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PREFACE

These notes were first written for a course on Algebraic Computing: Solving Systems of Poly-

nomial Equations, given in the Spring Semester of 1989 at the Free University of Berlin. They

were thoroughly revised following a similar course at the Courant Institute in the Spring of 1992.

Prerequisites are an undergraduate course in algebra and a graduate course in algorithmics.

I regard this course as an introduction to computer algebra. The subject matter (‘starting

from the Fundamental Theorem of Algebra’) is as classical as one gets in theoretical computer

science, and yet it is refreshingly contemporary in interest. This is because the complexity

viewpoint exposes many classical questions to new light. There is a common misunderstanding

that equates computational mathematics with numerical analysis. In fact, it seems to me that

the older name of “symbolic manipulation” given to our field arose as a direct contrast to

“numerical computation”. The preferred name today is “computer algebra”, although I feel

that “algorithmic algebra” gives a better emphasis to the fundamental nature of the subject.

In any case, computer algebra uses quite distinct techniques, and satisfies requirements distinct

from that in numerical analysis. In many areas of computer application (robotics, computer-

aided design, geometric modeling, etc) computer algebra is now recognized as an essential tool.

This is partly driven by the wide-spread availability of powerful computer work-stations, and

the rise of a new generation of computer algebra systems to take advantage of this computing

power.

The full spectrum of activity in computer algebra today covers many important areas that

we do not even give a hint of in these lectures: it ranges from more specialized topics such

as algorithmic integration theory, to implementation issues in computer algebra systems, to a

highly developed and beautiful complexity theory of algebraic problems, to problems in allied

application areas such as robot motion planning. Our material is necessarily selective, although

we feel that if one must cut one swath from the elementary into the deeper parts of the subject

in an introductory course, this is a choice cut. Historically, what we identified as “Fundamental

problems” in these lectures were clearly central to the development of algebra and even of

mathematics. There is an enormous amount of relevant classical literature on these fundamental

problems, in part a testimony to the strong algorithmic nature of mathematics before the

twentieth century. Even when restricted to this corpus of knowledge (classical, supplemented

by modern algorithmic development), my colleagues will surely notice important gaps. But I

hope they may still find this book useful as a launching point into their own favorite areas.

We have tried to keep the style of the book close to the lecture form in which this material

originally existed. Of course, we have considerably expanded on the lecture material. This

mainly consisted of the filling in of mathematical background: a well-equipped student may

skip this. The teacher could convey the central ideas quickly at the expense of generality, for

instance, by assuming that the rings under discussion are the “canonical examples” (Z and

F [X ]). One teaching plan is to choose a subset of the material in each Lecture Section of this

book for presentation in a 2-hour class (the typical length of class at Courant), with the rest

assigned for further reading.

I thank Frau Schottke from the Free University for her dedicated transcription of my original

hand-written notes into the computer.
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Lecture 0

INTRODUCTION

This lecture is an orientation on the central problems that concern us. Specifically, we identify three
families of “Fundamental Problems” in algorithmic algebra (§1 – §3). In the rest of the lecture (§4–
§9), we briefly discuss the complexity-theoretic background. §10 collects some common mathematical
terminology while §11 introduces computer algebra systems. The reader may prefer to skip §4-11
on a first reading, and only use them as a reference.

All our rings will contain unity which is denoted 1 (and distinct from 0). They
are commutative except in the case of matrix rings.

The main algebraic structures of interest are:

N = natural numbers 0, 1, 2, . . .
Z = integers
Q = rational numbers
R = reals
C = complex numbers
R[X] = polynomial ring in d ≥ 1 variables X = (X1, . . . , Xn)

with coefficients from a ring R.

Let R be any ring. For a univariate polynomial P ∈ R[X ], we let deg(P ) and lead(P ) denote its
degree and leading coefficient (or leading coefficient). If P = 0 then by definition, deg(P ) = −∞ and
lead(P ) = 0; otherwise deg(P ) ≥ 0 and lead(P ) 6= 0. We say P is a (respectively) integer, rational,
real or complex polynomial, depending on whether R is Z, Q, R or C.

In the course of this book, we will encounter other rings: (e.g., §I.1). With the exception of matrix
rings, all our rings are commutative. The basic algebra we assume can be obtained from classics
such as van der Waerden [22] or Zariski-Samuel [27, 28].

§1. Fundamental Problem of Algebra

Consider an integer polynomial

P (X) =

n
∑

i=0

aiX
i (ai ∈ Z, an 6= 0). (1)

Many of the oldest problems in mathematics stem from attempts to solve the equation

P (X) = 0, (2)

i.e., to find numbers α such that P (α) = 0. We call such an α a solution of equation (2); alterna-
tively, α is a root or zero of the polynomial P (X). By definition, an algebraic number is a zero of some
polynomial P ∈ Z[X ]. The Fundamental Theorem of Algebra states that every non-constant poly-
nomial P (X) ∈ C[X ] has a root α ∈ C. Put another way, C is algebraically closed. d’Alembert first
formulated this theorem in 1746 but Gauss gave the first complete proof in his 1799 doctoral thesis
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§1. Problem of Algebra Lecture 0 Page 2

at Helmstedt. It follows that there are n (not necessarily distinct) complex numbers α1, . . . , αn ∈ C

such that the polynomial in (1) is equal to

P (X) ≡ an

n
∏

i=1

(X − αi). (3)

To see this, suppose α1 is a root of P (X) as guaranteed by the Fundamental Theorem. Using the
synthetic division algorithm to divide P (X) by X − α1, we get

P (X) = Q1(X) · (X − α1) + β1

where Q1(X) is a polynomial of degree n − 1 with coefficients in C and β1 ∈ C. On substituting
X = α1, the left-hand side vanishes and the right-hand side becomes β1. Hence β1 = 0. If n = 1,
then Q1(X) = an and we are done. Otherwise, this argument can be repeated on Q1(X) to yield
equation (3).

The computational version of the Fundamental Theorem of Algebra is the problem of finding roots
of a univariate polynomial. We may dub this the Fundamental Problem of Computational Algebra
(or Fundamental Computational Problem of Algebra). The Fundamental Theorem is about complex
numbers. For our purposes, we slightly extend the context as follows. If R0 ⊆ R1 are rings, the
Fundamental Problem for the pair (R0, R1) is this:

Given P (X) ∈ R0[X ], solve the equation P (X) = 0 in R1.

We are mainly interested in cases where Z ⊆ R0 ⊆ R1 ⊆ C. The three main versions are where
(R0, R1) equals (Z, Z), (Z, R) and (Z, C), respectively. We call them the Diophantine, real and
complex versions (respectively) of the Fundamental Problem.

What does it mean “to solve P (X) = 0 in R1”? The most natural interpretation is that we want to
enumerate all the roots of P that lie in R1. Besides this enumeration interpretation, we consider two
other possibilities: the existential interpretation simply wants to know if P has a root in R1, and
the counting interpretation wants to know the number of such roots. To enumerate1 roots, we must
address the representation of these roots. For instance, we will study a representation via “isolating
intervals”.

Recall another classical version of the Fundamental Problem. Let R0 = Z and R1 denote the
complex subring comprising all those elements that can be obtained by applying a finite number of
field operations (ring operations plus division by non-zero) and taking nth roots (n ≥ 2), starting
from Z. This is the famous solution by radicals version of the Fundamental Problem. It is well known
that when deg P = 2, there is always a solution in R1. What if deg P > 2? This was a major question
of the 16th century, challenging the best mathematicians of its day. We now know that solution
by radicals exists for deg P = 3 (Tartaglia, 1499-1557) and deg P = 4 (variously ascribed to Ferrari
(1522-1565) or Bombelli (1579)). These methods were widely discussed, especially after they were
published by Cardan (1501-1576) in his classic Ars magna, “The Great Art”, (1545). This was the
algebra book until Descartes’ (1637) and Euler’s Algebra (1770). Abel (1824) (also Wantzel) show
that there is no solution by radicals for a general polynomial of degree 5. Ruffini had a prior though
incomplete proof. This kills the hope for a single formula which solves all quintic polynomials. This
still leaves open the possibility that for each quintic polynomial, there is a formula to extract its
roots. But it is not hard to dismiss this possibility: for example, an explicit quintic polynomial that

1There is possible confusion here: the word “enumerate” means to “count” as well as to “list by name”. Since we
are interested in both meanings here, we have to appropriate the word “enumerate” for only one of these two senses.
In this book, we try to use it only in the latter sense.
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does not admit solution by radicals is P (X) = X5 − 16X + 2 (see [3, p.574]). Miller and Landau
[12] (also [26]) revisits these question from a complexity viewpoint. The above historical comments
may be pursued more fully in, for example, Struik’s volume [21].

Remarks:. The Fundamental Problem of algebra used to come under the rubric “theory of equa-
tions”, which nowadays is absorbed into other areas of mathematics. In these lectures, we are
interested in general and effective methods, and we are mainly interested in real solutions.

§2. Fundamental Problem of Classical Algebraic Geometry

To generalize the Fundamental Problem of algebra, we continue to fix two rings, Z ⊆ R0 ⊆ R1 ⊆ C.
First consider a bivariate polynomial

P (X, Y ) ∈ R0[X, Y ]. (4)

Let Zero(P ) denote the set of R1-solutions of the equation P = 0, i.e., (α, β) ∈ R2
1 such that

P (α, β) = 0. The zero set Zero(P ) of P is generally an infinite set. In case R1 = R, the set
Zero(P ) is a planar curve that can be plotted and visualized. Just as solutions to equation (2) are
called algebraic numbers, the zero sets of bivariate integer polynomials are called algebraic curves.
But there is no reason to stop at two variables. For d ≥ 3 variables, the zero set of an integer
polynomial in d variables is called an algebraic hypersurface: we reserve the term surface for the
special case d = 3.

Given two surfaces defined by the equations P (X, Y, Z) = 0 and Q(X, Y, Z) = 0, their intersection
is generally a curvilinear set of triples (α, β, γ) ∈ R3

1, consisting of all simultaneous solutions to the
pair of simultaneous equations P = 0, Q = 0. We may extend our previous notation and write
Zero(P, Q) for this intersection. More generally, we want the simultaneous solutions to a system of
m ≥ 1 polynomial equations in d ≥ 1 variables:

P1 = 0
P2 = 0

...
Pm = 0



















(where Pi ∈ R0[X1, . . . , Xd]) (5)

A point (α1, . . . , αd) ∈ Rd
1 is called a solution of the system of equations (5) or a zero of the set

{P1, . . . , Pm} provided Pi(α1, . . . , αd) = 0 for i = 1, . . . , m. In general, for any subset J ⊆ R0[X],
let Zero(J) ⊆ Rd

1 denote the zero set of J . To denote the dependence on R1, we may also write
ZeroR1

(J). If R1 is a field, we also call a zero set an algebraic set. Since the primary objects
of study in classical algebraic geometry are algebraic sets, we may call the problem of solving the
system (5) the Fundamental (Computational) Problem of classical algebraic geometry. If each Pi is
linear in (5), we are looking at a system of linear equations. One might call this is the Fundamental
(Computational) Problem of linear algebra. Of course, linear systems are well understood, and their
solution technique will form the basis for solving nonlinear systems.

Again, we have three natural meanings to the expression “solving the system of equations (5) in R1”:
(i) The existential interpretation asks if Zero(P1, . . . , Pm) is empty. (ii) The counting interpretation
asks for the cardinality of the zero set. In case the cardinality is “infinity”, we could refine the
question by asking for the dimension of the zero set. (iii) Finally, the enumeration interpretation
poses no problems when there are only finitely many solutions. This is because the coordinates of
these solutions turn out to be algebraic numbers and so they could be explicitly enumerated. It
becomes problematic when the zero set is infinite. Luckily, when R1 = R or C, such zero sets are
well-behaved topologically, and each zero set consists of a finite number of connected components.
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(For that matter, the counting interpretation can be re-interpreted to mean counting the number
of components of each dimension.) A typical interpretation of “enumeration” is “give at least one
sample point from each connected component”. For real planar curves, this interpretation is useful
for plotting the curve since the usual method is to “trace” each component by starting from any
point in the component.

Note that we have moved from algebra (numbers) to geometry (curves and surfaces). In recognition
of this, we adopt the geometric language of “points and space”. The set Rd

1 (d-fold Cartesian product
of R1) is called the d-dimensional affine space of R1, denoted Ad(R1). Elements of Ad(R1) are called
d-points or simply points. Our zero sets are subsets of this affine space Ad(R1). In fact, Ad(R1) can
be given a topology (the Zariski topology) in which zero sets are the closed sets.

There are classical techniques via elimination theory for solving these Fundamental Problems. The
recent years has seen a revival of these techniques as well as major advances. In one line of work,
Wu Wen-tsun exploited Ritt’s idea of characteristic sets to give new methods for solving (5) rather
efficiently in the complex case, R1 = C. These methods turn out to be useful for proving theorems
in elementary geometry as well [25]. But many applications are confined to the real case (R1 = R).
Unfortunately, it is a general phenomenon that real algebraic sets do not behave as regularly as
the corresponding complex ones. This is already evident in the univariate case: the Fundamental
Theorem of Algebra fails for real solutions. In view of this, most mathematical literature treats the
complex case. More generally, they apply to any algebraically closed field. There is now a growing
body of results for real algebraic sets.

Another step traditionally taken to “regularize” algebraic sets is to consider projective sets, which
abolish the distinction between finite and infinite points. A projective d-dimensional point is simply
an equivalence class of the set Ad+1(R1)\{(0, . . . , 0)}, where two non-zero (d+1)-points are equivalent
if one is a constant multiple of the other. We use Pd(R1) to denote the d-dimensional projective
space of R1.

Semialgebraic sets. The real case admits a generalization of the system (5). We can view (5) as
a conjunction of basic predicates of the form “Pi = 0”:

(P1 = 0) ∧ (P2 = 0) ∧ · · · ∧ (Pm = 0).

We generalize this to an arbitrary Boolean combination of basic predicates, where a basic predicate
now has the form (P = 0) or (P > 0) or (P ≥ 0). For instance,

((P = 0) ∧ (Q > 0)) ∨ ¬(R ≥ 0)

is a Boolean combination of three basic predicates where P, Q, R are polynomials. The set of real
solutions to such a predicate is called a semi-algebraic set (or a Tarski set). We have effective
methods of computing semi-algebraic sets, thanks to the pioneering work of Tarski and Collins [7].
Recent work by various researchers have reduced the complexity of these algorithms from double
exponential time to single exponential space [15]. This survey also describes to applications of semi-
algebraic in algorithmic robotics, solid modeling and geometric theorem proving. Recent books on
real algebraic sets include [4, 2, 10].

§3. Fundamental Problem of Ideal Theory

Algebraic sets are basically geometric objects: witness the language of “space, points, curves, sur-
faces”. Now we switch from the geometric viewpoint (back!) to an algebraic one. One of the beauties
of this subject is this interplay between geometry and algebra.
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Fix Z ⊆ R0 ⊆ R1 ⊆ C as before. A polynomial P (X) ∈ R0[X] is said to vanish on a subset
U ⊆ Ad(R1) if for all a ∈ U , P (a) = 0. Define

Ideal(U) ⊆ R0[X]

to comprise all polynomials P ∈ R0[X] that vanish on U . The set Ideal(U) is an ideal. Recall that
a non-empty subset J ⊆ R of a ring R is an ideal if it satisfies the properties

1. a, b ∈ J ⇒ a− b ∈ J

2. c ∈ R, a ∈ J ⇒ ca ∈ J.

For any a1, . . . , am ∈ R and R′ ⊇ R, the set (a1, . . . , am)R′ defined by

(a1, . . . , am)R′ :={
m
∑

i=1

aibi : b1, . . . , bm ∈ R′}

is an ideal, the ideal generated by a1, . . . , am in R′. We usually omit the subscript R′ if this is
understood.

The Fundamental Problem of classical algebraic geometry (see Equation (5)) can be viewed as com-
puting (some characteristic property of) the zero set defined by the input polynomials P1, . . . , Pm.
But note that

Zero(P1, . . . , Pm) = Zero(I)

where I is the ideal generated by P1, . . . , Pm. Hence we might as well assume that the input to the
Fundamental Problem is the ideal I (represented by a set of generators). This suggests that we view
ideals to be the algebraic analogue of zero sets. We may then ask for the algebraic analogue of the
Fundamental Problem of classical algebraic geometry. A naive answer is that, “given P1, . . . , Pm, to
enumerate the set (P1, . . . , Pm)”. Of course, this is impossible. But we effectively “know” a set S
if, for any purported member x, we can decisively say whether or not x is a member of S. Thus we
reformulate the enumerative problem as the Ideal Membership Problem:

Given P0, P1, . . . , Pm ∈ R0[X], is P0 in (P1, . . . , Pm)?

Where does R1 come in? Well, the ideal (P1, . . . , Pm) is assumed to be generated in R1[X]. We shall
introduce effective methods to solve this problem. The technique of Gröbner bases (as popularized
by Buchberger) is notable. There is strong historical basis for our claim that the ideal membership
problem is fundamental: van der Waerden [22, vol. 2, p. 159] calls it the “main problem of ideal
theory in polynomial rings”. Macaulay in the introduction to his 1916 monograph [14] states that
the “object of the algebraic theory [of ideals] is to discover those general properties of [an ideal]
which will afford a means of answering the question whether a given polynomial is a member of a
given [ideal] or not”.

How general are the ideals of the form (P1, . . . , Pm)? The only ideals that might not be of this form
are those that cannot be generated by a finite number of polynomials. The answer is provided by
what is perhaps the starting point of modern algebraic geometry: the Hilbert!Basis Theore. A ring
R is called Noetherian if all its ideals are finitely generated. For example, if R is a field, then it
is Noetherian since its only ideals are (0) and (1). The Hilbert Basis Theorem says that R[X] is
Noetherian if R is Noetherian. This theorem is crucial2 from a constructive viewpoint: it assures us
that although ideals are potentially infinite sets, they are finitely describable.

2The paradox is, many view the original proof of this theorem as initiating the modern tendencies toward non-
constructive proof methods.
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We now have a mapping
U 7→ Ideal(U) (6)

from subsets of Ad(R1) to the ideals of R0[X], and conversely a mapping

J 7→ Zero(J) (7)

from subsets of R0[X] to algebraic sets of Ad(R1). It is not hard to see that

J ⊆ Ideal(Zero(J)), U ⊆ Zero(Ideal(U)) (8)

for all subsets J ⊆ R0[X] and U ⊆ Ad(R1). Two other basic identities are:

Zero(Ideal(Zero(J))) = Zero(J), J ⊆ R0[X],

Ideal(Zero(Ideal(U))) = Ideal(U), U ⊆ Ad(R1), (9)

We prove the first equality: If a ∈ Zero(J) then for all P ∈ Ideal(Zero(J)), P (a) = 0. Hence
a ∈ Zero(Ideal(Zero(J)). Conversely, if a ∈ Zero(Ideal(Zero(J)) then P (a) = 0 for all
P ∈ Ideal(Zero(J)). But since J ⊆ Ideal(Zero(J)), this means that P (a) = 0 for all P ∈ J .
Hence a ∈ Zero(J). The second equality (9) is left as an exercise.

If we restrict the domain of the map in (6) to algebraic sets and the domain of the map in (7)
to ideals, would these two maps be inverses of each other? The answer is no, based on a simple
observation: An ideal I is called radical if for all integers n ≥ 1, Pn ∈ I implies P ∈ I. It is not hard
to check that Ideal(U) is radical. On the other hand, the ideal (X2) ∈ Z[X ] is clearly non-radical.

It turns out that if we restrict the ideals to radical ideals, then Ideal(·) and Zero(·) would be
inverses of each other. This is captured in the Hilbert Nullstellensatz (or, Hilbert’s Zero Theorem
in English). After the Basis Theorem, this is perhaps the next fundamental theorem of algebraic
geometry. It states that if P vanishes on the zero set of an ideal I then some power Pn of P belongs
to I. As a consequence,

I = Ideal(Zero(I))⇔ I is radical.

In proof: Clearly the left-hand side implies I is radical. Conversely, if I is radical, it suffices to show
that Ideal(Zero(I)) ⊆ I. Say P ∈ Ideal(Zero(I)). Then the Nullstellensatz implies Pn ∈ I for
some n. Hence P ∈ I since I is radical, completing our proof.

We now have a bijective correspondence between algebraic sets and radical ideals. This implies that
ideals in general carry more information than algebraic sets. For instance, the ideals (X) and (X2)
have the same zero set, viz., X = 0. But the unique zero of (X2) has multiplicity 2.

The ideal-theoretic approach (often attached to the name of E. Noether) characterizes the transition
from classical to “modern” algebraic geometry. “Post-modern” algebraic geometry has gone on to
more abstract objects such as schemes. Not much constructive questions are raised at this level,
perhaps because the abstract questions are hard enough. The reader interested in the profound
transformation that algebraic geometry has undergone over the centuries may consult Dieudonné
[9] who described the subject in “seven epochs”. The current challenge for constructive algebraic
geometry appears to be at the levels of classical algebraic geometry and at the ideal-theoretic level.
For instance, Brownawell [6]and others have recently given us effective versions of classical results
such as the Hilbert Nullstellensatz. Such results yields complexity bounds that are necessary for
efficient algorithms (see Exercise).

This concludes our orientation to the central problems that motivates this book. This exercise is
pedagogically useful for simplifying the algebraic-geometric landscape for students. However, the
richness of this subject and its complex historical development ensures that, in the opinion of some
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experts, we have made gross oversimplifications. Perhaps an account similar to what we presented
is too much to hope for – we have to leave this to the professional historians to tell us the full
story. In any case, having selected our core material, the rest of the book will attempt to treat and
view it through the lens of computational complexity theory. The remaining sections of this lecture
addresses this.

Exercises

Exercise 3.1: Show relation (8), and relation (9). 2

Exercise 3.2: Show that the ideal membership problem is polynomial-time equivalent to the prob-
lem of checking if two sets of elements generate the same ideal: Is (a1, . . . , am) = (b1, . . . , bn)?
[Two problems are polynomial-time equivalent if one can be reduced to the other in polynomial-
time and vice-versa.] 2

Exercise 3.3*: a) Given P0, P1, . . . , Pm ∈ Q[X1, . . . , Xd], where these polynomials have degree at
most n, there is a known double exponential bound B(d, n) such that if P0 ∈ (P1, . . . , Pm)
there there exists polynomials Q1, . . . , Qm of degree at most B(d, n) such that

P0 = P1Q1 + · · ·+ PmQm.

Note that B(d, n) does not depend on m. Use this fact to construct a double exponential time
algorithm for ideal membership.
b) Does the bound B(d, n) translate into a corresponding bound for Z[X1, . . . , Xd]? 2

§4. Representation and Size

We switch from mathematics to computer science. To investigate the computational complexity of
the Fundamental Problems, we need tools from complexity theory. The complexity of a problem is
a function of some size measure on its input instances. The size of a problem instance depends on
its representation.

Here we describe the representation of some basic objects that we compute with. For each class of
objects, we choose a notion of “size”.

Integers: Each integer n ∈ Z is given the binary notation and has (bit-)size

size(n) = 1 + ⌈log(|n|+ 1)⌉

where logarithms are always base 2 unless otherwise stated. The term “1 + . . .′′ takes care of
the sign-bit.

Rationals: Each rational number p/q ∈ Q is represented as a pair of integers with q > 0. We do not
assume the reduced form of a rational number. The (bit-)size is given by

size

(

p

q

)

= size(p) + size(q) + log(size(p))

where the “ + log(size(p))′′ term indicates the separation between the two integers.
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Matrices: The default is the dense representation of matrices so that zero entries must be explicitly
represented. An m× n matrix M = (aij) has (bit-)size

size(M) =

m
∑

i=1

n
∑

j=1

(size(aij) + log(size(aij)))

where the “+log(size(aij))
′′ term allows each entry of M to indicate its own bits (this is some-

times called the “self-limiting” encoding). Alternatively, a simpler but less efficient encoding
is to essentially double the number of bits

size(M) =

m
∑

i=1

n
∑

j=1

(2 + 2size(aij)) .

This encoding replaces each 0 by “00” and each 1 by “11”, and introduces a separator sequence
“01” between consecutive entries.

Polynomials: The default is the dense representation of polynomials. So a degree-n univariate poly-
nomial is represented as a (n + 1)-tuple of its coefficients – and the size of the (n + 1)-tuple is
already covered by the above size consideration for matrices. (bit-)size

Other representations (especially of multivariate polynomials) can be more involved. In con-
trast to dense representations, sparse representations refer to sparse representation those whose
sizes grow linearly with the number of non-zero terms of a polynomial. In general, such compact
representations greatly increase (not decrease!) the computational complexity of problems. For
instance, Plaisted [16, 17] has shown that deciding if two sparse univariate integer polynomials
are relatively prime is NP -hard. In contrast, this problem is polynomial-time solvable in in
the dense representation (Lecture II).

Ideals: Usually, ‘ideals’ refer to polynomial ideals. An ideal I is represented by any finite set
{P1, . . . , Pn} of elements that generate it: I = (P1, . . . , Pn). The size of this representa-
tion just the sum of the sizes of the generators. Clearly, the representation of an ideal is far
from unique.

The representations and sizes of other algebraic objects (such as algebraic numbers) will be discussed
as they arise.

§5. Computational Models

We briefly review four models of computation: Turing machines, Boolean circuits, algebraic programs
and random access machines. With each model, we will note some natural complexity measures
(time, space, size, etc), including their correspondences across models. We will be quite informal
since many of our assertions about these models will be (with some coaching) self-evident. A
reference for machine models is Aho, Hopcroft and Ullman [1]. For a more comprehensive treatment
of the algebraic model, see Borodin and Munro [5]; for the Boolean model, see Wegener [24].

I. Turing machine model. The Turing (machine) model is embodied in the multitape Turing
machine, in which inputs are represented by a binary string. Our representation of objects and
definition of sizes in the last section are especially appropriate for this model of computation. The
machine is essentially a finite state automaton (called its finite state control) equipped with a finite
set of doubly-infinite tapes, including a distinguished input tape Each tape is divided into cells
indexed by the integers. Each cell contains a symbol from a finite alphabet. Each tape has a head
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which scans some cell at any moment. A Turing machine may operate in a variety of computational
modes such as deterministic, nondeterministic or randomized; and in addition, the machine can be
generalized from sequential to parallel modes in many ways. We mostly assume the deterministic-
sequential mode in this book. In this case, a Turing machine operates according to the specification
of its finite state control: in each step, depending on the current state and the symbols being scanned
under each tape head, the transition table specifies the next state, modifies the symbols under each
head and moves each head to a neighboring cell. The main complexity measures in the Turing
model are time (the number of steps in a computation), space (the number of cells used during a
computation) and reversal (the number of times a tape head reverses its direction).

II. Boolean circuit model. This model is based on Boolean circuits. A Boolean circuit is a
directed acyclic finite graph whose nodes are classified as either input nodes or gates. The input
nodes have in-degree 0 and are labeled by an input variable; gates are labeled by Boolean functions
with in-degree equal to the arity of the label. The set of Boolean functions which can be used as
gate labels is called the basis!of computational models of the model. In this book, we may take the
basis to be the set of Boolean functions of at most two inputs. We also assume no á priori bound
on the out-degree of a gate. The three main complexity measures here are circuit size (the number
of gates), circuit depth (the longest path) and circuit width (roughly, the largest antichain).

A circuit can only compute a function on a fixed number of Boolean inputs. Hence to compare the
Boolean circuit model to the Turing machine model, we need to consider a circuit family, which is
an infinite sequence (C0, C1, C2, . . .) of circuits, one for each input size. Because there is no a priori
connection between the circuits in a circuit family, we call such a family non-uniform. non-uniform.
For this reason, we call Boolean circuits a “non-uniform model” as opposed to Turing machines
which is “uniform”. Circuit size can be identified with time on the Turing machine. Circuit depth is
more subtle, but it can (following Jia-wei Hong be identified with “reversals” on Turing machines.

It turns out that the Boolean complexity of any problem is at most 2n/n (see [24]). Clearly this
is a severe restriction on the generality of the model. But it is possible to make Boolean circuit
families “uniform” in several ways and the actual choice is usually not critical. For instance, we
may require that there is a Turing machine using logarithmic space that, on input n in binary,
constructs the (encoded) nth circuit of the circuit family. The resulting uniform Boolean complexity
is now polynomially related to Turing complexity. Still, the non-uniform model suffices for many
applications (see §8), and that is what we will use in this book.

Encodings and bit models. The previous two models are called bit models because mathematical
objects must first be encoded as binary strings before they can be used on these two models. The
issue of encoding may be quite significant. But we may get around this by assuming standard
conventions such as binary encoding of numbers, list representation of sets, etc. In algorithmic
algebra, it is sometimes useful to avoid encodings by incorporating the relevant algebraic structures
directly into the computational model. This leads us to our next model.

III. Algebraic program models. In algebraic programs, we must fix some algebraic structures
(such as Z, polynomials or matrices over a ring R) and specify a set of primitive algebraic operations
called the basis!of computational models of the model. Usually the basis includes the ring opera-
tions (+,−,×), possibly supplemented by other operations appropriate to the underlying algebraic
structure. A common supplement is some form of root finding (e.g., multiplicative inverse, radical
extraction or general root extraction), and GCD. The algebraic program model is thus a class of
models based on different algebraic structures and different bases.

c© Chee-Keng Yap March 6, 2000



§5. Models Lecture 0 Page 10

An algebraic program is defined to be a rooted ordered tree T where each node represents either an
assignment step of the form

V ← F (V1, . . . , Vk),

or a branch step of the form
F (V1, . . . , Vk) : 0.

Here, F is a k-ary operation in the basis and each Vi is either an input variable, a constant or a
variable that has been assigned a value further up the tree. The out-degree of an assignment node
is 1; the out-degree of a branch node is 2, corresponding to the outcomes F (V1, . . . , Vk) = 0 and
F (V1, . . . , Vk) 6= 0, respectively. If the underlying algebraic structure is real, the branch steps can
be extended to a 3-way branch, corresponding to F (V1, . . . , Vk) < 0, = 0 or > 0. At the leaves of T ,
we fix some convention for specifying the output.

The input size is just the number of input variables. The main complexity measure studied with
this model is time, the length of the longest path in T . Note that we charge a unit cost to each
basic operation. This could easily be generalized. For instance, a multiplication step in which one of
the operands is a constant (i.e., does not depend on the input parameters) may be charged nothing.
This originated with Ostrowski who wrote one of the first papers in algebraic complexity.

Like Boolean circuits, this model is non-uniform because each algebraic program solves problems of
a fixed size. Again, we introduce the algebraic program family which is an infinite set of algebraic
programs, one for each input size.

When an algebraic program has no branch steps, it is called a straight-line program. To see that in
general we need branching, consider algebraic programs to compute the GCD (see Exercise below).

IV. RAM model. Finally, consider the random access machine model of computation. Each
RAM is defined by a finite set of instructions, rather as in assembly languages. These instructions
make reference to operands called registers Each register can hold an arbitrarily large integer and
is indexed by a natural number. If n is a natural number, we can denote its contents by 〈n〉. Thus
〈〈n〉〉 refers to the contents of the register whose index is 〈n〉. In addition to the usual registers, there
is an unindexed register called the accumulator in which all computations are done (so to speak).
The RAM instruction sets can be defined variously and have the simple format

INSTRUCTION OPERAND

where OPERAND is either n or 〈n〉 and n is the index of a register. We call the operand direct
or indirect depending on whether we have n or 〈n〉. We have five RAM instructions: a STORE
and LOAD instruction (to put the contents of the accumulator to register n and vice-versa), a
TEST instruction (to skip the next instruction if 〈n〉 is zero) and a SUCC operation (to add one
to the content of the accumulator). For example, ‘LOAD 5’ instructs the RAM to put 〈5〉 into the
accumulator; but ‘LOAD 〈5〉’ puts 〈〈5〉〉 into the accumulator; ‘TEST 3’ causes the next instruction
to be skipped if 〈3〉 = 0; ‘SUCC’ will increment the accumulator content by one. There are two
main models of time-complexity for RAM models: in the unit cost model, each executed instruction
is charged 1 unit of time. In contrast, the logarithmic cost model, charges ⌈lg(|n|+ |〈n〉|)⌉ whenever
a register n is accessed. Note that an instruction accesses one or two registers, depending on
whether the operand is direct or indirect. It is known that the logarithmic cost RAM is within
a quadratic factor of the Turing time complexity. The above RAM model is called the successor
RAM to distinguish it from other variants, which we now briefly note. More powerful arithmetic
operations (ADDITION, SUBTRACTION and even MULTIPLICATION) are sometimes included
in the instruction set. Schönhage describes an even simpler RAM model than the above model,
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essentially by making the operand of each of the above instructions implicit. He shows that this
simple model is real-time equivalent to the above one.

Exercises

Exercise 5.1:

(a) Describe an algebraic program for computing the GCD of two integers. (Hint: implement
the Euclidean algorithm. Note that the input size is 2 and this computation tree must be
infinite although it halts for all inputs.)
(b) Show that the integer GCD cannot be computed by a straight-line program.
(c) Describe an algebraic program for computing the GCD of two rational polynomials P (X) =
∑n

i=0 aiX
i and Q(X) =

∑m
i=0 biX

i. The input variables are a0, a1, . . . , an, b0, . . . , bm, so the
input size is n + m + 2. The output is the set of coefficients of GCD(P, Q). 2

§6. Asymptotic Notations

Once a computational model is chosen, there are additional decisions to make before we get a
“complexity model”. This book emphasizes mainly the worst case time measure in each of our
computational models. To each machine or program A in our computational model, this associates
a function TA(n) that specifies the worst case number of time steps used by A, over all inputs of
size n. Call TA(n) the complexity of A. Abstractly, we may define a complexity model to comprise
a computational model together with an associated complexity function TA(n) for each A. The
complexity models in this book are: Turing complexity model, Boolean complexity model, algebraic
complexity model, and RAM complexity model. For instance, the Turing complexity model refers to
the worst-case time complexity of Turing machines. “Algebraic complexity model” is a generic term
that, in any specific instance, must be instantiated by some choice of algebraic structure and basis
operations.

We intend to distinguish complexity functions up to constant multiplicative factors and up to their
eventual behavior. To facilitate this, we introduce some important concepts.

Definition 1 A complexity function is a real partial function f : R → R ∪ {∞} such that f(x) is
defined for all sufficiently large natural numbers x ∈ N. Moreover, for sufficiently large x, f(x) ≥ 0
whenever x is defined.

If f(x) is undefined, we write f(x) ↑, and this is to be distinguished from the case f(x) =∞. Note
that we require that f(x) be eventually non-negative. We often use familiar partial functions such
as log x and 2x as complexity functions, even though we are mainly interested in their values at N.
Note that if f, g are complexity functions then so are

f + g, fg, fg, f ◦ g

where in the last case, we need to assume that (f ◦ g)(x) = f(g(x)) is defined for sufficiently large
x ∈ N.

The big-Oh notation. Let f, g be complexity functions. We say f dominates g if f(x) ≥ g(x) for
all sufficiently large x, and provided f(x), g(x) are both defined. By “sufficiently large x” or “large
enough x” we mean “for all x ≥ x0” where x0 is some unspecified constant.

c© Chee-Keng Yap March 6, 2000



§6. Asymptotic Notations Lecture 0 Page 12

The big-Oh notationasymptotic notation!big-Oh is the most famous member of a family of asymptotic
notations. The prototypical use of this notation goes as follows. We say f is big-Oh of g (or, f is
order of g) and write

f = O(g) (10)

if there is a constant C > 0 such that C · g(x) dominates f(x). As examples of usage, f(x) = O(1)
(respectively, f(x) = xO(1)) means that f(x) is eventually bounded by some constant (respectively,
by some polynomial). Or again, n log n = O(n2) and 1/n = O(1) are both true.

Our definition in Equation (10) gives a very specific formula for using the big-Oh notation. We now
describe an extension. Recursively define O-expressions as follows. Basis: If g is a symbol for a
complexity function, then g is an O-expression. Induction: If Ei (i = 1, 2) are O-expressions, then
so are

O(E1), E1 ± E2, E1E2, EE2

1 , E1 ◦ E2.

Each O-expression denotes a set of complexity functions. Basis: The O-expression g denotes the
singleton set {g} where g is the function denoted by g. Induction: If Ei denotes the set of complexity
functions Ei then the O-expression O(E1) denotes the set of complexity functions f such that there
is some g ∈ E1 and C > 0 and f is dominated by Cg. The expression E1 + E2 denotes the set of
functions of the form f1 + f2 where fi ∈ Ei. Similarly for E1E2 (product), EE2

1 (exponentiation)
and E1 ◦ E2 (function composition). Finally, we use these O-expressions to assert the containment
relationship: we write

E1 = E2,

to mean E1 ⊆ E2. Clearly, the equality symbol in this context is asymmetric. In actual usage, we
take the usual license of confusing a function symbol g with the function g that it denotes. Likewise,
we confuse the concept of an O-expression with the set of functions it denotes. By convention, the
expressions ‘c’ (c ∈ R) and ‘n’ denote (respectively) the constant function c and the identity function.
Then ‘n2’ and ‘log n’ are O-expressions denoting the (singleton set containing the) square function
and logarithm function. Other examples of O-expressions: 2n+O(log n), O(O(n)log n+nO(n) log log n),
f(n)◦O(n log n). Of course, all these conventions depends on fixing ‘n’ as the distinguished variable.
Note that 1 + O(1/n) and 1 − O(1/n) are different O-expressions because of our insistence that
complexity functions are eventually non-negative.

The subscripting convention. There is another useful way to extend the basic formulation of
Equation (10): instead of viewing its right-hand side “O(g)” as denoting a set of functions (and
hence the equality sign as set membership ‘∈’ or set inclusion ‘⊆’), we can view it as denoting some
particular function C · g that dominates f . The big-Oh notation in this view is just a convenient
way of hiding the constant ‘C’ (it saves us the trouble of inventing a symbol for this constant).
In this case, the equality sign is interpreted as the “dominated by” relation, which explains the
tendency of some to write ‘≤’ instead of the equality sign. Usually, the need for this interpretation
arises because we want to obliquely refer to the implicit constant. For instance, we may want to
indicate that the implicit constants in two occurrences of the same O-expression are really the same.
To achieve this cross reference, we use a subscripting convention: we can attach a subscript or
subscripts to the O, and this particularizes that O-expression to refer to some fixed function. Two
identical O-expressions with identical subscripts refer to the same implicit constants. By choosing
the subscripts judiciously, this notation can be quite effective. For instance, instead of inventing a
function symbol TA(n) = O(n) to denote the running time of a linear-time algorithm A, we may
simply use the subscripted expression “OA(n)”; subsequent use of this expression will refer to the
same function. Another simple illustration is “O3(n) = O1(n) + O2(n)”: the sum of two linear
functions is linear, with different implicit constant for each subscript.
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Related asymptotic notations. We say f is big-Omega of g and write

f(n) = Ω(g(n))

if there exists a real C > 0 such that f(x) dominates C · g(x). We say f is Theta of g and write

f(n) = Θ(g(n))

if f = O(g) and f = Ω(g). We normally distinguish complexity functions up to Theta-order. We
say f is small-oh of g and write

f(n) = o(g(n))

if f(n)/g(n)→ 0 as n→∞. We say f is small-omega of g and write

f(n) = ω(g(n))

if f(n)/g(n)→∞ as n→∞. We write
f ∼ g

if f = g[1± o(1)]. For instance, n + log n ∼ n but not n + log n ∼ 2n.

These notations can be extended as in the case of the big-Oh notation. The semantics of mixing
these notations are less obvious and is, in any case, not needed.

§7. Complexity of Multiplication

We introduce three “intrinsic” complexity functions,

MB(n), MA(n), MM(n)

related to multiplication in various domains under various complexity models. These functions are
useful in bounding other complexity functions. This leads to a discussion of intrinsic complexity.

Complexity of multiplication. Let us first fix the model of computation to be the multitape
Turing machine. We are interested in the intrinsic Turing complexity TP of a computational problem
P , namely the intrinsic (time) cost of solving P on the Turing machine model. Intuitively, we expect
TP = TP (n) to be a complexity function, corresponding to the “optimal” Turing machine for P .
If there is no optimal Turing machine, this is problematic – – see below for a proper treatment of
this. If P is the problem of multiplying two binary integers, then the fundamental quantity TP (n)
appears in the complexity bounds of many other problems, and is given the special notation

MB(n)

in this book. For now, we will assume that MB(n) is a complexity function. The best upper bound
for MB(n) is

MB(n) = O(n log n log log n), (11)

from a celebrated result [20] of Schönhage and Strassen (1971). To simplify our display of such
bounds (cf. [18, 13]), we write Lk(n) (k ≥ 1) to denote some fixed but non-specific function f(n)
that satisfies

f(n)

logk n
= o(log n).
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If k = 1, the superscript in L1(n) is omitted. In this notation, equation (11) simplifies to

MB(n) = nL(n).

Note that we need not explicitly write the big-Oh here since this is implied by the L(n) notation.
Schönhage [19] (cf. [11, p. 295]) has shown that the complexity of integer multiplication takes a
simpler form with alternative computational models (see §6): A successor RAM can multiply two
n-bit integers in O(n) time under the unit cost model, and in O(n log n) time in the logarithmic cost
model.

Next we introduce the algebraic complexity of multiplying two degree n polynomials, denoted

MA(n).

The basis (§6) for our algebraic programs is comprised of the ring operations of R, where the
polynomials are from R[X ]. Trivially, MA(n) = O(n2) but Lecture I will show that

MA(n) = O(n log n).

Finally, we introduce the algebraic complexity of multiplying two n × n matrices. We assume the
basis is comprised of the ring operations of a ring R, where the matrix entries come from R. This
is another fundamental quantity which will be denoted by

MM(n)

in this book. Clearly MM(n) = O(n3) but a celebrated result of Strassen (1968) shows that this is
suboptimal. The current record (see Lecture I) is

MM(n) = O(n2.376). (12)

On Intrinsic Complexity.

The notation “MB(n)” is not rigorous when naively interpreted as a complexity function. Let
us see why. More generally, let us fix a complexity model M : this means we fix a computational
model (Turing machines, RAM, etc) and associate a complexity function TA(n) to each program
A in M as in §7. But complexity theory really begins when we associate an intrinsic complexity
function TP (n) with each computational problem P . Thus, MB(n) is the intrinsic complexity
function for the problem of multiplying two binary integers in the standard (worst-case time)
Turing complexity model. But how shall we define TP (n)?

First of all, we need to clarify the concept of a “computational problem”. One way is to
introduce a logical language for specifying problems. But for our purposes, we will simply
identify a computational problem P with a set of programs in model M . The set P comprises
those programs in M that is said to “solve” the problem. For instance, the integer multiplication
problem is identified with the set Pmult of all Turing machines that, started with m#n on
the input tape, eventually halts with the product mn on the output tape (where n is the
binary representation of n ∈ N). If P is a problem and A ∈ P , we say A solves P or A is
an algorithm for P . A complexity function f(n) is an upper boundintrinsic complexity!upper
bound on the problem P if there is an algorithm A for P such that f(n) dominates TA(n). If,
for every algorithm A for P , TA(n) dominates f(n), then we call f(n) a lower boundintrinsic
complexity!lower bound on the problem P .

Let UP be the set of upper bounds on P . Notice that there exists a unique complexity function
ℓP (n) such that ℓP (n) is a lower bound on P and for any other lower bound f(n) on P , ℓP (n)
dominates f(n). To see this, define for each n, ℓP (n) := inf{f(n) : f ∈ UP }. On the other hand,
there may not exist T (n) in UP that is dominated by all other functions in UP ; if T (n) exists,
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it would (up to co-domination) be equal to ℓP (n). In this case, we may call ℓP (n) = T (n) the
intrinsic complexity TP (n) of P . To resolve the case of the “missing intrinsic complexity”, we
generalize our concept of a function: An intrinsic (complexity) function is intrinsic (complexity)
function any non-empty family U of complexity functions that is closed under domination, i.e., if
f ∈ U and g dominates f then g ∈ U . The set UP of upper bounds of P is an intrinsic function:
we identify this as the intrinsic complexity TP of P . A subset V ⊆ U is called a generating
set of U if every f ∈ U dominates some g ∈ V . We say U is principal if U has a generating
set consisting of one function f0; in this case, we call f0 a generator of U . If f is a complexity
function, we will identify f with the principal intrinsic function with f as a generator. Note
that in non-uniform computational models, the intrinsic complexity of any problem is principal.

Let U, T be intrinsic functions. We extend the standard terminology for ordinary complexity
functions to intrinsic functions. Thus

U + T, UT, U
T
, U ◦ T (13)

denote intrinsic functions in the natural way. For instance, U +T denotes the intrinsic function
generated by the set of functions of the form u + t where u ∈ U and t ∈ T . We say U is big-Oh
of T , written

U = O(T ),

if there exists u ∈ U such that for all t ∈ T , we have u = O(t) in the usual sense. The reader
should test these definitions by interpreting MB(n), etc, as intrinsic functions (e.g., see (14) in
§9). Basically, these definitions allow us to continue to talk about intrinsic functions rather like
ordinary complexity functions, provided we know how to interpret them. Similarly, we say U is
big-Omega of T , written U = Ω(T ), if for all u ∈ U , there exists t ∈ T such that u = Ω(t). We
say U is Theta of T , written U = Θ(T ), if U = O(T ) and U = Ω(T ).

Complexity Classes. Corresponding to each computational model, we have complexity classes
of problems. Each complexity class is usually characterized by a complexity model (worst-case time,
randomized space, etc) and a set of complexity bounds (polynomial, etc). The class of problems that
can be solved in polynomial time on a Turing machine is usually denoted P : it is arguably the most
important complexity class. This is because we identify this class with the “feasible problems”. For
instance, the the Fundamental Problem of Algebra (in its various forms) is in P but the Fundamental
Problem of Classical Algebraic Geometry is not in P . Complexity theory can be characterized as
the study of relationships among complexity classes. Keeping this fact in mind may help motivate
much of our activities. Another important class is NC which comprises those problems that can
be solved simultaneously in depth logO(1) n and size nO(1), under the Boolean circuit model. Since
circuit depth equals parallel time, this is an important class in parallel computation. Although we
did not define the circuit analogue of algebraic programs, this is rather straightforward: they are like
Boolean circuits except we perform algebraic operations at the nodes. Then we can define NCA, the
algebraic analogue of the class NC . Note that NC A is defined relative to the underlying algebraic
ring.

Exercises

Exercise 7.1: Prove the existence of a problem whose intrinsic complexity is not principal. (In
Blum’s axiomatic approach to complexity, such problems exist.) 2

§8. On Bit versus Algebraic Complexity

We have omitted other important models such as pointer machines that have a minor role in algebraic
complexity. But why such a proliferation of models? Researchers use different models depending on
the problem at hand. We offer some guidelines for these choices.
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1. There is a consensus in complexity theory that the Turing model is the most basic of all general-
purpose computational models. To the extent that algebraic complexity seeks to be compatible to
the rest of complexity theory, it is preferable to use the Turing model.

2. In practice, the RAM model is invariably used to describe algebraic algorithms because the
Turing model is too cumbersome. Upper bounds (i.e., algorithms) are more readily explained in the
RAM model and we are happy to take advantage of this in order to make the result more accessible.
Sometimes, we could further assert (“left to the reader”) that the RAM result extends to the Turing
model.

3. Complexity theory proper is regarded to be a theory of “uniform complexity”. This means
“naturally” uniform models such as Turing machines are preferred over “naturally non-uniform”
models such as Boolean circuits. Nevertheless, non-uniform models have the advantage of being
combinatorial and conceptually simpler. Historically, this was a key motivation for studying Boolean
circuits, since it is hoped that powerful combinatorial arguments may yield super-quadratic lower
bounds on the Boolean size of specific problems. Such a result would immediately imply non-linear
lower bounds on Turing machine time for the same problem. (Unfortunately, neither kind of result
has been realized.) Another advantage of non-uniform models is that the intrinsic complexity of
problems is principal. Boolean circuits also seems more natural in the parallel computation domain,
with circuit depth corresponding to parallel time.

4. The choice between bit complexity and the algebraic complexity is problem-dependent. For
instance, the algebraic complexity of integer GCD would not make much sense (§6, Exercise). But
bit complexity is meaningful for any problem (the encoding of the problem must be taken into
account). This may suggest that algebraic complexity is a more specialized tool than bit complexity.
But even in a situation where bit complexity is of primary interest, it may make sense to investigate
the corresponding algebraic complexity. For instance, the algebraic complexity of multiplying integer
matrices is MM(n) = O(n2.376) as noted above. Let3 MM(n, N) denote the Turing complexity of
integer matrix multiplication, where N is an additional bound on the bit size of each entry of the
matrix. The best upper bound for MM(n, N) comes from the trivial remark,

MM(n, N) = O(MM(n)MB(N)). (14)

That is, the known upper bound on MM(n, N) comes from the separate upper bounds on MM(n)
and MB(N).

Linear Programming. Equation (14) illustrates a common situation, where the best bit complex-
ity of a problem is obtained as the best algebraic complexity multiplied by the best bit complexity
on the underlying operations. We now show an example where this is not the case. Consider the
linear programming problem. Let m, n, N be complexity parameters where the linear constraints are
represented by Ax ≤ b, A is an m×n matrix, and all the numbers in A, b have at most N bits. The
linear programming problem can be reduced to checking for the feasibility of the inequality Ax ≤ b,
on input A, b. The Turing complexity TB(m, n, N) of this problem is known to be polynomial in
m, n, N . This result was a breakthrough, due to Khacian in 1979. On the other hand, it is a major
open problem whether the corresponding algebraic complexity TA(m, n) of linear programming is
polynomial in m, n.

Euclidean shortest paths. In contrast to linear programming, we now show a problem for which
the bit complexity is not known to be polynomial but whose algebraic complexity is polynomial.

3The bit complexity bound on any problem is usually formulated to have one more size parameter (N) than the
corresponding algebraic complexity bound.
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This is the problem of finding the shortest paths between two points on the plane. Let us formulate
a version of the Euclidean shortest path problem: we are given a planar graph G that is linearly
embedded in the plane, i.e., each vertex v of G is mapped to a point m(v) in the plane and each
edge (u, v) between two vertices is represented by the corresponding line segment [m(u), m(v)],
where two segments may only intersect at their endpoints. We want to find the shortest (under the
usual Euclidean metric) path between two specified vertices s, t. Assume that the points m(v) have
rational coordinates. Clearly this problem can be solved by Djikstra’s algorithm in polynomial time,
provided we can (i) take square-roots, (ii) add two sums of square-roots, and (iii) compare two sums
of square-roots in constant time. Thus the algebraic complexity is polynomial time (where the basis
operations include (i-iii)). However, the current best bound on the bit complexity of this problem
is single exponential space. Note that the numbers that arise in this problem are the so-called
constructible reals (Lecture VI) because they can be finitely constructed by a ruler and a compass.

The lesson of these two examples is that bit complexity and algebraic complexities do not generally
have a simple relationship. Indeed, we cannot even expect a polynomial relationship between these
two types of complexities: depending on the problem, either one could be exponentially worse than
the other.

Exercises

Exercise 8.1*: Obtain an upper bound on the above Euclidean shortest path problem. 2

Exercise 8.2: Show that a real number of the form

α = n0 ±
√

n1 ±
√

n2 ± · · · ±
√

nk

(where ni are positive integers) is a zero of a polynomial P (X) of degree at most 2k, and that
all zeros of P (X) are real. 2

§9. Miscellany

This section serves as a quick general reference.

Equality symbol. We introduce two new symbols to reduce4 the semantic overload commonly
placed on the equality symbol ‘=’. We use the symbol ‘←’ for programming variable assignments ,
from right-hand side to the left. Thus, V ← V + W is an assignment to V (and it could appear on
the right-hand side, as in this example). We use the symbol ‘:=’ to denote definitional equality, with
the term being defined on the left-hand side and the defining terms on the right-hand side. Thus,
“f(n) :=n log n” is a definition of the function f . Unlike some similar notations in the literature, we
refrain from using the mirror images of the definition symbol (we will neither write “V + W → V ”
nor “n logn =: f(n)”).

Sets and functions. The empty set is written ∅. Let A, B be sets. Subsets and proper subsets
are respectively indicated by A ⊆ B and A ⊂ B. Set difference is written A \ B. Set formation
is usually written {x : . . . x . . .} and sometimes written {x| . . . x . . .} where . . . x . . . specifies some

4Perhaps to atone for our introduction of the asymptotic notations.
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properties on x. The A is the union of the sets Ai for i ∈ I, we write A = ∪i∈IAi. If the Ai’s are
pairwise disjoint, we indicate this by writing

A = ⊎i∈IAi.

Such a disjoint union is also called a partition of A. Sometimes we consider multisets. A multiset S
can be regarded as sets whose elements can be repeated – the number of times a particular element
is repeated is called its multiplicity. Alternatively, S can be regarded as a function S : D → N where
D is an ordinary set and S(x) ≥ 1 gives the multiplicity of x. We write f ◦ g for the composition
of functions g : U → V , f : V → W . So (f ◦ g)(x) = f(g(x)). If a function f is undefined for a
certain value x, we write f(x) ↑.

Numbers. Let i denote
√
−1, the square-root of −1. For a complex number z = x + iy, let

Re(z) :=x and Im(z) := y denote its real and imaginary part, respectively. Its modulus |z| is defined
to be the positive square-root of x2 + y2. If z is real, |z| is also called the absolute value . The
(complex) conjugate of z is defined to be z := Re(z)− Im(z). Thus |z|2 = zz.

But if S is any set, |S| will refer to the cardinality , i.e., the number of elements in S. This notation
should not cause a confusion with the notion of modulus of z.

For a real number r, we use Iverson’s notation (as popularized by Knuth) ⌈r⌉ and ⌊r⌋ for the ceiling
and floor functions. We have

⌊r⌋ ≤ ⌈r⌉ .
In this book, we introduce the symmetric ceiling and symmetric floor functions:

⌈r⌉s :=

{

⌈r⌉ if r ≥ 0,
⌊r⌋ if r < 0.

⌊r⌋s :=

{

⌊r⌋ if r ≥ 0,
⌈r⌉ if r < 0.

These functions satisfy the following inequalities, valid for all real numbers r:

| ⌊r⌋s | ≤ |r| ≤ | ⌈r⌉s |.

(The usual floor and ceiling functions fail this inequality when r is negative.) We also use ⌊r⌉ to
denote the rounding function, ⌊r⌉ :=⌈r − 0.5⌉. So

⌊r⌋ ≤ ⌊r⌉ ≤ ⌈r⌉.

The base of the logarithm function log x, is left unspecified if this is immaterial (as in the notation
O(log x)). On the other hand, we shall use

lg x, lnx

for logarithm to the base 2 and the natural logarithm, respectively.

Let a, b be integers. If b > 0, we define the quotient and remainder functions , quo(a, b) and rem(a, b)
which satisfy the relation

a = quo(a, b) · b + rem(a, b)

such that b > rem(a, b) ≥ 0. We also write these functions using an in-fix notation:

(adiv b) := quo(a, b); (amod b) := rem(a, b).

These functions can be generalized to Euclidean domains (lecture II, §2). We continue to use ‘mod’ in
the standard notation “a ≡ b(mod m)” for congruence modulo m. We say a divides b if rem(a, b) = 0,
and denote this by “a | b”. If a does not divide b, we denote this by “a∼| b”.
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Norms. For a complex polynomial P ∈ C[X ] and for each positive real number k, let ‖P‖k denote5

the k-norm ,

‖P‖k :=

(

n
∑

i=0

|pi|k
)1/k

where p0, . . . , pn are the coefficients of P . We extend this definition to k =∞, where

‖P‖∞ := max{|pi| : i = 0, . . . , n}. (15)

There is a related Lk-norm defined on P where we view P as a complex function (in contrast to
Lk-norms, it is usual to refer to our k-norms as “ℓk-norms”). The Lk-norms are less important for
us. Depending on context, we may prefer to use a particular k-norm: in such cases, we may simply
write “‖P‖” instead of “‖P‖k”. For 0 < r < s, we have

‖P‖∞ ≤ ‖P‖s < ‖P‖r ≤ (n + 1)‖P‖∞ (16)

The second inequality (called Jensen’s inequality) follows from:

(
∑

i |pi|s)1/s

(
∑

j |pj |r)1/r
=

{

n
∑

i=0

|pi|s
(
∑

j |pj |r)s/r

}
1

s

=







n
∑

i=0

(

|pi|r
∑

j |pj|r

)
s

r







1

s

<

{

n
∑

i=0

(

|pi|r
∑

j |pj|r

)}
1

r

= 1.

The 1-, 2- and ∞-norms of P are also known as the weight, length, and height of P . If u is a vector
of numbers, we define its k-norm ‖u‖k by viewing u as the coefficient vector of a polynomial. The
following inequality will be useful:

‖P‖1 ≤
√

n‖P‖2.
To see this, note that n

∑n
i=1 a2

i ≥ (
∑n

i=1 ai)
2 is equivalent to (n − 1)

∑n
i=1 a2

i ≥ 2
∑

1≤i<j≤n aiaj .

But this amounts to
∑

1≤i<j≤n(ai − aj)
2 ≥ 0.

Inequalities. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be real n-vectors. We write a · b or 〈a,b〉
for their scalar product

∑n
i=1 aibi.

Hölder’s Inequality: If 1
p + 1

q = 1 then

|〈a,b〉| ≤ ‖a‖p‖b‖q,
with equality iff there is some k such that bq

i = kap
i for all i. In particular, we have the Cauchy-

Schwarz Inequality:
|〈a,b〉| ≤ ‖a‖2 · ‖b‖2.

Minkowski’s Inequality: for k > 1,

‖a + b‖k ≤ ‖a‖k + ‖b‖k.

This shows that the k-norms satisfy the triangular inequality.

A real function f(x) defined on an interval I = [a, b] is convex on I if for all x, y ∈ I and 0 ≤ α ≤ 1,
f(αx+(1−α)y) ≤ αf(x)+ (1−α)f(y). For instance, if f ′′(x) is defined and f ′′(x) ≥ 0 on I implies
f is convex on I.

5In general, a norm of a real vector V is a real function N : V → R such that for all x ∈ V , (i) N(x) ≥ 0 with
equality iff x = 0, (ii) N(cx) = |c|N(x) for any c ∈ R, and (iii) N(x+y) ≤ N(x)+N(y). The k-norms may be verified
to be a norm in this sense.
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Polynomials. Let A(X) =
∑n

i=0 aiX
i be a univariate polynomial. Besides the notation deg(A)

and lead(A) of §1, we are sometimes interested in the largest power j ≥ 0 such that Xj divides
A(X); this j is called the tail degree of A. The coefficient aj is the tail coefficient of A, denoted
tail(A).

Let X = {X1, . . . , Xn} be n ≥ 1 (commutative) variables, and consider multivariate polynomials in
R[X]. A power product over X is a polynomial of the form T =

∏n
i=1 Xei

i where each ei ≥ 0 is an
integer. In particular, if all the ei’s are 0, then T = 1. The total degree deg(T ) of T is given by
∑n

i=1 ei, and the maximum degree mdeg(T ) is given by maxn
i=1 ei. Usually, we simply say “degree”

for total degree. Let PP(X) = PP(X1, . . . , Xn) denote the set of power products over X.

A monomial or term is a polynomial of the form cT where T is a power product and c ∈ R \ {0}. So

a polynomial A can be written uniquely as a sum A =
∑k

i=1 Ai of monomials with distinct power
products; each such monomial Ai is said to belong to A. The (term) length of a polynomial A to be
the number of monomials in A, not to be confused with its Euclidean length ‖A‖2 defined earlier.
The total degree deg(A) (respectively, maximum degree mdeg(A)) of a polynomial A is the largest
total (respectively, maximum) degree of a power product in A. Usually, we just say “degree” of A to
mean total degree. A polynomial is homogeneous if each of its monomials has the same total degree.
Again, any polynomial A can be written uniquely as a sum A =

∑

i Hi of homogeneous polynomials
Hi of distinct degrees; each Hi is said to be a homogeneous component of A.

The degree concepts above can be generalized. If X1 ⊆ X is a set of variables, we may speak of the
“X1-degree” of a polynomial A, or say that a polynomial “homogeneous” in X1, simply by viewing
A as a polynimial in X1. Or again, if Y = {X1, . . . ,Xk} is a partition of the variables X, the
“Y-maximum degree” of A is the maximum of the Xi-degrees of A (i = 1, . . . , k).

Matrices. The set of m×n matrices with entries over a ring R is denoted Rm×n. Let M ∈ Rm×n.
If the (i, j)th entry of M is xij , we may write M = [xij ]

m,n
i,j=1 (or simply, M = [xij ]i,j). The (i, j)th

entry of M is denoted M(i; j). More generally, if i1, i2, . . . , ik are indices of rows and j1, . . . , jℓ are
indices of columns,

M(i1, . . . , ik; j1, . . . , jℓ) (17)

denotes the submatrix obtained by intersecting the indicated rows and columns. In case k = ℓ = 1,
we often prefer to write (M)i,j or (M)ij instead of M(i; j). If we delete the ith row and jth column
of M , the resulting matrix is denoted M [i; j]. Again, this notation can be generalized to deleting
more rows and columns. E.g., M [i1, i2; j1, j2, j3] or [M ]i1,i2;j1,j2,j3 . The transpose of M is the n×m
matrix, denoted MT , such that MT (i; j) = M(j; i).

A minor of M is the determinant of a square submatrix of M . The submatrix in (17) is principal if
k = ℓ and

i1 = j1 < i2 = j2 < · · · < ik = jk.

A minor is principal if it is the determinant of a principal submatrix. If the submatrix in (17) is
principal with i1 = 1, i2 = 2, . . . , ik = k, then it is called the “kth principal submatrix” and its
determinant is the “kth principal minor”. (Note: the literature sometimes use the term “minor” to
refer to a principal submatrix.)

Ideals. Let R be a ring and I, J be ideals of R. The ideal generated by elements a1, . . . , am ∈ R
is denoted (a1, . . . , am) and is defined to be the smallest ideal of R containing these elements. Since
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this well-known notation for ideals may be ambiguous, we sometimes write6

Ideal(a1, . . . , am).

Another source of ambiguity is the underlying ring R that generates the ideal; thus we may some-
times write

(a1, . . . , am)R or IdealR(a1, . . . , am).

An ideal I is principal if it is generated by one element, I = (a) for some a ∈ R; it is finitely generated
if it is generated by some finite set of elements. For instance, the zero ideal is (0) = {0} and the
unit ideal is (1) = R. Writing aR :={ax : x ∈ R}, we have that (a) = aR, exploiting the presence
of 1 ∈ R. A principal ideal ring or domain is one in which every ideal is principal. An ideal is
called homogeneous (resp., monomial) if it is generated by a set of homogeneous polynomials (resp.,
monomials).

The following are five basic operations defined on ideals:

Sum: I + J is the ideal consisting of all a + b where a ∈ I, b ∈ J .

Product: IJ is the ideal generated by all elements of the form ab where a ∈ I, b ∈ J .

Intersection: I ∩ J is just the set theoretic intersection of I and J .

Quotient: I : J is defined to be the set {a|aJ ⊆ I}. If J = (a), we simply write I : a for I : J .

Radical:
√

I is defined to be set {a|(∃n ≥ 1)an ∈ I}.

Some simple relationships include IJ ⊆ I ∩ J , I(J + J ′) = IJ + IJ ′, (a1, . . . , am) + (b1, . . . , bn) =
(a1, . . . , am, b1, . . . , bn). An element b is nilpotent if some power of b vanishes, bn = 0. Thus

√

(0)
is the set of nilpotent elements. An ideal I is maximal if I 6= R and it is not properly contained
in an ideal J 6= R. An ideal I is prime if ab ∈ I implies a ∈ I or b ∈ I. An ideal I is primary if
ab ∈ I, a 6∈ I implies bn ∈ I for some positive integer n. A ring with unity is Noetherian if every
ideal I is finitely generated. It turns out that for Noetherian rings, the basic building blocks are
primary ideals (not prime ideals). We assume the reader is familiar with the construction of ideal
quotient rings, R/I.

Exercises

Exercise 9.1: (i) Verify the rest of equation (16).
(ii) ‖A±B‖1 ≤ ‖A‖1 + ‖B‖1 and ‖AB‖1 ≤ ‖A‖1‖B‖1.
(iii) (Duncan) ‖A‖2‖B‖2 ≤ ‖AB‖2

√

(

2n
n

)(

2m
m

)

where deg(A) = m, deg(B) = n. 2

Exercise 9.2: Show the inequalities of Hölder and Minkowski. 2

Exercise 9.3: Let I 6= R be an ideal in a ring R with unity.
a) I is maximal iff R/I is a field.
b) I is prime iff R/I is a domain.
c) I is primary iff every zero-divisor in R/I is nilpotent. 2

6Cf. the notation Ideal(U) ⊆ R0[X1, . . . , Xd] where U ∈ Ad(R1), introduced in §4. We capitalize the names of
maps from an algebraic to a geometric setting or vice-versa. Thus Ideal, Zero.
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§10. Computer Algebra Systems

In a book on algorithmic algebra, we would be remiss if we make no mention of computer algebra
systems. These are computer programs that manipulate and compute on symbolic (“algebraic”)
quantities as opposed to just numerical ones. Indeed, there is an intimate connection between
algorithmic algebra today and the construction of such programs. Such programs range from general
purpose systems (e.g., Maple, Mathematica, Reduce, Scratchpad, Macsyma, etc.) to those that
target specific domains (e.g., Macaulay (for Gröbner bases), MatLab (for numerical matrices), Cayley
(for groups), SAC-2 (polynomial algebra), CM (celestial mechanics), QES (quantum electrodynamics),
etc.). It was estimated that about 60 systems exist around 1980 (see [23]). A computer algebra
book that discuss systems issues is [8]. In this book, we choose to focus on the mathematical and
algorithmic development, independent of any computer algebra system. Although it is possible to
avoid using a computer algebra system in studying this book, we strongly suggest that the student
learn at least one general-purpose computer algebra system and use it to work out examples. If any
of our exercises make system-dependent assumptions, it may be assumed that Maple is meant.

Exercises

Exercise 10.1: It took J. Bernoulli (1654-1705) less than 1/8 of an hour to compute the sum of
the 10th power of the first 1000 numbers: 91, 409, 924, 241, 424, 243, 424, 241, 924, 242, 500.
(i) Write a procedure bern(n,e) in your favorite computer algebra system, so that the above
number is computed by calling bern(1000, 10).
(ii) Write a procedure berns(m,n,e) that runs bern(n,e) m times. Do simple profiling of the
functions bern, berns, by calling berns(100, 1000, 10). 2
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Lecture I

ARITHMETIC

This lecture considers the arithmetic operations (addition, subtraction, multiplication and division)
in three basic algebraic structures: polynomials, integers, matrices. These operations are the basic
building blocks for other algebraic operations, and hence are absolutely fundamental in algorithmic
algebra. Strictly speaking, division is only defined in a field. But there are natural substitutes in
general rings: it could be always be replaced by the divisibility predicate. In a domain, we can define
exact division. The the exact division of u by v is defined iff the v divides u; when defined, the
result is the unique w such that vw = u. In case of Euclidean rings (Lecture II), division could be
replaced by the quotient and remainder functions.

Complexity of Multiplication. In most algebraic structures of interest, the obvious algorithms
for addition and subtraction take linear time and are easily seen to be optimal. Since we are mainly
concerned with asymptotic complexity here, there is nothing more to say about them. As for the
division-substitutes, they turn out to be reducible to multiplication. Hence the term “complexity
of multiplication” can be regarded a generic term to cover such operations as well. After such
considerations, what remains to be addressed is multiplication itself. The pervading influence of
Schönhage and Strassen in all these results cannot be overstated.

We use some other algebraic structures in addition to the ones introduced in Lecture 0, §1:

GF (pm) = Galois field of order pm, p prime,
Zn = integers modulo n ≥ 1,
Mm,n(R) = m by n matrices over a ring R,
Mn(R) = Mn,n(R).

Finite structures such as GF (pm) and Zn have independent interest, but they also turn out to be
important for algorithms in infinite structures such as Z.

§1. The Discrete Fourier Transform

The key to fast multiplication of integers and polynomials is the discrete Fourier transform.

Roots of unity. In this section, we work with complex numbers. A complex number α ∈ C is
an nth root of unity if αn = 1. It is a primitive nth root of unity if, in addition, αm 6= 1 for all
m = 1, . . . , n − 1. In particular,

e
2π
n
i = cos

2π

n
+ i sin

2π

n

(i =
√
−1) is a primitive nth root of unity. There are exactly ϕ(n) primitive nth roots of unity

where ϕ(n) is the number of positive integers less than or equal to n that are relatively prime to n.
Thus ϕ(n) = 1, 1, 2, 2, 4, 2, 6 for n = 1, 2, . . . , 7; ϕ(n) is also known as Euler’s phi-function or totient
function.

Example: A primitive 8th root of unity is ω = e
2π
8
i = 1√

2
+ i 1√

2
. It is easy to check the only other

primitive roots are ω3, ω5 and ω7 (so ϕ(8) = 4). These roots are easily visualized in the complex
plane (see figure 1).
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ω2

ω4 = −1

ω7

ω8 = 1

ω = 1
√

2
+ i

1
√

2

Figure 1: The 8th roots of unity.

Let ω denote any primitive nth root of unity. We note a basic identity.

Lemma 1 (Cancellation Property)

n−1
∑

j=0

ωjs =

{

0 if s 6≡ 0 modn
n if s ≡ 0 modn

Proof. The result is clear if s ≡ 0 mod n. Otherwise, consider the identity xn−1 = (x−1)(
∑n−1

j=0 xj).
Substituting x = ωs makes the left-hand side equal to zero. The right-hand side becomes (ωs −
1)(
∑n−1

j=0 ωjs). Since ωs 6= 1 for s 6≡ 0 mod n, the result follows. Q.E.D.

Let F (ω) = Fn(ω) denote the matrix















1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

1 ωn−1 ω2(n−1) · · · ω(n−1)2















.

Definition 1 (The DFT and its inverse) Let a = (a0, . . . , an−1)
T ∈ Cn. The discrete Fourier

transform (abbr. DFT) of a is DFTn(a) :=A = (A0, . . . , An−1)
T where Ai =

∑n−1
j=0 ajω

ij, for
i = 0, . . . , n − 1. That is,

DFTn(a) = F (ω) ·











a0

a1

...
an−1











=











A0

A1

...
An−1











.

The inverse discrete Fourier transform of A = (A0, . . . , An−1)
T is DFT−1

n (A) = 1
nF (ω−1) ·A. That
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is,

DFT−1
n (A) :=

1

n











1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−n+1

...
...

1 ω−n+1 ω−2(n−1) · · · ω−(n−1)2











·











A0

A1

...
An−1











.

Note that ω−1 = ωn−1. We will omit the subscript ‘n’ in DFTn when convenient. The following
shows that the two transforms are indeed inverses of each other:

Lemma 2 We have F (ω−1) · F (ω) = F (ω) · F (ω−1) = nIn where In is the identity matrix.

Proof. Let F (ω−1) · F (ω) = [cj,k]
n−1
j,k=0 where

cj,k =

n−1
∑

i=0

ω−jiωik =

n−1
∑

i=0

ωi(k−j).

If j = k, then cj,k =
∑n−1

i=0 ω0 = n. Otherwise, −n < k− j < n and k− j 6= 0 implies cj,k = 0, using
lemma 1. Similarly, F (ω) · F (ω−1) = nIn. Q.E.D.

Connection to polynomial evaluation and interpolation. Let a be the coefficient vector of
the polynomial P (X) =

∑n−1
i=0 aiX

i. Then computing DFT(a) amounts to evaluating the polynomial
P (X) at all the nth roots of unity, at

X = 1, X = ω, X = ω2, . . . , X = ωn−1.

Similarly, computing DFT−1(A) amounts to recovering the polynomial P (X) from its values
(A0, . . . , An−1) at the same n points. In other words, the inverse discrete Fourier transform in-
terpolates, or reconstructs, the polynomial P (X) from its values at all the n roots of unity. Here we
use the fact (Lecture IV.1) that the interpolation of a degree n − 1 polynomial from its values at n
distinct points is unique. (Of course, we could also have viewed DFT as interpolation and DFT−1

as evaluation.)

The Fast Fourier Transform. A naive algorithm to compute DFT and DFT−1 would take
Θ(n2) complex arithmetic operations. In 1965, Cooley and Tukey [47] discovered a method that
takes O(n log n) operations. This has come to be known as the fast Fourier transform (FFT). This
algorithm is widely used. The basic ideas of the FFT were known prior to 1965. E.g., Runge and
König, 1924 (see [105, p. 642]).

Let us now present the FFT algorithm to compute DFT(a) where a = (a0, . . . , an−1). In fact, it is
a fairly straightforward divide-and-conquer algorithm. To simplify discussion, let n be a power of
2. Instead of a, it is convenient to be able to interchangeably talk of the polynomial P (X) whose
coefficient vector is a. As noted, computing DFT(a) amounts to computing the n values

P (1), P (ω), P (ω2), . . . , P (ωn−1). (1)

First, let us express P (X) as the sum of its odd part and its even part:

P (X) = Pe(X
2) + X · Po(X

2)
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where Pe(Y ), Po(Y ) are polynomials of degrees at most n
2 and n−1

2 , respectively. E.g., for P (X) =
3X6 −X4 + 2X3 + 5X − 1, we have Pe(Y ) = 3Y 3 −Y 2 − 1, Po(Y ) = 2Y + 5. Thus we have reduced
the problem of computing the values in (1) to the following:

FFT Algorithm:

Input: a polynomial P (X) with coefficients given by an n-vector a,
and ω, a primitive nth root of unity.

Output: DFTn(a).
1. Evaluate Pe(X

2) and Po(X
2) at X2 = 1, ω2, ω4, . . . , ωn, ωn+2, . . . , ω2n−2.

2. Multiply Po(ω
2j) by ωj for j = 0, . . . , n − 1.

3. Add Pe(ω
2j) to ωjPo(ω

2j), for j = 0, . . . , n − 1.

Analysis. Note that in step 1, we have ωn = 1, ωn+2 = ω2, . . . , ω2n−2 = ωn−2. So it suffices to
evaluate Pe and Po at only n/2 values, X = 1, ω2, . . . , ωn−2, i.e., at all the (n/2)th roots of unity.
But this is equivalent to the problem of computing DFTn/2(Pe) and DFTn/2(Po). Hence we view
step 1 as two recursive calls. Steps 2 and 3 take n multiplications and n additions respectively.
Overall, if T (n) is the number of complex additions and multiplications, we have

T (n) = 2T (n/2) + 2n

which has the exact solution T (n) = 2n logn for n a power of 2.

Since the same method can be applied to the inverse discrete Fourier transform, we have shown:

Theorem 3 (Complexity of FFT) Assuming the availability of a primitive nth root of unity, the
discrete Fourier transform DFTn and its inverse can be computed in O(n log n) complex arithmetic
operations.

Note that this is a result in the algebraic program model of complexity (§0.6). This could be
translated into a result about bit complexity (Turing machines or Boolean Circuits) if we make
assumptions about how the complex numbers are encoded in the input. However, this exercise
would not be very illuminating, and we await a “true” bit complexity result below in §3.

Remark: There are several closely related fast transform methods which have the same framework.
For example, [66].

Exercises

Exercise 1.1: Show that the number of multiplications in step 2 can be reduced to n/2. HINT:
Then half of the additions in step 3 become subtractions. 2

§2. Polynomial Multiplication

We consider the multiplication of complex polynomials. To exploit the FFT algorithm, we make a
fundamental connection.
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Convolution and polynomial multiplication. Assume n ≥ 2. The convolution of two n-vectors
a = (a0, . . . , an−1)

T and b = (b0, . . . , bn−1)
T is the n-vector

c = a ∗ b :=(c0, . . . , cn−1)
T

where ci =
∑i

j=0 ajbi−j . Let P (X) and Q(X) be polynomials of degrees less than n/2. Then
R(X) :=P (X)Q(X) is a polynomial of degree less than n − 1. Let a and b denote the coefficient
vectors of P and Q (padded out with initial zeros to make vectors of length n). Then it is not hard
to see that a ∗ b gives the coefficient vector of R(X). Thus convolution is essentially polynomial
multiplication. The following result relates convolution to the usual scalar product, a · b.

Theorem 4 (Convolution Theorem) Let a,b be n-vectors whose initial ⌊n/2⌋ entries are zeros.
Then

DFT−1(DFT(a) · DFT(b)) = a ∗ b. (2)

Proof. Suppose DFT(a) = (A0, . . . , An−1)
T and DFT(b) = (B0, . . . , Bn−1)

T . Let C =
(C0, . . . , Cn−1)

T where Ci = AiBi. From the evaluation interpretation of DFT, it follows that
Ci is the value of the polynomial R(X) = P (X)Q(X) at X = ωi. Note that deg(R) ≤ n − 1. Now,
evaluating a polynomial of degree ≤ n − 1 at n distinct points is the inverse of interpolating such
a polynomial from its values at these n points (see §IV.1). Since DFT−1 and DFT are inverses,
we conclude that DFT−1(C) is the coefficient vector of R(X). We have thus given an interpretion
for the left-hand side of (2). But the right-hand side of (2) is also equal to the coefficient vector of
R(X), by the polynomial multiplication interpretation of convolution. Q.E.D.

This theorem reduces the problem of convolution (equivalently, polynomial multiplication) to two
DFT and one DFT−1 computations. We immediately conclude from the FFT result (Theorem 3):

Theorem 5 (Algebraic complexity of polynomial multiplication) Assuming the availability
of a primitive nth root of unity, we can compute the product PQ of two polynomials P, Q ∈ C[X ] of
degrees less than n in O(n log n) complex operations.

Remark: If the coefficients of our polynomials are not complex numbers but in some other ring,
then a similar result holds provided the ring contains an analogue to the roots of unity. Such a
situation arises in our next section.

Exercises

Exercise 2.1: Show that polynomial quotient P divQ and remainder P modQ can be computed
in O(n log n) complex operations. 2

Exercise 2.2: Let q = pm where p ∈ N is prime, m ≥ 1. Show that in GF (q), we can multiply
in O(mL(m)) operations of Zp and can compute inverses in O(mL2(m)) operations. HINT:
use the fact that GF (q) is isomorphic to GF (p)[X ]/(F (X)) where F (X) is any polynomial of
degree m that is irreducible over GF (p). 2

Exercise 2.3: Let q = pm as above. Show how to multiply two degree n polynomials over GF (q) in
O(nL2(n)) operations of GF (q). and compute the GCD of two such polynomials in O(nL2(n))
operations of GF (q). 2
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§3. Modular FFT

To extend the FFT technique to integer multiplication, a major problem to overcome is how one
replaces the complex roots of unity with some discrete analogue. One possibility is to carry out the
complex arithmetic to a suitable degree of accuracy. This was done by Strassen in 1968, achieving
a time bound that satisfies the recurrence T (n) = O(nT (log n)). For instance, this implies T (n) =
O(n log n(log log n)1+ǫ) for any ǫ > 0. In 1971, Schönhage and Strassen managed to improved
this to T (n) = O(n log n log log n). While the complexity improvement can be said to be strictly
of theoretical interest, their use of modular arithmetic to avoid approximate arithmetic has great
interest. They discovered that the discrete Fourier transform can be defined, and the FFT efficiently
implemented, in ZM where

M = 2L + 1, (3)

for suitable values of L. This section describes these elegant techniques.

First, we make some general remarks about ZM for an arbitrary modulus M > 1. An element
x ∈ ZM is a zero-divisorring!zero-divisor if there exists y 6= 0 such that x · y = 0; a (multiplicative)
inversering!inverse element of x is y such that xy = 1. For example, in Z4, the element 2 has no
inverse and 2 · 2 = 0.

Claim: an element x ∈ ZM has a multiplicative inverse (denoted x−1) if and only if x is
not a zero-divisor.

To see this claim, suppose x−1 exists and x · y = 0. Then y = 1 · y = x−1x · y = 0. Conversely, if x is
not a zero-divisor then the elements in the set {x ·y : y ∈ ZM} are all distinct because if x ·y = x ·y′

then x(y − y′) = 0 and y − y′ 6= 0, contradiction. Hence, by pigeon-hole principle, 1 occurs in the
set. This proves our claim. We have two basic consequences: (i) If x has an inverse, the inverse is
unique. [In proof, if x · y = 1 = x · y′ then x(y − y′) = 0 and so y = y′.] (ii) ZM is a field iff M is
prime. [In proof, if M has the proper factorization xy then x is a zero-divisor. Conversely, if M is
prime then every x ∈ ZM has an inverse because the extended Euclidean algorithm (Lecture II§2)
implies there exist s, t ∈ ZM such that sx + tM = 1, i.e., s = x−1(mod M).]

In the rest of this section and also the next one, we assume M has the form in Equation (3). Then
2L ≡ −1(modM) and 22L = (M − 1)2 ≡ 1(mod M). We also use the fact that every element of the
form 2i (i ≥ 0) has an inverse in ZM , viz., 22L−i.

Representation and basic operations modulo M . We clarify how numbers in ZM are repre-
sented. Let 2L ≡ −1(mod M) be denoted with the special symbol 1. We represent each element of
ZM \ {1} in the expected way, as a binary string (bL−1, . . . , b0) of length L; the element 1 is given
a special representation. For example, with M = 17, L = 4 then 13 is represented by (1, 1, 0, 1), or
simply written as (1101). It is relatively easy to add and subtract in ZM under this represention
using a linear number of bit operations, i.e., O(L) time. Of course, special considerations apply to
1.

Exercise 3.1: Show that addition and subtraction take O(L) bit operations. 2

We will also need to multiply by powers of 2 in linear time. Intuitively, multiplying a number X by
2j amounts to left-shifting the string X by j positions; a slight complication arises when we get a
carry to the left of the most significant bit.
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Example: Consider multiplying 13 = (1101) by 2 = (0010) in Z17. Left-shifting (1101) by 1 position
gives (1010), with a carry. This carry represents 16 ≡ −1 = 1. So to get the final result, we must
add 1 (equivalently, subtract 1) from (1010), yielding (1001). [Check: 13 × 2 ≡ 9(mod 17) and
9 = (1001).]

In general, if the number represented by the string (bL−1, . . . , b0) is multiplied by 2j (0 < j < L),
the result is given as a difference:

(bL−j−1, bL−j−2, . . . , b0, 0, . . . , 0) − (0, . . . , 0, bL−1, bL−2, . . . , bL−j).

But we said that subtraction can be done in linear time. So we conclude: in ZM , multiplication by
2j takes O(L) bit operations.

Primitive roots of unity modulo M . Let K = 2k and K divides L. We define

ω := 2L/K .

For instance, in Z17, and with K = 2, we get ωi = 4, 16, 13, 1 for i = 1, 2, 3, 4. So ω is a primitive
4th root of unity.

Lemma 6 In ZM , ω is a primitive (2K)th root of unity.

Proof. Note that ωK = 2L ≡ −1(modM). Thus ω2K ≡ 1(mod M), i.e., it is a (2K)th root of
unity. To show that it is in fact a primitive root, we must show ωj 6≡ 1 for j = 1, . . . , (2K − 1).
If j ≤ K then ωj = 2Lj/K ≤ 2L < M so clearly ωj 6≡ 1. If j > K then ωj = −ωj−K where
j − K ∈ {1, . . . , K − 1}. Again, ωj−K < 2L ≡ −1 and so −ωj−K 6≡ 1. Q.E.D.

We next need the equivalent of the cancellation property (Lemma 1). The original proof is invalid
since ZM is not necessarily an integral domain (see remarks at the end of this section).

Lemma 7 The cancellation property holds:

2K−1
∑

j=0

ωjs ≡
{

0(mod M) if s 6≡ 0 mod 2K,
2K(modM) if s ≡ 0 mod 2K.

Proof. The result is true if s ≡ 0 mod 2K. Assuming otherwise, let (smod2K) = 2pq where q is
odd, 0 < 2p < 2K and let r = 2K · 2−p > 1. Then by breaking up the desired sum into 2p parts,

2K−1
∑

j=0

ωjs =

r−1
∑

j=0

ωjs +

2r−1
∑

j=r

ωjs + · · · +
2K−1
∑

j=2K−r

ωjs

=

r−1
∑

j=0

ωjs + ωrs
r−1
∑

j=0

ωjs + · · · + ωrs(2p−1)
r−1
∑

j=0

ωjs

≡ 2p
r−1
∑

j=0

ωjs,

since ωrs ≡ 1 modM . Note that ωrs/2 = ωKq ≡ (−1)q = −1. The lemma follows since

r−1
∑

j=0

ωjs =

r
2
−1
∑

j=0

(

ωsj + ωs(j+ r
2
)
)

≡
r
2
−1
∑

j=0

(

ωsj − ωsj
)

= 0.
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Q.E.D.

Using ω, we define the discrete Fourier transform and its inverse in ZM as usual: DFT2K(a) := F (ω)·a
and DFT−1

2K(A) := 1
2K F (ω−1) ·A. To see that the inverse transform is well-defined, we should recall

that 1
2K and ω−1 both exist. Our proof that DFT and DFT−1 are inverses (Lemma 2) goes through.

We obtain the analogue of Theorem 3:

Theorem 8 The transforms DFT2K(a) and DFT−1
2K(A) for (2K)-vectors a,A ∈ (ZM )2K can be

computed using the Fast Fourier Transform method, taking O(KL logK) bit operations.

Proof. We use the FFT method as before (refer to the three steps in the FFT display box in §1).
View a as the coefficient vector of the polynomial P (X). Note that ω is easily available in our
representation, and ω2 is a primitive Kth root of unity in ZM . This allows us to implement step
1 recursively, by calling DFTK twice, once on the even part Pe(Y ) and again on the odd part
Po(Y ). In step 2, we need to compute ωj (which is easy) and multiply it to Po(ω

2j) (also easy),
for j = 0, . . . , 2K − 1. Step 2 takes O(KL) bit operations. Finally, we need to add ωjPo(ω

2j) to
Pe(ω

2j) in step 3. This also takes O(KL) bit operations. Thus the overall number of bit operations
T (2K) satisfies the recurrence

T (2K) = 2T (K) + O(KL)

which has solution T (2K) = O(KL log K), as claimed. Q.E.D.

Remarks: It is not hard to show (exercise below) that if M is prime then L is a power of 2.
Generally, a number of the form 22n

+ 1 is called Fermat number. The first 4 Fermat numbers are
prime which led Fermat to the rather unfortunate conjecture that they all are. No other primes have
been discovered so far and many are known to be composite (Euler discovered in 1732 that the 5th

Fermat number 225

+ 1 is divisible by 641). Fermat numbers are closely related to a more fortunate
conjecture of Mersenne, that all numbers of the form 2p − 1 are prime (where p is prime): although
the conjecture is false, at least there is more hope that there are infinitely many such primes.

Exercises

Exercise 3.2: (i) If aL + 1 is prime where a ≥ 2, then a is even and L is a power of two.
(ii) If aL − 1 is prime where L > 1, then a = 2 and L is prime. 2

Exercise 3.3: Show that Strassen’s recurrence T (n) = n · T (logn) satisfies

T (n) = O

((

k−1
∏

i=0

log(i) n

)

(log(k) n)1+ǫ

)

(4)

for any k < log∗(n). HINT: use bootstrapping. 2

Exercise 3.4: (Karatsuba) The first subquadratic algorithm for integer multiplication uses the fact
that if U = 2LU0 + U1 and V = 2LV0 + V1 where Ui, Vi are L-bit numbers, then W = UV =
22LU0V0 + 2L(U0V1 + U1V0) + U1V1, which we can rewrite as 22LW0 + 2LW1 + W2. But if we
compute (U0 +U1)(V0 +V1), W0, W2, we also obtain W1. Show that this leads to a time bound
of T (n) = O(nlg 3). 2
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§4. Fast Integer Multiplication

The following result of Schönhage and Strassen [185] is perhaps “the fundamental result” of the
algorithmic algebra.

Theorem 9 (Complexity of integer multiplication) Given two integers u, v of sizes at most n
bits, we can form their product uv in O(n log n log log n) bit-operations.

For simplicity, we prove a slightly weaker version of this result, obtaining a bound of O(n log2.6 n)
instead.

A simplified Schönhage-Strassen algorithm. Our goal is to compute the product W of the
positive integers U, V . Assume U, V are N -bit binary numbers where N = 2n. Choose K = 2k, L =
3 · 2ℓ where

k :=
⌊n

2

⌋

, ℓ := ⌈n − k⌉ .

Observe that although k, ℓ are integers, we will not assume that n is integer (i.e., N need not be a
power of 2). This is important for the recursive application of the method.

Since k + ℓ ≥ n, we may view U as 2k+ℓ-bit numbers, padding with zeros as necessary. Break up
U into K pieces, each of bit-size 2ℓ. By padding these with K additional zeros, we get the the
(2K)-vector,

U = (0, . . . , 0, UK−1, . . . , U0)

where Uj are 2ℓ-bit strings. Similarly, let

V = (0, . . . , 0, VK−1, . . . , V0)

be a (2K)-vector where each component has 2ℓ bits. Now regard U, V as the coefficient vectors of

the polynomials P (X) =
∑K−1

j=0 UjX
j and Q(X) =

∑K−1
j=0 VjX

j. Let

W = (W2K−1, . . . , W0)

be the convolution of U and V . Note that each Wi in W satisfies the inequality

0 ≤ Wi ≤ K · 22·2ℓ

(5)

since it is the sum of at most K products of the form UjVi−j . Hence

0 ≤ Wi < 23·2ℓ

< M

where M = 2L + 1 as usual. So if arithmetic is carried out in ZM , W will be correctly computed.

Recall that W is the coefficient vector of the product R(X) = P (X)Q(X). Since P (22ℓ

) = U and

Q(22ℓ

) = V , it follows that R(22ℓ

) = UV = W . Hence

W =

2K−1
∑

j=0

22ℓjWj .

We can easily obtain each summand in this sum from W by multiplying each Wj with 22ℓj . As each
Wj has k + 2 · 2ℓ < L non-zero bits, we illustrate this summation as follows:

From this figure we see that each bit of W is obtained by summing at most 3 bits plus at most 2
carry bits. Since W has at most 2N bits, we conclude:
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(2K + 1)L/3

W0

L/3 L/3 L/3

W2K−1

W1

W2

· · ·
· · ·

Figure 2: Illustrating forming the product W = UV .

Lemma 10 The product W can be obtained from W in O(N) bit operations.

It remains to show how to compute W . By the convolution theorem,

W = DFT−1(DFT(U) · DFT(V )).

These three transforms take O(KL log K) = O(N log N) bit operations (Theorem 8). The scalar
product DFT(U) · DFT(V ) requires 2K multiplications of L-bit numbers, which is accomplished
recursively. Thus, if T (N) is the bit-complexity of this algorithm, we obtain the recurrence

T (N) = O(N log N) + 2K · T (L). (6)

Write t(n) := T (N)/N where N = 2n. The recurrence becomes

t(n) = O(n) + 2
K

N
T (L)

= O(n) + 2 · 3

L
T (L)

= O(n) + 6 · t(n

2
+ c),

for some constant c. Recall that n is not necessarily integer in this notation. To solve this recurrence,
we shift the domain of t(n) by defining s(n) := t(n + 2c). Then

s(n) = O(n + 2c) + 6t((n/2) + 2c) = O(n) + 6s(n/2).

This has solution s(n) = O(nlg 6). Back-substituting, we obtain

T (N) = O(N logα N), α = lg 6 < 2.5848. (7)

Refinements. Our choice of L = 3 ·2ℓ is clearly suboptimal. Indeed, it is not hard to see that our
method really implies

T (N) = O(N log2+ε N)

for any ε > 0. A slight improvement (attributed to Karp in his lectures) is to compute each Wi

(i = 0, . . . , 2K−1) in two parts: let M ′ := 22·2ℓ

+1 and M ′′ :=K. Since M ′, M ′′ are relatively prime
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and Wi < M ′M ′′, it follows that if we have computed W ′
i := Wi modM ′ and W ′′

i :=Wi modM ′′,
then we can recover Wi using the Chinese remainder theorem (Lecture IV). It turns out that
computing all the W ′′

i ’s and the reconstruction of Wi from W ′
i , W

′′
i can be accomplished in linear

time. The computation of the W ′
i ’s proceeds exactly as the above derivation. The new recurrence

we have to solve is
t(n) = n + 4t(n/2)

which has the solution t(n) = O(n2) or T (N) = O(N log2 N). To obtain the ultimate result, we have
to improve the recurrence to t(n) = n+2t(n/2). In addition to the above ideas (Chinese remainder,
etc), we must use a variant convolution called “negative wrapped convolution” and DFTK instead
of DFT2K . Then Wi’s can be uniquely recovered.

Exercise 4.1: Carry out the outline proposed by Karp. 2

Integer multiplication in other models of computation. In the preceding algorithm, we
only counted bit operations and it is not hard to see that this complexity can be achieved on a
RAM model. It is tedious but possible to carry out the Schönhage-Strassen algorithm on a Turing
machine, in the same time complexity. Thus we conclude

MB(n) = O(n log n log log n) = nL(n)

where MB(n) denotes the Turing complexity of multiplying two n-bit integers (§0.7). This bound
on MB(n) can be improved for more powerful models of computation. Schönhage [182] has shown
that linear time is sufficient on pointer machines. Using general simulation results, this translates
to O(n log n) time on logarithmic-cost successor RAMs (§0.5). In parallel models, O(log n) time
suffices on a parallel RAM.

Extending the notation of MB(n), let
MB(m, n)

denote the Turing complexity of multiplying two integers of sizes (respectively) at most m and n
bits. Thus, MB(n) = MB(n, n). It is straightforward to extend the bound on MB(n) to MB(m, n).

Exercises

Exercise 4.2: Show that MB(m, n) = max{m, n}L(min{m, n}). 2

Exercise 4.3: Show that we can take remainders umodv and form quotients udiv v of integers in
the same bit complexity as multiplication. 2

Exercise 4.4: Show how to multiply in Zp (p ∈ N a prime) in bit complexity O(log pL(log p)), and
form inverses in Zp in bit complexity O(log pL2(log p)). 2

§5. Matrix Multiplication

For arithmetic on matrices over a ring R, it is natural that our computational model is algebraic
programs over the base comprising the ring operations of R. Here the fundamental discovery by
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Strassen (1968) [195] that the standard algorithm for matrix multiplication is suboptimal started
off intense research for over a decade in the subject. Although the final word is not yet in, rather
substantial progress had been made. These results are rather deep and we only report the current
record, due to Coppersmith and Winograd (1987) [48]:

Proposition 11 (Algebraic complexity of matrix multiplication) The product of two matri-
ces in Mn(R) can be computed of O(nα) operations in the ring R, where α = 2.376. In other words,

MM(n) = O(nα).

It is useful to extend this result to non-square matrix multiplication. Let MM(m, n, p) denote the
number of ring operations necessary to compute the product of an m× n matrix by a n× p matrix.
So MM(n) = MM(n, n, n).

Theorem 12 Let MM(n) = O(nα) for some α ≥ 2. Then

MM(m, n, p) = O(mnp · kα−3)

where k = min{m, n, p}.

Proof. Suppose A is a m×n matrix, B a n×p matrix. First assume m = p but n is arbitrary. Then
the bound in our theorem amounts to:

MM(m, n, m) =

{

O(nmα−1) if m ≤ n
O(m2nα−2) if n ≤ m.

We prove this in two cases. Case: m ≤ n. We partition A into r = ⌈n/m⌉ matrices, A =
[A1|A2| · · · |Ar] where each Ai is an m-square matrix except possibly for Ar. Similarly partition B
into r m-square matrices, BT = [BT

1 |BT
2 | · · · |BT

r ]. Then

AB = A1B1 + A2B2 + · · · + ArBr.

We can regard ArBr as a product of two m-square matrices, simply by padding out Ar and Br with
zeros. Thus each AiBi can be computed in mα operations. To add the products A1B1, . . . , ArBr

together, we use O(rm2) = O(rmα) addition operations. Hence the overall complexity of computing
AB is O(rmα) = O(nmα−1) as desired.
Case: n ≤ m. We similarly break up the product AB into r2 products of the form AiBj , i, j =
1, . . . , r, r = ⌈m/n⌉. This has complexity O(r2nα) = O(m2nα−2). This completes the proof for the
case m = p.

Next, since the roles of m and p are symmetric, we may assume m < p. Let r = ⌈p/m⌉. We have
two cases: (1) If m ≤ n then MM(m, n, p) ≤ rMM(m, n, m) = O(pnmα−2). (2) If n < m, then
MM(m, n, p) ≤ rMM(m, n, m) = O(rm2nα−2) = O(pmnα−2). Q.E.D.

Notice that this result is independent of any internal details of the O(nα) matrix multiplication
algorithm. Webb Miller [133] has shown that under sufficient conditions for numerical stability,
any algorithm for matrix multiplication over a ring requires n3 multiplications. For a treatment of
stability of numerical algorithms (and Strassen’s algorithm in particular), we recommend the book
of Higham [81].
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Lecture II

The GCD

Next to the four arithmetic operations, the greatest common denominator (GCD) is perhaps the
most basic operation in algebraic computing. The proper setting for discussing GCD’s is in a
unique factorization domain (UFD). For most common UFDs, that venerable algorithm of Euclid
is available. In the domains Z and F [X ], an efficient method for implementing Euclid’s algorithm
is available. It is the so-called half-GCD approach, originating in ideas of Lehmer, Knuth and
Schönhage. The presentation here is based on unpublished joint work with Klaus Thull, and gives
a unified framework for the half-GCD approach for both integer and polynomial GCD. We also give
the first proof for the correctness of the (corrected) polynomial half-GCD algorithm.

The student will not go far amiss if she interprets all references to rings as either
the integers Z or a polynomial ring F [X ] over a field F (even taking F = Q).

§1. Unique Factorization Domain

Let D be a commutative ring. All rings in this book contain unity 1 where 0 6= 1. For a, b ∈ D,
we say b divides a, and write b | a, if there is a c ∈ D such that a = bc. If b does not divide a, we
write b∼| a. We also call b a divisor of a, and a a multiple of b. Thus every element divides 0 but
0 does not divide any non-zero element. A zero-divisor is an element b such that bc = 0 for some
non-zero c. We also call an element regular if it is not a zero-divisor. An integral domain (or domain
for short) D is a commutative ring whose only zero-divisor is 0. A unit is an element that divides
1. (Alternatively, units are the invertible elements.) Thus the unity element 1 is always a unit and
the zero element is never a unit. In a field, all non-zero elements are units. Two elements, a and b,
are associates if a = ub for some unit u. Clearly the relation of being associates is an equivalence
relation. So the elements of D are partitioned into equivalence classes of associates.

Exercise 1.1:
(a) The set of units and the set of zero-divisors are disjoint.
(b) a | b and b | a iff a, b are associates. 2

Convention. For each equivalence class of associates, we assume that a distinguished member is
chosen. The following convention captures most cases:
(i) The unity element 1 is always distinguished.
(ii) In Z, the units are +1 and −1 and the equivalence classes are {−n, +n} for each n ∈ N. The
non-negative elements will be distinguished in Z.
(iii) In the polynomial ring D[X ] over a domain D, if we have specified distinguished elements in D
then the distinguished elements of D[X ] will be those with distinguished leading coefficients. In case
D is a field, this means the distinguished elements in D[X ] are the monic polynomials, i.e., those
with leading coefficient 1. Note that the product of distinguished elements are distinguished when
D = Z.

A proper divisor of b is any divisor that is neither a unit nor an associate of b. An element is
irreducible if it has no proper divisors; otherwise it is reduciblering!reducible element. Since any
divisor of a unit is a unit, it follows that units are irreducible. Furthermore, the zero element is
irreducible if and only if D is a domain.
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A unique factorization domain (abbreviated, UFD) is a domain D in which every non-unit b can
be written as a product of irreducible non-units,

b = b1 b2 · · · bn (n ≥ 1).

Moreover, these irreducible elements are unique up to reordering and associates. UFD’s are also
called factorial domains.

The importance of UFD’s is that its elements are made up of “fundamental building blocks”, namely
the irreducible elements. Note that Z is a UFD, by the Fundamental Theorem of Arithmetic. In
fact, a UFD can be said to be a domain that has an analogue to the Fundamental Theorem of
arithmetic! The non-zero irreducible elements of Z are called primes. But in general, we define the
primering!prime elements elements of a ring R to be those non-units p ∈ R such that p 6= 0 and if p
divides any product a · b then p divides either a or b.

One sees that prime elements are irreducible but the converse is not generally true. For example
(see [29, page 173]), in C[X, Y, Z]/(Z2−XY ), Z is irreducible but not prime because Z divides XY
without dividing X or Y . It is easy to see that in a UFD, every irreducible element is also a prime.
Hence this is an example of a non-UFD.

Theorem 1 D is a UFD iff D[X ] is a UFD.

It is clear that D[X ] is not a UFD if D is not a UFD. The proof of the other direction is due to
Gauss and is deferred to the next lecture. Trivially, a field F is a UFD. Hence, by induction on
d ≥ 1, this theorem shows that F [X1, . . . , Xd] is a UFD.

Greatest common divisor. Let D be a UFD and S ⊆ D be a finite non-empty set. We write
a |S (read, a divides S) to mean a | b for all b ∈ S. An element d ∈ D is a greatest common divisor
(abbreviated, GCD) of S if

1) d |S,

2) if c |S then c |d.

Exercise 1.2: Prove that S has a greatest common divisor, and this is determined up to associates.
2

We can therefore define the function GCD(S) by choosing the distinguished greatest common divisor
of S. If S = {a1, a2, . . . , am}, we write GCD(a1, a2, . . . , am) for GCD(S). Unless otherwise noted, this
lecture will assume that S has one or two elements: S = {a, b}. In this case, the GCD function may
be regarded as a two argument function, GCD(a, b). It is called the simple GCD function, as opposed
to the multiple GCD function for general sets. If S has m ≥ 2 elements, we can compute GCD(S)
using m− 1 simple GCD computations.

The following is easy.

GCD(1, b) = 1

GCD(0, b) = b̂ where b̂ is the distinguished associate of b
GCD(a, b) = GCD(b, a)
GCD(a + b, b) = GCD(a, b)
GCD(ua, b) = GCD(a, b) where u is a unit
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Say a, b are relatively prime or co-prime if GCD(a, b) = 1.

For instance, GCD(123, 234) = 3 and GCD(3X4−6X3+13X2−8X+12, 6X5+17X3−3X2+12X−4) =
3X2 + 4.

GCD for ideals. Although we began with UFD’s such as Z and Q[X ], our Fundamental Problems
force us to consider more general domains such as number rings (§VI.3). These rings need not
be UFD’s (exercise below). This led Kummer, Dedekind and Kronecker to develop ideal theory for
algebraic numbers1. To regain the UFD property, we generalize numbers to ideals and introduce the
concept of prime ideals. The ideal theoretic analogue of UFD’s is this: a Dedekind domain is one in
which every ideal is a product of prime ideals. It can be proved that such prime ideal factorizations
are unique (e.g., [221, p. 273]). Number rings are Dedekind domains.

We do not define the concept of ideal divisibility via ideal products. Instead, if I, J ⊆ D are ideals,
we define I to be a divisor of J , and say I divides J , to mean I ⊇ J .

This definition is a stroke of inspiration from Dedekind (1871). Consider ideals in Z: they have the
form (n) where n ∈ Z since Z is a principal ideal domain (§3). Hence we can identify ideals of Z with
numbers. Then m, n ∈ Z has the property that m |n iff (m) ⊇ (n), “agreeing” with our definition.
In general, the relationship between ideal quotient and divisor property is only uni-directional: for
ideals I, J ⊆ D, we have that I ⊇ IJ and so I divides IJ .

The GCD of a set S of ideals is by definition the smallest ideal that divides each I ∈ S, and we easily
verify that

GCD(S) =
∑

I∈S
I.

For I = (a1, . . . , am) and J = (b1, . . . , bn), we have

GCD(I, J) = I + J = (a1, . . . , am, b1, . . . , bn). (1)

So the GCD problem for ideals is trivial unless we require some other conditions on the ideal
generators. For instance, for the ideals of Z, the GCD of (a) and (b) is the ideal (a, b). But since
Z is a principal ideal domain, we know that (a, b) = (d) for some d ∈ Z. We then interpret the
GCD problem in Z to mean the computation of d from a, b. It is not hard to prove that d is what
we have defined to be a greatest common divisor of a, b. Thus, the common notation ‘(a, b)’ for
GCD(a, b) is consistent with the ideal theoretic notation! In general, for a, b in a UFD, one should
not expect Ideal(a, b) to be generated by the GCD(a, b). For instance, Z[X ] is a UFD, GCD(2, X) = 1
but Ideal(2, X) 6= Ideal(1).

Exercises

Exercise 1.3:
(a) Is the set of ideals of a domain D under the ideal sum and ideal product operations a ring?
The obvious candidates for the zero and unity elements are (0) and (1) = D.
(b) Verify equation (1).
(c) What is the least common multiple, LCM, operation for ideal? 2

Exercise 1.4: Say a domain D is factorable if every non-unit of D is a finite product of irreducible
elements. Prove that a factorable domain D is a UFD iff irreducible elements are prime. 2

1The other historical root for ideal theory is rational function fields in one variable.
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Exercise 1.5: We will prove that the number ring Z[
√
−5] = {x + y

√
−5 : x, y ∈ Z} (cf. §VI.3) is

not a UFD. The norm of an element x + y
√
−5 is N(x + y

√
−5) := x2 + 5y2. Show:

(a) N(ab) = N(a)N(b).
(b) N(a) = 1 iff a is a unit. Determine the units of Z[

√
−5].

(c) If N(a) is a prime integer then a is irreducible in Z[
√
−5].

(d) The numbers 2, 3, 1+
√
−5, 1−

√
−5 are irreducible and not associates of each other. Since

6 = 2 · 3 = (1 +
√
−5) · (1−

√
−5), conclude that Z[

√
−5] is not a UFD. 2

Exercise 1.6:
(a) In a principal ideal domain, the property “I ⊇ J” is equivalent to “there exists an ideal K
such that IK = J”.
(b) In Z[X, Y ], there does not exist an ideal K such that (X, Y ) ·K = (X2, Y 2). 2

Exercise 1.7: (Lucas 1876) The GCD of two Fibonacci numbers is Fibonacci. 2

Exercise 1.8: (Kaplansky) Define a GCD-domain to be a domain in which any two elements have
a GCD.
a) Show that if D is such a domain, then so is D[X ].
b) Show that if for any two elements u, v ∈ D, either u | v or v |u (D is a valuation domain)
then D is a GCD-domain. 2

§2. Euclid’s Algorithm

We describe Euclid’s algorithm for computing the GCD of two positive integers

m0 > m1 > 0.

The algorithm amounts to constructing a sequence of remainders,

m0, m1, m2, . . . , mk, (k ≥ 1) (2)

where

mi+1 = mi−1 modmi (i = 1, . . . , k − 1)

0 = mk−1 modmk.

Recall that amod b is the remainder function that returns an integer in the range [0, b). But this is
not the only possibility (next section).

Let us prove that mk equals GCD(m0, m1). We use the observation that if any number d divides mi

and mi+1, then d divides mi−1 (provided i ≥ 1) and d divides mi+2 (provided i ≤ k − 2). Note
that mk divides mk and mk−1. So by repeated application of the observation, mk divides both m0

and m1. Next suppose d is any number that divides m0 and m1. Then repeated application of the
observation implies d divides mk. Thus we conclude that mk = GCD(m0, m1).

Two pieces of data related to the GCD(m0, m1) are often important. Namely, there exist integers s, t
such that

GCD(m0, m1) = sm0 + tm1. (3)

We call the pair (s, t) a co-factor of (m0, m1). By the co-GCD problem, we mean the problem of
computing a co-factor for an input pair of numbers. It is easy to obtain the GCD from a co-factor.
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However, most co-GCD algorithms also produces the GCD with no extra effort. By definition, an
extended GCD algorithm solves both the GCD and co-GCD problems. The existence of co-factors
will be proved by our construction of an extended GCD algorithm next.

We proceed as follows. Suppose qi is the quotient of the ith remaindering step in (2):

mi+1 = mi−1 − qimi (i = 2, . . . , k − 1) (4)

We compute two auxiliary sequences

(s0, s1, . . . , sk) and (t0, t1, . . . , tk) (5)

so that they satisfy the property

mi = sim0 + tim1, (i = 0, . . . , k). (6)

Note that when i = k, this property is our desired equation (3). The auxiliary sequences are obtained
by mirroring the remaindering step (4),

si+1 = si−1 − qisi
ti+1 = ti−1 − qiti

}
(i = 2, . . . , k − 1) (7)

To initialize the values of s0, s1 and t0, t1, observe that

m0 = 1 ·m0 + 0 ·m1

and
m1 = 0 ·m0 + 1 ·m1.

Thus (6) is satisfied for i = 0, 1 if we set

(s0, t0) :=(1, 0), (s1, t1) :=(0, 1).

Inductively, (6) is satisfied because

mi+1 = mi−1 − qimi

= (si−1m0 + ti−1m1)− qi(sim0 + tim1)

= (si−1 − qisi)m0 + (ti−1 − qiti)m1

= si+1m0 + ti+1m1.

This completes the description and proof of correctness of the extended Euclidean algorithm.

Application. Suppose we want to compute multiplicative inverses modulo an integer m0. An
element m1 has a multiplicative inverse modulo m0 if and only if GCD(m0, m1) = 1. Applying the
extended algorithm to m0, m1, we obtain s, t such that

1 = GCD(m0, m1) = sm0 + tm1.

But this implies
1 ≡ tm1(mod m0),

i.e., t is the inverse of m1 modulo m0. Similarly s is the inverse of m0 modulo m1.

Exercises
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Exercise 2.1: (i) Show that every two steps of the Euclidean algorithm reduce the (bit) size of the
larger integer by at least one. Conclude that the bit complexity of the Euclidean algorithm is
O(nMB(n)) where MB(n) is the bit complexity of integer multiplication.
(ii) Improve this bound to O(n2). HINT: If the bit length of mi in the remainder sequence is
ℓi, then the bit length of qi is at most ℓi−1 − ℓi + 1. The ith step can be implemented in time
O(ℓi(ℓi−1 − ℓ+1)). 2

Exercise 2.2: Consider the extended Euclidean algorithm.
(i) Show that for i ≥ 2, we have siti < 0 and si > 0 iff i is even.
(ii) Show that the co-factor (s, t) computed by the algorithm satisfy max{|s|, |t|} < m0. 2

Exercise 2.3: (Blankinship) The following is a simple basis for an extended multiple GCD algo-
rithm. Let N = (n1, . . . , nk)

T be a k-column of integers and A the k × (k + 1) matrix whose
first column is N , and the remaining columns form an identity matrix. Now perform any
sequence of row operations on A of the form “subtract an integer multiple of one row from
another”. It is clear that we can construct a finite sequence of such operations so that the first
column eventually contains only one non-zero entry d where d = GCD(n1, . . . , nk). If the row
containing d is (d, s1, . . . , sk), prove that

d =

k∑

i=1

sini.

2

Exercise 2.4:
(i) Let n1 > n2 > · · · > nk > 1 (k ≥ 1) be integers. Let S = (s1, . . . , sk) ∈ Zk be called a syzygy

of N = (n1, . . . , nk) if
∑k

i=1 sini = 0. Prove that the set of syzygies of N forms a Z-module.
For instance, let sij (1 ≤ i < j ≤ n) be the k-vector (0, . . . , 0, nj, 0, . . . , 0,−ni, 0, . . . , 0) (where
the only non-zero entries are at positions i and j as indicated). Clearly sij is a syzygy. This
module has a finite basis (XI§1). Construct such a basis.
(ii) Two k-vectors S, S′ are equivalent if S−S′ is a syzygy of N . Show that every S is equivalent
to some S′ where each component c of S′ satisfies |c| < n1. 2

§3. Euclidean Ring

We define the abstract properties that make Euclid’s algorithm work. A ring R is Euclidean if there
is a function

ϕ : R→ {−∞} ∪ R

such that

i) b 6= 0 and a|b implies ϕ(a) ≤ ϕ(b);

ii) for all r ∈ R, the set {ϕ(a) : a ∈ R, ϕ(a) < r} is finite;

iii) for all a, b ∈ R (b 6= 0), there exists q, r ∈ R such that

a = bq + r and ϕ(r) < ϕ(b).
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We say that ϕ is an Euclidean value function for R, and call the q and r in iii) a quotient and
remainder of a, b relative to ϕ. Property iii) is called the division property (relative to ϕ). We
introduce the remainder rem(a, b) and quotient quo(a, b) functions that pick out some definite pair
of remainder and quotient of a, b that simultaneously satisfy property iii). Note that these functions
are only defined when b 6= 0. Often it is convenient to write these two functions using infix operators
mod and div:

rem(a, b) = amod b, quo(a, b) = adiv b. (8)

A Euclidean domain is an Euclidean ring that is also a domain.

Exercise 3.1:
(a) rem(a, b) = 0 if and only if b|a (in particular, rem(0, b) = 0).
(b) ϕ(a) = ϕ(b) when a and b are associates.
(c) ϕ(0) < ϕ(b) for all non-zero b. 2

Our two standard domains, Z and F [X ], are Euclidean:
(A) Z is seen to be an Euclidean domain by letting ϕ(n) = |n|, the absolute value of n. There are
two choices for rem(m, n) unless n|m, one positive and one negative. For instance, rem(8, 5) can be
taken to be 3 or −2. There are two standard ways to make rem(m, n) functional. In the present
lecture, we choose the non-negative remainder. The corresponding function rem(m, n) ≥ 0 is called
the non-negative remainder function. An alternative is to choose the remainder that minimizes
the absolute value (choosing the positive one in case of a tie); this corresponds to the symmetric
remainder function. The function quo(a, b) is uniquely determined once rem(a, b) is fixed. Again,
we have the non-negative quotient function and the symmetric quotient function.
(B) If F is any field, the following division property for polynomials holds: for A, B ∈ F [X ] where
B 6= 0, there exists Q, R0 ∈ F [X ] such that

A = BQ + R0, deg(R0) < deg(B).

This can be proved by the synthetic division algorithm which one learns in high school. It follows
that the polynomial ring F [X ] is an Euclidean domain, as witnessed by the choice ϕ(P ) = deg P ,
for P ∈ F [X ]. In fact, the synthetic division algorithm shows that rem(P, Q) and quo(P, Q) are
uniquely determined. Despite property ii) in the definition of ϕ, there may be infinitely many a ∈ R
with ϕ(a) < r. This is the case if R = F [X ] with F infinite.

Lemma 2 If a is a proper divisor of b then ϕ(a) < ϕ(b).

Proof. By the division property, a = bq + r where ϕ(r) < ϕ(b). Now r 6= 0 since otherwise b divides
a, which contradicts the assumption that a properly divides b. Since a properly divides b, let b = ac
for some c. Then r = a− bq = a(1− cq). Then property i) implies ϕ(a) ≤ ϕ(r) < ϕ(b). Q.E.D.

Theorem 3 An Euclidean ring is a principal ideal ring. Indeed, if b ∈ I \ {0} is such that ϕ(b) is
minimum then I = Ideal(b).

Proof. Let I be any ideal. By property ii), there exists a b ∈ I \ {0} such that ϕ(b) is minimum.
To show I = Ideal(b), it suffices to show that b divides any c ∈ I \ {0}. By the division property,
c = bq + r where ϕ(r) < ϕ(b). If r 6= 0 then we have found an element r = c − bq ∈ I \ {0} with
ϕ(r) < ϕ(b), contradicting our choice of b. If r = 0 then b|c. Q.E.D.

The converse is not true (see exercise).
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Lemma 4 In a principal ideal ring R, the non-zero irreducible elements are prime.

Proof. Let p ∈ R \ {0} be irreducible. If p divides the product bc, we must prove that p divides b or
p divides c. Since R is a principal ideal ring, Ideal(p, b) = Ideal(u) for some u = αp + βb. So u|p.
Since p is irreducible, u is a unit or an associate of p. If u is an associate, and since u|b, we have p|b,
which proves the lemma. If u is a unit then uc = αpc + βbc. Since p|bc, this implies p|uc, i.e., p|c.

Q.E.D.

Theorem 5 In a principal ideal ring, the factorization of a non-unit into irreducible non-units is
unique, up to reordering and associates.

Proof. Suppose b ∈ R is a non-unit with two factorizations into irreducible non-units:

b = p1p2 · · · pm = q1q2 · · · qn, 1 ≤ m ≤ n.

We use induction on m. If m = 1 then clearly n = 1 and q1 = p1. Assume m > 1. Since p1 is
a prime, it must divide some qi, and we might as well assume p1|q1. But q1 is also a prime and
so it must be an associate of p1. Dividing by p1 on both sides of the expression, it follows that
p2 · · · pm = q′2q3 · · · qn where q′2 is an associate of q2. By induction, m = n and the two factorizations
are unique up to reordering and associates. This implies our theorem. Q.E.D.

Corollary 6 An Euclidean domain is a UFD.

Remainder sequences. Relative to the remainder and quotient functions, we define a remainder
sequence for any pair a, b ∈ R to be a sequence

a0, a1, . . . , ak (k ≥ 1) (9)

such that a0 = a, a1 = b and for i = 1, . . . , k − 1, ai+1 is an associate of rem(ai−1, ai), and
rem(ak−1, ak) = 0. Note that termination of this sequence is guaranteed by property ii). The remain-
der sequence is strict if ai+1 is any remainder of ai−1, ai for all i; it is Euclidean if ai+1 = rem(ai−1, ai).

Example: In Z, (13, 8, 5, 3, 2, 1), (13, 8,−3, 2,±1) and (13, 8, 3,−1) are all strict remainder se-
quences for (13, 8). A non-strict remainder sequence for (13, 8) is (13, 8,−5, 2, 1).

Associated to each remainder sequence (9) is another sequence

q1, q2, . . . , qk (10)

where ai−1 = aiqi+uiai+1 (i = 1, . . . , k−1, ui is a unit) and ak−1 = akqk. We call (10) the quotient
sequence associated toremainder sequence!2@
it see also quotient sequence the remainder sequence.

Norms. In some books, the function ϕ is restricted to the range N. This restriction does not
materially affect the concept of Euclidean domains, and has the advantage that property ii) is
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automatic. Our formulation makes it more convenient to formulate functions ϕ that have other
desirable properties. For instance, we often find the properties:

ϕ(ab) = ϕ(a)ϕ(b)

and
ϕ(a + b) ≤ ϕ(a) + ϕ(b).

In this case, we call ϕ a multiplicative norm (or valuation), and might as well (why?) assume
ϕ(0) = 0 and ϕ(1) = 1. Similarly, if ϕ(ab) = ϕ(a) + ϕ(b) and ϕ(a + b) = O(1) + max{ϕ(a), ϕ(b)}
then we call ϕ an additive norm, and might as well assume ϕ(0) = −∞ and ϕ(1) = 0. Clearly ϕ is
multiplicative implies log ϕ is additive.

Remarks. The number rings Oα (§VI.3) have properties similar to the integers. In particular,
they support the concepts of divisibility and factorization. Gauss pointed out that such rings may
not be a UFD (class number 1). Even when Oα is a UFD, it may not be Euclidean; the “simplest”
example is O√

−19 (see [174]). An obvious candidate for the Euclidean value function ϕ is the norm
of algebraic numbers, but other functions are conceivable. Turning now to the quadratic number
rings (i.e., Oα where α =

√
d and d is squarefree), Kurt Heegner [Diophantische Analysis und Mod-

ulfunktionen, Mathematische Zeitschrift, vol. 56, 1952, pp.227–253] was the first2 to prove that there
are exactly nine such UFD’s in which d < 0, viz., d = −1,−2,−3,−7,−11,−19,−43,−67,−163. In
contrast, it is conjectured that there are infinitely many UFD’s among the real (i.e., d > 0) quadratic
number fields. It is known that there are precisely 21 real quadratic domains that support the Eu-
clidean algorithm. Currently, the most general GCD algorithms are from Kaltofen and Rolletschek
[98] who presented polynomial-time GCD algorithms for each quadratic number ring O√

d
that is a

UFD, not necessarily Euclidean.

Exercises

Exercise 3.2: Justify the above remarks about multiplicative and additive norms. 2

Exercise 3.3: Verify that the Euclidean algorithm computes the GCD in an Euclidean domain,
relative to the function rem(a, b). 2

Exercise 3.4: Show that the number ring Oi (= Z[i] = {a + ib : a, b ∈ Z}) of Gaussian integers
forms an Euclidean domain with respect to the multiplicative norm ϕ(a + ib) = a2 + b2. Use
the identity of Fibonacci,

ϕ(xy) = ϕ(x)ϕ(y), x, y ∈ Z[i].

What are the possible choices for defining the remainder and quotient functions here? 2

Exercise 3.5: Consider the number ring R = O√
−19. Note that O√

−19 = {m + nω : m, n ∈ Z}
where ω = 1+

√
−19

2 . The norm of x + y
√
−19 ∈ Q(

√
−19) is by x2 + 19y2.

(a) R is a principal ideal domain.
(b) R is not an Euclidean domain with respect to the standard norm function. HINT: What
is the remainder of 5 divided by

√
−19? 2

2This result is often attributed to Stark and Baker who independently proved this in 1966. See Buell [34].
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§4. The Half-GCD Problem

An exercise in §2 shows that that Euclid’s algorithm for integers has bit complexity Θ(n2L(n)).
Knuth [104] is the first to obtain a subquadratic complexity for this problem. In 1971, Schönhage
[181] improved it to the current record of O(MB(n) log n) = nL2(n). Since F [X ] is an Euclidean
domain, Euclid’s algorithm can be applied to polynomials as well. Given P0, P1 ∈ F [X ] with
n = deg P0 > deg P1 ≥ 0, consider its Euclidean remainder sequence

P0, P1, P2, . . . , Ph (h ≥ 1). (11)

Call the sequence normal if deg Pi−1 = 1 + deg Pi for i = 2, . . . , h. A random choice for P0, P1 gives
rise to a normal sequence with high probability (this is because non-normal sequences arise from the
vanishing of certain determinants involving the the coefficients of P0, P1, Lecture III). The algebraic
complexity of this Euclidean algorithm is therefore

O(MA(n)n) = O(n2 log n) (12)

where MA(n) = O(n log n) is the algebraic complexity of polynomial multiplication (Lecture 1).
Moenck [141] improves (12) to O(MA(n) log n) in case the remainder sequence is normal. Aho-
Hopcroft-Ullman [2] incorrectly claimed that the Moenck algorithm works in general. Brent-
Gustavson-Yun [26] presented a corrected version without a proof. Independently, Thull and Yap
[204] rectified the algorithm with a proof, reproduced below. This lecture follows the unified frame-
work for both the polynomial and integer GCD algorithms, first presented in [204].

Let us motivate the approach of Schönhage and Moenck. These ideas are easiest seen in the case of
the polynomials. If the sequence (11) is normal with n = h and deg Pi = n− i (i = 0, . . . , n) then

h∑

i=0

deg Pi = n(n− 1)/2.

So any algorithm that explicitly computes each member of the remainder sequence has at least
quadratic complexity. On the other hand, if

Q1, Q2, . . . , Qh

is the quotient sequence associated to (11), then it is not hard to show that

h∑

i=1

deg Qi = n. (13)

Indeed, we can quickly (in O(n log2 n) time, see Exercise below) obtain any member of the remainder
sequence from the Qi’s. This suggests that we redirect attention to the quotient sequence.

Matrix Terminology. To facilitate description of our algorithms, we resort to the language of
matrices and vectors. In this lecture, all matrices will be 2 × 2 matrices and all vectors will be
column 2-vectors. The identity matrix is denoted by E. The Euclidean algorithm as embodied in
(11) can be viewed as a sequence of transformations of 2-vectors:

[
P0

P1

]
M1−→

[
P1

P2

]
M2−→ · · · Mh−1−→

[
Ph−1

Ph

]
Mh−→

[
Ph
0

]
. (14)

Precisely, if U, V are vectors and M a matrix, we write

U
M−→ V
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to mean that U = MV . Hence equation (14) can be correctly interpreted if we define

Mi =

[
Qi 1
1 0

]
.

In general, an elementary matrix refers to a matrix of the form M =

[
Q 1
1 0

]
where Q is a

polynomial with positive degree. We call Q the partial!quotient in M . A regular matrix M is a
product of zero or more elementary matrices,

M = M1M2 · · ·Mk (k ≥ 0). (15)

When k = 0, M is interpreted to be E. The sequence Q1, . . . , Qk of partial quotients associated
with the elementary matrices M1, . . . , Mk in equation (15) is called the sequence of partial quotients
of M . Also, Qk is called its last partial quotient Note that regular matrices have determinant ±1
and so are invertible. Regular matrices arise because

U
M−→ V and V

M ′

−→W implies U
MM ′

−→ W.

Our terminology here is motivated by the connection to continued fractions (for instance, regular
matrices are related to regular continued fractions).

We are ready to define the half-GCD (or, HGCD) problem for a polynomial ring F [X ]:

Given P0, P1 ∈ F [X ] where n = deg P0 > deg P1, compute a regular matrix

M := hGCD(P0, P1)

such that if [
P0

P1

]
M−→

[
P2

P3

]

then
deg P2 ≥ n/2 > deg P3. (16)

In general, we say two numbers a, b straddle a third number c if a ≥ c > b. Thus deg P2, deg P3

straddle n/2 in equation (16).

Now we show how to compute the GCD using the hGCD-subroutine. In fact the algorithm is really
a “co-GCD” (§2) algorithm:

c© Chee-Keng Yap September 9, 1999



§4. HGCD Lecture II Page 54

Polynomial co-GCD Algorithm:
Input: A pair of polynomials with deg P0 > deg P1

Output: A regular matrix M = co-GCD(P0, P1) such that[
P0

P1

]
M−→

[
GCD(P0, P1)

0

]
.

[1] Compute M0 ← hGCD(P0, P1).
[2] Recover P2, P3 via[

P2

P3

]
←M−1

0 ·
[

P0

P1

]
.

[3] if P3 = 0 then return(M0).
else, perform one step of the Euclidean algorithm,[

P2

P3

]
M1−→

[
P3

P4

]

where M1 is an elementary matrix.
[4] if P4 = 0 then return(M0M1).

else, recursively compute M2 ← co-GCD(P3, P4)
return(M0M1M2).

The correctness of this algorithm is clear. The reason for step [3] is to ensure that in our recursive
call, the degree of the polynomials is less than n/2. The algebraic complexity T (n) of this algorithm
satisfies

T (n) = T ′(n) + O(MA(n)) + T (n/2)

where T ′(n) is the complexity of the HGCD algorithm. Let us assume that

MA(n) = O(T ′(n)), T ′(αn) ≤ αT ′(n).

For instance, the first relation holds if T ′(n) = Ω(MA(n)); the second relation holds if T ′(n) is
bounded by a polynomial. In particular, they hold if T ′(n) = Θ(M(n) log n), which is what we will
demonstrate below. Then

T (n) = O(T ′(n) + T ′(n/2) + T ′(n/4) + · · ·) = O(T ′(n)).

In conclusion, the complexity of the GCD problem is the same order of the complexity as the HGCD
problem. Henceforth, we focus on the HGCD problem.

Remarks: The above complexity counts ring operations from F . If we count operations in F [X ],
the complexity is O(n log n). This counting is more general because it applies also to the case of
integer HGCD to be discussed. Strassen [196] has proved that this complexity is optimal: O(n log n)
is both necessary and sufficient.

Exercises

Exercise 4.1: Recall the auxiliary sequences (s0, s1, . . . , sk) and (t0, t1, . . . , tk) computed in the
Extended Euclidean algorithm (§2) for the GCD of a pair of integers a0 > a1 > 1. Show that

the appropriate elementary matrices have the form

[
si ti

si+1 ti+1

]−1

. 2

Exercise 4.2:
(a) Show equation (13).
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(b) Show that in O(n log2 n) time, we can reconstruct the polynomials S, T from the quo-

tient sequence Q1, . . . , Qk where SP0 + TP1 = GCD(P0, P1). HINT: note that

[
Pi

Pi+1

]
=

[
0 1
1 −Qi

] [
Pi−1

Pi

]
, and use a balanced binary tree scheme. 2

§5. Properties of the Norm

For the rest of this Lecture, the domain D refers to either Z or F [X ]. In this
case, we define the (additive) norm ‖a‖ of a ∈ D thus:

‖a‖ :=

{
log2 |a| if a ∈ Z,
deg(a) if a ∈ F [X ].

The previous section describes the polynomial HGCD problem. A similar, albeit more complicated,
development can be carried out for integers. We now describe a common framework for both the
integer and polynomial HGCD algorithms.

The following properties are easy to check:

a) ‖a‖ ∈ {−∞} ∪ R∗ where R∗ is the set of non-negative real numbers.

b) ‖a‖ = −∞⇐⇒ a = 0

c) ‖a‖ = 0⇐⇒ a is a unit.

d) ‖ − a‖ = ‖a‖

e) ‖ab‖ = ‖a‖+ ‖b‖

f) ‖a + b‖ ≤ 1 + max{‖a‖, ‖b‖}.

The last two properties imply that the norm is additive (§3). However, polynomials satisfy the
stronger non-Archimedean property (cf. [111, p.283]):

‖a + b‖ ≤ max{‖a‖, ‖b‖}.

It is this non-Archimedean property that makes polynomials relatively easier than integers. This
property implies

‖a + b‖ = max{‖a‖, ‖b‖} if ‖a‖ 6= ‖b‖. (17)

Exercise 5.1: Prove this. 2

This norm function serves as the Euclidean value function for D. In particular, the division property
relative to the norm holds: for any a, b ∈ D, b 6= 0, there exists q, r ∈ D such that

a = qb + r, ‖r‖ < ‖b‖.
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The remainder and quotient functions, rem(a, b) and quo(a, b), can be defined as before. Recall that
these functions are uniquely defined for polynomials, but for integers, we choose rem(a, b) to be the
non-negative remainder function. Note that in the polynomial case,

‖amodXm‖ ≤ min{‖a‖, m− 1} (18)

‖adivXm‖ =






‖a‖ −m if ‖a‖ ≥ m

−∞ else.
(19)

Matrices and vectors. The previous section (§4) introduced the matrix concepts we needed.
Those definitions extend in the obvious way to our present setting, except for one place, where we

need special care: A matrix of the form M =

[
q 1
1 0

]
(where q ∈ D) is denoted 〈q〉. A matrix is

elementary if it has the form 〈q〉 where ‖q‖ > 0 in the case of polynomials (as before), and q > 0 in
the case of integers. A finite product 〈q1〉〈q2〉 · · · 〈qk〉 (k ≥ 0) of elementary matrices is again called
regular and may be denoted 〈q1, . . . , qk〉. When k = 2, the careful reader will note the clash with
our notation for scalar products, but this ambiguity should never confuse.

A regular matrix M =

[
p q
r s

]
satisfies the following ordering property:

M 6= E ⇒ ‖p‖ ≥ max{‖q‖, ‖r‖} ≥ min{‖q‖, ‖r‖} ≥ ‖s‖, ‖p‖ > ‖s‖. (20)

Exercise 5.2:

a) Prove the ordering property.

b) If all the inequalities in the definition of the ordering property are in fact strict and ‖s‖ ≥ 0, we
say M satisfies the strict ordering property. Show that the product of three or more elementary
matrices has the strict ordering property.

c) Bound the norms of the entries of the matrix 〈q1, . . . , qk〉 in terms of the individual norms ‖qi‖.
2

For vectors U, V and matrix M , we write

U
M−→ V

(or simply, U −→ V ) if U = MV . We say M reducesmatrix!regular!reducing a vector U to V if M

is a regular matrix. If, in addition, U =

[
a
b

]
, V =

[
a′

b′

]
such that ‖a‖ > ‖b‖ and ‖a′‖ > ‖b′‖,

then we say this is an Euclidean reduction.

A matrix is unimodular if3 it has determinant ±1. Clearly regular matrices are unimodular. Thus

their inverses are easily obtained: if M =

[
p q
r s

]
is regular with determinant detM = δ then

M−1 = δ

[
s −q
−r p

]
= ±

[
s −q
−r p

]
. (21)

If U =

[
a
b

]
then we write GCD(U) for the GCD of a and b. We say U, V are equivalent if U = MV

for some unimodular matrix M .
3In some literature, “unimodular” refers to determinant +1.
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Lemma 7 U and V are equivalent if and only if GCD(U) = GCD(V ).

Proof. It is easy to check that if the two vectors are equivalent then they must have the same GCD.

Conversely, by Euclid’s algorithm, they are both equivalent to the vector

[
g
0

]
where g is their

common GCD. Q.E.D.

It follows that this binary relation between vectors is indeed a mathematical equivalence relation.
The following is a key property of Euclidean remainder sequences (§3):

Lemma 8 Given a, b, a′, b′ such that ‖a‖ > ‖b‖ ≥ 0. The following are equivalent:
(i) a′, b′ are consecutive elements in the Euclidean remainder sequence of a, b.
(ii) There is a regular matrix M such that

[
a
b

]
M−→

[
a′

b′

]
(22)

and either ‖a′‖ > ‖b′‖ ≥ 0 (polynomial case) or a′ > b′ > 0 (integer case).

Proof. If (i) holds then we can (by Euclid’s algorithm) find some regular matrix M satisfying (ii).
Conversely assume (ii). We show (i) by induction on the number of elementary matrices in the
product M . The result is immediate if M = E. If M is elementary, then (i) follows from the division
property for our particular choices for D. Otherwise let M = M ′′M ′ where M ′ is elementary and
M ′′ is regular. Then for some a′′, b′′,

[
a
b

]
M ′′

−→
[

a′′

b′′

]
M ′

−→
[

a′

b′

]
.

But a′′ = a′q′ + b′ and b′′ = a′ where q′ is the partial quotient of M ′. We verify that this means
‖a′′‖ > ‖b′′‖. By induction, a′′, b′′ are consecutive elements in a strict remainder sequence of a, b.
Then (i) follows. Q.E.D.

Exercises

Exercise 5.3: In Exercise 2.1, we upper bound the length of the integer Euclidean remainder
sequence of a > b > 0 by 2 log2 a. We now give a slight improvement.
(a) Prove that for k ≥ 1,

〈1, . . . , 1〉︸ ︷︷ ︸
k

= 〈1〉k =

[
Fk+1 Fk
Fk Fk−1

]

where {Fi}i≥0 is the Fibonacci sequence defined by: F0 = 0, F1 = 1 and Fi+1 = Fi + Fi−1

(i ≥ 1).
(b) Let φ be the positive root of the equation X2 −X − 1 = 0 (so φ = (1 +

√
5)/2 = 1.618...).

Prove inductively that
(1.5)k−1 ≤ Fk+1 ≤ φk.

(c) Say (q1, q2, . . . , qk) is the quotient sequence associated to the remainder sequence of a >

b > 0. If 〈q1, . . . , qk〉 =

[
p q
r s

]
prove that

‖p‖ ≤ ‖a‖ − ‖b‖.
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(d) Conclude that k < 1 + log1.5 a.

(e) (Lamé) Give an exact worst case bound on k in terms of φ and its conjugate φ̂. 2

§6. Polynomial HGCD

We describe the polynomial HGCD algorithm and prove its correctness.

Parallel reduction. The idea we exploit in the HGCD algorithm might be called “parallel re-
duction”. Suppose we want to compute the HGCD of the pair of polynomials A, B ∈ F [X ] where
deg A = 2m. First we truncate these polynomials to define

[
A0

B0

]
:=

[
AdivXm

B divXm

]
. (23)

Suppose that R is the matrix returned by HGCD(A0, B0); so

[
A0

B0

]
R−→

[
A′

0

B′
0

]
(24)

for some A′
0, B

′
0. Then we can define A′, B′ via

[
A
B

]
R−→

[
A′

B′

]
. (25)

Two reductions by the same matrix are said to be parallel. Thus (24) and (25) are parallel reductions.
If A′, B′ turn out to be two consecutive terms in the remainder sequence of A, B, then we may have
gained something! This is because we had computed R without looking at the lower order coefficients
of A, B. But we need another property for R to be useful. We want the degrees of A′, B′ to straddle
a sufficiently small value below 2m. By definition of HGCD, the degrees of A′

0, B
′
0 straddle m/2.

A reasonable expectation is that the degrees of A′, B′ straddle 3m/2. This would be the case if we
could, for instance, prove that

deg(A′) = m + deg(A′
0), deg(B′) = m + deg(B′

0).

This is not quite correct, as we will see. But it will serve to motivate the following outline of the
HGCD algorithm.

Outline. Given A, B with deg(A) = 2m > deg(B) > 0, we recursively compute R ←
HGCD(A0, B0) as above. Now use R to carry out the reduction of (A, B) to (A′, B′). Note that
although the degrees of A′, B′ straddle 3m/2, we have no upper bound on the degree of A′. Hence
we perform one step of the Euclidean reduction:

[
A′

B′

]
〈Q〉−→

[
C
D

]
.

Now the degree of C = B′ is less than 3m/2. We can again truncate the polynomials C, D via

[
C0

D0

]
:=

[
C divXk

D divXk

]
.
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for a certain k ≥ 0. Intuitively, we would like to pick k = m/2. Then we make our second recursive
call to compute S ← HGCD(C0, D0). We use S to reduce (C, D) to (C′, D′). Hopefully, the degrees
of C′ and D′ straddle m, which would imply that our output matrix is

R · 〈Q〉 · S

The tricky part is that k cannot be simply taken to be m/2. This choice is correct only if the
remainder sequence is normal, as Moenck assumed. Subject to a suitable choice of k, we have
described the HGCD algorithm.

We are ready to present the actual algorithm. We now switch back to the norm notation, ‖A‖
instead of deg(A), to conform to the general framework.

Algorithm Polynomial HGCD(A, B):
Input: A, B are univariate polynomials with ‖A‖ > ‖B‖ ≥ 0.
Output: a regular matrix M which reduces (A, B) to (C′, D′)

where ‖C′‖, ‖D′‖ straddle ‖A‖/2.

[1] m←
⌈
‖A‖
2

⌉
; {This is the magic threshold}

if ‖B‖ < m then return(E);

[2]

[
A0

B0

]
←

[
AdivXm

B divXm

]
.

{now ‖A0‖ = m′ where m + m′ = ‖A‖}
R← hGCD(A0, B0);

{
⌈
m′

2

⌉
is the magic threshold for this recursive call}

[
A′

B′

]
← R−1

[
A
B

]
;

[3] if ‖B′‖ < m then return(R);

[4] Q← A′ divB′;

[
C
D

]
←

[
B′

A′ modB′

]
;

[5] l← ‖C‖; k ← 2m− l; {now l −m <
⌈
m′

2

⌉
}

[6] C0 ← C divXk; D0 ← D divXk; {now ‖C0‖ = 2(l−m)}
S ← hGCD(C0, D0);

{l−m is magic threshold for this recursive call.}
[7] M ← R · 〈Q〉 · S; return(M);

The programming variables in this algorithm are illustrated in the following figure.

To prove the correctness of this lemma, we must show that the output matrix M satisfies

[
A
B

]
M−→

[
C′

D′

]
, ‖C′‖ ≥

⌈‖A‖
2

⌉
> ‖D′‖. (26)

The Basic Setup. Let A, B ∈ F [X ], ‖A‖ > ‖B‖ ≥ 0 and m ≥ 1 be given. Define A0, B0 as in
equation (23). This determines A1, B1 via the equation

[
A
B

]
=

[
A0X

m + A1

B0X
m + B1

]
=

[
A0 A1

B0 B1

] [
Xm

1

]
. (27)
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A

B

n
l m k

0

A
′

B
′
= C

D

A0

B0

C0

D0

Figure 1: Variables in the polynomial HGCD algorithm.

Now let M be any given regular matrix. This determines A′
0, B

′
0, A

′
1, B

′
1 via

[
A′

0 A′
1

B′
0 B′

1

]
:= M−1

[
A0 A1

B0 B1

]
. (28)

Finally, define A′, B′ via [
A′

B′

]
:=

[
A′

0 A′
1

B′
0 B′

1

] [
Xm

1

]
. (29)

Hence we have the “parallel” reductions,
[

A0

B0

]
M−→

[
A′

0

B′
0

]
,

[
A
B

]
M−→

[
A′

B′

]
.

Lemma 9 (Correctness Criteria) Let A, B, m, M be given, as in the Basic Setup, and define the
remaining notations Ai, Bi, A

′
i, B

′
i, A

′, B′ (i = 0, 1) as indicated. If

‖A′
0‖ > ‖B′

0‖, (30)

‖A0‖ ≤ 2‖A′
0‖ (31)

then
‖A′‖ = m + ‖A′

0‖, ‖B′‖ ≤ m + max{‖B′
0‖, ‖A0‖ − ‖A′

0‖ − 1}.
In particular,

‖A′‖ > ‖B′‖.

Proof. Let M =

[
P Q
R S

]
. First observe that ‖A′

0‖ > ‖B′
0‖ and A0 = A′

0P + B′
0Q implies

‖A0‖ = ‖A′
0‖+ ‖P‖. Hence (31) is equivalent to

‖P‖ ≤ ‖A′
0‖. (32)

Since M−1 = ±
[

S −Q
−R P

]
and A′

1 = ±(A1S −B1Q),

‖A′
1‖ ≤ max{‖A1S‖, ‖B1Q‖} < m + ‖P‖ ≤ m + ‖A′

0‖
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Hence A′ = A′
0X

m + A′
1 implies ‖A′‖ = m + ‖A′

0‖, as desired.

From B′
1 = ±(−A1R + B1P ) we get ‖B′

1‖ ≤ m − 1 + ‖P‖ = m − 1 + ‖A0‖ − ‖A′
0‖. From B′ =

B′
0X

m + B′
1 we get the desired inequality ‖B′‖ ≤ m + max{‖B′

0‖, ‖A0‖ − ‖A′
0‖ − 1}. Q.E.D.

We call the requirement (31) the (lower) “threshold” for ‖A′
0‖. This threshold is the reason for the

lower bound on ‖C′‖ in the HGCD output specification (26).

Finally we prove the correctness of the HGCD algorithm.

Lemma 10 (HGCD Correctness) Algorithm HGCD is correct: with input polynomials A, B
where ‖A‖ > ‖B‖ ≥ 0, it returns a regular matrix M satisfying (26).

Proof. To keep track of the proof, the following sequence of reductions recalls the notations of the
algorithm: [

A
B

]
R−→

[
A′

B′

]
〈Q〉−→

[
C
D

]
S−→

[
C′

D′

]
. (33)

The algorithm returns a matrix in steps [1], [3] or [7]. Only when the algorithm reaches step [7]
does the full sequence (33) take effect. It is clear that the returned matrix is always regular. So it
remains to check the straddling condition of equation (26). In step [1], the result is clearly correct.

Consider the matrix R returned in step [3]: the notations m, A0, B0, A
′, B′ in the algorithm conform

to those in Correctness Criteria (lemma 9), after substituting R for M . By induction hypothesis,
the matrix R returned by the first recursive call (step [2]) satisfies

‖A′
0‖ ≥ ⌈m′/2⌉ > ‖B′

0‖, (m′ = ‖A0‖)

where

[
A0

B0

]
R−→

[
A′

0

B′
0

]
. Then lemma 9 implies ‖A′‖ = m + ‖A′

0‖ ≥ m. Since m > ‖B′‖ is a

condition for exit at step [3], it follows that the straddling condition (26) is satisfied at this exit.

Finally consider the matrix M returned in step [7]. Since we did not exit in step [3], we have
m ≤ ‖B′‖. In step [4] we form the quotient Q and remainder D of A′ divided by B′. Also we
renamed B′ to C. Hence m ≤ l where l = ‖C‖. To see that C0 is properly computed, let us verify

l ≥ k ≥ 0. (34)

The first inequality in (34) follows from l ≥ m ≥ m + (m − l) = k. To see the second, l = ‖B′‖ ≤
m+max{‖B′

0‖, ‖A0‖−‖A′
0‖+1} (Correctness Criteria) and so l ≤ m+max{⌈m′/2⌉−1, ⌊m′/2⌋+1} ≤

m + ⌊m′/2⌋+ 1. Thus l −m ≤ ⌊m′/2⌋+ 1 ≤ m. Hence k = m− (l −m) ≥ 0, proving (34). In the
second recursive call, HGCD(C0, D0) returns S. By induction,

‖C′
0‖ ≥ ⌈‖C0‖/2⌉ > ‖D′

0‖, where

[
C0

D0

]
S−→

[
C′

0

D′
0

]
. (35)

But ‖C0‖ = l − k = 2(l−m) so (35) becomes

‖C′
0‖ ≥ l −m > ‖D′

0‖.

Now let

[
C
D

]
S−→

[
C′

D′

]
. Another application of lemma 9 shows that

‖C′‖ = k + ‖C′
0‖ ≥ k + l −m = m
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and

‖D′‖ ≤ k + max{‖D′
0‖, ‖C0‖ − ‖C′

0‖ − 1}
≤ k + max{l−m− 1, l −m− 1}
= k + l −m− 1 = m− 1.

This shows ‖C′‖ ≥ m > ‖D′‖ and hence (26). Q.E.D.

Remark: The proof shows we could have used k ← 2m − l − 1 as well. Furthermore, we could
modify our algorithm so that after step [4], we return R · 〈Q〉 in case ‖D‖ < m. This may be slightly
more efficient.

Complexity analysis. The HGCD algorithm makes two recursive calls to itself, hGCD(A0, B0)
and hGCD(C0, D0). We check that ‖A0‖ and ‖C0‖ are both bounded by n/2. The work in each call
to the algorithm, exclusive of recursion, is O(MB(n)) = O(n log n). Hence the algebraic complexity
T (n) of this HGCD algorithm satisfies

T (n) = 2T (n/2) + O(n log n).

This yields T (n) = O(n log2 n).

Exercises

Exercise 6.1: Generalize the HGCD problem to the following: the function FGCD(A, B, f) whose
arguments are polynomials A, B as in the HGCD problem, and f is a rational number between
0 and 1. FGCD(A, B, f) returns a matrix M that reduces the pair (A, B) to (A′, B′) such
that ‖A′‖, ‖B′‖ straddle f‖A‖. Thus FGCD(A, B, 1/2) = hGCD(A, B). Show that FGCD can
be computed in the same complexity as hGCD by using hGCD as a subroutine. 2

Exercise 6.2: Modify the polynomial HGCD algorithm so that in step [5], the variable k is set
to ⌈m/2⌉. This is essentially the algorithm of Moenck-Aho-Hopcroft-Ullman [2]. We want to
construct inputs to make the algorithm return wrong answers. Note that since the modified
algorithm works for inputs with normal remainder sequence (see §3), we are unlikely to find
such inputs by generating random polynomials. Suppose the output M reduces the input
(A, B) to (A′, B′). The matrix M may be wrong for several reasons:
(i) ‖B′‖ ≥ ⌈‖A‖/2⌉.
(ii) ‖A′‖ < ⌈‖A‖/2⌉.
(iii) A′, B′ are not consecutive entries of the Euclidean remainder sequence of A, B.
Construct inputs to induce each of these possibilities. (The possibilities (i) and (ii) are known
to occur.) 2
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§A. APPENDIX: Integer HGCD

For the sake of completeness, we present an integer version of the HGCD algorithm. We initially
use two simple tricks. The first is to recover the non-Archimedean property thus: for a, b ∈ Z,

ab ≤ 0 =⇒ ‖a + b‖ ≤ max{‖a‖, ‖b‖}.

One consequence of the non-Archimedean property we exploited was that if ‖a‖ 6= ‖b‖ then ‖a+b‖ =
max{‖a‖, ‖b‖}. Here is an integer analogue:

‖a‖ − ‖b‖ ≥ 1 =⇒ ‖a + b‖ = ‖a‖ ± ǫ, (0 ≤ ǫ ≤ 1).

To carry out a parallel reduction, the integer analogue would perhaps be to call HGCD on
adiv 2m, bdiv 2m for suitable m. Instead, the second trick will call HGCD on

a0 := 1 + (adiv 2m), b0 := bdiv 2m. (36)

The Basic Setup. We begin by proving the analogue of the Correctness Criteria (lemma 9). The
following notations will be fixed for the next two lemmas.

Assume that we are given a > b > 0 and m ≥ 1 where a ≥ 2m. This determines the non-negative
values a0, a1, b0, b1 via

[
a
b

]
=

[
a0 −a1

b0 b1

] [
2m

1

]
, 0 < a1 ≤ 2m, 0 ≤ b1 < 2m. (37)

Note that both tricks are incorporated in (37). Defining a0, b0 as in (36) is the same as choosing
a1 := 2m − (amod 2m) and b1 := bmod 2m. This choice ensures a0 > b0, as we assume in the
recursive call to the algorithm on a0, b0.

We are also given a regular matrix M . This determines the values a′
0, b

′
0, a

′
1, b

′
1, a

′, b′ via
[

a′
0 a′

1

b′0 b′1

]
:=M−1

[
a0 −a1

b0 b1

]
(38)

and [
a′

b′

]
:=

[
a′
0 a′

1

b′0 b′1

] [
2m

1

]
. (39)

Hence we have the parallel reductions
[

a0

b0

]
M−→

[
a′
0

b′0

]
,

[
a
b

]
M−→

[
a′

b′

]
.

Finally, we assume two key inequalities:

a′
0 > b′0 ≥ 0 (40)

2‖a′
0‖ − 2 ≥ ‖a0‖ (41)

Now write M as

M =

[
p q
r s

]
, M−1 = δ

[
s −q
−r p

]
(42)
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where δ = detM = ±1. From (38) we obtain

a′
1 = −δ(sa1 + qb1), b′1 = δ(ra1 + pb1). (43)

The proof below uses (43) to predict the signs of a′
1, b

′
1, assuming the sign of δ. This is possible

thanks to the second trick.

The following is the integer analogue of lemma 9:

Lemma 11 (Partial Correctness Criteria)
With the Basic Setup:

(–) Suppose detM = −1.
(–a) ‖a′‖ = m + ‖a′

0‖+ ǫ1, (0 ≤ ǫ1 < 1).
(–b) ‖b′‖ ≤ m + max{‖b′0‖, ‖a0‖ − ‖a′

0‖+ 1}.
Moreover, ‖a′‖ > ‖b′‖.

(+) Suppose detM = +1.
(+a) ‖a′‖ = m + ‖a′

0‖ − ǫ2, (0 ≤ ǫ2 < 1).
(+b) ‖b′‖ ≤ 1 + m + max{‖b′0‖, ‖a0‖ − ‖a′

0‖+ 1}.
Furthermore b′ ≥ 0.

In both cases (–) and (+), a′ > 0.

Proof. Since a0 = pa′
0 + qb′0, the ordering property (20) and (40) yields

‖a0‖ = ‖p‖+ ‖a′
0‖+ ǫ3 (0 ≤ ǫ3 < 1).

Hence (41) is equivalent to
‖p‖+ ǫ3 ≤ ‖a′

0‖ − 2.

We now prove cases (–) and (+) in parallel.

Part (a). From equation (43),

‖a′
1‖ ≤ max{‖sa1‖, ‖qb1‖}+ 1

< ‖p‖+ m + 1 (by (20), ‖a1‖ ≤ m, ‖b1‖ < m)

≤ ‖a′
0‖+ m− 1.

Hence ‖a′
02
m‖ > 1 + ‖a′

1‖ and so a′ = a′
02
m + a′

1 > 0. This proves the desired a′ > 0. If δ = −1
then a′

1 ≥ 0 (by equation (43)) and hence ‖a′‖ = m + ‖a′
0‖+ ǫ1 as required by subcase (–a). On the

other hand, if δ = +1 then a′
1 ≤ 0 and a′ = a′

02
m + a′

1 > a′
02
m−1 and hence subcase (+a) follows.

Part (b). Again from (43),

‖b′1‖ ≤ max{‖ra1‖, ‖pb1‖}+ 1

≤ ‖p‖+ m + 1

≤ ‖a0‖ − ‖a′
0‖+ m + 1.

In case δ = +1, b′1 ≥ 0 and hence b′ = b′02
m + b′1 ≥ 0, as desired. Also subcase (+b) easily follows.

In case δ = −1, b′1 ≤ 0 and b′0b
′
1 ≤ 0. This gives the non-Archimedean inequality:

‖b′‖ ≤ max{‖b′02m‖, ‖b′1‖},

which proves subcase (–b).
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Finally, we must show that δ = −1 implies ‖a′‖ > ‖b′‖: this follows immediately from (40), (41)
and subcases (–a) and (–b). Q.E.D.

To see inadequacies in the Partial Correctness Criteria, we state our precise algorithmic goal.

Integer HGCD Criteria: On input a > b ≥ 0, the integer HGCD algorithm outputs a regular
matrix M such that

a ≤ 3⇒ M = E (44)

a ≥ 4⇒ ‖a′‖ ≥ 1 +

⌈‖a‖
2

⌉
> ‖b′‖, a′ > b′ ≥ 0 (45)

where

[
a
b

]
M−→

[
a′

b′

]
.

Note that if a ≥ 4 then ‖a‖ ≥ 1 + ⌈‖a‖/2⌉ and so the desired matrix M exists.

Discussion. We see that the pair a′, b′ obtained in the Partial Correctness Criteria lemma may
fail two properties needed for our HGCD algorithm:
Case detM = −1: b′ can be negative.
Case detM = +1: the inversion b′ ≥ a′ may occur.
Clearly these two failures are mutually exclusive. On deeper analysis, it turns out that we only have
to modify M slightly to obtain some regular matrix M∗ such that

[
a
b

]
M∗

−→
[

a∗

b∗

]

and a∗, b∗ satisfy the correctness criteria, ‖a∗‖ ≥ m > ‖b∗‖, a∗ > b∗ ≥ 0. The “Fixing Up lemma”
below shows how to do this. The fixing up is based on three simple transformations of regular
matrices: advancing, backing up and toggling.

In the following, let a > b > 0 and M = 〈q1, . . . , qk〉 be a regular matrix such that

[
a
b

]
M−→

[
a′

b′

]
.

(I) Advancing: If q′ = a′ div b′, then we say that M has advanced by one step to the matrix
〈q1, . . . , qk, q

′〉. Note that this operation defines a regular matrix iff q ≥ 1, i.e., ‖a′‖ ≥ ‖b′‖. In
general, we may speak of advancing M by more than one step.

(II) Backing Up: We call the matrix 〈q1, . . . , qk−i〉 the backing up of M by i steps (0 ≤ i ≤ k);
in case i = 1, we simply call it the backup of M . To do backing up, we need to recover the

last partial quotient x from a regular matrix M =

[
p q
r s

]
. Note that M = E if and only if

q = 0, but in this case x is undefined. Hence assume M 6= E. Then M is elementary if and
only if s = 0, and in this case x = p. So we next assume that M is not elementary. Write

M ′ =

[
p′ q′

r′ s′

]
, M = M ′ ·

[
x 1
1 0

]

where M ′ 6= E and p = xp′ + q′, q = p′. There are two cases. Case of q = 1: Clearly p′ = 1.
Since p′ ≥ q′ ≥ 1 (ordering property), we must have q′ = 1. Hence x equals p − 1. Case
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of q > 1: Then p′ > q′ (there are two possibilities to check, depending on whether M ′ is
elementary or not). This implies x = pdiv q. In summary, the last partial quotient of M is
given by

x =






undefined if q = 0
p if s = 0
p− 1 if q = 1
pdiv q otherwise

(III) Toggling: We call T =

[
1 1
0 −1

]
the toggle matrix, so-called because T is idempotent (T 2 =

E). The matrix MT is the toggle of M . We observe that MT is equal to 〈q1, . . . , qk−1, qk−1, 1〉
in case qk > 1, and MT = 〈q1, . . . , qk−2, qk−1 +1〉 in case qk = 1 and k > 1. However, if qk = 1
and k = 1, MT is not a regular matrix. In any case, we have

[
a
b

]
MT−→

[
a′ + b′

−b′

]
.

Exercise A.1: Verify the remarks on the toggling matrix T . 2

Lemma 12 (Fixing Up)
With the notations from the Basic Setup, let t be any number (the “fixup threshold”) such that

‖a′
0‖ ≥ t > max{‖b′0‖, ‖a0‖ − ‖a′

0‖+ 1}. (46)

Moreover, if we write M as 〈q1, . . . , qk〉 and M∗ is as specified below, then

‖a∗‖ ≥ m + t > ‖b∗‖ (47)

and
b∗ ≥ 0, (48)

where

[
a
b

]
M∗

−→
[

a∗

b∗

]
. Here M∗ is the regular matrix specified as follows:

(–) Suppose detM = −1.
(–A) If b′ ≥ 0 then M∗ :=M .
(–B) Else if ‖a′ + b′‖ ≥ m + t then M∗ is the toggle of M .
(–C) Else if qk ≥ 2 then M∗ :=〈q1, . . . , qk−1, qk − 1〉 is the backup of the toggle of M .
(–D) Else M∗ is the backing up of M by two steps.

(+) Suppose detM = +1.
(+A) If ‖a′‖ ≤ ‖b′‖ then M∗ is the advancement of 〈q1, . . . , qk−1〉 by at most two steps.
(+B) Else if ‖a′‖ < m + t then M∗ is the backing up of M by one or two steps.
(+C) Else M∗ is the advancement of M by at most two steps.

Proof. The Partial Correctness Criteria lemma will be repeatedly exploited. First assume det M =
−1.

Subcase (–A). In this subcase, (48) is automatic, and (47) follows from case (–) of the Partial
Correctness Criteria lemma.
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Subcase (–B). In this subcase, M∗ = MT reduces

[
a
b

]
to

[
a∗

b∗

]
=

[
a′ + b′

−b′

]
, as noted earlier.

Recall that MT is not regular in case k = 1 and q1 = 1. But if this were the case then

[
a
b

]
=

[
1 1
1 0

] [
a′

b′

]
.

This implies a′ + b′ = a > b = a′ and so b′ > 0, contradicting the fact that subcase (–A) has been
excluded. Again, (48) is immediate, and (47) follows from case (–) of the Partial Correctness Criteria
Lemma (‖a∗‖ = ‖a′ + b′‖ ≥ m + t by assumption).

Subcase (–C). In this subcase, M∗ can be written as M

[
1 0
−1 1

]
, and so

[
a∗

b∗

]
=

[
a′

a′ + b′

]
.

We see that (48) holds by virtue of a′ + b′ > 0 (since ‖a′‖ > ‖b′‖, a′ > 0). Also (47) holds
because the Partial Correctness Criteria lemma implies ‖a′‖ ≥ m + t and, since subcase (–B) fails,
‖a′ + b′‖ < m + t.

Subcase (–D). Now qk = 1 and M∗ omits the last two partial quotients (qk−1, qk) = (x, 1) where
we write x for qk−1. We ought to show k ≥ 2, but this is the same argument as in subcase (–B).

Hence M∗ = M

[
1 −x
−1 x + 1

]
and

[
a∗

b∗

]
=

[
a′(x + 1) + b′x

a′ + b′

]
. Hence ‖a∗‖ = ‖xb∗ + a′‖ > ‖b∗‖

and so a∗, b∗ are consecutive elements of the remainder sequence of a, b. Then (48) holds because
a′ + b′ > 0. To see (47), it is clear that m+ t > ‖b∗‖ (otherwise subcase (–B) applies) and it remains
to show ‖a∗‖ ≥ m + t. But this follows from ‖a∗‖ = ‖a′ + x(a′ + b′)‖ > ‖a′‖ ≥ m + t.

Now consider the case det M = +1.

Subcase (+A). So there is inversion, a′ ≤ b′. Let us back up M to 〈q1, . . . , qk−1〉:
[

a
b

]
〈q1,...,qk−1〉−→

[
a′′

a′

]
〈qk〉−→

[
a′

b′

]
.

Hence a′′ = a′qk + b′ > a′. Thus a′′, a′ are consecutive members of the remainder sequence of a, b.
Now ‖a′′‖ ≥ ‖2a′‖ = ‖a′‖ + 1 > m + ‖a′

0‖ ≥ m + t. Also ‖a′‖ ≤ ‖b′‖ < 1 + m + t (by Partial
Correctness Criteria). Therefore, if we advance 〈q1, . . . , qk−1〉 by at most two steps, we would reduce
a′′, a′ to a∗, b∗ where ‖b∗‖ < m + t.

Subcase (+B). Now a′ > b′ ≥ 0 and ‖a′‖ < m + t. So a′, b′ are consecutive members of the
remainder sequence of a, b. Consider the entry a′′ = a′qk+ b′ preceding a′ in the remainder sequence
of a, b. If ‖a′′‖ ≥ m + t, we are done since ‖a′′‖, ‖a′‖ straddle m + t. Otherwise, consider the entry
a′′′ = a′′qk−1 + a′ preceding a′′. We have

‖a′′′‖ = ‖(a′qk + b′)qk−1 + a′‖ ≥ ‖a′‖+ 1 ≥ m + t.

Thus ‖a′′′‖, ‖a′′‖ straddle m + t.

Subcase (+C). Again a′, b′ are consecutive members of the remainder sequence with ‖a′‖ ≥ m + t.
But ‖b′‖ − 1 < m + t implies that if we advance M by at most two steps, the pair a′, b′ would be
reduced to a∗, b∗ where ‖b∗‖ < m + t.

Q.E.D.

It is interesting to note that in tests on randomly generated numbers of about 45 digits, subcase
(–D) never arose.
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The Fixup Procedure. The Fixing Up lemma and its proof provides a specific procedure to
convert the tentative output matrix M of the HGCD algorithm into a valid one. To be specific, let

Fixup(M, a, b, m, t)

denote the subroutine that returns M∗, as specified in the Fixing Up lemma:

[
a
b

]
M∗

−→
[

a∗

b∗

]
, ‖a∗‖ ≥ m + t > ‖b∗‖.

The correct behavior of the Fixup procedure depends on its input parameters fulfilling the conditions
of the Fixing Up lemma. In particular, it must fulfil the conditions of the Basic Setup (mainly the
inequalities (40) and (41)) and also the inequality (46).

In a typical invocation of Fixup(M, a, b, m, t), the values M, a, b, m are available as in the Basic
Setup. To pick a value of t, we use the fact that the following typically holds:

‖a′
0‖ ≥ 1 + ⌈‖a0‖/2⌉ > ‖b′0‖ (49)

(cf. (45)). In this case, it is easily verified that the choice t = 1 + ⌈‖a0‖/2⌉ will satisfy (46). Of
course inequality (49) also implies inequality (41).

However, our Fixup procedure may also be called in a situation when the Fixing Up lemma does
not hold, namely, when a0 = 1 + (adiv 2m) ≤ 3. In this case, no choice of t satisfying inequality
(46) is possible. Note that b0 < a0 ≤ 3 implies b = b02

m + b1 < 3 · 2m. It is easy to check that
if we take at most three of the usual Euclidean remaindering steps, we reduce a, b to a∗, b∗ where
‖a∗‖ ≥ m > ‖b∗‖. In such a situation, if we assume that the Fixup procedure is called with M = E
and t = 0, the returned matrix M∗ is the advancement of E by at most three steps. More generally,
if ‖a‖, ‖b‖ straddle m + i where i = 0, 1, 2, and we call Fixup with the arguments

Fixup(E, a, b, m, 0),

we say this is the “easy fixup” case, because M∗ is the advancement of E by at most 4 steps.

We present the integer HGCD algorithm.
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Algorithm Integer HGCD(a, b):
Input: integers a, b with a > b ≥ 0.
Output: a regular matrix M satisfying the integer HGCD criteria (44) or (45).

[1] m← 1 +
⌈
‖a‖
2

⌉
; {this is the magic threshold}

if a ≤ 3 or ‖b‖ < m then return(E);
[2] a0 ← 1 + (adiv 2m); b0 ← bdiv 2m;

if a0 ≤ 3 then t← 0 else t← 1 + ⌈‖a0‖
2 ⌉;

R← Fixup(hGCD(a0, b0), a, b, m, t);[
a′

b′

]
← R−1

[
a
b

]
;

[3] if ‖b′‖ < m then return(R);

[4] q ← a′ div b′;

[
c
d

]
←

[
b′

a′ mod b′

]
;

if 1 + (cdiv 2m) ≤ 3 then return(R · Fixup(E, c, d, m, 0));
[5] l ← ⌈‖c‖⌉; k ← 2m− l− 1;

{Now ‖c‖ ≥ m + 1 ≥ 4. We claim ‖c‖ − 1 ≥ k ≥ 0}
[6] c0 ← 1 + (cdiv 2k); d0 ← ddiv 2k;

if c0 ≤ 3 then t′ ← 0 else t′ ← 1 +
⌈
‖c0‖

2

⌉
;

S ← Fixup(hGCD(c0, d0), c, d, k, t′); {We claim k + t′ = m + 1.}
[7]

[
c′

d′

]
← S−1

[
c
d

]
; {So ‖c′‖, ‖d′‖ straddle k + t′}

T ← Fixup(E, c′, d′, m, 0);
M ← R · 〈q〉 · S · T ; return(M);

Correctness. Procedure hGCD returns in four places (steps [1], [3], [4] and [7]) in the algorithm.
We show that the matrix returned at each of these places is correct. Since these matrices are regular,
we basically have to check the straddling property (45) when a ≥ 4. We will also need to check that
each call to the Fixup procedure is proper.

a) In case the algorithm returns the identity matrix E in step [1], the correctness is trivial.

b) In step [2], we must check that the proper conditions are fulfilled for calling Fixup. When a0 ≤ 3
we have the “easy fixup” case. Otherwise a0 ≥ 4 and the first recursive call in hGCD returns some
regular matrix R′ which is fixed up as R by Fixup. The conditions of the Basic Setup are fulfilled

with a, b, m as usual and M = R′. If

[
a0

b0

]
R′

−→
[

a′
0

b′0

]
, then inductively, the correctness of the

HGCD procedure implies equation (49) (and hence (41)) holds. As discussed following equation (49),
the choice t = 1 + ⌈‖a0‖/2⌉ then satisfies (46),

c) Suppose the matrix R is returned at step [3]. This is correct since ‖a′‖, ‖b′‖ straddle m + t (by
correctness of the Fixup procedure) and the condition for exit is ‖b′‖ < m.

d) In step [4], the call to Fixup is the “easy fixup” case since ‖c‖ ≥ m and ‖c‖ ≤ m + 2. The
returned matrix is clearly correct.

e) Suppose we reach step [5]. We show the claim ‖c‖ − 1 ≥ k ≥ 0. We have ‖c‖ − 1 ≥ m − 1 ≥
(m− 1) + (m− l) = k. Next, k ≥ 0 is equivalent to 2m− 1 ≥ l. This follows from:

l = ⌈‖b′‖⌉ ≤ m + t (from the first FIXUP)
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= m + 1 +

⌈‖1 + (adiv 2m)‖
2

⌉

≤ m + 1 +

⌈
1 + ⌊‖adiv 2m‖⌋

2

⌉
(since ‖1 + x‖ ≤ 1 + ⌊‖x‖⌋)

= m + 1 +

⌈
1 + ⌊‖a/2m‖⌋

2

⌉
(since ⌊‖xdiv y‖⌋ = ⌊‖x/y‖⌋)

= m + 1 +

⌈
1 + ⌊‖a‖⌋ −m

2

⌉

≤ m + ⌈(m− 1)/2⌉ (since m = 1 + ⌈‖a‖/2⌉)
≤ 2m− 1 (m ≥ 2)

f) The call to Fixup in step [6] fulfills the appropriate conditions. [Reasoning as before: note that
‖c‖−1 ≥ k implies that c0 ≥ 3. Hence, the “easy fixup” case occurs iff c0 = 3. Otherwise, the Basic
Setup conditions prevail with a, b, m, M in the Basic Setup replaced by c, d, k, hGCD(c0, d0).] Next
we prove the claim k + t′ = m + 1:

t′ = 1 + ⌈‖c0‖/2⌉

= 1 +

⌈⌈‖c0‖⌉
2

⌉

= 1 +

⌈⌈‖ǫ + (c/2k)‖⌉
2

⌉
(0 < ǫ ≤ 1, c0 = 1 +

⌊
c/2k

⌋
)

= 1 +

⌈
l − k + δ

2

⌉
(δ = 0or 1, l = ⌈‖c‖⌉)

= 1 +

⌈
2l− 2m + 1 + δ

2

⌉
(k = 2m− l − 1)

= 2 + l−m.

Thus k + t′ = k + (2 + l −m) = m + 1, as desired.

g) We reach step [7]. By the correctness of the Fixup procedure, ‖c′‖, ‖d′‖ straddle k + t′ = m + 1.
Hence we have the right conditions for the “easy fixup” case. The final output is clearly correct.

This concludes our correctness proof.

Computational details and analysis. The algorithm has to perform comparisons of the kind

‖a‖ : m,

and compute ceiling functions in the special forms

⌈‖a‖⌉, ⌈‖a‖/2⌉,

where a, m are positive integers. (In the algorithm a may be zero, but we can treat those as special
cases.) Since ‖a‖ is generally not rational, we do not want to explicitly compute it. Instead we
reduce these operations to integer comparisons, checking if a is a power of two, and to computing
the function bit(a), which is defined to be the number of bits in the binary representation of a
positive integer a. So bit(a) = 1 + ⌊log2 a⌋ and clearly this function is easily computed in linear
time in the usual Turing machine model. Then we have

‖a‖ ≥ m⇔ bit(a)− 1 ≥ m
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and

‖a‖ > m⇔
{

bit(a)− 1 > m if a is a power of 2
bit(a) > m else.

and finally,

⌈‖a‖
2

⌉
=






⌈
bit(a)−1

2

⌉
if a is a power of 2

⌈
bit(a)

2

⌉
else

The global structure of the complexity analysis is similar to the polynomial HGCD case: with
MB(n) = nL(n) denoting as usual the bit complexity of integer multiplication, it is not hard to
see that Fixup takes time O(MB(n)), under the conditions stipulated for its invocation. In the two
recursive calls to hGCD, it is easy to check that the integers have bit size n

2 + O(1). Hence, if T (n)
is the bit complexity of our HGCD algorithm on inputs of size at most n, then

T (n) = O(MB(n)) + 2T (
n

2
+ O(1)).

This has solution T (n) = O(MB(n) log n) = nL2(n).

Exercises

Exercise A.2:
(a) Verify the remarks on reducing operations involving ‖a‖ to integer operations, the function
bit(a) and testing if a is a power of 2.
(b) Derive the time bound T (n) = nL2(n) for the HGCD algorithm. 2

Exercise A.3: Try to simplify the integer HGCD algorithm by separating the truncation value t
(as in a0 := adiv 2t) from the straddling value s (as in ‖a′‖ ≥ s > ‖b′‖). Currently t = s =
1 + ⌈‖a‖/2⌉. 2
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Lecture III

Subresultants

We extend the Euclidean algorithm to the polynomial ringD[X ] whereD is a unique factorization do-
main. The success of this enterprise depends on the theory of subresultants. Subresultant sequences
are special remainder sequences which have many applications including Diophantine equations,
Sturm theory, elimination theory, discriminants, and algebraic cell decompositions. Our approach
to subresultants follows Ho and Yap [84, 83], who introduced the pseudo-subresultants to carry
out Loos’ program [119] of studying subresultants via specialization from the case of indeterminate
coefficients. This approach goes back to Habicht [76].

One of the most well-studied problems in the early days of computer algebra (circa 1970) is the
problem of computing the GCD in the polynomial ring D[X ] where D is a UFD. See the surveys of
Loos [33] and Collins [45]. This led to a development of efficient algorithms whose approach is quite
distinct from the HGCD approach of the previous lecture. The reader may be surprised that any new
ideas are needed: why not use the previous techniques to compute the GCD in QD[X ] (where QD is
the quotient field of D) and then “clear denominators”? One problem is that computing remainders
in QD[X ] can be quite non-trivial for some D (say, D = F [X1, . . . , Xd]). Another problem is that
clearing denominators is really a multiple GCD computation (in its dual form of a multiple LCM
computation). Multiple GCD is expensive in practical terms, even when it is polynomial-time as
in the case D = Z. Worst, in case D = F [X1, . . . , Xd], we are involved in a recursive situation
of exponential complexity. Hence the challenge is to develop a direct method avoiding the above
problems.

In this lecture, D refers to a unique factorization domain with quotient field QD.
The reader may safely take D = Z and so QD = Q.

§1. Primitive Factorization

The goal of this section is to extend the arithmetic structure of a unique factorization domain D to
its quotient field QD and to QD[X ]. It becomes meaningful to speak of irreducible factorizations in
QD and QD[X ].

Content of a polynomial. Let q ∈ D be an irreducible element. For any non-zero element
a/b ∈ QD where a, b ∈ D are relatively prime, define the q-order of a/b to be

ordq(a/b) :=

{
n if qn|abut not qn+1|a,
−n if qn|bbut not qn+1|b. (1)

Exactly one of the two conditions in this equation hold unless n = 0. In this case, ordq(a/b) = 0 or
equivalently, q does not divide ab. For example, in D = Z we have ord2(4/3) = 2, ord2(3/7) = 0
and ord2(7/2) = −1.

We extend this definition to polynomials. If P ∈ QD[X ] \ {0}, define the q-order of P to be

ordq(P ) := min
i
{ordq(ci)}
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where ci ranges over all the non-zero coefficients of P . For example, ord2(X
3 − 5

4X + 2) = −2 in

Z[X ]. Any associate of qordq(P ) is called a q-content of P . Finally, we define a content of P to be

u
∏

q

qordq(P )

where q ranges over all distinguished irreducible elements of D, u is any unit. This product is well-
defined since all but finitely many ordq(P ) are zero. For the zero element, we define ordq(0) = −∞
and the q-content and content of 0 are both 0.

Primitive polynomials. A polynomial of QD[X ] is primitive if it has content 1; such polynomials
are elements of D[X ]. Thus every non-zero polynomial P has a factorization of the form

P = cQ

where c is a content of P and Q is primitive. We may always choose Q so that its leading coefficient
is distinguished. In this case, c is called the content of P , and Q the primitive part of P . These are
denoted cont(P ) and prim(P ), respectively. We call the product expression “cont(P )prim(P )” the
primitive factorization of P .

If prim(P ) = prim(Q), we say that P,Q are similar and denote this by

P ∼ Q.

Hence P ∼ Q iff there exist α, β ∈ D such that αP = βQ. In particular, if P,Q are associates then
they are similar.

For instance, the following are primitive factorizations:

−4X3 − 2X + 6 = (−2) · (2X3 +X − 3)

(15/2)X2 − (10/3)X + 5 = (5/6) · (9X2 − 4X + 6).

Also, −4X3 − 2X + 6 ∼ 6X3 + 3X − 9.

The following is one form of a famous little lemma1:

Lemma 1 (Gauss’ Lemma) If D is a UFD and P,Q ∈ D[X ] are primitive, then so is their
product PQ.

Proof. We must show that for all irreducible q ∈ D, ordq(PQ) = 0. We can uniquely write any
polynomial P ∈ D[X ] as

P = qP0 + P1, (P0, P1 ∈ D[X ])

where deg(P0) is less than the tail degree of P1 and the tail coefficient tail(P1) is not divisible by
q. [If tail(P ) is not divisible by q, then P0 = 0 and P1 = P .] Moreover,

ordq(P ) = 0 iff P1 6= 0.

Thus P1 6= 0. Let Q = qQ0 +Q1 be the similar expression for Q and again Q1 6= 0. Multiplying the
expressions for P and Q, we get an expression of the form

PQ = qR0 +R1, R1 = P1Q1 6= 0.

1We refer to Edwards [63] for a deeper investigation of this innocuous lemma.
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By the uniqueness of such expressions, we conclude that ordq(PQ) = 0. Q.E.D.

If Pi = aiQi (i = 1, 2) is a primitive factorization, we have cont(P1P2) = cont(a1Q1a2Q2) =
a1a2cont(Q1Q2) and prim(P1P2) = prim(Q1Q2). By Gauss’ lemma, cont(Q1Q1) = ǫ and
prim(Q1Q2) = ǫ′Q1Q2, where ǫ, ǫ′ are units. Hence we have shown

Corollary 2 For P1, P2 ∈ QD[X ],

cont(P1P2) = ǫ · cont(P1)cont(P2), prim(P1P2) = ǫ′ · prim(P1)prim(P2).

Another corollary to Gauss’ lemma is this:

Corollary 3 If P (X) ∈ D[X ] is primitive and P (X) is reducible in QD[X ] then P (X) is reducible
in D[X ].

To see this, suppose P = QR with Q,R ∈ QD[X ]. By the above corollary, cont(P ) =
ǫ · cont(Q)cont(R) = ǫ′′ for some unit ǫ′′. Then P = ǫ′′ · prim(P ). By the same corollary again,

P = ǫ′′ · ǫ′ · prim(Q)prim(R).

Since prim(Q), prim(R) belongs to D[X ], this shows P is reducible.

We are ready to prove the non-trivial direction of the theorem in §II.1: if D is a UFD, then D[X ]
is a UFD.

Proof. Suppose P ∈ D[X ] and without loss of generality, assume P is not an element of D. Let
its primitive factorization be P = aP ′. Clearly P ′ is a non-unit. We proceed to give a unique
factorization of P ′ (as usual, unique up to reordering and associates). In the last lecture, we proved
that a ring of the form QD[X ] (being Euclidean) is a UFD. So if we view P ′ as an element of QD[X ],
we get a unique factorization, P ′ = P ′

1P
′

2 · · ·P ′

ℓ where each P ′

i is an irreducible element of QD[X ].
Letting the primitive factorization of each P ′

i be ciPi, we get

P ′ = c1 · · · cℓP1 · · ·Pℓ.

But c1 · · · cℓ = ǫ (some unit). Thus

P ′ = (ǫ · P1)P2 · · ·Pℓ

is a factorization of P ′ into irreducible elements of D[X ]. The uniqueness of this factorization follows
from the fact that QD[X ] is a UFD. If a is a unit, then

P = (a · ǫ · P1)P2 · · ·Pℓ

gives a unique factorization of P . Otherwise, since D is a UFD, a has a unique factorization, say
a = a1 · · ·ak. Then

P = a1 · · · ak(ǫ · P1)P2 · · ·Pℓ
gives a factorization of P . It is easy to show uniqueness. Q.E.D.
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The divide relation in a quotient field. We may extend the relation ‘b divides c’ to the quotient
field of a UFD. For b, c ∈ QD, we say b divides c, written

b|c,

if for all irreducible q, either 0 ≤ ordq(b) ≤ ordq(c) or ordq(c) ≤ ordq(b) ≤ 0. Clearly QD is also
a “unique factorization domain” whose irreducible elements are q, q−1 where q ∈ D is irreducible.
Hence the concept of GCD is again applicable and we extend our previous definition to QD in a
natural way. We call b a partial content of P if b divides cont(P ).

Exercises

Exercise 1.1: Assume that elements in QD are represented as a pair (a, b) of relatively prime
elements of D. Reduce the problem of computing GCD in QD to the problem of GCD in D.

2

Exercise 1.2: (Eisenstein’s criterion) Let D be a UFD and f(X) =
∑n

i=0 aiX
i be a primitive

polynomial in D[X ].
(i) If there exists an irreducible element p ∈ D such that

an 6≡ 0(mod p),

ai ≡ 0(mod p) (i = 0, . . . , n− 1),

a0 6≡ 0(mod p2),

then f(X) is irreducible in D[X ].
(ii) Under the same conditions as (i), conclude that the polynomial g(x) =

∑n

i=0 aiX
n−i is

irreducible. 2

Exercise 1.3: (i) Xn − p is irreducible over Q[X ] for all prime p ∈ Z.
(ii) f(X) = Xp−1 +Xp−2 + · · · +X + 1 (= Xp

−1
X−1 ) is irreducible in Q[X ] for all prime p ∈ Z.

HINT: apply Eisenstein’s criterion to f(X + 1).
(iii) Let ζ be a primitive 5-th root of unity. Then

√
5 ∈ Q(ζ).

(iv) The polynomial g(X) = X10−5 is irreducible over Q[X ] but factors as (X5−
√

5)(X5+
√

5)
over Q(ζ)[X ]. 2

§2. Pseudo-remainders and PRS

Since D[X ] is a UFD, the concept of GCD is meaningful. It easily follows from the definitions that
for P,Q ∈ D[X ],

cont(GCD(P,Q)) = ǫ · GCD(cont(P ), cont(Q)), (ǫ = unit) (2)

prim(GCD(P,Q)) = GCD(prim(P ), prim(Q)). (3)

Thus the GCD problem in D[X ] can be separated into the problem of multiple GCD’s in D (to
extract contents and primitive parts) and the GCD of primitive polynomials in D[X ].

To emulate the Euclidean remaindering process for GCD’s in D[X ], we want a notion of remainders.
We use a basic observation, valid in any domain D, not just in UFD’s. If A,B ∈ D[X ], we may
still define rem(A,B) by treating A,B as elements of the Euclidean domain QD[X ]. In general,
rem(A,B) ∈ QD[X ].
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Lemma 4 (Pseudo-division Property) In any domain D, if A,B ∈ D[X ] where d = degA −
degB ≥ 0 and β = lead(B). Then rem(βd+1A,B) is an element of D[X ].

Proof. By the division property in QD[X ], there exists S,R ∈ QD[X ] such that

A = BS + R, degR < degB. (4)

Write A =
∑m

i=0 aiX
i, B =

∑n

i=0 biX
i and S =

∑d

i=0 ciX
i. Then we see that

am = bncd,

am−1 = bncd−1 + bn−1cd,

am−2 = · · · .
From the first equation, we conclude that cd can be written as an/β = α0β

−1 (α0 = an). From
the next equation, we further deduce that cd−1 can be written in the form α1β

−2 for some α1 ∈ D.
By induction, we deduce cd−i = αiβ

−(i+1) for some αi ∈ D. Hence βd+1S ∈ D[X ]. Multiplying
equation (4) by βd+1, we conclude that rem(βd+1A,B) = βd+1R. The lemma follows since βd+1R =
βd+1A−B(βd+1S) is an element of D[X ]. Q.E.D.

So it is natural to define the pseudo-remainder of P,Q ∈ D[X ] as follows:

prem(P,Q) :=

{
P if degP < degQ
rem(βd+1P,Q) if d = degP − degQ ≥ 0, β = lead(Q).

Pseudo-remainders are elements of D[X ] but they are not guaranteed to be primitive. We now
generalize the concept of remainder sequences. A sequence of non-zero polynomials

(P0, P1, . . . , Pk) (k ≥ 1)

is called a polynomial remainder sequence (abbreviated, PRS) of P,Q if P0 = P, P1 = Q and

Pi+1 ∼ prem(Pi−1, Pi) (i = 2, . . . , k − 1)

0 = prem(Pk−1, Pk).

If di = degPi for i = 0, . . . , k, we call

(d0, d1, . . . , dk)

the degree sequence of the PRS. The degree sequence of a PRS is determined by the first two elements
of the PRS. The PRS is regular if di = 1 + di+1 for i = 1, . . . , k − 1.

Discussion: We are usually happy to compute GCD’s up to similarity. The concept of a PRS
captures this indifference: the last term of a PRS is similar to the GCD of the first two terms.
Consider how we might compute a PRS. Assuming we avoid computing in QD[X ], we are presented
with several strategies. Here are two obvious ones:
(a) Always maintain primitive polynomials. Each step of the PRS algorithm is implemented by a
pseudo-remainder computation followed by primitive factorization of the result.
(b) Avoid all primitive factorizations until the last step. Repeatedly compute pseudo-remainders,
and at the end, extract the content with one primitive factorization.
Both strategies have problems. In case (a), we are computing multiple GCD at each step, which
we said is too expensive. In case (b), the final polynomial can have exponentially large coefficients
(this will be demonstrated below). In this lecture, we present a solution of G. E. Collins involving
an interesting middle ground between strategies (a) and (b), which is sufficient to avoid exponential
growth of the coefficients without repeated multiple GCD computation.

The PRS sequences corresponding to strategies (a) and (b) above are:
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a) Primitive PRS This is a PRS (P0, . . . , Pk) where each member (except possibly for the first
two) is primitive:

Pi+1 = prim(prem(Pi−1, Pi)) (i = 1, . . . , k − 1).

b) Pseudo-Euclidean PRS This is a PRS (P0, . . . , Pk) where

Pi+1 = prem(Pi−1, Pi) (i = 1, . . . , k − 1).

The following illustrates the explosive coefficient growth in the Pseudo-Euclidean PRS.

Example: (Knuth’s example) Displaying only coefficients, the following is an Pseudo-Euclidean
PRS in Z[X ] where each polynomial is represented by its list of coefficients.

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X 1

1 0 1 0 −3 −3 8 2 −5

3 0 5 0 −4 −9 21

−15 0 3 0 −9

15795 30375 −59535

1254542875143750 −1654608338437500

12593338795500743100931141992187500

§3. Determinantal Polynomials

In this section, we introduce the connection between PRS and determinants. The concept of “de-
terminantal polynomials” [119] is key to understanding the connection between elimination and
remainders.

Let M be an m×n matrix, m ≤ n. The determinantal polynomialpolynomial!determinantal of M is

dpol(M) :=det(Mm)Xn−m + det(Mm+1)X
n−m−1 + · · · + det(Mn)

where Mi is the square submatrix of M consisting of the first m− 1 columns and the ith column of
M (i = m, . . . , n). Call

det(Mm)

the nominal leading coefficient and n−m the nominal degree nominal degree of dpol(M). Of course
the degree of dpol(M) could be less than its nominal degree.

Notation: If P1, . . . , Pm are polynomials and n ≥ 1 + max
i

{degPi} then

matn(P1, . . . , Pm)

is the m×n matrix whose ith row contains the coefficients of Pi listed in order of decreasing degree,
treating Pi as having nominal degree n− 1. Write

dpoln(P1, . . . , Pm)

for dpol(matn(P1, . . . , Pm)). The subscript n is normally omitted when understood or equal to
1 + max

i
{degPi}.

c© Chee-Keng Yap September 9, 1999



§3. Determinantal Polynomials Lecture III Page 83

Sylvester’s matrix. Let us illustrate this notation. We often apply this notation to “shifted poly-
nomials” (where we call X iP a “shifted version” of the polynomial P ). If P and Q are polynomials
of degree m and n respectively then the following m+ n by m+ n square matrix is called Sylvester
matrix of P and Q:

mat(Xn−1P,Xn−2P, . . . , X1P,X0P
︸ ︷︷ ︸

n

, Xm−1Q,Xm−2Q, . . . ,X0Q
︸ ︷︷ ︸

m

)

=

















am am−1 · · · a0

am am−1 · · · a0

. . .
. . .

am am−1 · · · a0

bn bn−1 · · · b1 b0
bn bn−1 · · · b1 b0

. . .
. . .

bn bn−1 · · · b0

















where P =
∑m

i=0 aiX
i and Q =

∑n

i=0 biX
i. The above matrix may also be written as

mat(Xn−1P,Xn−2P, . . . , X1P,X0P ;Xm−1Q,Xm−2Q, . . . ,X0Q),

with a semicolon to separate the P ’s from the Q’s. [In general, we may replace commas with
semicolons, purely as a visual aid to indicate groupings.] Since this matrix is square, its determinantal
polynomial is a constant called the resultant of P and Q, and denoted res(P,Q). We shall return
to resultants in Lecture VI.

The basic connection between determinants and polynomials is revealed in the following:

Lemma 5 Let P,Q ∈ D[X ], degP = m ≥ n = degQ. If

M = mat(Xm−nQ,Xm−n−1Q, . . . ,X1Q,X0Q
︸ ︷︷ ︸

m−n+1

, P )

then
dpol(M) = prem(P,Q).

Proof. Let
M ′ = mat(Xm−nQ,Xm−n−1Q, . . . ,XQ,Q

︸ ︷︷ ︸

m−n+1

, bm−n+1P ),

where b = lead(Q) = bn.

1. Since M ′ is obtained from the matrix M in the lemma by multiplying the last row by bm−n+1,
it follows that dpol(M ′) = bm−n+1dpol(M).

2. If we do Gaussian elimination on M ′, by repeated elimination of leading coefficients of the last
row we finally get a matrix
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M ′′ =










bn bn−1 · · · b0
bn bn−1 · · · b0

. . .

bn bn−1 · · · b0
cn−1 cn−2 · · · c0










where the polynomial represented by the last row is R =
∑n−1

i=0 ciX
i with nominal degree n−1.

It is seen that R = prem(P,Q).

3. From the definition of determinantal polynomials, dpol(M ′′) = bm−n+1
n prem(P,Q).

4. Gaussian row operations on a matrix do not change the determinantal polynomial of a matrix:

dpol(M ′) = dpol(M ′′). (5)

The lemma follows from these remarks. Q.E.D.

Thus if Q(X) is monic, then the remainder (which is equal to the pseudo-remainder) of P (X) divided
by Q(X) is a determinantal polynomial. Another consequence is this:

Corollary 6 Let P,Q ∈ D[X ], degP = m ≥ n = degQ and a, b ∈ D. Then

prem(aP, bQ) = abm−n+1prem(P,Q).

From equation (5) we further conclude

Corollary 7 With b = lead(Q),

dpol(Xm−nQ, . . . , Q
︸ ︷︷ ︸

m−n+1

, P ) = dpol(Xm−nQ, . . . , Q
︸ ︷︷ ︸

m−n+1

, b−(m−n+1)prem(P,Q)). (6)

Application. We show that coefficients in the Pseudo-Euclidean PRS can have sizes exponentially
larger that those in the corresponding Primitive PRS. Suppose

(P0, P1, . . . , Pk)

is the Pseudo-Euclidean PRS and (d0, d1, . . . , dk) associated degree sequence. Write

(δ1, . . . , δk)

where δi = di−1 − di. Let α = cont(P2), Q2 = prim(P2):

P2 = αQ2.

Then corollary 6 shows that
αδ2+1|prem(P1, αQ2) = P3.

Writing P3 = αδ2+1Q3 for some Q3, we get next

α(δ2+1)(δ3+1)|prem(P2, α
δ2+1Q3) = prem(P2, P3) = P4.
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Continuing in this way, we eventually obtain

αN |Pk (where N =

k−1∏

i=2

(δi + 1)).

Since δi ≥ 1, we get α2k |Pk. Assuming that the size of an element α ∈ D is doubled by squaring,
this yields the desired conclusion. Note that this exponential behavior arises even in a regular PRS
(all δi equal 1).

Exercises

Exercise 3.1: What is the main diagonal of the Sylvester matrix? Show that anmb
m
0 and bmn a

n
0 are

terms in the resultant polynomial. What is the general form of such terms? 2

Exercise 3.2:
a) The content of Pk is larger than the αN indicated. [For instance, the content of P4 is strictly
larger than the α(δ2+1)(δ3+1) indicated.] What is the correct bound for N? (Note that we are
only accounting for the content arising from α.)
b) Give a general construction of Pseudo-Euclidean PRS’s with coefficient sizes growing at this
exponential rate. 2

§4. Polynomial Pseudo-Quotient

As a counterpart to lemma 5, we show that the coefficients of the pseudo-quotient can also be
characterized as determinants of a suitable matrix M . This fact is not used in this lecture.

Let P (X) =
∑m

i=0 aiX
i, Q(X) =

∑n

i=0 biX
i ∈ D[X ]. We define the pseudo-quotient of P (X) divided

by Q(X) to be the (usual) quotient of bm−n+1P (X) divided by Q(X), where b = bn and m ≥ n. If
m < n, the pseudo-quotient is just P (X) itself. In the following, we assume m ≥ n.

The desired matrix is

M := mat(P,Xm−nQ,Xm−n−1Q, . . . ,XQ,Q) =










am am−1 am−2 · · · am−n · · · a1 a0

bn bn−1 bn−2 · · · b0 · · · 0 0
bn bn−1 · · · b1 · · · 0 0

. . .
...

bn bn−1 · · · b1 b0










.

Let Mi denote the (i+ 1) × (i+ 1) principal submatrix of M .

Lemma 8 Let C(X) =
∑m−n

i=0 ciX
m−n−i be the pseudo-quotient of P (X) divided by Q(X). Then

for each i = 0, . . . ,m− n,

ci = (−1)ibm−n−i detMi, b = lead(Q).

Proof. Observe that the indexing of the coefficients of C(X) is reversed. The result may be directly
verified for i = 0. For i = 1, 2, . . . ,m− n+ 1, observe that

bm−n+1P (X) −





i−1∑

j=0

cjX
m−n−j



 ·Q(X) = ciX
m−i +O(Xm−i−1) (7)
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where O(Xℓ) refers to terms of degree at most ℓ. Equation (7) amounts to multiplying the (j+2)nd
row of M by cj and subtracting this from the first row, for j = 0, . . . , i− 1. Since the determinant
of a matrix is preserved by this operation, we deduce that

det










a′m a′m−1 · · · a′m−i+1 a′m−i

bn bn−1 · · · bn−i+1 bn−i
bn · · · bn−i+1

. . .
...

bn bn−1










= det










0 0 · · · 0 ci
bn bn−1 · · · bn−i+1 bn−i

bn · · · bn−i+1

. . .
...

bn bn−1










where a′j := ajb
m−n+1. But the LHS equals bm−n+1 detMi and the RHS equals (−b)ici. Q.E.D.

§5. The Subresultant PRS

We now present Collins’s PRS algorithm.

A PRS (P0, P1, . . . , Pk) is said to be based on a sequence

(β1, β2, . . . , βk−1) (βi ∈ D) (8)

if

Pi+1 =
prem(Pi−1, Pi)

βi
(i = 1, . . . , k − 1). (9)

Note that the Pseudo-Euclidean PRS and Primitive PRS are based on the appropriate sequences. We
said the Primitive PRS is based on a sequence whose entries βi are relatively expensive to compute.
We now describe one sequence that is easy to obtain (even in parallel). Define for i = 0, . . . , k − 1,

δi := deg(Pi) − deg(Pi+1),
ai := lead(Pi).

}

(10)

Then let

βi+1 :=

{
(−1)δ0+1 if i = 0,
(−1)δi+1(ψi)

δiai if i = 1, . . . , k − 2,
(11)

where (ψ0, . . . , ψk−1) is an auxiliary sequence given by

ψ0 := 1,

ψi+1 := ψi(
ai+1

ψi
)δi = (ai+1)

δi

(ψi)δi−1 ,

}

(12)

for i = 0, . . . , k − 2.

By definition, the subresultant PRS is based on the sequence (β1, . . . , βk−1) just defined. The
subresultant PRS algorithm computes this sequence. It is easy to implement the algorithm in the style
of the usual Euclidean algorithm: the values P0, P1, a0, a1, δ0, ψ0, ψ1 and β1 are initially available.
Proceeding in stages, in the ith stage, i ≥ 1, we compute the quintuple (in this order)

Pi+1, ai+1, δi, ψi+1, βi+1 (13)

according to (9),(10),(12) and (11), respectively.

This algorithm was discovered by Collins in 1967 [44] and subsequently simplified by Brown [30]. It
is the best algorithm in the family of algorithms based on sequences of β’s.
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It is not easy to see why this sequence of βi works: Superficially, equation (9) implies that Pi+1 lies
in QD[x] rather than D[x]. Moreover, it is not clear from (12) that ψi (and hence βi+1) belongs
to D rather than QD. In fact the ψi’s turn out to be determinants of coefficients of P0 and P1, a
fact not known in the early papers on the subresultant PRS algorithm. This fact implies that the
βi’s have sizes that are polynomial in the input size. In other words, this algorithm succeeded in
curbing the exponential growth of coefficients (unlike the Pseudo-Euclidean PRS) without incurring
expensive multiple GCD computations (which was the bane of the primitive PRS). The theory of
subresultants will explain all this, and more. This is ostensibly the goal of the rest of this lecture,
although subresultants have other uses as well.

Complexity. It is easy to see that implementation (13) takes O(n2 logn) operations of D.
Schwartz [188] applied the Half-GCD idea (Lecture II) in this setting to get an O(n log2 n) bound,
provided we only compute the sequence of partial quotients and coefficients of similarities

(Q1, α1, β1), . . . , (Qk−1, αk−1, βk−1)

where αiPi+1 = βiPi−1 + PiQi. This amounts to an extended GCD computation.

Exercises

Exercise 5.1: Modify the HGCD algorithm (see Lecture VIII) to compute the subresultants. 2

§6. Subresultants

We introduce subresultants.

Definition: Let P,Q ∈ D[X ] with

deg(P ) = m > n = deg(Q) ≥ 0.

For i = 0, 1, . . . , n, the ith subresultant!ith@ith subresultant of P and Q is defined as

sresi(P,Q) := dpol(Xn−i−1P,Xn−i−2P, . . . , P
︸ ︷︷ ︸

n−i

, Xm−i−1Q,Xm−i−2Q, . . . , Q)
︸ ︷︷ ︸

m−i

. (14)

Observe that the defining matrix

mat(Xn−i−1P, . . . , P ;Xm−i−1Q, . . . , Q)

has m+n−2i rows and m+n− i columns. If n = 0, then i = 0 and P does not appear in the matrix
and the matrix is m ×m. The nominal degree of sresi(P,Q) is i. The nominal leading coefficient
of sresi(P,Q) is called the ith principal subresultant coefficient of P and Q, denoted psci(P,Q). .

Note that the zeroth subresultant is in fact the resultant,

sres0(P,Q) = res(P,Q),

and thus subresultants are a generalization of resultants. Furthermore,

sresn(P,Q) = lead(Q)m−n−1Q ∼ Q.
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It is convenient to extend the above definitions to cover the cases i = n+ 1, . . . ,m:

sresi(P,Q) :=







0 if i = n+ 1, n+ 2, . . . ,m− 2
Q if i = m− 1
P if i = m

(15)

Note that this extension is consistent with the definition (14) because in case n = m − 1, the two
definitions of sresn(P,Q) agree. Although this extension may appear contrived, it will eventually
prove to be the correct one. Again, the subscript in sresi(P,Q) indicates its nominal degree. The
sequence

(Sm, Sm−1, . . . , S1, S0), where Si = sresi(P,Q),

is called the subresultant chain of P and Q. A member sresi(P,Q) in the chain is regular if its
degree is equal to the nominal degree i; otherwise it is irregular. We say the chain is regular if
sresi(P,Q) is regular for all i = 0, . . . , n (we ignore i = n+ 1, . . . ,m).

Likewise, we extend the definition of principal subresultant coefficient psci(P,Q) to the cases i =
n+ 1, . . . ,m:

psci(P,Q) :=

{
nominal leading coefficient of sresi(P,Q) for i = n+ 1, . . . ,m− 1
1 for i = m.

(16)

Note that pscm(P,Q) is not defined as lead(P ) = lead(Sm(P,Q)) as one might have expected.

We will see that the subresultant PRS is just a subsequence of the corresponding subresultant chain.

Remark: This concept of “regular” polynomials is quite generic: if a polynomial has a ‘nominal
degree’ (which is invariably an upper bound on the actual degree), then its “regularity” simply
means that the nominal degree equals the actual degree.

Exercises

Exercise 6.1: Let the coefficients of P (X) =
∑m
i=0 aiX

i and Q(X) =
∑n

j=0 bjX
j be indetermi-

nates. Let the weights of ai and bj be i and j, respectively. If M is a monomial in the
ai’s and bj’s, the weight of M is the sum of the weights of each indeterminate in M . E.g.,
M = (am)n(b0)

m has weight mn. Let ck be the leading coefficient of sresk(P,Q), viewed as
a polynomial in the ai’s and bj ’s.
(i) Show that the weight of each term in the polynomial ck is

m(n− k) + (m− k)k = mn− k2.

HINT: note that the principal diagonal of the matrix defining sresk(P,Q) produces a term
with this weight. Use the fact that if π, π′ are two permutations of m+n− 2k that differ by a
transposition, the terms in ck arising from π, π′ have the same weight, provided they are not
zero. What if one of terms is zero?
(ii) Generalize this to the remaining coefficients of sresk(P,Q). 2

§7. Pseudo-subresultants

The key to understanding polynomial remainder sequences lies in the prediction of unavoidable
contents of polynomials in the PRS. This prediction is simpler for regular subresultant chains.
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Regular chains can be studied using indeterminate coefficients. To be precise, suppose the given
polynomials

P =

m∑

i=0

aiX
i, Q =

n∑

i=0

biX
i, (n = m− 1) (17)

come from the ring

Z[X, am, . . . , a0, bm−1, . . . , b0] = Z[X ][am, . . . , a0, bm−1, . . . , b0]

where ai, bi are indeterminates. Assuming degP = 1 + degQ is without loss of generality for
indeterminate coefficients. After obtaining the properties of subresultants in this setting, we
can “specialize” the indeterminates ai, bj to values ai, bi in D. This induces a ring homomor-
phism Φ from Z[X ; am, . . . , a0, bm−1, . . . , b0] to D[X ]. We indicate the Φ-image of an element
e ∈ Z[X ; am, . . . , a0, bm−1, . . . , b0] by e, called the specialization of e. Thus if (Sm, . . . , S0) is the
subresultant chain of P,Q, we can observe the behavior of the specialized chain2

(Sm, . . . , S0) (18)

in D[X ]. This approach was first used by Loos [33] who also noted that this has the advantage
of separating out the two causes of irregularity in chains: (a) the irregularity effects caused by
the specialization, and (b) the similarity relations among subresultants that are independent of the
specialization. The similarity relations of (b) are captured in Habicht’s theorem (see exercise). The
proper execution of this program is slightly complicated by the fact that in general,

Si = sresi(P,Q) 6= sresi(P ,Q). (19)

To overcome this difficulty, the concept of “pseudo-subresultant chains” was introduced in [84]. It
turns out that (18) is precisely the pseudo-subresultant chain of P ,Q, provided degP = m. In this
way, Loos’ program is recaptured via pseudo-subresultants without an explicit use of specialization.

Definition 1 Let P,Q ∈ D[X ] and m = degP > degQ ≥ −∞. For i = 0, 1, . . . ,m− 1, define the
ith pseudo-subresultant of P and Q to be

psresi(P,Q) := dpol2m−i−1(X
m−i−2P,Xm−i−3P, . . . , P

︸ ︷︷ ︸

m−i−1

, Xm−i−1Q,Xm−i−2Q, . . . , Q
︸ ︷︷ ︸

m−i

).

Note that
psresm−1(P,Q) = Q.

Extending these definitions as before,

psresm(P,Q) :=P.

The sequence
(Sm, Sm−1, . . . , S1, S0), where Si = psresi(P,Q)

is called the pseudo-subresultant chain of P and Q. The ith pseudo-principal subresultant coefficient
of P and Q, denoted ppsci(P,Q) is defined to be the nominal leading coefficient of psresi(P,Q) for
i = 0, . . . ,m− 1 but (again) ppscm(P,Q) := 1.

Pseudo-subresultants of P,Q are basically their subresultants except that we give Q a nominal
degree of deg(P )− 1. The defining matrix for psresi(P,Q) has shape (2m− 2i− 1)× (2m− i− 1).
This definition, unlike the definition of subresultants, allows degQ = −∞ (Q = 0), in which case
psresi(P,Q) = 0 for all i < m. It is not hard to see that

psresi(aP, bQ) = am−i−1bm−ipsresi(P,Q).

2We prefer to write ‘Sj ’ instead of the more accurate ‘Sj ’.
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(m− n− 1) 0’s

n− i columns of P

n+ 1

Figure 1: The matrix associated to psresi(P,Q)

Furthermore, pseudo-subresultants are similar to subresultants:

psresi(P,Q) =

{
lead(P )m−n−1sresi(P,Q) for i = 0, 1, . . . ,m− 2
sresi(P,Q) for i = m− 1,m.

Our initial goal is to prove a weak version of the Subresultant Theorem. We first give a preparatory
lemma.

Lemma 9 (Basic Lemma) Let P,Q ∈ D[X ] with degP = m > n = degQ ≥ −∞. If a =
lead(P ), b = lead(Q) then for i = 0, . . . ,m− 2:

psresi(P,Q) = 0 if i ≥ n+ 1 (20)

psresn(P,Q) = (ab)m−n−1Q (21)

psresi(P,Q) = am−n−1b−(m−n+1)(n−i−1)(−1)(n−i)(m−i)psresi(Q, prem(P,Q)),

if i ≤ n− 1. (22)

Proof. The result is clearly true if Q = 0, so assume degQ ≥ 0. We use the aid of Figure 1. Let
column 1 refer to the rightmost column of the matrix

mat(Xm−i−2P, . . . , P ;Xm−i−1Q, . . . , Q)

in the figure. Thus column m+1 contains the leading coefficient of the row corresponding to P . The
column containing the leading coefficient of the row corresponding to Xm−i−1Q is (m− i−1)+(n+
1) = m+ n− i. But P and Xm−i−1Q correspond to consecutive rows. Hence if i = n, the leftmost
2m − 2i − 1 columns form an upper triangular square matrix with determinant am−n−1bm−n. It
is not hard to see that this proves equation (21). If i > n then the last two rows of the leftmost
2m− 2i− 2 columns are identically zero. This means that any square matrix obtained by adding a
column to these 2m−2i−2 columns will have zero determinant. This proves equation (20). Finally,
to prove equation (22), suppose i ≤ n− 1. We get

psresi(P,Q)
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= dpol(Xm−i−2P, . . . , P
︸ ︷︷ ︸

m−i−1

, Xm−i−1Q, . . . , Q
︸ ︷︷ ︸

m−i

)

= dpol(Xm−i−2P, . . . , Xn−iP
︸ ︷︷ ︸

m−n−1

, Xn−i−1P, . . . , P
︸ ︷︷ ︸

n−i

, Xm−i−1Q, . . . , Q
︸ ︷︷ ︸

m−i

)

= dpol(Xn−i−1P, . . . , P
︸ ︷︷ ︸

n−i

, Xm−i−1Q, . . . , Q
︸ ︷︷ ︸

m−i

) · am−n−1

(expanding the leftmost m− n− 1 columns)

= dpol(Xn−i−1bm−n+1P, . . . , bm−n+1P
︸ ︷︷ ︸

n−i

, Xm−i−1Q, . . . , Q
︸ ︷︷ ︸

m−i

) · am−n−1 · b−(m−n+1)(n−i)

= dpol(Xn−i−1prem(P,Q), . . . , prem(P,Q)
︸ ︷︷ ︸

n−i

, Xm−i−1Q, . . . , Q
︸ ︷︷ ︸

m−i

) · am−n−1 · b−(m−n+1)(n−i)

(by corollary 7)

= dpol(Xm−i−1Q, . . . ,Xn−i−1Q
︸ ︷︷ ︸

m−n+1

, Xn−i−2Q, . . . , Q
︸ ︷︷ ︸

n−i−1

, Xn−i−1prem(P,Q), . . . , prem(P,Q)
︸ ︷︷ ︸

n−i

)

·am−n−1 · b−(m−n+1)(n−i) · (−1)(n−i)(m−i)

(transposing columns)

= dpol(Xn−i−2Q, . . . , Q
︸ ︷︷ ︸

n−i−1

, Xn−i−1prem(P,Q), . . . , prem(P,Q)
︸ ︷︷ ︸

n−i

)

·am−n−1 · b−(m−n+1)(n−i) · (−1)(n−i)(m−i) · bm−n+1

(expanding the leftmost m− n+ 1 columns)

= psresi(Q, prem(P,Q)) · am−n−1 · b−(m−n+1)(n−i−1) · (−1)(n−i)(m−i).

Q.E.D.

The case i = n− 1 in equation (22) is noteworthy:

psresn−1(P,Q) = (−a)m−n−1prem(P,Q). (23)

We define a block to be a sequence

B = (P1, P2, . . . , Pk), k ≥ 1

of polynomials where P1 ∼ Pk and 0 = P2 = P3 = · · · = Pk−1. We call P1 and Pk (respectively) the
top and base of the block. Two special cases arise: In case k = 1, we call B a regular block; in case
P1 = 0, we call B a zero block. Thus the top and the base of a regular block coincide.

Using the Basic Lemma, we deduce the general structure of a subresultant chain.

Theorem 10 (Block Structure Theorem) A subresultant or pseudo-subresultant chain

(Sm, Sm−1, . . . , S0)

is uniquely partitioned into a sequence

B0, B1, . . . , Bk, (k ≥ 1)

of blocks such that
a) B0 is a regular block.
b) If Ui is the base polynomial of block Bi then Ui is regular and Ui+1 ∼ prem(Ui−1, Ui) (0 < i < k).
c) There is at most one zero block; if there is one, it must be Bk.
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Proof. Since pseudo-subresultants are similar to their subresultant counterparts, it is sufficient to
prove the theorem assuming (Sm, . . . , S0) is a pseudo-subresultant chain.

Assertion a) is immediate since B0 = (Sm). We verify assertion b) by induction on i: If degSm−1 =
n, the Basic Lemma (21) implies that (Sm−1, Sm−2, . . . , Sn) forms the next block B1. Moreover, Sn
is regular and Sn−1 ∼ prem(Sm, Sm−1) (23). Thus U2 ∼ prem(U0, U1). Inductively, assuming that
block Bi has been defined and the polynomial following the base of Bi is similar to prem(Ui−1, Ui),
we can repeat this argument to define the next block Bi+1 and show that Ui+1 is regular and
Ui+1 ∼ prem(Ui−1, Ui). This argument terminates when prem(Ui−1, Ui) = 0. Then the rest of the
pseudo-subresultants are zero, forming the final zero block, which is assertion c). Q.E.D.

By definition, a sequence of polynomials that satisfies this Block Structure theorem is called block-
structured. This structure is graphically illustrated in figure 2. Here m = 12 and there are 5
blocks in this particular chain. Each non-zero polynomial in the chain is represented by a horizontal
line segment and their constant terms are vertically aligned. The leading coefficient of regular
polynomials lies on the main diagonal. The top and base polynomials in the ith block are denoted
by Ti and Ui, respectively.

B0

B1

B2

B3

B4

U0

T1

U1

U2

T3

U3

Figure 2: Block structure of a chain with m = 12

Exercises

Exercise 7.1: Construct an example illustrating (19). 2

Exercise 7.2: Deduce the following from the Block Structure Theorem. Suppose P,Q ∈ D[X ]
has the remainder sequence (P0, P1, . . . , Pℓ) in QD[X ]. Let the blocks of their subresultant
sequence be B0, B1, . . ., where Ui is the base of block Bi.
(i) Ui ∼ Pi for i ≥ 0. If the last non-zero block is Bℓ, then Pℓ ∼ GCD(P0, P1).
(ii) The number of non-zero blocks in the subresultant chain of P,Q is equal to the length of any
remainder sequence of P,Q. Moreover, the base of each block is similar to the corresponding
member of the remainder sequence.
(iii) The last non-zero element in the subresultant chain is similar to GCD(P,Q).
(iv) The smallest index i such that the principal subresultant coefficient psci(P,Q) is non-zero
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is equal to deg(GCD(P,Q)).
(v) Two polynomials P,Q are relatively prime if and only if their resultant does not vanish,
res(P,Q) 6= 0. 2

§8. Subresultant Theorem

The Block Structure Theorem does not tell us the coefficients of similarity implied by the relation
bi+1 ∼ prem(bi−1, bi). It is a tedious exercise to track down these coefficients in some form; but the
challenge is to present them in a useful form. It is non-obvious that these coefficients bear simple
relations to the principal pseudo-subresultant coefficients; the insight for such a relation comes from
the case of indeterminate coefficients (Habicht’s theorem, see Exercise). These relations, combined
with the Block Structure Theorem, constitute the Subresultant Theorem which we will prove. We
begin with an analogue to Habicht’s theorem.

Theorem 11 (Pseudo Habicht’s theorem) Let (Sm, . . . , S0) be a pseudo-subresultant chain,
and let (cm, . . . , c0) be the corresponding sequence of principal pseudo-subresultant coefficients. If Sk
is regular (1 ≤ k ≤ m) then

Si = c
−2(k−i−1)
k psresi(Sk, Sk−1), i = 0, . . . , k − 1.

Proof. We use induction on k. If k = m then the result is true by definition (recall cm = 1).
Let P = Sm, Q = Sm−1, n = degQ, a = lead(P ) and b = lead(Q). So Sn is the next regular
pseudo-subresultant. Unfortunately, the argument is slightly different for k = n and for k < n.

CASE k = n: The Basic Lemma implies

Sn = (ab)(m−n−1)Q, Sn−1 = (−a)(m−n−1)prem(P,Q).

Taking coefficients of Sn, we get cn = am−n−1bm−n. From the Basic Lemma (22), for i = 0, . . . , n−1,

a−(m−n−1)b(m−n+1)(n−i−1)(−1)−(n−i)(m−i)Si

= psresi(Q, prem(P,Q))

= psresi((ab)
−(m−n−1)Sn, (−a)−(m−n−1)Sn−1)

(substituting for Q, prem(P,Q))

= (ab)−(m−n−1)(n−i−1)(−a)−(m−n−1)(n−i)psresi(Sn, Sn−1).

Si = a−2(m−n−1)(n−i−1)b−2(m−n)(n−i−1)psresi(Sn, Sn−1)

= c−2(n−i−1)
n psresi(Sn, Sn−1).

CASE 1 ≤ k < n: By the Block Structure Theorem, there is some regular Sℓ (ℓ ≤ n) such that
k = deg(Sℓ−1). By induction hypothesis, the lemma is true for ℓ. Let ai = leadSi (so ai 6= 0 unless
Si = 0). We have

c
2(ℓ−k−1)
ℓ Sk = psresk(Sℓ, Sℓ−1) (by induction)

= (cℓaℓ−1)
ℓ−k−1Sℓ−1 (Basic Lemma).

Sℓ−1 = (cℓa
−1
ℓ−1)

ℓ−k−1Sk. (24)

Taking coefficients,

ck = c
−(ℓ−k−1)
ℓ aℓ−kℓ−1 . (25)
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Again,

c
2(ℓ−k)
ℓ Sk−1 = psresk−1(Sℓ, Sℓ−1) (by induction)

= (−cℓ)ℓ−k−1prem(Sℓ, Sℓ−1) (by equation (23)).

prem(Sℓ, Sℓ−1) = (−cℓ)ℓ−k+1Sk−1. (26)

Hence

c
2(ℓ−i−1)
ℓ Si

= psresi(Sℓ, Sℓ−1) (by induction)

= cℓ−k−1
ℓ a

−(ℓ−k+1)(k−i−1)
ℓ−1 (−1)(ℓ−i)(k−i)psresi(Sℓ−1, prem(Sℓ, Sℓ−1)) (Basic Lemma)

= cℓ−k−1
ℓ a

−(ℓ−k+1)(k−i−1)
ℓ−1 (−1)(ℓ−i)(k−i)psresi((cℓa

−1
ℓ−1)

ℓ−k−1Sk, (−cℓ)ℓ−k+1Sk−1)

(by (24), (26))

= c
2(k−i)(ℓ−k)
ℓ a

−2(ℓ−k)(k−i−1)
ℓ−1 psresi(Sk, Sk−1) (more manipulations).

Si = (cℓ)
2(ℓ−k−1)(k−i−1)(aℓ−1)

−2(ℓ−k)(k−i−1)psresi(Sk, Sk−1)

= (ck)
−2(k−i−1)psresi(Sk, Sk−1) (by (25)).

Q.E.D.

Combined with the Basic Lemma, it is straightforward to infer:

Theorem 12 (Pseudo-Subresultant Theorem) Let (Sm, . . . , S0) be a
pseudo-subresultant chain, and let (am, . . . , a0) be the corresponding sequence of leading coefficients.
This chain is block-structured such that if Sℓ, Sk (m ≥ ℓ > k ≥ 1) are two consecutive regular
pseudo-subresultants in this sequence then:

Sk =

{
(aℓaℓ−1)

ℓ−k−1Sℓ−1 if ℓ = m,
(a−1
ℓ aℓ−1)

ℓ−k−1Sℓ−1 if ℓ < m.
(27)

Sk−1 =

{
(−aℓ)ℓ−k−1prem(Sℓ, Sℓ−1) if ℓ = m,

(−aℓ)−(ℓ−k+1)prem(Sℓ, Sℓ−1) if ℓ < m.
(28)

Finally, we transfer the result from pseudo-subresultants to subresultants:

Theorem 13 (Subresultant Theorem) Let (Rm, . . . , R0) be a subresultant chain, and let
(cm, . . . , c0) be the corresponding sequence of principal subresultant coefficients. This chain is block-
structured such that if Rℓ, Rk (m ≥ ℓ > k ≥ 1) are two consecutive regular subresultants in this
sequence then:

Rk = (c−1
ℓ lead(Rℓ−1))

ℓ−k−1Rℓ−1, (29)

Rk−1 = (−cℓ)−ℓ+k−1prem(Rℓ, Rℓ−1). (30)

Proof. Let (Sm, . . . , S0) be the corresponding pseudo-subresultant chain with leading coefficients
(am, . . . , a0). Write a instead of am and let n = deg Sm−1. We exploit the relation

Ri =

{
Si if i = m− 1,m,

a−(m−n−1)Si if i = 0, . . . ,m− 2.
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Hence, if Ri is regular and i < m, we have

ci = a−(m−n−1)ai.

We show the derivation of Rk−1, leaving the derivation of Rk to the reader:

Rk−1 = a−(m−n−1)Sk−1

=

{
a−(m−n−1)(−aℓ)ℓ−k−1prem(Sℓ, Sℓ−1) if ℓ = m

a−(m−n−1)(−aℓ)−(ℓ−k+1)prem(Sℓ, Sℓ−1) if ℓ < m

=

{
(−1)ℓ−k−1prem(Sℓ, Sℓ−1) if ℓ = m
a−(m−n−1)(−aℓ)−(ℓ−k+1)prem(Sℓ, Sℓ−1) if ℓ < m

=







(−1)ℓ−k−1prem(Rℓ, Rℓ−1) if ℓ = m
a−(m−n−1)(−aℓ)−(ℓ−k+1)prem(Rℓ, a

m−n−1Rℓ−1) if ℓ = m− 1

a−(m−n−1)(−aℓ)−(ℓ−k+1)prem(am−n−1Rℓ, a
m−n−1Rℓ−1) if ℓ < m

=







(−1)ℓ−k−1prem(Rℓ, Rℓ−1) if ℓ = m

(−aℓ)−(ℓ−k+1)a(m−n−1)(ℓ−k+1)prem(Rℓ, Rℓ−1) if ℓ = m− 1(= n)

(−aℓ)−(ℓ−k+1)a(m−n−1)(ℓ−k+1)prem(Rℓ, Rℓ−1) if ℓ < m

= (−cℓ)−(ℓ−k+1)prem(Rℓ, Rℓ−1).

The last equality is justified since:
(i) ℓ = m: this is because cℓ = 1.
(ii) and (iii): ℓ < m: this is because cℓ = a−(m−n−1)aℓ. Q.E.D.

So equation (29) gives the coefficients of similarity between the top and base polynomials in each
block.

Exercises

Exercise 8.1:
(i) Verify the Pseudo-Subresultant Theorem.
(ii) Complete the proof for the Subresultant Theorem. 2

Exercise 8.2: Show that the problem of computing the GCD of two integer polynomials is in the
complexity class NC = NCB. 2

Exercise 8.3: Prove that if P,Q have indeterminate coefficients as in (17), then
(i) sresm−2(P,Q) = prem(P,Q).
(ii) For k = 0, . . . ,m− 3,

b
2(m−k−2)
m−1 sresk(P,Q) = sresk(Q, prem(P,Q)).

(iii) [Habicht’s theorem] If Si = sresi(P,Q) and ci = psci(P,Q), for j = 1, . . . ,m− 1,

c
2(j−k)
j+1 Sk = sresk(Sj+1, Sj), (k = 0, . . . , j − 1) (31)

c2j+1Sj−1 = prem(Sj+1, Sj). (32)

2
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§9. Correctness of the Subresultant PRS Algorithm

We relate the subresultant PRS
(P0, P1, . . . , Pk) (33)

described in §5 (equations (11) and (12)) to the subresultant chain

(Rm, Rm−1, . . . , R0) (34)

where Rm = P0 and Rm−1 = P1. (Note that the convention for subscripting PRS’s in increasing
order is opposite to that for subresultant chains.) The basic connection, up to similarity, is already
established by the Block Structure Theorem. Th real task is to determine the coefficients of similarity
between the top of Bi and Pi. As a matter of fact, we have not even established that members of
the Subresultant PRS are in D[X ]. This is captured in the next theorem. Recall the computation
of Pi involves the following two auxiliary sequences

(β1, . . . , βk−1), (ψ0, . . . , ψk−1)

as given in (11) and (12), where

δi = degPi − degPi+1, ai = lead(Pi).

Theorem 14 (Subresultant PRS Correctness) Let Ti, Ui be the top and base polynomials of
block Bi, where (B0, . . . , Bk) are the non-zero blocks of our subresultant chain.

a) ψi = lead(Ui), i = 1, . . . , k. (Note that ψ0 = 1.)

b) The sequence (T0, . . . , Tk) is precisely (P0, . . . , Pk), the subresultant PRS.

Proof. We use induction on i.
BASIS: Part a): from (12), we have ψ1 = (a1)

δ0 . We verify from equation (29) that lead(U1) = ψ1.
Part b): By definition, Ti = Pi for i = 0, 1. Using the Subresultant Theorem,

P2 =
prem(P0, P1)

β1
(by definition)

=
prem(T0, T1)

(−1)δ0+1
(β1 = (−1)δ0+1)

=
(−1)δ0+1T2

(−1)δ0+1
(from (30))

= T2.

P3 =
prem(P1, P2)

β2

=
prem(T1, T2)

(−1)δ1+1ψδ11 a1

(by definition of β2)

=
prem(U1, T2)

(−1)δ1+1ψδ11 a
δ0
1

(since U1 = aδ0−1
1 T1)

=
(−ψ1)

δ1+1T3

(−1)δ1+1ψδ11 a
δ0
1

(by (30), prem(U1, T2) = (−ψ1)
1+δ1T3)

= T3 (since ψ1 = aδ01 ).
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INDUCTION: Let i ≥ 2 and assume that part a) is true for i− 1 and part b) is true for i and i+ 1.
Rewriting equation (29) from the Subresultant Theorem in the present terminology:

lead(Ui−1)
δi−1−1Ui = lead(Ti)

δi−1−1Ti. (35)

By inductive hypothesis, (ψi−1)
δi−1−1Ui = lead(Pi)

δi−1−1Pi. Comparing leading coefficients,

(ψi−1)
δi−1−1lead(Ui) = a

δi−1

i . Hence,

lead(Ui) =
a
δi−1

i

ψ
δi−1−1
i−1

.

But the latter is defined to be ψi, hence we have shown part a) for i. For part b), again rewrite
equation (30) from the Subresultant Theorem:

(−lead(Ui))
δi+1Ti+2 = prem(Ui, Ti+1). (36)

Then

βi+1Pi+2 = prem(Pi, Pi+1)

= prem(Ti, Ti+1) (by inductive hypothesis.)

= prem(
lead(Ui−1)

δi−1−1

lead(Ti)δi−1−1
Ui, Ti+1) (by (35))

=
ψ
δi−1−1
i−1

a
δi−1−1
i

prem(Ui, Ti+1) (by inductive hypothesis)

=
ψ
δi−1−1
i−1

a
δi−1−1
i

(−ψi)δi+1Ti+2 (by (36) and part a))

= βi+1Ti+2.

So Ti+2 = Pi+2, extending the induction for part b). Q.E.D.

Part a) may be reexpressed:

Corollary 15 The sequence of the ψi’s in the Subresultant PRS Algorithm on input P0, P1 are the
principal subresultant coefficients of the subresultant chain of P0, P1.

This confirms the original claim that ψi ∈ D and that (being determinants) their sizes are polyno-
mially bounded when D = Z.

Exercises

Exercise 9.1: (C.-J. Ho) Berkowitz has shown that the determinant of anm×m matrix has parallel
complexity O(log2m,m3.5), i.e., can be computed in parallel time O(log2m) using O(m3.5)
processors. Use this to conclude that the parallel complexity of computing the Subresultant
PRS of P0, P1 is

O(log2m, rnm3.5)

where m = deg(P0) > deg(P1) = n > 0 and r is the length of the Subresultant PRS. HINT:
first compute the principal subresultant coefficients. Then use the parallel-prefix of Ladner-
Fisher to obtain a sequence of the r indices of the non-zero principal subresultant coefficients.

2
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[32] B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal theory. In N. K.
Bose, editor, Multidimensional Systems Theory, Mathematics and its Applications, chapter 6,
pages 184–229. D. Reidel Pub. Co., Boston, 1985.

[33] B. Buchberger, G. E. Collins, and R. L. (eds.). Computer Algebra. Springer-Verlag, Berlin,
2nd edition, 1983.

[34] D. A. Buell. Binary Quadratic Forms: classical theory and modern computations. Springer-
Verlag, 1989.

[35] W. S. Burnside and A. W. Panton. The Theory of Equations, volume 1. Dover Publications,
New York, 1912.

[36] J. F. Canny. The complexity of robot motion planning. ACM Doctoral Dissertion Award Series.
The MIT Press, Cambridge, MA, 1988. PhD thesis, M.I.T.

[37] J. F. Canny. Generalized characteristic polynomials. J. of Symbolic Computation, 9:241–250,
1990.

[38] D. G. Cantor, P. H. Galyean, and H. G. Zimmer. A continued fraction algorithm for real
algebraic numbers. Math. of Computation, 26(119):785–791, 1972.

[39] J. W. S. Cassels. An Introduction to Diophantine Approximation. Cambridge University Press,
Cambridge, 1957.

[40] J. W. S. Cassels. An Introduction to the Geometry of Numbers. Springer-Verlag, Berlin, 1971.

[41] J. W. S. Cassels. Rational Quadratic Forms. Academic Press, New York, 1978.

[42] T. J. Chou and G. E. Collins. Algorithms for the solution of linear Diophantine equations.
SIAM J. Computing, 11:687–708, 1982.

c© Chee-Keng Yap September 9, 1999



§9. Subresultant PRS Correctness Lecture III Page 100

[43] H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, 1993.

[44] G. E. Collins. Subresultants and reduced polynomial remainder sequences. J. of the ACM,
14:128–142, 1967.

[45] G. E. Collins. Computer algebra of polynomials and rational functions. Amer. Math. Monthly,
80:725–755, 1975.

[46] G. E. Collins. Infallible calculation of polynomial zeros to specified precision. In J. R. Rice,
editor, Mathematical Software III, pages 35–68. Academic Press, New York, 1977.

[47] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Comp., 19:297–301, 1965.

[48] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J.
of Symbolic Computation, 9:251–280, 1990. Extended Abstract: ACM Symp. on Theory of
Computing, Vol.19, 1987, pp.1-6.

[49] M. Coste and M. F. Roy. Thom’s lemma, the coding of real algebraic numbers and the
computation of the topology of semi-algebraic sets. J. of Symbolic Computation, 5:121–130,
1988.

[50] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms: An Introduction to Com-
putational Algebraic Geometry and Commutative Algebra. Springer-Verlag, New York, 1992.

[51] J. H. Davenport, Y. Siret, and E. Tournier. Computer Algebra: Systems and Algorithms for
Algebraic Computation. Academic Press, New York, 1988.

[52] M. Davis. Computability and Unsolvability. Dover Publications, Inc., New York, 1982.

[53] M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential Diophantine
equations. Annals of Mathematics, 2nd Series, 74(3):425–436, 1962.
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[60] T. W. Dubé. A combinatorial proof of the effective Nullstellensatz. J. of Symbolic Computation,
15:277–296, 1993.

[61] R. L. Duncan. Some inequalities for polynomials. Amer. Math. Monthly, 73:58–59, 1966.

[62] J. Edmonds. Systems of distinct representatives and linear algebra. J. Res. National Bureau
of Standards, 71B:241–245, 1967.

[63] H. M. Edwards. Divisor Theory. Birkhauser, Boston, 1990.

c© Chee-Keng Yap September 9, 1999



§9. Subresultant PRS Correctness Lecture III Page 101

[64] I. Z. Emiris. Sparse Elimination and Applications in Kinematics. PhD thesis, Department of
Computer Science, University of California, Berkeley, 1989.

[65] W. Ewald. From Kant to Hilbert: a Source Book in the Foundations of Mathematics. Clarendon
Press, Oxford, 1996. In 3 Volumes.

[66] B. J. Fino and V. R. Algazi. A unified treatment of discrete fast unitary transforms. SIAM
J. Computing, 6(4):700–717, 1977.

[67] E. Frank. Continued fractions, lectures by Dr. E. Frank. Technical report, Numerical Analysis
Research, University of California, Los Angeles, August 23, 1957.

[68] J. Friedman. On the convergence of Newton’s method. Journal of Complexity, 5:12–33, 1989.

[69] F. R. Gantmacher. The Theory of Matrices, volume 1. Chelsea Publishing Co., New York,
1959.

[70] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, Resultants and Multi-
dimensional Determinants. Birkhäuser, Boston, 1994.
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tative Thue systems. Info. and Computation, 68:196–206, 1986.

[89] C. S. Iliopoulous. Worst-case complexity bounds on algorithms for computing the canonical
structure of finite Abelian groups and Hermite and Smith normal form of an integer matrix.
SIAM J. Computing, 18:658–669, 1989.

[90] N. Jacobson. Lectures in Abstract Algebra, Volume 3. Van Nostrand, New York, 1951.

[91] N. Jacobson. Basic Algebra 1. W. H. Freeman, San Francisco, 1974.

[92] T. Jebelean. An algorithm for exact division. J. of Symbolic Computation, 15(2):169–180,
1993.

[93] M. A. Jenkins and J. F. Traub. Principles for testing polynomial zerofinding programs. ACM
Trans. on Math. Software, 1:26–34, 1975.

[94] W. B. Jones and W. J. Thron. Continued Fractions: Analytic Theory and Applications. vol.
11, Encyclopedia of Mathematics and its Applications. Addison-Wesley, 1981.

[95] E. Kaltofen. Effective Hilbert irreducibility. Information and Control, 66(3):123–137, 1985.

[96] E. Kaltofen. Polynomial-time reductions from multivariate to bi- and univariate integral poly-
nomial factorization. SIAM J. Computing, 12:469–489, 1985.

[97] E. Kaltofen. Polynomial factorization 1982-1986. Dept. of Comp. Sci. Report 86-19, Rensselaer
Polytechnic Institute, Troy, NY, September 1986.

[98] E. Kaltofen and H. Rolletschek. Computing greatest common divisors and factorizations in
quadratic number fields. Math. Comp., 52:697–720, 1989.

[99] R. Kannan, A. K. Lenstra, and L. Lovász. Polynomial factorization and nonrandomness of
bits of algebraic and some transcendental numbers. Math. Comp., 50:235–250, 1988.
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[148] C. Ó’Dúnlaing and C. Yap. Generic transformation of data structures. IEEE Foundations of
Computer Science, 23:186–195, 1982.
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Lecture IV

Modular Techniques

We introduce modular techniques based on the Chinese Remainder Theorem, and efficient techniques
for modular evaluation and interpolation. This leads to an efficient GCD algorithm in Z[X ].

The rings in this lecture need not be domains.

§1. Chinese Remainder Theorem

The Chinese Remainder Theorem stems from observations about integers such as these: assume we
are interested in computing with non-negative integers that are no larger than 3 ·4 ·5 = 60. Then any
integer of interest, say 18, can be represented by its vector of residues modulo 3, 4, 5 (respectively),

(18 mod 3, 18 mod4, 18 mod5) = (0, 2, 3).

Two numbers in this representation can be added and multiplied, in the obvious componentwise
manner. It turns out this sum or product can be faithfully recovered provided it does not exceed
60. For instance 36 = 18× 2 is represented by (0, 2, 3)× (2, 2, 2) = (0, 0, 1), which represents 36. A
limited form of the theorem was stated by Sun Tsŭ (thought to be between 280 and 473 A.D.); the
general statement, and proof, by Chhin Chin Shao came somewhat later in 1247 (see [10, p. 271]).

We proceed to put these ideas in its proper algebraic setting (following Lauer [3]). ?? FULL NAME?
The above illustration uses an implicit ring, Z3 ⊗ Z4 ⊗ Z5. In general, if R1, . . . , Rn are rings, we
write

R1 ⊗R2 ⊗ · · · ⊗Rn or

n⊗

i=1

Ri

for the Cartesian product of R1, . . . , Rn, endowed with a ring structure by componentwise ex-
tension of the individual ring operations. The zero and unity elements of this Cartesian prod-
uct are (0, 0, . . . , 0) and (1, 1, . . . , 1), respectively. For instance, (u1, . . . , un) + (v1, . . . , vn) =
(u1 + v1, . . . , un + vn) where the ith component arithmetic is done in Ri. The reader should always
keep in sight where the ring operations are taking place because our notations (to avoid clutter) will
not show this explicitly.

Let R be a ring. Two ideals I, J ⊆ R are relatively prime if I + J = R. This is equivalent to the
existence of a ∈ I, b ∈ J such that a+ b = 1. For an ideal I, let R/I denote the quotient ring whose
elements are denoted u + I (u ∈ R) under the canonical map. For example, if R = Z and I = (n)
then R/I is isomorphic to Zn. Two ideals (n) and (m) are relatively prime iff n,m are relatively
prime integers. So the ideals (3), (4), (5) implicit in our introductory example are relatively prime.
We now present the ideal-theoretic version of the Chinese Remainder Theorem.

Theorem 1 (Chinese Remainder Theorem) Let (I1, . . . , In) be a sequence of pairwise relatively
prime ideals of R. Then the map

Φ : u ∈ R 7−→ (u+ I1, . . . , u+ In) ∈
n⊗

i=1

(R/Ii)

is an onto homomorphism with kernel

kerΦ =

n⋂

i=1

Ii.
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In short, this is the content of the Chinese Remainder Theorem:

R/(kerΦ) ∼= (R/I1)⊗ · · · ⊗ (R/In).

Proof. It is easy to see that Φ is a homomorphism with kernel

n⋂

i=1

Ii. The nontrivial part is to show

that Φ is onto. Let

u = (u1 + I1, . . . , un + In) ∈
n⊗

i=1

(R/Ii).

We must show the existence of u ∈ R such that Φ(u) = u, i.e.,

u ≡ ui(mod Ii) for all i = 1, . . . , n. (1)

Suppose for each i = 1, . . . , n we can find bi such that for all j = 1, . . . , n,

bi ≡ δi,j(mod Ij) (2)

where δi,j is Kronecker’s delta-function. Then the desired u is given by

u :=
n∑

i=1

uibi.

To find the bi’s, we use the fact that for all i 6= j, Ii and Ij are relatively prime implies there exist
elements

a
(j)
i ∈ Ii

such that
a
(j)
i + a

(i)
j = 1.

We then let

bi :=

n∏

j=1

j 6=i

a
(i)
j .

To see that bi satisfies equation (2), note that if j 6= i then a
(i)
j | bi and a

(i)
j ∈ Ij imply bi ≡ 0(mod Ij).

On the other hand,

bi =

n∏

j=1

j 6=i

(1 − a(j)
i ) ≡ 1(mod Ii).

Q.E.D.

In our introductory example we have R = Z and the ideals are Ii = (qi) where q1, . . . , qn are pairwise

relatively prime numbers. The numbers a
(j)
i can be computed via the extended Euclidean algorithm,

applied to each pair qi, qj . The kernel of this homomorphism is the ideal (q1q2 · · · qm).

The use of the map Φ gives the name “homomorphism method” to this approach. The hope offered by
this theorem is that computation in the quotient rings R/Ii may be easier than in R. It is important
to notice the part of the theorem stating that the kernel of the homomorphism is ∩ni=1In. Translated,
the price we pay is that elements that are equivalent modulo ∩ni=1In are indistinguishable.
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Lagrange and Newton interpolations. The proof of the Chinese Remainder Theorem involves
constructing an element u that satisfies the system of modular equivalences (1). This is the modular
interpolation problem. Conversely, constructing the ui’s from u is the modular evaluation problem.
The procedure used in our proof is called Lagrange interpolation. An alternative to Lagrange in-
terpolation is Newton interpolation. The basic idea is to build up partial solutions. Suppose we
want to solve the system of equivalences u ≡ ui(mod Ii) for i = 1, . . . , n. We construct a sequence
u(1), . . . , u(n) where u(i) is a solution to the first i equivalences. We construct u(i) from u(i−1) using

u(i) = u(i−1) + (ui − u(i−1))

i−1∏

j=1

a
(i)
j

where the a
(i)
j ∈ Ij are as in the Lagrange method. Thus u(1) = u1 and u(2) = u1 + (u2 −

u1)a
(2)
1 . Lagrange interpolation is easily parallelizable, while Newton interpolation seems inherently

sequential in nature. On the other hand, Newton interpolation allows one to build up partial
solutions in an on-line manner.

Exercises

Exercise 1.1: Carry out the details for Newton interpolation. 2

Exercise 1.2: Give an efficient parallel implementation of the Lagrange interpolation. 2

§2. Evaluation and Interpolation

Polynomial evaluation and interpolation. An important special case of solving modular equiv-
alences is when R = F [X ] where F is a field. For any set of n distinct elements, a1, . . . , an ∈ F ,
the set of ideals Ideal(X − a1), . . . , Ideal(X − an) are pairwise relatively prime. It is not hard to
verify by induction that

Ideal(X − a1) ∩ Ideal(X − a2) ∩ · · · ∩ Ideal(X − an) =
n∏

i=1

Ideal(X − ai) = Ideal(
n∏

i=1

(X − ai)).

It is easy to see that P (X)mod(X − ai) is equal to P (ai) for any P (X) ∈ F [X ] (Lecture VI.1).
Hence the quotient ring F [X ]/(X−ai) is isomorphic to F . Applying the Chinese Remainder Theorem
with Ii :=(X − ai), we obtain the homomorphism

Φ : P (X) ∈ F [X ] 7→ (P (a1), . . . , P (an)) ∈ Fn.

Computing this map Φ is the polynomial evaluation problem; reconstructing a degree n−1 polynomial
P (X) from the pairs (a1, A1), . . . , (an, An) such that P (ai) = Ai for all i = 1, . . . , n is the polynomial
interpolation problem. A straight forward implementation of polynomial evaluation has algebraic
complexity O(n2). In Lecture I, we saw that evaluation and interpolation at the n roots of unity
has complexity O(n log n). We now show the general case can be solved almost as efficiently.

The simple observation exploited for polynomial evaluation is this: If M ′(X)|M(X) then

P (X)modM ′(X) = (P (X)modM(X))modM ′(X). (3)
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Theorem 2 The evaluation of degree n−1 polynomials at n arbitrary points has algebraic complexity
O(n log2 n).

Proof. We may assume the polynomial P (X) is monic and its degree is ≤ n− 1, where n = 2k is a
power of 2. Suppose we want to evaluate P (X) at a0, . . . , an−1. We construct a balanced binary tree
T with n leaves. The n leaves are associated with the polynomials X − aj for j = 0, . . . , n− 1. If an
internal node u has children v, w with associated polynomials Mv(X),Mw(X) then u is associated
with the polynomial Mu(X) = Mv(X)Mw(X). There are 2i polynomials at level i, each of degree
2k−i (the root has level 0). As the algebraic complexity of multiplying polynomials is O(n log n),
computing all the polynomials associated with level i takes O(2i(k−i)2k−i) = O(n log n) operations.
Hence we can proceed in a bottom-up manner to compute the set {Mu : u ∈ T } of polynomials in
O(n log2 n) operations.

We call T the moduli tree for a0, . . . , an−1. This terminology is justified by our intended use of T :
given the polynomial P (X), we want to compute

Pu(X) :=P (X)modMu(X)

at each node u in T . This is easy to do in a top-down manner. If node u is the child of v and
P (X)modMv(X) has been computed, then we can compute Pu(X) via

Pu(X)← Pv(X)modMu(X),

by exploiting equation (3). If u is at level i ≥ 1 then this computation takes O((k−i)2k−i) operations
since the polynomials involved have degree at most 2k−i+1. Again, the computation at each level
takes O(n log n) operations for a total of O(n log2 n) operations. Finally, note that if u is a leaf
node with Mu(X) = X − aj , then Pu(X) = P (X)modMu(X) = P (aj), which is what we wanted.

Q.E.D.

To achieve a similar result for interpolation, we use Lagrange interpolation. In the polynomial case,
the formula to interpolate (a1, A1), . . . , (an, An) has the simple form

P (X) :=

n∑

k=1

∆k(X)Ak

provided ∆k(X) evaluated at ai is equal to δk,i (Kronecker’s delta). The polynomial ∆k(X) can be
defined as follows:

∆k(X) := Dk(X)/dk;

Dk(X) :=

n∏

i=1

i6=k

(X − ai);

dk :=

n∏

i=1

i6=k

(ak − ai).

Note that ∆k(X) has degree n− 1. First consider the problem of computing the dk’s. Let

M(X) :=

n∏

i=1

(X − ai),

M ′(X) =
dM(X)

dX

=

n∑

k=1




n∏

i=1

i6=k

(X − ai)


 .
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Then it is easy to see that M ′(ak) = dk. It follows that computing d1, . . . , dn is reduced to evaluating
M ′(X) at the n points X = a1, . . . , X = an. By the previous theorem, this can be accomplished with
O(n log2 n) ring operations, assuming we have M ′(X). Now M ′(X) can be obtained from M(X) in
O(n) operations. Since M(X) is the label of the root of the moduli tree T for a1, . . . , an, we can
construct M(X) in O(n log2 n) operations.

We now seek to split P (X) into two subproblems. First, write M(X) = M0(X)M1(X) where

M0(X) =

n/2∏

i=1

(X − ai), M1(X) =

n∏

i=1+n/2

(X − ai).

Note that M0(X),M1(X) are polynomials in the moduli tree T , which we may assume has been
precomputed. Then

P (X) =

n/2∑

k=1

Dk(X)
Ak
dk

+

n∑

k=1+n/2

Dk(X)
Ak
dk

= M1(X)

n/2∑

k=1

D∗
k(X)

Ak
dk

+M0(X)

n∑

k=1+n/2

D∗
k(X)

Ak
dk

= M1(X)P0(X) +M0(X)P1(X),

where D∗
k(X) = Dk(X)/M1(X) for k ≤ n/2 and D∗

k(X) = Dk(X)/M0(X) for k > n/2, and
P0(X), P1(X) have the same form as P (X) except they have degree n/2. By recursively solving for
P0(X), P1(X), we can reconstruct P (X) in two multiplications and one addition. The multiplications
take O(n logn) time, and so we see that the time T (n) to compute P (X) (given the moduli tree and
the dk’s) satisfies the recurrence

T (n) = 2T (n/2) + Θ(n logn)

which has solution T (n) = Θ(n log2 n). It follows that the overall problem has this same complexity.
This proves:

Theorem 3 The interpolation of a degree n− 1 polynomial from its values at n distinct points has
algebraic complexity O(n log2 n).

Solving integer modular equations. There are similar results for the integer case, which we
only sketch since they are similar in outline to the polynomial case.

Lemma 4 Given s+1 integers u and q1, . . . , qs where u

s∏

i=1

qi has bit size of d, we can form u1, . . . , us

where ui = (umod qi) in O(dL2(d)) bit operations.

Proof. We proceed in two phases:
1. Bottom-up Phase: Construct a balanced binary tree T with s leaves. With each leaf, we associate
a qi and with each internal node v, we associate the product mv of the values at its two children.
The product of all the mv’s associated with nodes v in any single level has at most d bits. Proceeding
in a bottom-up manner, the values at a single level can be computed in time O(dL(d)). Summing
over all log s levels, the time is at most O(d log s · L(d)).
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2. Top-down Phase: Our goal now is to compute at every node v the value umodmv. Proceeding
“top-down”, assuming that umodmv at a node v has been computed, we then compute the value
umodmw at each child w of v. This takes time O(MB(logmv)). This work is charged to the
node v. Summing the work at each level, we get O(dL(d)). Summing over all levels, we get
O(d log sL(d)) = O(dL2(d)) time. Q.E.D.

Lemma 5 Given non-negative ui, qi (i = 1, . . . , s) where ui < qi, the qi’s being pairwise co-prime
and each qi having bit size di, we can compute u satisfying u ≡ ui(mod qi) in bit complexity

O(d2L2(d))

where d =
∑s

i=1 di.

Proof. We use the terminology in the proof of the Chinese Remainder Theorem in §1.

1. Each pair a
(j)
i , a

(i)
j is obtained by computing the extended Euclidean algorithm on qi, qj . We may

assume a
(i)
i = 1. Note that a

(j)
i has bit size ≤ dj + di. This takes time O((di + dj)L2(d)). Summing

over all i, j, we get a bound of O(d2L2(d)).

2. For each i = 1, . . . , s, we compute bi =
∏s
j=1,j 6=i a

(i)
j as follows. First note that the bit size of

bi is ≤ sdi + d. As in the previous lemma, compute the product bi using the pattern of a balanced

tree Ti with leaves labeled by a
(i)
j (j = 1, . . . , s). This takes time O((sdi + d)L(d)) per level or

O((sdi + d) log sL(d)) for the entire tree. Summed over all i, the cost is O(sd log sL(d)).
3. Finally, we compute the answer u =

∑s
i=1 uibi. Each term uibi can be computed in O((sdi +

d)L(d)). Thus the sum can be computed in O(sdL(d)) time.
4. Summing over all the above, we get a bound of O(d2L2(d)). Q.E.D.

Exercises

Exercise 2.1: Solve the following modular interpolation problems:
i) u ≡ 1(mod 2), u ≡ 1(mod 3), u ≡ 1(mod5). (Of course, we know the answer, but you should
go through the general procedure.)
ii) u ≡ 1(mod 2), u ≡ 1(mod3), u ≡ 1(mod 5), u ≡ 3(mod 7).
iii) P (0) = 2, P (1) = −1, P (2) = −4, P (3) = −1 where degP = 3. 2

Exercise 2.2:
i) Verify the assertions about polynomial evaluation and interpolation, in particular, equa-
tion (3).
ii) Let J = Ideal(X − a) ∩ Ideal(X − b) where a, b ∈ F are distinct. Prove that F [X ]/J and
F [X ]/Ideal(X2) are not isomorphic as rings. 2

Exercise 2.3: It should be possible to improve the complexity of modular integer interpolation
above. 2

§3. Finding Prime Moduli

To apply the Chinese Remainder Theorem for GCD in Z[X ], we need to find a set of relatively
prime numbers whose product is sufficiently large. In this section, we show how to find a set of
prime numbers whose product is larger than some prescribed bound.
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The following function is useful: for a positive integer n, θ(n) is defined to be the natural logarithm
of the product of all primes ≤ n. The following estimate from Langemyr [11] (see also Rosser-
Schoenfeld [15]) is useful.

Proposition 6 For n ≥ 2,
0.31n < θ(n) < 1.02n.

Consider the following problem: given a number N > 0, list all the primes ≤ N . We can do this
quite simply using the sieve of Eratosthenes (276-194 B.C.). Let L be a Boolean array of length N ,
initialized to 1. We want L[i] = 1 to indicate that i is a candidate for a prime. We can immediately
set L[1] = 0. In the general step, let p be the smallest index such that L[p] = 1, and p is prime.
Then we do the following “step” repeatedly, until the entire array is set to 0:

Output p and set L[ip] = 0 for i = 1, 2, . . . , ⌊N
p
⌋. (4)

The correctness of this procedure is easy. Note that (4) costs N
p array accesses. The total number

of array accesses over all steps is ∑

p<N

N

p
= N ·

∑

p<N

1

p

where the summation is over all primes less thatn N . Clearly
∑
p<N

1
p ≤

∑N
i=1

1
i = O(logN). But

it is well-known [6, p.351] that, in fact,

∑

p<N

1

p
= ln lnN +O(1).

So the total number of array accesses is O(N log logN). In the RAM complexity model, this proce-
dure has a complexity of O(NL(N)).

Lemma 7 We can find a list of primes whose product is at least n in time O(log nL(logn)) in the
RAM model.

Proof. Choose N =
⌈

lnn
0.31

⌉
. Then θ(N) > 0.31N ≥ lnn. So the product of all primes at most N is

at least n. The above algorithm of Erathosthenes has the desired complexity bound. Q.E.D.

§4. Lucky homomorphisms for the GCD

Let p be a fixed prime. The key homomorphism we consider is the map

(·)p : Z[X ]→ Zp[X ] (5)

where (A)p denotes the polynomial obtained by the modulo p reduction of each coefficient of A ∈
Z[X ]. Where there is no ambiguity, we write Ap for (A)p. We will also write

A ≡ Ap(mod p).

Note that the GCD is meaningful in Zp[X ] since it is a UFD. This section investigates the connection
between GCD(A,B)p and GCD(Ap, Bp).
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Begin with the observation

(AB)p = (Ap ·Bp), A,B ∈ Z[X ]

where the second product occurs in Zp[X ]. It follows that

A|Bimplies Ap|Bp.

Similarly, GCD(A,B)|A implies GCD(A,B)p|Ap. By symmetry, GCD(A,B)p|Bp. Hence

GCD(A,B)p|GCD(Ap, Bp).

However, it is not generally true that

GCD(A,B)p = GCD(Ap, Bp). (6)

A simple example is
A = X − 1, B = X + 1

and p = 2. Here Ap = Bp and hence GCD(Ap, Bp) = Ap. But A,B are relatively prime so that
GCD(A,B)p = 1.

We study the conditions under which equation (6) holds. Roughly speaking, we call such a choice
of p “lucky”. The basic strategy for the modular GCD algorithm is this: we pick a set p1, . . . , pn
of lucky primes and compute GCD(Api , Bpi) for i = 1, . . . , n. Since GCD(Api , Bpi) = GCD(A,B)pi , we
can reconstruct G = GCD(A,B) by solving the system of modular equivalences

G ≡ GCD(A,B)pi (mod pi).

Definition: A prime p ∈ N is lucky for A,B ∈ Z[X ] if p does not divide lead(A) · lead(B) and

deg(GCD(Ap, Bp)) = deg(GCD(A,B)).

To be sure, this definition may appear odd because we are trying to compute GCD(A,B) via mod
p computation where p is lucky. But to know if p is lucky, the definition requires us to know the
degree of GCD(A,B).

Lemma 8 If p does not divide at least one of lead(A) and lead(B) then GCD(Ap, Bp) has degree at
least as large as GCD(A,B).

Proof. Let G = GCD(A,B), g = leadG, a = leadA and b = leadB. Note that g|GCD(a, b). If p does
not divide a, then p does not divide GCD(a, b) and hence p does not divide g. Then deg(G) = deg(Gp).
But deg(Gp) ≤ deg GCD(Ap, Bp). Q.E.D.

To generalize this lemma, suppose we have a homomorphism between domains,

Φ : D → D′

extended to
Φ : D[X ]→ D′[X ]
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in the coefficient-wise fashion (but still denoted by the same symbol Φ). Let

(Am, Am−1, . . . , A0)

be a subresultant chain in D[X ] and

(Am, Am−1, . . . , A0)

be the Φ-image of the chain, Ai = Φ(Ai).

Lemma 9 If deg(Am) = deg(Am) and deg(Am−1) = deg(Am−1) then (Am, . . . , A0) is a subresul-
tant chain in D′[X ].

Proof. The hypothesis of this lemma is simply that the leading coefficients of Am−1 and Am must
not be in the kernel of Φ. The result follows since subresultants are determinants of matrices whose
shape is solely a function of the degrees of the first 2 polynomials in the chain. Q.E.D.

We conclude that the following diagram commutes if p does not divide lead(A)lead(B):

(A,B) (Ap, Bp)

subres(A,B) subres(A,B)p=subres(Ap, Bp)

-

-

? ?

mod p

mod p

subres subres

Here, subres(P,Q) denotes the subresultant chain of P,Q in Z[X ] or in Zp[X ]. The following
generalizes lemma 8.

Lemma 10 Under the same assumption as the previous lemma, if Ai (i = 0, . . . ,m) is nonzero then
deg(Ai) also occurs as deg(Aj) for some j ≤ i. In particular, GCD(Am, Am−1) has degree at least as
large as that of GCD(Am, Am−1).

Proof. By the Block Structure Theorem (§III.7), if deg(Ai) = j then Aj is regular and hence Aj
is regular. The conclusion about the GCD uses the fact that the non-zero subresultant of smallest
degree is similar to the GCD. Q.E.D.

We justify our definition of luckiness:

Lemma 11 (Luckiness Lemma) If p is lucky for A and B then GCD(Ap, Bp) ∼ GCD(A,B)p.

Proof. Let (Am, . . . , A0) be the subresultant chain for A,B and Ai = (Ai)p for i = 0, . . . ,m.
Lemma 9 implies that (Am, . . . , A0) is a subresultant sequence for Ap, Bp. By definition, p is lucky
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means that if GCD(A,B) has degree d then Ad and Ad are the last nonzero polynomials in their
respective subresultant sequence. The lemma follows from

GCD(A,B)p ∼ (Ad)p = Ad ∼ GCD(Ap, Bp).

Q.E.D.

Lemma 12 Let A,B ∈ Z[X ] with n = max{degA, degB} and N = max{‖A‖2, ‖B‖2}. If P is the
product of all the unlucky primes of A,B, then

P ≤ N2n+2.

Proof. If GCD(A,B) has degree d then the dth principal subresultant coefficient Cd is non-zero. If p
is unlucky and does not divide ab then by lemma 8, deg GCD(A,B) < deg GCD(Ap, Bp). This means
p|Cd. Hence all unlucky primes for A,B are among the divisors of a · b ·Cd, where a = lead(A) and
b = lead(B). The product of all prime divisors of a·b·Cd is at most |a·b·Cd|. Since |a| ≤ N, |b| ≤ N ,
the lemma follows if we show

|Cd| ≤ N2n.

To see this, Cd is the determinant of a submatrix M of the Sylvester matrix of A,B. Each row ri
of M has non-zero entries coming from coefficients of A or of B. Thus ‖ri‖2 ≤ N . Since M has at
most 2n rows, the bound on |Cd| follows immediately from Hadamard’s determinant bound (§IX.1).

Q.E.D.

§5. Coefficient Bounds for Factors

Assume that
A(X), B(X) ∈ C[X ]

where B |A. We derive an upper bound on ‖B‖2 in terms of ‖A‖2. Such bounds are needed in our
analysis of the modular GCD algorithm and useful in other contexts (e.g., factorization algorithms).
Begin with the following equality:

Lemma 13 Let A(X) ∈ C[X ], c ∈ C. Then ‖(X − c) ·A(X)‖2 = ‖(cX − 1) ·A(X)‖2, where c is the
complex conjugate of c.

Proof. If A(X) =

m∑

i=0

aiX
i then

(X − c) · A(X) =

m+1∑

i=0

(ai−1 − cai)X i, (a−1 = am+1 = 0),

‖(X − c) ·A(X)‖2 =

m+1∑

i=0

(ai−1 − cai)(ai−1 − cai)

=

m+1∑

i=0

((|ai−1|2 + |c|2 · |ai|2)− (caiai−1 + caiai−1))

= (1 + |c|2)
m∑

i=0

|ai|2 −
m∑

i=1

(caiai−1 + cai · ai−1).
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Similarly, ‖(cX − 1) ·A(X)‖2 can be expanded to give the same expression. Q.E.D.

For any A(X) ∈ C[X ] whose complex roots are α1, . . . , αm (not necessarily distinct), define the
measure,
it see under polynomial of A to be

M(A) = |a| ·
m∏

i=1

max{1, |αi|}

where a is the leading coefficient of A(X). The effect of the max function is simply to discard from
the product any root within the unit disc. Measures have the nice property that

A|Bimplies M(A)/|a| ≤M(B)/|b|

where a = lead(A) and b = lead(B). The following proof is from Mignotte [13]:

Theorem 14 Let A(X) ∈ C[X ] has lead coefficient a and tail coefficient a′.
(i) Then M(A) ≤ ‖A‖2.
(ii) If A is not a monomial then

M(A)2 +

(
aa′

M(A)

)2

≤ ‖A‖22.

Proof. Let α1, . . . , αm ∈ C be the not-necessarily distinct roots of A, arranged so that

|α1| ≥ · · · ≥ |αk| ≥ 1 > |αk+1| ≥ · · · ≥ |αm|

for some k = 0, . . . ,m. By repeated applications of the previous lemma,

‖A‖2 = ‖a
m∏

i=1

(X − αi)‖2

= ‖a(α1X − 1)

m∏

i=2

(X − αi)‖2

= · · ·

= ‖a
k∏

j=1

(αjX − 1)

m∏

i=k+1

(X − αi)‖2.

Let B denote the last polynomial,

B = a

k∏

j=1

(αjX − 1)

m∏

i=k+1

(X − αi).

Then

leadB = a

k∏

j=1

αj , tailB = a

n∏

i=k+1

αi =
aa′

M(A)
.

Clearly ‖A‖s ≥ |leadB| = a
∏k
j=1 |αj | = M(A), proving (i). Part (ii) is also immediate since

‖A‖2 ≥ |leadB|2 + |tailB|2 when A is not a monomial. Q.E.D.

Part (i) is often called the bound of Landau (1905); the improvement in (ii) is attributed to Vicente
Gonçalves (1956) (cf. [16, p. 162]).
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Corollary 15 If α is a root of A(X) ∈ C[X ] then |α| ≤ ‖A‖2/|a| where a = leadA.

Lemma 16 If B(X) =
∑n

i=0 bX
i then |bn−i| ≤

(
n
i

)
M(B).

Proof. Let B(X) =
∑n

i=0 biX
i = b

∏n
i=1(X − βi). Then for i = 0, . . . , n:

|bn−i| ≤ |b|
∑

1≤j1<···<ji≤n
|βj1βj2 . . . βji |

≤
∑

1≤j1<···<ji≤n
M(B)

=

(
n

i

)
M(B).

Q.E.D.

Theorem 17 (Mignotte) Let A,B ∈ C[X ], b = lead(B), a = lead(A) and n = deg(B). If B|A
then

‖B‖∞ ≤
∣∣∣∣
b

a

∣∣∣∣ ·
(

n

⌊n/2⌋

)
· ‖A‖2

‖B‖1 ≤
∣∣∣∣
b

a

∣∣∣∣ · 2
n · ‖A‖2

Proof. The first inequality is an immediate consequence of the previous lemma, using the fact(
n
i

)
≤
(

n
⌊n/2⌋

)
and M(B) ≤ |b/a|M(A) ≤ |b/a| · ‖A‖2. For the second inequality, we bound ‖B‖1 by

suming up the upper bounds (again from previous lemma) for |b0|, . . . , |bn|, giving

‖B‖1 ≤ 2nM(B).

Q.E.D.

Since ‖B‖2 ≤ ‖B‖1 (§0.10), we get an upper bound on ‖B‖2 as well. If C,B are integer polynomials
and C|B then |lead(C)/lead(B)| ≤ 1. Therefore:

Corollary 18 Let A,B,C ∈ Z[X ] with C = GCD(A,B). Then

‖C‖1 ≤ 2nmin{‖A‖2, ‖B‖2}

where deg(A) ≥ deg(B) = n.

We refer to Mignotte [13] for more information about measures. The above bounds have been
sharpened by Beauzamy [1] by using a weighted L2-norm of polynomials: for a polynomial A of
degree m with coefficients ai, define

[A]2 :=

(
m∑

i=0

|ai|2(
m
i

)
)1/2

.
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Then if B|A, it is shown that

‖B‖∞ ≤
33/4

2
√
π

3m/2√
m

[A]2.

In general, for any norm N(A) on polynomials, we can define two constants β > 1 and δ > 1 which
are the smallest values such that

N(B)N(C) ≤ δnN(A), N(B) ≤ βnN(A)

holds for all monic polynommials A,B,C such that A = B · C and deg(A) = n. For any two
standard norms, N(A) and N ′(A), we have the basic inequality N(A) ≤ (n+1)N ′(A) (§0.9). Hence
the constants δ, β are the same for all such norms. It is also easy to see that δ ≥ β, since N(C) ≥ 1.
The above result of Mignotte implies β ≤ 2. Boyd [2] has determined δ = M(P1) = 1.79162 . . . and
β = M(P0) = 1.38135 . . ., where P1 = 1 +X + Y −XY and P0 = 1 +X + Y .

Exercises

Exercise 5.1: Conclude from the bounds for the coefficient sizes of factors that the problem of
factorizing integer polynomials is finite. 2

Exercise 5.2: (Davenport-Trager) Construct examples in which the coefficients of the GCD of
A,B ∈ Z[X ] grow much larger than the coefficients of A,B. HINT: A = (X + 1)2k(X − 1),
B = (X + 1)2k(X2 −X + 1). 2

Exercise 5.3: (Cassels) Let z, β be real or complex, |z| ≤ 1. Then

|z − β| ≤ |1− βz| if |β| < 1,

|z − β| ≥ |1− βz| if |β| > 1.

Equality holds in both cases iff |z| = 1. 2

Exercise 5.4: (i) Show that the measure of a polynomial A(Z) can also be defined as

M(A) = exp

(∫ 1

0

log |A(e(θ))|dθ
)

where e(θ) = exp(2πiθ). If A = A(X1, . . . , Xn) is a multivariate polynomial, this definition
generalizes to the multiple integral:

M(A) = exp

(∫ 1

0

· · ·
∫ 1

0

log |A(e(θ1), . . . , e(θn))|dθ1 · · · dθn
)
.

(We can view M(A) is the geometric mean of |A| on the torus T n.) (ii) (Mahler) If n = degA
then (

n

⌊n/2⌋

)−1

‖A‖∞ ≤M(A) ≤ ‖A‖∞
√
n+ 1.

2−n‖A‖1 ≤M(A) ≤ ‖A‖1.

(iii) M(A±B) ≤ ‖A‖1 + ‖B‖1 ≤ 2n(M(A) +M(B)).
(iv) (Duncan [4]) (

2n

n

)−1/2

‖A‖2 ≤M(A) ≤ ‖A‖1.
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(v) M(A) ≤ ‖A‖2. HINT: Use induction on degree, Jensen’s inequality∫ 1

0 log |F (t)|dt ≤ log
∫ 1

0 |F (t)|dt and Parseval’s formula for a univariate polynomial F (X):∫ 1

0 (
∑n

i=1 |F (ei2πt)|2dt = ‖F‖22. 2

Exercise 5.5: Referring to the weighted L2-norm [A]2 for a univariate A:
(i) [A]2 ≤ ‖A‖2.
(ii) [AB]2 ≤ [A]2[B]2.

(iii)
(

d
⌊d/2⌋

)−1/2
M(A) ≤ [A]2 ≤ 2d/2M(A).

(iv) Compare the bounds of Beauzamy to that of Mignotte.
2

Exercise 5.6: If α = (α1, . . . , αn) ∈ Nn, let |α| :=∑n
i=1 αi and α! :=α1! · · ·αn!. If A(X1, . . . , Xn) =∑

α aαX
α is homogeneous, then define

[A]2 :=




∑

|α|=m

α!

m!
|aα|2




1/2

Clearly [A]2 ≤ ‖A‖2.
(i) (Beauzamy,Bombieri,Enflo,Montgomery) [AB]2 ≥

√
m!n!

(m+n)! [A]2[B]2.

(ii) (Beauzamy) In case A is not homogeneous, define [A]2 to be [A∧]2 where A∧ is the homog-
enization of A with respect to a new variable. If A,B are univariate and B|A and A(0) 6= 0

then ‖B‖∞ ≤ 33/43d/2

2
√
πd

[A]2. 2

§6. A Modular GCD algorithm

We present the modular algorithm of Brown and Collins for computing the GCD of A,B ∈ Z[X ]
where

n0 = max{deg(A), deg(B)},
N0 = max{‖A‖22, ‖B‖22}.

We have shown that the product of all unlucky primes is ≤ Nn0+2
0 , and that each coefficient of

GCD(A,B) has absolute value ≤ 2n0N0. Let

K0 = 2 ·Nn0+2
0 · 2n0N0 = 2n0+1Nn0+3

0 .

First compute the list of all initial primes until their product is just ≥ K0. The lucky primes in this
list have product at least

K0 ·N−(n0+2)
0 = 2n0+1N0.

To identify these lucky primes, we first omit from our list all primes that divide the leading coefficients
of A or of B. Among the remaining primes p, we compute Ap, Bp and then GCD(Ap, Bp). Let δ(p)
be the degree of GCD(Ap, Bp) and

δ∗ = min
p
δ(p).
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Clearly δ∗ is the degree of GCD(A,B) since there is a lucky prime p0 that remains and this δ(p0)
would attain the minimum δ∗. We discard all p where δ(p) > δ∗. We have now identified the set L∗

of all lucky primes in our original list.

Let

C(X) :=

δ∗∑

i=0

ciX
i ∼ GCD(A,B). (7)

Our goal is to compute some such C(X) using the Chinese Remainder Theorem. We must be careful
as C(X) is determined by GCD(A,B) only up to similarity. To see what is needed, assume that for
each lucky p, we have computed

Cp(X) :=

δ∗∑

i=0

ci,pX
i ∼ GCD(Ap, Bp). (8)

How shall we ensure that these Cp(X)’s are “consistent”? That is, is there one polynomial C(X) ∈
Z[X ] such that each Cp(X) is the image of C(X) under the canonical map (5)? We shall pick
equation (7) such that

lead(C) = cδ∗ = GCD(lead(A), lead(B)).

Such a choice exists because if C|A and C|B then lead(C)|GCD(lead(A), lead(B)). “Consistency”
then amounts to the requirement

cδ∗,p = (cδ∗ mod p)

for each p. Now we can reconstruct the ci’s in equation (7) as the solution to the system of congru-
ences.

ci ≡ ci,p (mod p), p ∈ L∗.

The correctness of this solution depends on the Luckiness Lemma, and the fact that the product of
lucky primes (being at least 2n0+1N0) is at least twice as large as |ci|.

To recapitulate:

1. Compute the list of initial primes whose product is ≥ K0.

2. Omit all those primes that divide lead(A) or lead(B).

3. For each remaining prime p, compute Ap, Bp, Cp(X) ∼ GCD(Ap, Bp) and δ(p).

4. Find δ∗ as the minimum of the δ(p)’s. Omit the remaining unlucky primes.

5. Use Chinese Remainder to reconstruct C(X) ∼ GCD.

Timing Analysis. We bound the time of the above steps. Let k0 = logK0 = O(n0 logN0).

1. This step takes O(k0L(k0)).

2. This is negligible compared to other steps: for each prime p, to check if p|lead(A) takes O(log p+
logN0)L(log p+ logN0)). Summed over all p, this is k0L(N0)L(k0).

3(a). To compute Ap (similarly for Bp) for all p, we exploit the integer evaluation result (lemma 4).
Hence all Ap can be computed in time O(n0k0L2(k0)), the n0 coming from the coefficients of
A.
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3(b). To compute GCD(Ap, Bp) (for any p) requires (Lecture III)

n0L2(n0)

operations in Zp, and each Zp operation costs O(L2(log p)) = O(log p). Summing over all p’s,
we get order of:

n0L2(n0)
∑

p

log p = n0L2(n0) · k0.

4. Negligible.

5. Applying the integer interpolation result (lemma 5), we get a time of

O(k2
0L2(k0)).

Summing up these costs, we conclude:

Theorem 19 The above algorithm computes the GCD of A,B ∈ Z[X ] in time

O(k2
0L2(k0)).

If the input A,B has size n, the complexity bound becomes

O(n2L2(n)).

In practice, one could try to rely on luck for lucky primes and this can be the basis of fast probabilistic
algorithms.

§7. What else in GCD computation?

There are several further directions in the study of GCD computation:

1. extend to multivariate polynomials

2. extend to multiple GCD

3. algorithms that are efficient for sparse polynomials

4. extend to other number fields

5. use randomization techniques to speed up computation

1. In principle, we know how to compute the multiple GCD of a set S ⊆ D[X1, . . . , Xn] where D is a
UFD: treating Sn as polynomials inXn, then G = GCD(S) can be factored (§III.2) into its content and
primitive part: G = cont(G)prim(G). But cont(G) = GCD(cont(S)) and prim(G) = GCD(prim(S))
where cont(S) = {cont(A) : A ∈ S} and prim(S) = {prim(A) : A ∈ S}. Now cont(A) amounts to
computing the multiple GCD of the coefficients of A, and this can be achieved by using induction
on n. The basis case amounts to computing GCD in D, which we assume is known. For n > 1,
the computations of cont(S) and prim(S) are reduced to operations in D[X1, . . . , Xn−1]. Finally,
cont(G) is also reduced to GCD in D[X1, . . . , Xn−1] and prim(G) is done using, say, the methods
of the previous lecture.
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2. As the preceding procedure shows, even if we start with computing a simple GCD of two polyno-
mials, we may recursively have to deal with multiple GCD. Although multiple GCD can be reduced
to simple GCD, the efficient computation of the multiple GCD is not well-understood. One such
algorithm is the Jacobi-Perron algorithm for multiple GCD for integers. Chung-jen Ho [7, 8] has
generalized the concept of subresultants to several univariate polynomials, and presented a multiple
GCD algorithm for F [X ].

3. The use of sparse polynomial representation is important (especially in multivariable case) but it
makes apparently “simple” problems such as univariate GCD inherently intractable (see §0.5).

4. Another direction is to consider factorization and GCD problems in non-commutative rings. For
instance, see [9, chapter 14] for the ring of integer matrices that has a form of unique factorization
and GCD. The study of GCD algorithms for quadratic integer rings that are UFD’s is related to the
problem of finding shortest vectors in a 2-dimensional lattice. We return to the last topic in Lecture
IX.

§8. Hensel Lifting

[NOTE: the introduction to this chapter needs to be change to reflect this insertion. Some general
remarks – including the terminology “homomorphism techniques” for modular techniques.]

Consider the problem of computing the GCD of two multivariate polynomials. The approach of the
preceding sections can be generalized for this problem. Unfortunately, the number of homomorpic
subproblems we need to solve grows exponentially with the number of variables. This section inves-
tigates an alternative approach called “Hensel lifing”. Instead of a growing number of homomorphic
subproblems, we solve one homomorphic subproblem, and then “lift” the solution back to the orig-
inal domain. The emphasis here is on the “lifting”, which turns out to be computationally more
expensive than in Chinese Remaindering methods. Fortunately, for many multivariate computations
such as GCD and factorization, this approach turns out to be more efficient.

One of the first papers to exploit Hensel’s lifting is Musser’s thesis [14] on polynomial factorization.
Yun [17, 19] observed that the lifing process in Hensel’s method is the algebraic analogue of Newton’s
iteration for finding roots (see Chapter 6, Section 10). The book [5] gives an excellent treatment of
modular techniques. We follow the general formulation of Lauer [12].

Motivating example: polynomial pactorization. Before considering the general framework,
consider the special case of integer polynomials. Let A,B,C ∈ Z[X ]. Fix a prime number p and for
any n ≥ 1, consider the homomorphism

(·)pn : Z[X ]→ Zp[X ]

(cf. Section 4). As usual, we write A ≡ B(mod pn) if (A)pn = (B)pn .

Lemma 20 (Hensel) uppose
AB ≡ C(mod pn)

and A,B are relatively prime, modulo pm for some 1 ≤ m ≤ n. Then there exists A∗, B∗ ∈ Z[X ]
such that

A∗B∗ = Cmod pn+m

and A∗ ≡ A(mod pn), B∗ ≡ B(mod pn).

c© Chee-Keng Yap February 22, 2000



§8. Hensel Lifing Lecture IV Page 121

Proof. Suppose AB = C + pnĈ, A∗ = A + pnÃ and B∗ = B + pnB̃. Here C̃ is determined by the
given data, but we will choose Ã and B̃ to verify the lemma. Then we have

A∗B∗ = (A+ pnÃ)(B + pnB̃)

≡ AB + pn(AB̃ + ÃB)(mod pn+m)

≡ C + pn(C̃ +AB̃ + ÃB)(mod pn+m)

≡ C(mod pn+m).

The last equivalence is true provided we choose Ã, B̃ such that

C̃ +AB̃ + ÃB ≡ 0(mod pm).

But since A,B are relatively prime modulo pm, there are polynomials A′, B′, D such that AB′ +
A′B ≡ 1(mod pm). Thus C̃ − AB′C̃ − A′BC̃ ≡ 0(mod pm). We therefore choose B̃ = −B′C̃ and

Ã = −A′C̃. Q.E.D.

This lemma says that, given a factorization A,B of C modulo pn, and under a suitable “non-
degeneracy” condition on this factorization, we can “lift” the factorization up to another factorization
(A∗, B∗) modulo pn+m. the lemma can be applied again. Zassenhaus [20] generalized this to obtain
a quadratically convergent factorization method.
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Lecture V

Fundamental Theorem of Algebra

This lecture has primarily mathematical rather than computational goals. Our main objective is
the Fundamental Theorem of Algebra. We choose a slightly circuitous route, via an investigation
of the underlying real field R. It is said that the Fundamental Theorem of Algebra depends on
two distinct sets of properties: the algebraic properties of a field and the analytic properties of real
numbers. But we will see that these “analytic properties” could be formulated purely in algebraic
terms. Of course, there is no avoiding some standard construction (such as Dedekind cuts or Cauchy
sequences) of the real numbers R, and verifying that they satisfy our algebraic axioms. But even
such constructions can made in a purely algebraic setting. This development originated from Artin’s
solution to Hilbert’s 17th Problem1. The solution is based on the theory of real closed fields (see
[111, 209]). Much of this theory has been incorporated into the algebraic theory of quadratic forms
[176, 164], as well as into real semi-algebraic topology [3, 20, 23].

§1. Elements of Field Theory

We briefly review the some basic algebraic properties of field. For a proper treatment, there are
many excellent textbooks (including van der Waerden’s classic [209]).

Fields. A field is a commutative ring in which each non-zero element is invertible. This implies
that a field is a domain. Often, F arises as the quotient field of a domain D. This underlying domain
gives F its “arithmetical structure” which is important for other considerations. For instance, in
Lecture III.1, we showed that the concepts of divisibility and unique factorization in a domain
extend naturally to its quotient field. If there is a positive integer p such that 1 + 1 + · · · + 1︸ ︷︷ ︸

p

= 0.

If p is chosen as small as possible, we say the field has characteristic p; if no such p exists, it has
characteristic 0. One verifies that p must be prime.

Extension Fields. If F ⊆ G where G is a field and F is a field under the induced operations of
G, then F is a subfield of G, and G an extension field of F . An element θ ∈ G is algebraic over F
if p(θ) = 0 for some p(X) ∈ F [X ]; otherwise θ is transcendental G is an algebraic extension of F
if every element of G is algebraic over F . If S ⊆ G then F (S), the adjunction of F by S, denotes
the smallest subfield of G that contains F ∪ S. In case S = {θ1, . . . , θk} is a finite set, we write
F (θ1, . . . , θk) for F (S) and call this a finite extension. If k = 1, F (θ1) is called a simple extension.
It is easy to see G can be viewed as a vector space over F . Let [G : F ] denote the dimension of this
vector space. We call [G : F ] the degree of G over F .

Simple extensions. To study the simple extension F (θ), consider the natural map φ : F [X ] → G
that takes X to θ and which fixes F (this just means φ(x) = x for x ∈ F ). It is clear that φ is a
homomorphism. If I is the kernel of φ then the image of φ is isomorphic to F [X ]/I. Furthermore, we
have I = (p) for some p ∈ F [X ], since I is an ideal and F [X ] is a principal ideal domain. Note that p
must be irreducible. [Otherwise, p = p1p2 for some non-trivial factor p1. Then 0 = φ(p) = φ(p1)φ(p2)
implies φ(p1) = 0 or φ(p2) = 0 (since G is a domain). This proves p1 or p2 is in the kernel I,

1Let K be the field of rational numbers. Hilbert asks if a rational function f ∈ K(X1, . . . , Xn) that is non-negatives
at every point (a1, . . . , an) ∈ Kn for which f(a1, . . . , an) is defined, is necessarily a sum of squares of rational functions.
Artin answered affirmatively in the more general case of any real closed field K.
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contradiction.] There are now two possibilities: either p = 0 or p 6= 0. In the former case, the image
is isomorphic to F [X ]/(0) = F [X ] and θ is a transcendental element; in the latter case, we find that
φ(p) = p(θ) = 0 so that θ is algebraic. In case p 6= 0, it is also easy to see that F [θ] = F (θ): every
non-zero element of F [θ] has the form q(θ) for some polynomial q(X) ∈ F [X ]. We show that q(θ)
has a multiplicative inverse. By the extended Euclidean algorithm, there exists a(X), b(X) ∈ F [X ]
such that q(X)a(X) + p(X)b(X) = 1. Then p(θ) = 0 implies q(θ)a(θ) = 1, i.e., a(θ) is the inverse
of q(θ).

Splitting fields. Above we started out with a given extension field G of F and ask how we find
simple extensions of F into G. There is a converse problem: given a field F , we want to construct
an extension with prescribed properties. In case we want a simple transcendental extension, this is
easy: such a G is isomorphic to F (X). If G is to be an algebraic extension, assume we are given a
polynomial p(X) ∈ F [X ] and G is to be the smallest extension such that p(X) splits into linear factors
in G[X ]. Then G is called the splitting field of p(X), and is unique up to isomorphism. We now show
such a splitting field may be constructed, proceeding in stages. First let us split off all linear factors
X−α (α ∈ F ) of p(X). If a non-linear polynomial p1(X) remains after removing the linear factors, let
q1(X) be any irreducible non-linear factor of p1(X). Then the quotient ring F [X ]/(q1) is a domain.
But it is in fact a field because (q1) is a maximal ideal. [For, if q 6∈ (q1) then the irreducibility of
q1 implies GCD(q, q1) = 1, and by the extended Euclidean algorithm F [X ] = (1) = (q, q1).] This
extension field can be written as F (θ1) where θ1 is the equivalent class of X in F [X ]/(q1). Now in
F (θ1), the polynomial p1/(X − θ1) may split off additional linear factors. If a non-linear polynomial
p2 remains after removing these linear factors, we again pick any irreducible factor q2 of p2, and
extend F (θ1) to F (θ1)[X ]/(q2), which we write as F (θ1, θ2), etc. This process must eventually stop.
The splitting field G has the form F (θ1, . . . , θk) and can be shown to be unique up to isomorphism.
We have shown: for any polynomial p(X) ∈ F [X ] there exists an extension field G of F in which
p(X) has deg(p) roots.

Normal extensions. A field G is said to be a normal extension of F (or, normal over F ) if G is
an algebraic extension and for every irreducible polynomial p(X) ∈ F [X ], either G has no roots of
p(X) or G contains the splitting field of p(X). We can equivalently characterize normal extensions
as follows: two elements of G are conjugates of each other over F if they have the same minimal
polynomial in F [X ]. Then G is a normal extension of F iff G is closed under conjugates over F ,
i.e., if a ∈ G then G contains all the conjugates of a over F . If G is also a finite extension of
F , it can be shown that G must be a splitting field of some polynomial over F . For instance, a
quadratic extension F (

√
a) is normal over F . On the other hand, Q(a1/3) ⊆ R is not normal over Q

for any positive integer a that is square-free. To see this, note that by Eisenstein’s criterion (§III.1,
Exercise), X3 − a is irreducible over Z and hence over Q. But

X3 − a = (X − a1/3)(X − ρa1/3)(X − ρ2a1/3)

where ρ, ρ2 = (−1±
√
−3)/2 are the two primitive cube-roots of unity. If Q(a1/3) were normal over

Q then Q(a1/3) would contain a non-real element ρa1/3, which is impossible. It is not hard to show
that splitting fields of F are normal extensions. A normal extension of a normal extension of F need
not be a normal extension of F (Exercise).

Separable extensions. An irreducible polynomial f(X) ∈ F [X ] may well have multiple roots α
in its splitting field. Such an α is said to be inseparable over F . But if α is a multiple root of f(X),
then it is a common root of f(X) and df(X)/dX = f ′(X). Since f(X) is irreducible, this implies
f ′(X) is identically zero. Clearly this is impossible if F has characteristic zero (in general, such fields
are called perfect). In characteristic p > 0, it is easy to verify that f ′(X) ≡ 0 implies f(X) = φ(Xpe

)
for some e ≥ 1 and φ(Y ) is irreducible in F [Y ]. If α is a simple root of an irreducible polynomial,
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then it is separable. An extension G of F is separable over F if if all its elements are separable over
F . An extension is Galois if it is normal and separable.

Galois theory. If E is an extension field of F , let Γ(E/F ) denote the group of automorphisms of
E that fixes F . We call g ∈ Γ(E/F ) an automorphism of E over F . We claim: g must map each
θ ∈ E to a conjugate element g(θ) over F . [In proof, note that if p(X) ∈ F [X ] then

g(p(θ)) = p(g(θ)).

The claim follows if we let p(X) be the minimal polynomial of θ, whereby p(θ) = 0 and g(p(θ)) =
g(0) = 0, so that p(g(θ)) = 0.] In consequence, the group Γ(E/F ) is finite when E is a splitting field
of some polynomial p(X) over F . To see this, note that our claim implies that each g ∈ Γ(E/F )
determines a permutation π of α1, . . . , αn. Conversely, each permutation π can extend to at most
one g ∈ Γ(E/F ) since g is completely determined by its action on the roots of p(X) because E is
generated by the roots of p(X) over F .

If G′ is any subgroup of Γ(E/F ), then the fixed field of G′ is the set of elements x ∈ E such that
g(x) = x for all g ∈ G. Galois theory relates subgroups of Γ(E/F ) to the subfields of E over F .
Two subfields K, K ′ of E over F are conjugate if there is an automorphism σ of E over F such that
σ(K) = K ′.

The Fundamental theorem of Galois theory says this. Suppose p(X) ∈ F [X ] is separable over F and
E is the splitting field of p(X).

(i) There is a one-one correspondence between subfields of E over F and the subgroups of Γ(E/F ):
a subfield K corresponds to a subgroup H iff the fixed field of H is equal to K.

(ii) If K ′ is another subfield that corresponds to H ′ ⊆ Γ(E/F ) then K ⊆ K ′ iff H ′ ⊆ H .
(iii) If K and K ′ are conjugate subfields then H and H ′ are conjugate subgroups.

Primitive element. Suppose G = F (θ1, . . . , θk) is a finite separable extension of an infinite field
F . Then it can be shown that G = F (θ) for some θ. Such an element θ is called a primitive
elementfield!primitive element of G over F . The existence of such elements is easy to show provided
we accept the fact2 that are only finitely many fields that are intermediate between F and G: it is
enough to show this when k = 2. Consider F (θ1 + cθ2) for all c ∈ F . Since there are only finitely
many such fields (being intermediate between F and G), suppose F (θ1 + cθ2) = F (θ1 + c′θ2) for
some c 6= c′. Letting θ = θ1 + cθ2, it is clear that F (θ) ⊆ F (θ1, θ2). To see the converse inclusion,
note that (c − c′)θ2 = θ − (θ1 + c′θ2). Hence θ2 ∈ F (θ) and also θ1 ∈ F (θ).

Zorn’s Lemma. A powerful principle in mathematical arguments is the Axiom of Choice. This
usually appears in algebraic settings as Zorn’s lemma (following Kneser): if P is a partially ordered
set such that every chain C in P has an upper bound in P , then P contains a maximal element. A
set C ⊆ P is a chain if for every x, y ∈ C, either x < y or x > y or x = y. A typical application is
this: let P be a collection of fields, partially ordered by set inclusion. If C is a chain in P , we note
that its union ∪C is also a field defined in the natural way: if x, y ∈ ∪C then there is a field F ∈ C
that contains x, y and we define x + y and xy as if they are elements in F . Assume that P is closed
under unions of chains. Then Zorn’s lemma implies that P contains a maximal field.

Algebraic Closure. If every non-linear polynomial in F [X ] is reducible then we say that F is
algebraically closed. The algebraic closure of F , denoted F , is a smallest algebraically closed field

2This is a result of Artin (see Jacobson [90]).
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containing F . A theorem of Steinitz says that every field F has an algebraic closure, and this closure
is unique up to isomorphism. The proof uses Zorn’s lemma. But the existence of algebraic closures
is intuitively clear: we simply iterate the splitting field construction for each polynomial, using
transfinite induction. The Fundamental Theorem of Algebra is the assertion that C is algebraically
closed.

Exercises

Exercise 1.1:
(i) A quadratic extension is a normal extension.
(ii) Let a be a positive square-free integer. If α is any root of X3 − a then Q(α) is not normal.
(This is more general than stated in the text.)
(iii) Q( 4

√
2) is not a normal extension of Q. Thus, a normal extension of a normal extension

need not be a normal extension. HINT: X4 − 2 = (X2 −
√

2)(X2 +
√

2). 2

Exercise 1.2: The splitting field E of f(X) ∈ F [X ] over F has index [E : F ] ≤ n! where n = deg(f).
HINT: use induction on n. 2

Exercise 1.3:
(i) Compute a basis of E over F = Q in the following cases of E: E = Q(

√
2,
√

3), Q(
√

2,
√
−2),

Q(
√

2, 3
√

2), Q(
√

2, ω) where ω = (1 +
√
−3)/2, Q( 3

√
2, ω), Q(

√
2, 3

√
2, 3

√
5).

(ii) Compute the group Γ(E/F ), represented as a subgroup of the permutations on the previ-
ously computed basis. Which of these extensions are normal? 2

§2. Ordered Rings

To study the real field R algebraically, we axiomatize one of its distinguishing properties, namely,
that it can3 be ordered.

Let R be a commutative ring (as always, with unity). A subset P ⊆ R is called a positive set if it
satisfies these properties:
(I) For all x ∈ R, either x = 0 or x ∈ P or −x ∈ P , and these are mutually exclusive cases.
(II) If x, y ∈ P then x + y and xy ∈ P .
We say R is ordered (by P ) if R contains a positive set P , and call (R, P ) an ordered ring.

As examples, Z is naturally ordered by the set of positive integers. If R is an ordered ring, we can
extend this ordering to the polynomial ring R[X ], by defining the positive set P to comprise all
polynomials whose leading coefficients are positive (in R).

Let P ⊆ R be a fixed positive set. We call a non-zero element x positive or negative depending on
whether it belongs to P or not. For x, y ∈ R, we say x is less than y, written “x < y”, if y − x
is positive. Similarly, x is greater than y if x − y ∈ P , written “x > y”. In particular, positive
and negative elements are denoted x > 0 and x < 0, respectively. We extend in the usual way
the terminology to non-negative, non-positive, greater or equal to and less than or equal to, written
x ≥ 0, x ≤ 0, x ≥ y and x ≤ y. Define the absolute value |x| of x to be x if x ≥ 0 and −x if x < 0.

3It is conventional to define “ordered fields”. But the usual concept applies to rings directly. Moreover, we are
interested in the order in rings such as Z and Q[X].
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We now show that notations are consistent with some familiar properties of these inequality symbols.

Lemma 1 Let x, y, z be elements of an ordered ring R.
(i) x > 0 and xy > 0 implies y > 0.
(ii) x 6= 0 implies x2 > 0. In particular, 1 > 0.
(iii) x > y implies x + z > y + z.
(iv) x > y and z > 0 implies xz > yz.
(v) x > 0 implies x−1 > 0.
(vi) x > y > 0 implies y−1 > x−1 (provided these are defined).
(vii) (transitivity) x > y and y > z implies x > z.
(viii) x 6= 0, y 6= 0 implies xy 6= 0.
(ix) |xy| = |x| · |y|.
(x) |x + y| ≤ |x| + |y|.
(xi) x2 > y2 implies |x| > |y|.

The proof is left as an exercise.

From property (II) in the definition of an ordered ring R, we see that R has characteristic 0 (otherwise
if p > 0 is the characteristic of R then 1 + 1 + · · · + 1︸ ︷︷ ︸

p

= 0 is positive, contradiction). Parts (ii) and

(iii) of the lemma implies that 0 < 1 < 2 < · · ·. Part (vii) of this lemma says that R is totally
ordered by the ‘>’ relation. Part (viii) implies R is a domain.

An ordered domain (or field) is an ordered ring that happens to be a domain (or field). If D is
an ordered domain, then its quotient field QD is also ordered: define an element u/v ∈ QD to be
positive if uv is positive in D. It is easy to verify that this defines an ordering on QD that extends
the ordering on D.

Exercises

Exercise 2.1: Verify lemma 1. 2

Exercise 2.2: In an ordered field F , the polynomial Xn − c has at most one positive root, denoted
n
√

c. If n is odd, it cannot have more than one root; if n is even, it has at most two roots (one
is the negative of the other). 2

Exercise 2.3: If the ordering of QD preserves the ordering of D, then this ordering of QD is unique.
2

§3. Formally Real Rings

Sum of Squares. In the study of ordered rings, those elements that can be written as sums of
squares have a special role. At least for the real fields, these are necessarily positive elements. Are
they necessarily positive in an ordered ring R? To investigate this question, let us define

R(2)
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to denote the set of elements of the form
∑m

i=1 x2
i , m ≥ 1, where the xi’s are non-zero elements of

R. The xi’s here are not necessarily distinct. But since the xi’s are non-zero, it is not automatic
that 0 belongs to R(2). Indeed, whether 0 belongs to R(2) is critical in our investigations.

Lemma 2
(i) 1 ∈ R(2) and R(2) is closed under addition and multiplication.
(ii) If x, y ∈ R(2) and y is invertible then x/y ∈ R(2).
(iii) If P ⊆ R is a positive set, then R(2) ⊆ P .

Proof. (i) is easy. To see (ii), note that if y−1 exists then x/y = (xy)(y−1)2 is a product of elements
in R(2), so x/y ∈ R(2). Finally, (iii) follows from (i) because squares are positive. Q.E.D.

This lemma shows that R(2) has some attributes of a positive set. Under what conditions can R(2)

be extended into a positive set? From (iii), we see that 0 6∈ R(2) is a necessary condition. This
further implies that R has characteristic p = 0 (otherwise 1 + 1 + · · · + 1︸ ︷︷ ︸

p

= 0 ∈ R(2)).

A ring R is formally real if 0 6∈ R(2). This notion of “real” is only formal because R need not be a
subset of the real numbers R (Exercise). The following is immediately from lemma 2(iii):

Corollary 3 If R is ordered then R is formally real.

To what extent is the converse true? If R is formally real, then 0 6∈ R(2), and x ∈ R(2) implies
−x 6∈ R(2). So, R(2) has some of the attributes of a positive set. In the next section, we show that
if R is a formally real domain then R(2) can be extended to a positive set of some extension of R.

Exercises

Exercise 3.1: (a) If the characteristic of R is not equal to 2 and R is a field then 0 ∈ R(2) implies
R = R(2).
(b) If R(2) does not contain 0 then R has no nilpotent elements.
(c) Every element in GF (q) is a sum of two squares. 2

Exercise 3.2:
(a) Let α ∈ C be any root of X3 − 2. Then Q(α) is formally real (but not necessarily real).
(b) Let Q(α) be an algebraic number field and f(X) is the minimal polynomial of α. Then
Q(α) is formally real iff f(X) has a root in R. 2

Exercise 3.3: Let K be a field.
(a) Let G2(K) denote the set {x ∈ K \ {0} : x = a2 + b2, a, b ∈ K}. Show that G2(K) is a
group under multiplication. HINT: consider the identity |zz′| = |z| · |z′| where z, z′ are complex
numbers.
(b) Let G4(K) denote the set {x ∈ K \ {0} : x = a2 + b2 + c2 + d2, a, b, c, d ∈ K}. Show that
G4(K) is a group under multiplication. HINT: consider the identity |qq′| = |q| · |q′| where q, q′

are quarternions. 2
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§4. Constructible Extensions

Let F be a formally real field. For instance, if D be a domain, then its quotient field F = QD is
formally real iff D is formally real. It is immediate that

F is formally real iff − 1 6∈ F (2).

We call a field extension of the form

G = F (
√

a1,
√

a2, . . . ,
√

an), ai ∈ F,

a finite constructible extension of F provided G is formally real. If n = 1, we call G a simple
constructible extension. Note that “F (

√
a)” is just a convenient notation for the splitting field of the

polynomial X2 − a over F (that is, we do not know if
√

a can be uniquely specified as the “positive
square root of a” at this point).

Ruler and compass constructions. Our “constructible” terminology comes from the classical
problem of ruler-and-compass constructions. More precisely, a number is (ruler-and-compass) con-
structible if it is equal to the distance between two constructed points. By definition, constructible
numbers are positive. Initially, we are given two points (regarded as constructed) that are unit
distance apart. Subsequent points can be constructed as an intersection point of two constructed
curves where a constructed curve is either a line through two constructed points or a circle centered
at a constructed point with radius equal to a constructed number. [Thus, our ruler is only used as
a “straight-edge” and our compass is used to transfer the distance between two constructed points
as well as to draw circles.] The following exercise shows that “constructible numbers” in this sense
coincides with our abstract notion of constructible real numbers over Q.

Exercise 4.1: In this exercise, constructible means “ruler-and-compass constructible”.
i) Show that if S ⊆ R is a set of constructible numbers, so are the positive elements in the
smallest field F ⊆ R containing S. [In particular, the positive elements in Q are constructible.]
ii) Show that if the positive elements in a field F ⊆ R are constructible, so are the positive
elements in F (

√
a), for any positive a ∈ F . [In view of i), it suffices to construct

√
a.]

iii) Show that if x is any number constructible from elements of F ⊆ R then x is in
F (

√
a1, . . . ,

√
ak) for some positive numbers ai ∈ F , k ≥ 0. 2

Lemma 4 If F is a formally real field, a ∈ F and F (
√

a) is not formally real then a 6∈ F (2) and
−a ∈ F (2).

Proof. F (
√

a) is not formally real is equivalent to 0 ∈ F (
√

a)(2). Hence

0 =
∑

i

(bi + ci

√
a)2, (bi, ci ∈ F )

=
∑

i

(b2
i + c2

i a) + 2
√

a
∑

i

bici

= u + v
√

a,

where the last equation defines u and v. If u 6= 0 then v 6= 0; hence
√

a = −u/v ∈ F and F (
√

a) = F
is formally real, contradicting our assumption. Hence we may assume u = 0. If a ∈ F (2) then u
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which is defined as
∑

i(b
2
i + c2

i a) also belongs to F (2). This give the contradiction 0 = u ∈ F (2).
This proves a 6∈ F (2), as required. We also see from the definition of u that

−a = (
∑

i

b2
i )/(

∑

i

c2
i ) ∈ F (2),

as required. Q.E.D.

Corollary 5
(i) (Real Square-root Extension) a ∈ F (2) implies F (

√
a) is formally real.

(ii) a ∈ F implies F (
√

a) or F (
√
−a) is formally real.

Constructible closure. Let H be any extension of F . Call x ∈ H a constructible element of H
over F provided x ∈ G ⊆ H where G is any finite constructible extension of F . Call H a constructible
extension of F if every element in H is constructible. A field F is constructible closed if for any
a ∈ F , F (

√
a) = F . We call F (formally) real constructible closed if F is formally real and for

any a ∈ F (2), F (
√

a) = F . Beware that if F is constructible closed then it cannot be formally real

because
√
−1 ∈ F . We define a (formally) real constructible closure F̂ of a formally real field F to

be a real constructible closed extension of F that is minimal, i.e., for any field G, if F ⊆ G ⊂ F̂
then G is not real constructible closed.

Let U be a set of formally real extensions of F , closed under two operations, (a) real square-root
extension (á la corollary 5(i)), and (b) forming unions of chains (§1). Zorn’s lemma implies that
U has a maximal element F ′ that is an extension of F . Clearly F ′ is real constructible closed. To
obtain a real constructible closure of F , the set V of all real constructible closed fields between F
and F ′. If C is a chain in V , the intersection ∩C can be made into a field that contains F in a
natural way. We see that V is closed under intersection of chains. By another application of Zorn’s
lemma to V , we see that there is minimal element F̂ in V . This shows:

Theorem 6 Every formally real field F has a real constructible closure G = F̂ .

For instance, suppose F = Q(X). A real constructive closure G = F̂ contains either
√

X or
√
−X,

but not both. Let x1 be the element in G such that x2
1 = X or x2

1 = −X . The choice of x1 will
determine the sign of X . In general, G contains elements xn (n ≥ 1) such that x2

n = xn−1 or
x2

n = −xn−1 (by definition, x0 = X). Thus G is far from being uniquely determined by F . On the
other hand, the next result shows that each choice of G induces a unique ordering of F .

Lemma 7 If G is real constructible closed then it has a unique positive set, and this set is G(2).

Proof. We know that G(2) is contained in any positive set of G. Hence it suffices to show that G(2)

is a positive set. We already know G(2) is closed under addition and multiplication, and 0 6∈ G(2).
We must show that for every non-zero element x, either x or −x belongs to G(2). But this is a
consequence of corollary 5 since either

√
x or

√
−x is in G. Q.E.D.

We now investigate the consequence of adding i =
√
−1 to a real constructible closed field. This is

analogous to the extension from R to C = R(i).
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Theorem 8 If G is real constructible closed then G(i) is constructible closed.

Proof. Let a + bi where a, b ∈ G, not both 0. We must show that there exist c, d ∈ G such that
(c + di)2 = a + bi. Begin by defining a positive element e :=

√
a2 + b2. Clearly e belongs to G. We

have e ≥ |a| since e2 = a2 + b2 ≥ |a|2. Hence both (e − a)/2 and (e + a)/2 are non-negative. So
there exists c, d ∈ G satisfying

c2 =
e + a

2
, d2 =

e − a

2
. (1)

This determines c, d only up to sign, so we further require that cd ≥ 0 iff b ≥ 0. Hence we have

c2 − d2 = a, 2cd = b. (2)

It follows that
(c + di)2 = (c2 − d2) + 2cdi = a + bi,

as desired. Q.E.D.

Exercises

Exercise 4.2: (See [4]) For a, b ∈ R, we say that the complex number a + bi is constructible if a
and b are both constructible real numbers.
(i) The sum, difference, product and quotient of constructible complex numbers are con-
structible.
(ii) The square-root of a constructible complex number is constructible. 2

§5. Real Closed Fields

A field is real closed if it is formally real and any algebraic proper extension is formally non-real.

Lemma 9 Let F be formally real. Let p(X) ∈ F [X ] be irreducible of odd degree n and α be any
root of p(X) in the algebraic closure of F , Then F (α) is formally real.

Proof. The result is true for n = 1. Suppose inductively that the result holds for all smaller odd
values of n. If F (α) is not formally real then

−1 =
∑

i∈I

qi(α)2

for some finite index set I and qi(X) ∈ F [X ], deg qi ≤ n − 1. Since p(X) is irreducible, F (α) is
isomorphic to F [X ]/(p(X)). Thus we get

−1 =
∑

i∈I

qi(X)2 + r(X)p(X)

for some r(X) ∈ F [X ]. But
∑

i∈I qi(X)2 has a positive even degree of at most 2n − 2. Hence, in
order for this equation to hold, the degree of r(X)p(X) must equal that of

∑
i∈I qi(X)2. Then r(X)

has odd degree at most n − 2. If r′(X) is any irreducible factor of r(X) of odd degree and β is a
root of r′(X) then we get

−1 =
∑

i∈I

qi(β)2.
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This proves F (β) is not formally real, contradicting our inductive assumption. Q.E.D.

For instance, X3 − 2 is irreducible in Q[X ] (Eisenstein’s criterion). Thus Q(α) is formally formally
real for α any cube-root of 2. If we choose α 6∈ R, then Q(α) is not a subset of R.

Corollary 10 If F is real closed, then every irreducible polynomial of F [X ] has even degree.

Proof. Let p(X) ∈ F [X ] have odd degree. If α is any root of p(X) in the algebraic closure of F then
F (α) is formally real. Since F is real closed, this means α ∈ F . As X −α divides p(X), we conclude
that p(X) is reducible in F [X ]. Q.E.D.

Theorem 11 (Characterization of real closed fields)
The following statements are equivalent.
(i) F is real closed.
(ii) F is real constructible closed and every polynomial in F [X ] of odd degree has a root in F .
(iii) F is not algebraically closed but F (i) is.

Proof.

(i) implies (ii): this follows from the above corollary and the following observation: a real closed
field F is real constructible closed. To see this, if a ∈ F (2) then F (

√
a) is formally real and hence√

a ∈ F .

(ii) implies (iii): clearly F is formally real implies it is not algebraically closed since X2 + 1 has
no solution in F . To see that F (i) is algebraically closed, it suffices to prove that any non-constant
polynomial f(X) ∈ F (i)[X ] has a root in F (i). Write f(X) for the conjugate of f(X), obtained by
conjugating each coefficient (the conjugate of a coefficient x + yi ∈ F (i) is x − yi). It is not hard to
verify that

g(X) = f(X)f(X)

is an element of F [X ]. Moreover, if g(X) has a root α ∈ F (i), this implies f(α) = 0 or f(α) = 0.
But the latter is equivalent to f(α) = 0. So g(X) has a root in F (i) iff f(X) has a root in F (i).

We now focus on g(X). Let deg(g) = n = 2iq where q is odd and i ≥ 0. We use induction on n
to show that g has a root in F (i). If i = 0, then by assumption g(X) has a root in F . So assume
i ≥ 1. Let α1, . . . , αn be the roots of g in an algebraic extension of F . We may assume these roots
are distinct since otherwise GCD(g, dg/dX) has a root α in F (i), by induction on n. Consider the set
of values

B = {αjαk + c(αj − αk) : 1 ≤ j < k ≤ n}
where 1 ≤ j < k ≤ n, for a suitable choice of c ∈ F . Let N :=

(
n
2

)
. Clearly |B| ≤ N and there

are O(n4) values of c for which this inequality is strict. This is because each coincidence of values
uniquely determines a c. Since F is infinite, we may pick c so that |B| = N . Let si denote ith
elementary symmetric function (§VI.5) of the elements in B (thus s1 =

∑
x∈B x). But si is also

symmetric in α1, . . . , αn. Hence the si are rational integral polynomials in the elementary symmetric
functions σ0, . . . , σn on α1, . . . , αn. But these σi’s are precisely the coefficients of g(X). Thus the

polynomial G(X) =
∑N

i=0 siX
i belongs to F [X ] and its roots are precisely the elements of B.
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Notice the degree of G is N = 2i−1q′ for some odd q′. By induction hypothesis, G has a root in
F (i). Without loss of generality, let this root be

φ = α1α2 + c(α1 − α2) ∈ F (i).

Similar to the construction of G(X), let u(X) ∈ F [X ] be the polynomial whose roots are precisely
the set {αjαk : 1 ≤ j < k ≤ n}, and likewise v(X) ∈ F [X ] be the polynomial whose roots are
{αj − αk : 1 ≤ j < k ≤ n}. We note that

u(α1α2) = 0, v(
φ − α1α2

c
) = v(α1 − α2) = 0.

Moreover, for any αjαk where (j, k) 6= (1, 2), v(
φ−αjαk

c ) 6= 0 because our choice of c implies
φ−αjαk

c 6=
αℓ − αm for any 1 ≤ ℓ < m ≤ n. This means that the polynomials

u(X), v(
φ − X

c
) ∈ F (φ)[X ] ⊆ F (i)[X ]

have α1α2 as their only common root. Their GCD is thus X − α1α2, which must be an element of
F (i)[X ]. This proves that α1α2 ∈ F (i) and therefore α1 − α2 ∈ F (i). We can determine α1 and α2

by solving a quadratic equation in F (i). This proves g(X) has solutions α1, α2 in F (i).

(iii) implies (i): we must show that F is formally real. We first observe that an irreducible
polynomial f(X) in F [X ] must have degree 1 or 2 because of the inequality

2 = [F (i) : F ] ≥ [E : F ] = deg f

where E ⊆ F (i) is the splitting field of f over F . Next we see that it is sufficient to show that
every sum a2 + b2 of squares (a, b ∈ F \ {0}) is a square in F . For, by induction, this would prove
that every element in F (2) is a square, and the formal reality of F then follows because −1 is not a
square in F . To show a2 + b2 is a square, consider the polynomial f(X) = (X2 − a)2 + b2 ∈ F [X ].
It factors as

(X2 − a − bi)(X2 − a + bi)

over F (i). Since F (i) is algebraically closed, there are c, d ∈ F (i) such that

c2 = a + bi, d2 = a − bi.

This gives f(X) = (X − c)(X + c)(X − d)(X + d). Note that ±a ± bi are not elements in F . Thus
f(X) has no linear factors in F [X ]. It must therefore split into quadratic factors. Consider the factor
that contains X − c. This cannot be (X − c)(X + c) = X2− c2. Hence it must be (X − c)(X ±d). In
either case, notice that ±cd =

√
a2 + b2 is the constant term of (X−c)(X±d). Hence

√
a2 + b2 ∈ F ,

as we wanted to show. Q.E.D.

Exercises

Exercise 5.1: Show that f(X)f(X) ∈ F [X ] if f(X) ∈ F (i)[X ]. 2

Exercise 5.2: Let a, b ∈ F and f(X) ∈ F [X ] where F is real closed. If f(a) < 0 and f(b) > 0 then
there exists c between a and b such that f(c) = 0. HINT: it suffices to show this for deg f = 2.

2
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Exercise 5.3: (See [164])
(a) The Pythagorean number of R is the least number h = h(R) such that if x ∈ R(2), then
x is a sum of at most h squares. Thus h(R) = 1 for R = R. Show Lagrange’s theorem that
h(Z) = 4.
(b) If K is real closed field then h(K) = 2.
(c) We call a field K Pythagorean if h(K) = 2; alternatively, any sum of 2 squares is a square
in such a field. Show that the field of constructible real numbers is Pythagorean.
(d) Let P ⊆ R be the smallest Pythagorean field containing Q. Then P is properly contained

in the field of constructible real numbers. HINT:
√√

2 − 1 6∈ P is constructible. 2

§6. Fundamental Theorem of Algebra

In this section, we are again interested in the standard “reals” R, not just “formal reals”. In 1746,
d’Alembert (1717–1783) published the first formulation and proof of the Fundamental Theorem of
Algebra. Gauss (1777–1855) is credited with the first proof4 that is acceptable by modern standards
in 1799. We note two analytic properties of real numbers:

1. The reals are ordered (and hence formally real).

2. (Weierstraß’s Nullstellensatz) If f(X) is a real function continuous in an interval [a, b], and
f(a)f(b) < 0 then f(c) = 0 for some c between a and b.

Recall that f(X) is continuous at a point X = a if for all ǫ > 0 there is a δ > 0 such that
|f(a + d) − f(a)| < ǫ whenever |d| < δ. It is not hard to show that the constant functions, the
identity function, the sums and products of continuous functions are all continuous. In particular,
polynomials are continuous. One then concludes from Weierstraß’s Nullstellensatz:
(i) A positive real number c has a positive real square root,

√
c.

(ii) A real polynomial f(X) of odd degree has a real root.
It follows from theorem 11 that R is real closed. Since C is defined to be R(

√
−1), we obtain:

Theorem 12 (Fundamental Theorem of Algebra)
C is algebraically closed.

Exercise 6.1: Use Weierstraß’s Nullstellensatz to verify the above assertions, in particular, prop-
erties (i) and (ii). 2

Cantor’s construction of the reals. Since the Fundamental Theorem of Algebra is about a very
specific structure, R, it is worthwhile recalling one construction (albeit, a highly non-constructive

one!) of this set. If F is a field and F̂ is a minimal real closed field containing F , then we call F̂ a
real closure of F . As in our proof of theorem 6, the real closure of any real field F exists, by Zorn’s
lemma. For instance, Q̂ is the set of real algebraic numbers and hence forms a countable set. But
R, being uncountable, must necessarily include many elements not in Q̂.

4One of Gauss’ proofs was in turn found wanting, presumably also by modern standards only! Apropos of a
footnote in (§VI.1) concerning the second-class status of complex numbers, Gauss personally marked the transition
to the modern view of complex numbers: in his 1799 dissertation on the Fundamental Theorem of Algebra, he
deliberately avoided imaginary numbers (by factoring polynomials only up to linear or quadratic factors). In 1849,
he returned to give his fourth and last proof of the theorem, this time using imaginaries. The symbol i for

√
−1 is

due to Euler (1707–1783). See [197, p. 116,122].
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We now outline the method to obtain a real closed field containing an ordered field F . This just
mirrors the construction of R from Q using Cauchy sequences. A Cauchy or fundamental sequence
of F is a infinite sequence a = (a1, a2, . . .) such that for all positive ǫ there exists n = n(ǫ) such that
|ai − aj | < ǫ for all i, j > n. We may add and multiply such sequences in a componentwise manner.
In particular, if b = (b1, b2, . . .) then ab = (a1b1, a2b2, . . .). It is easy to check that Cauchy sequences
form a commutative ring. We define a sequence (a1, a2, . . .) to be null if for all ǫ > 0 there exists
n = n(ǫ) such that |ai| < ǫ for i > n. Similarly, we define the sequence to be positive if there is
an ǫ > 0 and n such that ai > ǫ for i > n. The set of null sequences form a maximal ideal in the
ring of fundamental sequences; hence the ring of Cauchy sequences modulo this null ideal is a field
F̃ that extends F in a canonical way. If F = Q then F̃ is, by definition, equal to R. Since R is
uncountable, it is not equal to the Q̂. This shows that F̃ is, in general, not equal to the real closure
F̂ of F . Now F̃ is an ordered field because the set of positive Cauchy sequences correspond to the

positive elements of F̃ . This construction, if repeated on F̃ yields nothing new:
˜̃
F is isomorphic to

F̃ . An ordering of R is Archimedean if for all a ∈ R, there is an n ∈ Z such that a < n. If F is
Archimedean ordered, we have a canonical isomorphism between F̃ and R.

Exercises

Exercise 6.2: Show that Q̂ is the set of real algebraic numbers, and hence a countable set. 2

Exercise 6.3: Verify the assertions made of the Cantor construction. 2
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Mathématiques. Hermann, Paris, 1990.

c© Chee-Keng Yap September 9, 1999



§6. Fundamental Theorem Lecture V Page 138

[21] S. J. Berkowitz. On computing the determinant in small parallel time using a small number
of processors. Info. Processing Letters, 18:147–150, 1984.

[22] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill Book Company, New York, 1968.

[23] J. Bochnak, M. Coste, and M.-F. Roy. Geometrie algebrique reelle. Springer-Verlag, Berlin,
1987.

[24] A. Borodin and I. Munro. The Computational Complexity of Algebraic and Numeric Problems.
American Elsevier Publishing Company, Inc., New York, 1975.

[25] D. W. Boyd. Two sharp inequalities for the norm of a factor of a polynomial. Mathematika,
39:341–349, 1992.

[26] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of Toeplitz systems of equations
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[157] O. Perron. Die Lehre von den Kettenbrüchen. Teubner, Stuttgart, 1954. Volumes 1 & 2.

[158] J. R. Pinkert. An exact method for finding the roots of a complex polynomial. ACM Trans.
on Math. Software, 2:351–363, 1976.

[159] D. A. Plaisted. New NP-hard and NP-complete polynomial and integer divisibility problems.
Theor. Computer Science, 31:125–138, 1984.

[160] D. A. Plaisted. Complete divisibility problems for slowly utilized oracles. Theor. Computer
Science, 35:245–260, 1985.

[161] E. L. Post. Recursive unsolvability of a problem of Thue. J. of Symbolic Logic, 12:1–11, 1947.

[162] A. Pringsheim. Irrationalzahlen und Konvergenz unendlicher Prozesse. In Enzyklopädie der
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Lecture VI

Roots of Polynomials

From a historical viewpoint, it seems appropriate to call root finding for polynomials the Fundamen-
tal Computational Problem of algebra. It occupied mathematicians continuously from the earliest
days, and was until the 19th century one of their major preoccupations. Descartes, Newton, Euler,
Lagrange and Gauss all wrote on this subject. This interest has always been intensely computational
in nature, which strikes a chord with modern computer science. The various extensions of natural
numbers (negative1, rational, algebraic and complex numbers) were but attempts to furnish entities
as roots. Group theory, for instance, originated in this study of roots.

There are two distinct lines of investigation. The first is the algebraic approach which began with
with the Italian algebraists (see §0.2) after the introduction of algebra through the Arab mathemati-
cians in the 13th century. The algebraic approach reached a new level of sophistication with the
impossibility demonstrations of Abel and Wantzel. The numerical approximation of roots represent
the other approach to the Fundamental Problem. Here, Viète (1600) published the first solution.
These were improved by others, culminating in the well known method of Newton (1669). Horner’s
contribution was to organize Newton’s method for polynomials in a very efficiently hand-calculable
form. One ought not minimize such a contribution: contemporary research in algorithms follows
the same spirit. Horner’s method resembles a method that was perfected by Chin Kiu-Shao about
1250 [194, p.232]. Simpson, the Bernoullis, Lagrange and others continued this line of research.
Goldstine’s history of numerical analysis [73] treats numerical root finding; Nový [146] focuses on
the algebraic side, 1770–1870.

Modern treatments of the fundamental problem may be found in Henrici [79], Obreschkoff [147],
Ostrowski [151] and Marden [127]. Our treatment here is slanted towards finding real roots. In
principle, finding complex roots can be reduced to the real case. We are interested in “infallible
methods”. Collins [46], an early advocate of this approach, noted that we prefer to make infallible
algorithms faster, whereas others have sought to make fast algorithms less fallible (cf. [93]). Along
this tradition, recent work of Schönhage [184], Pan [152] and Renegar [166] show how to approximate
all complex roots of a polynomial to any prescribed accuracy ǫ > 0, in time O(n2 log n(n log n +
log 1

ǫ )). Neff [144] shows that this problem is “parallelizable” (in NC , cf. §0.8). However, this does
not imply that the problem of root isolation is in NC . There is a growing body of literature related
to Smale’s approach [192, 193]. Pan [153] gives a recent history of the bit complexity of the problem.
This (and the next) lecture is necessarily a selective tour of this vast topic.

§1. Elementary Properties of Polynomial Roots

There is a wealth of material on roots of polynomials (e.g. [127, 147, 135]). Here we review some
basic properties under two categories: complex roots and real roots. But these two categories could
also be taken as any algebraically closed field and any real closed field, respectively.

Complex Polynomials. Consider a complex polynomial,

A(X) =
n∑

i=0

aiX
i, an 6= 0, n ≥ 1.

1The term “imaginary numbers” shows the well-known bias in favor of real numbers. Today, the term “negative
numbers” has hardly any lingering negative (!) connotation but a bias was evident in the time of Descartes: his terms
for positive and negative roots are (respectively) “true” and “false” roots [197, p. 90].
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C1. Let c ∈ C. By the Division Property for polynomials (§II.3), there exists a B(X) ∈ C[X ],

A(X) = B(X) · (X − c) + A(c).

Thus c is a root of A(X) iff A(c) = 0, iff A(X) = B(X) · (X − c). Since deg B = deg(A) − 1,
we conclude by induction that A(X) has at most deg A roots. This is the easy half of the
fundamental theorem of algebra.

C2. Taylor’s expansion of A(X) at c ∈ C:

A(X) = A(c) +
A′(c)

1!
(X − c) +

A′′(c)

2!
(X − c)2 + · · · + A(n)(c)

n!
(X − c)n.

C3. A(X) is determined by its value at n + 1 distinct values of X. This can be seen as a
consequence of the Chinese Remainder Theorem (§IV.1).

C4. (The Fundamental Theorem of Algebra) A(X) has exactly n (not necessarily distinct)
complex roots, α1, . . . , αn ∈ C. This was proved in the last lecture. By repeated application
of Property C1, we can write

A(X) = an

n∏

i=1

(X − αi). (1)

Definition: If α occurs m ≥ 0 times among the roots α1, . . . , αn, we say α is a root of
multiplicity m of A(X). Alternatively, we say α is an m-fold root of A(X). However, when
we say “α is a root of A” without qualification about its multiplicity, we presuppose the
multiplicity is positive, m ≥ 1. A root is simple or multiple according as m = 1 or m ≥ 2. We
say A is square-free if it has no multiple roots.

C5. If α is a root of A(X) of multiplicity m ≥ 1 then α is a root of its derivative A′(X) of
multiplicity m − 1. Proof. Write A(X) = (X − α)mB(X) where B(α) 6= 0. Then A′(X) =
m(X −α)m−1B(X)+ (X −α)mB′(X). Clearly α has multiplicity ≥ m− 1 as a root of A′(X).
Writing

C(X) =
A′(X)

(X − α)m−1
= mB(X) + (X − α)B′(X),

we conclude C(α) = mB(α) 6= 0. Hence α has multiplicity exactly m − 1 as a root of A′(X).
Q.E.D.

Corollary 1 The polynomial
A(X)

GCD(A(X), A′(X))
(2)

is square-free and contains exactly the distinct roots of A(X).

C6. The derivative A′(X) can be expressed in the form

A′(X)

A(X)
=

1

X − α1
+

1

X − α2
+ · · · + 1

X − αn
.

This follows by taking derivatives on both sides of equation (1) and dividing by A(X). The
rational function A′(X)/A(X) is also called the logarithmic derivative since it is equal to
d log A(X)

dX . There are very interesting physical interpretations of A′/A. See [127, p. 6].

C7. A(X) is a continuous function of X. This follows from the continuity of the multiplication
and addition functions.
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C8. The roots A(X) are continuous functions of the coefficients of A(X). We need to state this
precisely: suppose α1, . . . , αk are the distinct roots of A(X) where αi has multiplicity mi ≥ 1,
and let D1, . . . , Dk be any set of discs such that each Di contains αi but not αj if j 6= i. Then
there exists an ǫ > 0 such that for all ǫ0, . . . , ǫn with |ǫi| < ǫ, the polynomial

B(X) =

n∑

i=0

(ai + ǫi)X
i

has exactly mi roots (counted with multiplicity) inside Di for i = 1, . . . , k. For a proof, see
[127, p. 3].

C9. For any c ∈ C, there is a root α∗ ∈ C of A(X) such that

|c − α∗| ≤ (|A(c)|/|an|)1/n.

In proof, observe that |A(c)| = |an|
∏n

i=1 |c − αi| in the notation of equation (1). We just
choose α∗ to minimize |c − αi|. As a corollary, the root α∗ of smallest modulus satisfies

|α∗| ≤
( |a0|
|an|

)1/n

.

Real Polynomials. The remaining properties assume that A(X) ∈ R[X ].

R1. The non-real roots of A(X) appear in conjugate pairs.

Proof. For a real polynomial A(X), we may easily verify that A(α) = A(α) for any complex
number α, i.e., complex conjugation and polynomial evaluation commute. Thus A(α) = 0
implies A(α) = 0. Q.E.D.

As (X − α)(X − α) is a real polynomial, we conclude:

Corollary 2
1) A(X) can be written as a product of real factors that are linear or quadratic.
2) If n = deg A is odd, then A(X) has at least one real root.

R2. Let X range over the reals. The sign of A(X) as |X | → ∞ is the sign of anXn. The sign of
A(X) as |X | → 0 is the sign of aiX

i where i is the smallest index such that ai 6= 0.

R3. If α < β are two real numbers such that A(α)A(β) < 0 then there exists γ (α < γ < β) such
that A(γ) = 0.

R4. Let ǫ > 0 approach 0. Then for any real root α,

A′(α − ǫ)

A(α − ǫ)
→ −∞,

A′(α + ǫ)

A(α + ǫ)
→ +∞.

In other words, when X is just slightly smaller than α, A′(X) and A(X) have different signs and
when X is just slightly greater than α, they have the same signs. See Figure 1. Proof. From

Property C6. we see that of A′(α−ǫ)
A(α−ǫ) approaches 1

−ǫ as ǫ approaches 0+. But 1
−ǫ → −∞.

Similarly for the other case. Q.E.D.
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α2α1 Xα3

Figure 1: Illustrating the function A′(X)/A(X).

R5. Theorem 3 (Rolle’s theorem) Between two consecutive real roots of A(X) there is an odd
number of real roots of A′(X).

Proof. Apply the previous property: if α < β are two consecutive real roots then A(X) has
constant sign in the interval (α, β). However A′(X) has the same sign as A(X) near α+ and
has a different sign from A(X) near β−. By continuity of A′(X), it must be zero an odd
number of times. Q.E.D.

Corollary 4 Between any two consecutive real roots of A′(X) there is at most one real root
of A(X).

Exercises

Exercise 1.1: (Lucas, 1874) Any convex region K of the complex plane containing all the complex
roots of A(X) also contains all the complex roots of A′(X). NOTE: This is the complex
analogue of Rolle’s theorem for real roots. Much is known about the location of the roots of
the derivative of a polynomial; see [127]. 2

Exercise 1.2: (Jensen, 1912) Let A(X) be a real polynomial, so its non-real roots occur in conjugate
pairs. A Jensen circle of A(X) is a circle with diameter determined by one of these conjugate
pair of roots. Then all the non-real zeros of A′(X) lie on or inside the union of the Jensen
circles of A(X). 2

Exercise 1.3: (Rouché, 1862) Suppose P (Z), Q(Z) are analytic inside a Jordan curve C, are con-
tinuous on C, and satisfy |P (Z)| < |Q(Z)| on C. Then F (Z) = P (Z) + Q(Z) has the same
number of zeros inside C as Q(Z). 2

Exercise 1.4: (Champagne) We improve the root bound in Property C9. Suppose the roots
α1, . . . , αk (k = 0, . . . , n − 1) have been “isolated”: this means that there are discs Di
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(i = 1, . . . , k) centered in ci with radii ri > 0 such that each Di contains αi and no other
roots and the Di’s are pairwise disjoint. Then for any c chosen outside the union ∪k

i=1Di of
these discs, there is a root α∗ ∈ {αk+1, . . . , αn} such that

|c − α∗| ≤ |A(c)|
|an|

n∏

i=2

(|c − ci| − ri)
−1.

2

Exercise 1.5: Give a lower bound on |αi| using the technique in Property C9. 2

Exercise 1.6: [Newton] If the polynomial A(X) = anXn +
(
n
1

)
an−1X

n−1 + · · · +
(

n
n−1

)
a1X + a0,

an 6= 0 has real coefficients and n real roots then a2
i ≥ ai−1ai+1 for i = 1, . . . , n − 1. HINT:

Obvious for n = 2 and inductively use Rolle’s theorem. 2

§2. Root Bounds

Let

A(X) =

n∑

i=0

aiX
i, an 6= 0

where ai ∈ C, and let α ∈ C denote any root of A(X). To avoid exceptions below, we will also
assume a0 6= 0 so that α 6= 0. Our goal here is to give upper and lower bounds on |α|. One such
bound (§IV.5) is the Landau bound,

|α| ≤ ‖A‖2/|an|. (3)

And since 1/α is a root of XnA(1/Xn), we also get 1/|α| ≤ ‖A‖2/|ai| where i is the largest subscript
such that ai 6= 0. Thus |α| ≥ |ai|/‖A‖2. We next obtain a number of similar bounds.

Knuth attributes the following to Zassenhaus but Ostrowski [151, p.125] says it is well-known, and
notes an improvement (Exercise) going back to Lagrange.

Lemma 5 We have |α| < 2β where

β :=max

{
|an−1|
|an|

,

√
|an−2|
|an|

, 3

√
|an−3|
|an|

, . . . , n

√
|a0|
|an|

}
.

Proof. The lemma is trivial if |α| ≤ β; so assume otherwise. Since A(α) = 0, anαn = −(an−1α
n−1 +

· · · + a0). Hence

|an| · |α|n ≤ |an−1| · |α|n−1 + |an−2| · |α|n−2 + · · · + |a0|.

1 ≤ |an−1|
|an|

· 1

|α| +
|an−2|
|an|

· 1

|α|2 + · · · + |a0|
|an|

· 1

|α|n

≤ β

|α| +
β2

|α|2 + · · · + βn

|α|n

<
β/|α|

1 − (β/|α|) ,
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where the last step uses our assumption |α| > β. This yields the bound |α| < 2β. Q.E.D.

Assuming |an| ≥ 1 (as when A(X) ∈ Z[X ]), we get

|α| < 2‖A‖∞. (4)

Similarly, by applying this result to the polynomial XnA(1/X), assuming |a0| ≥ 1, we get

|α| >
1

2‖A‖∞
. (5)

Now define

γ :=max

{
|an−1|(
n
1

)
|an|

,

√
|an−2|(
n
2

)
|an|

, 3

√
|an−3|(
n
3

)
|an|

, . . . , n

√
|a0|(

n
n

)
|an|

}
.

We have not seen this bound in the literature:

Lemma 6
|α| ≤ γ

n
√

2 − 1
.

Proof. As before, we obtain

1 ≤ |an−1|
|an|

· 1

|α| +
|an−2|
|an|

· 1

|α|2 + · · · + |a0|
|an|

· 1

|α|n

≤
(

n

1

)
γ

|α| +

(
n

2

)
γ2

|α|2 + · · · +
(

n

n

)
γn

|α|n ,

2 ≤
(

1 +
γ

|α|

)n

,

from which the desired bound follows. Q.E.D.

Both β and γ are invariant under “scaling”, i.e., multiplying A(X) by any non-zero constant.

Lemma 7 (Cauchy)

|a0|
|a0| + max{|a1|, . . . , |an|}

< |α| < 1 +
max{|a0|, . . . , |an−1|}

|an|

Proof. We first show the upper bound for |α|. If |α| ≤ 1 then the desired upper bound is immediate.
So assume |α| > 1. As in the previous proof

|an||α|n ≤ |an−1| · |α|n−1 + |an−2| · |α|n−2 + · · · + |a0|

≤ max{|a0|, . . . , |an−1|}
n−1∑

i=0

|α|i

≤ max{|a0|, . . . , |an−1|} ·
(|α|n − 1)

|α| − 1
,

|α| − 1 <
max{|a0|, . . . , |an−1|}

|an|
.
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This shows the upper bound. The lower bound is obtained by applying the upper bound to the
polynomial XnA

(
1
X

)
which has 1

α as root (recall we assume α 6= 0). We get
∣∣∣∣
1

α

∣∣∣∣ < 1 +
max{|a1|, . . . , |an|}

|a0|
from which the lower bound follows. Q.E.D.

Corollary 8
|a0|

|a0| + ‖A‖∞
< |α| < 1 +

‖A‖∞
|an|

.

If A(X) is an integer polynomial and a0 6= 0, we may conclude

1

1 + ‖A‖∞
< |α| < 1 + ‖A‖∞.

Lemma 9 (Cauchy)

|α| ≤ max

{
n|an−1|
|an|

,

√
n|an−2|
|an|

, 3

√
n|an−3|
|an|

, . . . , n

√
n|a0|
|an|

}

Proof. If k is the index such that

|ak| · |α|k

is maximum among all |ai| · |α|i (i = 0, . . . , n− 1) then the initial inequality of the previous proof
yields

|an| · |α|n ≤ n|ak| · |α|k

|α| ≤ n−k

√
n·|ak|
|an| .

The lemma follows. Q.E.D.

Many other types of root bounds are known. For instance, for polynomials with real coefficients,
we can exploit the signs of these coefficients (see exercises). One can also bound the product of the
absolute values of the roots of a polynomial [132]. See also [147, 131].

Exercises

Exercise 2.1: i) Apply the β and γ root bounds to the roots of the characteristic polynomial of an
n × n matrix A whose entries are integers of magnitude at most c.
ii) Compare the β and γ bounds generally. 2

Exercise 2.2: (Cauchy) Let R be the unique positive root of the polynomial

B(Z) = |an|Zn − (|an−1|Zn−1 + · · · + |a0|) = 0, an 6= 0.

Then all the zeros of A(Z) =
∑n

i=0 aiZ
i lie in the circle |Z| ≤ R. 2
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Exercise 2.3: (Real root bounds for real polynomials) Consider the polynomial A(X) =
∑n

i=0 aix
i

(an 6= 0) with real coefficients ai. The following describes L which is understood to be a bound
on the real roots of A(X), not a bound on the absolute values of these roots.
i) [Rule of Lagrange and MacLaurin] Let a = max{|ai/an| : ai < 0}, and let n − m be the
largest index i of a negative coefficient ai. Then L = 1 + a1/m.
ii) [Newton’s rule] Let L be2 any real number such that each of the first n derivatives of A(x)
evaluates to a positive number at L.
iii) [Laguerre’s rule] Let L > 0 have the property that when A(X) is divided by X − L, the
quotient B(X) is a polynomial with positive coefficients and the remainder r is a positive
constant.
iv) [Cauchy’s rule] Let the negative coefficients in A(X) have indices i1, i2, . . . , ik for some k.
Then let L be the maximum of

(k · |ai1 |)1/(n−i1), (k · |ai2 |)1/(n−i2), . . . , (k · |aik
|)1/(n−ik).

v) [Grouping method] Let f(X) and g(X) be polynomials with non-negative coefficients such
that the biggest exponent of X in g(X) is not bigger than the smallest exponent of X in f(X).
If L > 0 is such that F (L) := f(L) − g(L) > 0, then F (X) > 0 for all X > L. 2

Exercise 2.4: Let A(X) = X5 − 10X4 + 15X3 + 4X2 − 16X +400. Apply the various root bounds
to A(X). 2

Exercise 2.5: (Ostrowski, Lagrange) Improve the root bound above attributed to Zassenhaus: if

α is a root of A(X) =
∑n

i=0 aiXi, (a0 = 1), and we arrange the terms a
1/(n−i)
i (i = 1, . . . , n)

in non-decreasing order, then the sum of the last two terms in this sequence is a bound on |α|.
2

Exercise 2.6: (J. Davenport) There is a root of the polynomial A(X) =
∑n

i=0 aiX
i whose absolute

value is at least β/2n where β is the bound of Zassenhaus. HINT: Assume A(X) is monic and
say βk = |an−k| for some k. Then there are k roots whose product has absolute value at least

|an−k|
(
n
k

)−1
. 2

Exercise 2.7: The following bounds are from Mahler [125]. Let F (X) be a complex function,
F (0) 6= 0, ξ1, . . . , ξN are all the zeros of F (X) (multiplicities taken into account) satisfying
|ξi| ≤ r for all i, F (X) is regular inside the closed disc {x : |x| ≤ r}. Then Jensen’s formula in
analytic function theory says

1

2π

∫ 2π

0

log |F (reiθ)|dθ = log |F (0)| +
N∑

i=1

log
r

|ξi|
.

(a) Let f(X) =

n∑

i=0

aiX
i ∈ C[X ], a0an 6= 0. Let the roots of f(X) be ξ1, . . . , ξn such that

|ξ1| ≤ · · · ≤ |ξN | ≤ 1 < |ξN+1| ≤ · · · ≤ |ξn|.

Apply Jensen’s formula with r = 1 to show

1

2π

∫ 2π

0

log |f(eiθ)|dθ = log |a0ξN+1 · · · ξn| = log |M(f)|.

2To apply this rule, first try to find a number L1 such that the derivative A(n−1)(X) (which is linear in X) is
positive or vanishes at L1. Next consider A(n−2)(X). If this is negative, choose a number L2 > L1, etc.
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(b) Show

log(2−n‖f‖1) ≤
1

2π

∫ 2π

0

log |f(eiθ)|dθ ≤ log ‖f‖1.

HINT: The second inequality is immediate, and gives a bound on M(f) weaker than
Landau’s.

(c) [Feldman-Mahler] Show for any subset {ξi1 , . . . , ξim
} of {ξ1, . . . , ξn},

|a0ξi1 · · · ξim
| ≤ ‖f‖1.

(d) [Gelfond] If f(X) =

s∏

i=1

fi(X), n = deg f , then

2n‖f‖1 ≥
s∏

i=1

‖fi‖1.

2

§3. Algebraic Numbers

Our original interest was finding roots of polynomials in Z[X ]. By extending from Z to C, every
integer polynomial has a solution in C. But it is not necessary to go so far: every integer polynomial
has a root in the algebraic closure3 Z of Z. In general, we let

D

denote the algebraic closure of a domain D. Just as the concept of a UFD is characterized as a
domain in which the Fundamental Theorem of Arithmetic holds, an algebraically closed domain can
be characterized as one in which the Fundamental Theorem of Algebra holds.

By definition, an algebraic number α is an element in C that is the zero of some polynomial P (X) ∈
Z[X ]. For instance

√
2 and i =

√
−1 are algebraic numbers. We call P (X) a minimal polynomial of

α if the degree of P (X) is minimum. To make this polynomial unique (see below) we further insist
that P (X) be primitive and its leading coefficient is a distinguished element of Z; then we call P (X)
the minimal polynomial of α. Note that minimal polynomials must be irreducible. The degree of α
is the degree of its minimal polynomial. By definition, if α = 0, its unique minimal polynomial is 0
with degree −∞. Clearly, every algebraic number belongs to Z. In §5, we show that Z is equal to
the set of algebraic numbers; this justifies calling Z the field of algebraic numbers.

A non-algebraic number in C is called a transcendental number. By Cantor’s diagonalization argu-
ment, it is easy to see that transcendental numbers exist, and in abundance. Unfortunately, proofs
that special numbers such π (circumference of the circle with unit diameter) and e (base of the
natural logarithm) are transcendental are invariably non-trivial. Nevertheless, it is not hard to show
explicit transcendental numbers using a simple argument from Liouville (1844). It is based on the
fact that algebraic numbers cannot be approximated too closely. Here is the precise statement: if
α is the irrational zero of an integral polynomial A(X) of degree n, then there exists a constant
c = c(α) > 0 such that for all p, q ∈ Z, q > 0,

|α − p

q
| ≥ c

qn
. (6)

3Concepts that are defined for fields can be applied to domains in the natural way: we simply apply the concept to
the quotient field of the said domain. Thus the “algebraic closure” (which was defined for fields in §V.1) of a domain
D refers to the algebraic closure of the quotient field of D.
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Without loss of generality, assume A′(α) 6= 0 (otherwise replace A(X) by A(X)/GCD(A(X), A′(X))).
Pick ε > 0 such that for all β ∈ [α± ε], |A′(β)| ≥ |A′(α)|/2. Now the one-line proof goes as follows:

1

qn
≤
∣∣∣∣A
(

p

q

)∣∣∣∣ =

∣∣∣∣A
(

p

q

)
− A(α)

∣∣∣∣ =

∣∣∣∣α − p

q

∣∣∣∣ · |A′(β)| (7)

for some β = tα + (1 − t)p/q, 0 ≤ t ≤ 1, and the last equality uses the Mean Value Theorem or
Taylor’s expansion (§10). This proves

∣∣∣∣α − p

q

∣∣∣∣ ≥ min{ε, 2

qn
|A′(α)} ≥ c

qn

(c = min{ε, 2/|A′(α)|}. With this, we can deduce that certain explicitly constructed numbers are
transcendental; for instance,

α =
1

2
+

1

22!
+

1

23!
+

1

24!
+ · · · + 1

2n!
+ · · · . (8)

There touches on the deep subject of Diophantine approximation. Let us define κ(n) to be the
least number such that for all ν > κ(n) and all algebraic numbers α of degree n ≥ 2, there exists a
constant c = c(α, ν) such that

|α − p

q
| ≥ c

qν
. (9)

Thus (6) shows κ(n) ≤ n. This bound on κ(n) steadily decreased starting with Thue (1909),
Siegel (1921), independently by Dyson and Gelfond (1947), until Roth (1955) finally showed that
κ(n) ≤ 2. This is the best possible since for every irrational α, there are infinitely many solutions
to |α− p/q| < 1/q2 (see §XIV.6). It should be noted that the constant c = c(α, ν) here is ineffective
in all the cited development (but it is clearly effective in the original Liouville argument).

Number Fields. All the computations in our lectures take place exclusively in Z. In fact, in any
particular instance of a problem, all computations occur in a subfield of the form

Q(α) ⊆ Z

for some α ∈ Z. This is because all computations involve only finitely many algebraic numbers, and
by the primitive element theorem, these belong to one field Q(α) for some α. Subfields of the form
Q(α) are called number fields.

Basic arithmetic in a number field Q(α) is quite easy to describe. Let P (X) be the minimal polyno-
mial of α. If α is of degree d, then it follows from P (α) = 0 that αd can be expressed as a polynomial
of degree at most d − 1 in α, with coefficients in Q. It follows that every element of Q(α) can be
written as a polynomial of degree at most d − 1 in α. Viewed as a vector space over Q, Q(α) has
dimension d; in particular,

1, α, α2, . . . , αd−1

is a basis of this vector space. An element β =
∑d−1

i=0 biα
i in Q(α) is uniquely determined by its

coefficients (b0, b1, . . . , bd−1) (otherwise, we would have a vanishing polynomial in α of degree less
than d). Addition and subtraction in Q(α) are performed component-wise in these coefficients.
Multiplication can be done as in polynomial multiplication, followed by a reduction to a polynomial
of degree at most d − 1. What about the inverse of an element? Suppose Q(X) =

∑d−1
i=0 biX

i and
we want the inverse of β = Q(α). Since P (X) is irreducible, Q(X), P (X) are relatively prime in
Q[X ]. So by the extended Euclidean algorithm (§II.4), there exist A(X), B(X) ∈ Q[X ] such that
A(X)P (X) + B(X)Q(X) = 1. Hence B(α)Q(α) = 1, or B(α) = β−1.
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Arithmetical Structure of Number Fields. An algebraic number α is integral (or, an algebraic
integer) if α is the root of a monic integer polynomial. The set of algebraic integers is denoted O. As
expected, ordinary integers are algebraic integers. In the next section, we show that O is a subring
of Z. This subring plays a role analogous to that of Z inside Q (or, as we say, gives the algebraic
numbers its “arithmetical structure”). Denote the set of algebraic integers in a number field Q(α)
by

Oα := Q(α) ∩ O,

which we call number rings. The simplest example of a number ring is Oi, called the ring of

Gaussian integer. It turns out that Oi = Z[i]. On the other hand, 1
2 (1−

√
5) is an algebraic integer

since it is the root of X2 − X − 1. This shows that O(α) is not always of the form Z[α].

Let the minimal polynomial of α be P (X); if α is also an algebraic integer then it is the root of a
monic polynomial Q(X) of minimal degree. The following shows that P (X) = Q(X).

Lemma 10
(i) Let P (X), Q(X) ∈ Z[X ] such that P (X) is the minimal polynomial of α and Q(α) = 0. Then
P (X) divides Q(X).
(ii) The minimal polynomial of an algebraic number is unique.
(iii) The minimal polynomial of an algebraic integer is monic.

Proof. (i) By the Division Property for polynomials (§II.3), Q(X) = b(X)P (X) + r(X) for some
rational polynomials b(X), r(X) ∈ Q[X ] where deg(r) < deg(P ). Hence Q(α) = P (α) = 0 implies
r(α) = 0. Since P is the minimal polynomial, this means r(X) is the zero polynomial, i.e., Q(X) =
b(X)P (X). We may choose ξ ∈ Q such that ξ · b(X) is a primitive integral polynomial. By Gauss’
Lemma (§III.1), ξQ(X) is a primitive polynomial since it is the product of two primitive polynomials,
ξQ(X) = ξb(X) · P (X). Thus P (X) divides ξQ(X). By primitive factorization in Z[X ] (§III.1),
ξQ(X) equals prim(Q(X)). Hence P (X) divides prim(Q(X)) which divides Q(X).
(ii) If deg Q = deg P this means P, Q are associates. But the distinguished element of a set of
associates is unique. Uniqueness of the minimal polynomial for α follows.
(iii) If in (i) we also have that Q(X) is primitive then unique factorization implies ξ = 1. If α is
an algebraic integer, let Q(X) be a monic polynomial such that Q(α) = 0. Then in part (i), ξ = 1
implies Q(X) = b(X)P (X) and hence P (X) must be monic. Q.E.D.

From this lemma (iii), we see that the only algebraic integers in Q is Z:

O ∩ Q = Z.

The justifies calling the elements of Z the rational integers (but colloquially we just say ordinary
integers).

Lemma 11 Every algebraic number has the form α = β/n where β is an algebraic integer and
n ∈ Z.

Proof. Say α is a root of P (X) ∈ Z[X ]. If P (X) =
∑n

i=0 aiX
i where a = an then

an−1P (X) =

n∑

i=0

aia
n−1−i(aX)i

= Q(aX)
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where Q(Y ) =
∑n

i=0(aia
n−1−i)Y i is a monic polynomial. So aα is an algebraic integer since it is a

root of Q(Y ). Q.E.D.

We extend in a routine way the basic arithmetical concepts to number rings. Let us fix a number
ring Oα and simply say “integer” for an element of this ring. For integers a, b, we say a divides b
(denoted a|b) if there exists an integer c such that ac = b. A unit u is an integer that divides 1 (and
hence every integer in the number ring). Alternatively, u and u−1 are both integers iff they are both
units. It is easy to see that u is the root of a monic polynomial P (X) whose constant term is unity,
1. Two integers a, b are associates if a = ub for some unit u. An integer is irreducible if it is only
divisible by units and its associates.

Just as a number field is a vector space, its underlying number ring is a lattice. We will investigate
the geometric properties of lattices in Lecture VIII. A basic property about Oα is that it has
a integral basis, ω1, . . . , ωn, meaning that ωi are integers and every integer is a rational integral
combination of these ωi’s.

Remarks. The recent book of Cohen [43] is a source on algebraic number computations. See also
Zimmer [223].

Exercises

Exercise 3.1:
a) Complete the one-line argument in Liouville’s result: choose the constant c in equation (6)
from (7).
b) Show that α in equation (8) is transcendental. HINT: take q = 2.
c) Extend Liouville’s argument to show that |α −

√
p/q| ≥ Cq−(n+1)/2.

2

Exercise 3.2: Let R ⊆ R′ be rings. An element α ∈ R′ that satisfies a monic polynomial in R[X ]
is said to be integral over R. The set R∗ of elements in R′ that are integral over R′ is called
the integral closure of R in R′. Show that the integral closure R∗ is a ring that contains R.
NOTE: Oα can thus be defined to be the integral closure of Z in Q(α). 2

Exercise 3.3:
a) Show that O√

−1 = Z[i] (the Gaussian integers).

b) Show that O√
−3 = Z[ω] = {m + nω : m, n ∈ Z} where ω = 1+

√
−3

2 . NOTE: ω2 = ω − 1.
c) Determine the quadratic integers. More precisely, determine O√

d for all square-free d ∈ Z,

d 6= 1. HINT: O√
d = Z[

√
d] if d ≡ 2 or d ≡ 3 (mod 4) and O√

d = Z[
√

d−1
2 ] if d ≡ 1(mod 4).

d) Prove that Oα is a subring of Q(α). 2

Exercise 3.4:
a) Show that α ∈ Q(

√
d) is integer iff the trace Tr(α) = α + α and the norm N(α) = αα are

ordinary integers.
b) Every ideal I ⊆ O√

d is a module, i.e., has the form Z[α, β] :={mα + nβ : m, n ∈ Z}, for

some α, β ∈ Q(
√

d).
c) A module M = Z[α, β] is an ideal iff its coefficient ring {x ∈ Q(

√
d) : xM ⊆ M} is precisely

O√
d. 2
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Exercise 3.5: (H. Mann) Let θ be a root of X3 + 4X + 7. Show that 1, θ, θ2 is an integral basis for
Q(θ). 2

§4. Resultants

There are two classical methods for obtaining basic properties of algebraic numbers, namely the
theory of symmetric functions and the theory of resultants (§III.3). Here we take the latter approach.
We first develop some properties of the resultant.

The results in this section are valid in any algebraically closed field. We fix such a field D = D.

Lemma 12 Let A, B ∈ D[X ] with deg A = m, deg B = n and let α, β ∈ D.

(i) res(α, B) = αn. By definition, res(α, β) = 1.

(ii) res(X − α, B) = B(α).

(iii) res(A, B) = (−1)mnres(B, A).

(iv) res(αA, B) = αnres(A, B).

We leave the simple proof of this lemma as an exercise (the proof of (ii) is instructive).

Lemma 13 res(A, B) = 0 if and only if GCD(A, B) is non-constant.

Proof. Although this is a special case of the Fundamental theorem of subresultants, it is instructive
to give a direct proof. Suppose res(A, B) = 0. Consider the matrix equation

w · S = 0, w = (un−1, un−2, . . . , u0, vm−1, . . . , v0), (10)

where S is the (n+m)–square Sylvester matrix of A, B and w is a row (m+n)-vector of unknowns.

There is a non-trivial solution w since det(S) = res(A, B) = 0. Now define U =
∑n−1

j=0 ujX
j and

V =
∑m−1

i=0 viX
i. Then (10), or rather w · S · x = 0 where x = (Xm+n−1, Xm+n−2, . . . , X, 1)T ,

amounts to the polynomial equation
UA + V B = 0.

But by the unique factorization theorem for D[X ] (recall D is a field), A has a factor of degree at
most m− 1 in G and hence a factor of degree at least 1 in B. This show GCD(A, B) is non-constant,
as desired. Conversely, if GCD(A, B) has positive degree, then the equation

B̂A − ÂB = 0

holds where B̂ = B/GCD(A, B), Â = A/GCD(A, B). This can be written in the matrix form (10) as
before. Thus 0 = det(S) = res(A, B). Q.E.D.

Proposition 12(ii) is a special case of the following (see [33, p. 177] for a different proof):

Lemma 14 Let A, B ∈ D[X ], α ∈ D, deg B > 0. Then

res((X − α) · A, B) = B(α)res(A, B).
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Proof. Let A∗ = (X −α) ·A, m = deg A∗, n = deg B and M the Sylvester matrix of A∗, B. Writing

A(X) =
∑m−1

i=0 aiX
i and B(X) =

∑n
i=0 biX

i, then M is given by




am−1 am−2 − αam−1 am−3 − αam−2 · · · a0 − αa1 −αa0

am−1 am−2 − αam−1 · · · a1 − αa2 a0 − αa1 −αa0

. . .
. . .

am−1 · · · a0 − αa1 −αa0

bn bn−1 · · · b1 b0

bn · · · b2 b1 b0

. . .
. . .

bn bn−1 · · · b1 b0




We now apply the following operations to M , in the indicated order: add α times column 1 to
column 2, then add α times column 2 to column 3, etc. In general, we add α times column i to
column i + 1, for i = 1, . . . , m + n − 1. The resulting matrix M ′ can be succinctly described by
introducing the notation

B/X i, (i ∈ Z)

to denote the integral part of B(X) divided by X i. For instance, B/Xn = bn, B/Xn−1 = bnX+bn−1

and B/X = bnXn−1 + bn−1X
n−2 + · · ·+ b2X + b1. Note that if i ≤ 0, then we are just multiplying

B(X) by X−i, as in B/X0 = B(X) and B/X−2 = X2B(X). Finally, we write B/αi to denote the
substitution of α for X in B/X i. The matrix M ′ is therefore

M ′ =




am−1 am−2 am−3 · · · a0 0
am−1 am−2 · · · a1 a0 0

. . .
. . .

am−1 · · · a0 0
B/αn B/αn−1 · · · B/α1 B(α) B/α−1 · · · B/α−m+2 B/α−m+1

B/αn · · · B/α1 B(α) · · · B/α−m+3 B/α−m+2

. . .
. . .

...
B/αn B/αn−1 · · · B/α1 B(α) B/α−1

B/αn B/αn−1 · · · B/α1 B(α)




Note that if we subtract α times the last row from the last-but-one row, we transform that row into

(0, . . . , 0, bn, bn−1, . . . , b1, b0, 0).

In general, we subtract α times row m + n− i + 1 from the (m + n− i)th row (for i = 1, . . . , m− 1),
we obtain the matrix

M ′′ =




am−1 am−2 am−3 · · · a0 0
am−1 am−2 · · · a1 a0 0

. . .
. . .

. . .

am−1 · · · a1 a0 0
bn bn−1 · · · b1 b0 0 · · · 0 0

bn · · · b1 b0 0 0
. . .

. . .
...

bn bn−1 · · · b0 0
B/αn B/αn−1 · · · B/α1 B(α)




But the last column of M ′′ contains only one non-zero entry B(α) at the bottom right corner, and
the co-factor of this entry is the determinant of the Sylvester matrix of A, B. Hence detM ′′ =
B(α)res(A, B). Q.E.D.
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Theorem 15 Let A, B ∈ D[X ], a = lead(A), b = lead(B), deg A = m, deg B = n with roots

α1, . . . , αm, β1, . . . , βn ∈ D.

Then res(A, B) is equal to each of the following expressions:

(i) an

m∏

i=1

B(αi)

(ii) (−1)mnbm

n∏

j=1

A(βj)

(iii) anbm

m∏

i=1

n∏

j=1

(αi − βj)

Proof. Writing A = a

m∏

i=1

(X − αi), we get from the previous lemma,

res(A, B) = anres

(
m∏

i=1

(X − αi), B

)

= anB(α1)res

(
m∏

i=2

(X − αi), B

)

= · · ·
= anB(α1) · · ·B(αm).

This shows (i), and (ii) is similar. We deduce (iii) from (i) since

B(αi) = b
n∏

j=1

(αi − βj).

Q.E.D.

The expression in part (i) of the theorem is also known as Poisson’s definition of the resultant.

If A, B are multivariate polynomials, we can take their resultant by viewing them as univariate
polynomials in any one of the variables Y . To indicate this, we write resY (A, B).

Lemma 16 Let A, B ∈ D[X ] and α, β ∈ D such that A(α) = B(β) = 0 and deg A = m, deg B = n.

(i) 1/α is the root of XmA(1/X) provided α 6= 0.

(ii) β ± α is a root of C(X) = resY (A(Y ), B(X ∓ Y )).

(iii) αβ is a root of C(X) = resY (A(Y ), Y nB(X
Y )).
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Proof.

(i) This is immediate.

(ii) resY (A(Y ), B(X ∓ Y )) = an

m∏

i=1

B(X ∓ αi)

= anbm

m∏

i=1

n∏

j=1

(X ∓ αi − βj).

(iii) resY (A(Y ), Y nB(X
Y )) = an

m∏

i=1

(αn
i B(

X

αi
))

= an

m∏

i=1

(bαn
i

n∏

j=1

(
X

αi
− βj))

= anbm

m∏

i=1

n∏

j=1

(X − αiβj).

Q.E.D.

The proof of (ii) and (iii) shows that if A(X), B(X) are monic then C(X) is monic. Thus:

Corollary 17 The algebraic integers form a ring: if α, β are algebraic integers, so are α ± β and
αβ.

Corollary 18 The set of algebraic numbers forms a field extension of Q. Furthermore, if α, β are
algebraic numbers of degrees m and n respectively then both α + β and αβ have degrees ≤ mn.

Proof. We only have to verify the degree bounds. For α±β, we must show that resY (A(Y ), B(X ∓
Y )) has X-degree at most mn. Let M = (ai,j) be the (m + n)-square Sylvester matrix whose
determinant equals resY (A(Y ), B(X ∓ Y )). Then the first n rows of M have constant entries
(corresponding to coefficients of A(Y )) while the last m rows have entries that are polynomials in
X (corresponding to coefficients of B(X ∓ Y ), viewed as a polynomial in Y ). Moreover, each entry
in the last m rows has X-degree at most n. Thus each of (m + n)! terms in the determinant of M
is of X-degree at most mn. A similar argument holds for resY (A(Y ), Y nB(X/Y )). Q.E.D.

Computation of Resultants. The computation of resultants can be performed more efficiently
than using the obvious determinant computation. This is based on the following simple observation:
let A(X) = B(X)Q(X) + R(X) where m = deg A, n = deg B, r = deg R and m ≥ n > r. Then

res(A, B) = (−1)n(m−r)bm−rres(R, B), (b = lead(B)) (11)

= (−1)mnbm−rres(B, R). (12)

Thus, the resultant of A, B can be expressed in terms of the resultant of B, R. Since R is the
remainder of A divided by B, we can apply an Euclidean-like algorithm in case the coefficients come
from a field F : given A, B ∈ F [X ], we construct the Euclidean remainder sequence (Lecture III):

A0 = A, A1 = B, A2, . . . , Ah
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where Ai+1 = Ai−1 mod Ai and Ah+1 = 0. If deg Ah is non-constant, then res(A, B) = 0. Otherwise,
we can repeatedly apply the formula of equation (11) until the basis case given by res(Ah−1, Ah) =

A
deg(Ah−1)
h . This computation can further be sped up: J. Schwartz [186] has shown that the Half-

GCD technique (Lecture II) can be applied to this problem.

Exercises

Exercise 4.1: Compute the minimal polynomial of
√

3 − 3
√

3 + 1. 2

Exercise 4.2: res(AB, C) = res(A, C) · res(B, C). 2

Exercise 4.3: Let α, β be real algebraic numbers. Construct a polynomial C(X) ∈ Z[X ] such that
C(α + iβ) = 0. Hence α + iβ is algebraic. Writing C(α + iβ) = C0(α, β) + iC1(α, β), can you
give direct constructions of C0, C1? 2

Exercise 4.4: An algebraic integer that divides 1 is called a unit.
(i) An algebraic integer is a unit iff its minimal polynomial has trailing coefficient ±1.
(ii) The inverse of a unit is a unit; the product of two units is a unit. 2

Exercise 4.5: A root of a monic polynomial with coefficients that are algebraic integers is an
algebraic integer. 2

Exercise 4.6: (Projection) Let R(Y ) be the resultant, with respect to the variable X , of F (X, Y )
and G(X, Y ).
(i) Justify the interpretation of the roots of R(Y ) to be the projection of the set F (X, Y ) =
G(X, Y ) = 0.
(ii) Suppose G(X, Y ) is derivative of F (X, Y ) with respect to X . Give the interpretation of
the roots of R(Y ). 2

Exercise 4.7: [Bezout-Dixon Resultant] With A(X), B(X) as above, consider the bivariate poly-
nomial,

D(X, Y ) := det

[
A(X) B(X)
A(Y ) B(Y )

]
.

(i) Show that ∆(X, Y ) := D(X,Y )
X−Y is a polynomial.

(ii) The polynomial ∆(X, Y ), regarded as a polynomial in Y is therefore of degree m − 1.
Show that for every common root α of A(X) and B(X), ∆(α, Y ) = 0. Conversely, show that
if deg(A) = deg(B) and ∆(α, Y ) = 0 then α is a common root of A, B.
(iii) Construct a determinant R(A, B) in the coefficients of A(X) and B(X) whose vanishing
corresponds to the existence of a common root of A(X) and B(X)¿
(iv) Construct R(A, B) where A(X) and B(X) are polynomials of degree 2 with indeterminate
coefficients. Confirm that this is (up to sign) equal to the Sylvester resultant of A, B.
(v) Construct R(A, B) where A, B again has indeterminate coefficients and deg(A) = 2 and
deg(B) = 3. What is the relation between R(A, B) and the Sylvester resultant of A, B? In
general, what can you say if deg(A) 6= deg(B)?
(vi) Design and analyze an efficient algorithm to compute R(A, B).
(vii) [Dixon] Generalize this resultant construction to three bivariate polynomials,
A(X, Y ), B(X, Y ) and C(X, Y ). That is, construct a polynomial R(A, B, C) in the coefficients
of A, B, C such that A, B, C have a common solution iff R(A, B, C) = 0. 2
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§5. Symmetric Functions

The other approach to the basic properties of algebraic numbers is via the theory of symmetric
functions. This approach is often the simplest way to show existence results (cf. theorem 23 below).
But computationally, the use of symmetric functions seems inferior to resultants.

Consider polynomials in D[X] = D[X1, . . . , Xn] where D is a domain. Let Sn denote the set of
all permutations on the set {1, 2, . . . , n}. This is often called the symmetric!group on n-symbols.
A polynomial A(X1, . . . , Xn) is symmetric in X1, . . . , Xn if for all permutations π ∈ Sn, we have
A(X1, . . . , Xn) = A(Xπ(1), . . . , Xπ(n)). For example, the following set of functions are symmetric:

σ1(X1, . . . , Xn) =

n∑

i=1

Xi,

σ2(X1, . . . , Xn) =
∑

1≤i<j≤n

XiXj,

...

σk(X1, . . . , Xn) =
∑

1≤i1<i2<···<ik≤n

Xi1Xi2 · · ·Xik
,

...

σn(X1, . . . , Xn) = X1X2 · · ·Xn.

We call σi the ith elementary symmetric function (on X1, . . . , Xn). We could also define σ0 = 1.

Let e = (e1, . . . , en) where e1 ≥ e2 ≥ · · · ≥ en ≥ 0. If π ∈ Sn, let Xe
π denote the power product

Xe1

π(1)X
e2

π(2) · · ·X
en

π(n).

In case π is the identity, we write Xe instead of Xe
π. In our inductive proofs, we need the lexico-

graphic!ordering on n-tuples of numbers:

(d1, . . . , dn) ≥
LEX

(e1, . . . , en)

is defined to mean that the first non-zero entry of (d1−e1, . . . , dn−en), if any exists, is positive. If we
identify a power product Xe with the n-tuple e, then the set PP = PP(X) of power products can be
identified with Nn and hence given the lexicographical ordering. There is a unique minimal element
in PP, namely 1. In our proof below, we use the fact that PP is well-ordered4 by the lexicographic
ordering. This will be proved in a more general context in §XII.1.

We now introduce two classes of symmetric polynomials: first, define Ge = Ge1,...,en
to be the sum

over all distinct terms in the multiset
{Xe

π : π ∈ Sn}.
For example, σ1 = G1,0,...,0, σ2 = G1,1,0,...,0 and σn = G1,1,...,1.

Lemma 19 Ge is symmetric.

Proof. Clearly the expression

G′
e =

∑

π∈Sn

Xe
π

4A linearly ordered set S is well-ordered if every non-empty subset has a least element.
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is symmetric. We only have to show that there is a constant ce such that G′
e = ceGe. Let

Aut(e) :={π ∈ Sn : Xe
π = Xe}.

It is easy to see that Aut(e) is a subgroup of Sn. For any ρ ∈ Sn, we have

Aut(e) · ρ = {π ∈ Sn : Xe
πρ−1 = Xe} = {π ∈ Sn : Xe

π = Xe
ρ}.

This shows that Xe
ρ occurs exactly |Aut(e)| times in G′

e. As this number does not depend on ρ, we
conclude the desired constant is ce = |Aut(e)|. Q.E.D.

A basic polynomial is one of the form a · Ge for some a ∈ D \ {0} and e = (e1, . . . , en) where
e1 ≥ · · · en ≥ 0. Clearly a symmetric polynomial A(X1, . . . , Xn) can be written as a sum E of basic
polynomials:

E =

m∑

i=1

aiGe(i)

where each aiGe(i) is a basic polynomial. If the e(i)’s in this expression are distinct then the
expression is unique (up to a permutation of the terms). Call this unique expression E the basic
decomposition of A(X1, . . . , Xn).

With e = (e1, . . . , en) as before, the second class of polynomials has the form

Γe := σe1−e2

1 σe2−e3

2 · · ·σen−1−en

n−1 σen

n . (13)

Γe is symmetric since it is a product of symmetric polynomials. A σ-basic polynomial is one of
the form a · Γe, a ∈ D \ {0}. If a symmetric polynomial can be written as a sum E′ of σ-basic
polynomials, then E′ is unique in the same sense as in a basic decomposition (Exercise). We call E′

a σ-basic decomposition. The σ-degree of E′ is the total degree of E′ when viewed as a polynomial
in the σi’s. Likewise, say E′ is σ-homogeneous if E′ is homogeneous as a polynomial in the σi’s. The
next result shows that every symmetric polynomial has a σ-basic decomposition.

Examples. Let n = 2. The symmetric polynomial A1(X, Y ) = X2 + Y 2 can be expressed as
A1(X, Y ) = (X +Y )2 − 2XY = σ2

1 − 2σ2. In fact, A1(X, Y ) is the basic polynomial G2,0, and it has
the σ-basic decomposition Γ2,0 − 2Γ2,2. Now let n = 3. A2(X, Y, Z) = (XY )2 + (Y Z)2 + (ZX)2 can
be written σ2

2 − 2σ1σ3. Then A2 = G2,2,0 and has the σ-basic decomposition Γ2,2,0 − 2Γ2,1,1.

The maximum degree (§0.10) of A(X1, . . . , Xn) is the maximum Xi-degree of A, i = 1, . . . , n. If A
is symmetric, the maximum degree of A is equal to the Xi-degree for any i. Thus the maximum
degrees of both A1 and A2 in these examples are 2. The σ-degree of their σ-basic decompositions
are also 2.

We are ready to prove:

Theorem 20 (σ-Basic Decomposition of Symmetric Polynomials)
(i) Every symmetric polynomial A(X1, . . . , Xn) ∈ D[X1, . . . , Xn] has a σ-basic decomposition E′.
(ii) If A has maximum degree d then E′ has σ-degree d.
(iii) If A is homogeneous then E′ is σ-homogeneous.

Proof. (i) The result is trivial if A is a constant polynomial. So assume otherwise. For some
e = (e1, . . . , en), the basic decomposition of A(X1, . . . , Xn) has the form

A(X1, . . . , Xn) = a · Ge + A′, (0 6= a ∈ D) (14)
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where A′ involves power products that are lexicographically less than Xe. Now consider Γe in
equation (13): expanding each σi term into sums of monomials,

Γe = (X1 + · · · + Xn)e1−e2(X1X2 + · · · + Xn−1Xn)e2−e3 · · · (X1X2 · · ·Xn)en

=
{
(X1)

e1−e2(X1X2)
e2−e3 · · · (X1 · · ·Xn)en

}
+ · · ·

· · · +
{
(Xn)e1−e2(Xn−1Xn)e2−e3 · · · (X1 · · ·Xn)en

}

= {Xe1

1 Xe2

2 · · ·Xen
n } + · · · +

{
Xe1

n Xe2

n−1 · · ·Xen

1

}
. (15)

The basic decomposition of Γe contains the basic polynomial Ge: this follows from the presence of
the term Xe1

1 Xe2

2 · · ·Xen
n in equation (15) and the fact that Γe is symmetric. Thus

Γe = Ge + G′ (16)

for some symmetric polynomial G′. Moreover, the basic decomposition of G′ involves only power
products that are lexicographically less than Xe: this is clear since Xe is obtained by multiplying
together the lexicographically largest power product in each σ-term. From equations (14) and (16),
we conclude that

A(X1, . . . , Xn) = a · Γe − a · G′ + A′ (17)

where −a·G′+A′ involves power products that are lexicographically less than Xe. By the principal of
induction for well-ordered sets (see Exercise), we easily conclude that A has a σ-basic decomposition.

(ii) Note that if A has maximum degree d then in equation (17), the σ-degree of a · Γe is d, and the
maximum degree of −a · G′ + A′ is at most d. The result follows by induction.

(iii) Immediate. Q.E.D.

Since a σ-basic polynomial is a polynomial in the elementary symmetric functions, we conclude:

Theorem 21 (Fundamental Theorem of Symmetric Functions)
If A(X1, . . . , Xn) ∈ D[X] is a symmetric polynomial of maximum degree d, then there is a polynomial
B(X1, . . . , Xn) ∈ D[X] of total degree d such that

A(X1, . . . , Xn) = B(σ1, . . . , σn)

and σi is the ith elementary symmetric function on X1, . . . , Xn. If A is homogeneous, so is B.

Let
γ(1), γ(2), . . . , γ(n)

be all the roots (not necessarily distinct) of a polynomial

G(X) =

n∑

i=0

giX
i, (gi ∈ D).

Hence G(X) = gn

∏n
i=1(X − γ(i)). Equating coefficients in the two expressions for G(X),

(−1)ign−i = gn · σi(γ
(1), . . . , γ(n))

for i = 0, 1, . . . , n. So the coefficient of Xn−i in G(X) is, up to signs, equal to the product of
gn with the ith elementary symmetric function on the roots of G(X). If A ∈ D[X1, . . . , Xn] is
symmetric and homogeneous of degree d, then by the Fundamental Theorem there exists B ∈
D[X1, . . . , Xn] such that gd

nA(γ(1), . . . , γ(n)) = B(−gn−1, . . . , (−1)ng0), which is an element of D. If
A is not homogeneous, the same argument can be applied to each homogeneous component of A,
thus showing:
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Theorem 22 Let G(X) ∈ D[X ] be as above. If A ∈ D[X1, . . . , Xn] is symmetric of degree d then
(gn)dA(γ(1), . . . , γ(n)) is a polynomial in the coefficients of G(X). In particular,

(gn)dA(γ(1), . . . , γ(n)) ∈ D.

We give another application of the Fundamental Theorem:

Theorem 23 If α is algebraic over E, and E is an algebraic extension of a domain D, then α is
algebraic over D.

Proof. Since α is algebraic over D iff it is algebraic over the quotient field of D, we may assume that
D is a field in the following proof. Let α be the root of the polynomial B(X) =

∑n
i=0 βiX

i where
βi ∈ E. Let

Ri :={β(j)
i : j = 1, . . . , di} (18)

be the set of conjugates of βi over D. For each choice of j0, j1, . . . , jn, consider the ‘conjugate’ of
B(X),

Bj0,...,jn
(X) :=

n∑

i=0

β
(ji)
i X i.

Form the polynomial

A(X) :=
∏

j0,j1,...,jn

Bj0,...,jn
(X).

Note that B(X)|A(X) and hence α is a root of A(X). The theorem follows if we show that A(X) ∈
D[X ]. Fix any coefficient ak in A(X) =

∑
k akXk. Let Di := D[Ri, Ri+1, . . . , Rn], i = 0, 1, . . . , n.

Note that Di is also a field, since D is a field (see §V.1). View ak as a polynomial in the variables R0,
with coefficients in D1, i.e., ak ∈ D1[R0]. But ak is symmetric in R0 and so ak ∈ D1 by theorem 22
above. Next we view ak as a polynomial in D2[R1]. Again, ak is symmetric in R1 and so ak ∈ D2.
Repeating this argument, we finally obtain ak ∈ D. Q.E.D.

We have shown that the set of algebraic numbers forms a field extension of Z. By the preceding,
this set is algebraically closed. Clearly, it is the smallest such extension of Z. This proves:

Theorem 24 The algebraic closure Z of Z is the set of algebraic numbers.

Exercises

Exercise 5.1: Show the uniqueness of σ-basic decompositions. 2

Exercise 5.2: Let sk(X1, . . . , Xn) =
∑n

i=1 Xk
i for k = 1, . . . , n. Express sk in terms of σ1, . . . , σk.

Conversely, express σk in terms of s1, . . . , sk. 2

Exercise 5.3: The principle of induction for well-ordered sets S is this: Suppose a statement P (x)
is true for all minimal elements x of S, and for any y ∈ S, whenever P (x) is true for all x < y,
then P (y) also holds. Then P (x) is true for all x ∈ S. 2
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Exercise 5.4: Generalize the above proof that Ge is symmetric: fix any subgroup ∆ ≤ Sn and we
need not assume that the ei’s are non-decreasing. As above, define Ge to be the sum over the
distinct terms in the multiset {Xe

π : π ∈ ∆}. Let Aut∆(e) = {ρ ∈ ∆ : Xe
ρ = Xe} be the group

of ∆-automorphisms of Xe.
(a) Show that there is a constant ce such that

∑
π∈∆ Xe

π is equal to ceGe.
(b) The number of terms in Ge is equal to the number of cosets of Aut∆(Xe) in ∆. 2

Exercise 5.5: Fix e = (e1, . . . , en), ei ≥ 0, and subgroup ∆ ≤ Sn, as in the last exercise. Let
U = {Xe

π : π ∈ Sn}. For t ∈ U , the ∆-orbit of t is t∆ = {tπ : π ∈ ∆}. Let Λ ≤ ∆ be a
subgroup. Let Σ be the normalizer of Λ in ∆, defined as Σ = {π ∈ ∆ : π−1Λπ = Λ}. (Note:
in the permutation, π−1ρπ we first apply π−1, then ρ, finally π.) Define (cf. [148, 149]):

N∆(Λ) := {t ∈ U : Aut∆(t) = Λ},
N̂∆(Λ) := {Q : Q is an ∆-orbit , Q ∩ N∆(Λ) 6= ∅}.

Let t ∈ N∆(Λ).
(a) Show that Aut∆(tπ) = π−1Λπ.
(b) t∆ ∩ N∆(Λ) = tΣ.
(c) |tΣ| equals the number of cosets of Λ. 2

Exercise 5.6: Suppose A(X1, . . . , Xn) is a symmetric polynomial with integer coefficients.
(a) If we write A as a polynomial P (σ1, . . . , σn) in the elementary symmetric functions, what
is a bound on the ‖P‖∞ as a function of ‖A‖∞, n and deg A?
(b) Give an algorithm to convert a symmetric polynomial A(X1, . . . , Xn) (given as a sum
of monomials) into a polynomial B(σ1, . . . , σn) in the elementary symmetric functions σi.
Analyze its complexity. In particular, bound ‖B‖∞ in terms of ‖A‖∞.
(c) We want to make the proof of theorem 23 a constructive result: suppose that coefficients of
the minimal polynomials of the βi’s are given. Give an algorithm to construct the polynomial
A(X). What is its complexity? 2

Exercise 5.7: A polynomial A = A(X1, . . . , Xn) is alternating if for all transpositions of a pair
of variables, Xi ↔ Xj (i 6= j), the sign of A changes. Show that A can be expressed (up to
sign) as

A = B
∏

i<j

(Xi − Xj)

for some symmetric polynomial B. 2

§6. Discriminant

For any non-constant polynomial A(X) ∈ C[X ], we define its minimum root separation to be

sep(A) := min
1≤i<j≤k

|αi − αj |

where the distinct roots of A(X) are α1, . . . , αk ∈ C. Clearly k ≥ 1 and if k = 1, then sep(A) = ∞
by definition. In order to get a bound on sep(A), we introduce a classical tool in the study of
polynomials.

Let D be any domain. The discriminant of A ∈ D[X ] is

disc(A) = a2m−2
∏

1≤i<j≤m

(αi − αj)
2
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where α1, . . . , αm ∈ D are the roots (not necessarily distinct) of A, deg(A) = m ≥ 2, a = lead(A).
If A(X) = aX2 + bx + c, then its discriminant is the familiar disc(A) = b2 − 4ac. It is clear from
this definition that disc(A) = 0 iff A has repeated roots. To see that disc(A) ∈ D, note that the
function

∏
i≤i<j≤m(αi − αj)

2 is a symmetric function of the roots of A(X). Since this function has
maximum degree 2(m− 1), theorem 22 implies that our expression for disc(A) is an element of D.
But this gives no indication on how to compute it. The following result gives the remedy. With A′

denoting the derivative of A, we have:

Lemma 25 a · disc(A) = (−1)(
m

2 )res(A, A′).

Proof.

res(A, A′) = am−1
m∏

i=1

A′(αi) (by theorem 15)

= am−1
m∏

i=1


a

m∏

j=1

(X − αj)




′∣∣∣∣∣∣
X=αi

= a2m−1
m∏

i=1




m∑

k=1

m∏

j=1

j 6=k

(X − αj)




∣∣∣∣∣∣∣
X=αi

= a2m−1
m∏

i=1




m∏

j=1

j 6=i

(αi − αj)




= a2m−1
∏

1≤i<j≤m

(−1)(αi − αj)
2

= (−1)(
m

2 )a · disc(A).

Q.E.D.

The following matrix

Vm = Vm(α1, α2, . . . , αm) :=




1 1 · · · 1
α1 α2 · · · αm

α2
1 α2

2 · · · α2
m

...
...

...
αm−1

1 αm−1
2 · · · αm−1

m




is called a Vandermonde matrix, and its determinant is a Vandermonde determinant.

Lemma 26 ∏

1≤i<j≤m

(αi − αj) = (−1)(
m

2 ) detVm(α1, α2, . . . , αm).

Proof. One can evaluate detVm recursively as follows. View detVm as a polynomial Pm(αm) in the
variable αm. The degree of αm in Pm is m − 1, as seen by expanding the determinant by the last
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column. If we replace αm in Pm(αm) by αi (i = 1, . . . , m − 1), we get the value Pm(αi) = 0. Hence
αi is a root and by basic properties of polynomials (§2),

Pm(αm) = U · (αm − α1)(αm − α2) · · · (αm − αm−1)

where U is the coefficient of αm−1
m in Pm. But U is another Vandermonde determinant Pm−1:

Pm−1 = det




1 1 · · · 1
α1 α2 · · · αm−1

α2
1 α2

2 · · · α2
m−1

...
...

...
αm−2

1 αm−2
2 · · · αm−2

m−1




= detVm−1(α1, . . . , αm−1).

Inductively, let

(−1)(
m−1

2 )Pm−1 =
∏

1≤i<j≤m−1

(αi − αj).

Hence

Pm = U ·
m−1∏

i=1

(αm − αi)

= (−1)(
m−1

2 )Pm−1 · (−1)m−1
m−1∏

i=1

(αi − αm)

= (−1)(
m

2 )
∏

1≤i<j≤m−1

(αi − αj) ·
m−1∏

i=1

(αi − αm)

= (−1)(
m

2 )
∏

1≤i<j≤m

(αi − αj).

Q.E.D.

For a monic polynomial A,
√
disc(A) is equal to a Vandermonde determinant, up to sign. Note

that
√
disc(A) is however not a symmetric function (although, up to sign, it is symmetric).

Exercises

Exercise 6.1: The discriminant of A(X) =
∑3

i=0 aiX
i is a2

2a
2
1+18a3a2a1a0−4a3a

3
1−4a3

2a0−27a2
3a

2
0.
2

Exercise 6.2: disc(AB) = disc(A)disc(B)(res(A, B))2. 2

Exercise 6.3: Show that

disc(A) = det




s0 s1 · · · sm−1

s1 s2 · · · sm

...
sm−1 sm · · · s2m−2




where si =

m∑

j=1

αi
j (i = 0, . . . , 2m − 2). 2
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Exercise 6.4: Let A(X) be a monic polynomial of degree d. Show that the sign of its discriminant

is (−1)(d
2−r)/2 where r is the number of its real roots. 2

§7. Root Separation

We now prove a root separation bound. But first we quote Hadamard’s bound whose proof is delayed
to a later lecture (§VIII.2).

Lemma 27 (Hadamard’s determinantal inequality) Let M ∈ Cn×n. Then | det(M)| ≤∏n
i=1 ‖Ri‖2 where Ri is the ith row of M . Equality holds iff 〈Ri, Rj〉 = 0 for all i 6= j. Here

Rj denotes the complex conjugate of each component in Rj and 〈, 〉 is scalar product.

Recall (§IV.5) that the measure M(A) of a complex polynomial A is equal to the product |lead(A)| ·∏
i |αi| where i ranges over all complex roots αi of A with absolute value |αi| ≥ 1. (If i ranges over

an empty set, then M(A) = |lead(A)|.)

Theorem 28 (Davenport-Mahler) Assume A(X) ∈ C[X ] has roots α1, . . . αm ∈ C. For any
k + 1 of these roots, say α1, . . . , αk+1 (k = 1, . . . , m − 1), we reorder them so that

|α1| ≥ |α2| ≥ · · · ≥ |αk+1|.
Then

k∏

i=1

|αi − αi+1| >
√

|disc(A)| · M(A)−m+1 · m−m/2 ·
(√

3

m

)k

.

Proof. First let us assume A is monic. Let us give an upper bound on
√
|disc(A)| which by the

previous lemma is, up to sign, given by the Vandermonde determinant

detVm = det




1 1 · · · 1
α1 α2 · · · αm

α2
1 α2

2 · · · α2
m

...
...

...
αm−1

1 αm−1
2 · · · αm−1

m




.

We modify Vandermonde’s matrix by subtracting the 2nd from the 1st column, the 3rd column from
the 2nd, and so on, and finally the (k + 1)st column from the kth column. Hence the first k column
becomes (for i = 1, . . . , k):

(αi − αi+1)




0
1

β
(2)
i

β
(3)
i

...

β
(m−1)
i
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where β
(j)
i =

αj

i
−αj

i+1

αi−αi+1
=
∑j−1

ℓ=0 αℓ
iα

j−1−ℓ
i+1 . Hence

detVm =

k∏

i=1

(αi − αi+1) · det




0 0 · · · 0 1 · · · 1
1 1 · · · 1 αk+1 · · · αm

β
(2)
1 β

(2)
2 · · · β

(2)
k α2

k+1 · · · α2
m

...
...

...
...

...

β
(m−1)
1 β

(m−1)
2 · · · β

(m−1)
k αm−1

k+1 · · · αm−1
m




. (19)

Let us upper bound the 2-norm of each column in this last matrix. There are two cases to consider:

Case 1: The column is (0, 1, β
(2)
i , . . . , β

(m−1)
i )T . Each β

(j)
i satisfies

|β(j)
i |2 ≤

(
j−1∑

ℓ=0

|αi|ℓ|αi+1|j−1−ℓ

)2

≤
(
j|αi|j−1

)2

≤ j2(max{1, |αi|})2(m−1).

So the 2-norm of the column is




m−1∑

j=1

|β(j)
i |2




1
2

<

√
m3

3
· (max{1, |αi|})m−1,

using the fact that
∑m

j=1 j2 = m3

3 + m2

2 + m
6 < (m+1)3

3 .

Case 2: The column is (1, αi, α
2
i , . . . , α

m−1
i )T . Its 2-norm is

(
m−1∑

ℓ=0

|αi|2ℓ

)1/2

<
√

m · (max{1, |αi|})m−1.

The product of the 2-norms of all the m columns is therefore less than

(√
m3

3

)k

(
√

m)m−k
m∏

i=1

max{1, |αi|}m−1 =

(
m√
3

)k

· mm/2 · (M(A))m−1

where M(A) is the measure of A.

By Hadamard’s inequality, this product is an upper bound on the determinant in (19). Hence

√
|disc(A)| = | detVm| <

(
k∏

i=1

|αi − αi+1|
)

·
(

m√
3

)k

mm/2(M(A))m−1.

This proves the theorem for monic A. It remains to remove the assumption that A is monic. Suppose
lead(A) = a 6= 1. Then clearly we have proved that

k∏

i=1

|αi − αi+1| >
√
|disc(A/a)| · M(A/a)−m+1 · m−m/2 ·

(√
3

m

)k

.
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But disc(A/a) = disc(A)
a2m−2 and M(A/a)−m+1 = am−1M(A)−m+1. Hence the extraneous factors

involving a cancel out, as desired.

Q.E.D.

The preceding proof for k = 1 is from Mahler (1964), generalized here to k > 1 by Davenport (1985).
Since M(A) ≤ ‖A‖2 (§IV.5), we obtain:

Corollary 29
(i) sep(A) >

√
3|disc(A)| · ‖A‖−m+1

2 · m−(m+2)/2 where m = deg A.
(ii) |disc(A)| ≤ mm(M(A))2m−2 ≤ mm‖A‖2m−2

2 .

Proof. Part (i) comes from the theorem with k = 1. Part (ii) is a corollary of the proof of the main
theorem (essentially with k = 0). Q.E.D.

For integer polynomials, let us express part (i) in simpler, if cruder, terms. The bit-size of an integer
polynomial (§0.8) is simply the sum of the bit-sizes of its coefficients in the dense representation.

Lemma 30 If A ∈ Z[X ] is square-free of degree m and has bit-size s ≥ 4 then sep(A) >

‖A‖−m+1
2 m−(m+2)/2 ≥ 2−2s2

.

Proof. Note that
√
|disc(A)| ≥ 1, ‖A‖2 ≤ 2s, and m ≤ s. Q.E.D.

In other words, with O(s2) bits of accuracy we can separate the roots of A. Instead of the trivial
bound |disc(A)| ≥ 1 above, Siegel [191, p. 27] shows that a situation where this can be improved:
if A(X) ∈ Z[X ] is irreducible and monic with only real zeros then

disc(A) ≥
(

mm

m!

)2

, m = deg A.

Remark: Our root separation bound is useless when A has multiple roots, since the discriminant
is then zero. Of course, we can still obtain a bound indirectly, by computing the root separation
of the square-free part A∗ :=A/GCD(A, A′) of A, as follows. Since A∗|A, we have ‖A∗‖1 ≤ 2m‖A‖2

(§IV.5), assuming integer coefficients. Then

sep(A) = sep(A∗) > (2m‖A‖2)
−mm−(m+2)/2. (20)

This bound is inferior to what can be obtained by direct arguments. Rump [173] (as rectified by
Schwartz [187]) has shown

sep(A) >
(
2 · m(m/2)+2(‖A‖∞ + 1)m

)−1

. (21)

Exercises
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Exercise 7.1: [Mahler]
Show that the root separation bound in corollary 29(i) is tight up to some constant. HINT:
The polynomial A(X) = Xm − 1 has |disc(A)| = mm and sep(A) = 2 sin(π/m). 2

Exercise 7.2: (Sellen-Yap) Let ε = a +
√

b −√
c where a, b, c are all L-bit integers.

(i) Show that log2(1/|ε|) = 3L/2 + O(1). HINT: a is at most 1 + (L/2) bits long.
(ii) Show that this is the best possible by an infinite family of examples with L → ∞. HINT:
a = 2L/2−1, b = 2L−2−1 and c = 2L−1−2. These numbers are the best possible for L = 6, 8, 10,
as verified by exhaustive computation. 2

Exercise 7.3: (Mignotte) Consider the following polynomial A(X) = Xn − 2(aX − 1)2 where
n ≥ 3, a ≥ 3 are integers.
i) Show that A(X) is irreducible (using Eisenstein’s criterion).
ii) Show that A(X) has two real roots close to 1/a and their separation is at most 2a−(n+2)/2.
iii) Compute bounds for the absolute value of the roots and root separation, using the above
formulas. 2

§8. A Generalized Hadamard Bound

Let A(X), B(X) ∈ Z[X ] where A(X)B(X) has only simple roots, and n = max{deg A, deg B}. We
want a lower bound on |α − β| where α, β are roots of (respectively) A(X), B(X). Using the fact
that |α − β| ≥ sep(AB), we derive a bound:

|α − β| ≥ sep(A(X)B(X))

≥
√

3 · disc(A(X)B(X)) · ‖AB‖−(2n−1)
2 (2n)−(2n+2)/2

≥ (‖A‖2‖B‖2(1 + n))(−2n+1)(2n)−n−1,

using the fact ‖AB‖2 ≤ ‖A‖∞‖B‖∞(1 + n). This section gives a slightly sharper bound, based on
a generalization of the Hadamard bound [72]. The proof further applies to complex polynomials
A, B ∈ C[X ] that need not be square-free. Let W = [wij ]i,j ∈ Cn×n. Define

H(W ) :=(

n∏

i=1

n∑

j=1

|wij |2)
1
2 .

Then the Hadamard’s determinantal bound (Lemma 27) gives | det(W )| ≤ H(W ). The following
generalizes this.

Theorem 31 (Goldstein-Graham) Let M(X) = (Mij(X)) be an n-square matrix whose entries
Mij(X) are polynomials in C[X ]. Let W = [wij ]i,j be the matrix where wij = ‖Mij(X)‖1. Then
det(M(X)) ∈ C[X ] satisfies

‖ det(M(X))‖2 ≤ H(W ).

Proof. For any real t,

|Mij(e
i t)| ≤ wij
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where i =
√
−1. Hence Hadamard’s inequality implies

| det(M(ei t))|2 ≤
n∏

k=1

n∑

ℓ=1

|Mkℓ(e
i t)|2

≤
n∏

k=1

n∑

ℓ=1

w2
kℓ

= (H(W ))2.

But, if the polynomial det(M(X)) is a0 + a1X + a2X
2 + · · ·, then

1

2π

∫ 2π

0

| det(M(ei t))|2dt =
1

2π

∫ 2π

0

((
∑

k

akeikt)(
∑

ℓ

aℓe
i ℓt))dt

=
∑

k

|ak|2

since 1
2π

∫ 2π

0

e−i ktdt = δk,0 (Kronecker’s delta). (This is also known as Parseval’s identity.) Hence

‖ det(M(X))‖2
2 =

∑

k

|ak|2 (by definition)

=
1

2π

∫ 2π

0

| det(M(ei t))|2dt

≤ 1

2π

∫ 2π

0

(H(W ))2dt

= (H(W ))2.

Q.E.D.

Applications. (I) Consider our original problem of bounding the minimum separation between
distinct roots of A(X) and B(X) in Z[X ], where A(X)B(X) need not be square-free. Let

C(X) := resY (A(Y ), B(X + Y ))

where Y is a new variable. Note that α − β is a root of C(X). Assume m = deg A and n = deg B.
Writing B(X) =

∑n
i=0 biX

i, we have

B(X + Y ) =

n∑

i=0

bi(X + Y )i

=

n∑

i=0

bi

i∑

j=0

(
i

j

)
X i−jY j

=

n∑

j=0

Y j




n∑

i=j

bi

(
i

j

)
X i−j


 .

Let S(X) be the Sylvester matrix corresponding to resY (A(Y ), B(X +Y )). Consider a row of S(X)
corresponding to B(X + Y ): each non-zero entry is a polynomial of the form

Bj(X) :=

n∑

i=j

bi

(
i

j

)
X i−j .
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Its 1-norm is bounded as ‖Bj(X)‖1 ≤ ‖B‖∞
∑n

i=j

(
i
j

)
. Thus the 2-norm of such a row is at most

‖B‖∞




n∑

j=0




n∑

i=j

(
i

j

)


2



1
2

≤ ‖B‖∞
n∑

j=0

n∑

i=j

(
i

j

)

= ‖B‖∞
n∑

i=0

i∑

j=0

(
i

j

)

= ‖B‖∞
n∑

i=0

2i

= ‖B‖∞(2n+1 − 1).

Since there are m such rows, the product of all these 2-norms is at most

‖B‖m
∞2m(n+1).

The remaining rows of S(X) have as non-zero entries the coefficients of A(X). Their 2-norms are
clearly ‖A‖2. Again, there are n such rows, so their product is ‖A‖n

2 . The generalized Hadamard
bound yields

‖C(X)‖2 ≤ ‖B‖m
∞2m(n+1) · ‖A‖n

2

≤ (2n+1‖B‖2)
m‖A‖n

2 . (22)

Of course, if n < m, we could interchange the roles of m and n in this bound. Applying Landau’s
bound (3), we conclude:

Lemma 32 If α 6= β then

|α − β| >
1

‖C‖2
≥ 1

2nm+min{m,n}‖B‖m
2 ‖A‖n

2

.

If s is the sum of the bit sizes of A(X) and B(X) then

|α − β| >
1

(2s · 2s)s−12s−1
≥ 2−2s2

.

Letting A = B, we further obtain (cf. equation (20)):

Corollary 33 If A is an integer polynomial, not necessarily square-free,

sep(A) > (2m+1‖A‖2
2)

−m.

(II) The next application is useful when computing in a number field Q(α) (cf. [173]):

Lemma 34 Let A, B ∈ Z[X ], deg A = m > 0 and deg B = n > 0. For any root α of A, if B(α) 6= 0
then

|B(α)| >
1

‖B̂‖m
2 · ‖A‖n

2 + 1

where B̂(X) is the same polynomial as B(X) except that its constant term b0 has been replaced by
1 + |b0|.
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Proof. Let Y be a new variable and consider the resultant of A(Y ) and X − B(Y ) with respect to
Y :

C(X) = resY (A(Y ), X − B(Y )) = an
m

m∏

i=1

(X − B(αi))

where αi’s are the roots of A and am = lead(A). From the determinantal bound of Goldstein and
Graham,

‖C(X)‖2 ≤ ‖A‖n
2 · ‖B̂‖m

2 .

Again applying Landau’s bound, any root γ of C(Y ) satisfies

|γ| >
1

‖C‖2
.

Since B(α) is such a root, the lemma follows. Q.E.D.

(III) Our final application arises in an implementation of a real algebraic expression package [57].
In particular, we are interested in real expressions E that are recursively built-up from the rational
constants, using the operations of

+,−,×,÷,
√

. (23)

Thus E denotes a constructible real number (§V.4). With each expression E, the user can associate
a precision bound of the form [a, r] where a, r ∈ Z. If the value of E is α, this means the system will
find an approximate value α̂ satisfying

|α − α̂| ≤ max{|α|2−r, 2−a}.

Thus, α̂ has “absolute precision a” or “relative precision r”. Note that by changing the precision
bound, we may force the approximate value to be recomputed. The most important case is [a, r] =
[∞, 1], which guarantees one relative bit of α. This ensures that the sign of α is correctly determined.
The system is the first one that could automatically determine the sign of arbitrary real constructible
expression. To achieve this, we need an easily computable lower bound on |α| when α 6= 0. There
are several ways to do this, but we maintain with each node of the expression E an upper bound on
the degree and length of the algebraic number represented at that node. If α is an algebraic number,
we call the pair (d, ℓ) a degree-length bound on α if there exists a polynomial A(X) ∈ Z[X ] such
that A(α) = 0, deg(A) ≤ d and ‖A‖2 ≤ ℓ. Note that this implies that |α| ≥ 1/ℓ (Landau’s bound)
and so we only need to compute α to about lg ℓ bits in absolute precision in order to determine its
sign. We now derive the recursive rules for maintaining this bound.

Suppose the algebraic number β is obtained from α1 and α2 by one of the 5 operations in (23).
Inductively, assume a degree-length bound of (di, ℓi) on αi, (i = 1, 2), and let Ai(X) be a poly-
nomial that achieves this bound. We will describe a polynomial B(X) such that B(β) = 0, and a
corresponding degree-length bound (d, ℓ) on β.

• (BASIS) β = p/q is a rational number, where p, q ∈ Z. Choose B(X) = qX − p, d = 1 and

ℓ =
√

p2 + q2.

• (INVERSE) β = 1/α1: choose B(X) = Xd1A1(1/X), d = d1 and ℓ = ℓ1.

• (SQUARE-ROOT) β =
√

α1: choose B(X) = A1(X
2), d = 2d1 and ℓ = ℓ1.

• (PRODUCT) β = α1α2: choose B(X) = resY (A1(Y ), Y d2A2(X/Y )), d = d1d2 and

ℓ = ℓd2

1 ℓd1

2 .

c© Chee-Keng Yap September 9, 1999



§9. Isolating Interval Lecture VI Page 172

• (SUM/DIFFERENCE) β = α2 ±α1: choose B(X) = resY (A1(Y ), A2(X ∓ Y )), d = d1d2 and

ℓ = ℓd2

1 ℓd1

2 2d1d2+min{d1,d2}.

The BASIS, INVERSE and SQUARE-ROOT cases are obvious. The choices of B(X) and d the
remaining cases are justified by the theory of resultants (§4). It remains to justify the choices of ℓ.
For PRODUCT, the choice ℓ is an easy application of the generalized Hadamard bound. In case of
SUM/DIFFERENCE, the choice ℓ is derived in application (I). Finally, these bounds can easily be
extended to the class of general algebraic expressions (see Exercise 3).

Exercises

Exercise 8.1: Let A = a0 + a1X and B = b0 + b1X . Then ‖AB‖2 ≤ ‖A‖2‖B‖2 iff a0a1b0b1 ≤ 0.
2

Exercise 8.2: Suppose that we wish to maintain a “degree-height” bound (d, h) instead of the
degree-length bound (d, ℓ). Recall that the height of a polynomial A(X) is ‖A(X)‖∞. Derive
the corresponding recursive rules for maintaining such bounds. 2

Exercise 8.3: Extend the class of expressions in Application (III) as follows. We treat only real
algebraic numbers (extension to the complex case is similar). If E0, E1, . . . , En are expressions
and i is a number between 1 and n then POLY(E0, . . . , En, i) is a new expression that denotes
the ith largest real root of the polynomial P (X) =

∑n
j=0 αjX

j, where αj is the value of Ej .
This POLY expression is considered ill-formed if P (X) has less than j real roots. Show how
to maintain the (degree-length) bound for such expressions. 2

§9. Isolating Intervals

The existence of a root separation bound justifies the following representation of real algebraic
numbers.

(i) Let I = [a, b] be an interval, (a, b ∈ R, a ≤ b). For any polynomial A(X) ∈ R[X ], we call I an
isolating interval of A if I contains exactly one distinct real root α of A. The width of I is
b − a.

(ii) Let α ∈ Z ∩ R be a real algebraic number. An isolating interval representation of α is a pair

(A(X), I)

where A ∈ Z[X ] is square-free and primitive, A(α) = 0, and I is an isolating interval of A that
contains α and has rational endpoints: I = [a, b], a < α < b, (a, b ∈ Q). As a special case, we
allow a = b = α. We write

α ∼= (A, I)

to denote this relationship.
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This isolating interval representation motivates the root isolation problem: given a real polynomial
P (X), determine an isolating interval for each real root of P (X). This problem is easily solved
in principle: we know a lower bound L and an upper bound U on all real roots of P (X). We

partition the interval [L, U ] into subintervals of width at most 4−s2

where s is the bit-size of P (X).
We evaluate P (X) at the end points of these subintervals. By our root separation bounds, such a
subinterval is isolating for P (X) iff P (X) does not vanish at both end points but has opposite signs
there. Of course, this procedure is grossly inefficient. The next lecture uses Sturm sequences to
perform more this efficiently.

Clearly, an isolating interval representation is far from unique. We do not insist that A(X) be
the minimal polynomial of α because this is too expensive computationally. We also note that the
rational endpoints of I are usually binary rationals i.e., they have finite binary expansions. Note
that once A is fixed, then minimum root separation tells us I need not have more than O(s2) bits
to isolate any root of interest (s is the bit-size A). The interval I serves to distinguish the root of
A(X) from the others. This is not the main function of I, however – otherwise we could as well
represent α as (A(X), i) if α is the ith smallest real root of A(X). The advantage of isolating interval
is that it facilitates numerical computations. In the following, let α, β be two real algebraic numbers
represented in this way:

α ∼= (A(X), I), β ∼= (B(X), J)

(A) We can compute α ∼= (A, I) to any desired degree of accuracy using repeated bisections of I:
if I = [a, b] is not degenerate then clearly A(a) · A(b) < 0. We begin by evaluating A(a+b

2 ). If

A(a+b
2 ) = 0 then we have found α exactly. Otherwise, either [a, a+b

2 ] or [a+b
2 b] contains α. It is

easy to determine exactly which half-interval contains α: a < α < a+b
2 iff A(a)A((a+b)/2) < 0.

Note that if a, b are binary rationals, then a+b
2 is still a binary rational.

(B) We can compare α and β to see which is bigger: this comparison is immediate if I ∩ J = ∅.
Otherwise, we could repeatedly refine I and J using bisections until they are disjoint. But
what if α = β? In other words, when do we stop bisecting in case α = β? If s is a bound on
the sum of the bit sizes of A and B, then the previous section says we can stop when I and J
have widths ≤ 4−s2

, concluding α = β iff I ∩ J 6= ∅.

(C) We can perform any of the four arithmetic operations on α and β. We just illustrate the
case of multiplication. We can (§4) compute a polynomial C(X) that contains the product
αβ as root. It remains to compute an isolating interval K of C(X) for αβ. Can we choose
K = I × J = {xy : x ∈ I, y ∈ J}? The answer is yes, provided the width of K is smaller than
the root-separation bound for C(X). For instance, suppose both I = [a, a′] and J = [b, b′] have
width at most some w > 0. Then the width of K is W := a′b′ − ab (assuming a > 0, b > 0).
But W = a′b′ − ab ≤ (a + b + w)w, so it is easy to determine a value w small enough so that
W is less than the root separation bound for C. Then we just have to refine I and J until
their widths are at most w. It is similarly easy to work out the other cases.

The above methods are simple to implement.

Exercises

Exercise 9.1: Show that a number is algebraic iff it is of the form α+iβ where α, β are real algebraic
numbers. Hence any representation for real algebraic numbers implies a representation of all
algebraic numbers. 2
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Exercise 9.2: Give complete algorithms for the four arithmetic operations on algebraic numbers,
using the isolating interval representation. 2

§10. On Newton’s Method

Most books on Numerical Analysis inform us that when one has a “sufficiently good” initial ap-
proximation to a root, Newton’s method rapidly converges to the root. Newton’s method is much
more efficient than the bisection method in the previous section for refining isolating intervals: in
each iteration, the bisection method increases the root approximation by one bit while Newton’s
method doubles the number of bits. Hence in practice, we should begin by applying some bisection
method until our isolating interval is “sufficiently good” in the above sense, whereupon we switch
to Newton’s method. In fact, we may then replace the isolating interval by any point within the
interval.

In this section, we give an á priori bound on how close an initial approximation must be to be
“sufficiently good”. Throughout this section, we assume f(X) is a real function whose zeros we
want to approximate.

We view Newton’s method as giving a suitable transformation of f(X) into another function F (X),
such that a fixed point X∗ of F (X) is a root of f(X):

X∗ = F (X∗) ⇒ f(X∗) = 0.

As a simple example of a transformation of f(X), we can let F (X) = X − f(X). More generally,
let F (X) = X − g(X) · f(X) for a suitable function g(X). In the following, we assume the standard
Newton method where

F (X) = X − f(X)

f ′(X)
. (24)

The rest of the method amounts to finding a fixed point of F (X) via an iterative process: begin with
an initial value X0 ∈ R and generate the sequence X1, X2, . . . where

Xi+1 = F (Xi). (25)

We say the iterative process converges from X0 if the sequence of Xi’s converges to some value X∗.
Assuming that F (X) is continuous at X∗, we may conclude that F (X∗) = X∗. Hence X∗ is a root
of f(X).

To study the convergence of this iteration, let us assume that F is n-fold differentiable and the
process converges to X∗ starting at X0. Using Taylor’s expansion of F at X∗ with error term,

F (X) = F (X∗) + (X − X∗) · F ′(X∗) + (X − X∗)2 · F ′′(X∗)

2!
+ · · · + (26)

(X − X∗)n−1 · F (n−1)(X∗)

(n − 1)!
+ (X − X∗)n · F (n)(ξ)

n!
,

where F (i) denotes the i-fold differentiation of F (X) and ξ denotes some value between X and X∗:

ξ = X + θ(X∗ − X), 0 ≤ θ ≤ 1.

We say F (X) gives an n-th order iteration at X∗ if F (i)(X∗) = 0 for i = 1, . . . , n − 1. Then, since
F (X∗) = X∗, we have

F (X) − X∗ = (X − X∗)n · F (n)(ξ)

n!
. (27)
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Let us suppose that for some real k0 > 0,

∣∣∣∣
F (n)(ξ)

n!

∣∣∣∣ < k0 (28)

for all ξ where |X∗ − ξ| ≤ 1/k0. Repeated application of equation (27) yields

|X1 − X∗| < k0|X0 − X∗|n,

|X2 − X∗| < k0|X1 − X∗|n < kn+1
0 |X0 − X∗|n2

,

...

|Xi − X∗| <

{
k

ni−1

n−1

0 |X0 − X∗|ni

if n > 1,
ki
0|X0 − X∗| if n = 1.

If n = 1 then convergence is assured if k0 < 1. Let us assume n > 1. Then

|Xi − X∗| <

(
k

1
n−1

0 |X0 − X∗|
)ni

· k
1

1−n

0

and a sufficient condition for convergence is

k
1

n−1

0 |X0 − X∗| < 1. (29)

Remark: Newton’s method works in very general settings. In particular, it applies when f(X) is
a complex function. But if f(X) is a real polynomial and X∗ is a complex root, it is clear that
the initial value X0 must be complex if convergence to X∗ is to happen. More generally, Newton’s
method can be used to solve a system of equations, i.e., when f(X) is a vector-valued multivariate
function, f : Cn → Cm, X = (X1, . . . , Xn).

Exercises

Exercise 10.1: Apply Newton’s method to finding the square-root of an integer n. Illustrate it for
n = 9, 10. 2

Exercise 10.2: (Schroeppel, MIT AI Memo 239, 1972) Let f(X) ∈ C[X ] be a quadratic polynomial
with distinct roots α, β. Viewing C as the Euclidean plane, let L be the perpendicular bisector
of the segment connecting α and β.
(a) Show that Newton’s method converges to the closest root if the initial guess z0 lies in C\L.
(b) If z0 ∈ L, the method does not converge.
(c) There is a (relatively) dense set of points which involve division by zero.
(d) There is a dense set of points that loop, but all loops are unstable. 2

Exercise 10.3: (Smale) Show that f(X) = X3/2 − X + 1 has two neighborhoods centered about
X = 0 and X = 1 such that Newton’s method does not converge when initialized in these
neighborhoods. What are the complex roots of f? 2

§11. Guaranteed Convergence of Newton Iteration
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Most books on Numerical Analysis inform us that when X0 is sufficiently close to a root X∗, Newton
iteration gives a second order rate of convergence. What we seek now is an explicit á priori upper
bound on |X0 − X∗| which guarantees the said rate of convergence to X∗. Smale (e.g., [192])
describes implicit conditions for convergence. Following Smale, one may call such an X0 is called an
approximate root (and the set of approximate roots that converges to X∗ the Newton basin of X∗).
See also Friedman [68].

We now carry out the estimates for F (X) = X − f(X)
f ′(X) where f(X) ∈ Z[X ] is square-free of degree

m with real root X∗, and X0 is a real satisfying |X0 − X∗| ≤ 1. Then

F ′(X) =
f0f2

f2
1

(30)

F ′′(X) =
f0f1f3 + f2

1 f2 − 2f0f
2
2

f3
1

(31)

where we write fi for f (i)(X). For any root X∗, equation (30) shows that F ′(X∗) = 0 since X∗ is
a simple root. Hence Newton’s method gives rise to a second order iteration. Our goal is to find a
real bound δ0 > 0 such that for any real number ξ satisfying |X∗ − ξ| ≤ δ0,

∣∣∣∣
F ′′(ξ)

2!
δ0

∣∣∣∣ < 1. (32)

Note that this implies (28) and (29) with the choice k0 = 1
δ0

.

Lemma 35 If |ξ − X∗| ≤ 1 and f(X∗) = 0 then for all i = 0, 1, . . . , m,

|f (i)(ξ)| ≤ m!

(m − i)!
(1 + M)1+m,

where M = 1 + ‖f‖∞.

Proof. By Cauchy’s bound (§2, lemma 7), |X∗| < M . Then

|f (i)(ξ)| ≤ m!

(m − i)!
‖f‖∞

m−i∑

j=0

|ξ|j

<
m!

(m − i)!
‖f‖∞

m∑

j=0

(1 + M)j

<
m!

(m − i)!
(1 + M)1+m.

Q.E.D.

Lemma 36 Let f(X) ∈ Z[X ] be square-free, and X∗ a root of f(X). If m = deg f then

|f ′(X∗)| ≥ 1

mm−3/2‖f‖m−2
∞

.

Proof. Let g(X) = f(X)
X−X∗ . Then (by property C6. in §1) we have f ′(X∗) = g(X∗). We claim that

disc(f) = disc(g) · f ′(X∗)2.
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To see this, if f(X) = a
∏m

i=1(X − αi) then

disc(f) = a2m−2
m∏

1≤i<j≤m

(αi − αj)
2

= a2m−4
∏

1≤i<j<m

(αi − αj)
2 ·
[
a

m∏

i=1

(αi − αm)

]2

.

Choosing X∗ = αm then a
∏m

i=1(αi −αm) = ±g(X∗), which verifies our claim. By Corollary 29(ii)
of Mahler (§7) we see that

|disc(g)| ≤ (m − 1)m−1M(g)2m−4

where M(g) is the measure of g. Also M(g) ≤ M(f) ≤ ‖f‖2. This implies

|disc(g)| ≤ (m − 1)m−1‖f‖2m−4
2

< mm−1
(
m

1
2 ‖f‖∞

)2m−4

= m2m−3‖f‖2m−4
∞ .

Hence |f ′(X∗)| ≥
√

|disc(f)| · m−m+3/2‖f‖−m+2
∞ and the lemma follows. Q.E.D.

Let us now pick

δ0 :=
1

m3m+9(1 + M)6m
.

We first derive a lower bound on

|f ′(ξ)|, where |X∗ − ξ| ≤ δ0.

We have
f ′(ξ) = f ′(X∗) + (X∗ − ξ)f ′′(η)

for some η between X∗ and ξ, so |X∗ − η| ≤ δ0. Using the preceding two lemmas,

|f ′(ξ)| ≥ |f ′(X∗)| − |X∗ − ξ| · |f ′′(η)|

≥ 1

mm−3/2(M − 1)m−2
− |δ0| · m2(1 + M)1+m

≥ 1

mm−3/2(M − 1)m−2
− m2(1 + M)1+m

m3m+9(1 + M)6m

≥ 1

mm(M − 1)m−2

From (31) we see that

|F ′′(ξ)| ≤ 4 · K3

|f ′(ξ)|3

where K ≥ maxi=0,...,3{|f (i)(ξ)|}. It suffices to choose K = m3(1 + M)1+m by lemma 35. Thus

|F ′′(ξ)| ≤ 4(m3(1 + M)1+m)3 · (mm(M − 1)m−2)3

< 4m3m+9(1 + M)6m−3

< δ−1
0 .

Our goal, inequality (32) is thus achieved, and we have proved:
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Theorem 37 Let f(X) ∈ Z[X ] be square-free with m = deg f and M = 1 + ‖f‖∞. Then Newton
iteration for f(X) is guaranteed to converge to a root X∗ provided the initial approximation is at
most

δ0 = (m3m+9(1 + M)6m)−1

from X∗.

If s is the bit-size of f(X) then m ≤ s, M ≤ 2s and δ0 has about 6s2 bits of accuracy. In practice,
it would be of interest to “dynamically” check when an approximate root is close enough for Newton
iteration, since in practice one expects the effective δ0 is much larger than the one guaranteed by
this theorem. In Collin’s computer algebra system SAC-II, such checks are apparently used.

Exercises

Exercise 11.1: Suppose that f(X) ∈ Z[X ] is not square-free. Show that Newton’s iteration works
with g(x) = f(X)/f ′(X) instead of f(X). Derive a similar guaranteed convergence bound for
g(X). 2

Exercise 11.2: (a) Let f(X) ∈ C[X ] be square-free with roots α1, . . . , αm. Show that

m∏

i=1

f ′(αi) = (−1)(
m

2 )a−m+2disc(f).

Deduce a lower bound on |f ′(αi)| from this.
(b) By modifying the proof of the Davenport-Mahler root separation bound show

±
√

|disc(f)|
a2m−2

=
n∏

j=2

(αj − α1) · det




1 0 · · · 0
α1 1 1

α2
1 β

(2)
2 β

(2)
m

...
...

...

αm−1
1 β

(m−1)
2 β

(m−1)
m




where β
(k)
j = (αk

j − αk
1)/(αj − α1). Note that

∣∣∣∣∣∣
a

n∏

j=2

(αj − α1)

∣∣∣∣∣∣
= |f ′(α1)|. If f(X) is monic,

deduce a lower bound for |f ′(α)|.
(c) Consider the resultant R(f, g) of f(X), g(X). Show that

R(f, g) =




fm fm−1 · · · f0

fm fm−1 · · · f0

. . .
. . .

fm fm−1 · · · f0

gn gn−1 · · · g0

gn gn−1 · · · g0

. . .
. . .

gn · · · g0
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is equal to 


fm fm−1 · · · f0 αn−1f(α)
fm fm−1 · · · f0 αn−2f(α)

. . .
. . .

...
fm fm−1 · · · f1 f(α)

gn gn−1 · · · g0 αm−1g(α)
gn gn−1 · · · g0 αm−2g(α)

. . .
. . .

...
gn · · · g1 g(α)




for any value α. Derive from this a lower bound for |f ′(α)| where α is a root of f(X).
(d) (Lang) Show that if f(X) has only simple roots αi (i = 1, . . . , n), and ω is any complex
number then

min
i

|ω − αi| ≤ |f(ω)|e5n(log n+h+4)

where h = ‖f‖∞. 2
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[121] H. Lüneburg. On the computation of the Smith Normal Form. Preprint 117, Universität
Kaiserslautern, Fachbereich Mathematik, Erwin-Schrödinger-Straße, D-67653 Kaiserslautern,
Germany, March 1987.

[122] F. S. Macaulay. Some formulae in elimination. Proc. London Math. Soc., 35(1):3–27, 1903.

[123] F. S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge University Press,
Cambridge, 1916.

[124] F. S. Macaulay. Note on the resultant of a number of polynomials of the same degree. Proc.
London Math. Soc, pages 14–21, 1921.

[125] K. Mahler. An application of Jensen’s formula to polynomials. Mathematika, 7:98–100, 1960.

[126] K. Mahler. On some inequalities for polynomials in several variables. J. London Math. Soc.,
37:341–344, 1962.

[127] M. Marden. The Geometry of Zeros of a Polynomial in a Complex Variable. Math. Surveys.
American Math. Soc., New York, 1949.

c© Chee-Keng Yap September 9, 1999



§11. Guaranteed Convergence Lecture VI Page 186

[128] Y. V. Matiyasevich. Hilbert’s Tenth Problem. The MIT Press, Cambridge, Massachusetts,
1994.

[129] E. W. Mayr and A. R. Meyer. The complexity of the word problems for commutative semi-
groups and polynomial ideals. Adv. Math., 46:305–329, 1982.

[130] F. Mertens. Zur Eliminationstheorie. Sitzungsber. K. Akad. Wiss. Wien, Math. Naturw. Kl.
108, pages 1178–1228, 1244–1386, 1899.

[131] M. Mignotte. Mathematics for Computer Algebra. Springer-Verlag, Berlin, 1992.

[132] M. Mignotte. On the product of the largest roots of a polynomial. J. of Symbolic Computation,
13:605–611, 1992.

[133] W. Miller. Computational complexity and numerical stability. SIAM J. Computing, 4(2):97–
107, 1975.

[134] P. S. Milne. On the solutions of a set of polynomial equations. In B. R. Donald, D. Kapur, and
J. L. Mundy, editors, Symbolic and Numerical Computation for Artificial Intelligence, pages
89–102. Academic Press, London, 1992.
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[155] O. Perron. Die Lehre von den Kettenbrüchen. Teubner, Leipzig, 2nd edition, 1929.

[156] O. Perron. Algebra, volume 1. de Gruyter, Berlin, 3rd edition, 1951.
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Lecture VII

Sturm Theory

We owe to Descartes the problem of counting the number of real roots of a polynomial, and to
Waring (1762) and Lagrange (1773) the problem of separating these roots. Lagrange gave the
first complete algorithm for separating roots, which Burnside and Panton [2] declared “practically
useless”, a testimony to some implicit efficiency criteria. The decisive technique was found by
Sturm in 1829. It superseded the research of his contemporaries, Budan (1807) and Fourier (1831)
who independently improved on Descartes and Lagrange. In one sense, Sturm’s work culminated
a line of research that began with Descartes’ rule of sign. According to Burnside and Panton, the
combination of Horner and Sturm gives the best root separation algorithm of their day. Hurwitz,
Hermite and Routh all made major contributions to the subject. Sylvester was especially interested
in Sturm’s work, as part of his interest in elimination theory and theory of equations [16]. In [14],
he alludes to a general theory encompassing Sturm theory. This is apparently the tome of an article
[15]. Uspensky [17] rated highly a method of root separation based on a theorem of Vincent (1836).
Of course, all these evaluations of computational methods are based on some implicit model of the
human-hand-computer. With the advent of complexity theory we have more objective methods of
evaluating algorithms.

One profound generalization of Sturm’s theorem is obtained by Tarski, in his famous result showing
the decidability of elementary algebra and geometry (see [7]). Hermite had interest in generalizing
Sturm’s theory to higher dimensions, and considered some special cases; the general case has recently
been achieved in the theses of Pedersen [11] and Milne [9].

§1. Sturm Sequences from PRS

We introduce Sturm’s remarkable computational tool for counting the real zeros of a real function.
We also show a systematic construction of such sequences from a PRS (§III.2). Our next definition
is slightly more general than the usual.

Let A(X), B(X) ∈ R[X ] be non-zero polynomials. By a (generalized) Sturm sequence for
A(X), B(X) we mean a PRS

A = (A0, A1, . . . , Ah), h ≥ 1,

for A(X), B(X) such that for all i = 1, . . . , h, we have

βi Ai+1 = αi Ai−1 + Qi Ai (1)

(αi, βi ∈ R, Qi ∈ R[X ]) such that Ah+1 = 0 and αi βi < 0.

We call A a Sturm sequence for A if it is a Sturm sequence for A, A′ where A′ denotes the derivative
of A.

Note that we do not assume deg A ≥ deg B in this definition. However, if deg A < deg B then it is
clear that A = A0 and A2 are equal up to a negative constant factor. In any case, the degrees of all
subsequent polynomials are strictly decreasing, deg A1 > deg A2 > · · · > deg Ah ≥ 0. Note that the
relation (1) exists by the definition of PRS.

Connection between a PRS and a Sturm sequence. Essentially, a Sturm sequence differs
from a PRS only by virtue of the special sign requirements on the coefficients of similarity αi, βi.
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Although this connection is well-known, the actual form of this connection has not been clearly
elucidated. Our goal here is to do this, and in a way that the transformation of a PRS algorithm
into a Sturm sequence algorithm can be routine.

Assume that we are given a PRS A = (A0, . . . , Ah). We need not know the values αi, βi or Qi in
equation (1), but we do require knowledge of the product

si :=−sign(αiβi) (2)

of signs, for i = 1, . . . , h − 1. Here sign(x) is a real function defined as expected,

sign(x) :=







−1 if x < 0
0 if x = 0
+1 if x > 0

. (3)

In the known PRS algorithms, these signs can be obtained as a byproduct of computing the PRS.
We will now construct a sequence

(σ0, σ1, . . . , σh),

of signs where σ0 = σ1 = +1 and σi ∈ {−1, 0, +1} such that

(σ0 A0, σ1 A1, . . . , σh Ah) (4)

is a Sturm sequence. From (1) we see that

(βiσi+1)(σi+1Ai+1) = (αiσi−1)(σi−1Ai−1) + QiAi.

Hence (4) is a Sturm sequence provided that sign(αiσi+1βiσi−1) = −1 or, using equation (2),

sign(siσi+1σi−1) = 1.

Multiplying together j (2 ≤ 2j ≤ h) of these equations,

(σ0s1σ2)(σ2s3σ4)(σ4σ5σ6) · · · (σ2j−2s2j−1σ2j) = 1.

Telescoping, we obtain the desired formula for σ2j :

σ2j =

j
∏

i=1

s2i−1. (5)

Similarly, we have the formula for σ2j+1 (2 ≤ 2j + 1 ≤ h):

σ2j+1 =

j
∏

i=1

s2i. (6)

Thus the sequence (σ1, . . . , σh) of signs splits into two alternating subsequences whose computation
depends on two disjoint subsets of {s1, . . . , sh−1}. Also (5) and (6) can be rapidly computed in
parallel, using the so-called parallel prefix algorithm.

Descartes’ Rule of Sign. As noted in the introduction, the theory of Sturm sequences basically
supersedes Descartes’ Rule of Sign (or its generalizations) as a tool for root counting. The rule says:

The sign variation in the sequence (an, an−1, . . . , a1, a0) of coefficients of the polynomial
P (X) =

∑n
i=0 aiX

i is more than the number of positive real roots of P (X) by some
non-negative even number.
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The proof of this and its generalization is left to an exercise.

Exercises

Exercise 1.1: Modify the subresultant algorithm (§III.5) of Collins to produce a Sturm Sequence.
NOTE: in §III.5, we assume that the input polynomials P, Q satisfy deg P > deg Q. A small
modification must now be made to handle the possibility that deg P ≤ deg Q. 2

Exercise 1.2: Prove Descartes’ Rule of Sign. HINT: let Q(X) be a real polynomial and α a positive
real number. The number of sign variations in the coefficient sequence of (X−α)Q(X) is more
than that of the coefficient sequence of Q(X) by a positive odd number. 2

Exercise 1.3: (i) Give the analogue of Descartes’ rule of sign for negative real roots.
(ii) Prove that if P (X) has only real roots, then the number of sign variations in P (X) and
P (−X) is exactly n.
(iii) Let (an, . . . , a1, a0) be the sequence of coefficients of P (X). If ana0 6= 0 and P (X) has
only real roots, then the sequence has the property that ai = 0 implies ai−1ai+1 < 0. 2

Exercise 1.4: Newton’s rule for counting the number of imaginary roots (see quotation preceding
this lecture) is modified in case a polynomial has a block of two or more consecutive terms
that are missing. Newton specifies the following rule for such terms:

If two or more terms are simultaneously lacking, beneath the first of the deficient
terms, the sign − must be placed, beneath the second, +, etc., except that beneath
the last of the terms simultaneously lacking, you must always place the sign + when
the terms next on either sides of the deficient ones have contrary signs.

He gives the following examples:

2
5

1
2

1
2

2
5

X5 + aX4 + 0 + 0 + 0 + a5

+ + − + − +
(4 imaginary roots)

2
5

1
2

1
2

2
5

X5 + aX4 + 0 + 0 + 0 − a5

+ + − + + +
(2 imaginary roots)

(i) Restate Newton’s rule in modern terminology.
(ii) Count the number of imaginary roots of the polynomials X7−2X6+3X5−2X4+X3−3 = 0,
and X4 + 14X2 − 8X + 49. 2

§2. A Generalized Sturm Theorem

Let α = (α0, . . . , αh) be a sequence of real numbers. We say there is a sign variation in α at position
i (i = 1, . . . , h) if for some j = 0, . . . , i − 1 we have

(i) αj αi < 0

(ii) αj+1 = αj+2 = · · · = αi−1 = 0.
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The sign variation of α is the number of positions in α where there is a sign variation.

For instance, the sequence (0,−1, 0, 3, 8,−7, 9, 0, 0, 8) has sign variations at positions 3, 5 and 6.
Hence its sign variation is 3.

For any sequence A = (A0, . . . , Ah) of polynomials and α ∈ R, let A(α) denote the sequence
(A0(α), . . . , Ah(α)). Then the sign variation of A(α) is denoted

Var
A
(α),

where we may omit the subscript when A is understood. If A is the Sturm sequence for A, B, we
may write VarA,B(α) instead of Var

A
(α). If α < β, we define the sign variation difference over the

interval [α, β] to be
Var

A
[α, β] := Var

A
(α) − Var

A
(β). (7)

There are different forms of “Sturm theory”. Each form of Sturm theory amounts to giving an
interpretation to the sign variation difference (7), for a suitable notion of the “Sturm sequence” A.
In this section, we prove a general (apparently new) theorem to encompass several known Sturm
theories.

In terms of counting sign variations, Exercise 7.2.1 indicates that all Sturm sequences for A, B are
equivalent. Hence, we may loosely refer to the Sturm sequence of A, B.

Let r ≥ 0 be a non-negative integer. Recall that α is a root of multiplicity r (equivalently, α is an
r-fold root) of an r-fold differentiable function f(X) if

f (0)(α) = f (1)(α) = · · · = f (r−1)(α) = 0, f (r)(α) 6= 0.

So we refer (awkwardly) to a non-root of f as a 0-fold root. However, if we simply say ‘α is a root
of f ’ then it is understood that the multiplicity r is positive. If h is sufficiently small and α is an
r-fold root, then Taylor’s theorem with remainder gives us

f(α + h) =
hr

r!
· f (r)(α + θh)

for some θ, 0 ≤ θ ≤ 1. So for h > 0, f(α + h) has the sign of f (r)(α); for h < 0, f(α + h) has the
sign of (−1)rf (r)(α). Hence:

If r is odd, f(X) changes sign in the neighborhood of α;
If r is even, f(X) maintains its sign in the neighborhood of α.

Let A = (A0, . . . , Ah) be a sequence of non-zero polynomials and α a real number.
i) We say α is regular for A if each Ai(X) ∈ A is non-vanishing at X = α; otherwise, α is irregular.
ii) We say α is degenerate for A if each Ai(X) ∈ A vanishes at X = α; otherwise α is nondegenerate.
iii) A closed interval [α, β] where α < β is called a fundamental interval (at γ0) for A if α, β are
non-roots of A0 and there exists γ0 ∈ [α, β] such that for all γ ∈ [α, β], if γ 6= γ0 then γ is regular
for A. Note that γ0 can be equal to α or β.

Hence α may be neither regular nor degenerate for A, i.e., it is both irregular and nondegenerate
for A. The following characterizes nondegeneracy.

Lemma 1 Let A = (A0, . . . , Ah) be a Sturm sequence.
a) The following are equivalent:
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(i) α is degenerate for A.
(ii) Two consecutive polynomials in A vanish at α.
(iii) Ah vanishes at α.

b) If α is nondegenerate and Ai(α) = 0 (i = 1, . . . , h − 1) then Ai−1(α)Ai+1(α) < 0.

Proof.
a) If α is degenerate for A then clearly any two consecutive polynomials would vanish at α. Con-
versely, if Ai−1(α) = Ai(α) = 0, then from equation (1), we see that Ai+1(α) = 0 (i + 1 ≤ h) and
Ai−2(α) = 0 (i − 2 ≥ 0). Repeating this argument, we see that every Aj vanishes at α. Thus α is
degenerate for A. This proves the equivalence of (i) and (ii). The equivalence of (ii) and (iii) is easy
once we recall that Ah divides Ah−1, by definition of a PRS. Hence Ah vanishes at α implies Ah−1

vanishes at α.
b) This follows from the fact that αiβi < 0 in equation (1). Q.E.D.

The importance of fundamental intervals arises as follows. Suppose we want to evaluate VarA,B[α, β]
where α, β are non-roots of A. Clearly, there are only a finite number of irregular values in the interval
[α, β]. If there are no irregular values in the interval, then trivially VarA,B[α, β] = 0. Otherwise, we
can find values

α = α0 < α1 < · · · < αk = β

such that each [αi−1, αi] is a fundamental interval. Clearly

VarA,B[α, β] =

k
∑

i=1

VarA,B[αi−1, αi].

So we have reduced our problem to sign variation difference on fundamental intervals.

Given real polynomials A(X), B(X), we say A(X) dominates B(X) if for each root α of A(X), we
have

r ≥ s ≥ 0

where α is an r-fold root of A(X) and an s-fold root of B(X).

Note that r ≥ 1 here since α is a root of A(X). Despite the terminology, “domination” is neither
transitive nor asymmetric as a binary relation on real polynomials. We use the concept of domination
in the following four situations, where in each case A(X) dominates B(X):

• B(X) is the derivative of A(X).

• A(X) and B(X) are relatively prime.

• A(X) and B(X) are both square-free.

• B(X) divides A(X).

We have invented the concept of domination to unify these We come to our key lemma.

Lemma 2 Let A = (A0, . . . , Ah) be a Sturm sequence for A, B where A dominates B. If [α, β] is a
fundamental interval at γ0 for A then

Var
A
[α, β] =







0 if r = 0 or r + s is even

sign(A(r)(γ0)B
(s)(γ0)) if r ≥ 1 and r + s is odd,
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where γ0 is an r-fold root of A(X) and also an s-fold root of B(X).

Proof. We break the proof into two parts, depending on whether γ0 is degenerate for A.

Part I. Suppose γ0 is nondegenerate for A. Then Ah(γ0) 6= 0. We may define the unique sequence

0 = π(0) < π(1) < · · · < π(k) = h, (k ≥ 1)

such that for all i > 0, Ai(γ0) 6= 0 iff i ∈ {π(1), π(2), . . . , π(k)}. Note that π(0) = 0 has special
treatment in this definition. Define for each j = 1, . . . , k, the subsequence Bj of A:

Bj :=(Aπ(j−1), Aπ(j−1)+1, . . . , Aπ(j)).

Since two consecutive polynomials of A cannot vanish at a nondegenerate γ0, it follows that since
π(j) − π(j − 1) equals 1 or 2 (i.e., each Bj has 2 or 3 members). Indeed, Bj has 3 members iff its
middle member vanishes at γ0. Then the sign variation difference can be expressed as

VarA,B[α, β] =

k
∑

i=1

Var
Bi

[α, β]. (8)

Let us evaluate Var
Bi

[α, β] in two cases:

CASE 1: Var
Bi

[α, β] has three members. The signs of the first and third member do not vary in
the entire interval [α, β]. In fact, the signs of the first and third member must be opposite. On the
other hand, the signs of the middle member at α and at β are different (one of them can be the zero
sign). But regardless, it is now easy to conclude Var

Bi
[α, β] = 1 − 1 = 0.

CASE 2: Var
Bi

[α, β] has two members. There are two possibilities, depending on whether the first

member of the sequence Bi vanishes at γ0 or not. In fact, the first member vanishes iff i = 1 (so
B1 = (A, B) and A(γ0) = 0). If A(γ0) 6= 0, then the signs of both members in Bi do not vary in the
entire interval [α, β]. This proves Var

Bi
[α, β] = 0, as required by the lemma when A(γ0) 6= 0.

Before we consider the remaining possibility where A(γ0) = 0, we may simplify equation (8), using
the fact that all the cases we have considered until now yield Var

Bi
[α, β] = 0:

VarA,B[α, β] =







Var
B1

[α, β] if A(γ0) = 0,

0 else.
(9)

Note that if A(γ0) 6= 0 then r = 0. Thus equation (9) verifies our lemma for the case r = 0.

Hence assume A(γ0) = 0, i.e., r ≥ 1. We have s = 0 because γ0 is assumed to be nondegenerate
for A. Also α < γ0 < β since A(X) does not vanish at α or β (definition of fundamental interval).
There are two subcases.

SUBCASE: r is even. Then A(X) and B(X) both maintain their signs in the neighborhood of γ0

(except temporarily vanishing at γ0). Then we see that

Var
B1

(α) = Var
B1

(β),

proving the lemma in this subcase.

SUBCASE: r is odd. Then A(X) changes sign at γ0 while B(X) maintains its sign in [α, β]. Hence
Var

B1
[α, β] = ±1. In fact, the following holds:

Var
B1

[α, β] = sign(A(r)(γ0)B
(s)(γ0)), (10)
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proving the lemma when s = 0 and r ≥ 1 is odd. [Let us verify equation (10) in case B(X) > 0
throughout the interval. There are two possibilities: if A(r)(γ0) < 0 then we get Var

B1
(α) = 0

and Var
B1

(β) = 1 so that Var
B1

[α, β] = sign(A(r)(γ0)). If A(r)(γ0) > 0 then Var
B1

(α) = 1 and

Var
B1

(β) = 0, and again Var
B1

[α, β] = sign(A(r)(γ0)).]

Part II. Now assume γ0 is degenerate. This means α < γ0 < β. Let

C = (A0/Ah, A1/Ah, . . . , Ah/Ah)

be the depressed sequence derived from A. This is a Sturm sequence for C0 = A0/Ah, C1 = A1/Ah.
Moreover, γ0 is no longer degenerate for C, and we have

Var
A
(γ) = Var

C
(γ),

for all γ ∈ [α, β], γ 6= γ0. Since [α, β] remains a fundamental interval at γ0 for C, the result of part
I in this proof can now be applied to C, showing

Var
C

[α, β] =







0 if r∗ = 0 or r∗ + s∗ is even,

sign(C
(r∗)
0 (γ0)C

(s∗)
1 (γ0)) if r∗ ≥ 1 and r∗ + s∗ is odd.

(11)

Here r∗, s∗ are the multiplicities of γ0 as roots of C0, C1 (respectively). Clearly, if γ0 is an m-fold
root of Ah(X), then r = r∗ + m, s = s∗ + m. Hence r∗ + s∗ = even iff r + s = even. This shows

Var
A
[α, β] = Var

C
[α, β] = 0

when r + s = even, as desired. If r∗ + s∗ = odd and r∗ ≥ 1, we must show

sign(C
(r∗)
0 (γ0)C

(s∗)
1 (γ0)) = sign(A(r)(γ0)B

(s)(γ0)). (12)

For clarity, let Ah(X) be rewritten as D(X) so that

A(X) = C0(X) · D(X)

A(r)(X) =

r
∑

i=0

(

r

i

)

C
(i)
0 (X)D(r−i)(X)

A(r)(γ0) =

(

r

r∗

)

C
(r∗)
0 (γ0)D

(m)(γ0)

since C
(i)
0 (γ0) = 0 for i < r∗, and D(r−i)(γ0) = 0 for i > r∗. Similarly,

B(s)(γ0) =

(

s

s∗

)

C
(s∗)
1 (γ0)D

(m)(γ0).

This proves (12).

Finally suppose r∗ = 0. But the assumption that A dominates B implies s∗ = 0. [This is the only
place where domination is used.] Hence s∗ + r∗ is even and Var

C
[α, β] = 0. Hence s + r is also even

and Var
A
[α, β] = 0. This completes the proof. Q.E.D.

This lemma immediately yields the following:

Theorem 3 (Generalized Sturm) Let A dominate B and let α < β so that A(α)A(β) 6= 0. Then

VarA,B[α, β] =
∑

γ,r,s

sign(A(r)(γ)B(s)(γ)) (13)
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where γ ranges over all roots of A in [α, β] of multiplicity r ≥ 1, and B has multiplicity s at γ, and
r + s = odd.

The statement of this theorem can be generalized in two ways without modifying the proof:
(a) We only need to assume that A dominates B within the interval [α, β], i.e., at the roots of A in
the interval, the multiplicity of A is at least that of the multiplicity of B.
(b) The concept of domination can be extended to mean that at each root γ of A (restricted to [α, β]
as in (a) if we wish), if A, B have multiplicities r, s (respectively) at γ, then max{0, s− r} is even.

Exercises

Exercise 2.1: Suppose A and B are both Sturm sequences for A, B ∈ R[X ]. Then they have the
same length and corresponding elements of A and B are related by positive factors: Ai = αiBi

where αi is a positive real number. 2

Exercise 2.2: The text preceding Lemma 7.2 specified four situations were A(X) dominates B(X).
Verify domination in each case. 2

Exercise 2.3: (Budan-Fourier) Let A0(X) be a polynomial, α < β and A0(α)A0(β) 6= 0. Let
A = (A0, A1, . . . , Ah) be the sequence of non-zero derivatives of A0, viz., Ai is the ith derivative
of A0. Then the number of real zeros of A0(X) in [α, β] is less than the Var

A
[α, β] by an even

number. HINT: Relate the location of zeros of A(X) and its derivative A′(X). Use induction
on deg A0. 2

Exercise 2.4: a) Deduce Descartes’ Rule of Sign (§1) from the Budan-Fourier Rule (see previous
exercise).
b) (Barbeau) Show that Descartes’ Rule gives a sharper estimate for the number of negative
zeros than Budan-Fourier for the polynomial X4 + X2 + 4X − 3. 2

§3. Corollaries and Applications

We obtain four useful corollaries to the generalized Sturm theorem. The first is the classic theorem
of Sturm.

Corollary 4 (Sturm) Let A(X) ∈ R[X ] and suppose α < β are both non-roots of A. Then the
number of distinct real roots of A(X) in the interval [α, β] is given by VarA,A′ [α, β].

Proof. With B(X) = A′(X), we see that A(X) dominates B(X) so that the generalized Sturm
theorem gives:

VarA,B[α, β] =
∑

γ,r,s

sign(A(r)(γ)B(s)(γ)),

where γ is an r-fold root of A in (α, β), γ is an s-fold root of B and r ≥ 1 with r + s being odd. But
at every root of A, these conditions are satisfied since r = s + 1. Hence the summation applies to
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every root γ of A. Furthermore, we see that A(r)(γ) = B(s)(γ) so that sign (A(r)(γ)B(s)(γ)) = 1.
So the summation yields the number of roots of A in [α, β]. Q.E.D.

Note that it is computationally convenient that our version of Sturm’s theorem does not assume
A(X) is square-free (which is often imposed).

Corollary 5 (Schwartz-Scharir) Let A(X), B(X) ∈ R[X ] be square-free polynomials. If α < β
are both non-roots of A then

VarA,B[α, β] =
∑

γ

sign(A′(γ)B(γ))

where γ ranges over all roots of A(X) in [α, β].

Proof. We may apply the generalized Sturm theorem to evaluate VarA,B[α, β] in this corollary. In
the sum of (13), consider the term indexed by the triple (γ, r, s) with r ≥ 1 and r + s is odd. By
square-freeness of A and B, we have r ≤ 1 and s ≤ 1. Thus r = 1, s = 0 and equation (13) reduces
to

VarA,B[α, β] =
∑

γ

sign(A′(γ)B(γ)),

where the summation is over roots γ of A in [α, β] which are not roots of B. But if γ is both a root
of A and of B then sign(A′(γ)B(γ)) = 0 and we may add these terms to the summation without
any effect. This is the summation sought by the corollary. Q.E.D.

The next corollary will be useful in §7:

Corollary 6 (Sylvester, revisited by Ben-Or, Kozen, Reif) Let A be a Sturm sequence for
A, A′B where A(X) is square-free and A(X), B(X) are relatively prime. Then for all α < β which
are non-roots of A,

Var
A
[α, β] =

∑

γ

sign(B(γ))

where γ ranges over the roots of A(X) in [α, β].

Proof. Again note that A dominates A′B and we can proceed as in the proof of the previous corollary.
But now, we get

Var
A
[α, β] =

∑

γ

sign(A′(γ) · A′(γ)B(γ))

=
∑

γ

sign(B(γ)),

as desired. Q.E.D.

In this corollary, the degree of A0 = A is generally less than the degree of A1 = A′B so that the
remainder sequence typically looks like this: A = (A, A′B,−A, . . .).

Our final corollary concerns the concept of the Cauchy index of a rational function. Let f(X) be
a real continuous function defined in an open interval (α, β) where −∞ ≤ α < β ≤ +∞. We
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allow f(X) to have isolated poles in the interval (α, β). Recall that γ ∈ (α, β) is a pole of f(X) if
1/f(X) → 0 as X → γ. The Cauchy index of f at a pole γ is defined1 to be

sign(f(γ−)) − sign(f(γ+))

2
.

For instance, the index is −1 if f(X) changes from −∞ to +∞ as X increases through γ, and the
index is 0 if the sign of f(X) does not change in passing through γ. The Cauchy index of f over an
interval (α, β) is then

Iβ
αf(X) :=

∑

γ

sign(f(γ−)) − sign(f(γ+))

2

where the sum is taken over all poles γ ∈ (α, β). Typically, f(X) is a rational function A(X)/B(X)
where A(X), B(X) are relatively prime polynomials.

Corollary 7 (Cauchy Index) Let A(X), B(X) ∈ R[X ] be relatively prime and f(X) =
A(X)/B(X). Then

Iβ
αf(X) = −VarA,B[α, β].

Proof. Let (γ, r, s) index a summation term in (13). We have s = 0 since A, B are relatively prime.
This means that r is odd, and

sign(A(r)(γ)) =
sign(A(γ+)) − sign(A(γ−))

2
,

sign(A(r)(γ)B(0)(γ)) =
sign(A(γ+)B(γ+)) − sign(A(γ−)B(γ−))

2

=
sign(f(γ+)) − sign(f(γ−))

2
.

Summing the last equation over each (γ, r, s), the left-hand side equals VarA,B[α, β], by the gener-
alized Sturm theorem. But the right-hand side equals Iβ

αf . Q.E.D.

This result is used in §5. For now, we give two applications of the corollary of Schwartz-Scharir
(cf. [13]).

A. The sign of a real algebraic number. The first problem is to determine the sign of a
number β in a real number field Q(α). We assume that β is represented by a rational polynomial
B(X) ∈ Q[X ]: β = B(α). Assume α is represented by the isolating interval representation (§VI.9)

α ∼= (A, [a, b])

where A ∈ Z[X ] is a square-free polynomial. First let us assume B(X) is square-free. To determine
the sign of β, first observe that

sign(A′(α)) = sign(A(b) − A(a)). (14)

Using the corollary of Schwartz-Sharir,

VarA,B[a, b] = sign(A′(α) · B(α)).

1Here, sign(f(γ−)) denotes the sign of f(X) for when γ − X is positive but arbitrarily small. When f(X) is a
rational function, this sign is well-defined. Similarly sign(f(γ+)) is the sign of f(X) when X − γ is positive but
arbitrarily small.
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Hence,

sign(B(α)) = sign((VarA,B[a, b]) · A′(α))

= sign((VarA,B[a, b]) · (A(b) − A(a))).

If B(X) is not square-free, we can first decompose it into a product of square-free polynomials.
That is, B has a square-free decomposition B1 · B2 · . . . · Bk where B1 is the square-free part of
B and B2 · . . . · Bk is recursively the square-free decomposition of B/B1. Then sign(B(α)) =
∏k

i=1 sign(Bi(α)).

Exercise 3.1: Alternatively, use the Sylvester corollary to obtain the sign of B(α). 2

B. Comparing two real algebraic numbers. Given two real algebraic numbers

α ∼= (A, I), β ∼= (B, J)

represented as indicated by isolating intervals, we wish to compare them. Of course, one method is
to determine the sign of α − β, by a suitable reduction to the problem in Section 7.3.1. But we
give a more direct reduction. If I ∩ J = ∅ then the comparison is trivially done. Otherwise, if either
α 6∈ I ∩ J or β 6∈ I ∩ J then again we can easily determine which of α or β is bigger. Hence assume
α and β are both in a common isolating interval I ∩ J = [a, b].

a β α

B(X)

a bβ α

B(X)

b

Figure 1: Two cases for α > β in isolating interval [a, b].

It is not hard to verify (see Figure 1) that

α ≥ β ⇔ B(α) · B′(β) ≥ 0,

with equality on the left-hand side if and only if equality is attained on the right-hand side (note
that B′(β) 6= 0 by square-freeness of B). Since we already know how to obtain the signs of B(α)
and of B′(β) (Section 7.3.1) we are done:

B(α) · B′(β) ≥ 0 ⇔ (VarA,B[a, b]) · (A(b) − A(a)) · (B(b) − B(a)) ≥ 0.

Complexity of one incremental-bit of an algebraic number. Let α be an algebraic
number, given as the ith real root of a square-free polynomial A(X) ∈ Z[X]. Consider the
following question: what is the complexity of finding out one incremental-bit of α? More
precisely, suppose we already know that α lies within an interval I . How much work does it
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take to halve the interval? There are three stages. Sturm stage: Initially, I can be taken to be
[−M, M ] where M = 1 + ‖A‖∞ is Cauchy’s bound. We can halve I by counting the number
of real roots of A in the interval [−M, 0] and [0, M ]. This takes two “Sturm queries” as given
by corollary 4. Subsequently, assuming we already know the number of real roots inside I ,
each incremental-bit of α costs only one Sturm query. This continues until I is an isolating
interval. Bisection stage: Now we may assume that we know the sign of A(X) at the end-points
of I . Henceforth, each incremental-bit costs only one polynomial evaluation, viz., evaluating
the sign of A(X) at the mid-point of I . We continue this until the size ∆ of I is within the
range of guaranteed Newton convergence. Newton stage: According to §VI.11, it suffices to have
∆ ≤ m−3m−9M−6m where m = deg A and M = 2 + ‖A‖∞. Let X0 be the midpoint of I when
∆ first reaches this bound. If Newton iteration transforms Xi to Xi+1, then the point Xi is

within distance 2−2i

of α (§VI.10). The corresponding interval Ii may be taken to have size

21−2
i

∆, centered at Xi. That is, we obtain about 2i incremental-bits for i Newton steps. Each
Newton step is essentially two polynomial evaluations. In an amortized sense, the cost is about
2−i+1 polynomial evaluations per incremental-bit for the ith Newton iteration.

Exercises

Exercise 3.2: Isolate the roots of:
(a) (X2 + 7)2 − 8X = X4 + 14X2 − 8X + 49.
(b) X16 − 8X14 + 8X12 + 64X10 − 98X8 − 184X6 + 200X4 + 224X2 − 113.

These are the minimal polynomials of
√

2 +
√

5 and

√

1 +

√

5 − 3
√

1 +
√

2, respectively. 2

Exercise 3.3: Isolate the roots of the following polynomials:

P2(X) =
3

2
X2 − 1

2
,

P3(X) =
5

2
X3 − 3

2
X,

P4(X) =
35

8
X4 − 15

4
X2 +

3

8
.

These are the Legendre polynomials, which have all real and distinct roots lying in the interval
[−1, 1]. 2

Exercise 3.4: Give an algorithm for the square-free decomposition of a polynomial B(X) ∈ Z[X ]:
B(X) = B1B2 · · ·Bk as described in the text. Analyze the complexity of your algorithm. 2

.

Exercise 3.5: What does VarA,A′′ [α, β] count, assuming α < β and A(α)A(β) 6= 0? 2

.

Exercise 3.6: (a) Let Q(Y ) ∈ Q(α)[Y ], where α is a real root of P (X) ∈ Q[X ]. Assume that
we have an isolating interval representation for α (relative to P (X)) and the coefficients of
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Q(Y ) are represented by rational polynomials in α. Show how to carry out a Sturm sequence
computation to isolate the real roots of Q(Y ). Analyze the complexity of your algorithm.
(b) This gives us a method of representing elements of the double extension Q(α)(β). Extend
the method to multiple (real) extensions: Q(α1) · · · (αk). Explain how arithmetic in such
representations might be carried out. 2

Exercise 3.7: (Schwartz-Sharir) Given an integer polynomial P (X) (not necessarily square-free)
and an isolating interval I of P (X) for one of its real roots α, determine the multiplicity of
P (X) at α. 2

Exercise 3.8: In order for all the roots of P (X) to be real, it is necessary that the leading coefficients
of a Sturm sequence of P (X) be all positive. 2

Exercise 3.9: Give a version of the generalized Sturm’s theorem where we replace the condition
that α, β are non-roots of A by the condition that these are nondegenerate. 2

Exercise 3.10: Let α1, . . . , αk be real algebraic numbers with isolating interval representations.
Preprocess this set of numbers so that, for any subsequently given integers n1, . . . , nk ∈ Z, you
can efficiently test if

∑k
i=1 niαi is zero. 2

Exercise 3.11: (Sederberg and Chang)
(a) Let P (X), B(X) and C(X) be non-zero real polynomials and define

A(X) := B(X)P ′(X) + C(X)P (X).

Then between any two adjacent real roots of P (X) there is at least one real root of A(X) or
B(X). (This statement can be interpreted in the natural way in case the two adjacent roots
coincide.) In general, any pair A(X), B(X) of polynomials with this property is called an
isolator pair for P (X).
(b) Let P (X) = X3 + aX2 + bX + c. Construct two linear polynomials A(X) and B(X)
which form an isolator pair for P (X). What are the roots A(X) and B(X)? HINT: choose
B(X) = 1

3 (X + a
3 ) and C(X) = −1.

(c) Relate the concept of isolator pairs to the polynomial remainder sequence of P (X). 2

Exercise 3.12*: Is there a simple method to decide if an integer polynomial has only real roots?

2

§4. Integer and Complex Roots

We discuss the special cases of integer and rational roots, and the more general case of complex
roots.

Integer and Rational Roots. Let A(X) =
∑n

i=0 aiX
i be an integer polynomial of degree n. We

observe that if u is an integer root of A(X) then

a0 = −
n
∑

i=1

aiu
i = −u

(

n
∑

i=1

aiu
i−1

)
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and hence u divides a0. Hence, checking if A(X) has any integer roots it can be reduced to factor-
ization of integers: we factor a0 and for each integer factor u, we check if A(u) = 0. Similarly, if u/v
is a rational root of A(X) with GCD(u, v) = 1 it is easily checked that u divides a0 and v divides an.
[Thus, if u/v is a rational root of a monic integer polynomial then v = 1, i.e., the set of algebraic
integers that are rational is precisely Z.] We can thus reduce the search for rational roots to the
factorization of a0 and an.

Hilbert’s 10th problem asks for an algorithm to decide if an input integer polynomial has any integer
roots. Matiyasevich (1970), building on the work of Davis, Putnam and Robinson [5], proved that
no such algorithm exists, by showing that this is (many-one) equivalent to the Halting Problem.
For an exposition of this result, see the book of Davis [4, Appendix 2] or [8]. It is an open problem
whether there is an algorithm to decide if an input integer polynomial has any rational roots. This
can be shown to be equivalent to restricting the inputs to Hilbert’s 10th problem to homogeneous
polynomials.

Complex Roots. We reduce the extraction of complex roots to the real case. The real and
complex component of a complex algebraic number may be separately represented using isolating
intervals. Suppose P (X) ∈ C[X ] and P (X) is obtained by complex conjugation of each coefficient
of P (X). Then for α ∈ C, P (α) = P (α). So P (α) = 0 iff P (α) = 0. It follows that if P (X) =
∏n

i=1(X − αi) then

P (X) · P (X) = (
n
∏

i=1

X − αi)(
n
∏

i=1

X − αi).

Hence P (X) · P (X) is a real polynomial, as (X − αi)(X − αi) ∈ R[X ]. This shows that even when
we are interested in complex roots, we may only work with real polynomials. But it may be more
efficient to allow polynomials with complex coefficients (cf. next section). In practice, we assume
that P (X) has Gaussian integers Z[i] as coefficients.

If F (X) ∈ C[X ] and α + iβ ∈ C (α, β ∈ R) is a root of F (X) then we may write

F (α + iβ) = P (α, β) + iQ(α, β)

where P (X, Y ), Q(X, Y ) are bivariate real polynomials determined by F . This reduces the problem
of finding α, β to solving the simultaneous system

P (α, β) = 0,

Q(α, β) = 0.

We solve for α using resultants:

R(X) := resY (P (X, Y ), Q(X, Y )).

For each real root α of R(X), we can plug α into P (α, Y ) to solve for Y = β. (We have not explicitly
described how to handle polynomials with algebraic coefficients but in principle we know how to
perform arithmetic operations for algebraic numbers.) Alternatively, we can find β among the real
roots of resX(P, Q) and check for each pair α, β that may serve as a root α + iβ of F (X). This will
be taken up again in the next section.

It is instructive to examine the above polynomials P, Q in greater detail. To this end, let us write
F (X) as

F (X) = A(X) + iB(X), A(X), B(X) ∈ R[X ].

Then by Taylor’s expansion,

A(α + iβ) = A(α) +
A′(α)

1!
· (iβ) +

A′′(α)

2!
· (iβ)2 + · · · + A(n)(α)

n!
(iβ)n
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where n = max{deg A, deg B}. Similarly,

B(α + iβ) = B(α) +
B′(α)

1!
(iβ) + · · · + B(n)

n!
(iβ)n.

Hence the real and imaginary parts of F (α + iβ) are, respectively,

P (α, β) = A(α) +
B′(α)

1!
(−β) +

A(2)(α)

2!
(−β2) + · · · ,

Q(α, β) = B(α) +
A′(α)

1!
(β) +

B(2)(α)

2!
(−β2) + · · · .

So P (α, β) and Q(α, β) are polynomials of degree ≤ n in β with coefficients that are polynomials
in α of degree ≤ n. Hence R(α) is a polynomial of degree n2 in α. Moreover, the bit-size of R(X)
remains polynomially bounded in the bit-size of A(X), B(X). Hence, any polynomial-time solution
to real root isolation would lead to a polynomial-time solution to complex root isolation.

Remarks: See Householder [6] for more details on this approach.

Exercises

Exercise 4.1: Work out the algorithmic details of the two methods for finding complex roots as
outlined above. Determine their complexity. 2

Exercise 4.2: Express P (α, β) and Q(α, β) directly in terms of F (i)(α) and βi by a different Taylor
expansion, F (α + iβ) = F (α) + F ′(α)(iβ) + · · ·. 2

Exercise 4.3: A Diophantine polynomial is a polynomial D(X1, . . . , Xn) with (rational) integer
coefficients and whether the Xi’s are integer variables. Hilbert’s 10th Problem asks whether
a given Diophantine polynomial D(X1, . . . , Xn) is solvable. Show that the decidability of
Hilbert’s 10th Problem is equivalent to the decidability of each of the following problems:
(i) The problem of deciding if a system of Diophantine equations is solvable.
(ii) The problem of deciding if a Diophantine equation of total degree 4 is solvable. Remark:
It is an unknown problem whether ‘4’ here can be replaced by ‘3’. HINT: First convert the
single Diophantine polynomial to an equivalent system of polynomials of total degree at most
2.
(iii) The problem of deciding if a Diophantine equation of degree 4 has solution in non-negative
integers. HINT: In one direction, use the fact that every non-negative integer is the sum of
four squares of integers. 2

Exercise 4.4: A Diophantine set of dimension n is one of the form

{(a1, . . . , an) ∈ Zn : (∃b1, . . . , bm ∈ Z)D(a1, . . . , an, b1, . . . , bm) = 0}

where D(X1, . . . , Xn, Y1, . . . , Ym) is a Diophantine polynomial. A Diophantine set S ⊆
Zn can be viewed as Diophantine relation R(X1, . . . , Xn) where R(a1, . . . , an) holds iff
(a1, . . . , an) ∈ S.
(i) Show that the following relations are Diophantine: X1 6= X2, X1 = (X2 modX3),
X1 = GCD(X2, X3)
(ii) A set S ⊆ Z is Diophantine iff

S = {D(a1, . . . , am) : (∃a1, . . . , an ∈ Z}
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for some Diophantine polynomial D(Y1, . . . , Ym).
(iii) Show that Diophantine sets are closed under union and intersection.
(iv) (M.Davis) Diophantine sets are not closed under complement. The complementation is
with respect to Zn if the dimension is n.
(v) (Y.Matijasevich) The exponentiation relation X = Y Z , where X, Y, Z are restricted to
natural numbers, is Diophantine. This is a critical step in the solution of Hilbert’s 10th
Problem. 2

§5. The Routh-Hurwitz Theorem

We now present an alternative method for isolating complex zeros using Sturm’s theory. First we
consider a special subproblem: to count the number of complex roots in the upper complex plane.
This problem has independent interest in the theory of stability of dynamical systems, and was first
solved by Routh in 1877, using Sturm sequences. Independently, Hurwitz in 1895 gave a solution
based on the theory of residues and quadratic forms. Pinkert [12] exploited this theory to give an
algorithm for isolating complex roots. Here, we present a variant of Pinkert’s solution.

In this section we consider complex polynomials as well as real polynomials.

We begin with an elementary result, a variant of the so-called principle!of argument. Let F (Z) ∈
C[Z] and L be an oriented line in the complex plane. Consider the increase in the argument of F (Z)
as Z moves along the entire length of L, denoted

∆L argF (Z).

Note that if F = G · H then

∆L argF = (∆L argG) + (∆L arg H). (15)

Lemma 8 Suppose no root of F (Z) lies on L, p ≥ 0 of the complex roots of F (Z) lie to the
left-hand side of L, and q ≥ 0 of the roots lie to the right-hand side, multiplicity counted. Then
∆L argF (Z) = π(p − q).

Proof. Without loss of generality, let F (Z) =
∏p+q

i=1 (Z−αi), αi ∈ C. Then arg F (Z) =
∑p+q

i=1 arg(Z−
αi). Suppose αi lies to the left of L. Then as Z moves along the entire length of L, arg(Z − αi)
increases by π i.e., ∆L arg(Z −αi) = π. Similarly, if αi lies to the right of L, ∆L arg(Z −αi) = −π.
The lemma follows by summing over each root. Q.E.D.

Since p + q = deg F (Z), we conclude:

Corollary 9

p =
1

2

[

deg F +
1

π
∆L argF (Z)

]

,

q =
1

2

[

deg F − 1

π
∆L argF (Z)

]

.
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Number of roots in the upper half-plane. Our immediate goal is to count the number of roots
above the real axis. Hence we now let L be the real axis. By the foregoing, the problem amounts to
deriving a suitable expression for ∆L argF (Z). Since Z is going to vary over the reals, we prefer to
use ‘X ’ to denote a real variable. Let

F (X) = F0(X) + iF1(X)

where F0(X), F1(X) ∈ R[X ]. Observe that α is a real root of F (X) iff α is a real root of G =
GCD(F0, F1). Before proceeding, we make three simplifications:

• We may assume F0(X)F1(X) 6= 0. If F1 = 0 then the complex roots of F (X) come in conjugate
pairs and their number can be determined from the number of real roots. Similarly if F0 = 0
then the same argument holds if we replace F by iF .

• We may assume F0, F1 are relatively prime, since we can factor out any common factor G =
GCD(F0, F1) from F , and and apply equation (15) to F/G and G separately.

• We may assume deg F0 ≥ deg F1. Otherwise, we may replace F by iF which has the same set
of roots. This amounts to replacing (F0, F1) by (−F1, F0) throughout the following.

We define

ρ(X) :=
F0(X)

F1(X)
.

Thus ρ(X) is well-defined for all X (we never encounter 0/0). Clearly arg F (X) = cot−1ρ(X). Let

α1 < α2 < · · · < αk

be the real roots of F0(X). They divide the real axis L into k + 1 segments,

L = L0 ∪ L1 ∪ · · · ∪ Lk, (Li = [αi, αi+1])

where α0 = −∞ and αk+1 = +∞. Thus,

∆L argF (X) =

k
∑

i=0

∆αi+1

αi
cot−1ρ(X).

Here the notation
∆β

αf(Z)

denotes the increase in the argument of f(Z) as Z moves along the line segment from α to β.
Since F (X) has no real roots, ρ(X) is defined for all X (we do not get 0/0) and ρ(X) = 0 iff
X ∈ {αi : i = 1, . . . , k}. We will be examining the signs of ρ(α−

i ) and ρ(α+
i ), and the following

graph of the cotangent function is helpful:

Note that cot−1ρ(αi) = cot−10 = ±π/2 (taking values in the range [−π, +π]), and

∆αi+1

αi
cot−1ρ(X) = lim

ǫ→0
∆

αi+1−ǫ
αi+ǫ cot−1ρ(X).

But ρ(X) does not vanish in the interval [αi + ǫ, αi+1 − ǫ]. Hence for i = 1, . . . , k − 1,

∆αi+1

αi
cot−1ρ(X) =























0 if ρ(α+
i )ρ(α−

i+1) > 0

π if ρ(α+
i ) < 0, ρ(α−

i+1) > 0

−π if ρ(α+
i ) > 0, ρ(α−

i+1) < 0

= π

[

sign(ρ(α−

i+1)) − sign(ρ(α+
i ))

2

]

. (16)
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cot φ

π−π 0

−π/2 π/2
φ

Figure 2: The cotangent function.

This is seen by an examination of the graph of cotφ. For i = 0, k, we first note that if deg F0 > deg F1

then ρ(−∞) = ±∞ and ρ(+∞) = ±∞. It follows that

∆α1

−∞cot−1ρ(X) =
π

2
sign(ρ(α−

1 )),

∆+∞

αk
cot−1ρ(X) = −π

2
sign(ρ(α+

k )),

and so
∆α1

−∞cot−1ρ(X) + ∆+∞

αk
cot−1ρ(X) =

π

2
sign(ρ(α−

1 )) − π

2
sign(ρ(α+

k )). (17)

If deg F0 = deg F1 then ρ(−∞) = ρ(+∞) = (lead(F0))/(lead(F1)) and again (17) holds. Combining
equations (16) and (17), we deduce:

Lemma 10

∆L argF (X) = π

k
∑

i=1

sign(ρ(α−

i )) − sign(ρ(α+
i ))

2
.

But αi is a pole of ρ−1 = F1/F0. Hence the expression
sign(ρ(α−

i
))−sign(ρ(α+

i
))

2 is the Cauchy index of
ρ−1 at αi. By Corollary 7 (§3), this means −VarF1,F0

[−∞, +∞] gives the Cauchy index of ρ−1 over
the real line L. Thus ∆L argF (X) = −VarF1,F0

[−∞, +∞]. Combined with corollary 9, we obtain:

Theorem 11 (Routh-Hurwitz) Let F (X) = F0(X) + iF1(X) be monic with deg F0 ≥ deg F1 ≥ 0
and F0, F1 relatively prime. The number of roots of F (X) lying above the real axis L is given by

1

2
(deg F − VarF1,F0

[−∞, +∞]) .

To exploit this result for a complex root isolation method, we proceed as follows.
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1. Counting Roots to one side of the imaginary axis. Suppose we want to count the
number p of roots of F (Z) to the right of the imaginary axis, assuming F (Z) does not have any
purely imaginary roots. Note that α is a root of F (Z) to the right of the imaginary axis iff iα is
a root of F (Z/i) = F (−iZ) lying above the real axis. It is easy (previous section) to construct the
polynomial G(Z) := F (−iZ) from F (Z).

2. Roots in two opposite quadrants. We can count the number of roots in the first and third
quadrant as follows: from F (Z) construct a polynomial F ∗(Z) whose roots are precisely the squares
of roots of F (Z). This means that α is a root of F (Z) in the first (I) or third (III) quadrant iff α2

is a root of F ∗(Z) in the upper half-plane (which we know how to count). Similarly, the roots of
F (Z) in (II) and (IV ) quadrants are sent into the lower half-plane. It remains to construct F ∗(Z).
This is easily done as follows: Let F (Z) = Fo(Z) + Fe(Z) where Fo(Z) consists of those monomials
of odd degree and Fe(Z) consisting of those monomials of even degree. This means Fo(Z) is an odd
function (i.e., Fo(−Z) = −Fo(Z)), and Fe(Z) is an even function (i.e., Fe(−Z) = Fe(Z)). Consider

G(Z) = Fe(Z)2 − Fo(Z)2

= (Fe(Z) + Fo(Z))(Fe(Z) − Fo(Z))

= F (Z)(Fe(−Z) + Fo(−Z))

= F (Z)F (−Z).

If F (Z) = c
∏n

i=1(Z − βi) where βi are the roots of F (Z) then

F (Z)F (−Z) = c2
n
∏

i=1

(Z − βi)(−Z − βi) = (−1)nc2
n
∏

i=1

(Z2 − β2
i ).

Hence, we may define our desired polynomial F ∗(Y ) by the relation F ∗(Z2) = G(Z). In fact, F ∗(Y )
is trivially obtained from the coefficients of G(Z).

3. Roots inside a quadrant. We can count the number #(I) of roots in the first quadrant, since

#(I) =
1

2
[(#(I) + #(II)) + (#(I) + #(IV )) − (#(II) + #(IV ))]

where #(I) + #(II) and #(I) + #(IV ) are half-plane counting queries, and #(II) + #(IV ) is a
counting query for an opposite pair of quadrants. But we have shown how to answer such queries.

4. Roots in a translated quadrant. If the origin is translated to a point α ∈ C, we can count
the number of roots of F (Z) in any of the four quadrants whose origin is at α, by counting the
number of roots of F (Z + α) in the corresponding quadrant.

5. Putting these together. In the last section, we have shown how to isolate a sequence x1 <
x2 < · · · < xk of real numbers that contain among them all the real parts of complex roots of F (Z).
Similarly, we can isolate a sequence y1 < y2 < · · · < yℓ of real numbers that contains among them
all the imaginary parts of complex roots of F (Z). So finding all roots of F (Z) is reduced to testing
if each xi + iyj is a root. We may assume from the root isolation that we know (rational) numbers
ai, bj such that

x1 < a1 < x2 < a2 < · · · < ak−1 < xk < ak, y1 < b1 < y2 < b2 < · · · < bℓ−1 < yℓ < bℓ.
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Then for j = 1, . . . , ℓ and for i = 1, . . . , k, we determine the number n(i, j) of roots of F (Z) in the
quadrant (III) based at ai + ibj. Note that n(1, 1) = 1 or 0 depending on whether x1 + iy1 is a root
or not. It is easy to work out a simple scheme to similarly determine whether each xi + iyj is a root
or not.

Exercises

Exercise 5.1: Determine the complexity of this procedure. Exploit the fact that the testings of the
various xi + iyj ’s are related. 2

Exercise 5.2: Isolate the roots of F (Z) = (Z2−1)(Z2+0.16) using this procedure. [This polynomial
has two real and two non-real roots. Newton iteration will fail in certain open neighborhoods
(attractor regions).] 2

Exercise 5.3: Derive an algorithm to determine if a complex polynomial has all its roots inside
any given circle of the complex plane.
HINT: the transformation w 7→ z = r 1+w

1−w
(for any real r > 0) maps the half-plane Re(w) < 0

into the open disc |z| < r. 2

Exercise 5.4: If F (X) is a real polynomial whose roots have no positive real parts then the coeffi-
cients of F (X) have no sign variation.
HINT: write F (X) =

∏n
i=1(X−αi) and divide the n roots into the k real roots and 2ℓ complex

roots (n = k + 2ℓ).

2

Exercise 5.5: Let Fn(X), Fn−1(X), . . . , F0(X) be a sequence of real polynomials where each Fi(X)
has degree i and positive leading coefficient. Moreover, Fi(x) = 0 implies Fi−1(x)Fi+1(x) < 0
(for i = 1, 2, . . . , n− 1, and x ∈ R). Then each Fi(X) (i = 1, . . . , n) has i simple real roots and
between any two consecutive roots is a root of Fi−1. 2

Exercise 5.6: (Hermite, Biehler) If all the roots of F (X) = A(X) + iB(X) (A(X), B(X) ∈ R[X ])
lie on one side of the real axis of the complex plane, then A(X) and B(X) have only simple
real roots, and conversely. 2

§6. Sign Encoding of Algebraic Numbers: Thom’s Lemma

We present an alternative representation of real algebraic numbers as suggested by Coste and Roy
[3]. If A = [A1(X), A2(X), . . . , Am(X)] is a sequence2 of real polynomials, then a sign condition of
A is any sequence of signs,

[s1, s2, . . . , sm], si ∈ {−1, 0, +1}.
We say [s1, s2, . . . , sm] is the sign condition of A at α ∈ R if si = sign(Ai(α)) for i = 1, . . . , m. This
will be denoted

signα(A) = [s1, . . . , sm].
2In this section, we use square brackets ‘[. . .]’ as a stylistic variant of the usual parentheses ‘(. . .)’ for writing certain

sequences.
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A sign condition of A is consistent if there exists such an α. Define the sequence

Der[A] :=[A(X), A′(X), A(2)(X), . . . , A(n)(X)], deg A = n,

of derivatives of A(X) ∈ R[X ]. The representation of algebraic numbers is based on the following
“little lemma” of Thom. Let us call a subset of R simple if it is empty, a singleton or an open
interval.

Lemma 12 (Thom) Let A(X) ∈ R[X ] have degree n ≥ 0 and let s = [s0, s1, . . . , sn] ∈
{−1, 0, +1}n+1 be any sign condition. Then the set

S :={x ∈ R : sign(A(i)(x)) = si, for all i = 0, . . . , n}

is simple.

Proof. We may use induction on n. If n = 0 then A(X) is a non-zero constant and S is either empty
or equal to R. So let n ≥ 1 and let s′ = [s1, . . . , sn]. Then the set

S′ :={x ∈ R : sign(A(i)(x)) = si, i = 1, . . . , n}

is simple, by the inductive hypothesis for A′(X). Note that S = S′ ∩ S0 where S0 :={x ∈ R :
sign(A(x)) = s0}. Now the set S0 is a disjoint union of simple sets. In fact, viewing A(X) as
a continuous real function, S0 is equal to A−1(0), A−1(R>0) or A−1(R<0), depending on whether
s0 = 0, +1 or −1. In any case, we see that if S′ ∩S0 is a connected set, then it is simple. So assume
it is disconnected. Then S′ contains two distinct roots of A(X). By Rolle’s theorem (§VI.1), A′(X)
must have a root in S′. This implies S′ is contained in the set {x ∈ R : sign(A′(x)) = 0}, which is
a finite set. Since S′ is connected, it follows that S′ is empty or a singleton. This contradicts the
assumption that S′ ∩ S0 is disconnected. Q.E.D.

Lemma 13 Let α, β be distinct real roots of A(X), deg A(X) = n ≥ 2. Let s = [s0, . . . , sn] and
s′ = [s′0, . . . , s

′
n] be the sign conditions of Der[A] at α and at β (respectively).

(i) s and s′ are distinct.
(ii) Let i be the largest index such that si 6= s′i. Then 0 < i < n and si+1 = s′i+1 6= 0. Furthermore,
α < β iff one of the following conditions holds:

(a) si+1 = +1 and si < s′i;

(b) si+1 = −1 and si > s′i.

Proof. Let I be the open interval bounded by α, β.
(i) If s = s′ then by Thom’s lemma, every γ ∈ I also achieves the sign condition s. In particular,
this means A(γ) = 0. Since there are infinitely many such γ, A(X) must be identically zero,
contradiction.
(ii) It is clear that 0 < i < n since s0 = s′0 = 0 and sn = s′n. Thom’s lemma applied to the polynomial
A(i+1)(X) implies that A(i+1)(γ) has constant sign throughout the interval I. If si+1 = s′i+1 = 0 then

we obtain the contradiction that A(i+1)(X) is identically zero in I. So suppose si+1 = s′i+1 = +1

(the other case being symmetrical). Again by Thom’s lemma, we conclude that A(i+1)(γ) > 0 for
all γ ∈ I, i.e., A(i)(X) is strictly increasing in I. Thus α < β iff

A(i)(α) < A(i)(β). (18)

Since the signs of A(i)(α) and A(i)(β) are distinct, the inequality (18) amounts to si < s′i. Q.E.D.
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This result suggests that we code a real algebraic number α by specifying a polynomial A(X) at
which α vanishes, and by specifying its sign condition at Der[A′], written

α ∼= (A(X), sign(Der[A′])).

This is the same notation (∼=) used when α is represented by an isolating interval (§VI.9), but it
should not lead to any confusion. We call (A(X), sign(Der[A′])) a sign encoding of α. For example,√

2 ∼= (X2 − 2, [+1, +1]) and −
√

2 ∼= (X2 − 2, [−1, +1]).

This encoding has some advantages over the isolating interval representation in that, once A is fixed,
the representation is unique (and we can make A unique by choosing the distinguished minimal
polynomial of α). It’s discrete nature is also desirable. On the other hand, the isolating intervals
representation gives an explicit numerical approximation, which is useful. Coste and Roy [3] also
generalized the sign encoding to the multivariate situation.

Exercises

Exercise 6.1: Let s = [s0, . . . , sn] be a sequence of generalized sign condition that is, si belongs to
the set {< 0,≤ 0, 0,≥ 0, > 0} of generalized signs (rather than si ∈ {−1, 0, +1}). If A(X) has
degree n ≥ 0, show that the set {x ∈ R : s = signx(Der[A])} is connected (possibly empty).

2

Exercise 6.2: Give an algorithm to compare two arbitrary real algebraic numbers in this represen-
tation. 2

§7. Problem of Relative Sign Conditions

Uses of the sign encoding of real algebraic numbers depend on a key algorithm from Ben-Or, Kozen
and Reif [1]. This algorithm has come to be known as the “BKR algorithm”. We first describe the
problem solved by this algorithm.

Let B = [B1, B2, . . . , Bm] be a sequence of real polynomials, and A another real polynomial. A
sign condition s = [s1, . . . , sm] of B is consistent relative to A (or, A-consistent) if [0, s1, . . . , sm] is
consistent for the sequence [A, B1, . . . , Bm]. In other words, s is A-consistent if s = signα[B] for
some root α of A. The weight of s relative to A is the number of roots of A at which B achieves
the sign condition s. Thus s is relatively consistent iff [0, s1, . . . , sm] has positive weight. If A is
understood, we may simply call s a relatively consistent sign condition of B.

The problem of relative sign consistency, on input A, B, asks for the set of all A-consistent sign
conditions of B; a stronger version of this problem is to further ask for the weight of each A-
consistent sign condition.

There are numerous other applications of this problem, but we can see immediately its applications
to the sign encoding representation:

• To determine the sign encoding of all roots of A(X), it suffices to call the BKR algorithm on
A, B where B = Der[A′].
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• To determine the sign of a polynomial P (X) at the roots of A, we call BKR on A, B where
B = [P, A′, A(2), . . . , A(m−1)].

The original BKR algorithm is described only for the case where A, B1, . . . , Bm are relatively prime,
as the general case can be reduced to this special case. Still, it is convenient to give a direct algorithm.
Mishra and Pedersen [10] observed that corollary 6 used in the original BKR algorithm in fact holds
without any conditions on the polynomials A, B:

Lemma 14 Let A, B ∈ R[X ] such that A(α)A(β) 6= 0, α < β. Then

VarA,A′B[α, β] =
∑

γ

sign(B(γ))

where γ ranges over the distinct real roots of A.

Proof. Again, it suffices to prove this for a fundamental interval [α, β] at some γ0 ∈ [α, β]. Let γ0

be an r-fold root of A and an s-fold root of A′B. If r ≥ s, then this has been proved in corollary 6.
So assume s > r. The sign variation difference over [α, β] in the Sturm sequence [A0, A1, . . . , Ah]
for A, A′B is evidently equal to that in the depressed sequence [A0/Ah, A1/Ah, . . . , 1]. But the sign
variation difference in the depressed sequence is 0 since γ0 is a non-root of A0/Ah (here we use the
fact that γ0 is an r-fold root of Ah). Since B(γ0) = 0 (as s > r), we have verified

VarA,A′B[α, β] = 0 = sign(B(γ0)).

Q.E.D.

In the following, we fix A and B = [B1, . . . , Bm]. If ε is a sign condition of B, write

W ε :={α : A(α) = 0, signα[B] = ε} (19)

for the set of real roots α of A at which B achieves the condition ε. So the weight of ε is given by

wε := |W ε|.

For instance, when m = 1, the roots of A are partitioned into W 0, W+, W−. When m = 3, w+−0 is
the number of roots of A at which B1 is positive, B2 is negative and B3 vanishes.

So the BKR algorithm amounts to determining these weights. First consider some initial cases of
the BKR algorithm (for small m).

CASE m = 0: In this case, the A-consistent sign condition is [ ] (the empty sequence) and its weight
is (by definition) just the number of real roots of A. By the original Sturm theorem (§3), this is
given by

vA(1) := VarA,A′ [−∞, +∞].

In general, we shall abbreviate VarA,A′B[−∞, +∞] by vA(B), or simply, v(B) if A is understood. In
this context, computing v(B) is sometimes called “making a Sturm query on B”.

CASE m = 1: By the preceding lemma,

vA(B1) = w+ − w−, vA(B2
1) = w+ + w−.

Case m = 0 shows that
vA(1) = w0 + w+ + w−.
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We put these together in the matrix format,




1 1 1
0 1 −1
0 1 1



 ·





w0

w+

w−



 =





v(1)
v(B1)
v(B2

1)



 . (20)

Thus we can solve for w0, w+, w− since we know the right hand side after making the three Sturm
queries v(1), v(B1), v(B2

1).

CASE m = 2: If we let M1 be the matrix in equation (20), it is not hard to verify





M1 M1 M1

0 M1 −M1

0 M1 M1



 ·





























w00

w0+

w0−

w+0

w++

w+−

w−0

w−+

w−−





























=





























v(1)
v(B1)
v(B2

1)
v(B2)

v(B1B2)
v(B2

1B2)
v(B2

2)
v(B1B

2
2)

v(B2
1B2

2)





























. (21)

Again, we can solve for the weights after making some Sturm queries. The case m = 2 will illustrate
the general development of the BKR algorithm below. If the square matrix in (21) is denoted M2

then M2 can be viewed as the “Kronecker product” of M1 with itself.

Exercises

Exercise 7.1: Let α have the sign encoding E = (A(X), [s1, . . . , sm]).
(i) What is the sign encoding of −α in terms of E?
(ii) Give a method to compute the sign encoding E′ of 1/α. Assume that the polynomial in
E′ is XmA(1/X). HINT: consider Der[A](1/X) instead of Der[XmA(1/X)]. 2

§8. The BKR algorithm

We now develop the BKR algorithm.

Let M ∈ Rm×n and M ′ ∈ Rm′
×n′

where R is any ring. The Kronecker product M ⊗ M ′ of M and
M ′ is the mm′ × nn′ matrix partitioned into m × n blocks, with the (i, j)th block equal to

(M)ij · M ′.

In other words, M ⊗ M ′ is defined by

(M ⊗ M ′)(i−1)m′+i′,(j−1)m′+j′ = MijMi′j′ ,

i ∈ {1, . . . , m}, j ∈ {1, . . . , n}, i′ ∈ {1, . . . , m′}, j′ ∈ {1, . . . , n′}.

For instance, the matrix M2 in (21) can be expressed as M1 ⊗M1. Again, if u, u′ are m-vectors and
m′-vectors, respectively, then u ⊗ u′ is a (mm′)-vector.

Lemma 15 Let M ∈ Rm×m and M ′ ∈ Rm′
×m′

and u, u′ be m-vectors and m′-vectors, respectively.
(i) (M ⊗ M ′)(u ⊗ u′) = (Mu) ⊗ (M ′u′).
(ii) If M, M ′ are invertible, so is M ⊗ M ′, with inverse M−1 ⊗ M ′−1.
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Proof. (i) This is a straightforward exercise.
(ii) Consider the action of the matrix product (M−1 ⊗ M ′−1) · (M ⊗ M ′) on u ⊗ u′:

(M−1 ⊗ M ′−1) · (M ⊗ M ′) · u ⊗ u′ = (M−1 ⊗ M ′−1) · (M · u ⊗ M ′ · u′)

= (M−1 · M · u) ⊗ (M ′−1 · M ′ · u′).

= u ⊗ u′.

As u, u′ are arbitrary, this proves that (M−1 ⊗M ′−1) · (M ⊗M ′) is the identity matrix. Q.E.D.

The real algebra of vectors. We describe the BKR algorithm by “shadowing” its action in the
ring R = Rk of k-vectors over R. This notion of shadowing will be clarified below; but it basically
makes the correctness of the algorithm transparent.

Note that R = Rk is a ring under component-wise addition and multiplication. The real numbers R

are embedded in R under the correspondence α ∈ R 7→ (α, α, . . . , α) ∈ R. Thus R is a real algebra3.

To describe the BKR algorithm on inputs A(X) and B = [B1, . . . , Bm], we first choose the k in the
definition of R to be the number of distinct real roots of the polynomial A(X); let these roots be

α = (α1, . . . , αk). (22)

We shall use R in two distinct ways:

• A vector in R with entries from −1, 0, +1 will be called a root sign vector. Such vectors4

represent the signs of a polynomial Q(X) at the k real roots of A(X) in the natural way:

signA(X)(Q(X)))

denotes the sign vector [s1, . . . , sk] where si = sign(Q(αi)). If si = signA(Qi) (i = 0, 1) then
notice that s0 · s1 = signA(Q0Q1).

In the BKR algorithm, Q will be a power product of B1, . . . , Bm.

• A 0/1 vector in R will be called a Boolean vector. Such a vector u represents a subset U of
the roots of A(X) in the natural way: the i-th component of u is 1 iff αi ∈ U . If the Boolean
vectors u0, u1 ∈ R represent the subsets U0, U1 (respectively) then observe that U0 ∩ U1 is
represented by the vector product u0 · u1.

In the BKR algorithm, the subsets U are determined by sign conditions of B: such subsets have
the form W ε (see equation (19)) where ε = [s1, . . . , sℓ] is a sign condition of C = [C1, . . . , Cℓ]
and C is a subsequence of B. Note that ε is not to be confused with the root sign vectors
in R. In fact, we define a rather different product operation on such sign conditions: let
ε = [s1, . . . , sℓ] be a sign condition of C = [C1, . . . , Cℓ] and ε′ = [sℓ+1, . . . , sℓ′ ] be a sign

condition of C
′
= [Cℓ+1, . . . , Cℓ′ ], ℓ < ℓ′. Assuming that C and C

′
are disjoint, we define

ε · ε′ :=[s1, . . . , sℓ, sℓ+1, . . . , sℓ′ ],

i.e., the concatenation of ε with ε′. This definition of product is consistent with the prod-
uct in R in the following sense: if u0, u1 ∈ R represent W ε, W ε′

(respectively) then u0 · u1

(multiplication in R) represents
W ε·ε.

3In general, a ring R containing a subfield K is called a K-algebra.
4Although root sign vectors are formally sign conditions, notice that root sign vectors arise quite differently, and

hence the new terminology. By the same token, Boolean vectors are formally a special type of sign condition, but
they are interpreted very differently.
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We come to a key definition: let C = [C1, . . . , Cℓ] be a subsequence of B. Let M ∈ Rℓ×ℓ, ε =
[ε1, . . . , εℓ] where each εi is a sign condition for C = [C1, . . . , Cℓ], and Q = [Q1, . . . , Qℓ] be a
sequence of real polynomials. We say that

(M, ε, Q)

is a valid triple for C if the following conditions hold:

• M is invertible.

• Every A-consistent sign condition for C occurs in ε (so ε may contain relatively inconsistent
sign conditions).

• The equation
M · u = s (23)

holds in R where u = (u1, . . . , uℓ)
T with each ui a Boolean vector representing W εi , and

s = (s1, . . . , sℓ)
T with si equal to the root sign vector signA(Qi) ∈ R. Equation (23) is called

the underlying equation of the triple.

We can view the goal of the BKR algorithm to be the computation of valid triples for B (note that
A is implicit in our definition of valid triples).

Example: (M1, ([0], [+], [−]), [1, B1, B
2
1 ]) is a valid triple for B = [B1]. The underlying equation is





1 1 1
0 1 −1
0 1 1



 ·





u0

u+

u−



 =





signA(1)
signA(B1)
signA(B2

1)



 . (24)

where we write u0, u+, u− for the Boolean vectors representing the sets W 0, W+, W−. Compare this
equation to equation (20).

We define the “Kronecker product” of two triples (M, ε, Q) and (M ′, ε′, Q
′
) as

(M ⊗ M ′, ε ⊗ ε′, Q ⊗ Q
′
)

where the underlying “multiplication” in ε ⊗ ε′ and Q ⊗ Q
′
are (respectively) concatenation of sign

conditions and multiplication of polynomials. For example,

(0, +,−) ⊗ (+−,−0) = (0 + −, 0 − 0, + + −, + − 0,− + −,−− 0)

and
[Q1, Q2] ⊗ [Q3, Q4] = [Q1Q3, Q1Q4, Q2Q3, Q3Q4].

Lemma 16 Suppose (M, ε, Q) is valid for [B1, . . . , Bℓ] and (M ′, ε′, Q
′
) is valid for [Bℓ+1, . . . , Bℓ+ℓ′ ].

Then
(M ⊗ M ′, ε ⊗ ε′, Q ⊗ Q

′
) (25)

is valid for [B1, . . . , Bℓ, Bℓ+1, . . . , Bℓ+ℓ′ ].

Proof. (i) First we note that M ⊗ M ′ is invertible.
(ii) Next note that every A-consistent sign condition for [B1, . . . , Bℓ+ℓ′ ] is listed in ε ⊗ ε′.

(iii) Let the underlying equations of (M, ε, Q) and (M ′, ε′, Q
′
) be M · u = s and M ′ · u′ = s′,

respectively. By lemma 15(i),
(M ⊗ M ′)(u ⊗ u′) = s ⊗ s′. (26)

Then it remains to see that equation (26) is the underlying equation for equation (25). This follows

since for each i, (u ⊗ u′)i represents the set W (ε⊗ε′)i , and (s ⊗ s′)i = signA((Q ⊗ Q
′
)i). Q.E.D.
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Pruning. It follows from this lemma that

(M2, ([0], [+], [−]) ⊗ ([0], [+], [−]), [1, B1, B
2
1 ] ⊗ [1, B2, B

2
2 ])

is a valid triple for [B1, B2]. We can repeat this formation of Kronecker product m times to obtain
a valid triple (M, ε, Q) for [B1, . . . , Bm]. But the size of the matrix M would be 3m × 3m, which is
too large for practical computation. This motivates the idea of “pruning”. Observe that the number
of A-consistent sign conditions cannot be more than k. This means that in the underlying equation
Mu = s, all but k of the Boolean vectors (u)i must be the zero vector 0 (representing the empty
set). The following steps reduces the matrix M to size at most k × k:

Pruning Procedure for the equation Mu = s:
1. Detect and eliminate the zero vectors in u.

Call the resulting vector u′.
So the length of u′ is ℓ where ℓ ≤ k.

2. Omit the columns in M corresponding to eliminated entries of u.
We get a new matrix M ′′ satisfying M ′′u′ = s.

3. Since M is invertible, find ℓ rows in M ′′ that form
an invertible ℓ × ℓ matrix M ′.

4. If s′ are the entries corresponding to these rows,
we finally obtain the “pruned equation” M ′u′ = s′.

After we have pruned the underlying equation of the valid triple (M, ε, Q), we can likewise “prune”

the valid triple to a new triple (M ′, ε′, Q
′
) whose underlying equation is M ′u′ = s′. It is not hard

to verify that that this new triple is valid. The resulting matrix M ′ has size at most k × k.

Shadowing. The Pruning Procedure above is not intended to be effective because we have no
intention of computing over R. Instead, we apply the linear map

λ : R → R

defined by λ(x) =
∑k

i=1 xi for x = (x1, . . . , xk). Notice

• If x is a Boolean vector representing W ε then λ(x) = wε.

• If x is a root sign condition for a polynomial Q then λ(x) = vA(Q), a Sturm query on Q.

If u ∈ Rℓ, then λ(u) ∈ Rℓ is defined by applying λ component-wise to u. The underlying equation
is transformed by λ into the real matrix equation,

M · λ(u) = λ(s).

This equation is only a “shadow” of the underlying equation, but we can effectively compute with
this equation. More precisely, we can compute λ(s) since it is just a sequence of Sturm queries:

λ(s) = (vA(Q1), . . . , vA(Qℓ))
T

where Q = (Q1, . . . , Qℓ). From this, we can next compute λ(u) as M−1 · λ(s). The A-inconsistent
sign conditions in ε correspond precisely to the 0 entries in λ(u). Thus step 1 in the Pruning
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Procedure can be effectively carried out. The remaining steps of the Pruning Procedure can now
be carried out since we have direct access to the matrix M (we do not need u or s). Finally we can
compute the pruned valid triple.

All the ingredients for the BKR algorithm are now present:

BKR Algorithm

Input: A(X) and B = [B1, . . . , Bm].

Output: a valid triple (M, ε, Q) for B.
1. If m = 1, we output (M1, ([0], [+], [−]), (1, B1, B

2
1)) as described above.

2. If m ≥ 2, recursively compute (M ′, ε′, Q
′
) valid for [B1, . . . , Bℓ] (ℓ = ⌊m/2⌋),

and also (M ′′, ε′′, Q
′′
) valid for [Bℓ+1, . . . , Bm].

3. Compute the Kronecker product of (M ′, ε′, Q
′
) and (M ′′, ε′′, Q

′′
).

4. Compute and output the pruned Kronecker product.

The correctness of this algorithm follows from the preceding development. The algorithm can actu-
ally be implemented efficiently using circuits.

Mishra and Pedersen [10] describe extensions of this algorithm useful for various operations on sign
encoded numbers.
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Lecture VIII

Gaussian Lattice Reduction

The subject known as the geometry of numbers was initiated by Minkowski. Its power and elegance
comes from converting algebraic problems into a geometric setting (which, we might say, is an
inversion of the program of Descartes to algebraize geometry). The central object of study in the
geometry of numbers is lattices. Cassels [40] (see also [191]) gives a classical treatment of this
subject; recent development may be found in the book of Grötschel, Lovász and Schrijver [75].
H. W. Lenstra (1983) first introduced these methods to complexity theory, leading to a polynomial-
time algorithm for integer programming in fixed dimensions. Current polynomial-time algorithms for
factoring integer polynomials also depend on lattice-theoretic techniques. A key ingredient in these
major results are efficient algorithms for lattice reduction. General lattice reduction and factoring of
integer polynomials will be treated in the next lecture. In this lecture, we introduce lattice reduction
by focusing on 2-dimensional lattices. Here, an algorithm of Gauss lays claim to being the natural
extension of Euclid’s algorithm to 2-dimensions. The algorithm originally arises in Gauss’s theory of
reduction of integral binary quadratic forms [41, 177, 108]. See [206, 207, 218] for some recent work
on the Gaussian algorithm. Note that we use “Gaussian algorithm” to refer to the 2-dimensional
case only, although there are some higher dimensional analogues.

§1. Lattices

This section gives a general introduction to lattices.

Fix d ≥ 1. Let S ⊆ Rd be a non-empty finite set. The lattice generated by S is the set of integer
linear combinations of the elements in S,

Λ = Λ(S) :={m1u1 + m2u2 + · · · + mkuk : k ≥ 1, ui ∈ S, mi ∈ Z}.

The set S is called a generating set for the lattice Λ. If S has the minimum cardinality among
generating sets for Λ, we call S a basis of Λ. The cardinality of a basis of Λ is the dimension, dimΛ,
of Λ. Instead of Λ(S), we also write Zu if S = {u}; or

Λ(u1, . . . , uk) = Zu1 + Zu2 + · · · + Zuk

if S = {u1, . . . , uk}.

Even for d = 1, the dimension of a lattice can be arbitrarily large or even infinite. But in our
applications, it is sufficient and customary to restrict Λ to the case where u1, . . . , uk are linearly
independent as real vectors. In this case, 1 ≤ k ≤ d. Viewing S as an ordered sequence (u1, . . . , uk)
of vectors, we let

A = [u1, . . . , uk] ∈ R
d×k

denote a d × k real matrix, and write Λ(A) instead of Λ(S). Under the said customary convention,
A has matrix rank k. We say Λ(A) is full-dimensional iff k = d. Our applications require lattices
that are not full-dimensional.

A lattice Λ with only integer coordinates, Λ ⊆ Zd, is called an integer lattice. The simplest example
of a lattice is the unit integer lattice Λ = Zd. A basis for this lattice is the set S = {e1, . . . , ed} of
elementary vectors in Rd (equivalently, the identity matrix E = [e1, . . . , ed] is a basis). If we replace
any ei by the vector consisting of all 1’s, we get another basis for Zd.

We examine the conditions for two bases A, B to generate the same lattice. If U is a k × k real
non-singular matrix, we can transform a basis A to AU .
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Definition: A square matrix U ∈ Ck×k is unimodular if detU = ±1. A real, integer, etc, unimodular
matrix is one whose entries are all real, all integer, etc.

A unimodular1 matrix U represents a unimodular transformation of lattice bases, A 7→ AU . Note
that the inverse of a (real or integer, respectively) unimodular matrix is still (real or integer) uni-
modular. The next theorem shows why we are interested in integer unimodular matrices.

Theorem 1 Let A, B ∈ Rd×k be two bases. Then Λ(A) = Λ(B) iff there exists an integer unimod-
ular matrix U such that A = BU .

Proof. (⇒) Since each column of A is in Λ(B), there is an integer matrix UA such that

A = BUA.

Similarly, there is an integer matrix UB such that

B = AUB.

Hence A = AUBUA. If A′ is a k × k submatrix of A such that detA′ 6= 0, then A′ = A′UBUA shows
that det(UBUA) = 1. Since UA, UB are integer matrices this implies | detUA| = | detUB| = 1.

(⇐) If A = BU then Λ(A) ⊆ Λ(B). But since B = AU−1, Λ(B) ⊆ Λ(A). Q.E.D.

Definition: The determinant of a lattice Λ is given by

detΛ :=
√

detATA

where A is any basis with Λ(A) = Λ.

By definition, the determinant of a lattice is always positive. Using the previous theorem, it is easy
to show that detΛ is well-defined: if A = BU for some unimodular matrix U (this demonstration
does not depend on U being integer) then

detATA = det UTBTBU = det(UT ) det(BTB) det(U)

= det BTB.

Geometrically, det Λ is the smallest volume of a parallelepiped formed by k independent vectors of
Λ (k = dim Λ). For instance, the unit integer lattice has determinant 1. The reader may also verify
that Λ(u, v) = Z2 where u = (2, 1)T , v = (3, 2)T . Note that det[u, v] = 1.

It is easy to check that given any basis A = [a1, . . . , an], the following transformations of A are
unimodular transformations:

(i) Multiplying a column of A by −1:

A′ = [a1, . . . , ai−1,−ai, ai+1, . . . , an].

(ii) Adding a constant multiple c of one column to a different column:

A′ = [a1, . . . , aj , . . . , ai + caj , . . . , an].

1Unimodular literally means “of modulus one”. The terminology is also used, for instance, to refer to complex

numbers z = x + yi where |z| =
√

x2 + y2 = 1.
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(iii) Permuting two columns of A:

A′ = [a1, . . . , aj−1, ai, aj+1, . . . , ai−1, aj , ai+1, , . . . , an].

It is important that i 6= j in (ii). We call these the elementary column operations. There is clearly
an analogous set of elementary row operations. Together, they are called the elementary unimodular
transformations. If c in (ii) is an integer, then (i), (ii) and (iii) constitute the elementary integer row
operations.

The unimodular matrices corresponding to the elementary transformations are called elementary
unimodular matrices. We leave it as an exercise to describe these elementary unimodular matrices
explicitly.

A fundamental result which we will not prove here (but see [86, p. 382]) is that the group of
unimodular matrices in Zn×n can be generated by the following three matrices:

U0 =





−1 0 0 · · · 0
0 1 0 · · · 0

· · · . . .
...

0 0 0 · · · 1




, U1 =





0 0 0 · · · 0 (−1)n−1

1 0 0 · · · 0 0
0 1 0 · · · 0 0

· · · . . .
...

0 0 0 · · · 1 0




, U2 =





1 1 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0

· · · . . .
...

0 0 0 · · · 1




.

It is easy to see that U0, U1, U2 are each a product of elementary unimodular transformations. We
conclude: a matrix is unimodular iff it is a product of the elementary unimodular transformations.

Short vectors. Let |u| denote the (Euclidean) length of u ∈ Rd. So |u| := ‖u‖2, in our general
notation. When d = 2, this notation conveniently coincides with the absolute value of u as a complex
number. The unit vector along direction u is û :=u/|u|. Scalar product of u, v is denoted by 〈u, v〉.
We have the basic inequality

|〈u, v〉| ≤ |u| · |v|. (1)

Note that the zero vector 0 is always an element of a lattice. We define u ∈ Λ to be a shortest
vector in Λ if it has the shortest length among the non-zero vectors of Λ. More generally, we call a
sequence

(u1, u2, . . . , uk), k ≥ 1

of vectors a shortest k-sequence of Λ if for each i = 1, . . . , k, ui is a shortest vector in the set
Λ \ Λ(u1, u2, . . . , ui−1). We call2 a vector a kth shortest vector if it appears as the kth entry in
some shortest k-sequence. Clearly k ≤ dimΛ. For instance, if u, v are both shortest vectors and are
independent, then (±u,±v) and (±v,±u) are shortest sequences and so both u, v are 2nd shortest
vectors. We will not distinguish u from −u when discussing shortest vectors. So we may say u is the
unique ith shortest vector if u and −u are the only ith shortest vectors. In a 2-dimensional lattice
Λ, we will see that the shortest 2-sequence forms a basis for Λ. Hence we may speak of a shortest
basis for Λ. But in higher dimensions, a shortest k-sequence (where k > 2 is the dimension of the
lattice) need not form a basis of the lattice (Exercise).

A fundamental computational problem in lattices is to compute another basis B for a given lattice
Λ(A) consisting of “short” vectors. The present lecture constructs an efficient algorithm in the two
dimensional case. The general case will be treated in the subsequent lecture.

Exercises

2Evidently, this terminology can be somewhat confusing. For instance, the 2nd shortest vector is not always what
you expect.
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Exercise 1.1: Show that there exist lattices Λ ⊆ R of arbitrarily large dimension. 2

Exercise 1.2: Determine all bases for the unit integer lattice Z2 where the components of each
basis vector are between −4 and 4. (Distinguish a vector up to sign, as usual.) 2

Exercise 1.3:
(i) For A ∈ Zd×d, we have Λ(A) = Zd iff detA = ±1.
(ii) Give A, B ∈ Z2 such that det A = detB but Λ(A) 6= Λ(B). 2

Exercise 1.4: The unimodular matrices in Zn×n with determinant 1 are called positive unimodular
matrices. Clearly this is a subgroup of the unimodular matrices. For n = 2, show that this
subgroup is generated by

S =

[
1 1
0 1

]
, T =

[
0 1
−1 0

]
.

HINT: What is T 2? Sm (the mth power of S)? Use S and T to transform a positive unimodular

matrix M =

[
a b
c d

]
so that it satisfies 0 ≤ b < a. Now use induction on a to show that M

is generated by S and T . 2

Exercise 1.5: Show that the set of 2× 2 integer unimodular matrices is generated by the following
two elementary unimodular matrices:

[
0 1
1 0

]
,

[
1 1
0 1

]
.

Note that, in contrast, the general case seems to need three generators. HINT: you may reduce
this to the previous problem. 2

Exercise 1.6: Show that every lattice Λ has a basis that includes a shortest vector. 2

Exercise 1.7: (Dubé) Consider e1, e2, . . . , en−1, h where ei is the elementary n-vector whose ith

component equals 1 and all other components equal zero, and h = (
1

2
,
1

2
, . . . ,

1

2︸ ︷︷ ︸
n

). Show that

this set of vectors form a basis for the lattice Λ = Z∪ (1

2
+Z). What is the shortest n-sequence

of Λ? Show that for n ≥ 5, this shortest n-sequence is not a basis for Λ. 2

§2. Shortest vectors in planar lattices

In the rest of this lecture, we focus on lattices in R2. We identify R2 with C via
the correspondence (a, b) ∈ R2 7→ a + ib ∈ C, and speak of complex numbers
and 2-vectors interchangeably.

c© Chee-Keng Yap March 6, 2000



§2. Shortest vectors Lecture VIII Page 223

Thus we may write an expression such as ‘〈u/v, w〉’ where ‘u/v’ only makes sense if u, v are treated
as complex numbers but the scalar product treats the result u/v as a vector. No ambiguity arises
in such mixed notations. Let

∠(u, v) = ∠(v, u)

denote the non-reflex angle between the vectors u and v. The unit normal u⊥ to u is defined as

u⊥ := ûi.

Note that multiplying a complex number by i amounts to rotating the corresponding vector counter-
clockwise by 90◦.

First, let us relate the shortest vector problem to the GCD problem. Consider the 1-dimensional
lattice generated by a set u1, . . . , uk of integers: Λ = Λ(u1, . . . , uk). It is easy to see that Λ = Λ(g)
where g = GCD(u1, . . . , uk). So g is the shortest vector in Λ. Hence computing shortest vectors is a
generalization of the GCD problem. Hence it is not surprising that the GCD problem can be reduced
to the shortest vector problem (Exercise). The following definition is key to a characterization of
shortest vectors.

Fundamental Region. The fundamental region of u ∈ C\{0} is the set F(u) of complex numbers
v ∈ C such that

1. |v| ≥ |u|;

2. − |u|2

2
< 〈u, v〉 ≤ |u|2

2
.

Figure 1 illustrates the fundamental region of u.

u

O

v

Figure 1: Fundamental Region of u is shaded.

This figure is typical in that, when displaying the fundamental region of u ∈ C, we usually rotate
the axes so that u appears horizontal. Note that v ∈ F(u) implies that ∠(u, v) ≥ 60◦.
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Lemma 2 If v is in the fundamental region of u then the sequence (u, v) is a shortest 2-sequence
in Λ(u, v). Moreover, this shortest 2-sequence is unique (up to sign) unless |u| = |v|.

Proof. We first show that u is a shortest vector of Λ = Λ(u, v). Let w = mu + nv ∈ Λ be a shortest
vector. Projecting w onto u⊥, and noting that |〈u⊥, v〉| ≥

√
3|v|/2, we have

|〈w, u⊥〉| ≥ |n|
√

3|v|
2

. (2)

Thus if |n| > 1, we have |w| > |〈w, u⊥〉| > |v| ≥ |u|, contradicting the choice of w as a shortest
vector. Hence we must have |n| ≤ 1. Next we have

|〈w, û〉| ≥ (|m| − 1/2)|u|
2

.

Thus if |m| > 1, we have |w| > |〈w, û〉| > |u|, again a contradiction. Hence we must have |m| ≤ 1.
If |m| = 1 and |n| = 1, we have

|w|2 = 〈w, u⊥〉2 + 〈w, û〉2 >
3

4
|u|2 +

1

4
|u|2 = |u|2,

contradiction. Hence we must have |m| + |n| = 1. There remain two possibilities: (I) If n = 0 then
|m| = 1 and so |w| = |u| and hence u is a shortest vector. (II) If m = 0 then |n| = 1 and so |w| = |v|.
Since |u| ≤ |v|, we conclude u and v are both shortest vectors.

Summarizing, we say that either (I) u is the unique shortest vector (as always, up to sign), or else
(II) both u and v are shortest vectors.

We proceed to show that (u, v) is a shortest 2-sequence in Λ(u, v). It suffices to show that v is
a shortest vector in Λ \ Λ(u). If w = mu + nv is a second shortest vector, then n 6= 0. This
implies |n| = 1 (otherwise, |w| > |v| as shown above). Clearly |〈w, u⊥〉| = |〈v, u⊥〉|. Also |〈w, û〉| =
m|u| ± 〈v, û〉 ≥ |〈v, û〉|, with equality iff m = 0. Hence

|w|2 ≥ |〈v, û〉|2 + |〈v, u⊥〉|2 = |v|2,

with equality iff m = 0. Hence |w| = |v|. This proves that (u, v) is a shortest 2-sequence. Moreover,
this is unique up to sign unless case (II) occurs. Q.E.D.

In the exceptional case of this lemma, we have at least two shortest 2-sequences: (±u,±v) and
(±v,±u). There are no other possibilities unless we also have ∠(u, v) = 60◦ or 120◦. Then let
w :=u + v if ∠(u, v) = 120◦, and w :=u − v otherwise. There are now 4 other shortest 2-sequences:
(±w,±v) or (±v,±w), (±u,±w) or (±w,±u).

Coherence and Order. Let 0 ≤ α ≤ 1. We say a pair (u, v) of complex numbers is α-coherent if

〈û, v̂〉 ≥ α, u 6= 0, v 6= 0.

If α = 0 then we simply say coherent; if α = 1/2 then we say strongly coherent. If (u, v) is not
coherent, we say it is incoherent. We say a pair (u, v) is ordered if |u| > |v|, otherwise it is inverted.
We say (u, v) is admissible if it is ordered and coherent; otherwise it is inadmissible. So α-coherence
of u, v amounts to

∠(u, v) ≤ cos−1(α).

Thus (u, v) is strongly coherent means ∠(u, v) ≤ 60◦.
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Let us investigate the transformation of pairs (u, v) ∈ C2 to (v, w) where w = u − q · v for some
positive integer q:

(u, v)
q−→ (v, w).

The critical restriction here is that q must be positive. A pair (u, v) can be in one of four different
states, taken from the set {coherent, incoherent}× {ordered, inverted}, and defined in the natural
way. Focusing only on the states of the pairs involved, it is not hard to verify that the only possible
transitions are given in figure 2.

coherent/invertedcoherent/ordered incoherent/ordered incoherent/inverted

Figure 2: Possible state transitions.

Referring to figure 2, we may call the coherent/inverted and incoherent/ordered states transitory,
since these states immediately transform to other states.

We record these observations:

Lemma 3 Let q1, q2, . . . , qk−1 (k ≥ 2) be arbitrary positive integers. Assuming u0, u1 ∈ C are not
collinear, consider the sequence (u0, u1, u2, . . . , uk) where ui+1 = ui−1 − qiui. Also define

pi :=(ui−1, ui), θi :=∠(ui−1, ui), si := |ui−1| + |ui|, (i = 1, . . . , k).

(i) The sequence of angles θ1, θ2, . . . , θk is strictly increasing.

(ii) The sequence of pairs p1, . . . , pk comprises a prefix of admissible pairs, followed by a suffix of
inadmissible pairs. The prefix or the suffix may be empty. The suffix may begin with up to two
transitory pairs.

(iii) The sequence of sizes s1, . . . , sk comprises a decreasing prefix, followed by an increasing suffix.
In case both prefix and suffix are non-empty, say

· · · si−2 > si−1 > si > si+1 > si+2 · · ·

then either pi or pi+1 is the first inadmissible pair.

We let the reader verify these remarks. Since we are interested in short lattice basis, lemma 3(iii)
suggests that we study sequences whose pairs are admissible. This is taken up next.

Exercises

Exercise 2.1: Find the shortest 2-sequence for the lattice Λ(u, v) where u =

[
9
5

]
and v =

[
5
3

]
.

2
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Exercise 2.2: Show how to compute the second shortest vector in Λ(u, v), given that you have the
shortest vector w. You may assume that you know m, n ∈ Z such that w = mu + nv. 2

Exercise 2.3: (Zeugmann, v. z. Gathen) Let a ≥ b be positive integers. Show that the shortest
vector in the lattice Λ ⊆ Z2 generated by (a(a + 1), 0) and (b(a + 1), 1) is (0, a′) where
a′ = a/GCD(a, b). Conclude that integer GCD computation can be reduced to shortest vectors
in Z2. 2

Exercise 2.4: Show that if v, v′ are distinct members of F(u) then Λ(u, v) 6= Λ(u, v′). 2

§3. Coherent Remainder Sequences

If v is non-zero, we define the coherent quotient of u divided by v as follows:

quo+(u, v) :=

⌊〈u, v〉
|v|2

⌋
.

Note that (u, v) is coherent iff quo+(u, v) ≥ 0. In this case, quo+(u, v) is the largest j0 ∈ Z such
that (u − j0v, v) remains coherent. The coherent remainder of u, v is defined to be

rem+(u, v) :=u − quo+(u, v) · v.

Figure 3 illustrates geometrically the taking of coherent remainders. We are only interested in this
definition when (u, v) is coherent.

u − 2v u

vO

Figure 3: Coherent remainder of u, v where quo+(u, v) = 2.

Note that the pair (v, rem+(u, v)) is coherent unless rem+(u, v) = 0.

If (u0, u1) is admissible, define the coherent remainder sequence (abbreviated, CRS) of u0, u1 to be
the maximal length sequence

CRS(u0, u1) :=(u0, u1, . . . , ui−1, ui, . . .)

such that for each i ≥ 1,

1. Each pair (ui−1, ui) is admissible.

2. ui+1 = rem+(ui−1, ui).
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This definition leaves open the possibility that CRS(u0, u1) does not terminate – we prove below that
this possibility does not arise. A pair in the CRS is just any two consecutive members, (ui, ui+1).
The initial pair of the CRS is (u0, u1), and assuming the CRS has a last term uk, the terminal pair
of the CRS is (uk−1, uk). Clearly a pair (u, v) is a terminal pair in some CRS iff (u, v) is a CRS.
So we may call (u, v) a “terminal pair” without reference to any larger CRS. The “maximal length”
requirement in the definition of a coherent remainder sequence means that if uk+1 is the coherent
remainder of a terminal pair (uk−1, uk), then either uk+1 = 0 or |uk+1| ≥ |uk|.

The next lemma shows that every terminal pair can be easily transformed into a shortest 2-sequence.
The proof refers to three regions on the plane illustrated in figure 4. These regions are defined as
follows.

• (I) = {w ∈ C : |w| ≥ |v|, 0 ≤ 〈w, v〉 ≤ |v|2/2},
• (II) = {w ∈ C : |v|2/2 < 〈w, v〉 ≤ |v|2, |w − v| ≥ |v|},

• (III) = {w ∈ C : 〈w, v〉 ≤ |v|2, |w| ≥ |v|, |w − v| < |v|}.

O−v v

q

p

(I)

(III)

(II)

r − v
(III)′

Figure 4: A terminal pair (u, v) where r = rem+(u, v) 6= 0.

Lemma 4 Let (u, v) be a terminal pair and r = rem+(u, v). If |r| ≥ |v| then one of the following
holds. With the notations of Figure 4:

(i) r ∈ F(v) if r ∈ (I).

(ii) r − v ∈ F(v) if r ∈ (II).

(iii) −v ∈ F(r − v) if r ∈ (III).

Proof. Without loss of generality, assume 〈r, v⊥〉 > 0 (v⊥ points upwards in the figure). Clearly, r
belongs to one of the three regions (I), (II) or (III). If r is in (I) or (II), it clearly satisfies the
lemma. In case (III), r − v lies in region (III)′, simply defined as {z : z + v ∈ (III)}. The line
segment from 0 to r − v intersects the circle centered at −v of radius |v| at some point p. Dropping
the perpendicular from −v to the point q on the segment Op, we see that

〈(−v), p〉 =
|p|2
2
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and hence 〈(−v), (r − v)〉 ≤ |r−v|2

2
, i.e., −v ∈ F(r − v). Q.E.D.

Combined with lemma 2, we conclude:

Corollary 5 Let (u, v) be a terminal pair and r = rem+(u, v).

(i) Either v or r − v is a shortest vector in the lattice Λ(u, v).

(ii) If r = 0 then the lattice is one dimensional. Otherwise, a simple unimodular transformation
of (u, v) leads to a shortest 2-sequence of Λ(u, v). Namely, one of the following is a shortest
2-sequence of Λ(u, v):

(v, u), (v, r − v), (r − v, v).

We had noted that the angles θi defined by pairs (ui, ui+1) of a CRS is increasing with i (assuming
θi > 0). The following implies that if θi ≥ 60◦, equivalently, (ui, ui+1) is not strongly coherent, then
(ui, ui+1) is terminal.

Lemma 6 (60-degree Lemma) Let (u, v) be admissible. If ∠(u, v) ≥ 60◦ then v is a shortest
vector in Λ(u, v).

O−v v

(I)

(II)′ (II)

Figure 5: Sixty Degrees Region of u.

Proof. Referring to Figure 5, define the following regions:

• region (I) comprises those w ∈ F(v) inside the vertical strip 0 ≤ Re(w/v) ≤ 1/2;

• region (II) comprises those w inside 1/2 < Re(w/v) ≤ 1 and ∠(w, v) ≥ 60◦.
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Clearly, r = rem+(u, v) belongs to one of these two regions. If r ∈ (I), and since (I) ⊆ F(v), we
conclude that v is a shortest vector of Λ(r, v) = Λ(u, v). If r ∈ (II) then r − v ∈ (II)′ where (II)′

is defined to be (II) − v. But (II)′ ⊆ F(v). Again v is a shortest vector of Λ(r − v, v) = Λ(u, v).
Q.E.D.

One more lemma is needed to prove termination of a remainder sequence: we show that the angles
increase at some discrete pace.

Lemma 7 Let (u0, u1, u2) be the first 3 terms of a CRS and let θ0 = ∠(u0, u1) and θ1 = ∠(u1, u2).
If θ1 ≤ 60◦ then

sin θ1 ≥ 2√
3

sin θ0.

h

ℓ

θ0

θ1

u1

u0u2

k

Figure 6: Three consecutive terms in a CRS.

Proof. Let u2 = u0 − qu1. It is sufficient to prove the lemma for q = 1. Let h, k, ℓ be the lengths
shown in figure 6. Since θ1 ≤ 60◦, we have h ≤

√
3ℓ. Also ℓ ≤ k ≤ 2ℓ. Thus

(
sin θ0

sin θ1

)2

=
h2 + (k − ℓ)2

h2 + k2
= 1 −

(
2kℓ − ℓ2

h2 + k2

)
.

It is easy to see that (
2kℓ − ℓ2

h2 + k2

)
≥ ℓ2

3ℓ2 + 4ℓ2
=

1

7
.

This implies sin θ1 ≥
√

7/6 sin θ0. To get the improved bound of the lemma, define the function

f(k) :=
2kℓ − ℓ2

3ℓ2 + k2
.

Then df/dk = 0 implies k2 − kℓ − 3ℓ2 = 0. This has solution k = ℓ(−1 ±
√

13)/2. Hence f(k) has
no minimum within the range [ℓ, 2ℓ], and in this range, the minimum is attained at an end-point.
We check that f(k) ≥ f(ℓ) = 1/4 for all k ∈ [ℓ, 2ℓ]. Hence sin θ0

sin θ1
≤

√
1 − f(ℓ) =

√
3/2. Q.E.D.

Theorem 8 For every admissible pair (u0, u1), the number of terms in CRS(u0, u1) is at most

3 − 2 log4/3(2 sin θ0)

where θ0 = ∠(u0, u1).
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Proof. Let
CRS(u0, u1) = (u0, u1, u2, . . . , ui, ui+1, . . .).

To show that the sequence terminates, consider the angles θi :=∠(ui, ui+1). We have

sin θ0 ≤
√

3/4 sin θ1 ≤ · · · ≤ (3/4)i/2 sin θi

provided θi ≤ 60◦. Since sin θi ≤ sin 60◦ = 1/2, we get (4/3)i/2 ≤ 1/(2 sin θ0) or

i ≤ −2 log4/3(2 sin θ0).

If θi+1 is defined and i + 1 > −2 log4/3(2 sin θ0), then θi+1 > 60◦. By the 60-degree Lemma, ui+2 is
the shortest vector. Hence ui+2 must be the last term in the CRS, and the CRS has i + 3 terms.

Q.E.D.

Our final result shows the existence of “shortest bases”:

Theorem 9 Every lattice Λ has a basis that is a shortest 2-sequence.

Proof. Let Λ = Λ(u, v). It is easy to transform u, v to an admissible pair (u′, v′) such that Λ(u, v) =
Λ(u′, v′). By the previous theorem, the CRS of (u′, v′) has a terminal pair, say, (u′′, v′′). Since each
consecutive pair of a CRS is produced by unimodular transformations, these pairs are bases for Λ.
In particular, (u′′, v′′) is a basis. By corollary 5, a unimodular transformation of (u′′, v′′) creates a
shortest 2-sequence which is therefore a basis for Λ. Q.E.D.

The preceding development reduces the shortest vector and shortest basis problem to computing
coherent remainder sequences.

Theorem 10 Given u, v ∈ Z[i] where each component number is n-bits, the shortest basis for Λ(u, v)
can be computed in O(nMB(n)) time.

Proof. By replacing u with −u if necessary, we assume (u, v) is admissible, possibly after reordering.
Let θ = ∠(u, v). We claim that − log sin θ = O(n). To see this, consider the triangle (0, u, v). By
the cosine formula,

sin θ =

√
(2|u| · |v|)2 − (|u|2 + |v|2 − |u − v|2)2

2|u| · |v| ≥ 1

2|u| · |v| .

Since both |u| and |v| are O(2n), so (sin θ)−1 ≤ 2|u| · |v| = O(2n), and our claim follows. By
theorem 8, the number of steps in CRS(u, v) is − log sin θ = O(n). The proof is complete now
because each step of the CRS can be computed in O(MB(n)) time. Q.E.D.

Remarks:
The study of unimodular transformations is a deep topic. Our definition of “fundamental regions”
is adapted from the classical literature. For basic properties of the fundamental region in the clas-
sical setting, see for example, [86]. See also §XIV.5 for the connection to Möbius transformations.
The process of successive reductions of 2-vectors by subtracting a multiple of the last vector from
the last-but-one vector may be called the “generic Gaussian algorithm”. The “coherent version” of
this generic Gaussian algorithm was described in [218]: it is, of course, analogous to non-negative
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remainder sequences for rational integers (§II.3). The more commonly studied version of the Gaus-
sian algorithm is analogous to the symmetric remainder sequences for integers. See [206] for the
description of other variants of the Gaussian algorithm. A half-Gaussian algorithm (in analogy of
half-GCD in Lecture II) was described in [218]. This leads to an improved complexity bound of
O(log nMB(n)) for computing shortest basis for Λ(u, v).

Exercises

Exercise 3.1: Compute the sequence CRS(33 + 4i, 20 + i). 2

Exercise 3.2: Suppose u0, u1 ∈ Z[i] are Gaussian integers where each component has at most n
bits. Bound the length of CRS(u0, u1) as a function of n. 2

Exercise 3.3: Let (u0, u1, . . . , uk) be a CRS.
i) For any complex θ, the sequence (u0θ, u1θ, . . . , ukθ) is also a CRS.
ii) Assume u1 is real and u0 lies in the first quadrant. The angle between consecutive entries
always contains the real axis and the subsequent ui’s alternately lie in the first and fourth
quadrants. 2
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[185] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292,
1971.

[186] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. of the
ACM, 27:701–717, 1980.

[187] J. T. Schwartz. Polynomial minimum root separation (Note to a paper of S. M. Rump).
Technical Report 39, Courant Institute of Mathematical Sciences, Robotics Laboratory, New
York University, February 1985.

[188] J. T. Schwartz and M. Sharir. On the piano movers’ problem: II. General techniques for
computing topological properties of real algebraic manifolds. Advances in Appl. Math., 4:298–
351, 1983.

[189] A. Seidenberg. Constructions in algebra. Trans. Amer. Math. Soc., 197:273–313, 1974.

c© Chee-Keng Yap March 6, 2000



§3. Coherent Remainder Sequences Lecture VIII Page 241

[190] B. Shiffman. Degree bounds for the division problem in polynomial ideals. Mich. Math. J.,
36:162–171, 1988.

[191] C. L. Siegel. Lectures on the Geometry of Numbers. Springer-Verlag, Berlin, 1988. Notes by
B. Friedman, rewritten by K. Chandrasekharan, with assistance of R. Suter.

[192] S. Smale. The fundamental theorem of algebra and complexity theory. Bulletin (N.S.) of the
AMS, 4(1):1–36, 1981.

[193] S. Smale. On the efficiency of algorithms of analysis. Bulletin (N.S.) of the AMS, 13(2):87–121,
1985.

[194] D. E. Smith. A Source Book in Mathematics. Dover Publications, New York, 1959. (Volumes
1 and 2. Originally in one volume, published 1929).

[195] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 14:354–356, 1969.

[196] V. Strassen. The computational complexity of continued fractions. SIAM J. Computing,
12:1–27, 1983.

[197] D. J. Struik, editor. A Source Book in Mathematics, 1200-1800. Princeton University Press,
Princeton, NJ, 1986.

[198] B. Sturmfels. Algorithms in Invariant Theory. Springer-Verlag, Vienna, 1993.

[199] B. Sturmfels. Sparse elimination theory. In D. Eisenbud and L. Robbiano, editors, Proc.
Computational Algebraic Geometry and Commutative Algebra 1991, pages 377–397. Cambridge
Univ. Press, Cambridge, 1993.

[200] J. J. Sylvester. On a remarkable modification of Sturm’s theorem. Philosophical Magazine,
pages 446–456, 1853.

[201] J. J. Sylvester. On a theory of the syzegetic relations of two rational integral functions, com-
prising an application to the theory of Sturm’s functions, and that of the greatest algebraical
common measure. Philosophical Trans., 143:407–584, 1853.

[202] J. J. Sylvester. The Collected Mathematical Papers of James Joseph Sylvester, volume 1.
Cambridge University Press, Cambridge, 1904.

[203] K. Thull. Approximation by continued fraction of a polynomial real root. Proc. EUROSAM
’84, pages 367–377, 1984. Lecture Notes in Computer Science, No. 174.

[204] K. Thull and C. K. Yap. A unified approach to fast GCD algorithms for polynomials and
integers. Technical report, Courant Institute of Mathematical Sciences, Robotics Laboratory,
New York University, 1992.

[205] J. V. Uspensky. Theory of Equations. McGraw-Hill, New York, 1948.

[206] B. Vallée. Gauss’ algorithm revisited. J. of Algorithms, 12:556–572, 1991.

[207] B. Vallée and P. Flajolet. The lattice reduction algorithm of Gauss: an average case analysis.
IEEE Foundations of Computer Science, 31:830–839, 1990.

[208] B. L. van der Waerden. Modern Algebra, volume 2. Frederick Ungar Publishing Co., New
York, 1950. (Translated by T. J. Benac, from the second revised German edition).

[209] B. L. van der Waerden. Algebra. Frederick Ungar Publishing Co., New York, 1970. Volumes
1 & 2.

[210] J. van Hulzen and J. Calmet. Computer algebra systems. In B. Buchberger, G. E. Collins,
and R. Loos, editors, Computer Algebra, pages 221–244. Springer-Verlag, Berlin, 2nd edition,
1983.

c© Chee-Keng Yap March 6, 2000



§3. Coherent Remainder Sequences Lecture VIII Page 242
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Lecture IX

Lattice Reduction and Applications

In the previous lecture, we studied lattice reduction in 2 dimensions. Now we present an algorithm
that is applicable in all dimensions. This is essentially the algorithm in [117], popularly known as
the “LLL algorithm”. The complexity of the LLL-algorithm has been improved by Schönhage [183]
and Schnorr [180].

This algorithm is very powerful, and we will describe some of its applications. Its most striking
success was in solving a major open problem, that of factoring polynomials efficiently. The problem
of (univariate) integer polynomial factorization can be thus formulated: given P (X) ∈ Z[X ], find
all the irreducible integer polynomial factors of P (X), together with their multiplicities. E.g., with
P (X) = X4 + X3 + X + 1, we want to return the factors X + 1 and X2 −X + 1 with multiplicities
(respectively) of 2 and 1. This answer is conventionally expressed as

P (X) = (X + 1)2(X2 −X + 1).

The polynomial factorization problem depends on the underlying polynomial ring (which should be
a UFD for the problem to have a unique solution). For instance, if we regard P (X) as a polynomial
over Z (the algebraic closure of Z, §VI.3), then the answer becomes

P (X) = (X + 1)2(X − 1−
√
−3

2
)(X − 1 +

√
−3

2
).

Since the factors are all linear, we have also found the roots of P (X) in this case. Indeed, factoring
integer polynomials over Z amounts to root finding.

This connection goes in the other direction as well: this lecture shows that if we can approximate
the roots of integer polynomials with sufficient accuracy then this can be used to factor integer
polynomials over Z[X ] in polynomial time. The original polynomial-time algorithm for factoring
integer polynomials was a major result of A. K. Lenstra, H. W. Lenstra and Lovász [117].

Kronecker was the first to give an algorithm for factoring multivariate integer polynomials. Known
methods for factoring multivariate polynomials are obtained by a reduction to univariate polynomial
factorization. Using such a reduction, Kaltofen has shown that factorization of integer polynomials
over a fixed number of variables is polynomial-time in the total degree and size of coefficients
[96]. One can also extend these techniques to factor polynomials with coefficients that are algebraic
numbers. See [99, 109, 115, 116, 83]. A closely related problem is testing if a polynomial is irreducible.
This can clearly be reduced to factorization. For integer polynomials P (X, Y ), a theorem of Hilbert
is useful: P (X, Y ) is irreducible implies P (a, Y ) is irreducible for some integer a. This can be
generalized to multivariate polynomials and made effective in the sense that we show that random
substitutions from a suitable set will preserve irreducibility with some positive probability [95].
Testing irreducibility of polynomials over arbitrary fields is, in general, undecidable (Frölich and
Shepherdson, 1955). An polynomial is absolutely irreducible if it is irreducible even when viewed as a
polynomial over the algebraic closure of its coefficient ring. Thus, X2+Y 2 is irreducible over integers
but it is not absolutely irreducible (since the complex polynomials X ± iY are factors). E. Noether
(1922) has shown absolute irreducibility is decidable by a reduction to field operations. Again,
absolute irreducibility for integer polynomials can be made efficient. For a history of polynomial
factorization up to 1986, we refer to Kaltofen’s surveys [33, 97].

In this lecture, the 2-norm ‖a‖2 of a vector a is simply written ‖a‖.
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§1. Gram-Schmidt Orthogonalization

We use the lattice concepts introduced in §VIII.1. Let A = [a1, . . . , am] ∈ Rn×m be a lattice basis.
Note that 1 ≤ m ≤ n. The matrix A is orthogonal if for all 1 ≤ i < j ≤ m, 〈ai, aj〉 = 0. The
following is a well-known procedure to convert A into an orthogonal basis A∗ = [a∗

1, . . . , a
∗
m]:

Gram-Schmidt Procedure

Input: A = [a1, . . . , am].
Output: A∗ = [a∗

1, . . . , a
∗
m], the Gram-Schmidt version of A.

1. a∗
1 ← a1.

2. for i = 2, . . . , m do

µij ←
〈ai, a

∗
j 〉

〈a∗
j , a

∗
j 〉

, (for j = 1, . . . , i− 1) (1)

a∗
i ← ai −

i−1
∑

j=1

µij · a∗
j . (2)

This is a very natural algorithm: for m = 2, 3, we ask the reader to visualize the operation ai 7→ a∗
i

as a projection. Let us verify that A∗ is orthogonal by induction. As basis of induction,

〈a∗
2, a

∗
1〉 = 〈a2 − µ21a

∗
1, a

∗
1〉 = 〈a2, a

∗
1〉 − µ21〈a∗

1, a
∗
1〉 = 0.

Proceeding inductively, if i > j then

〈a∗
i , a

∗
j 〉 = 〈ai −

i−1
∑

k=1

µika∗
k, a∗

j 〉 = 〈ai, a
∗
j 〉 − µij〈a∗

j , a
∗
j 〉 = 0,

as desired. We shall call A∗ the Gram-Schmidt version of A. We say that two bases are Gram-
Schmidt equivalent if they have a common Gram-Schmidt version.

Exercise 1.1: In §VIII.1, we described three elementary unimodular operations. Show that two of
them (multiplying a column by −1, and adding a multiple of one column to another) preserve
Gram-Schmidt equivalence. The first operation (exchanging two columns) does not. 2

Let us rewrite (2) as

ai = a∗
i +

i−1
∑

j=1

µija
∗
j . (3)

Then

〈ai, a
∗
i 〉 = 〈a∗

i +

i−1
∑

j=1

µija
∗
j , a

∗
i 〉

= 〈a∗
i , a

∗
i 〉.

Hence (1) may be extended to

µii :=
〈ai, a

∗
i 〉

〈a∗
i , a

∗
i 〉

= 1,
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whence (3) simplifies to

ai =

i
∑

j=1

µija
∗
j . (4)

In matrix form,
A = A∗MT (5)

where A∗ = [a∗
1, . . . , a

∗
m] and MT is the transpose of a lower diagonal matrix

M =











µ11 0 0 · · · 0
µ21 µ22 0 0
...

µm1 µm2 µm3 · · · µmm











. (6)

Since µii = 1, it follows that det M = 1 and so the Gram-Schmidt version of A is a unimodular
transformation of A. However, M need not be an integer matrix.

Lemma 1

(i) det(AT A) =
∏m

i=1 ‖a∗
i ‖2.

(ii) ‖ai‖ ≥ ‖a∗
i ‖ for i = 1, . . . , m with equality iff ai is orthogonal to all a∗

j (j = 1, . . . , i− 1).

Proof. (i)

det(AT A) = det(MA∗T ·A∗MT )

= det(M) det(A∗T A∗) det(MT )

= det(A∗T A)

=

m
∏

i=1

‖a∗
i ‖2.

(ii) From (3), we get

‖ai‖2 = ‖a∗
i ‖2 +

i−1
∑

j=1

µ2
ij‖a∗

j‖2

≥ ‖a∗
i ‖2,

with equality iff µij = 0 for all j. Q.E.D.

From this lemma, we deduce immediately

√
detAT A ≤

m
∏

i=1

‖ai‖.

By part(ii), equality is attained iff each ai is orthogonal to a∗
1, . . . , a

∗
i−1. But the latter condition is

seen to be equivalent to saying that the ai’s are mutually orthogonal. In particular, when m = n,
we get Hadamard’s determinantal bound

| det A| ≤
n

∏

i=1

‖ai‖.

In Lecture VI.7, for the proof of the Goldstein-Graham bound, we needed the complex version of
Hadamard’s bound. The preceding proof requires two simple modifications:
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1. Instead of the transpose AT , we now use the Hermitian transpose AH , defined as AH :=A
T
,

where A is obtained by taking the complex conjugate of each entry of A.

2. The 2–norm of a complex vector u = (v1, . . . , vn) is defined as ‖v‖ =
(
∑n

i=1 |vi|2
)

1
2 =

(
∑n

i=1 vivi)
1
2 .

It is easy to verify that the preceding argument goes through. Thus we have the following general-
ization of Hadamard’s bound:

Theorem 2 Let A = [a1, . . . , am] ∈ Cn×m, 1 ≤ m ≤ n. Then

√

det(AHA) ≤
m
∏

i=1

‖ai‖.

Equality in this bound is achieved iff for all 1 ≤ i < j ≤ m, 〈ai, aj〉 = 0 where aj is the conjugation
of each entry in aj.

We revert to the setting in which A is a real n×m matrix. The quantity

δ(A) :=
‖a1‖ · ‖a2‖ · · · ‖am‖

√

det(AT A)

is called the (orthogonality) defect of A. Note that δ(A) ≥ 1. Intuitively, it measures the amount of
A’s distortion from its Gram-Schmidt version.

This suggests the following minimum defect basis problem: given a basis A, find another basis B
with Λ(A) = Λ(B) such that δ(B) is minimized. Lovász [75, p. 140] has shown this problem to be
NP -complete. For many applications, it is sufficient to find a B such that δ(B) is at most some
constant K that depends only on m and n. Call this the K-defect basis problem. In case m = n,
Hermite has shown that there exists such a basis B with

δ(B) ≤ Kn

where Kn depends only on n. The current bound for Kn is O(n1/4(0.97n)n). We will show a

polynomial-time algorithm in case K = 2(m

2 ).

Exercises

Exercise 1.2:
(i) If L is any linear subspace of Rn and u ∈ Rn then u can be decomposed as u = uL + uN

where uL ∈ L and uN is normal to L (i.e., 〈uN , a〉 = 0 for all a ∈ L). HINT: use the Gram-
Schmidt algorithm.
(ii) This decomposition is unique. 2

Exercise 1.3: Suppose we are given B = [b1, . . . , bm] ∈ Qn×m and also its Gram-Schmidt version
B∗. Note that since B is rational, so is B∗. Suppose u ∈ Qn such that [b1, . . . , bm, u] has
linearly dependent columns. Show how to find integers s, t1, . . . , tm such that su =

∑m
i=1 tibi.

HINT: project u to each b∗i . 2
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§2. Minkowski’s Convex Body Theorem

In this section, we prove a fundamental theorem of Minkowski. We assume full-dimensional lattices
here.

Given any lattice basis A = [a1, . . . , an] ∈ Rn×n we call the set

F(A) :={α1a1 + . . . + αnan : 0 ≤ αi < 1, i = 1, . . . , n}

the fundamental parallelopiped of A. The (n-dimensional) volume of F(A) is given by

Vol(F(A)) = | det(A)|.

It is not hard to see that Rn is partitioned by the family of sets

u + F(A), u ∈ Λ(A).

Any bounded convex set B ⊆ Rn with volume Vol(B) > 0 is called a body. The body is 0-symmetric
if for all x ∈ B, we have also −x ∈ B.

Theorem 3 (Blichfeldt 1914) Let m ≥ 1 be an integer, Λ a lattice, and B any body with volume

Vol(B) > m · detΛ.

Then there exist (m + 1) distinct points p1, . . . , pm+1 ∈ B such that for all i, j,

pi − pj ∈ Λ.

Proof. Let A = [a1, . . . , an] be a basis for Λ and F = F(A) be the fundamental parallelopiped. For
u ∈ Λ, define

Fu = {x ∈ F : x + u ∈ B}.

Hence (u + F ) ∩B = u + Fu. It follows that

∑

u∈Λ

Vol(Fu) = Vol(B) > m · Vol(F ).

We claim that there is a point p0 ∈ F that belongs to m + 1 distinct set Fu1
, . . . , Fum+1

. If not, we
may partition F into

F = F (0) ∪ F (1) ∪ · · · ∪ F (m)

where F (i) consists of all those points X ∈ F that belong to exactly i sets of the form Fu, (u ∈ Λ).
Then

∑

u

Vol(Fu) =

m
∑

i=0

iVol(F (i)) ≤ mVol(F )

which is a contradiction. Hence p0 exists. Since p0 belongs to Fui
(i = 1, . . . , m + 1), we see that

each of the points

pi := p0 + ui

belong to B. It is clear that the points p1, . . . , pm+1 fulfill the theorem. Q.E.D.

Note that in the proof we use the fact that Vol(F (i)) is well defined. We now deduce Minkowski’s
Convex Body theorem (as generalized by van der Corput).
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Theorem 4 (Minkowski) Let B ⊆ Rn be an O-symmetric body. For any integer m ≥ 1 and lattice
Λ ⊆ Rn, if

Vol(B) > m2n det(Λ) (7)

then B ∩ Λ contains at least m pairs of points

±q1, . . . ,±qm

which are distinct from each other and from the origin O.

Proof. Let
1

2
B = {p ∈ Rn : 2p ∈ B}.

Then Vol(1
2B) = 2−nVol(B) > m · det(Λ). By Blichfeldt’s theorem, there are m + 1 distinct points

p1

2 , . . . , pm

2 , pm+1

2 ∈ 1
2B such that 1

2pi − 1
2pj ∈ Λ for all i, j. We may assume

p1 >
LEX

p2 >
LEX

. . . >
LEX

pm+1

where >
LEX

denotes the lexicographical ordering: pi >
LEX

pj iff pi 6= pj and the first non-zero component

of pi − pj is positive. Then let

qi :=
1

2
pi −

1

2
pm+1

for i = 1, . . . , m. We see that
0,±q1,±q2, . . . ,±qm

are all distinct (qi − qj 6= 0 since pi 6= pj and qi + qj 6= 0 since it has a positive component). Finally,
we see that

qi ∈ B (i = 1, . . . , m)

because pi ∈ B and −pm+1 ∈ B (by the O-symmetry of B) implies 1
2 (pi − pm+1) ∈ B (since B is

convex). So ±q1, . . . ,±qm satisfy the theorem. Q.E.D.

We remark that premise (7) of this theorem can be replaced by Vol(B) ≥ m2n det(Λ) provided B
is compact. As an application, we now give an upper bound on the length of the shortest vector in
a lattice.

Theorem 5 In any lattice Λ ⊆ Rn, there is a lattice point ξ ∈ Λ such that

‖ξ‖ ≤
√

2n

π
· det(Λ)

1
n .

Proof. Let B be the n-dimensional ball of radius r centered at the origin. It is well-known [145] that

Vol(B) =
πn/2

Γ(n
2 + 1)

· rn.

We choose r large enough so that Minkowski’s Convex Body theorem implies B contains a lattice
point ξ ∈ Λ:

Vol(B) ≥ 2n det Λ

or

r ≥ 2√
π

(

Γ(
n

2
+ 1) · det(Λ)

)
1
n

.
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Since Γ(x + 1) ≤ xx, it suffices to choose r to be

r =

√

2n

π
(det(Λ))

1
n .

Then ξ ∈ Λ ∩B satisfies ‖ξ‖ ≤ r. Q.E.D.

If n is large enough, it is known that the constant
√

2/π can be replaced by 0.32.

Exercises

Exercise 2.1: Give an upper bound on the length of the shortest vector ξ in a lattice Λ(B) that is
not necessarily full-dimensional. 2

Exercise 2.2: (cf. [145])
i) Show that Vol(Bn) = πn/2/Γ(n

2 + 1) where Bn is the unit n-ball.
ii) If B is an n × n positive definite symmetric matrix, the set of n-vectors x ∈ Rn such that
xT Bx ≤ c (c ∈ R) is an ellipsoid E. Determine Vol(E) via a deformation of E into Bn. 2

§3. Weakly Reduced Bases

As an intermediate step towards constructing bases with small defects, we introduce the concept of
a weakly reduced basis. The motivation here is very natural. Given a basis B = [b1, . . . , bm], we
see that its Gram-Schmidt version B∗ = [b∗1, . . . , b

∗
m] has no defect: δ(B∗) = 1. Although B and B∗

are related by a unimodular transformation M , unfortunately M is not necessarily integer. So we
aim to transform B via an integer unimodular matrix into some B = [b1, . . . , bm] that is as close as
possible to the ideal Gram-Schmidt version. To make this precise, recall that for i = 1, . . . , m,

bi =

i
∑

j=1

µijb
∗
j (8)

where µij =
〈bi,b

∗

j 〉
〈b∗

j
,b∗

j
〉 , and µii = 1 (see equation (4) §1).

We say that B is weakly reduced if in the relation (8), the µij ’s satisfy the constraint

|µij | ≤
1

2
, (1 ≤ j < i ≤ m).

Weakly reduced bases are as close to its Gram-Schmidt version as one can hope for, using only the
elementary unimodular transformations but without permuting the columns. Let us consider how to
construct such bases. If B is not weakly reduced, there is a pair of indices (i0, j0), 1 ≤ j0 < i0 ≤ m,
such that

|µi0j0 | >
1

2
.

Pick (i0, j0) to be the lexicographically largest such pair: if |µij | > 1/2 then (i0, j0) ≥
LEX

(i, j), i.e.,

either i0 > i or i0 = i, j0 ≥ j. Let
c0 = ⌊µi0j0⌉
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be the integer closest to µi0j0 . Note that c0 6= 0. Consider the following unimodular transformation

B = [b1, . . . , bi0 , . . . , bm] −→ B = [b1, . . . , bi0 , . . . , bm]

where

bi =

{

bi if i 6= i0
bi0 − c0bj0 if i = i0

We call the B → B transformation a weak reduction step. We observe that B and B are Gram-
Schmidt equivalent. So we may express B in terms of its Gram-Schmidt version (which is still
B∗ = [b∗1, . . . , b

∗
m]) thus:

bi =
i

∑

j=1

µijb
∗
j

where it is easy to check that

µij =
〈bi, b

∗
j 〉

〈b∗j , b∗j 〉
=

{

µij if i 6= i0,
µij − c0µj0j if i = i0

In particular,

|µi0j0 | = |µi0j0 − c0| ≤
1

2
.

As usual, µj0j = 0 if j > j0. Hence, if (i, j) is any index such that (i, j) >
LEX

(i0, j0) then µij = µij so

|µij | ≤ 1
2 . This immediately gives us the following.

Lemma 6 (Weak Reduction) Given any basis B ∈ Rn×m, we can obtain a weakly reduced basis
B where Λ(B) = Λ(B) by applying at most

(

m
2

)

weak reduction steps to B.

§4. Reduced Bases and the LLL algorithm

Let us impose a restriction on weakly reduced bases B.

A weakly reduced basis B is reduced if in addition it satisfies

‖b∗i ‖2 ≤ 2‖b∗i+1‖2 (9)

for i = 1, . . . , m− 1, where B∗ = [b∗1, . . . , b
∗
m] is the Gram-Schmidt version of B. We first show that

reduced bases have bounded defect.

Lemma 7 If B = [b1, . . . , bm] is a reduced basis then its defect is bounded: δ(B) ≤ 2
1
2 (

m

2 ).

Proof. If B∗ = [b∗1, . . . , b
∗
m] is the Gram-Schmidt version of B then, by induction using (9), we have

‖b∗i−j‖2 ≤ 2j‖b∗i ‖2

for 0 ≤ j ≤ i. But from the usual relation

bi = b∗i +

i−1
∑

j=1

µijb
∗
j
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and |µij | ≤ 1
2 , we get

‖bi‖2 ≤ ‖b∗i ‖2 +
1

4

i−1
∑

j=1

‖b∗j‖2

≤ ‖b∗i ‖2 +
1

4

i−1
∑

j=1

2i−j‖b∗i ‖2

≤ ‖b∗i ‖2


1 +

i−1
∑

j=1

2i−j−2





≤ 2i−1‖b∗i ‖2 (i ≥ 1).
m
∏

i=1

‖bi‖2 ≤ 2(m

2 )
m
∏

i=1

‖b∗i ‖2.

Q.E.D.

To measure how close a basis B is to being reduced, we introduce a real function V (B) defined as
follows:

V (B) :=

m
∏

i=1

Vi(B)

where

Vi(B) :=

i
∏

j=1

‖b∗j‖ =
√

det(BT
i Bi)

and Bi consists of the first i columns of B. Observe that Vi(B) depends only on the Gram-Schmidt
version of Bi. In particular, if B′ is obtained by applying the weak reduction step to B, then

V (B′) = V (B)

since B′ and B are Gram-Schmidt equivalent. Since ‖bi‖ ≥ ‖b∗i ‖ for all i, we deduce that

V (B) =

n
∏

i=1

‖b∗i ‖n−i+1 ≤ {max
i
‖bi‖}(

n

2).

Now suppose B = [b1, . . . , bm] is not reduced by virtue of the inequality

‖b∗i ‖2 > 2‖b∗i+1‖2

for some i = 1, . . . , m. It is natural to perform the following reduction step which exchanges the ith
and (i + 1)st columns of B. Let the new basis be

C = [c1, . . . , cm]← [b1, . . . , bi−1, bi+1, bi, bi+2, . . . , bm].

Thus cj = bj whenever j 6= i or i + 1. The choice of i for this reduction step is not unique.
Nevertheless we now show that V (B) is decreased.

Lemma 8 If C is obtained from B by a reduction step and B is weakly reduced then

V (C) <

√
3

2
V (B).
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Proof. Let C = [c1, . . . , cm] be obtained from B = [b1, . . . , bm] by exchanging columns bi and
bi+1. As usual, let B∗ = [b∗1, . . . , b

∗
m] be the Gram-Schmidt version of B with the matrix (µjk)m

j,k=1

connecting them (see (8)). Similarly, let C∗ = [c∗1, . . . , c
∗
m] be the Gram-Schmidt version of C with

the corresponding matrix (νjk)m
j,k=1. We have

Vj(C) = Vj(B), (j = 1, . . . , i− 1, i + 1, . . . , m).

This is because for j 6= i, Cj = BjUj where Cj , Bj denotes the matrix comprising the first j
columns of C, B (respectively) and Uj is a suitable j × j unimodular matrix. Hence | det(CT

j Cj)| =
| det(BT

j Bj)|. It follows that

V (C)

V (B)
=

Vi(C)

Vi(B)
=
‖c∗i ‖
‖b∗i ‖

. (10)

It remains to relate ‖c∗i ‖ to ‖b∗i ‖. By equation (8) for µjk, and a similar one for νjk, we have

ci = bi+1 = b∗i+1 +

i
∑

j=1

µi+1,jb
∗
j = b∗i+1 + µi+1,ib

∗
i +

i−1
∑

j=1

νijc
∗
j . (11)

The last identity is easily seen if we remember that c∗j is the component of cj normal to the subspace
spanned by {c1, . . . , cj−1}. Hence b∗j = c∗j and µi+1,j = νij for j = 1, . . . , i = 1. Hence

c∗i = ci −
i−1
∑

j=1

νijc
∗
j

= b∗i+1 + µi+1,ib
∗
i .

Since we switched bi and bi+1 in the reduction step, we must have ‖b∗i ‖2 > 2‖b∗i+1‖2. Thus

‖c∗i ‖2 = ‖b∗i+1‖2 + µ2
i+1,i‖b∗i ‖2

≤ ‖b∗i+1‖2 +
1

4
‖b∗i ‖2

<
1

2
‖b∗i ‖2 +

1

4
‖b∗i ‖2 =

3

4
‖b∗i ‖2.

This, with equation (10), proves the lemma. Q.E.D.

We now describe a version of the LLL algorithm (cf. Mishra [136]). In the following, weak-reduce(B)
denotes a function call that returns a weakly reduced basis obtained by repeated application of
the weak reduction step to B. Similarly, reduce-step(B) denotes a function that applies a single
reduction step to a weakly-reduced B.

LLL Algorithm

Input: B ∈ Qn×m, a basis.
Output: A reduced basis B with Λ(B) = Λ(B).
1. Initialize B ← weak-reduce(B).
2. while B is not reduced do

2.1. B ← reduce-step(B)

2.2. B ← weak-reduce(B).

Correctness: It is clear that if the algorithm halts, then the output B is correct. It remains to
prove halting. Write

B =
1

d
C (12)
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for some C ∈ Zn×m and d ∈ Z. We may assume that in any elementary integer unimodular transform
of the matrix in (12), the common denominator d is preserved. Hence it is sufficient to focus on the
integer part C. If C = [c1, . . . , cm] then ‖ci‖ = d‖bi‖, so

Vi(C) = diVi(B)

V (C) = d(n

2)V (B)

≤ {d max
i=1,...,m

‖bi‖}(
n

2).

If s is the maximum bit-size of entries of B then

log ‖bi‖ = O(s + log n).

Each weak reduction step preserves V (C) but a reduction step reduces it by a factor of
√

3/2. Since
|V (C)| ≥ 1, we conclude that the algorithm stops after

log√3/2 V (C) = O(n2 log
{

d max
i
‖bi‖

}

) = O(n2(s + log n))

reduction steps. Each weak reduction of B involves one call to the Gram-Schmidt procedure and
O(n2) vector operations of the form bi ← bi− cbj , (c ∈ Z). These take O(n3) arithmetic operations.
We conclude with:

Theorem 9 Given a basis A ∈ Qn×m, we can compute a reduced basis B with Λ(A) = Λ(B) using
O(n5(s + log n)) arithmetic operations, where s is the maximum bit-size of entries in A.

Exercises

Exercise 4.1: The reduction factor of
√

3/2 in this lemma is tight in the planar case (n = 2)
(cf. §VIII.3). 2

Exercise 4.2: Bit Complexity. For simplicity, assume s ≥ log n. Show that all intermediate num-
bers in the LLL algorithm have bit-size O(ns). Conclude that if we use the classical algorithms
for rational arithmetic operations, the bit-complexity of the algorithm is O(n7s3). 2

Exercise 4.3: By keeping track of the updates to the basis in the weak reduction step we can save
a factor of n. Using fast integer arithmetic algorithms, we finally get O(n5s2L(ns)). 2

Exercise 4.4: The LLL algorithm above assumes the columns of the input matrix B forms a basis.
In some applications this assumption is somewhat inconvenient. Show how to modify LLL
algorithm to accept B whose columns need not be linearly independent. 2

§5. Short Vectors

Let B = [b1, . . . , bm] ∈ Rn×m be a basis and let ξ1 ∈ Λ = Λ(B) denote the shortest lattice vector,
ξ1 6= 0. We do not know if computing the shortest vector from B is NP -complete. This assumes that
the length of a vector is its Euclidean norm. If we use the ∞-norm instead, van Emde Boas (1981)
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has shown that the problem becomes NP -complete. In §2, we show that if Λ is a full-dimensional

lattice, ‖ξ1‖ is bounded by
√

2n
π det(Λ)

1
n . We do not even have an efficient algorithm to compute

any lattice vector with length within this bound. But this lecture shows that we can efficiently
construct a vector ξ whose length is bounded by a slightly larger constant. Moreover, ‖ξ‖ is also
bounded relative to the length of the shortest vector: ‖ξ‖/‖ξ1‖ ≤ 2(m−1)/2. Indeed, finding such a
ξ is trivially reduced to the LLL-algorithm by showing that ξ can be chosen from a reduced base.

Lemma 10 Let B∗ = [b∗1, . . . , b
∗
m] be the Gram-Schmidt version of B. Then the shortest vector ξ1

satisfies
‖ξ1‖ ≥ min

i=1,...,m
‖b∗i ‖.

Proof. Suppose

ξ1 =

k
∑

i=1

λibi (λi ∈ Z, λk 6= 0)

for some 1 ≤ k ≤ m. Then

ξ1 =

k
∑

i=1

λi

i
∑

j=1

µijb
∗
j , by equation (8)

= λkb∗k +
k−1
∑

i=1

µ′
ib

∗
i

for some suitable µ′
i ∈ Q. Hence

‖ξ1‖ ≥ |λk| · ‖b∗k‖ ≥ ‖b∗k‖.
Q.E.D.

We deduce from the above:

Lemma 11 Let B = [b1, . . . , bm] be a reduced basis and ξ1 be a shortest vector in Λ(B).

(i) ‖b1‖ ≤ 2(m−1)/2‖ξ1‖,

(ii) ‖b1‖ ≤ 2(m−1)/4(detΛ(B))1/m.

Proof. (i) Let bi be the shortest vector in B. Since B is reduced,

‖b1‖2 = ‖b∗1‖2 ≤ 2i−1‖b∗i ‖2 ≤ 2m−1‖ξ1‖2.

(ii) ‖b1‖2m ≤
∏m

i=1 2i−1‖b∗i ‖2 = 2(m

2 ) det(BT B). Q.E.D.

Thus we can use the LLL-algorithm to construct a short vector ξ satisfying both

‖ξ‖/‖ξ1‖ ≤ 2(m−1)/2 and ‖ξ‖ ≤ 2(m−1)/4(det(BT B))1/2m. (13)
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Simultaneous Approximation. Let us give an application to the problem of simultaneous ap-
proximation: given rational numbers α1, . . . , αn and positive integer bounds N, s, find integers
p1, . . . , pn, q such that

|q| ≤ N and |qαi − pi| ≤ 2−s, (i = 1, . . . , n). (14)

In other words, we want to simultaneously approximate the numbers α1, . . . , αn by rationals numbers
p1/q, . . . , pn/q with a common denominator. It is not hard to see that if N is large enough relative
to s, there will be a solution; conversely there may be no solutions if N is small relative to s.

Lemma 12 (Dirichlet) If N = 2s(n−1) then there is a solution to the simultaneous approximation
problem.

By way of motivation, note that the system of inequalities (14) translates into

‖p1e1 + p2e2 + · · ·+ pnen − qα‖∞ ≤ 2−s.

where ei is the ith elementary n-vector (0, . . . , 0, 1, 0, . . . , 0) with a “1” in the ith position and
α = (α1, . . . , αn). So this becomes the problem of computing a short vector

ξ = p1e2 + p2e2 + · · ·+ pnen − qα (15)

in the lattice generated by B = [α, e1, . . . , en].

Let us now prove Dirichlet’s theorem: it turns out to be an immediate application of Minkowski’s
convex body theorem (§2). But we cannot directly apply Minkowski’s theorem with the formulation
of (15): the columns of B are not linearly independent. To circumvent this, we append an extra
coordinate to each vectors in B. In particular, the n + 1st coordinate of α can be given a non-zero
value c, and each ei is now an elementary (n + 1)-vector. The modified B is

B = [α, e1, . . . , en] =















α1 1 0 · · · 0
α2 0 1 · · · 0
...

. . .
...

αn 0 0 · · · 1
c 0 0 · · · 0















. (16)

Note that det(B) = c, where we are free to choose c. Let C be the cube

C = {(x0, . . . , xn) ∈ Rn+1 : |xi| ≤ 2−s}.

The volume of C is 2(1−s)n. If we choose c = 2−sn, then Vol(C) = 2n det(B). Since C is compact,
using a remark after Minkowski’s theorem in §2, we conclude that C contains a point ξ of Λ(B):

ξ = −qα +
n

∑

i=1

piei, (q, pi ∈ Z).

Since ξ ∈ C, we have |cq| ≤ 2−s (or |q| ≤ 2s(n−1)) and |qαi− pi| ≤ 2−s, proving Dirichlet’s theorem.

Unfortunately, there is no known polynomial-time algorithm to find Dirichlet’s solution. In contrast,
we have:

Theorem 13 If N = 2ns+n(n+1)/4 then the simultaneous approximation problem has a solution that
can be found in polynomial time.
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The only algorithmic technique we have for short vectors involve the LLL-algorithm, and somehow
we must reduce our problem computing a “short” vector in the sense of (13). The basic setup of the
proof of Dirichlet’s theorem can be used, with only a different choice of c. With B as in (16), we
see from (13) that it suffices to choose c sufficiently small:

‖ξ‖ ≤ 2n/4 det(B)1/(n+1) = 2n/4c1/(n+1).

Hence ‖ξ‖∞ ≤ ‖ξ‖ ≤ 2−s provided we choose

c = 2−(n/4+s)(n+1).

Now the (n + 1)st coordinate of ξ is equal to −qc hence |qc| ≤ 2−s or

|q| ≤ 2(n/4+s)(n+1)−s = N.

This proves theorem 13.

Exercises

Exercise 5.1: Assuming that m is fixed, show that the shortest vector can be found in polynomial
time. 2

Exercise 5.2: Show by a general example that Dirichlet’s result is tight. 2

Exercise 5.3: (Babai 1986) A generalization of the short vector problem is the problem of near
vector: given a basis B = [b1, . . . , bm] ∈ Qn×m and a vector u ∈ Qn, find a lattice point
ξ ∈ Λ(B) that is “near to u” in this sense:

‖u− ξ‖ ≤ 2(m/2)−1‖u− ξ1‖

where ξ1 is the nearest lattice point to u. Show that this problem can be solved in polynomial
time. HINT: choose ξ such that

u− ξ =
m

∑

i=1

λib
∗
i , |λi| ≤ 1/2,

where [b∗1, . . . , b
∗
m] is the Gram-Schmidt version of B 2

§6. Factorization via Reconstruction of Minimal Polynomials

Approximate roots. Suppose we are given a pair

(α, s), α ∈ C, s ∈ Z

where s ≥ 4. In our algorithmic applications, the real Re(α) and imaginary Im(α) parts of α will be
rational numbers, but the mathematical results do not depend on this assumption. Let us call the
pair (α, s) an approximate root if there exists an algebraic number α ∈ C with minimal polynomial
F (X) such that

(i) |α− α| ≤ 2−5s3

, (17)

(ii) F (X) has bit-size less than s. (18)
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We also say the approximate root (α, s) belongs to α. Note that equations (17) and (18) imply

‖F (X)‖∞ ≤ 2s−1, deg(F ) ≤ s− 1, |α| ≤ 2s. (19)

Our main task is to show that F (X) is uniquely determined under assumptions (17) and (18), and to
efficiently reconstruct F (X) from (α, s). Incidentally, this suggests that approximate roots can serve
as yet another representation of algebraic numbers. Although the representation is very simple, it
is not clear whether it is useful for general algebraic manipulations.

Application to Polynomial Factorization. Before addressing the main task, let us show how
this leads to an efficient procedure for factoring integer polynomials. Suppose we wish to factor
the integer polynomial G(X) of degree n ≥ 2. According to §IV.5, if F (X) divides G(X) then

‖F‖∞ ≤ |lead(F )| ·
(

n

⌊n/2⌋

)

‖G‖

≤ |lead(G)| ·
(

n

⌊n/2⌋

)

‖G‖.

If t denotes the last expression, then the bit size of F is bounded by s :=(n+1)t. We may, following
§VII.5, isolate a complex root α of G(X) to the accuracy required by (17). This gives us an

approximation α such that |α − α| ≤ 2−5s3

. Applying the minimal polynomial reconstruction
algorithm to the approximate root (α, s), we get a minimal polynomial F for α. Note that if
deg F = n then F is just equal to the primitive part of G(X) and we have verified that G(X) is
irreducible. Otherwise, F (X) is a nontrivial irreducible factor of G(X). We can now continue with
the factorization of G(X)/F (X).

The rest of this section considers the problem of reconstructing minimal polynomials, following
Kannan, Lenstra and Lovász [99].

Lattice points as polynomials. Fix an arbitrary integer m, 1 ≤ m ≤ s, and let

c := 2−4s3

. (20)

Consider the following matrix

Bm :=



















Re(α0) Re(α1) · · · Re(αm)
Im(α0) Im(α1) · · · Im(αm)

c 0 · · · 0
0 c · · · 0
...

. . .

0 0 c



















. (21)

Clearly Bm is a basis for a (m+1)-dimensional lattice in Rm+3. Let the columns of Bm be b0, . . . , bm,

Bm = [b0, . . . , bm],

and consider the following correspondence between polynomials G(X) ∈ Z[X ] of degree at most m
and lattice points G ∈ Λ(Bm):

G(X) =

m
∑

i=0

giX
i ⇐⇒ G =

m
∑

i=0

gibi. (22)
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This is seen to be a bijection once we notice

G = (Re(G(α)), Im(G(α)), cg0, cg1, . . . , cgm). (23)

It follows that

‖G‖2 = Re(G(α))2 + Im(G(α))2 + c2
m

∑

i=0

g2
i

‖G‖2 = |G(α)|2 + c2‖G(X)‖2. (24)

This important identity suggests a connection between the minimal polynomial F (X) and short
vectors in the lattice Λ(Bm): Assume m is the degree of the minimal polynomial F (X). Then the
lattice point F corresponding to F (X) has small length since F (α) is close to F (α) = 0 and c is small
implies ‖F‖ = |F (α)|2 + c2‖F (X)‖ is small. In fact for any G 6= F we show that ‖G‖ ≥ 2m‖F‖.
Intuitively, this means that the LLL-algorithm can distinguish F from all other lattice points. One
complication is that we do not know in advance the degree m of the minimal polynomial. In any
case, the idea is to reduce the search for a minimal polynomial to the search for a short vector in a
suitable lattice. The following theorem answers the basic questions of this approach.

Theorem 14 (Correctness)

Let (α, s) be an approximate root belonging to α. With 1 ≤ m ≤ s and c = 2−4s3

, construct the basis
Bm as above. Let F (X) be the minimal polynomial of α and

C := 22sc = 22s−4s3

.

(i) If G ∈ Λ(Bm) satisfies ‖G‖ ≤ C then G(α) = 0.

(ii) If m = deg F (X) then ‖F‖ ≤ C.

(iii) If m = deg F (X) then for any lattice point G ∈ Λ(Bm), G(α) 6= 0 implies ‖G‖ > 2sC.

It is easiest to appreciate the theorem by seeing how it justifies the following algorithm for recon-
structing minimal polynomials:

Minimal Polynomial Algorithm:

Input: Approximate root (α, s) belonging to α, i.e., satisfying (17) and (18).
Output: F (X), the minimal polynomial of α.
Method:

for m = 1, 2, . . . , do forever

1. Construct the basis Bm.
2. Use the LLL-algorithm to find a reduced basis B for Bm.
3. Let G be the first vector in B, and G(X) the corresponding polynomial.
4. Let H(X) be the primitive part of G(X).
5. If ‖H‖ ≤ C then output H(X) and halt.

Justification of Algorithm: Let F (X) be the minimal polynomial of α. Part (i) of the theorem
shows that the algorithm cannot halt at any stage m where m < deg F ≤ s− 1. So suppose we have
reached stage m = deg F . From part (ii), the shortest vector in Λ(Bm) has length at most C. Let
G be first vector in the reduced basis. By a property of reduced bases (lemma 11(i)), ‖G‖ ≤ 2s · C.
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Then part (iii) of the theorem implies G(α) = 0. Hence the primitive part of G(X) must be the
minimal polynomial F (X). Therefore in stage m = deg F , the polynomial H(X) is indeed equal to
F (X). Hence H(X) will satisfy the condition ‖H‖ ≤ C, necessary for halting. So our algorithm
will surely halt at the correct stage, and when it halts, the output is correct. This concludes the
justification.

Proof of the Correctness Theorem. The proof will occupy the rest of this section. We first
state without proof a simple estimate.

Lemma 15 Let A(X) ∈ Z[X ] and α, α ∈ C. If m ≥ deg A(X) and M ≥ max{1, |α|, |α|} then

|A(α)−A(α)| ≤ |α− α| · ‖A‖∞m2Mm.

Proof of part (i) of Theorem. From (24) and the assumption ‖G‖ ≤ C, we get

|G(α)| ≤ C and c‖G(X)‖ ≤ C. (25)

The latter inequality implies
‖G(X)‖ ≤ c−1C = 22s.

By lemma 15, and since |α| ≤ 2s and m ≤ s− 1,

|G(α) −G(α)| ≤ |α− α| · ‖G‖∞ ·m2 · 2sm

≤ |α− α| · ‖G‖ ·m2 · 2sm

≤ 2−5s3 · 22s · 2s · 2s2

≤ 2−4s3

(provided s ≥ 4). (26)

|G(α)| ≤ |G(α) −G(α)|+ |G(α)|
≤ 2−4s3

+ C

≤ 2C.

Let

F (X) =

n
∑

i=0

fiX
i (27)

be the minimal polynomial of α and α = α1, α2, . . . , αn be the conjugates of α. Consider the
expression

fm
n

n
∏

i=1

G(αi). (28)

Since
∏n

i=1 G(αi) is symmetric in the αi’s and of degree ≤ m in αi, the fundamental theorem
on symmetric functions (§VI.5) implies that the expression (28) yields an integer. Since |fn| ≤
2s, |αi| ≤ 2s,

|G(αi)| ≤
m

∑

j=0

|gj‖αi|j

≤ ‖G‖∞
m

∑

j=0

2sj

≤ 22s · 2sm+1 ≤ 22s2

.
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Hence

|fm
n

n
∏

i=1

G(αi)| ≤ |fn|m · |G(α)| ·
n

∏

i=2

|G(αi)|

≤ 2sm · 2C · (22s2

)n−1

≤ C · 22s3

< 1.

It follows that the expression (28) is equal to 0. Hence G(αi) = 0 for some i. But the αi’s are
conjugates, so G(α) = 0. This concludes the proof of part(i).

Proof of part (ii). We now want to upper bound ‖F‖. Since ‖F (X)‖∞ ≤ 2s and |α| ≤ 2s,
lemma 15 shows

|F (α)| = |F (α)− F (α)|
≤ |α− α| · ‖F‖∞ · s2 · 2s2

≤ 2−5s3 · 2s · 2s · 2s2

≤ 2−4s3

.

Hence (cf. (24))

‖F‖ = (|F (α)|2 + c2‖F (X)‖2) 1
2

≤ ((2−4s3

)2 + (2−4s3 · 2s)2)
1
2

≤ 22s−4s3

= C.

Proof of part (iii). Let G ∈ Λ(Bm) and G(α) 6= 0. We need a lower bound on ‖G‖. We will use
a lower bound on G(α) provided by the following lemma:

Lemma 16 Let A(X), B(X) ∈ Z[X ] be non-constant and relatively prime. Suppose

m ≥ max{deg A, deg B},
M ≥ 1 + max{‖A‖∞, ‖B‖∞}.

Then at any root α of A(X),

|B(α)| > 1

mmM3m
.

Proof. Let deg A = k, deg B = ℓ. So k ≥ 1, ℓ ≥ 1 and there exist U(X), V (X) ∈ Q[X ] such that

U =
∑ℓ−1

i=0 uiX
i, V =

∑k−1
i=0 viX

i and

U(X)A(X) + V (X)B(X) = 1. (29)

We rewrite equation (29) using Sylvester’s matrix S = S(A, B) (§III.3):

(uℓ−1, . . . , u0, vk−1, . . . , v0) · S = (0, . . . , 0, 1)

Since detS is the resultant of the relatively prime A and B, we have detS 6= 0. By Cramer’s rule,
vi = detSi

det S where Si is obtained by replacing a suitable row of S by the (k + ℓ)-vector (0, . . . , 0, 1).
By Hadamard’s bound,

|vi| ≤ | detSi| ≤ mmM2m−1
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since each row of S has 2-norm at most
√

mM . Using Cauchy’s bound that |α| ≤M , we obtain

|V (α)| ≤ |
k−1
∑

i=0

viα
i|

≤
k−1
∑

i=0

(mmM2m−1)M i

≤ mmM3m−1.

From (29) we get V (α) · B(α) = 1 and hence |B(α)| ≥ m−mM1−3m. Q.E.D.

To conclude the proof of part(iii), let assume

‖G(X)‖ ≤ 23s

since otherwise
‖G‖ ≥ c‖G(X)‖ > c · 23s = 2s · C,

and we are done. Note that G(X) and F (X) are relatively prime because F (X) is a minimal
polynomial. Applying lemma 16, we see that (with M = 23s, m = s),

|G(α)| ≥ s−s2−9s2

= 2−s log s−9s2

> 2s+1C.

Applying lemma 15, we get |G(α)−G(α)| ≤ 2−4s3

< C (just as (26) above). Finally,

|G(α)| ≥ |G(α)| − |G(α) −G(α)|
≥ 2s+1C − C > 2sC.

This completes the proof of the Correctness Theorem.

Remark: The constants c and C have Θ(s3) bits each. In [99], similar constants use only Θ(s2) bits
but it seems that they only proved the equivalent of part (iii). It is our proof of part (i) that seems
to require Ω(s3) bits. Still, there is not much difference in complexity between computing roots to
Θ(s3) bits of accuracy as opposed to Θ(s2) bits. This is because Newton iteration (§VI.11) can be
used once we have about s2 bits of accuracy.

Exercises

Exercise 6.1:
(i) Estimate the complexity of the Minimal Polynomial Algorithm.
(ii) Estimate the complexity of the factorization based on this minimal polynomial algorithm.

2
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Mathématiques. Hermann, Paris, 1990.

c© Chee-Keng Yap September 9, 1999



§6. Reconstructing Minimal Polynomials Lecture IX Page 254

[21] S. J. Berkowitz. On computing the determinant in small parallel time using a small number
of processors. Info. Processing Letters, 18:147–150, 1984.

[22] E. R. Berlekamp. Algebraic Coding Theory. McGraw-Hill Book Company, New York, 1968.

[23] J. Bochnak, M. Coste, and M.-F. Roy. Geometrie algebrique reelle. Springer-Verlag, Berlin,
1987.

[24] A. Borodin and I. Munro. The Computational Complexity of Algebraic and Numeric Problems.
American Elsevier Publishing Company, Inc., New York, 1975.

[25] D. W. Boyd. Two sharp inequalities for the norm of a factor of a polynomial. Mathematika,
39:341–349, 1992.

[26] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of Toeplitz systems of equations
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Lecture X

Linear Systems

Determinants and solving linear systems of equations are fundamental in algebraic computation.
The basic facts of this topic are well-known when the underlying algebraic structure R is a field.

Gaussian elimination is the main method in this case. But our main interest is when R is a domain
D. Of course, we can still embed a determinant computation in the quotient field QD of D. But
this method turns out to be inefficient, for reasons similar to those that argue against computing
the GCD over D[X ] via the Euclidean algorithm for GCD over QD[X ]. In this lecture, special
techniques will be described for three problems:

(i) Computing determinants. The method to be described has similarities to the subresultant PRS
algorithm, and in the modern form, is due to Bareiss [10, 11]. Bareiss noted that the method is
known to Jordan. This method seems quite effective when D is the integers or univariate polynomials
[51] (see also Sasaki and Murao [175]).

(ii)&(iii) Computing Hermite and Smith normal forms of integer matrices. These have applications
to lattice-theoretic questions, solving linear Diophantine equations, and finitely generated Abelian
groups.

The results for computing determinants apply to any domain D. For the Hermite and Smith normal
forms, we describe the results for D = Z although the basic method could be extended to any UFD.

The set of m× n matrices with entries in D is denoted Dm×n. The (i, j)th entry of a matrix M is
denoted (M)i,j or (M)ij .

§1. Sylvester’s Identity

Bareiss’ algorithm for computing determinants of matrices over D is based on a determinantal
identity which we derive in this section. When applied to D = Z, Bareiss’ algorithm is polynomial-
time.

It is instructive to understand why the usual Gaussian elimination is inadequate. Using fairly
standard notations, suppose we initially have a matrix M (1) with L-bit integers. In the kth
stage, we transform M (k) to M (k+1). The transformation applies to all entries of M (k) with
index (i, j) where i, j ≥ k. If the (i, j) entry of M (k) is x

(k)
ij , we have

x
(k+1)
ij ← x

(k)
ij − x

(k)
kj

x
(k)
i1

x
(k)
k1

.

The entries in M (k+1) are rational with bit size up to 4 times the bit sizes of entries in M (k).
Thus after m steps, the entries can have bit size up to 4mb. It is an open problem if this
exponential upper bound can be attained. Pivoting does not seem to help (see Exercise). Hence
new methods are needed. Edmonds [62] appears to be the first to give a polynomial time solution
for this problem.

Let M ∈ Dn×n with (M)i,j = xi,j . Note that xij may also be an indeterminate if D is suitably
defined. The (i, j)-cofactor of M is denoted [M ]ij and defined thus:

[M ]ij :=(−1)i+j detM [i; j] (1)
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where M [i; j] is the matrix obtained by deleting the ith row and jth column of M . The adjoint of M
is the matrix adj(M) whose (i, j)th entry is the (j, i)-cofactor of M (note the transposed subscripts).
For any i, j = 1, . . . , n, it is easy to see that the sum

xi1[M ]j1 + xi2[M ]j2 + · · ·+ xin[M ]jn

is equal to det M if i = j, and equal to 0 if i 6= j. This immediately yields the following fundamental
identity:

M · adj(M) = det(M) · I. (2)

Taking determinants on both sides, it follows that det(adjM) = det(M)n−1. If det(M) is an
invertible element of D, we infer that the inverse of M exists and is given by

M−1 = (det(M))−1adj(M). (3)

Let ABC denote a triple matrix product of shape m× n× n× p (so B is an n-square matrix). For
any b from domain D, we have the identity

bABC = A(bB)C. (4)

This follows by looking at the typical element of bABC:

(bABC)rs = b
n∑

i=1

ari(BC)is

= b

n∑

i=1

ari

n∑

j=1

(B)ijcjs

=

n∑

i=1

ari

n∑

j=1

(bB)ijcjs

=

n∑

i=1

ari(bBC)is

= (A(bB)C)rs.

Next we express the matrix M in the form

M =

[
A B
C X

]

where A is (k − 1)-square and X is (n− k + 1)-square. For the following derivation, assume

δ = detA 6= 0.

Lemma 1
δn−k detM = det(δX − C · adj(A)B).

Proof. If we express

M =

[
A 0
C I

] [
I A−1B
0 X − CA−1B

]
(5)

then we see that

detM = δ det(X − CA−1B)

δn−k detM = det(δX − δCA−1B)

= det(δX − C · adj(A)B)
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where the last step exploits equations (3) and (4). Q.E.D.

But what is δX−C ·adj(A)B? To see this, introduce the “(r, s)-bordered matrix of order k” defined
to be

M (k)
r,s :=





x1,1 x1,2 · · · x1,k−1 x1,s

x2,1 x2,2 · · · x2,k−1 x2,s

· · · · · · · · ·
xk−1,1 xk−1,2 · · · xk−1,k−1 xk−1,s

xr,1 xr,2 · · · xr,k−1 xr,s





for k ≤ min{r, s}. By definition, M
(1)
r,s is the 1× 1 matrix [xr,s]. Also, define

x(k)
rs :=det M (k)

rs . (6)

For instance, M = M
(n)
nn and detM = x

(n)
nn . Now let us look at a typical element of δX−C ·adj(A)B:

for r ≥ k and s ≥ k, we have

(δX − C · adj(A)B)r−k+1,s−k+1 = δxr,s − (C · adj(A)B)r−k+1,s−k+1

= δxr,s −

k−1∑

i=1

Cr−k+1,i

k−1∑

j=1

(adj(A))ijBj,s−k+1

= δxr,s −

k−1∑

i=1

xr,i

k−1∑

j=1

[A]jixj,s

where [A]ji is the (j, i)-cofactor of A. But the last expression can be seen to be equal to the

determinant of the bordered matrix M
(k)
rs (cf. exercise below giving the cofactors of xr,ixj,s). This

proves:

Lemma 2
(δX − C · adj(A)B)rs = x(k)

rs .

Note that δ = x
(k−1)
k−1,k−1. Combining the last two lemmas:

Lemma 3 (Sylvester’s identity)

(x
(k−1)
k−1,k−1)

n−k detM = det





x
(k)
k,k x

(k)
k,k+1 · · · x

(k)
k,n

x
(k)
k+1,k x

(k)
k+1,k+1 · · · x

(k)
k+1,n

...
. . .

...

x
(k)
n,k x

(k)
n,k+1 · · · x

(k)
n,n




.

Exercises

Exercise 1.1: (i) (Wilkinson 1961) With the notations for Gaussian elimination in the introduction,
let us now assume total pivoting. Show that

|a
(k)
ij | ≤ k1/2

(
2 · 31/2 · 41/3 · · · · · k1/(k−1)

)1/2

‖A‖∞.
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NOTE: a rough estimate is that log
(
2 · 31/2 · 41/3 · · · · · k1/(k−1)

)
is O(log2 k). Thus the mag-

nitude of the entries are polynomial.
(ii) Why is it not obvious that this leads to a polynomial time solution for integer matrices?
(iii) (Open) Construct examples with exponential bit sizes in the intermediate entries. (You
may assume that no pivoting is needed.) 2

Exercise 1.2: (Bareiss) Show that Sylvester’s identity holds even when x
(k−1)
k−1,k−1 = 0. HINT:

perturb the singular submatrix. 2

§2. Fraction-free Determinant Computation

Lemma 3 with n − k = 1 is called the “first order” Sylvester identity. With the notations of the

previous section, this identity for the matrix M
(k+1)
i,j amounts to

x
(k−1)
k−1,k−1 detM

(k+1)
ij = det




x

(k)
k,k x

(k)
k,j

x
(k)
i,k x

(k)
i,j



 .

Hence,

x
(k+1)
ij =

x
(k)
k,kx

(k)
i,j − x

(k)
i,k x

(k)
k,j

x
(k−1)
k−1,k−1

. (7)

The important point is that the division by x
(k−1)
k−1,k−1 in this equation is exact (i.e., with no remain-

der). Equation (7) is the defining step of the fraction-free Gaussian elimination algorithm of Bareiss
(and Jordan):

Bareiss Algorithm

Input: M an n-square matrix,

assuming its principal minors x
(k)
kk are all non-zero.

Output: The matrix entry (M)n,n contains the determinant of M .
In general, for i ≥ k, we have

(M)ik = x
(k)
ik , (M)ki = x

(k)
ki .

1. (M)0,0 ← 1; {Note: (M)0,0 is a special variable.}
2. for k = 1, . . . , n− 1 do

3. for i = k + 1, . . . , n do

4. for j = k + 1, . . . , n do

5. (M)ij ←
(M)ij(M)kk−(M)ik(M)kj

(M)k−1,k−1

The program structure of this algorithm amounts to a simple triple-loop, as in the standard Gaussian
elimination. Its correctness is easily shown by induction on k, and by appeal to equation (7) (we
leave this as an exercise).

In case the assumption about principal minors turns out to be false, this is easily detected and the
algorithm may be aborted. Alternatively, it is not hard to add the code (between lines 2 and 3) to
perform some kind of pivoting: say, if (M)k−1,k−1 = 0 and some (M)k−1,i 6= 0 (i = k, . . . , n) then
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we can exchange the ith column with the k − 1st column. But we defer a more complete discussion
of this to an extension of Bareiss’ algorithm below.

The division in line 5 is exact since (M)k−1,k−1 = x
(k−1)
k−1,k−1. Hence all computed values remain

inside the domain D.

This is an “in-place” algorithm that destroys the contents of the original matrix. But we can easily
preserve the original matrix is desired. The output M has the following shape:

M =





x
(1)
1,1 · · · x

(1)
1,n

...
. . .

x
(k)
kk x

(k)
k,k+1 · · · x

(k)
k,n

x
(k)
k+1,k

. . .
...

. . .

x
(1)
n,1 x

(k)
n,k x

(n)
n,n





In other words, for each k = 1, . . . , n, there is an (rotated) L-shaped band in M that contains
determinants of order k bordered matrices, as indicated.

In view of the definition of x
(k)
ij (equation (6)) as subdeterminants of M , we obtain at once:

Lemma 4 The intermediate values encountered in the algorithm have absolute values at most nn2Ln

where 2L bounds the absolute values of the entries of M .

Since the algorithm takes O(n3) arithmetic steps, and each entry has at most n(log n + L) bits, we
conclude that the bit-complexity of this method is

O(n3MB(n(log n + L)))

where MB(s) is the bit-complexity of multiplying two s-bit integers.

One can exploit the higher order Sylvester identities to obtain analogous algorithms. We will not
explore this but see Bareiss [10] for an analysis of an algorithm exploiting the second order identity.
We will instead describe two other extensions.

Extended Bareiss Algorithm. We extend the algorithm to matrices of arbitrary m × n shape
and of general rank ρ. This can be formulated as follows:

(*) Given a matrix A ∈ Zm×n, we want to compute its rank ρ, a permutation P of its
rows, a permutation Q of its columns, and non-zero values d1, . . . , dρ, such that each di

is the ith principal minor of PAQ.

This will be needed for the Hermite normal form algorithm in §7.

Partially Processed Matrices. To describe the solution, it is useful to introduce some termi-
nology. Let A, M ∈ Zm×n. We say that M is a partially processed version of A if each (i, j)th entry
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(M)i,j is an (i, j)-bordered determinant of A of some order k = k(i, j). Clearly we have

1 ≤ k ≤ min{i, j}.

If k(i, j) = min{i, j} (respectively, k(i, j) = 1), we say the (i, j)th entry is fixed (resp., original). We
call k(i, j) the fixing order of the (i, j)th entry. For instance, A is a partially processed version of
itself, with every entry original. If every entry of M is fixed (for A), then M is said to be completely
processed (for A). In this terminology, we can view Bareiss’ algorithm on input A as trying to fix
every entry of A. An operation of the form

(M)i,j ←
(M)k,k(M)i,j − (M)i,k(M)k,j

(M)k−1,k−1
(8)

is called a fixing step for the (i, j)th entry. The fixing step is valid provided the fixing order of
(M)k,k, (M)i,m, (M)i,k and (M)k,m is k and the fixing order of (M)k−1,k−1 is k − 1. If M is
partially processed before a valid step for the (i, j)th entry, it remains partially processed after the
step, with the fixing order of the (i, j) entry equal to k + 1 (cf. equation (10)).

Let us return to problem (*). Suppose M is initialized to A and the row and column permutations
P, Q are initially identities. Inductively, assume M is a partially processed version of PAQ. We
proceed in stages. In stage s (s = 1, . . . , ρ) our goal is to ensure the following properties:
(i) Every entry in the sth principal submatrix of M is fixed.
(ii) The first s diagonal entries of M are non-zero.
(iii) To maintain an index m0 ≥ s such that each row i > m0 is known to be dependent on the first
s− 1 rows. Moreover, the entries in rows s + 1 to m0 are original. Initially, m0 = m.

For s ≥ 1, suppose that stage s − 1 is completed. [For s = 1, the properties (i)-(iii) are vacuously
true.] Observe that we can fix the first s − 1 entries of the sth row of C in O(s2) fixing steps.
Applying this observation once more, we can fix the first s entries in the sth column in O(s2) fixing
steps. Thus goal (i) is attained. The problem is that the (s, s)th entry may be zero. We may go on
to fix the first s entries of column j for j = s + 1, s + 2, . . . , n. There are two cases:
(A) We find a column j which can be exchanged with column s to satisfy goal (ii). Then we exchange
column j and column s, and update permutation Q. If s = m0, we halt, else go to stage s + 1.
(B) No such column exists. In this case we conclude that row s is dependent on the first s− 1 rows.
If m0 = s, we stop, since ρ = s − 1. Otherwise, we exchange row m0 with row s, decrement m0,
update permutation P and continue with stage s.

This completes the description of our solution to problem (*). For reference, call this the Extended
Bareiss Algorithm. It’s correctness is clear. For its complexity, first note that each matrix entry is
a minor of A and hence has bit-size at most L′ := ρ(lg ρ + L) where L = lg ‖A‖∞. [Recall (§0.9)
that lg = log2.] Second, we use O(mnρ) arithmetic operations on integers of bit-size O(ρ(lg ρ + L)).
This is because the fixing step for each entry is applied at most ρ + 1 times. To see this, we verify
two facts: (a) In case (A), when we exchange columns s and j, note that the first s entries in the
columns between s and j have been fixed. This information is still valid after the column exchange.
So we just need a Boolean flag at each entry to indicate whether it is fixed or not. (b) In case (B),
note that after the exchange between rows s and row m0, the entire row m0 is already fixed and row
s is original. Thus we have:

Theorem 5 On input A ∈ Zm×n with rank ρ ≥ 1, the Extended Bareiss Algorithm has bit complexity
O(mnρMB(L′)) where L′ = ρ(lg ρ + L) and L = lg ‖A‖.

A Preprocessing Problem. We note another useful extension to Bareiss’ algorithm. If N ∈
Zm×(m−1), let Ni (i = 1, . . . , m) be the submatrix of N with the ith row deleted. Consider this
problem:
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(**) Given N ∈ Zm×(m−1), compute the m subdeterminants

detN1, . . . , detNm. (9)

This is a “preprocessing problem” in the sense that once the detNi’s are available, for any given
column a = (a1, . . . , am)T ∈ Zm, if A is obtained by appending a to N , we can quickly compute
detA as

detA =

m∑

i=1

ai(−1)i+m+1 det Ni.

The solution is simple: let M be the m×m matrix obtained from N by appending a column

Z = (Z1, . . . , Zm)T

where the Zi’s are indeterminates. Let X = (xi,j)
m,m
i,j=1 be the output matrix when M is input to

Bareiss’ algorithm. The entries xi,j are computed as expected. But the entry xi,m in the last column
is a linear function in Z1, . . . , Zi, which we denote by fi(Z1, . . . , Zi).

In the notations of §1, let x
(k)
i,j denote the (i, j)-bordered determinant of M of order k (i, j ≥ k).

Thus each output entry xi,j is equal x
(k)
i,j where k = min{i, j}. Let δk = x

(k)
k,k. For example, the

reader may verify that

f1 = Z1,

f2 = δ1Z2 − x2,1Z1,

f3 = δ2Z3 − x3,2Z2 −

(
δ2x3,1 − x3,2x2,1

δ1

)
Z1.

For any (a1, . . . , am) ∈ Zm, the value of fm(a1, . . . , am) yields the determinant of the matrix M
where each Zi is replaced by ai. Thus, up to signs, the desired subdeterminants (9) may be read off
from the coefficients of fm.

What is the complexity of this procedure? The bit-sizes of entries in the first m− 1 columns of M
and the time to compute them are exactly as in Bareiss’ algorithm. Consider the mth column. In
stage k + 1 (k = 1, . . . , m − 1) of the outermost for-loop in Bareiss’ algorithm, the entries of the

column m that are computed are x
(k+1)
i,m (i = k + 1, . . . , m). We have

x
(k+1)
i,m =

x
(k)
k,kx

(k)
i,m − x

(k)
i,k x

(k)
k,m

x
(k−1)
k−1,k−1

(10)

=
δkx

(k)
i,m(Z1, . . . , Zk−1, Zi)− x

(k)
i,k fk(Z1, . . . , Zk)

δk−1
. (11)

Each of the linear functions x
(k)
i,m(Z1, . . . , Zk−1, Zi) and fk(Z1, . . . , Zk) has k coefficients that are

minors of N of order k − 1, and hence has bit-size at most m(L + lg m). Hence it takes takes

O(k) arithmetic operations to compute x
(k+1)
i,m . Summing over the cost for computing the entries of

column m, we again have O(m3) arithmetic operations on integers of bit size O(m(L + lg m)). So
the overall complexity is exactly as in the original Bareiss’ algorithm.

Exact Division. Exact division turns out to be slightly more efficient than division-with-
remainder (by a small constant factor). We briefly describe the method (see Jebelean [92] for
more details). Suppose C = A ·B is an integer product. Consider the problem of computing B given
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C, A where integers are in base β. Let 0 ≤ ℓ(A) < β denote the least significant digit (LSD) of A.
Then it is easy to see that ℓ(C) ≡ ℓ(A)ℓ(B)(mod β). Thus

ℓ(B) = (ℓ(C) · (ℓ(A)−1)modβ)

provided ℓ(A) is invertible modβ. For simplicity, assume β is prime so that this is always possible.
This immediately leads to an exact division algorithm that produces the digits of B sequentially,
beginning with the LSD of B. Clearly, this is the opposite of the classical division algorithm [105],
and avoids the “guess-and-correct” step of the classical method:

Exact Division

Input: A, C ∈ Z in a prime base β, A|C.
Output: B such that AB = C.

NORMALIZATION:
1. while β|A do

2. A← A/β; C ← C/β.
MAIN LOOP:
3. while C > 0 do

4. b← ℓ(C)/ℓ(A)modβ;
5. Output b;
6. C ← (C − b · A)/β.

Let len(A) denote the number of digits in A. Step 6 is considered the inner loop. To speed up this
step, observe that only the lowest len(B) digits of C are involved in the inner loop. Hence the main
loop can be improved as follows:

· · ·
MAIN LOOP:
3. for k ← (len(C) − len(A) + 1) downto 1
4. b← ℓ(C)/ℓ(A)modβ;
5. Output b;
6. C ← ((C − b ·A)modβk)/β.

If β is a power of 2, then ℓ(A) would be invertible if A is odd. We achieve this by a simple modification
to the normalization stage, namely, by inserting steps 2.1 and 2.2 below:

NORMALIZATION:
1. while β|A do

2. A← A/β; C ← C/β.
2.1 while 2|A do

2.2 A← A/2; C ← C/2.
MAIN LOOP:

· · ·

At the end of normalization, A is odd, and hence ℓ(A) is odd. This guarantees that ℓ(A) is invertible.
The bit analysis of this algorithm is left to an exercise.
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Exercises

Exercise 2.1: M is a square matrix with (M)ij = xij for all i, j. The “cofactor” of xijxi′j′ is
defined to be the expression E that is multiplied by xijxi′j′ when we collect terms in the
determinant of M that involve both xij and xi′j′ . E.g., if M is 2× 2, the cofactor of x12x21 is
−1 and the cofactor of x11x22 is 1. If i = i′ or j = j′ then E = 0; otherwise, show that

E = (−1)i+i′+j+j′+δ detM [i, i′; j, j′]

where

δ =

{
1 if (i > i′)⊕ (j > j′), (⊕ is exclusive-or)
0 else,

and M [i, i′; j, j′] is the submatrix of M obtained by deleting rows i and i′ and deleting columns
j and j′. 2

Exercise 2.2: Show that adj(adjA) = det(A)nA. 2

Exercise 2.3: What is the 3× 3 matrix analogue of equation (5)? 2

Exercise 2.4: Carry out the dth order version of Bareiss algorithm, by exploiting the order d

Sylvester identity. For instance, for d = 2, we must construct x
(k)
ij for even values of k,

evaluating 3× 3 determinants. 2

Exercise 2.5: Modify Bareiss’ algorithm in order to compute the determinant of a matrix with
rational entries. Carry out comparison experiments in this setting of rational inputs. HINT:
make each row have a common denominator first. 2

Exercise 2.6: Suppose M is n × m where n ≤ m. In Bareiss’ algorithm, we replace line 4 with
“for j = k+1, . . . , m do” (i.e., we extend change the limit from n to m). Describe the contents
of the entries (M)n,j for j = n, n + 1, . . . , m. What is the complexity of this modification?
How is this related to the determinantal polynomials (§III.3)? 2

Exercise 2.7: In the exact division algorithm, show that when the length m of C is less than twice
the length n of A, this method uses no more than half the number of bit-operations of the
classical method. Quantify this bit-operation count more generally in terms of m, n. 2

§3. Matrix Inversion

Matrix inverse is easily computed using the standard Gaussian elimination procedure. Following
[69], let us compute the more general product

CA−1B

where the triple product CAB has shape m × n × n × p. We proceed as follows: apply Gaussian
elimination to the (m + n)× (n + p) matrix

M =

[
A B
−C 0

]
, (A is nonsingular) (12)
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and obtain (after operations that zero the first n columns below A)

M ′ =

[
A′ B′

0 D′

]
. (13)

Here 0 denotes a matrix of zeros. Note that if A is singular, we would have discovered this fact
during Gaussian elimination. Henceforth, assume A is non-singular. We claim that D′ is precisely
what we wanted:

Lemma 6
D′ = CA−1B.

Block Gaussian elimination. This lemma is a slight generalization of lemma 1 to the non-square
case. It is instructive to briefly consider Gaussian elimination for block-size elements. Let

M =





A11 A12 · · · A1n

A21 A22 · · · A2n

...
. . .

...
Am1 Am2 · · · Amn





where Aij is a ki × ℓj matrix (“block”). We may say that M has shape (k1, . . . , km) × (ℓ1, . . . , ℓn).
Consider the following transformation of M : for 1 ≤ r, s ≤ m, r 6= s, and any kr × ks matrix H , we
replace the rth row of M with the sum of the rth row and H right multiplied by the sth row. That
is,

Art ← Art + HAst, (for t = 1, . . . , n).

This is equivalent to left multiplying M by the matrix

Tr,s(H) :=





I1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · Ir · · · H · · · 0
...

...
. . .

...
...

0 · · · 0 · · · Is · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · Im





where each Ij is the kj-square identity matrix, the Ij ’s occurring along the main diagonal, 0-blocks
occurring everywhere else except at the (r, s)th position which is occupied by H . Clearly, for any
minor ∆ of M (now viewed as an ordinary matrix of shape (

∑m
i=1 ki) × (

∑n
j=1 ℓj)) that contains

rows in the ith and jth block rows of M , this operation preserves ∆. If m = n and for all i, ki = ℓi

and Ai,i is non-singular, then we can effect Gaussian elimination at this block level: for instance,
Ti1(Ai1A

−1
11 ) will make the (i, 1)th entry zero. In particular, if A is square and non-singular, we may

transform the matrix

N =

[
A B
C D

]
(14)

to

N ′ =

[
A′ B′

0 D − CA−1B

]
.

We may conclude:

Lemma 7 The rank of N is equal to the rank of A iff D = CA−1B.
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We complete the proof of lemma 6. Suppose, instead of M in equation (12), we had

P =

[
A B
−C −CA−1B

]
.

Then by lemma 7, the rank of P is equal to the rank of M . Applying Gaussian elimination to P to
zero the entries below A, we obtain

P ′ =

[
A′ B′

0 D′ − CA−1B

]
.

The matrices A′, B′, D′ here are the same as those in M ′ (equation (13)) since the same multipliers
were used to do the elimination. But the rank of P ′ equals the rank of P and hence of M . This can
only mean that D′ − CA−1B = 0, as we wanted shown.

Exercises

Exercise 3.1: Let N be square in equation (14).
(i) Show that detN = det(AD −ACA−1B) if A−1 exists.
(ii) Under what conditions is detN = det(AD − CB)? det N = det(AD −BC)?
(iii) Consider the four cases of these identities depending on which of the 4 blocks of N are
non-singular.
(iv) Obtain the corresponding formulas using column operations (multiplication from the
right). 2

Exercise 3.2: Use the method to compute CA−1B to solve the system Ax = b of linear equations.
2

Exercise 3.3: For n > 1, let U be the n-square matrix all of whose entries are 1 and let S = U − I.
So S has zeros along its main diagonal. Compute S−1 using the above algorithm for small n.
NOTE: S−1 = 1

n−1U − I. 2

Exercise 3.4: Let T (n) be the algebraic complexity of computing the determinant of an n-square
matrix. Show that T (n) = O(MM(n)) where MM(n) is the complexity of multiplying two
n-square matrices. 2

§4. Hermite Normal Form

Let A, B ∈ Zm×n. In §VIII.1, we viewed the columns of A as a generating set of the lattice
Λ(A) ⊆ Zm. Alternatively, we may regard Λ(A) as a subgroup of the Abelian group Zm. We have
shown (§VIII.1)

Λ(A) = Λ(B)iff A = B · U (15)

for some integer unimodular matrix U . The original proof requires A and B to be bases but this
assumption can be dropped (see below). This raises the question: how can we decide if two matrices
A, B generate the same subgroup (or lattice)? The result (15) does not appear to be helpful for this
purpose – there is no obvious way to find U even if one is known to exist. In this lecture, and unlike
§VIII.1, we will no longer assume that A has rank n, so the columns of A form a generating set but

c© Chee-Keng Yap September 9, 1999



§4. Hermite Normal Form Lecture X Page 269

not necessarily a basis of Λ(A). The tool for answering such questions about Λ(A) is a normal form
which we now describe.

By applying the elementary integer column operations (§VIII.1) to A, we can transform A to a
matrix H = H(A) of the following shape:

1. For some r = 1, . . . , n, the first r columns of H are non-zero and the remaining columns (if
any) are zero.

2. For i = 1, . . . , r, let (H)c(i),i be the first non-zero entry of column i. Then

1 ≤ c(1) < c(2) < · · · < c(r) ≤ n. (16)

3. For i = 1, . . . , r, (H)c(i),i > 0.

4. If 1 ≤ j < i ≤ r then 0 ≤ (H)c(i),j < (H)c(i),i.

Such a matrix H = H(A) is said to be in Hermite normal norm (HNF), or H is the HNF of A.
For instance, the following 6× 4 matrix H1 is in HNF:

H1 =





2 0 0 0
−1 0 0 0
0 3 0 0
0 1 2 0
2 10 −4 0
9 −3 0 0




. (17)

If only the first two conditions in the definition of HNF hold, H is said to be in column echelon
form Column echelon form is just a generalization of “lower triangular matrices”. If H is a column
echelon form of A, then rows c(1), . . . , c(r) are called the critical rows of H . Each of the entries
(H)c(i),i is called a critical entry of H . The number r of non-zero columns in H is called the rank
of A. For the matrix H1 in (17), the critical rows are the 1st, 3rd and 4th, the critical entries are
(1, 1), (3, 2) and (4, 3).

Since the elementary column operations preserve the underlying lattice, Λ(A) = Λ(H(A)). It is then
easy to see: row i is critical in H(A) iff there is a vector ξ ∈ Λ(H(A)) whose first non-zero entry
is in the ith position. This latter characterization of critical rows depends only on the lattice. This
shows that the set of critical rows of H(A) depends only on Λ(A).

Theorem 8 Let A, B have the same shape. Λ(A) = Λ(B) if and only if A and B have the same
Hermite normal form: H(A) = H(B).

Proof. If H(A) = H(B) then clearly Λ(A) = Λ(B). In the other direction, let us assume Λ(A) =
Λ(B). We wish to prove H(A) = H(B). First observe that A and B have the same rank, d. This is
because A, B have the same set of critical rows, by a preceding observation. But d is the number of
critical rows.

We use induction on d. We assume that d ≥ 1 since d = 0 is trivial. Let a, b be the first columns
of H(A) and H(B), respectively. Let c(1) and c′(1) denote the first non-zero entry of a and b,
respectively. It is easy to see that c(1) = c′(1). Indeed, these two entries must be identical since
they each generate all the c(1)th entries of vectors in Λ(A) = Λ(B).
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Let H1(A) and H1(B) be obtained by deleting a and b, respectively. Notice that Λ(H1(A)) generates
the subgroup of Λ(A) whose first c(1) entries are zero. Similarly Λ(H1(B)) generates the subgroup of
Λ(B) whose first c(1) entries are zero. Since Λ(A) = Λ(B), we conclude that Λ(H1(A)) = Λ(H1(B)).
Since H1(A) and H1(B) are in HNF, we deduce by induction that H1(A) = H1(B).

It remains to prove that a = b. Suppose a− b is not identically zero. It follows from the preceding
that the first c(1) entries of a−b are zero. If k is the first non-zero column of a−b, then k > c(1) and
it follows that there exists a column c in H1(A) whose first non-zero entry is in position k. If (a)k

denotes the kth component of a, then by the definition of HNF, (c)k > (a)k ≥ 0 and (c)k > (b)k ≥ 0.
Hence (a − b)k has absolute value less than (c)k. This is impossible since a− b ∈ Λ(H1(A)) means
that (a− b)k must be a multiple of (c)k. Q.E.D.

As corollary, we also see that (15) holds without the restriction that the columns of A, B (re-
spectively) are linearly independent. It suffices to show that if Λ(A) = Λ(B) then there is a
unimodular matrix U such that AU = B. But there are unimodular matrices UA, UB such that
AUA = H(A) = H(B) = BUB. Take U = UAU−1

B .

It follows that our basic question of deciding if Λ(A) = Λ(B) is reduced to computing and comparing
their HNF’s. Other questions such as checking whether a given vector ξ belongs to Λ(A) can similarly
be answered (Exercise). We next address the computation of HNF.

Generic HNF algorithm. Assume the input is the m × n matrix A. By the “subrow” at an
entry (A)i,j we mean the set of entries of the form (A)i,k for k = j, j + 1, . . . , n. The best way to
understand this algorithm is to imagine that our task (the main loop below) is to determine the
critical rows of A.

Generic HNF Algorithm:

Input: an m× n integer matrix A.
Output: the Hermite normal norm of A.

MAIN LOOP:
1. Initialize i← 1 and j ← 1.
2. while i ≤ m and j ≤ n do:
3. While the subrow at (A)ij has only zero entries, increment i.
4. Now assume the subrow at (A)ij has non-zero entries.
5. By adding multiples of one column to another, eliminate all but

one non-zero element in the subrow at (A)ij .
6. By a column-exchange, bring this sole non-zero entry to

position (i, j) and increment j.
end{while}

CLEAN UP:
7. At this point, the matrix is in column-echelon form.
8. By adding multiples of one column to another, achieve the remaining

two conditions for the definition of HNF.

Exercise 4.1: (i) There are several ways to fill in details in the generic algorithm. Describe a
reasonable choice.
(ii) For your version of the generic algorithm, analyze the number of arithmetic operations for
a m× n input matrix whose entries are L-bit integers.
(iii) Bound the bit complexity of your algorithm. 2
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Although part (i) of the exercise should give a polynomial bound in m, n, L, the bit complexity in part
(ii) should be exponential in min{m, n}. Note that these exponential bounds arise from potential
sizes of intermediate matrix entries; the final entries in the HNF can be shown to be polynomially
bounded (below). Nevertheless, it is an open problem to construct examples that actually exhibit
exponential behavior. In random examples, huge intermediate entries routinely appear. For instance,
Hafner and McCurley [77] reported that for random 20×20 matrices with entries between 0 and 10,
most gave rise to an entry exceeding 10500. One example has an entry exceeding 105011. We will
develop a modular technique to achieve polynomial bit-complexity bounds.

Invariants of the Hermite normal form. Let A ∈ Zm×n and 1 ≤ k ≤ min{m, n}. For
1 ≤ i1 < i2 < · · · < ik ≤ m, let A(i1, i2, . . . , ik) denote the submatrix of A formed by rows
i1, . . . , ik. Let γ(A; i1, . . . , ik) denote the GCD of all the k× k subdeterminants (i.e., order k minors)
of A(i1, i2, . . . , ik). Note that γ(A; i1, . . . , ik) = 0 iff every order k minor of A(i1, i2, . . . , ik) is zero.

Lemma 9 The elementary integer column operations on A preserve γ(A; i1, i2, . . . , ik).

Proof. The column operations that interchange two columns or multiply a column by −1 do not
change the GCD (since GCD is defined up to associates and we always pick the positive member.)
Suppose c ∈ Z times the ith column of A is added to the jth column. Certain of the k × k
subdeterminants of A(i1, i2, . . . , ik) change. If a subdeterminant value D is changed, say to D′,
it is easy to see that D − D′ = ±c · D′′ where D′′ is another subdeterminant. Moreover, D′′ is
among the subdeterminants of A(i1, . . . , ik) that have not changed. To see this, observe that a
subdeterminant D is changed iff D involves column j but not column i. Schematically, if the old
GCD is GCD(. . . , D, . . . , D′′, . . .) then the new one is

GCD(. . . , D′, . . . , D′′, . . .) = GCD(. . . , D ± c ·D′′, . . . , D′′, . . .).

But the later expression is equal to the old GCD. Q.E.D.

Let r be the rank of A. For k = 1, . . . , r, we use the shorthand

γk(A) := γ(A; c(1), c(2), . . . , c(k)).

We define γi(A) = 0 for i = r + 1, . . . , n.

Corollary 10 The value γk(A) is invariant under the elementary column operations on A. If H is
the Hermite normal form of A, then the product of the first k critical values of H is equal to γk(A).
In particular, γk(A) divides γk+1(A) for k = 1, . . . , n− 1.

Exercises

Exercise 4.2: Describe the HNF of an m× 1 matrix. 2

Exercise 4.3: Discuss other strategies for implementing the generic HNF algorithm. 2
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Exercise 4.4: Solve the following problem efficiently:
(i) Given x ∈ Zm and A ∈ Zm×n, decide if x ∈ Λ(A). If x ∈ Λ(A), find the n-vector ξ such
that Aξ = x.
(ii) Given A, B ∈ Zm×n, check whether Λ(A) = Λ(B). In case they are equal, construct
matrices U, V such that A = BU and B = AV . [These matrices need not be unimodular
unless A, B are bases for Λ(A).] 2

Exercise 4.5: Suppose A, B are both in column-echelon form, and Λ(A) ⊆ Λ(B). If the critical
entries in A and the critical entries in B are in the same position and corresponding critical
entries have the same values, then Λ(A) = Λ(B) 2

Exercise 4.6: (i) Every subgroup of Zn is finitely generated.
(ii) Every finitely generated Abelian group G is isomorphic to a subgroup of Zn for some n.

2

Exercise 4.7: Call H a generalized HNF for A if H is in HNF and obtained from A by the usual
elementary column operations, but now we allow the permutation of rows as well. How do the
various generalized HNF’s of A relate to each other? 2

Exercise 4.8: (Open) Given a matrix A ∈ Zm×n and its Hermite normal form H(A). Let L bound
the bit sizes of entries in A and H(A). What is best upper bound B(m, n, L) such that
there exists a sequence of elementary integer column operations from A to H(A) where all
intermediate entries have bit size at most B(m, n, L)? 2

§5. A Multiple GCD Bound and Algorithm

Computing multiple GCD’s is a key subproblem in Hermite normal forms. For example, in the
generic HNF algorithm (§4), the process of zeroing out all but one entry of a subrow amounts to
computing the multiple GCD of the entries in the subrow. Of course, multiple GCD can be reduced
to simple GCD, i.e., GCD for two elements. But this is not the most efficient method. In this
section, we present an efficient multiple GCD algorithm over integers. This is based on a co-factor
bound that we first derive.

In the following, fix
(a1, a2, . . . , ak) (k ≥ 2)

such that the ai’s are distinct and positive. Let d = GCD(a1, . . . , ak). By definition, an integer
sequence (s1, . . . , sk) is called a co-factor of (a1, . . . , ak) if

d = s1a1 + s2a2 + · · ·+ skak.

The “co-GCD problem” refers to the problem of computing a co-factor of (a1, . . . , ak). Note that
once a co-factor is available, we can easily compute the GCD. Our first goal is to prove the existence
of a co-factor with each |si| upper bounded by a1. We use an argument of Hongwei Cheng:

Lemma 11 If d = GCD(a1, . . . , ak) then there exists a co-factor (s1, . . . , sk) for (a1, . . . , ak) such
that

|s1| ≤
ak

2
,
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|si| <
ai−1 + ak

2
i = 2, . . . , k − 1,

|sk| ≤
d

ak
+

ak−1

2
.

Proof. Suppose (t1, . . . , tk) is any co-factor for (a1, . . . , ak). Define

si :=

{
ti − qiak i = 1, . . . , k − 1

tk +
∑k−1

j=1 qjaj i = k,

where q1, . . . , qk ∈ Z are to be specified. It is not hard to check that (s1, . . . , sk) is also a co-factor
for (a1, . . . , ak). We now define the qi’s inductively. Pick q1 to be the symmetric quotient (§II.3) of
t1 divided by ak. Then |s1| ≤ ak/2, as desired. Now consider the partial sums

Si =

i∑

j=1

sjaj .

Thus S1 = a1s1 and |S1| ≤ a1ak/2. Inductively, assume Si−1 has been defined so that |Si−1| ≤
ai−1ak/2. For i = 2, . . . , k − 1, define qi so that |Si| ≤ aiak/2. This is clearly possible since
Si = Si−1 + aisi = Si−1 + ai(ti − qiak). It follows that

|aisi| = |Si − Si−1| ≤
aiak

2
+

ai−1ak

2

|si| <
ak

2
+

ai−1

2
,

as desired. Finally, we bound |sk|. By definition of Sk, we have Sk = d, the GCD of a1, . . . , ak. So
|skak| = |Sk − Sk−1| ≤ d + ak−1ak

2 or |sk| ≤
d
ak

+ ak−1

2 . Q.E.D.

Note that for k = 2, this lemma gives a well-known bound

|s1| ≤
a2

2
, |s2| ≤ 1 +

a1

2
.

Suppose we further assume that
a1 > a2 > · · · > ak.

Then we may further infer the bounds |si| ≤ ai−1 − (k − i + 1)/2 for i = 2, . . . , k and |s1| ≤ ak/2.
This yields:

Corollary 12 For all a1 > a2 > · · · > ak ≥ 2, there exists a co-factor (s1, . . . , sk) for (a1, . . . , ak)
such that

k∏

i=1

|si| <
ak

2

k−1∏

i=1

(
ai −

k − i + 1

2

)
≤

k∏

i=1

(ai − 1).

This says that the output size of the co-GCD algorithm need not be larger than the input size.

We now address the question of computing a co-factor (s1, . . . , sk) satisfying the lemma. We will
use a divide and conquer approach. We split a1, . . . , ak into two subsets according to the parity of
their subscripts, and assume inductively that we have computed c, c′, t1, . . . , tk such that

c := GCD(a2, a4, . . . , a2⌊k/2⌋) =

⌊k/2⌋∑

i=1

t2ia2i,

c′ := GCD(a1, a3, . . . , a2⌊(k−1)/2⌋+1) =

⌊(k−1)/2⌋∑

i=1

t2i+1a2i+1.
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By a call to the simple extended GCD on c, c′, we obtain d, t, t′ such that

d = tc + t′c′.

By induction, we may assume that |ti| is bounded according to lemma 11. In particular, |ti| < a1

for i = 1, . . . , k. Similarly, |t| < a1 and |t′| < a1. Define

s′1 =

{
tit if i = even,
tit

′ if i = odd.

Thus
∑k

i=1 s′iai = d and |s′i| < a2
1 for all i. Following the proof of lemma 11, we may now reduce

s′1, . . . , s
′
k to s1, . . . , sk:

Reduction Step:

1. s1 ← s′1 modak and S1 ← s1a1.
2. for i = 2, . . . , k − 1 do

Si ← (Si−1 + ais
′
i)modaiak;

si ← (Si − Si−1)/ai;
qi ← (s′i − si)/ak.

3. sk ← s′k +
∑k−1

i=1 qiai.

The mod operator here is the symmetric version (§II.3). Note that both divisions in step 2 are
exact.

Let
L = lg max{a1, . . . , ak}. (18)

The bit complexity of this reduction step is O(kMB(L)). Let T (k, L) be the bit complexity of the
overall recursive procedure. Clearly

T (k, L) = 2T (k/2, L) + O(kMB(L) + MB(L) log L) (19)

where ‘kMB(L)’ comes from the reduction step and ‘MB(L) logL’ comes from the simple co-
GCD computation for c, c′ (Lecture II). The solution is easily seen to be T (k, L) = O(k(log k +
log L)MB(L)). Thus we have:

Theorem 13 There is a multiple co-GCD algorithm with bit complexity

T (k, L) = O(k(log k + log L)MB(L)).

On input (a1, . . . , ak), the output co-factor (s1, . . . , sk) satisfy the bounds of lemma 11.

Application to multiple LCM. There are many applications of multiple GCD. An obvious ap-
plication is for computing the primitive factorization (§III.1) of an integer polynomial. Bareiss [10]
states that “there is no question that for maximum efficiency in any integer-preserving elimination
code, the elements of all the rows and columns respectively should be made relative prime to each
other before starting the elimination process”. Here we consider another application: the computa-
tion of multiple LCM. Simple GCD and simple LCM are closely related: LCM(a, b) = ab/GCD(a, b). It
is slightly more involved to relate multiple GCD with multiple LCM. Our multiple GCD algorithm
computes intermediate information that can be used to obtain the multiple LCM. Specifically, on
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input (a1, . . . , ak) the information can be organized as a binary tree T of height ⌈lg k⌉ with k leaves,
each associated with an ai. At each internal node u of T , let Su ⊆ {a1, . . . , ak} denote the ai’s
associated to the leaves of the subtree rooted at u. Assume we store at u the value GCD(Su). It is
then simple to extend the multiple GCD algorithm so that we recursively compute at node u the
LCM of Su. If v, w are the children of u, we use the formula

LCM(Su) = LCM(LCM(Sv), LCM(Sw)) =
LCM(Sv) · LCM(Sw)

GCD(Su)
.

Let L′ = lg LCM(a1, . . . , ak). With L as in (18), we see that L′ ≤ kL. The cost of additional
computation at u is O(MB(L′)). Overall, the additional cost is O(kMB(L′)). Combined with
theorem 13, we conclude:

Theorem 14 There is an algorithm to compute both the GCD and LCM of a1, . . . , ak with bit
complexity O(k(log k ·MB(L) + log L ·MB(L) + MB(L′))) which is

O(k(log L ·MB(L) + kMB(L))).

Remarks. Iliopoulos [89] obtains the co-factor bound |si| = O(ak
i ) by using a balanced binary

tree and co-factor bounds for simple GCD’s. Lüneburg [121] gives the bound

|si| ≤ a1/2

for all i except when i = i0 (for some i0). Moreover, |si0 | ≤ (1 + a1(k − 1))/2. The dependence on
k in these bounds is somewhat unsatisfactory. Hongwei Cheng1 shows the uniform bound |si| < a1

for all i; our lemma 11 follows his argument.

Exercises

Exercise 5.1: Suppose we apply lemma 11 with

ak−1 > ak−2 > · · · > a2 > a1 > ak.

How does this compare to the bound in the corollary?
2

Exercise 5.2: Verify the solution to recurrence (19) by an appropriate induction. 2

Exercise 5.3: Suppose a1, . . . , ak ∈ Z[X ]. Give an efficient method for computing the extended
GCD of a1, . . . , ak. 2

Exercise 5.4: (Open: Odlyzko, Sims) Is there a function f(k) > 0 that goes to infinity as k →∞
such that for all a1 > a2 > · · · > ak ≥ 2, a cofactor (s1, . . . , sk) exists where |si| ≤ |a1|/f(k)?
[Can we take f(k) = lg k?] 2

§6. Hermite Reduction Step
1Private communication, 1991.
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Let a ∈ Z1×n be a non-zero row n-vector, n ≥ 2. The goal in this section is to construct a unimodular
matrix U ∈ Zn×n such that a ·U is zero except for its first entry. Since U is invertible, the non-zero
entry of a · U must be equal to GCD(a). We will call the transformation

a 7→ U (20)

a “Hermite reduction step problem”. The reason for this name is clear. For, if a is the first row
in a m× n matrix, then A · U is essentially the first step of the generic HNF algorithm. Repeating
this process suitably, we finally obtain a column echelon form of A, which is easily converted into
the Hermite normal form.

First let us illustrate our approach for the case n = 2. Suppose a = (a1, a2) and we wish to find a
2 × 2 unimodular U such that aU = (g, 0) where g = GCD(a1, a2). So there exist integers s, t such
that g = sa1 + ta2. Moreover, s, t are relatively prime. Hence there exist integers s′, t′ such that
ss′ + tt′ = 1. In fact, we may choose s′ = a1/g and t′ = a2/g. Then it is easy to see that

(a1, a2)

[
s −t′

t s′

]
= (g, g′) (21)

for some g′. But g divides g′ (since g divides a1 and a2). If e = g′/g then we see that the desired U
can be taken to be P · P ∗ where

P =

[
s −t′

t s′

]
, P ∗ =

[
1 −e
0 1

]
.

It turns out that U can always be written as the product of matrices P and P ∗. In fact, we will see
that it is more useful to represent U as the pair (P, P ∗). We begin with a key lemma which shows
how to construct P (see [86, p. 375] or [145]).

Lemma 15 Let u = (u1, . . . , un)T be a column of integers with d = GCD(u). There exists an n× n
integer matrix P with the following properties:

(i) The first column of P equals u.

(ii) detP = d.

(iii) ‖P‖∞ < ‖u‖∞.

Proof. We use induction on n. The result is trivial for n = 1 so let n ≥ 2. Let u′ = (u1, . . . , un−1)
T

with d′ = GCD(u′). By induction, there is a matrix P ′ with first column u′ and det P ′ = d′. So there
are integers s, t such that

sd′ + tun = d. (22)

We may assume that |s| < |un| and |t| < |d′|. We claim (§5) that the desired matrix can be taken
to be

P =





u1

r
P ′ u2

r
...

un−1

r

un 0 · · · 0 s




,

where r ∈ Q is to be determined. Part (i) is clearly satisfied. By expanding the determinant along
the last row, we have

detP = s detP ′ + un detP ′′,
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where P ′′ is obtained by omitting the first column and last row of P . We want to choose r so that
detP ′′ = t (so that (ii) is satisfied). We observe that P ′′ is rather similar to P ′: the last column of
P ′′ is just 1/r times the first column of P ′. In fact,

P ′′ = P ′ · C = P ′ ·





0 0 0 · · · 0 1
r

1 0 0 0 0
0 1 0 0 0
...

. . .
...

0 0 0 0 0
0 0 0 · · · 1 0





.

Here C has a subdiagonal of 1’s and a top-right entry of 1/r. Note that C simply circulates the
columns of P ′, moving the first column (multiplied by 1/r) to the last place and for the other columns,
one place to the left. When n = 2, C is simply the matrix [1r ]. Then detP ′′ = detC detP ′ =
(−1)n 1

r d′. Thus part (ii) is satisfied with r = (−1)nd′/t. To see that P is correct, note that the
entries of P are integers since ui/r = uit/d′ ∈ Z for i = 1, . . . , n− 1.

Finally, part (iii) claims that each entry of P is bounded by ‖u‖∞. This is true of the entries of P ′

(by induction) and also true of the non-zero entries in the rest of P , namely, s, un and ui/r (in the
last case, we use the fact that |t| < |d′|). Q.E.D.

Note that P is not unique since s, t are not unique. In our application, the vector u = (u1, . . . , un)T

satisfies GCD(u) = 1 so that the matrix P is unimodular.

Now we implement the above lemma.

Lemma 16 Let a = (a1, . . . , an) 6= 0 be an integer row vector and log ‖a‖∞ ≤ L.

(i) We can construct the unimodular matrix P of the previous lemma 15 in bit complexity

O(n(n + log L)MB(L)). (23)

(ii) Suppose b = (b1, . . . , bn) ∈ Zn satisfies log ‖b‖∞ ≤ L then we can compute b · P from b, P in bit
complexity

O(nMB(L + log n)). (24)

Proof. (i) Let u = (u1, . . . , un)T such that
∑n

i=1 uiai = GCD(a1, . . . , an) = d. By theorem 13, we can
compute u in time

O(n(log n + log L)MB(L)). (25)

Note that GCD(u1, . . . , un) = 1. As in the proof of lemma 15, we recursively compute the (n− 1)×
(n − 1) matrix P ′ with detP ′ = d′ with first column (u1, . . . , un−1)

T . Then we compute s, t with
sd′ + tun = d, in time MB(L) log L. Finally, we compute the last row of P in time O(nMB(L)).
Hence if T (n, L) is the complexity of computing P

T (n, L) = T (n− 1, L) + O((n + log L)MB(L)).

Hence T (n, L) = O(n(n + log L)MB(L)), and this dominates the complexity in (25).

(ii) Given a and P , a straightforward multiplication gives bP in time O(n2MB(L)). But a better
bound is needed. For i = 2, . . . , n, the ith column of P has the form

pi = (
u1

ri
,
u2

ri
, . . . ,

ui−1

ri
, si, 0, . . . , 0)T
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where ri, si are the elements described in the proof of lemma 15. So

bP = (〈b, p1〉, 〈b, p2〉, . . . , 〈b, pn〉)

where 〈b, pi〉 indicates scalar product. We will compute the entries of bP in a particular order.
Notice that

log |〈b, pi〉| = O(L + log n). (26)

Clearly 〈b, p2〉 can be computed in time O(MB(L)). For i = 2, . . . , n− 1, 〈b, pi+1〉 can be obtained
from 〈b, pi〉 in time O(MB(L + log n)) using the formula

〈b, pi+1〉 =
(〈b, pi〉 − bisi)ri + biui

ri+1
+ bi+1si+1.

Finally, the first entry 〈b, p1〉 in bP can be computed from the last entry in time O(MB(L + log n)).
The entire computation costs O(nMB(L + log n)) as claimed. Q.E.D.

Continuing in our pursuit of the matrix U , we now need to compute the matrix P ∗ such that (aP )P ∗

will have zero everywhere except the first entry. Clearly, if aP = (g1, g2, g3, . . . , gn) then g1 = d and

P ∗ =





1 −g2/d −g3/d · · · −gn−1/d −gn/d
0 1 0 · · · 0 0
...

. . .
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1




.

Note that P ∗ is integer unimodular since d divides each gi. The entries in the first row of P ∗ have
bit-size of O(L + log n). We return to the main problem (20):

Lemma 17 (Hermite Reduction Step) Let a 6= 0 be the first row of A ∈ Zm×n and L =
lg ‖A‖∞. Define the matrices P, P ∗, U relative to a, as before.

(i) We can compute the matrices P, P ∗, U from a in time O(n(n + log L)MB(L + log n)).

(ii) If b is any row of A, we can compute bU from b, P, P ∗ in time O(nMB(L + log n)).

(iii) We can compute AU from A, P, P ∗ in time O(mnMB(L + log n)).

(iv) We can compute P, P ∗, AU from A in time O(n(n + m + log L)MB(L + log m)).

Proof. (i) We use the previous lemma to compute P in time (23). Similarly, we can compute
aP = (g1, . . . , gn) in time (24). Assuming that we only represent the first row of P ∗ explicitly,
we can also construct P ∗ in time (24). Next, each entry of U = PP ∗ can be computed in time
O(MB(L + log n)) or

O(n2MB(L + log n))

for the entire matrix U . Thus the three matrices P, P ∗, U can be computed in time

O(n(n + log L)MB(L)) + nMB(L + log n) + O(n2MB(L + log n)) = O(n(n + log L)MB(L + log n)).

(ii) To compute bU , we first compute bP in time (24). Then compute (bP )P ∗ within the same time
bound (24).
(iii) This amounts to repeating part (ii) m times.
(iv) This just adds up parts (i) and (iii). Q.E.D.
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Application. Although we could use this lemma repeatedly to compute the Hermite normal form,
it seems that the best bounds for bit sizes of intermediate values are exponential in min{m, n}. So
this application is only useful for m≫ n or n≫ m. We describe another application here. Suppose
the columns of A = [a1, . . . , an] ∈ Zm×n are not linearly independent. Consider the problem of
computing B = [b1, . . . , bn−1] ∈ Zm×(n−1) such that Λ(A) = Λ(B). For instance, this is useful in
preprocessing a basis before calling the LLL algorithm, since the LLL algorithm requires the input
columns to be linearly independent.

Note that there exists x ∈ Zn×1 such that Ax = 0. Finding such an x from A is easily reduced
to Gram-Schmidt orthogonalization. In the notations of §IX.1, if A∗ = [a∗

1, . . . , a
∗
n] is the Gram-

Schmidt version of A, then a∗
i = 0 for some i. This means

a∗
i = 0 = ai −

i−1∑

j=1

µija
∗
j .

Recall that µij are rational numbers. It is then easy to find integers t1, . . . , ti such that

0 = tiai +

i−1∑

j=1

tjaj . (27)

We may set x = (t1, . . . , ti, 0, . . . , 0)T . Clearly, we may assume that GCD(x) = 1. To find B, we
can use the Hermite reduction step to give us a unimodular matrix U ∈ Zn×n such that Ux =
(1, 0, . . . , 0)T . Since (AU−1)(Ux) = 0, we conclude that the first column of AU−1 is zero. The
desired matrix B may be taken to comprise all but the first column of AU−1.

Algebraic complexity of the Hermite Reduction Step.

We have given an upper bound on the bit complexity of the Hermite Reduction Step (20).
But suppose we want its complexity in an algebraic model of computation (§0.6). It is clear
from the preceding that problem (20) over Z can be solved in polynomial time in an algebraic
model M if the elementary operations or basis of M includes the following:

+, −, ,×, cGCD(x, y). (28)

Here cGCD denotes the co-GCD primitive (§II.2) that returns a co-factor (s, t) of an input pair
(x, y) ∈ Z2: sx + ty = GCD(x, y). Hafner and McCurley [77, p. 1075] suggested that there may
be no solution in case our basis comprises only the ring operations (+,−,×), i.e., if we omit
cGCD. Let us show this. If (20) can be solved in the algebraic model M then GCD(x, y) can
be solved in M in constant time by reduction to the n = 2 case. This assumes (as we may)
that the ring operations are available in M . Suppose π(x, y) is a branching program in M for
computing the GCD(x, y). The inputs x, y and constants used in π are all integers, and at each
decision node, there is an integer polynomial f(X, Y ) whose sign at the input (x, y) determines
the flow of computation. The finiteness of π means that there are finitely many leaf nodes in
the branching program. At each leaf ℓ, there is an integer polynomial Pℓ(X, Y ) such that if
input (x, y) terminates at ℓ the Pℓ(x, y) = GCD(x, y). Let Sℓ denote the set of all (x, y) ∈ R2

that terminate at ℓ. Note that it makes sense to feed pairs (x, y) of real numbers to π and
hence the set Sℓ is well-defined. Clearly, Sℓ is a semi-algebraic set (i.e., defined by a finite
set of polynomial inequalities). By basic properties of semi-algebraic sets, there is some leaf ℓ

such that Sℓ has the following properties: Sℓ contains an infinite cone C which in turn contains
infinitely many vertical rays of the form Ri = {(xi, y) : y ≥ ci} where xi ∈ Z is prime and ci is
arbitrary, for i = 0, 1, 2, . . .. Focus on the output polynomial Pℓ(X, Y ) at such an ℓ. We may
pick a ray Ri such that such that none of the non-zero coefficients of the Y ’s in Pℓ(X, Y ) vanish
when X is replaced by xi. Since there are infinitely many prime y’s such that (xi, y) ∈ Ri ⊆ Sℓ,
we conclude that Pℓ(xi, Y ) is the constant 1 and Pℓ(X, Y ) does not depend on Y . Next suppose
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Pℓ has X-degree < d. Pick a disc D ⊆ Sℓ large enough so that there are prime numbers y0

and ui (i = 1, . . . , d) such that D contains (ui, y0) for i = 1, . . . , d and none of the non-zero
coefficients of X in Pℓ(X, Y ) vanishes when y0 replaces Y . Again, we argue that Pℓ(X, y0) is
the constant 1 and Pℓ(X, Y ) does not depend on X. Thus Pℓ(X, Y ) must be the constant 1.
But, clearly Sℓ contains a pair (a, b) of integers such that GCD(a, b) > 1. This is a contradiction
since 1 = Pℓ(a, b) = GCD(a, b) > 1.

Exercises

Exercise 6.1: (i) Show that the matrix P in lemma 15 is a product of elementary integer unimod-
ular matrices (§VIII.1). HINT: use induction on n.
(ii) Do the same for P ∗. Hence conclude that U in (20) is a product of elementary integer
unimodular matrices. 2

Exercise 6.2: (i) What is the algebraic complexity of the Hermite reduction step assuming the
basis (28)?
(ii) Show that if 2×2 Smith normal form (see §8) can be solved in constant time in an algebraic
model M then the general Smith normal form problem can be solved in polynomial time in
M .
(iii) Assume an algebraic computation model M whose basis is given by (28). Show that
the 2 × 2 Smith normal form problem is equivalent to the following: given a, b, c ∈ Z find
U, V, W, Z ∈ Z such that aUV + bV W + cWZ = GCD(a, b, c). HINT: first reduce the 2 × 2
matrix to Hermite normal form.
(iv) (Open) Prove that the problem in (iii) cannot be solved in constant time in model M . 2

Exercise 6.3: In the above application, work out efficient algorithms for:
(i) Computing the integers t1, . . . , tn in (27) from µij ’s.
(ii) Computing the inverse U−1 from U . 2

Exercise 6.4: Suppose a = (a1, . . . , an)T and b = (b1, . . . , bn)T (n ≥ 2) be two columns. Under
what circumstances is there a unimodular matrix U whose first and second columns are a and
b? A necessary condition is that GCD(a) = GCD(b) = 1 and the GCD of all minors of order 2 of
[a, b] is 1. 2

Exercise 6.5: (Bass) Let M = [aij ] be an n × n matrix over a ring R. Say M is invertible iff its
determinant is invertible in R. But det M = a11A11 + ... + a1nA1n where Aij is the co-factor
of aij . Write ai for a1i. Then invertibility of M implies R = Ideal(a1, . . . , an). We also call
(a1, . . . , an) a unimodular row in this case. The converse asks: is every unimodular row the
row of an invertible matrix? This is related to a conjecture of Serre’s which was answered
affirmatively by Quillen and Suslin. Verify the counterexample: R = R[X, Y, Z]/(X2 + Y 2 +
Z2 = 1). The unimodular row (X, Y , Z) is not the first row of any invertible matrix. Here u
denotes the image of u in the canonical map from R[X, Y, Z] to R. 2

§7. Bachem-Kannan Algorithm

We present a polynomial time algorithm for Hermite normal form. It is essentially that of Bachem
and Kannan [7], extended to non-square matrices of arbitrary rank. We assume that the input matrix
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A ∈ Zm×n has been preprocessed so that the ith principal minor is non-zero for i = 1, . . . , ρ where
ρ > 0 is the rank of A. The Extended Bareiss Algorithm (§2) can convert any matrix A into this
form. Moreover, the complexity of this conversion is dominated by the subsequent computation.

Algorithm. The algorithm is relatively straightforward to describe. For any matrix M , let

〈M〉i :=M(1, 2, . . . , i; 1, 2, . . . , i)

using the general matrix notations in §0.9. So 〈M〉i is just the ith principal submatrix of M . On
input A, the algorithm has n stages where in the sth (s = 1, . . . , n) stage, we seek to put 〈A〉s into
the Hermite normal form. Stage 1 requires no action. Suppose that we have just completed the
(s− 1)st stage. The sth stage has two phases. Elimination phase: we eliminate (i.e., zero out) the
first s−1 entries in the sth column. This will make 〈A〉s a lower triangular matrix. Reduction phase:
we then reduce the off-diagonal entries of 〈A〉s so that each such entry is non-negative and less than
the corresponding diagonal entry in its row. This completes the sth stage.

Bachem-Kannan Algorithm

Input: A ∈ Zm×n and ρ ≥ 1 the rank of A.
Assume the ith principal minor is non-zero for i = 1, . . . , ρ.

Output: H ∈ Zm×n, the HNF of A, and U ∈ Zn×n, a unimodular matrix
such that H = AU .

INITIALIZATION:
1. H :=A; U := I, the identity matrix.

MAIN LOOP:
2. for s← 2 to n do

ELIMINATION PHASE:
3. for i← 1 to min{s− 1, ρ} do

4. By postmultiplying H with a suitable unimodular matrix K,
eliminate the (i, s)th entry of H ; Update U ← UK.

REDUCTION PHASE:
5. if s > ρ, skip this phase; else continue.
6. for j ← s− 1 downto 1 do

7. for i← j + 1 to s do

8. By postmultiplying H with a suitable unimodular matrix K,
reduce the (i, j)th entry of H ; Update U ← UK.

Call step 4 an “elimination step” and step 8 a “reduction step”. Note that when s > ρ, the
reduction phase is omitted since column s would be zero after the elimination phase. The order of
reduction represented by the double for-loop (steps 6 and 7) is important for the analysis: this is
an improvement from Chou and Collins [42]. The reduction step is rather obvious: the entry x to
be reduced is replaced by xmod d where d is the diagonal element in the same row. The rest of
the column of x is modified accordingly. We now illustrate the elimination step: it is basically the
2 × 2 version of the Hermite reduction step (§6). For instance, suppose H ∈ Z5×6 already has its
3rd principal submatrix in HNF. The following shows the first elimination step of stage 4:

H = [h1, h2, h3, h4, h5, h6] → [h′
1, h2, h3, h

′
4, h5, h6] = H ′,





a1,1 0 0 a1,4 ∗ ∗
a2,1 a2,2 0 a2,4 ∗ ∗
a3,1 a3,2 a3,3 a3,4 ∗ ∗
a4,1 a4,2 a4,3 a4,4 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




→





a′
1,1 0 0 0 ∗ ∗

a′
2,1 a2,2 0 a′

2,4 ∗ ∗
a′
3,1 a3,2 a3,3 a′

2,4 ∗ ∗
a′
4,1 a4,2 a4,3 a′

2,4 ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗




.
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As in (21) (§6), this amounts to replacing columns h1, h4 (respectively) by h′
1, h

′
4 which is defined

as follows:

[h′
1, h

′
4]← [h1, h4]

[
s a1,4/g
t −a1,1/g

]

where g = GCD(a1,1, a1,4) = s · a1,1 + t · a1,4. We may assume that (see §5)

|s| < |a1,4|, |t| ≤ |a1,1|. (29)

We may write this elimination step as H ′ = HK where

K =





s 0 0 a1,4/g 0 0
0 1 0 0 0 0
0 0 1 0 0 0
t 0 0 −a1,1/g 0 0
0 0 0 0 1 0
0 0 0 0 0 1




. (30)

If U is the unimodular matrix such that H = AU then we update U via U ← UK.

Analysis. There are subtleties in proving a polynomial running time. In this analysis, we simply
write ‖M‖ instead of ‖M‖∞ for the ∞-norm of a matrix M . With

λ0 := ‖A‖, L := lg λ0,

the analysis amounts to showing that throughout the algorithm, lg ‖H‖ and lg ‖U‖ are polynomially-
bounded in terms of m, n and L.

Bound between stages. Let H(s) denote the H-matrix just after the sth stage. Thus H(1) is
equal to the initial matrix A. Also let the unimodular matrix that transforms A to H(s) be denoted
U (s):

H(s) = AU (s).

So U (1) is the identity matrix. Letting
λ1 :=(ρλ0)

ρ, (31)

we see that every minor of A is bounded by λ1. From this we infer

‖〈H(s)〉s‖ ≤ λ1. (32)

This is because each step (elimination or reduction) in the first s stages does not change the sth
principal minor of H , and H is initially equal to A. Since 〈H(s)〉s is lower triangular, this means
that each diagonal entry of 〈H(s)〉s is bounded by λ1. But the off-diagonal entries are also bounded
by λ1, since 〈H(s)〉s is in HNF. Thus (32) is verified.

First assume s ≤ ρ. Note that U (s) has the form

U (s) =

[
〈U (s)〉s 0

0 I

]
. (33)

So
〈U (s)〉s = 〈A〉−1

s 〈H
(s)〉s. (34)

Each entry of 〈A〉−1
s is bounded by λ1/ det(〈A〉s) (see §1). So a typical element U

(s)
ij of 〈U (s)〉s is

bounded by

|U
(s)
ij | ≤

s∑

k=1

λ1

| det〈A〉s|
|H

(s)
kj | ≤ λ1,
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since
s∑

k=1

|H
(s)
kj | ≤ 1 +

s∑

k=j

(|H
(s)
kk | − 1) (35)

≤

s∏

k=1

|H
(s)
kk | (36)

= | det〈A〉s|.

Inequality (35) is a consequence of Hermite normal form of 〈H(s)〉s. Inequality (36) exploits the
elementary bound

1 +

ℓ∑

k=1

(xk − 1) ≤

ℓ∏

k=1

xk (37)

which holds for any ℓ ≥ 1 positive integers x1, . . . , xℓ (see Exercise). From (33), we infer that

‖U (s)‖ ≤ ‖〈U (s)〉s‖ ≤ λ1. (38)

From H(s) = AU (s) and the special form (33), we conclude

‖H(s)‖ ≤ λ2 (39)

where
λ2 := ρλ0λ1 = (ρλ0)

1+ρ. (40)

We have therefore given a bound on ‖U (s)‖ and ‖H(s)‖ for s ≤ ρ.

Now let s > ρ. Clearly H(s) still satisfies the bound (39) since in stage s we eliminated column s
while the remaining columns are unchanged from H(s−1). We conclude that ‖H‖ ≤ λ2 holds in the
transition between any two successive stages.

What about U (s)? Eliminating the (r, s)th entry amounts to adding some multiple cr,s of column r
(r ≤ ρ) to column s. The multiple cr,s is bounded by λ0. Therefore, it increases ‖U (s)‖ by a factor
of (λ0 + 1). We perform ρ such elimination steps to entirely eliminate column s. Thus

‖U (s)‖ ≤ (λ0 + 1)ρ‖U (s−1)‖.

The maximum size bound is when s = n:

‖U (n)‖ ≤ (λ0 + 1)ρ(n−ρ)‖U (ρ)‖ ≤ λ3, (41)

where
λ3 :=(λ0 + 1)ρ(n−ρ)λ1. (42)

Bounds on H during a stage. What remains is to bound ‖H‖ and ‖U‖ during a stage. In
other words, although the entries in H and U are nicely bounded between two successive stages,
we must ensure that they do not swell up excessively within a stage. In our analysis, we shall use
the observation that once the (s, s)th element is “fixed” at the end of the sth stage, it is hereafter
bounded by λ1. If it changes at all, it can only become smaller (replaced by a divisor). In fact, the
product of all the “fixed” diagonal elements is bounded by λ1. Let us now focus on stage s for some
s = 1, . . . , n. Of course, the columns of interest are the first min{s− 1, ρ} columns and column s.

ELIMINATION PHASE: let H(r,s) be the H matrix just before the (r, s)th entry is eliminated

(r = 1, . . . , min{s− 1, ρ}). Let h
(r,s)
j be the jth column of H(r,s) and H

(r,s)
i,j be the (i, j)th entry of

H(r,s). Initially, we have

‖h
(1,s)
j ‖ ≤

{
λ2, for j = 1, . . . , min{s− 1, ρ},
λ0, for j = s.
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When we eliminate the (r, s)th entry, column s is transformed (cf. equation (30)) according to the
rule

h(r+1,s)
s ←

H
(r,s)
r,s h

(r,s)
r −H

(r,s)
r,r h

(r,s)
s

g
(43)

where g = GCD(H
(r,s)
r,r , H

(r,s)
r,s ). At the same time, column r is transformed according to the rule

h(r+1,s)
r ← c · h(r,s)

r − c′ · h(r,s)
s (44)

where |c| < |H
(r,s)
r,s | and |c′| ≤ |H

(r,s)
r,r | (cf. equation (29)). Define

βr := λ2(λ1 + λ2)
r−1.

Inductively assume that column s is bounded as follows:

‖h(r,s)
s ‖ ≤ βr. (45)

This is true for r = 1. From (43), we extend the inductive hypothesis to r + 1:

‖h(r+1,s)
s ‖ ≤ |H(r,s)

r,s | · ‖h
(r,s)
r ‖+ |H(r,s)

r,r | · ‖h
(r,s)
s ‖

≤ βr · λ2 + λ1 · βr

= βr(λ1 + λ2) = βr+1.

From (44), we similarly obtain a bound on column s:

‖h(r,s)
r ‖ ≤ βr. (46)

Let H(s,s) be the H matrix just after the (s − 1, s)th entry of H is eliminated. Then the bounds
(45) and (46) extend to

‖h
(s,s)
s−1 ‖ ≤ βs, ‖h(s,s)

s ‖ ≤ βs.

We conclude that throughout an elimination phase, each entry of H is bounded by

βs = λ2(λ1 + λ2)
s−1 < λ4

where
λ4 :=(2λ2)

ρ = 2ρ(ρλ0)
ρ(1+ρ). (47)

REDUCTION PHASE: So H(s,s) is the H matrix just before the start of the reduction phase. Note

that we may assume s ≤ ρ. Let h
(s)
j be the jth column of H(s,s). Also let ĥ

(s)
j be the jth column

at the end of the reduction phase: these are called the “reduced vectors”. Note that the reduced
vectors are columns of H(s) and hence satisfy

‖ĥ
(s)
j ‖ ≤ λ2. (48)

Exploiting the special sequencing of reduction steps in the algorithm (following Chou-Collins), we
see that

ĥ
(s)
j = h

(s)
j −

s∑

r=j+1

br,j,sĥ
(s)
r (49)

for suitable constants br,j,s. The point is that reduced vectors appear on the right-hand side of (49).
The entries of column j in H are bounded by λ4 at the start of the reduction phase. To reduce

column j (j = 1, . . . , s− 1), we first reduce its j + 1st entry by subtracting the column bj+1,j,sĥ
(s)
j+1

(cf. equation (49)). Clearly bj+1,j,s ≤ λ4 so that entries of column j are bounded by λ4(1 + λ2)
after this reduction step. Inductively, it is easy to see that after the (j + k)th (k = 1, 2, . . .) entry of
column j is reduced, the entries of column j are bounded by

λ4(1 + λ2)
k.
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So just after the s− 1st entry is reduced, its entries are bounded by

λ4(1 + λ2)
s−1−j < λ4(2λ2)

ρ = λ2
4.

Finally, we reduce the sth entry of column j. But the result is a reduced column bounded as in (48).
It follows that the bound

‖H‖ ≤ λ2
4

holds throughout the stage.

Bounds on U during a stage. First assume s ≤ ρ. It suffices to use the bound

‖U‖ ≤ n‖A−1‖ · ‖H‖ ≤ nλ1λ
2
4

since the relation U = A−1H holds throughout the stage. Suppose s > ρ. There is no reduction
phase and the argument showing ‖U (s)‖ ≤ λ3 in (41) actually shows that ‖U‖ ≤ λ3 throughout stage
s. This concludes our analysis.

We summarize the foregoing analysis: the entries of H and U matrices are uniformly bounded by

λ5 :=λ3 + λ4 < λ1((2λ0)
ρ(n−ρ) + nλ2

4)

throughout the algorithm. Since L = lg λ0, we get

L′ := lg λ5 = O(ρnL + ρ2 lg ρ)

as a bound on the bit-size of entries. There are O(ρ2n) column operations and O(ρ2) co-GCD
operations on matrix entries. Each column operation takes O(m) ring operations on matrix entries.
Hence the cost of co-GCD operations is dominated by the cost of column operations, which amounts
to:

Theorem 18 With L = lg λ0, the matrix entries have bit-size that are uniformly bounded by

L′ = O(ρ[nL + ρ lg ρ)])

in the Bachem-Kannan algorithm. The bit-complexity of the algorithm is O(mnρ2MB(L′)).

Remarks. Our complexity analysis is somewhat more involved than that in Bachem and Kannan
[7], in part because the input matrix is non-square and may have dependent rows and columns. For
instance, if n = ρ then lg(λ3) = O(n(L + lg n) and not O(n2L).

Suppose we want to compute the HNF H(A) of an arbitrary matrix A. Accordingly, we submit A to
the Extended Bareiss algorithm (§2) to obtain B = PAQ where P and Q are permutation matrices.
Now we submit B to the Bachem-Kannan algorithm which outputs H = H(B), the HNF of B. We
leave it as an exercise to show:

H(A) = P−1H. (50)

Exercises

Exercise 7.1: (Chou-Collins) Verify inequality (37) 2
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Exercise 7.2: Show equation (50). HINT: this depends on the particular structure of our Extended
Bareiss algorithm. 2

Exercise 7.3: Analyze the algorithm assuming A is square and non-singular. 2

§8. Smith Normal Form

H. J. S. Smith (1861) introduced the normal form bearing his name. Let A ∈ Zm×n. We say A is in
Smith normal form (SNF) if it is diagonal, that is, (A)i,j = 0 for i 6= j, and its diagonal entries are
non-negative satisfying

(A)i−1,i−1|(A)i,i, for i = 2, . . . , min{m, n}. (51)

Since every number divides 0, but 0 divides only itself, we conclude from (51) that if (A)i,i = 0 for
some i, then (A)j,j = 0 for all j > i. The multi-set of non-zero diagonal entries of a Smith normal
form matrix A,

{(A)1,1, (A)2,2, . . . , (A)r,r}

where (A)r,r > 0 and (A)r+1,r+1 = 0, is called the set of Smith invariants of A. We also call (A)i,i

the ith Smith invariant (i = 1, . . . , r). [In the literature, the Smith invariants of A are also called
“invariant factors” of A.]

By elementary operations in this section, we mean elementary integer row or column operations. We
say that two matrices are equivalent if they are inter-transformable by elementary operations.

Lemma 19 Every integer matrix A can be brought into a Smith normal form S by a sequence of
elementary operations.

We leave the proof to an Exercise. The algorithm below implies this, of course, but it is instructive
for the student to give a direct proof. We will show that S is unique for A, and so S is the Smith
normal form of A, usually denoted S(A). For k = 1, . . . , min{m, n}, let δk(A) denote the GCD of
all the order k minors of A. In particular, δ1(A) is the GCD of all the entries of A.

Lemma 20

(i) The elementary operations on a matrix A preserve δk(A).

(ii) The set of Smith invariants of A is unique.

(iii) The Smith normal form of A is unique.

Proof. (i) This is immediate from our treatment of the γ-invariants for the HNF.
(ii) Let the rank of A be r. Then δk(A) 6= 0 iff k = 1, . . . , r. From the definition of the δ’s, it is clear
that

δk(A)|δk+1(A)

for k = 1, . . . , r − 1. Let S be a Smith normal form of A. Since A and S have the same rank, we
conclude that (S)k,k 6= 0 iff k = 1, . . . , r. Note that δk(S) = (S)1,1(S)2,2 · · · (S)k,k. In view of part
(i), we conclude

(S)1,1(S)2,2 · · · (S)k,k = δk(A).
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It follows that (S)1,1 = δ1(A) and (S)k+1,k+1 = δk+1(A)/δk(A) (k = 2, . . . , r − 1).
(iii) This follows from (ii) since a Smith normal form is determined by the set of its Smith invariants.

Q.E.D.

Polynomial-time Algorithm. Computing the Smith normal form of a matrix A is equivalent
to computing the set of Smith invariants. For some applications, it is desirable to also know the
unimodular matrices U, V such that

S(A) = UAV.

For instance, it is easy to compute the 1st Smith invariant – it is just the GCD of all the matrix
entries. But computing U and V such that (UAV )1,1 has this invariant is non-trivial. As usual, the
difficulty in giving a polynomial time algorithm is the possibility of exponential size intermediate
entries. We describe an algorithm from Bachem-Kannan [7], based on a Hermite normal form
algorithm.

It suffices to show how to perform a Smith Reduction Step (in analogy to the Hermite Reduction
Step of §6): given a matrix A ∈ Zm×n, compute two unimodular matrices U ∈ Zm×m, V ∈ Zn×n

such that UAV is “Smith-reduced”. In general, a matrix M is said to be Smith-reduced if:
(i) The first row and first column of M are zero except for the top-left corner entry (M)1,1.
(ii) (M)1,1 divides all the remaining entries of M .

Our Hermite normal form is based on column operations. We now need the “row version” of the
normal form: a matrix A is in row Hermite normal form (abbr. RHNF) if its transpose AT is in
Hermite normal form. Using elementary row operations, or multiplication by unimodular matrices
on the left, we can transform any matrix into its RHNF. Algorithms for RHNF are trivially obtained
from HNF algorithms, simply by interchanging the roles of rows and columns.

Smith Reduction Step

Input: A ∈ Zm×n. Assume (A)1,1 6= 0.
Output: Unimodular matrices U ∈ Zm×m and V ∈ Zn×n, and matrix S

such that S is Smith-reduced and HNF, and S = UAV .
INITIALIZATION:

1. S ← A.
2. U ← Im; V ← In (identity matrices).

MAIN LOOP:
{Loop Invariant: S = UAV }

3. while S is not Smith-reduced do

4. if (S)1,1 is the only non-zero entry in the first row
and first column, then (S)1,1 does not divide some (S)i,j .

5. In this case, add column j to column 1, and update V .
6. Apply a RHNF algorithm to S and update U accordingly.
7. Apply a HNF algorithm to S and update V accordingly.

Analysis. The bit-sizes of entries remain polynomially bounded between successive while-
iterations: this is because S is in HNF on exit from an iteration, and so the largest entry lies
on the diagonal. But the diagonal entries of S are bounded by the determinant of the input matrix
A, since the elementary operations preserve δk(A) for each k. Since the RHNF and HNF algorithms
are polynomial time, we conclude that each while-iteration is polynomial-time.
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It remains to show that the number of iterations is polynomial. Note that whenever (S)1,1 changes
after an iteration, it is being replaced by a factor of itself. We claim that (S)1,1 must change at least
in every other iteration. To see this, consider the two possibilities: either step 5 (adding column
j to column 1) is executed or it is not. Step 5 is executed: then column 1 contains an entry not
divisible by (S)1,1 before the RHNF algorithm. After the RHNF algorithm, (S)1,1 will contain the
the GCD of entries in column 1, and this will be a proper factor of its previous value. Step 5 is not
executed: then row 1 or column 1 must have at least some other non-zero entry. Again there are
two cases. (i) If all of these non-zero entries are divisible by (S)1,1 then after this iteration, (S)1,1 is
the only non-zero entry in row 1 and column 1. If this is not the last iteration, then we already saw
that (S)1,1 will change in the next iteration. (ii) If there is an entry that is not divisible by (S)1,1

then either the RHNF or HNF algorithm will change (S)1,1 to a smaller value. Hence the number
of iterations is at most 1 + 2 lg ‖A‖.

One other remark: the output matrices U, V are of polynomial bit-size. This is because each matrix
is the product of O(lg ‖A‖) many component matrices (produced by the call to HNF or RHNF or
by Step 5). But each component matrix is of polynomial bit-size. This concludes our analysis of
the Smith Reduction Step algorithm. Clearly the Smith normal form of an m × n matrix can be
reduced to min{m, n} Smith Reduction steps. Moreover, the result of Smith Reduction Step is an
HNF, and hence polynomially bounded in terms of the original input. This proves:

Theorem 21 There is a polynomial-time algorithm to compute the Smith normal form S(A) of a
matrix A. This algorithm simultaneously computes two unimodular matrices U, V such that S(A) =
UAV .

Exercises

Exercise 8.1: Show lemma 19 by a direct argument (i.e., without reference to the existence of the
SNF algorithm). 2

Exercise 8.2: Let di (i = 1, . . . , r) be the ith Smith invariant of A. Write

di = p
ei,1

1 p
ei,2

2 , . . . , p
ei,ℓi

ℓi
, (ℓi ≥ 1)

where pi is the ith prime number. Call the prime power p
ei,j

j an elementary divisor of A. Show
that two matrices are equivalent iff they have the same rank and the same set of elementary
divisors. 2

Exercise 8.3: Analyze the complexity of the Smith Reduction Step and the associated SNF algo-
rithm. 2

Exercise 8.4: Let A, B, C ∈ Zn×n. We say A is irreducible if, whenever A = BC then either B or
C is unimodular. Otherwise A is reducible. If A = BC, we call C a right divisor of A or C
right-divides A. Write C|A in this case. Similarly, there is a notion of left divisor.
(i) An irreducible matrix is equivalent to diag(1, . . . , 1, p), the diagonal matrix whose main
diagonal has all ones except the last entry, which is a prime p.
(ii) A necessary and sufficient condition for a square matrix to be irreducible is that its deter-
minant is prime.
(iii) A reducible matrix can be factored into a finite product of irreducible matrices. Formulate
a uniqueness property for this factorization. 2
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Exercise 8.5: Let A, B, C, D ∈ Zn×n. Assume A and B are not both zero. Call D a (right) greatest
common divisor (GCD) of A, B if D|A and D|B and for any other C that divides both A and
B, then C|D. (See definitions in previous exercise.)
(i) Show that GCDs of A, B exist. Moreover, if D is a GCD then D = PA + QB for some
P, Q. HINT: consider the SNF of [A|B].
(ii) If D, D′ are two GCD’s of A then D = UD′ for some unimodular matrix U . 2

§9. Further Applications

Linear Diophantine equations. Let A ∈ Zm×n and b = (b1, . . . , bn) ∈ Z1×n. Consider the
problem of solving the linear system

x ·A = b (52)

for an unknown x = (x1, . . . , xm) ∈ Z1×m. Such a system is also called a Diophantine linear system.
For simplicity, assume m ≥ n; otherwise, the n equations in (52) are not independent and some may
be omitted. Let S = UAV be the Smith normal form of A and let the diagonal elements of S be
d1, . . . , dn. Then (52) implies

(xU−1)(UAV ) = bV,

x̂S = b̂.

where x̂ = (x̂1, . . . , x̂m) = xU−1 and b̂ = (̂b1, . . . , b̂n) = bV . The last equation amounts to

x̂idi = b̂i, i = 1, . . . , n. (53)

Suppose d1, . . . , dr are non-zero and dr+1 = · · · = dn = 0. Then the system (52) has solution iff

(i) di |̂bi for i = 1, . . . , r and

(ii) b̂i = 0 for i = r + 1, . . . , n.

If these conditions are satisfied then a general solution to (53) is given by setting x̂i = b̂i/di for
i = 1, . . . , r and arbitrary assignments to x̂i for i = r + 1, . . . , m. For instance, we may choose

x̂ = (̂b1/d1, . . . , b̂r/dr, 0, . . . , 0).

From any such particular solution we obtain a solution x = x̂U to the original system (52).

Homogeneous Case. The important special case of (52) where b = 0 is said to be homogeneous.
A solution to this homogeneous system xA = 0 is called a null-vector of A. The set N(A) ⊆ Zm

of these null-vectors forms a Z-module. By the Hilbert basis theorem for modules (see Lecture
XI), N(A) has a finite basis. Now er+1, . . . , em is a basis for the set of solutions to (53) in the
homogeneous case. Here ei denotes the m-vector with 1 in the ith position and 0 everywhere else.
We conclude that the set

er+1U, er+2U, . . . , emU

is a basis for N(A). Therefore, we may consider a complete solution of (52) to have the form
(x̂U, er+1U, . . . , emU) where x̂ is any particular solution to (53). Notice that N(A) is a lattice,
which we may regard as the “dual” of the lattice Λ(A) (§VIII.1).

If A ∈ Zm×n and m > n then we have just shown that the homogeneous Diophantine system
x · A = 0 has non-trivial solutions. An interesting question is whether there exist small integer
solutions. Siegel (1929) shows: there is an x ∈ N(A) satisfying

‖x‖ < 1 + (m‖A‖)n/(m−n). (54)

We leave the demonstration to an exercise.
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Finitely-generated Abelian groups. Smith normal forms are intimately related to the theory
of finitely generated Abelian groups. Let G be a finitely-presented Abelian group, that is, G is
represented by n generator x1, . . . , xn and m relations of the form

n∑

j=1

aijxj = 0, (aij ∈ Z)

for i = 1, . . . , m. (Note the convention of writing the operations of an Abelian group “additively”.)
The corresponding relations matrix is an m × n integer matrix A where aij = (A)i,j . We may
rewrite the relations in the form Ax = 0 where x = (x1, . . . , xn)T . In the special case where m = 0
(alternatively, the matrix A is all zero) deserves mention: the group G in this case is called the free
Abelian group of rank n. Clearly, G ≈ Zn where ≈ indicates group isomorphism.

Let the Smith normal form of A be S = S(A) = UAV for some unimodular matrices U, V .
This amounts to transforming the generators of G to (y1, . . . , yn)T = V −1(x1, . . . , xn)T . Then
S · (y1, . . . , yn)T = 0. If S has rank r and the diagonal elements of S are d1, . . . , dmin(m,n) then we
see that diyi = 0 for i = 1, . . . , r and yr+1, . . . , yn satisfy no relations whatsoever. Each yi generates
the subgroup Gi = Zyi of G. Moreover, Gi ≈ Zdi

for i = 1, . . . , r and Gi ≈ Z for i = r + 1, . . . , n.
Clearly G is a direct sum of the Gi’s: G = ⊕n

i=1Gi. There are three kinds of subgroups:
di = 0: these correspond to torsion-free subgroups Gi ≈ Z. The number β of these subgroups is
called the Betti number of G.
di = 1: these are trivial subgroups, and may be omitted in the direct sum expression.
di ≥ 2: these give rise to finite cyclic groups Gi. These di’s are called torsion coefficients of G.

We have just proven the “fundamental theorem of finitely generated Abelian groups”: every finitely
presented Abelian group G on n generators can be written as a direct sum G = ⊕r

i=0Hi where H0

is a free Abelian group of rank β, and each Hi (i = 1, . . . , r) is a finite cyclic group of order di ≥ 2
satisfying such that d1|d2| · · · |dr. The numbers β, d1, . . . , dr are uniquely determined by G.

It follows that a polynomial time algorithm for SNF implies that we can check for isomorphism
between two finitely generated Abelian groups in polynomial time. A slightly different group iso-
morphism problem arises if we assume that finite groups are represented by their multiplication
tables instead of by a set of relations. An observation of Tarjan implies that we can check isomor-
phism of two such groups in O(nlog n+O(1)) time. For the Abelian case, Vikas [212] has shown an
O(n log n) isomorphism algorithm.

Exercises

Exercise 9.1: Let a, b, c ∈ Z where a, b are relatively prime. Suppose sa + tb = 1. Show that the
general solution of the Diophantine equation ax + by = c is (x, y) = (sc + nb, tc− na) where n
is any parameter. 2

Exercise 9.2: Consider N(A) in case n = 1. Say A = (a1, . . . , am)T .
(i) Let s = (s1, . . . , sm) be a co-factor of (a1, . . . , am). Show that Z ·N(A) + Z · s is the unit
lattice Zm.
(ii) For 1 ≤ i < j ≤ m let T (i, j) be the m-vector that is zero everywhere except ai/GCD(ai, aj)
at the jth position and −aj/gcd(ai, aj) at the ith position. The set of these T (i, j)’s generates
N(A). 2

Exercise 9.3: (i) Show the bound of Siegel (54). HINT: for H a parameter to be chosen, let
C = CH be the cube comprising points x ∈ Rm where ‖x‖ ≤ H . Let α : Rm → Rn be the
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linear map given by α(x) = x ·A. Give a cube C′ in Rn the contains α(C). Use a pigeon hole
argument to show that α is not 1− 1 on the integer points of C. See [179] for several versions
of Siegel’s bound.
(ii) Show that the exponent n/(m− n) cannot be improved. 2

Exercise 9.4: Show:
(i) If d1, d2 are co-prime then Zd1

⊕ Zd2
≈ Zd1d2

.
(ii) Every finite cyclic group is a direct sum of cyclic groups of prime power.
(iii) Every finitely generated Abelian group written as a direct sum G = ⊕ℓ

i=0Hi where H0 is a
free Abelian group of rank β, and Hi ≈ Zqi

where qi is a prime power (i = 1, . . . , ℓ). Moreover,
the numbers β, q1, . . . , qℓ are uniquely determined by G. (These qi’s are called the invariant
factors of G.) 2
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[56] T. Dubé, B. Mishra, and C. K. Yap. Admissible orderings and bounds for Gröbner bases
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[74] W. Gröbner. Moderne Algebraische Geometrie. Springer-Verlag, Vienna, 1949.

[75] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization. Springer-Verlag, Berlin, 1988.

[76] W. Habicht. Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens. Comm. Math.
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Lecture XI

Elimination Theory

Algebraic geometry has been reformulated several times and, by Dieudonné’s account [54], contains
seven epochs leading to the present time. In an earlier incarnation, elimination theory and more
generally, invariant theory, played a central role. Early invariant theory (under Cayley, Sylvester
and Gordan) relies on constructive methods, as epitomized by the “master computer” Gordan.
Hilbert’s non-constructive proof1 in 1888 of his basis theorem is said to have killed invariant theory
as an active area. Nevertheless, Emmy Noether wrote a thesis on the subject in 1907 under Gordan.
Recent interest in constructive methods have revived interest in these topics. See Sturmfels [198]
for a modern computational perspective on invariant theory.

This lecture concerns elimination theory. Elimination theory is the study of conditions on coefficients
of a system of polynomials that are necessary and sufficient for the system to have a solution. We
are familiar with this idea in two important special cases:

• When there are n linear homogeneous equations in n unknowns, the vanishing of the deter-
minantal function on the coefficients is a necessary and sufficient condition for solvability.

• When we have two univariate polynomials, the vanishing of the Sylvester resultant of these
polynomials gives a necessary and sufficient condition for solvability.

These are both special cases of the fact that we can define a “resultant polynomial” R for any system
Σ of n homogeneous polynomials in n variables such that R is a polynomial in the coefficients of
these polynomials, and the vanishing of R is a necessary and sufficient condition for the solvability
of the system (we prove this in §6). Elimination theory is useful in other unexpected ways. For
instance, if F (x, y, λ) is a family of plane curves parameterized by λ, then the envelop curve of the
family can be obtained by eliminating the parameter from the equations F = 0 and ∂F/∂λ = 0.
This is a form of the implicitization problem, to compute a system of equations that defines an
algebraic set given in some other form. The converse problem is the parameterization problem (or
the construction of “generic solutions”, see §4).

The results in this lecture are updates of classical work that goes back to Macaulay, Hurwitz and
others. In recent years, Canny [36, 37] revisited this classical literature, showing its usefulness for
efficient algorithms. This lecture is clearly influenced by his work. Because the classical background
is scattered and perhaps unfamiliar to the modern reader, we have tried to be self-contained in this
exposition (except in §10,11). There is a newer body of work on sparse elimination theory (e.g.,
Sturmfels [199], Emiris [64]) which we unfortunately omit. A deep investigation of elimination
theory is found in the book of Gelfand, Kapranov and Zelevinsky [70]. Furthermore, there has
been a large output of recent material on techniques for solving algebraic systems.

Most results in this lecture, unless otherwise noted, pertain to a Noetherian
UFD D. We use X to denote the set of indeterminates {X1, . . . , Xn}.

§1. Hilbert Basis Theorem
1Which led Gordan to his famous remark “this is not mathematics, this is theology”. Gordan later admitted that

“theology has its uses”. See Kline [103] for a fuller account of the period.
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Hilbert proved three fundamental results that can be regarded as the starting point of modern alge-
braic geometry: the Basis Theorem, the Zero Theorem (Nullstellensatz) and the Syzygy Theorem.
This section proves the Basis Theorem for polynomial rings. The Zero Theorem is treated in the

next section while the Syzygy Theorem is found in §XII.8 and §XIII.2.

Let S ⊆ R[X] be an arbitrary set of polynomials, R is a ring. A basis for S is any subset B ⊆ S
such that S ⊆ Ideal(B) ⊆ R[X]. Alternatively, B is a basis if each f ∈ S can be expressed as a
linear combination of elements of B:

f =

m∑

i=1

fibi, (fi ∈ R[X], bi ∈ B).

Note that S is not necessarily an ideal. In case S is an ideal, modern terminology prefers to call
B a generator set for S. A basis or generator set is finite if it has finitely many elements. A ring
R is Noetherian if every ideal in R has a finite generator set. For example, if R is a field then it is
Noetherian since R has only two ideals (0) and (1). It is also easy to see that Z is Noetherian.

Theorem 1 (Hilbert Basis Theorem) If R is Noetherian then R[X] is Noetherian.

Proof. It is enough2 to prove this for X = {X}. The theorem then follows by induction on the
number of variables in X: if R[X1, . . . , Xn−1] is Noetherian then so is R[X1, . . . , Xn−1][Xn]. So
we want to show that any given ideal I ⊆ R[X] has a finite basis. Let us construct a sequence of
polynomials

f1, f2, f3, . . . ,

where f1 is a smallest degree polynomial in I, and in general fi+1 is a smallest degree polynomial in
I \ Ideal(f1, . . . , fi). The result is proved if this process stops in a finite number of steps, i.e., when
I = Ideal(f1, . . . , fi) for some i. So by way of contradiction, assume that the sequence f1, f2, . . ., is
infinite. Consider the corresponding sequence

a1, a2, a3, . . . ,

where ai = lead(fi). Since R is Noetherian, there exists a first value ak+1 such that

ak+1 ∈ Ideal(a1, . . . , ak) ⊆ R. (1)

Hence ak+1 has the form

ak+1 =

k∑

j=1

cjaj (cj ∈ R).

If the degree of fj is nj then n1 ≤ n2 ≤ n3 ≤ . . .. Note that polynomial

g :=

k∑

j=1

cjX
nk+1−nj fj

has leading coefficient ak+1. Hence the degree of fk+1 − g is less than nk+1. Since fk+1 − g ∈ I \
Ideal(f1, . . . , fk), this means fk+1 is not of minimum degree in I\Ideal(f1, . . . , fk), a contradiction.

Q.E.D.

2This proof of Heidrun Sarges (1976), like the original proof of Hilbert, is non-constructive. Hilbert’s proof was
a tour de force in his time, much to the chagrin of constructivists like Gordan and Kronecker. Gordan, by involved
arguments, only managed to construct finite bases for ideals in two variables. Some historians of mathematics have
pin-pointed this proof as the genesis of the modern tendency to use non-constructive proofs. Hilbert subsequently
returned to his proof to make it constructive [165]. For a modern constructive treatment see [198].
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Corollary 2 If R is Noetherian, then every set S ⊆ R[X] has a finite basis.

Proof. By the theorem, Ideal(S) has a finite basis B′ ⊆ Ideal(S). Each b′ ∈ B′ is a linear
combination of some finitely many elements of S. Hence there is a finite subset B ⊆ S such that
each b′ ∈ B′ is a linear combination of B. Clearly B is a basis for S. Q.E.D.

This corollary is the original basis theorem shown by Hilbert. Modern texts usually only treat the
case where S is an ideal. In an application below, we need this more general form.

The basis theorem has the following implication for solving polynomial equations in D[X1, . . . , Xn]
where D is a Noetherian domain. Note that if B is a basis for a set S ⊆ D[X1, . . . , Xn] then
(x1, . . . , xn) ∈ D

n
is a zero of S iff (x1, . . . , xn) is a zero of B. So without loss of generality, it is

enough to solve only finite systems of equations.

We now prove Hilbert’s basis theorem for modules. Let R be a ring and M an R-module. If x ∈M ,
then xR denotes the set {xa : a ∈ R}. If Mi ⊆ M (i ∈ J where J is an index set) then

∑
i∈J Mi

denotes the set of all sums of the form
∑

i∈J xi where xi ∈Mi or xi = 0, and moreover only finitely
many xi’s are non-zero. Say a set S ⊆M generates M if

∑
x∈S xR = M . M is finitely generated if

it has a finite set S as generator. M is Noetherian if every R-submodule of M is finitely generated.
(Note that the concept of Noetherian modules generalizes the concept of Noetherian rings.)

Let us illustrate these definitions as well as the theorem to be stated: R = Z is a Noetherian ring and
M = Z

n is a Z-module. Note that a Z-submodule of M is also called a lattice (§VIII.1). Clearly, M
is finitely generated. The next theorem implies that every Z-submodule of M is finitely generated.

One more definition. For R-modules M and N , a map ϕ : M → N is an R-module homomorphism
if ϕ(x + y) = ϕ(x) + ϕ(y), ϕ(ax) = aϕ(x) for all x, y ∈M, a ∈ R.

Theorem 3 (Hilbert’s Basis Theorem for modules) If R is a Noetherian ring and M is a
finitely generated R-module then M is Noetherian.

Proof. Let M = x1R + · · ·+ xnR. Then we have a canonical R-homomorphism

ϕ : Rn −→M

where (a1, . . . , an) ∈ Rn is mapped to
∑n

i=1 aixi ∈M . Let N ⊆M be any submodule. We have to
show that N has a finite set of generators. Let

U = {a ∈ Rn : ϕ(a) ∈ N}.
One checks that U is a submodule of Rn. If U = a1R + · · ·+ amR (ai ∈ Rn) then N = ϕ(a1)R +
· · · + ϕ(an)R. So it suffices to show U is finitely generated. We first observe that the set of first
components of members of U form an ideal I in R. Since R is Noetherian, I = (u1, . . . , uk) for some
u1, . . . , uk. Pick a1, . . . ,ak ∈ U such that the first component of ai is ui (i = 1, . . . , k). Let V ⊆ U
be the set of those n-vectors with zero as first component. Then

U = a1R + · · ·+ akR + V.

But V is isomorphic to a submodule of Rn−1. If n = 1, then we are done. Otherwise by induction,
V has a finite set of generators and so does U . Q.E.D.

Exercises
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Exercise 1.1: The following are standard facts:
(i) For I ⊆ R an ideal in a ring R, I is maximal (resp., prime, primary) iff R/I is a field (resp.,
a domain, a ring in which all zero divisors are nilpotent). An element x is nilpotent if some
power xm is zero.
(ii) An ideal is said to be irreducible if it is not the proper intersection of two ideals. Show
that prime ideals are irreducible and under the ascending chain condition, irreducible ideals
are primary. 2

Exercise 1.2:
(i) The homomorphic image of a Noetherian ring is Noetherian.
(ii) Every non-unit in a Noetherian domain is a product of irreducible elements. 2

§2. Hilbert Nullstellensatz

Henceforth, let 3 D be a Noetherian UFD. This section gives several forms of the Nullstellensatz
of Hilbert for D. Basically, the Nullstellensatz is a theorem about the existence of zeros in the
algebraic closure D of D. Accordingly, for a set S ⊆ D[X1, . . . , Xn], a zero of S is an element
(x1, . . . , xn) ∈ D

n
such that p(x1, . . . , xn) = 0 for each polynomial p ∈ S. We also say S vanishes at

(x1, . . . , xn). Denote the set of zeros of S by

Zero(S) ⊆ D
n
.

We begin with what is known as the field-theoretic version of Hilbert’s Nullstellensatz [107, 111].
By way of motivation, note that if D(ξ1, . . . , ξn) is an algebraic extension of D then D(ξ1, . . . , ξn)
is obtained as a ring adjunction of the quotient field QD of D, i.e., D(ξ1, . . . , ξn) = QD[ξ1, . . . , ξn].
We show the converse.

Theorem 4 (Nullstellensatz – field-theoretic form) Let D be a Noetherian UFD and E a field
extension of D. If E = QD[ξ1, . . . , ξn] for some ξ1, . . . , ξn, then E is algebraic over D.

We first prove two lemmas.

Lemma 5 (Artin-Tate) Let R ⊆ S ⊆ T be rings, R Noetherian and T be finitely generated as an
S-module. If T is finitely generated as a ring over R, i.e., T = R[ξ1, . . . , ξn], then S is finitely
generated as a ring over R.

Proof. Since T is a finitely generated S-module, let ω1, . . . , ωm ∈ T such that

T = Sω1 + Sω2 + · · ·+ Sωm. (2)

We may assume ξ1, . . . , ξn is contained among ω1, . . . , ωm. Let

M = {ai,j
k : i, j, k = 1, . . . , m}

be the multiplication table of ω1, . . . , ωm, that is,

ωiωj =

m∑

k=1

ai,j
k ωk.

3It is known that a Noetherian domain is a UFD iff all its height one prime ideals are principal.
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We may assume M ⊆ S because of (2). Consider the ring

S′ :=R[M ] ⊆ S.

From T = R[ξ1, . . . , ξn] we conclude that T is generated as an R-module by the set of power products
of ξ1, . . . , ξn. But since the multiplication table of ξ1, . . . , ξn is in S′ we get

T = S′ω1 + S′ω2 + · · ·+ S′ωm.

Since R is Noetherian, Hilbert’s basis theorem (for polynomials) implies S′ is Noetherian. By
Hilbert’s basis theorem (for modules) T is a Noetherian S′-module, and since S is a S′-submodule
of T , S must be finitely generated over S′: for some {u1, . . . , ut} ∈ T ,

S = S′u1 + S′u2 + · · ·+ S′ut.

Hence S = R[M, u1, u2, . . . , ut]. Q.E.D.

Lemma 6 Let S = D(Z1, . . . , Zt) be a rational function field over D with t ≥ 1 indeterminates.
Then S is not finitely generated as a ring over QD.

Proof. Suppose S = QD[ξ1, . . . ξn] where ξi = fi(Z1,...,Zt)
gi(Z1,...,Zt)

and fi, gi ∈ D[Z1, . . . , Zt], (i = 1, . . . , n).

Then each element of QD[ξ, . . . , ξn] has the form f
g = f(Z1,...,Zt)

g(Z1,...,Zt)
where

g(Z1, . . . , Zt) = a

n∏

i=1

gei

i (Z1, . . . , Zt), a ∈ D, ei ≥ 0. (3)

There are infinitely many non-associated irreducible polynomials in QD[Z1, . . . , Zt] (see appendix
B). Pick an irreducible polynomial p ∈ QD[Z1, . . . , Zt] that does not divide any gi. Then 1/p ∈ S
implies that it has a representation of the form f/g where g is given by (3). From 1/p = f/g, we
obtain g = f ·p. Hence p divides some gi, since QD[Z1, . . . , Zt] is a UFD. This contradicts our choice
of p. Q.E.D.

We now prove the field version of the Nullstellensatz: If E = QD[ξ1, . . . , ξn] is not algebraic, let
Z1, . . . , Zt (t ≥ 1) be the maximal subset of {ξ1, . . . , ξn} that is algebraically independent over
QD. Set S = QD(Z1, . . . , Zt) = D(Z1, . . . , Zt). Then E is a finite algebraic extension of S. Since
S is a field, E is finitely generated as an S-module. Applying the first lemma using R = D,
S = D(Z1, . . . , Zt) and T = E = QD[ξ1, . . . , ξn] implies D(Z1, . . . , Zt) is finitely generated as a ring
over QD. This contradicts the second lemma, completing the proof.

Theorem 7 (Nullstellensatz – weak form) An ideal I ⊆ D[X1, . . . , Xn] has no zeros iff I con-
tains a non-zero element of D.

Proof. Clearly if I contains a non-zero element a ∈ D then I has no zero. Conversely, if I∩D = {0},
we must show that Zero(I) is non-empty. We may (by the maximum principle) assume I is maximal.
Then E = D[X]/I is a field. If b ∈ D[X] maps to b under the canonical homomorphism D[X] −→ E
then for a, b ∈ D, a 6= b implies a−b 6= 0 (otherwise a−b ∈ I). So we may assume D ⊆ E and indeed,
QD ⊆ E. Since E = QD[X1, . . . , Xn], the previous theorem shows that E is algebraic over D.
Thus we may assume that E ⊆ D. Now the canonical homomorphism takes p(X1, . . . , Xn) ∈ D[X]
to

p(X1, X2, . . . , Xn) = p(X1, . . . , Xn).
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Hence p(X1, . . . , Xn) = 0 iff p(X1, X2, . . . , Xn) = 0 iff p(X1, . . . , Xn) ∈ I. Hence (X1, . . . , Xn) ∈
Zero(I). Q.E.D.

This theorem is equivalent to an apparently stronger version:

Theorem 8 (Nullstellensatz – strong form) Let I ⊆ D[X1, . . . , Xn] be an ideal and p ∈
D[X1, . . . , Xn]. Then p vanishes at all the zeros of I iff there is an m ≥ 0 and a non-zero a ∈ D
such that

a · pm ∈ I.

The strong Nullstellensatz implies the weak form: to show the non-trivial direction of the weak
Nullstellensatz, suppose Zero(I) is empty. Then (vacuously) 1 vanishes at all the zeros of I. The
strong form then implies that a = a · 1m ∈ I for some m ≥ 0 and non-zero a ∈ D.

Conversely, the weak Nullstellensatz implies the strong form: again, in the nontrivial direction, we
assume that p ∈ D[X] vanishes at Zero(I). Suppose I = Ideal(f1, . . . , fr). Using the “trick of
Rabinowitz”, introduce a new variable Z and let

g := 1− Z · p.

Then the ideal (f1, . . . , fr, g) has no zeros since g will not vanish at any zero of f1, . . . , fr. Hence
the weak Nullstellensatz implies the existence of some nonzero a ∈ D ∩ Ideal(f1, . . . , fr, g). Let

a =
r∑

i=1

αifi + β(1− Zp)

for suitable αi, β ∈ D[X1, . . . , Xn, Z]. Substituting Z = 1
p , we get:

a =

r∑

i=1

α′
ifi

where each α′
i ∈ D(X1, . . . , Xn) is a rational function whose denominator is some power of p.

Multiplying by a suitable power m ≥ 0 of p, we get

a · pm =

r∑

i=1

(α′
ip

m)fi

where α′
ip

m ∈ D[X1, . . . , Xn]. Thus a · pm ∈ I, proving the non-trivial direction of the strong
Nullstellensatz.

Quantitative Nullstellensatz. It is known from Hermann [80] (cf. [129]) that the number m
appearing in the strong Nullstellensatz is at most double exponential in n. In recent years, starting
from the work of Brownawell [31], single-exponential bounds began to appear. Essentially the best
possible bound is from Kollár [106] (see also [190]). Dubé [60] gives a purely combinatorial proof of
similar bounds4. We quote without proof the bound of Dubé (somewhat simplified).

Theorem 9 (Nullstellensatz – quantitative form) Let p vanish at all the zeros of an ideal I ⊆
D[X1, . . . , Xn]. If I is generated by a set of polynomials of degrees at most d then there exists a ∈ D
such that a · pN ∈ I where

N = 13dn.
4The bound of Dubé’s applies more generally to ideals generated by prime sequences.
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Let the “Nullstellensatz bound”
N(n, d) (4)

to be the least value for N for which this theorem holds. Thus N(n, d) ≤ 13dn. We remark that
Kollár’s formulation of the theorem generally gives better bounds (without the constant factor 13)
but it is less suited for our purpose of defining N(n, d) because he has a technical requirement
that the generators of I have degrees not equal to 2. The following easy extension of the strong
Nullstellensatz will be useful:

Theorem 10 (Nullstellensatz – extended form) Let A1, . . . , Ar ∈ D[X1, . . . , Xn] be polynomi-
als such that each Ai vanishes at all the zeros of an ideal I ∈ D[X1, . . . , Xn]. If I is generated by
polynomials of degrees at most d then there exists a non-zero a ∈ D such that

a ·Ae1
1 Ae2

2 · · ·Aer

r ∈ I

whenever
∑r

i=1 ei ≥ 1 + r(N − 1), N = N(n, d) and ei ≥ 0.

Proof. By definition of N = N(n, d), for each i, we have aiA
N
i ∈ I for some non-zero ai ∈ D. Let a =∏r

i=1 ai. If
∑r

i=1 ei ≥ 1+ r(N−1) then some ei ≥ N and so aiA
ei

i ∈ I. Hence a ·Ae1
1 Ae2

2 · · ·Aer
r ∈ I.

Q.E.D.

Exercises

Exercise 2.1: (Corollaries to Hilbert’s Nullstellensatz)
(i) If D = D then I is a maximal ideal iff I = Ideal(X1 − ξ1, . . . , Xn − ξn) where ξi ∈ D.
(ii) D[X1, . . . , Xn]/I is a finite field extension of D iff I is a maximal ideal.
(iii) Let Ideal be the map taking a set V ⊆ An(D) = D

n
to the set

Ideal(V ) = {f ∈ D[X1, . . . , Xn] : f vanishes on V }.

Show that Ideal is a bijection between algebraic sets and radical ideals. 2

Exercise 2.2: Show that we can find an exponent m in the Strong Nullstellensatz that depends
only on I (and not on p). HINT: show that (

√
I)e ⊆ I for some e and p ∈

√
I. 2

Exercise 2.3: (Mishra and Gallo, 1992) Assume D = Z. Obtain primitive recursive bounds on |a|
in the strong or quantitative form of the Nullstellensatz. 2

§3. Specializations

The informal idea of specialization is that of “substitution of indeterminates”. In most applica-
tions, this naive understanding suffices. We wish to explore this concept in a more general setting.
Specialization arises in three ways in solving systems of polynomial equations over D. In illustration,
consider the system

F1 = F2 = 0 (5)

where F1(X, Y, Z) = X −Y 2 and F2(X, Y, Z) = XY −Z are polynomials over D. First, we see that
the specialization

(X, Y, Z) −→ (t2, t, t3) (6)
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is a solution to the system (5), for any t ∈ D. The “−→” notation here means the right-hand
quantities are substituted for the left-hand quantities. So (6) is a “specialization” of X, Y, Z. Second,
suppose t is an indeterminate. Then we can express another important idea: solution (6) is the most
general or “generic” solution to (5) in the following sense:

(i) For any “specialization” of t to a value α ∈ D, the corresponding substitution (X, Y, Z) −→
(α2, α, α3) is a solution to (5).

(ii) Moreover, every solution (α1, α2, α3) ∈ D
3

of (5) can be obtained as in (i).

The third way in which specialization arises is when we consider polynomials with indeterminate
coefficients. We are interested in conditions under which specializations of these coefficients lead to
solvability.

As discussed in Lecture 0, it is significant to ask where the solutions (α1, α2, α3) come from. There
are three natural cases: the αi’s can come from D, or from its quotient field QD, or from the algebraic
closure D. These are, respectively, the Diophantine case, the rational case and the algebraic case of
solving equations over D. The Nullstellensatz (§2) concerns the algebraic case. Following A. Weil,
we may go beyond the algebraic case by asking for solutions in the universal field Ω of D. By
definition Ω = ΩD is defined to be

ΩD = D(t1, t2, . . .)

where the ti’s is an infinite set of indeterminates. Call this the universal case of solving equations
over D. Since within each normal context of discourse, we only have to deal with a finite number
of these ti’s, we may regard the infinite transcendence degree of Ω as a mere convenience. But the
existence of transcendental elements in Ω allows us to accomplish more than the algebraic case: it
affords the notion of a generic solution as seen in the above example.5 Finding generic solutions
can be considered as another view of the parameterization problem, briefly noted in this lecture’s
introduction.

As far as the existence of solutions goes, the universal case of solving polynomial equations does
not add anything: a system of polynomial equations over D is solvable in D iff it is solvable in ΩD.
This is because any transcendental solution can always be “specialized” to a non-trivial algebraic
solution.

The concept of specialization. We formalize the above notions. In the following, let S ⊆ Ω.
We write

D[S] and D(S)

to denote the smallest subring and subfield (respectively) of Ω containing D ∪ S. This is a natural
extension of the standard notations, D[X ] and D(X). Suppose

σ : S → Ω

is any function. We would like to extend σ into the canonical homomorphism

hσ : D[S]→ Ω

where, for each F (X1, . . . , Xn) ∈ D[X] and x1, . . . , xn ∈ S,

hσ(F (x1, . . . , xn)) = F (σx1, . . . , σxn).
5It is possible to avoid this universal field; indeed, contemporary algebraic geometry prefers instead to use the

set of prime ideals of D[X1, . . . , Xn] for Ω. But as in this example, the language of the universal field seems more
intuitive and geometric.
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But one must verify that hσ is well-defined. A necessary condition is that σ(a) = a whenever
a ∈ D. Clearly if hσ were well-defined, it would be a homomorphism. In fact, it would be a
D-homomorphism (i.e., it is the identity function when restricted to D).

Usually, S is a set of transcendental6 elements over D. If these transcendental elements are
algebraically independent over D, meaning that F (x1, . . . , xn) 6= 0 for all F (X1, . . . , Xn) ∈
D[X1, . . . , Xn] \ 0 and x1, . . . , xn ∈ S. We may call S a set of indeterminates and elements of
S are called indeterminates. So the concept of an “indeterminate” is always relative to some such
set S, which is often implicit. This definition of indeterminates agrees with the usual informal uses
of the term; of course, we have relied on this informal understanding in the earlier discussions.

Example:
(i) If S is a set of indeterminates, hσ is clearly well-defined for any σ.
(ii) S may contain algebraic relations among its members, as in our introductory example with
S = {t, t2, t3}.
(iii) S may even have algebraic elements. Consider D = R and S = {i} (where i =

√
−1). The

specialization which maps i to −i amounts to complex conjugation.
(iv) Let S = {X, XY } where {X, Y } is a set of indeterminates. The map hσ is well-defined
provided σ(X) = 0 implies σ(XY ) = 0.

Definition: Let S ⊆ Ω. An S-specialization (or simply, specialization) is a function σ : S → Ω
such that for all F (X1, . . . , Xn) ∈ D[X] (the Xi are variables) and for all x1, . . . , xn ∈ S,

F (x1, . . . , xn) = 0 =⇒F (σx1, . . . , σxn) = 0.

We claim: hσ is well-defined iff σ is a specialization. To show this in one direction, if F (x1, . . . , xn) =
0 and hσ(F (x1, . . . , xn)) 6= 0, i.e., σ is not a specialization, then hσ(0) is not well-defined.
In the other direction, if σ is a specialization, we must show that for any F, G ∈ D[X], if
F (x1, . . . , xn) = G(x1, . . . , xn) then hσ(F (x1, . . . , xn)) = hσ(G(x1, . . . , xn)). This is equivalent
to showing that F (x1, . . . , xn) = 0 implies hσ(F (x1, . . . , xn)) = 0. But this is immediate since
hσ(F (x1, . . . , xn)) = F (σ(x1), . . . , σ(xn)) which equals 0 since σ is a specialization.

We may think of specializations as a type of ring homomorphism. We call hσ the canonical σ-
homomorphism from D[S] to D[σ(S)] (or, to Ω). We say that hσ(x) is the specialization of x (under
σ). Since hσ is an extension of σ, we often continue to use ‘σ’ instead of ‘hσ’. In case σ(S) = S, we
have a (the older literature calls it a ‘substitution’). If σ(S) ⊆ D we call σ a ground specialization.
We say a specialization σ is partial if for some xi, σ(xi) = xi. A partial ground specialization is
σ such that for each c ∈ S, either σ(c) = c or σ(c) ∈ D. If σ(S) ⊆ D we call σ an algebraic
specialization.

Generic points. Henceforth, assume S ⊆ ΩD is a finite set. Fixing any enumeration x =
(x1, . . . , xn) of S, we may represent a S-specialization σ by the sequence

y = (σ(x1), . . . , σ(xn)).

Let us write (following Artin [5])

x
σ−→ y or x

S−→ y or x −→ y (7)

6An element x is transcendental over D if F (x) 6= 0 holds for any non-zero polynomial F (X) ∈ D[X]. Otherwise,
it is algebraic over D.
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to indicate that y is an S-specialization. If σ is an S-specialization and τ is a σ(S)-specialization
then the composition τ ◦ σ is an S-specialization. In the arrow notation,

x −→ y −→ z implies x −→ z.

An element y ∈ Ωn (n ≥ 1) is called an n-point, or, simply a point in the affine n-space

A
n(Ω) :=Ωn.

Thus each x-specialization can be viewed as point. This gives a more geometric language for spe-
cializations.

For any subset U ⊆ Ω, the specialization of U under σ is the set σ(U) = {hσ(a) : a ∈ U}, which we
also denote by

U |σ.

In case U |σ = {0}, we simply write U |σ = 0. In this case, we say that U vanishes under σ, or7 σ
is an S-solution (or simply, solution) of U . The solution σ is non-trivial if σ is not identically zero.
Specializations can be composed: if τ is a another specialization, then we write

U |σ,τ

instead of the more awkward (U |σ)|τ .

Let V ⊆ An(Ω). We call y a generic point of V and say y determines V if

V = {z ∈ A
n(Ω) : y

S−→ z}.

For example, if t1, . . . , tn ∈ Ω are algebraically independent over D, then (t1, . . . , tn) determines
V = An(Ω). Recalling an earlier example, (t2, t, t3) is a generic point of the {X, Y, Z}-solutions of
U = {X − Y 2, X2 − Y Z}.

Lemma 11
(i) If x1, . . . , xn ∈ Ω, then the set I of polynomials in D[X1, . . . , Xn] that vanishes at (x1, . . . , xn) is
a prime ideal.
(ii) If I ∈ D[X1, . . . , Xn] is a prime ideal and 1 6∈ I then I has a generic zero.

Proof. Part (i) is immediate. To see (ii), consider the ring E = D[X]/I. This is a domain (§1,
Exercise). As in the proof of the weak Nullstellensatz (§2), we can assume D is embedded in E
via the canonical homomorphism p 7→ p from D[X] to E. We may also assume E is embedded in
ΩD. For any p(X1, . . . , Xn) ∈ D[X], we saw that p(X1, . . . , Xn) = 0 iff p(X1, . . . , Xn) ∈ I. Hence
x = (X1, . . . , Xn) ∈ Ωn

D is a zero of I. We claim that x is a generic zero. Let a = (a1, . . . , an) ∈ Ωn
D.

We must show that a is a zero of I iff
x −→ a,

i.e., the function taking X i to ai (i = 1, . . . , n) is a specialization. Suppose a is a zero of I. If
p(X1, . . . , Xn) ∈ D[X] and p(x) = 0 then p(X1, . . . , Xn) ∈ I (property of canonical homomorphism)
and hence p(a) = 0 (as a is a zero of I). This proves x −→ a. Conversely, assume x −→ a. If

7When we call σ a “solution” of U , it is understood that we are considering the universal case of solving the system
U = 0. In contrast, as in §3, we shall call σ a “zero” of U when we consider the algebraic case of solving the system
U = 0.
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p(X1, . . . , Xn) ∈ I then p(x) = 0 (property of canonical homomorphism) and so p(a) = 0 (definition
of x −→ a). This means a is a zero of I. Q.E.D.

This lemma justifies the treatment of the zero set of prime ideals as “points” in an abstract space.
Exercises

Exercise 3.1: Let F1(X, Y, Z) = X − Y 2, and F2(X, Y, Z) = XY − Z.
i) Show that Ideal(F1, F2) is prime.
ii) Let F0(X, Y, Z) = X2 − Y Z. Show that I0 := Ideal(F0, F1) is not prime.
iii) Show that I0 has two generic points, (t2, t, t3) and (0, 0, t). (See above for a definition of
generic points.)
iv) Consider the homogeneous polynomials f1(X, Y, Z, U) = UX − Y 2 and f2(X, Y, Z, U) =
XY − UZ. Is Ideal(f1, f2) prime? 2

Exercise 3.2: If I ⊆ D[X] is the set of polynomials that vanish at two distinct points in Ωn
D, then

I is not prime. 2

§4. Resultant Systems

We introduce the concept of a resultant system for a system of homogeneous polynomials with
indeterminate coefficients (this will be precisely defined). Using the extended Nullstellensatz (§2),
we show the existence of resultant systems.

Forms. Let C,X be disjoint sets of indeterminates. We write D[C][X] instead of D[C ∪ X] to
signal our intention to view F ∈ D[C ∪X] as a polynomial in X with coefficients in D[C]. Hence
the degree, deg(F ), of F is understood to refer to the X-degree. If e = (e1, . . . , en) ∈ N

n, we shall
write Xe for the power product

∏n
i=1 Xei

i . The set C will be used in a very special way as captured
next:

Definition:
(i) A polynomial F ∈ D[C][X] is an indeterminate polynomial if it is the sum of terms such as

c0X
e (c0 ∈ C, e ∈ N

n).

We call c0 and Xe (respectively) the coefficient and power product of this term. degree of this term.
Moreover, this association between coefficients c0 and power products Xe among the terms is a bi-
jection.
(ii) A form is an indeterminate polynomial that is homogeneous, i.e., each term has the same degree.
(iii) If σ is a partial ground C-specialization, and F is an indeterminate polynomial, then F |σ is
called a partially indeterminate polynomial. So the coefficient of each power product in such a poly-
nomial belongs to D or to C. A partial form is similarly defined.
(iv) A system of indeterminate polynomials (of partial forms, etc) is a set of indeterminate polynomi-
als (of partial forms, etc) such that distinct polynomials in the set have disjoint sets of indeterminate
coefficients.

For instance, let X = {X, Y },C = {c0, c1, c2}. Then c0X
2 + c0XY = c0(X

2 + XY ) and
c1X + c2X = (c1 + c2)X are not indeterminate polynomials as they fail the bijectivity require-
ment. Although c0X

2Y and c0X + c1Y are both indeterminate polynomials, together, they do not
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constitute a “system” of indeterminate polynomials. The reason is, of course, because c0 occurs in
both polynomials. Note that the underlying domain D is irrelevant in this definition.

Two indeterminate polynomials are equivalent if they are identical after a suitable renaming of the
coefficients in the polynomials. A form F of degree d is generic if every power product of degree d
occurs in F ; clearly F has

(
d+n−1

n−1

)
terms. For any n, d, all generic forms of degree d on n variables

are equivalent. Caveat: “forms” in the literature sometimes refers to homogeneous polynomials and
sometimes refers to generic forms, neither agreeing with our definition.

More examples. The following are indeterminate polynomials:

c1X + c2XY, c0 + c2X
2, c1X

2 + c2Y
2.

The following are not indeterminate polynomials, but they are partially indeterminate:

X + 4X(= 5X), c1X + XY, 4 + c0X, 3X2 − 5XY + c2Y
2.

The following are not even partially indeterminate:

c0X − c1Y, 4X3 + c0X
3 = (4 + c0)X

3, 1 + c0, c2
1XY, 8c1Y.

Both c0 and c1X
2 + c0XY + c2Y

2 are generic forms while c0X
2Y is a non-generic form.

We come to the main definition:

Definition: Let Σ ⊆ D[C][X]. A set Γ ⊆ D[C] is called a resultant system of Σ if for any ground
specialization

σ : C −→ D,

the vanishing of Γ|σ is a necessary and sufficient condition for the existence of a non-trivial X-
solution of the set Σ|σ. In case Γ is a singleton set {R}, then we call the polynomial R a resultant
polynomial of Σ.

The resultant system Γ can be the empty set ∅ in which case Γ|σ always vanishes, by definition.
Two other special cases are Γ = {0} and Γ = {1}: then Γσ always vanishes and never vanishes
(respectively). We say Γ is trivial, and simply write “Γ = 0”, if Γ always vanishes.

The classic example of a resultant polynomial is the determinant. More precisely, if Σ is a system
of n generic linear forms in n variables, and det(Σ) is the determinant of a matrix whose ith row
contains the coefficients of the ith form, then det(Σ) is a resultant polynomial for Σ. If σ is a ground
specialization, it is conventional to call det(Σ)|σ the “resultant of Σ|σ”.

We note a simple fact: a set Γ is a resultant system iff any basis (§1) for Γ is a resultant system. In
particular, if C is finite (the usual case), and there exists a resultant system, then the Hilbert basis
theorem (§1) assures us there is a finite resultant system.

The following is immediate:

Lemma 12 Let Σ ⊆ D[C][X] be any set polynomials. If Γ ⊆ D[C] is a resultant system for Σ and
σ is a partial C-specialization then Γ|σ is a resultant system for Σ|σ.

It will be shown that any system Σ of forms has a resultant system Γ. For any partial specialization
Σ|σ of Σ, we can of course compute its resultant system by first computing Γ and then specializing
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it to Γ|σ. However, it may be more efficient to directly construct a resultant system for Σ|σ. Recent
results on sparse elimination are able to do this to some extent.

Construction of Resultant Systems. We now construct a resultant system for a system

Σ = {A1, . . . , Ar} ⊆ D[C][X1, . . . , Xn]

of forms. To avoid trivial cases, let us assume that n ≥ 2, r ≥ 1 and d ≥ 1 where d = maxr
i=1 deg(Ai).

Recall PP = PP(X1, . . . , Xn) is the set of power products in the Xi’s. There are

Nm :=

(
m + n− 1

n− 1

)
(8)

power products in PP of total degree m. Let PPm be a column vector of length Nm that enumerates
all these power products. When convenient, we also view PPm as a set. A homogeneous polynomial
F ∈ D[C][X] of degree m can be identified with a row vector F ∈ D[C]Nm such that F is equal to
the scalar product

〈F , PPm〉.
We are interested in the multiset Σm of homogeneous polynomials of degree m that are formed by8

multiplying each Ai ∈ Σ by various power products:

Σm :={uA : deg(uA) = m, A ∈ Σ, u ∈ PP}.

Let N∗
m denote the number (with multiplicity counted) of polynomials in Σm (we estimate N∗

m

below). Let Qm be the matrix that represents Σm: Qm has N∗
m rows and Nm columns, with the

rows corresponding to the vectors F , F ∈ Σm. So

Qm · PPm

is just a column vector enumerating all the members of the multiset Σm. Now let

Γm ⊆ D[C]

denote the set of Nm ×Nm subdeterminants of Qm (if N∗
m < Nm then Γm is empty). Finally, let Γ

be the union of the Γm for all m ≥ 1.

Example: Let Σ = {A1, A2} where Ai = aiX + biY + ciZ. Let PP2 = (X2, XY, Y 2, Y Z, Z2, ZX)T .
Viewed as a set, Σ2 = {XA1, Y A1, ZA1, XA2, Y A2, ZA2}. Then

X2 XY Y 2 Y Z Z2 ZX

Q2 =




a1 b1 c1

a1 b1 c1

b1 c1 a1

a2 b2 c2

a2 b2 c2

b2 c2 a2




.

A1X

A1Y

A1Z

A2X

A2Y

A2Z

8Macaulay calls these the elementary polynomials with respect to Σ.
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Note that we have labeled the rows and columns of the matrix in the obvious way. Here
N∗

2 = N2 = 6 and so Γ2 consists of just the determinant of Q2. This determinant turns out to
be 0.

Theorem 13 If Σ ⊆ D[C][X1, . . . , Xn] is a system of forms of degrees at most d then Γm is a
resultant system for Σ whenever

m ≥ 1 + n(N − 1)

where N = N(n, d) is the Nullstellensatz bound (§2).

Proof. Fix any ground specialization σ of the coefficients in Σ, and write Σ̃ for Σ|σ, Γ̃m for Γm|σ,

etc. We must show that Σ̃ has a non-trivial solution iff Γ̃m = 0. (Recall that Γm may be empty in

which case Γ̃m = 0 is automatic.)

First suppose Σ̃ has only trivial solutions. By the extended form of the Nullstellensatz (§2), as each

Xi (i = 1, . . . , n) vanishes at all the zeros of Σ̃, there exists a ∈ D such that for all pi ∈ PPm,

a · pi ∈ Ideal(Σ̃).

This follows from our choice of m. This means that there exists an Nm×N∗
m matrix U with entries

in D such that
a · I = U · Q̃m, (9)

where I is the identity matrix. [To see this, if PPm = (p1, p2, . . .)
T then on translating a · pi ∈

Ideal(Σ̃) to the matrix form

a · pi = (ui1, ui2, . . .) · Q̃m · PPm,

we make take the ith row of U to be (ui1, ui2, . . .).] This means that the rank of Q̃m is Nm and

some determinant in Γ̃m is non-zero. (In particular, Γm is non-trivial.)

Conversely, suppose Σ̃ has a nontrivial solution τ : X→ ΩD. By way of contradiction, let us assume
that Γ̃m 6= 0. Then there exists a non-zero matrix U and a ∈ D such that equation (9) holds. [To
see this, note that Γm is non-trivial implies that N∗

m ≥ Nm. We may assume the first Nm rows

of Q̃m form a square matrix V with nonzero determinant a. Then we set U = [adj(V )|0] where
adj(V ) denotes the adjoint of V and 0 is a matrix of zeros.] Then

a · PPm = U · Q̃m · PPm. (10)

The right hand side of this equation evaluates to a column vector: each element in this vector is a
D-linear combination of the polynomials in Σ̃. Hence if we specialize this equation using τ , then the
right-hand side vanishes (as τ is a solution of Σ̃). But the left-hand side does not vanish (as τ is a
non-trivial solution), contradiction. Q.E.D.

Kapferer [100] already shows in 1929 that there is a resultant system whose polynomials have degree

2n−1d2n−1−1.

Estimates for N∗
m. For simplicity, assume m ≥ d in the following. First let us dispose of a

simple case, when r = 1: then N∗
m = Nm−d < Nm and Γm is empty. (So the above theorem shows

that a single polynomial always has non-trivial solutions.) Henceforth, let r ≥ 2. The number of
polynomials in Σm is

N∗
m =

r∑

i=1

Nm−di
≥ rNm−d.
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Note that

Nm

Nm−d
=

(m + n− 1)(m + n− 2) · · · (m + 1)

(m− d + n− 1)(m− d + n− 2) · · · (m− d + 1)
<

(
1 +

d

m− d

)n−1

< r

for r ≥ 2 and m large enough. Hence N∗
m ≥ rNm−d > Nm and so Γm is non-empty. However, as

a previous example shows, this does not guarantee that Γ contains a non-zero element. Precisely
when this happens will be clarified shortly.

Non-existence of Resultant Systems. We give an example of van der Waerden showing that
if we drop the homogeneity requirement for the polynomials of Σ ⊆ D[X], then Σ may have no
resultant systems. Assume D is an infinite field. Suppose Σ = {A, B} ⊆ D[a,b][x, y] where a =
(a0, a1, a2),b = (b0, b1, b2) and

A = a0 + a1x + a2y,

B = b0 + b1x + b2y.

Consider any specialization σ of a,b such that

G1 = a2
0 + b2

0, G2 = a1b2 − a2b1

either both vanish, or both do not vanish under σ. Then by linear algebra, Σ|σ has a nontrivial
solution. It can be verified that converse also holds. We claim that Σ does not have a resultant
system Γ. Assume to the contrary that Γ ⊆ D[a,b] is a resultant system. Now there exists a ground
specialization σ0 of a,b such that

G1|σ0 = 0, G2|σ0 6= 0.

Thus Σ|σ0 has no non-trivial solutions and hence Γ|σ0 6= 0. But there are also infinitely many σ′

such that σ′ and σ0 agree at all values except that σ′(a0) 6= σ0(a0), and

G1|σ′ 6= 0, G2|σ′ 6= 0. (11)

Hence Γ|σ′ = 0. Since a1, a2, b0, b1, b2 are held fixed when considering assignments such as σ′, we can
view elements of Γ as polynomials in the variable a0 with constant coefficients. But such polynomials
can have infinitely many solutions only if they are identically zero. But this contradicts the fact
that Γ|σ0 6= 0. Thus Γ does not exist.

Resultant systems for a system of indeterminate (possibly non-homogeneous) polynomials exist if
we modify our definition of a “resultant system” to exclude specializations that cause the leading
coefficients to all vanish. See an exercise in the next section for the non-homogeneous version of the
Sylvester resultant.

Exercises

Exercise 4.1:
(i) nm ≥ Nm =

(
m+n−1

n−1

)
, with strict inequality if n ≥ 2 and m ≥ 2.

(ii) N∗
m > Nm if m > d(1 + n/ ln r). 2

Exercise 4.2: Construct the set Γ2 for Σ = {A0, A1, A2} where A0 = aX2 + bY 2 + cX2 and

Ai = aiX + biY + ciZ, i = 1, 2.

2
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§5. Sylvester Resultant Revisited

It is instructive to explicitly construct a resultant polynomial for a system of two forms in two
variables. Unlike the general setting of the previous section, we do not use the Nullstellensatz. The
reader will recognize that this is essentially the Sylvester matrix construction in §III.3.

Consider two generic forms A, B ∈ D[a,b][X, Y ],

A(X, Y ) =

m∑

i=0

ai X iY m−i

B(X, Y ) =

n∑

i=0

bi X iY n−i.

The Sylvester matrix of A, B is the (m + n)-square matrix

S(A, B)

formed from the coefficients of A, B, in analogy to the non-homogeneous case in §III.3. The matrix
in equation (13) below is S(A, B). The resultant res(A, B) of A, B is the determinant of S(A, B).
Our main goal is to prove the following:

Theorem 14 The polynomial res(A, B) is a resultant polynomial for {A, B}.

Let σ be any ground specialization of a,b. Write Ã, B̃ and R̃ for A|σ, B|σ and res(A, B)|σ , respec-
tively.

Lemma 15 The following are equivalent:
(a) R̃ = 0.
(b) There exist homogeneous polynomials U, V ∈ D[X, Y ] of degrees n− 1 and m− 1 (respectively)
such that

U · Ã + V · B̃ = 0. (12)

Proof. The equation 0 = U · A + V · B can be written as a matrix equation involving the Sylvester
matrix S(A, B),

0 = (un−1, un−2, . . . , u0, vm−1, vm−2, . . . , v0) ·




a0 a1 · · · am

a0 a1 · · · am

. . .
. . .

a0 · · · am

b0 b1 · · · bn

. . .
. . .

b0 · · · bn




(13)

where the ui’s and vj ’s are the coefficients of U, V , respectively. Thus equation (12) holds for U, V

iff the determinant of S(A, B)|σ vanishes, i.e., iff R̃ = 0. Q.E.D.

Lemma 16 R̃ = 0 implies {Ã, B̃} has a non-trivial solution.
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Proof. If Ã is the zero polynomial, then clearly any non-trivial solution for B̃ is a non-trivial solution
for {Ã, B̃}. So assume that σ(ak) 6= 0 for some k = 0, . . . , m, and σ(ai) = 0 for i ≥ k + 1. Then Ã
has the factorization

Ã = σ(ak)Y m−k
k∏

i=1

(X − αiY ), αi ∈ D.

From equation (12), we get UÃ = −V B̃. Since D[X, Y ] is a UFD and deg(V ) = m− 1, at least one

of the m linear factors, Y or X−αiY , divides B̃. Then either (1, 0) or (αi, 1) would be a non-trivial

zero {Ã, B̃}. Q.E.D.

Finally, our main result, theorem 14, is just a consequence of the following result:

Theorem 17 The following are equivalent:
(a) R̃ 6= 0,
(b) There exists a non-zero c ∈ D such that for r = 1, . . . , m + n,

c ·Xr−1Y m+n−r ∈ Ideal(Ã, B̃). (14)

(c) {Ã, B̃} has only the trivial solution.

Proof. (a)⇒(b): We set up m + n equations involving A and B:




a0 a1 · · · am

a0 a1 · · · am

. . .
. . .

a0 · · · am

b0 b1 · · · bn

. . .
. . .

b0 · · · bn







Y m+n−1

XY m+n−2

...

Xm+n−2 Y
Xm+n−1




=




Y n−1A
XY n−2A
...
Xn−2Y ·A
Xn−1A
Y m−1B
...
Xm−1B




(15)

Note that the Sylvester matrix is again involved. Fix r = 1, . . . , m + n. Let C1, . . . , Cm+n be the
co-factors of the entries in the rth column. Multiply both sides of equation (15) on the left by the
row (C1, . . . , Cm+n). Equating the left and right side of this multiplication,

Xr−1Y m+n−rres(A, B) = Ur(X, Y ) ·A(X, Y ) + Vr(X, Y ) · B(X, Y ). (16)

where Ur, Vr ∈ D[a,b][X, Y ] are forms of degrees n − 1 and m − 1. Assertion (b) follows with the
choice c = res(A, B)|σ .
(b)⇒(c): Any non-trivial solution (X, Y ) −→ (x, y) of {A, B}|σ will make the right-hand side
of equation (16) vanish, but the left-hand side will not vanish for either r = 1 or r = m + n,
contradiction.
(c)⇒(a): This is the contrapositive of the previous lemma. Q.E.D.

Remarks. The element c in (14) is called an inertial element of {A, B} (see next section). An
important application of resultants is in the elimination of variables from a system of equations.
Although the multivariate resultant of Macaulay may be more efficient in an asymptotic sense, it
seems that for actual examples, eliminating one variable at a time using Sylvester resultants may be
faster. An exercise below illustrates this application.
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Exercises

Exercise 5.1: (Resultant system for non-homogeneous polynomials)
Let A(X) =

∑m
i=0 aiX

i, B(X) =
∑n

i=0 biX
i ∈ D[a,b][X ]. For all specializations σ of a,b,

such that σ(am) 6= 0 or σ(bn) 6= 0, the system {A, B}|σ has a solution iff R|σ = 0, where R is
the Sylvester resultant of A, B. 2

Exercise 5.2: How many terms are there in res(A, B)? 2

Exercise 5.3: Elimination of variables.
(a) If F, G are polynomials in X1, X2, . . . , Xn, we can compute the Sylvester resultant of F and
G with respect to the variable X1 (so the resultant is a polynomial in X2, . . . , Xn). Interpret
this as a projection of the intersection of two hypersurfaces.
(b) Suppose C1 : F (X, Y ) = 0 and C2 : G(X, Y ) = 0 are two plane curves. We want to define
the locus V of points v = (vx, vy) such that the largest disk Dv whose interior avoids these
curves simultaneously touches both C1 and C2. This locus V is called the Voronoi diagram
defined by C1, C2. Let a = (ax, ay) and b = (bx, by) denote points on C1 and C2 respectively
where Dv touches C1 and C2. The relevant equations are

F0 : |v − a|2 − |v − b|2 = 0,

F1 : F (a) = 0,

F2 : G(b) = 0,

F3 : (vx − ax)Fx(a)− (vy − ay)Fy(a) = 0,

F4 : (vx − bx)Gx(b)− (vy − by)Gy(b) = 0,

Suppose that F, G are polynomials of degrees m. Show by pairwise elimination that V is, in
general, an algebraic curve of degree at most 4m5. HINT: eliminate variables successively in
carefully chosen order.
(c) Compute the Voronoi diagram for the following pair of curves, C1 : X + Y − 9 = 0 and
C2 : 2X2 + Y 2 − 3 = 0.
(d) Why do you get different degree bounds with different order of elimination? What happens
if your resultant vanishes? Can you prove that this is the best possible using “this method”?

2

§6. Inertial Ideal

In this section, fix
Σ = {A1, . . . , Ar}, r ≥ 1 (17)

to be a system of partial forms in D[C][X] where deg Ai = di ≥ 1. Partial forms are convenient
here because they are preserved by partial specializations. We say that a partial form A of degree
m is regular in variable Xj if the coefficient of its power Xm

j in A is an indeterminate. We say Σ
is regular in Xj if each A ∈ Σ is regular in Xj. Finally, we say Σ is regular if Σ is regular in each
variable Xj.

We will assume that Σ is regular unless a less strict condition is explicitly mentioned (e.g., when we
explicitly say “Σ is regular in X1” then the more general assumption is dropped).
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In the following, whenever Σ is regular in variable X1, we assume that the indeterminate coefficients

C = (c1, c2 . . .)

are relabeled so that ci is the coefficient of Xdi

1 in Ai. We further write

Ai = A∗
i + ciX

di

1 , (18)

where A∗
i ∈ D[C][X].

Let us reëxamine our proof that any system Σ of forms has a resultant system Γm (§4). If

Γm \ {0} = {a1, a2, a3, . . .}

is non-empty, then as in the proof, there are Nm×Nm matrices U1, U2, U3, . . . with entries in D[C],
such that

ai · I = Ui ·Qm.

Therefore
ai · PPm = Ui ·Qm · PPm.

The entries on the right-hand side are D[C]-linear combinations of polynomials from the set Σm. In
particular, this shows that

aiX
m
1 ∈ Ideal(Σ).

In general, following Hurwitz, for any set of polynomials Σ′ ⊆ D[C][X], we call R ∈ D[C] an inertial
element of Σ′ if

R ·Xm
1 ∈ Ideal(Σ′) (19)

for some m ≥ 0. Note that Ideal(Σ′) here is generated in the ring D[C][X], and also note the
special role of X1 in this definition. The following is immediate:

Lemma 18 For any Σ:
(i) The set of inertial elements is an ideal.
(ii) If R is an inertial element of Σ and σ is a partial specialization of C then R|σ is an inertial
element of Σ|σ.

Hence, we may speak of the inertial ideal of Σ. When Σ is a system of forms, we constructed in §4 a
resultant system Γ consisting of inertial elements. We conclude from this lemma and lemma 12, §4:

Corollary 19 Every system of partial forms has a resultant system consisting of inertial elements.

We next give a characterization of inertial elements:

Lemma 20 Let Σ be regular in variable X1 and R(C) ∈ D[C]. Then R is an inertial element of Σ
iff under the partial specialization

σ∗ : ci 7−→
−A∗

i

Xdi

1

(i = 1, . . . , r) (20)

the polynomial R(C), regarded as an element of D(C)(X), vanishes:

R|σ∗ = R

(
− A∗

1

Xd1
1

,− A∗
2

Xd2
1

, . . . ,− A∗
r

Xdr

1

, cr+1, . . .

)
= 0. (21)
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Proof. Suppose R is an inertial element. Then (18) and (20) show that Ideal(Σ|σ∗) = (0). So
R|σ∗ = 0 by (19). Conversely assume that (21) holds. Then

R(c1, . . . , cr, cr+1, . . .) = R

(
A1 −A∗

1

Xd1
1

, . . . ,
Ar −A∗

r

Xdr

1

, cr+1, . . .

)

= R

(
− A∗

1

Xd1
1

, . . . ,− A∗
r

Xdr

1

, cr+1, . . .

)

+

r∑

i=1

Ai

Xdi

1

· Bi

(
− A∗

1

Xd1
1

, . . . ,− A∗
r

Xdr

1

, cr+1, . . .

)
,

for some Bi(c1, c2, . . .). The last expression for R(c1, . . . , cr, . . .) represents an expansion of R into 2
parts: the first part containing terms that are not divisible by any Ai/Xdi

1 (i = 1, . . . , r and treating
Ai/Xdi

1 as a new symbol), and the second part for the remaining terms. But the first part is just
R|σ∗ , which is assumed to vanish. Multiplying the last equation by a suitable power of X1, it follows
that R satisfies (19). Hence R is an inertial element. Q.E.D.

The special role of X1 in the definition of inertial elements can be replaced by another Xj under the
following conditions:

Lemma 21 Suppose Σ is regular in variable X1 and in Xj (for some 1 < j ≤ n). Then Xm
1 R ∈

Ideal(Σ) (for some m ≥ 0) iff Xk
j R ∈ Ideal(Σ) (for some k ≥ 0).

Proof. Let σ∗ be the specialization in equation (20). If Xk
j R ∈ Ideal(Σ) then R|σ∗ = 0 (since Σ|σ∗

vanishes). Then Xm
1 R ∈ Ideal(Σ) as in the proof of lemma 20. The reverse implication is similarly

shown. Q.E.D.

Theorem 22 If Σ is a system of partial forms that is regular in X1 then the set of inertial elements
of Σ is a prime ideal of D[C].

Proof. To see that the inertial ideal is prime, consider R, S ∈ D[C]. If R · S is an inertial element,
then by lemma 20, R ·S vanishes under the specialization (20). Hence either R or S vanishes under
the specialization. Again by lemma 20, this means R or S is an inertial element. Q.E.D.

Theorem 23 Let Σ be a system of partial forms that is regular. Then the inertial ideal I of Σ is a
resultant system for Σ.

Proof. Let Γ ⊆ I be a resultant system for Σ. For any ground specialization σ of C, if I|σ vanishes
then Γ|σ vanishes. As Γ is a resultant system for Σ, we conclude that Σ|σ has a non-trivial solution.
Conversely, suppose Σ|σ has a non-trivial X-solution, say τ . Suppose τ(Xj) 6= 0. Now for each
R ∈ I, for some m ≥ 0,

Xm
j R ∈ Ideal(Σ).

Since Σ|σ,τ = 0, and Xm
j |τ 6= 0, it follows that R|σ,τ = 0. But R does not depend on X, so R|σ = 0.

This proves that I|σ = 0. Q.E.D.
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Lemma 24 Let Σ be regular in X1 and c1, . . . , cr be given by (18). Let c ∈ C be different from
c1, . . . , cr and σ be a partial C-specialization that maps c to some α ∈ D (leaving all other indeter-
minates in C fixed). Suppose the inertial ideal I of Σ is non-trivial.
(a) The inertial ideal of Σ|σ is also non-trivial.
(b) Every non-zero element R ∈ I contains a factor P that does not vanish under σ.

Proof. Part (a) follows immediately from part (b). To show (b), suppose R ∈ I is a non-zero element
such that R|σ = 0. By the pseudo-division property (§III.2), βmR = (c− α)P + Q for some m ≥ 1,
β ∈ D[C], and P, Q ∈ D[C] such that Q and β do not depend on c (actually β = 1 here). But
R|σ = 0 implies Q|σ = Q = 0. Thus (c−α)P is an inertial element. Note that c−α is not an inertial
element of Σ, by lemma 20. Hence P must be a non-zero inertial element of Σ. We can repeat this
argument (choosing P in place of R) until eventually R|σ 6= 0. Q.E.D.

Lemma 25 If R is a non-zero inertial element of Σ then R depends on at least n of the coefficients
among c1, . . . , cr. In particular, r ≥ n.

Proof. By way of contradiction, suppose that R depends on m < n elements among c1, . . . , cr.
Without loss of generality, assume R depends on c1, . . . , cm only. Consider the partial specialization

(cn+1, cn+2, . . .)
σ−→ (αn+1, αn+2, . . .), (αj ∈ D). (22)

Repeated application of the previous lemma shows that R|σ 6= 0. Write R̃ for R|σ. So R̃ =

R̃(c1, . . . , cm) is an inertial element of Σ|σ. Since Σ is regular, we may choose the αj ’s in (22) so

that A∗
i |σ = −Xdi

i+1 for i = 1, . . . , m (using the fact that i ≤ m < n). Let σ∗ be the {c1, . . . , cn}-
specialization for Σ|σ, defined as in (20). It follows that

σ∗(σ(ci)) = σ∗(ci) = (Xi+1/X1)
di .

Since R̃|σ∗ vanishes, we have

R̃|σ∗ = R̃

((
X2

X1

)d1

,

(
X3

X1

)d2

, . . . ,

(
Xm+1

X1

)dm

)
= 0.

But renaming each (Xi+1/X1)
di as a new indeterminate Yi, we conclude that R̃(Y1, . . . , Ym) = 0.

But a non-zero polynomial cannot vanish by renaming, contradiction. Q.E.D.

This yields:

Theorem 26
(i) If the number r of polynomials in Σ is less than the number n of variables then the inertial ideal
of Σ is trivial.
(ii) Any system of homogeneous equations in D[X] with fewer equations than unknowns has a non-
trivial zero.

Proof. (i) If Σ has a non-zero inertial element then the previous lemma shows that r ≥ n. So r < n
implies such elements do not exist.
(ii) Let Σ′ ⊆ D[X] be the homogeneous system under consideration. If Σ′ = Σ|σ where Σ is the
system in part (i), then any resultant system Γ for Σ specializes to a resultant system Γ|σ for Σ′. But
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such a Γ is necessarily trivial (we may always assume Γ is comprised of inertial elements). Q.E.D.

An ideal I ∈ D[C] is pseudo-principal if there exist R ∈ I and α ∈ D such that for all S ∈ I, R
divides α · S. Of course, if α = 1, then I is principal in the usual sense.

Theorem 27 If Σ has as many polynomials as variables, then its inertial ideal I is a non-trivial
pseudo-principal ideal. In particular, Σ has a resultant polynomial.

Proof. First let us show that I 6= (0). If I = (0) then under every C-specialization σ, the system
Σ|σ has a non-trivial solution. In particular, since n = r, we may specialize Σ to

Σ|σ = {Xdi

i : i = 1, . . . , n}.

But it is patently false that Σ|σ has a non-trivial solution. This shows I 6= (0). By lemma 25,
any non-zero element of I must depend on c1, . . . , cn. We now operate in the UFD D′ = QD[C]
where QD is the quotient field of D. Choose R0 ∈ IdealD′(I) to be an irreducible element whose
cn-degree, say d ≥ 1, is minimum. We claim that

IdealD′(R0) = IdealD′(I).

The forward inclusion is immediate. In the reverse direction, pick any non-zero S ∈ IdealD′(I) and
let e be the cn-degree of S. Then e ≥ d and by the pseudo-division property, γmS = AR0 + B for
some m ≥ 1 and γ, A, B ∈ QD[C] where the cn-degree of B is less then d and γ does not depend
on cn. But B = γmS − AR0 ∈ IdealD′(I). So B = 0 since the cn-degree of B is less than d; this
in turn means R0 divides γmS. As R0 is irreducible in D′ which is a UFD, it must divide γ or S.
Since the cn-degree of γ is 0, R0 cannot divide γ and so it divides S. This proves our claim. Note
that for some α ∈ D, α · R0 ∈ I. This means that for all S ∈ I, αR0 divides αS, proving that I is
pseudo-principal.

This immediately implies that α · R0 can serve as a resultant polynomial for Σ (since the inertial
ideal is a resultant system for Σ). Q.E.D.

Definition of Macaulay Resultant. We call α·R0 in the preceding proof the Macaulay resultant
of Σ, and denote it by

res(Σ).

Although α ·R0 in the proof is only defined up to associates in D, we will next show that α can be
taken to be 1 for a regular system of n forms. Thus res(Σ) is unique with this convention.

Suppose now Σ = {A1, . . . , An} is a system of partial forms, not necessarily regular. Its Macaulay
resultant can be defined naturally to be an appropriate specialization: namely, if Σ′ = {A′

1, . . . , A
′
n}

is any regular system such that deg A′
i = deg Ai and there is a partial specialization σ such that

Σ′|σ = Σ then define the Macaulay resultant res(Σ) of Σ to be res(Σ′)|σ. We leave it as an exercise
to show that this does not depend on the choice of Σ′.

Exercises

Exercise 6.1: (Bloemer) Let Γ be the inertial ideal of Σ. Show by an example that the inertial
ideal of Σ|σ may be a proper superset of Γ|σ. HINT: let Γ be trivial. 2
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§7. The Macaulay Resultant

We derive properties of the Macaulay resultant

R0 := res(Σ)

where
Σ = {A1, . . . , An} ⊆ D[C][X1, . . . , Xn]

is a regular system of n ≥ 2 forms.

We can already infer from theorem 22 that R0 is irreducible. For further properties, we give an
explicit construction which van der Waerden [208] attributed to Hurwitz. Let

di :=deg(Ai) ≥ 1, (i = 1, . . . , n).

Unlike the previous section, we now let ci denote the coefficient of Xdi

i in Ai, and call ci the main
coefficient of Ai. In §4, we constructed the matrix Qm of shape N∗

m×Nm. We revisit this construction
in more detail. As usual, Xe denotes the power product

∏n
i=1 Xei

i where e = (e1, . . . , en) ∈ Nn. We
first partition the set PPd of power products of degree d into the following sets:

PPd
1 := {Xe ∈ PPd : e1 ≥ d1},

PPd
2 := {Xe ∈ PPd : e1 < d1 and e2 ≥ d2},

...

PPd
i := {Xe ∈ PPd : e1 < d1, e2 < d2, . . . , ei−1 < di−1 and ei ≥ di},

...

PPd
n := {Xe ∈ PPd : e1 < d1, e2 < d2, . . . , en−1 < dn−1 and en ≥ dn}.

Finally, let
PPd

n+1 :={Xe ∈ PPd : ei < di for i = 1, . . . , n}.
These n + 1 sets constitute a partition of PPd because not only is PPd

i disjoint from PPd
j for i 6= j,

but every Xe ∈ PPd must fall into some PPd
i .

We say Xe is reduced in Xi if ei < di. We say Xe is reduced if it is reduced in every Xi. Finally, if
Xe is reduced in all but one of the variables, we say it is almost-reduced.

E.g., PPd
i comprises those power products (in PPd) that are reduced in X1, . . . , Xi−1 but not reduced

in X i. PPd
n+1 comprises the reduced power products. Every element in PPd

n is almost-reduced. Note
that

PPd
i ∪ PPd

i+1 ∪ · · · ∪ PPd
n+1

comprises the power products that are reduced in X1, . . . , Xi−1.

It is easy to verify that PPd
n+1 is empty iff d ≥ 1 +

∑n
i=1(di − 1). Henceforth, assume

d := 1 +

n∑

i=1

(di − 1). (23)

Further let

d̂i :=




n∏

j=1

dj


 /di. (24)
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Then for i = 1, . . . , n, it is easy (Exercise) to see that

|PPd
i | ≥ d̂i, with equality when i = n. (25)

Next, for each i = 1, . . . , n, let

Si :=
PPd

i

Xdi

i

·Ai = {Xe · Ai : Xe ·Xdi

i ∈ PPd
i }.

So the set
S := S1 ∪ · · · ∪ Sn

has Nd =
(
d+n−1

n−1

)
polynomials. Since the polynomials in S have degree d, each polynomial corre-

sponds to a row in the matrix Σd. The corresponding Nd×Nd submatrix M of Σd made up of these
rows will be called a Macaulay matrix of Σ. Of course, the determinant of M is an element of Γd

(§5) and so is an inertial element of Σ.

Example: Let
Σ = {A1, A2, A3} (26)

where A3 = a3X
2 + b3Y

2 + c3Z
2 and Ai = aiX + biY + ciZ for i = 1, 2. Then (d1, d2, d3) =

(1, 1, 2). So d = 3 and

PP2
1 = {X2, XY, XZ}, PP2

2 = {Y 2, Y Z}, PP2
3 = {Z2},

S1 = {XA1, Y A1, ZA1}, S2 = {Y A2, ZA2}, S3 = {A3}.

Finally, M is given by

X2 XY XZ Y 2 Y Z Z2

M =




a1 b1 c1

a1 b1 c1

a1 b1 c1

a2 b2 c2

a2 b2 c2

a3 b3 c3




.

XA1

Y A1

ZA1

Y A2

ZA2

A3

Notice that the main coefficients are a1, b2, c3 and these occur along the main diagonal of M .
We have labeled the columns of M by elements of PPd and the rows by elements of S. The
matrix is also partitioned into blocks. All these illustrate a general convention.

Labeling convention for Macaulay Matrix. It is expedient for the subsequent exposition to
construct M by first listing the rows corresponding to S1, followed by the rows corresponding to S2,
and so on. The columns of M are labeled by elements of PPd according to the following scheme:
for each F ∈ Sj , call the power product Xe in F whose coefficient is cj the main power product.
Observe that distinct polynomials in S have distinct main power products. Thus the cj ’s occur in
distinct columns of M , and we may arrange so c1, . . . , cn appear along the main diagonal of M . We
therefore label a column by the unique main power product Xe that appears in that column (and
in a main diagonal position). Notice that the main power products of elements in Sj comprise the
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set PPd
j . This means that the columns of M are labeled first by the elements of PPd

1, followed by

elements of PPd
2, etc. Thus M can be given the block structure:

M =




M11 M12 · · · M1n

M21 M22 M2n

...
. . .

...
Mn1 Mn2 · · · Mnn


 , (27)

where Mij is |PPd
i | by |PPd

j | and contains coefficients from Ai only. This is schematically shown in
figure 1.

· · ·

S1

...

...

Sn

Nd

Nd

PPd
1 PPd

2 PPd
n

S2

Figure 1: The Macaulay matrix M for Σ.

Lemma 28 For each j = 1, . . . , n, the determinant det(M) is homogeneous of degree hj in the
coefficients of Aj ∈ Σ where hj = |PPd

j |. In fact, det(M) contains the monic monomial

ch1
1 ch2

2 · · · chn

n (28)

where cj is the main coefficient of Aj.

Proof. It is clear that det(M) is homogeneous in the coefficients of each Aj . If det(M) 6= 0 then it
has the claimed degree hj in the coefficients of Aj since there are exactly hj rows in M containing
only coefficients of Aj . So it remains to show that det(M) 6= 0. This follows if det(M) contains the

monomial (28). Let σ be the specialization yielding Aj |σ = cjX
dj

j for each j. The non-zero entries
of M |σ are therefore confined to its main diagonal (by construction of M), and hence det(M |σ) is
given by (28). Q.E.D.

Our preceding construction of the sets PPd
i is arbitrary in two ways:

c© Chee-Keng Yap September 9, 1999



§7. The Macaulay Resultant Lecture XI Page 325

(a) We associated the variable Xi with Ai. (Macaulay suggests that we regard Ai as a polynomial
in Xi.)

(b) The definition of PPd
i (and of Si) depended on a fixed enumeration of the variables, from X1 to

Xn.

The assertion (25) depends on these choices only to the extent that we enumerated the variable (viz.,
Xn) associated with An last. To indicate this special role of An in our construction of S and M , let
us introduce the notations S(n) and M (n) to refer to them. Let us now vary the construction of S
and M by preserving (a) but varying (b) so that the variable Xi associated with Ai is enumerated
last. Call the corresponding set S(i) and matrix M (i). Set

G(i) :=det(M (i)).

We have the following analogue of (25) and lemma 28:

Corollary 29 Fix i = 1, . . . , n. Then G(i) is homogeneous in the coefficients of each Aj ∈ Σ. If

G(i) is of degree d
(i)
j in the coefficients of Aj then

d
(i)
j ≥ d̂j , with equality when j = i.

Moreover, G(i) contains the monic monomial

±c
d
(i)
1

1 c
d
(i)
2

2 · · · cd(i)
n

n . (29)

Since QD[C] is a UFD, we may define the GCD of G(1), . . . , G(n) in QD[C]. Our goal is to show that
R0 is (up to similarity, §III.1) equal to

G := GCD(G(1), . . . , G(n)). (30)

Let B1 and B2 be forms in the variables X but involving indeterminate coefficients C′ and such
that deg(B1B2) = deg(A1). We assume C′ is disjoint from C. We need an unusual specialization:

Lemma 30 Suppose σ is a partial specialization such that

A1|σ = B1B2

and which leaves the coefficients of the other Aj’s untouched. Then some associate of R0|σ is divisible
by R1R2 where Rj := res(Bj , A2, A3, . . . , An) (j = 1, 2).

Proof. Note that Xe
1R0 ∈ Ideal(A1, A2, . . . , An) for some e ≥ 0. Hence Xe

1R0|σ ∈
Ideal(B1B2, A2, . . . , An) where this ideal is generated in the ring D[C,C′][X]. Hence Xe

1R0|σ ∈
Ideal(Bj , A2, . . . , An), j = 1, 2. This means R0|σ is divisible by Rj in the ring QD[C,C′]. But
R1 and R2 are each irreducible, and so R0|σ is in fact divisible by the product R1R2 in QD[C,C′].

Q.E.D.

Theorem 31
(a) The Macaulay resultant R0 is (up to similarity) equal to G.

(b) R0 is homogeneous of degree d̂i in the coefficients of Ai.
(c) R0 contains a monomial of the form

α · cd̂1
1 cd̂2

2 · · · cd̂n

n ,

where α is a unit in D. W.l.o.g., assume α = 1.
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Proof. We first assume that Σ consists of generic polynomials.
(a) Clearly R0 divides G, since R0 divides each G(i) in QD[C]. To show (a), it suffices (in view of

corollary 29) to show that the degree of R0 in the coefficients of Ai is equal to d̂i. By symmetry, it

suffices to prove that the degree of R0 in the coefficients of An is equal to d̂n. To see this, choose a
specialization σ such that each

Ai|σ, i = 1, . . . , n− 1

factors into di linear forms that are regular in all variables. We assume these linear forms involve
brand new indeterminate coefficients. For instance, we may choose σ such that

A1|σ = L1L2 · · ·Ld1

where Li =
∑n

j=1 aijXj and the aij ’s are new indeterminates. This is possible since A1 is
generic. If Bi (i = 1, . . . , n − 1) is a linear factor of Ai|σ, then the Macaulay resultant R′ =
res(B1, B2, . . . , Bn−1, An) divides some associate of R0|σ, by the obvious extension to the previous

lemma. But there are d̂n such resultants R′, and they all divide some associate of R0|σ. Since each
R′ is irreducible, their product must divide some associate of R0|σ. By corollary 29, we know that
each R′ is of degree at most 1 in the coefficients of An. By lemma 25, R′ must depend on the
coefficients of An, and so it has degree exactly 1. Hence their product is of degree exactly d̂n in
the coefficients of An. So R0|σ is of degree (at least, and hence equal to) d̂n in the coefficients of

An. Since σ does not affect the coefficients of An, we conclude that R0 also has degree d̂n in the
coefficients of An.
(b) With respect to the coefficients of Ai, G(i) is homogeneous and R0 divides G(i) implies that R0

is also homogeneous; the argument in part (a) shows that R0 has degree d̂i.
(c) Let σ be the specialization such that Ai|σ = ciX

di for i = 1, . . . , n. Then R0|σ divides

G(i)|σ = c
d
(i)
1

1 · · · cd(i)
n

n implies that R0|σ = α · ce1
1 · · · cen

n for some ei’s and α is a unit. Now σ(ci) = ci

for all i = 1, . . . , n implies that R0|σ is a monomial in R0. Since R0 is homogeneous of degree d̂i in

the coefficients of Ai (from part (b)), this means ei = d̂i for each i = 1, . . . , n.

Finally, we remove the assumption that Σ has only generic polynomials: since G and R0 are obtained
from the generic case by a common specialization, any equality would be preserved. In particular,
(a) holds generally. Next (b) holds since the degree d̂i in the coefficients of Ai is preserved under
any specialization in which Σ remains a set of forms (such specializations sends each ci to 0 or ci).
Finally (c) is preserved by specializations in which Σ remains regular. Q.E.D.

Macaulay’s Theorem. At this point, we have a method for computing the Macaulay resultant,
using the GCD formula of (30). Actually, it turns out that we can avoid GCD computation and
obtain R0 as a sequence of 2n divisions involving minors of the M (i)’s (§9). But a better method
follows from an important result of Macaulay [122]. Let M be a Macaulay matrix of Σ (for instance,
take M = M (n)) and let L be the principal submatrix of M obtained by deleting all the columns
that are labeled by almost-reduced power products, and also deleting the rows corresponding to the
deleted columns. Note that an almost-reduced power product can be characterized as one that labels
some column in the last block of the matrix M (i), for some i = 1, . . . , n. Hence there are exactly d̂
almost-reduced power products in PPd where (see equation (24))

d̂ :=

n∑

i=1

d̂i. (31)

We cite without proof:
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Theorem 32 (Macaulay)
R0 = det(M)/ det(L). (32)

For example, if M = M (3) is the Macaulay matrix for the system (26) above, then the only power
product in PP2 that is not almost-reduced is XY . In this case, L is a 1 × 1 matrix containing the
entry a1. Note that it is hardly obvious from an examination of the matrix M that such a factor a1

exists in det(M).

Remark. The basic properties of the Macaulay resultant goes back to Mertens [130]. It was also
treated by Hurwitz [87] and Perron [156]. The only proof in print of Macaulay’s theorem seems
to be his original paper [122]. This paper contains the construction of the matrix M above. These
ideas apparently trace back to Bézout (1779). See also [123]. For improved constructions when all
the polynomials have the same degree, see [124].

Exercises

Exercise 7.1:
(i) Verify (25).
(ii) Give an exact expression for |PPd

i |. 2

Exercise 7.2: Construct the partition of PPd = ⊎n
i=1PP

d
i in the following cases:

(i) Let n = 3, (d1, d2, d3) = (2, 4, 2). So d = 6.
(ii) Let (d1, . . . , dn) = (1, 1, . . . , 1, m). So d = m. 2

Exercise 7.3: Consider the Macaulay resultant for the following:
(i) A system of n generic linear forms in n variables. Verify that this is the standard determi-
nant.
(ii) A system of 2 generic forms in 2 variables. Verify that this is the Sylvester resultant.
(iii) A system of n− 1 generic linear forms and 1 arbitrary generic form, in n variables. 2

Exercise 7.4: Consider the system in equation (26).
(i) Compute its Macaulay resultant using formula (32). Show intermediate results.
HINT: the Macaulay resultant is

R0 = a2
2b

2
1c3−2a1a2b1b2c3+a2

1b
2
2c3+a2

2b3c
2
1+a3b

2
2c

2
1−2a1a2b3c1c2−2a3b1b2c1c2+a2

1b3c
2
2+a3b

2
1c

2
2.

(ii) What are the elements of Γ2 (see §4, exercise 4.2) expressed in terms of R0? 2

Exercise 7.5: Consider the system Σ = {A1, A2, A3} where A1(X, Y, Z) is generic of degree 1 and
A2(X, Y, Z), A3(X, Y, Z) are generic of degree 2 (i.e., quadrics). Write down a Macaulay
matrix M for Σ and its associated matrix L. Compute its Macaulay resultant. HINT: do
not expect to explicitly write down the final resultant by hand — use some computer algebra
system. 2

Exercise 7.6: The Macaulay matrix M of Σ has shape Nd × Nd where d depends only on the
degrees d1, . . . , dn. We want to exploit the sparse structure of the actual forms in Σ. Describe
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an infinite family of systems Σ such that we can set up similar matrices M whose sizes are
smaller than that of the corresponding Macaulay matrix. E.g., suppose each Ai ∈ Σ is a sum
of powers: Ai =

∑n
j=1 cijX

di

j . 2

p Last Update Date : 1999/09/0622 : 26 : 47

§8. U-Resultant

Let Σ = {A1, . . . , Ar} be a system of homogeneous polynomials in D[X1, . . . , Xn] with a finite number
s ≥ 1 of non-trivial zeros in the algebraic closure D, say,

ξ(j) =
(
ξ
(j)
1 , . . . , ξ(j)

n

)
, (j = 1, . . . , s), (33)

such that every other zero of Σ is proportional to one of these zeros. Such a set {ξ(1), . . . , ξ(s)} is
called a representative set of solutions for Σ. We consider the problem of computing a representative
set. A useful tool for this purpose is the U -resultant.

The above “finiteness condition” is clearly the best that one can impose on the zero set of Σ, since
if ξ = (ξ1, . . . , ξn) is any zero, so is any multiple αξ = (αξ1, . . . , αξn), α ∈ D. The set

D · ξ = {αξ : α ∈ D}

is called a solution line. So our assumption on the zero set of Σ amounts to saying that it has finitely
many solution lines. Such a system Σ is also called a projective zero-dimensional system. Two
solutions are said to be proportional if they belong to the same solution line.

We first introduce the polynomial

A0 = U1X1 + · · ·+ UnXn

in the new indeterminates U = (U1, . . . , Un) and in X. Let Γ ⊆ D[U] be a resultant system of Σ′,
where

Σ′ :={A0, A1, . . . , Ar}.

We may assume that Γ is an ideal. Note that Γ is non-trivial (otherwise, for any j, we get that∑n
i=1 αiξ

(j)
i = 0 for any specialization Ui → αi, i = 1, . . . , n which is clearly false). Consider

G(U) :=

s∏

j=1

gj(U), where gj(U) := U1ξ
(j)
1 + · · ·+ Unξ(j)

n . (34)

We shall say that gj(U) “encodes” the solution line corresponding to ξ(j).

Lemma 33 For any ground U-specialization σ, Γ|σ = 0 iff G(U)|σ = 0.

Proof. (⇒) If Γ|σ vanishes, then Σ′|σ has an X-solution. But since any X-solution is proportional
to some solution ξ(j) in (33), this means for some j,

A0(ξ
(j),U)|σ = gj(U)|σ = 0,
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which implies G(U)|σ = 0.
(⇐) If G|σ vanishes then for some j, gj(U)|σ = 0. Then Σ′|σ has the non-trivial solution ξ(j). Hence
Γ|σ vanishes. Q.E.D.

So Γ and G have precisely the same set of zeros. By the Nullstellensatz (in the coefficient ring D),
for each R ∈ Γ, there is some e ∈ N such that

Re ∈ IdealD(G(U)) (35)

and there is some d ∈ N such that
G(U)d ∈ IdealD(Γ). (36)

Note that
R0 := GCD(Γ)

is well-defined, assuming the GCD takes place in the UFD QD[U]. We will construct R0 explicitly as
follows: for each i = 1, . . . , s, let ei ≥ 0 be the maximum value such that gei

i divides each R ∈ Γ.
Since G(U) is a product of the irreducible linear forms g1, . . . , gs, it follows from (35) that each R
is divisible by each gi. This proves that each ei ≥ 1. Next we pick H1, . . . , Hs ∈ Γ such that g1+ei

i

does not divide Hi (by definition, gei

i divides Hi). From equation (36), there exists G1, . . . , Gt ∈ Γ
such that G(U)d ∈ IdealD(G1, . . . , Gt). Consider

R1 := GCD(H1, . . . , Hs, G1, . . . , Gt)

where the GCD takes place in the UFD QD[U]. Clearly R1 = βge1
1 · · · gen

n for some β ∈ QD[U]. We
show that, in fact, β = 1. From our choice of G1, . . . , Gt, we have GCD(G1, . . . , Gt)|G(U)d. Hence
R1|G(U)d, and so β is a power product in g1, . . . , gn. But no positive power of any gi can divide
β (otherwise βgei

i |Hi implies g1+ei

i |Hi). This proves β ∈ QD, but this means β = 1, by the usual
conventions for the GCD function. We define R0 as an element of D[U] by multiplying R1 with a
suitable α ∈ D,

R0 :=α · R1 ∈ D[U].

Clearly R1 (and hence R0) is a GCD of Γ over QD[U].

We call R0 the U -resultant of Σ, and this is defined up to similarity (multiplication by elements of
D). The resultant terminology for R0 is justified because R0 is a resultant polynomial of Σ: if Σ|σ
has a solution iff Γ|σ = 0, iff G|σ = 0, iff R0|σ = 0. We summarize all this:

Theorem 34 The U -resultant R0 of Σ is a resultant polynomial of {A0, A1, . . . , Ar}. It factors into
linear factors of the form

gj = U1ξ
(j)
1 + · · ·+ Unξ(j)

n

(with some multiplicity ej ≥ 1) in D[U]. The distinct linear factors in this factorization correspond
to the s solution lines D · ξ(j) (j = 1, . . . , s) of Σ.

Solving Projective Zero-dimensional Systems. Thus solving Σ is reduced to factoring the
U -resultant over D. Let us now assume D = Z. We indicate how to use univariate real root isolation
techniques and avoid factoring over C. Our goal is to compute a representative set (33) of solutions

for Σ in case r = n− 1. Let us first assume that ξ
(j)
1 6= 0 for all j. We may proceed as follows.

(1) Compute R0 as the Macaulay resultant of Σ′ (= Σ ∪ {A0}).
(2) Define the partial U-specialization σk (for 2 ≤ k ≤ n) as follows:

σk(Uℓ) =





U1, if ℓ = 1,
−1 if ℓ = k,
0 else.

(37)
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Now isolate the roots of the specialized U -resultant,

R0|σk
=

s∏

j=1

(U1ξ
(j)
1 − ξ

(j)
k )ej .

Then each ξ
(j)
k /ξ

(j)
1 (j = 1, . . . , s) appears as a root of R0|σk

. Let Tk denote this set of roots.
(3) Finally, we need to check for each element ξ = (1, ξ2, . . . , ξn) ∈ {1} ×∏n

k=2 Tk whether ξ is a
zero of Σ. The ξi’s are algebraic numbers and so, in principal, we know how to check this. For
instance, ξi may be represented by isolating intervals or it may be represented by a sufficiently good
approximation (cf. §IX.6). In any case, we need some root bounds on ξi. This is derived below.

Note that if the 1st and kth components of any root ξ(j) both vanish, then R0 vanishes under the
specialization σk and the method fails. In this case, we may be able to replace the special role of the
first coordinate by the ith coordinate if the following holds: for all k, k 6= i, and for all j = 1, . . . , s,

either ξ
(j)
k or ξ

(j)
i is non-zero. Otherwise, we need further techniques. Since D = Z, we may assume

that R0(U) is a primitive polynomial (§III.1). Hence the U -resultant is determined up to sign. We
first factor R0 over the Z:

Lemma 35 Let W ⊆ {1, . . . , n}. Then R0(U) ∈ Z[U] factors over Z into two polynomials

R0 = RW RW

with the following property: for all j = 1, . . . , s,

RW

gj
∈ C[U] iff (∃i ∈W )[ξ

(j)
i 6= 0].

Proof. We may choose RW (U) ∈ Z[U] to be the U -resultant of

ΣW :=Σ ∪ {Xi : i ∈ W}.

Note that RW |R0 since each zero of ΣW is a zero of Σ.

Q.E.D.

Choosing W = {1, k}, we may apply now the substitution (37) to RW (U), etc., as before. But
how do we know RW (U)? After factoring R0(U) into its irreducible factors over Z, we can easily
discover which of these factors are factors of RW (U): these are precisely the factors that do not
vanish under the specialization (37). In case one has r > n−1 equations in n variables, then a set of
n− 1 linear combination of these r equations (with coeficients randomly chosen from a suitable set)
can be shown to result in a zero-dimensional system that can be solved as before. See also [113, 37].

Exercises

Exercise 8.1: We may assume that Γ consists of inertial elements. Show that Γ is a homogeneous
ideal in U. 2

Exercise 8.2: The U -resultant of X2 + Y 2 −Z2 and (X − Y −Z)(X − Y + Z) is U2
1 U2

2 −U2
1 U2

3 −
U2

2 U2
3 + U4

3 . What are the linear factors of this U -resultant? Give a geometric interpretation
of this system. 2
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Exercise 8.3: Complete the above outline of a method to solve a projective zero-dimensional system
of n− 1 equations in n variables. 2

§9. Generalized Characteristic Polynomial

Let
Σ = {A1, . . . , An} ⊆ Z[C][X1, . . . , Xn] (38)

be a system of n partial forms in n variables. Let di = deg Ai ≥ 1. The “main coefficient” of Ai is
again the coefficient ai ∈ Z∪C of Xdi

i in Ai. Note that ai may be 0. We are interested in computing
the Macaulay resultant R0 = res(Σ), and its applications for solving zero-dimensional polynomial
systems.

First consider the problem of computing R0. In the two extreme cases, Σ may be a system of generic
polynomials or it may be a system of homogeneous polynomials in Z[X1, . . . , Xn]. In case Σ is a
system of generic forms, we may use Macaulay’s formula det(M)/ det(L) (equation (32)) to compute
the resultant. If Σ is not generic, we can still use compute Macaulay’s resultant for the generic case
and then specialize. The problem is that the generic case is not computationally feasible, except for
very small systems. Ideally, we should try to compute directly with the specializations M̃, L̃ of the
matrices M, L. Unfortunately, the specialized determinants det(M̃) and det(L̃) may both vanish so
that the division cannot be carried out.

To avoid this problem, Canny [37] introduced the (generalized) characteristic polynomial χΣ(λ) of
Σ where λ is a new indeterminate. This is defined to be the Macaulay resultant of the system

Σλ :={λXdi

i −Ai : Ai ∈ Σ}. (39)

Let M be a Macaulay matrix of Σλ (this can be one of the M (i)’s in §7). Let χM (λ) be the
characteristic polynomial of M . Recall that in general, for any square matrix M , the characteristic
polynomial of M (in the indeterminate λ) may be defined to be

χM (λ) := det(λI −M)

where I is the identity matrix. In analogy to equation (32), we see that

χΣ(λ) =
χM (λ)

χL(λ)
. (40)

Note that while (32) assumes a regular system of forms, the formula (40) is also valid9 for any
M, L constructed from partial forms because of the presence of λ. There are well-known methods
for computing the characteristic polynomials of matrices. Indeed, we can adapt Bareiss’ algorithm
(§X.2) if we want a polynomial-time algorithm. An efficient parallel algorithm10 by Berkowitz [21]
is also available for this computation. Once we have computed χΣ(λ), we can recover the Macaulay
resultant R0 = res(Σ) via the formula

R0 = ±χΣ(0).

In other words, up to sign, R0 is just the constant term in the polynomial χΣ.

9More precisely, the only concern when we partially specialize the numerator and denominator in formula (40) is
that the denominator may vanish. But this cannot happen because of the introduction of λ.

10The method of Berkowitz explicitly avoids division in the underlying domain. A comparable algorithm of Csanky
does not have this property (but may be adapted to yield an extra factor of n!, see [167, appendix]).

c© Chee-Keng Yap September 9, 1999



§9. Generalized Characteristic Polynomial Lecture XI Page 332

Division Scheme for χΣ(λ). We derive an alternative method suggested by Canny with the
attractive feature that it only involves a sequence of 2n exact divisions. Let

Σ′ = {A′
1, . . . , A

′
n} ⊆ Z[C, c1, . . . , cn][X1, . . . , Xn]

where A′
i is obtained from Ai by replacing ai with a new indeterminate ci. We first develop the

scheme to compute the Macaulay resultant of Σ′ since its correctness is more transparent. Then we
specialize Σ′ to Σ(λ) by replacing each ci with λ− ai.

As in §7, let G(i) (i = 1, . . . , n) denote the determinant of the Macaulay matrix M (i) with respect
to the system Σ′. Writing χ0 for the Macaulay resultant of Σ′, we let

H(i) :=
G(i)

χ0
. (41)

Clearly, H(i) is a polynomial in Z[C, c1, . . . , cn]. We make the important observation:

H(i) is independent of ci. (42)

This is because the ci-degree of G(i), and of χ0, are both equal to d̂i. Next, define

G
(i)
j , H

(i)
j , χj , (j = 0, . . . , n)

to be the leading coefficients (respectively) of G(i), H(i), χ0 when viewed as polynomials in c1, . . . , cj .
Strictly speaking, it is nonsense to speak of the “leading coefficient” of a multivariate polynomial.
But G(i), χ0 are “rectangular” and hence has a “leading coefficient” in the following sense:

Definition. A polynomial P = P (c1, . . . , cn) ∈ D[c1, . . . , cn] is rectangular if it contains
a monomial of the form αcd1

1 · · · cdn
n for some α ∈ D where each di is the degree of P

in the indeterminate ci. We say P is monic rectangular if, in addition, α = 1. The
leading coefficient of a rectangular P , when viewed as an element of D′[c1, . . . , ci] where
D′ = D[ci+1, . . . , cn], refers to the element β ∈ D′ such that βcd1

1 · · · cdi

i is a monomial
of P .

Now each G
(i)
j , H

(i)
j , χj is, in turn, a rectangular monic polynomial in cj+1, . . . , cn. The notation

“χj” agrees with our original subscript “0” in χ0. From (41), we obtain at once the corresponding
equations

H
(i)
j =

G
(i)
j

χj
, (j = 0, . . . , n). (43)

Note that H
(i)
j ’s are principal minors of M (i). In view of (42), we obtain a series of equations and

recurrences for the χi’s:

H
(i)
i = H

(i)
i−1, (i = 1, . . . , n),

G
(i)
i

χi
=

G
(i)
i−1

χi−1
,

χi−1 =
G

(i)
i−1

G
(i)
i

χi.

Telescoping,

χ0 =
G

(1)
0

G
(1)
1

G
(2)
1

G
(2)
2

· · · G
(n)
n−1

G
(n)
n

χn. (44)

Since χn = 1 and each G
(i)
j is a minor of M (i), this formula leads to scheme to compute χ0 by a

sequence of exact divisions as follows.
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Division Scheme:

Input: G
(i)
i and G

(i)
i−1 for i = 1, . . . , n.

Output: χ0(λ), the generalized characteristic polynomial.
Method:

Initialization: χn ← 1.
for i← n downto 1, do

1. H
(i)
i−1 ←

G
(i)
i

χi
.

2. χi−1 ←
G

(i)
i−1

H
(i)

i−1

.

Now let σ be the specialization that takes ci to λ − ai. We could have carried out the above

computation for indeterminate ci’s and then specialize using σ. But this is inefficient. If G̃
(i)
j , H̃

(i)
j ,

etc., denote the σ-specialization of G
(i)
j , H

(i)
j , etc., then notice that G̃

(i)
j can be obtained as an

appropriate minor of M̃ (i). Then the H̃
(i)
j ’s and R̃j ’s can be computed using the same scheme. Of

course, R̃0 is just the desired characteristic polynomial χΣ(λ).

Computing the Constant Term of χΣ(λ). Suppose we only want to compute R0, without
computing the entire characteristic polynomial χ0. We observe that χM (λ) and χL(λ) are monic
polynomials in λ. As such, the coefficients of their quotient can be directly obtained as suitable
subdeterminants according to §III.4. To be explicit, suppose

C(X) =

m−n∑

i=0

ciX
i (45)

is the quotient of A divided by B where

A(X) =

m∑

i=0

aiX
i, B(X) =

n∑

i=0

biX
i, m ≥ n. (46)

are monic polynomials. Then (§III.4) the coefficient ci is, up to sign, the (m− n− i + 1)st principal
minor of the following matrix:

M :=




am am−1 am−2 · · · am−n · · · a1 a0

bn bn−1 bn−2 · · · b0 · · · 0 0
bn bn−1 · · · b1 · · · 0 0

. . .
...

bn bn−1 · · · b1 b0




. (47)

For instance, the leading coefficient cm−n of C is given by the 1st principal minor, which is am = 1.

The next coefficient cm−n−1 is given by det

[
am am−1

bn bn−1

]
. For i = 1, . . . , m − n, the coefficient

cm−n−i depends only on am−1, . . . , am−i and bn−1, . . . , bmin{0,n−i}. In particular, the constant term
c0 depends only on the leading m − n + 1 coefficients of polynomials A and B. Note that these
remarks do not assume that B divides A exactly.

Now return to our goal of computing the constant term R0 of χM/χL. First, recall that M is an

Nd ×Nd matrix where Nd =
(

d+n−1
d

)
and d = 1 +

∑n
i=1 di (see §7). Also L is a (Nd − d̂)× (Nd − d̂)

submatrix of M where d̂ =
∑n

i=1 d̂i and d̂i = (
∏n

j=1 dj)/di. Hence χM/χL is a polynomial of degree

d̂. Therefore to compute the constant term of χM/χL, it is sufficient to compute the leading d̂ + 1
coefficients of χM and χL.

c© Chee-Keng Yap September 9, 1999



§9. Generalized Characteristic Polynomial Lecture XI Page 334

Solving Zero-dimensional Systems. In the rest of this section, assume the system

Σ = {A1, . . . , An} ⊆ Z[X1, . . . , Xn], (48)

not necessarily homogeneous, has a finite number of zeros in Cn. Our goal is to find these zeros.
We may first homogenize each Ai to Âi using a new variable X0. Let Σ̂ = {Â1, . . . , Ân}. Assuming

that Σ̂ has finitely many solution lines in Cn, then we may compute its U -resultant R(U1, . . . , Un),
which is just the Macaulay resultant of

Σ̂ ∪ {A0}, where A0 = X0U0 + X1U1 + · · ·+ XnUn. (49)

Using R(U), we may compute a representative set of Σ̂, as in §8. From among this representative
set, any zero

ξ′ = (ξ′0, ξ
′
1, . . . , ξ

′
n)

where ξ′0 6= 0 will yield a zero (ξ′1/ξ′0, . . . , ξ
′
n/ξ′0) of Σ. We say ξ′ is a “zero at infinity” or a “finite

zero” for Σ̂, depending on whether ξ′0 = 0 or not. In terms of solution lines, we speak of “solution
lines at infinity” or “finite solution lines”. Conversely, any zero ξ = (ξ1, . . . , ξn) of Σ is proportional
to a finite zero in the representative set. Hence, the system (48) is solved.

The problem is that Σ̂ may have infinitely many solution lines at infinity (Exercise). That is, its
zero set has dimension at least 1 in the projective n-space, Pn(C). For any U-specialization σ, the
equation A0|σ = 0 defines a hyperplane, which is a zero set of dimension n−1, in projective n-space.

If the zero set of Σ̂ is of dimension at least 1, it must intersect this hyperplane. This is because
of the general result11 that two zero sets in projective n-space of dimensions i and j (respectively)
have non-empty intersection provided i + j ≥ n. This means that the system (49) has a common
solution when specialized by σ, and so R(U)|σ = 0. Since σ is arbitrary, we conclude that R(U) is
identically zero. Combined with §9, we conclude:

Lemma 36 The U -resultant of Σ̂ does not vanish iff Σ̂ is projective zero-dimensional.

This result can be the basis of a method for testing if Σ̂ is projective zero-dimensional. If the U -
resultant of Σ̂ vanishes, then U -resultants are useless for our purposes. The next section shows how
to overcome this.

Exercises

Exercise 9.1: Verify that the following system has finitely many solutions, and solve it.

Σ = {X3 −X2 + X − 1, XY − Y −X2 + X, Y 2 −X2}

2

Exercise 9.2: (Hinternaus) Compute the U -resultant of A1 = Y 3 − 2t3 and A2 = Y 3 + 3XY 2 +
3X2Y + X3 − 2t3, and solve this system. HINT: there are 9 solutions. 2

11See, e.g., Mumford [143]. This is a generalization of a more familiar fact on the intersection of linear subspaces: if
S, T are linear subspaces of Euclidean n-space, then dim(S∩T ) = dim(S)+dim(T )−dim(S∪T ). If dim(S)+dim(T ) ≥ n

then the intersection S ∩ T is necessarily non-empty since dim(S ∪ T ) ≤ n.
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Exercise 9.3: Construct a system Σ with finitely many zeros, but where Σ̂ has infinitely many
solution lines.

2

Exercise 9.4: Try to adapt Berkowitz’ algorithm [21] to compute only the first k (for any given
k ≥ 1) leading coefficients of the characteristic polynomial of a matrix. 2

Exercise 9.5: Study conditions under which one can directly use the Macaulay quotient formula
(without introducing extra indeterminates). 2

§10. Generalized U-resultant

Let Σ = {A1, . . . , An} ⊆ Z[X1, . . . , Xn] have finitely many zeros in Cn and let Σ̂ = {Â1, . . . , Ân} ⊆
Z[X0, X1, . . . , Xn], as in equations (48) and (49). Assume the U -resultant of Σ̂ vanishes. We now
introduce a non-vanishing substitute for the U -resultant.

Let λ be a new indeterminate and compute the U -resultant of

Σ(λ) :={λXd1
1 − Â1, λXd2

2 − Â2, . . . , λXdn

n − Ân} (50)

where di = deg Ai. The result, denoted
χ(λ,U),

is almost the characteristic polynomial of the system (49). In fact, under the partial specialization
taking U0 to λ − U0, χ(λ,U) is transformed to the characteristic polynomial of (49). This implies

χ(λ,U) is non-zero. Viewing χ(λ,U) as a polynomial in λ, let R̂(U) be its tail coefficient.
Alternatively, if i0 ≥ 0 is the largest index such that λi0 divides χ(λ,U), then

χ′(λ,U) := χ(λ,U)λ−i0 (51)

is a polynomial (the “reduced characteristic polynomial”) with R̂(U) as constant term. It turns out

that R̂(U) can now play the role of the U -resultant. Note that the constant term of χ(λ,U) is just

the usual U -resultant of Σ̂. When this constant term is non-zero, R̂(U) is equal to this U -resultant.

It is therefore appropriate to call R̂(U) the generalized U -resultant of Σ̂.

Lemma 37 R̂(U) is homogeneous of degree D =
∏n

i=1 di in U0, . . . , Un.

Proof. Suppose Σ∧ denotes the system (50) where we replace each non-zero coefficient of a power
product of X by a new indeterminate. Let ui be the new indeterminate coefficient of Xdi

i . Let σ

be the specialization such that Σ∧|σ = Σ(λ). [For instance the coefficient of Xd1
1 in Â1 is c1 ∈ Z,

then we replace λ − c1 by the new indeterminate u1, and σ(u1) = λ − c1.] The U -resultant of Σ∧,
denoted R∧, is the Macaulay resultant of Σ∧ ∪ {A0}. By theorem 31 (§7), R∧ is homogeneous of
degree D =

∏n
i=1 di in the coefficients U of A0. Since R∧|σ = χ(λ,U) and since σ does not affect

the Ui’s, it follows that χ(λ,U) is homogeneous of degree D in U. The lemma follows since R̂λi

(for some i ≥ 0, perhaps with an integer coefficient) is a monomial of χ(λ,U) and λ does not occur
in A0. Q.E.D.
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Lemma 38 For all α ∈ C \ {0}, χ(α,U) 6= 0 and factors completely into D =
∏n

i=1 di linear
homogeneous factors in U.

Proof. Pick any u = (u0, . . . , un) ∈ Cn+1 such that R̂(u) 6= 0. Then as α → 0, the non-constant
monomials in the “reduced characteristic polynomial” (see (51)) χ′(α,U) approach 0. Hence for
α small enough, χ′(α,u) 6= 0 and so χ′(α,U) 6= 0. This implies χ(α,U) 6= 0. But in fact, this

argument works for any α 6= 0 because we can make R̂(u) arbitrarily large by multiplication with a

large constant K, since R̂(Ku) = KDR̂(u).

To see that χ(α,U) completely factors, note that χ(α,U) is the U -resultant of the system (50) under
the specialization λ −→ α. It follows from lemma 36 that this specialized system has finitely many
solution lines. These solution lines correspond to the complete factorization of χ(α,U) into linear
homogeneous factors in U. By lemma 37, the number (with multiplicity of factors counted) of linear
factors is D =

∏n
i=1 di. Q.E.D.

Consider the zero set of the characteristic polynomial,

V :=Zero(χ(λ,U)) ⊆ C× C
n+1.

Clearly
V = V0 ∪ V1 (52)

where V0 :=Zero(λi0 ) and V1 :=Zero(χ′(λ,U)) (see (51)). Note that if i0 = 0 then V0 is the empty
set, otherwise it is the hyperplane {0} ×Cn+1. By lemma 38, we have V1 6⊆ V0. It follows that (see
[107, p. 131])

dim(V1 ∩ V0) ≤ n.

Also, let
W :=Zero(R̂(U)) ⊆ C

n+1.

The following simple observation is a useful tool.

Lemma 39 Let u ∈ Cn+1. If there exists a sequence {(λi,ui)}i≥1 in V1 \V0 that converges to (0,u)
then u ∈W .

Proof. By choice of λi,ui, χ′(λi,ui) = 0. Since {(λi,ui)}i≥0 converges to (0,u), we conclude by

continuity that χ′(0,u) = 0. But χ′(0,u) = 0 implies R̂(u) = 0. Q.E.D.

Let
πU : C× C

n+1 → C
n+1

be the projection map onto the U-coordinates. Thus π(α, u0, u1, . . . , un) = (u0, . . . , un). In view of
lemma 38, for all α 6= 0 small enough, the set

W (α) := πU(V ∩ ({α} × C
n+1))

is a union of D (not necessarily distinct) hyperplanes in Cn+1. Now we may view W (λ) as a
parametrized system of D hyperplanes. In a suitable sense, the function W (λ) is continuous in the
neighborhood of λ = 0. To see this, view the D hyperplanes dually, as the multiset of D solution
lines of a homogeneous polynomial χλ(U) in U with coefficients depending on λ. The multiset of
D solution lines varies continuously with λ provided the (homogeneous) degree is constant. In our
case, this provision amounts to λ 6= 0. We may take the distance between two solution lines to be
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the Euclidean distance between their respective intersection points with the unit sphere. Continuity
of the D lines means that for any ǫ > 0 small enough, there is a δ > 0 such that if λ varies by less
than δ then for each solution line ℓ with multiplicity µ ≥ 1, there are exactly µ perturbed solutions
lines (counting multiplicity) that are within ǫ of ℓ. Take any sequence λ = {λi}i≥1 that converges
to 0. The systems W (λi) converge as i→∞. By compactness of the space of hyperplanes (this is a
Grassmanian space, or the fact that the space of solution lines is topologically the unit sphere with
antipodal points identified), there exists a limit system of D hyperplanes which we may denote by

W (0).

We show W (0) is unique, in fact, it is equal to W , the zero set of R̂(U). To see this, consider
any u = (u0, . . . , un) ∈ W (0) \ 0. Note that u occurs in W (0) with a given multiplicity. From
our definition of W (0), there is a sequence {ζi}i≥1 in V1 \ V0 that approaches (0,u). In fact, we
may choose ζi ∈ ({λi} ×W (λi)) ⊆ V1 for all i ≥ 1. By lemma 39, this implies u ∈ W (with its

multiplicity intact). Thus W contains the D hyperplanes of W (0). Since W = Zero(R̂(U)) and

R̂(U) has degree D, we conclude:

Lemma 40 We have the equality W (0) = W = Zero(R̂(U)).

Unfortunately, this result does not establish that the zeros of Σ are encoded (in the sense of U -

resultants) among the linear factors of R̂(U). We need a more careful analysis of the behaviour of
the system as λ goes to 0, using an argument similar to Renegar [167].

Pick any u ∈ Rn+1 such that R̂(u) 6= 0. Let ei ∈ Rn+1 (i = 0, . . . , n) be the elementary unit
vector with 1 at the (i + 1)st coordinate and 0 elsewhere. With t a new indeterminate, consider the
polynomial

ri(λ, t) := χ′(λ, tu− ei),

where we view ri(λ, t) as a polynomial in t with coefficients parametrized by λ. To avoid excessive
notations, we may by reason of symmetry focus on i = 1, in which case we simply write r1(λ, t) as
r(λ, t).

Lemma 41 In a small enough neighborhood N0 of 0, for all λ ∈ N0:

(i) The polynomial r(λ, t) is non-vanishing of degree D in t.

(ii) We have χ′(λ,u) 6= 0. In particular, χ′(0,u) 6= 0.

Proof. (i) Note that

R̂(tu− e1) = tDR̂(u) + R̂(−e1) + t · q(t,u)

where q(t,u) is a polynomial whose t-degree is less than D − 1. Hence R̂(tu− e1) is non-vanishing
of degree t. Then, arguing as in lemma 38, we conclude that χ′(λ, tu − e1) does not vanish for

small enough λ. In fact, r(λ, t) has the form tD(R̂(u)+λh(λ,u))+l.o.t., for some h(λ,u) and “l.o.t”

indicates lower order terms in t. Thus the leading coefficient of r(λ, t) tends to R̂(u) when λ is small
enough. This establishes the existence of exactly D roots.
(ii) Furthermore, when λ is small enough, χ′(λ,u) tends to R̂(u), a non-zero value. Q.E.D.

By lemma 38,

χ′(λ,U) =

D∏

j=1

gj(λ,U), where gj(λ,U) =

n∑

ℓ=0

Uℓξ
(j)
ℓ (λ),
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where ξ(j)(λ) = (ξ
(j)
0 (λ), . . . , ξ

(j)
n (λ)). It is immediate from

r(λ, t) =

D∏

j=1

gj(λ, tu− e1),

that the zeros of r(λ, t) are precisely those t such that

gj(λ, tu− e1) = tgj(λ,u) − ξ
(j)
1 (λ) = 0 (53)

for some j = 1, . . . , D. Since χ′(λ,u) 6= 0 (for λ ∈ N0), we conclude that gj(λ,u) 6= 0 for all j. It
follows that r(λ, t) has exact D roots (possibly non-distinct) that can be expressed (via (53)) in the
form

t
(j)
1 (λ) =

ξ
(j)
1 (λ)

gj(λ,u)
, (j = 1, . . . , D). (54)

We now use a well-known fact: if r(λ, t) is a polynomial in t whose coefficients vary continuously
with λ within an open interval N0, and the degree D of r(λ, t) is invariant for λ ∈ N0, then the D
roots (with multiplicity counted) of r(λ, t) vary continuously in the following precise sense:

For all λ0, there exist ε > 0 and δ > 0 such that for all λ′, if |λ′ − λ0| < δ then for
each root t0 of multiplicity µ ≥ 1 of r(λ0, t), there are exactly µ roots (with multiplicity
counted) of r(λ′, t) that are within distance ε of t0.

We may therefore define the limits of these root functions,

τ
(j)
1 := lim

λ→0
t
(j)
1 (λ).

Note that τ
(j)
1 is finite because the denominator in (54) approaches a non-zero value gj(0,u). Re-

turning to the general notation ri(λ, t) (for i = 0, . . . , n, not just i = 1), we have thus established
the existence of the continuous root functions

t
(j)
i (λ), (i = 0, . . . , n; j = 1, . . . , D)

for λ ∈ N0. Again, we can take their limits as λ approaches 0. But we need something more. We
really want to ensure that the “j” superscripts are assigned consistently, so that

(t
(j)
0 (λ), . . . , t(j)n (λ)) · gj(λ,u) = (t

(j)
0 (λ) · gj(λ,u), . . . , t(j)n (λ) · gj(λ,u)) (55)

are indeed zeros of Σ(λ) (cf. (54)).

Each time a multiple root splits, we have to decide which of the branches should a particular t
(j)
i (λ)

follow. There can be a problem if these D roots merge and split indefinitely. More precisely, let us
temporarily fix i = 0, 1, . . . , n. For any λ ∈ N0, let us say that the multiset of roots

Si(λ) :={t(j)i (λ) : j = 1, . . . , D}

has generalized multiplicity (or simply, multiplicity) µ = (µ1, µ2, . . . , µD) ∈ ND if there are exactly
µ1 simple roots, exactly µ2 roots of multiplicity 2, and in general, µi roots of multiplicity i. So∑D

i=1 i · µi = D. If the generalized multiplicity is constant for λ ∈ N0, then we clearly can define
t(j)(λ) unambiguously, and thus the limiting ξ(j) are unique. We will show that the generalized
multiplicity of Si(λ) can only change a finite number of times as λ approaches 0. Again, it is
sufficient to focus on case S1(λ), and let µ(λ) denote the generalized multiplicity of S1(λ). We call
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λ′ ∈ C a critical value for S1(λ) if for all neighborhoods N ′ of λ′, there exists λ′′ ∈ N ′ such that
µ(λ′′) 6= µ(λ′). Let the derivative of r be

r′(λ, t) =
dr(λ, t)

dt
.

Let pj(λ) denote the pseudo-principal subresultant coefficient ppscj(r, r
′) (for j = 0, . . . , D − 1) of

r(λ, t) and r′(λ, t) (§III.7). For any λ′, the degree of GCD(r, r′) is the smallest j such that pj(λ
′) 6= 0

(§III.8, Exercise). Hence the number of distinct roots of r is equal to D − j (property C5, §VI.1).
Let j1 be the least index such that pj1(λ) is non-vanishing. Define C1(λ) := pj1(λ). Clearly j1 and
C1(λ) are well-defined.

Lemma 42

(i) A value λ′ is a critical for S1(λ) iff λ′ is a root of C1(λ).

(ii) If λ0 < λ1 and µ(λ0) 6= µ(λ1) then there is a critical value λ′, λ0 ≤ λ′ ≤ λ1.

(iii) For a small enough neighborhood N0 of 0, the polynomial r(λ, t) has exactly D − j1 distinct
roots when λ ∈ N0.

Proof. (i) Let us note that if λ′ is critical then every neighborhood of λ′ contains a λ′′ such that
r(λ′′, t) has a different number of distinct roots than r(λ′, t). Hence, if C1(λ

′) = 0 then λ′ is critical.
Conversely, if C1(λ

′) 6= 0 then there is a neighborhood N ′ of λ′ such that for all λ′′ ∈ N ′, pj(λ
′′) 6= 0

for j ∈ I. Then the number of distinct roots of r(λ, t) is constant for λ ∈ N ′. Such a λ′ is not
critical.
(ii) If either λ0 or λ1 is critical then we are done. Otherwise, let λ′ = sup{λ ∈ (λ0, λ1) : µ(λ) =
µ(λ0)}. If µ(λ′) = µ(λ0) then for all ε > 0 sufficiently small, µ(λ′ + ε) 6= µ(λ′). If µ(λ′) 6= µ(λ0)
then for all ε > 0 sufficiently small, µ(λ′ − ε) 6= µ(λ′). In either case, λ′ is critical.
(iii) Choose N0 small enough to avoid all the roots of C1(λ). By (i) and (ii), µ(λ) is invariant for
λ ∈ N0. Q.E.D.

The above focused on the multiset S1(λ). Now assume N0 is small enough to ensure that the
previous two lemmas hold for each Si(λ) (i = 0, 1, . . . , n). Restricting λ to N0, we can now define

unambiguously the continuous functions t
(j)
i (λ) for each i = 0, . . . , n and j = 1, . . . , D. Moreover,

we will choose the indexes so that for each λ ∈ N0, the point in (55) is a zero of Σ(λ). Now we may
define

ξ(j) = (ξ
(j)
0 , . . . , ξ(j)

n ) where ξ
(j)
i := τ

(j)
i gj(0,u). (56)

It is immediate that each ξ(j) is a zero of Σ(0). But Σ(0) = Σ̂∪{A0}. By a suitable renumbering, let
us assume that {ξ(i) : i = 1, . . . , s} comprises the multiset of finite zeros, i.e., whose first component

ξ
(j)
0 6= 0. Write

ξ
(i)

= (ξ
(i)

1 , . . . , ξ
(i)

n ) :=(ξ
(i)
1 /ξ

(i)
0 , . . . , ξ(i)

n /ξ
(i)
0 ), (i = 1, . . . , s). (57)

We have therefore shown that each ξ
(i)

is a solution of Σ (the original system). We still need to

show that every solution to Σ is among the ξ
(i)

’s in (57). Towards this end, and in analogy to (34),
define the polynomial

G(U) :=

s∏

j=1

gj(U), where gj(U) := U0 +

n∑

i=1

Uiξ
(j)

i .

We say that gj(U) “encodes” the solution ξ
(j)

. Finally, here is the main result on generalized
U -resultants (cf. §8, theorem 34):
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Theorem 43 The generalized U -resultant R̂(U) of Σ has the following properties:

(i) R̂(U) factors completely into linear factors over the complex numbers C.

(ii) The polynomial G(U) divides R̂(U).

(iii) The linear factors of G(U) encode all, and only, solutions of Σ.

Proof.
(i) This is just a restatement of lemma 40.

(ii) Each ξ
(j)

defines the hyperplane gj(U) = 0 in U-space. Suppose gj(u) = 0 for some u. Then
the specialization

σ0 : (λ;X;U) −→ (0; 1, ξ
(j)

;u), X = (X0, X1, . . . , Xn) (58)

is a zero of A0(X,U), and hence of Σ(0). Take any sequence {λℓ}ℓ≥1 that approaches zero. Then

we get a corresponding sequence {(1, ξ
(j)

(λℓ))}ℓ≥1 that approaches X = (1, ξ
(j)

). CLAIM: we can
construct a corresponding sequence

{(λℓ,uℓ)}ℓ≥1

in V1 \ V0 (see (52)) that approaches (λ,U) = (0,u).

Before verifying the CLAIM, note that the claim implies R̂(u) = 0, by lemma 39. In other words,

gj(U) divides R̂(U) and part (ii) is proved.

It remains to show the CLAIM. It suffices to choose a sequence uℓ (ℓ ≥ 1) so that

A0(1, ξ
(j)

(λℓ),uℓ) = 0.

and uℓ approaches u. This would mean Σ(λℓ) has the solution

σℓ : (λ;X;U) −→ (0; 1, ξ
(j)

(λℓ);vℓ).

and hence χ′(λℓ,vℓ) = 0. This shows (λℓ,vℓ) ∈ V1 \ V0, as desired by the claim. By going to a

subsequence of {uℓ}ℓ if necessary, we assume that ‖ξ(j)
(λℓ) − ξ

(j)‖∞ is at most 1/ℓ. Initially, u1

is arbitrary. It is not hard to see that we can ensure that ‖uℓ − u‖∞ is O(1/ℓ). This implies uℓ

approaches u.

(iii) We already noted that each ξ
(j)

is a zero of Σ. Conversely, let ζ = (ζ1, . . . , ζn) be a zero of Σ.

Then (1, ζ) is a zero of Σ̂. This (1, ζ) defines the U-hyperplane g(U) = U0 +
∑n

i=1 ζiUi = 0. By the

same argument as part (ii), g(U) divides R̂(U). By definition, G(U) contains all linear factors of

R̂(U) in which U0 has a non-zero coefficient. Hence g(U) divides G(U). Q.E.D.

Finally, let us consider how to extract the zeros of Σ without factoring over C. We need an analog

of lemma 35. As usual, gj(U) =
∑n

i=0 ξ
(j)
i Ui.

Lemma 44 Let W ⊆ {1, . . . , n}. Then R̂(U) factors over Z into RW RW where, for all j = 1, . . . , s,

RW /gj ∈ C[U] iff for some i ∈W , ξ
(j)
i 6= 0.

Proof. Consider the system ΣW := Σ ∪ {Xi : i ∈ W}. This system has a finite number of zeros. We
cannot directly construct the generalized U -resultant of ΣW since this is only defined for a system
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of n homogeneous polynomials in n + 1 variables. But by a result of Eisenbud and Evans [107,
p. 126, corollary 1.5], there are n polynomials B1, . . . , Bn ∈ Z[X1, . . . , Xn] whose zero set comprises
precisely these zeros (not necessarily with the same multiplicities). We homogenize these Bi’s and
construct their generalized U -resultant R′

W . By taking a large enough power (R′
W )k (k ≥ 1), we see

that GCD((R′
W )k, R̂) ∈ Z[U] has the property we desire of RW . Q.E.D.

To find the kth components of ξ
(j)

(j = 1, . . . , s), set W = {k}. We factor R̂ into irreducible
polynomials over Z. Such a polynomial F divides RW iff F depends on Uk. The product of all these
F ’s that depend on Uk therefore constitute RW . We may now proceed as before (§8) to find the kth
components of zeros by root isolation, etc.

Finally, the notion of U -resultant can be generalized to the concept of Chow forms of projective
varieties (e.g., see Gelfand, Kapranov and Zelevinsky [70]).

Exercises

Exercise 10.1: Prove that the roots of a polynomial A(λ, t) in t with coefficients parameterized
continuously by λ vary continuously with λ. 2

§11. A Multivariate Root Bound

Let Σ = {A1, . . . , An} ⊆ Z[X1, . . . , Xn] be a system of n polynomials, not necessarily homogeneous.
Suppose Σ has finitely many complex zeros and (ξ1, . . . , ξn) ∈ Cn is one of these zeros. We provide
bounds on |ξi|. Assume di = deg(Ai) and let

K :=max{
√

n + 1, max{‖Ai‖2 : i = 1, . . . , n}}. (59)

The main result of this section is:

Theorem 45 If (ξ1, . . . , ξn) is a zero of Σ and |ξi| 6= 0, i = 1, . . . , n, then

|ξi| > (23/2NK)−D2−(n+1)d1···dn

where

N :=

(
1 +

∑n
i=1 di

n

)
, D :=

(
1 +

n∑

i=1

1

di

)
n∏

i=1

di. (60)

Before we present the proof, it is worthwhile understanding the basic order of growth of this root
bound. First, we claim:

N = (cd̃)n, (for some 1 < c < e), (61)

where d̃ = (
∑n

i=1 di)/n is the “average degree” and e = 2.718 . . . is the base of the natural logarithm.

To see this, it is easy to check that N > (d̃)n. Conversely, we see that N < (
∑n

i=1 di)
n/(n!) for

n ≥ 3. Since n! > (n/e)n, this implies N < ((
∑n

i=1 di)e/n)
n

= (d̃e)n. In fact, the last inequality
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holds even when n = 2. This verifies our claim (61). We next want to show that N ≫ D. More
precisely,

D = o(N). (62)

First let us write D = C
∏n

i=1 di for some 1 < C ≤ n + 1. Note that
∏n

i=1 di ≤ d̃n with equality
iff all di’s are equal. [This is easily shown by induction on n.] It follows that D/N ≤ C/cn → 0 as
n→∞, as we wanted to show in (62). Our bound can be simplified to

|ξi| >
(
25/2(d̃e)nK

)−(n+1)(
∏

n

i=1
di)

.

In case all the di’s are equal to d, this gives

|ξi| >
(
25/2(de)nK

)−(n+1)dn

.

In terms of bit-sizes, we take logs, leading to a single exponential bit-size bound.

Basic Approach. The strategy is to express 1/ξi as the root of a suitably specialized U -resultant.

As in the previous section, we first homogenize Σ to Σ̂ = {Â1, . . . , Ân} ⊆ Z[X0, X1, . . . , Xn], then
define Σ(λ), as in (50). Let R(U0, U1, . . . , Un) = R(U) be the generalized U -resultant of Σ(λ): this

is the tail coefficient of the Macaulay resultant of Σ̂ ∪ {A0} where A0 = U0X0 + · · · + UnXn. Let
σ = σi be the U-specialization such that

σ(Uℓ) = σi(Uℓ) =




−Ui if ℓ = i,
1 if ℓ = 0,
0 else.

(63)

By lemma 44, with W = {i}, the polynomial RW (U)|σ is non-vanishing. Moreover, 1/ξi is a root of
RW (U)|σ. We need a bound on multivariate polynomials12 from Mahler [126], stated here without
proof:

Lemma 46 Let A, B ∈ C[X1, . . . , Xn]. Suppose B|A and the degree of A in Xi is δi. Then ‖B‖1 ≤
2δ1+···+δn‖A‖1.

Since RW |R and the total degree of R is d1d2 · · · dn, we conclude

‖RW ‖1 ≤ 2(n+1)d1d2···dn‖R‖1.

It follows that
‖(RW )σ‖1 ≤ 2(n+1)d1d2···dn‖R‖1. (64)

Hence theorem 45 follows from Cauchy’s root bound and the following:

Lemma 47 The 1-norm, ‖R(U)‖1, is at most (23/2NK)D−1.

Bounding R(U). Recall that R(U) is the tail coefficient of the exact quotient χM (λ)/χL(λ) for
a suitable Macaulay matrix M , with L a submatrix of M (cf. (40)). Let us assume that R(U) is,

12Note that the k-norms ‖A‖k for univariate polynomials extend to multivariate polynomials in the obvious way.
In particular, when k = 1 this is just the sum of the absolute values of the coefficients of A.
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in fact, the constant term of χM/χL, since we will see that this is the worst case for our bounding
method. In fact, one can easily verify that (see §7) M is N ×N and L is (N −D)× (N −D). Write

χM (λ,U) =

N∑

i=0

ai(U)λi.

Each ai(U) is the sum of all the principal minors of M of order N− i. There are
(
N
i

)
such minors, so

that we may write ai(U) =
∑(N

i )
j=1 ai,j(U). Now we need a generalization of the Goldstein-Graham

Hadamard bound (§VI.8) to multivariate polynomials.

Lemma 48 Let M(U) be a square matrix whose (i, j)th entry Mi,j(U) is a polynomial in C[U]. If
W = [wi,j ]i,j is the matrix where wi,j = ‖Mi,j(U)‖1 then ‖ detM(U)‖2 ≤ H(W ) where H(W ) is
the product of the 2-norms of the rows of W .

Proof. Suppose det(M(U)) =
∑

α cαUα where α = (α0, . . . , αn) ranges over a suitable subset of
Zn+1 and cα ∈ C. Then

‖ detM(U)‖22 =
∑

α

|cα|2 (by definition)

=

∫ 1

0

dt1 · · ·
∫ 1

0

| det(M(e2πit1 , . . . , e2πitn)|2 (Parseval’s identity)

≤
∫ 1

0

dt1 · · ·
∫ 1

0

H(W )2 (Hadamard’s bound)

= H(W )2.

Q.E.D.

To apply this bound, we construct the “W -matrix” corresponding to M : let W :=[wij ]
N
i,j=1 ∈ Z

N×N

where wij is the 1-norm of the (i, j)th entry of M . If the non-zero entries in a row of W are the
coefficients from a polynomial in Σ, then the 2-norm of the row is bounded by K, by assumption.
If the row arises from the polynomial A0 then its 2-norm is

√
n + 1, which is also ≤ K. Let ai,j(U)

be one of the minors of M . If Wi,j is the corresponding submatrix of W , and H(Wi,j) denotes (as
in §VI.8) the product of the 2-norms of all the rows of Wi,j , then the generalized Hadamard bound
says that

‖ai,j(U)‖2 ≤ H(Wi,j) ≤ KN−i.

Since ai(U) has degree at most N − i, we obtain

‖ai,j(U)‖1 ≤ ‖ai,j(U)‖2
√

N − i + 1 ≤ KN−i
√

N − i + 1.

The first inequality is a general relation between 1-norms and 2-norms (§0.10). Next, since generally

‖a(U) + b(U)‖1 ≤ ‖a(U)‖1 + ‖b(U)‖1,

we infer that

‖ai(U)‖1 ≤
(

N

i

)
KN−i

√
N − i + 1.

Similarly, if we write

χL(λ) =

N−D∑

i=0

bi(U)λi.
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then we may deduce that

‖bi(U)‖1 ≤
(

N −D

i

)
KN−D−i

√
N −D − i + 1.

Now R is equal (see §9) to the determinant of the following (D + 1)× (D + 1) matrix:

M0 :=




aN aN−1 aN−2 · · · aN−D

bN−D bN−D−1 bN−D−2 · · · bN−2D

bN−D bN−D−1 · · · bN−2D+1

. . .
...

bN−D bN−D−1




. (65)

Note that aN = bN−D = 1. Instead of using the generalized Hadamard bound again, we now use
the bound

‖R‖1 ≤ per(WD)

where per(WD) denotes13 the permanent of WD, and WD is analogous to the W -matrix of M0 (65):

WD :=




1
(
N
1

)
K
√

2
(
N
2

)
K2
√

3 · · ·
(

N
D−1

)
KD−1

√
D

(
N
D

)
KD
√

D + 1

1
(
N
1

)
K
√

2
(
N
2

)
K2
√

3 · · ·
(

N
D−1

)
KD−1

√
D

(
N
D

)
KD
√

D + 1

1
(
N
1

)
K
√

2 · · ·
(

N
D−2

)
KD−2

√
D − 1

(
N

D−1

)
KD−1

√
D

. . .
...

1
(
N
1

)
K
√

2
(
N
2

)
K2
√

3

1
(
N
1

)
K
√

2




. (66)

Note that the first two rows of WD are identical. It remains to evaluate this permanent. If we delete
the first row and first column of WD, we obtain the following D ×D matrix

W ′
D :=




(
N
1

)
K
√

2
(
N
2

)
K2
√

3
(
N
3

)
K3
√

4 · · ·
(

N
D−1

)
KD−1

√
D

(
N
D

)
KD
√

D + 1

1
(
N
1

)
K
√

2
(
N
2

)
K2
√

3 · · ·
(

N
D−2

)
KD−2

√
D − 1

(
N

D−1

)
KD−1

√
D

1
(
N
1

)
K
√

2 · · ·
(

N
D−3

)
KD−3

√
D − 2

(
N

D−2

)
KD−2

√
D − 1

. . .
...

1
(
N
1

)
K
√

2
(
N
2

)
K2
√

3

1
(
N
1

)
K
√

2




.

(67)
If we expand the permanent of WD by the first column, we obtain

per(WD) = 2 · per(W ′
D). (68)

But if we divide the first row of W ′
D by NK

√
2 we see that the resulting row is component-wise

upper-bounded by the first row of WD−1. This is because the ith entry in the resulting row is

(
N
i

)
Ki
√

i + 1

NK
√

2
13The permanent of a n-square matrix [aij ]ni,j=1 is defined rather like as a determinant, being a sum of n! terms.

Each term in the permanent has the form +
∏n

i=1
ai,π(i) where π is a permutation of {1, 2, . . . , n}. For instance,

per(

[
a b

c d

]
) = ad + bc. Note that each term is given a positive sign; in contrast, for determinants, we may attach

a negative sign to the term.
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and this is upper bounded by the ith entry of the first row of WD−1, thus:
(
N
i

)
Ki
√

i + 1

NK
√

2
≤
(

N

i− 1

)
Ki−1

√
i.

It follows that that per(W ′
D) ≤ (NK

√
2)per(WD−1). Substituted into (68), we obtain the recurrence

per(WD) = (23/2NK)per(WD−1). Since per(W2) = 23/2NK, we obtain

per(WD) ≤ (23/2NK)D−1.

This concludes our proof of lemma 47.

Upper Bound on Roots. It is clear that we can also make ξi a root of a suitable specialization
of RW (U), and this specialization has the same bound on its 1-norm as in (64). Therefore:

Corollary 49 With the notation of theorem 45, we also have

|ξi| < (23/2NK)D2(n+1)d1···dn

Remarks. Our basic approach is similar to Canny’s [36]. Instead of using Macaulay’s formula,
he uses the division scheme (§9). Canny only treats the special where R(U) is the standard
U -resultant.

Exercises

Exercise 11.1: Simplify the above root bounds but give sharper estimates than in the text. E.g.,
use the Stirling approximation of Robbins: n! = (n/e)n

√
2πneα where (12n + 1)−1 < α <

(12n)−1. A simpler approximation is n! = Θ((n/e)n+(1/2)). 2

Exercise 11.2: Assuming the case where the generalized U -resultant is the standard U -resultant,
improve our root bound above. 2

Exercise 11.3: (Canny) Define the Z-height of a polynomial A(X) =
∑m

i=0 aiX
i, am 6= 0, to be

hZ(A) := max

{
|am−1|
|am|

,

√
|am−2|
|am|

, 3

√
|am−3|
|am|

, . . . , m

√
|a0|
|am|

}
.

Alternatively, hZ(A) is the smallest value β such that βi ≥ |am−i/am| for all i = 1, . . . , m. 14

In the following proofs, it is often easiest to assume the polynomials are already monic, since
this does not affect the Z-height.
(i) If K = ‖M‖∞ where of a matrix M ∈ Rn×n, then hZ(χM (λ)) ≤ nK.
(ii) hZ(AB) ≤ hZ(A) + hZ(B).
(iii) Assuming A, B are monic, hZ(A + B) ≤ hZ(A) + hZ(B).
(iv) hZ(C) ≤ hZ(A) + 2hZ(B) where C(X) is the quotient of A(X) divided by B(X)

(v) Bound hZ(R̂) and conclude with an alternative multivariate root bound. 2

14This terminology recalls the notion of “height” for a polynomial. The “Z” here refers to a lemma attributed to
Zassenhaus (§VI.2) showing that if A(α) = 0 then |α| < 2hZ(A).
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§A. APPENDIX A: Power Series

We introduce the ring of power series over a ring R and describe some basic properties, mainly to
facilitate the proof in appendix B. In particular, we describe what it means to form infinite sums
and products.

A (formal) power series in the variable Z and with coefficients from a ring R is a formal infinite
sum of the form

G(Z) =

∞∑

i=0

aiZ
i, (ai ∈ R).

Let R[[Z]] denote the set of such power series. These power series are said to be “formal” because,
unlike their use in mathematical analysis, we do not evaluate them to a definite value and so there
is no discussion of convergence properties. Two power series are deemed equal if their corresponding
coefficients are equal. The polynomial ring R[Z] is embedded in R[[Z]] in a natural way. We can
add and multiply two power series in the obvious term-wise fashion. Hence R[[Z]] is a ring.

In the rest of this appendix, assume that R is a domain D. We proceed to state some easily verifiable
properties of D[[Z]]. Then it is easily seen that G(Z)H(Z) = 0 iff G(Z) = 0 or H(Z) = 0. This
shows that D[[Z]] is a domain, with 0 and 1 as the zero and unity elements. The inverse of G(Z)
is the power series H(Z) such that G(Z)H(Z) = 1. As in any domain, inverses are unique when
they exist. The inverse of G is denoted by H(Z) = 1/G(Z) or G−1(Z). It is not hard to see that
G(Z) has an inverse iff a0 is a unit in D: this amounts to an inductive construction of each of the
coefficients of G−1(Z).

Formal differentiationdifferentiation of G(Z) is also defined,

G′(Z) =
∑

i≥1

i · aiZ
i−1.

The usual rules of differentiation hold. For instance, the product rule can be verified:

(G(Z)H(Z))′ = G′(Z)H(Z) + G(Z)H ′(Z).

We now derive an important formula using differentiation. If A is a finite product of power series,

A(Z) =

k∏

i=1

Gi(Z)

then extension of the above product rule gives

A′(Z) =

k∑

i=1

G′
i(Z)

∏

j 6=i

Gj(Z).

Assuming that A(Z) is invertible, then each Gi(Z) is also seen to be invertible. So we can divide
both sides by A(Z) to give the “logarithmic derivative formula” for A(Z):

A′(Z)

A(Z)
=

k∑

i=1

G′
i(Z)

Gi(Z)
. (69)

Recall that A′(Z)/A(Z) is the “logarithmic derivative” of A(Z) (§VI.1). The power of this formula
to turn a product into a sum will be useful.
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The smallest i such that ai 6= 0 is called the order of G(Z), denoted ord(G). When G is a polynomial,
ord(G) is just its tail degree (§0.10). Hence we will call ai the tail coefficient of G when i =
ord(G). By definition, ord(0) = ∞. It is easily seen that ord(G · H) = ord(G) + ord(H) and
ord(G ± H) ≥ min{ord(G), ord(H)} with equality whenever ord(G) 6= ord(H). The theory of
divisibility is extremely simple for power series: G|H iff ord(G) ≤ ord(H) and the tail coefficient of
G divides the tail coefficient of H .

Infinite Sums and Products. The domain D[[Z]] only guarantees that finite sums and finite
products are well-defined. The fact that a power series is an infinite sum will tempt us to use infinite
sums and products. Especially in combinatorial enumeration, infinite sums and infinite products are
extremely useful. Clearly they are not always well-defined. Our goal here is to define an unambiguous
meaning for the following infinite product and sum

P =

∞∏

i=0

Gi(Z), S =

∞∑

i=0

Gi(Z), (Gi(Z) ∈ D[[Z]]). (70)

Towards this end, for each n ≥ 1, we define G(Z) and H(Z) to be equivalent modulo Zn if Zn divides
G(Z)−H(Z). This is written

G(Z) ≡ H(Z) (mod Zn).

Note that G = H iff for all n ≥ 1,
G ≡ H (mod Zn). (71)

We also write
G(Z)modZn

for the polynomial obtained by eliminating all terms in G(Z) that are divisible by Zn. So
G(Z)modZn is a polynomial of degree at most n − 1 and G ≡ H (mod Zn) iff (GmodZn) =
(H modZn).

Definition 1
(a) The infinite product P in equation (70) is defined if for all n ≥ 1, there exists a finite bound
b(n) such that for all i > b(n), Gi(Z)modZn = 1. In this case P is the power series P (Z) ∈ D[[Z]]
such that for each n ≥ 0,

P (Z) ≡
b(n)∏

i=0

Gi(Z) (mod Zn). (72)

(b) The infinite sum S in equation (70) is defined if for all n ≥ 1, there exists a finite bound b(n)
such that for all i > b(n), Gi(Z)modZn = 0. In this case S is the power series S(Z) ∈ D[[Z]] such
that for each n ≥ 0,

S(Z) ≡
b(n)∑

i=0

Gi(Z) (mod Zn). (73)

Clearly P (Z), S(Z) are unique when defined; in particular, they do not depend on the choice of the
bounds b(n).

Lemma 50 If
∏∞

i=0 Gi(Z) is defined and H0, H1, . . . is any rearrangement of the factors G0, G1, . . .
then

∏∞
i=0 Hi(Z) is defined and equal to

∏∞
i=0 Gi(Z).
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The proof is left as an exercise. In view of this rearrangement lemma, we can define the product of
a set of power series: if W = {G0, G1, . . .} ⊆ D[[Z]], the product

∏
W or

∏
G∈W G can be defined to

be
∏∞

i=0 Gi, provided this is defined. We now extend the logarithmic derivative formula to infinite
products:

Lemma 51 If P (Z) =
∏∞

i=0 Gi(Z) is defined, and P (Z) is invertible then

P ′(Z)

P (Z)
=

∞∑

i=0

G′
i(Z)

Gi(Z)
. (74)

Proof. First we show that the infinite sum in equation (74) is defined. Since P (Z) is invertible,
we conclude that Gi is also invertible for all i [In proof: for any n, if i > b(n) then the constant
term in Gi is 1, and if i ≤ b(n) then equation (72) shows that the constant term in Gi is invert-
ible.] Next for each n ≥ 1 and i > b(n), Gi(Z)modZn = 1 implies G′

i(Z)modZn−1 = 0; then
G′

i(Z)/Gi(Z)modZn−1 = 0, and so the infinite sum of equation (74) is defined.

It remains to show that the infinite sum equals P ′(Z)/P (Z). For each n, equation (72) holds;
applying the logarithmic derivative formula yields

P ′(Z)

P (Z)
≡

b(n)∑

i=0

G′
i(Z)

Gi(Z)
(mod Zn−1). (75)

On the other hand, if S(Z) is defined to be the infinite sum
∑∞

i=0 G′
i(Z)/Gi(Z), then since

G′
i(Z)/Gi(Z)modZn−1 = 0 for i > b(n), we conclude that S(Z) ≡ ∑b(n)

i=0
G′

i(Z)
Gi(Z) (mod Zn−1).

This, with equation (75), shows that S(Z) ≡ P ′(Z)/P (Z) (mod Zn−1) for all n ≥ 0. So
S(Z) = P ′(Z)/P (Z). Q.E.D.

Exercises

Exercise A.1: Verify the unproved assertions about D[[Z]]. 2

Exercise A.2:
(a) If D is a field then D[[Z]] is an Euclidean domain (§II.3) with ϕ(G) = ord(G).
(b) If D is a UFD, is D[[Z]] a UFD? 2

Exercise A.3: Show lemma 50. 2

Exercise A.4: If F1 ≡ F2 and G1 ≡ G2 then F1 ± G1 ≡ F2 ± G2 and F1G1 ≡ F2G2, all modulo
Zn. 2

§B. APPENDIX B: Counting Irreducible Polynomials

Let D be a domain. We prove the following result:
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Theorem 52 D[X ] has infinitely many non-associated irreducible polynomials.

This result is used in §2. It is also of independent interest for applications in coding theory and
cryptography. In case D is an infinite set, this theorem is immediate since the set {X−a : a ∈ D} is
clearly an infinite set of pairwise non-associated irreducible polynomials. Henceforth, let us assume
that D is finite. In fact, we have: a finite domain D is a field. To see this, for any non-zero a ∈ D,
consider the sequence

1, a, a2, . . . , ar, ar+1, . . . , ar+s

where ar+s is the first time that the sequence repeats, and ar+s = ar. Then ar(1 − as) = 0 and so
as = 1. Hence as−1 is the inverse of a. So D must be a Galois field with q elements where q is a
prime power.

Assuming we have picked a distinguished element in each equivalence class of associates of D[X ]
(§II.1), our problem amounts to counting the number of distinguished irreducible polynomials in
D[X ]. We follow Berlekamp’s approach [22] of using generating functions. This approach yields
much more information than just the stated theorem.

Generating Functions. The power series G(Z) =
∑

i≥0 aiZ
i is called a generating function for

the sequence.
a0, a1, a2, . . . , (ai ∈ D).

For any set S ⊆ D[X ], the counting function GS(Z) for S is the generating function for the sequence

|S0|, |S1|, |S2|, . . .

where Si ⊆ S is the set elements in S of degree i. Let I be the set of distinguished irreducible poly-
nomials in D[X ]. According to the convention in §II.1, the distinguished polynomials are precisely
the monic ones. Denote the counting function of I by

GI(Z) :=

∞∑

i=0

diZ
i. (76)

Our original goal of showing that I is infinite follows from the following stronger claim:

Theorem 53 For all i ≥ 0, di ≥ 1.

Towards a proof of theorem 53, note that if f ∈ D[X ] has degree d ≥ 0 then

Hd(Z) :=
1

1− Zd
= 1 + Zd + Z2d + · · ·

is the counting function for the set

S(f) :={f i : i = 0, 1, 2, . . .}.

Next, if f, g ∈ D[X ] are relatively prime and have degrees d, e ≥ 0, then similarly

Hd(Z)He(Z) =
1

1− Zd
· 1

1− Ze

is the counting function for the set

S(f, g) :={f igj : i, j = 0, 1, 2, . . .}.
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Note that this remark depends on the fact that D[X ] is a UFD (recall that D is a Galois field). By
induction on k, if f1, . . . , fk are pairwise relatively prime of degrees d1, . . . , dk ≥ 0 then

Hd1(Z)Hd2(Z) · · ·Hdk
(Z) =

k∏

i=1

1

1− Zdi

is the counting function for the set
S(f1, . . . , fk)

of power products of f1, . . . , fk. Now we make an essential leap to the infinite case:

Lemma 54 Let S(I) be the set of power products of elements in I. Its counting function GS(I) is
given by

GS(I) =
∏

u∈I

Hdeg(u)(Z) (77)

=

∞∏

i=0

(Hi(Z))di . (78)

Proof. It is easy to see that the infinite product

P =
∏

u∈I

Hdeg(u)(Z) =
∏

u∈I

1

1− Zdeg(u)
.

is defined (cf. lemma 50). We can verify routinely that each coefficient of P is equal to the corre-
sponding coefficient of GS(I), by looking at a finite number of terms in P . Since there are di (see
equation (76)) elements in I of degree i, P can also be written as in equation (78) (this also needs
verification). Q.E.D.

Note that the set S(I) is precisely the set of distinguished elements in D[X ]. On the other hand,
the number of distinguished elements of degree n is just |D|n = qn. Thus the counting function of
S(I) is equal to

GS(I) = 1 + qZ + q2Z2 + · · · = 1

1− qZ
.

Combining this equation for GS(I)(Z) with the previous lemma, we have shown:

Lemma 55 The counting function for the set of distinguished elements in D[X ] is

GS(I)(Z) =

∞∏

i=0

(
1

1− Zi

)di

(79)

=
1

1− qZ
. (80)

Taking the logarithmic derivative G′
S(I)(Z)/GS(I)(Z) of the two expressions in the lemma and equat-

ing them,

q

1− qZ
=

∞∑

i=0

di
i · Zi−1

1− Zi
,
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qZ

1− qZ
=

∞∑

i=0

di
i · Zi

1− Zi

=

∞∑

i=0

i · di


∑

j≥1

Zji




=

∞∑

i=0

i · di


 ∑

n≥1;i|n

Zn


 (putting n = ji)

=

∞∑

n=1

Zn


 ∑

i≥1;i|n

i · di


 .

Equating coefficients of Zn, we have

Theorem 56 The number di of distinguished irreducible polynomials of degree i in D[X ] satisfies
the equation

qn =
∑

i≥1;i|n

i · di, q = |D|. (81)

This theorem immediately shows that d1 = q (interprete this). Also, d2 = q2−q
2 ≥ 1. For general

dn, we have the following upper and lower bounds:

Corollary 57
qn − q1+(n/2)

n
≤ dn ≤

qn − q

n
. (82)

Proof. For the upper bound, we ignore all but the first and last terms in the sum in equation (81),
giving qn ≥ n · dn + d1. For the lower bound, we extract the term involving dn in equation (81) and
note that the remaining terms involve di for i ≤ n/2:

qn ≤ n · dn +

n/2∑

i=1

idi < n · dn +

n/2∑

i=1

qi < n · dn + q1+(n/2).

Q.E.D.

Now theorem 53 is immediate since the lower bound in equation (82) shows that dn > 0 for n ≥ 3.
This corollary also shows that ∣∣∣∣dn −

qn

n

∣∣∣∣ = o

(
qn

n

)
.

Exercises

Exercise B.1: (Nijmeijer and Staring, 1988) For any prime p, Xp −X − 1 is irreducible in Zp[X ].
2
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Exercise B.2:
(a) Apply Möbius inversion to the equation (81).
(b) Use the inversion formula to compute dn for n = 1, . . . , 10, when D = GF (2). 2

Exercise B.3: Count the number of irreducible polynomials in D[X, Y ] using the same method.
2

c© Chee-Keng Yap September 9, 1999



§B. APPENDIX B: Irreducible Polynomials Lecture XI Page 353

References

[1] W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases. Graduate Studies in
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Lecture XII

Gröbner Bases

The subject of Gröbner bases or standard bases has generated considerable recent interest. Hironaka
(Thesis, Harvard 1963) introduced the concept of standard bases for ideals in the ring of power
series; independently, Buchberger (Thesis, Innsbruck 1965) gave an algorithm to construct a rather
similar notion in polynomial rings. Buchberger coined the name Gröbner bases and popularized
it [32]. Ideas germane to Gröbner bases appeared independently in the work of numerous authors
including Richmond, Sims, Spear, Trinks and Zacharias. Gröbner bases are special generators
for ideals with amiable computational properties. Many problems in polynomial algebra can be
solved using such bases. The basic algorithm to construct such bases (in polynomial rings over a
field) can be viewed as a simultaneous generalization of the Euclidean algorithm (for two univariate
polynomials) and Gaussian elimination (for a system of linear multivariate polynomials). In the term
rewriting literature, the algorithm is a special case of the Knuth-Bendix procedure. It is related to
the “straightening law” of invariant theory and to the Wu-Ritt procedure (see [216]). These
connections give a hint of the richness of these ideas. Generalizations and extensions of Gröbner
bases to more general rings have been studied. This is only a brief introduction, as there are many
extensions of these ideas (Gröbner bases for integer polynomials, universal Gröbner basis, special
classes of ideals such as binomial ideals, etc). Our exposition is essentially an expansion of [140].
Some recent books on the subject include Becker and Weispfenning [17], Mishra [137], Cox, Little
and O’Shea [50], Sturmfels [198], Adams and Loustaunau [1] and also a collection of research papers
[170].

In this lecture, we fix an arbitrary field K and let R = K[X1, . . . , Xn] = K[X].

§1. Admissible Orderings

Let PP = PP(X1, . . . , Xn) be the set of power products (§0.10) of X. A partial ordering ≤
A

on PP is

compatible if for all p, q, r ∈ PP, p≤
A

q implies rp≤
A

rq. It is semi-admissible if it is a compatible total

ordering. It is admissible if it is semi-admissible and 1≤
A

p for all p ∈ PP. If p≤
A

q but p 6= q then

we write p<
A

q or q >
A

p. Sometimes, a power product is called a term and an admissible orderings is

also called a term ordering.

Example: Three important admissible orderings are the (pure) lexicographic ordering ≤
LEX

, (total)

degree ordering ≤
TOT

, and reverse lexicographic ordering ≤
REV

. These orderings are completely

specified once we choose a total ordering on the variables X1, . . . , Xn. Typically, we pick

X1>
A

X2>
A

· · ·>
A

Xn (1)

where >
A

is >
LEX

, >
TOT

or >
REV

. Let

p = Xd1
1 Xd2

2 · · ·X
dn
n , q = Xe1

1 Xe2
2 · · ·X

en
n .

(a) Define p ≥
LEX

q if p = q or else, the first non-zero element in the sequence

(d1 − e1, d2 − e2, . . . , dn − en) (2)
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is positive. Thus, writing (X,Y, Z) for (X1, X2, X3), we have

1 <
LEX

Z <
LEX

Z2 <
LEX

· · · <
LEX

Y <
LEX

Y Z <
LEX

Y 2 · · · <
LEX

<
LEX

X <
LEX

XZ <
LEX

XY <
LEX

X2 <
LEX

· · · .

Note that there are an infinity of terms to be inserted at the three ellipses (describe them).

(b) Define p ≥
TOT

q if deg(p) > deg(q) or else, p ≥
LEX

q.

1 <
TOT

Z <
TOT

Y <
TOT

X <
TOT

Z2 <
TOT

Y Z <
TOT

Y 2 <
TOT

XZ <
TOT

XY <
TOT

X2 <
TOT

· · · .

(c) Define p ≥
REV

q iff either deg(p) > deg(q) or else, the last non-zero element in the sequence

(2) is negative.

1 <
REV

Z <
REV

Y <
REV

X <
REV

Z2 <
REV

Y Z <
REV

XZ <
REV

Y 2 <
REV

XY <
REV

X2 <
REV

· · · .

This ordering is less familiar but has important computational properties (Bayer and
Stillman [12]). Suppose deg(p) = deg(q) and we wish to decide if p >

REV

q. If degXn
(p) <

degXn
(q) then declare p >

REV

q; otherwise degXn
(p) = degXn

(q) and we apply this rule

recursively.

We need an oft-rediscovered little lemma of Dickson [55] (also attributed to Gordan).

Theorem 1 (Dickson’s Lemma) Given any subset T ⊆ PP(X1, . . . , Xn), there is a finite subset
F ⊆ T such that every power product in T is a multiple of some element of F .

Proof. We use induction on the number n of variables. If n = 1 then we let F consist of the unique
term in T of minimum degree. Next assume n > 1. Pick any p0 ∈ T and say

p0 = Xe1
1 Xe2

2 · · ·X
en
n .

Then every m ∈ T that is not divisible by p0 belongs to one of
∑n
i=1 ei different sets: let i = 1, . . . , n

and v = 0, 1, . . . , ei−1. Then the set Ti,v consists of those monomialsm ∈ T such that degXi
(m) = v.

Let T ′

i,v denote the set of monomials obtained by omitting the factor Xv
i from monomials in Ti,v.

By inductive hypothesis, there exists finite subsets F ′

i,v ⊆ T ′

i,v such that each monomial in T ′

i,v is a
multiple of some monomial in F ′

i,v. Let Fi,v be the set {m ·Xv
i : m ∈ F ′

i,v}. It is then clear that
every monomial in T is a multiple of some monomial in the finite set

{p0} ∪
⋃

i,v

Fi,v.

Q.E.D.

The set F in the lemma is known as a Dickson basis of T . Recall that a total ordering is well-founded
if there is no infinite sequence of strictly decreasing elements. We show that any admissible ordering
≤
A

is well-founded. For, if p1>
A

p2>
A

p3>
A

· · · then by Dickson’s lemma, the set T = {p1, p2, . . . , } has

a Dickson basis F . Without loss of generality, let F = {p1, . . . , pk} for some k. If T has more than
k elements, then pk+1 is divisible by some pi ∈ F . This contradicts pi>

A

pk+1.

Corollary 2 An admissible ordering is well-founded.
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Linear quasi-ordering on polynomials. We need to extend the admissible ordering ≤
A

to poly-

nomials. First we extend it to mononomials: if c ·p and d · q (c, d ∈ K; p, q ∈ PP) are two monomials,
then we declare c · p≤

A

d · q if p≤
A

q. Note that this is1 a linear quasi-ordering. For any polynomial

p = c1p1 + c2p2 + · · ·+ cmpm, written as a sum of monomials with distinct pi’s, introduce the term
sequence of p

p = (p1, . . . , pm), (3)

where p1>
A

p2>
A

· · ·>
A

pm. We compare two polynomials as follows: p≤
A

q iff in their term sequences

(p1, . . . , pm) and (q1, . . . , qk), either (1) m ≤ k and pi = qi for each i = 1, . . . ,m, or (2) for some
i ≤ min{m, k}, pi<

A

qi and pj = qj for j = 1, . . . , i− 1.

It is easy to check that this defines a linear quasi-ordering for polynomials. From a linear quasi-
ordering ≤

A

, we obtain a strict partial order <
A

where x<
A

y holds provided x≤
A

y holds but not y≤
A

x.

We leave it as an exercise to show:

Lemma 3 There is no strictly descending infinite sequence of polynomials under the ordering ≤
A

.

Weight Schemes. For a quantitative approach to admissible ordering, we introduce another view
of such orderings. Define a weight function w : PP → R to be a real-valued function with the
properties w(1) = 0 and w(pq) = w(p)+w(q). To avoid triviality, we assume that w(p) 6= 0 for some
p ∈ PP. It is easy to see w is completely characterized by the n-vector

w :=(w(X1), w(X2), . . . , w(Xn)). (4)

Let us extend PP to the set PP defined to consist of all rational power products of X1, . . . , Xn. Thus

a typical element of PP is
∏n
i=1X

ei

i where ei ∈ Q. For instance, X−3
1 X2X

1/5
4 . The definition of

“weight function” extends to PP, mutatis mutandis.

Lemma 4 For any weight function w : PP → R, there is a unique extension of w to a weight
function w′ : PP→ R.

Proof. Let p = Xe where X ∈ {X1, . . . , Xn} and e ∈ Q. It suffices to show that w′(p) is uniquely
determined by w, since every element in PP is a product of such p’s. If e ∈ N then w′(p) = w(p). If
e ∈ Z \ N then w′(p) + w′(p−1) = w′(1) = 0 implies w′(p) = −w(X−e). If e = c/d (where c ∈ Z,
d ∈ N) then d ·w′(p) = w′(pd) = w′(Xc). Hence w′(p) = w′(Xc)/d. We have completely determined
w′. Q.E.D.

In some sense, extending the concept of weight functions from PP to PP does not add anything
essential. We wish to identify PP with Nn, and PP with Qn. To freely switch between these two
views as convenient, it is useful to introduce the analogue of the logarithm function (but still calling
it “log”):

log : PP→ Qn,

Xe 7→ e.

1A binary relation ≤ on a set S is a quasi-ordering if for all x, y, z ∈ S, we have x ≤ x and if x ≤ y and y ≤ z
then x ≤ z. This is like a partial-order except that the symmetry law is omitted: so x ≤ y and y ≤ x need not imply
x = y. A quasi-ordering in which every two elements are comparable is called a linear quasi-ordering. Thus linear
quasi-orderings satisfy the usual laws of linear orderings, save the symmetry law.

c© Chee-Keng Yap September 9, 1999



§1. Admissible Orderings Lecture XII Page 366

So a weight function w : Qn → R can be expressed as w(p) = 〈w, log(p)〉 where w is given in (4) and
〈·, ·〉 indicates inner product. A sequence

W = (w1, . . . , wn) (5)

of n weight functions is called a weight scheme. W can be viewed as a function W : Qn → Rn where

W (p) = (w1(p), . . . , wn(p)), p ∈ Qn.

The weight matrix W associated with W is the n × n real matrix whose ith row is wi =
(wi(X1), . . . , wi(Xn)), then we may write W (p) as the matrix-vector product

W (p) = W · log(p).

Every weight scheme W (or its associated matrix W ) induces a partial order ≤
W

on PP as follows. It

is determined by the relation:
p<

W

qiff W (p) <
LEX

W (q).

This is easily seen to be a partial ordering (e.g., transitivity of ≤
W

follows from the transitivity of

≤
LEX

). Let us see some examples.

Example: (i) Let W be the n × n identity matrix In. Then W induces the pure lexicographic
ordering ≤

LEX

(ii) A weight matrix inducing the total degree ordering ≤
TOT

is given by





1 1 1 · · · 1 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

. . .
...

0 0 0 · · · 1 0




.

(iii) A weight matrix inducing the reverse lexicographic ordering ≤
REV

is given by





1 1 1 · · · 1 1
1 1 1 · · · 1 0
1 1 1 · · · 0 0
...

. . .
...

1 1 0 · · · 0 0
1 0 0 · · · 0 0





.

It should be noted that the ordering induced by W may only depend on a prefix of (w1, . . . , wn).
For instance, if the entries of w1 are n transcendental elements linearly independent over Q then W
does not depend on the w2, . . . , wn. On the other hand, we are usually interested in W with integer
entries in which case the function will necessarily depend on all wi’s.

A row operation on W is admissible if it is one of the following two types:

(1) Multiplying a row by a positive constant.
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(2) Adding an arbitrary constant multiple of row i to row j for some j > i.

It is not hard to see that admissible row operations do not change the partial ordering induced by
W . Moreover, such operations are invertible. Say two weight matrices are equivalent if they are
equal after a finite sequence of admissible row operations. We say W (or W ) is non-negative if all
the entries of W are non-negative. We say W semi-admissible provided W is non-singular, i.e.,

W (p) = 0 = (0, 0, . . . , 0)iff p = 1. (6)

Lemma 5 Let ≤
W

be the partial ordering on PP induced by a weight scheme W .

(i) The partial ordering ≤
W

is a compatible ordering.

(ii) If W is semi-admissible, then ≤
W

is a semi-admissible ordering.

(iii) If W is non-negative and semi-admissible then ≤
W

is an admissible ordering.

(iv) If ≤
W

is admissible then the first non-zero entry of each column of W is positive. Moreover, W

is equivalent a non-negative semi-admissible weight matrix.

Proof. (i) We have already noted that≤
W

is a partial ordering. Compatibility follows from the linearity

of weight functions: W (p) ≤
LEX

W (q) implies W (rp) = W (r) +W (p) ≤
LEX

W (r) +W (q) = W (rq).

(ii) ≤
W

is a total ordering because p 6= q implies W (p) 6= W (q) (otherwise, by linearity, we get

W (p/q) = 0 which contradicts p/q 6= 1).
(iii) We must show that p≥

W

1 for all p ∈ PP. If W is non-negative, then W (p) ≥
LEX

0 = W (1). Thus

p≥
W

1.

(iv) If ≤
W

is admissible, it is easy to see that the first non-zero entry of each column is non-negative.

(Trivially, no columns can be entirely zero.) Let us say that a column “belongs to i” if the first
non-zero entry of the column is in the ith row. Clearly the first row must be non-negative. So by
adding a suitable multiple of the first row to the other rows, we can make all the columns belonging
to 1 non-negative. At this point, row 2 becomes non-negative. We repeat this process with row
2, turning all the columns belonging to 2 non-negative. Notice that this does not affect the non-
negativity of any column. Clearly we can finally turn the entire matrix non-negative. Q.E.D.

Robbiano has shown that (Exercise) every admissible ordering is induced by some weight scheme
(see also [56]).

Normal Form. There are obvious parallels between admissible row operations and elementary row
operations (§X.4). Let us say that a weight matrix is in normal form if (1) the rows are mutually
orthogonal, and (2) in each non-zero row, the first non-zero entry is ±1.

Theorem 6 (i) Every weight matrix is equivalent to a normal form weight matrix. If the original
matrix is rational, so is the normal form.

(ii) Two semi-admissible weight matrices with rational entries induce the same semi-admissible
ordering on PP iff they have the same normal form.
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Proof. (i) We can make the rows mutually orthogonal using the Gram-Schmidt procedure (§IX.1).
It is trivial to divide each row by the absolute value of its first non-zero entry to ensure that the
first non-zero entry is ±1. This procedure preserves rationality of the matrix.
(ii) If two weight matrices have the same normal form, then clearly they induce the same partial
ordering on PP. Conversely, suppose W,W ′ are semi-admissible and rational, and the the orderings
≤
W

,≤
W′

that they induce on PP are identical. By part (i), we may assume that they are both already in

normal form. Suppose the first i− 1 rows of W and W ′ are identical, and the ith rows are not. Let
e, e′ ∈ Qn be the ith rows of W and W ′, respectively. By semi-admissibility, the matrices W,W ′

must have full rank. Hence e, e′ are both non-zero. First suppose 〈e, e′〉 ≤ 0. Then observe that
〈e− e′, e〉 = e2 − 〈e, e′〉 > 0 while 〈e− e′, e′〉 = 〈e, e′〉 − e′2 < 0. This shows that Xe−e′ >

W

1 and and

Xe−e′ <
W′

1, contradiction. (Note that the rationality e, e′ depends on the rationality of the original

matrices.) Now suppose 〈e, e′〉 > 0. We choose α ∈ Q so that

〈e− αe′, e〉 = e2 − α〈e, e′〉 = 0. (7)

That is, α = e2/〈e, e′〉. Consider E = 〈e − αe′, e′〉 = 〈e, e′〉 − αe′2. If E 6= 0, then by perturbing
α slightly, we can make 〈e− αe′, e〉 have a different sign than E. This again gives a contradiction.
Hence we must have

E = 〈e− αe′, e′〉 = 〈e, e′〉 − αe′2 = 0. (8)

Combining equations (7) and (8), we obtain 〈e, e′〉2 = e2e′2. Hence e, e′ are parallel. Since the first
non-zero entries of both e and e′ are ±1, and 〈e, e′〉 > 0, this implies e = e′, contradiction. Q.E.D.

The following justifies the “normal form” terminology:

Corollary 7

(i) The normal forms of semi-admissible rational weight matrices are unique.

(ii) Two semi-admissible rational weight matrices are equivalent iff they have the same normal form.

Proof. (i) This is immediate from the preceding theorem.
(ii) If two such matrices are equivalent, then they induce the same semi-admissible ordering. So they
must have the same normal form. Conversely, since they both are equivalent to a unique normal
form, they are equivalent to each other. Q.E.D.

Final Remarks.
1. This corollary is useful for constructing new semi-admissible orderings with rational matrices –
we just have to make sure that their normal forms are distinct.
2. Our normal form can be defined for any real matrix. In case of rational matrices, a variant
normal form may be preferable: still keeping the rows mutually orthogonal, we now insist that all
entries are integer and the GCD of each row is 1. The preceding results hold for this variant.
3. Further treatment of the subject may be found in Robbiano [168, 169]. In particular, we can
generalize weight functions to be w : R \ {0} → Γ where Γ is an ordered Abelian group playing the
role of R. All of Gröbner basis theory can be carried out in this general setting.

Exercises
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Exercise 1.1: (i) Order the monomials of degree 3 in PP(X,Y ) using the three types of admissible
ordering (assuming (1)).

(ii) Similar, order the monomials of degree 3 in PP(X,Y, Z) for the three admissible orderings.

(iii) Suppose we declare p≥
A

q if p = q or else, in (2), last nonzero component is negative.

(This is rather like reverse lexicographic ordering). Is this admissible? Semi-admissible?

(iv) Show by admissible row operations that the weight matrix




1 1 1
−2 1 1
0 −1 1





induces an admissible ordering that is one of the three standard examples (≤
LEX

, ≤
TOT

, ≤
REV

).
2

Exercise 1.2: Show the normal form matrices for total degree and reverse lexicographical ordering
on n variables. 2

Exercise 1.3: (Robbiano) Show that every admissible ordering ≤
A

on PP arises from some weight

scheme W . 2

Exercise 1.4: Derive the Hilbert basis theorem (§XI.1) from Dickson’s lemma. 2

Exercise 1.5: The following implies lemma 3. If U is any set totally ordered by ≤′, let S(U)
denote the set of finite ordered sequences over U . That is, the elements of S(U) have the form
(u1, . . . , uk) where u1 >

′ u2 >
′ · · · >′ uk and k ≥ 0. We extend the ordering ≤′ to S(U) where

u = (u1, . . . , uk) ≤
′ (v1, . . . , vℓ) = v

if either u is a prefix of v (possibly u = v) or else there is some 1 ≤ i ≤ min{k, ℓ} such that
ui <

′ vi and for j = 1, . . . , i − 1, uj = vj . Show: If U is well-ordered by ≤′ then S(U) is
well-ordered under the induced ordering. 2

Exercise 1.6: We want to construct weight matrices with integer entries that induce an admissible
ordering different from our standard examples:
(i) If we permute the rows of the normal forms for reverse lexicographic ordering, do we get
new admissible orders?
(ii) What about the total degree ordering?
(iii) Construct examples different from (i) and (ii). 2

Exercise 1.7: In analogy to Hermite Normal form, let us define an alternative normal form for a
weight matrix W as follows: Let us call the first non-zero entry of each row a critical entry of
the matrix. Say a weight matrix is in normal form if (1) the critical entries are ±1, and (2)
there are only zero entries below each critical entry.
(i) Show that every weight matrix is equivalent to one of this form.
(ii) Show the analogues of the above normal form results for this new definition. 2

§2. Normal Form Algorithm
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We fix some admissible ordering ≤
A

in this section.

The heart of the Gröbner bases algorithm is the normal form algorithm which is described here. We
also provide an explicit bound on the number of reduction steps in the normal form algorithm.

Concept of Reduction. The head term hterm(f) of a polynomial f ∈ R refers to the ≤
A

-largest

power product (=term) in f . The head coefficient hcoef(f) and head monomial hmono(f) of f
refers to the coefficient and monomial associated to the head term of f . Thus

hterm(f) · hcoef(f) = hmono(f).

For example, if f = −2X2Y +X+1 then hterm(f) = X2Y , hmono(f) = −2X2Y and hcoef(f) = −2.
These assertions did not depend on the choice of admissible ordering; we often choose examples with
this property. On the other hand, the head term of g = X+Y 3 depends on the admissible ordering.

If F ⊆ R is a set of polynomials, we define hterm(F ) in the natural way, hterm(F ) = {hterm(f) :
f ∈ F}. We then define the head ideal Head(F ) of any set F ⊆ R to be the ideal generated by
hterm(F ):

Head(F ) := Ideal(hterm(F )).

A basic concept in Gröbner bases is that of reduction Given two polynomials f, g ∈ R, we say f is
reducible by g if hmono(g) divides some monomial m in f . In that case m = c · hmono(g) for some
monomial c. We then call h = f − c · g a reduct of f by g, and denote this 3-way relationship by

f
g
−→ h.

Necessarily, f 6= h. If G is any set of polynomials and there exists a g in G such that f
g
−→ h, then

we write
f

G
−→ h,

and call this a G-reduction step. The reflexive transitive closure of the binary relation
G
−→ is denoted

G−→∗ . If f is not reducible by G, we call f a G-normal form, and denote this in the suggestive

manner: f
G
−→. A normal form of f ∈ R is any G-normal form f̂ such that

f G−→∗ f̂
G
−→ .

Write NFG(f) for the set of G-normal forms of f . The following is an (essentially trivial) algorithm
for computing a member of NFG(f).

Normal Form Algorithm

Input: a polynomial f ∈ R, a finite set G ⊆ R.
Output: a G-normal form h of f .

h← f .
while h is reducible by G do

1. Pick g ∈ G such that g divides some monomial m of f .
2. h← h− c · g where m = hmono(c · g).

We remark that this algorithm is non-deterministic because step 1 may have several choices of g and
m. A variant of this algorithm is where G is fixed, so that the input is only f . In this case we call it
the G-normal form algorithm. We shall write nfG(f) for the (non-unique) output of this procedure.
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There are two fundamental questions concerning this algorithm:
(A) Termination: does every reduction sequence eventually reach a normal form?
(B) Is the normal form always unique?

Note that a positive answer to (A) implies that NFG(f) is non-empty. A positive answer to (B)
implies that |NFG(f)| = 1. The answer to (A) is easily deduced from lemma 3, once we remark that

f
G
−→ himplies f >

A

h.

We may now give our first definition of a Gröbner basis: A finite set G of polynomials is a Gröbner
basis (for the ideal Ideal(G)) if for every polynomial f , the G-normal form of f is unique.

Length of Reduction Sequences. We provide explicit upper bounds on the length of such
sequences.

For the rest of this section, we fix a finite set F ⊆ R and g ∈ R. For simplicity,
assume that F ∩ K = ∅, i.e., F has no constant polynomials. Our goal is to
bound the worst case length

k = k(F, g)

of any sequence of F -reductions that begins with g:

g = h1
F
−→ h2

F
−→ h3

F
−→ · · ·

F
−→ hk. (9)

We assume that our admissible ordering ≤
A

arises from the weight scheme

W = (w1, . . . , wn)

(cf. (5)). Moreover, we may assume that W is non-negative: wi(p) ≥ 0 for all p ∈ PP.

Let f = (f1, f2, . . . , , fm) be the term sequence (see (3)) for a polynomial f . Then we define the
extended term sequence of f as follows. It is equal to f if fm = 1; otherwise, the extended term
sequence is (f1, f2, . . . , , fm, 1). So extended term sequences always end with 1.

Let (f1, f2, . . . , , fm) be the extended term sequence of f . Assuming f is not a constant (i.e., f 6∈ K),
we have m ≥ 2. Then we define:

µ(f) :=min{wi(fj)− wi(fj+1) : wi(fj) > wi(fj+1), i = 1, . . . , nand j = 1, . . . ,m− 1}.

Since fj > fj+1, there exists an i = i(j) such that wi(fj) > wi(fj+1). Thus µ(f) is well-defined and
µ(f) > 0. We also define

M(f) := −min{wi(fj)− wi(fj+1) : i = 1, . . . , nand j = 1, . . . ,m− 1}

= max{wi(fj+1)− wi(fj) : i = 1, . . . , nand j = 1, . . . ,m− 1}.

Unlike µ(f), M(f) could be negative.

Our bounds on k = k(F, g) will be in terms of the following parameters. Let the term sequence of g
be g = (g1, g2, . . . , gℓ).

ℓ := the length of g
∆ := max{wi(gj) : i = 1, . . . , nand j = 1, . . . , ℓ}
µ0 := min{µ(f) : f ∈ F}
M0 := max{1,max{M(f) : f ∈ F}}}
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Example: Let ≤
A

be the pure lexicographic ordering ≤
LEX

. Then W can be taken to be the n × n

identity matrix (§1). Then wi(fj) gives the Xi-degree of the monomial fj . If mdeg(f) = d (§0.10),
then 1 ≤ µ(f) ≤ d and 1 ≤M(f) ≤ d.

The main result of this section is:

Theorem 8 Any sequence of F -reduction steps on g has length at most

k(F, g) ≤ ℓ2
∆ρn

M0 ,

where ρ := M0

µ0
+ 1.

In the above pure lexicographic ordering example, we have ρ ≤ d + 1. Hence k(F, g) ≤ ℓ2∆(d+1)n

.
Note that ∆ = mdeg(g) in this case.

For the proof, first introduce a “cost function” CF : PP→ R where

CF (p) =
1

µ0

n∑

i=1

ρn−iwi(p).

Also let CF (cp) = CF (p) for p ∈ PP and c ∈ K. Note that CF (pq) = CF (p) + CF (q). Moreover,
CF (p) ≥ 0 with equality iff p = 1.

Lemma 9 Let p>
A

q be consecutive power products appearing in the extended term sequence of f ∈ F .

Then CF (p) ≥ 1 + CF (q).

Proof. Since p>
A

q, there exists a k0 such that

wk0 (p) > wk0(q) and wi(p) = wi(q) (for i = 1, . . . , k0 − 1).

Hence

CF (p)− CF (q) =
1

µ0

n∑

i=1

ρn−i(wi(p)− wi(q))

=
1

µ0
ρn−k0(wk0 (p)− wk0(q)) +

1

µ0

n∑

i=k0+1

ρn−i(wi(p)− wi(q))

≥ ρn−k0 −
1

µ0

n∑

i=k0+1

ρn−iM0 (since max{µ0,−M0} ≤ wi(p)− wi(q))

= ρn−k0 −
M0

µ0
·
ρn−k0 − 1

ρ− 1
= 1,

where the last line is valid since M0 6= 0 and hence ρ 6= 1. Q.E.D.

Inductively, we obtain:

Corollary 10 If f ∈ F and f = (f1, f2, . . . , fk) then

CF (f1)− i+ 1 ≥ CF (fi) ≥ 1, (i = 1, . . . , k).
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Now define a cost function on polynomials. For any polynomial h, let

ĈF (h) :=
m∑

i=1

2CF (hi) =
m∑

i=1

ĈF (hi).

where h = (h1, . . . , hm).

Lemma 11 For any g, h ∈ R, if g
F
−→ h then ĈF (g) ≥ 2 + ĈF (h).

Proof. Suppose h = g−u ·f for some f ∈ F and monomial u. Let f = (f1, f2, . . . , fk). The reduction
by f removes the monomial uf1 from g and ‘replaces’ it with uf2 + uf3 + . . .+ ufk. Note that ufi
(i = 2, . . . , k) may combine with monomials in g and even vanish. If k = 1 then we have simply

removed uf1 and clearly ĈF (g)− ĈF (h) ≥ 1. Assuming k ≥ 2,

ĈF (g)− ĈF (h) ≥ 2CF (uf1) −
k∑

i=2

2CF (ufi)

≥ ĈF (u)

[
2C −

k∑

i=2

2C−i+1

]
, (C :=CF (f1))

= ĈF (u)2C−k+1

≥ ĈF (ufk), (by previous corollary).

But ĈF (ufk) ≥ 2 since CF (ufk) ≥ 1 (again by previous corollary). Q.E.D.

Conclusion of proof. Since ĈF (h) ≥ 1 for any non-zero polynomial h, the last lemma implies

that the length of the F -reduction sequence (9) is at most ĈF (g) (actually ĈF (g)/2, but we give up
the factor to 2 for the sake of simplicity). With g = (g1, . . . , gℓ), we have

CF (gj) =
1

µ0

n∑

i=1

ρn−iwi(gj)

≤
∆

µ0

n−1∑

i=0

ρi

=
∆

M0
(ρn − 1).

Hence ĈF (g) =
∑ℓ

i=1 2CF (gi) < ℓ2∆ρn/M0 , and main result follows.

A variant of this bound is derived in [56]. We remark that the bound makes no assumptions about
the order of reductions. With some simple restrictions, we can improve the bound from double
exponential in n to single exponential (Exercise and [56]).

Exercises

Exercise 2.1:

(i) Let G = {X2Y, Y 2} and f = 2Y 4 +X3Y − 3XY + 1. Show that NFG(f) = {−3XY + 1}.
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(ii) Show that any finite set G of monomials is a Gröbner basis. Further, the G-normal forms
are independent of the choice of admissible ordering.

2

Exercise 2.2: Let G = {g1, g2} where g1 = XY − 2 and g2 = 3X2 − 1. Show that G is not a
Gröbner basis. HINT: consider NFG(X2Y 2). 2

Exercise 2.3: We want efficient implementations of the normal form algorithm.
(i) Give an efficient data structure D1(S) for any finite subset S ∈ Zn such that given any
e ∈ Zn, you can use D1(S) to quickly retrieve any d ∈ S such that Xd|Xe.
(ii) Modify D1(S) into a semi-dynamic data structure, i.e., where S can have elements inserted
and D1(S) is quickly updated.
(ii) Use the above data structure to implement the normal form algorithm. Assume a sparse
representation of polynomials. 2

Exercise 2.4: Let n be the number of variables, d the maximum degree of any variable in F , ∆
the maximum degree of any variable in g. Show the following:
(i) For total degree ordering, k(F, g) ≤ 2(∆+1)n

.
(ii) The bound in (i) is k(F, g) ≤ (∆ + 1)n if we insist that the normal form algorithm always
chooses to eliminate the ≤

A

-largest monomial in g that can be eliminated. 2

Exercise 2.5: We show that the above upper bound is, in some sense, the best possible ([56]). The
admissible ordering is the usual ≤

LEX

with

X1 >
LEX

X2 >
LEX

. . . >
LEX

Xn.

Let d,∆, ℓ, L be integers satisfying d ≥ ℓ− 2 > 0 and ∆ > L. The polynomial g is

g :=X∆
1 X

L
n +X∆

1 X
L−1
n + · · ·+X∆

1 Xn

and the reducing set F comprises the following polynomials:

f1 = X1 − (Xd
2X

d
3 · · ·X

d
n−1)(X

d
n +Xd−1

n + · · ·+Xd−ℓ+2
n )

f2 = X2 − (Xd
3X

d
4 · · ·X

d
n−1)(X

d
n +Xd−1

n + · · ·+Xd−ℓ+2
n )

...

fn−1 = Xn−1 − (Xd
n +Xd−1

n + · · ·+Xd−ℓ+2
n )

fn = Xℓ
n −X

ℓ−1
n − · · · −Xn

fn+1 = Xℓ−1
n −Xℓ−2

n − · · · −Xn

...

fn+ℓ−2 = X2
n −Xn

fn+ℓ−1 = Xn − 1

(i) What is the upper bound on k(F, g) based on our theorem?
(ii) Consider the reduction sequence that always chooses the ≤

LEX

-least monomial to reduce.

Let s(f) be the length of the entire F -reduction sequence starting from f . Show that if
f = (f1, . . . , fm) then s(f) =

∑m
i=1 s(fi).

(iii) Show that s(Xe1
1 · · ·X

en
n ) is at least

2
ℓ−2

ℓ−1
((e1(d+1)n−1+e2(d+1)n−2+···+en−1).
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(iv) Conclude that s(g) ≥ 2
ℓ−2

ℓ−1
(d+1)n−1∆L. 2

§3. Characterizations of Gröbner Bases

We now give several characterizations of Gröbner bases. Note that the following discussion is entirely
relative to some fixed admissible ordering ≥

A

.

The Normal Form Characterization. Our original definition (§2) of Gröbner basis was based
on the concept of reduction and the normal form algorithm: a finite set G ⊆ R is Gröbner iff every
f ∈ R has a unique G-normal form. We also say G is a Gröbner basis for the Ideal(G) that it
generates.

The Standard Characterization. Perhaps the simplest characterization is this: a finite set
G ⊆ R is Gröbner iff

Head(G) = Head(Ideal(G)). (10)

This definition is elegant but highly non-constructive as it does not suggest any procedure to verify
if a given set is Gröbner. We call this the standard characterization of Gröbner bases because
some literature defines “standard bases” precisely this way, being the closest to Hironaka’s notion
of standard bases.

Buchberger’s Characterization. Computationally, this is the most important characteriza-
tion. The least common multiple (LCM) of two power products p = Xe1

1 Xe2
2 · · ·X

en
n and q =

Xd1
1 Xd2

2 · · ·X
dn
n is given by

LCM(p, q) :=X
max(d1,e1)
1 X

max(d2,e2)
2 · · ·Xmax(dn,en)

n .

The LCM of two monomials ap and bq (a, b ∈ K; p, q ∈ PP) is2 ab · LCM(p, q). For example, the LCM
of 6X3Y and 4X2Y 2 is 24X3Y 2.

A critical notion in the constructive approach to Gröbner basis due to Buchberger is the following:
for f, g ∈ R where m = LCM(hterm(f), hterm(g)), we define the S-polynomial of f and g to be

S(f, g) :=
m

hmono(f)
· f −

m

hmono(g)
· g.

It is easy to understand S(f, g) once we note that the head terms in m
hmono(f) · f and m

hmono(g) · g both

equal m, and hence they cancel each other in the defining expression for S(f, g). For example, with
g1 = XY − 2, g2 = 3X2 − 1, we get

m = LCM(XY, 3X2) = 3X2Y, S(g1, g2) = 3X · g1 − Y · g2 = −6X + Y.

Buchberger’s characterization is this: G is Gröbner iff S(f, g) G−→∗ 0 for all f, g ∈ G.

2If K is the quotient field of a UFD, then we could replace ab by LCM(a, b) (§III.1).
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Term Rewriting Connection. The Gröbner bases literature is closely related to the term-

rewriting literature. For any fixed set F ⊆ R, we can view the binary relation F−→∗ on R as a
partial order. In general, consider a partial order −→∗ on an arbitrary set U . Let us write f −→ g,
if f −→∗ g and f 6= g. The partial order is Noetherian if it has no infinite descending sequence in
the sense of

f1 −→ f2 −→ f3 −→ · · · .

The partial order is said to be Church-Rosser (alternatively, confluent) if for all f, g, g′ ∈ U , if
f −→∗ g and f −→∗ g′ then there exists h ∈ U such that g −→∗ h and g′ −→∗ h. (Such an h is
called a common successor of g, g′.) A minimal element f in this partial order is called an normal
form, or a normal form of g if, in addition, g −→∗ f . A powerful induction principle for Noetherian
structures is the following:

Proposition 12 (Principle of Noetherian Induction) For a Noetherian relation −→∗ , to es-
tablish the validity of a predicate P (x) for all x ∈ U , it is sufficient that:
(1) P (x) holds for all normal form elements x ∈ U .
(2) For x ∈ U : if P (y) holds whenever x −→ y, then we can conclude that P (x) holds.

In proof, suppose that (1) and (2) hold. For the sake of contradiction, suppose P (x0) fails. Then x0

is not a normal form. So there exists some x1 such that x0 −→ x1 and P (x1) fails. Continuing in this
fashion, we obtain an infinite descending sequence x0, x1, x2, . . ., which contradicts the Noetherian
property. The following is a basic result in the theory of term-rewriting:

Theorem 13 If −→∗ is a Noetherian partial order on U then −→∗ is Church-Rosser iff every
g ∈ U has a unique normal form.

This is easy to show by Noetherian induction (Exercise).

The Church-Rosser Property Characterization. We now apply this terminology to the par-

tial order F−→∗ induced by F -reductions. From §2, we know that this partial order is Noetherian.

Combined with theorem 13, we conclude that the Church-Rosser property for
F−→∗ is equivalent to

F being Gröbner: a set G ⊆ R to be Gröbner iff the relation
G−→∗ is Church-Rosser.

Extended Standard Characterization. The following is a useful variant of the standard char-
acterization:

Lemma 14 (Extended standard characterization) G is Gröbner in the standard sense of (10)
iff for all f ∈ Ideal(G), there are elements αi ∈ R, gi ∈ G, (i = 1, . . . , r) such that

f =

r∑

i=1

αigi (11)

and hterm(f)≥
A

hterm(αigi) for all i.

Proof. (⇒) Let f ∈ Ideal(G). If f = 0 then f has the desired form (11). Otherwise, since
hmono(f) ∈ Head(Ideal(G)) = Head(G) there is some g1 ∈ G and monomial p1 such that
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hmono(p1g1) = hmono(f). By the principle of Noetherian induction on Ideal(G), we may assume
that f − p1g1 can be represented in a form of equation (11). Then clearly f can be so represented.

[The Noetherian induction refers to the partial order G−→∗ on Ideal(G) with 0 as the only normal
form.]

(⇐) Conversely, assume every f ∈ Ideal(G) can be expressed as in Equation (11). We want to
show Head(G) = Head(Ideal(G)). It is clear that Head(G) ⊆ Head(Ideal(G)). For the opposite
inclusion, suppose p ∈ Head(Ideal(G)) and p 6= 0. Then p =

∑
i βihterm(fi) where βi ∈ R and

fi ∈ Ideal(G). From (11), we see that each fi can be written as
∑

j αijgij where gij ∈ G. We may
assume that αij are monomials. Therefore

p =
∑

i

βi




∑

j

hterm(αijgij)



 =
∑

i

∑

j

(βiαij)hterm(gij),

implying p ∈ Head(G). Q.E.D.

Ideal Membership Characterization. It is clear that if g is the F -normal form of h then g ≡
h(mod Ideal(F )). If F is Church-Rosser, then we have a unique representative for each equivalence
class of polynomials modulo Ideal(F ). Since 0 is clearly a normal form, it must be the unique

representative for each element in Ideal(F ). In particular, for all h ∈ Ideal(F ), h
F−→∗ 0. The

ideal membership characterization of Gröbner bases says that the converse also holds: F is Gröbner
iff

∀h ∈ Ideal(F ), h F−→∗ 0. (12)

Note that the condition (12) is equivalent to 0 ∈ NFF (h) for all h ∈ Ideal(F ). But in fact (12) is
equivalent to the stronger assertion

∀h ∈ Ideal(F ), NFF (h) = {0}. (13)

To see this, it suffices to show that g ∈ NFF (h) implies g = 0. If g 6= 0 then, since g ∈ Ideal(F ), we

have g F−→∗ 0. So g is F -reducible, contradiction.

We summarize the above discussions in the following:

Theorem 15 (Characterization of Gröbner bases) Let G ⊆ I ⊆ R where I is an ideal and G
is finite. The following are equivalent:

1. (Normal Form) Every f ∈ R has a unique G-normal form.

2. (Standard bases) Head(G) = Head(I).

3. (Buchberger’s Criterion) For all f, g ∈ G, we have S(f, g)
G−→∗ 0.

4. (Church-Rosser) The relation
G−→∗ is Church-Rosser.

5. (Extended Standard) Every f ∈ Ideal(G) has the expression

f =

r∑

i=1

αigi, (where hterm(f)≥
A

hterm(αigi), αi ∈ R, gi ∈ G).

6. (Ideal Membership) For all f ∈ I, we have f G−→∗ 0.
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§4. Gröbner Bases Lecture XII Page 378

Exercises

Exercise 3.1: Prove theorem 13 using Noetherian induction. 2

Exercise 3.2: Define H(f) to mean the highest degree homogeneous component of a polynomial
f ∈ R. If F ⊆ R, let H(F ) = {H(f) : f ∈ H}. The H-base or Macaulay base of an ideal I
is a finite set F such that Ideal(H(I)) = Ideal(H(F )). Let f∧ denote the homogenization
of f with respect to a new variable X0, and for a set S ⊆ R, S∧ = {f∧ : f ∈ S}. Prove:
{f1, . . . , fm} is a H-base of I iff I∧ = Ideal(f1

∧, . . . , fm
∧). 2

Exercise 3.3:

(i) Is the following set

F1 = {X3 −X2 +X − 1, XY − Y −X2 +X,Y 2 −X2}

a Gröbner basis under the lexicographic ordering where X <
LEX

Y ?

(ii) Show that the following is a Gröbner basis under the total degree ordering (does not
matter whether X <

TOT

Y or X >
TOT

Y ):

F2 = {XY 4 − 1, X3 − Y, Y 5 −X2}.

(iii) Give a finite procedure to check if any set F is Gröbner. HINT: use Buchberger’s char-
acterization.

2

Exercise 3.4: (Sturmfels-Eisenbud) Let Λ ⊆ Zn is a lattice (§VIII.1). The lattice ideal I ⊆
K[X1, . . . , Xn] = K[X] of Λ is the ideal with the generator set of elements of the form

Xe+ −Xe− , e ∈ Λ.

Here e+ is obtained from e by replacing any negative component by 0, and e− is obtained from
−e by a similar process. E.g., e = (−2, 2, 0, 3,−1), e+ = (0, 2, 0, 3, 0), e− = (2, 0, 0, 0, 1).
(i) Show that the ideal generated by F2 (previous exercise) is a lattice ideal, where the lattice

is generated by the vectors (1, 4) and (4, 3).

(ii) If A = {a1, . . . , am} ⊆ Zn is a generating set of Λ and all the components of ai are positive,

then I is generated by the set {Xa+

−Xa− : a ∈ A}.

(iii) Show that Zn/Λ is a direct sum G0 ⊕ G1 where G0 is a free Abelian group and G1 is
the direct sum of a finite number of cyclic groups. HINT: Use Hilbert’s basis theorem
for modules and the fundamental theorem of finitely generated Abelian groups (see §XI.1
and §X.9).

(iv) Show that if G1 is trivial then I is a prime ideal. This is called a toric ideal [Sturmfels
and Eisenbud].

(v) Show that if G0 is trivial, the order of the group G1 is equal to the determinant of Λ, and
I is zero-dimensional. In fact, K[X]/I has dimension det(Λ).

(vi) Relative to an admissible ordering ≤
A

, Head(I) is generated by the monomials {Xe+ : e ∈

Λ, e+>
A

e−}.

(vii) A binomial Xe −Xd belongs to I iff e− d ∈ Λ.
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2

Exercise 3.5: Complete the proof of theorem 15. 2

§4. Buchberger’s Algorithm

Despite Buchberger’s criterion, it is not immediately obvious how to construct a Gröbner basis
for any ideal (given by a set of generators, as always). We now present Buchberger’s algorithm to
construct Gröbner bases. There are various heuristics to improve the algorithm but the basic version
of the algorithm given below is easy to describe.

Buchberger’s Algorithm

Input: F ⊆ R a finite set of polynomials
Output: G a Gröbner basis for Ideal(F ).
G← F ;
B ← {S(f, g) : f, g ∈ F, f 6= g};
while B 6= ∅ do begin

Remove f from B;
h← nfG(f);
if h′ 6= 0 then begin

B ← B ∪ {S(f, h′) : f ∈ G};
G← G ∪ {h′}

end {if}
end {while}

Correctness: If this algorithm terminates, it is easy to see from Buchberger’s criterion that G is
a Gröbner basis for Ideal(F ). To see that this algorithm terminates, let

h1, h2, . . .

be the sequence of non-zero polynomials produced by the normal form algorithm in the while-loop.
Since each hi is not reducible by any of the previous polynomials (since hi is not reducible by G which
contains {h1, . . . , hi−1}) we see that hterm(hi) is not divisible by hterm(hj) for all j = 1, . . . , i− 1.
By Dickson’s lemma, the set {hterm(hi) : i ≥ 1} must be finite, i.e., the loop terminates.

Exercises

Exercise 4.1: (i) Compute the Gröbner basis of {XY 4 − 1, X3 − Y, Y 5 − X2} under the pure
lexicographic ordering assuming X >

LEX

Y .

(ii) Now assume X <
LEX

Y .

(iii) Now use the reverse lexicographic ordering with X >
REV

Y .
2

Exercise 4.2: Compute the Gröbner basis of {X3−Y,XY −Z} relative to the reverse lexicographic
order (assuming Z >

REV

Y >
REV

X). 2
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Exercise 4.3: (Trinks) Compute the Gröbner basis for the following polynomials in Q[w, p, z, t, s, b]
using the pure lexicographic order determined by w >

LEX

p >
LEX

z >
LEX

t >
LEX

s >
LEX

b:

A1 = 45p+ 35s− 165b− 36,

A2 = 35p+ 40z + 25t− 27s,

A3 = 15w + 25ps+ 30z − 18t− 165b2,

A4 = −9w + 15pt+ 20zs,

A5 = wp+ 2zt− 11b3,

A6 = 99w − 11sb+ 3b2.

NOTE: The Gröbner basis has a univariate polynomial in b of degree 10, coefficients up to 60
digits. Christoph Koegl informs us that this can be solved in tenths of a second on Sparc 10
or 20 (ca. 1997). 2

§5. Uniqueness

Now that we have established the existence of Gröbner bases, we turn to the question of their unique-
ness. It is clear that we need to impose some additional conditions to get any kind of uniqueness.

We define a non-empty set F ⊆ K[X1, . . . , Xn] to be self-reduced if each f ∈ F is not reducible by
F − {f}. Of course, this definition is relative to some admissible ordering.

To treat some extreme cases of this definition, let us define the zero polynomial 0 to be reducible by
F , for all F . Hence, no self-reduced set contains 0. By definition, if f 6= 0 then f is not reducible
by the empty set. Hence if F is a singleton set and F 6= {0}, then it is self-reduced. Also, if c ∈ K
and c ∈ F then F is self-reduced implies F = {c}.

Definition: A finite non-empty set G ⊆ R is a reduced (Gröbner) basis if (1) it is a Gröbner basis
(2) it is self-reduced and (3) each f ∈ G is monic (i.e., hcoef(f) = 1).

Lemma 16 Every ideal has a reduced basis (relative to any choice of an admissible ordering).

Proof. Begin with any Gröbner basis G. For each g ∈ G, reduce it with respect to the remaining
polynomials of G. If the result g′ is 0, then discard g from G; otherwise replace g by g′. After
such a step, it is easy to see that G remains a Gröbner basis for the original ideal (use the standard
characterization). We systematically cycle through all choices of g, and we continue this as long
as G continues to change. More precisely, we stop if no g ∈ G can be reduced by the remaining
polynomials. Clearly this process must terminate because each replacement polynomial g′ is <

A

the

original g. Finally, we replace each polynomial g by g/hcoef(g). Q.E.D.

Monomial Ideals. A monomial ideal is one generated by a set of monomials. It is easy to show:

An ideal I is monomial iff for all f ∈ I, each monomial of f also belongs to I. (14)

We prove a strong uniqueness property for reduced bases of monomial ideals:
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Theorem 17 Reduced bases for monomial ideals are comprised of power products; moreover, they
are unique and this is independent of the admissible ordering.

We shall omit the proof because it is similar to, but simpler than, the proof for the homogeneous
case (Theorem 20 below).

Lemma 18 If G is a reduced basis then

hterm(G) = {hterm(f) : f ∈ G}

is a reduced basis for Head(G).

Proof. By the standard characterization of Gröbner bases, hterm(G) is a basis for Head(G). Clearly
hterm(G) is self-reduced because this amounts to saying that no term in hterm(G) divides another
term in hterm(G). Q.E.D.

Theorem 19 (Buchberger) Reduced bases are unique, up to choice of admissible orderings.

Proof. By way of contradiction, suppose G,G′ are distinct reduced bases for the same ideal. By
the previous two lemmas, we conclude that hterm(G) = hterm(G′); this equality holds only because
we assume the admissible ordering in G and G′ are the same. In particular, |G| = |G′|. Since
G,G′ are distinct, without loss of generality, let f ∈ G \ G′. Then there is f ′ ∈ G′ such that
hterm(f) = hterm(f ′). Then f − f ′ is a non-zero polynomial. Suppose that hterm(f − f ′) occurs

in f (the argument if it occurs in f ′ is similar). Since f − f ′ G−→∗ 0, there is some g ∈ G such that
hterm(g) divides hterm(f − f ′). Clearly g 6= f . Then f is reducible by G \ {f}, contradicting the
self-reduced property. Q.E.D.

Homogeneous Ideals. A homogeneous ideal is one generated by a set of homogeneous elements.
As for monomial ideals, it is easy to show:

I is homogeneous iff for all f ∈ I, each homogeneous component of f belongs to I. (15)

We have a strong uniqueness result similar to the case of monomial ideals:

Theorem 20 Reduced bases for homogeneous ideals are comprised of homogeneous polynomials;
moreover, such bases are unique and independent of the admissible ordering.

Proof. Let G be a reduced basis for a homogeneous ideal I. If f ∈ G is not homogeneous, let h be
any homogeneous component of f of degree less than deg(f). Since h ∈ I, there is some g ∈ G such
that h is reducible by g. Hence f is reducible by g and g 6= f . This contradicts the self-reduced
property.

To show uniqueness, suppose G′ is another reduced basis, G′ 6= G. We do not assume that the
admissible orderings implicit in the definitions of G and G′ are the same. Hence, for any polynomial
f , we shall write hterm(f) and hterm′(f) to denote the head terms of f relative to the two admissible
orderings. We may now assume that G,G′ have only homogeneous polynomials. Without loss of
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generality, let f ∈ G \G′. Then hterm′(f ′) divides hterm(f) for some f ′ ∈ G′. Similarly, hterm(g)
divides hterm′(f ′) for some g ∈ G. Hence f is reducible by g. This is a contradiction unless
g = f . So assume g = f . Then hterm(f) = hterm′(f ′). Consider the non-zero polynomial f − f ′.

Consider hterm(f − f ′) and we may suppose it belongs to f . Since f − f ′ G−→∗ 0, we conclude
that hterm(f − f ′) is reducibile by some h ∈ G. This means f is reducible by h, contradicting the
self-reduced property. Thus f does not exist and G = G′. Q.E.D.

Exercises

Exercise 5.1: Show the characterizations of monomial and homogeneous ideals in (14) and (15).
2

Exercise 5.2: Modify Buchberger’s algorithm (§4) to output a reduced basis. 2

§6. Elimination Properties

In this and the following sections, we discuss of applications of Gröbner bases. The number of appli-
cations are numerous. But two basic applications are: computing in residue class rings (the original
motivation of Buchberger) and elimination. This section considers the elimination applications.

Let X,Y be disjoint sets of variables and suppose ≤
X

and ≤
Y

are admissable orderings on PP(X) and

PP(Y), respectively. Then we define the lexicographic product of ≤
X

and ≤
Y

,

(≤
X

,≤
Y

)

which is an admissible ordering on PP(X ∪Y): If p, p′ ∈ PP(X), q, q′ ∈ PP(Y) then

pq (≤
X

,≤
Y

) p′q′

iff p≤
X

p′ or else, p = p′ and q≤
Y

q′.

Clearly a pure lexicographic ordering ≤
LEX

on n variables in which Xi <
LEX

Xi+1 is obtained as a lexico-

graphic product of the unique admissible ordering on each of the variables, (≤
X1

, . . . ,≤
Xn

).

Theorem 21 Let ≤
X,Y

denote the lexicographic product of admissible orderings ≤
X

and ≤
Y

on PP(X)

and PP(Y), respectively. If G ⊆ K[X,Y] is a Gröbner basis with respect to ≤
X,Y

then

(a) IdealK[X,Y](G) ∩K[Y] = IdealK[Y](G ∩K[Y])

(b) G ∩K[Y] is a Gröbner basis for IdealK[Y](G ∩K[Y]).

Proof. For part (a), note that the inclusion

IdealK[Y](G ∩K[Y]) ⊆ IdealK[X,Y](G) ∩K[Y]
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is immediate. The converse inclusion uses a simple observation:

hterm(f) ∈ PP(Y)⇐⇒ f ∈ K[Y].

If f ∈ IdealK[X,Y](G)∩K[Y], then by applying a sequence of G-reductions to reduct f to 0, we see
that

f =
m∑

i=1

figi

where fi ∈ K[X,Y], gi ∈ G, hterm(f) ≥
X,Y

hterm(figi). But this implies that hterm(figi) ∈ PP(Y)

which means fi, gi ∈ K[Y]. This proves part (a). But the proof also shows that G ∩ K[Y] is
a Gröbner basis for the ideal IdealK[Y](G ∩ K[Y]) (use the extended standard characterization).

Q.E.D.

If I ⊆ K[X] and Y is any subset of X then we call I ∩K[Y] an elimination ideal of I. Note that
I∩K[Y] is clearly an ideal in K[Y]. The theorem just proved shows how to obtain elimination ideals
— by constructing a Gröbner basis with respect to any admissible ordering which is a lexicographic
product of two admissible orderings over PP(X\Y) and PP(Y), respectively. Note that the variables
in X \ Y are to be “eliminated” in order to get I ∩ K[Y], and these variables are given “greater
priority” in the admissible ordering. In particular, with the pure lexicographic ordering <

A

in which

X1<
A

· · ·<
A

Xn,

we get a Gröbner basis G ⊆ K[X1, . . . ,Xn] such that, for each i = 1, . . . , n, G ∩ K[X1, . . . ,Xi]
generates an elimination ideal of (G). Of course, G ∩K[X1, . . . ,Xi] may be trivial, i.e., {0}.

A set S ⊆ R is zero-dimensional iff its zero set Zero(S) ⊆ K
n

is finite. For example, if S =
{X2

1 − 1, X2
2 , . . . , X

2
n} then Zero(S) has two zeros (±1, 0, . . . , 0).

Theorem 22 Let Xi (i = 1, . . . , n) be disjoint groups of variables, and I ⊆ K[X1, . . . ,Xn]. Then
I is zero-dimensional iff for each i = 1, . . . , n, I ∩K[Xi] 6= ∅.

Proof. (⇐) If fi ∈ I ∩K[Xi] for each i = 1, . . . , n then for any zero ξ = (ξ1, . . . , ξn) ∈ Zero(I), ξ
(and hence ξi) must be a root of fi. So Zero(I) is clearly finite.

(⇒) Suppose Zero(I) = {ξ(1), . . . , ξ(m)} where ξ(j) = (ξ
(j)
1 , . . . , ξ

(j)
n ). Then for each i = 1, . . . , n,

there is a polynomial fi ∈ K[Xi] such that fi(ξ
(j)
i ) = 0 for each j = 1, . . . ,m. Hence fi vanishes

on Zero(I). By Hilbert’s Nullstellensatz, some power mi of fi belongs to I: fmi

i ∈ I. This proves
I ∩K[Xi] 6= ∅.

Q.E.D.

Corollary 23 Let G be a Gröbner basis. Then G is zero-dimensional, iff for each i = 1, . . . , n,
there is a gi ∈ G with hterm(gi) ∈ PP(Xi).

Proof. This is because hterm(G) = {hterm(g) : g ∈ G} generates Head(Ideal(G)) and Ideal(G) ∩
K[Xi] is non-empty implies there exists gi ∈ Head(Ideal(G)) ∩K[Xi]. Q.E.D.
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Theorem 24 Let G be a Gröbner basis with respect to the pure lexicographic order ≤
LEX

where

X1 <
LEX

X2 <
LEX

· · · <
LEX

Xn. Then G is zero-dimensional if and only if for each i = 1, . . . , n, there is

a pi ∈ G such that pi ∈ K[X1, . . . ,Xi]−K[X1, . . . ,Xi−1].

Proof. If G is zero dimensional, the existence of pi follows from the above corollary (if hterm(gi) ∈
PP(Xi) then gi ∈ K[X1, . . . ,Xi] \K[X1, . . . ,Xi−1]). Conversely, suppose for each i, we have some
pi ∈ G where pi ∈ K[X1, . . . ,Xi] − K[X1, . . . ,Xi−1]. Then we see that every ξ = (ξ1, . . . , ξn) in
Zero(G) must satisfy pi(ξ1, . . . , ξi) = 0. If i = 1, this shows there are finitely many ξ1 in Zero(G).
Inductively, if there are only finitely many values for the first i− 1 components of ξ ∈ Zero(G), we
see from pi(ξ1, . . . , ξi−1, ξi) = 0 that there are only finitely many possible values for ξi.

Q.E.D.

Application to Solving Polynomial Equations. Suppose we want to solve the system f1 =
f2 = · · · = fm = 0 of polynomial equations:

• The question whether the system is inconsistent (has no solutions) amounts to whether 1 ∈
Ideal(f1, . . . , fm). We can determine the membership of any element g in Ideal(f1, . . . , fm)
by first computing a Gröbner basis G of Ideal(f1, . . . , fm) and then checking if nfG(g) = 0.
But for g = 1, it is sufficient to see if G contains a non-zero constant.

• If the system is consistent, we can check whether it has finitely many solutions. Compute a
Gröbner basis G relative to any ≤

A

. Check for each i whether there is a polynomial pi ∈ G

with hterm(pi) ∈ PP(Xi).

• Finally, suppose the system has finitely many solutions. Suppose we answered the previous
question of zero-dimensionality by choosing ≤

A

according to theorem 24. Then we can continue

from the Gröbner basis G computed there: we solve for all possible values for X1 (considering
the polynomials in G∩K[X1]). Then we back back-solve in the natural way: for each possible
value of X1, we solve the polynomials in G ∩K[X1, X2] for the associated values of X2. This
can be continued in the obvious way.

Application in Geometric Projections. Geometrically, the elimination of variables amounts
to projection. Let

X = {X1, . . . , Xm}, Y = {Y1, . . . , Yn} (16)

and for I ⊆ K[X,Y], let V be the algebraic set Zero(I) ⊆ K
m+n

. We are interested in the projection
map

π : K
m+n

→ K
m

given by π(x,y) = x. Intuitively, I ∩ K[X] is the zero set of the projection π(V ). There is a
subtlety: the projection may not be an algebraic set. A simple example is V = Zero(XY − 1)
where π(V ) = K −{0}, which is not an algebraic set. Thus we define the Zariski closure of a subset
S ⊆ K

m
to be the smallest algebraic set that contains S. Then we have the following theorem,

whose proof we leave to an exercise.

Theorem 25 . Let I ⊆ K[X,Y] be an ideal. The Zariski closure of π(Zero(I)) is equal to Zero(I∩
K[X]).
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An instance of projection is the problem of “implicitization”. In computer-aided design, a surface
S ⊆ R3 is often represented parametrically in the form:

X =
f(s, t)

d(s, t)
, Y =

g(s, t)

d(s, t)
, Z =

h(s, t)

d(s, t)
, (17)

where f, g, h, d ∈ Q[s, t]. That is, S = {(X(s, t), Y (s, t), Z(s, t)) : (s, t) ∈ R2}. Implicitization of
these parametric equations is the problem of computing a polynomial A(X,Y, Z) such that S =
Zero(A). This polynomial can be obtained by computing

Ideal(d(s, t)X − f(s, t), d(s, t)Y − g(s, t), d(s, t)Z − h(s, t)} ∩Q[X,Y, Z],

i.e., eliminating s, t. In fact, by homogenizing the equations using another indeterminate u and
treating X,Y, Z as the indeterminates, A(X,Y, Z) can be computed as a Macaulay resultant, (see
[8, 9] for this and other applications). Note that the parametric form (17) is useful when we have to
render the surface, as in computer graphics. But the implicit form A(X,Y, Z) is more useful when
we need to know if a given point (a, b, c) is on the surface, or on one side of the surface).

Exercises

Exercise 6.1: For the following systems, indicate whether it is solvable, and if so, whether it is
zero-dimensional, and if so, compute the finitely many solutions:
(i) {X2 + Y 2 − 1, XY − 1, Y 2 −X}
(ii) {X2Y − Y +X2 − 1, XY +X − 1, XY 3 + Y 3 + Y + 2}.
(iii) {XY 2 − Y 2 +X − 1, X3 +X2, Y 2 − Y }.
(iv) {XY 2 − Y 2 −X + 1, XY 2 − Y, X3 −X2 −X + 1}. 2

Exercise 6.2: (Macaulay’s quartic curve) Consider the curve X = t, Y = t3, Z = t4.
(i) Use the Gröbner basis algorithm to show that its ideal is Ideal(X3 − Y,XY − Z) or
Ideal(Y −X3, Z −X4) (by eliminating t).
(ii) Re-do (i) but by using Macaulay’s resultant (as suggested in the text).
(iii) Show by computing the appropriate Gröbner basis that its projective closure on the XY
plane, the Y Z plane and the XZ-plane are (respectively) Y −X3, Z3 − Y 4 and Z −X4. 2

Exercise 6.3: Show how Gröbner basis algorithms can be used to compute the resultant (with
respect to X1) of two polynomials in K[X1, . . . , Xn]. 2

Exercise 6.4: Prove theorem 25. 2

Exercise 6.5: With X,Y as in (16), let f1, . . . , fm ∈ K[Y].
(i) Show that the kernel of the map φ : K[X] → K[Y] where φ(Xi) = fi (i = 1, . . . ,m) is
given by

Ideal(X1 − f1, . . . , Xm − fm)K[X,Y] ∩K[X].

(ii) With I ⊆ K[Y] an ideal, give an interpretation of

Ideal(I,X1 − f1, . . . , Xn − fn)K[X,Y] ∩K[X].

2
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Exercise 6.6: (Bayer)
Let G = (V,E) be an undirected graph on the vertex set V = {1, . . . , n}. We want to test if G
is 3-colorable, i.e., there is a 3-coloring of G such that adjacent vertices have distinct colors.
Associate vertex i with the variable Xi and consider the system of polynomials

{X3
i − 1, X2

i +XiXj +X2
j : i, j = 1, . . . , n, (i, j) ∈ E}.

Show that G is 3-colorable iff this system is consistent. 2

Exercise 6.7:

Let P (X) be the minimal polynomial of the algebraic number α, and let β ∈ Q(α). Say,
β = A(α)/B(α) where A,B ∈ Z(X). Show that the minimal polynomial of β appears as a
reduced Gröbner basis of an ideal intersection:

Ideal(P (X), B(X)Y −A(X)) ∩Q[Y ].

2

§7. Computing in Quotient Rings

Gröbner bases provide a simple tool for computing in residue class rings (equivalently, quotient
rings). For an ideal I ⊆ R, let S = R/I be the quotient ring and the canonical homomorphism
from R to S be denoted

a ∈ R 7−→ a = a+ I ∈ S.

The element a is called the “residue class” of a. Let G ⊆ I be a reduced Gröbner basis for I, relative
to some admissible ordering. First let us address the question of representing elements of S. For
a ∈ R, we let nfG(a) represent a. We write nfG(a) ∼= a to indicate this relation between a particular
polynomial nfG(a) and an element a of R/I. Note that a = b iff a − b ∈ I iff nfG(a − b) = 0 iff
nfG(a) = nfG(b). So there is a bijection between the elements of S and the set

{nfG(a) : a ∈ R}.

Ring operations in S are easily simulated:

a± b ∼= nfG(a)± nfG(b)

a · b ∼= nfG(nfG(a) · nfG(b))

where the ± and · on the right hand side are ordinary polynomial operations.

Lemma 26 Let I ⊆ R = K[X1, . . . , Xn] be an ideal with G as Gröbner basis.

(i) S = R/I is a K-vector space.

(ii) Let B = {p ∈ PP : p = nfG(p)}. Then B = {p : p ∈ B} forms a basis for this vector space.

(iii) S is a finite dimensional K-vector space iff I is zero-dimensional.

Proof. (i) is routine. (ii) follows from the above representation of S by the G-normal forms, since

each normal form is of the form
∑k

i=1 αipi with αi ∈ K, pi ∈ PP(X1, . . . , Xn) and p = nfG(p). To see
(iii), recall that I is zero-dimensional iff for each i, there is a fi ∈ G with hterm(fi) ∈ PP(Xi). So if I
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is zero-dimensional, we easily see that the Xi-degree of each p ∈ B is less than deg(hterm(fi)). This
implies B is a finite set and S is finite dimensional. Conversely, if I is not zero-dimensional, there
exists a variable Xi such that Xℓ

i ∈ B for all ℓ ≥ 0. Then B is infinite and S is infinite dimensional.
Q.E.D.

Therefore, if I is zero-dimensional then we can construct the basis B (as represented by B) for the
K-vector space S. Furthermore, we can construct the so-called multiplication table for this basis: for
each p, q ∈ B, we only need to compute the G-normal form of pq. We are thus set up for computation
in S = R/I.

Dimension of an Ideal. In general, for a prime ideal P ⊆ K[X] = R, its dimension dim(P ) is
the transcendence degree3 of R/I over K. If I is a general ideal, its dimension dim(I) is defined to
be the maximum dimension of a prime ideal P that contains I. Let us relate dimension to another
quantity: define (following Gröbner)

δ(I) := max{|Y| : Y ⊆ X, I ∩K[Y] = (0)}.

It is immediate that δ(P ) ≤ dim(P ) since P ∩ K[Y] = (0) implies that Y is a transcendental set
over R/P . The following theorem (from Gröbner [74]) shows that they are in fact equal for all I.

Theorem 27 The dimension of I is the largest cardinality of a set Y ⊆ X such that I∩K[Y] = (0).
That is, dim(I) = δ(I).

This leads to a method to compute a subset of X that is a transcendental base forR/I: for each subset
Y ⊆ X, compute a Gröbner basisG for I relative to an admissible ordering which is the lexicographic
product ( ≤

X−Y

,≤
Y

). Then Y is a transcendental set iff G ∩K[Y] is empty. We may systematically

do this computation for Y’s of larger cardinality before those of smaller cardinality, stopping at the
first transcendent set Y we find. Note that the alternative “bottom-up” approach is to find a set
transcendental Y and then try to extend it to Y ∪ {Xi} for some Xi ∈ X \Y. Unfortunately, this
fails for non-prime ideals I. The following is an example from Cavaliere (unpublished lecture notes):

I = Ideal(X2
1 , X1X3, X1X4, X2X3, X2X4) ⊆ K[X1, . . . , X4] (18)

Then I ∩K[X2] = (0) and I ∩ [X2, Xj ] 6= (0) for j 6= 2. However, I ∩K[X3, X4] = (0), and in fact
dim(I) = 2. See Weispfenning (in [170]) for further aspects of this problem.

Exercises

Exercise 7.1: Construct the multiplication table for R/Ideal(G) where G = {X2 −X + 1, Y 2 −
Y + 2X,XY − 2}. 2

Exercise 7.2: Given g a polynomial and a set F of polynomials generating an ideal I ⊆ R, show
how to decide if g is an invertible element in S = R/I. NOTE: g is invertible if there is some
h such that gh+ I = R = Ideal(1). 2

3A subset T ⊆ R/I is said to be algebraically independent over K if there is no polynomial relation A(t1, . . . , tm) ∈
K[t1, . . . , tm] and elements a1, . . . , am ∈ T such that A(a1, . . . , am) = 0. We say T is a transcendental set over K if
every finite subset of T is algebraically independent over K. If T is a maximal cardinality transcental set, we call it
a transcendental base of R/I over K. Although a transcendental base is non-unique, its cardinality is unique. This
cardinality is called the transcendence degree of R/I over K.
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Exercise 7.3: Verify the assertions on the example (18) of Cavaliere. 2

§8. Syzygies

In this section, let g = [g1, . . . , gm] ∈ Rm be a fixed but arbitrary sequence of polynomials in R =
K[X1, . . . , Xn]. We regard g as an ordered basis for Ideal(g1, . . . , gm).

Definition: Let a = [a1, . . . , am] ∈ Rm. The g-grade of a is given by

max{hterm(aigi) : i = 1, . . . ,m}

where the maximum is with respect to the implicit admissible ordering <
A

. We call a a syzygy of g

if
∑m

i=0 aigi = 0.

Let us motivate some syzygy computations that might be desired.

Let Syz(g) ⊆ Rm denote the set of syzygies of g. Observe that Syz(g) is a R-submodule of Rm.
By Hilbert’s basis theorem for Noetherian modules (§XI.1), Syz(g) is finitely generated. So the

question to construct a finite basis of Syz(g) naturally arises. syzygy Why would we be interested in
syzygies in the first place? Well, it would tell us about any non-trivial relations among g1, . . . , gm.
If particular, if g1 can be expressed as a combination of g2, . . . , gm, then clearly any basis for Syz(g)
must contain a syzygy whose first component is a non-zero constant! Let us say that a finite set
F ⊆ R is a minimal basis (for the ideal it generates) if no proper subset of F generates Ideal(F ).
Thus computing a syzygy basis yields a method (possibly overkill) to decide if F is a minimal basis.

Next, let the map ϕ : Rm → R given by ϕ(a) =
∑m

i=1 aigi be called the canonical map determined
by g: it is clearly an R-module homomorphism (§XI.1). So Syz(g) is simply the kernel of ϕ. Then
the following sequence4 is exact:

Rm
ϕ
−→ R

ψ
−→ R/I −→ 0

where I is the ideal generated by g1, . . . , gm and ψ is the canonical map from R to R/I. Again,
Syz(g) has a finite basis, say h = [h1, . . . , ht] (hi ∈ Rm). We can thus look at the set Syz(h)
of syzygies of h, where Syz(h) is called the second syzygy module of I. Again, why would we be
interested in the second syzygy module? As before, it would tell us of any non-trivial relations among
the generators of the first syzygy module (and similar to the minimal basis application, might be
used for a similar purpose).

Again, we may introduce another canonical map ϕ′ : Rt −→ Rm such that the following extended
sequence is exact:

Rt
ϕ′

−→ Rm
ϕ
−→ R

ψ
−→ R/I −→ 0.

But the Syz(h) also has a finite basis (say with s generators) with canonical map ϕ′′, and we can
extend this exact sequence again. The Hilbert syzygy theorem says that such extensions of the exact
sequence terminate in that we eventually reach a final canonical map ϕ′′ with the trivial kernel (0)
(hence only trivial syzygies). So we have a finite exact sequence,

0 −→ Rs
ϕ′′

−→ · · · −→ Rt
ϕ′

−→ Rm
ϕ
−→ R

ψ
−→ R/I −→ 0,

4A (finite or infinite) sequence of R-module homomorphisms

· · ·
ϕi−1
−→ Mi−1

ϕi
−→ Mi

ϕi+1
−→ · · ·

is exact if the image of ϕi equals the kernel of ϕi+1 for all i. (The kernel of a homomorphism is the set elements that
maps to 0.)
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called a free resolution of I. There are clearly arbitrary choices in the definition of this sequence
(the ordering in g = [g1, . . . , gm], the choice of syzygy bases, etc). Nevertheless, it contains certain
invariants that depend only on I (e.g., [222, ch.VII] and also lecture XIII). It is therefore important
to develop computational tools for computing with syzygies.

Syzygy basis for a Gröbner basis. We will initially assume that g is a Gröbner basis.

For 1 ≤ i < j ≤ m, the S-polynomial of gi and gj can be written in the form

S(gi, gj) = αi,jgi + βi,jgj

where αi,j , βi,j are monomials. Then by the extended standard characterization of Gröbner bases,

S(gi, gj) =

m∑

µ=1

hi,jµ gµ

where hterm(S(gi, gj))≥
A

hterm(hi,jµ gµ) for each µ.

Define
T (i, j) :=[hi,j1 , hi,j2 , . . . , hi,ji − αi,j , . . . , h

i,j
j − βi,j , . . . , h

i,j
m ].

In other words, the µ-th entry of T (i, j) is hi,jµ except when µ = i or µ = j, in which case the entries

are hi,jj − αi,j and hi,jj − βi,j , respectively. Clearly, T (i, j) is a syzygy of g. The grade of T (i, j) is
equal to

hterm(αijgi) = hterm(βijgj)

which is equal to LCM(hterm(gi), hterm(gj)). It is also important for the following proof to notice
that the grade of T (i, j) is attained at the ith and jth components and nowhere else. grade!of a
vector of polynomials

Theorem 28 (Spear, Schreyer) If g is an ordered Gröbner basis then

{T (i, j) : 1 ≤ i < j ≤ m}

forms a basis for the module Syz(g).

Proof. We have noted that the the T (i, j)’s belong to Syz(g). To show that they generate Syz(g),
let a = [a1, . . . , am] ∈ Syz(g). Let p be the grade of a. Without loss of generality, suppose that k of
the components of a achieve this grade so that, for some 1 ≤ j1 < j2 < · · · < jk ≤ m, we have

p = hterm(gj1aj1) = hterm(gj2aj2) = · · · = hterm(gjkajk).

Clearly k ≥ 2 since hterm(gj1aj1) must be cancelled in the expression
∑m
i=1 aigji = 0. We will show

that for some monomial γ,
b = a− γ · T (j1, j2)

such that either b has grade <
A

p or else less than k components of b attain the grade p. Repeating

this, we must eventually achieve the trivial syzygy [0, 0, . . . , 0] since <
A

is well-founded. This would

prove that the set of T (i, j) generates Syz(g).

In fact, since p = hterm(aj1gj1) = hterm(aj2gj2), we see that

LCM(hterm(gj1), hterm(gj2))
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must divide p. Hence γ · T (j1, j2) has grade p, for some monomial γ. Moreover, we may choose γ so
that the j1th component of

b = a− γ · T (j1, j2)

is <
A

p. Since the grade p is attained only at the j1th and j2th components of T (j1, j2), this means

that the number of components of b that attains grade p is strictly reduced. Further, since the grade
of b is ≤

A

p, our inductive step is complete. This completes our proof.

Q.E.D.

With s =
(
m
2

)
, let

U ∈ Rs×m (19)

denote matrix whose rows are the syzygies T (i, j). Note that T (i, j) can be computed by running any
normal form algorithm on the S-polynomial S(gi, gj), and doing some straightforward bookkeeping.

Syzygy basis for an arbitrary ordered basis. Suppose now f = [f1, . . . , fr] ∈ Rr is an arbitrary
ordered ideal basis. We again want to construct a module basis for Syz(f).

Let g = [g1, . . . , gm] be a Gröbner basis for the ideal generated by {f1, . . . , fr}. We may assume
m ≥ r and gi = fi for i = 1, . . . , r. Let

G = [Ir|O]

be an r×m matrix consisting of an r× r identity matrix Ir and O is a r× (m− r) matrix of zeros.
Then

fT = GgT

where (·)T denotes matrix transpose. Since each gi is a linear combination of f1, . . . , fr, there is an
m× r matrix F with entries in R such that

gT = F fT .

We may further assume the first r rows of F form the identity matrix Ir . Hence

GF = Ir .

With U as in (19), we obtain
U · gT = 0.

Theorem 29 The matrix B :=U · F is an s× r matrix whose rows form a basis for Syz(f).

Proof. Suppose a ∈ Syz(f). Then aG is a syzgy of g (by our assumption on G, aG is just the
padding out of a with 0’s). Since the rows of U form a basis for these syzgies, there exists an s-tuple
b such that aG = bU . Hence:

a = aGF = b · UF = bB.

This proves the rows of B are indeed a basis for Syz(f). Q.E.D.

Note that the matrix F , and hence B, can be constructed from f : the entries of F can be built up
during the construction of the Gröbner basis g from f .
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Application to Ideal Intersection. Let f1, . . . , fr, g1, . . . , gs be given. We want the ideal inter-
section

I = Ideal(f1, . . . , fr) ∩ Ideal(g1, . . . , gs).

Write h :=[f1, . . . , fr, g1, . . . , gs]. We construct B, the matrix whose rows form a basis for Syz(h). If
C is the matrix consisting of the first r columns ofB, and for each row a of C, we form the dot product
a · fT (where f = [f1, . . . , fr]), then we claim that the set S of these dot products a · fT generates
I. To see that each a · fT ∈ S is in I, note that for some b, the concatenation a;b is a row of B.
Hence a · fT +b ·gT = 0 where g = [g1, . . . , gs]. Hence a · fT ∈ Ideal(g1, . . . , gs)∩Ideal(f1, . . . , fr).
Conversely, any element of I has the form a′ · fT and also the form b′ · gT . Hence [a′;−b′] is a
syzygy of h. Thus a′ is a linear combination of the rows of C, and so a′ · fT is a linear combination
of elements of the form a · fT ∈ S.

Final Remarks. This section touches on an important direction in the development of Gröbner
bases: the whole subject is capable of generalization to R-submodules of Rm, for some m ≥ 1. (It
is a generalization because an ideal of R is just a submodule of Rm with m = 1.) Let us briefly
indicate how it goes. We may define a “generalized power product” to be an element of the form
p · ei where p ∈ PP(X) and ei = (0, . . . , 0, 1, 0, . . . , 0) is the ith elementary m-vector with a 1 in the
ith position. Write PPm(X) for these generalized power products. (So the original notation PP is just
PP1.) We say a total ordering ≤

A

on PPm(X) is admissibleordering!admissible if for all g,h ∈ PPm(X)

and all p ∈ PP(X), we have (1) g≤
A

pg and (2) g≤
A

h implies pg≤
A

ph. One then shows that this is a

well-ordering, and extends this total ordering to a linear quasi-ordering on Rm. We may define the

notion of the headterm of g and reduction f
g
−→ h, and hence a notion of normal forms and Gröbner

basis. Alternatively, the standard characterization can be used to define Gröbner basis. Finally, an
analogue of Buchberger’s algorithm can be shown.

Exercises

Exercise 8.1: Describe the necessary modifications to the normal form algorithm and Buchberger’s
algorithm in order to carry out the computation of a general syzygy basis above. 2

Exercise 8.2: Compute a syzygy basis for the following ordered basis

[g1, g2, g3] = [X2
1 −X2X4, X1X2 −X3X4, X1X3 −X

2
2 ],

say, assuming a pure lexicographic ordering. 2

Exercise 8.3: Describe some efficient method to solve the following: given F , compute a subset
H ⊆ F that is a minimal basis for Ideal(F ). 2

Exercise 8.4: (Gianni-Trager-Zacharias)
(i) If I, J ⊆ R are ideals and t is a new indeterminate, show that

(I ∩ J) = (Ideal(tI, (t− 1)J) · R[t]) ∩R.

(ii) Use this to give an alternative algorithm for computing ideal intersection.
2
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Exercise 8.5: If ≤
A

is an admissible ordering on PP, show that the following (still denoted ≤
A

) are

admissible orderings on PPm. Let p, q ∈ PP.
(i) Define p · ei≤

A

q · ej iff i < j or else, p≤
A

q.

(ii) Define p · ei≤
A

q · ej iff p<
A

q or else, i ≤ j. 2

Exercise 8.6: Carry out the above outline of a generalization of Gröbner basis theory to submodules
of Rm. 2

Exercise 8.7: Generalize the above syzygy algorithm. If G = [g1, . . . ,gk] where gi ∈ RRm, we

may define a = [a1, . . . , ak] ∈ Rk to be a syzygy of G if
∑k

i=1 aigi = 0 (as in the second syzygy
module). Then the set Syz(G) of syzygies of G is a submodule of Rk. Develop an algorithm
to compute a basis for Syz(G). 2
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Lecture XIII

Bounds in Polynomial Ideal Theory

Despite Hilbert’s acceptance of non-constructive proofs and non-finitistic arguments in
mathematics1, the constructive approach to mathematics was not entirely ignored by the Göttingen
school. Thus, Grete Hermann’s highly constructive doctoral dissertation (see the quote from Sei-
denberg above) was completed under Emmy Noether. In constructive approaches to a problem,
the derivation of explicitly bounds is often a first step towards an algorithm. Or, from the viewpoint
of complexity theory, such bounds are essential towards pinning down the inherent complexity of
a computational problem. To illustrate this, consider an example from Seidenberg [12]: for given
polynomial ideals A and B, suppose we want to compute a number ρ such that A : Bρ = A : Bρ+1.
An obvious procedure is to compute the sequence

A1 < A2 < · · · < Ak < · · ·

of ideals where Ak = A : Bk until the first time Ak = Ak+1. This k is our desired ρ. This procedure
always halts, by the ascending chain condition. Seidenberg and Hermann do not consider this
procedure “effective” until we derive a bound on ρ, expressed as a computable function of numerical
parameters in (the representation of) A, B. Such a bound is provided in [12].

In this lecture, we address another such bound that is fundamental in constructive polynomial ideal
theory.

Let G(n, d) denote the minimum degree of Gröbner bases of ideals generated by polynomials of degree
at most d in the ring R = Q[X1, . . . , Xn] of rational polynomials. We will show double-exponential
upper and lower bounds on G(n, d): for large n,

G(n, d) = d2βn

, 0.16 < β ≤ 1. (1)

There is a close connection between G(n, d) and two other important bounds I(n, d) (ideal member-
ship bound) and S(n, d) (syzygy basis bound) in the theory of polynomial ideals.

Sharper bounds than (1) are known: for any ε > 0 and n large enough, we have

0.5 − ε < β < 0.79.

This upper bound is from Lazard [7], but our lecture presents the weaker result β ≤ 1 from Dubé
[3, 4]. See also Giusti [5] and Möller and Mora [10]). The original lower bound is from Mayr
and Meyer [9], but here we use a simpler construction from Yap [13]. Bayer and Stillman [1] first
observed that the construction of Mayr-Meyer leads to lower bounds on S(n, d). Huynh [6] gives
other applications of these lower bound constructions.

Unless otherwise noted, R refers to the ring K[X] = K[X1, . . . , Xn] for some field K.
For the lower bound proof, we further assume K = Q. We normally assume the standard
grading of K[X], so “homogeneous polynomials” have the standard sense (see §2).

§1. Some Bounds in Polynomial Ideal Theory
1Hilbert’s program in metamathematics and the axiomatic approach in his later life may be seen as attempts to

justify the non-constructive approaches, and a direct response to to the criticisms of Kronecker and Brouwer.
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Three bounds arise naturally in the constructive theory of ideals in R:

I(n, d), S(n, d), D(n, d).

We call them (respectively) the ideal membership bound, Syzygy basis bound and
grob
basis bound. They are defined as follows: let f1, . . . , fm ∈ R = Q[X1, . . . , Xn] with (total) degree
deg fi ≤ d. Then the ideal membership degree bound I(n, d) is the least value such that for all such
fi’s whenever f0 ∈ Ideal(f1, . . . , fm) then

f0 =

m∑

i=1

aifi, ai ∈ R, deg(aifi) ≤ I(n, d) + deg(f0).

The syzygy basis bound S(n, d) is the least value such that for all such fi’s there exists a syzygy
basis for the module of syzygies of (f1, . . . , fm), where each syzygy in the basis has degree at most
S(n, d). The degree of a syzygy [h1, . . . , hm] is the maximum degree of the hi’s. Finally, the Gröbner
basis bound D(n, d) is the least value such that for all such fi’s and any admissible ordering ≤

A

, there

is a Gröbner basis with respect to ≤
A

whose members are polynomials of degree at most D(n, d).

All the three bounds are closely related, and are essentially doubly exponential [13]. For instance,
D(n, d) ≥ S(n, d). Lazard (1982,1991 [7]) has shown

S(n, d) ≤ d2βn

,

I(n, d) ≤ d2βn+O(log n)

,

where β = log4 3 < 0.79. Lazard indicated a similar upper bound for G(n, d), superceding the upper
bound shown in this lecture. Nevertheless, the proof to be presented has independent interest.
These bounds are all tight up to constant factors in the second exponent. Yap [13] shows that
I(n, d), D(n, d) and S(n, d) are each lower-bounded by the function

d2βn

, β ∼ 0.5. (2)

The notation “β ∼ 0.5” means that the right-hand side has an implicit dependence on n and β
approaches 0.5 as n → ∞. The lower bound was originally2 shown by Mayr-Meyer [9] with β ∼ 0.1.
In this lecture, we give a simple construction to achieve β ∼ 0.2. This construction can be sharpened
to the cited result.

Remarks.
1. Essentially all known doubly exponential lower bounds proofs in polynomial ideal theory use
variants of the construction in the proof of (2). The construction allows us to simulate an expo-
nential space Turing machine, and leads to this conclusion: any Turing machine for deciding the
ideal membership problem must use space cn for some c > 0 for infinitely many n. The reason is
that such systems can simulate counter-machines with double-exponentially large counters, and this
corresponds exactly to single-exponential space-bounded Turing machines. See [9] for details.
2. A double-exponential degree bound immediately leads to a double-exponential complexity bound
on ideal membership problem: to test if f0 belongs to the ideal generated by f1, . . . , fm, we can set
up a suitable large linear system to be solved (Exercise). Similarly, this leads to a double-exponential
time algorithm for computing Gröbner bases (Exercise).
3. The fact the coefficients comes from Q is only needed in the lower bound argument. The lower

2Several authors (including Bayer-Stillman, Lazard, etc) noted that the original Mayr-Meyer construction can be
improved from using about 15n variables to using about 10n variables for counting up to d2

n
. This implies the stated

bound.
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bound applies to any field K.
4. If we consider the polynomial ring R0[X1, . . . , Xn] where R0 is a general ring, such universal
bounds G(n, d), etc, may not exist. This is the case when R0 = Z or if R0 = K[Z] where K is a
field and Z an indeterminate. See Li [8].

Exercises

Exercise 1.1: By writing f0 =
∑m

i=1 aifi as a linear system in the unknown coefficients of ai ∈ R,
show that ideal membership in Q[X] can be solved in double-exponential time. 2

Exercise 1.2: Suppose we have a Gröbner degree bound G(n, d, m) where n, d are as above and m
is the number of generators. Show how to eliminate the dependence on m. 2

.

Exercise 1.3: Use the bound on G(n, d) to give a double-exponential bound on the bit-complexity

of a suitable variation of Buchberger’s algorithm. HINT: let B =
(

G(n,d)+n−1
n−1

)
. Restrict the

polynomials in the Gröbner basis H that is being constructed to satisfy: (1) |H | ≤ B, (2) each
f ∈ H has degree at most B. Use an efficient normal form algorithm (see exercise, §XII.3).

2

Exercise 1.4: (Buchberger, Lazard) Show that G(2, d) ≤ d2. 2

§2. The Hilbert-Serre Theorem

By way of proving the Hilbert-Serre theorem, we introduce the Hilbert polynomial for graded mod-
ules.

The concept of homogeneous elements can be generalized as follows. (These definitions are slightly
more general than we strictly need.) Let (G, +, 0) be an Abelian semigroup (so + is associative,
commutative and 0 is the identity for +). Typically, G = N, G = Z or G = Zn. A G-grading (or,
simply grading) of a ring R is a (weak) direct sum decomposition of R,

R =
⊕

d∈G

Rd

where each Rd is an additive subgroup of R and RdRe ⊆ Rd+e for all d, e ∈ G. Here, the decompo-
sition is weak because in the decomposition of an element u =

∑
d ud ∈ R (ud ∈ Rd) only finitely

many of the ud’s are non-zero. A graded ring is a ring together with a grading. A G-graded module
M is an R-module with a weak direct sum decomposition, M =

⊕
d∈G Md such that Md is an

additive subgroup of M and RdMe ⊆ Md+e. Elements of Md are said to be homogeneous of degree
d. Note that 0 is homogeneous of every degree d. In fact, Md∩Me = {0} for all d 6= e. If an element
u ∈ M is decomposed as u =

∑
d ud, then each non-zero ud is called a homogeneous component of u.

A graded submodule or homogeneous submodule N of M is a submodule N ⊆ M that is generated
by homogeneous elements. Equivalently, for all u ∈ I, each homogeneous component of u is in I
(cf. §XII.5). Note that all these terms (homogenous element, graded submodule, etc) for modules
apply to the ring R, since we may view R as an R-module.
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Example: (1) Let G = R and w be a weight function on PP(X) (§XII.1). Say a polynomial f
is homogeneous of degree d if each power product u in f has weight w(u) = d. Let Rd

comprise all w-homogeneous polynomials of degree d. This gives rise to the w-grading of R. If
w = (1, 1, . . . , 1) then we get the standard grading of R. In this case, elements of Rd is said to
be homogeneous in the standard sense.
(2) Let G = Nn and fix an admissible ordering on PP(X) (so that hterm(f) is defined for
f ∈ R). Then f ∈ Re iff log(hterm(f)) = e ∈ Nn (see §XII.1 for definition of log(·)).
(3) (Matsumura) Let G = N and M = R[X, Y, Z]/Ideal(f) where f = aXα + bY β + cZγ .
Then the weight function w(X) = βγ, w(Y ) = αγ and w(Z) = αβ yields a grading on M .
(4) If I ⊆ R is an ideal, then grI(R) =

⊕
n≥0 In/In+1 is an N-graded ring.

We introduce homomorphisms on graded modules. Given two G-graded R-modules M, M ′, we say
a module homomorphism

φ : M → M ′

is homogeneous of degree d if φ(Me) ⊆ M ′
e+d for each e ∈ G. (By module homomorphism, we mean

φ(u + v) = φ(u) + φ(v) and φ(au) = aφ(u) where u, v ∈ M , a ∈ R.) In particular, if M = R and
suppose M ′ = R′ is another ring then φ becomes a homogeneous ring homomorphism of degree d.
For instance, if R = R′ = K[X1, . . . , Xn] with the standard grading, then the map φ defined by
φ(u) = uXn for all u ∈ M is homogeneous of degree 1. (This map will be used in the proof below.)
The following is straightforward and left to an exercise.

Lemma 1 Let M =
⊕

d∈G Md be a G-graded R-module.

(i) A homogeneous submodule N of M is a G-graded R-module with grading
⊕

d∈G(N ∩ Md).

(ii) If N is homogeneous, the module difference M − N has grading
⊕

d∈G(Md − N).

(iii) If φ : M → M ′ is homogeneous, then the kernel of φ is a homogeneous submodule of M and
the image of φ is a homogeneous submodule of M ′.

(iv) Also, the co-kernel coKerφ = M ′ − φ(M) (module difference) is a graded module.

We state the Hilbert-Serre theorem:

Theorem 2 Let R = K[X1, . . . , Xn] have the standard grading, and M be a finitely generated graded
module over R, M =

⊕+∞

d=−∞ Md. Then Md is a K-vector space of finite dimension dimK(Md),
and there is a polynomial ΦM (z) of degree ≤ n − 1 with integer coefficients and a constant d0 such
that for all d ≥ d0, ΦM (d) = dimK(Md).

Remarks.

1. The polynomial ΦM (z) is called the Hilbert polynomial of the graded module M . The smallest
constant d0 for which the theorem holds is called the Hilbert constant of M and denoted hM .
This polynomial contains important geometric data as noted next. See Bayer-Stillman [2] for
computations of this polynomial.

2. Let I be a homogeneous ideal of the polynomial ring R. Two main applications of this theorem
are when M = I and when M = R/I. For M = I, each additive group Md is the K-vector
space Id comprising the homogeneous polynomials in I of degree d. The degree of the Hilbert
polynomial ΦM (z) in this case is the dimension of the projective zero set Zero(I) ⊆ Pn−1(K).
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3. Again let M be an ideal I ⊆ R. The degree of the zero set Zero(I) is defined to be d! times the
leading coefficient of ΦI(z). The “degree” of a plane algebraic curve V1 is intuitively clear: it
is the maximum number of points (multiplicity counted) obtainable by intersecting V1 with an
arbitrary line L. In general, the degree of an algebraic set Vd ⊆ An(K) of dimension d ≤ n may
be defined as the maximum number of points obtainable by intersecting Vd with an arbitrary
(n − d)-dimensional hyperplane L. The precise definition here is complicated because of the
phenomenon of multiplicity; historically, there have been many erroneous definitions. The
algebraic notion of degree via the Hilbert polynomial has no ambiguity although the geometric
intuition is lost.

We make some preparatory remarks for the proof.

1. Every polynomial p(z) of degree ≤ d can be written in the form

p(z) = c0

(
z

d

)
+ c1

(
z

d − 1

)
+ · · · + cd−1

(
z

1

)
+ cd (3)

for suitable coefficients ci. If p(z) has integer coefficients then each ci is integer. This is clear for
d = 0 or 1. For d > 1, we note that

zd = d!

(
z

d

)
+ l.o.t.

where ‘l.o.t.’ (lower order terms) refers to terms in z of degree less than d. Then, writing p(z) =
a0z

d + · · · + ad−1z + ad, we obtain at once

p(z) = a0d!

(
z

d

)
+ l.o.t.

So we can choose c0 = a0d!. By induction, the polynomial in the l.o.t. of p(z) can be put in the
desired form, giving the constants c1, . . . , cd. This proves that p(z) has the form in equation (3).
Moreover, if p(z) has integer coefficients, then c0 is an integer and the l.o.t.’s of p(z) also has integer
coefficients. By induction, we conclude that c1, . . . , cd are also integers.

2. If p(z) is a polynomial and p(z′) is an integer for all large enough integers z′, then p(z) has
integer coefficents. The result is true for d = 0. We now apply the identity

(
n + 1

d

)
−
(

n

d

)
=

(
n

d − 1

)

to equation (3) to obtain

p(z + 1) − p(z) = c0

(
z

d − 1

)
+ c1

(
z

d − 2

)
+ · · · + cd−2

(
z

1

)
+ cd−1.

But p(z + 1) − p(z) is a polynomial of degree less than d which evaluates to an integer for z large
enough. By induction, therefore, c0, . . . , cd−1 are integers. Pick z to be a large enough multiple of
d! so that p(z) is integer. Then equation (3) shows that p(z)− cd is an integer. We conclude that cd

is also integer.

3. Suppose N is a proper submodule of M . A composition series from N to M is a strictly increasing
sequence of submodules of the form

N = M0 < · · · < Mk = M

which cannot be extended in the sense that there is no submodule M ′ such that Mi < M ′ < Mi+1

for any i. We call k the length of this series. If N = {0}, we call it a composition series of M .
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By definition, composition series are finite, and some modules may have no composition series. For
instance, the module Z of integers has no composition series (why?). By the Jordan theorem [15,
p. 159], every composition series of M has the same length, which we define to be the length ℓ(M) of
M . For instance, the module {0} has length zero. By definition, ℓ(M) = ∞ if M has no composition
series. If N < M and ℓ(M) < ∞, it follows easily that

ℓ(M − N) = ℓ(M) − ℓ(N).

[Just as modules are generalizations of vector spaces, so dimension of vector spaces becomes length
of modules.]

4. Let

0
f0−→ E1

f1−→ E2
f2−→ · · · fn−1−→ En

fn−→ 0

be an exact sequence of R-modules where each Ei has length ℓ(Ei). Then the alternating sum

ℓ(E1) − ℓ(E2) + · · · (−1)n−1ℓ(En) (4)

is equal to zero. Note that Ker fi+1 = Imfi because the sequence is exact at Ei+1. But Imfi is
isomorphic to Ei/Ker fi, so ℓ(Imfi) = ℓ(Ei) − ℓ(Ker fi). Therefore

ℓ(Ei) = ℓ(Ker fi) + ℓ(Ker fi+1).

The desired sum (4) becomes

ℓ(Ker f1) + ℓ(Ker f2) − ℓ(Ker f2) − ℓ(Ker f3) + · · · + (−1)n−2ℓ(Ker fn) + (−1)n−1ℓ(En). (5)

The non-extreme terms of this sum cancel out, so it is equal to ℓ(Ker f1) + (−1)n−2ℓ(Ker fn) +
(−1)n−1ℓ(En). But Ker fn = En and ℓ(Ker f1) = 0 (since f1 is injective). Thus the entire sum is 0,
as we wanted shown.

5. For any R-module M , we define its order or annihilator to be the set

AnnM = {a ∈ R : aM = {0}}.

Note that AnnM is a homogeneous ideal of R. Now let I be any subideal of AnnM and let R = R/I.
We view M as a R-module in the natural way: if a ∈ R, u ∈ M , we define au as the element au,
where a ∈ R and a = a + I. (Check that this is well-defined.) Any R-submodules of M can be
viewed as a R-submodule of M , and vice-versa. Thus we can reduce the study of M as a R-module
to the study of M as an R-module. This important technique will be used in our proof. Typically,
we take I = AnnM . See [15, p. 141].

Proof of the Hilbert-Serre Theorem. We first claim that each Md has finite dimension as
a K-vector space. Since M is finitely generated over R, let {y1, . . . , yk} be a basis for M . Since
M is graded, each yi may be assumed to be homogeneous (if not, we can replace yi be its set of
homogeneous components). Then every element of Md has the form

k∑

i=1

uiyi, (ui ∈ R)

where ui 6= 0 implies yi has degree deg(yi) ≤ d and ui is a homogeneous polynomial of degree
d − deg(yi). Hence Md can be generated as a K-vector space by elements of the form py where
y ∈ {y1, . . . , yk} and p is a power product of degree d − deg(y). Our claim about Md follows since
there are only finitely many elements in this form py.
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Now we prove the theorem by induction on the number n of variables. First, assume n = 0.
We claim that the polynomial ΦM (z) can be chosen to be identically zero. It suffices to show
that dimK(Md) = 0 for all d sufficiently large. Again, let M be generated over R by a basis of
homogeneous elements {y1, . . . , yk}. Let d0 be the maximum degree of these basis elements. Since

every element u of M has the form u =
∑k

i=1 αiyi, αi ∈ R = K, we see that deg(u) ≤ d0. Thus if
d > d0 then Md = {0} and dimK(Md) = 0, as desired.

Now let n ≥ 1. Consider the homomorphism φ : M → M defined by

φ(u) = uXn

for all u ∈ M . This homomophism is homogeneous of degree 1. Now consider the modules

N = Kerφ, P = coKerφ = M − φ(M)

where M − φ(M) denotes module difference. Note that Xn is in AnnN (since XnN = {0}) and
Xn is in AnnP (since Xn · (u + φ(M)) = 0 + φ(M) for any u ∈ M). Thus, by our preceding
remarks, N and P can be regarded as modules over K[X1, . . . , Xn−1, Xn]/(Xn) which is isomorphic
to K[X1, . . . , Xn−1]. Thus our induction hypothesis can be applied to N and P .

Now consider the sequence of homomorphisms:

0 −→ N
i−→ M

φ−→ M
j−→ P −→ 0

where φ is as above, i is the inclusion map and j is the natural homomorphism from M to its
difference module P . This is an exact sequence. By lemma 1, N =

⊕
d Nd is a graded module since

it is the kernel of a homogeneous homomorphism φ, and P =
⊕

d Pd is also a graded module since
it is the co-kernel of φ. For each d, we may restrict the above sequence to the following:

0 −→ Nd
i−→ Md

φ−→ Md+1
j−→ Pd+1 −→ 0.

By the formula (4) for the alternating sum of module lengths, we get

dim(Nd) − dim(Md) + dim(Md+1) − dim(Pd+1) = 0

dim(Md+1) − dim(Md) = dim(Pd+1) − dim(Nd)

But P and N are isomorphic to modules over K[X1, . . . , Xn−1]. So by induction on n− 1, dim(Pd)
(resp. dim(Nd)) is a polynomial in d of degree ≤ n − 2 for all d ≥ d0 (for some d0). [This remark
holds even when n = 1 as the said polynomial is identically zero, which has degree −∞. The
following argument is modified accordingly.] But this means that for d ≥ d0,

dim(Md+1) − dim(Md) = a0

(
d − 1

n − 2

)
+ a1

(
d − 1

n − 3

)
+ · · · + an−2

where a0, . . . , an−2 are integers. For d = 1, 2, . . . , d0 − 1, we may write

dim(Md+1) − dim(Md) = a0

(
d − 1

n − 2

)
+ a1

(
d − 1

n − 3

)
+ · · · + an−2 + cd

where the cd are integers. Also, we set

dim(M1) = c1.

Finally, using the binomial identity

(
d

s

)
=

d−1∑

i=1

(
i

s − 1

)
,
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we sum up the above expressions for dim(Mi) − dim(Mi−1) for i = 1, . . . , d and d ≥ d0, giving

dim(Md) = a0

(
d

n − 1

)
+ a1

(
d

n − 2

)
+ · · · + an−2

(
d

1

)
+ an−1

for some integer an−1. This proves the Hilbert-Serre theorem.

Exercises

Exercise 2.1: Suppose I ⊆ R is an ideal where I = Ra1 + Ra2 + · · · + Rak. Let ai denote the
image of ai in I/I2. Show that grI(R) = (R/I)[a1, . . . , ak]. 2

Exercise 2.2: Verify lemma 1. 2

§3. Homogeneous Sets

In the following, let X′ = {X0, X1, . . . , Xn} = {X0} ∪ X. Some admissible ordering ≤
A

on PP(X) will be assumed.

Homogenization. Homogeneous ideals have nice combinatorial properties (somewhat akin to its
well-known nice geometric motivations) which will be exploited in our proof. We first discuss the
relation between general ideals and homogeneous ideals (in the standard sense). Given f ∈ K[X],
there is a well-known procedure to obtain a homogeneous polynomial F ∈ K[X′]: if f has total
degree d then F is obtained by multiplying each monomial of degree e in f by Xd−e

0 . We shall
denote the homogenized form F of f by f∧ and call X0 the homogenizing variable. For example,

f = 2X4
1X2 − X2

2 + 3, f∧ = 2X4
1X2 − X3

0X2
2 + 3X5

0 .

There is a corresponding procedure to dehomogenize any polynomial F ∈ K[X′], simply by special-
izing X0 to 1. We denote the dehomogenized form of F by F∨. If S ⊆ K[X] then S∧ = {f∧ : f ∈ S},
and similarly for S∨. Clearly (f∧)

∨
= f . It is also easy to check that

(f · g)
∧

= f∧ · g∧, (f · g)
∨

= f∨ · g∨, (f + g)
∨

= f∨ + g∨.

If I = Ideal(f1, . . . , fm) then clearly

Ideal(f1
∧, . . . , fm

∧) ⊆ Ideal(I∧).

The reverse inclusion may be false: let f1 = X1, f2 = X2
1 + X2. Then I =

Ideal(f1, f2) = Ideal(X1, X2) so Ideal(I∧) = IdealK[X0,X1,X2](X1, X2), which properly con-
tains Ideal(f1

∧, f2
∧) = Ideal(X1, X

2
1 + X0X2) = Ideal(X1, X0X2). This situation cannot arise if

{f1, . . . , fm} is a suitable Gröbner basis.

Let us say that an admissible ordering ≤
A

is degree-compatible if it is induced by a weight matrix

W whose first row is all 1. Thus, the total-degree ≤
TOT

and reverse lexicographic ≤
REV

orderings are

degree-compatible, but pure lexicographic ≤
LEX

is not. For any admissible ordering ≤
A

on PP(X), let

≤
A

∧
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denote the admissible ordering on PP(X′) where u(≤
A

∧)v iff deg(u) < deg(v) or else, (u∨)≤
A

(v∨).

Notice that ≤
A

∧ is a degree-compatible admissible ordering. In fact, reverse lexicographic ordering

can be obtained by recursive application of this operator.

Lemma 3 Let ≤
A

be an admissible ordering on PP(X).

(i) If G = {f1, . . . , fm} is a Gröbner basis for I ⊆ K[X] relative to ≤
A

, and ≤
A

is degree-compatible,

then Ideal(G∧) = Ideal(I∧). In particular, G∧ is a Gröbner basis.

(ii) If {F1, . . . , Fm} is a Gröbner basis for Ideal(I∧) ⊆ K[X′] relative to ≤
A

∧, then {F1, . . . , Fm}∨

is a Gröbner basis for I relative to ≤
A

.

Proof. (i) The non-trivial inclusion is Ideal(I∧) ⊆ Ideal(G∧). For this, it suffices to show that
if F ∈ I∧ then F ∈ Ideal(G∧). We may assume that F = f∧ where f =

∑
i αifi, fi ∈ G,

αi ∈ K[X] and hterm(f)≥
A

hterm(αifi). Hence deg(f) ≥ deg(αifi). Then F =
∑

i αi
∧fi

∧Xd−di

0

where d = deg f and di = deg(αifi). This shows F ∈ Ideal(G∧). The fact that G∧ is a Gröbner
basis follows from the standard characterization of Gröbner bases.
(ii) Let f ∈ I. It is sufficient to show that f =

∑m
i=1 αi · Fi

∨ for some αi ∈ K[X] and where
hterm(f)≥

A

hterm(αi ·Fi
∨). Since the Fi’s form a Gröbner basis, we have f∧ =

∑m
i=1 βiFi where βi ∈

K[X′] and hterm(f∧)(≥
A

∧)hterm(βiFi). Applying the dehomogenizing operator to this expression for

f∧, and letting βi
∨ = αi, the result follows. In particular, we check that hterm(f∧)(≥

A

∧)hterm(βiFi)

and deg(f∧) = deg(βiFi) implies hterm(f)≥
A

hterm(αi · Fi
∨). Q.E.D.

Homogeneous Sets. A subset T ⊆ K[X] is a homogeneous set if T is a K-vector space and f ∈ T
implies each homogeneous component of f belongs to T . Note that T is a K-vector space means
that au + v ∈ T for all u, v ∈ T , a ∈ K. An important special case of homogeneous sets is where
f ∈ T implies each monomial in f belongs to T ; we call these monomial sets.

For instance, homogeneous ideals are homogeneous sets and monomial ideals are monomial sets.
Gröbner bases theory provides other examples of such sets: for any ideal I ⊆ K[X] and f ∈ K[X],
let nfI(f) denote the unique normal form of f with respect to the Gröbner basis of I. Let

NF(I) :={nfI(f) : f ∈ K[X]}

denote3 the set of all normal forms.

Lemma 4
(i) NF(I) is a monomial set.
(ii) If H = Head(I) then NF(H) = NF(I).

Proof. (i) If f, g ∈ NF(I), then it is easy to see that af + g ∈ NF(I) for any a ∈ K. Thus NF(I)
is a K-vector space. Also NF(I) is a monomial set because if m is a monomial in f ∈ NF(I) then
m ∈ NF(I).
(ii) Recall Head(I) = Ideal({hterm(f) : f ∈ I}). Clearly f is reducible by G iff f is reducible by

3This should not be confused with the notation NFG(f) for the set of G-normal forms of f .
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hterm(G). But, by the standard characterization of Gröbner bases, G is a Gröbner basis for I iff
hterm(G) is a Gröbner basis for H . Hence f ∈ NF(I) iff f ∈ NF(H). Q.E.D.

Hilbert Function of Homogeneous Sets. For each natural number z ∈ N, let

Tz :={f ∈ T : f is homogeneous of degree z}. (6)

Note that Tz is also a K-vector space, and so we may speak of its vector space dimension, denoted
dimK(Tz). The Hilbert function φT : N → N of T is defined by

φT (z) := dimK(Tz).

As before, if the Hilbert function is equal to a polynomial f(z) for z sufficiently large, we shall call
f(z) the Hilbert polynomial of T and denote it by ΦT (z).

Example: The Hilbert function should be viewed combinatorially as a counting function. If T is a
monomial set, then φT (z) just counts the number of power products of total degree z in Tz. In
figure 1, we illustrate this for K[X, Y ]: each lattice point corresponds to a power product in
PP(X, Y ), where moving to the north-east (resp., north-west) corresponds to increasing powers
of Y (resp., X).

X3

X2

X

1

Y

Y 2

Y 3

Figure 1: Hilbert function of Ideal(X3Y, X2Y 2).

The origin corresponds to 1 = X0Y 0. The three circled lattice points are X3Y, X2Y 2 and
X3Y 2. The ideal I = Ideal(X3Y, X2Y 2) is represented in figure 1 by the set of lattice points
lying above the solid curve. The Hilbert function φI(z) counts the number of monomials in
I that are of total degree z; these are the monomials at level z in the figure. For instance,
φI(z) = 0 for z ≤ 3, φI(4) = 2. In general, φI(z) = z − 2 for z ≥ 4.

If I is a homogeneous ideal, the Hilbert-Serre theorem shows that Hilbert function φI(z) is equal to
the Hilbert polynomial ΦI(z) for z larger than the Hilbert constant hI . Note that with T = K[X]
we have

φT (z) =

(
z + n − 1

n − 1

)
,
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a polynomial of degree n−1 that counts the number of terms of total degree z. The set NF(I), being
monomial, has a Hilbert function φNF(I)(z). It is easy to see that

φI(z) + φNF(I)(z) =

(
z + n − 1

n − 1

)
. (7)

So we conclude from the Hilbert-Serre theorem:

Corollary 5 For any ideal I, the Hilbert function φNF(I)(z) of NF(I) is a polynomial of degree ≤ n−1
for z large enough.

Again, let ΦNF(I)(z) denote the polynomial in this corollary. Note that for z ≥ hI (the Hilbert
constant), we also have

φNF(I)(z) = ΦNF(I)(z).

Our immediate goal is to find an upper bound on hI . It turns out that hI yields an upper bound
on the function G(n, d) (§1). Monomial sets have a key role in this development:

Lemma 6 Let I be a homogeneous ideal and H = Head(I). Then I and H have the same Hilbert
functions:

φI = φH

Proof. We first show φI(z) ≤ φH(z). Let f1, . . . , fm ∈ I be homogeneous of degree z and suppose
they are linearly independent over K. We must show that there exists h1, . . . , hm ∈ H of degree
z and linearly independent over K. Suppose f ′

1 = f1 is the polynomial in {f1, . . . , fm} with the
≤
A

-largest head term. Now use f ′
1 to reduce each polynomial in {f2, . . . , fm}. This just ensures

that the resulting polynomials have head terms distinct from h1 := hterm(f ′
1). Also, note that none

of reduced polynomials are zero – otherwise, we have found a linear dependence in {f1, . . . , fm}.
Let f ′

2 be the polynomial with the ≤
A

-largest head term in the reduced set of polynomials and let

h2 := hterm(f ′
2). Now repeat this process to find h3, . . . , hm. But h1, . . . , hm, being pairwise distinct,

are linearly independent. Since they are of degree d and belong to H , this proves φI(z) ≤ φH(z).

To show φI(z) ≥ φH(z), suppose f1, . . . , fm ∈ I such that hterm(f1), . . . , hterm(fm) are distinct
and of degree z. Then clearly the above process yields f ′

1, . . . , f
′
m ∈ I that are linearly independent

over K. Q.E.D.

From (7), we obtain φNF(I) = φNF(H), since NF(I) = NF(H). We are mainly interested in Hilbert
functions φT where T has the form I or NF(I); by the last two lemmas, we may assume that T are
monomial sets in these cases.

Homogeneous Decompositions. We want to decompose a homogeneous set T as a direct sum

T = S1 ⊕ S2 ⊕ · · · ⊕ Si ⊕ · · · (8)

where the Si ⊆ T are K-vector spaces. In case the Si’s are homogeneous sets, we call the set
{S1, S2, S3, . . .} a homogeneous decomposition of T . An example of homogeneous decomposition is
T = T0 ⊕ T1 ⊕ T2 ⊕ · · · where Tz is defined in (6). If equation (8) is a homogeneous decomposition,
then

φT (z) =
∑

i≥1

φSi
(z). (9)
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This is because each u ∈ Tz has a unique decomposition u =
∑

i≥1 ui where ui ∈ (Si)z = Si ∩ Tz.
Thus computing the Hilbert function of T is reduced to computing those of Si.

Lemma 7 (Dubé)

(i) For any ideal I ⊆ K[X], we obtain the following direct decomposition:

K[X] = I ⊕ NF(I).

(ii) Let J be a proper subideal of I ∈ K[X] and I = Ideal(f0, J) for some f0 ∈ K[X].

I = J ⊕ f0 · NF(J : f0).

Proof.
(i) For f ∈ K[X], f = nfI(f) + g where g ∈ I. But nfI(f) is unique.
(ii) First we show that J + f0 · NF(J : f0) = I. Since J : f0 is the ideal {g ∈ R : g · f0 ∈ J},
the containment J + f0 · NF(J : f0) ⊆ I is immediate. To show the reverse inclusion, note that
I = Ideal(f0, J) implies every f ∈ I has the form

f = αf0 + β

where α ∈ R, β ∈ J . But α = nfJ:f0(α) + γ where γ ∈ J : f0. Hence

f = f0 · nfJ:f0(α) + (β + γf0).

This shows f ∈ f0 · NF(J : f0) + J . Finally, we must show that f0 · NF(J : f0) + J is indeed a
direct sum. Suppose f = αf0 + β = α′f0 + β′ where α, α′ ∈ NF(J : f0) and β, β′ ∈ J . Then
(α − α′)f0 = β′ − β ∈ J . This implies α − α′ ∈ J : f0. But α − α′ ∈ NF(J : f0). The last two
assertions imply α − α′ = 0. Q.E.D.

Note that if I, J and f0 are homogeneous then the decompositions in the above lemma are
homogeneous. Moreover, we can repeatedly apply the decomposition in part (ii), so that if
I = Ideal(f1, . . . , fm) and Ii = Ideal(f1, . . . , fi−1) (i = 1, . . . , m) then

I = Ideal(f1) ⊕
(

m⊕

i=1

fi · NF(Ii : fi)

)
. (10)

Exercises

Exercise 3.1: Suppose that I, J are homogeneous ideals of a graded ring R.
(i) Show that I + J , I ∩ J , IJ , I : J and

√
I are each homogeneous.

(ii) Show that I is prime if and only if for all homogeneous elements u, v ∈ R, uv ∈ I implies
u ∈ I or v ∈ I.
(iii) Show that I is primary if and only if for all homogeneous elements u, v ∈ R, uv ∈ I implies
u ∈

√
I or v ∈

√
I. 2

Exercise 3.2: What is the Hilbert function of Ideal(f) where deg(f) = d and n = 3? of
Ideal(X2 + Y 2 + Z2, XY, Z)? 2
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Exercise 3.3: Show that φT (z) is the number of distinct power products of total degree z that
appear as head terms of polynomials in T . (Thus φT (z) is independent of the admissible order
≤
A

.) 2

Exercise 3.4: Carry out the preceding development for a general K-vector space T ⊆
K[X1, . . . , Xn], not necessarily a homogeneous set. HINT: for the affine version of the Hilbert
function, φT (z) = dimK(Tz) let Tz be the set of polynomials of total degree at most z. 2

Exercise 3.5: Given {f1, . . . , fm}, give an algorithm to test if Ideal(f1, . . . , fm) is homogeneous.
HINT: reduce the problem to computing a Gröbner basis. 2

§4. Cone Decomposition

Let f ∈ K[X] be homogeneous and Y ⊆ X be a set of variables. A cone C is a set of the form

Cone(f,Y) := f · K[Y].

For instance, Cone(1,X) = K[X]. A principal ideal is a cone: Ideal(f) = Cone(f,X). Define

deg(C) := deg(f), dim(C) := |Y|.

If f = 0 then Cone(f,Y) = {0} is the trivial cone; by definition, dim(C) = deg(C) = −∞ for
the trivial cone. If T = C1 ⊕ · · · ⊕ Cr where Ci are cones, then we call D = {C1, . . . , Cr} a cone
decomposition of T . Note that the Ci’s are non-trivial unless T = {0}, in which case we have the
trivial decomposition D = {Cone(0, ∅)}.

Figure 2 illustrates a cone decomposition for n = 2. The set

Cone(X2Y 2, ∅), Cone(X3Y, {X}), Cone(X3Y 2, {X}), Cone(X2, Y 3, {X, Y })

is a cone decomposition for the ideal Ideal(X3Y, X2Y 2).

C(X3Y, {X})

C(X3Y 2, {X})
C(X2Y 2, ∅)

C(X2Y 3, {X,Y })

Figure 2: Cone decomposition for Ideal(X3Y, X2Y 2).
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Cones are homogeneous sets with very simple Hilbert functions:

dim(C) = 0 : φC(z) =






1 if z = deg(C),

0 else.

dim(C) > 0 : φC(z) =






0 if z < deg(C),

(
z−deg(C)+dim(C)−1

dim(C)−1

)
else.

Definition 1 We call a cone decomposition

D = {C1, . . . , Cr, Cr+1, . . . , Cr+s}, (r, s ≥ 0) (11)

exact if, after relabelling, we have

dim(C1) ≥ dim(C2) ≥ · · · ≥ dim(Cr) > 0 = dim(Cr+1) = · · · = dim(Cr+s)

and
deg(C1) < deg(C2) < · · · < deg(Cr) = deg(C1) + r − 1.

The positive part of D be defined as

D+ :={C ∈ D : dim(C) > 0}.

Thus deg(Ci+1) = deg(Ci) + 1 for i = 1, . . . , r − 1. We provide some intuition for this definition
using a graphic representation. In figure 3, we represent each cone as a lattice point in a deg-dim
axes system.

8

7

6

5

4

3

1

2

1 2 4 53 7

b9 b8

b7

b5 b4

13

b3

b2

b1

b0

dim

6 15
deg

b6

Figure 3: Illustrating exact decomposition
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A cone decomposition D is then represented by a multiset of lattice points, one lattice point for each
cone in D. If D is exact, then only lattice points of dimension 0 can have multiplicity greater than
1. For any set D of cones, let

dim(D) := max{dim(C) : C ∈ D}
and

maxdeg(D) := max{deg(C) : C ∈ D}, mindeg(D) :=min{deg(C) : C ∈ D}.
If D = ∅, we set maxdeg(D) = mindeg(D) = 0. For any cone decomposition D, we are mostly
interested in the quantities maxdeg(D) and mindeg(D+). Notice that if D and D′ are cone decom-
positions of a set T then dim(D) = dim(D′). Hence, we may speak of the cone dimension dim(T )
of T .

Let D0 be the cone decomposition illustrated in figure 3. Then dim(D0) = 8, maxdeg(D0) = 15 and
mindeg(D+

0 ) = 5. Assuming no multiplicity of lattice points in this figure, we may verify that D0

is exact: this amounts to saying that the lattice points of D+
0 represent a discrete non-increasing

function in the range from mindeg(D+
0 ) to maxdeg(D+

0 ).

Macaulay Constants. The Macaulay constants of the exact cone decomposition D in equa-
tion (11) is a set b0, . . . , bn+1 of constants defined as follows: For i = 0, . . . , n, define bi to be

bi :=

{
1 + max{deg(C) : C ∈ D, dim(C) ≥ i}, if dim(D) ≥ i
mindeg(D+), dim(D) < i.

In particular, we always have the relation bn+1 = mindeg(D+). Hence,

1 + maxdeg(D) = b0 ≥ b1 ≥ · · · ≥ bn ≥ bn+1 = mindeg(D+).

In the example D0 of figure 3, we have

b0 = 16, b1 = b2 = b3 = 14, b4 = 10, b5 = 8, b6 = b7 = b8 = 7, b9 = 5.

The following derivation motivates the definition of the Macaulay constants. First, there are exactly

bi − bi+1

cones of dimension i (i = 1, 2, . . . , n). In fact, these cones have degrees

bi+1, bi+1 + 1, . . . , bi − 1.

So for z ≥ b0, by (9),

φT (z) =
∑

C∈D

φC(z)

=

n∑

i=1

bi−1∑

d=bi+1

(
z − d + i − 1

i − 1

)

=
n∑

i=1

[(
z − bi+1 + i

i

)
−
(

z − bi + i

i

)]

=

(
z − bn+1 + n

n

)
+

n−1∑

i=1

[(
z − bi+1 + i

i

)
−
(

z − bi+1 + i + 1

i + 1

)]
−
(

z − b1 + 1

1

)

=

(
z − bn+1 + n

n

)
−

n−1∑

i=1

(
z − bi+1 + i

i + 1

)
−
(

z − b1

1

)
− 1

=

(
z − bn+1 + n

n

)
−

n∑

i=1

(
z − bi + i − 1

i

)
− 1. (12)
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This form of the Hilbert polynomial is due to Macaulay, and we will refer to it as the “Macaulay
form” of the Hilbert polynomial of T . This polynomial is of at most degree n − 1 since the leading
terms of

(
z−bn+1+n

n

)
and

(
z−bn+n−1

n

)
cancel. Also notice that b0 does not appear in the equation.

Since these constants depend on the exact decomposition which is by no means unique, the following
result is interesting.

Lemma 8 The Macaulay constants b0, b1, . . . , bn for a homogeneous set T are uniquely determined
once bn+1 is fixed.

Proof. As a homogeneous set, T has a Hilbert polynomial. Write this in the standard form

ΦT (z) =

n−1∑

i=0

aiz
i. (13)

The constants a0, . . . , an−1 are unique in this form. Note that only bn+1 and bn affect the term
of degree n − 1 in equation (12). Equating the coefficients of zn−1 in the two forms, we express
an−1 in terms of bn+1 and bn. Thus bn is completely determined by bn+1 and an−1. In general,
ai−1 can be expressed in terms of bi, . . . , bn+1 for i = n, n− 1, . . . , 2, 1. Hence bi is determined from
ai−1, bi+1, . . . , bn+1. By induction, bi+1, . . . , bn+1 have been determined, so bi is determined. So
the Macaulay form of the polynomial is completely determined. What about the constant b0? We
claim that b0 is the smallest value z0 ≥ b1 such that for all z ≥ z0, the expression 12 equals the
Hilbert function φT (z). To see this, note that for z ≥ b1, the Macaulay formula accurately counts
the contribution of cones of positive dimension. So any error is due to cones of dimension zero; by
definition of b0, it is correct for z ≥ b0. On the other hand, if b0 > b1 then the Macaulay formula is
wrong at z = b0 − 1. Q.E.D.

We may also define the dimension dim(T ) of T to be dim(D) for any cone decomposition D of T .
It is clear that this definition does not depend on the choice of D.

Exercises

Exercise 4.1: If T ⊆ K[X] is a K-vector space, not necessarily homogeneous, define the affine
version of the Hilbert function ϕT (z) to be the dimension of the set T≤z :={u ∈ T : deg(u) ≤ z}.
Carry out the analogous development. 2

§5. Exact Decomposition of NF(I)

This section gives an exact decomposition of NF(I) where I is any ideal. We may assume that I is
a monomial ideal. Note that if u is a monomial then I : u is a monomial ideal. We introduce the
convenient if somewhat unusual notation

a : b =
a

GCD(a, b)

where a, b ∈ K[X]. Note that a : b ∈ K if and only if a|b, and a : b, b :a are relatively prime. This
notation is justified on the grounds that Ideal(a : b) = Ideal(a) : b, where the right-hand side refers
to ideal quotient.
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Lemma 9 Let u be a monomial. Then I : u = Ideal(u1 : u, u2 :u, . . . , um : u), where I is generated
by the monomials u1, . . . , um.

Proof. Let J = Ideal(u1 : u, u2 : u, . . . , um : u). To show I : u ⊆ J , let f ∈ I : u where f =
∑

i fi and
each fi is a monomial. Then f ·u =

∑
i fiu ∈ I. Since I is a monomial ideal, each fiu is in I. So fiu

is divisible by some uj . This means fi is divisible by uj :u. We conclude that f ∈ J . Conversely,
each ui : u ∈ I :u, so (ui : u) · u ∈ Ideal(ui) ⊆ I. This shows ui : u ∈ I : u. So J ⊆ I : u. Q.E.D.

The key idea of the decomposition is simple: let X0 ∈ Y and Y′ = Y \ {X0}. Then we have the
cone decomposition

Cone(u,Y) = Cone(uX0,Y) ⊕ Cone(u,Y′)

= C1 ⊕ C2 (14)

where C1, C2 are implicitly defined here. We may call this the shift decomposition of Cone(u,Y).
For example, let u = X2Y , Y = {X, Z} and X0 = X . Then C1 = Cone(X3Y, {X, Z}) and
C2 = Cone(X2Y, {Z}). Note that deg(C1) is 1 more than deg(C) and dim(C2) is 1 less than dim(C).
This is illustrated in figure 4:

C2

dim

deg

C C1

Figure 4: Shifting a cone.

We repeat this operation and obtain for any cone C the cone decomposition

C =

d⊕

i=0

C′
i (15)

where d = dimC, dimC′
i = i (i = 0, . . . , d) and deg(C′

i) = deg(C) + 1 (i = 1, . . . , d). Let us call this
the “complete shift decomposition”. We now describe an application of this. We will say that C is
“violating” in a set D of cones if dim(C) > 0 and for some other C′ ∈ D, one of the following three
conditions holds:

(I) deg C′ = deg C and dimC′ ≥ dimC.

(II) deg C′ > deg C and dimC′ > dimC.

(III) deg C′ > 1 + deg C but there does not exist C′′ ∈ D+ with deg C′′ = 1 + deg C.
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We refer to these as violations of types (I), (II) and (III), respectively. For any cone decomposition
D, it is easy to see that D is exact iff D contains no violating cones. The following is a procedure
to remove violating cones:

Exact Conversion

Input: D, a cone decomposition of a set T .
Output: D, an exact cone decomposition of T .
Method:

while there exists a “violating” cone C ∈ D do

Replace C by its “complete shift decomposition”, C0, C1, . . . , Cd as in equation (15).

If this procedure halts, it is clear that the result is correct.

Lemma 10 The exact conversion procedure halts.

Proof. We use induction on |D+|. If |D+| ≤ 1, the result is clear. So let |D+| ≥ 2. Let
d1 := mindeg{C ∈ D+ : dim C = dimD} and D1 :={C ∈ D+ : deg C ≤ d1}. If D1 has no vio-
lating cones then |D1| = 1 and D is exact iff D \ D1 is exact. By induction, the exact conversion
applied to D \ D1 halts. The lemma holds in this case. Suppose D1 contains a violating cone. At
each step, the procedure replaces a cone C by its complete shift decomposition. If C ∈ D1, then this
reduces the size of D1 and the procedure halts, by double induction on |D1| and |D+|. If C 6∈ D1,
then the procedure can only choose C from D \D1. Again by induction, it cannot do this infinitely
often. This completes the proof. Q.E.D.

Now we describe a method to exactly decompose a set of the form

NF(I) ∩ Cone(u,Y)

where Y ⊆ X = {X1, . . . , Xn} and u ∈ PP(X). This is a slight generalization of the original goal of
exactly decomposing NF(I).

Exact Decomposition Algorithm

Input: (u,Y, F ) where u ∈ PP(X),
Y ⊆ X a set of variables and F ⊆ PP(X) is a monomial basis for an ideal I.

Output: D, an exact cone decomposition for NF(I) ∩ Cone(u,Y).
Method:

1. (BASIS 1) For each v ∈ F do: if v : u ∈ PP(Y) then goto step 2.
Return D = {Cone(u,Y)}.

2. (BASIS 2) If v : u = 1 for any v ∈ F
then return the trivial cone decomposition D = {Cone(0, ∅)}.

3. (DIVIDE) Let X0 ∈ Y such that X0|v : u for some v ∈ F .
Let Y′ = Y \ {X0} and Cone(u,Y) = C1 ⊕ C2

with C1 = Cone(uX0,Y) and C2 = Cone(u,Y′), as in equation (14).
4. (RECURSE) Call the exact decomposition algorithm recursively (twice) to decompose

NF(I) ∩ C1 and also NF(I) ∩ C2.
5. (CONQUER) Let Di (i = 1, 2) be the exact decomposition for NF(I) ∩ Ci.

Return the “exact conversion” of D1 ∪ D2 using the procedure above.
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Correctness. We justify each step in the algorithm.

Step 1: (BASIS 1) Suppose we returned in this step. This means for all v ∈ F , v : u 6∈ PP(Y). We
need to show that D = {Cone(u,Y)} is an the exact decomposition of NF(I) ∩ Cone(u,Y). This is
equivalent to Cone(u,Y) ⊆ NF(I). The following characterization justifies this step.

Lemma 11 Cone(u,Y) ⊆ NF(I)iff (for all f ∈ F )f : u 6∈ PP(Y).

Proof. (⇒) If f :u ∈ PP(Y) then there exists α ∈ PP(Y) such that f : u = α, i.e., f |uα, or equivalently,
uα 6∈ NF(I). This contradicts our assumption that Cone(u,Y) ⊆ NF(I). (⇐) If αu ∈ Cone(u,Y)
then for all f ∈ F , f does not divide αu since f :u 6∈ PP(Y). Hence αu ∈ NF(I). Q.E.D.

Step 2: (BASIS 2) Suppose we returned this step. Then clearly v|u and Cone(u,Y) ⊆ I. Hence
Cone(u,Y) ∩ NF(I) = {0}. This justifies the output of the trivial decomposition.

Step 3: (DIVIDE) The choice X0 ∈ Y exists because we did not return in steps 1 and 2. For now,
any choice of X0 will do. We describe later a more careful choice of X0 in order to ensure a certain
property of the decomposition.

Step 4: (RECURSE) The recursive calls to decompose NF(I) ∩ Ci (i = 1, 2) must be shown to
eventually return. To show this, we must indicate the sense in which the new arguments are “smaller”
than the original inputs. Towards this end, we define the “size” of the input (u,Y, F ) to be

|Y| +
∑

v∈F

deg(v : u).

Note that we use deg(v : u) instead of deg(v). In the case of C1, our arguments are (uX0,Y, F ).
Note that

deg(v : uX0) ≤ deg(v : u)

is always true; moreover, our choice of X0 ensures that the inequality is strict for some v ∈ F . Hence
the size has gone down. In the case of C0, the arguments are (u,Y′, F ) clearly has reduced size by
virtue of |Y′| < |Y|.

Step 5: (CONQUER) Notice that D1 ∪ D2 is a cone decomposition of Cone(u,Y) ∩ NF(I). Then
applying the “exact conversion” procedure above to D1 ∪ D2 gives us the desired output. This
concludes our justification of the algorithm.

Modified Exact Decomposition Algorithm. We wish to modify step 3 in the above algorithm.
But we first develop some insights. Let D be the exact decomposition for NF(I) as returned by the
above algorithm on input (u,Y, F ) where F is a monomial basis for I. Let

T = Cone(u,Y) ∩ NF(I).

Note that for any w ∈ Cone(u,Y) and Y′ ⊆ Y,

Cone(w,Y′) ⊆ T iff Cone(u,Y′) ⊆ T.

Of course, dim(T ) is equal to the largest subset Y′ ⊆ Y such that Cone(u′,Y′) ⊆ NF(I). The
preceding remark implies that we can in fact take u = u′. For lack of a better name, let us call any
subset Y′ ⊆ Y of maximal cardinality such that Cone(u,Y′) ⊆ T a “maximum set” relative to u, I.
This is equivalent to saying Y′ has maximum cardinality subject to

Cone(u,Y′) ⊆ NF(I). (16)
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Example: Let Y = X = {W, X, Y, Z}, u = Y 2 and F = {W 2XZ, X2Y 3, Y 4Z, WY 3}. Let F ′

comprise the elements f : u for all f ∈ F . So F ′ = {W 2XZ, X2Y, Y 2Z, WY }. Using the
characterization in lemma 11, we see that the maximal (not maximum) sets that satisfy (16)
are

{W, Z}, {W, X}, {X, Z}, {Y }.
The first three sets are maximum.

We want our algorithm on input (u,Y, F ) to return a decomposition D that contains a cone of the
form Cone(u,Y∗) where Y∗ is a maximum set in the sense of (16). Note that D will always contain
a cone of the form Cone(u′,Y∗) — so what we seek is u = u′. To this end, we modify step 3 of the
algorithm as follows:

3. (DIVIDE) Choose X0 such that Y′ :=Y \ {X0} contains a maximum set in
the sense of (16). Let C1 = Cone(uX0,Y) and C2 = Cone(u,Y′).

This choice of X0 exists since Y is not a maximum set by the time we reach step 3 in the algorithm.
Furthermore, X0 still has the property that X0 divides f : u for some f ∈ F (this property ensures
termination). To see this, let Y∗ ⊆ Y \ {X0} be a maximum set. By the characterization in
lemma 11, f : u 6∈ PP(Y∗) for all f ∈ F . If X0 does not divide f : u for all f ∈ F then {X0} ∪ Y∗

has the C-property, contradicting the assumption that Y∗ is maximum.

Lemma 12 Consider the modified algorithm on input (u,Y, F ). The output cone decomposition D,
if non-trivial, contains a cone of the form Cone(u,Y∗) where Y∗ is maximum and mindeg(D) =
deg u.

Proof. The lemma is clearly true in case of “basis 1”, and by assumption, “basis 2” does not occur.
So assume D is the “exact conversion” of D1∪D2. Notice that D2 is nontrivial since some maximum
set Y∗ is contained in Y′ = Y \ {X0}. So by induction, D2 contains some cone C∗ = Cone(u,Y∗).
Such a cone is clearly unique (since u is given). If D1 is trivial, then D = D2 and the lemma is true.
Otherwise, mindeg(D2) = deg u and mindeg(D1) = 1 + deg u. It follows that C∗ is non-violating
and our exact conversion procedure will not replace C∗. Hence C∗ ∈ D. Q.E.D.

Applying the modified algorithm to input (1,X, F ), we conclude that for every monomial ideal
I = Ideal(F ) 6= K[X], the set NF(I) has an exact cone decomposition D for which

mindeg(D+) = 0. (17)

(Recall that if D+ = ∅, then mindeg(D+) = 0 by definition.)

Recall that the reduced basis of a monomial ideal is unique and consists of power products (§XII.5).

Lemma 13 Let F be a reduced monomial basis, and D be the output of the modified algorithm on
input (u,Y, F ), where Y ⊆ X, |Y| ≥ 1. If D is non-trivial then for each f ∈ F ∩ Cone(u,Y), there
is some C ∈ D with deg C = deg(f) − 1.
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Proof. Let f ∈ F ∩ Cone(u,Y). First note that deg(f : u) ≥ 1 since otherwise f |u and D is trivial.
We now use double induction on deg(f : u) and |Y|. If deg(f : u) = 1 then f = uX0 for some
X0 ∈ Y and by the previous lemma, D contains a cone of degree deg(u) = deg(f) − 1. If |Y| = 1
then it is easy to see that there is at most one element f in F ∩ Cone(u,Y). Moreover, if such an f
exists, then f = uXk

0 for some k ≥ 1 where Y = {X0}. Then clearly D contains the Cone(uXk−1
0 , ∅)

which has degree deg(f) − 1. Finally, assume deg(f : u) ≥ 2 and |Y| ≥ 2. Then step 3 decomposes
Cone(u,Y) into C1 ⊕ C2 where C1 = Cone(uX0,Y) and C2 = Cone(u,Y \ {X0}). The result then
follows by inductive hypothesis. Q.E.D.

Here is a cone decomposition of NF(I) that does not have the property in this lemma: let I =
Ideal(XY Z) and

D = {Cone(1, ∅), Cone(X, {X, Y }), Cone(Y, {Y, Z}), Cone(Z, {Z, X})}

Of course, this decomposition is not exact.

Corollary 14 Let F be a reduced basis for an arbitrary ideal I. If b0, . . . , bn+1, (bn+1 = 0), is a set
of Macaulay constants for NF(I) then deg(hterm(f)) ≤ 1 + b0 for each f ∈ F .

Proof. The constants b0, . . . , bn are uniquely determined by the requirement bn+1 = 0. But we can
also obtain b0 as maxdeg(D) where D is is an exact decomposition for NF(I) obtained by applying
the algorithm to the input (1,X, hterm(F )), since hterm(F ) is a basis for Head(I). For f ∈ F ,
the preceding lemma implies that maxdeg(D) ≥ deg(hterm(f)) − 1 Hence b0 ≥ deg(hterm(f)) − 1.

Q.E.D.

Remark: If the implicit admissible ordering here is degree-compatible, we can simplify the bound
in this corollary to deg(f) ≤ 1+ b0. It is interesting to note that the exact decomposition algorithm
gives us a constructive proof of the Hilbert-Serre theorem.

Exercises

Exercise 5.1: Let I = Ideal(XY 2Z, X2Y Z2). Give an exact cone decomposition of NF(I), and
determine its Macaulay constants, and Hilbert function. 2

Exercise 5.2: Derive an expression for I :(u1, . . . , uk) involving I : ui’s. Further, derive an ex-
pression involving LCM(vi, vj)’s for suitable vi, vj ’s. HINT: Ideal(u, u′) ∩ Ideal(v, v′) =
Ideal(LCM(u, v), LCM(u, v′), LCM(u′, v), LCM(u′, v′)). 2

Exercise 5.3: Derive a bound on the length of the exact conversion process. 2

§6. Exact Decomposition of Ideals

We construct a cone decomposition of an arbitrary ideal I. Let

I = Ideal(f1, . . . , fm)
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and
d = max{deg(fi) : i = 1, . . . , m}.

So I has the decomposition (§4)
I = S1 ⊕ S2 ⊕ · · · ⊕ Sm

where S1 = Ideal(f1) and for i = 2, . . . , m,

Ii = Ideal(f1, . . . , fi−1), Si = fi · NF(Ii : fi).

We describe exact cone decompositions Di for Si: we may choose D1 = {S1}. For i = 2, . . . , m, we

already know how to obtain an exact decomposition D̂i of NF(Ii : fi). Then

Di :={fiC : C ∈ D̂i}

is an exact decomposition for Si. Hence, mindeg(D+
i ) = deg fi since we may assume mindeg(D̂+

i ) =
0. Let D be the result of applying the “exact conversion” procedure to the set

D2 ∪ D3 ∪ · · · ∪ Dm.

Note that the cones in D have the form Cone(f,Y) where f are no longer power products. We claim
that

mindeg(D+) ≤ d. (18)

Before the exact conversion procedure, this is clearly true. In each step of the conversion, we replace
a violating cone C by its “complete shift decomposition”. If this is a violation of type (I), it will
not affect mindeg(D+). In case of a violation of type (II) or type (III), then deg(C) < d, and the
replacement cones have degrees deg(C) + 1. Again the new mindeg(D+) is bounded by d. This
proves (18). It is easy to modify D so that we have equality in equation (18). We will assume this
in the following.

The above decomposition applies for any ideal. But in the rest of the section, we assume f1, . . . , fm

are homogeneous polynomials. Then D is an exact cone decomposition of some homogeneous set
T ⊆ I. The corresponding Hilbert polynomial of T has the Macaulay form (cf. equation (12))

ΦT (z) =

(
z − d + n

n

)
− 1 −

n∑

i=1

(
z − ai + i − 1

i

)

for suitable Macaulay constants

a0 ≥ a1 ≥ · · · ≥ an ≥ an+1 = d. (19)

In fact we claim that
a0 = a1. (20)

This claim amounts to saying that if C ∈ D is zero-dimensional then there exists C′ ∈ D with
dimC′ > 0 and deg C′ ≥ deg C. This property holds vacuously for each Di (i = 1, . . . , m) since Di

has no zero-dimensional cones. Next note that the conversion procedure applied to D1 ∪ · · · ∪ Dm

preserves this property because for each zero-dimensional cone C that the procedure introduces, it
also produces a cone C′ of positive dimension with deg C′ = deg C.

We have freedom in choosing the polynomial f1 for forming S1, so we may assume deg f1 = d. Since
I = S1 ⊕ T , its Hilbert polynomial can now be written as

ΦI(z) = ΦS1(z) + ΦT (z)

=

(
z − d + n − 1

n − 1

)
+

(
z − d + n

n

)
− 1 −

n∑

i=1

(
z − ai + i − 1

i

)
. (21)

Exercises
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Exercise 6.1: (i) Let I = Ideal(XY 2Z, X2Y Z2). Give an exact cone decomposition of I, and
determine its Macaulay constants, and Hilbert function.
(ii) Repeat part (i) for an ideal I that is generated by linear polynomials (d = 1). 2

§7. Bounding the Macaulay constants

We now have exact decompositions for I = (f1, . . . , fm) and for NF(I), where I is homogeneous. Let
the Macaulay constants for the exact decomposition of NF(I) be

b0 ≥ b1 ≥ · · · ≥ bn ≥ bn+1 = 0

with

ΦNF(I)(z) =

(
z + n

n

)
− 1 −

n∑

i=1

(
z − bi + i − 1

i

)
.

We also have the expression for ΦI(z) with associated constants a0, . . . , an+1 (equations (21) and
(19)). Therefore,

(
z + n − 1

n − 1

)
= ΦI(z) + ΦNF(I)(z)

=

(
z − d + n − 1

n − 1

)
+

(
z − d + n

n

)
+

(
z + n

n

)

−2 −
n∑

i=1

{(
z − ai + i − 1

i

)
+

(
z − bi + i − 1

i

)}
. (22)

We now apply the “backwards difference operator” ∇, defined by its effect on real functions F (z),

∇F (z) := F (z) − F (z − 1).

For i ≥ 0, let ∇0F = F and ∇i+1F = ∇(∇iF ). It is easy to verify the identity ∇
(
z−k

n

)
=
(
z−k−1

n−1

)
.

Applied i times,

∇i

(
z − k

n

)
=

(
z − k − i

n − i

)
.

This formula applies for all values of i, recalling that by definition of the binomial coefficients,
(

z

k

)
=

{
1 if k = 0
0 if k < 0.

Clearly, ∇(F + G) = (∇F ) + (∇G), and ∇C = 0 iff C is a constant. Applying ∇j (j ≥ 0) to both
sides of equation (22),

(
z + n − j − 1

n − j − 1

)
=

(
z − d + n − j − 1

n − j − 1

)
+

(
z − d + n − j

n − j

)
+

(
z + n − j

n − j

)
− 2δ(j, 0)

−
n∑

i=j

{(
z − ai + i − j − 1

i − j

)
+

(
z − bi + i − j − 1

i − j

)}
. (23)

Here

δ(x, y) =

{
1 if x = y,
0 else,

denotes the Kronecker delta function. Setting z = 0 and using the identity
(

k

n

)
= (−1)n

(
n − k − 1

n

)
, k < 0,
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equation (23) becomes

1 = (−1)n−j−1

(
d − 1

n − j − 1

)
+ (−1)n−j

(
d − 1

n − j

)
+ 1 − 2δ(j, 0) −

n∑

i=j

(−1)i−j

{(
ai

i − j

)
+

(
bi

i − j

)}
.

(24)
For j = n − 1, this reduces to

an + bn = d.

But we know an ≥ d, bn ≥ 0. Hence an = d, bn = 0. It is convenient to define

cj = aj + bj , j = 0, . . . , n + 1.

Thus we have just shown cn = d. Next we simplify equation (24) by extracting the terms
(

ai

i−j

)
+
(

bi

i−j

)

in the summation corresponding to i = j, i = j + 1 and i = n. These three terms (respectively) are

2, −cj+1, (−1)n−j

(
d

n − j

)
.

This gives us, for j = 0, . . . , n − 2,

cj+1 = 2(1 − δ(j, 0)) + 2(−1)n−j

(
d − 1

n − j − 1

)
+

n−1∑

i=j+2

(−1)i−j

{(
ai

i − j

)
+

(
bi

i − j

)}
, (25)

For j = n − 2, this yields
cn−1 = 2d.

We now use the inequality (
ai

k

)
+

(
bi

k

)
≤
(

ci

k

)

(this is obvious from the combinatorial interpretation). Note that equation (25) (for j ≤ n − 3)
contains the term

2 + (−1)n−j

{
2

(
d − 1

n − j − 1

)
−
(

an−1

n − j − 1

)
−
(

bn−1

n − j − 1

)}
.

If j = n − 3, this expression is bounded by 2 − 2
(
d−1
2

)
+
(
2d
2

)
= d(d + 2). From (25), we get

cn−2 ≤ d(d + 2).

But to get a general bound, proceed as follows. Extracting the term corresponding to i = j+2 in (25),
and discarding the negative term corresponding to i = j+3 and also discarding the Kronecker-delta,

cj+1 ≤ 2 + 2

(
d − 1

n − j − 1

)
+

(
cj+2

2

)
+

n−1∑

i=j+4

(
ci

i − j

)
. (26)

In the following, we assume d ≥ 2 (see §6, Exercise, for d = 1).

Lemma 15 For d ≥ 2,

cj < Bj := d2n−j

, j = 1, . . . , n − 2.

Proof. The result is true for j = n− 2. We may also note that cn−1 ≤ Bn−1 = d2. So let j ≤ n− 3.
For i = j + 4, . . . , n − 1, we have i − j ≤ 2i−j−2 and so

(
Bi

i − j

)
<

Bi−j
i

(i − j)!
≤ B2i−j−2

i

(i − j)!
=

Bj+2

(i − j)!
.
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Also, check that 2 + 2
(

d−1
n−j−1

)
≤ 2Bj+2. Inductively, equation (26) yields

cj+1 ≤ 2Bj+2 +

(
Bj+2

2

)
+

n−1∑

i=j+4

(
Bi

i − j

)

≤ 2Bj+2 +
Bj+1

2
− Bj+2

2
+
∑

i≥j+4

Bj+2

(i − j)!

≤ Bj+1

2
+ Bj+2





3

2
+
∑

i≥4

1

i!






<
Bj+1

2
+ 2Bj+2

≤ Bj+1.

Q.E.D.

In particular, we have a1 + b1 = c1 ≤ B1 = d2n−1

. We already know a0 = a1. The remaining
constant to be bounded is b0.

Lemma 16
b0 ≤ max{a1, b1}.

Proof. Let D be the cone decomposition for K[X], constructed relative to I as in the foregoing. The
Hilbert function of K[X] can be expressed as





∑

i≥0

W0,iδ(z, i)




+






n∑

d=0

∑

i≥0

Wd,i ·
(

z − i + d − 1

d − 1

)

i






where Wd,i is the number of d-dimensional cones of degree i in D. Here, we attach a subscript “i”

on the binomial coefficient
(
z−i+d−1

d−1

)
i

to indicate that the expression must be equated to zero for

z < i. For z ≥ max{a1, b1}, these subscripts can be removed, giving





∑

i≥0

W0,iδ(z, i)




+






n∑

d=0

∑

i≥0

Wd,i ·
(

z − i + d − 1

d − 1

)

 =

(
z + n − 1

n − 1

)
. (27)

Hence, for z ≥ max{a1, b1}, equation (27) shows that the expression
∑

i≥0 W0,iδ(z, i) is equal to
a sum of binomial coefficients, and so is equal to some integer polynomial p(z). But for z ≥
max{a0, b0} (≥ max{a1, b1}) we know that p(z) = 0, so p(z) is the zero polynomial. This implies
that b0 ≤ max{a1, b1}. Q.E.D.

To obtain our main result about general polynomials, we need to first homogenize the input poly-
nomials (§3).

Theorem 17 Let f1, . . . , fm ⊆ K[X1, . . . , Xn] be polynomials of degree at most d. Relative to any
admissible order ≤

A

, there is a Gröbner basis G for I = Ideal(f1, . . . , fm) of degree at most d2n

. In

other words,
G(n, d) ≤ d2n

.

c© Chee-Keng Yap September 9, 1999



§8. Term Rewriting Systems Lecture XIII Page 423

Proof. First we homogenize each fi to Fi ∈ K[X0, . . . , Xn] where X0 is a homogenizing variable.
Let G be a reduced basis for J = Ideal(F1, . . . , Fm) relative to ≤

A

∧ (§3). We want an upper bound

on B = max{deg(g) : g ∈ G}. The set F = {hterm(f) : f ∈ G} is a reduced monomial basis for
the head ideal H = Head(G). Applying the exact cone decomposition algorithm to (1,X, F ), we
obtain an exact decomposition for NF(H). But G is a Gröbner basis means NF(H) = NF(J). We
similarly obtain an exact decomposition for J . As above, the associated Macaulay constants are
b0, . . . , bn+2 and a0, . . . , an+2, respectively. (Note that there are n + 3 Macaulay constants for each
decomposition since we have n + 1 variables.) By lemma 13 we know that B ≤ 1 + b0. But

b0 ≤ max{a1, b1} ≤ c1 ≤ d2n

.

Finally, dehomogenizing the polynomials in G yields a Gröbner basis for I (lemma 3). Q.E.D.

Exercises

Exercise 7.1: Obtain the sharpest bound you can on the above constants aj , bj. For instance,

cn−3 ≤
(
2d
3

)
+
(
d2+d

2

)
. In general,

cj ≤ 2

(
d2

2
+ d

)2n−j−1

.

2

§8. Term Rewriting Systems

The rest of this lecture proves a lower bound on G(n, d), I(n, d) and S(n, d). We now
assume the coefficient field K is Q. The underlying set of variables will now be denoted
Σ = {X1, . . . , Xn}.

The context for the lower bound construction comes from the term-rewriting literature. We had
a brief encounter with term-rewriting systems in §XII.3. Such systems deal with syntactic objects
(“free terms”) and their behavior under a set of transformations. These transformations are governed
by finitistic or local rules. For example, let the terms be words over an alphabet Σ. A simple rule
might be the transposition of two adjacent variables occurring in a word: . . .XY . . . → . . . Y X . . ..
This particular rule amounts to saying that the variables are commutative. If the rules are reversible,
then this defines an equivalence relation among the terms. Questions of recognizing equivalence are
important issues, and, as in Gröbner bases, this can be studied via normal forms. Indeed, many
general questions of interest in this subject are already reflected in our study of Gröbner bases:
termination for a set of rules, normal forms, Church-Rosser property.

We will now study polynomial transformations from this “syntactic” view-point. In fact, the lower
bound results use a very special class of polynomials which we call Thue polynomials, and the
corresponding term-rewriting systems are called Thue systems. Many concepts of term-rewriting
systems have analogues in polynomial rings. In such cases, it is a simple matter of introducing the
corresponding vocabulary. Generally, we will try to adopt the new vocabulary.

Let Σ = {X1, . . . , Xn} be a set of variables. In term-rewriting, Σ is a called alphabet and each
Xi ∈ Σ is a commutative variable. Although commutativity of variables is the normal assumption
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in polynomial rings, the opposite assumption is more common in term-rewriting. In the following
definitions, we put the qualification “commutative” in parenthesis when defining the appropriate
concepts. However, we normally drop the ‘commutative’ qualifications in our usage, as this will be
understood.

The set of power products PP(Σ) is also called the free commutative monoid generated by Σ. A
power product w ∈ PP(Σ) is also called a (commutative) word. Because of commutativity, ww′

and w′w both refer to the same word. Thus the empty word corresponds to “1”. If Γ ⊆ Σ and
w, v ∈ PP(Σ), then degΓ(w) denotes the degree of w in the variables of Γ. For instance, we say w
is linear in Γ if degΓ(w) = 1. If Γ = Σ, then degΓ(w) is the usual degree, deg(w). We say w is a
subword of w′ if w|w′ (w divides w′).

A (commutative) semi-Thue system over Σ is a pair (S, Σ) where S is a finite set of pairs in PP(Σ).
Each pair (α, β) ∈ S is called a rule. We call α and β (respectively) the precondition and postcondition
of the rule (α, β). The reverse of a rule (α, β) is the rule (β, α). We say S is a (commutative)
Thue system if (α, β) is in S implies its reverse (β, α) is in S. The degree of a rule (α, β) is
max{deg(α), deg(β)}, and the degree of S is the maximum degree of its rules.

Derivations. Given words v, w, we write

v → w (mod S)

if for some (α, β) ∈ S and γ ∈ PP(Σ), we have v = γα and w = γβ. We also call “v → w”
a transition (of S). The reflexive, transitive closure of → (mod S) is denoted −→∗ (mod S). A
sequence

D = (w1, w2, . . . , wk)

(also written, D : w1 → · · · → wk, or, D : w1 −→∗ wk) where wi ∈ PP(Σ) (k ≥ 1) is called a
derivation of S from w1 to wk if wi → wi+1(mod S) for i = 1, . . . , k − 1. The derivation has a
repetition if wi = wj for some 1 ≤ i < j ≤ k; this instance of repetition is trivial if i = j − 2. A
derivation is repetition-free if it has no repetition; it is simple if it has no trivial repetition. Thus
simple derivations are allowed to have non-trivial repetitions. Clearly only simple derivations are
of interest, and this is often implicit in our discussion. A repetition-free derivation D : w −→∗ w′

is said to be unique if it is the only repetition-free derivation from w to w′. We say D is strongly
unique if for all repetition-free derivations D′ : w −→∗ u, if w′ |u then u = w′ and D′ = D. A word
w is recursive if there is a non-trivial (i.e., at least one transition step) simple derivation from w to
some w′ such that w |w′; otherwise it is non-recursive. Note that possibly w = w′ here.

For any set G = {g1, . . . , gm} or sequence g = (g1, . . . , gm) of polynomials, let maxdeg(G) (resp.,
maxdeg(g)) be the maximum degree of a polynomial in G (resp., in g). Here, g may represent a
syzygy or a derivation and G a Gröbner basis.

We are often interested in derivations of a Thue system S from some distinguished word w0. We
call w0 the initial assertion of S and words derivable from the initial assertion are called assertions
of S. (This terminology is from Post [11].)

Main Task. The main task before us (following [9]) involves constructing a Thue system Sn,d that
“counts to d2n

” in the following sense: there are distinguished variables Q0, Q∞, A ∈ Σ such that if
D is any simple derivation

D : Q0 −→∗ Q∞w (mod Sn,d)
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then w is equal to Ad2n

. Here A is called an “accumulator” variable since it acts as a unary counter.
Moreover, the derivation D is strongly unique. For the lower bound application, this construction

needs to be “efficient” in the sense that Sn,d involves only O(n) variables and has degree O(n + d).

Connection to Polynomial Ideals. Such a construction has implications for polynomials be-
cause we can view each rule (α, β) as the polynomial α − β. Let us call a polynomial of this form a
Thue polynomial and an ideal generated by a set of Thue polynomials is called a Thue ideal [13, 14].
Let

FS :={α − β : (α, β) ∈ S} (28)

be the set of Thue polynomials corresponding to rules of S. For w, w′ ∈ PP(Σ), notice that if
w −→ w′(mod S) then w = αγ and w′ = βγ for some rule (α, β) ∈ S. Then w − w′ ∈ Ideal(FS).
This argument can be repeated for derivations of any length, giving:

Lemma 18 If w −→∗ w′(mod S) then w − w′ ∈ Ideal(FS).

Let us now show a partial converse. For this, we need to assume that the field of coefficients is
K = Q. For f ∈ K[Σ], define the support of f be the set support(f) ⊆ PP(Σ) comprising those
words whose coefficients in f are non-zero.

Lemma 19 (Mayr-Meyer) Suppose w − w′ ∈ Ideal(FS) where the ideal is generated over R =
Q[X1, . . . , Xn] then there exists a derivation D : w −→∗ w′(mod S). Moreover, if

w − w′ =

m∑

i=1

aifi (29)

where ai ∈ R and fi ∈ FS, then maxdeg(D) ≤ maxdeg{aifi : i = 1, . . . , m}.

Proof. We may assume that each ai in (29) is a monomial. By multiplying both sides by a suitable
positive integer d, we obtain an expression

d(w − w′) =

m∑

i=1

bifi

where each bi is now a power product. We want to construct a derivation

D : w = w0 −→ w1 −→ · · · −→ wk = w′(mod S)

for some k ≤ m. This is done by induction on m. It is easiest to see the argument graphically. Let
us construct a digraph G on the vertex set V = ∪m

i=1support(bifi), where we introduce an edge
from u to v whenever bifi = u − v (i = 1, . . . , m). Note that G may have multiple edges (i.e., there
may be more than one edge going from any vertex u to any v). Let dG(u) be equal to the number
of outgoing edges from u minus the number of incoming edges into u. Clearly

dG(u) =






0 if u 6∈ {w, w′},
d if u = w,
−d if u = w′.

It easily follows by induction on m that there exists a path from w to w′. This is immediate if
m = 1. Otherwise, assume that we have constructed a path (w0, w1, . . . , wi) where wi 6= w′ (i ≥ 0).
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Moreover, we have removed the edges of this path from G (so G now has m − i edges). Then it is
easy to see that there remains an outgoing edge from wi, and so this construction can proceed. We
leave the formal argument to the reader. But any path from w to w′ corresponds to a derivation
from w to w′. It is also not hard to see that the corresponding derivation has degree bounded by
maxdeg{aifi : i = 1, . . . , m}. Q.E.D.

Exercises

Exercise 8.1: Let Σ = {Q0, A, B, Q1}. Construct a Thue system S such that for any w ∈ PP(A, B),
we have Q0w −→∗ Q1A

mBn(mod S) where m = degA(w) and n = degB(w). Moreover, this
derivation is strongly unique. S may use a larger alphabet than Σ. 2

Exercise 8.2: The reduced Gröbner basis (with respect to any admissible ordering) of a Thue ideal
is comprised of Thue polynomials. HINT: analyze Buchberger’s algorithm and note that the
S-polynomial of two Thue polynomials is a Thue polynomial. 2

§9. A Quadratic Counter

We construct a Thue system S0 that can be viewed as a “counter”.

Constants. Throughout this construction, we fix the integers n ≥ 1 and d ≥ 2. We also define

ed(k) = e(k) := d2k

for all k ≥ 0. Observe that e(k + 1) = e(k)2.

Variables. There are two types of variables.

1. Accumulator variables: Ak, Bk, (k = 0, 1, . . . , n)

2. Flag variables: Fk[color] (k = 1, . . . , n; color ∈ {inc, dec, pass}).

Let Σ0 denote this set of 5n+2 variables. Each variable belongs to some level k (its subscript) which
is an integer between 0 and n. The colors are read ‘increment’, ‘decrement’ and ‘pass’, respectively.
We are mainly interested in commutative words of the following form:

w = Am0
0 Bn0

0

n∏

k=1

Amk

k Bnk

k Fk[colork]

where m0, n0, mk, nk ≥ 0 and m0 + n0 = d. We call such words well-formed.

So a well-formed word is linear in {Fk[inc], Fk[dec], Fk[pass]} for each k = 1, . . . , n.

For 1 ≤ k ≤ n and k ≤ ℓ ≤ n + 1, we use the abbreviation:

Fk,ℓ[color] ≡
ℓ−1∏

i=k

Fi[color]

Thus Fk,k[color] = 1. The following well-formed word is designated the initial assertion

w0 := Ad
0F1,n+1[inc]. (30)
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We now present the rules, which naturally fall under two groups:

Start Rules. (k = 1, 2, . . . , n)

(S1)k A0
F1,k[pass]Fk[inc]

-
B0A

d
k (“increment rule”)

(S2)k A0B
d
k

F1,k[pass]Fk[dec]
-

B0 (“decrement rule”)

Finish Rules. (k = 1, 2, . . . , n − 1)

(F1)k Bd
0F1,k[dec]Fk[inc] - Ad

0F1,k[inc]Fk[pass] (“inc ⇒ pass rule”)

(F2)k Bd
0F1,k[dec]Ak

Fk[pass]
-

Ad
0F1,k[inc]Bk (“pass ⇒ pass rule”)

(F3)k Bd
0F1,k[dec]Fk[pass]Ak

- Ad
0F1,k[inc]Fk[dec]Bk (“pass ⇒ dec rule”)

Let (S0, Σ0) denote the Thue system corresponding to these rules.

Remark: We write the rule (α, β) as α → β above to be suggestive of the “forward” direction of
applying the rules. But one must remember that we are describing a Thue system, so the reverse
rule β → α is also implied. A derivation that only uses the forward (resp. reverse) rules will be
called a forward (resp. reverse) derivation; otherwise the derivation is mixed. Furthermore, a rule
of the form αγ → βγ where GCD(α, β) = 1 may be written as

γ

α −→ β

as in the rules4 (S1) and (S2). Since γ is unchanged, we call it the “catalyst” for the rule. In this

and the next section, all transitions → ,
∗→ are understood to be (mod S0).

Example: We illustrate a derivation of S0. Note that any word w ∈ PP(Σ0) can be expressed as
w = w0w1 · · ·wn where wk (k = 0, . . . , n) is the subword of w comprising all variables of level k.
In the following derivation, we will represent w by stacking wk−1 above wk. Here d = 2, n = 3.

w0 =





A2
0

F1[inc]
F2[inc]
F3[inc]




rule(S1)1

-





A0B0

F1[inc]A
2
1

F2[inc]
F3[inc]




rule(S1)1

-





B2
0

F1[inc]A
4
1

F2[inc]
F3[inc]




rule(F1)1

-





A2
0

F1[pass]A
4
1

F2[inc]
F3[inc]




rule(S1)1

-





A0B0

F1[pass]A
4
1

F2[inc]A
2
2

F3[inc]





- · · · -





B2
0

F1[dec]
F2[dec]
F3[inc]A

256
3



 .

The reader should try to see how to eventually derive the last indicated word.

Let us briefly comment on the rules: the forward start rules at level k are all dependent on the
catalyst F1,k[pass] and in each case, convert an occurrence of A0 to B0. Rule (S1), in the presence

4By a harmless abuse of language, we call, for instance, (S1) a ‘rule’ even though it is really a family of n rules
parameterized by k.
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of the catalyst Fk[inc], increments the accumulator Ak by d: in this, we see that the pass flags
Fi[pass] at levels i = 1 to i = k − 1 each signal that the accumulator Ai should be ignored. Rule
(S2) is the counterpart of (S1) where the flag Fk[dec] signals the decrementing of accumulator Ak

by d.

We similarly note some salient features of the forward finish rules: in each case, the subword Bd
0

transforms to Ad
0. Furthermore, the initial block of “decrement flags” F1,k[dec] is converted to

F1,k[inc]. Hence differences among the finish rules hinge on the flag at level k: in case of (F1), the
flag is Fk[inc] and we convert it to Fk[pass]. In the case of (F2), the flag Fk[pass] acts only as a
catalyst for converting an Ak into a Bk. In (F3), we convert Fk[pass] to Fk[dec], and at the same
time convert an Ak to a Bk. Thus the flag variable at level k is transformed by these rules in a
cyclic fashion

inc ⇒ pass ⇒ dec ⇒ inc ⇒ · · · .
More precisely: in any forward derivation, the flag variable at each level transforms cyclically as
indicated.

Clearly the rules preserve well-formedness of words. In particular, all assertions are well-formed. To
see these rules in action, it is best to follow the proof of the following lemma:

Lemma 20 (Standard Derivation) Let 1 ≤ k ≤ ℓ ≤ n and w be any commutative word.

(a)k,ℓ (Increment) Let u1 = wAd
0F1,k[inc]Fk,ℓ[pass]Fℓ[inc]. Then there is a forward derivation

u1
∗→ u′

1 where

u′
1 = wBd

0A
e(k)
ℓ F1,k[dec]Fk,ℓ[pass]Fℓ[inc].

The first and last rules in this derivation are start rules.

(b)k,ℓ (Decrement) Let v1 = wAd
0B

e(k)
ℓ F1,k[inc]Fk,ℓ[pass]Fℓ[dec]. Then there is a forward deriva-

tion v1
∗→ v′1 where

v′1 = wBd
0F1,k[dec]Fk,ℓ[pass]Fℓ[dec].

The first and last rules in this derivation are start rules.

Proof. Let k = 1. Part (a) consists of d applications of rule (S1)ℓ, and part (b) consists of d
applications of rule (S2)ℓ. Now assume k > 1.

(a)k,ℓ
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wAd
0F1,k[inc]Fk,ℓ[pass]Fℓ[inc] = u1

ind(a)k−1,k−1
-∗

wBd
0A

e(k−1)
k−1 F1,k−1[dec]Fk−1[inc]Fk,ℓ[pass]Fℓ[inc] = u2

(F1)
-

wAd
0A

e(k−1)
k−1 F1,k−1[inc]Fk−1[pass]Fk,ℓ[pass]Fℓ[inc] = u3

ind(a)k−1,ℓ
-∗

wBd
0A

e(k−1)
k−1 A

e(k−1)
ℓ F1,k−1[dec]Fk−1,ℓ[pass]Fℓ[inc] = u4

(F2)
-

wAd
0A

e(k−1)−1
k−1 Bk−1A

e(k−1)
ℓ F1,k−1[inc]Fk−1,ℓ[pass]Fℓ[inc] = u5

ind(a)k−1,ℓ
-∗

wBd
0A

e(k−1)−1
k−1 Bk−1A

2e(k−1)
ℓ F1,k−1[dec]Fk−1,ℓ[pass]Fℓ[inc] = u6

... (by e(k − 1) − 2 more applications of last 2 steps)

ind(a)k−1,ℓ
-∗

wBd
0Ak−1B

e(k−1)−1
k−1 A

e(k)
ℓ F1,k−1[dec]Fk−1,ℓ[pass]Fℓ[inc] = u7

(F3)
-

wAd
0B

e(k−1)
k−1 A

e(k)
ℓ F1,k−1[inc]Fk−1[dec]Fk,ℓ[pass]Fℓ[inc] = u8

ind(b)k−1,k−1
-∗

wBd
0A

e(k)
ℓ F1,k−1[dec]Fk−1[dec]Fk,ℓ[pass]Fℓ[inc] = u′

1

The inductive invocations of the lemma are labeled “ind(a)” or “ind(b)”.

(b)k,ℓ: We omit the similar derivation. The only difference is that all the inductive invocations of
“ind(a)k−1,ℓ” are replaced by “ind(b)k−1,ℓ”. Q.E.D.

We shall call any prefix of the derivations (a) or (b) in the proof of this lemma a standard derivation
(at level k). To understand how the system may deviate from standard derivations, we consider the
‘ambiguities’ that arise when the precondition of a rule R subsumes the precondition of another rule
R′. This would mean that whenever R is applicable, so is R′, causing non-determinism in derivations.
In general, non-determinism arises even when the rules are not ambiguous in this sense. But in S0,
such ambiguities are the only cause of deviation from our intended or standard derivations. Of
course, we must consider the reverse rules in describing ambiguities.

Forward Ambiguities Among the forward rules, the only source of ambiguity arises from the fact
that both (F2) and (F3) have the same preconditions.

Reverse Ambiguities Among the reverse rules, the only ambiguity arises because the precondition
of reverse (F2) subsumes the precondition of reverse (F1).

Mixed Ambiguities Finally, consider ambiguities involving a forward and a reverse rule. The
problem here is essentially caused by the case k = 1. Thus the precondition for rule (S1)1 is
subsumed by the postcondition of the finish rules (Fm)ℓ (for m = 1, 2, 3 and ℓ ≥ 2). Similarly,
the postcondition of rule (S2)1 is subsumed by the precondition of the finish rules (Fm)ℓ

(for m = 1, 2, 3 and ℓ ≥ 2). It turns out that these mixed ambiguities are harmless for our
purposes.5

5The fact that the postcondition of (Fm)ℓ subsumes the precondition of (S1)1 means that following an application
of (Fm)ℓ , we can immediately apply rule (S1)1. But the reader may check that in standard derivations, we always
apply rule (S1)1 right after rule (Fm)ℓ! Similarly, that the precondition of rule (Fm)ℓ subsumes the postcondition
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The following properties of S0 may now be noted. Let w be any well-formed word.

• Rule (F2) is applicable to w if and only if rule (F3) is applicable to w. If both are applicable,
then no other rules apply; if both are non-applicable, then there is at most one forward rule
applicable to w.

• If reverse (F2) is applicable to w, then reverse (F1) (and no other reverse rules) is applicable
to w. If reverse (F2) is not applicable, then there is at most one reverse rule applicable to w.

These properties will be assumed when we prove the Basic Lemma next.

§10. Uniqueness Property

If we apply lemma 20(a) to the initial assertion w0 with the parameters k = ℓ = n, we get the word

w∞ := Bd
0Ae(n)

n F1,n[dec]Fn[inc]. (31)

We call w∞ the final assertion. The next lemma shows that this derivation is unique.

For any word w, define the level of w to be the smallest k = 0, 1, . . . , n such that if
Γ :={Ak, Bk, Fk[inc], Fk[pass], Fk[dec]} then degΓ(w) > 0.

Lemma 21 (Basic Lemma) Let 1 ≤ k ≤ ℓ ≤ n and let w1, w
′
1 be commutative words of level at

least k and the following are well-formed words:

u1 := w1A
d
0F1,k[inc], u′

1 :=w′
1B

d
0F1,k[dec].

(a)k,ℓ (Forward Derivation) Let

D1 : u1
∗→ u′

1

be a simple derivation such that the first transition in D1 is a forward one and u′
1 is the

only word in D1 divisible by Bd
0F1,k[dec]. Then D1 is unique and a standard derivation, and

moreover:

(a.1)k,ℓ If Fk,ℓ[pass]Fℓ[inc] |w1 then w1A
e(k)
ℓ = w′

1, i.e., the accumulator Aℓ has increased
by e(k).

(a.2)k,ℓ If Fk,ℓ[pass]Fℓ[dec] |w1 then w1 = w′
1B

e(k)
ℓ , i.e., the accumulator Bℓ has decreased

by e(k).

(b)k,ℓ (Backward Derivation) Let

D2 : u′
1

∗→ u1

be a simple derivation such that the first transition in D2 is a reverse one and u1 is the
only word in D2 divisible by Ad

0F1,k[inc]. Then D2 is unique and the reverse of a standard
derivation, and moreover:

(b.1)k,ℓ If Fk,ℓ[pass]Fℓ[inc] |w′
1 then w′

1 = w1A
e(k)
ℓ , i.e., the accumulator Aℓ has decreased

by e(k).

(b.2)k,ℓ If Fk,ℓ[pass]Fℓ[dec] |w′
1 then w′

1A
e(k)
ℓ = w1, i.e., the accumulator Bℓ has increased

by e(k).
of (S2)1 means that, whenever rule (Fm)ℓ is applicable, so is the reverse of (S2)1. But in standard derivations, we
only apply rule (Fm)ℓ after an application of rule (S2)1. Hence it is impossible to deviate from standard behavior
using this ambiguity: it would mean that we apply reverse (S2)1 instead of (Fm)ℓ . But this would give a non-simple
derivation.
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We defer the proof to the appendix. The following shows that S0 is (with some simple modifications)
counting up to the double-exponential number e(n).

Corollary 22 If D : w0
∗→ w and Bd

0F1,n[dec]Fn[inc] |w then D is unique and w = w∞. Hence,

the standard derivation w0
∗→ w∞ is strongly unique.

Proof. Only a forward rule can be applied to w0, and there is a first word x in D such that
Bd

0F1,n[dec]Fn[inc] |x. By the basic lemma (a)1,n, x has the form of the final assertion,

w∞ = Bd
0Ae(n)

n F1,n[dec]Fn[inc].

Moreover, the derivation cannot be extended from x (recall that the finish rules does not include
the case k = n). So x is indeed equal to w. The uniqueness of D follows from the uniqueness of
standard derivations. Q.E.D.

Lemma 23 The initial assertion w0 = Ad
0F1,n+1[inc] is non-recursive.

Again, the proof is technical and deferred to the appendix.

§11. Lower Bounds

Modified System S1. Recall that S0 has a unique derivation from the initial assertion w0 (30) to
the final assertion w∞ (31). Let us modify S0 to a new system S1 so that it has, instead, a unique
derivation of the form:

Q0 −→∗ w∞ −→∗ Q∞ (32)

where Q0 and Q∞ are new variables. Intuitively, the derivation from w∞ to Q∞ should be the
reverse of the standard derivation. (So calling w∞ the “final assertion” is slightly misleading in this
setting, but we stick to this terminology.)

More precisely, we first expand Σ0 to Σ1 by adding three new variables

Q0, Qmid, Q∞.

We now treat Q0 as the initial assertion of S1. Next, we augment the rules of S0 with three new
rules.

Augmented Rules.

(S0) Q0
- Ad

0F1,n+1[inc] = w0 (“initialization rule”)

(T0) 1 Bd
0F1,n[dec]Fn[inc]

-
Qmid (“transition rule”)

(F0) QmidA
d
0F1,n+1[inc] - Q∞ (“termination rule”)
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Intended Derivation. We intend to use these rules as follows. The initialization rule (S0) simply
converts Q0 to w0 in one step. Then the standard derivation takes w0 to w∞. At this point, the only
applicable rule that preserves simplicity is rule (T0), and this simply introduces the new variable
Qmid. At this point, the reverse standard derivation will take Qmidw∞ back to Qmidw0. Now the final
termination rule (F0) converts Qmidw0 to Q∞. To summarize:

Q0
(S0)−→ w0

std−→∗ w∞

(T0)−→ Qmidw∞
rstd−→∗ Qmidw0

(F0)−→ Q∞. (33)

It is clear that this derivation has all the properties we previously asserted for S0:

Lemma 24 The derivation Q0 −→∗ Q∞ (mod S1) is strongly unique. The initial assertion Q0 is
non-recursive.

Modified System S2. We need to make one more modification. The degree of the rules of S1 can
be as large as n + d + 2. We now modify them so that their degree is at most d + O(1). Introduce
n new “level” variables

L1, . . . , Ln

and also
Qinit, Qend.

We use them to simulate the rules of S1. Thus the start rules (S1)-(S2) are now replaced by:

(T0)k Lk
Fk[pass]A0

-
Lk+1 (k = 1, . . . , n − 1)

(T1)k LkA0
Fk[inc]

-
L1B0A

d
k (k = 1, . . . , n)

(T2)k LkA0B
d
k

Fk[dec]
-

L1B0 (k = 1, . . . , n).

Intuitively, we see that the start rules can be simulated by the new rules (T0)-(T2). Roughly
speaking, rule (S1)k is simulated by the sequence

L1A0

F1[pass]
-

(T0)1
L2A0

-

(T0)2
· · · -

(T0)k−1

LkA0

Fk[inc]
-

(T1)k

L1B0A
d
k.

The rule (S0) can be simulated using

(C1) Q0
- QinitL1A

d
0

(C2) Lk
Qinit

-
Lk+1Fk[inc] (k = 1, . . . , n − 1)

(C3) QinitLn
- L1Fn[inc]

We leave it for the reader to find substitutes for the rules (F0)-(F3) and for (T0). These modifications
should not modify the basic properties of the original system. The upshot is a modified system S2

with 6n + 7 variables and whose rules have degree at most d + 3.
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Lower Bound on I(n, d).

Lemma 25 The ideal membership problem in Q[X1, . . . , Xn] has bound I(n, d + 3) ≥ d2p

, p ∼ n/6.

Proof. Let D∞ be the unique derivation of S2 from Q0 to Q∞. Let F = {f1, . . . , fm} be the set of
Thue polynomials corresponding to S2 and let f0 = Q0 − Q∞. Then

maxdeg(F ) = d + 3, deg(f0) = 1, maxdeg(D∞) ≥ e(n) + d + 3.

Suppose f0 =
∑m

i=1 aifi (ai ∈ Q[X1, . . . , Xn]). By lemma 19, there is a derivation D′ from Q0

to Q∞ such that maxdeg(D′) ≤ deg(aifi) for all i = 1, . . . , m. After omitting repetitions from
D′, we must get the unique derivation D∞. Since maxdeg(D∞) ≤ maxdeg(D′), we conclude that
deg(aifi) ≥ maxdeg(D∞) ≥ e(n) + d + 3. But by definition of I(n, d), we have

I(6n + 7, d + 3) + deg(f0) ≥ deg(aifi) ≥ e(n) + d + 3.

Hence I(n, d + 3) ≥ e(p) where p ∼ n/6. Q.E.D.

Assuming n ≥ ln d, we may simplify this bound to I(n, d) ≥ e(p) for some p ∼ n/6.

Lower Bound on S(n, d). First we show a property of Thue polynomials. If f =
∑k

i=1 hi where
each hi ∈ R satisfies support(hi) ⊆ support(f) then we say that f is a non-canceling sum of
h1, . . . , hk, and write

f =

k⊕

i=1

hi.

Lemma 26 Let f1, . . . , fm be Thue polynomials and f =
∑m

i=1 αifi, (αi ∈ R) and

d0 := max{deg(αifi) : i = 1, . . . , m}. Then f =
⊕k

j=1 hj (k ≥ 1) where hj are Thue polynomi-
als that can be expressed as

hj =

m∑

i=1

αj,ifi

with αi,j ∈ R and deg(αj,ifi) ≤ d0.

Proof. First we rewrite f in the form

f =

ℓ∑

i=1

βigi

where each βi is a monomial, each gi ∈ {f1, . . . , fm} (possibly repeated) and deg(βigi) ≤ d0. We
use induction on ℓ. If ℓ = 1 then the result is immediate. Assume ℓ > 1. Without loss of generality,
assume that support(β1g1)∩ support(f) is non-empty. By induction, f ′ := f − β1g1 can be written
as a non-canceling sum,

f ′ =
k⊕

j=1

hj

where hj can be expressed as hj =
∑m

i=1 αj,ifi, deg(αj,ifi) ≤ d0.

There are two cases. Case 1: support(β1g1) ⊆ support(f). Then we can write f =
⊕k

j=0 hj where
h0 = β1g1. This satisfies the lemma. Case 2: there is a word w ∈ support(β1g1) − support(f).
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Now let cj be the coefficient of w in hj for j = 1, . . . , k, and let c be the coefficient of w in f ′. Since
w ∈ support(f ′), c 6= 0 and the sum of all the cj ’s is equal to c. Now consider the expression

f = f ′ + β1g1

=

k∑

j=1

hj +

k∑

j=1

cj

c
β1g1

=
k∑

j=1

h′
j

where h′
j :=hj + (cj/c)β1g1. One verifies: h′

j is Thue: this is obvious if cj = 0, and otherwise,
the coefficient of w in h′

j is zero because the coefficient of w is β1g1 is −c. Hence support(h′
j) ⊆

support(f), and h′
j can be expressed as a linear sum of the f1, . . . , fm with degree at most d0.

Q.E.D.

Lemma 27 Let S be a Thue system with a strongly unique derivation D0 : w0
∗→ w∞ and w0 is non-

recursive. Let F = {f1, . . . , fm} be the set of Thue polynomials corresponding to S and f0 = w∞−w0.
Then any syzygy basis for S = Syz(f0, f1, . . . , fm) has degree at least maxdeg(D0) − maxdeg(F ).

Proof. Let B ⊆ S be a basis for S where each element of B has degree at most d0. Note that S
contains a syzygy (g0, . . . , gm) where g0 = 1. This implies that there is a basis element (h0, . . . , hm) ∈
B such that the constant term of h0 is non-zero; without loss of generality, assume the constant
term is 1. Now we have that

h0f0 = −
m∑

i=1

hifi.

By lemma 26, h0f0 can be written as a non-canceling sum h0f0 =
⊕k

j=1 pj where each pj is Thue.

Also we may assume that p1 =
∑m

i=1 αifi where deg(αifi) ≤ maxdeg({h1f1, . . . , hmfm}) ≤ d0 +
maxdeg(F ). Each monomial of h0f0 is of the form w0β or w∞β where ±β is a monomial of h0.
In particular, w0 is a monomial of h0f0. Without loss of generality, assume −w0 is a monomial of
p1. If the other monomial in p1 is of the form w0β, then p1 = w0β − w0. By lemma 19, there is a
derivation from w0 to w0β, contradicting the non-recursiveness of w0. Hence p1 = w∞β − w0. So
there is a simple derivation D from w0 to w∞β such that maxdeg(D) ≤ d0 + maxdeg(F ). By the
strong uniqueness of D0, β = 1 and D = D0. Hence d0 ≥ maxdeg(D0) − maxdeg(F ). Q.E.D.

Applying this lemma to the system S2 yields the lower S(n, d) ≥ d2p

, p ∼ n/6. Finally, our lower
bound for G(n, d) follows from the fact (see [13]) that

G(n, d) ≥ S(n, d).

Exercises

Exercise 11.1: Observe that each of the level variables (Li’s) and the flag variables
(Fi[inc], Fi[dec], Fi[pass]) has degree at most one in assertions. Show how to replace all
these variables by just 2n new variables, say Gi, Hi (i = 1, . . . , n). This improves the lower
bounds to ∼ d2p

where p ∼ n/4. 2
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Exercise 11.2:
(i) Let K ⊆ R be any set of polynomials and I ⊆ R be an ideal. We say I is of type K if for
all f ∈ I, there are polynomials f1, . . . , fm ∈ I ∩ K (m ≥ 1) such that f =

⊕m
i=1 fi. Show

that an ideal is Thue iff it is generated by a finite subset of Thue polynomials.
(ii) The reduced Gröbner basis of a Thue ideal is Thue.
Remark: Monomial and homogeneous ideals exhibit similar properties. 2
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§A. APPENDIX: Properties of S0

We prove two technical properties of the system S0: the Basic Lemma (§10) and the non-recursiveness
of w0 (lemma 23).

Proof of Basic Lemma. The result is easy to check for k = 1. So assume k > 1.

(a.1)k,ℓ We shall be referring to the words ui (i = 1, . . . , 8) defined in the standard derivation in the
proof of lemma 1(a). By assumption, Fk,ℓ[pass]Fℓ[inc] | w1, and the word u1 in this lemma and u1

in lemma 1(a) are identified by assuming

w1 = wFk,ℓ[pass]Fℓ[inc].

Since Bd
0F1,k[dec] | u′

1, there must be a first word x1 in the derivation D1 in which Bd
0F1,k−1[dec] | x1.

By the induction hypothesis (a.1)k−1,k−1, x1 has the form of u2:

u2 = w1B
d
0A

e(k−1)
k−1 F1,k−1[dec]Fk−1[inc].

So the prefix of D1 that derives u2 is standard and unique. In particular, the last rule applied to
get u2 is a forward start rule. Now two rules are applicable to u2: (F1)k−1 and some reverse start
rule. But this reverse start rule is excluded since otherwise we get a non-simple derivation (it is
easily checked: a forward start rule followed by a reverse start rule gives a non-simple derivation).
Thus the word after u2 in D1 must be obtained by applying rule (F1)k−1. This word is u3. Since
Bd

0F1,k−1[dec] | u′
1 but not u3, there is a first word x2 after u3 in D1 such that Bd

0F1,k−1[dec] | x2.
Also the rule applied to u3 must be a forward one. By induction hypothesis (a.1)k−1,ℓ, we conclude
that x2 is the same as u4.

Now u4 = x3(0) where

x3(i) :=w1B
d
0A

e(k−1)−i

k−1 Bi
k−1A

(i+1)e(k−1)
ℓ F1,k−1[dec]Fk−1[pass],

i = 0, . . . , e(k−1). Assume in general that x3(i) has just been derived by a forward start transition.
In that case, if i = e(k− 1) then there are no rules applicable to x3(i), so assume i < e(k− 1). Then
we could apply either rule (F2)k−1 or rule (F3)k−1 to x3(i).

Case 1: If we apply (F3) to x3(i) we get

x4 :=w1A
d
0A

e(k−1)−i−1
k−1 Bi+1

k−1A
(i+1)e(k−1)
ℓ F1,k−1[inc]Fk−1[dec].

But then we may apply induction (a.2)k−1,k−1 (since only a forward rule now applies to x4) which

implies B
e(k−1)
k−1 | x4. This implies i = e(k − 1) − 1.

Case 2: If we apply (F2) to x3(i), we get

x5 := w1A
d
0A

e(k−1)−i−1
k−1 Bi+1

k−1A
(i+1)e(k−1)
ℓ F1,k−1[inc]Fk−1[pass].

If the next rule applied is a forward rule, then by induction (a.1)k−1,ℓ, we get x3(i + 1). We claim
that this is the only possibility. Suppose for the sake of contradiction that the rule applied to x5 is
a reverse rule. Then it must be reverse (F1)k−1, giving us

x6 := w1B
d
0A

e(k−1)−i−1
k−1 Bi+1

k−1A
(i+1)e(k−1)
ℓ F1,k−1[dec]Fk−1[inc].
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Observe that no forward rule is applicable to x6. Since the flag Fk−1[inc] must subsequently change,
and this can only occur as a result of applying a finish rule (Fm)j or its reverse (for some m = 1, 2, 3
and j ≥ k − 1). This means that there is a first word x7 after x6 such that Ad

0F1,k−1[inc] | x7. By

induction (b.1)k−1,k−1, this means A
e(k−1)
k−1 divides x6. Clearly a contradiction.

We conclude from the analysis of these two cases that starting from u4 = x3(0), we must repeatedly
apply the sequence of rules,

[(F2)k−1, induction (a.1)k−1,ℓ]

for e(k − 1) − 1 times, yielding x3(e(k − 1) − 1); finally, we apply rule (F3)k−1, giving us u8. From
this, we can invoke induction (a.2)k−1,k−1 to get u′

1, exactly as in the standard derivation. Since all
the steps are forced, this is unique.

(a.2)k,ℓ Similar to part (a.1).

(b)k,ℓ We only prove case (b.1)k,ℓ. So Fk,ℓ[pass]Fℓ[inc] | w′
1, and we will try to show that D2 is

the reverse of the standard derivation in lemma 1. Instead of u1, . . . , u8 of the proof in lemma 1, we
define v1, . . . , v8 by

vi :=uiw
′
1(wA

e(k)
ℓ Fk,ℓ[pass]Fℓ[inc])

−1.

For instance,

v8 = w′
1A

d
0B

e(k−1)
k−1 F1,k−1[inc]Fk−1[dec].

It is not clear that the vi’s are well-defined words; they would all be clearly well-defined if

A
e(k)
ℓ | w′

1,

which we will show. But v8, v7 are well-defined in any case.

Starting from u′
1 = w′

1B
d
0F1,k[dec], we may invoke induction (b.2)k−1,k−1 to get to v8. Then reverse

(F3)k−1 is forced and we get to

v7 = w′
1B

d
0Ak−1B

e(k−1)−1
k−1 F1,k−1[dec]Fk−1[pass].

Now either rule (F2)k−1 or some reverse rule applies to v7.

First assume that rule (F2)k−1 is applied to v7, giving

x8 :=w′
1A

d
0B

e(k−1)
k−1 F1,k−1[inc]Fk−1[pass].

If a reverse rule were applied to x8 then this is reverse (F1)k−1 giving us

x9 := w′
1B

d
0B

e(k−1)
k−1 F1,k−1[dec]Fk−1[inc].

Now only a reverse rule is applicable to x9, and we can apply induction (b.1)k−1,k−1 which implies

A
e(k−1)
k−1 divides x9, contradiction. So a forward rule is applied to x8. Since Fk−1[pass] in x8 must

change as some later point, we argue as before that Bd
0F1,k−1[dec] divides some subsequent word

x10. But then induction (a.1)k−1,ℓ implies that x8 leads to

x11 := w′
1B

d
0B

e(k−1)
k−1 A

e(k−1)
ℓ F1,k−1[dec]Fk−1[pass].

But now we are stuck.
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Hence we can assume that some reverse rule is applied to v7. Then by induction (b.1)k−1,ℓ we know

that A
e(k−1)
ℓ | v7 and we arrive at the word

x12 :=w′
1A

d
0Ak−1B

e(k−1)−1
k−1 A

−e(k−1)
ℓ F1,k−1[inc]Fk−1[pass].

Note that x12 = x13(1) where

x13(i) :=w′
1A

d
0A

i
k−1B

e(k−1)−i

k−1 A
−i·e(k−1)
ℓ F1,k−1[inc]Fk−1[pass].

In general assume that x13(i) occurs in D2. In particular, this means that A
i·e(k−1)
ℓ | w′

1 (i.e., x13(i)
is well-defined). Further assume that x13(i) had been obtained by applying a reverse start rule (this
is true of x12 = x13(1)). So the only rules applicable to x13(i) are reverse (F1)k−1 or reverse (F2)k−1.

(i) If it is known that reverse (F2)k−1 is next applied to x13(i) then we can apply induction (b.1)k−1,ℓ

to conclude that x13(i+1) occurs in D2. But note that reverse (F2) cannot be applied to x13(e(k−1)).

(ii) If reverse (F1)k−1 is applied to x13(i) then we get to

x14(i) := w′
1B

d
0Ai

k−1B
e(k−1)−i

k−1 A
−i·e(k−1)
ℓ F1,k−1[dec]Fk−1[inc].

Now only a reverse rule applies to x14(i) and by induction (b.1)k−1,k−1, we see that A
e(k−1)
k−1 | x14(i).

This implies that i = e(k − 1). But x14(e(k − 1)) is v2.

From (i) and (ii), we conclude: starting from x13(1) in D2, we must repeatedly apply the sequence
of reverse rules

[reverse (F2)k−1, induction (b.1)k−1,ℓ]

for e(k − 1)− 1 times, yielding x13(e(k − 1)). Finally we apply reverse (F2) to give v2. From v2, we
invoke induction (b.1)k−1,k−1 to get to v1. This proves the basic lemma.

Proof of the non-recursiveness of w0. Under the assumption that we have a non-trivial simple
derivation D : w0

∗→ w̃ where w0|w̃, we force D to trace through the computation path of a standard
derivation and derive a contradiction. We will rely heavily on the analysis of the proof of the Basic
Lemma. Invocations of parts of the Basic Lemma are denoted “ind(a.1)k,ℓ”, etc, for appropriate k, ℓ.
We also refer to the words u1, . . . , u8, x1, . . . , x7 used in the proof of the Basic Lemma. We assume
that u1 there is equal to w0.

We proceed as follows. Any derivation starting from w0 begins with a forward rule. Suppose that
k = 1, . . . , n is the smallest level such that D does not modify the flag at level k. It is clear that
k ≥ 2. Since the flag at level k− 1 is initially Fk−1[inc], and the only rule that changes Fk−1[inc] is
rule (F1)k−1, we conclude that D must have a first word y1 such that Bd

0F1,k−1[dec]Fk−1[inc] | y1.
By ind(a.1)k−1,k−1, the prefix of D up to y1 is a standard derivation and y1 must be equal to
u2. After applying rule (F1)k−1, we get u3. Since the flag at level k − 1 of u3 must subsequently
change (since Fk−1[inc] | w̃), some finish rule at level j ≥ k − 1 must be applied. This means some
subsequent word is divisible by Bd

0F1,k−1[dec]. Only a forward rule is applicable to u3. So we may
invoke ind(a.1)k−1,k to get to u4 (assuming ℓ = k).

Now u4 has the general form of x3(i). The two cases are again applicable: Case 1, where we apply
(F3) to x3(i) to get x4. Since the flag at level k − 1 is not colored [inc], we can again invoke
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ind(a.2)k−1,k−1 which implies i = e(k − 1) − 1. Case 2, where we apply (F2) to x3(i) to get x5. If
we next apply a backward rule to x5, it must be reverse (F1), yielding x6. Now only a backward
rule apply to x6 and since we eventually must reach a word divisible by Ad

0F1,k[inc], we may invoke
ind(b.1)k−1,k−1 to get a contradiction. This means only a forward rule is applicable to x3(i) and
after invoking ind(a.1)k−1,k we get to x3(i + 1).

Again we conclude from cases 1 and 2 that we must eventually reach u8. Only a forward rule applies
to u8. Since the flag of u8 at level k−1 must eventually change, we can again invoke ind(b.1)k−1,k−1

to yield u′
1. But note that from u′

1 there is only rule (F1)k that applies. But this rule modifies the
flag at level k, a contradiction. This concludes the proof.
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Lecture XIV

Continued Fractions

This venerable subject goes back to the Greeks: Archimedes (287–212 B.C.) and Theon of Smyrna
(c. 70–135 A.D.) were suspected of using continued fractions to approximate square roots [67]. The
first attempt at a general definition of continued fractions was due to Leonardo of Pisa better known
as Fibonacci (c. 1170-1250). Pringsheim [162] states that Pietro Antonio Cataldi (1548-1626) is
the inventor of continued fractions. Euler uses the term “continued fractions” (fractio continua)
for the first time. Continued fractions originally arose in the solution of algebraic equations. They
are also widely used in analysis under the “analytic theory of continued fractions”. The classic
in the subject is Oskar Perron’s two-volume Die Lehre von den Kettenbrüchen [157], a considerable
expansion of the original volume [155]. The classic exposition from Olds [150] is highly recommended.
Other references include Wall [214], Khovanskii [101], Jones and Thron [94], and Lorentzen and
Waadeland [120]. See Brezinski [28] for a comprehensive history on continued fractions and Padé
approximation from antiquity until 1939.

Continued fractions are a particular representation of numbers with an implied iterative computa-
tional process. It furnishes us with an alternative constructive approach to the subject of computable
real numbers (the more obvious approach takes a computable real number to be a computable se-
quence of bits, say). Lagrange’s method (see §7) of approximating roots of polynomial equations
using continued fractions is intimately related to Gaussian algorithm in the theory of reduced bi-
nary quadratic forms (Lecture VIII) [28, p. 185]. of polynomials, Gosper [18] is an early advocate
of the merits of continued fraction arithmetic, and described algorithms for the basic arithmetic
operations. Vuillemin [213] expanded on these ideas, advocating the use of redundant continued
fraction representations. Zimmer [223] treats the use of continued fractions in representing algebraic
numbers. See also Zippel [224, chapter 2].

§1. Introduction

What is a continued fraction? Intuitively, it is a sequence of approximations to a number. For
instance, consider the fraction 343

284 = 1.20774 . . .. To the nearest integer, 343
284 ∼ 1. More precisely,

343

284
= 1 + ǫ1

where 0 ≤ ǫ1 < 1 is an error term. The term ǫ1 is more precisely given by

1

ǫ1
=

284

59
= 4 + ǫ2

where 0 ≤ ǫ2 < 1. The term ǫ2 is really

1

ǫ2
=

59

48
= 1 + ǫ3

where 0 ≤ ǫ3 < 1. Continuing in this spirit,

1

ǫ3
=

48

11
= 4 + ǫ4,

1

ǫ4
=

11

4
= 2 + ǫ5,

1

ǫ5
=

4

3
= 1 + ǫ6,

1

ǫ6
= 3.

Thus we see that
343

284
= 1 +

1

4 + 1
1+ 1

4+ 1

2+ 1

1+ 1
3

.
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The expression on the right is called a continued fraction. The reader may notice that we have just
carried out the Euclidean algorithm (§II.2) on the pair 343, 284. This connection is no accident.
The sequence [1, 4, 1, 4, 2, 1, 3] of quotients obtained in the Euclidean algorithm can be regarded as
a representation of 343/282. Furthermore, each initial prefix of this sequence is an approximation
— it will be shown that these approximations are the best possible in a suitable sense.

Let us next take an irrational number,
√

2 = 1.414213 . . .. To the nearest integer,
√

2 ∼ 1. Well, it
is closer to

√
2 ∼ 1 + 1

2 . But in fact,

1 +
1

2 + 1
2

, 1 +
1

2 + 1
2+ 1

2

, · · ·

are successively better (each improvement is obtained by replacing the rightmost occurrence of ‘2’
with ‘2 + 1

2 ’.) Apparently this process could be continued indefinitely. To see why, note that

√
2 − 1 =

1√
2 + 1

=
1

2 + (
√

2 − 1)

which is a recursive equation in
√

2 − 1. Thus the recursion can be expanded as often as we like.
This example shows that a continued fraction is generally an infinite expression.

Our third motivation for continued fractions is to view them as approximate solutions to algebraic
equations. Suppose x satisfies the equation X2 − 2X − 1 = 0. Then we have

x = 2 +
1

x
.

We may further expand the x on the right-hand side,

x = 2 +
1

2 + 1
x

= 2 +
1

2 + 1
2+ 1

x

= · · ·

By ignoring the trailing x in these continued fractions as negligible, we get a succession of approxi-
mations to x:

2, 2 +
1

2
, 2 +

1

2 + 1
2

, 2 +
1

2 + 1
2+ 1

2

, 2 +
1

2 + 1
2+ 1

2+ 1
2

, · · ·

These approximations are

2,
5

2
= 2.5,

12

5
= 2.4,

29

12
= 2.4166 . . . ,

70

29
= 2.4138 . . . , · · ·

The reader must have noticed the similarity between x and
√

2 above. Indeed, solving the quadratic
equation for x we get x = 1 ±

√
2. Thus we have obtained a sequence of approximations for

x = 1+
√

2. We will return to the subject of using continued fractions to solve algebraic equations.

An advantage of continued fractions is illustrated by the nice continued fraction representation of√
2: many transcendental numbers such as e, π also have “regularly describable” continued fractions.

So for some applications, it may be a more natural representation of numbers than, say, binary or
decimal notations.

Exercises

Exercise 1.1: Use the continued fraction expansion approach to find a root of X3 − 2X2 + 1. Can
you find the other roots by a similar approach? HINT: X = 2 − 1

X2 = · · ·. 2
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Exercise 1.2: (Bombelli, 1572 [197, p.111]) Generalize the above continued fraction for
√

2: for
any positive integer X , √

X = a +
r

2a + r
2a+ r

2a+ r
2a+···

.

where a =
⌊√

X
⌋

and r = X − a2. 2

§2. Extended Numbers

We make a small but essential detour. The natural setting for discussing continued fractions involves
infinity as a number. Let the set

Ĉ := C ∪ {∞}
of extended complex numbers be the set C of complex numbers augmented with a single new point
∞. It has a compact topology, obtained by the “one-point compactification” of the usual topology
of C. When we restrict attention to the set R ⊆ C of real numbers, we similarly have the one-point
compactification,

R̂ := R ∪ {∞},
the set of extended real numbers. An extended number is finite if it is not equal to ∞ (so finite
numbers are just numbers in the usual sense). It is important to realize that we equate ∞ with
−∞, in the same way that 0 = −0. It is convenient to further introduce a new symbol ⊥ (called
bottom) that is not a number: we call it the indefinite value. Hence we also call an extended number
a definite value. With all this, the traditional injunction against dividing by zero is removed and
given an algebraic expression:

0/0 = ⊥, x/0 = ∞
where x is any non-zero extended number. Of course, all this begs the question of extending the
arithmetic operations to ⊥ as well as ∞. The rule for ⊥ is easy: if any operand equals ⊥, the result
of the arithmetic operation is ⊥. For example, x +⊥ = ⊥+ x = ⊥ for all x. The rule for ∞ is more
involved, but could be deduced by using simple limiting arguments. For instance, suppose {ai}, {bi}
are monotonic sequences that tend to 0 and to ∞, respectively. Then the sequence {ai + bi} tends
to ∞. This gives the rule

0 + ∞ = ∞.

If the monotonic sequence {ci} also tends to ∞, we see that {bi + ci} could tend to any value or to
nothing at all. Thus

∞ + ∞ = ⊥.

We have ∞−∞ = ∞÷∞ = ⊥ by the same argument. Similarly, {aibi} is indefinite, yielding

∞× 0 = 0 ×∞ = ⊥.

This exhausts all cases where the result is indefinite. A summary of these operations is given in the
following tables.

+ 0 y ∞ − 0 y ∞
0 0 y ∞ 0 0 −y ∞
x x x + y ∞ x x x − y ∞
∞ ∞ ∞ ⊥ ∞ ∞ ∞ ⊥

× 0 y ∞ ÷ 0 y ∞
0 0 0 ⊥ 0 ⊥ 0 0
x 0 xy ∞ x ∞ x/y 0
∞ ⊥ ∞ ∞ ∞ ∞ ∞ ⊥
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In these tables, x and y are finite non-zero values. The table for negation x 7→ −x ought to be added
to the above. But this table is rather trivial:

−x = x iff x ∈ {0,∞,⊥}.

There is no standard name for this ring-like algebraic structure C ∪ {∞,⊥}.

Chordal Metric. In order to avoid any special role for ∞ among the extended complex numbers,
we introduce a natural metric on Ĉ via the stereographic projection σ : Ĉ → S2 where S2 ⊆ R

3 is the
unit sphere centered at the origin of an Euclidean 3-space and C is identified with the xy-plane. S2

is called the Riemann sphere, with North and South poles given by N = (0, 0, 1) and S = (0, 0,−1),
respectively. The complex number p = px + ipy (by identification with the point p = (px, py, 0) on
the xy-plane) is mapped to the unique point σ(p) ∈ S2 such that N, p, σ(p) are collinear. We further
define σ(∞) = N . This map can be explicitly given by

σ(p) =

(
2px

|p|2 + 1
,

2py

|p|2 + 1
,
|p|2 − 1

|p|2 + 1

)
, |p|2 = p2

x + p2
y.

The chordal distance ∆(p, q) between two points p, q ∈ Ĉ is equal to the Euclidean distance between
σ(p) and σ(q). More explicitly,

∆(p, q) =






2|p−q|√
(1+|p|2)(1+|q|2)

if p, q 6= ∞,

2|p|√
1+|p|2

if q = ∞.

Note that ∆(p, q) ≤ 2.

Our applications in continued fractions focus on the restriction (still called σ) of this map to the
extended real numbers

σ : R̂ → S1 (1)

where S1 is intersection of S2 with the xz-plane. extended real numbers We may also identify the
xz-plane with C and call S1 the “unit complex circle”. Under this identification, the North and
South Pole of S1 are the complex numbers i and −i. See figure 1.

Then σ(1) = 1, σ(−1) = −1, σ(0) = −i and σ(∞) = i. The inverse of σ is given by

σ−1(eiθ) =
cos θ

1 − sin θ
.

It is easy to see that ∆(0, 1) =
√

2 and ∆(
√

3,∞) = 1. More generally, ∆(0, r) = 2|r|/
√

1 + r2,
∆(∞, r) = 2/

√
1 + r2.

Exercises

Exercise 2.1:
(i) Verify the formulas for σ(p) and ∆(p, q).
(ii) Verify that ∆(p, q) is a metric. 2

§3. General Terminology
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z

σ(1) = 1

x
θ

σ(0) = −i

σ(−1) = −1

σ(r)

σ(∞) = i

0 r

Figure 1: Stereographic projection: r 7→ σ(r) ∈ S1.

Formally, a continued fraction is a possibly infinite expression of the form

q0 +
p1

q1 + p2

q2+
p3

q3+
p4

q4+···

(2)

where pi, qi are extended complex numbers or functions of complex variables. We call pi, qi the ith
partial numerator and ith partial denominator; pi/qi is the ith partial quotient. We refer to the
partial numerators and partial denominators as terms of the continued fraction. For simplicity, we
normally assume each qi 6= 0. To avoid the cumbersome form (2), we express the same continued
fraction using a linear notation

q0 +
p1

q1+

p2

q2+

p3

q3+
· · · (3)

or a summation-like notation

q0 +
B

K
i=1

(
pi

qi

)

where B ≥ 0 is an integer or ∞. The latter form is useful for stating explicit expressions for the
general i-th partial denominator and numerator. For example,

ln(1 + z) =
z

1+

z/2

1+

z/6

1+

2z/6

1+

2z/10

1+

3z/10

1+

3z/14

1+
· · ·

= K
i≥1

(aiz

1

)

where a1 = 1 and for i ≥ 1, a2i = i
2(2i−1) and a2i+1 = i

2(2i+1) . This continued fraction converges for

all z ∈ C except when z ∈ (−∞,−1], part of the negative x-axis. Many such continued fractions are
known for common transcendental functions. See the Exercise for a continued fraction for ez.

The continued fraction is called terminating or non-terminating according to whether or not it has
finitely many terms.1 The length of a terminating continued fraction is the largest n such that
both the nth partial numerator and denominator are defined; the length is infinite in case of a
non-terminating continued fraction.

1Terminating/non-terminating continued fractions are also called finite/infinite in the literature. We avoid this
terminology since “finite” and “infinite” also applies to extended numbers.
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We are mainly interested in the continued fraction (3) when all pi, qi are numbers: in which case we
say the continued fraction is numerical; otherwise it is functional. A typical example of a functional
continued fraction is where all the pi, qi depends on a single variable X . For instance, Euler shows
that the power series c0 + c1X + c2X

2 + · · · is “equivalent” to

c0 +
c1X

1−

c2

c1
X

1 + c2

c1
X−

c3

c2
X

1 + c3

c2
X− · · ·

cn

cn−1
X

1 + cn

cn−1
X− · · ·

in a suitable sense (cf. below). Note that we write

· · · pi

qi−
pi+1

qi+1+
· · ·

as an alternate form for

· · · pi

qi+

−pi+1

qi+1+
· · ·

We now define the value of a continued fraction. This value is an element of Ĉ ∪ {⊥} when the
continued function is numerical; otherwise the value is a function. We will not discuss the value
of a functional continued fraction except to say that it is somewhat like the convergence of series,
but more subtle (Exercise). When the continued fraction is numerical and terminating, the value
is defined in an obvious fashion. For instance, the value of 1 + 1

2+
1
2 is 7/5. For the value of a

non-terminating continued fraction, we proceed as follows: if i ≥ 0 is at most the length of the
continued fraction (3), we call the terminating continued fraction

q0 +
p1

q1+

p2

q2+
· · · pi−1

qi−1+

pi

qi

the ith convergent of the continued fraction (3). The value of the ith convergent is called the ith
quotient or ith approximant. For example, the ith quotient of (3) for i = 0, . . . , 3 are:

q0,
p1 + q0q1

q1
,

p1q2 + p2q0 + q0q1q2

p1 + q1q2
, (4)

p1p3 + p1q2q3 + p2q0q3 + p3q0q1 + q0q1q2q3

p2q3 + p3q1 + q1q2q3
. (5)

The ith quotient is clearly a fraction Pi/Qi which could be infinite (Pi 6= 0, Qi = 0) or indefinite
(Pi = Qi = 0); otherwise the ith quotient is finite. We define the value of a non-terminating
continued fraction (3) to be the extended number r provided all but a finite number of its quotients
are definite, and the sequence of definite quotients Pi/Qi converges to r as i → ∞. Note that r may
be ∞. A basic problem in the theory of continued fraction is to study conditions on pi, qi to ensure
convergence. We prove such a theorem in §6.

We now define the (nominal) numerator and denominator of the ith quotient Pi/Qi. The definition
should not be taken for granted since there can be accidental cancellations between the nominal
numerators and denominators2. It is best to view them as polynomials in the partial numerators
and denominators pj, qj (j ≤ i),

Pi = Pi(q0, p1, q1, . . . , pi, qi), Qi = Qi(p1, q1, . . . , pi, qi). (6)

We call Pi and Qi the ith numerator and ith denominator, respectively. They are defined as follows,
using the compact matrix notation:

[
P−1

Q−1

]
:=

[
1
0

]
(7)

2It turns out the systematic cancellation of common factors in the numerator and denominator cannot happen:
the polynomials Pi, Qi that we define are absolutely irreducible in the indeterminates q0, p1, q1, . . . , pi, qi (see [67]).
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[
P0

Q0

]
:=

[
q0

1

]
(8)

[
Pi

Qi

]
:=

[
Pi−2 Pi−1

Qi−2 Qi−1

] [
pi

qi

]
, i ≥ 1 (9)

We must show that this definition is valid, i.e., Pi/Qi gives the expected ith quotient. Clearly (9) is
valid for i = 1 (we have concocted P−1, Q−1 for this purpose). Assume inductively that Pi/Qi gives
the correct ith quotient. From (9) we get

Pi

Qi

=
piPi−2 + qiPi−1

piQi−2 + qiQi−1
. (10)

We observe that Pi+1/Qi+1 is obtained from Pi/Qi by replacing qi by qi +
pi+1

qi+1
. Substituting in (10)

we get

Pi+1

Qi+1
=

piPi−2 +
(
qi + pi+1

qi+1

)
Pi−1

piQi−2 +
(
qi + pi+1

qi+1

)
Qi−1

=
qi+1 (piPi−2 + qiPi−1) + pi+1Pi−1

qi+1 (piQi−2 + qiQi−1) + pi+1Qi−1

=
qi+1Pi + pi+1Pi−1

qi+1Qi + pi+1Qi−1

which proves that (9) is correct for i + 1.

Complements and Tails. The remaining terms of a continued fraction after we have extracted
the ith convergent is

ci = K
j≥i+1

(
pj

qj

)
, (11)

which we will call the ith complement. Its value is called the complementary quotient. In general, a
continued fraction (3) where the 0-th term vanishes (q0 = 0) is said to be in “complementary form”.

Sometimes we prefer to use an alternative decomposition of a continued fraction. The following
continued fractions which comprise a prefix and a suffix of (3),

hi = q0 +
p1

q1+
· · · pi−1

qi−1+

pi

1
, ti = qi + K

j≥i+1

(
pj

qj

)

are called (respectively) the ith head and tail of (3). The value (if it exists) of ti is called the ith tail
quotient.

Exercises

Exercise 3.1: Show that the ith quotients of

1 − 1

2−
1

2−
1

2− · · ·

are 1
i+1 for all i ≥ 0. Hence the value is 0. 2

Exercise 3.2: (Lorentzen-Waadeland) The value of K∞
i=1

(
6
1

)
is 2. HINT: the ith approximant is

−6 (−3)i−2i

(−3)i+1−2i+1 . 2
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Exercise 3.3: Consider the continued fraction

f(Z) =
Z

1 − Z+

Z

1 − Z+
· · · = K

(
Z

1 − Z

)
.

(i) f(Z) converges to Z if |Z| < 1.
(ii) f(Z) converges to −1 if |Z| > 1. 2

Exercise 3.4: Show that

(1 + X)r = 1 +
rX

1−
r−1
2 X

1 + r−1
2 X−

r−2
3 X

1 + r−2
3 X− · · ·

where the continued fraction terminates (with length r) if and only if r is a non-negative
integer. 2

Exercise 3.5: (Khovanskii)
(i) For any a, we have the functional continued fraction

√
X = a +

X − a2

2a+

X − a2

2a+
· · · .

(ii) The above continued fraction is convergent for all X ≥ 0.
(iii) Show

√
Y 2 + Z2 = Y +

Z2

2Y +

Z2

2Y +

Z2

2Y +
· · ·

= Y +
Z2

Y + Z+

Y 2

Y + Z+

Z2

Y + Z+

Y 2

Y + Z+
· · ·

2

Exercise 3.6: Consider a continued fraction of the form

F (Z) =
1

b1 + Z−
a2
1

b2 + Z−
a2
2

b3 + Z− · · · .

(i) Show that the nth denominator is given by

Bn(Z) = det





b1 + Z −a1

−a1 b2 + Z −a2

−a2 b3 + Z
. . .

bn−1 + Z −an−1

−an−1 bn + Z





.

NOTE: let B−1(Z) = 0, B0(Z) = 1 and a0 = 1.
(ii) If the ai, bi are real then Bn(Z) has all real roots. 2

§4. Ordinary Continued Fractions
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Two continued fractions with the same value are said to be equivalent.3 It is important to study
equivalent transformations of continued fractions, i.e., transformations that preserve values. The
following is a simple example of an equivalent transformation of the continued fraction (3):

q0 +
c1p1

c1q1+

c1c2p2

c2q2+

c2c3p3

c3q3+
+ · · · = q0 +

∞

K
i=1

ci−1cipi

ciqi

(12)

for non-zero ci’s (c0 = 1). It is clear that the ith convergents of (12) and (3) are equal for all i. In
general, when this condition holds between two continued fractions, we say that they are term-wise
equivalent.

It is not hard to see that with suitable choice of ci’s, every continued fraction (3) is term-wise
equivalent to one whose partial numerators are 1:

q0 +
1

q1+

1

q2+

1

q3+
· · · . (13)

We call such4 a continued fraction (13) ordinary, and its value is given the compact notation

[q0, q1, q2, . . .] = [qi]
∞
i=0. (14)

As examples we have
√

2 = [1, 2, 2, 2, . . .],

∞ = [r, 0] (for any finite number r). The ith quotient of (14) is [q0, q1, q2, . . . , qi]; the ith tail and
ith complementary quotients are [qi, qi+1, qi+2 . . .] and [0, qi, qi+1, qi+2 . . .] (respectively). Moreover,

[q0, q1, q2 . . .] = [q0, q1, . . . , qi−1, [qi, qi+1, . . .] ].

If the partial denominators qi (i ≥ 1) are positive integers in (13) and q0 is an integer, we call5 it a
regular continued fraction.

Empty Ordinary Continued Fraction. It is convenient to introduce the empty ordinary con-
tinued fraction, denoted by the symbol []. We define the value of [] to be ∞ and its length to be
−∞. If n is the length of the continued fraction, we define its nth complement to be [] and so the
nth complementary quotient is ∞.

Periodic Continued Fractions. If for some h ≥ 1 and n ≥ 0 we have

qi = qi+h

whenever i ≥ n, then we say (14) is periodic. This can be indicated either by a bar over the periodic
part or by a semicolon separating the periodic part from a suffix:

[q0, q1, . . . , qn−1, qn, qn+1, . . . , qn+h−1] or [q0, q1, . . . , qn−1; qn, qn+1, . . . , qn+h−1]. (15)

If h is chosen as small as possible, then h is called the period of the ordinary continued fraction.
For instance

√
2 = [1, 2, 2, 2, 2, 2] = [1, 2] = [1; 2] has period 1. The classic theorem about periodic

continued fractions is due to Lagrange: the value of a real regular continued fraction is an irrational
quadratic number if and only if the continued fraction is periodic. An irrational quadratic number
has the form a + b

√
d where a, b are rational numbers, b 6= 0 and d > 1 is squarefree. (One direction

of this result is easy – see Exercise.) Unfortunately there is no known extension of Lagrange’s
characterization to higher degree algebraic numbers.

3The more usual definition of “equivalence”, following L. Seidel (1855), corresponds to what we call term-wise
equivalence.

4Lagrange concludes from this that there is no interest in the more general form of continued fractions; this is
unwarranted for many reasons.

5Usually called simple continued fraction, but we follow Perron [155] who uses the equivalent German term
regelmäßig.
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The Continued Fraction Algorithm. It is clear that for any finite real number r we can define
a regular continued fraction RCF(r) as follows: if r is an integer, then RCF(r) = r. Otherwise,

RCF(r) := ⌊r⌋ +
1

RCF(1/(r − ⌊r⌋)) . (16)

This can be viewed as a process to transform a number into a sequence of integers and is sometimes
called the “continued fraction algorithm”.

Is the representation of finite reals by regular continued fractions unique? The answer is no because
of this easily seen identity:

[q0, . . . , qn−1, qn, 1] = [q0, . . . , qn−1, qn + 1], n ≥ 1

This identity implies that any terminating regular continued fraction is equivalent to one whose last
partial quotient qn is at least 2 whenever its length n is positive. It turns out that, with this sole
exception, we have uniqueness:

Lemma 1
(i) There is a bijective correspondence between the finite real numbers and regular continued fractions,
provided we restrict the last partial quotient of a terminating continued fraction of positive length to
be at least 2.
(ii) Under the correspondence of part (i), a finite real number is irrational if and only its regular
continued fraction is non-terminating.

We leave the proof as an Exercise. The distinction between a continued fraction and its value is
often confused. The preceding lemma justifies the practice in case of regular continued fractions.
We sometimes perpetrate the same language abusive by referring to the value “[q0, q1, q2, . . .]” as a
continued fraction.

Simple Operations on Ordinary Continued Fractions. For reciprocals, we have

1

[q0, q1, . . .]
=

{
[0, q0, q1, . . .], q0 > 0

[q1, q2, q3, . . .], q0 = 0.
(17)

For negation, we have −[q0, q1, q2, . . .] = [−q0,−q1,−q2, . . .] or more generally:

−
[
q0 +

p1

q1+

p2

q2+
· · ·
]

=

[
−q0 −

p1

q1−
p2

q2−
· · ·
]

. (18)

Alternatively, we can proceed as follows. It is easy to verify that

[x, y] = [x − 1, 1,−(y + 1)] or [x + 1, y − 1] = [x, 1,−y]. (19)

Applying this identity,

[−q0,−q1,−q2, . . .] = [−q0,−[q1, q2, . . .]]

= [−q0 − 1, 1, [q1, q2, . . .] − 1]

= [−q0 − 1, 1, [q1 − 1, q2, . . .]].

This yields a negation formula that manipulates only a finite part of the original continued fraction.

−[q0, q1, q2, q3, . . .] = [−q0 − 1, 1, q1 − 1, q2, q3, . . .]. (20)
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We can absorb partial quotients that vanish

[. . . , qn−1, 0, qn+1, . . .] = [. . . , qn−1 + qn+1, . . .], n ≥ 1. (21)

Using the identity (19), partial quotients of 1 can also be absorbed.

Finally, we defer the treatment of the arithmetic operations to a later section.

Exercises

Exercise 4.1:
(i) Is the continued fraction

q0q1 + p1

q1+

p2

q2+

p3

q3+
· · ·

equivalent to the one in (3)?
(ii) What are the numerators and denominators of the continued fraction (12)? 2

Exercise 4.2:
(i) What is the number [1] = [1, 1, 1, . . .]? Again: [0], [1, 2] and [1, 2, 3]?
(ii) Give upper and lower bounds for [1, 2, 3, 4, . . .] = K∞

i=1

(
1
i

)
. Is this an algebraic number?

2

Exercise 4.3:
(i) The continued fraction solution to the equation X2 − 3X − 1 = 0 is X = [3, 3, 3, . . .] = [3].
Use this to hand-compute arbitrarily good approximations to

√
13. HINT: what is the relation

of X to
√

13?
(ii) Show that

√
13 = [3, 1, 1, 1, 1, 6]. 2

Exercise 4.4: (Euler)

(i) For any complex numbers a, b, if X = a − b
2 +

√
1 + b2

4 then

X − a =
1

b+

1

b+

1

b+
· · · .

(ii) Show that
√

1 + a2 = [a, 2a, 2a, . . .] = [a, 2a]. (This gives us the continued fractions of√
2,
√

5,
√

10, etc.) 2

Exercise 4.5: Let C = q′0 +
p′

1

q′

1
+

p′

2

q′

2
+ · · · be the continued fraction equivalent to (3) such that the

ith quotient P ′
i/Q′

i of C is the (2i)th quotient of (3) for all i ≥ 0. Determine p′i, q
′
i. 2

Exercise 4.6: Show the easy direction of Lagrange’s result characterizing irrational quadratic num-
bers, namely, if a real regular continued fraction is periodic, then its value is irrational
quadratic. HINT: first assume the purely periodic case. [The other direction of Lagrange’s
result is an exercise in §7.] A regular continued fraction is purely periodic if it has the form
[q1, . . . , qn]; the aperiodic part is empty. 2
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Exercise 4.7: A real quadratic irrationality X = a + b
√

d is reduced if X > 1 and its conjugate
X ′ = a − b

√
d satisfies −1 < X ′ < 0.

(i) Show that the regular continued fraction of a real quadratic irrationality is purely periodic
if and only if it is reduced. See previous exercise for the definition of purely periodic.
(ii) If α = [q1, q2, . . . , qn] then the continued fraction of −1/α is [qn, qn−1, . . . , q1].
REMARK: see §8 for the general concept of a “reduced real irrationality”. 2

Exercise 4.8: Show that √
3 = 1 +

2

2+

2

2+

2

2+
· · · .

Apply the equivalent transformation (12) to convert this into the regular continued fraction√
3 = [1, 1, 2]. 2

Exercise 4.9:
(i) Show that

√
8 = [2, 1, 4]. More generally,

√
4(1 + a2) = [2a, a, 4a].

(ii) Investigate the continued fractions of period 2: let X satisfy

X − a =
1

b+

1

c+

1

b+

1

c+
· · · =

1

b+

1

c + X − a
.

(iii) Conclude that
√

a(a + 1) = [a, 2, 2a]. (This gives the continued fraction of
√

3,
√

6,
√

12,
etc.)
(d) Generalize this to

√
a2 + b2. 2

Exercise 4.10: Let x = 1
2 (
√

5 − 1).
(i) Show that x = [0, 1].
(ii) If Pi/Qi is the ith convergent to x, prove that

∣∣∣∣
Pi

Qi

− x

∣∣∣∣ <
1

Q2
i

√
5
.

(iii) Prove that the constant
√

5 in the right-hand side cannot be improved for this choice of
x.
REMARK: for every irrational x there are infinitely many choices of p, q such that |p

q
− x| <

(q2
√

5)−1. 2

Exercise 4.11: (Euler) Consider the connection between power series and continued fractions:
(i) The power series c0 + c1 + c2 + · · · (ci 6= 0 for i ≥ 1) and the continued fraction

c0 +
c1

1−
c2/c1

1 + (c2/c1)−
c3/c2

1 + (c3/c2)−
· · · = K

i≥1

( −ci/ci−1

1 + (ci/ci−1)

)

have the same value.
(ii) Show that for all real or complex x,

ex = 1 +
x

1−
x/2

1 + x/2−
x/3

1 + x/3− · · ·

= 1 +
x

1−
1x

2 + x−
2x

3 + x−
3x

4 + x−
4x

5 + x− · · ·

HINT: put ci = 1/i! in part (i). 2
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§5. Continued fractions as Möbius transformations

We now view continued fractions as transformations on the extended complex numbers Ĉ = C∪{∞}.
A Möbius transformation is a function f : Ĉ → Ĉ given by

f(z) =
az + b

cz + d

where a, b, c, d are finite complex numbers.6 It is easy to check that f(z) is a constant function
iff ad − bc = 0. The constant function is f(z) = b/d = a/c. We call ad − bc the determinant of
f(z). Another special case is when f(z) = z (the identity function). This happens iff b = c = 0
and a = d. To avoid special cases, we henceforth restrict f to be neither a constant function nor
the identity function. Since the function is unchanged if we multiply all of a, b, c, d by a common
nonzero constant, we further assume

ad − bc = 1.

The reader can check that f(∞) = a/c and f(−d/c) = ∞. This function is analytic everywhere
except for a pole at z = −d/c. The function is injective since

f(z) − f(y) =
(ad − bc)(z − y)

(cz + d)(cy + d)

is zero if and only if z = y. It is surjective since its inverse function

z =
d · f(z) − b

−c · f(z) + a

is also a Möbius transformation. We leave as an exercise to show that Möbius transformations map
circles onto circles (straight lines are special cases of circles that pass through ∞).

Matrix Representation. Basic manipulations and properties of continued fractions are easier
to “see” when stated in the language of matrices. Each x ∈ Ĉ is non-uniquely represented in
homogeneous coordinates by the 2-vector of the form

[
cx
c

]
,

for each choice c ∈ C − {0}. Conversely, any vector

[
x
y

]

with x, y ∈ Ĉ represents the value x/y ∈ Ĉ ∪ {⊥}. If either x = y = 0 or x = y = ∞, then x/y = ⊥
and the vector is said to be indefinite. If the 2-vectors u,v represent the same value, we say they
are proportional and we write

u :: v.

In matrix notation, the function f(z) = (az + b)/(cz + d) is represented by a 2× 2 matrix

[
a b
c d

]

and function application translates into multiplying a 2-vector by such a matrix: if z = x/y then

[
f(z)

1

]
::

[
a b
c d

] [
x
y

]
=

[
ax + by
cx + dy

]
.

The composition of two Möbius transformation becomes multiplication of two such matrices.

6Such transformations are also called linear fractional transformations or homographic functions.
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Classification. We call z∗ ∈ Ĉ a fix-point of f(z) if f(z∗) = z∗. It is easy to see that Z = z∗ is a
solution to the following equation:

cZ2 + (d − a)Z − b = 0.

Since f(z) is not the identity function, this equation does not identically vanish — this implies
that there are at most two fixed points. In case c = 0, d = a, we must have b 6= 0, so there are
no fixed points. This corresponds to the translation f(z) = z + (b/d). We can classify Möbius
transformations by their actions relative to fixed points. More precisely, their iterated action f (n)(z)

(n-fold application of f , as n → ∞) can either move any point z ∈ Ĉ towards a fixed point or away
from it. For simplicity, assume c 6= 0 so that f has two fixed points z1, z2 (not necessarily distinct).
The following occurs:

• (Parabolic) There is only one distinct fixed point z1. Then f (n)(z) → z1 as n → ∞ for all

z ∈ Ĉ.

• (Elliptic) We have z1 6= z2 and |cz1 + d| = |cz2 + d|. Then f (n)(z) diverges for all z 6= z1, z2.

• (Loxodromic) We have z1 6= z2 and |cz1 + d| > |cz2 + d|. Then f (n)(z) → z1 as n → ∞ for all
z 6= z2.

Continued Fractions as Transformations. The pair pi, qi of partial numerator and denomina-
tor in the continued fraction

q0 +
p1

q1+

p2

q2+

p3

q3+
· · · (22)

can be viewed as the Möbius transformation

x 7→ pi

qi + x
. (23)

In terms of matrix transformations, (23) becomes:

[
x
1

]
7→
[

0 pi

1 qi

] [
x
1

]
=

[
pi

qi + x

]
.

Hence we call a matrix of the form [
0 p
1 q

]

a partial quotient matrix. Similarly, the partial denominator q0 corresponds to the matrix transfor-
mation [

x
1

]
7→
[

1 q0

0 1

] [
x
1

]
=

[
q0 + x

1

]
.

T (q) :=

[
1 q
0 1

]
.

is called a translation matrix.

The ith quotient (i ≥ 0) of the continued fraction (22) corresponds to the matrix product

Mi :=

[
1 q0

0 1

] [
0 p1

1 q1

] [
0 p2

1 q2

]
· · ·
[

0 pi

1 qi

]
. (24)

Call Mi the ith convergent matrix of the continued fraction. If the continued fraction (22) has finite
length n, then Mn is the transformation matrix associated with the continued fraction; if the length
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is infinite, the transformation matrix will be an infinite product of matrices, viewed formally. It is
immediate that

detMi = (−1)ip1p2 · · · pi. (25)

The ith convergent matrix can be expressed in terms of the the jth numerators Pj and denominators
Qj (6). It is easy to verify (cf. (7–9)) that

Mi =

[
Pi−1 Pi

Qi−1 Qi

]
. (26)

Hence, we have the so-called determinant formula

Pi−1Qi − PiQi−1 = (−1)ip0p1p2 · · · pi (p0 = 1). (27)

This matrix is associated to the Möbius transformation

fi(z) =
zPi + Pi−1

zQi + Qi−1
. (28)

Notice that this is the value of the continued fraction

q0 +
p1

q1+

p2

q2+
· · · pi

qi+

1

z
.

That is, we append (1/z) as the (i + 1)st partial quotient. The reason we use 1/z instead of z is
because this form is convenient to specialize to ordinary continued fractions where pi+1 = 1. More
explicitly, for ordinary continued fraction [q0, q1, q2, . . . , , qi] we have

fi(z) = [q0, q1, q2, . . . , , qi, z] =
zPi + Pi−1

zQi + Qi−1
.

We shall call fi(z) in equation (28) the z-value of the continued fraction

q0 +
p1

q1+

p2

q2+
· · · pi

qi

.

Our original definition of the “value” of a continued fraction corresponds to z = ∞. Thus, 0-value is
Pi−1/Qi−1 and the ∞-value is the usual value Pi/Qi. Suppose xi denotes the (i−1)st complementary
quotient of the continued fraction (3), and let x0 denote the value of the continued fraction. Then
x0 = q0 + x1 = q0 + p1/(q1 + x2). In general,

[
x0

1

]
=

[
Pi−1 Pi

Qi−1 Qi

] [
xi

1

]
. (29)

Inverting the matrix, we obtain:
[

xi

1

]
=

[
Pi−1 Pi

Qi−1 Qi

]−1 [
x0

1

]
=

(−1)i

p1p2 · · · pi

[
Qi −Pi

−Qi−1 Pi−1

] [
x0

1

]
.

Recurrence for Tail Quotients. We carry out a similar analysis for tail quotients. First, let

ti := qi +
pi+1

qi+1+

pi+2

qi+2+
· · ·

denote the ith tail quotient of (3). Then we have ti = qi + pi+1

ti+1
for i ≥ 0. By telescopy,

[
t0
1

]
=

[
q0 p1

1 0

] [
t1
1

]

=

[
q0 p1

1 0

] [
q1 p2

1 0

] [
t2
1

]

...

=

[
q0 p1

1 0

] [
q1 p2

1 0

]
· · ·
[

qn−1 pn

1 0

] [
tn
1

]
.
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Expressing this in analogy to (29):

[
t0
1

]
=

[
An Bn

Cn Dn

] [
tn
1

]
(30)

where An, Bn, Cn, Dn are the analogues of Pn, Qn, satisfying the recurrence relations:

[
A1 B1

C1 D1

]
=

[
q0 p1

1 0

]
,

[
An+1 Bn+1

Cn+1 Dn+1

]
=

[
An Bn

Cn Dn

] [
qn pn+1

1 0

]
,

=

[
qnAn + Bn pn+1An

qnCn + Dn pn+1Cn

]
. (31)

Notice that the recurrence for complementary quotients requires only 2 recurrence sequences (for
Pi, Qi) instead of 4 (for Ai, Bi, Ci, Di). However, if we assume ordinary continued fractions (pi = 1)
then we have

Bi = Ai−1, Di = Ci−1, (32)

with A0 = 1 and C0 = 0. But Ai, Bi are now related to the numerators and denominators:

Ai+1 = Pi, Ci+1 = Qi, (i ≥ 0). (33)

Inverting the matrices,

[
tn
1

]
=

(
n∏

i=1

1

pi

)[
0 pn

1 −qn−1

]
· · ·
[

0 p2

1 −q1

] [
0 p1

1 −q0

] [
t0
1

]

=
(−1)i

p1p2 · · · pi

[
Dn −Bn

−Cn An

] [
t0
1

]
.

Beardon [15] gives a general account of Möbius transformations (in any dimension).

Exercises

Exercise 5.1: Show that Möbius transformations map circles in the complex plane into circles.
(i) Show that the equation of a circle is

Azz + Bz + Bz + C = 0

for complex constants A, B, C with A, C real. Also, the circle is a straight line iff A = 0.
(ii) Show that if z = f(w) = (aw + b)/(cw + d), then the w satisfies another equation of the
form

A′ww + B′w + B′w + C′ = 0

for some other A′, B′, C′ with A′, C′ real. 2

Exercise 5.2: Verify the three-fold classification of Möbius transformations and associated proper-
ties. 2
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Exercise 5.3: Two numbers x, y are equivalent if they are related by an integer unimodular trans-
formation: y = ax+b

cx+d
where a, b, c, d are integers and ad − bc = ±1. Check that this is a

mathematical equivalence.
(i) Any two rational numbers are equivalent.
(ii) If x, y are irrational then they are equivalent iff their regular continued fractions share a
common suffix: x = [a0, a1, . . .] and y = [b0, b1, . . .] implies there exists k, ℓ such that for all
i ≥ 0, ai+k = bi+ℓ.
(iii) Partition the following numbers according to their equivalence classes:

√
2,

√
3,

√
5, (1 +

√
5)/2, 1 +

√
2, 1 +

√
3.

2

Exercise 5.4: Consider the following matrix representation of a continued fraction of a
√

2 (for any
a), corresponding to a · [1, 2]

[
a 0
0 1

] [
1 1
0 1

] [
0 1
1 2

] [
0 1
1 2

]
· · · .

Show that if the ith convergent matrix Mi =

[
ai ai+1

bi bi+1

]
then

ai =
a

2

(
(1 +

√
2)i + (1 −

√
2)i
)

, bi =
1

2
√

2

(
(1 +

√
2)i − (1 −

√
2)i
)

.

2

§6. Convergence Properties

We investigate the ith numerator Pi and denominator Qi. From (7–9), we get

[
P0

Q0

]
=

[
q0

1

]
, (34)

[
P1

Q1

]
=

[
p1 + q0q1

q1

]
, (35)

[
P2

Q2

]
=

[
p1q2 + q0p2 + q0q1q2

p1 + q1q2

]
, (36)

[
P3

Q3

]
=

[
p1p3 + p1q2q3 + q0p2q3 + q0q1p3 + q0q1q2q3

p2q3 + q1p3 + q1q2q3

]
. (37)

The polynomials Pi, Qi are instances of an infinite family of polynomials K1, K2, . . . called continuant
polynomials. We give a simple rule (cf. Knuth [105, p. 340]) to describe all the terms of Pi:

Lemma 2 Each term in Pn is obtained from the initial term q0q1 · · · qn by substituting zero or more
non-overlapping pairs qi−1qi of consecutive variables by pi. Moreover, every term obtained in this
way appears in Pn

For instance, q0p2q3q4, q0p2p4 and p1q2p4 are terms in P4. The proof is by a simple induction:
the result is trivially true for P0 = q0 and P1 = p1 + q0q1. Inductively, the rule follows from the
recurrence:

Pn = pnPn−2 + qnPn−1.

c© Chee-Keng Yap October 7, 1999



§6. Convergence Properties Lecture XIV Page 463

An analogous rule for the terms in Qn holds: we only have to use q1q2 · · · qn as initial term in the
preceding lemma.

Define the polynomial Kn in 2n + 1 variables such that

Kn

(
p1 p2 · · · pn

q0 q1 q2 · · · qn

)
:= Pn(q0, p1, . . . , qn).

Here we have arranged, following Muir (ca. 1874), the variables of Kn in a suggestive matrix form.
With this notation, we see that

Kn

(
p2 p3 · · · pn

q1 q2 q3 · · · qn

)
= Qn(q1, p2, . . . , qn).

The continuant polynomials can also be written in a determinantal form (Exercise).

The difference between two consecutive quotients is easy to determine:

Pi−1

Qi−1
− Pi

Qi

=
detMi

Qi−1Qi

=
(−1)ip1p2 · · · pi

Qi−1Qi

. (38)

In case of ordinary continued fractions, pj = 1 for all j, and so

Pi−1

Qi−1
− Pi

Qi

=
(−1)i

Qi−1Qi

.

If we telescope the difference (38) from i = 1 to n we obtain

P0

Q0
− Pn

Qn

=
−p1

Q0Q1
+

p1p2

Q1Q2
+ · · · + (−1)np1p2 · · · pn

Qn−1Qn

,

Pn

Qn

= q0 +
p1

q1
− p1p2

Q1Q2
+ · · · + (−1)n+1p1p2 · · · pn

Qn−1Qn

.

Next observe that the difference between the nth and n − 2nd quotients is

Pn

Qn

− Pn−2

Qn−2
= (−1)n p1 · · · pn−1

Qn−2Qn−1
+ (−1)n+1 p1 · · · pn

Qn−1Qn

= (−1)n p1 · · · pn−1

Qn−1

(
1

Qn−2
− pn

Qn

)

= (−1)n p1 · · · pn−1qn

Qn−2Qn

. (39)

These lead to:

Theorem 3 Assume the partial numerators pi and denominators qi are positive for i ≥ 1 in the
continued fraction (3).
(i) The sequence of quotients with even indices

P0

Q0
,
P2

Q2
,
P4

Q4
, . . .

is increasing but bounded above by q0 + p1

q1
, and hence has a limiting value Ke.

(ii) The sequence of quotients with odd indices

P1

Q1
,
P3

Q3
,
P5

Q5
, . . .
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is decreasing but bounded below by q0, and hence has a limiting value Ko.
(iii) Ke ≤ Ko.
(iv) (Seidel-Stern) In case each pi = 1, then the divergence of the series

∑∞
i=1 qi is a necessary and

sufficient condition for Ke = Ko (= value of the continued fraction).

Proof. From equation (38), we have
P2i

Q2i

<
P2i−1

Q2i−1
.

The inequality of part (iii) follows from this, assuming that Ke and Ko exist. From equation (39),
we see that the sequence of even quotients is strictly increasing, the sequence of odd quotients is
strictly decreasing. It follows that each Pi/Qi (i ≥ 2) is greater than q0: this is immediate if i is
even; otherwise we have Pi/Qi > Pi−1/Qi−1 > q0. Likewise, Pi/Qi is smaller than q0 + p1

q1
. This

proves parts (i) and (ii).

It remains to prove (iv). First assume that the series
∑∞

i=1 qi is divergent and we will show that
Ke = Ko. First observe that Q1 = q1, Q2 = q1q2 + 1 and

Q2n = q2nQ2n−1 + Q2n−2, Q2n+1 = q2n+1Q2n + Q2n−1 (n ≥ 1)

imply Q2n ≥ 1 and Q2n+1 ≥ q1 for all n ≥ 1. From this we get that

Q2n ≥ q2nq1 + Q2n−2

≥ · · ·
≥ q2nq1 + q2n−2q1 + · · · + q4q1 + q2q1.

Similarly

Q2n+1 ≥ q2n+1 + Q2n

≥ · · ·
≥ q2n+1 + q2n−1 + · · · + q3 + q1.

Thus, the divergence of
∑∞

i=1 qi implies the divergence of either the odd Q-sequence Q1, Q3, Q5, . . .
or the even Q-sequence Q2, Q2, Q6, . . .. Hence the sequence Q1Q2, Q3Q4, Q5Q6, . . . diverges. The
fact that Ke = Ko then follows from (38).

Conversely, if the series
∑∞

i=1 qi is convergent, we show that Ke < Ko. First we show that the even
P -sequence

P0, P2, P4, . . . , P2n, . . .

and the odd P -sequence
P1, P3, P5, . . . , P2n+1, . . .

both converge to some values P∗ and P ∗, respectively. It is not hard to show by induction from
Pn = qnPn−1 + Pn−2 that

Pn <

n∏

i=1

(1 + qi)

and hence

Pn < exp(

n∑

i=1

qi) < c0

for some constant c0. Next, by recursively expanding the term Pn−2 in Pn = qnPn−1 +Pn−2, we get

Pn = qnPn−1 + qn−2Pn−3 + qn−4Pn−5 + · · · .
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Hence

Pn+2m − Pn = qn+2mPn+2m−1 + qn+2m−2Pn+2m−3 + · · · + qn+2Pn+1

< c0(qn+2m + qn+2m−2 + · · · + qn+2).

The convergence criterion of Bolzano-Cauchy for the series
∑∞

i=1 qi says that the sequence is conver-
gent if and only if for any ǫ > 0 there is a N such that for all m ≥ n ≥ N , qn + qn+1 + · · ·+ qm < ǫ.
So for any ǫ > 0, for sufficiently large n, the above derivation implies Pn+2m − Pn < ǫ. Another
application of the Bolzano-Cauchy criterion shows that the even and the odd P -sequences each con-
verge. A similar argument shows that the even and odd Q-sequences converge to some values Q∗

and Q∗ respectively. Using the fact that P2n+1Q2n − P2nQ2n+1 = 1, we conclude that in the limit

P ∗Q∗ − P∗Q
∗ = 1.

But Ke = P∗/Q∗ and Ko = P ∗/Q∗. This shows Ko − Ke = (Q∗Q
∗)−1 or Ke < Ko as desired.

Q.E.D.

Another classic convergence theorem (from Śleszyński-Pringsheim) is this: if |qi| ≥ 1 + |pi| for all i
then Ki≥1(pi/qi) converges to a value of modulus ≤ 1.

Approximation of Irrationals by Rationals. The preceding shows that the value K (if it
exists) of the continued fraction (3) is equal to the series

K = q0 +
∑

i≥1

(−1)i+1 p1 · · · pi

Qi−1Qi

.

Moreover, for each n ≥ 2, it satisfies

∣∣∣∣K − Pn

Qn

∣∣∣∣ <
∣∣∣∣
p1 · · · pn

Qn−1Qn

∣∣∣∣ .

In particular, the nth approximant of the regular continued fraction of any K satisfies

∣∣∣∣K − Pn

Qn

∣∣∣∣ ≤
1

Qn−1Qn

<
1

c0Q2
n

(40)

where c0 = 1. It is not hard to show that for any two consecutive quotients of K, one of them
satisfies the inequality with c0 = 2. This turns out to be a defining characteristic of quotients:
whenever any fraction p/q has the property |K − p/q| < 1/(2q2), then p/q is a quotient of the
regular continued fraction of K. Borel showed that of any three consecutive quotients, at least one
satisfies the above inequality with c0 =

√
5. Hence every irrational number K has infinitely many

approximations Pn/Qn satisfying the above inequality with c0 =
√

5. This is the best possible in the
sense that the statement fails if any larger value of c0 is used. We also obtain a characterization of
irrational numbers:

Corollary 4 A number α is irrational iff there are infinitely many pairs of relatively prime integers
p, q which satisfy the inequality α − (p/q) < 1/q2.

Proof. If α is a rational a/b then |α − (p/q)| ≥ 1/(bq) ≥ 1/q2 for all but finitely many q. But if α
is irrational then the nth approximant pn/qn of its ordinary continued fraction satisfies the desired
inequality, following (40). To see that there are infinitely many distinct solutions among these
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approximants, note that for any pn, qn, we may choose m large enough so that |α−(pn/qn)| > 1/(q2
m).

Then pm, qm must be a new solution. Q.E.D.

Exercises

Exercise 6.1: Prove that the following problem can be solved in polynomial time in the bit-sizes
of the integer N > 1 and of the rational number α: given N, α, find a rational number p/q
such that |qα − p| is minimum, subject to q ≤ N . 2

Exercise 6.2: Show that

Pn = det





q0 −1 0
p1 q1 −1 0
0 p2 q2 −1 0
0 p3 q3 −1 0

· · ·
0 pn−1 qn−1 −1
0 pn qn





.

HINT:

−P0 = −q0,
q1P0 −P1 = −p1,
p2P0 q2P1 −P2 = 0,

p3P1 q3P2 −P3 = 0,
· · ·

pn−1Pn−3 qn−1Pn−2 −Pn−1 = 0,
pnPn−2 qnPn−1 −Pn = 0.

(b) Derive a similar determinantal form for Qn.
(c) Conclude that

Qn =
∂Pn

∂q0

and

Kn

(
p1 p2 · · · pn

q0 q1 q2 · · · qn

)
= Kn

(
pn pn−1 · · · p1

qn qn−1 qn−2 · · · q0

)
.

2

Exercise 6.3: (Gosper) Give a method to compute the rational number with minimum denominator
that lies within an interval [a, b] with rational endpoints. 2

§7. Real Möbius Transformations

We consider the method of Lagrange and Vincent for computing the regular continued fraction of
a real algebraic number. For modern updates on this method see [203] and Cantor, Galyean and
Zimmer [38]. Thull reports that his implementation of this approach is faster than Newton’s
method by a factor of 3 to 4.
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For this and the next section, assume α0 is a real root of a real polynomial A0(X) of degree m ≥
2. We may assume that A0(X) has only simple non-integer roots, and we are given an isolating
interval [r0, s0] with rational endpoints for α0. Our goal is to compute the regular continued fraction
[a0, a1, a2, . . .] of α0.

The basic method is simple to understand. By binary search, we can compute a0 = ⌊α0⌋, viz., a0 is
the unique integer n between ⌊r0⌋ and ⌊s0⌋ such that A0(n)A0(n + 1) < 0. Then we could output
a0 as the zeroth partial denominator q0. We then transform α0 to α1 = 1

α0−a0
= [a1, a2, a3, . . .].

Notice that α1 is the root of the transformed polynomial

A1(X) = XmA0(a0 +
1

X
).

The “key question” for continuing this process is to find a simple rule for a new isolating interval
[r1, s1] of α1 relative to A1(X). If so, we can repeat this process indefinitely: find a1 = ⌊α1⌋,
transform A1(X) to A2(X) and find an isolating interval for α2 := 1

α1−a2
, etc. We refer to this

generic process as the “continued fraction algorithm for (real) roots”.

Transformations of the Complex Plane. To answer the “key question”, we study the effects
of the map

T0(z) = a0 + (1/z) (41)

on the complex plane, corresponding to the transformation from α0 to α1 after we output the term
a0. In general, if the regular continued fraction of α0 is [a0, a1, . . .], then after outputing the first
n + 1 partial denominators, we have the Möbius transformation (see equation (30))

Tn : z 7→ [a0, a1, . . . , an, z] =
zAn+1 + An

zCn+1 + Cn

=
zPn + Pn−1

zQn + Qn−1

where Ai, Ci, Pi, Qi are given by equations (31), (32) and (33) (with ai’s in place of qi’s). Note that
Pn, Qn are positive integers such that for n ≥ 2,

Pn ≥ max{Pn−1, Qn} ≥ min{Pn−1, Qn} ≥ Qn−1 ≥ 0.

The first and last inequality is strict for n ≥ 3. More generally, consider the Möbius transformation
T : z 7→ w = az+b

cz+d
, or in matrix form

T :

[
z
1

]
7→
[

a b
c d

] [
z
1

]
=

[
w
1

]
, (42)

where a ≥ max{b, c} ≥ min{b, c} ≥ d ≥ 0 are non-negative with determinant

∆ = ad − bc 6= 0.

We said (§5) that circles (in the z-plane) are transformed into circles (in the w-plane) by such
transformations. Since T is real, we have T (z) = T (z) (z denotes complex conjugation). This means
that the real line is invariant under T and T has reflection symmetry about the real line. A simple
calculation for the following 6 points shows

T (0) =
b

d
, T (1) =

a + b

c + d
, T (∞) =

a

c
, T (−d/c) = ∞, T (−b/a) = 0, T

(
−b + d

a + c

)
= −1.

See figure 2 for a representation of this mapping.

Let IT be the interval on the real-axis of the w-plane with end-points a/c and b/d. It follows from
the above calculations that T maps the imaginary axis of the z-plane to the circle KT where KT is
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∞

i

1

KT

KF

−1

−b/a

−1

−(b + d)/(a + c)

∞
1

F = T−1

T

0 IT

z w

−i

Re(w) = a/c
Re(z) = −d/c

b/d

(b + a)/(c + d)

0

Figure 2: Transformation T : z 7→ w = (az + b)/(cz + d). Case of ∆ < 0.

the circle with diameter IT . Note that a
c
− b

d
= ∆

cd
. So a/c > b/d iff ∆ > 0. Similarly −b/a > −d/c

iff ∆ > 0. Figure 2 illustrates the transformation for ∆ < 0. Moreover, since the distinction between
the inside and outside of a circle is preserved by Möbius transformations, and T (1) lies inside KT

while T (−d/c) lies outside KT , we conclude that the entire half-plane Re(z) > 0 is mapped to the
open disc inside KT , and the positive real axis of the z-plane to IT .

Similarly, let F denote the inverse of T , and IF the interval on the real-axis of the z-plane with end-
points −b/a and −d/c, and KF be the circle with diameter IF . Then F maps KF to the imaginary
axis of the w-plane and IF to the positive real axis of the w-plane.

Another notable feature is that the line Re(z) = −d/c is mapped into the line Re(w) = a/c. Sum-
marizing these observations:

Lemma 5 The transformation T in (42) from the z-plane to the w-plane has these properties:
(i) The half-plane Re(z) > 0 is mapped to the open disc inside KT , and Re(z) = 0 is mapped to the
circle KT .
(ii) The circle KF is mapped to the negative real axis in the w-plane and its interior is mapped to
the half-plane Re(w) < 0.
(iii) The half-plane Re(z) > −d/c is mapped to the half-plane Re(w) > a/c, and the line Re(z) = −d/c
becomes the line Re(w) = a/c.

Now specialize our considerations to the case T = T0 as given by (41). The associated matrix is

[
a b
c d

]
=

[
a0 1
1 0

]
.

Let us assume a0 > 0. The circle KT turns out to be the line Re(w) = a0, and hence the half-plane
Re(z) > 0 is simply translated to the half-plane Re(w) > a0. In fact, parts (i) and (iii) in the lemma
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become identical. We can also verify that the half-plane Re(z) > 1 becomes the interior of the circle
Ka0

with diameter [a0, a0 + 1]. Furthermore, the real intervals [0, 1] and [∞,−1/a0] in the z-plane
transforms (respectively) into the real intervals [a0 + 1,∞] and [0, a0] in the w-plane. See figure 3.

i

1

−1−1

a0

−1/(a0 + 1)

−1/a0

KF

a0 + 1

−i

Ka0

∞

T0

10

F0 = T−1
0

z w

0

∞

Figure 3: Transformation T0 : z 7→ (a0z + 1)/z.

.

Transformation of Isolating Intervals. Let us see how the roots of A0(X) are transformed by
T . Let its roots be

α0 = α(1), α(2), . . . , α(m). (43)

Then
A1(X) :=A0(T (X))

is a real polynomial whose roots,

F (α
(1)
0 ), F (α(2)), . . . , F (α(m)),

are obtained by applying the inverse transform F :=T−1 to the roots of A0(X). Let us assume
α0 > 0 and [r0, s0] ⊆ [0,∞] is an isolating interval for α0 with respect to A0(X), and let T = T0 be
the transformation (41). Writing F0 :=T−1

0 and α1 :=F0(α0), and a0 = ⌊α0⌋, it follows that

α1 ∈ F0([a0, a0 + 1]) = [1,∞].

Notice that F0([r0, s0]) is an isolating interval for α1 relative to A1(X) = A0(T0(X)). A fortiori,

I1 :=F0([r0, s0]) ∩ [1,∞]

is an isolating interval for α1. It is easy to see that I1 = [r1, s1] where

r1 :=

{
F0(s0), if s0 < a0 + 1,
1, else;

(44)

s1 :=

{
F0(r0), if r0 > a0,
∞, else.
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We have thus answered the “key question” that motivated this section.

We dispose of two final details: (a) We have assumed α0 > 0. The condition αi > 0 is clearly
maintained for i ≥ 1. In case α0 < 0, we can replace α0 by α0 − ⌊α0⌋ before starting the initial
iteration, and also modify A0(X) and [r0, s0] accordingly. (b) If s1 = ∞, we may have trouble
performing the standard binary search for a1 = ⌊α1⌋ in the infinite interval [r1, s1]. But it is easy
to replace s1 by some finite upper bound on α1 (for instance, Cauchy’s bound in §VI.2).

Exercises

Exercise 7.1: Let α = (−b +
√

∆)/2a be a zero of A(X) = aX2 + bX + c with discriminant
∆ = b2 − 4ac.
(i) Let a0 = ⌊α⌋ and let α = a0 + (1/α′). Let α′ be a root of the polynomial a′X2 + b′X + c′.
Show that b′2 − 4a′c′ = ∆.
(ii) Let T be the transformation (42) and A(T (X)) = aT X2 + bT X + cT . If α lies between
a/c and b/d and |ad − bc| = 1 then |aT | < 2|aα| + |a| + |b|, |cT | < 2|aα| + |a| + |b| and
|bT | < 4(2|aα| + |a| + |b|)2 + |∆|.
(iii) Conclude that the regular continued fraction of a quadratic number is eventually periodic.
(This is the harder direction of Lagrange’s theorem, §4). 2

§8. Continued Fractions of Roots

Let us recapitulate the continued fraction algorithm developed in the previous section. Suppose we
are given a polynomial A0(X) of degree m and an isolating interval [r0, s0] for a real root α0 > 0
of A0. To generate the regular continued fraction [a0, a1, a2, . . .] of α, we compute the following
successive members of the following sequence of tuples:

(ri, si, Ai(X), ai), i ≥ 0 (45)

where

1. [ri, si] is an isolating interval for a root αi of Ai(X);

2. ai := ⌊αi⌋;

3. Ai+1(X) :=XmAi(ai + X−1); and

4. ri and si are computed as in equation (44); we assume that si is further replaced by some
root-bound if this is better.

Here, αi = 1/(αi−1 − ai−1) is just the ith tail quotient of [a0, a1, a2, . . .]. Note that ai is found by a
binary search on the interval [⌊ri⌋ , ⌊si⌋].

Although the sequence (45) is potentially infinite, it is useful to give a definite termination condition.
Suppose that we only want to approximate α0 to within some absolute error ǫ > 0. Then we can
compute, in addition to (45), also the ith numerator Pi and denominator Qi (§3) of the [a0, a1, . . .].
We can terminate this computation at the ith iteration where

1

Qi−1Qi

≤ ǫ

c© Chee-Keng Yap October 7, 1999



§8. Continued Fractions of Roots Lecture XIV Page 471

since the ith approximant Pi/Qi has the property |Pi/Qi − α0| < 1/(Qi−1Qi) (§6).

The reader can easily turn this description into a more explicit algorithm.

Reduced Numbers. In view of the preceding, it is natural to call a real algebraic number α
reduced if α > 1 and all of whose conjugates β distinct from α lie in the interior of circle in the
complex plane with the real line segment [−1, 0] as diameter. This is related7 to Zassenhaus’ notion
[38]: a real algebraic number α is said to be in “reduced state” if α > 1 and for any conjugate β 6= α,

Re(β) < 0, |β| < 1.

Clearly, reduced numbers are in reduced state. Note that the transformation (42) is favorable for
reduced numbers: if α0 is reduced then so is F (α0). Reduced numbers have the trivial isolating
interval [1,∞], and the tails of their continued fractions remain reduced. We now show that every
real algebraic number can be transformed into a reduced number within an explicitly given number
of transformations of the form (41).

Let δ > 0 be a root separation bound (§VI.7) for A0(X), and as usual, let αi be the ith tail quotient
of the regular continued fraction of α0.

Theorem 6 If Qi−2Qi−1 ≥ 2/δ then αi+2 is a reduced number.

Proof. Let β 6= α0 be any conjugate of α0. Setting β0 := β, we transform βi to βi+1 = 1/(βi − ai),
in analogy to our transformations on the αi’s. Then we have, for i ≥ 1,

[
β
1

]
=

[
Pi Pi−1

Qi Qi−1

] [
βi

1

]

[
βi

1

]
= (−1)i

[
Qi−1 −Pi−1

−Qi Pi

] [
β
1

]

βi = (−1)i βQi−1 − Pi−1

−βQi + Pi

= (−1)i β − Pi−1/Qi−1

−β + Pi/Qi

· Qi−1

Qi

= (−1)i β − Pi−1/Qi−1

−β + Pi/Qi

· 1

ai

·
(

1 − Qi−2

Qi

)
(46)

where the last equation is a consequence of the recurrence Qi = aiQi−1 + Qi−2. Our goal is to show
that

|βi| < 1/ai (47)

for i large enough. Once this goal is reached, all the conjugates of αi lie in the half-plane Re(w) < 1
and by our observations on the map T0, these conjugates will be mapped via F0 to the half-space
Re(z) < 0. That is, all the conjugates of αi+1 (which are among the roots of Ai+1(X)) have negative
real parts. By another application of the observation about T0, we conclude that all the conjugates
of αi+2 lie within the circle with diameter [−1, 0], i.e., αi+2 is reduced, proving our theorem.

The goal (47) follows from (46) if we show
∣∣∣∣
β − Pi−1/Qi−1

−β + Pi/Qi

∣∣∣∣ ≤ 1 +
Qi−2

Qi

. (48)

7It is also related to the notion of a PV-number or Pisot-Vijayaraghavan number. This is a real algebraic integer
α with conjugates α = α1, α2, . . . , αn such that α > 1 and |αj | < 1 for j 6= 1. See Cassels [39]. The smallest
PV-number is the real root of the X3 − X − 1 [C. L. Siegel, 1944].
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To this end, note that

∣∣∣∣
β − Pi−1/Qi−1

−β + Pi/Qi

∣∣∣∣ =

∣∣∣∣
β − (Pi/Qi) − (−1)i/(QiQi−1)

−β + (Pi/Qi)

∣∣∣∣

≤ 1 +
1

Qi−1Qi

· 1

| − β + (Pi/Qi)|
.

Hence it suffices to show that

Qi−2

Qi−1
≥ 1

Qi−1Qi

1

| − β + (Pi/Qi)|
,

Qi−1Qi−2 ≥ 1

| − β + (Pi/Qi)|
. (49)

By definition of δ, |β − α0| ≥ δ. From (40), |Pi/Qi − α0| ≤ 1/(QiQi−1). Hence, if i satisfies the
condition of the theorem then

∣∣∣∣−β +
Pi

Qi

∣∣∣∣ ≥ |β − α0| −
∣∣∣∣α0 −

Pi

Qi

∣∣∣∣ ≥ δ − 1

QiQi−1
>

δ

2
≥ 1

Qi−1Qi−2
.

Q.E.D.

A simplified version of this bound goes as follows. Recall that Qi’s satisfies the recurrence

Qi = aiQi−1 + Qi−2, (i ≥ 2; Q0 = 1, Q1 = q1).

Compare this with the Fibonacci numbers

Fi = Fi−1 + Fi−2, (i ≥ 2; F0 = 0, F1 = 1).

It follows that
Qi ≥ Fi+1, i ≥ 0. (50)

It is easy to show that Fi ≥ φi−1 for i ≥ 1 and φ = (
√

5 − 1)/2. Thus Qi ≥ φi for all i ≥ 0. Thus:

Corollary 7 If 2i − 3 ≥ logφ(2/δ), i.e.,

i ≥
3 + logφ(2/δ)

2
, (51)

then αi+2 will be reduced.

For the special case of quadratic numbers, more efficient and specialized algorithms for their contin-
ued fractions have been known from antiquity (Exercises).

Exercises

Exercise 8.1: Let R :={⌊r0⌋ , ⌊s1⌋ , ⌊r2⌋ , ⌊s3⌋ , . . .} and S :={⌊s0⌋ , ⌊r1⌋ , ⌊s2⌋ , ⌊r3⌋ , . . .}. Then both
R and S eventually become the periodic sequence {. . . , 1,∞, 1,∞, . . .}. Before the appearance
of this periodic part, R is the regular continued fraction expansion of r0 and S is the regular
continued fraction expansion of s0. The common “aperiodic” prefix of both sequences must
agree except possibly for the last partial quotient. 2
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Exercise 8.2:
(i) Show that Fi = (φn − φ̂n)/

√
5 where φ = (

√
5 − 1)/2 and φ̂ = 1 − φ = −0.618 . . .. Verify

the bound Fi ≥ φi−1.
(ii) If A0(X) is of degree m and ‖A0‖∞ ≤ M , deduce an upper bound on i in terms of m, M
that guarantees αi will be reduced. 2

Exercise 8.3: Let a0, a1, . . . be an arbitrary sequence of positive integers and we transform an
initial real polynomial A0(X) by a succession of substitutions, Ai+1(X) = Ai(ai + X−1). If i
satisfies (51) then Ai(X) has at most one root with positive real part.
NOTE: this is closely related to a theorem of Vincent (1836) which Uspensky [205] uses as a

basis for a root separation method. Vincent’s theorem concludes that Ai(X) has at most one
sign variation if i satisfies a comparable bound to (51). 2

Exercise 8.4: (Thull) Suppose α0 is reduced and T (α1) = α0 where T is given by (42).
(i) Let S = α(2) + · · · + α(m) be the sum of all the conjugates of α0 which are different from
α0. Then S lies in the interval with endpoints −(m − 1)b/a and −(m − 1)d/c.
(ii) Let A0(T (X)) =

∑m

i=0 biX
i, where A0(α0) = 0. Then α1 lies in the interval with endpoints

−(bm−1/bm) + (m − 1)b/a −(bm−1/bm) + (m − 1)d/c. 2

Exercise 8.5: We develop an algorithm for quadratic numbers. Let N > 1 be a square-free integer,

α = (a +
√

N)/b for integers a, b and R =
⌊√

N
⌋
.

(i)
⌊
(a +

√
N)/b

⌋
is equal to ⌊(a + R)/b⌋ if b > 0 and equal to ⌊(1 + a + R)/b⌋ if b < 0.

(ii) Let q = ⌊(a + R)/b⌋ and suppose (a′ + R)/b′ = ((a + R)/b − q)−1. Then a′ = bq − a and
b′ = (N − a′2)/b.
(iii) Repeating the transformations (a, b) → (a′, b′), let us form the sequence {(ai, bi) : i ≥ 0}
where (a0, b0) = (a, b). Prove that for i large enough, |ai| < R, |bi| < 2R. [Hence it becomes
periodic.]
(iv) Develop a continued fraction algorithm of α using these facts (assuming that we can com-
pute the floor function).
(v) Show that α is reduced iff 0 < a <

√
N and

√
N − a < b <

√
N + a.

(vi) Modify your algorithm in (iii) to detect the onset of periodicity. HINT: recall a charac-
terization of reduced quadratic numbers in an exercise of §4. 2

§9. Arithmetic Operations

We consider the arithmetic operations +,−,×,÷. The algorithmic idea is a very natural one. Say we
want to compute x+y where x, y are continued fractions. The result z is supposed to be a continued
fraction as well. The algorithm for z will request successive terms from x and y as needed. So we
view a continued fraction x as a process that can respond to requests for its next term. Once the
process x outputs a term, it transforms itself into a new process for a modified continued fraction x′.
We assume that x′ has no memory of its previous outputs – so the algorithm for z must remember
these outputs (in some form). Thus in general, a process has internal memory in the form of state
variables. Similarly, the algorithm for adding x, y can be viewed as a process for z. The terms of a
continued fraction q0 +Ki≥1(pi/qi) are given in the order q0, p1, q1, p2, q2, . . .. As terms are ingested
(i.e., consumed) by the algorithm for x+y, the state variables of (the process) for z change. We have
no á priori requirement on how terms from x or y are to be ingested – this is under the control of
the algorithm for z. One obvious possibility is to ingest one term each from x and y simultaneously.
We expect the algorithm to egest (i.e., spit out) terms of z = x+y from time to time. These ideas fit
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very well into the concept of “streams” and “lazy evaluation” in the programming milieu. What we
call a process can be identified as a stream. Lazy evaluation of z means that the algorithm ingests
terms from x, y only when there is a pending request for a term of z. Of course, the stream for z
can be fed into other on-going computations.

Following Gosper [18], the processes for arithmetic operations can unified under the process for
computing the general function

z(x, y) =
axy + bx + cy + d

a′xy + b′x + c′y + d′
(52)

where a, b, . . . , c′, d′ are numerical constants called the state variables of the process. We use the
compact notation

z(x, y) =
(a, b, c, d)

(a′, b′, c′, d′)

(
x

y

)
.

The arithmetic operations can be recovered with suitable choices for the state variables. Thus:

x + y =
(0, 1, 1, 0)

(0, 0, 0, 1)

(
x

y

)

x − y =
(0, 1,−1, 0)

(0, 0, 0, 1)

(
x

y

)

xy =
(1, 0, 0, 0)

(0, 0, 0, 1)

(
x

y

)

x/y =
(0, 1, 0, 0)

(0, 0, 1, 0)

(
x

y

)

ax + b

cx + d
=

(0, a, 0, b)

(0, c, 0, d)

(
x

y

)

The last operation is a Möbius transformation in the variable x, since it does not depend on y. It
comes from the general expression z(x, y) by replacing y with 0, and may arise from the termination
of the stream for y.

Ingesting terms. It is easy to give transformations of the state variables when we ingest one
term from x: there are two cases, depending on whether we ingest a partial numerator or a partial
denominator. To avoid this dichotomy, it is simplest to ingest a pair of terms at a time. Say the 0th
partial denominator q = q0 and the 1st partial numerator p = p1 of the current x are ingested. So

x = q +
p

x′

where x′ is the 1st tail of x. Let us see how the state variables changes:

z(x, y) =
a(q + p/x′)y + b(q + p/x′) + cy + d

a′(q + p/x′)y + b′(q + p/x′) + c′y + d′

=
(aq + c, bq + d, ap, bp)

(a′q + c′, b′q + d′, a′p, b′p)

(
x′

y

)
.

This changes z from a function of x, y to another function of x′, y. In general, if x is a real number
and xi is its ith tail, then from (30),

[
x
1

]
=

[
Ai Bi

Ci Di

] [
xi

1

]

=
(0, Ai, 0, Bi)

(0, Ci, 0, Di)

(
xi

y

)
.
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Alternatively, if x is in “complementary form” x = Ki≥1(pi/qi) (i.e., q0 = 0) then we could write

x =
p1

q1 + x′

where x′ is now the 1st complement. If we ingest the pair (p, q) = (p1, q1) the transformed function
becomes

z(x, y) =
ayp/(q + x′) + bp/(q + x′) + cy + d

a′yp/(q + x′) + b′p/(q + x′) + c′y + d′

=
(c, d, ap + cq, bp + dq)

(c′, d′, a′p + c′q, b′p + d′q)

(
x′

y

)
.

Egesting terms. Next suppose that we are ready to egest a term from z(x, y). For now, we defer
the question of deciding when it is appropriate to egest terms and what these terms should be.
Again, it is convenient to assume that we will egest a pair of terms u, v and transform z to z′:

z = u +
v

z′
.

Then

z′ =
v

z − u

=
v

axy+bx+cy+d

a′xy+b′x+c′y+d′
− u

=
(a′v, b′v, c′v, d′v)

(a − ua′, b − ub′, c − uc′, d − ud′)

(
x

y

)
.

Similarly, if z is already in the “complementary form”, we can write z = (v/z′) − u, and derive z′

accordingly.

The strategy for deciding when and what terms to egest is simplified by assuming that z is a regular
continued fraction (in particular, x, y are real and v = 1 above). The state variables of the process for
z contains information about the range of possible values for z. If this range of values is narrowed
sufficiently so that we know the value of ⌊z⌋, then we may egest the pair (u, v) = (⌊z⌋ , 1) and
transform z to z′ as above. It is intuitively clear that without any restriction on the real numbers
represented by x, y, there cannot be any á priori bound on how many terms must be ingested before
the range is “sufficiently narrow” [213]. But for nice numbers (say algebraic numbers), such bounds

exist. In many situations, the range of possible values are can be restricted to intervals of R̂.

Gosper suggests a method of egesting intermediate information without waiting for ⌊z⌋ to be deter-
mined. Suppose we have narrowed the range of z so that we know that z lies in [3000, 4000). Then
we could egest 3000 and transform z to z′ = z − 3000. Now we know that z′ lies in [0, 1000). If
subsequent narrowing of the intervals for x, y tells us that z′ lies in [700, 800), we then egest the
two terms 0 and 700, and transform z′ to z′′ = z − 700. Now we know z′′ lies in [0, 100). Suppose
we further discover z′′ lies in [20, 30). We then egest the two terms 0 and 20, transforming z′′ to
z′′′ = z′′ − 20. Now z′′′ ∈ [0, 10). Say we discover z′′′ ∈ [5, 6). We may then output 0 and 5 and
transform z′′′ to z′′′′ = 1/(z′′′ − 5) and continue in the normal fashion. Notice that we have egested
the sequence

. . . , 3000, 0, 700, 0, 20, 0, 5, . . .

which, by rule (21), is equivalent to egesting one term 3725. The intermediate terms 3000, 700, 20
may be useful, for instance, in narrowing the interval containing z, without waiting for the even-
tual discovery of the term 3725 (which may not even be necessary). Of course, by having partial
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denominators that vanish, we have slightly violated the condition for a regular continued fraction.
Our example is intended to suggest8 the output of decimal representation for partial denominators,
but clearly the rule (21) can be applied in more general situations. We can also modify the egestion
algorithm to output the value of a continued fraction in human-friendly decimal notation (Exercise).

Intervals. As suggested above, we would like to restrict the range of possible values of z(x, y) to
an interval. Suppose x has already egested (i + 1) pairs of terms:

q0, p1, q1, p2, . . . , qi, pi+1.

Inductively, we may assume that the numerators and denominators Pi−1, Pi, Qi−1, Qi have been
maintained. Therefore x lies in the finite interval with endpoints

Pi−1/Qi−1, Pi/Qi.

(Recall that i is even iff Pi−1/Qi−1 < Pi/Qi.) Similarly, we may assume that we know the value of
y within some interval. We can then deduce an interval containing z. In general, if z(x1, . . . , xn) is
a function where xi are continued fractions in complementary form, then the set of possible values
of z is z([1,∞], . . . , [1,∞]). If z is one of the arithmetic operations, this set is an interval. We now
give an account of intervals and their basic calculus.

An interval I will refer to a connected subset of the extended real numbers R̂. The special case
where I = R̂ will be given the special notation ⊥ (this will turn out to be an extension of the use
of the symbol ⊥ in §2). If I 6= ⊥, we will call I a proper interval. We classify proper intervals as
follows: I is infinite if ∞ ∈ I, otherwise it is finite. I is positive if it comprises only positive numbers
(0 and ∞ are neither positive nor negative). Similarly for a negative interval. The reader should
visualize I using the stereographic projection of I onto the unit complex circle S1 (§2, figure 1).

A proper interval I has two endpoints, a and b which are not necessarily distinct. We now introduce
some conventions for representing I in terms of a, b. First assume a = b. Then there are two
possibilities: either I consists of just the number a or I is equal to R̂ \ {a}. In the former case, I is
a point interval denoted I = [a, a]; in the latter case, it is a deleted point interval denoted I = (a, a).
We sometimes write a for [a, a]. Next assume the endpoints are distinct and not equal to ∞, say
a < b. Suppose I is a closed interval (i.e., a, b ∈ I). Then we can use the notation

I =

{
[a, b] if I is finite
[b, a] if I is infinite

(53)

If one end point, say b, equals ∞ then we let I = [a,∞] denote the set of reals that are greater than
or equal to a including ∞; and I = [∞, a] denotes the set of reals less than or equal to a including
∞. If I is open (meaning that both a, b are not in I) then we either write I = (a, b) or I = (b, a)
under the same conditions as in (53). We can generalize these notations to half-open intervals (a, b]
or [a, b) when a 6= b, in the standard way. Note that (a, a] and [a, a) are not defined.

Interval calculus. We define algebraic operations on intervals in a generic fashion: assume that
f(x, y) and g(x) are algebraic operations on R̂. We extend these operations to any subsets I, J ⊆ R̂

via
f(I, J) :={f(x, y) : x ∈ I, y ∈ J}, g(I) :={g(x) : x ∈ I}.

Now we assume that these operations are continuous and I, J are intervals. Then the result of
these operations are intervals. There is an exception to be handled in this generic definition of

8A more user-friendly output might be ‘3 ∗ ∗∗’, subsequently revised to ‘32 ∗ ∗’, then to ‘327∗’ and finally ‘3275’.

c© Chee-Keng Yap October 7, 1999



§9. Arithmetic Operations Lecture XIV Page 477

operations on intervals: it is possible (as usual) that f(x, y) = ⊥ or g(x) = ⊥. By definition, if
f(x0, y0) = ⊥ for some x0 ∈ I, y0 ∈ J then we define f(I, J) = ⊥. But it is also quite possible that
f(I, J) = ⊥ even when I × J does not contain such a pair (x0, y0). For instance, [1,−1] + [0, 2] = ⊥
and [2, 1] × [1, 2] = ⊥.

We consider the case where f, g are rational operations. These are well-known to be continuous.
Another useful fact is this: if f(x, y) is monotonic increasing or monotonic decreasing in the finite
intervals I, J then the endpoints of f(I, J) (if it is not ⊥) can be determined by applying f(x, y) to
the endpoints of I and J .

Lemma 8 Let I = [a, b] and I ′ = [a′, b′] be proper intervals.

(i) 1/[a, b] = [1/b, 1/a] provided b 6= ∞. Otherwise, 1/[a, b] = [1/a, 1/b].

(ii) −[a, b] = [−b,−a].

(iii) (Addition) If ∞ ∈ I ∩ I ′ then I + I ′ = ⊥. If I, I ′ are both finite, then I + I ′ = [a + a′, b + b′].
Otherwise,

I + I ′ =

{
⊥ if a + a′ ≤ b + b′

[a + a′, b + b′] else.

(iv) (Multiplication) Let E = {a, b} × {a′, b′} = {aa′, ab′, ba′, bb′}.
(iv.1) If 0 ∈ I,∞ ∈ I ′ then I × I ′ = ⊥.
(iv.2) If ∞ 6∈ I ∪ I ′ then I × I ′ = [min(E), max(E)].
(iv.3) If 0 6∈ I ∪ I ′ then I × I ′ = [1/ max(1/E), 1/ min(1/E)].
(iv.4) If none of the above is true, let {0,∞} ⊆ I ′. So I is either positive or negative.

I × I ′ =






[min(a′ × I), max(b′ × I)] if I is positive and min(a′ × I) > max(b′ × I),
[min(b′ × I), max(a′ × I)] if I is negative and min(b′ × I) > max(a′ × I),
⊥ else.

Proof. We prove (iv). By definition, I × I ′ = ⊥ if condition (iv.1) holds. Case (iv.2): here, I
and I ′ are both finite. It is easy to check that the result is true in case I is “definite” (i.e., I
does not contain both negative and positive numbers). If I is indefinite, write I = I+ ⊎ I− as
the union of two definite intervals and use the fact that I × I ′ = (I+ × I ′) ∪ (I− × I ′). Case
(iv.3): both 1/I and 1/I ′ are finite. From part (i), we have 1/I = [1/b, 1/a] and similarly for 1/I ′.
From case (iv.2), we have (1/I) × (1/I ′) = [min(1/E), max(1/E)]. Using part (i) again, we have
I×I ′ = [1/ max(1/E), 1/ min(1/E)]. Note this expression cannot be simplified to [min(E), max(E)],
e.g., if E = {−2, 1} then 1/ max(1/E) 6= min(E). Finally consider case (iv.4). Since the previous
cases do not hold, it follows from {0,∞} ⊆ I ′ that I is definite (either positive or negative). Also,
I ′ is co-definite (i.e., its complement is definite). Defining “co-negative” or “co-positive” similarly,
we verify

I × I ′ =






[a′a, b′b] if I is positive, I ′ is co-positive, and b′b < a′a,
[a′b, b′a] if I is positive, I ′ is co-negative, and b′a < a′b,
[b′a, a′b] if I is negative, I ′ is co-positive, and a′b < b′a,
[b′b, a′a] if I is negative, I ′ is co-negative, and a′a < b′b,
⊥ else.

This is slightly summarized in the statement of the lemma. Q.E.D.

A corollary of this lemma is that the four arithmetic operations preserves intervals. Using these
rules, we can implement arithmetic for continued fractions in which we maintain the intervals as
terms are egested and ingested. The chordal metric may be used to show that eventually, a new
term is egested.
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Exercises

Exercise 9.1: Consider the process for z(x, y) above.
(i) Carry out the transformations for ingesting a single term of x; likewise, for a single term
each from x and from y.
(ii) Carry out the transformation for ingesting a pair of terms simultaneously from x and from
y. (There are 4 cases depending on whether x, y are in complementary form or not.)
(ii) Suppose we only want to ingest one term from either x or y. Discuss heuristics to decide
which term should be ingest. 2

Exercise 9.2: Modify lemma 8 for open or half-open intervals. 2

Exercise 9.3: (Gosper) Let z(x, y) be given by (52). Modify the egestion algorithm above to output
the value of z in decimal notation. In particular, we can print the value of any continued
fraction in decimal notation. 2

Exercise 9.4: Suppose x, y are algebraic numbers of degree at most d and height at most h. Bound
(in terms of d, h) the number of terms of x, y that must be egested before we can egest a term
of z = x + y. 2

Exercise 9.5: (Vuillemin)
As an alternative to regular continued fractions we choose the partial denominators qi as
follows: Let ⌊r⌉ (rounding of r) denote the integer nearest to a real number r, breaking ties
in some systematic way9. For definiteness, we choose ⌊r⌉ = ⌊r⌋ in case of a tie. Then define
ZCF(r) = 1/(r − ⌊r⌉). The Z-continued fraction of r is the sequence

[q0, q1, . . .]

where qi = ⌊ri⌉ and r0, r1, . . . is the sequence r0 = r and ri+1 = ZCF(ri).
(i) Show that |qi| ≥ 2 for i ≥ 0.
(ii) If |qi| = 2 then qi+1 has the same sign as qi.
(iii) If the sequence [q0, q1, . . .] terminates then the last term is different from −2.
(iv) Replace the rounding function ⌊r⌉ in the definition of the Z-continued fraction by a more
pragmatic version that can return any value q such that ∆(r, q) < 1 (the chordal metric of §2).
Prove that this new continued fraction [q0, q1, . . .] (which is no longer uniquely determined by
r) has the value r. Vuillemin calls this the E-continued fraction of r. 2

9There are four common ways of doing this — always pick the larger, always the smaller, always the smaller
magnitude or always the larger magnitude. Thus ⌊1.5⌉ = 2, 1, 1, 2 depending on which of these four rules are used.
Likewise, ⌊−1.5⌉ = −1,−2,−1,−2.
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[56] T. Dubé, B. Mishra, and C. K. Yap. Admissible orderings and bounds for Gröbner bases
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Nullstellensatz. PhD thesis, Courant Institute, N.Y.U., 1989.

[59] T. W. Dubé. The structure of polynomial ideals and Gröbner bases. SIAM J. Computing,
19(4):750–773, 1990.
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