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Preface

Much of this book has been used for a course in thermodynamics for beginning
graduate students in materials science and engineering (MS&E) and is considered
as core material. Those who enroll in the course come with a variety of back-
grounds, although all have encountered thermodynamics at least once in their
previous studies so that a minimum amount of time is spent on the fundamentals
of the subject.

As compared with the available texts on MS&E thermodynamics, we think
that the material covered in this book can claim to adopt a more modern approach
in that we:

(A) Recognize the impact of the computer on the teaching of MS&E thermo-
dynamics. While the impact of computers on the application of thermo-
dynamics in industry is widely known, their influence on the teaching of
thermodynamics to MS&E students has not been sufficiently recognized
in texts to date. Our philosophy on how computers can best be utilized in
the teaching environment is given in more detail below.

(B) Make the students aware of the practical problems in using thermodynam-
ics. It has been our experience that it is easy for students to be seduced by
the charming idea of the ability of thermodynamics to predict something
from nothing. Many seem to believe that one has only to sit down with a
piece of commercial software and request the prediction of equilibrium in
the X–Y–Z system. In an effort to enable students to have a more realistic
outlook, we have placed a lot of emphasis on system definition. Proper
system definition can be particularly difficult when considering chemical
equilibria in high-temperature systems. The ability to arrive at incorrect
results from thermodynamic calculations on a poorly defined system is
something of which all students should be made aware.

(C) Emphasize that the calculation of the position of phase and chemical equi-
librium in complex systems, even when properly defined, is not easy. It
usually involves finding a constrained minimum in the Gibbs energy. It
is nevertheless possible to illustrate the principles involved to students
and this we have set out to try and do. With this aim in mind, the use
of Lagrangian multipliers is introduced early on for the simplest case of
phase equilibrium in unary systems. The same procedure is then followed
in its application to phase equilibria in binary systems and the calculation
of chemical equilibria in complex systems.

xiii
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(D) Relegate concepts like equilibrium constants, activities, activity coeffi-
cients, free-energy functions, Gibbs–Duhem integrations, all of which
seemed so important in the teaching of thermodynamics 50 years ago,
to a relatively minor role. This change in emphasis is again a result of the
impact of computer-based calculations.

(E) Consider the use of approximations of higher order than the usual
Bragg–Williams in solution-phase modeling.

THE ROLE OF COMPUTERS IN THE TEACHING
OF THERMODYNAMICS

New tools can lead us to new, better ways of teaching, if only we apply a
modicum of creativity and common sense. In the process some of our cherished
traditions will need to go, as will some of what we teach now.

There is no denying the impact of computers on the application of thermo-
dynamics to practical problems in MS&E. There is an equal expectation that
computers should also have a major influence on the way that thermodynamics
is taught to students in this discipline. One might ask whether ground-breakers
like Lewis and Randall, who did so much to influence the way that chemical
thermodynamics was taught some 80 or so years ago, would have done things
as they did if they had had access to a modern computer.

Some consideration is needed, however, to achieve the optimum use of com-
puters in a course such as the one covered by these chapters. There can be no
argument about the tremendous graphics capabilities of computers, a tool capable
of providing a vast improvement in the presentation of results from thermody-
namic calculations. This aspect alone would have delighted Gibbs, who was keen
on using plaster models for property visualization.

We firmly believe that the use of commercial blackbox thermodynamic soft-
ware, widely used in research and industry, has no place in the teaching of
thermodynamics. It is much more important that students understand the fun-
damentals of the problem they are trying to solve. As an intermediate way,
between the use of blackbox thermodynamic software and students having to
write their own programs, we believe that the use of nonlinear equation solvers
is to be preferred. Their use demands that students understand the fundamentals
and yet still offers the advantages afforded only by the use of computers without
requiring the student to be either a skilled programmer or an expert in numer-
ical methods. There are many appropriate packages around which are suitable
for this task—Matlab©, MathCad©, EES©, and Solver in Microsoft Excel© are
examples. Many of the problems in these chapters are written around the use of
such programs. While there remain some of the older style of problem, with sim-
ple models, used for hand calculation, their use permits the student to encounter
problems based on real systems.

The solution of thermodynamic problems invariably involves the minimization
of a function or the solution of a set of nonlinear equations. Before computers,
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this led to the simplification of problems so that they were made amenable for
hand calculation. With computer assistance, however, it is no longer necessary
that student exercises involve only perfect gases or ideal or regular solutions
or that the calculation of phase diagrams should be confined to the simplest
two-phase equilibrium problems. With a computer, solving real system problems
becomes just as straightforward. There is the added advantage that computational
errors, so common in hand calculations, are more easily avoided.

There is another important aspect to the impact of computers in thermody-
namics: They have changed the way in which calculations are carried out and
we believe that this should also be reflected in the material presented in a course
on MS&E Thermodynamics. For example:

1. In the teaching of phase equilibria, it has been usual to consider the equal-
ity of chemical potentials of all components in all phases, μ

(i)
i = μ

(j)

i , as
the cornerstone of such calculations. Although not denying the importance
of students learning the derivation and application of these criteria, they
should also appreciate that its application is restricted to calculating the
equilibrium between two prespecified phases. When more complex situa-
tions have to be considered, a whole new philosophy for carrying out phase
equilibria calculations is needed. Modern students should be aware of these
developments.

2. The equation �G
◦ = −RT loge K

◦ has played a key role in the teach-
ing of chemical thermodynamics, but it should be remembered that this
equation is applicable to a single-chemical-reaction equation. Real-world
applications, however, often involve systems containing many species and,
therefore, many independent reaction equations. The solution of the chem-
ical equilibrium problem for such complex systems requires a different
approach. Again, while not denying that students should derive and use the
equilibrium constant equation, we believe that they should also be made
aware of how more complex systems can be handled through the use of
computers.

3. Analytical representation of thermodynamic properties, no matter how com-
plex the function required, is also of little concern when fed into a computer.
But it has changed the way that students spend their time in learning the
fundamentals. Things like the counting of squares or the weighing of paper
cut-outs for the graphical solution of Gibbs–Duhem integrations, so much
a part of the learning experience in the precomputer era, are a thing of the
past.

In considering both unary and binary systems, the approach has been to present
the material in the following order:

(i) Macroscopic thermodynamics
(ii) Microscopic models

(iii) Phase equilibria
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We are aware of some of the shortcomings of the material presented. Specifi-
cally:

1. The book is restricted almost completely to a consideration of unary and
binary systems, although there are two chapters specifically on ternary
alloys and, in the case of homogeneous chemical equilibria, emphasis is
placed on treating multispecies systems.

2. We have avoided using any statistical mechanics in the chapters: There is
no mention of Hamiltonians or partition functions. We have also avoided
any mention of correlation functions by using the equivalent cluster proba-
bilities. Students who have completed the course should be in good shape to
follow up with a more formal study of statistical mechanics. Similarly, the
text is restricted to a consideration of alloys only but, again, students who
understand this material would have no difficulty in applying the concepts
to other types of materials.

3. There is almost nothing on stress as a variable since this requires a
specialized background of its own. For an excellent tutorial on this topic
see W. C. Johnson, “Influence of Stress on Phase Transformations,”
in Lectures on the Theory of Phase Transformations , Second Edition,
H. Aaronson, Editor, The Minerals, Metals and Materials Society,
Warrendale, PA, 1999, p. 35.

4. There is almost nothing on the influence of pressure on phase equilibria.

FURTHER READING

The following classic texts are especially valuable in giving an insight into the
meaning of thermodynamics and should be consulted by all students wishing to
specialize in the subject.

H. B. Callen, Thermodynamics and an Introduction to Thermostatics , 2nd ed., Wiley,
New York, 1985.

K. G. Denbigh, Principles of Chemical Equilibrium: With Applications to Chemistry
and Chemical Engineering , 4th ed., Cambridge University Press, 1981.

E. A. Guggenheim, Thermodynamics , 5th ed., North-Holland, 1967.

A. P. Pippard, Classical Thermodynamics , Cambridge University Press, 1960.

I. Prigogine and R. Defay, Chemical Thermodynamics , translated by D. H. Everett,
Longmans Green and Co., 1954.

H. Reiss, Methods of Thermodynamics , Dover Publications, 1996.

J. W. Tester and M. Modell, Thermodynamics and its Applications , Prentice-Hall, 3rd
ed., 1996
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Some books which are oriented to the application of thermodynamics to MS&E
and hence to the material covered in the present text are, in order of year of
publication:

C. Wagner, Thermodynamics of Alloys , Addison-Wesley, 1952.

L. S. Darken and R. W. Gurry, Physical Chemistry of Metals , McGraw-Hill, 1953.

A. Prince, Alloy Phase Equilibria , Elsevier, Amsterdam, 1966.

T. B. Reed, Free Energy of Formation of Binary Compounds , MIT Press, Boston,
1971.

R. A. Swalin, Thermodynamics of Solids , 2nd ed., Wiley, New York, 1972.

E. T. Turkdogan, Physical Chemistry of High Temperature Technology , Academic, New
York, 1980.

C. H. P. Lupis, Chemical Thermodynamics of Materials , North-Holland, 1983.

O. F. Devereux, Topics in Metallurgical Thermodynamics , Wiley, New York, 1983.

O. Kubaschewski, C. B. Alcock, and P. J. Spencer, Materials Thermochemistry , 6th
ed., Pergamon, 1993.

D. R. Gaskell, Introduction to the Thermodynamics of Materials , 3rd ed., Taylor &
Francis, 1995.

D. V. Ragone, Thermodynamics of Materials , Vols. I and II, Wiley, New York, 1995.

D. L. Johnson and G. B. Stracher, Thermodynamic Loop Applications in Materials
Systems , Minerals, Metals and Materials Society, Warrendale, PA, 1995.

J. B. Hudson, Thermodynamics of Materials: A Classical and Statistical Synthesis ,
Wiley, New York, 1996.

N. G. Saunders and A. P. Miodownik, CALPHAD: A Comprehensive Guide, Pergamon
Materials Series, Elsevier, Amsterdam, 1996.

M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations: Their Ther-
modynamic Basis , Cambridge University Press, 1998.

H. Aaronson, Ed., Lectures on the Theory of Phase Transformations , 2nd ed., Minerals,
Metals and Materials Society, Warrendale, PA, 1999.

D. R. F. West and N. Saunders, Ternary Phase Diagrams in Materials Science, 3rd
ed., Institute of Materials, London, 1992.

B. Predel, M. Hoch, and M. Pool, Phase Diagrams and Heterogeneous Equilibria: A
Practical Introduction , Springer-Verlag, Berlin, 2004.

S. Stolen and T. Grande, Chemical Thermodynamics of Materials: Macroscopic and
Microscopic Aspects , Wiley, Hoboken, NJ, 2005.

R. T. DeHoff, Thermodynamics in Materials Science, 2nd ed., CRC Press, Boca Raton,
FL, 2006.

H. L. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: The
Calphad Method , Cambdidge University Press, 2007.
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Quantities, Units, and Nomenclature

QUANTITIES AND UNITS

We have tried, throughout, to stick with the recommendations of the IUPAC
(International Union of Pure and Applied Chemistry) and IUPAP (International
Union of Pure and Applied Physics) on quantities, units, and symbols and also
for the labeling of graph axes and table headings. See the following references:

1. Mills et al., Quantities, Units and Symbols in Physical Chemistry , 2nd ed.,
Blackwell, Oxford, 1993

2. IUPAC Report, Notation for states and processes, significance of the word
“standard” in chemical thermodynamics, and commonly tabulated forms of
thermodynamic functions, J. Chem. Thermo., 14 (1982), 805–815.

Physical quantity = numerical value × unit

SI Units (SI = Systéme International) are used.

Primary Quantity Name Symbol Unit Symbol

Length l Meter m
Mass M Kilogram kg
Time t Second s
Electric current I Ampere A
Thermodynamic temperature T Kelvin K
Amount of substance n Mole mol
Luminous intensity Iv Candela cd

The amount of substance is of special importance to us. Previously referred
to as the number of moles , this practice should be abandoned since it is wrong
to confuse the name of a physical quantity with the name of a unit. The amount
of substance is proportional to the number of specified elementary entities of
that substance, the proportionality factor being the same for all substances: The
reciprocal of this proportionality constant is the Avogadro constant . An acceptable
abbreviation for amount of substance is the single word amount .

xix
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The elementary entities may be chosen as convenient. The concept of formula
unit is important. One mole of Fe2O3 contains 5 mol of atoms, 1 mol of AlNi
contains 2 mol of atoms, and 1 mol of Al0.5Ni0.5 contains 1 mol of atoms.

Derived Quantity Name Unit Symbola

Force Newton N (m kg−2)
Pressure (or stress) Pascal Pa (N m−2)
Energy (or work or quantity of heat) Joule J (N·m)
Surface tension Newton per meter N m−1

Heat capacity (or entropy) Joule per kelvin J K−1

Specific heat capacity, specific entropy Joule per kilogram kelvin J kg−1 K−1

Specific energy Joule per kilogram J kg−1

Molar energy Joule per mole J mol−1

Molar heat capacity (or entropy) Joule per mole kelvin J mol−1 K−1

aSymbols in parentheses refer to primary units.

NOMENCLATURE

Some IUPAC recommendations which are particularly relevant to these notes are
as follows:

1. Number of entities (atoms, molecules, formula units) N

2. Amount n

3. Mass M

4. A specific quantity refers to per-unit mass, a molar quantity to per-unit
amount of substance. We use lowercase for specific and subscripted with
m for molar. In the case of volume, for example,

v = V

M
Vm = V

n

5. Avogadro’s constant L or NA

6. Relative atomic mass (atomic weight) Ar ; relative molecular mass (molec-
ular weight) Mr . The terms atomic and molecular weights are obsolete.

7. Mass fraction w; mole fraction x; sublattice mole fraction y
(j)

i for species
i on sublattice j

8. Total pressure p; partial pressure pi

9. Partial molar quantities are written as �GFe and not as �GFe. The subscript
is sufficient to denote that it is a partial quantity without any additional bar
over the symbol.

10. Accepted notations for state of aggregation are g for gas, l for liquid, s for
solid. Further distinctions like cr for crystalline, vit for vitreous, and so on,
are acceptable.
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11. Methods for denoting processes: Any of the following may be used:

�
g
l H

◦ = �vapH
◦ = H

◦
(g) − H

◦
(l)

Accepted abbreviations for vaporization, sublimation, melting are vap, sub,
and fus, respectively.

The symbol for mixing (formation from pure components of the same
structure as the solution) is mix as a subscript, for example, the molar
enthalpy of mixing is written as

�mixHm(500 K)

The symbol for formation (formation from pure components in their
stable state at the temperature of interest) is f and so the standard molar
enthalpy of formation is written as

�f H
◦
m(298.15 K)

The symbol for reaction is r and so the standard molar Gibbs energy of
reaction is written as

�rG
◦
m(1000 K)

A process under fixed conditions is written with the function followed
by | with the conditions as a subscript, for example, dG|T ,P

12. The notation for pure substance when not in its standard state is ∗, for
example H ∗.

13. The ideal state should be superscripted, for example, �mixH
id
m .

14. Note that unit names are always in lowercase, even if the symbols are in
uppercase. This is the case even where the quantity has been named after
an eminent scientist. Thus we write zero kelvin or 0 K but not zero Kelvin.

15. There are no dots in unit abbreviations, for example, r = 10 cm (not r = 10
cm.).

16. There are no dots between unit symbols, for example, J mol−1 K−1

17. It is often advantageous to express many molar thermodynamic quantities
in dimensionless form, for example, G/RT or S/R.

18. It is occasionally advantageous to use more than one subscript separated
by commas. Subscripts to subscripts should be avoided.

19. Graph and table labeling should be like T /K and not T (K). This removes
confusion with some of the more complicated quantities.





1 Review of Fundamentals

The following brief notes cover some of the more important points which students
have met in previous courses on thermodynamics.

A principal objective of thermodynamics is to provide relations between cer-
tain equilibrium properties of matter. These relations lead to predictions about
unmeasured properties. Thus, redundant measurements can be avoided, as the
following sketch illustrates.

Properties
D, E, F

Properties
A, B, C

Thermodynamic
relations

Prediction

Measure separately

or, go
this way

These thermodynamic relations sometimes connect quantities which might not
appear to be related at first glance. An important example in regard to the subject
of this book is illustrated in the following sketch:

Properties
ΔH, cp, m

Phase
diagram

Thermodynamic
relations

Prediction

Measure separately

or, go
this way

It is not immediately obvious that the phase diagram shown in the sec-
ond sketch, traditionally obtained from thermal analysis measurements, can be
calculated, in principle, from appropriate thermochemical measurements: Ther-
modynamics is concerned with the macroscopic properties of substances and
systems at equilibrium (the definition of equilibrium is given later). Statistical
mechanics is concerned with interpreting the equilibrium macroscopic properties
in terms of microscopic properties, that is, in terms of atoms, electrons, bonds

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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2 REVIEW OF FUNDAMENTALS

between atoms, and so on. Specification of a microscopic state requires ≈1023

independent variables, usually called degrees of freedom in thermodynamics,
whereas specification of a macroscopic state requires only a few independent
variables (two in the case of a pure substance undergoing p–V work only). The
reason for this enormous reduction in the number of independent variables is
that the macroscopic properties are determined by the time average of the many
possible microscopic states.

Most of this course is concerned with macroscopic thermodynamics, but we
will also cover some elementary aspects of statistical mechanics.

Historical Perspective Newton (1687) quantified the concepts of force and
physical work (= force × distance) but never mentioned energy. This concept
came much later from Thomas Young (1807) and Lord Kelvin (1851), the latter
appreciating that energy was the primary principle of physics. The science of
mechanics is concerned with applying the conservation of energy to physical
work problems.

Energy is the capacity to do work, potential energy being the form by virtue
of position and kinetic energy being the form by virtue of motion.

There is no mention of heat in mechanics. The early calorific theory of heat had
to be discarded following the experiments of Count Rumford (1798) and Joule
(ca. 1850), who showed the equivalence of work transfer and heat transfer; that
is, they are simply different forms of energy transfer. Work is energy transferred
such that it can, in principle, be used to raise a weight, while heat is energy
transferred as a result of a temperature difference. Atomistically, in work transfer,
the atoms move in a uniform fashion while in heat transfer the atoms are moving
in a disorganized fashion.

The equivalence of work transfer and heat transfer led to a broadening of the
meaning of the conservation of energy and this became the first law in the new
science of thermodynamics.

Later developments came from Carnot, Lord Kelvin, Clausius, and Boltzmann
with the realization that there are some limitations in the heat transfer–work
transfer process. This led to the idea of the quality of energy and the introduction
of a new quantity, entropy. The limitations on different processes could be
understood in terms of whether there is an overall increase in the thermal and/or
positional disorder.

1.1 SYSTEMS, SURROUNDINGS, AND WORK

In thermodynamics we consider the system and its surroundings. It is up to the
thermodynamicist to define the system and the surroundings. The two might be

(i) isolated from one another, an isolated system;
(ii) in mechanical contact only, an adiabatic system;

(iii) in mechanical and thermal contact, a closed system; or
(iv) also able to exchange matter, an open system.
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By mechanical contact we mean that work can be exchanged between the
system and the surroundings. As is illustrated schematically in Figure 1.1, work
is always measured in the surroundings and not in the system. For the moment,
we consider only mechanical work; other types of work are consider later in
Section 1.5.2.

Convention Work done by the system on the surroundings is taken as positive.
Mechanical work is defined as the product of a generalized force f and its
conjugate displacement variable dX:

δw = fsurr dX (1.1)

The subscript surr refers to the surroundings.

Note that we write δw and not dw because work exchanged between system
and surroundings is a path-dependent quantity. Paths may be drawn in state space
(the space spanned by the chosen independent variables) with many different
paths being possible in the joining of two points. Consider, for example, the two
paths in going from A to B in Figure 1.2. Clearly, if we go along the path ACB the
work done (

∫
p dV ) is different from when we go along the path ADB . No work

is done along the paths AC and BD (the volume is constant) with these transitions
being made possible by heat transfer. This path dependence demonstrates that
work is not a state function. which is defined as one which is path independent
when considering movement between two points in state space.

Any state function Y , being path independent, is zero when a system is put
through a cyclic path or loop, that is, for a state function,∮

dY = 0

Especially important is the path where equilibrium is maintained, between sys-
tem and surroundings, at all points as the path is traversed—a quasi-static or
reversible path. Although impossible to achieve in practice, since we would have
to go infinitely slowly, it is a very useful concept. When fsurr = f , the latter being

System

w

Surroundings

Figure 1.1 Work is measured in the surroundings and not in the system. On our con-
vention, work done by the system is taken as positive.
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A

C

B

D

p

V

Figure 1.2 Work is not a state function; it depends on the path taken. The work done
on going from A to B via ACB is different from that along the path ADB .

the value in the system, we can write

δwrev = f dX (1.2)

An equation of state (EOS) is a relation between conjugate (defined later) work
variables for a body in equilibrium. Some well-known examples of approximate
EOS are

σ = kε (Hooke’s law)

pV = nRT (perfect gas law)

p = −BT

V0
�V (solid compression)

Given an EOS, we can then evaluate wrev = ∫
δwrev along quasi-static or

reversible paths. For the above EOS examples

wrev =
∫

σ dε =
∫

kε dε = 1

2
kε2

(wrev)T = −
∫

p dV = nRT loge

(
V2

V1

)

wrev = −
∫

p dV = 1

2

BT

V0
(�V )2

1.2 THERMODYNAMIC PROPERTIES

Thermodynamic properties may be classified into being either extensive or inten-
sive.

1. The meaning of extensive is clear. If M is mass and k a constant, then, in
the case of volume, for example,

V (kM) = kV (M) (1.3)
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Mathematically, extensive properties like V are said to be homogenous
functions of the first degree.

2. Intensive properties can be divided into two types and it is important to
distinguish between the two:
(a) Field : T , p, μ (much more later about this function)
(b) Density : Vm = V/Ntotal, Hm = H/Ntotal, and mole fraction xi =

Ni/Ntotal

There is an important distinction between these two kinds of intensive variables
in that a field variable takes on identical values in any coexisting phases at
equilibrium, a density variable does not.

1.3 THE LAWS OF THERMODYNAMICS

The laws of thermodynamics can be introduced historically via experimental
observations and many equivalent statements are possible. Alternatively, they
may be stated as postulates, axiomatic statements, or assumptions based on
experience. In this approach, the existence of some new state functions (bulk
properties) is postulated with a recipe given for how to measure each of them.
This latter approach is adopted here.

(a) Zeroth Law Thermodynamic temperature T is a state function.
Recipe The thermodynamic temperature is equal to the ideal gas tempera-

ture, pVm/R. It is possible, therefore, to define T in terms of mechanical
ideas only, with no mention of heat. Note, however, that the thermody-
namic temperature is selected as a primary quantity in the SI system.

(b) First Law The internal energy U is a state function.
Recipe If we proceed along an adiabatic path in state space, then

dU = −δwadiabatic (1.4)

The negative sign here arises since, if work is done by the system, its
energy is lowered. Note that only changes in U can be measured. This
applies to all energy-based extensive thermodynamic quantities.

The first law leads to the definition of heat. Heat should only be
referred to as an energy transfer and not as an energy or heat content ;
that is, heat is not a noun, heat flow is a process.

For a nonadiabatic process, the change in U is no longer given by
the work done on the system. The missing contribution defines the heat
transferred:

dU = δq − δw (first law) (1.5)
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Just as δw is path dependent, δq is also path dependent; that is, q is not
a state function, whereas U is.

Equation (1.5) is the differential form of the conservation of energy
or first law for any system. Note that there is no specific mention of
p–V work in this statement. It is generally valid.

Convention Heat flow into the system is taken to be positive (Fig. 1.3).
Since both work and heat flow are measured in the surroundings, where
the field variables are taken to be constant, any changes in state in the
surroundings are always considered to be made quasi-statically.

(c) Second Law while the first law is concerned with the conservation of
energy, the second law is concerned with how energy is spread. Any spon-
taneous process occurs in a way so as to maximize the spread of energy
between accessible states of the system and its surroundings . Entropy is the
property which is the measure of this spread.

The second law is usually stated in two parts:

1. Entropy S of the system is a state function.
Recipe If the state of a system is changed reversibly by heat flow,
then the entropy change is given by

dS = δqrev

T
(second law, part 1) (1.6)

2. In a spontaneous process, entropy in the system plus surroundings, some-
times called the universe, is created (energy is spread).

The total entropy change of the system plus surroundings is then
given by

dSuniv = dS + dSsurr ≥ 0 (1.7)

In an isolated system there is no external creation of entropy so that

dSsurr = 0 and dS ≥ 0

q

System

Surroundings

Figure 1.3 Heat flow is measured in the surroundings. In our convention, heat flow into
the system is taken as positive.
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(d) Third Law The third law is not really a law of macroscopic thermody-
namics since its formulation requires some microscopic information. The
word law is too strong for a rule which is known to have exceptions. In a
form due originally to Planck, it can be stated as:
For any pure substance in a stable, perfectly crystalline form at 0 K, S can

be taken to be zero.
Note that:

(i) This is not to say that the entropy has an absolute value of zero.
Given time enough, all systems would undergo intranuclear and
isotopic changes. These are so slow, however, that they may be
considered to make a time-independent contribution; that is, they
contribute an additive constant to the entropy so that it is satisfac-
tory to take this as zero.

(ii) Mixtures are specifically excluded from the defining statement.
Thus glasses, solid solutions, and asymmetric molecules may have
residual entropies at 0 K.

(iii) Pressure is not mentioned in the defining statement. This is because
dS/dp = −dV/dT and the thermal expansivity α = (1/V ) dV/dT

is also zero at 0 K [see (1.28) for the relation between dS/dp and
β].

This wording of the third law means that the entropy of every pure crystalline
substance (element or compound) in its lowest energy state is taken to be zero
at 0 K. This wording does not preclude, for example, that S(C(diamond)) =
S(C(graphite)) = 0 at T = 0 K. Although there is an energy difference between
these two allotropes, the lower energy graphite states are not accessible to dia-
mond at low temperature: Only excitations to other diamond states are possible.
This is why both C(graphite) and C(diamond) can be given zero entropies at 0 K.

It is clear that microscopic (crystallographic) information about the substance
is needed in order to be sure that the substance is in its lowest energy state.
Specifying the composition of the substance alone is not sufficient. This is why
the third law cannot be regarded on the same macroscopic footing as the zeroth,
first, and second laws.

Example 1.1 State Functions
The changes in H (or any other state function) when a system is put through a
cycle is given by ∮

dH = 0

Consider the cycle shown in Figure 1.4. Each stage in the cycle is carried out
at a total pressure of 1 bar. We place no restriction on the steps that take place
(they do not have to be carried out quasi-statically) as long as the system at the
start and end points of each step is in internal equilibrium:
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Si(s) + O2(g) B SiO2(s)

1000 K

C

D

A

SiO2(s)

298 K

Si(s) + O2(g)

Figure 1.4 Enthalpy is a state function.

(A)
[
H

◦
(1000) − H

◦
(298)

]
Si(s) + [

H
◦
(1000) − H

◦
(298)

]
O2(g)

=
∫ 1000

298
[Cp(Si) + Cp(O2)] dT = 17,075 + 22,694 J

(B) −�f H
◦
(SiO2(s), 1000) = −857,493 J

(C)
[
H

◦
(298) − H

◦
(1000)

]
SiO2

=
∫ 298

1000
Cp(SiO2) dT = −43,611 J

(D) �f H
◦
(SiO2(s), 298.15) = +861,335 J

from which, for the cycle∮
(A − B − C − D) = 17,075 + 22,694 − 857,493 − 43,611 + 861,335 = 0

The same procedure may be followed for the state properties U, S, A, and G.
For all of these state functions,

∮
dY = 0.

1.4 THE FUNDAMENTAL EQUATION

The combined statement of the first and second laws comes by first expressing
the first law for any process,

δq = dU + δw (1.8)

and then introducing the second law for a reversible process, δqrev = T dS, to
obtain

T dS = dU + δwrev (1.9)

For a closed system of fixed amounts of substances doing p–V work only we can
write δwrev = p dV so that

dU = T dS − p dV (p–V work only, fixed amounts) (1.10)
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Although we have derived this equation by considering reversible processes, it
is applicable to any process as long as the initial and final states are in internal
equilibrium, since it involves state functions only. It is called the fundamental
equation or Gibbs’s first equation and we consider its application later.

It can be seen from (1) that the natural independent variables of the state
function U are S and V .

1.5 OTHER THERMODYNAMIC FUNCTIONS

For systems undergoing p–V work only, we have seen that the primary func-
tions of thermodynamics are the mechanical variables p and V together with
the variables T , U , and S. For convenience, however, many other state func-
tions are defined since it is usually not convenient for the natural variables of a
system to be S and V ; that is, we do not usually hold these variables constant
when carrying out experiments. The introduction of new state functions enable
us to change the natural variables to anything desired (in mathematical terms, we
perform Legendre transformations).

The most important of these new derived functions are as follows:

1. Enthalpy H is defined as

H = U + pV (1.11)

Its usefulness comes from the fact that, at constant p,

dH |p = dU + p dV (1.12)

and, if this equation is compared with

dU = δq − p dV (1.13)

then we see that

dH |p = δq (1.14)

Note that there is nothing in this last equation about maintaining constant T

or carrying out the process reversibly. An enthalpy change can be obtained
from the measured heat flow required to bring about the change at constant
p. This is the basis of calorimetry .

2. Heat capacities Cp and CV are two response functions (partial derivatives
of other functions):

CV =
(

∂U

∂T

)
V

Cp =
(

∂H

∂T

)
p

3. Helmholtz energy A is defined as A = U − T S. For an isothermal process
dA = dU − T dS, but for a reversible process δwrev = −dU + T dS, so
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that, for a reversible, isothermal process,

−dA|T = δwrev (1.15)

that is, in an isothermal process, the decrease in A measures the maximum
work performed by the system.

4. Entropy change has already been defined: δqrev = T dS, where δqrev can
be expressed in terms of the heat capacity at constant pressure. This then
gives

dS|p = δqrev|p
T

= Cp

T
dT (1.16)

and, when this is integrated, advantage is taken of the third law to obtain
absolute entropies:

S|p(T ) =
∫ T

0

Cp

T
dT (1.17)

In practice, it is more useful to do the integration in two stages:

S|p(T ) − S|p(298 K) =
∫ T

298K

Cp

T
dT (1.18)

5. Gibbs energy G is defined as G = U + pV − T S. For an isothermal, iso-
baric process

dG = dU + p dV − T dS (1.19)

For a reversible isothermal, isobaric process (combine with δwrev =
−dU + T dS),

−dG|p,T = δwrev − p dV (1.20)

This is the total reversible work less the p–V work so that, in an isothermal,
isobaric process, the decrease in G measures the maximum non–p–V work
performed . It is the most widely used derived function in materials ther-
modynamics. The non–p–V work of most interest to us is chemical work.

By using the definitions of the derived functions H , A, G, we can derive the
other three Gibbs equations for p–V work only, fixed amounts:

dH = T dS + V dp (1.21)

dA = −S dT − p dV (1.22)

G = −S dT + V dp (1.23)

The natural variables of G are p, T , which are the ones usually controlled in
experiments and this accounts for the importance of this particular state function.
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1.5.1 Maxwell’s Equations

Return to (1.10), which is the total differential of U = U(S, V ). We can rewrite
this equation in terms of partial derivatives as follows:

dU =
(

∂U

∂S

)
V

dS +
(

∂U

∂V

)
S

dV (1.24)

If we compare (1.10) with (1.24), we see that

(
∂U

∂S

)
V

= T (1.25)

(
∂U

∂V

)
S

= −p (1.26)

Application of standard partial differentiation theory like this to the other
Gibbs equations leads to similar relations and further relations can be obtained
from the cross-derivatives, for example,

(
∂2U

∂S ∂V

)
V

=
(

∂2U

∂V ∂S

)
S

(1.27)

which, using (1.25), gives

−
(

∂p

∂S

)
V

=
(

∂T

∂V

)
S

(1.28)

Such relations are called Maxwell’s equations. Their importance lies in the fact
that they can point to the recognition of redundant measurements and offer the
possibility of obtaining difficult-to-measure property variations from variations
in properties which are easier to measure.

All the equations in this section apply to systems performing p–V work only
and are of fixed composition. We must now consider the modifications brought
about by the inclusion of other types of work and the effect of changes in the
amounts of substances which comprise the system.

1.5.2 Defining Other Forms of Work

With the conservation of energy as the fundamental principle, it is possible to
invent other forms of thermodynamic work which can then be incorporated into
the conservation-of-energy equation. By doing this, force and displacement are
used in a much broader sense than they are in mechanical work. Any form of
work which brings about a change in internal energy is to be considered. It may
be a potential times a capacity factor or a field times a polarization.
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Most notably in the present context is the invention, made by Gibbs, of
chemical work. Chemical work can, of course, be considered as originating in
the potential and kinetic energies of the atoms and electrons, but Gibbs realized
that it is more useful to regard it as a separate form of work. In doing so, he
introduced a most important new state function, the chemical potential , and also
extended the fundamental equations to incorporate this new form of work.

The fundamental equations previously given apply to closed systems, that is,
of fixed amounts of substance. They can be extended to include varying amounts,
either for the case of a closed system, in which the amounts of substances are
varying due to chemical reactions occurring within the system, or to open sys-
tems, where substances are being exchanged with the surroundings and in which
reactions may or may not be occurring. In both cases chemical work is involved;
that is, changes in internal energy are occurring.

If the amounts of substances can vary in a system, then, clearly, the state
functions will depend on the ni . In the case of U , for example, we now have
U = U(S, V, n1, n2 . . .). Equation (1.24) will be modified to

dU =
(

∂U

∂S

)
V,nj

dS +
(

∂U

∂V

)
S,nj

dV +
∑

i

(
∂U

∂ni

)
S,V,nj

dni (1.29)

where nj means all the others except i.
In order to be able to write this in a manner similar to (1.10), we need a

symbol for the partial derivative of U with respect to ni . The usual symbol is μi

and its name is the chemical potential (p–V and chemical work only):

dU = T dS − p dV +
∑

i

μi dni (1.30)

The other Gibbs equations may be modified in a similar fashion (p–V and
chemical work only):

dH = T dS + V dp +
∑

i

μi dni (1.31)

dA = −S dT − p dV +
∑

i

μi dni (1.32)

dG = −S dT + V dp +
∑

i

μi dni (1.33)

Note that the definition of μi varies depending on which function is being used:

μi =
(

∂U

∂ni

)
S,V,nj

=
(

∂H

∂ni

)
S,p,nj

=
(

∂A

∂ni

)
T ,V,nj

=
(

∂G

∂ni

)
T ,p,nj

(1.34)
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This extension of thermodynamics from a study of heat engines to its applica-
tion to phase and chemical equilibrium by Gibbs represents one of the greatest
achievements in nineteenth-century science. Recall that, in the application of
thermodynamics to heat engines, the nature of the fluid of the engine is unim-
portant, but in introducing chemical work, the nature of the material constituting
the system becomes all important.

Chemical work is not the only possible form of work which might have to
be considered. Some examples of different types of thermodynamic work are
given in the accompanying table. In order to emphasize the fact that (1.10) is a
restricted form of the fundamental equation, let us write down a more complete
statement which takes into account some other possible types of work:

dU = T dS − p dV +
N∑

i=1

μi dni + φ dm

+
N∑

i=1

ψi dQi + σ dε + γ dAs + · · · (1.35)

In writing the equation in this form it is assumed that the various types of work
are independent of one another. This may not always be the case; often, two or
more work terms are coupled .

A complete new set of Maxwell’s equations can also be obtained from the
fundamental equations for systems undergoing these various forms of work.

Type of Field Extensive Differential
Work Variable Variable Work in dU

Mechanical

Pressure–volume −p V −p dV

Elastic τij V ηij V
∑

τij dηij

Gravitational φ = gh m = ∑
Mini φ dm = ∑

ghMi dni

Surface γ As γ dAs

Electromagnetic

Charge transfer ψi Qi ψi dQi

Electric polarization E p E · dpi

Magnetic polarization B m B · dm

Chemical

No reactions μi ni species
∑

i μi dni

With reactions μi ξ extent of
∑

i νiμi dξ

reaction



14 REVIEW OF FUNDAMENTALS

1.6 EQUILIBRIUM STATE

A precise definition of a system in equilibrium is not straightforward. To define a
system as being in equilibrium when its properties are not changing with time is
unacceptable—the state which involves a steady flow of heat or matter through
a system is a time-independent state but systems in which these processes are
occurring are not in equilibrium; there are field gradients. We need a better
definition and one is discussed below.

The second law, part 2, states that dSuniv ≥ 0, with the inequality referring to
spontaneous processes and the equality to reversible processes, the latter corre-
sponding with the system being in equilibrium.

If we consider an isolated system (no work or heat flow and, therefore, constant
U and V ), then dSsurr = 0 so that

dS|U,V = dSuniv ≥ 0 (1.36)

In other words, for an isolated system, S reaches a maximum at the equilibrium
state, making this state function the appropriate thermodynamic potential for
isolated systems. The important point here is that, under certain constraints, we
have replaced a property of the universe (system + surroundings) by a property
of the system alone.

Of more practical interest is to obtain the appropriate thermodynamic potential
for constant p and T conditions and the nature of the extrema conditions. We
can do this as follows:

G = U + pV − T S (1.37)

dG = dU + p dV + V dp − T dS − S dT (1.38)

= δq − psurr dV + p dV + V dp − T dS − S dT (1.39)

and at constant p and T where psurr = p we have

dG|p,T = −T dSsurr − T dS

= −T dSuniv ≤ 0 (1.40)

From the general statement of the second law, dSuniv is a maximum at
equilibrium, it follows from (1.40) that the appropriate thermodynamic potential
for conditions of constant p and T is the Gibbs energy and G evolves to a
minimum at equilibrium . Since these conditions are the most frequently met, the
Gibbs energy is usually the most important thermodynamic potential of interest.
Note that, again, a property of the universe has been replaced by a property of
the system alone.

For small excursions from an equilibrium state, we can expand any function
for G as a Taylor series in the state space variables. As illustrated in Figure 1.5,
which shows G as a function of only two state space variables, the extrema in
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Local minimum

Maximum

Saddle point

Global minimum

Figure 1.5 Local and global equilibrium, drawn using Matlab®.

multidimensional space can be maxima, minima, or saddle points (a maximum in
some directions, a minimum in others). The required conditions for the extremum
to be a minimum when there are two such variables, x and y, can be written as

∂2G

∂x2
and

∂2G

∂y2
> 0 (1.41)

∂2G

∂x2

∂2G

∂y2
>

(
∂2G

∂x ∂y

)2

(1.42)

Failure of the condition given in (1.40) implies a saddle point.
These conditions only apply, however, for small excursions from the equilib-

rium point. As shown in Figure 1.5, it is possible to have a local minimum which
fulfils the above conditions, but it is not the global minimum which we seek in
our thermodynamic calculation.

For both the local and global minima, a small fluctuation from the equilibrium
point will result in dG|p,T > 0 and the system will wish to return to its equilibrium
point. In both cases also the field variables (T , p, μA) are constant throughout
the system. This means that we can apply the equations of thermodynamics
equally well to the metastable local equilibrium and the stable global equilibrium
situations if we ensure that there are no large-scale fluctuations which will take
us from the local to the global equilibrium.

The global equilibrium, that is, the true equilibrium state, is when �G|p,T > 0
for any excursions from that state, providing the start and end states are main-
tained in internal equilibrium by the imposition of extra constraints. It is this
definition of the equilibrium state which is mainly used throughout these chapters,
but, as has been indicated previously, other thermodynamic potentials fulfil the
same role as G for other conditions.

EXERCISES

1.1 Starting from Al(s) and O2(g) at 298 K and 1 bar, use the data given below
and the cycle illustrated in Figure 1.6 to confirm that

∮
dS = 0:
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2Al(l) + 1.5O2(g) B Al2O3(s)

1000 K

C

D

A

298 K

2Al(s) + 1.5O2(g) Al2O3(s)

Figure 1.6 Cycle to be considered.

Tfus(Al) = 933 K �fusHm = 10460 J mol−1

Cp = a + bT + cT 2 + dT −2

a b/103 c/106 d/10−5 S
◦
(298)/J K−1 mol−1

Al(s) 20.7 12.4 0 0 28.3
Al(l) 31.8 0 0 0 0
O2(g) 30 4.184 0 −1.67 205.0
Al2O3(s) 106.6 17.78 0 −28.53 51.0

1.2 Starting with CaCO3(s) at 298 K and 1 bar: .

(a) Calculate the heat transferred in producing 1 mol of CaO(s) at 1200 K
and 1 mol of CO2(g) at 500 K.

(b) Calculate the standard entropy change for this process.

1.3 .(a) Write down the full equations required for evaluation of the standard
enthalpy and Gibbs energy for the reaction equation

CaCO3(s) = CaO(s) + CO2(g)

(b) Determine the temperature at which �G
◦ = 0 for this reaction equation.

(c) Calculate the enthalpy of reaction at the temperature for which the
equilibrium pressure of CO2 is 1 bar.

Cp = a + bT + cT 2 + dT −2/J K−1 mol−1

�f H
◦
(298K)/ S◦

(1000K)/

Substance kJ mol−1 J K−1 mol−1 a b × 103 c × 105 d × 10−5

CaO(s) −634.92 96.96 57.75 −107.79 0.53 −11.51
CO2(g) −393.51 269.19 44.14 9.04 0 −8.54
CaCO3(s) −1206.60 220.21 99.55 27.14 0 −21.48
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1.4 Given the following data:
Note that 〈C◦

p〉 refers to the average values of C
◦
p over the range 298–

1000 K. Calculate: .

(a) The standard entropy of oxidation of Si(s) to SiO2(s) at 1000 K.
(b) The same using the values of 〈C◦

p〉. Compare with the result from (a).

S
◦(s, 298 K)/ S

◦
1000 − S

◦
298)/ 〈C◦

p〉/
Substance J K−1 mol−1 J K−1 mol−1 J K−1 mol−1

Si(s) 18.81 28.69 23.23
O2(g) 209.15 38.43 32.10
SiO2(s) 27.78 72.15 56.02

(c) �f H
◦
(SiO2, 1000 K) using the value of �f H

◦
(SiO2, 298 K) in the

text.

1.5 Derive (1.21), (1.22), and (1.23) from (1.10) and the definitions of the
functions H , A and G.

1.6 .(a) If the entropy of transition of a pure substance A, �
β
αS

◦
(A), at constant

p is constant, show that the corresponding enthalpy change, �
β
αH

◦
(A),

is also constant.
(b) If the phase transition of a pure substance is a function of T and p and

the value of �
β
αS

◦
(A) is independent of the change in conditions, show

that the value of �
β
αH

◦
(A) is no longer constant, as was the case for

the constraint of constant p. (Hint : Use the Maxwell relationships.)





2 Thermodynamics of Unary
Systems

A unary, or one-component, system refers to a pure substance of fixed compo-
sition. Importantly, this includes molecules and compounds as well as the pure
elements. For molecules and compounds, their formation properties are often the
most important. Formation properties are defined as the properties of the com-
pound relative to those of the elements in their most stable form at the temperature
and pressure of interest.

In this chapter, only p–V work is considered. Chemical work, surface work,
and so on, are ignored.

2.1 STANDARD STATE PROPERTIES

Standard states, by definition, always refer to a pressure of 1 bar. Reference states,
which are also used in thermodynamics, are not necessarily so constrained. We
can also speak of reference states for standard state properties, for example, a
reference state at 298.15 K for a standard state property at 1 bar.

For the moment we concentrate on properties at 1 bar, that is, on standard
state properties.

Collating all the available experimental data for pure substances and arriving at
recommended values for thermochemical properties comprise a highly skilled and
major exercise. It has been done by large organizations, for example, the National
Institute of Standards and Technology (NIST), the National Aeronautics and
Space Administration (NASA), and the U.S. Bureau of Mines. Before computers,
thermochemical data were usually presented in the form of tables; occasionally
they were presented as analytical approximations. With the advent of computers,
however, analytical representations have almost totally supplanted the use of
tables. The storage of the coefficients in analytical expressions is much more
convenient for computer usage than their presentation in tabular form.

A quantity of primary interest is the standard Gibbs energy of formation of
a compound, which is related to the standard enthalpy and entropy of formation
by

�f G
◦
(T ) = �f H

◦
(T ) − T �f S

◦
(T ) (2.1)
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From values of �f G
◦
(T ) for the participating substances, we can obtain standard

Gibbs reaction energies, �rG
◦
(T ), for any reaction:

�rG
◦
(T ) =

∑
i

νi�f G
◦
(i, T ) (2.2)

Here νi is the stoichiometric coefficient, which is positive for products and nega-
tive for reactants in a chemical reaction, that is, for a formation reaction such as

Pb + 1
2 O2(g) = PbO

νPbO = 1 νPb = −1 νO2 = − 1
2

Standard Heat Capacities As will be discussed in Chapter 3, the standard heat
capacity of a substance varies with temperature in a rather complex manner at
low temperatures. Above room temperature, however, and in the absence of any
phase transformations, its variation with T can be represented to a sufficiently
high accuracy by a polynomial. The approximation usually used is of the form

C
◦
p(T ) = a + bT + cT 2 + dT −2 (2.3)

Note, however, that some data compilations use slightly different analytical
expressions.

Standard Entropies of Formation In the absence of any phase transformations,
the standard entropy for a pure substance at any temperature T may be referred
to its value at 298.15 K using

S
◦
(T ) − S

◦
(298.15) =

∫ T

298.15

C
◦
p

T
dT (2.4)

If (2.3) is used for the standard heat capacity of the substance, then we see that this
standard entropy difference can be evaluated from the same stored polynomial
coefficients:

S
◦
(T ) − S

◦
(298.15) = a loge

(
T

298.15

)
+ b(T − 298.15)

+ 1
2 c(T 2 − 298.152) − 1

2 d(T −2 − 298.15−2) (2.5)

When a phase transition occurs in the substance, it is necessary to allow for this
in the representation. Different allotropes require different C

◦
p representations and

there is the transformation entropy between the allotropes to be considered. If
the substance undergoes a transition from α to β at temperature TT r ,

S
◦
(T ) − S

◦
(298.15) =

∫ TT r

298.15

C
◦
p(α)

T
dT + �β

αS
◦ +

∫ T

TT r

C
◦
p(β)

T
dT (2.6)
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If the substance undergoes a magnetic transition, say from ferromagnetic to para-
magnetic, the heat capacity variation is more complex and the simple polynomial
representation has to be augmented with another representation for the magnetic
contribution.

The Planck postulate (S for any pure substance in a stable perfect crystalline
form at 0 K is taken to be zero) is taken advantage of in obtaining S

◦
(298.15).

Although C
◦
p below room temperature is a complex function of temperature

which cannot be represented by a simple polynomial like (2.3), once it has been
measured, the standard entropy of a crystalline substance at 298.15 K can be
obtained from

S
◦
(298.15) =

∫ 298.15

0

C
◦
p(T )

T
dT (2.7)

This means that the computer storage of S
◦(298.15 K) plus the coefficients in

the standard heat capacity equation (2.3) is sufficient for evaluating the standard
entropies of pure substances in a particular structural form at any temperature
above room temperature.

For a pure compound substance it is the formation property which is of major
interest. In view of the Planck postulate we can write

�f S
◦
(298.15) =

∑
i

νiS
◦
(i, 298.15) (2.8)

where the summation is over all participating substances in the formation reac-
tion equation. Equation (2.8) can then be used in the calculation of the high-
temperature standard entropy of formation of the compound:

�f S
◦
(T ) = �f S

◦
(298.15) +

∑
i

νi

[
S

◦
(i, T ) − S

◦
(i, 298.15)

]
(2.9)

where (2.5) is used for S
◦
(i, T ) − S

◦
(i, 298.15).

If phase transformations occur in either products or reactants, (2.9) has to be
modified in a manner similar to that given in (2.6).

Standard Enthalpies of Formation The difference in standard enthalpy for a
substance between two temperatures is given by

H
◦
(T2) − H

◦
(T1) =

∫ T2

T1

Cp dT (2.10)

Whereas standard entropies have a natural reference point by taking advantage
of the Planck postulate, there is no similar natural reference point for enthalpies.

In the following we concentrate on the two most commonly used choices
of reference state. The first one is used in most tabular presentations while the
second one is favored in computer databases:
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1. Standard Substance Reference (SSR) State The enthalpies of all subs-
tances in their most stable form at 1 bar and 298.15 K are selected to be zero.

Table 2.1 for copper, taken from the NIST-JANAF tables, illustrates this selec-
tion. It can be seen that H

◦
(298.15 K) = 0. It also has this value for compound

substances.
Using the SSR state, the enthalpy of formation of a pure compound can be

obtained from

�f H
◦
(T ) = �f H

◦
(298.15) +

∑
i

νi

[
H

◦
(i, T ) − H

◦
(i, 298.15)

]
(2.11)

There is no equation analogous to (2.8) for formation enthalpies at 298.15 K.
These have to be determined by experiment or calculation.

If (2.3) is used for the heat capacity, the bracketed terms on the right-hand
side of (2.11) are given by

H
◦
(i, T ) − H

◦
(i, 298.15 K) = a(T − 298.15) + 1

2b(T 2 − 298.152)

+ 1
3c(T 3 − 298.153) − d(T −1 − 298.15−1)

(2.12)

In tabular form as shown in Table 2.1 for Cu, data are usually presented at 100 K
intervals. If data at temperatures intermediate to these are required, it is necessary
to interpolate. In order to assist in doing this with some accuracy, some function
which is a slowly varying function of temperature is desired. Such a function is
the so-called Gibbs energy function gef (a confusing term) defined as

gef(T ) = −G
◦
(T ) − H

◦
(298.15)

T
(2.13)

As can be seen in Table 2.1 for Cu, this function has the desired property of
being slowly varying with temperature and is therefore easily and accurately
interpolated. Given the values of gef for all the species involved in the formation
reaction, the calculation of �f G

◦
(T ) is then straightforward. From (2.13),

T × gef(T ) = −G
◦
(T ) + H

◦
(298.15)

and we see that �f G
◦
(T ) can be obtained from

�f G
◦
(T ) = �f H

◦
(298.15) − T

∑
i

νi gef(i, T ) (2.14)

In order to evaluate �f G
◦
(T ), all that is required is the room temperature

standard enthalpy of formation and the tables can then be used to obtain∑
i νi gef(i, T ) for the formation of the substance. It should be noted that the

difference,
∑

i νi gef(i, T )), usually varies even more slowly with T than the
gef values for the individual substances.
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TABLE 2-1 Tabular Presentation of Thermodynamic Properties of Copper from
NIST-JANAF Tables

Enthalpy Reference Temperature Ts = 298.15 K Standard State Pressure = 0.1 MPa

J K−1 mol−1 kJ mol−1

T/K C
◦
p S

◦ −[G◦ − H
◦
(Ts)]

T
H

◦ − H
◦
(Ts) �f H

◦
�f G

◦ log Kt

0 0 0 0 −5.007 0 0 0
100 16.010 10.034 53.414 −4.338 0 0 0
200 22.631 23.73 35.354 −2.325 0 0 0
250 23.782 28.915 33.563 −1.162 0 0 0
298.15 24.442 33.164 33.164 0.000 0 0 0
300 24.462 33.315 33.164 0.045 0 0 0
350 24.975 37.127 33.464 1.282 0 0 0
400 25.318 40.484 34.136 2.539 0 0 0
450 25.686 43.489 35.011 3.815 0 0 0
500 25.912 46.206 35.997 5.105 0 0 0
600 26.481 50.982 38.107 7.725 0 0 0
700 26.996 55.030 40.247 10.399 0 0 0
800 27.494 58.739 42.336 13.123 0 0 0
900 28.049 62.009 44.343 15.899 0 0 0

1000 28.662 64.994 46.261 18.733 0 0 0
1100 29.479 67.763 48.091 21.638 0 0 0
1200 30.519 70.368 49.840 24.633 0 0 0
1300 32.143 72.871 51.516 27.762 0 0 0
1358 33.353 74.300 52.459 29.660 Crystal ←→ Liquid
1358 32.844 83.974 52.459 42.798 Transition
1400 32.844 84.974 53.419 44.177 0 0 0
1500 32.844 87.240 55.599 47.462 0 0 0
1600 32.844 89.360 57.644 50.746 0 0 0
1700 32.844 91.351 59.569 54.031 0 0 0
1800 32.844 93.229 61.387 57.315 0 0 0
2000 32.844 96.689 64.747 63.884 0 0 0
2200 32.844 99.819 67.795 70.453 0 0 0
2400 32.844 102.677 70.585 77.022 0 0 0
2600 32.844 105.306 73.156 83.591 0 0 0
2800 32.844 107.740 75.540 90.159 0 0 0
2843.3 32.844 108.244 76.034 91.580 FUGACITY = 1 bar
2900 32.844 108.893 76.671 93.444 −300.204 5.996 −0.108
3000 32.844 110.006 77.764 96.728 −299.409 16.541 −0.288
3200 32.844 112.126 79.846 103.297 −297.971 37.556 −0.613
3400 32.844 114.117 81.804 109.866 −296.737 58.488 −0.899
3600 32.844 115.995 83.652 116.435 −295.703 79.352 −1.151
3800 32.844 117.770 85.401 123.004 −294.962 100.165 −1.377
4000 32.844 119.455 87.062 129.573 −294.199 120.938 −1.579

Note: The data for some temperatures have been removed to decrease the size of the table.
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The NIST-JANAF compilation also presents tables for other choices of
reference state. In one set of tables, as discussed above, the most stable form
at 1 bar and 298.15 K is selected while, in another set, the enthalpies of all
substances in the designated form, regardless of whether that form is the most
stable or not, are selected to be zero at 1 bar and 298.15 K. For example,
the properties for a liquid substance are referred to the liquid at 298.15 K
in this other form of presentation. Other compilations select the enthalpy of
the substance in its most stable form at 0 K to be zero and it is clear that
some care is required if these different presentations of data are to be used
correctly.

With the advent of the computer storage of data, tabular presentations are at
the obsolescent stage.

2. Standard Element Reference (SER) State The enthalpies of the elements
in their most stable form at 1 bar and 298.15 K are selected to be zero.

In order to distinguish between the SSR and SER states for the standard
enthalpy, we will use H SER to refer to H

◦(298.15) when the element reference
state is being used. Here, H SER is set to zero for the elements in their most
stable state at 298.15 K while H SER(298.15) for a compound (abbreviation cpd)
is equal to its enthalpy of formation at that temperature:

H SER(cpd, 298.15) = �f H
◦
(cpd, 298.15) (2.15)

The standard formation enthalpy for a compound at any temperature on this
reference state is then given by

�f H
◦
(T ) =

∑
νiH

◦
(i, T ) (2.16)

an equation which can be compared with (2.11) based on using the substance
reference state.

When phase transformations are present, the enthalpies of transition must be
incorporated into (2.16).

Table 2.2 shows the way that the necessary coefficients, used in the SER, are
stored in computer databases for PbO.

(i) Line 1 in Table 2.2 gives the values for H SER and S
◦(298.15).

(ii) Line 2 gives the heat capacity coefficients between 298.15 and 762
K. At this temperature there is a phase transformation in PbO(s).

(iii) Line 3 gives the enthalpy change at this transition. The standard
entropy change can be obtained from �T rH

◦
/T

◦
T r since �T rG

◦ = 0
at this temperature.

(iv) Line 4 gives the heat capacity coefficients for the temperature range
720–1162 K. PbO melts at this temperature.

(v) Line 5 gives the standard enthalpy of fusion. Again the standard
entropy of fusion can be obtained from �fusH

◦
/T

◦
fus.

(vi) Line 6 gives the heat capacity coefficients for liquid PbO.
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TABLE 2-2 Computer Stored Coefficients for Evaluating Standard State
Properties of PbO

Line
No. T H

◦
S

◦
a b c d

1 298.15 −218,600.00 67.84
2 298.15–762.0 40.9683 0.0203012 0.15180900 −53460.602

×10−6

3 762.0 200.0
4 762.0–1160.0 38.853298 0.19788301 0.67834202

×10−1 ×10−6 −369456.00
5 1160.0 25,580.000
6 >1160.0 3200.0000 0 0 0

Note: SI units are used.

With the storage of these parameters, it is possible to calculate the standard state
properties for PbO on the SER scale at any temperature.

Example 2.1 Using SSR and SER
It is essential to become familiar with manipulating thermodynamic data pre-
sented as both SSR and SER. We illustrate with the specific example of calcu-
lating �f H

◦
(T ) and �f S

◦
(T ) for the formation reaction at 1 bar:

Pb(T ) + 1
2 O2(g)(T ) = PbO(s)(T ) (2.17)

We will concentrate on a calculation for 800 K, where Pb(l) is the stable form
of lead.

No matter whether the SSR or SER state is used, we must obtain the same
calculated result for these properties.

The computer storage of data requires not only the coefficients given in
Table 2.2 for PbO but similar tables of coefficients for Pb and O2.

The formation properties are plotted in Figures 2.1a and 2.1b as a function of
temperature. The large steps apparent in both curves occur at the melting point
of Pb; that is, there is a difference in �f H

◦
(T ) and �f S

◦
(T ) at 600 K for the

reaction equations:

Pb(s) + 1
2 O2(g) =PbO(s) (2.18)

Pb(l) + 1
2 O2(g) =PbO(s) (2.19)

The small steps in the curves shown in Figs. 2.1a and 2.1b occur at a solid-state
transformation in PbO (line 3 in the Table 2.2).

The entropy change calculation is the same no matter whether the SSR or
SER state is used since both utilize the same, 0 K, reference state. The standard
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Figure 2.1 Formation properties of PbO(s) as a function of T .
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Figure 2.2 Standard molar entropies for PbO(s), Pb(l), and 0.5O2(g).

entropies for the participating substances are shown in Figure 2.2. At 800 K

�f S
◦
(800) = S

◦
(PbO(s), 800) − S

◦
(Pb(l), 800) − 0.5S

◦
(O2(g), 800)

= 118.329 − 101.172 − 0.5 × 235.819

= −100.75 JK−1 mol−1

The value of 118.329 J K−1 mol−1 for PbO(s) has been obtained from (2.5)
using the coefficients given in Table 2.2 and is also shown in Figure 2.1b.

The calculation of the standard formation enthalpy, on the other hand, differs,
depending on whether the SSR or SER state is used. The standard enthalpies with
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Figure 2.3 Standard molar enthalpies for PbO(s), Pb(l), and 0.5O2(g).

respect to the two reference states under consideration are shown in Figures 2.3a
and 2.3b.

Using the SSR,

�f H
◦
(800) = �f H

◦
(298.15) + [H ◦

(PbO(s), 800) − H
◦
(PbO(s), 298.15)]

− [H ◦
(Pb(l), 800) − H

◦
(Pb(l), 298.15)]

− 0.5[H ◦
(O2(g), 800)) − H

◦
(O2(g), 298.15)]

= −218.6 + 26.143 − 19.403 − 0.5 × 15.837

= −219.78 kJ mol−1

Using the H SER,

�f H
◦
(800) = H

◦
(PbO(s), 800) − H

◦
(Pb(l), 800) − 0.5H

◦
(O2(g), 800)

= −192.457 − 19.403 − 0.5 × 15.837

= −219.78 kJ mol−1

When the SER is used, we will usually denote the standard Gibbs energy G
◦
(T )

as G(SER, T ), where

G(SER, T ) = [H ◦
(T ) − H SER] − T S

◦
(T ) (2.20)

2.2 THE EFFECT OF PRESSURE

The EOS for a pure substance is a relationship between any four thermodynamic
properties of the substance, three of which are independent. Usually the EOS
involves pressure p, volume V , temperature T , and amount of substance in the
system, n:

π(p, V, T , n) = 0 (2.21)
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which indicates that, if any three of the four properties are fixed, the fourth is
determined. More usually, the EOS is written in a form which depends only on
the nature of the system and not on how much of the substance is present; hence
all extensive properties are replaced by their corresponding specific values. The
molar form of the above EOS is

π(p, Vm, T ) = 0 (2.22)

If any two of these thermodynamic properties are fixed, the third is determined.
Some simple EOS for gases and condensed phases which have been proposed
are given below.

2.2.1 Gases

2.2.1.1 The Perfect Gas. The EOS for a perfect gas is familiar:

pVm = RT (2.23)

We can now illustrate how knowledge of an EOS gives us the pressure variation of
the thermodynamic properties at constant temperature. The fourth Gibbs equation
for a pure substance is

dG = −S dT + V dp (p–V work only) (2.24)

Substituting the ideal gas EOS into the above equation, we have

dG = −S dT + nRT

p
dp (2.25)

= −S dT + nRT d loge p (2.26)

At constant T , for a perfect gas only, and for 1 mol, this reduces to

dGm|T = RT d loge p (2.27)

or, in integral form,

G∗
m(T , p) − G

◦
m(T ) = RT loge

(
p∗

p◦

)
(2.28)

Here we have introduced the superscript asterisk to indicate the quantity for a
pure substance at any pressure other than the standard.

2.2.1.2 Real Gases. In chemical engineering, where there is much interest in
the behavior of substances in those parts of state space where the distinction
between gas and liquid becomes blurred, it is necessary to have an EOS which
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permits the calculation of the thermodynamic properties at all temperatures and
pressures. A large number of such equations has been proposed and we will meet
one of these later in Chapter 4.

In the regime where the properties of a real gas do not deviate substantially
from those of a perfect gas, it is common to use the concept of fugacity . The
functional form of (2.27) is retained but the fugacity f is used to replace pressure.
Fugacity has the same units as for pressure. In differential form

dGm(T ) = RT d loge f (real gas, constant T ) (2.29)

which, in integrated form, becomes

G∗
m(T , p) − G

◦
m(T ) = RT loge

(
f ∗

f ◦

)
(2.30)

Tabulations as well as graphical and analytical presentations of the fugacities of
the common gases are readily available.

2.2.2 Condensed Phases

Condensed phases are much less compressible than gases and it is rare that the
effect of pressure on thermodynamic properties has to be taken into account
in calculations in material science and engineering (MS&E), in contrast, for
example, to such calculations in applications to geochemistry and astrophysics.

The difference in the effect of pressure on solids and liquids as compared
with its effect on gases is readily illustrated. At constant T for a pure substance
undergoing p–V work only,

dGm|T = Vm dp (2.31)

For a perfect gas at standard temperature and pressure (STP), Vm = 22,400 cm3

mol−1, but for a solid or liquid Vm is much smaller, on the order of 10 cm3

mol−1. The large difference in the effect of pressure on G is due to these large
differences in molar volume.

The simplest EOS which may be used to describe a solid under pressure
changes at constant temperature comes from the definition of isothermal com-
pressibility:

κT = − 1

V

(
∂V

∂p

)
T

(2.32)

If κT is assumed independent of pressure, then integration gives

V − V
◦

V ◦ ≈ −κT (p − p
◦
) (2.33)
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and hence, using (2.31), the Gibbs energy is

G∗
m(T , p) − G

◦
m(T ) ≈ −V ∗ − V

◦

V ◦κT

(2.34)

More sophisticated expressions for the EOS for solids take into account the effect
of p and T on Vm and κT .

Summarizing : To a good approximation , it is usually safe in MS&E to use

G∗
m(T , p) ≈ G◦

m(T ) + RT loge

(
p∗

p◦

)
(pure gases) (2.35)

G∗
m(T , p) ≈ G◦

m(T ) (pure solids, liquids) (2.36)

2.3 THE GIBBS–DUHEM EQUATION

Although there are the three field variables T , p, and μ to consider for a pure
substance, we have previously stated that the state of a one-component, single-
phase system is fully specified by only two independent variables. Thus there
must be a relationship between the three field variables in a single-phase unary
system. This relation is the important Gibbs–Duhem equation (we will meet it
again when discussing solution phases). One way by which it may be derived is
given below.

The fundamental equation for a pure substance A is

dU = T dS − p dV + μA dnA (2.37)

Since all three independent variables in this equation are extensive, its integration
gives the integral extensive quantity as follows:

U = T S − pV + nAμA (2.38)

This equation can also be obtained from (2.37) by applying Euler’s theorem for
homogeneous functions of degree 1 (see Appendix B).

When we define H = U + pV and A = U − T S, however, the fundamental
equations are

dH = T dS + V dp + μA dnA (2.39)

dA = −S dT − p dV + μA dnA (2.40)

These equations now have only two extensive independent variables, the other
being a field variable. The extensive integral quantities are obtained in this case
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by considering only the extensive variables to give

H = T S + nAμA (2.41)

A = −pV + nAμA (2.42)

On defining the Gibbs energy, G = H − T S, the resulting fundamental equation
is now a function of only one extensive independent variable:

dG = −S dT + V dp + μA dnA (2.43)

and the integral quantity is obtained by considering only this independent variable
to give

G = nAμA (2.44)

It is possible to go one step further by defining the new function, called the grand
potential and defined as � = G − nAμA. Using (2.44) we see that both � and
d� equal 0 and there is now a new fundamental equation:

0 = −S dT + V dp + nA dμA (2.45)

This is the Gibbs–Duhem equation , which gives the relation between the three
field variables for a single-phase unary system. The Gibbs–Duhem equation
confirms that the state of a single-phase unary system is fully specified by only
two field variables.

2.4 EXPERIMENTAL METHODS

It is clear from the material presented earlier in this chapter that, in order to
be able to calculate all the high-temperature thermodynamic properties of pure
substances at 1 bar, certain experimental information is required. The measure-
ments which are made in order to provide the necessary data rely heavily on the
use of calorimeters which are of two types: substance calorimeters and reaction
calorimeters.

Substance calorimeters comprise:

1. High-temperature heat capacity calorimeters (from room temperature
upward) are used to obtain C

◦
p, from which both H

◦
(T ) − H

◦
(298.15) and

S
◦
(T ) − S

◦
(298.15) can be obtained. Differential scanning calorimetery

(DSC) is a relatively modern, easy-to-use technique which can be used
for measuring C

◦
p on a few milligrams of material, although not with the

accuracy achievable from using a calorimeter designed specifically for the
purpose.
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In addition, H
◦
(T ) − H

◦
(298.15) can be measured directly in a drop

calorimeter, where the specimen at temperature T is dropped into a
calorimeter maintained at room temperature. Many high-temperature C

◦
p

values have been obtained from the temperature derivative of the results
obtained from using a drop calorimeter.

2. Low-temperature heat capacity calorimeters (from close to 0 K to room
temperature) are used to obtain C

◦
p and hence S

◦(298.15 K) for all sub-
stances.

Reaction calorimeters, which are used to measure �rH
◦ at either 298.15 K or at

elevated temperatures, can be further subdivided into synthesis calorimeters, in
which the reactants combine to form the pure substance of interest, and solution
calorimeters, in which �f H

◦ is obtained from dissolving both reactants and
products in a suitable solvent and then using

∮
H

◦ = 0 to obtain the formation
enthalpies from the solution enthalpies.

Although calorimetry is an important tool in obtaining the thermodynamic
properties of pure condensed-phase substances, we will see later that it is also
possible to obtain thermodynamic data for pure substances from phase and chem-
ical equilibrium measurements.

We have also seen that it is important to have information for solids in their
different structural forms. Many of these will be metastable or even unstable
in certain temperature ranges and not amenable to direct measurement. In this
case, the desired thermodynamic properties may have to be obtained by indirect
methods.

In the last decade or so, the first-principles calculations of 0 Kelvin total
energies have become commonplace. The best of the results from these density
functional calculations are capable of giving results of comparable accuracy to
those obtainable at 298.15 K by experimental measurement. Calculations have
the big advantage over experimental measurement that they can be carried out on
unstable structures just as readily as they can on the most stable. This is rarely
possible experimentally.

The thermodynamic properties of perfect gases are usually not measured by
any of the techniques outlined above but are obtained from a combination of
spectroscopic measurements and statistical mechanics. This will be discussed
briefly in Chapter 3.

EXERCISES

2.1 Show that the storage of data as the six coefficients mentioned in Table 2.1
for PbO leads to the following expression for the Gibbs energy:

G = A + BT + CT ln(T ) + DT 2 + ET 3 + F

T
(2.46)
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Relate the parameters in this equation to the heat capacity equation
parameters given in (2.3).

2.2 .(a) Calculate the enthalpy of oxidation of Si(l) to SiO2(β) at 1700 K
using the data given below using both the standard substance and H SER

approaches. The result obtained from both methods should be identical.
(b) Calculate �f G

◦(SiO2, 1700 K) using either of the reference states
in (a) and compare your calculated result with that obtained using
�f H

◦
(SiO2, 298.15K) = −910.7 kJ mol−1 and the values of the gef

at 1700 K.
(c) By assuming that �f (gef) is temperature independent, obtain the lin-

ear equation for �f G
◦ as a function of temperature in the region of

1700 K.
The element Si melts at 1685 K and α-SiO2 (alpha quartz) transforms
to β-SiO2 (beta quartz) at 844 K. Also β-SiO2 is actually metastable
above 1400 K, but this fact is to be ignored in the problem.

(H
◦
T − H

◦
298.15)/T S

◦
T −gef 〈C◦

p〉
T /K Substance /J K−1 mol−1 /J K−1 mol−1 /J K−1 mol−1 /J K−1 mol−1

298.15 Si(s) 0 18.81 18.81 19.94
298.15 O2(g) 0 205.15 205.15 29.37
298.15 SiO2(α) 0 41.46 41.46 44.59

1700 Si(l) 51.085 92.03 40.95 25.52
1700 O2(g) 28.226 262.69 234.46 37.11
1700 SiO2(β) 56.291 153.85 97.56 75.98

2.3 The element Fe, exhibiting body-centered-cubic (bcc) structure (α-Fe) at
low temperatures, transforms first to face-centered-cubic (fcc) structure (γ -
Fe) at 1042 K, next to the bcc structure (δ-Fe) at 1184 K, and to the liquid
state (or melts) at 1665 K, with the pressure maintained at 1 bar.

The enthalpies of the transitions of Fe at these temperatures are 958.6,
899.8, and 1015.7 J mol−1 respectively.

The enthalpy of α-Fe at 1042 K relative to its enthalpy at 298.15 K is
26,410 J mol−1.

The corresponding entropy changes are 0.92, 0.76, and 0.61 J K−1 mol−1,
respectively. The entropy of α-Fe at 1042 K is 68.84 J K−1 mol−1.

The average specific heats (Cp) for γ -Fe (1042–1184 K), δ-Fe
(1184–1665 K), and the liquid Fe, L-Fe (>1665 K) are 43.87, 35.71, and
41.69 J K−1 mol−1, respectively. .

(a) Calculate and plot the enthalpies of Fe as a function of temperature
from 298.15 to 1800 K.

(b) Calculate and plot the entropies of Fe as a function of temperature from
298.15 to 1800 K.
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(c) Calculate and plot the Gibbs energies of Fe as a function of temperature
from 298.15 to 1800 K.

(d) We nearly always use 298.15 K as the reference state. However, it may
become more convenient to use γ -Fe (1042 K) as the reference state.
Calculate the Gibbs energies of Fe using this reference state and plot
the Gibbs energies as a function of temperature from 298.15 to 1800 K.
Convince yourself that the Gibbs energy difference between any chosen
temperatures is the same regardless of the references state you use, that
is, α-Fe at 298.15 K or γ -Fe at 1042 K.

2.4 Use some, if not all, of the following thermodynamic data to carry out the
required calculations. The tabulated values refer to 1 mol of substance.

Substance 〈C〉◦p/(J K−1) �fusH
◦
/J �f H

◦
(298 K)/J S

◦
(1000 K)/(J K−1)

Zn(s) 27.5 7,320 0 74.55
Zn(l) 31.38 — — 86.54
O2(g) 32.10 — 0 243.58
ZnO(s) 46.77 — −350,460 101.76

Zinc melts at 693 K.
The oxidation of Zn(l) to ZnO(s) at 1000 K may be represented by the
following chemical reaction: Zn(l) + 0.5 O2(g) = ZnO(s). .

(a) Based on the standard reference state, what are the enthalpies of Zn(l),
O2(g), and ZnO(s) at 1000 K?

(b) Based on the SER state, what are the enthalpies of Zn(l), O2(g), and
ZnO(s) at 1000 K?

(c) Using the SER state, calculate the enthalpy of oxidation of Zn(l) to
ZnO(s) at 1000 K.

(d) Calculate the entropy of oxidation of Zn(l) at 1000 K.
(e) Calculate the Gibbs energy of oxidation of Zn(l) at 1000 K.



3 Calculation of Thermodynamic
Properties of Unary Systems

The aim of microscopic thermodynamics or statistical mechanics is to provide an
understanding, at the atomic level, of the observed macroscopic thermodynamic
properties.

The calculation of ground-state energies and the energy levels of the various
excited states for a substance is the business of quantum mechanics. The calcu-
lation of the occupation of these energy levels, and hence the mean energy and
the spread in the energy, resulting in the calculation of the bulk properties of the
substance, is the business of statistical mechanics.

In this Chapter we will attempt to illustrate the kind of things which result
from the application of statistical mechanics without becoming too involved in
the details. This will give rise to a few “it can be shown that. . .” statements.

Maxwell gave a thorough treatment of the kinetic theory of gases and showed
how the bulk thermodynamic (and dynamic) properties of a gas could be cal-
culated from its atomic properties. Boltzmann extended Maxwell’s work and
showed how probabilistic system averages could be obtained from kinetic (time
averages)—an equivalence which is known as the ergodic hypothesis. He pos-
tulated that each microstate for a system has an equal probability of occurring
and that the measured bulk properties are those obtained from the calculation of
microstate probabilities. In particular, he related the bulk property S for a system
of fixed energy to the number of accessible microstates (often called the thermo-
dynamic probability W ). Note that it is the number of accessible states and not
the number of states actually accessed during the making of an observation. The
number of accessed states is, generally, only a very small fraction of the number
of possible accessible states.

The form of the Boltzmann relation can be understood by considering a system
comprised of two subsystems. The entropy property is additive but the number
of microstates is multiplicative:

S = S1 + S2 W = W1W2 (3.1)

From these differences in behavior, it follows that

S α loge W (3.2)

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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The proportionality constant is now known as the Boltzmann constant kB and
the final Boltzmann equation is then

S = kB loge W (3.3)

This expression is often used, but it should be remembered that it applies to
systems of fixed energy.

3.1 CONSTANT-PRESSURE/CONSTANT-VOLUME CONVERSIONS

Experimental measurements are usually carried out at constant pressure whereas
theoretical calculations often refer to constant volume. It follows that we often
need to be able to convert constant-volume properties to those at constant
pressure. We illustrate this property transformation by considering the relation
between the two heat capacities CV and Cp. Macroscopic thermodynamics pro-
vides the necessary relationships for carrying out this and similar transformations.

If we select T and V as independent variables, then, from the differential form
of the first law for p –V work only,

δq = dU + p dV

δq

δT
=
(

∂U

∂T

)
V

+
[(

∂U

∂V

)
T

+ p

]
dV

= CV +
[(

∂U

∂V

)
T

+ p

]
dV (3.4)

If T and V are varied so that p remains constant, then, when T changes by dT ,
V will change by (∂V/∂T )p dT and the amount of heat transferred is

δq|p = Cp dT = CV dT +
[(

∂U

∂V

)
T

+ p

](
∂V

∂T

)
p

dT (3.5)

We now have the desired relation between the constant-pressure and constant-
volume properties:

Cp = CV +
(

∂V

∂T

)
p

[(
∂U

∂V

)
T

+ p

]
(3.6)

The experimental values for C
◦
p for Ti metal over a wide temperature range are

shown in Figure 3.1. Not shown in the figure is the fact that C
◦
p → 0 as T → 0

(the way it does this is discussed in Section 3.4). Titanium has been selected for
illustration since it has an allotropic transformation and the figure shows how C

◦
p

changes for the two solid phases, the liquid phase, and the gas phase [monatomic
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Figure 3.1 Standard heat capacity of Ti over wide temperature range.

Ti(g)]. From the Maxwell relation(
∂Cp

∂p

)
T

= −T

(
∂2V

∂T 2

)
p

(3.7)

we see that, for perfect gases, Cp is pressure independent. For condensed phases,
in the absence of any phase changes, (3.7) can be used to show that the effect of
pressure on Cp is very small. It can also be seen in Figure 3.1 that, at each phase
change, there is a discontinuity in C

◦
p resulting from the different ways in which

the different energy levels are occupied in the various phases. The meaning of
the dashed and dotted curves is discussed in Section 3.3.

The standard entropies of the various Ti phases are shown by the solid curves
in Figure 3.2. Also shown are the nonstandard entropies at 0.01 bar. The prop-
erties of the condensed phases are unchanged by this pressure variation, but it
can be seen that, contrary to the situation for Cp , S for the gas phase is pressure
dependent, even when the gas is perfect. The entropy of a perfect gas increases
as the pressure decreases. The transformation temperature between liquid and gas
phases is also pressure dependent (the temperatures where the vapor pressure is
1 bar or 0.01 bar can be read from the graph). The large value for �vapS

◦ as
compared with �

β
αS

◦ and �fusS
◦ is also clearly apparent in this figure.

3.2 EXCITATIONS IN GASES

3.2.1 Perfect Monatomic Gas

(a) Translational Contributions The following is based on the use of clas-
sical mechanics, not quantum mechanics, this being satisfactory for gases except
at the lowest temperatures (�10 K).
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Figure 3.2 Solid curve: standard entropy of Ti; dashed curve: entropy at 0.01 bar.

For a system of N noninteracting particles of mass m confined in a box of
volume V and traveling with root-mean-square velocity u, it can be shown that
the pressure p is given by

p = 1

3

Nmu2

V
(3.8)

and since the kinetic energy (KE) of the particles = 1/2 Nmu2, we see that

pV = 2
3 KE (3.9)

Since there is no other contribution to the energy of the noninteracting particles,
KE is the same as the total energy U , and since the EOS is that for a perfect
gas, pV = NkBT , we obtain

Um = 3
2RT (noninteracting particles) (3.10)

The three degrees of freedom for a three-dimensional translator mean that there
is an energy contribution of 1/2RT per degree of freedom. This theorem of
the equipartition of energy (Boltzmann) applies to all other possible degrees of
freedom where classical mechanics is valid.

From (3.10) we obtain the following equation for the constant-volume heat
capacity:

CV =
(

∂Um

∂T

)
V

= 3

2
R (noninteracting particles) (3.11)
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We can now use (3.3) to obtain Cp . For a perfect gas of noninteracting particles
(∂U/∂V )T = 0 and, using the perfect gas law, we obtain

Cp = CV +
(

R

V

)
V = CV + R = 5

2R (3.12)

Note that this value is pressure independent, in agreement with the results for
Ti(g) shown in Figure 3.1. It can also be seen in this figure that this value is
found for Ti(g) at low temperatures but not at high temperatures (the explanation
for this is given below).

We cannot obtain S from Cp just by using S = ∫
Cp/T dT since the allowed

energies for particles in a box depend not just on temperature but also on the vol-
ume of the box. Without going into the derivation, the Sackur–Tetrode equation
gives the translational entropy for a gas of noninteracting particles as a function
of p and T :

Sm

R
= 5

2
ln T − ln p + ln

(
2πm

h2

)3/2

k
5/2
B + 5

2
(3.13)

The first term in this expression leads to Cp = 5/2R and it can be seen that, as
shown in Figure 3.2, the translational entropy increases as the pressure decreases.

(b) Electronic Contributions The reason that, at high temperatures for
monatomic gases, Cp �= 5/2R (see Fig. 3.1) is where electronic excitations are
being superimposed on the translational component of the monatomic gas: There
are many electronic energy levels and these become increasingly occupied with
increasing temperature, that is, the energy spread increases.

3.2.2 Molecular Gases

Molecular gases have extra modes for absorbing energy so that, as well as trans-
lation and electronic, other contributions to Cp have to be considered, namely,
rotation and harmonic and anharmonic vibration. The energy levels associated
with these excitations can be obtained from spectroscopic measurements and the
levels used in the appropriate equations derived from statistical mechanics for
calculating C

◦
p and S

◦. This combination of spectroscopic-level measurements
with theory is now the accepted method for obtaining the best values of standard
thermodynamic functions for perfect gases.

3.3 EXCITATIONS IN PURE SOLIDS

The thermal excitations in the energy for elemental or pure compound solids are
not translational, as in gases, but involve vibrational, electronic, and magnetic
contributions:

(a) Vibrational Application of the Boltzmann energy equipartition theorem
to a solid, which possesses six vibrational degrees of freedom, leads to Dulong
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and Petit’s equation for the constant-volume heat capacity, namely, CV = 6 ×
1/2R = 3R = 24.95 J K−1 mol−1. It is apparent, however, from experimental
results, that this equation does not hold at low temperatures, as can be seen in
Figure 3.3, which shows the standard constant-pressure heat capacity of silver
(the constant-pressure/volume correction is quite small in this region so that
CV ∼ Cp).

An explanation for the principal features of the low-temperature heat capacity
of solids was one of the early triumphs in the application of quantum theory.

Einstein considered a system of N atoms as a set of 3N independent simple
harmonic oscillators with angular frequency ω. From quantum mechanics, the
energy levels of such an oscillator are given by

En = (n + 1
2 )�ω (3.14)

where n is the principal quantum number and the mean or expectation value (the
bulk observed value) of the energy is related to the probabilities of the occupation
of the different energy levels:

〈E〉 =
∑

n

pnEn (3.15)

The calculation of the probabilities is carried out using statistical mechanics and
this mean energy is found to be

〈E〉 = 1

2
�ω + �ω

exp[hω/(kT )] − 1
(3.16)

Since the oscillators are assumed independent, the molar internal energy is given
by 3N times this and the constant-volume heat capacity is then found, by differ-
entiation, to be

CV = 3R

(
θE

T

)2 exp (θE/T )[
exp (θE/T ) − 1

]2 (3.17)

where the Einstein temperature θE = �ω/kB .
This equation produces a curve of similar form to that shown for Ag in

Figure 3.3. It also gives the desired classical high-temperature limit of 3R. The
weakness of the Einstein model lies in the assumption of independent oscillators
vibrating with a single frequency. The atoms in real solids are strongly coupled
with a continuous spectrum of vibration frequencies. Debye removed the Einstein
assumption and made the simplest possible assumption for the vibrational fre-
quency spectrum (a continuous distribution with maximum frequency ω), from
which he was able to derive the following equation for CV in terms of a single
parameter, the Debye temperature θD = �ω/kB :

CV = 3R

[
4D

(
θD

T

)
− (3θD/T )

exp(θD/T ) − 1

]
(3.18)
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Figure 3.3 Constant-pressure heat capacity of Ag(s) below room temperature.

where D is known as the Debye function defined by

D(x) = 3

x3

∫ x

0

z3 dz

exp(z) − 1
(3.19)

The Debye equation for CV indicates that, if we plot CV versus θD/T , the results
for all solid substances lie on the same curve. This curve is shown in Figure 3.4.

The vibrational contributions to the internal energy, entropy, and Helmholtz
energy according to the Debye model are given by

Um (Debye) = 9
8RθD + 3RTD

(
θD

T

)
(3.20)

Sm (Debye) = R

[
−3 loge(1 − exp(−θD

T
+ 4D

(
θD

T

)]
(3.21)

Am (Debye) = 9
8RθD + RT

[
3 loge(1 − exp(−θD

T
− D

(
θD

T

)]
(3.22)

Here, the first, temperature-independent, term in Um and Am represents the
zero-point energy (ZPE), which originates from the atoms being in their lowest
vibrational state at 0 K.

The Debye model turns out to be fairly satisfactory for metals and alloys, and
we will use it again in Section 3.4 when discussing the temperature and volume
variation of the thermodynamic properties of a solid.

(b) Electronic Drude (1900) realized that the high electrical conductivity of
metals was due to free electrons. But if classical Maxwell–Boltzmann statistics
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Figure 3.4 CV for all metals fall approximately on this curve when the temperature
scale is normalized in the manner shown.

are applied to this free gas, then, just as for the translation heat capacity of a
monatomic perfect gas, it is expected that Cel

V = 3/2R. Such a high value is
inconsistent with the observed high-temperature heat capacity of metals, which
are approximately 3R. It is known, as discussed above, that this value arises from
lattice vibrations, whereas a value of 9/2R would result if we were to add the
classic translation value to the vibrational contribution. It was again left to quan-
tum mechanics to provide the answer. Sommerfeld applied the Pauli exclusion
principle (one electron only in each electron energy level), which leads to all the
lower electron levels being fully occupied. As a result, only those electrons near
the Fermi surface, which separates the occupied from the unoccupied levels, can
be excited to higher levels. It is this which is responsible for the low values of
the electron heat capacity of solids. It can be shown that

Cel
V = 1

3 (πkB)2N(EF )T = γelT (3.23)

where N(EF ) is the density of states at the Fermi level. The electronic specific
heat coefficient γel lies in the range of approximately 1–30.10−4 J K−2 mol−1.
This leads to a value of Cel

V << Cvib
V except at temperatures close to 0 K.

(c) Magnetic Ferromagnetism is associated with the long-range ordering of
the atomic electron spins in a metal. Paramagnetism results when these spins
are almost completely randomly distributed. Several pure substances undergo
a transformation from the ferromagnetic to the paramagnetic state. The most
notable examples are the metals Fe, Co, and Ni. The transformation from ordering
to disordering of the spins means that the populated energy levels change with
temperature and this results in a heat capacity change. The transformation from
ordered to disordered spins is a second-order one (discussed in Chapter 15), for
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Figure 3.5 Heat capacity for Ni, showing a cusp associated with magnetic contribution.

which the heat capacity–temperature curve shows a characteristic cusp like that
shown for Ni in Figure 3.5. The temperature where there is a sudden drop in Cp

is known as the Curie temperature.
Note that some substances are anti-ferromagnetic, where the low-temperature

ordered state consists of the spins being antiparallel, so that there is no net
magnetic moment in the fully ordered state (the spin alignment can be observed
in neutron-scattering experiments). The transition to the disordered paramagnetic
state occurs at the Néel temperature.

3.4 THE THERMODYNAMIC PROPERTIES OF A PURE SOLID

In the above discussion we have concentrated principally on the heat capacities of
a pure solid. We now wish to concentrate on the other thermodynamic properties
of a simple pure solid. In order to do so, we will consider the simplest possible
model in some detail in order to illustrate the approach. The model has been
chosen to simplify the mathematics without making the physics unrealistic:

(i) Only vibrational excitations are considered and we assume that these can
be represented by the Debye model. The Debye temperature is assumed
to be independent of both temperature and volume.

(ii) The thermal expansivity and compressibility are assumed to be indepen-
dent of temperature and volume.

The volume coefficient of expansion, α, and the isothermal compressibility,
κT , are defined as

α = 1

Vm

(
∂Vm

∂T

)
p

κT = − 1

Vm

(
∂Vm

∂p

)
T

(3.24)
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If we consider a differential volume change as a function of pressure and tem-
perature,

dV =
(

∂V

∂T

)
p

dT +
(

∂V

∂p

)
T

dp

By introducing our model approximations into this equation, we obtain

dV = V 0
0 (α dT − κT dp) (3.25)

which, on integration, gives the following simple EOS for our solid:

V = V 0
0 (1 + αT + κT p) (3.26)

= V 0
T κT p (3.27)

where V 0
0 is the volume at zero temperature and zero pressure and V 0

T is the
volume at temperature T and zero pressure.

We may use Maxwell relations in order to obtain the volume derivatives of the
thermodynamic properties from the EOS. The following table shows the general
Maxwell relations, applicable to any EOS, and also the specific values for the
EOS being used:

Derivative General Specific(
∂U

∂V

)
T

T

(
∂p

∂T

)
V

− p
αT

κT

− p(
∂S

∂V

)
T

(
∂p

∂T

)
V

α

κT(
∂A

∂V

)
T

−p V 0
T

We may now use these relations to obtain the static (abbreviation stat) con-
tributions to the thermodynamic properties:

Ustat(V, T ) − U
◦
(V 0

T ) = αT

κT

∫ V

V 0
dV −

∫ V

V 0
p dV (3.28)

= αT

κT

(V − V 0
T ) +

∫ V

V 0

V − V 0
T

κT V 0
0

dV (3.29)

= αT

κT

(V − V 0
T ) +

1
2 (V − V 0

T )2

κT V 0
0

(3.30)

Sstat(V, T ) − S
◦
(V 0

T ) = α

κT

∫ V

V 0
T

dV (3.31)
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= α

κT

(V − V 0
T ) (3.32)

Astat(V, T ) − A
◦
(V 0

T ) =
1
2 (V − V 0

T )2

κT V 0
0

(3.33)

From the Maxwell relation, (
∂A

∂V

)
T

= −p (3.34)

we see that the minimum in A with respect to V occurs at p = 0.
Using the Debye model for the vibrational contributions, the volume-

independent variation of U
◦
(V 0

T ) and A
◦
(V 0

T ) are given by (3.20) and (3.22).
We now have the necessary information to be able to calculate the variation
of these properties as a function of both V and T . This variation is shown in
Figures 3.6 and 3.7 for a particular set of values for θD , α, and κT . The values
used (θD = 250 K, α = 10−4 K−1, κT = 10−11 Pa−1, V 0

0 = 10−5 m3 mol−1, are
not unreasonable values for these properties of real solids, although they have
been chosen so as to emphasize the following effects shown in the figures:

(i) The vertical positioning of the curves is determined by θD .
(ii) The minima in the plots of Am versus V/V 0

0 occur at p = 0. The variation
of the position of these minima with temperature is determined by α.

(iii) The variation in Um and Am with V/V 0
0 at constant temperature is deter-

mined by κT .
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Figure 3.6 Calculated variation of Um as a function of V and T for the simple model
discussed in the text.
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Figure 3.7 Calculated variation of Am as a function of V and T for the simple model
discussed in the text.

Similar calculations of H and G, using T and p as independent variables, are
possible.

3.4.1 Inadequacies of the Model

As we mentioned earlier, the EOS used in the above calculations is too simple
to represent the p–V –T properties of a real solid. In particular, we should note
that:

(a) The Debye model has its own limitations. For example, different θD are
obtained from the equations for CV (Debye), S(Debye), and A(Debye) and
the temperatures obtained are found to vary with T , even when anharmonic
contributions are insignificant. The Debye model does not, of course, allow
for any such anharmonic contributions.

(b) If the Debye model is to be used, it is necessary to allow for the variation
of θD .

(c) The α values are not constant but vary with T , going to zero at 0 K.
(d) The κT values are not constant but vary with pressure and temperature.

These and other factors complicate the calculation of the thermodynamic prop-
erties of pure solids. Nevertheless, our simple model gives a good introduction
to the kind of approach which is necessary.

EXERCISES

3.1 Use Figure 3.3 to estimate the Debye temperature for Ag as a function of
temperature. You will find a set of Debye Tables, available on the internet,
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most useful for this purpose. Compare the values of the Debye temperature
obtained with values found in the literature.

3.2 At low temperatures, the Debye equation gives a T 3 relation CV = aT 3,
where a = (12/5)(π4R/θ3

D). Given the following heat capacity data for
Ag at low temperatures, obtain a value for θD and for the electronic heat
capacity coefficient, γ .

T /K Cp/J K−1 mol−1 T /K Cp/J K−1 mol−1 T /K Cp/J K−1 mol−1

1 7.0 × 10−4 15 0.682 75 17.2
2 2.6 × 10−4 20 1.71 100 20.2
3 6.6 × 10−4 25 3.12 150 23.1
4 1.36 × 10−3 30 4.73 200 24.3
5 2.49 × 10−3 40 8.24 250 25.0

10 1.88 × 10−2 50 11.6 298 25.4

3.3 Show that the relation

Cp − CV =
(

∂V

∂T

)
T

[(
∂U

∂V

)
p

+ p

]
(3.35)

can be reduced to the form

Cp − CV = α2VmT

κT

(3.36)

(Hint: take advantage of the Maxwell relations given in Section 1.1.5.1)

3.4 Show that Cp − CV = R for a perfect gas.

3.5 Show thermodynamically that κT /κS,= CV /Cp .

3.6 When U is written as a function of pV /R for an ideal gas, show that
(∂U/∂p)V = V CV /R.

3.7 At room temperature, taken as 298 K, Al has the following properties: Ar

= 26.9815, density = 2.70 g cm−3, Cp = 24.31 J mol−1, α = 71.4 × 10−6

K−1, κT = 1.34 × 10−2 GPa−1, θD = 375 K.
Calculate (a) CV and (b) κS . (c) An equation which has been used for

the quick estimation of high-temperature heat capacities from ones at room
temperature is the Nernst–Lindemann equation Cp − CV (Dulong–Petit) =
AC2

pT , where the constant A in the equation is obtained from room tem-
perature values.

Calculate Cp for Al(s) from θD/2 to 933.25 K (the melting point).
Compare the calculated results with any experimental data you find in
the literature and offer comments on the value of the Nernst–Lindemann
equation.





4 Phase Equilibria in Unary
Systems

The calculation of phase diagrams provides an excellent illustration of the way
in which thermodynamics permits one set of properties to be calculated from an
apparently completely different set of properties.

For the moment we are concentrating on unary (one-component, pure sub-
stance) systems. As we will see, however, many of the features which are
encountered in binary phase diagrams have their counterpart in unary phase
diagrams.

In the absence of external fields (e.g., magnetic), the state of a one-component
system is uniquely specified by two variables (see Section 2.3). Different
choices of these variables are possible and give different possibilities for a
two-dimensional representation of the system’s phase behavior (phase diagrams).
We have mentioned previously that the intensive thermodynamic variables can
be divided into two categories: field variables and density variables. A field
variable, for example, T , takes on identical values in any coexisting phases at
equilibrium, while a density variable, for example, Vm, does not.

Figure 4.1 shows examples of the only possible different types of two–
dimensional phase diagrams for a unary system:

(A) Field–Field Type The p−T (field–field) phase diagram (Fig. 4.1a)
shows single-phase areas, two-phase coexistence lines, a triple point, and
a critical point . A two-phase line indicates where two coexisting phases
have the same temperature and pressure. Similarly, at the triple point , the
coexisting gas, liquid, and solid phases have exactly the same tempera-
ture and pressure. At the critical point the liquid and gas phases become
indistinguishable.

(B) Field–Density Type In the p−Sm (field–density) representation
(Fig. 4.1b) there are single-phase areas as in a field–field diagram. But
two-phase coexistence is now indicated by areas, and the triple point
has become a horizontal triple line. The horizontal tie-lines in, say,
the gas–liquid coexistence region indicate that any coexisting gas and
liquid must have the same pressure (the field variable), but they have
different Sm (the density variable). A similar interpretation holds for the

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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Figure 4.1 Different types of phase diagram for one-component system: (a) field–field;
(b) field–density; (c) density–density.

gas, liquid, and solid coexisting along the triple line—equality of p but
different Sm.

(C) Density–Density Type In the Vm –Sm representation shown in
Figure 4.1c, we have two-phase regions with oblique tie-lines and
a triple triangle. The sloping tie-lines in the gas–liquid region, for
example, tell us that any coexisting gas and liquid have different Vm as
well as different Sm (although they still have the same p and T ). The
usual lever rule applies to the determination of the relative amounts of
any coexisting phases along one of these sloping tie-lines. Any point in
the triple triangle represents a system with coexisting gas, liquid, and
solid phases, which differ from each other in both Vm and Sm. The lever
rule can also be applied in this three-phase region for the determination
of the relative volume amounts of the three phases.

When the solid phase has more than one crystal structure (polymorphism or
allotropy), then unary phase diagrams can become more complex. A p−T phase
diagram for pure Fe is shown in Figure 4.2. At p → 0 we see the usual trans-
formations bcc → fcc → bcc → liquid as the temperature is increased, but at
high p it can be seen that the pattern of transformations is quite different.

A plot of one thermodynamic function against another does not always give
rise to a true phase diagram, defined as one where any point on the diagram gives
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Figure 4.2 p−T phase diagram for Fe.

a unique answer concerning the existence of individual phases and combinations
of phases. The ones shown in Figure 4.1 are true phase diagrams, but some
diagrams which show the range of existence of phases and their combinations
are not. This is illustrated in Figures 4.3a and 4.3b. Although these diagrams are
field–density diagrams and the topography of Figure 4.3a is similar to that for
the plot of p versus Sm shown in Figure 4.3b, it is not a true phase diagram. This
is apparent from Figure 4.3b, which shows a similar p-versus-Vm diagram but
where the molar volume of the solid is greater than that of the liquid. Water and
bismuth are common examples of materials which fall into this latter category.
It is clear that in the neighborhood of the black dot the system’s properties are
not uniquely defined.

Plotting conjugate variables , for example, p versus Vm, is the source of the
problem. Any plot of a property versus its conjugate property does not give a
true phase diagram. We will meet this again when discussing binary systems (see
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Figure 4.3 Plots of conjugate variables are not true phase diagrams: (a) appears to be a
true phase diagram when Vm(l) >Vm(s); (b) clearly not a true phase when Vm(s) >Vm(l).
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Chapter 8). Suffice to mention here that the definition of conjugate variables is
somewhat broader than encountered previously. For example, it is possible to
rewrite the fundamental equation as

dSm = 1

T
dUm + p

T
dVm (4.1)

In this case, p/T and Vm are seen to be conjugate variables so that a plot of
these quantities will not give a true phase diagram.

An interesting feature arises for properties in the liquid–gas region. It is found
that, if the p−V −T variables are expressed relative to the values at the critical
point for that particular substance, that is, as reduced variables

pr = p

pc

Vr = V

Vc

Tr = T

Tc

ρr = ρ

ρc

(4.2)

then the liquid–vapor coexistence curves plotted in terms of these reduced vari-
ables approximately coincide for simple molecules. These are examples of the
application of the law of corresponding states , which can be useful in the estima-
tion of the properties for substances where only limited information is available.

4.1 THE THERMODYNAMIC CONDITION FOR PHASE
EQUILIBRIUM

Since we are usually interested in phase equilibrium at constant total pressure
ptotal and T , the following derivation is based on using the Gibbs energy, whose
natural variables are p and T .

Consider two phases, liquid and gas, to be in open contact as illustrated in
Figure 4.4. Matter can be transferred between the phases at constant ptotal and
T , although the two-phase system is considered closed.

The Gibbs energy of the whole system, comprising the two phases, is then

Gtotal = Gliq + Ggas (4.3)

and we wish to find the minimum in this total Gibbs energy, which we can
write as

Gtotal = nl
Aμl

A + n
g
Aμ

g
A (4.4)

There is, however, a constraint on this minimization, since the complete liquid/gas
system is closed and the total amount of a is fixed, ntotal

A = nl
A + n

g
A.

Constrained minimization problems like this are conveniently handled using
Lagrangian multipliers (see Appendix B for an introduction). In this case, only
one λ is required:

λ : nA(total) − nl
A − n

g
A = 0 (4.5)
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Figure 4.4 Phase equilibrium between pure liquid A and a gas phase comprising A and
an inert gas. Both gas and liquid are maintained at the same total pressure ptotal.

and the Lagrangian function L to be minimized becomes

L = G + λ(nA − nl
A − n

g
A) (4.6)

= nl
Aμl

A + n
g
Aμ

g
A + λ(nA − nl

A − n
g
A) (4.7)

Partial differentiation with respect to nl
A and n

g
A gives the minimum in L:

∂L
∂nl

A

= μl
A − λ = 0 (4.8)

∂L
∂n

g
A

= μ
g
A − λ = 0 (4.9)

Elimination of the Lagrangian multiplier leads to the condition for the constrained
minimum in G, that is, the condition of equilibrium:

μl
A = μ

g
A (4.10)

As is apparent from (4.8) and (4.9), the physical meaning of the Lagrangian
multiplier used for the mass balance constraint, λ, is seen to be that of the
chemical potential.

For either of the single phases we can write

G(A) = nAμA (4.11)

or

μA = G(A)

nA

= Gm(A) (4.12)



54 PHASE EQUILIBRIA IN UNARY SYSTEMS

that is, for a unary system, we may also write the phase equilibrium condition as

Gm

(
Al, p, T

) = Gm

(
Ag, p, T

)
(4.13)

Equations (4.10) and (4.13) appear to be equivalent ways of expressing the
condition of phase equilibrium. There is, however, an important difference
between these two equations. Equation (4.10) is still obtained if we start with
different fixed external conditions; for example, at constant S and V and we
used the fundamental equation for U , whereas (4.13) applies only at constant
p and T .

The conditions for two bulk phases of a pure substance to be in equilibrium
then are:

(i) Their temperatures must be equal so that there is no heat flow between the
two phases.

(ii) Their total pressures must be equal so that there is no bulk material flow
between the two phases.

(iii) The chemical potentials of the substance must be equal in the two phases
so that there is no mass (diffusive) flow between the two phases.

As will become apparent later, this last criterion, as well as the usual equality
of p and T , holds in much more complex situations than those being discussed
here.

It is very important to appreciate that this equilibrium condition for mass
transfer, (4.10), is a necessary but not sufficient condition for evaluating the global
equilibrium in a system. The condition (4.10) alone can only be used when the
two phases are actually specified beforehand, for example, Al and Ag. These,
however, may not be the global equilibrium ones for the specified conditions.
For example, in Figure 4.4, the equilibrium condensed phase might be solid a
rather than liquid a under the specified p and T . At this total p and T , we can
use (4.10) to evaluate pA in the gas phase for equilibrium with either liquid or
solid a . Under the particular conditions chosen, only one of them would represent
the global equilibrium. The other would represent a metastable equilibrium. It is
necessary to check, using (4.4), which of the two equilibria has the lower Gibbs
energy in order to decide which is the global equilibrium and which is a local,
metastable, equilibrium.

4.2 PHASE CHANGES

4.2.1 The Slopes of Boundaries in Phase Diagrams

Consider a p−T plot for a pure substance like that shown in Figure 4.1a . An
important relation for the slopes of the two-phase equilibrium lines on such a
diagram can be derived in the following way.
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At any point along the line for solid–liquid equilibrium

G(s) = Gl (4.14)

Since this applies for all points along the two-phase equilibrium curve, then for
any displacement from a particular point along the curve for two-phase equilib-
rium

� [G(l) − G(s)] = 0 (4.15)

For one of the phases, the total differential for G as a function of p and T is

dG =
(

∂G

∂p

)
T

dp +
(

∂G

∂T

)
p

dT (4.16)

Repeating for the other phase and substituting into (4.15) and rearranging give
the slope of the pressure–temperature phase equilibrium curve:

dp

dT
= −�

[
(∂G/∂T )p

]
�
[
(∂G/∂p)T

]
= �S

�V
(4.17)

and since �G = 0 along the two-phase equilibrium, �H = T �S. Hence, we
may rewrite (4.17) as

dp

dT
= �H

T �V
(4.18)

This last equation is known as the Clausius–Clapeyron equation. From it,
we can predict the slope of a p−T phase boundary from the enthalpy and
volume change associated with the phase transformation. Alternatively, the
inverse of (4.18) can be used to obtain the variation of �fusH

∗
m as a function of

pressure from measurements of the pressure change of the melting point and
volume. These represent good examples of using thermodynamic relations for
predicting one property of a substance from properties which might be easier
to measure.

It is found experimentally that, while �fusV
∗
m and Tfus change markedly with

pressure, the change in �fusH
∗
m is small, that is,

�fusH
∗
m ≈ �fusH

◦
m (4.19)

A special case of the Clausius–Clapeyron equation, which involves using
approximations , arises in its application to gas/condensed-phase equilibrium
at low pressures. Assuming the gas is perfect (first approximation) and that
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Vm(l) � V
g
m (second approximation), then almost all the volume change occurs

in the gas phase and is given by

�vapV ≈ RT

p
(4.20)

giving

d loge p

dT
≈ �vapH

RT 2
(liquid (or solid), perfect gas only) (4.21)

which is known as the Clapeyron equation.
Another aspect of the slopes of phase boundaries which is apparent in

field–field phase diagrams is concerned with how two-phase equilibrium curves
extend through three-phase equilibrium points (see Fig. 4.5a).

Consider the solid–liquid–gas equilibrium shown in the sketch. Using the
Clausius–Clapeyron equation, with superscripts to indicate which two-phase
equilibrium is being considered, we see that

(
dp

dT

)s−g

= �
g
s H

T �
g
s V

= �
g
l H + �l

sH

T �
g
s V

(4.22)

= �
g
l V

�
g
sV

(
dp

dT

)l−g

+ �l
sV

�
g
s V

(
dp

dT

)s−l

(4.23)

= (1 − vf )

(
dp

dT

)l−g

+ vf

(
dp

dT

)s−l

(4.24)

where vf is the volume fraction of the total s–g volume change which is due to
the s–l volume change.

It follows from (4.24) that the slope of the s–g curve must lie between that
of the s–l and l–g curves; that is, the extension of all three curves through

p

T

s l

g

(b)(a)

p

T

s l

g

Figure 4.5 Extensions of phase boundaries in field–field phase diagrams: (a) correct;
(b) impossible.
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the triple point is into the opposite single-phase region. This phase boundary
extension requirement is known as Schreinemaker’s rule.

An impossible extension is shown in Figure 4.5b.
The equivalent requirement of Schreinemaker’s rule in field–density and

density–density phase diagrams such as those shown in Figures 4.1b and 4.1c
is that the phase boundaries must always extend into the two-phase regions on
the opposite side of the invariant point. Some published phase diagrams indicate
that this thermodynamic requirement has not always been complied with by
experimentalists.

4.2.2 Gibbs Energy Changes for Phase Transformations

The magnitudes of the Gibbs energies for any phase change in pure substances
is of paramount importance. We will meet these quantities frequently in the
application of thermodynamics to the calculation of binary phase diagrams (see
Chapters 8 to 12).

At the equilibrium transition temperature for a pure substance at constant
pressure

�trG
∗
m(T ∗

tr ) = 0 (4.25)

and so

�trS
∗
m(T ∗

tr ) = �trH
∗
m(T ∗

tr )

T ∗
tr

(4.26)

It can be seen from the sketches in Figure 4.6, which apply for standard
conditions, that �trG

∗
m �= 0 at temperatures away from the equilibrium transition

temperature.

H°

S°

G°

T

T

T

ΔtrH°

ΔtrS°

ΔtrG°= 0

Figure 4.6 Variation of enthalpy, entropy, and Gibbs energy differences in neighborhood
of first-order phase transformation.
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A linear approximation for �trG
◦, which is equivalent to assuming that �H

◦

and �S
◦ are temperature independent, is also very useful and much used:

�trG
◦
(T ) = �trH

◦
(T ) − T �trS

◦
(T ) (4.27)

0 = �trH
◦
(T

◦
tr ) − T

◦
tr �trS

◦
(T

◦
tr ) (4.28)

These two equations always hold, but if we now assume that �trH
◦
(T ) ≈

�trH
◦
(T

◦
tr ) and �trS

◦
(T ) ≈ �trS

◦
(T

◦
tr ), then a useful approximation is obtained:

�trG
◦
(T ) ≈ (T

◦
tr ) − T )�trS

◦ ≈ (T
◦

tr ) − T

T
◦

tr
�trH

◦
(T

◦
tr ) (4.29)

Some useful approximations for the magnitudes of �trS
◦
(Ttr) and �trH

◦
(Ttr)

for various types of phase transformation in pure substances are summarized
below. Approximations like these are useful when it is necessary, due to the
absence of experimental data, to estimate properties.

(A) Evaporation Since S
◦,g � S

◦,l, then it follows that �vapS
◦ ≈ S

◦,g and
since all monatomic gases have approximately the same entropy (see
Chapter 3), it comes as no surprise that �vapS

◦
m is approximately constant

for all metals (very few metals have significant amounts of molecular
species in their vapors). This is the basis of Trouton’s rule:

�vapS
◦
m ≈ 84 J mol−1 K−1 (4.30)

If the transformation temperature is 1000 K, we see that �vapH
◦
m is esti-

mated to be ≈ 84 kJ mol−1, which is quite a large value.
(B) Fusion Since S

◦,l ≈ S
◦,s, then it is not to be expected that there is

a similar constancy in �fusS
◦
m. Nevertheless, for metals, Richard’s rule

works quite well:

�fusS
◦
m ≈ 9 J mol−1 K−1 (4.31)

which, if the transition temperature is 1000 K, gives �fusH
◦
m ≈ 9 kJ

mol−1, much smaller than for vaporization.
Semiconductors and inorganic compounds can have much larger values
for �fusS

◦
m than for metals, so that Richard’s rule should not be used in

estimating this quantity for these materials.
(C) Allotropic Transformations The enthalpies for the transformation

between different polymorphic forms of both elements and compounds
are important in the calculation of phase diagrams. These enthalpies
are often referred to as the relative lattice stabilities . Some examples
are shown in Figure 4.7. It can be seen that, at the beginning of a
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Figure 4.7 Relative lattice stability for some transition metals shown as the difference
in the standard enthalpies between the bcc and hcp structures.

transition period, the hexagonal close-packed (hcp) structure is more
stable than the bcc structure, but this trend is first reversed and then
recovered towards the end of the period. Note that the values of �trH

◦
m

for solid/solid transformations are generally smaller than for fusion.

4.3 STABILITY AND CRITICAL PHENOMENA

In Chapter 2 we considered some basic EOS for gases and condensed phases.
It is apparent from Figure 4.1, however, that the gas and liquid phases become
indistinguishable at the critical point. As a result, there has been a desire to
develop EOS which apply throughout the whole p−V −T gas/liquid region,
so that even isotherms both above and below the critical temperature can be
represented analytically.

Figure 4.8 shows a p−V diagram which includes two isotherms, one above
and one below the critical temperature. Van der Waals first proposed an EOS
which, although it has several shortcomings from a theoretical and practical
standpoint, illustrates how both these super- and subcritical isotherms can be
represented by one equation. The van der Waals equation is

p = RT

Vm − b
− a

V 2
m

(4.32)

where a and b are parameters. The first term on the right-hand side is due to
the attraction between the molecules and the second term accounts for repulsion
forces between them. Being an analytical equation, it can be plotted for any
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Figure 4.8 A loop in a subcritical isotherm when the van der Waals EOS is used.
Source: I. Prigogine and R. Defay, Chemical Thermodynamics , Longman, 1954.

values of the parameters and variables. At a temperature below the critical, then,
as can be seen in Figure 4.8, the shape of the isotherm is quite different from
those found above the critical temperature. At very high temperatures, the van
der Waals EOS gives isotherms which approach those for the perfect gas, while
below Tc they show the so-called van der Waals loop.

The various parts of the continuous curve AVNMLD on the subcritical isotherm
have distinct physical significances. It can be seen that for the part between N

and M

(
∂p

∂V

)
T

> 0 (4.33)

which means that such states are mechanically unstable (the volume must
decrease with increase of pressure) and therefore not realizable in practice; that
is, any point between N and M is unstable. The calculated isotherms have no
physical meaning here and are just the result of an analytical representation
which gives a continuous curve at all p and Vm. The loci of the points M and N ,
where

(
∂p

∂V

)
T

= 0

at different temperatures gives the region marked unstable in Figure 4.9. The
curve which separates the unstable region from the metastable region is called
the spinodal curve. The portion of the curve marked V N in Figure 4.8 represents
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Figure 4.9 Stable, metastable, and unstable regions on unary phase diagram. The curve
separating the metastable and unstable regions is called the spinodal, that between the
stable and metastable regions the binodal. Source: I. Prigogine and R. Defag, Chemical
Thermodynamics , Longman, 1954.

supersaturated vapor and the part LM corresponds with overexpanded liquid.
These states might exist in metastable equilibrium up to the limit where the
extensions enter the unstable region. Thus the region between the outer phase
boundary and the inner envelope separating the unstable region can be marked
metastable, as shown in Figure 4.9.

Note that, by following the path ABB′D in Figure 4.8, it is possible to go from
gas to liquid without at any stage observing the appearance of a new phase, in
contrast to the situation if path AVLD is followed.

4.4 GIBBS’S PHASE RULE

The phase rule is concerned with evaluating how many field variables can be
fixed arbitrarily for a system consisting of several phases. We will meet this
again when considering binary systems, but here we are concerned with only
unary systems.

Associated with each phase in a one-component system are three field vari-
ables. These will usually be T , p, and μ.

If we have φ phases in the system, then there are 3φ field variables in total.
But these variables are not independent since, first, p, T , and μA are equal in

all phases. If φ is the number of phases,

T (1) = T (2) · · · = T (φ) (4.34)

p(1) = p(2) · · · = p(φ) (4.35)

μ
(1)
A = μ

(2)
A · · · = μ

(φ)

A (4.36)
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Second, we have a Gibbs–Duhem relation between the three field variables for
each phase:

0 = −S dT + V dp + nA dμA

so that there are 3(φ − 1) − φ constraints placed on the total number of field
variables.

The number of independent variables or, as it is more usually called in ther-
modynamics, the number of degrees of freedom F is, therefore

F = 3φ − 3(φ − 1) − φ = 3 − φ (4.37)

which is the usual way of writing Gibbs’s phase rule for one-component systems.
Figure 4.10 Illustrates the number of degrees of freedom for one-, two-, and
three-phase equilibrium in a unary system.

In words, the rule states that the existence of a single phase requires the
specification of two field variables (it has two degrees of freedom; the system is
bivariant), the third field variable being fixed through the Gibbs–Duhem equation;
when two phases coexist, specification of one field variable automatically fixes
the other (there is one degree of freedom; the system is univariant); if three
phases coexist in equilibrium the values of all the field variables are fixed (zero
degrees of freedom; the system is invariant). Under no circumstances can four
phases of a one-component system coexist in equilibrium.

It is interesting to note that the phase rule may not appear to apply at the
critical point where there is also only a single phase present but where F =
0 rather than 2, as suggested by (4.37). The reason for this apparent break-
down is that the constraints given in (4.37) are no longer applicable since there
is only one phase. Instead, some extra constraints are introduced. The same
thing arises in binary systems and will be discussed in detail when encountered
there.

p

T

F = 2

F = 1

F = 0

I II

III

Figure 4.10 Number of degrees of freedom for one-, two-, and three-phase equilibrium
in unary system.
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EXERCISES

4.1 The following linearized equations give the approximate standard Gibbs
energies of Zn in solid, liquid, and gaseous forms:

G
◦g(Zn,SER, T ) = 137,000 − 182.2T J/mol

G
◦s(Zn,SER, T ) = 4175 − 53.95T J/mol

G
◦l(Zn,SER, T ) = 11,200 − 64.1T J/mol

Assume that the condensed-phase properties are independent of pressure
and that the gas phase is perfect.

(a) Calculate the equilibrium vapor pressure in contact with both liquid
and solid Zn at (i) 685 K and (ii) 700 K.

(b) Calculate which equilibrium has the lower G at these two tempera-
tures.

(c) Does the stable state have a higher or lower vapor pressure than the
metastable state?

(d) plot a T −μZn diagram which shows these results by plotting the
condensed-phase lines and vapor lines for fixed values of pZn.

(e) Is this field–field diagram a true phase diagram?

4.2 The following results were obtained for the melting point (mp) and
the volume change accompanying the melting of a solid at different
pressures:

p/MPa mp/◦C �fusV
∗
m/cm3 mol−1

0.1 97.6 2.787
200.0 114.2 2.362
400.0 129.8 2.072
600.0 142.5 1.873
800.0 154.8 1.711

1000.0 166.7 1.556
1200.0 177.2 1.398

Evaluate �fusH
∗ as a function of pressure and plot the ratios of

�fusV
∗
m/�fusV

◦
m and �fusH

∗
m/�fusH

◦
m as a function of pressure. Do these

results support our MS&E assumption that �fusH
∗
m ≈ �fusH

◦
m?

4.3 Derive (4.19) from (4.16).
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4.4 Sketch a complete schematic p−T phase diagram for Fe in the solid,
liquid, and gaseous states. Use the information in Figures 4.1 and 4.2.

4.5 The vapor pressure of Sil is represented by the equation

log10 p (torr) = 10.78–20,900T −1 − 0.565 log T

Calculate its enthalpies of vaporization at 1700 and 1500 K (undercooled
liquid).

4.6 The vapor pressure of a pure element such as Cu, Si, and Ni is often
expressed in either of the following equations:

loge p = A + B

T
or loge p = A′ + B ′

T
+ C′ ln T

(a) Starting from the Clausius–Clapeyron equation, show under what ther-
modynamic condition do these two equations given above apply?

(b) Take the vapor pressures of Si tabulated as a function of temperature
from a reference book such as the NIST-JANAF thermochemical
tables and obtain values of A and B as well as A′, B ′, and C′ in the
above two equations from 298.15 to their melting point. Compare the
values calculated from either of these equations with the tabulated
values.

4.7 The densities of α-Fe(bcc) and γ -Fe(fcc) are 7.57 and 7.63 g cm−3, respec-
tively, at 1184 K, 1 bar, when they are in equilibrium with each other.
The enthalpies of transformation from α-Fe to γ -Fe are 900 J mol−1 at
the transition temperature 1184 K and 1660 J mol−1 at 1100 K. Calculate
the pressure under which both forms of Fe can coexist at 950 K. State the
assumptions you make in order to carry out the calculation.

4.8 Starting from the equation dG = V dp − S dT, do a back-of-the-envelope
calculation to estimate the pressure needed to transform α-Fe(bcc) to a
closer packed γ -Fe(fcc) at room temperature given the entropy of α-
Fe(bcc) to be about 55 J K−1 mol−1 and density to be about 7.5 g cm−3.

4.9 The vapor pressure of liquid silver is given by

log10[p (bar)] = 8.83 − 14,400

T
− 0.85 log10 T

How much heat is required to evaporate 0.11 mol of Ag at 2300 K? The
normal boiling point of silver is 2436 K.

4.10 Calculate the partial pressure of zinc over liquid zinc at 600◦C using the
thermodynamic data of Zn(l) and Zn(g) given below:
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800 K 900 K

gef(g)/J mol−1 K−1 168.35 169.94
gef(l)/J mol−1 K−1 52.672 55.865

�subH
◦
(298 K) (kJ mol−1) = 130.42

where gef = −[G◦
(T ) − H

◦
(298 K)]/T .

4.11 Calculated �rG
◦ for the reduction of SiO2(s) by Al(l) at 1200 K. Do you

think that pure Al will reduce SiO2 at this temperature?





5 Thermodynamics of Binary
Solutions I: Basic Theory and
Application to Gas Mixtures

Gas mixtures are a familiar type of solution phase. While gas-phase solutions
are usually referred to as gas mixtures, this is not the case for condensed phases.
There, the term mixture is usually used to refer to a mechanical mixture of the
components and the term solution when one component actually dissolves in the
other.

Water and alcohol form a continuous series of liquid solutions; we say they
are completely miscible. Water and oil do not; they have no appreciable mutual
solubility ; they are nearly immiscible. Water and salt form a limited liquid solu-
tion. On continuing the addition of the salt, the solution becomes saturated with
the solid phase.

Metals in the liquid and solid states also form solutions. In the latter case
we speak of solid solutions . Solid solutions are further distinguished as being
either substitutional or interstitial . In substitutional solid solutions all the atoms
are on the one lattice. Familiar examples are (Cu,Zn), (Cu,Sn), (Cu,Ni), (Si,Ge)
alloys. In interstitial solid solutions the smaller atoms reside in the interstices
of the sublattice formed by the larger atoms. It is convenient to adopt the nota-
tion (M):(I) to represent the occupation of the metal and interstitial sublattices.
Familiar examples using this notation are (Fe):(C) and (Pd):(H).

5.1 EXPRESSING COMPOSITION

Three methods are commonly used:

(i) Mole fraction or percent
(ii) Mass fraction or percent

(iii) Volume fraction or percent

Volume percent is the usual way of expressing the composition of gas mixtures.
Because gas volumes change markedly with p and T , it is necessary to specify

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.

67



68 THERMODYNAMICS OF BINARY SOLUTIONS I

both. The most common way is to refer the volumes to STP (standard temperature
and pressure), that is, T = 273.15 K and p = 1 bar.

Mole and mass fractions or percents are the most commonly used ways of
expressing the composition of condensed phases. The definitions of mole fraction
and weight percent require that

∑
i

xi = 1
∑

i

wt % i = 100 (5.1)

Consider a liquid or substitutional solid solution such as (Cu,Zn). The term mole
fraction refers to 1 mol of alloy atoms, that is, to Cu1−xZnx , where the subscript
x refers to the mole fraction of Zn and 1 − x to the mole fraction of Cu:

xZn = nZn

nZn + nCu
(5.2)

wt % Zn = mZn

mZn + mCu
× 100 (5.3)

Conversion from one composition variable to the other is straightforward since

nZn = mZn

Ar,Zn
(5.4)

For a solution of binary compounds such as FeO–MnO the mole fraction is

xMnO = nMnO

nMnO + nFeO
(5.5)

and equivalently for the weight percent. Conversion between composition vari-
ables in this case is obtained by using

nMnO = mMnO

Mr,MnO
(5.6)

5.2 TOTAL (INTEGRAL) AND PARTIAL MOLAR QUANTITIES

The magnitudes of the extensive thermodynamic properties of a solution phase
are rarely found to be the composition-weighted average of the properties of the
pure components, that is, that of the mechanical mixture. For example, for the
volume of a solution of water and alcohol:

100 ml water + 100 ml alcohol �= 200 ml of solution but ≈ 190 ml of solution

In this instance, there is a volume contraction (at the microscopic level, there
is strong attraction between the molecules of water and alcohol, resulting in a
reduction of the solution volume).
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Similar nonlinear behavior is found in all types of solutions for the other
extensive thermodynamic quantities, U , H , G, A, S, . . ..

Any extensive thermodynamic quantity Y , at constant p and T , is a function
of the amounts of substance of the components, A and B, that is,

Y |p,T = Y (nA, nB) (5.7)

and the differential quantity is given by

dY |p,T =
∑

i

Yi dni (5.8)

where Yi is the partial derivative at constant p and T and nj is the amount of
substance of the other component(s):

Yi =
(

∂Y

∂ni

)
p,T ,nj

(5.9)

This last equation defines a partial molar quantity . Note that these partial deriva-
tives are only referred to as partial molar quantities when the derivatives refer to
constant p and T .

Extensive thermodynamic functions are homogeneous functions of the first
degree, that is,

kY (ni) = Y (kni) (5.10)

where k is a constant, and by Euler’s theorem for such functions, the integral
quantity is related to the partial molar quantities by

Y =
∑

i

niYi (5.11)

The difference between a total (or integral) property and a partial molar prop-
erty is clear from the two experiments sketched in Figure 5.1. The sketch on the
left shows how the total or integral enthalpy of mixing �mixH for a liquid (A,B)
alloy at a particular composition, A0.7B0.3(l), at constant temperature and pres-
sure. The relative amounts of the pure components required to give the desired
composition are simply mixed. The sketch on the right shows how the partial
molar enthalpy of mixing of A, �HA, in a liquid alloy of the same composition,
A0.7B0.3(l), and at the same temperature and pressure is measured. A very small
amount of component A is added to a relatively large amount of the alloy. The
result from this experiment is independent of the size of the alloy bath as long
as it is very large compared with the amount of A added.

Because of the relation between total (extensive) and partial molar quantities,
Y = ∑

i niYi , we can see that all the relations previously met for the extensive
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nA = 0.7 nB = 0.3

A0.7B0.3 A0.7B0.3
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dnA

( )dH
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Figure 5.1 Difference between total or integral thermodynamic property and partial
molar property. Both mixing processes are carried out at constant p and T .

properties of unary systems apply equally well to the partial molar quantities in
solutions (remember that the partial molar quantities are only defined at constant
p and T ). Some examples are

Gi = Hi − T Si (5.12)

Hi = Ui + pVi (5.13)

�mixGi = �mixHi − T �mixSi (5.14)(
∂Gi

∂T

)
p

= −Si (5.15)

(
∂Gi

∂p

)
T

= −Vi (5.16)

5.2.1 Relations between Partial and Integral Quantities

We will show how (5.9) and (5.11) can be used to derive some important relations
between partial and integral quantities.

The molar form of (5.8) can be obtained for a binary solution by dividing by
nA + nB :

dYm = YA dxA + YB dxB (5.17)

and since xA + xB = 1, then dxA = −dxB , giving

dYm = (YB − YA) dxB (5.18)

or

dYm

dxB

= YB − YA (5.19)
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Figure 5.2 Tangent–intercept relation between partial and integral molar quantities at
constant p and T .

Graphically, this means that, for a binary solution, the tangent slope at a point
on a plot of an integral molar quantity is equal to the difference in the partial
molar properties at that point.

Similarly, the molar form of (5.7) for a binary solution is given by

Ym = xAYA + xBYB = (1 − xB)YA + xBYB (5.20)

Combination of (5.19) and (5.20) yields equations from which the individual
partial molar quantities can be obtained from the integral molar quantity:

YA = Ym − xB

dYm

dxB

(5.21)

YB = Ym + (1 − xB)
dYm

dxB

(5.22)

These equations also have a very simple graphical interpretation which is shown
in Figure 5.2. The partial molar quantities are given by the intercepts on the
ordinate (property) axes of the tangent to the integral property curve at the com-
position of interest.

Example 5.1 Calculation of Partial Molar from Integral Enthalpies of Mixing
The enthalpy of mixing of Cu(l) with Sn(l) to form 1 mol of liquid Cu1−xSnx alloy
as a function of composition at 1400 K (and p = 1 bar) is shown in Figure 5.3.
The tangent shown refers to a composition xSn = 0.2. The two tangent intercepts
at this composition are shown on the two ordinate axes. These two values for the
partial molar properties are then shown by dots in Figure 5.4 for this particular
composition. The curves in the latter figure are obtained by repeating this pro-
cedure at all compositions. The advantage of having an analytical representation
of the integral property and then being able to do the necessary differentiations
analytically is obvious. We will return to this point later.



72 THERMODYNAMICS OF BINARY SOLUTIONS I

−6

−4

−2

0

0 0.2 0.4 0.6 0.8 1
Cu SnxSn

−8
Δ m

ix
H

 / 
kJ

 m
ol

−1

ΔHCu ΔmixH

ΔHSn

Figure 5.3 �mixHm for liquid Cu1−xSnx alloys at 1400 K and 1 bar. The reference
states are Cu(l) and Sn(l).
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Figure 5.4 Partial molar enthalpies of mixing for liquid Cu1−xSnx alloys at 1400 K and
1 bar. The reference states are Cu(l) and Sn(l).

5.2.2 Relation between Partial Quantities: the Gibbs–Duhem Equation

The fourth Gibbs equation for a solution phase is

dG = −S dT + V dp +
∑

i

μi dni (5.23)

Since one of the independent variables, ni , is extensive, while the other two, p

and T , are independent of the size of the system, integration of this equation
gives the equation

G =
∑

i

niμi (5.24)

where the μi are functions of p and T .
The result from this integration also follows from Euler’s equation for homo-

geneous functions of degree 1 (see Appendix B):
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The total differential of (5.24) is

dG =
∑

i

ni dμi +
∑

i

μi dni (5.25)

Subtracting (5.23) from (5.24) gives

0 = −S dT + V dp +
∑

i

ni dμi (5.26)

which is the Gibbs–Duhem equation for a solution phase.
At constant p and T it becomes

0 =
∑

i

ni dμi (5.27)

from which we see that the chemical potentials in a solution phase are not inde-
pendent.

The molar form of (5.27) for a binary system is obtained by dividing by
nA + nB and taking the derivative with respect to xB :

xA

(
∂μA

∂xB

)
p,T

+ xB

(
∂μB

∂xB

)
p,T

= 0 (5.28)

which, on integrating, gives∫
dμB = −

∫
1 − xB

xB

(
∂μA

∂xB

)
p,T

dxB (5.29)

We can see from this equation that, if the composition variation of one chemical
potential is known in a binary solution for a given p and T , then the other chem-
ical potential can be evaluated. This represents another example of using thermo-
dynamics to avoid, in principle, having to carry out extraneous measurements.

The constant p and T version of the Gibbs–Duhem equation can be equally
applied to the other partial molar properties of a solution:

0 =
∑

i

ni dHi (5.30)

5.3 APPLICATION TO GAS MIXTURES

5.3.1 Partial Pressures

Pressure is a field quantity (see Chapter 4). In a gas mixture we wish to assign the
separate contributions of the components to the total pressure. Partial pressures
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are defined to do just this; that is, their sum is equal to the total pressure:

pi = xip (5.31)

from which we see that the definition ensures that the sum of the partial pressures
equals the total pressure:∑

i

pi =
∑

i

xip = p
∑

i

xi = p (5.32)

Because it is a definition, this equation applies independently of whether the
gas is perfect or not. Note that (5.31) is not , as is sometimes claimed, Dalton’s
so-called law of partial pressures. Dalton found experimentally that the total
pressure of a gas mixture, in a constant-volume enclosure at constant T , was
approximately equal to the sum of the pure component pressures in the same
enclosure: p ≈ ∑

i p∗
i

5.3.2 Chemical Potentials in Perfect Gas Mixtures

We have already seen in (2.28) in Chapter 2 that, for a unary gas,

G∗
m(T , p) − G

◦
m(T , p

◦
) = RT loge

(
p∗

p◦

)
perfect gas (5.33)

We can go through a derivation similar to that used for obtaining (5.33) for a
component of a perfect gas mixture at constant T :

dGi |T = Vi dpi (5.34)

and for a perfect gas

dGi |T = RT

pi

dpi (5.35)

On integration this gives, with respect to the standard conditions,

Gi(T , p∗) − G
◦
i (T , p

◦
i ) = RT loge

(
pi

p
◦
i

)
(5.36)

or, for any conditions,

μi(T , pi) − μ
◦
i (T ) = RT loge

(
pi

p
◦
i

)
component
perfect gas mixture

(5.37)

This equation is used very often in MS&E calculations, where it is usually safe
to assume that gases are perfect. It gives us a recipe for calculating μi for a
component of a gas mixture from observable quantities (gas analysis).
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5.3.3 Real Gas Mixtures: Component Fugacities and Activities

Defining the fugacity of a component in a mixture is similar to that already met
with in Chapter 2 for a pure gas—for a real gas we keep the same form as (5.37)
in order to define the fugacity of a component:

μi(T , pi) − μ
◦
i (T ) = RT loge

(
fi

f
◦
i

)
real gas mixture (5.38)

where f
◦
i is the standard state fugacity of component i at p

◦
i , T .

The activity of a component is defined as the ratio of its fugacity in the state
it happens to be in to its fugacity in the standard state:

ai = fi

f
◦
i

(5.39)

When the gas phase can be assumed perfect, then the activity of a component
can be obtained from

ai = pi

p
◦
i

(5.40)

The relation between chemical potential and activity is given by

μi(T , pi) − μ
◦
i (T ) = RT loge ai (5.41)

and we see that the functions fugacity and activity are just alternative ways of
expressing the chemical potential of a component in a gas mixture. The same
functions are used for components of solid and liquid solutions.

EXERCISES

5.1 The integral enthalpy of mixing of liquid (Cu,Zn) solution can be approx-
imated by the following equation using Cu(l) and Zn(l) as the reference
states: �mixHm = −19, 250xCuxZn J mol−1 at 1400 K.

(a) Derive the corresponding partial quantities of Cu and Zn, respectively.
(b) Show the two partial equations are internally consistent with the

Gibbs–Duhem equation.
(c) Plot the integral enthalpy values at 1400 K as a function of composition.

Draw a tangent at 50 mol% Zn and obtain the two partial quantities
graphically as shown in Figure 5.3.
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(d) Plot the variation of the integral and partial quantities graphically and
make a comparison with the data shown in Figures 5.3 and 5.4. Please
make any comment you may have on the different behaviors between
the two alloy systems.

5.2 .(a) Calculate the enthalpy effect �H for dissolving 1 mol of solid nickel
in 9 mol of liquid copper at 1473 K, assuming an ideal solution is
formed. In other words, the enthalpy of mixing liquid (Cu,Ni) alloys is
negligibly small and can be taken to be zero. The enthalpies of melting
for Ni and Cu are 17,470 J mol−1 at Tfus = 1726 K and 13,055 J mol−1

at Tfus = 1356.6 K.
(b) Calculate the entropy change of the system and of the surroundings for

this process.

5.3 .(a) A stream of argon gas is passed in a closed system over a boat con-
taining mercury at 273 K. The flow rate of the argon is slow enough
to allow this gas to become saturated with mercury vapor. The total
volume of nitrogen used is 22 liters measured at 293.15 K and 1 bar.
The argon was found to contain 0.0674 g of mercury. Calculate the
vapor pressure of mercury at 273.15 K.

(b) The same experiment is carried out with a sodium amalgam (Na + Hg)
in which the atomic fraction of sodium is 0.122; 22 liters of argon gas
saturated with mercury is found to contain 0.0471 g of mercury. Take
pure mercury as the reference state and calculate the chemical potential
of Hg relative to that of Hg(l), that is, μHg − μ

◦
Hg.

5.4 Copper (Cu) and nickel (Ni) form a continuous series of solutions in both
the liquid- and solid state. The crystal structure of both solid elements is
face-centered cubic.

The following experiments have been carried out to measure the enthalpy
of solution of Cu(l, 1823 K, 1 bar) and that of Ni(l, 1823 K, 1 bar) in a
liquid Cu0.6Ni0.4 alloy, also held at 1823 K, 1 bar.

Specifically a sample of 0.2 g of liquid Cu held at 1823 K, 1 bar, is
dropped into a large bath of liquid Cu0.6Ni0.4 alloy (say, 1000 g) also held
at 1823 K and 1 bar. The enthalpy change measured is 6.14 J (endothermic
or heat flow into system).

A similar experiment is also carried out by dropping 0.2 g of Ni held
at 1823 K and 1 bar into the same bath under identical conditions. The
enthalpy change measured is 14.96 J (also endothermic).

S
◦,s
m (298 K) 〈C◦,s

p 〉 〈C◦,l
p 〉 T

◦
fus �fusH

◦
m(T

◦
fus) Vapor

Element Ar /J K−1 mol−1 /J K−1 mol−1 /J K−1 mol−1 / K /J Pressure/bar

Cu 63.54 28.5 27.2 32.6 1356.6 13055.0 6.80 × 10−4

Ni 58.71 33.5 32.5 43.1 1726 17470.0 2.76 × 10−5
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Use these experimental data as well as any other thermodynamic data given
in the above table (note that you may not need all the data in the table) to
calculate the following (stating any assumptions you may have to make in
carrying out some of the calculations):

(a) Relative partial molar enthalpy of Cu, �mixHCu(1823 K, 1 bar), in
Cu0.6Ni0.4

(b) Relative partial molar enthalpy of Ni, �mixHNi(1823 K, 1 bar), in
Cu0.6Ni0.4

(c) Integral molar enthalpy of mixing, �mixHm, for Cu0.6Ni0.4 (l, 1823 K,
1 bar)

(d) Relative partial molar enthalpy of Cu at 1823 K and 1 bar but with
respect to Cu(s)

(e) Relative partial molar enthalpy of Cu at 1823 K and 1 bar but with
respect to the SER reference state

(f) Equilibrium partial pressures of Cu and Ni over the alloy Cu0.6Ni0.4 at
1823 K. You may assume that �mixSm is the same as that for an ideal
solution.





6 Thermodynamics of Binary
Solutions II: Theory and
Experimental Methods

6.1 IDEAL SOLUTIONS

Just as the perfect gas mixture provides a useful concept when discussing the
properties of a real gas mixture, it is similarly useful to define ideal solutions
for condensed phases and then discuss the behavior of real solutions in terms of
their deviation from the defined ideal behavior.

With gases, it was clear how to define a perfect gas—one whose EOS is given
by pV = nRT , which results when intermolecular interactions are negligible.
Real gases at moderate pressures, and particularly at high temperatures, approach
this defined ideal behavior. In the case of liquid and solid solutions, however,
we have the situation where the balance between attractive and repulsive forces
between the atoms or molecules is actually responsible for the stability of the
condensed phase, so that we cannot define a condensed-phase ideal solution
on the basis of zero atomic or molecular interactions. Such a definition is not
necessary, however, since we are only interested in property changes on mixing
to form a solution and we might, therefore, define an ideal solution as one where
there are negligible effects brought about by changes in the atomic or molecular
interactions on forming the solution. On the basis of this definition, we only
expect a real solution to approach this ideal behavior when the components are
chemically identical. Mixtures or solutions of isotopes are, therefore, the most
likely candidates for forming an ideal solution. An alloy of the chemically similar
elements Ag and Au might be expected to approach ideal solution behavior while
chemically dissimilar elements like Al and Ti would not.

For a component i of a perfect gas mixture the chemical potential relative to
that for the pure component at pressure p∗

i is given by

μi(pi, T ) − μ∗
i (p

∗
i , T ) = RT loge

(
pi

p∗
i

)
(6.1)
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and from the definition of partial pressure:

pi = xip
∗
i (6.2)

In such a perfect gas mixture we may write the chemical potential of the com-
ponent i in terms of molar concentration as

μi(pi, T ) − μ∗
i (p

∗
i , T ) = RT loge

(
xip

∗
i

p∗
i

)
(6.3)

μi(pi, T ) − μ∗
i (p

∗
i (xi = 1), T ) = RT loge xi (6.4)

In liquid or solid solutions we are interested in solutions at, effectively, p = 1
bar (in MS&E, the effect of pressure on condensed-phase properties is generally
negligible). Comparison with (6.3) leads to a plausible definition of an ideal
solution for condensed phases:

μi(xi, T ) − μ∗
i (xi = 1, T ) ≈ μi(xi, T ) − μ

◦
i (xi = 1, T )

= RT loge xi (6.5)

which we will usually write as

�mixμ
id
i = RT loge xi (6.6)

Recall that the subscript mix is used whenever the reference states for the pure
components have the same structure as that of the phase of interest.

It should be made clear that an ideal solution could be defined differently
from (6.6); the definition is in the hands of the thermodynamicist and is not an
absolute. The aim is to use a definition such that the properties of the defined
ideal solution are approached by real solutions.

Solutions conforming to the definition given in (6.6) are said to be Raoultian
ideal. But other definitions of ideal solutions, more appropriate for other types
of solution, are used. For the moment, it should be emphasized that we have
defined an ideal solution and not the ideal solution. This particular definition is
useful when discussing liquid metal alloys and solid substitutional alloys. For the
remainder of this chapter, we will usually drop the prefix Raoultian and simply
use the term ideal solution.

The following equations for �H id
i , �Sid

i , and �V id
i , at constant xi , for our

defined ideal solution are readily obtained:

�mixH
id
i = ∂(�μid

i /T )

∂(1/T )
= ∂(R ln xi)

∂(1/T )
= 0 (6.7)

�mixS
id
i = −∂ �μid

i

∂T
= −∂(RT ln xi)

∂T
= −R loge xi (6.8)
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�mixV
id
i = ∂ �μid

i

∂p
= ∂(RT loge xi)

∂p
= 0 (6.9)

The integral molar quantities may be obtained from these partial molar quantities
by using, for any property Y , Ym = ∑

i xiYi . For a binary solution (A,B)

�mixG
id
m = RT [xA loge xA + xB loge xB ] (6.10)

�mixHid
m = 0 (6.11)

�mixS
id
m = −R[xA loge xA + xB loge xB ] (6.12)

�mixV
id
m = 0 (6.13)

The compositional variations of the partial and integral entropies and Gibbs ener-
gies (in dimensionless units) are shown in Figures 6.1 and 6.2 for a Raoultian
ideal solution in a binary system. The integral and partial enthalpies and volumes
of mixing are zero.

As shown in Figure 6.2, the Gibbs energy of mixing for this ideal solu-
tion is symmetrical with respect to composition; it attains a minimum value
of −0.69315R at the equi-atomic composition and approaches zero at the pure
component elements. On the other hand, the partial quantities change much more
markedly with composition due to the logarithmic term involved:

xi → 1 �Si, �Gi → 0

xi → 0 �Si → +∞ �Gi → −∞
At the midcomposition, the integral and partial Gibbs energies attain the same

value in the defined ideal solution since the horizontal tangent to the integral
Gibbs energy curve �G/RT at this point intercepts the ordinate axes at the same
value as that of the integral quantity. These intercepts are the chemical potentials
(or partial molar Gibbs energies in this case) of the component elements for the
alloy at the equi-atomic composition.

ΔmixS

R
ΔmixSB

R

ΔmixSA

R

ΔmixSm
0.69315

0
0.0 0.2 0.4 0.6 0.8 1.0

A xB B

1

2

3

R

Figure 6.1 Integral and partial molar entropies for Raoultian ideal solution as defined
in (6.6).
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ΔmixG

RT

−3
0.0 0.2 0.4 0.6 0.8 1.0

A xB B

−2

−1

0

ΔmixGm

RT

ΔmixGB

−0.69315

RT

ΔmixGA

RT

Figure 6.2 Integral and partial molar Gibbs energies for Raoultian ideal solution as
defined in (6.6).

6.1.1 Real Solutions

The experimental results for many real systems indicate deviations from ideal
solution behavior and it is useful to define quantities which are suited to describ-
ing their behavior. There are several commonly used ways of doing this. One of
these, already met in Chapter 5, is to retain the form of (6.5) but to replace the
mole fraction with another dimensionless quantity called the activity :

μi(xi, T ) − μ
◦
i (xi = 1, T ) = RT loge ai (6.14)

Comparison of (6.14) with (6.6) shows that, for an ideal solution,

ai (xi ) = xi Raoultian ideal, p
◦ = 1 bar (6.15)

The variation of component activities with composition for a Raoultian ideal
solution is shown in Figure 6.3. Equation (6.14) can be rewritten as

μi(xi, T ) − μ
◦
i (xi = 1, T ) = RT loge xi + RT loge γi (6.16)

where γi is known as the activity coefficient or, more precisely, as the Raoultian
activity coefficient.

Note that, because of the way that activity is defined, a solution at a pressure
other than 1 bar in which the compositional variation of the chemical potential
is given by

dμi |p,T = RT d loge xi (6.17)

does not obey (6.15).
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Figure 6.3 Variation of component activities with composition for a Raoultian ideal
solution.

Another way for describing the properties of the real solutions is to use depar-
ture or excess functions. These also describe the deviation from the defined ideal
solution behavior. The excess integral and partial molar properties are defined by

Y E = �mixY − �mixY
id (6.18)

Y E
i = �mixYi − �mixY

id
i (6.19)

As will become apparent later, there are definite advantages in defining such new
functions. The most important excess properties are

GE
m = �mixGm − �mixG

id
m (6.20)

HE
m = �mixHm − �mixH

id
m = �mixHm (6.21)

μE
i = �mixμi − �mixμ

id
i (6.22)

It can be seen that the excess chemical potential is related to the activity coeffi-
cient by

μE
i = RT loge

(
ai

xi

)
= RT loge γi (6.23)

Note that, while �mixμi = �mixGi → −∞ as xi → 0, μE
i and �mixHi remain

finite in this limit, since they do not contain the logarithmic term associated with
the mixing entropy.

6.1.2 Dilute Solution Reference States

So far we have concentrated on using the pure substance reference state. Some-
times the required pure substance may not exist, as, for example, when only
dilute solutions can be investigated experimentally. In such cases, it is more con-
venient and perhaps necessary to select a more appropriate reference state for the
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solute (the pure substance reference state can be used for the solvent). Several are
possible and we illustrate with just the one—the mole fraction infinitely dilute
solution reference state.

In the pure substance reference state γi → 1 as xi → 1. When the mole frac-
tion infinitely dilute reference state is chosen, a new activity coefficient,fi , is
defined so that fi → xi as xi → 0. The differences between the pure substance
and mole fraction infinitely dilute solution reference states, assuming results are
available over the whole concentration range, are shown in Figure 6.4. The dif-
ferences are also apparent in the definitions:

μi = μ
◦
i + RT loge xi + RT loge γi (6.24)

= μ�
i + RT loge xi + RT loge fi (6.25)

where we have used μ�
i for the standard reference state for the mole fraction

infinitely dilute solution to distinguish it from the pure substance standard
state. As can be seen from (6.25), the value of μ�

i can be obtained from dilute
solution results by plotting μi − RT loge xi versus xi . The intercept at xi = 0 is
then the value of μ�

i , since this is where fi = 1. If results are available over the
whole concentration range, comparison of (6.24) with (6.25) gives the relation
between fi and γi :

fi = γi exp

(
μ

◦
i − μ�

i

RT

)
(6.26)

It is sometimes found experimentally that fi appears to remain approximately
constant at fi = 1 (or, alternatively, γi is constant, at a value usually represented
as γ

◦
i ) in very dilute solution of the solute i. Under these circumstances, the

linear relation ai(pure substance scale) = γ
◦
i xi is known as Henry’s law . It is

more often used in dilute aqueous solutions than in alloy solutions.

0.0 m°
B

mB

−0.5RT

GE
m

−1.0

−1.5

−2.0

0.0 0.2 0.4 0.6 0.8 1.0
A xB B

Figure 6.4 Difference between pure substance and infinitely dilute solution reference
states.
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In the dilute solution region, it is possible to use an interpolation formula
as an approximation for calculating the activity coefficient of a solute in dilute
concentration in a multicomponent solution. The values for the individual solutes
are stored as interaction coefficients in binary and ternary systems:

εi
i =

(
∂ loge fi

∂xi

)
ε

j

i =
(

∂ loge fi

∂xj

)

Then, in the multicomponent solution,

loge fi = 1 + xiε
i
i +

∑
j

xj ε
j

i (6.27)

It is emphasized that such a linear interpolation should only be used for solutes
in very dilute solutions.

6.2 EXPERIMENTAL METHODS

As we saw in Chapter 5, it is possible, in principle, to obtain all the mixing
thermodynamic quantities, that is, both the integral and the partial Gibbs ener-
gies, enthalpies, and entropies of mixing for a binary solution phase when the
chemical potential of one component is measured as a function of composition
and temperature. The Gibbs–Duhem equation provides the means for doing this.

In practice, however, the values for the derived mixing entropies and enthalpies
obtained by this procedure may not always be reliable, even though the Gibbs
energy values themselves may be satisfactory (there are practical difficulties in
obtaining accurate slopes and intercepts from a plot of loge ai versus reciprocal
temperature).

Improved approaches to obtaining accurate thermodynamic properties of solu-
tions are to:

(a) Determine simultaneously the chemical potentials of both components. This
can often be done by mass spectrometry measurements of the component
vapor pressures.

(b) Determine the chemical potential of one component, for example, by vapor
pressure measurements, together with either the integral or partial enthalpy
of mixing using calorimetry.

The methods which are used in obtaining the high-temperature thermodynamic
properties of alloys can be summarized as follows:

1. First-principles calculations of the 0 K total energies plus model calcula-
tions of excitational energies

2. Substance calorimetry
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(a) Heat capacity, Cp

(b) Enthalpy difference, H(T2) − H(T1)

3. Reaction calorimetry
(a) Integral enthalpies of mixing, �mixHm

(b) Direct
(c) Solution
(d) Partial molar enthalpies of mixing, �mixHi

4. Chemical potential measurements, μi , via one of the following:
(a) Phase equilibria
(b) Chemical equilibria
(c) Electrochemical equilibria

Substance and reaction calorimetry for unary systems was discussed in Chapter 2.
There are no differences in the methods used for obtaining alloy formation prop-
erties from those used for compound formation properties and so it is unnecessary
to consider them again here.

The principle behind the measurement of a component chemical potential
in a phase is, most commonly, to equilibrate that phase with another phase in
which its chemical potential is already known (phase equilibria). We anticipate
the important relation, to be discussed in Chapter 8, that, for equilibrium between
two phases, the chemical potentials of any given mobile component are equal in
the two phases. If chemical reactions are involved between the phases involved,
then a modified equilibrium criterion, to be discussed in detail in Chapter 18, is
used. Similarly, when electrochemical reactions are involved between the phases
(electrochemical equilibria), another equilibrium relation is necessary.

6.2.1 Chemical Potential Measurements

6.2.1.1 Phase Equilibria. The relation used is μ′
i = μ′′

i , where the value in one
phase is known. The latter is usually the gas phase at low pressures, where
μi = μ

◦
i + RT loge(pi/p

∗
i ) can be used with high accuracy.

Most of the older vapor pressure methods measure the total pressure rather than
the individual component vapor pressures. As a result, these methods are suitable
only for alloys where the vapor pressures of the two component elements differ
from each other by at least three orders of magnitude. The measurement of vapor
pressures at high temperature is not straightforward. Either the whole apparatus
must be at a high temperature to prevent any undesirable condensation or some
pressure-balancing device must be introduced to isolate the high-temperature
reactive system from a room temperature inert gas pressure-measuring
system.

An example is provided by liquid (Pb,Sn) alloys. For this binary system, the
vapor pressure of Pb(l) is many orders of magnitude higher than that of Sn(l).
Accordingly, the measured total pressures over (Pb,Sn) alloys are essentially the
partial pressures of Pb, with the partial pressure of Sn being negligibly small
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if the concentration of Pb is at all significant. When the partial pressure of Pb
is measured at a constant temperature as a function of composition from pure
Pb to nearly pure Sn, the chemical potential or activity of Pb can be calculated
from

aPb = pPb

p∗
Pb

≈ ptot

p∗
Pb

(6.28)

The activity of Sn can then be obtained from those for Pb via the
Gibbs–Duhem relationship and the integral Gibbs energy from the two partial
quantities.

A relatively new method by which it is possible to simultaneously determine
the vapor pressures and therefore the activities of both components is known as
KEMS (Knudsen effusion mass spectrometry). The simultaneous mass spectro-
metric measurements can, however, only be carried out when the temperatures
and alloy components and compositions are such that the component vapor pres-
sures do not differ by too many orders of magnitude.

6.2.1.2 Chemical Equilibria. To illustrate, we present the example of using a
mixture of CO(g) and CO2(g) gases to obtain the activity of C in ferrous alloys.
Graphite, C(gr), is used as the reference state for C. The following chemical
reaction represents the chemical equilibrium between a mixture of CO and CO2

and C in an Fe alloy:

CO2(g) + C(gr) = 2CO(g)

The equilibrium constant Kp for this reaction is

Kp = p2
CO

pCO2aC(gr)
(6.29)

The value of Kp is obtained from the value of the p2
CO/pCO2 ratio in equilibrium

with pure C(gr) so that the activity of C(gr) in the alloy can be obtained from

aC(gr) =
(
p2

CO/pCO2

)
alloy(

p2
CO/pCO2

)
gr

(6.30)

In practice, a gas mixture with a known ratio of p2
CO/pCO2 is passed over the

ferrous alloy until equilibrium is attained and the concentration of C in the alloy
then determined by chemical analysis.
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6.2.1.3 Electrochemical Equilibria. An extension of the fundamental equation
for Gibbs energy changes is necessary in order to allow for the fact that an
electrochemical cell also does electrical work (in the surroundings). Just as with
p–V work (δw = −p dV ), electrical work can be expressed as an intensive
quantity and its conjugate extensive property, namely, δw = E dq, where E is
the electric potential and q the charge moved. The Gibbs energy form of the
combined statement of the first and second laws for a system carrying out p–V ,
chemical, and electrical work is then

dG = S dT + V dp +
∑

i

μi dni + E dq (6.31)

An electrochemical cell is in equilibrium when no actual charge is flowing; when
it is an open circuit cell, the electromotive force (emf) of which can be measured
by using a very high impedance voltmeter.

At constant p and T and for an electrochemical cell in equilibrium, dG|p,T =
0 and therefore

∑
i

μi dni + E dq = 0 (6.32)

Since we wish to express E in volts and q in coulombs, a conversion factor is
involved:

∑
i

μi dni = −
∑

i

ziFE dni (6.33)

where zi is the charge on the ion being transported through the cell and F is the
Faraday constant, being 96,494 when the μi are in joules and E, the emf of the
cell, is in volts.

If only one species is being transported (at an infinitely slow rate), then for
the difference in chemical potential between the two electrodes we can write:

�μi = μ′
i − μ′′

i = −ziFE (6.34)

In order to be able to use this equation, the electrochemical cell must have an
electrolyte which transports only the ion of the alloy component under consider-
ation and there must be no electron conduction in the electrolyte. Certain liquids,
for example, some molten salts, and a few solids have this property.

As an example, an alkali metal chloride has been used as the electrolyte in
the determination of the activity of Cd in liquid (Cd,Pb) alloys. Such a cell may
be represented schematically as

Cd(l, T ) ‖ CdCl2 (in alkali chloride) ‖ Cd (Cd1−xPbx, l, T )
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From (6.34) we see that the activity of Cd in the alloy can be determined from

aCd(l, T ) = exp

[
−
(

2FE

RT

)]
(6.35)

since E = 0 when x = 0.
As was briefly mentioned in Chapter 2 for unary systems, another important

source of experimental data, which has become important in the last decade, is
the quantum mechanical calculation of the energies of formation of ordered com-
pounds. The results from the best calculations are now of comparable accuracy
to those which can be determined experimentally. Although the calculations refer
to 0 K, it is possible, albeit with less precision at present, to also gain some infor-
mation of the high-temperature properties by using appropriate models for the
excitation processes. These first-principles calculations have the great advantage
over experimental measurements in that it is just as easy to do calculations on
unstable compounds as it is on the stable forms, whereas the experimentalist is
usually constrained to carry out measurements on only the stable forms. Calcula-
tions on disordered alloy phases are more difficult at present, although by using
supercells of certain ordered structures, approximations to the disordered state
can be achieved.

EXERCISES

6.1 The following values for pPb over liquid (Pb,Sn) alloys at 1050 K have
been reported:

Pb : Tfus = 600.6 K �fusH
◦ = 4799 J mol−1

xPb 0.879 0.737 0.657 0.514 0.397 0.282 0.176 0.091

105p /bar 4.253 4.101 3.889 3.621 2.929 2.311 1.555 1.015

Sn : Tfus = 505.1 K �fusH
◦ = 7029 J mol−1

.(a) Calculate the activity, activity coefficient, partial molar Gibbs energy,
and excess partial molar Gibbs energy of Pb relative to the Pb(l) refer-
ence state at 1050 K.

(b) Calculate the activity, activity coefficient, partial molar Gibbs energy,
and excess partial molar Gibbs energy of Pb relative to a reference state
of Pb(S) at 1050 K.

(c) Attempt to describe the data by a regular solution model and find the
deviations of the data from this model.

(d) Plot GE
Pb/(1 − xPb)

2 versus xPb and carry out a regression analysis. Are
the experimental data well described by a subregular solution model?
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6.2 Assume that 1 mol of liquid nickel and 2 mol of liquid copper mix without
an appreciable enthalpy and volume change. Is there a change in internal
energy, U? In entropy, S? In Gibbs energy, G? Is any work done in this
process if the mixing is carried out in a vacuum under an atmosphere of
argon?

6.3 One mole of Cr(s) at 1600◦C is added to a large quantity of (Fe,Cr) liquid
solution (in which xFe = 0.8) which is also at 1600◦C. If Fe and Cr form
Raoultian ideal solutions, calculate the enthalpy and entropy changes in the
solution resulting from the addition, assume the heat capacity difference
between solid and liquid Cr is negligible.

Element T
◦

fus/ K �fusH
◦
m/ kJ mol−1

Cr 2130 16.93
Fe 1809 13.81

6.4 The activity coefficients of Ni [reference state Ni(l)] in liquid (Ni,Ti) alloys
at 1700◦C are:

xTi 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

γNi 0.021 0.023 0.052 0.104 0.189 0.313 0.474 0.659 0.834 0.956 1

(a) Calculate aTi over the entire composition at intervals of 0.1 in xTi.
(b) Plot aTi and aNi as a function of composition.
(c) What are the Henry’s law constants for Ni and Ti?

6.5 The excess Gibbs energies of bcc solid solutions of (Fe, Cr) and fcc solid
solutions of (Fe, Cr) may be represented by the following expressions:

GE(bcc)/J = xCrxFe (25,104 − 11.7152T )

GE(fcc)/J = xCrxFe (13,108 − 31.823T + 2.748T loge T )

For the bcc phase: .

(a) Calculate the partial Gibbs energy expressions for Fe and Cr.
(b) Plot the integral and partial Gibbs energies as a function of composition

at 873 K.
(c) Plot aCr and aFe as a function of composition at 873 K.

6.6 The enthalpy of an alloy is often obtained by solution calorimetry since
direct reaction of two elemental components may not always go to com-
pletion. One of the solvents used for metallic alloys is Sn since it has a
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low melting point but a high boiling point, making its vapor pressure low
to quite high temperatures.

Two grams of Au, Cu, and Au0.5Cu0.5 at 298 K was individually dropped
into a large bath of molten Sn maintained at 623 K. The chemical reaction
equation is given by

M(s, 298 K) = M(in Sn(l), 623 K, xM → 0)

where M refers to Au, Cu, or Au0.5Cu0.5. The enthalpies for the dissolution
of M in the tin bath at 623 K were -142.1 J for Au, +614.6 J for Cu, and
−176.3 J for Au0.5Cu0.5.

(a) Calculate the enthalpy of formation of Au0.5Cu0.5 at 298.15 K.
(b) Calculate the enthalpy of formation of Au0.5Cu0.5 at 623 K.

The values in the following table are required and refer to 1 mol of
substance.

Tfus/K �fusH
◦/J 〈C◦〉p/J K−1 Ar

Au 1336 12,550 26.0 197.2
Cu 1357 13,055 25.7 63.54
Au 0.5Cu 0.5 — — 26.0

6.7 .(a) A stream of nitrogen gas is passed in a closed system over a boat
containing mercury at 100◦C. The flow rate of the nitrogen is slow
enough to allow this gas to become saturated with mercury vapor. The
total volume of nitrogen used is 22 liters measured at 20◦C and 1 bar.
The nitrogen was found to contain 0.0674 g of mercury. Calculate the
vapor pressure of mercury at 100◦C.

(b) When the same experiment is carried out with a sodium amalgam
(Na+Hg) in which xNa = 0.122, 22 liters of nitrogen gas saturated
with mercury was found to contain 0.0471 g of mercury. Take pure
mercury as the reference state and calculate the activity a, the activity
coefficient γHg, and the difference μHg − μ

◦
Hg in this amalgam.

6.8 .(a) Will a gas mixture containing 97% H2O and 3% H2 oxidize nickel at
1000 K?

(b) An alloy containing 10 at % Ni and 90 at % Au is a solid solution
to 1000 K. It is found that this solution reacts with water vapor to
form NiO. Assume that approximate measurements indicate that the
reaction reaches equilibrium when the water vapor–hydrogen mixture
contains 0.35% hydrogen by volume. Find the corresponding value of
the activity coefficient γ of Ni in the alloy.
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6.9 A pure iron wire is exposed to an atmosphere composed of 95% CO and
5% CO2 at a total pressure of 1 bar and 1200 K. When equilibrium is
established, the carbon content of the wire is found to be 0.4 wt %, Ar (C)
= 12.01, and Ar (Fe) = 55.84. .

(a) Calculate aC with reference to graphite as the reference state.
(b) If the experiment is reported at the same temperature and same gas

composition but with the total gas pressure of 2 bars, estimate the
equilibrium carbon concentration in the wire. State any assumptions
made.

(c) Solutions of carbon in solid iron exhibit positive deviations from
Henry’s law. Given the information, is your answer to part (b) too
high or too low?



7 Thermodynamics of Binary
Solutions III: Experimental
Results and Their Analytical
Representation

7.1 SOME EXPERIMENTAL RESULTS

For an alloy to be stable, at a given p and T , with respect to the component
elements in the same structural form at a particular composition, �mixGm <

0. If this were not the case, a mechanical mixture of the perfectly pure metal
components would be stable at that composition.

It is possible, however, to obtain negative �mixGm values from different com-
binations of the contributory �mixHm and �mixSm values:

(i) If �mixHm > 0, then �mixGm < 0 only if �mixSm >�mixHm/T .
(ii) If �mixHm � 0, then �mixGm can be < 0 not only for �mixSm > 0 but

perhaps also when �mixSm < 0.

Experimental results for the thermodynamic properties of real binary alloys show
these different ways in which �mixGm can be < 0.

7.1.1 Liquid Alloys

A cursory glance at any compilation of phase diagrams reveals that liquid metals
are much more likely to form a complete series of liquid alloy solutions than is
the case for solid alloys. Immiscibility and compound formation are much more
likely to be found in solid alloys.

Some results for �mixHm and �mixSm for liquid alloys are presented typical
in Figures 7.1 and 7.2.

Figure 7.1 shows an example for liquid (Al,Ti) alloys, where �mixHm < 0,
and one for liquid (Pb,Zn) alloys, where �mixHm > 0. Note that the magnitude

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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Figure 7.1 �mixHm > 0 for two liquid alloys: (a) (Ti,Al) alloys at 2000 K; (b) (Pb,Zn)
alloys at 926 K.
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Figure 7.2 �mixSm > 0 for two liquid alloys: (a) (Sn,Zn) alloys at 800 K; (b) (Fe,Si)
alloys at 1853 K.

of �mixHm for (Al,Ti) is considered to be fairly large for alloy mixing, although
the magnitudes are much lower than can be found for ionic compound formation,
for example.

Figure 7.2 shows an example for liquid (Sn,Zn) alloys, where �mixSm > 0, and
one for liquid (Fe,Si) alloys, where �mixSm < 0. The values of �mixS

id
m for an

ideal solution are also shown in Figure 7.2a . It can be seen that the results shown
for (Fe,Si) represent a large negative deviation from that for an ideal solution,
that is, SE

m(= �mixSm − �mixS
id
m) is large and negative.

The results for SE
m from a compilation for 107 liquid binary alloys are shown

as a histogram in Figure 7.3. It is apparent that SE
m often departs significantly

from zero, that is, many binary liquid alloys have entropies of mixing which
deviate significantly from that of an ideal solution. It can also be seen that SE

m is
more often negative than positive and that, in many cases, SE

m is sufficiently large
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Figure 7.3 Histogram of SE
m for some liquid binary alloys. (Results from Journal of

Alloys and Compounds , 325 (2001) 118).

and negative that �mixSm is itself negative (the dashed vertical line corresponds
with SE

m = −�mixSm at the midcomposition for an ideal solution).

7.1.2 Solid Alloys

Alloy solution phases which exist over the whole composition range are not very
common in the case of solid alloys. These continuous series of solid solutions
occur when the magnitudes of the values for �mixHm are relatively small. Two
examples, one for (Ag,Pd) where �mixHm < 0 and another for (Au,Ni) where
�mixHm > 0, are shown in Figure 7.4a . In those solid alloys which do form
a continuous series of solid solutions it is also found that, because �mixHm is
necessarily small, SE

m is close to zero. On this point, as shown in Figure 7.5, there
appears to be a correlation between �mixHm and SE

m for liquid and solid solutions.
A more common occurrence with solid alloys is for them either to be immis-

cible or to form intermediate phases.
Phase separation will occur below some temperature whenever �mixHm > 0

because of the decreasing influence of temperature on the T �mixSm term, that is,
�mixGm will eventually become > 0 if �mixHm > 0. In the case of the (Au,Ni)
system shown in Figure 7.4b, phase separation occurs at temperatures below
about 1083 K.

Intermediate-phase formation occurs whenever �mixHm is large and negative,
indicative of a strong chemical affinity between the two metals involved. In such
cases, several different intermediate phases are often found to occur and these
will most likely be based on different parent phase structures; that is, some will
be based on an fcc parent structure, others on a bcc parent. This means that it
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is no longer possible to plot �mixHm or �mixSm as a function of composition
as we did for the case when a continuous series of solid solutions are formed.
Nevertheless, it is possible to observe the general trend by plotting �f Hm or
�f Sm with respect to the stable element reference states at that temperature. An
example is given in Figure 7.6 for solid (Al,Ni) alloys. The reference states here
are Al(l) and Ni(fcc). The solid lines where there are no points represent the
two phase regions (at 1000 K). Very large negative �f Sm values are indicated
in this system and this conclusion would not change markedly were reference
states selected for each intermediate phase which are appropriate for calculating
�mixSm for that particular phase.
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Just as is apparent from the histogram shown in Figure 7.3 for liquid alloys,
a similar plot for solid alloys also indicates that negative �f Sm values are often
found in solid alloys.

Summary The experimental results for the thermodynamic properties of real
binary alloys indicate that:

(i) Both positive (endothermic) and negative (exothermic) values for �mixHm

or �f Hm are found in both liquid and solid alloys.
(ii) Deviations of the entropies of mixing from �mixS

id
m are commonplace.

(iii) Both positive and negative values for SE
m are found, although negative SE

m

values are more common. Frequently, negative deviations from ideal mixing
can be so large that �mixSm and �f Sm are negative.

(iv) Asymmetry of the properties as a function of composition is frequently
found.

These observations concerning the thermodynamic properties of liquid and solid
binary alloys must be taken into account when attempting to atomistically model
these properties.

7.2 ANALYTICAL REPRESENTATION OF RESULTS FOR LIQUID
OR SOLID SOLUTIONS

Principal reasons for having analytical representations are:

1. It provides the means for obtaining efficient storage solution-phase prop-
erties in computer databases.
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2. The equations for the integral and partial molar properties are thermody-
namically self-consistent. Thus it is unnecessary, for example, to carry out
any Gibbs–Duhem integrations.

The principal reason for defining and having analytical representations of the
excess thermodynamic functions comes from the fact that, in calculating them,
the logarithmic terms are removed from the integral and partial molar expressions
for �mixSm and �mixGm. With these removed, there is the possibility of obtaining
simple polynomial expressions for the excess functions.

Margules first suggested a polynomial representation of HE
m(= �mixHm since

�mixH
id
m = 0):

HE
m = xAxB

[
λ0 + λ1xB + λ2x

2
B + λ3x

3
B + · · ·]

= xAxB

n∑
i=0

λix
i
B (7.1)

It can be seen that this form of representation has the required limiting value
of zero at both end compositions. A polynomial of any required order in xB

can be used in the summation term and the λ’s may or may not be temperature
dependent.

More recently, (7.2) has been assumed to apply to GE
m rather than to just HE

m:

GE
m = xAxB

n∑
i=0

λix
i
B (7.2)

Polynomials for GE
m which differ slightly from the one given in (7.2) are possible.

One which is frequently used in computer databases, because it is more readily
extended for use with multicomponent solutions than (7.1), is known as the
Redlich–Kister equation:

GE
m = xAxB

n∑
j=0

Lj (xA − xB)j (7.3)

In this equation the Lj parameters may or may not have to be assumed to be
temperature dependent in describing a set of experimental results.

The expressions for the partial molar quantities corresponding with (7.2) are

μE
A = x2

B

n∑
j=0

Lj(xA − xB)j−1[(2j + 2)xA − 1] (7.4)

μE
B = x2

A

n∑
j=0

Lj (xA − xB)j−1[1 − xB(2j + 2)] (7.5)
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A Raoultian ideal solution is one where all the Lj parameters are zero. When
only the term with n = 0 is required to describe the experimental results, then
the integral and partial molar quantities are given by

GE
m = L0xAxB (7.6)

�mixGm = L0xAxB + RT (xA loge xA + xB loge xB) (7.7)

μE
A = L0x

2
B (7.8)

�mixμA = L0x
2
B + RT loge xA (7.9)

μE
B = L0x

2
A (7.10)

�mixμB = L0x
2
A + RT loge xB (7.11)

A solution whose thermodynamic properties can be adequately described by these
equations is called a regular solution . If the experimental results can be described
without L0 being temperature dependent, then the solution is said to be strictly
regular . In this case, the first terms in (7.7), (7.9), and (7.11) are enthalpies
and second terms are entropies. Because the strictly regular solution is simple
to handle and because it is occasionally not all that far away from providing a
reasonable representation of the properties of some real alloys, it is often used in
illustrative phase diagram calculations. Note that while a regular solution has a
constant value of GE

m/xAxB , the converse is not true. It is possible for GE
m/xAxB

to be a composition-independent constant even when �mixSm �= �mixS
id
m .

When the properties of a solution are not well represented by using just the
L0 terms, additional terms are added in (7.3). Those solutions which can be
represented by using only the L0 and L1 terms have often been called subregular
and those requiring L0, L1, and L2 sub-subregular. The sketch in Figure 7.7

0
Ideal

Regular

Subregular

Sub-subregular

GE

xAxB

A xB
B

Figure 7.7 Behavior of GE
m/xAxB for different numbers of coefficients used in

Redlich–Kister equation. No coefficients—ideal solution; L0 only—regular solution;
L0, L1 only—subregular solution; L0, L1, L3 only—sub-subregular solution.
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shows how GE
m/xAxB varies as a function of composition with an increasing

number of Lj parameters together with the names usually given.
The use of high-order polynomials is not recommended in the fitting of exper-

imental results. It would be rare to go beyond the use of L3, since the use of
further terms increases the likelihood of finding waves in the polynomial repre-
sentation of sparse data. If a solution’s properties cannot be fitted by a low-order
polynomial, then it is time to look for another type of representation which is
based more on the physicochemical nature of the solution. This is the situation,
to be discussed in later chapters, when wishing to describe the thermodynamic
properties of intermediate phases.
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Example 7.1 Using Redlich–Kister Equation to Describe Experimental
Results
A satisfactory analytical description of the excess thermodynamic properties
requires the least-squares fitting of the Redlich–Kister equation to the experi-
mental results. A decision has to be made as to how many parameters in this
equation should be used in the description. This is a standard statistical problem
and, without going into any detail, we may illustrate what is involved by con-
sidering the experimental results shown in Figure 7.8. The results available in
this example are more plentiful than is normally the case for real experimental
results: this having been done purposely in order to illustrate the procedure.

One can start off by using only the L0 term in (7.3). It is immediately obvious
in Figure 7.8a that the description using this single parameter is very poor. This is
also apparent from the low value of the coefficient of determination, R2 statistic
(gives the probability of variability in a data set accounted for by the model), and
the high value of the mean-square error (MSE) (a measure of accuracy which is
computed by squaring the individual errors for each item in the data, then finding
the average of the sum of those squares).

The remaining figures in Figure 7.8 show the effect of increasing the number
of L parameters in the description. In this case, the values of R2 and the MSE
have reached acceptable values only when the L0, L1, L2, and L3 parameters are
used, a fact which is also obvious by visual inspection.

Experimental results for the thermodynamic properties of a solution phase are
rarely as plentiful as the ones shown in Figure 7.8. When the data are sparse,
it is dangerous to use a third-order Redlich–Kister polynomial to describe the
results. This is illustrated in Figure 7.9. The fitted curve shown has included
the L0, L1, L2, and L3 parameters and it can be seen that waves have already
started to appear in the least-squares curve. When it is recalled that it is the
derivative of this fitted curve which is required in the calculation of the partial
molar quantities, the dangers are obvious.
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Figure 7.9 When the data are sparse, it is dangerous to use a high-order Redlich–Kister
polynomial to describe the solution properties.
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EXERCISES

7.1 When μE
B = L0(1 − xB)2, show by the Gibbs–Duhem relationship that

μE
A = L0(1 − xA)2.

7.2 Liquid solutions of (Mg,Al) exist from pure Mg(l) to Al(l) at 700◦C. Esti-
mate the partial pressure of Mg over an alloy containing 90 at % Al, 700◦C,
making any assumption necessary. Use the following equations for the vapor
pressures of Al(l) and Mg(l):

Al(l933–2793 K): log10

( p

Pa

)
= −16, 380

T
− 1.0 log10 T + 14.445

Mg(l922–1363 K): log10

( p

Pa

)
= −7550

T
− 1.41 log10 T + 14.915

7.3 The results for liquid (Cu,Sn) alloys shown in Figure 5.3 are described by
the following equation:

�mixHm = xCuxSn[−90028.0 − 5, 8381T

− (20100.4 − 3.6366T )(xCu − xSn)

− 10528.4(xCu − xSn)
2] J/mol

Derive the equation for �mixHSn and compare the results with those shown
in Figure 5.4.

7.4 Show that the coefficients used in (7.1) and (7.3) are related to one another.
The enthalpy of mixing of (Cu,Ni) alloys exhibiting the fcc structure can
be described approximately by the equation

�mixHm = 8400xNi(1 − xNi) J/mol (7.12)

.(a) Calculate the integral enthalpy of mixing with 30 mol % of Ni.
(b) Calculate the partial enthalpy of mixing of Cu and Ni in an alloy with

30 mol % of Ni.

7.5 The partial molar enthalpy of mixing of Ge in (Si,Ge) alloys can be repre-
sented by the equation

�mixHGe = 5820(1 − xGe)
2 J/mol (7.13)

.(a) Calculate the partial enthalpy of mixing of Ge in a (Si,Ge) alloy with
40 mol % Ge.

(b) Calculate the partial enthalpy of mixing of Si in the same alloy.
(c) Calculate the integral enthalpy of mixing of (Si,Ge) for the same alloy.



8 Two-Phase Equilibrium I: Theory

8.1 INTRODUCTION

We have seen that the most stable equilibrium state in a closed system at constant
p and T coincides with where the Gibbs energy is at its global minimum value.
But we have also seen that it is possible to have local equilibrium points which
exist in a metastable state. Liquid water existing below 0◦C is an example of a
metastable phase in a one-component system.

Metastable states are often encountered in alloys and it is important to appre-
ciate that these local equilibria are just as amenable to the application of thermo-
dynamics as is the stable state; that is, thermodynamics is applicable to situations
where any change of the system with time is imperceptible in the time window of
our observations. For example, in a plain carbon steel, we may have metastable
martensite at room temperature; its decomposition rate is imperceptible. The usual
thermodynamic relations can be applied and thermodynamic properties assigned
to martensite in this state. On tempering the steel at a higher temperature, it
starts to decompose (the system is changing with time) and thermodynamics is
not applicable to this state. When the martensite is completely decomposed to
ferrite and carbide and the system is once more effectively time independent,
thermodynamics is again applicable. However, another transition state can then
be obtained if the alloy is annealed at a higher temperature to give the final global
equilibrium of ferrite plus graphite. Thermodynamic relations are not applicable
during the transition stage, except in providing hints for the direction of change.
Thermodynamics is again applicable, in a quantitative way, to the final global
equilibrium.

In the following, we are concerned with finding solutions to a more restricted
problem, namely, locating the equilibrium position, metastable or stable,
between two prespecified phases. The equilibrium conditions for this situation
can be derived in a straightforward way. Just as we did for unary systems,
we seek a constrained minimization of the Gibbs energy by using Lagrangian
multipliers.

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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8.2 CRITERION FOR PHASE EQUILIBRIUM BETWEEN TWO
SPECIFIED PHASES

8.2.1 Equilibrium between Two Solution Phases

Consider two binary solution phases, α and β, in contact with one another as
shown in Figure 8.1. The total system comprising the two phases is closed, but
each subsystem, namely, each individual phase, is open to the other.

The Gibbs energy in each phase is given by the weighted sum of the chemical
potentials, that is, G = ∑

i niμi , and the total Gibbs energy of the two-phase
system by G = ∑

j

∑
i n

j

i μ
j

i .
We can write the constraints on the Gibbs energy minimization and give an

associated Lagrangian multiplier as follows:

λ1 for nA(total) − nα
A − n

β

A = 0 (8.1)

λ2 for nB(total) − nα
B − n

β

B = 0 (8.2)

and the Lagrangian function L to be minimized becomes

L = G + λ1(nA − nα
A − n

β

A) + λ2(nB − nα
B − n

β

B) (8.3)

= nα
Aμα

A + n
β

Aμ
β

A + nα
Bμα

B + n
β

Bμ
β

B (8.4)

+ λ1(nA − nα
A − n

β

A) + λ2(nB − nα
B − n

β

B) (8.5)

Partial differentiation with respect to, for example, nα
A gives the minimum in L:

∂L
∂nα

A

= μα
A − λ1 = 0 (8.6)

∂L
∂n

β

A

= μ
β

A − λ1 = 0 (8.7)

∂L
∂nα

B

= μα
B − λ2 = 0 (8.8)

∂L
∂n

β

B

= μ
β

B − λ2 = 0 (8.9)

a
(A,B )

(A,B )
b

Figure 8.1 The two solution phases α and β are in open contact with one another but
the α + β system is closed.
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Elimination of the Lagrangian multipliers leads to the condition for the con-
strained minimum in G, that is, the condition of equilibrium:

μα
A = μ

β

A (8.10)

μα
B = μ

β

B (8.11)

In general, the condition of equilibrium between any two prespecified phases α

and β is

μα
i = μ

β

i for all components i in phases α and β (8.12)

The physical meaning of the Lagrangian multipliers used for the mass balance
constraints λ1 and λ2 is apparent from (8.6)–(8.9). They are seen to be chemical
potentials.

Since μi
i = f

(
p, T , xi

i

)
, then solution of the set of equations (8.12) yields

the compositions of the phases in equilibrium at a given p and T . The meaning
of (8.12) is shown graphically in Figure 8.2. At the constant p and T chosen,
Figure 8.2a shows the Gibbs energies for the two phases. Starting from the A-
rich side, it can be seen that the α-phase has the lower Gibbs energy until the
composition xα

B is reached. From there until the composition x
β

B , the two-phase
mixture of α + β has a lower Gibbs energy than either of the single phases. After
x

β

B the β-phase becomes the stable state. Figure 8.2b summarizes this information
in a tie-line of the T − xi phase diagram. There is another important result from

Gm

mA

a

b

b

a

a+b

T

A B

mB

xB

(a)

(b)

0 1

xB
bxB

a

Figure 8.2 Equilibrium between two phases in Figure 8.1.
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the calculation. The constraint nA = nα
A + n

β

A can be rewritten as

nA

N
= nα

A

N
+ n

β

A

N
= Nα

N
· nα

A

Nα

+ Nβ

N
· n

β

A

Nβ

(8.13)

which is equivalent to

xA = f αxα
A + f βx

β

A (8.14)

which is a statement of the Lever rule. Not only are the compositions of the
phases in equilibrium obtained but also their relative amounts.

We see, then, that the constrained Gibbs energy minimization for two prespec-
ified phases in equilibrium in a closed system of given overall composition at
constant p and T gives us two important results:

(i) The phase compositions from μi
i = μ

j

i

(ii) The phase fractions from xi = f ixi
i + f jx

j

i

It is emphasized again that (8.12) is a necessary but not a sufficient condition
for calculating the stable or global equilibrium in a system. This is illustrated
graphically in Figure 8.3. There, the tangent intercepts to both pairs of points ab

and cd fulfill the condition given in (8.12), but it is clear that, for an alloy with
composition between points b and c, only one of them, the tangent to the points
ab refers to the global equilibrium. Remember also that the equilibrium between
two bulk phases at constant p and T is being discussed. We have not considered
any effects due to stresses, external magnetic fields, and so on.

In this case of simple binary systems we can look at the phases singly and
two at a time, using (8.12) to obtain the compositions of phases in equilibrium.
It is then possible to determine the location of the global equilibrium by finding
which phase or combination of phases has the lowest G. The calculation of

I II

a

bc d

A B

G

xB

0 1

Figure 8.3 Illustration of difference between global and local minimum in G for two-
phase mixtures.
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multicomponent, multiphase phase diagrams requires a more sophisticated
algorithm.

8.2.2 Equilibrium between a Solution Phase and a Stoichiometric
Compound Phase

To some extent this calculation is simpler than the one discussed above in that
there is only one unknown, the solution-phase composition, since the composition
of the stoichiometric phase is given. The Gibbs energies involved are sketched
in Figure 8.4. The Gibbs energy of the stoichiometric compound is a point on
this G − xB diagram. Although a tangent cannot be drawn to a point, it is clear
from the figure that there is a unique solution to the problem.

Suppose that the β-phase is a stoichiometric compound, AmBn. The need to
maintain stoichiometry introduces another constraint into the Gibbs energy min-
imization over those used for the two-solution-phase case. The extra Lagrangian
multiplier is

λ3 for mn
β

B − nn
β

A = 0 (8.15)

Minimization of the Lagrangian function using (8.1), (8.2), and (8.15) gives

∂L
∂nα

A

= μα
A − λ1 = 0 (8.16)

∂L
∂n

β

A

= μ
β

A − λ1 − nλ3 = 0 (8.17)

∂L
∂nα

B

= μα
B − λ2 = 0 (8.18)

∂L
∂n

β

B

= μ
β

B − λ2 + mλ3 = 0 (8.19)

AmBnxB(a)
A B

n m

Gm

Gm (B)

Gm(A)
Gm(AmBn)mA

mB

0 1

a

Figure 8.4 Equilibrium between solution phase, α, and stoichiometric compound phase,
AmBn.
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Elimination of the Lagrangain multipliers from these equations yields the condi-
tion of equilibrium:

mμ
β

A + nμ
β

B = Gm(AmBn) = mμα
A + nμα

B (8.20)

The graphical interpretation of this equation is clear from Figure 8.4. It can be
seen that Gm(AmBn) is given by the composition-weighted sum of the chemical
potentials in the α-phase when the same reference states are used for both solution
and compound phases.

In discussing stoichiometric phases, it should be appreciated that all interme-
diate phases are nonstoichiometric to some extent above 0 K since, as well as
vibrational excitations, atomic disorder excitations (defects) are always present.
With a compound like GaAs, for example, the deviation from stoichiometry is
less than one part in 10,000 even close to its melting point. But its important
technological properties, that is, its electrical properties, are extremely sensitive
to these very small deviations. With such small deviations from stoichiometry,
we are usually justified in using the approach discussed above.

In the case of some alloy intermediate phases, however, the deviation from
stoichiometry can be quite large (on the order of �x = 0.1). For such phases, the
above treatment is inadequate. But it is also found that a low-order polynomial
representation for GE, as we have used for solution phases, is also unsatisfactory
for nonstoichiometric intermediate phases. It is necessary to look at the phys-
ical modeling of these intermediate phases in order to obtain a more reliable
representation for their Gibbs energy. This is left for later chapters.

8.3 GIBBS’S PHASE RULE

The phase rule is concerned with evaluating the number of independent field
variables required to specify a state. In the following we evaluate the number of
degrees of freedom (independent variables) for p − V work systems. If we have
more than just p − V work, then the number of independent variables increases
and the following derivation is no longer correct. The following derivation is
very similar to that already given for unary systems.

(A) Total Number of Field Variables For C components the field variables
are p, T , μ1, μ2, . . . , μC . The total number of variables for each phase is
C + 2 and the total number of variables for φ-phases is φ(C + 2).

(B) Number of Constraints on Field Variables The field variables are not all
independent:
(a) T (1) = T (2) = · · · = T (φ) φ − 1 relations
(b) p(1) = p(2) = · · · = p(φ) φ − 1 relations

(c) μ
(j)

i constraints Rμ relations
Here, Rμ is the number of chemical potential constraints. The total number
of constraints equals 2(φ − 1) + Rμ.
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(C) Number of Independent Variables, F This is given by the total number
of variables minus the number of constraints, φ(C + 2) − 2(φ − 1) − Rμ,
which gives

F = φC + 2 − Rμ p − V work only (8.21)

which is the general form of Gibbs’s phase rule for systems undergoing
p − V work only. At constant total pressure we lose one degree of freedom
and the phase rule for p − V work only becomes

F = φC + 1 − Rμ fixed pressure (8.22)

Let us now consider the number of chemical potential constraints, Rμ. If we
assume that all species are mobile between all the φ-phases, then

μ
(1)
i = μ

(2)
i = · · · = μ

φ
i (8.23)

Thus there are C(φ − 1) constraints on the chemical potentials for C components.
But we must also remember that the constant p, T Gibbs–Duhem equation,∑

i ni dμi = 0, places an extra constraint on the various μi in each phase; that
is, there are φ more constraints to include. Thus

Rμ = C(φ − 1) + φ (8.24)

Substituting (8.24) into (8.21), the phase rule becomes

phase equilibrium,

F = C − φ + 2 p − V work only, (8.25)

all species mobile in all phases

If the total pressure is held constant, then one independent variable is lost
and we obtain the most frequently encountered form of the phase rule for use in
phase diagram work:

phase equilibrium, fixed pressure,

F = C − φ + 1 p − V work only, (8.26)

all species mobile in all phases

Using (8.26), we see that, for a single phase (φ = 1) in a binary system
(C = 2), F = 2. This means that, as we have already seen, all the information
for this system can be plotted on a two-dimensional phase diagram. When two
phases are present, F = 1, which means that, if the temperature is specified
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(at constant total pressure), everything else is fixed, that is, the compositions of
the coexisting phases.

It is important to appreciate the assumptions used in arriving at this most
commonly used form of the phase rule, (8.26). As well as assuming that we
are dealing with p − V work only systems, we assume that all the species are
mobile between all phases and that no chemical reactions are occurring within the
system. When any such constraint comes into play, (8.26) is no longer applicable.

Note that the number of degrees of freedom specifies the number of indepen-
dent variables which are required to fix all the field properties of the system.
If we wish to fix the extensive properties, then it is necessary to also fix an
extensive property so that the size of each phase in the system is fixed.

EXERCISES

8.1 Use the Lagrangian function approach to derive the equilibrium condition
between a solution phase, (A,B), and the pure metal B.

8.2 Given the experimental data below for GE
m/J mol−1 for some binary liquid

alloys, decide, for each alloy, the number of terms which should be used
in a Redlich–Kister representation.

Ag–Au Fe–Ti Cu–Zn Al–Ca
xB 1500 K 2000 K 1500 K 1000 K

0 0 0 0 0
0.05 −697.87 −2480.87 −1150.61 −2517.21
0.1 −1322.28 −4658.02 −2176.18 −4987.05
0.15 −1873.23 −6538.54 −3069.88 −7332.12
0.2 −2350.72 −8129.54 −3826.62 −9486.69
0.25 −2754.75 −9438.09 −4443.11 −11396.1
0.3 −3085.32 −10471.3 −4917.78 −13016.2
0.35 −3342.43 −11236.3 −5250.87 −14312.6
0.4 −3526.08 −11740.1 −5444.33 −15260
0.45 −3636.27 −11989.9 −5501.91 −15841.8
0.5 −3673 −11992.8 −5429.11 −16049.2
0.55 −3636.27 −11755.7 −5233.19 −15880.8
0.6 −3526.08 −11286 −4923.18 −15341.8
0.65 −3342.43 −10590.5 −4509.85 −14443.2
0.7 −3085.32 −9676.51 −4005.77 −13201.8
0.75 −2754.75 −8551.03 −3425.23 −11638.8
0.8 −2350.72 −7221.18 −2784.32 −9779.66
0.85 −1873.23 −5694.06 −2100.86 −7653.37
0.9 −1322.28 −3976.76 −1394.45 −5291.72
0.95 −697.87 −2076.37 −686.46 −2728.73
1 0 0 0 0
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8.3 The following sparse experimental values for GE for a liquid alloy (A,B)
have been obtained. Fit them to a Redlich–Kister equation using L0, . . . , L4

parameters and plot your results. Now use the fitted equation to obtain μB

as a function of xB . What do you conclude?

xB 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

GE/kJ mol−1 0 −4.55 −8.95 −11.82 −12.63 −14.4 −15.34 −12.19 −7.76 −2.79 0

8.4 Equation (8.26), for the constant-total-pressure form of the phase rule, was
derived on the basis of assuming that all species are mobile between all
phases. Consider the case of the two-phase equilibrium (A, B,C)/(A, B),
that is, where species C is not mobile between the two phases and examine
whether any modifications to the previous phase rule are necessary.





9 Two-Phase Equilibrium II:
Example Calculations

In this chapter we will be concerned with some specific examples which have
been chosen to illustrate the calculation of the equilibrium between two prespeci-
fied phases in a binary system. Such calculations may be carried out by following
these steps:

(A) Introduce Thermodynamic Relations The condition of equilibrium
between two prespecified phases, α and β, assuming that all species are
mobile between both phases, is given by

μα
i = μ

β

i ∀i (9.1)

We will always use the MS&E approximation where the thermodynamic
properties of condensed phases are assumed to be independent of the total
pressure.

(B) Select Reference States In order to be able to use (9.1) we must choose
the same reference state for a particular component in both phases. Com-
puter databases use the SER state for all substances in all phases, so that
this requirement is fulfilled. Consider, for example, pure Fe(fcc) at tem-
perature T . Its standard molar enthalpy at a temperature T , using SER,
is given as

H
◦
m(Fe(fcc),SER, T )

= H
◦
m(Fe(fcc), T ) − H

◦
m(Fe(bcc), 298.15 K) (9.2)

since Fe(bcc) is the stable form of Fe at 298.15 K. It can be seen in
Figure 9.1a that H

◦
m(T ) goes through zero at 298.15 K for the bcc form

but not for Fe(fcc) or Fe(l).
In the case of S

◦
m(T ) the Planck postulate is used for all crystalline sub-

stances so that we may write

S
◦
m(Fe(fcc), T ) = S

◦
m(Fe(fcc), 298.15 K)

+ [S◦
m(Fe(fcc), T ) − S

◦
m(Fe(fcc), 298.15 K)] (9.3)

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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Figure 9.1 Values of standard state properties (using SER) for pure Fe in bcc, fcc, and
liquid forms: (a) H

◦
m(SER, T ); (b) S

◦
m(T ); (c) G

◦
m(SER, T ).

The values at 298.15 K are the standard entropies, none of which are
zero. This can be seen in Figure 9.1b for the three structural forms of Fe.
The standard Gibbs energy G

◦
m for Fe(fcc) is, as usual,

G
◦
m(Fe(fcc),SER, T )

= H
◦
m(Fe(fcc),SER, T ) − T S

◦
m(Fe(fcc), T ) (9.4)

and, as can be seen in Figure 9.1c, it does not go through zero at 298.15
K for any of the structural forms. It can also be seen that a definite
curvature exists in the G

◦
m-versus-T curves, particularly at lower temper-

atures. This is handled by a polynomial representation, as was discussed in
Chapter 2.
By using the SER, standard Gibbs energies and standard chemical poten-
tials may be used as though they are absolute values.
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(C) Introduce Appropriate Solution-Phase Model For a component i in the
α-phase at constant T , we can write

μα
i = μ

◦α
i (SER) + �mixμ

id,α
i + μ

E,α
i (9.5)

and since μ
◦α
i (SER) = G

◦,α
m (i, SER), we obtain the following equation

for the chemical potential of a component in a solution phase:

μα
i = G

◦,α
m (i, SER) + �mixμ

id,α
i + μ

E,α
i (9.6)

Combination of the equilibrium conditions given in (9.1) with (9.6) for
the two-phase equilibrium between α- and β-phases in a binary alloy
(A,B) at constant T can now be written as

μ
◦,α
A (SER) + �mixμ

id,α
A + μ

E,α
A = μ

◦,β

A (SER) + �mixμ
id,β

A + μ
E,β

A (9.7)

μ
◦,α
B (SER) + �mixμ

id,α
B + μ

E,α
B = μ

◦,β

B (SER) + �mixμ
id,β

B + μ
E,β

B (9.8)

In order to proceed further, an appropriate modeling equation is required
for the excess chemical potentials in the different solution phases. The
most common way of representing the experimental results for liquid and
substitutional solid phases is with a Redlich–Kister polynomial. For a
binary system (A,B):

μE
A = x2

B

n∑
j=0

Lj (xA − xB)j−1[(2j + 2)xA − 1] (9.9)

μE
B = x2

A

n∑
j=0

Lj(xA − xB)j−1[1 − xB(2j + 2)] (9.10)

Example 9.1 Miscibility Gap Formation in Al–Zn System
We wish to calculate the equilibrium phase compositions and phase fractions for
an alloy of overall composition Al0.7Zn0.3 at 500 K assuming that only the fcc
phase has to be considered.

The following parameters are given. Note that the G
◦
m values for both elements

have been linearized as a function of temperature to assist in simplifying the
calculation:

G
◦
m(Al(fcc), SER) ≈ 4627.33 − 41.18T J mol−1

G
◦
m(Zn(fcc), SER) ≈ 7700.09 − 56.37T J mol−1

GE
m(fcc) = xZn(1 − xZn)[L0 + L1(1 − 2xZn) + L2(1 − 2xZn)

2]

L0 = 6656.0 + 1.615T J mol−1
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L1 = 6793.0 − 4.982T J mol−1

L2 = −5352.0 + 7.261T J mol−1

While Al(fcc) is the stable form of Al at 500 K, the stable form of Zn at this
temperature is hcp. The above equation for G

◦
m(Zn) thus refers to metastable

Zn(fcc).
Miscibility gap formation represents one of the simplest type of phase dia-

grams since there is only one phase description to consider—at high temperatures
a single phase exists over the whole composition range but at lower temperatures
the single phase splits into two coexisting phases. This requires that �mixHm > 0,
but it should be remembered that the logarithmic nature of the mixing entropy
term (and hence of −T �mixSm) gives an infinite slope in the infinitely dilute
solution, whereas �mixHm has a finite slope. This difference in asymptotic behav-
ior ensures that there is always a minimum in �mixGm in dilute solution all the
way down to 0 K.

A good example of a miscibility gap is found in fcc (Al,Zn) alloys. The stable
phase diagram for the system is shown in Figure 9.2. Also shown (dashed) is
the phase diagram which results when the liquid and hcp phases are suppressed
to leave only the fcc phase to consider. Part of this fcc phase diagram is seen to
represent a local and not a global equilibrium; that is, part is a metastable phase
diagram. At 500 K, for example, the fcc phase equilibrium is metastable with
respect to the fcc–hcp phase equilibrium.

Figure 9.3 shows �mixGm for the fcc alloys at various temperatures, both
above and below the critical temperature of 622.3 K. It can be seen that the
�mixGm versus xZn curve at the highest temperature is convex everywhere, indi-
cating that the single phase is stable over the entire composition range. At the
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Figure 9.2 Stable Al–Zn phase diagram with metastable fcc phase diagram superim-
posed.
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Figure 9.3 �mixGm for fcc (Al,Zn) alloys at several temperatures.

three lowest temperatures, however, the �mixGm-versus-xB curve exhibits two
minima and one maximum, due to the fact that the −T �mixSm term becomes of
lesser importance with decreasing temperature.

The relevant properties for Al required in the calculation can be written as

μ
◦,α
Al (SER, 500 K) = G

◦
m(Al(fcc), SER, 500 K) = −15962.6 J mol−1

μ
E,α
Al = (xα

Zn)
2[L0 + L1(3 − 4xα

Zn) + L2(1 − 2xα
Zn)(5 − 6xα

Zn)]

There are analogous equations for Zn.
When these equations for both components in both phases are inserted into

(9.7) and (9.8), the following solution is obtained:

xα
Zn = 0.101 xα′

Zn = 0.661 f α′ = 0.356

Example 9.2 Solution/Solution-Phase Equilibrium in Fe–Mo System
We wish to calculate the equilibrium phase compositions of the liquid and bcc
phases and their phase fractions for an Fe0.4Mo0.6 alloy at 2000 K and are required
to provide a Gm−x plot which illustrates the results from the calculation.

The following parameters are given:

G
◦
m(Fe(l), SER) ≈ 69714 − 98.38T J mol−1

G
◦
m(Mo(l), SER) ≈ 83383 − 91.98T J mol−1

G
◦
m(Fe(bcc), SER) ≈ 56097 − 90.85T J mol−1

G
◦
m(Mo(bcc), SER) ≈ 41690 − 77.38T J mol−1
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GE
m(l) = xMo(1 − xMo)[L0 + L1(1 − 2xMo)]

L0(l) = −6973 − 0.37T J mol−1

L1(l) = −9424 + 4.502T J mol−1

L0(bcc) = 36818 − 9.141T J mol−1

L1(bcc) = −362 − 5.724T J mol−1

The phase diagram for the Fe–Mo system is shown in Figure 9.4 with the tie-line
relevant to the calculation shown dashed. The Gbbs energy curver for the two
phases at the same temperature are shown in figure 9.5.

When the equations for both components in both phases are inserted into (9.7)
and (9.8), the following solution is obtained.

xbcc
Mo = 0.8315 xl

Mo = 0.4784 f l = 0.6566

Example 9.3 Solution/Stoichiometric Compound Phase Equilibrium in
Mg–Si System
We wish to calculate:

(i) The liquid-phase composition and fraction at 1273 K for the alloy Mg0.6Si0.4

in equilibrium with the stoichiometric compound Mg2Si
(ii) The activity of Mg relative to Mg(l) in these two phases

(iii) A Gm−x plot which illustrates the results from the calculation

The following parameters are given:

G
◦
m(Mg(l), SER) ≈ 35004 − 82.01T J mol−1
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Figure 9.4 Phase diagram for Fe–Mo system. The tie-line at 2000 K for the equilibrium
between the liquid and bcc phases is shown dashed.
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m for liquid and bcc phases in Fe–Mo system at 2000 K.

G
◦
m(Si(l), SER) ≈ 72406 − 82.103T J mol−1

G
◦
m(Mg0.667Si0.333(s), SER) = −2556.4 − 58.017T J mol−1

GE
m = xSi(1 − xSi)[L0 + L1(1 − 2xSi)]

L0 = −47052.64 J mol−1

L1 = −2385.71 J mol−1

The Mg–Si phase diagram shown in Figure 9.6, calculated from the above
approximated data, is an example of where a nearly stoichiometric compound is
formed as a result of the strong chemical interaction between the components.

The maximum in the liquid at the Mg2Si composition is known as a congruent
point .

A rapid change in the component activities takes place in these “stoichio-
metric” compounds. This can be appreciated in Figure 9.7, which shows the
variation of aMg [reference state Mg(l)] with composition over the whole com-
position range at 1273 K and can be understood while referring to the phase
diagram in Figure 9.6 and the Gbbs energy curves shown in Figure 9.8.

The activity of Mg in the liquid phase first decreases gradually with increasing
xSi up to the solubility limit and then remains constant within the two-phase field
until the stoichiometric composition is reached. It then decreases abruptly to a
much lower value. The activity then remains constant within the two-phase field,
decreases again as we pass through the liquid phase until it reaches (almost)
zero, when it becomes saturated with almost pure Si(s) at higher concentrations
of Si.
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Figure 9.7 The aMg relative to Mg(l) at 1273 K in Mg–Si system.

There is only one unknown, the liquid-phase composition, and we can use
(8.20), which, for this particular case, reads

0.667μl
Mg + 0.333μl

Si = Gm(Mg2Si) (9.11)

As is apparent from the phase diagram there are two solutions for the liquid-
phase composition, one on each side of the stoichiometric compound. The two
solutions can be obtained by appropriate selection of the starting values used in
the equation solver. In the question, we are only required to find the solution on
the Si-rich side of the compound.
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When (9.11) is used in conjunction with (9.7) and (9.8), the following solution
is obtained:

xl
Si = 0.5063 f Mg2Si = 0.615

EXERCISES

9.1 Confirm the solutions for Examples 9.1–9.3 discussed in the text.

9.2 Components A and B form a regular solution in the solid state with a fcc
structure designated by α for which �mixH(α) = 20,000xAxB J mol−1.
Calculate the composition of α′ and α′′ in equilibrium and the chemical
spinodal compositions at 1000 K.

9.3 Derive an expression which indicates the factors determining the maxi-
mum width of the liquid/solid two-phase region when both liquid and solid
solutions are ideal.

9.4 Using the following data, calculate the Ag–Au phase diagram assuming
that both the liquid and solid solutions are ideal. Compare the calculated
diagram with the real one (see a reference book i.e., Metals Handbook ).

Ag Au

T
◦

fus/K 1234 1336.15
�fusS

◦/ J mol−1 K−1 9.16 9.39

For semiconductors such as Si and Ge, the entropy of fusion is about 30.1 J
K−1 mol−1. Assume the entropy of fusion for Ag and Au to be 30.1 J K−1
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mol−1. Recalculate the phase diagram for this hypothetical binary system,
again assuming that the liquid and solid solutions behave ideally.

9.5 Using the data given below, calculate the Cu–Ni phase diagram assuming
ideal solution behavior for both the liquid and solid phases. Compare the
calculated diagram with the real one (see a reference book).

Cu Ni

T
◦

fus/K 1,356.55 1,726
�fusH

◦/ J mol−1 13,055 17,472

9.6 Figure 9.9 shows the phase diagram for the Ag–Pt system. Draw schemat-
ically the Gibbs energy curves versus composition diagrams for the Ag–Pt
system at T = 1300◦C, 1100◦C, and 900◦C.
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Figure 9.9 The Ag–Pt phase diagram.

9.7 Data for the pure elements and solution phases for the liquid and fcc phases
in the (Al,Zn) system are given in the text.

Carry out the following calculations at 750 K and present graphs sum-
marizing the results from each calculation: .

(a) Using the SER for both Al and Zn, plot Gm for the two phases. On the
diagram draw the common tangent and obtain the equilibrium compo-
sitions of the two phases.
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(b) Calculate xα
B, x

β

B, f β at xB = 0.3, T = 400 K.
(c) Generate plots of another function which enables you to obtain these

compositions more accurately than can be obtained from the common
tangent to G.

(d) Repeat (a) and (b) using Al(l) and Zn(l) as the reference states and
confirm that you get the same answer for the equilibrium compositions.

(e) Repeat (a) and (b) using Al(fcc) and Zn(fcc) as reference states for the
fcc phase and Al(l) and Zn(l) as reference states for the liquid phase.
Why do you now get a different answer for the two-phase equilibrium?

(f) Repeat (a)–(d) but obtain plots of μZn for both phases. Label the mean-
ing of the value of each intercept on the pure Zn axis, for example,
μ

◦
Zn(fcc, 750 K)–μ

◦
Zn(l, 750 K).

9.8 For the temperature range 1000–1500 K, the activity coefficient of zinc in
liquid brass can be expressed by the equation

RT loge γZn = −19,245x2
Cu J mol−1

Calculate the partial pressure of zinc, pZn, over a solution of 60 at %
copper and 40 at % zinc at 1500 K.





10 Binary Phase Diagrams:
Temperature–Composition
Diagrams

We have indicated previously that, for unary systems, two-dimensional phase
diagrams may be classified as follows:

Field–field phase diagrams
Field–density phase diagrams
Density–density phase diagrams

Field variables are intrinsically intensive quantities like p, T , μi . Density vari-
ables are intensive quantities formed from extensive quantities by division by
either mass or amount and are referred to as specific quantities.

This same classification applies to phase diagrams for binary systems but,
because of the additional component, there is an additional independent variable.
It now requires three independent variables to specify the properties of a binary
single phase. This means that, in order to be able to plot properties or phase dia-
grams in two dimensions, it is necessary to fix one of the independent variables.
In MS&E, phase diagrams are invariably displayed at a fixed total pressure of 1
bar.

For binary systems, commonly met examples of the three types of plots are
T − μi , T − xi , and Hm − xi diagrams, respectively. Schematic examples of
these three are shown in Figure 10.1.

Just as in the case of unary systems, the topology of the three types of
phase diagram differs. The three-phase invariant equilibrium is a point in
field–field phase diagrams, a line in field–density phase diagrams, and an area
in density–density phase diagrams.

As will be discussed in the next section, arbitrary plots of two properties
do not necessarily result in a true phase diagram. There are constraints on the
selection of the variables which can be plotted if a true phase diagram is to be
obtained.

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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Figure 10.1 Examples of field–density, field–field, and density–density binary phase
diagrams. The numerals indicate the number of phases present in that region of the
diagram.

10.1 TRUE PHASE DIAGRAMS

Each thermodynamic potential has its natural variables , which are apparent from
the appropriate Gibbs equation. For example, from dU = T dS − p dV , the nat-
ural variables of U are S and V . If the potential is known as a function of its
natural variables, then all the thermodynamic properties of the system are fixed.
Thus, for a multicomponent system, knowledge of G = G(p, T , ni) fixes all
the other thermodynamic properties but, for example, knowing G = G(V, T , ni)

does not.
Every extensive thermodynamic function has an intensive thermodynamic

potential which is its conjugate variable. These pairs come from the definition of
work in its widest, thermodynamic, sense. As can be seen from the fundamental
equation

dU = T dS − p dV +
∑

i

μi dni (10.1)

T and S are conjugate variables, as are −p and V , and as are μi and ni .
A plot of any pair of conjugate variables does not result in a true phase

diagram, by which we mean one where all points on the diagram give a unique
answer to the phase constitution at that point. Plots of conjugate variables simply
lead to a property diagram, not a phase diagram.

A multitude of thermodynamically valid equations similar to (10.1) are pos-
sible. As an example, consider the constant-pressure Gibbs–Duhem equation for
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a binary system:

0 = S dT + nA dμA + nB dμB (10.2)

We may rewrite this equation in two different ways, first, dividing by nB and,
second, dividing by nA + nB :

−dμB = S

nB

dT + nA

nB

dμA (10.3)

−dμB = Sm dT + xA d(μA − μB) (10.4)

Using the rule that the plotting of conjugate variables does not result in a true
phase diagram, we can see from (10.3) that, at constant total p, the following
types of true phase diagrams may be drawn:

Field–field: T versus μA

Field–density: μA versus
S

nB

and T versus
nA

nB

Density–density :
S

nB

versus
nA

nB

Plots of S/nB versus T or of nA/nB versus μA do not give true phase diagrams.
If the molar quantities in (10.4) are used, the following types of true phase

diagrams, at constant p, are indicated:

Field–field: T versus μA − μB

Field–density: μA − μB versus Sm and T versus xB

Density–density: Sm versus xB

Plots of Sm versus T or of xA versus μA − μB , on the other hand, are not true
phase diagrams.

Depending on the thermodynamic equation used, other sets of conjugate vari-
ables are possible and this leads to other pairs of variables which can be plotted
to give a true phase diagram and those which cannot. A field–field diagram will
always be a true phase diagram because the field variables are not conjugate.
Similarly, density–density diagrams are also always true phase diagrams, with
the proviso that the same mass or amount units are used for both functions. It
is with field–density diagrams that more care has to be exercised. This is illus-
trated in Figure 10.2 where some different choices of variables for the simple
eutectic system formed by (Pb,Sn) alloys, based on (10.3) and (10.4), have been
selected. It can be seen that three of these diagrams are true phase diagrams but
that (Fig. 10.2c) is not. The shaded area in this field–density diagram indicates a
region where any point does not give a unique answer for the phase constitution
at that point.
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Figure 10.2 Plots of different thermodynamic functions for Pb–Sn system illustrating
what are and what are not true phase diagrams: (a) field–field and (b) density–field true
phase diagrams; (c) density–field diagram of conjugate variables; (d) density–field true
phase diagram. The SER reference states have been used.

Many different types of phase diagram have a practical value. Plots of
Hm − xi , for example, are useful in heat balance calculations. The type of most
significance in MS&E is the T –xi diagram and we now discuss some aspects
of these in more detail.

10.2 T –xi PHASE DIAGRAMS FOR STRICTLY REGULAR
SOLUTIONS

Application of (9.7) and (9.8) to a liquid and solid (α) phases with the assumption
that both solution phases are strictly regular gives, at constant p, T ,

μl
A = μα

A (10.5)

μ
◦,α
A + �μ

id,α
A + μ

E,α
A = μ

◦,l
A + �μ

id,l
A + μ

E,l
A

− (μ
◦,l
A − μ

◦,α
A ) (10.6)
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The last term in (10.6) can be expressed as

(μ
◦,l
A − μ

◦,α
A ) = �fusH

◦
m(A) − T �fusS

◦
m(A) (10.7)

≈ [T ◦
fus(A) − T ]�fusS

◦
m(A) (10.8)

so that we obtain the working equation for component A:

RT loge(1 − xl
B) + Ll

0(x
l
B)2 = RT loge(1 − xα

B) + Lα
0 (xα

B)2

− [(T ◦
fus(A) − T ) �fusS

◦
m(A)] (10.9)

RT loge

(
xl

A

xα
A

)
= [Lα

0 (xα
B)2 − Ll

0(x
l
B)2]

− [(T ◦
fus(A) − T ) �fusS

◦
(A)] (10.10)

with a similar equation for the other component, B. The two equations can be
solved to calculate binary phase diagrams for strictly regular solutions.

From (10.10) and the analogous equation for B, we see that the location of
phase boundaries depends on:

(i) T
◦

fus(A) and T
◦

fus(B)

(ii) �fusS
◦
m(A) and �fusS

◦
(B)

(iii) Ll
0 and Lα

0

As is illustrated below, variation of these factors can have a profound effect
on the phase diagram topology for these strictly regular solutions. For most
metals, �fusS

◦
m ≈ 10 J K−1 mol−1 while it may be much higher than this for

semiconductors. For the other pure component properties we have selected two
sets of parameters, one set where there is a small difference in T

◦
fus of the two

components and the other set with a large difference:

T
◦

fus(A) = 1000 K T
◦

fus(A) = 500 K

T
◦

fus(B) = 1200 K T
◦

fus(B) = 3000 K

�fusS
◦
m(A) = 10 J mol−1 K−1 �fusS

◦
m(A) = 10 J mol−1

�fusS
◦
m(B) = 10 J mol−1 K−1 �fusS

◦
m(B) = 10 J mol−1K−1

In Figure 10.3, the phase diagrams on the left have been calculated using the first
set of parameters, with a small difference in fusion points of the components;
those on the right are obtained when large differences in the fusion points are
selected.

The effect of varying the solution parameters of the two phases are apparent
in the figure.
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Figure 10.3 Phase diagrams involving two phases, both of which are strictly regular
solutions. There is a 200-K difference in melting points for those in the left column,
a 2500-K difference for those in the right column: (a, b) Ll
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10.2.1 Some General Observations

It is clear from these phase diagrams for strictly regular solutions that a con-
siderable variety can be found by changing just a few model parameters. An
examination of diagrams in Figures 10.3 and 10.4 enables us to reach some
general observations as to when we might expect to see different types of simple
phase diagrams.
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Figure 10.4 Phase diagrams involving two phases, both of which are strictly reg-
ular solutions. All refer to systems with a 200-K difference in melting points:
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(i) Complete Solubility Phase Diagrams Complete solubility results when
both phases are ideal, that is, Ll

0 = Lα
0 = 0. But we can have a complete solubility

phase diagram even when the solutions are not ideal. Such diagrams result when
Ll

0 ≈ Lα
0 . Real alloy examples include the Ag–Au, Ag–Pd, Cd–Mg, and Co–Ni

systems.
When both Ll

0 and Lα
0 are negative, the phase diagram is similar to that for

the case Ll
0 = Lα

0 = 0, but when Ll
0 ≈ Lα

0 � 0, miscibility gaps are formed at
lower temperatures. A real alloy example of this is found in the Au–Ni system,
where Lα

0 � 0.
Other features to note are:

(i) When Ll
0 ≈ Lα

0 � 0, the width of the melting region becomes larger
than for the ideal solution case. Conversely, when Ll

0 ≈ Lα
0 < 0, the

width of the melting region is narrower than for the ideal solution
case.

(ii) The width of the two-phase region also depends on the relative melt-
ing points and entropies of fusion of the components. The freezing
ranges for semiconductor alloys (e.g., Ge–Si) are particularly large,
due primarily to the large entropies of fusion for the two elemental
semiconductors.

(ii) Peritectic Phase Diagrams Peritectic phase diagrams are more likely to
occur when:

(a) There is a large difference between T
◦

fus(A) and T
◦

fus(B).
(b) Ll

0 ≈ Lα
0 > 0.

(c) The critical temperature Tc for the (metastable) miscibility gap of the
solid phase intercepts the (metastable) solidus curve.

Real alloy examples include the Ag–Pt and Co–Cu systems.
(iii) Phase Diagrams with Maximum and Minimum Congruent Melting

Points A maximum occurs when the solid phase is more stable than the liquid
phase and vice versa but when Ll

0 ≈ Lα
0 and both are small. If they are too high

and positive, miscibility gaps will occur.
When Ll

0 < Lα
0 and Ll

0 is not too large, a maximum occurs in the liquid/solid.
An example of a congruent maximum in a real alloy system occurs in the Pb–Tl
system. When Ll

0 >Lα
0 and Lα

0 is not too large, a minimum occurs in the liq-
uid/solid. Examples of real alloy systems showing congruent minima are Co–Pd
and Cr–Mo.

(iv) Eutectic Phase Diagrams When Lα
0 >> 0 and Ll

0 ≤ 0 and the
difference in melting points of the two components is not too large, a eutectic
phase diagram is found. Cu–Ag is a real alloy system with this type of phase
diagram.

(v) Monotectic, Syntectic, and Monotectic + Syntectic Phase Diagrams
Miscibility gaps form in the liquid phase when Ll

0 � 0. Pb–Zn is a real alloy
system which shows a liquid-phase miscibility gap.
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10.2.2 More on Miscibility Gaps

By examining the compositional dependencies of G and its derivatives, we can
obtain the conditions which pertain at the critical temperature. We illustrate by
reference to the Al–Zn system, which was discussed as Example 9.1, the sta-
ble phase diagram for the system having been given in Figure 9.2. The stable
miscibility gap exists over a fairly small temperature range. Its metastable exten-
sion to lower temperatures is shown in Figure 10.5a. The critical point occurs at
approximately 622.3 K. The first three derivatives of the Gibbs energy of mixing
with respect to xZn for the fcc (Al,Zn) phase at this temperature are shown in
Figures 10.5b –10.5d .

It can be seen that, at the critical point, d2G/dx2
B = d3G/dx3

B = 0 but that
dG/dxB �= 0 (we have abbreviated �mixG to G). We have selected the fcc
(Al,Zn) example since it is not a regular solution. For the latter, the critical
point occurs at x = 0.5, and this gives rise to a special case where the first
derivative is also zero at that point. This is not a general condition.

The zero values of the second and third derivatives at the critical point are
relevant to an apparent breakdown of the phase rule when applied to misci-
bility gap systems at the critical point. Clearly, F = 0 at this point since the
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Figure 10.5 First, second, and third derivatives of G with respect to xZn for fcc Al–Zn
at critical temperature of 622.29 K: (a) miscibilty gap in fcc phase; (b) first derivative of
G; (c) second derivative of G; (d) third derivative of G. The critical composition occurs
at xZn = 0.347.
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temperature and composition are fixed (at constant total pressure). But, if we
apply (8.26), we find that F = 2 − 1 + 1 = 2, which is incorrect. The reason is
that there are other constraints on the μi at this point and we must apply (8.21).
The extra constraints are those already discussed, namely, at the critical point,
d2Gm/dx2

B = d3Gm/dx3
B = 0, so that, with the Gibbs–Duhem relation, Rμ = 3.

Applying (8.21), we see that F = 1 × 2 + 1 − 3 = 0, as it should be.

10.2.3 The Chemical Spinodal

The dashed curve shown in Figure 10.5a is the locus of compositions where
d2G/dx2

B = 0 and is called the chemical spinodal curve. The phase boundary
for the two-phase stable equilibrium is referred to as the binodal curve.

The significance of the spinodal can be understood by referring to Figure 10.6.
The points s1 and s2 are the spinodal points.

When a single-phase alloy with a composition between the spinodals is brought
from a high temperature (T >Tc) to a lower temperature within the miscibility
gap, this alloy becomes thermodynamically unstable. The equilibrium system will
consist of a two-phase mixture. There are, however, two quite different ways in
which the phase decomposition can occur:

(a) Between the spinodal compositions, the G − xB curve is concave. In this
case, the Gibbs energy of the homogenous single-phase alloy is always
higher than that of any mixture of compositions (c and d , for example)
which can form from a decomposition of this phase.
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Figure 10.6 The �mixG
◦
m for fcc (Al,Zn) at 300 K. At compositions inside the spinodal,

any fluctuations in composition are unstable, whereas in the metastable region, between
the binodal and the spinodal, fluctuations are stable.
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(b) When a single-phase alloy with a composition between the miscibility gap
and the nearby spinodal composition is brought to a T < Tc, the situation
is quite different. Due to the convex nature of the G − xB curve in this
composition range, there would be an increase of the Gibbs energy if a
single-phase alloy decomposed locally to form any mixture of compositions
(a and b, for example); that is, there is no thermodynamic driving force
for decomposition by fluctuations when the composition falls between the
spinodal and binodal. Decomposition in this case can only take place by
nucleation of a phase in the other.

These two different mechanisms, spinodal decomposition and nucleation, are
very important in the theory of phase transformations.

10.3 POLYMORPHISM

The Hf–Ta phase diagram shown in Figure 10.7 indicates that there is an
allotropic transformation in Hf. The hcp form is stable at low temperatures with
a transformation to bcc occurring at 1743◦C. Tantalum is bcc at all temperatures
in the solid state. It can be seen that the two bcc forms are completely miscible.
But the difference in the two structures at low temperatures brings about a
completely different topology to the phase diagram than would have been the
case if only the high-T form of Hf existed. The method of calculation of the
phase equilibrium boundaries between the Hf-rich hcp phase and the bcc phase
is identical with that discussed above for the liquid/α equilibrium.
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Figure 10.7 The Hf–Ta phase diagram.
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EXERCISES

10.1 In the Mo–Ru phase diagram given in Figure 10.8, there exists a bcc (Mo,
Ru) solid solution, a hcp (Ru, Mo) solid solution, an intermetallic phase
denoted by σ , and a liquid phase. Suppose the σ -phase does not exist in
this system. Estimate �G

hcp
bcc(Mo) and �Gbcc

hcp(Ru) at 1800◦C on the basis
of the solubility of Ru in bcc (Mo, Ru) and that of Mo in hcp (Ru, Mo),
making any needed assumption to carry out this calculation.

The solubility curves in Figure 10.8 were determined for the bcc + σ

and σ + hcp two-phase fields. If σ does not form due to kinetic difficulties,
we would then have a metastable equilibrium between bcc and hcp. Would
the solubilities of Ru in bcc (Mo, Ru) and of Mo in hcp (Ru, Mo) decrease
or increase for the metastable equilibrium?
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Figure 10.8 The Mo–Ru phase diagram.

10.2 Derive the critical point conditions for a subregular solution with the fol-
lowing expression for GE:

GE = xAxB [L0 + L1(xa − xB)] (10.11)

10.3 GE
m for fcc (Al,Zn) alloys may be represented by

GE
m/J mol−1 = xAlxZn[6656.0 + 1.615T ) + (6793.0 − 4.982T )(xAl − xZn)

+ (−5352.0 + 7.261T )(xAl − xZn)
2]

Calculate the miscibility gap and evaluate the critical point (approxi-
mately). At the critical temperature, plot �mixGm and the first, second,
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and third derivatives of �mixGm as a function of xZn and note which ones
are zero at the critical composition.

10.4 If it is assumed that both the liquid and solid solution phases are ideal,
a very simple phase diagram results in which the solid solution is stable
down to 0 K. How does this tie in with your understanding of the Planck
postulate?





11 Binary Phase Diagrams:
Temperature–Chemical
Potential Diagrams

To date, we have considered only temperature–composition phase diagrams,
which, as we have seen, are actually a constant total pressure slice through a
three-dimensional diagram in pressure–temperature–composition space. These
phase diagrams are the most widely used two-dimensional phase diagrams for
binary systems. There are good reasons for this:

(i) Examination of temperature–composition space is the normal way of
experimentally obtaining phase equilibrium information.

(ii) Alloys are usually used in temperature–composition space in their pro-
duction and applications.

In thermodynamic language, these two points mean that we usually carry out
measurements on and use binary systems, especially alloys, in a closed-system
sense.

This T –xi representation, however, is not always the most useful and it is
certainly not the only way of graphically presenting information about phase
equilibrium.

In chapter 10, we noted that, in a true phase diagram, any point on that diagram
gives a unique answer as to the phase constitution represented at that point.
We also noted that a field–field phase diagram is always a true phase diagram
since two field variables can never be conjugate variables. The most useful of
the field–field diagrams, whenever an open system is being considered (where
composition is not fixed), is a plot of T versus μi at constant total pressure. When
one or more of the components (or compounds of the components) are volatile at
the temperatures of interest, composition may then become a dependent variable
with an external chemical potential being the independent variable.

We first discuss some general points about these T –μi phase diagrams and
will then discuss some examples. This same type of representation will be dis-
cussed again in Chapters 19–22, when we will refer to heterogeneous chemical
equilibrium. For the moment, we concentrate on phase equilibrium.

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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11.1 SOME GENERAL POINTS

In earlier chapters we placed emphasis on the value of the SER in carrying out
equilibrium calculations. This reference state is not, of course, the only possible
selection. It is not usually the reference state of choice in the presentation of
T –μi phase diagrams. A more useful choice (but not a mandatory one) is to
take the pure component at T , p = 1 bar as the reference state. By making this
selection, the T –μi phase diagram is made to resemble the equivalent T –xi

phase diagram (remember that there is a monotonic relation between chemical
potential and composition in single-phase regions).

This selection of the reference state selection presents no ambiguity in the case
of gases but, for condensed phases, it is necessary to decide whether to select
the pure solid or the pure liquid component at all temperatures (and standard
pressure) as the reference state. In the remainder of this chapter we will use the
pure solid reference state so that, when we write μi , we mean μi(T , 1 bar, xi) −
μ

◦,s
i (T , 1 bar, xi = 1). Since we will concentrate on T –μB phase diagrams for

an A–B system, we are selecting B(s) at the T of interest as the reference state.

Example 11.1 System with Two Ideal Solution Phases
As an introduction to T –μi diagrams, we will consider the simplest possible
case where both the liquid and solid phases form ideal solutions. The T –xB

phase diagram is shown in Figure 11.1. This phase diagram has been calculated
on the assumption that �fusS

◦
m = 10 J K−1 mol−1 for both components. The

chosen melting points are apparent on the phase diagram. It can be seen from
Figure 11.1 that a liquid alloy with xB = 0.1 is in equilibrium with an α phase
alloy with xB = 0.374 at 1432 K.

Having selected the B(s) as the reference state, it is necessary to calculate a
line on the T –μB diagram representing the properties of pure B(l). This can be
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a

Figure 11.1 The T –xB phase diagram where both solid and liquid form ideal solutions.
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obtained as follows:

�fusμ
◦
B = μ

◦,l
B (T ) − μ

◦,s
B (T ) = �fusG

◦
m(B, T )

� 〈�fusH
◦
m(B)〉 − T 〈�fusS

◦
m(B)〉 (11.1)

where, in the last equation, we have used the linear approximation for �fusG
◦
m.

The bracketed terms are average values for the quantities. This linear approxi-
mation is quite satisfactory when used in high-temperature calculations (above
room temperature). The average values in (11.1) refer to values obtained from
high-temperature results, even though they are used, but only for construction
purposes, at lower temperatures, including 0 K. In this linear approximation,
these construction lines are given by:

(i) At T = 0 K : �fusμ
◦
B(0 K) = 〈�fusH

◦
m(B)〉

(ii) At T = T
◦

fus : �fusμB = 0

so that it is possible to draw the line going through these two points on a T –μB

diagram. This is illustrated in Figure 11.2. We can extend the calculations to alloys
by putting lines on the T –μB phase diagram for different alloy compositions in
both the solid and liquid phases. Since both the solid and liquid alloys have been
assumed to form ideal solutions, the chemical potentials in the solid and liquid
phases, relative to pure solid B as the reference state, are given by

μs
B(xB) − μ

◦,s
B = RT loge xs

B (11.2)

μl
B(xB) − μ

◦,s
B = RT loge xl

B + �fusG
◦
m(B) (11.3)

These two equations give rise to composition fans on the T –μB diagram.
These fans for the solid solution phase originate, at T = 0 K, according to (11.2)
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Figure 11.2 The T –μB phase diagram where both solid and liquid form ideal solutions.
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at the origin, while those for the liquid phase originate, according to (11.3), at
T = 0 K at the point �fusH

◦
m(B).

The T –μB phase diagram shown in Figure 11.2 is seen to be similar to the
T –xB diagram given in Figure 11.1 but with the difference that the two-phase
region in the T –xB diagram has contracted to a single curve in the T –μB

diagram. The line for xB = 0.1 for the liquid phase emanates from the point on
the 0 K axis marked as �fusH

◦
m. It can be seen to intersect with the composition

line for xB = 0.374 for the solid solution phase, which emanates from the origin
of the figure, at the temperature of 1432 K.

It is clear that there is exactly the same information on the T –μB diagram as
on the T –xB phase diagram. Note that we could show μB on the T –xB diagram
so that then both diagrams would contain exactly the same information. Because
the introduction of the μB lines on the T –xB phase diagram would lead to clutter,
it is much more convenient to use the T –μB plot in those circumstances where
μB is under external control.

It is also possible to include the gas-phase properties on both the T –xB

and T –μB diagrams. Taking the same example as above and assuming that
�vapG

◦
m = 340,000 + 85T J mol−1, which gives a normal boiling point of 4000

K, we can insert curves for selected pB on the T –xB phase diagram, as shown in
Figure 11.3. The inclusion of gas-phase partial pressure fans on a T –μB diagram
requires a very similar procedure to that used for composition fans for the liquid
and solid phases in Figure 11.2. Phase equilibrium is governed by the relation
μ

g
B = μs

B . In order to incorporate the gas-phase properties on the T –μB diagram,
they must be referred to the pure solid B reference state.

0
0.2 0.4 0.6 0.8 1
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Figure 11.3 Inclusion of lines of constant pB on temperature–composition diagram.
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For the standard property difference between gas and solid, we may write
(using the abbreviation sub for sublimation)

μ
◦,g
B (xB) − μ

◦,s
B = �subG

◦
m(B, T ) (11.4a)

� 〈�subH
◦
m(B)〉 − T 〈�subS

◦
m(B)〉 (11.4b)

where we have again used the linear approximation. From (11.4) we see that, in
the linear approximation, the construction lines are given by:

(i) At T = 0 K: μ
◦,g
B (0 K) − μ

◦,g
B (0 K) = 〈�subH

◦
m(B)〉

(ii) At T = T
◦

sub: μ
◦,g
B (T

◦
sub) − μ

◦,s
B (T

◦
sub) = 0

If the gases are assumed perfect, we may use

μ
g
B(pB) − μ

◦,g
B = RT loge

(
pB

p
◦
B

)
(11.5)

The chemical potential relative to pure solid B is then obtained by adding (11.4a)
and (11.5):

μ
g
B(pB) − μ

◦,s
B = RT loge

(
pB

p
◦
B

)
+ �subG

◦
m(B, T ) (11.6)

We can now superimpose the gas-phase information onto Figure 11.2 to yield a
phase diagram from which we are able to read the liquid or solid compositions
in equilibrium with a gas phase of fixed pB at any temperature T . The resulting
T –μB phase diagram is shown in Figure 11.4.
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Figure 11.4 Inclusion of lines of constant pB on T –μB phase diagram.
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B < 0 0

Figure 11.5 Example of interrelation between T –xB and T –μB phase diagrams. The
inclusion of isoconcentration lines on the T –μB phase diagram is illustrated.

Example 11.2 Simple Eutectic System
Some practice is required in the interconversion of T –xB and T –μB phase
diagrams. A slightly more complicated example is shown in Figures 11.5. The
three-phase equilibrium line in the T –xB diagram has become a point in the
T –μB diagram. The melting point of pure B shown in the T –xB diagram cor-
responds with μB = 0 in the T –μB diagram, while the melting point of pure A
corresponds with μB = −∞ in the T –μB diagram. The location of two isocom-
position curves on the two diagrams is also apparent.

Example 11.3 More Complex System
Figure 11.6 shows how to convert from a T –μB diagram to a T –xB diagram in a
more complex case. Three stable three-phase points are apparent in Figure 11.6a .
The first thing to do is to focus on these invariant points and translate them to
T –xB space as in Figure 11.6b —their relative position in the xB direction will
be expected to be the same as their relative positions in the μB direction. The
two-phase boundaries may then be joined to give Figure 11.6c.

Note that, in Figure 11.6a , the extrapolations of the αβ, βγ , and γα two-
phase curves must intersect, as shown dotted, to give a single triple point for the
metastable αβγ equilibrium.

xB

T
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b

g

d

mB

a

g

d
b

xB

(a) (b) (c)

Figure 11.6 Example of interrelation between T –xB and T –μB phase diagrams. The
way in which invariant points appear on both types of phase diagram is illustrated.
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Example 11.4 Preparation of GaAs
In the making of a (Pb,Sn) solder, Pb and Sn can be weighed out in a molar ratio
of about 1 : 3. The resulting alloy will act as a low-melting-point solder with
little mushy freezing. If we are a little out in the weighing of the constituents, it
will not make all that much difference to the engineering utility of the alloy.

This preparation of a solder may be contrasted with the very different situation
for the preparation of GaAs, whose engineering applications depend on its electri-
cal properties. According to the normal temperature–composition phase diagram
shown in Figure 11.7a , GaAs is essentially stoichiometric. But, if we make one
alloy with (0.4999 Ga, 0.5001 As) and one with (0.5001 Ga, 0.4999 As), then
it is found that these two alloys have completely different engineering proper-
ties. This is because GaAs is marginally nonstoichiometric, as is apparent in a
gross expansion of the composition scale of the temperature–composition phase
diagram in the neighborhood of the stoichiometric composition (see Fig. 11.7b).
An alloy composition cannot be guaranteed to this degree of precision if it is
made up by weighing. Fortunately, however, it is possible to take advantage of
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the fact that μAs changes considerably over this very narrow composition range.
In practical terms, orders-of-magnitude changes in the arsenic pressure can bring
about minuscule, but extremely significant, changes in composition. This is clear
in the T –μAs phase diagram shown in Figure 11.7c.

It is quite clear that, to those interested in the production of single crystals of
GaAs, a T –xi phase diagram is not as useful as a T –μi phase diagram.

As we will see in later chapters, open systems are frequently encountered
when examining heterogeneous equilibria in chemically reacting systems. In these
situations, T –μi diagrams are the more useful way for graphically presenting the
results.

EXERCISES

11.1 Calculate T –μA phase diagrams from the T –xB phase diagrams shown
in Figures 11.1 and 11.5.

11.2 Figure 11.8 shows a “double” Fe–C temperature–composition phase dia-
gram. The heavy lines refer to the iron–graphite system and the dashed
lines to the metastable iron–carbide system. To those interested in car-
burizing or decarburizing of Fe, a T –μC phase diagram is a more useful
type of presentation. Use the T –xC double diagram to sketch the T –μC

phase diagram using graphite as the reference state at all temperatures.
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Figure 11.8 The T –xC stable and metastable phase diagrams for Fe–C system.
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11.3 Sketch the T –xB phase diagram corresponding to the T –μB phase dia-
gram shown in Figure 11.9. Include, with dashed lines, the location of
the metastable αβγ invariant equilibrium and the associated univariant
equilibria.

a b

g

d

mB

T

< 0 0

Figure 11.9 A T –μB phase diagram.





12 Phase Diagram Topology

As we have seen in the previous chapters, some of the constant-pressure T –xi

phase diagrams for real binary alloys are fairly simple. Many others, on the
other hand, seem quite complex but all are comprised of one-phase regions, two-
phase regions, and horizontal lines connecting three phases in equilibrium. These
correspond with bivariant, univariant, and invariant equilibria, respectively.

When the invariant three-phase equilibria , or as they are sometimes called
reaction types, are examined, it is found that they are one of only two basic
types, as shown in Figure 12.1. In the first type, (a), a high-temperature phase
is no longer stable below the invariant temperature or, in reaction terms, the
phase stable at high temperature dissociates into two other phases at the invariant
temperature. In the other type, (b), a phase which is unstable at high temperature
becomes stable below the invariant temperature. In reaction terms, two phases
stable at high temperature react at the invariant temperature to form a new phase.

It is usual to go further and subdivide these two types of invariant equilibria
into subcategories which depend on what kind of phases are involved at the
invariant temperature. A complex, albeit hypothetical, phase diagram is shown in
Figure 12.2. The names given to the different types of the subcategories of the two
basic types are indicated on this diagram. The two other types of invariant point
which have been met with previously, namely, a critical point and a congruent
point, but which are not three-phase equilibria are also shown in this figure.

In this Chapter we will examine, more closely, the factors which determine the
shape or topology of phase diagrams. There are constraints on what is and what is
not acceptable and many published phase diagrams, determined by conventional
means, have not complied with these constraints. With the increasing awareness
of thermodynamic constraints, this is a less frequent occurrence nowadays.

A complete understanding of the observed topology of a given phase diagram
requires consideration of:

1. The phase rule, which tells us the number of phases which can be present
at each topographical feature.

2. A combinatorial analysis, which will tells us the maximum possible number
of topographical features present in a given system.

3. Schreinemaker’s rules, which tell us what are some of the topographical
possibilities and impossibilities .

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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4. The Gibbs–Konovalov equation, which reveals the factors responsible for
determining the slopes of phase boundaries

The application of all these concepts together is particularly useful for gaining
an understanding of multicomponent phase diagrams, but we can illustrate the
principles by confining ourselves to a consideration of binary systems only.
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Figure 12.1 Two types of invariant equilibria in both T –xi and T –μi planes.
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12.1 GIBBS’S PHASE RULE

A principal use of the phase rule is to tell us how many phases are present
at each topographical feature, each of which corresponds to a different value
of F , the number of degrees of freedom, where F is the number of intensive
variables which may be independently varied without changing the number of
phases present at a selected point on the phase diagram.

At constant total pressure, where all species are mobile and in the absence
of external fields and chemical reactions, F = C − φ + 1. In a binary system,
under these conditions, F = 3 − φ. It follows that we may have only bivariant,
univariant, and invariant equilibria corresponding to the presence of single-phase,
two-phase, and three-phase regions on a phase diagram.

Two examples of topographical features which are obvious violations of the
phase rule are shown in Figure 12.3. The first, illustrating a four-phase equilib-
rium, leads to F = −1 and the second suggests a three-phase equilibrium (F = 0)
with the coexisting phases at different temperatures.

12.2 COMBINATORIAL ANALYSIS

The phase rule does not give any indication of how many of the different types
of topographical features are present in a given system. A combinatorial analysis,
on the other hand, permits the calculation of the upper limit to the number of
different topographical features. Not all of the features included in this maxi-
mum total number are necessarily present in the phase diagram for a particular
system.

In a system with C components and N total number of phases, the upper limit
of invariant features, that is, where F = 0 and φ = C + 1, may be calculated from
the combinatorial rule,

(
N

C+1

)
. Similar evaluations can be made for univariant

and bivariant features. In the case of phases which show a miscibility gap, it is
necessary to include both segregated phases in the counting procedure. Also, the
combinatorial calculation for the maximum possible number of the topographical
features does not take the single-phase invariant congruent points and critical
points into consideration.

Let us use the combinatorial formula for evaluating the maximum possible
number of each feature in a binary system in which there are four different phases
in total. From the phase rule, the maximum number of phases in equilibrium at

Figure 12.3 Phase rule violations in T –xi phase diagrams. Source: H. Okamoto and
T. B. Massalski, J. Phase Equilib. 12 148–168, 1991.
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constant p (where F = 0) is 3. Therefore, the maximum possible total number of
invariant features is

(4
3

) = 4, the maximum possible total number of univariant
features is

(4
2

) = 6, and the maximum possible total number of bivariant features
is
(4

1

) = 4. In more detail, for a system where the four phases are designated
α, β, γ, δ, we can summarize all the possible topographical features as follows:

F φ Total Combinations

0 3 4 αβγ , αβδ, αγ δ, βγ δ

1 2 6 αβ, αγ , αδ, βγ , βδ, γ δ

2 1 4 α, β, γ , δ

It is obvious from this table that, for a given invariant feature, all possible
univariant features may be calculated by combination of any two of the phases
involved in the invariant equilibrium, for example, αβγ → αβ, αγ, βγ (see
the sketches on the right-hand side of Figures 12.1a and 12.1b for a three-phase
invariant point on a T –μi diagram).

The combinatorial calculation does not give information on which of the total
number of possible features are likely to be stable and which features are likely to
be metastable and therefore absent. The concept of the missing invariant points
can be appreciated by considering a binary system in which there is a single
stoichiometric compound and two eutectics on either side of the compound (see
Fig. 12.4a).

Since there are four phases, the combinatorial result is that there is a total of
four invariant equilibria (at constant p). But the actual phase diagram shows only
two (plus the congruent point). In this case there must be two other metastable
invariant points. The location of these metastable invariant equilibria are shown
schematically on the T –xi and T –μi phase diagrams in Figure 12.4.
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Figure 12.4 The T –xi and T –μi phase diagrams for system with stoichiomet-
ric compound. Locations of the metastable invariant equilibria are indicated on both
diagrams.
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12.3 SCHREINEMAKER’S RULES

Schreinemaker’s rules are based on the concept that an equilibrium phase or
phase assemblage must only have its stability field constricted by consideration
of another yet more stable assemblage.

The rules are clearer in a field–field phase diagram than in a field–density
phase diagram. In the former type:

1. Adjacent univariant curves around an invariant point are constrained to be
<180◦.

2. The metastable extension of a stable univariant curve to the opposite side
of an invariant point must be into a different single-phase region.

Acceptable and unacceptable topologies are shown in Figure 12.5. It can be seen
that application of the rules to extrapolations is clearer in the field–field phase
diagram than they are in the field–density diagram. The correctness of their
application to T –xB phase diagrams can be appreciated from G − xB curves,
such as those shown in Figure 12.6. It can be seen there that the phase boundaries
for the metastable α/β equilibrium lie inside those for the stable liq/α and liq/β

equilibria.

a a

(a) (b)

b b

L
L L L

a ab b

Figure 12.5 Stable phase boundaries and their extrapolations into metastable regions in
both T –μi and T –xi phase diagrams: (a) acceptable; (b) unacceptable.
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Figure 12.6 Application of Schreinemaker’s rules can be appreciated from G–xB

curves.
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12.4 THE GIBBS–KONOVALOV EQUATIONS

The phase rule, combinatorics, or the application of Schreinemaker’s rules will
not tell us if there actually is a miscibility gap, a congruently melting compound,
or anything about the actual juxtaposition of the different phases and location
of the invariant equilibria in a particular system. Only knowledge of the ther-
modynamic properties of the phases involved can do this. The thermodynamic
properties also determine the slopes of the phase boundaries in both T –xi and
T –μi phase diagrams and it is on this aspect that we will concentrate here.

The phase diagrams shown in Figures 12.7 and 12.8 are examples which
exhibit some rather unusual features.

The diagram in Figure 12.7a shows an increase in solid solubility with falling
temperature which is then followed by a decrease in the solubility. The solute
whose solubility increases with decreasing temperature is said to have retro-
grade solubility. The phase diagram shown in Figure 12.7b is unusual in that it
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Figure 12.7 Some unusual topological features found in phase diagrams: (a) Cu–Fe;
(b) Au–Pt.
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shows an almost completely flat solidus. That in Figure 12.8 shows a congru-
ent point which is apparently quite sharp. These and other topological features
can be understood from a thermodynamic analysis of the factors which control
the slopes of phase boundaries. Such an analysis can prevent an experimentalist
from interpolating/extrapolating his or her results in an erroneous manner in the
construction of the final phase diagram. This kind of analysis is unimportant in
calculated phase diagrams since thermodynamic consistency is automatic.

The object is to determine the factors which are responsible for the slopes of
phase boundaries on isobaric phase diagrams of both the T –μi and T –xi type,
that is, we wish to calculate

(
∂T

∂μi

)
p

and

(
∂T

∂xα
i

)
p

Note that, in the second case, it is necessary to specify both the component and
the phase since there are two phases of different composition, that is, two phase
boundaries, to consider.

Both of the above partial derivatives refer to univariant equilibria and, along
the univariant phase boundaries, the component chemical potentials are equal in
both phases. The total differentials of μi for each component in each phase are
also equal:

dμα
A = dμ

β

A = dμA (12.1)

dμα
B = dμ

β

B = dμB (12.2)

We will use these relations in the derivations given below.

12.4.1 Slopes of T –μi Phase Boundaries

The Gibbs–Duhem equations for both phases along the phase boundary are

xα
A dμA + xα

B dμB + Sα dT + V α dp = 0 (12.3)

x
β

A dμA + x
β

B dμB + Sβ dT + V β dp = 0 (12.4)

At constant p, we can eliminate dμA from these equations by multiplying with
the appropriate factors and then subtracting:

xα
Ax

β

A dμA + xα
Bx

β

A dμB + x
β

ASα dT = 0 (12.5)

xα
Ax

β

A dμA + xα
Ax

β

B dμB + xα
ASβ dT = 0 (12.6)

(xα
Ax

β

B − xα
Bx

β

A) dμB + (xα
ASβ − x

β

ASα) dT = 0 (12.7)
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and, since xα
Ax

β

B − xα
Bx

β

A = xα
A − x

β

A, we have

(
∂T

∂μB

)
p

= xα
A − x

β

A

x
β

ASα − xα
ASβ

(12.8)

There is, of course, an analogous equation for dT /dμA.

Example 12.1 Phase Boundary Slopes
Confirm (12.8) for the following system at 600 K. The calculated phase diagram
is shown in Figure 12.9. This phase diagram was obtained by taking the liquid
phase to be strictly regular and the solid phase to be strictly subregular. The pure
liquids are chosen as reference states:

μ
◦,l
A = μ

◦,l
B = 0

μ
◦,s
A − μ

◦,l
A = −9000 + 10T J mol−1

μ
◦,s
B − μ

◦,l
B = −12,000 + 10T J mol−1

GE(l) = 5000xAxB J mol−1

GE(s) = xAxB(10,000 + 10,000(xA − xB)) J mol−1

Using the phase boundary values given in Figure 12.9 for T = 600 K, we have

dT

dμA

= 0.9866 − 0.3033

0.3033(−9.409) − 0.9866(−4.898)
= 0.345

dT

dμB

= 0.0134 − 0.697

0.6967(−9.409) − 0.0134(−4.898)
= 0.105

which agree well with the slopes given in Figure 12.10a .

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 12.9 Calculated phase diagram used in the example.
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Figure 12.10 (a) dμ/dT and (b) Sm(600 K) − xB diagrams for system shown in
Figure 12.9.

12.4.2 Slopes of T –xi Phase Boundaries

The derivation of the equations for the phase boundary slopes is again based
on using procedures very similar to those used in the derivation of the
Clausius–Clapeyron. Along the equilibrium phase boundary between the two
phases we have

μα
i − μ

β

i = 0 dμα
i − dμ

β

i = 0

At constant total p, the total differential for μi is

dμi =
(

∂μi

∂xi

)
T

dxi +
(

∂μi

∂T

)
xi

dT (12.9)

The two partial derivatives may now be obtained:

(a) From the tangent intercept relation at constant p:

μi = Gm + (1 − xi)

(
∂Gm

∂xi

)

so that

(
∂μi

∂xi

)
T

=
(

∂Gm

∂xi

)
T

+ (1 − xi)Gxixi
(T ) −

(
∂Gm

∂xi

)
T

= (1 − xi)Gxixi
(T )
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(b) (
∂μi

∂T

)
xi

= −Si(xi)

where we have used Gxixi
(T ) for the second derivative of Gm with

respect to xi . Note that, since μB − μA = dGm/dxB = −dGm/dxA and in
the case of the second derivatives,

Gxα
Axα

A
(T ) = Gxα

Bxα
B
(T ) = Gα

xx(T )

We now have, for the two equations for dμα
i − dμ

β

i = 0,

xα
BGxx(T ) dxα

A − Sα
A(xα

A) dT − x
β

BGxx(T ) dx
β

A + S
β

A(x
β

A) dT = 0

xα
AGxx(T ) dxα

B − Sα
B(xα

B) dT − x
β

AGxx(T ) dx
β

B + S
β

B(x
β

B) dT = 0

Remembering that dxA = −dxB in either phase, we now have two equations from
which dT /dxα

B and dT /dx
β

B can be obtained. These are the Gibbs–Konovalov
equations for the slopes of the two phase boundaries for a two-phase equilibrium
at constant p, T :

dT

dxα
B

= (xα
B − x

β

B)Gα
xx(T )

x
β

B �
β
αSB + x

β

A �
β
αSA

dT

dx
β

B

= (xα
B − x

β

B)G
β
xx(T )

xα
B �

β
αSB + xα

A �
β
αSA

Since, along the phase boundary, μα
i = μ

β

i , it follows that �
β
αHi = T �

β
αSi , so

that this substitution may be made in the above equations. This is the way that the
equations are most often presented for the isobaric conditions being considered:

dT

dxα
B

= (xα
B − x

β

B)T Gα
xx(T )

x
β

B �
β
αHB + x

β

A �
β
αHA

(12.10)

dT

dx
β

B

= (xα
B − x

β

B)T G
β
xx(T )

xα
B �

β
αHB + xα

A �
β
αHA

(12.11)

Example 12.2 Phase Boundary Slopes
Confirm (12.10) and (12.11) for the same system as used in the previous example
at 600 K. The approximate slopes of the boundaries on the T –xB phase diagram
are indicated on Figure 12.11a . The values of Gα

xx(T ) [= G
β
xx(T ) in this case]

are given in Figure 12.11b.
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The slopes given in the figure are only approximate:

dT

dxα
B

= (0.0134 − 0.6967)2.989 × 105

0.6967(−32.85) − 0.3033(−9.807)
= +10,252

dT

dx
β

B

= (0.0134 − 0.6967)0.272 × 105

0.0134(−32.85) − 0.9866(−9.807)
= −2011

12.4.3 Some Applications of Gibbs–Konovalov Equations

We may now consider the application of (12.8) and the Gibbs–Konovalov
equations, (12.10) and (12.11), in order to explain the slopes of phase boundaries
on both T –μi and T –xi phase diagrams. We concentrate on the features
illustrated in the hypothetical phase diagram shown in Figure 12.12.

We use, as is apparent from Figure 12.11b, that, in the infinitely dilute solu-
tions, Gxx → ∞. At other compositions, it may be either positive or negative.
We have previously noted that this second derivative is zero at a critical point.

1. Congruent and Critical Points At both congruent and critical points (the
points indicated by 1 in Fig. 12.12), xα

B = x
β

B , so it follows, from (12.8), (12.10),
and (12.11), that

dT

dμB

= dT

dxα
B

= dT

dx
β

B

= 0

At a liquid/solid intermediate-phase transformation, both the liquidus and solidus
have zero slope at the actual congruent point. Although it may appear that the
congruent point in Figure 12.8 is quite sharp, it must actually be rounded. This
can be demonstrated through the use of appropriate modeling equations for the

. .

0.0 0.2 0.4 0.6 0.8 1.0
400

800

1200

dT/dx ~ −2000dT/dx ~ +10,000

A BxB

T
/K

(a)

xB

0

10,0000

20,0000

30,0000

40,0000

50,0000

G
xx

x
B

= .0134

Gxx = 2.989 × 10−5

x
B

= .6967

Gxx = 0.272 × 10−5

A B
0 10.2 0.4 0.6 0.8

(b)

Figure 12.11 Phase boundary slopes and values of Gxx at 600 K for system considered:
(a) slopes of T –xi phase diagram; (b) Gxx at phase boundaries.
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Figure 12.12 Some topological features which may be understood from Gibbs–
Konovalov equations.

liquid phase. A sharp congruent point like that shown requires a deep minimum
in the �mixGm − xi curve. The zero-slope requirement at a congruent point also
applies to critical points. At the pure component ends of the phase diagram, where
xα

B is also equal to x
β

B , the requirement that dT /dμB = dT /dxα
B = dT /dx

β

B = 0
no longer holds since, at these end compositions, Gxx is no longer finite.

2. Azeotropy A further consequence of (12.8), (12.10), and (12.11) is to
exclude phase diagrams like the one in the accompanying sketch. The liquidus
and solidus can only touch (xα

B = x
β

B ) when the slope is zero. They can, therefore,
only touch at a maximum or a minimum. Such points are called azeotropic points ,
the best known example being that for the liquid/vapor equilibrium for water and
alcohol.

3. Retrograde Solubility An example of retrograde solubility was given in
Figure 12.7a and at the point marked as 2 in Figure 12.12. At the retrograde
point, the solidus phase boundary is vertical, that is, dT /dxα

B = ∞. This can
only occur if the denominator is zero, that is, when

xα
B �

β

I SB + xα
A �

β

I SA = 0 (12.12)
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4. Inflection Points At the critical point Gα
xx = 0 so that, in the neighborhood

of this critical point, Gα
xx ≈ 0, and since, from (12.10) and (12.11)

dT

dxB(s)
∝ Gxx(s)

it follows that if the solidus is fairly close to the critical point for the solid-state
miscibility gap as in the case of the points marked 1 and 4 in Figure 12.12 and
in Figure 12.7b for the (Au,Pt) system, then

dT

dxα
B

≈ 0

that is, under these conditions, an inflection point will occur in the solidus (the
solidus can never be horizontal except at an azeotropic point). An accompanying
inflection point in the liquidus is not necessary—this would require Gxx(l) ≈ 0,
which would only occur if the liquid phase was itself close to giving rise to phase
separation.

5. Dilute Solutions For xB → 0, xA → 1, we can take the ideal entropy so
that Gα

xx → RT/xα
B . Under these conditions, the Gibbs–Konovalov equations

simplify to

dT

dxα
B

= (xα
B − x

β

B)RT

xα
B �

β
αSA

(12.13)

dT

dx
β

B

= (xα
B − x

β

B)RT

x
β

B �
β
αSA

(12.14)

If we invert these and subtract,

dxα
B

dT
− dx

β

B

dT
= �

β
αSA

RT
(12.15)

T

xB
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If the α phase is the low-temperature phase, then �
β

I SA will be positive, which
means that the difference in the reciprocal slopes of the coexistence in very
dilute solution, (12.15), must be positive. If both are positive, say, dT /dxα

B = 2
and dT /dx

β

B = 4, then the difference of the reciprocals is 1
2 − 1

4 = 1
4 . If both

are negative, say, dT /dxα
B = −4 and dT /dx

β

B = −2, then the difference of the
reciprocals is − 1

4 + 1
2 = 1

4 . But if one is positive and the other negative, say
dT /dxα

B = −2 and dT /dx
β

B = 4, then the difference of the reciprocals is − 1
2 −

1
4 = − 3

4 , which is negative. This means that a phase diagram like the one in the
sketch on page 161, where the liquidus on the A-rich end has a positive slope
while the solidus has a negative slope, is impossible.

Summary The computer calculation of phase diagrams ensures that all thermo-
dynamic requirements are met, that is, there are no errors in calculated phase dia-
grams due to any failure in meeting the requirements of the phase rule, Schreine-
maker’s rules, or the Gibbs–Konovalov equation. Nevertheless, many published
phase diagrams have not been computed but are based on experimental results.
They are thus prone to contain mistakes which are thermodynamically incorrect.

EXERCISES

12.1 The hypothetical phase diagram in Figure 12.13 contains many mistakes
which are indicated by a letter. For each of these mistakes, list the type
of error in terms of its failure to be in line with the requirements of:
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Figure 12.13 Hypothetical phase diagram containing many topological errors.
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(i) The phase rule
(ii) Schreinemakers’s rules

(iii) The Gibbs–Konovalov’s equation

12.2 Using the data below, calculate the phase diagram, evaluate the retrograde
point, and confirm (12.12).

Be sure to use the same reference state for both phases when evaluating
the entropy difference terms in (12.12).

μ
◦,l
A = μ

◦,l
B = 0

μ
◦,s
A − μ

◦,l
A = −22,500 + 15T J mol−1

μ
◦,s
B − μ

◦,l
B = −7500 + 15T J mol−1

GE(l) = 10,000xAxB J mol−1

GE(s) = 15,000xAxB J mol−1





13 Solution Phase Models I:
Configurational Entropies

Up until this point we have discussed the representation of the thermodynamic
properties of solution phases by using polynomials such as the Redlich–Kister
equation:

GE = xAxB [L0 + L1(xA − xB) + L2(xA − xB)2 . . .]

where the parameters Li may be temperature dependent. Such representations
do, however, have some limitations:

(a) Fitting sparse experimental results to polynomials, particularly high-order
polynomials, can be dangerous, particularly when it is necessary to extrap-
olate the equations outside the region (of composition and/or temperature)
where the fitting was carried out.

(b) The experimental results for some phases are unsuited to polynomial rep-
resentation. This is particularly true of some intermediate phases, which
are formed when there is a strong chemical affinity between the alloy-
ing elements involved. These phases progress from being fully ordered at
low temperatures, as illustrated schematically in Figure 13.1b, to being
disordered at high temperatures (as in Fig. 13.1a). As we will see later,
�mixHm changes quite markedly with composition and temperature due
to the ordering process, and not in the simple way that can be represented
reliably by a Redlich–Kister type of equation.

(c) To date, we have been concerned only with substitutional alloys, as
sketched in Figures 13.1a and b. Sometimes, however, we encounter
interstitial solid solution phases, as represented in Figure 13.1c. In the
latter, the metal host atoms form one sublattice while the interstitial sites,
formed within the metal atom sublattice, are occupied by the interstitial
atoms. Since the metal atom cage must always be present to provide the
interstitial sites, it is clear that this type of solution cannot exist across
the whole composition range from one pure element to the other, as it
does in the case of a substitutional solution. A (mathematical) modeling
equation like the Redlich–Kister equation can be modified from that

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.

165



166 SOLUTION PHASE MODELS I: CONFIGURATIONAL ENTROPIES

(a) (b)

(c)

Figure 13.1 Some different types of lattice models: (a) disordered substitutional phase,
all sites available for all types of atoms; (b) fully ordered intermediate phase, separate
sublattices for each type of atom; (c) interstitial solution phase, interstitial atoms occupy
their own sublattice.

used for substitutional solution phases as long as the interstitial solid
solution is disordered. But interstitial solid solutions can also undergo
ordering transitions and, again, a polynomial representation of their
thermodynamic properties is unsatisfactory.

It is for these reasons that we need to supplement a wholly mathematical
approach to modeling equations, by introducing a little more physics into the
modeling process with the hope of obtaining a better representation of the exper-
imental (or theoretically calculated) results. In particular, we wish to be able to
handle sublattice phases of either the interstitial solution- or intermediate-phase
type and we particularly wish to be able to have a model which will lead to a
representation which is suitable for those phases which undergo order/disorder
transitions.

The physicochemical factors which contribute to solid solution and compound
formation between metals were summarized by Hume-Rothery in the 1930s, who
found the following atomic properties to be important:



SOLUTION PHASE MODELS I: CONFIGURATIONAL ENTROPIES 167

(i) Atomic Size Factor If the atomic radii of the elements differ by more
than ≈15%, solid solution formation is not favored.

(ii) Crystal Structure Factor For appreciable solid solubility, the crystal
structure of the component metals must be the same.

(iii) Electrochemical Factor The greater the electronegativity difference
between the components, the greater the tendency to form intermetallic
compounds.

(iv) Valence Factor For extensive solid solubility, the components should
have the same valences. A metal will dissolve another metal of higher
valency more than it will one of lower valency.

Hume-Rothery discovered these rules from the relatively small amount of infor-
mation available to him some 80 years ago. Very large databases are now available
for metal properties, and when these are linked with a machine learning system
(data mining), predictions can be made about the structural and stability properties
of alloys. It is interesting to note that the atomic properties used in correlating the
information on alloy phase stability in one such large database are very similar
to the ones used by Hume-Rothery: size, atomic (Mendeleev) number, valence
electron, electrochemical, angular-valence orbital, and cohesive energy factors.

In obtaining such correlations, it is being assumed that alloy properties can be
understood wholly in terms of the component atomic properties, which would seem
to be a little optimistic. Although the elemental properties clearly give some clues as
to the important factors which contribute to alloy thermodynamic mixing properties,
they cannot lead to what is required in the present instance, namely, an analytical
expression for these properties as a function of temperature and compositions.
Recent first-principles calculations have been quite successful in calculating total
energies for binary compounds at 0 K. Some improvements are still required,
however, in the calculation of high-temperature Gibbs energies and in extending the
calculations to disordered phases. As a result, a less ambitious phenomenological
or empirical approach to solution-phase modeling is still necessary. Some physics
is introduced but the model parameters are obtained, not by calculation, but by
their optimization with respect to the available experimental or calculated results
to give the best description of the experimental Gibbs energies. This empirical
approach will probably be necessary for some years to come, particularly since
it is multicomponent alloys which are of primary technological significance.
First-principles calculations for these would seem some considerable way off.

In order to obtain the desired analytical representation, we simplify things by
assuming that the Gibbs energy of mixing can be separated additively into:

(i) Configuration independent (abbreviation conf indep) contributions. These
depend only on the alloy composition and not on how the component
atoms are distributed in the alloy; that is, these contributions are iden-
tical for the fully ordered and for the random solution. A large part of
any atomic size mismatch contributions and some part of electronic band
contributions may fall into this category.
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(ii) Configuration dependent (abbreviation conf) contributions. These do
depend on how the component atoms are distributed in the alloy. An
ordered alloy has different properties from a disordered alloy from these
contributions. In other words, these are local environment effects . Apart
from the mixing properties themselves, we might expect that at least part
of the vibrational properties of an atom will be sensitive to the local
environment.

With this assumption of the two contributions being independent of one
another, we can write the solution-phase Gibbs energy as follows:

Gm = Gconf
m + Gconfindep

m (13.1)

It should be emphasized that this factorization of Gm can be an oversimplification
in that the the two contributions may be coupled .

Now Gconf
m = H conf

m − T Sconf
m and here we will make another big assumption,

namely, that these two contributions to Gconf
m can be treated independently, so

that we may now write

Gm = [
H conf

m − T Sconf
m

]+ Gconfindep
m

In the remainder of this chapter we concentrate on the calculation of Sconf
m for

the three types of solution phase shown in Figure 13.1.

13.1 SUBSTITUTIONAL SOLUTIONS

We have previously met the Boltzmann equation, applicable to systems of fixed
energy:

S = kB loge W (13.2)

This equation indicates that we can evaluate the entropy from a calculation of the
number of microstates available to a system. For any solid substance the available
states will include nuclear, electronic (including nuclear and electronic spin), and
vibration energy levels— thermal disorder. For the moment, however, we are
concerned only with configurational disorder—the more numerous the possible
ways of arranging the atoms on a lattice, the higher the configurational entropy.

In a substitutional solid solution, all the lattice sites are considered to be
available for occupation by every atom. If the energy of mixing is taken to have
the constant value of zero, it is then straightforward to calculate the number of
microstates for a random binary solution. This random approximation is referred
to as the point, zeroth, or regular solution approximation. When NA and NB

particles are distributed randomly on Ns = NA + NB sites, then

W = Ns!

NA! NB !
(13.3)
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Use Stirling’s approximation for the factorial of a large number,

loge x! ≈ x loge x − x

we obtain from (13.2) and (13.3)

Sconf

kB

= Ns loge Ns − NA loge NA − NB loge NB (13.4)

Since W = 1 for the pure components, the entropy for the random solution is
the same as integral mixing entropy per mole of sites for the alloy, �mixS

conf
m :

−�mixS
conf
m

NskB

= xA loge xA + xB loge xB random subst. soln. (13.5)

The partial molar entropies can be obtained by differentiating (13.4):

Sconf
A

kB

=
(

∂S/kB

∂NA

)
NB

= loge Ns − loge NA = − loge xA

Using i to represent any component, the partial molar entropy of mixing is
given by

−�mixS
conf
i

R
= loge xi random subst. soln. (13.6)

As we have seen previously, such a random substitutional alloy with a zero
energy of mixing will obey Raoult’s law.

13.2 INTERMEDIATE PHASES

Consider the simple case where the intermediate phase can be described as being
comprised of only two sublattices, similar to that shown schematically in Figure
13.1b. The usual notation for representing such an intermediate phase is

(A,B)f α : (B,A)f β

where A is the predominant species on the first sublattice and B on the second
sublattice.

We will use i to refer to any sublattice constituent and (j) to refer to any
sublattice. Thus f (j), which is the fraction of the total sites which are on sublattice
(j), is given by

f (j) = N
(j)
s

Ns

where
∑
(j)

f (j) = 1
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with N
(j)
s being the number of sites on sublattice (j) and Ns the total number

of sites.
It is also useful to define the sublattice mole fraction as

y
(j)

i = N
(j)

i

N
(j)
s

The relation between the sublattice mole fractions and the mole fraction can be
obtained as follows:

xi = Ni

Ns

= Nα
i + N

β

i

Ns

= f αNα
i

Nα
s

+ f βN
β

i

N
β
s

or, in general,

xi =
∑
(j)

∑
i

f (j)y
(j)

i (13.7)

Let us now obtain the expression for the mixing entropy for this case. Analogous
to the disordered alloy, we will assume that there is random mixing on each
individual sublattice. This is known as the Bragg–Williams (BW) approximation.
Under these circumstances, the energy of mixing is fixed at constant composition,
so that the Boltzmann equation can be applied.

The equation for the thermodynamic probability is now given by

W =
[

Nα
s !

Nα
A! Nα

B !
× N

β
s !

N
β

A! N
β

B !

]
(13.8)

From the Boltzmann equation and using the Stirling approximation and general-
izing,

Sconf

kB

=
∑
(j)

[
N(j)

s loge N(j)
s −

∑
i

N
(j)

i loge N
(j)

i

]
(13.9)

=
∑
(j)

∑
i

N
(j)

i loge y
(j)

i (13.10)

Dividing by Ns to obtain the entropy per lattice site,

− Sconf

kBNs

=
∑
(j)

f (j)
∑

i

y
(j)

i loge y
(j)

i (13.11)
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Since W = 1 for the pure elements, this is also the molar mixing entropy:

−�mixS
conf
m

R
=
∑
(j)

f (j)
∑

i

y
(j)

i loge y
(j)

i BW approx. (13.12)

The partial molar entropies are given by

−�mixS
conf
i

R
=
∑
(j)

f (j)
∑

i

loge y
(j)

i BW approx. (13.13)

These expressions have the correct high-temperature limit of giving the same
answer as for the random substitutional solid solution. When there is only one
sublattice,f (j) = 1, and then, from (13.7), y

(j)

i = xi , and we recover (13.5) from
(13.9).

We can also readily evaluate (13.12) and (13.13) for the BW most ordered
state.

At the stoichiometric composition, AB, and in the fully ordered condition,
the first sublattice is occupied by A atoms only and the second sublattice by
B atoms only, that is, yα

B = 0, y
β

B = 1. On moving to the B-rich side, we can
only increase yα

B since the second sublattice is already filled. The variation of
yα

B and y
β

B as a function of xB , over the whole composition range, is shown in
Figure 13.2. It can be seen that, for this most ordered state,

yα
B = 0 y

β

B = 2xB for xB ≤ 1
2

yα
B = 2xB − 1 y

β

B = 1 for xB > 1
2

Similar equations exist for yA and we can then substitute these values for the
sublattice mole fractions into (13.12) and (13.13) in order to calculate the integral
and partial molar mixing entropies for this most ordered state. The following
relations are obtained for the integral and partial quantities (for component B):

−�mixS
conf
m

R
=

1
2 [2xB loge(2xB) + (1 − 2xB) loge(1 − 2xB)] xB < 1

2 (13.14)

1
2 [2xA loge(2xA) + (1 − 2xA) loge(1 − 2xA)] xB > 1

2 (13.15)

−�mixSB

R
= loge 2xB − 1

2 loge(1 − 2xB) xB < 1
2 (13.16)

1
2 loge(2xB − 1) xB > 1

2 (13.17)

The results for the integral and partial quantities for both the random and most
ordered states are shown in Figures 13.3a and 13.3b, respectively. These represent
the low- and high-temperature limits for these quantities.
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Figure 13.2 Variation of sublattice mole fraction with composition for BW most ordered
state in two-sublattice intermediate phase.
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Figure 13.3 Integral and partial molar configurational mixing entropies for two-
sublattice intermediate phase in BW most ordered state: (a) integral �mixSm; (b) partial
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13.3 INTERSTITIAL SOLUTIONS

Now consider a binary interstitial solid solution with two sublattices: one, α,
occupied by the metal atoms, M, and another, β, formed by the spaces lying
between the metal atoms and in which an element, I, occupies some fraction of
these interstitial sites. This model can be represented by the following notation:

(M)f α : (I, Va)f β

where Va represents a vacancy on the interstitial sublattice.
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We may go straight to using (13.9) and consider the random mixing of atoms
and vacancies on the interstitial sublattice:

Sconf

kB

= Nβ
s loge Nβ

s − [Nβ

I loge N
β

I + N
β
Va loge N

β
Va] (13.18)

We may eliminate NVa and express S in terms of only the chemical components
by using N

β
Va = N

β
s − N

β

I :

Sconf

kB

= Nβ
s loge Nβ

s −
[
N

β

I loge N
β

I + (Nβ
s − N

β

I ) loge(N
β
s − N

β

I )
]

(13.19)

and can express this, per mole of interstitial sites, by dividing by N
β
s :

− Sconf

kBN
β
s

=
[
y

β

I loge y
β

I + (1 − y
β

I ) loge(1 − y
β

I )
]

(13.20)

which has the same analytical form as the equation for a random substitutional
solid solution.

Equation (13.9) can be differentiated to obtain the partial quantity for the
interstitial element I. Per atom,

Sconf
I

kB

=
(

∂Sconf/kB

∂NI

)
NM

= − loge N
β

I + loge(N
β
s − N

β

I )

= − loge

(
y

β
I

1 − y
β
I

)
(13.21)

and for the partial molar quantity,

Sconf
I

R
= − loge

(
y

β

I

1 − y
β

I

)
(13.22)

In order to obtain the partial quantity for M we must express N
β
s in terms of

NM . Let N
β
s = ζNM , where ζ is the number of interstitial sites per metal atom

[this means that f α = 1/(1 + ζ ) and f β = ζ/(1 + ζ )]. Using this in (13.18) and
differentiating, per atom,

Sconf
M

kB

=
(

∂Sconf/kB

∂NM

)
NI

= loge ζNM − loge(ζNM − N
β

I )

= −ζ loge(1 − y
β
I ) (13.23)
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Figure 13.4 Partial molar entropies of mixing for random interstitial solid solution with
ζ = 1.

and for the partial molar quantity,

Sconf
M

R
= −ζ loge(1 − y

β

I ) (13.24)

Note that, even though the metal sublattice remains totally unaffected by the
mixing process, which occurs only on the interstitial sublattice, there is a change
in its partial molar property with composition.

The partial molar entropies for this random interstitial solid solution are shown
in Figure 13.4a for the case where ζ = 1 (which corresponds with the octahedral
interstitial sites in the fcc lattice). The partial molar quantity for the interstitial
component goes to plus and minus infinity, which is quite different behavior from
that for the substitutional alloy. It is clear that a random interstitial solution will
not be expected to obey Raoult’s law; that is, obeying Raoult’s law is not an
appropriate definition of an ideal solution for an interstitial solid solution.

A random interstitial solid solution whose partial molar configurational ent-
ropies are given by the above equations is said to form a Langmuir ideal solution.

We should note again that a thermodynamicist may define an ideal solu-
tion in any way that he or she wants. We have now met two different types
and definitions: Raoultian and Langmuir ideal solutions. The major point is that
each is defined to be a limit to which real solutions of that type may approach.
A Raoultian ideal solution is appropriate for substitutional phases and a Langmuir
ideal solution for interstitial phases.

EXERCISES

13.1 Starting from the Boltzmann equation, (13.2), derive �mixS
conf
m for a ran-

dom solution mixture of (Fe, Ni)0.75 : (C, Va)0.25.
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13.2 Derive the analogous equations to (13.16) and (13.17) for component A.

13.3 Derive integral and partial expressions for the mixing entropy in a four-
sublattice model for the most ordered and random solutions. Provide plots
of the results.

13.4 Titanium monocarbide possesses the NaCl structure but, unlike NaCl, TiC
exists over a wide range of homogeneity, varying from 32 mol % C to
a maximum of 48.8 mol % C. using the sublattice notation, write down
the appropriate model for this phase and calculate the Bragg–Williams
entropy of mixing of this carbide having 46 mol % C. Give your results
in both joules per mole of atoms and per mole of Ti.





14 Solution Phase Models II:
Configurational Energy

In the previous chapter we introduced a factorization of the Gibbs energy in
order to consider a basic thermodynamic model for a substitutional alloy phase.
In this model, the experimental (or calculated) results for the Gibbs energy of
formation of an alloy are assumed to contain separable configuration-dependent
and configuration-independent contributions (the rationale behind this assumption
is discussed in chapter 16):

�mixGm = �mixH
conf
m − T �mixS

conf
m + �mixG

conf indep
m

We then calculated the configurational mixing entropy for this model for two
extremes of a sublattice phase alloy—the most ordered state and the random
state. Under these circumstances we could use the Boltzmann equation.

In this chapter, we turn our attention to the enthalpy of mixing, �mixH
conf
m .

We will also make the additional assumption that the configurational part of the
energy is volume independent so that �mixH

conf
m is equal to the energy of mixing,

�mixU
conf
m .

The aim is to express �mixU
conf
m in a form which depends on the atomic

distribution, that is, in terms of local environment effects. In the simplest type
of ordered alloy, comprised of two sublattices, the nearest neighbors of A atoms
are the maximum number possible of B atoms. In some lattices, however, the
nearest neighbors in the fully ordered state cannot all be B atoms. In an fcc alloy,
for example, it is not possible to arrange for all nearest neighbors to be unlike
atoms and obtain an ordered structure. This is called frustration . In a disordered
alloy there will be a significant proportion of like-atom neighbors with the actual
ratio of like and unlike depending on the temperature and composition and the
degree of short-range order (SRO).

In almost all thermodynamic models of solid solution phases, the experimental
values for �mixH

conf
m are mapped onto the energy parameters of what is called an

Ising-like model . The original Ising model was for a lattice model of a ferromag-
net in which the atomic magnetic moments (designated as up-spin or down-spin)
were located on the lattice sites and interacted via constant pairwise exchange
energies. There is a one-to-one correspondence between this model of a magnet
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and that for a binary alloy, with the up-spin being equivalent to an A atom and a
down-spin to a B atom. In order to extend the model by including the possibility
of energy representations other than only pair representations, the term Ising-like
model is used.

In using an Ising-like model, it is usually assumed that the model energy
parameters are configuration independent ; that is, we can apply the energy
parameters derived from one configuration to other configurations in that alloy.
We may, for example, use the information on �mixU

conf
m for the fully ordered sto-

ichiometric compound to calculate the Ising-like energy parameters and then use
these same parameters in order to calculate �mixU

conf
m for the partially ordered

nonstoichiometric phase or for the disordered phase.
As will become apparent later, it should be emphasized that there is no unique

way of carrying out the energy mapping . This should make it clear that the derived
model energy parameters should not be confused with believing that they are
actual chemical bonding energies. We are wanting to map the total energy in
such a way that it embraces only the near neighbors; that is, we are assuming
that the interactions outside a small circle of influence are substantially weaker
than those inside the circle.

14.1 PAIR INTERACTION MODEL

In order to illustrate, we will consider two examples. In the first, only one ordered
phase is formed, at the composition AB. The configurational energy in the BW
most ordered state will vary with composition as shown in Figure 14.1.

mol fraction B

0.0 0.2 0.4 0.6 0.8 1.0

C
on

fig
ur

at
io

na
l e

ne
rg

y

−30

−25

−20

−15

−10

−5

0

A B

Figure 14.1 Configurational mixing energy for BW most ordered alloys in two-sublattice
model.
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We consider a model comprising two sublattices only and assume that these
are of equal size. This is the same model considered in the previous chapters for
the calculation of the configurational mixing entropies and can be represented by
the notation

(A,B)0.5 : (B,A)0.5

With two sublattices of equal size there can only be one fully ordered stoichio-
metric compound, AB. At 0 K for this stoichiometric alloy, all the A atoms are
on one sublattice (1) and all the B atoms on the other (2). At higher temperatures,
or with deviations from stoichiometry, antisite disorder excitation of the atoms
occurs (some of the atoms occupy the wrong sublattice). Eventually, at a suf-
ficiently high temperature or deviation from stoichiometry, the A and B atoms
become evenly distributed on both sublattices. At this stage there is only one
lattice; that is, we have a substitutional solid solution. The phase has undergone
an order/disorder transformation.

14.1.1 Ground-State Structures

The term ground-state structure is used to refer to the most stable structure at
0 K. Even with just the two sublattices of equal size, it is possible to obtain
different structures at the stoichiometric composition AB. In the structures based
on the bcc lattice, two possibilities are shown in Figure 14.2—the occupation
of the two sublattices is different in the two cases. It is clear, therefore, that
in our thermodynamic modeling, it is not sufficient to know only the stoichio-
metric composition of the phase in order to be able to map the configurational
energy onto an Ising-like model. We must also know the ground-state struc-
ture of the alloy. It is obvious that, in Figure 14.2a , the B2 structure will be
stable when the nearest neighbor pair interaction energy between unlike atoms,
ε
(1)
AB < 0 dominates, while the B32 structure shown in Figure 14.2b will not

be stable under these conditions. Rather, it will be necessary to have ε
(2)
AB < 0

and with this second nearest neighbor interaction dominating in order for this

(a) (b)

Figure 14.2 (a) the B2 and (b) B32 ground-state structures in a bcc lattice. The dots
represent the A atoms and the crosses the B atoms.
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structure to become stable. But over what range of ε
(2)
AB/ε

(1)
AB will the B2 struc-

ture be stable? To answer this question, we must evaluate which structure has
the lower formation energy over all possible values of the ratio. The results
from this kind of study can then be summarized in a phase stability map.
Such maps, showing the various possible ground-state structures for different
ratios of the pair interaction energies, are available for the fcc, hcp, and bcc
lattices.

We will simplify our two-sublattice model by considering nearest neighbor
interaction mappings only. In the case of a bcc-based intermediate phase, this
means that the compound AB has the B2 structure. As we have indicated, this
phase would remain stable if we took ε

(2)
AB/ε

(1)
AB to be other than zero. Different

values of ε
(1)
AB and ε

(2)
AB could be selected to agree with the same �mixU

conf
m values,

a result which emphasizes that there is no unique mapping of the configurational
energy onto an Ising-like model’s energy parameters.

14.1.2 Nearest Neighbor Model

As shown in Figure 14.3 for the two-dimensional equivalent lattice for the sub-
lattice model being discussed, nearest neighbors reside on different sublattices.
Examples of the four different types of inter-sublattice pairs in a binary alloy are
shown. In our model we assume that the alloy’s configurational energy is being
mapped onto these nearest neighbor pair interactions only.

The molar configurational energy of the alloy, in any given atomic arrange-
ment, can be expressed in terms of the average probabilities of the different types
of pairs and the pair energies, εPQ, whose values are to be determined. For a
binary AB system, the alloy energy is

U alloy
m = 〈pAA〉εAA + 〈pAB〉εAB + 〈pBA〉εBA + 〈pBB〉εBB (14.1)
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Figure 14.3 Two-dimensional two-sublattice model in which it is assumed that only
nearest neighbor interactions are present.
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where the angular bracketed terms refer to the mean probability of occurrence of
a particular type of pair.

Note that, since the dimensions of Um are per mole of sites, then the dimen-
sions of the pair interaction energies used in (14.1) also refer to an energy per
mole of sites and not, for the moment, to an energy per mole of pairs.

For the mechanical mixture (or the fully segregated alloy or the composi-
tion weighted sum) of the pure components in the same structure as that of the
intermediate phase,

Umixt
m = xAεAA + xBεBB (14.2)

The equations which relate the mole fractions to the average pair probabilities
are

xA = 〈pAA〉 + 1
2 (〈pAB〉 + 〈pBA〉)

xB = 〈pBB〉 + 1
2 (〈pAB〉 + 〈pBA〉)

Note that, when these two equations are added, the sum of both the left-hand
and right-hand sides equals 1, as they should.

We can now rewrite the equation for the mechanical mixture as

Umixt
m = [〈pAA〉 + 1

2 (〈pAB〉 + 〈pBA〉)] εAA

+ [〈pBB〉 + 1
2 (〈pAB〉 + 〈pBA〉)] εBB (14.3)

Subtracting (14.3) from (14.1) gives the mixing energy:

�mixU
conf
m = 〈pAB〉 [εAB − 1

2 (εAA + εBB)
]

+ 〈pBA〉 [εBA − 1
2 (εAA + εBB)

]
or

�mixU
conf
m = 1

2z (〈pAB〉 + 〈pBA〉) WAB (14.4)

where WAB = εAB − 1/2(εAA + εBB) is called the pair exchange energy and we
have taken WAB = WBA; that is, the pair exchange energy is assumed independent
of the actual location of the A and B atoms.

Note that WAB is now expressed as the energy per mole of pairs by multiplying
the previous energies per mole of sites by the number of pairs per site (= z/2,
where z is the coordination number of the lattice; z = 4 in Fig. 14.3).

As we did with the mixing entropy, we can evaluate (14.4) for the two limiting
cases considered in Chapter 13, namely, the BW most ordered and the random
solution.



182 SOLUTION PHASE MODELS II: CONFIGURATIONAL ENERGY

The pair probability distributions for the BW most ordered state are shown in
Figure 14.4a, where it can be seen that

〈pBA〉 = 0 all compositions

〈pAB〉 =
{

2xB

2(1 − xB)

for xB ≤ 1
2

for xB > 1
2

〈pAA〉 =
{

1 − 2xB

0

for xB ≤ 1
2

for xB > 1
2

〈pBB〉 =
{

0

2xB − 1

for xB ≤ 1
2

for xB > 1
2

For the random solution case, we can use the binomial expansion to calculate
the probabilities:

〈pAB〉 = 〈pBA〉 = 〈pA〉〈pB〉 = xAxB

〈pAA〉 = x2
A 〈pBB〉 = x2

B
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Figure 14.4 Pair probabilities and integral and partial molar configurational mixing ener-
gies for BW most ordered and random states in two-sublattice model: (a) pair probabilities
for BW most ordered state; (b) pair probabilities for random state; (c) �mixUm for BW
most ordered and random states; (d) �mixUB for BW \newline most ordered and random
states.
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The pair probability distributions for the random state are shown in Fig-
ure 14.4b.

Substitution of these equations for the two limiting cases into (14.4) gives the
following mixing energies:

�mixU
conf
m =

⎧⎪⎨
⎪⎩

zWABxB BW most ordered, xB ≤ 1
2

zWABxA BW most ordered, xB > 1
2

zWABxAxB random solution, all compositions

The partial molar properties for the most ordered and random mixing limits may
now be obtained from these integral quantities. For the component B,

�mixU
conf
B =

⎧⎪⎪⎨
⎪⎪⎩

zWAB BW most ordered, xB ≤ 1
2

0 BW most ordered, xB > 1
2

zWABx2
A random solution, all compositions

It can be seen that the mixing energy for the disordered (random) state is of
exactly the same form as that already met when using the Redlich–Kister repre-
sentation with L0 = zWAB . Thus we have one possible model which physically
models the behavior of this empirical modeling equation. It would be wrong, how-
ever, to believe that the only model to yield this result is this nearest neighbor
pair interaction model.

Both �mixU
conf
m and �mixU

conf
B for these two limiting cases are shown in

Figures 14.4c and 14.4d . It can be clearly seen that, as the temperature is
increased in going from the most ordered state to the random disordered state,
there is a decrease in the magnitude of �mixU

conf
m , even though we have used

the same temperature- (and composition-) independent energy parameter in this
Ising-like model.

Note the physical inconsistency in our having used a model which possesses
a finite mixing energy when we have assumed a random mixing entropy. Finite
pair interaction energies will give rise to SRO, which will in turn lead to both a
modified mixing energy and entropy. The BW model for sublattice phases and the
point, zeroth, or regular solution approximation for substitutional solid solutions
ignores this fact.

14.2 CLUSTER MODEL

The two-sublattice model discussed above can be applied to ordered phases whose
stoichiometry is different from f α = f β = 1

2 . Similar arguments and derivations
to those used above could be equally well applied to, for example, A3B, but,
in every case, �mixU

conf
m for the most ordered state will look similar to that
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shown in Figure 14.1, that is, with a single sharp minimum at the stoichiometric
composition.

Two types of complication can arise, however, which suggest that improve-
ments to our two-sublattice model may sometimes be necessary:

(a) If structure is to be taken into consideration, it may be necessary to intro-
duce interactions between more distant neighbors than just the nearest. The
case of bcc alloys was mentioned earlier—the B2 structure is expected
when ε

(2)
AB/ε

(1)
AB is small but the B32 structure is expected to be stable when

it is large.
(b) Ordered phases can form at more than one composition from the same

parent disordered phase. In this case �mixU
conf
m for the most ordered state

will look like that shown in Figure 14.5. Here, there are three ordered
phases to consider, A3B, AB, and AB3. It can be seen that there is only one
minimum in this curve, with inflexions in the curve occurring at the other
ordered phase compositions. The classic example of this kind of behavior
is found in the Au–Cu system where the disordered fcc parent phase gives
rise to ordered phases at the Au3Cu, CuAu, and Cu3Au compositions.

In order to take these points into consideration we will use a four-sublattice model
instead of our previous two-sublattice model. The notation for this sublattice
model is

(A, B)0.25 : (A, B)0.25 : (A, B)0.25 : (A, B)0.25
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Figure 14.5 Configurational mixing energy for fully ordered alloys in four-sublattice
model.
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Figure 14.6 Nearest neighbor tetrahedron cluster in fcc lattice.

The four near neighbor sites form a tetrahedron cluster in both the fcc and bcc
structures. In the fcc lattice the six tetrahedron edges are the nearest neighbors,
as illustrated in Figure 14.6. In the bcc lattice, on the other hand, the nearest
and next nearest neighbors form an irregular tetrahedron, as is apparent from
Figure 14.2.

In the cluster model, the alloy’s configurational energy is given by

U alloy
m =

5∑
i=1

piεi (14.5)

where the εi are the cluster energies per site.
Just as in the case of the pair approximation, where we used WAB = WBA,

we will assume that the energy of a cluster depends only on the number of the
various participating atoms and not on their arrangement , for example, εABBA =
εBAAB = · · · = εA2B2 . This means that, in a binary system with a 4-point cluster,
there are only 5 independent alloy cluster energies to consider instead of the 16,
were we to consider the influence of atom arrangements on the cluster energies
as well.

As we did for the pair approximation model, we can write the equation for
the mechanical mixture:

Umixt
m = xAεA4 + xBεB4 (14.6)

and use the relation between the mole fractions and the cluster probabilities (note
that both sides sum to unity):

xA = 〈pA4〉 + 3
4 〈pA3B〉 + 1

2 〈pA2B2〉 + 1
4 〈pAB3〉 (14.7)

xB = 1
4 〈pA3B〉 + 1

2 〈pA2B2〉 + 3
4 〈pAB3〉 + 〈pB4〉 (14.8)

The cluster probabilities for the most ordered and the random states are shown
in Figures 14.7a and 14.7b, respectively.
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In the case of the pair cluster in the two-sublattice model, there was no pos-
sibility of the energy being shared between the clusters. This is not the case,
however, in the case of tetrahedron clusters in the fcc lattice. It is possible to
closely pack the tetrahedra so that they share edges or to loosely pack them in
a different way so that there is no sharing of edges, but only of corners. In the
two cases, the number of clusters per site, γ , and the energy assigned to a sin-
gle cluster must differ but the resulting total energy must be the same in both
cases.

The mixing energy is given by the difference of (14.5) and (14.3) while using
(14.7):

�mixU
conf
m = γ [〈pA3B〉VA3B + 〈pA2B2〉VA2B2 + 〈pAB3〉VAB3 ] (14.9)
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where VAB3 = εAB3 − (1/4εA4 + 3/4εB4), and so on. These cluster exchange
energies are analogous to the pair exchange energies in the pair approxima-
tion used previously. Because of the introduction of the γ conversion factor (the
number of clusters per site), the cluster energies are now in units of energy per
cluster.

We can use the results for the most ordered and for the random states shown in
Figures 14.7a and 14.7b together with (14.9) to obtain �mixU

conf
m for these two

limiting cases. For the most ordered case, the values between the stoichiometric
compounds are simply the linear joins, while, for the random solution case,
�mixU

conf
m is obtained from a binomial expansion and is given by

�mixU
conf
m = γ (4x3

AxBVA3B + 6x2
Ax2

BVA2B2 + 4xAx3
BVAB3) (14.10)

The calculated integral energies and entropies of mixing for the most ordered
and random alloys are shown in Figures 14.7c and 14.7d , respectively.

If desired, it is possible to continue to express the cluster energies in terms of
the near neighbor pair interaction energies. For the fcc-based lattice and assuming
that WAB is constant, it is easy to see that, at the AB composition, �mixU

conf
m =

4WAB , whereas at the A3B and AB3 compositions, �mixU
conf
m = 3WAB .

However, if we use the values for �mixU
conf
m given in Figure 14.5, we would

find that there are three different values for WAB :

A3B: WAB = −22

3
= −7.33 kJ

AB: WAB = −25

4
= −6.25 kJ

AB3: WAB = −19

3
= −6.33 kJ

In this situation, we might accept the volume (or composition) dependence of
WAB or, alternatively, use the cluster energies.

Summarizing, any energy representation adopted should give rise to the
observed ground-state structures for that system.

The models discussed have used the following important assumptions:

• Additive separation of the Gibbs energy into configuration-dependent and
configuration independent contributions.

• The configuration-dependent energy is volume independent. This may be
the weakest of the assumptions used.

• The cluster energy parameters are temperature and composition independent.
• The parameters of the Ising-like model can be used for all configurations.
• The energies of clusters, including pairs, depend only on the number and not

on the arrangement of the different types of atoms, for example, VABBA =
VBAAB = VA2B2 , WAB = WBA.
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EXERCISES

14.1 Derive the expressions for the partial molar energy of B in the tetrahedron
cluster model for the most ordered and random mixing cases. Using the
integral mixing energy and entropy values given in Figures 14.7c and
14.7d , calculate the partial molar values for both properties in the most
ordered and random states.



15 Solution Models III: The
Configurational Free Energy

In the last two chapters, we have seen how:

1. The configurational entropy for a sublattice phase can readily be calculated
in the point, zeroth, or BW approximation (hereafter referred to as the
BW approximation) for any set of sublattice mole fractions, y

(j)

i . In this
approximation, the atoms on the individual sublattices are assumed to be
randomly distributed and the configurational mixing entropy �mixS

conf
m is

given by

�mixS
conf
m = −R

∑
(j)

f (j)
∑

i

y
(j)

i loge y
(j)

i (15.1)

2. The total configurational energy of the phase can be mapped onto the energy
parameters of an Ising-like model. In terms of a four-point cluster model,
the energy is related to the cluster probabilities and the cluster energies by

�mixU
conf
m = γ

∑
αβγ δ

∑
ijkl

〈pαβγ δ

ijkl 〉Vijkl (15.2)

where the superscripts on the V ’s have been dropped because of our assumption
that the cluster energy depends only on the number or the different types of atoms
in the cluster and not on their arrangement.

In the previous chapter we used (15.1) and (15.2) to calculate the properties
for two extreme cases—the BW most ordered state and the the random mixing
state, corresponding with 0 K and infinite temperature, respectively. We now
wish to calculate the configurational Helmholtz energy of mixing, �mixA

conf
m , for

any given temperature and composition. Since our configurational model is a
constant-volume model, the appropriate free energy is the Helmholtz energy and
not the Gibbs energy.

The calculation is simplified by using the BW approximation where, no
matter how large the magnitude of the pair or cluster energies, the atoms are
assumed to be distributed randomly on the individual sublattices. Similarly, in
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the single-lattice disordered phase, we assume that the distribution of atoms
on that lattice is also independent of the magnitude of the pair or cluster
formation energies. This BW approximation is clearly not a self-consistent
one since a set of large negative pair or cluster formation energies means a
strong tendency for nonrandom mixing. The approach is very useful, however,
for illustrating solution-phase modeling. It has the big advantage that the
energy and entropy may be treated separately. When we allow for the coupling
between the energy and entropy, it is necessary to use more sophisticated
models.

The assumed random mixing on the sublattices means that the cluster prob-
abilities are given by the product of the average site occupation probabilities
on the individual sublattices which, in turn, are the same as the sublattice mole
fractions. For a four-point cluster

〈pαβγ δ

ijkl 〉 = 〈pα
i 〉〈pβ

j 〉〈pγ

k 〉〈pδ
l 〉 = yα

i y
β

j y
γ

k yδ
l

In this approximation, �mixU
conf
m is given by

�mixU
conf
m = γ

∑
αβγ δ

∑
ijkl

yα
i y

β

j y
γ

k yδ
l Vijkl (15.3)

and the equation for the configurational Helmholtz energy of mixing in this
cluster model in the BW approximation becomes

�mixA
conf
m = γ

∑
ijkl

∑
ijkl

yα
i y

β

j y
γ

k yδ
l Vijkl

+ RT
∑
(j)

f (j)
∑

i

y
(j)

i loge y
(j)

i (15.4)

It should be noted that, by using the BW approximation, the 16 tetrahedron
probabilities, p

αβγ δ

ijkl , have been reduced to only 4 point probabilities, yα
i . This

reduction is extremely important from a computational viewpoint.
Equation (15.4) does not contain the mole fractions as a variable so that we

cannot simply substitute values for T and xB and obtain a value of �mixA
conf
m , as

we are able to do when using a polynomial representations of �mixA
conf
m values.

15.1 HELMHOLTZ ENERGY MINIMIZATION

The y
(j)

i ’s are internal variables in the minimization of �mixA
conf
m ; that is, it is

a functional rather than a function. Equilibrium at any composition depends on
minimizing �mixA

conf
m with the yα

i as the independent variables but subject to the
constraint of constant composition (recall that xi = ∑

(j)

∑
i f (j)yα

i ).
In order to discuss the procedure and the kind of results obtained, we will

consider the nearest neighbor two-sublattice model and assume that the single
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energy parameter WAB has been obtained from a knowledge of the configura-
tional energy for a known atom distribution. Usually, this is from information
on the most ordered state. In the following we assume that WAB is temperature
and composition independent.

For two equally sized sublattices in the pair approximation, (15.4) can be
written out in full as

�mixA
conf
m = 1

2z[yα
Ay

β

B + yα
By

β

A]WAB

+ 1
2RT [yα

A loge yα
A + yα

B loge yα
B + y

β

A loge y
β

A + y
β

B loge y
β

B ]
(15.5)

The low- and high-temperature limits of (15.5) can be obtained from equations
given in the two previous chapters. In the high-temperature limit (the random
state)

�mixA
conf
m = zxAxBWAB + RT (xA loge xA + xA loge xB)

and in the low-temperature limit (the most ordered state) and for xB < 1
2

�mixA
conf
m = zxBWAB + RT [(1 − 2xB) loge(1 − 2xB) + 2xB loge(2xB)]

We can also minimize the Helmholtz energy functional, (15.5), for intermediate
stages of ordering and obtain results for the various properties which lie between
those for the the low- and high-temperature limits.

The Lagrangian multiplier method could be used to solve the constrained
minimization problem, but a simpler way, in this particular case, is to change the
variables so that the constraining conditions are built into the functional. To do
this, we define a long-range order (LRO) parameter as follows:

η = yα
A − y

β

A = y
β

B − yα
B

In the disordered state, where yα
B = y

β

B , η = 0. In the ordered state, where yα
B �=

y
β

B (yβ

B
>yα

B ), η > 0.
To change variables, we use the constraining condition on the sublattice mole

fractions:

xA = 1
2 (yα

A + y
β

A) xB = 1
2 (yα

B + y
β

B)

and then express the yα
i ’s in terms of the xi’s and η:

yα
A = xA + 1

2η y
β

A = xA − 1
2η

yα
B = xB − 1

2η y
β

B = xB + 1
2η

(15.6)
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Figure 15.1 Variation of Helmholtz energy with long-range parameter η for
zWAB/RT = −3.2 at xB = 0.5.

If we now insert (15.6) into (15.3) and (15.1), we can remove the sublattice mole
fractions from the equations for the mixing quantities:

�mixU
conf
m = 1

2zWAB

(
2xAxB + 1

2η2) (15.7)

�mixS
conf
m = − 1

2R[(xA + 1
2η) loge(xA + 1

2η) + (xB − 1
2η) loge(xB − 1

2η)

+ (xA − 1
2η) loge(xA − 1

2η) + (xB + 1
2η) loge(xB + 1

2η)] (15.8)

so that we now have �mixA
conf
m as a function of the single internal variable, η,

with the constraints for the relation between lattice and sublattice mole fractions
already incorporated. An example showing how Am varies with η is given in
Figure 15.1. It can be seen that, at the particular value of WAB/RT chosen, there
is a Helmholtz minimum close to η = 0.9. Once solved for the equilibrium value
of η, (15.6) can be used to obtain the sublattice mole fractions.

In Chapter 13, we showed how the sublattice mole fractions varied with the
mole fraction for the most ordered case. Figure 15.2 shows this variation at
intermediate levels of the disordering.

Minimization of �mixA
conf
m (= �mixU

conf
m − T �mixS

conf
m ) with respect to η

yields(
∂�mixAm

∂η

)
xB

= η
z

2
WAB + RT

4
loge

[
(xA + η/2)(xB + η/2)

(xA − η/2)(xB − η/2)

]
= 0 (15.9)

The sudden changes in the slopes of the integral quantity curves at composi-
tions which depend on temperature is due to the change from the disordered
phase (single lattice) to the ordered phase (two sublattices). In this particular
case of a second-order order/disorder transformation, there is no discontinuity
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Figure 15.2 Sublattice mole fractions of B for different values of WAB/RT (numbers
on the curves) in the two-sublattice model.

(only a singularity) in the first derivatives of �mixAm(conf) (both �mixS
conf
m =

−∂ �mixAm/∂T and �mixμ
conf
i = −∂ �mixA/∂Ni at the transition). There are,

however, discontinuities in the second derivatives at the phase boundary and
these can be seen in Figure 15.3 for �mixS

conf
B and �mixH

conf
B .

It is clear from these plots why a polynomial representation of the thermo-
dynamic properties as a function of composition and temperature is out of the
question for this type of intermediate phase.

15.2 CRITICAL TEMPERATURE FOR ORDER/DISORDER

The temperature at which the distinction between the sublattices, or LRO, dis-
appears is the order/disorder critical temperature. In the case of the pair cluster,
two-sublattice model in the BW approximation, the limiting value of WAB where
η → 0 can be obtained from (15.9) by concentrating on the critical composition,
xA = 1

2 :

η
z

2
WAB + RTcη

4xAxB

= 0 (15.10)

where we have used the general relation

lim δ → 0 loge

[
x + δ

x − δ

]
= 2δ

x

At the critical composition, (15.10) becomes

z

2
WAB = −RTc

BW approx.

order/disorder
(15.11)
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Figure 15.3 Integral and partial molar configurational thermodynamic properties for
two-sublattice model for different values of WAB/RT (0,−1.5,−3): (a) �mixU

conf
m ;

(b) �mixS
conf
m ; (c) �mixU

conf
B ; (d) �mixS

conf
B . The values for the BW most ordered structures

are also shown for the integral quantities.

Note that this relation for the order/disorder critical point is different from
that for the segregation critical point. The latter can be obtained from putting
∂2Am/∂x2

B = ∂3Am/∂x3
B = 0 with η = 0 in (15.7) and (15.8). The result is

z

4
WAB = RTc

BW approx.

phase separation
(15.12)

Figure 15.4a shows the resulting phase diagram for this two-sublattice, nearest
neighbor pair interaction model in the BW approximation. Figure 15.4b shows
how the sublattice mole fractions change with temperature for an alloy with
composition xB = 0.5. The loss of LRO with increasing temperature can be
seen. Unlike the case for most phase diagrams, where the different phases are
separated by a two-phase region, there is only a single phase boundary on this
particular phase diagram, which separates the ordered from the disordered region.
This indicates that the order/disorder transformation is of the second-order type.
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Figure 15.5 Comparison of phase diagram calculated using BW approximation with
“exact” one obtained from Monte Carlo simulations for nearest neighbor pair interaction
model in fcc alloys.

This is also apparent from Figure 15.4 and from a consideration of the integral
and partial molar thermodynamic properties shown in Figures 15.3c and 15.3d .

Some other order/disorder transitions are found to be of first order (disconti-
nuities are present in the first derivatives of A). There are then two-phase regions
on the order/disorder phase diagram, as is illustrated in Figure 15.5. Both phase
diagrams shown result from using nearest neighbor pair interaction energies in
the four-sublattice model for the fcc lattice. The solid-line diagram is obtained
by using the BW approximation (the dashed line is for a second-order transition
between two ordered phases). The exact phase diagram obtained by using Monte
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Carlo simulations is shown as individual points. It can be seen that the topology
of the two diagrams are quite different as are the magnitudes of the RT/WAB at
the critical points and the absence of the second-order transition. This confirms,
as we expect, that there is an inconsistency in using a model in which random
sublattice mixing is assumed when there are finite interaction energies.

EXERCISES

15.1 Use (15.5) to derive expressions for the partial molar properties of the
two-sublattice phase.

15.2 Derive (15.9).

15.3 Derive (15.10).



16 Solution Models IV: Total
Gibbs Energy

It has been assumed earlier that �mixGm can be separated additively as follows:

�mixGm = [�mixH
conf
m − T �mixS

conf
m ] + �mixG

confindep
m

The configurational energy model used in Chapters 14 and 15 is a constant-
volume model. The assumption of volume-independent pair or cluster energies is
not a good one since a change of volume means a change in interatomic distances,
which, in turn, will be expected to give rise to a change in interaction energies.

In a constant-volume model, �mixH
conf
m can be replaced by �mixU

conf
m so that

�mixGm = [�mixU
conf
m − T �mixS

conf
m ] + �mixG

confindep
m

= �mixA
conf
m + �mixG

confindep
m

In this chapter we will concentrate on the term �mixG
confindep
m . We can demon-

strate its importance by considering two examples:

1. The phase diagram for the Au–Ni system is shown in Figure 16.1, where it
can be seen that a miscibility gap exists in the fcc solid solution. Accord-
ing to our simple configurational model, this would indicate a repulsion
between Au and Ni atoms, (WAuNi > 0). But in the solid solution region,
near to that marked by a cross on the diagram, it is known experimentally
(from diffraction studies) that substantial short-range ordering exists, that
is, that there is an attraction between Au and Ni atoms, (WAuNi < 0). This
apparent discrepancy is due to our failure to take into account the large
atomic size difference which exists between Au and Ni. All the models
discussed to date have been constant-volume models.

2. We have seen that �mixS
conf
m is always ≥ 0, as is illustrated in the upper part

of Figure 16.2. In the lower part of this figure it is shown how �f Sm varies
with composition for the Al–Ni system. Although there are many different
ordered phases with many different structures in this system, it is clear that
there are other very important contributions to the total �mixGm (changes of
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Figure 16.2 Negative values of �f Sm in Al–Ni system.

reference states do not have a major effect). This same conclusion applies
to many other alloy systems.

From these two examples it is clear that we should consider at least two
contributions to �mixG

confindep
m :

�mixG
confindep
m = �mixG

asm
m + �mixG

excit
m (16.1)

where the superscripts asm and excit refer to atomic size mismatch and thermal
excitations, respectively.
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Equation (16.1) implies the independence and separation of these contributing
terms to �mixG

confindep
m and remember that we have already assumed the inde-

pendence of the configurational and nonconfigurational contributions. We will
examine these assumptions later and discuss some important coupling effects
which are being ignored when the terms are separated in this way.

16.1 ATOMIC SIZE MISMATCH CONTRIBUTIONS

The molar volumes of the pure components in a binary system are rarely the
same and the alloys formed from these components will usually have interme-
diate molar volumes. This means that it is necessary to perform some work in
bringing pure component A and pure component B to the volume of the alloy—in
Figure 16.3 a dilation of A and the compression of B is necessary in the forma-
tion of the alloy. We are again simplifying by assuming that the metals and alloy
are elastically isotropic.

The process being considered is sketched in Figure 16.3 and shown as a p–V

diagram in Figure 16.4. The p–Vm relations for pure A, pure B and for 1 mol of
an alloy A1−xBx are shown. The energies involved for the individual components
are shown shaded in Figure 16.4. The equilibrium volume V of the alloy is given
by ∂A/∂V = 0 and this corresponds with the p = 0 point on the curve for the
alloy. Before the pure components are mixed and acquire the volume of the alloy,
they are under compressive or dilatational stress. When they are now mixed to
form the alloy, the pressure is again reduced to zero. Since there is no volume
change in this stage of the process, there is no work done and no change in the
Helmholtz energy.

The total deformation energy (Helmholtz energy) involved in the formation
of 1 mol total of pure components in the amounts present in the alloy and at the

A
B

A1−x
Bx

p = 0

p = 0

p = 0

p > 0p < 0 A B

Figure 16.3 Molar volume changes on alloying.
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Figure 16.4 The p − V work involved in alloying.

final volume of the alloy is

�mixA
asm
m (A1−xBx, VAB) = (1 − x) �Am(A, VA) + x �Am(B, VB) (16.2)

The volume changes involved in this dilation/compression from the pure metal to
the alloy are generally much larger than those found for the volume differences
between the ordered and disordered forms of a given phase; that is, the assumption
that the volume changes are composition independent is a fairly good one.

Consider first the dilation or compression of a pure solid. The work done by
the system, δw = p dV , is negative in both cases (if p > 0, dV < 0 and δW < 0;
if p < 0, dV > 0 and δW < 0).

The isothermal compressibility κT is defined by

κT = − 1

V ◦

(
∂V

∂p

)
T

If it is assumed that κT is independent of p, as we did for a unary substance in
Chapter 3, then integration of this equation gives

p = −V − V
◦

κT V ◦

so that the work done on the system increases the Helmholtz energy of the
component by an amount

�A =
∫

V − V
◦

κT V ◦ dV (16.3)

so that we can write

�Am = 1

2
V

◦
m

(
�Vm

κT V ◦
m

)2

(16.4)



ATOMIC SIZE MISMATCH CONTRIBUTIONS 201

As expected, this equation demonstrates that there is a Helmholtz energy increase
no matter whether the work done on the solid has been to compress it or dilate it.

We actually want the change in the Gibbs, as distinct from the Helmholtz,
energy for this compress/dilate/mix process. Since

G = A + pV �G = �A + �(pV )

then for the compress/dilate part of the process from the initial p = 0 state,

�G = �A + pV

and for the mix part of the process to the final p = 0 state,

�G = 0 − pV

and we see that, for the compress/dilate/mix process, �mixGm = �mixAm.

Example 16.1 Calculation of Atomic Size Mismatch Contribution
Calculate �mixG

asm
m for the Cr–Ta system.

The following table gives the property values at room temperature. We will
simplify the calculation by making the (rather drastic) assumption that the molar
density and elastic properties of Cr and Ta are the same in the alloy as in the
pure components.

Vm/cm3 mol−1 BT /GPa

Cr 7.26 167
Ta 10.86 196

If we consider the alloy with x = xT a = 1
2 and substitute the given property

values into (16.4),

�mixGm(Cr0.5Ta0.5, V ) = (1/8) × (10.86 − 7.26)2 × 10−12

(1/2)
[
7.26/167 + 16.86/196

]× 1015

= +32.77 kJ (mol alloy)−1

If this calculation is repeated at different compositions, then the curve shown in
Figure 16.5 is obtained.

In this particular system, the atomic size mismatch is quite large and, as a
consequence, the effect is seen to give a very substantial contribution �mixGm.
As can be seen in Figure 16.5, the equation is approximately parabolic and equiv-
alent to a value of �mixGm ≈ 131xCrxTa kJ mol−1 (much larger than the values
considered when we examined some strictly regular solution-phase diagrams).
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Figure 16.5 Calculated atomic size mismatch contribution, �mixG
asm
m , for (Cr,Ta) alloys.

The dashed curve is a parabolic approximation to the curve calculated from (16.4).

It is clear from this example that, even though the model adopted is very
crude, the atomic size mismatch contribution to the mixing properties, which is
always positive, cannot be neglected. This configuration-independent contribution
applies equally to ordered phases as well as to disordered phases; that is, this
effect is due not to local elastic distortions of the atoms from their lattice sites
but to the different molar volumes of the alloy as compared with those of the
pure components. The effect of local lattice distortions is relatively small in
comparison.

16.2 CONTRIBUTIONS FROM THERMAL EXCITATIONS

In the absence of any significant magnetic contributions to �mixG
excit
m , the most

important are the vibrational contributions.
We will use the Debye model, previously discussed in Chapter 3 for pure sub-

stances, in the high-temperature approximation. In this approximation, �mixCV =
0 (CV = 3R for both alloy and elements) and Svib

m = −3R loge θD . Using this
approximation, the following values for the vibrational contributions to the energy
and entropy of mixing can be obtained:

�mixU
vib
m =

∫
�mixCV dT = 0 (16.5)

�mixS
vib
m = −3R loge

(
θD(A1−xBx)

θ1−x
D (A)θx

D(B)

)
= const (16.6)
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Figure 16.6 The �mixA
vib
m for Debye model where θD = 200 K for the pure metals and

θD = 300 K for alloy.

As an example, consider two metals, A and B, each with θD = 200 K which form
an alloy, A1−xBx , with θD = 300 K. The magnitudes and differences of these
Debye temperature values do not affect the conclusions. Figure 16.6 shows how
�mixA

vib
m varies with temperature. It can be seen that, in agreement with (16.5)

and (16.6), there is a linear variation with temperature in the high-temperature
region:

�mixG
excit
m ≈ �mixA

vib
m = const × T (16.7)

16.2.1 Coupling between Configurational and Thermal Excitations

Because of the vastly different time scales of the thermal excitational processes as
compared with lattice configuration changes by atomic interchange, it is possible
to coarse grain the alloy free energy by integrating over all the possible excitation
states for just one configurational state. As a result, the configurational energy
can be expressed as temperature-dependent effective cluster interactions; that is,
for �mixGm we can write

�mixGm = [�mixA
conf
m + �mixG

excit
m ] + �mixG

asm
m

= [�mixU
conf
m + �mixA

vib
m ] − T �mixS

conf
m + �mixG

asm
m (16.8)

where, from the Debye model in the high-temperature approximation at least, the
square bracketed term is a linear function of temperature and is the one used in
the configurational energy calculation.

Note, particularly, an unusual feature of (16.8). The square bracketed term
for the temperature-dependent configurational energy includes an excitational
free energy.
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16.3 THE TOTAL GIBBS ENERGY IN EMPIRICAL MODEL
CALCULATIONS

If it is assumed that the term from the atomic size mismatch contribution is
parabolic and the configuration-dependent contribution is for a four-point cluster
in the BW approximation, we can write the following expression for the total
Gibbs energy of mixing:

�mixGm = �xAxB +
∑
αβγ δ

∑
ijkl

yα
i y

β

j y
γ

k yδ
l Vijkl(T )

+ RT
∑
(j)

∑
i

f (j)y
(j)

i loge y
(j)

i (16.9)

Although (16.9) has been derived by considering ordered phases, it should also
apply to the case where there is no long-range ordering and even when the cluster
formation energies are positive. In this case, the mixing entropy term becomes
that for a Raoultian ideal substitutional solution.

If we now compare the first two terms of this modeling equation with the
Redlich–Kister polynomial expression previously used for these solutions,

GE = xAxB [L0 + L1(xA − xB) + L2(xA − xB)2 · · ·]

we can see that the regular solution parameter L0 could arise from either the
long-range configuration-independent term, �xAxB , or the cluster energies, that
is, from configuration-dependent terms. Given only the experimental thermo-
dynamic properties of a phase, it is not possible to evaluate the individual
contributions from these effects. In a more sophisticated treatment, both would
be considered in a self-consistent way. The only reason for the separation into
volume-independent, short-range chemical interactions and volume-dependent,
atomic size mismatch effect has been to keep the model simple.

An example of the effect of introducing atomic size mismatch on the phase
diagram is illustrated in Figure 16.7. In this example, for the A2/B2 order-
ing transformation in bcc alloys, both terms have been taken to be of similar
magnitude. In the absence of the configuration-independent contribution, the
order/disorder phase diagram appears as in Figure 16.7a . There is a second-
order phase transition in this case. When a positive configuration-independent
contribution is included, the phase diagram changes dramatically, as shown in
Figure 16.7b. The second-order transition becomes a first-order transition at low
temperatures. The junction point where the second order changes into a first order
is called a tricritical point .

A real alloy which seems to exhibit this kind of behavior is found in the
Fe–Ti system, the phase diagram for which is shown in Figure 16.8. Although
the whole of the order/disorder phase diagram is not actually visible in this case
because of the intrusion of other phases, it is possible to see similarities of the
A2/B2 transition with that shown in Figure 16.7b.
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EXERCISES

16.1 Given the following properties for Cr and Ni at room temperature, calculate
an approximate parabolic relation of the form �mixG

asm
m = �xAxB for the

effect of atomic size mismatch.

Vm/cm3 mol−1 BT /GPa

Cr 7.26 167
Ni 6.592 186.5
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16.2 The following experimental results were obtained for the system (A,B) in
which only one ordered phase is formed at midcomposition:

(a) �mixHm(random) = −2.5 kJ/mol alloy
(b) �mixHm(fully ordered) = −7.5 kJ/mol alloy
(c) Tc = 1203 K

If a configuration-independent Gibbs energy is represented by �mixGm

(conf ind) = �x(1 − x), what values of WAB and � can reconcile the
three sets of results?



17 Chemical Equilibria I: Single
Chemical Reaction Equations

17.1 INTRODUCTION

In the next four chapters we will consider the thermodynamics of chemical equi-
libria. We begin by considering a single-chemical-reaction equation involving
gaseous species only and introduce some different methods for solving the gen-
eral problem of calculating the equilibrium state given the input amounts and the
conditions (usually constant p and T ).

It is important to note that this chapter is entitled single-chemical-reaction
equations and not single chemical reactions. The distinction is very important in
thermodynamics. In thermodynamics, when we write an equation like CO(g) +
0.5O2(g) = CO2, we are not suggesting that this chemical reaction is actually
occurring in the system. This may or may not be true and, in any case, a concern
for an actual reaction mechanisms is irrelevant in thermodynamics. The writing
of this particular equation tells us that we have defined the system as consisting
of three molecular species made from two types of elements and that we can
hope to experimentally measure or calculate the amounts of these species at
equilibrium under the imposed conditions. The chemical reaction equation is
simply a statement of the stoichiometric relations between the molecular species
defined as constituting the system. This distinction between a chemical reaction
and a chemical reaction equation will become clearer when we consider a system
comprised of several species, which requires the writing of more than one reaction
equation.

17.2 THE EMPIRICAL EQUILIBRIUM CONSTANT

Consider the reaction equation

CH4(g) + H2O(g) = CO(g) + 3H2(g) (17.1)

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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The empirical equilibrium constant Kp for this reaction equation is an experi-
mental quantity and is evaluated from

Kp =
(

p
eq
CO(p

eq
H2

)3

p
eq
CH4

p
eq
H2O

)
(17.2)

where the superscripts refer to the fact that we are talking about equilibrium
conditions. Note that, when it is written in this way, Kp may or may not be
dimensionless. It is not, for example, in the case of the particular example given
in (17.2). We will have more to say on this point later.

Equation (17.2) can be generalized and written compactly as

Kp =
∏
j

p
νj ,eq
j gaseous reaction equations (17.3)

where the stoichiometric coefficient νi is positive for product species and negative
for reactant species.

It is also useful to define an empirical reaction equation quotient, Qp , which
applies to the reaction equation for any values of the partial pressures:

Qp =
∏
j

p
νj

j gaseous reaction equations (17.4)

where Qp is useful when discussing driving forces for reaction equations.

17.3 THE STANDARD EQUILIBRIUM CONSTANT

17.3.1 Relation to �rG
◦

In the case of phase equilibrium, the condition of equilibrium between two phases
α and β is given by

μα
i = μ

β

i ∀ i (17.5)

This equilibrium condition has to be modified when stoichiometry within the
system is constrained by a chemical reaction equation. The general condition is
readily appreciated by considering a specific example. If the system is defined to
contain the species SO2(g), O2(g), and SO3(g), the reaction equation constraining
these species is SO2(g) + 0.5O2(g) = SO3(g). As is shown later in this chapter
[see (17.43)], the condition of equilibrium is now given by

μSO3 − μSO2 − 1
2μO2 = 0
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The general condition for equilibrium when a chemical reaction equation con-
straint is present has to be modified to read

∑
i

νiμi = 0 single-chemical-reaction equation (17.6)

Although we have considered a single reaction equation in a single (gas) phase,
the effect of reaction equation constraints is similar when the reaction equation
involves more than one phase. The condition for phase equilibrium, (17.5), is
seen to correspond with all the νi being ±1.

In order to be able to express (17.6) in a more useful form, we can make use
of the relation previously introduced for a component of a perfect gas mixture:

μj = μ
◦
j + RT loge

(
pj

p
◦
j

)
(17.7)

Substituting this into (17.6), the equilibrium condition for the reaction can be
expressed as:

∑
j

νj

[
μ

◦
j + RT loge

(
pj

p
◦
j

)]
= 0 perfect gas mixtures only (17.8)

or, equivalently,

∑
j

νjμ
◦
j + RT loge

⎡
⎣∏

j

(
pj

p
◦
j

)νj

⎤
⎦ = 0 (17.9)

Now the first term on the left-hand side is just the standard Gibbs energy of
reaction, which refers to the complete conversion of reactants to products at 1
bar: ∑

j

νjμ
◦
j = �rG

◦ (17.10)

so that (17.9) can be written as

�rG
◦ + RT loge

[∏(
pj

p
◦
j

)νj
]

= 0 (17.11)

If we now define a new quantity, the standard equilibrium constant K
◦, using

�rG
◦ = −RT loge K

◦ (17.12)
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then we see, from (17.11),

−RT loge K
◦ + RT loge

[∏(
pj

p
◦
j

)νj
]

= 0 perfect gas mixtures only

(17.13)

or

K
◦ = exp

(−�rG
◦

RT

)
=
∏
j

(
pj

p
◦
j

)νj

(17.14)

Note that K
◦ is dimensionless, whereas the empirical equilibrium constant Kp,

obtained from (17.3), may not be. If, however, the partial pressures are written
as the ratio pj/p

◦
j in Kp, then it, like K

◦, is also dimensionless so that the two
quantities can be compared. In the special case of perfect gas mixtures only,

Kp = K
◦ = exp

(−�rG
◦

RT

)
(17.15)

that is, the experimental property Kp can be predicted from the independently
calculated thermodynamic quantity K

◦ under conditions which usually prevail
in MS&E.

Equation (17.15) can also be used for the case of equilibrium between pure
condensed phases and perfect gas mixtures. In this situation, the evaluation of
Kp is restricted to the gas mixture partial pressures only since for the pure solid
we can write, as previously, μ∗

i ≈ μ
◦
i (the asterisk refers to the pure substance

reference state at a pressure other than the standard 1 bar).
As an example, consider the reaction equation 2C(s) + O2(g) = 2CO(g) for

which we may write Kp = p2
CO/pO2, involving the gas phase only, but �rG

◦

used in calculating K
◦ refers to that for the chemical reaction equation involving

both gas and solid.

17.3.1.1 The Effect of Temperature on the Equilibrium Constant. The tempera-
ture variation of the standard equilibrium constant can be obtained by considering
the temperature variation of �rG

◦
/T . Since R is a constant,

d(�rG
◦
/T )

d(1/T )
= −T 2

(
d(�rG

◦
/T )

dT

)
(17.16)

= −T 2
[

1

T

d �rG
◦

dT
− �rG

◦

T 2

]
(17.17)

= T �rS
◦ + �rG

◦ (17.18)

= �rH
◦ (17.19)
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Figure 17.1 Standard enthalpy of reaction can be obtained from the slope of a plot
of loge Kp versus reciprocal temperature for reaction equations involving perfect gas
mixtures and pure solids.

where we have used �rG
◦ = �rH

◦ − T �rS
◦ and(

∂ �rG
◦

∂T

)
p

= −�rS
◦

Then, from the relation between �rG
◦ and K

◦, the above equation can be
re-written as

d loge K
◦

d (1/T )
= −�rH

◦

R
general relation (17.20)

and, when it is safe to assume that Kp = K
◦,

d loge Kp

d (1/T )
= −�rH

◦

R
perfect gas mixtures only (17.21)

Equation (17.21) is known as the Gibbs–Helmholtz equation. As shown in
Figure 17.1, loge Kp for a chemical reaction equation is plotted as a function
of 1/T over a small range of temperature, we expect to obtain a straight line
in circumstances where the perfect gas assumption holds. In this case, the slope
yields the negative of the standard enthalpy of reaction, valid for the temperature
interval investigated. In practice, it is unlikely that �rC

◦
p will be exactly zero so

that we should not expect to obtain a perfectly straight line over a large range
of temperature, although, because of uncertainty in the data, we may go ahead
and fit the results to a linear equation from which we can obtain an approximate
value for �rH

◦
(T ).

17.3.2 Measurement of �rG
◦

Previously, we have seen how �rG◦ can be obtained from a combination of
substance and reaction calorimetric measurements alone.
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But we can also make use of �rG
◦ = −RT loge K

◦ if we work in a regime
where it is safe to assume that Kp = K

◦, that is, high temperatures and low
pressures. This has been discussed briefly in Chapter 6. Here, we will give a
little more detail.

We will illustrate with two examples, one involving phase equilibrium and the
other chemical equilibrium:

1. Suppose we set out to measure the vapor pressure of Ag(l). Note that this
is not straightforward experimentally. We cannot just connect the Ag at
high temperature to a manometer at room temperature since this would
result in the distillation of the Ag from the hot region to the cold region.
Nevertheless, there are practical ways of overcoming this kind of problem.
Knudsen effusion mass spectroscopy (KEMS) is another useful technique
for measuring very low vapor pressures and can, in certain circumstances,
lead to the simultaneous measurement of both of the component vapor
pressures in a binary alloy, thereby giving a check with Gibbs–Duhem
calculations.

For the phase equilibrium represented by Ag(l) = Ag(g), we have
�vapG

◦
(Ag, T ) = −RT loge(pAg/bar) so that the vapor pressure

measurement gives us the thermodynamic quantity �vapG
◦
(Ag, T ) and,

if the equilibrium is measured as a function of T ,�vapH
◦(Ag,T )and

�vapS
◦(Ag,T ) can be obtained.

2. The Kp for the reaction equation

Fe(s) + H2O(g) = FeO(s) + H2(g)

can be measured in an apparatus similar to that in Figure 17.2. After evac-
uation, the Fe(s) sample is exposed to the water vapor from the H2O(l)
reservoir. The formation of FeO(s) from Fe(s) takes place with the for-
mation of H2(g). The controlled temperature of the H2O(l) fixes pH2O

throughout the apparatus. It is also the coldest part of the apparatus so
that there is no chance of condensation elsewhere. The manometer read-
ing gives pH2 + pH2O so that the individual pH2 and pH2O values can be
obtained. Hence Kp = pH2/pH2O is known. With the justified assumption
that K

◦ = Kp, �rG
◦ for the above reaction equation can be evaluated. If

�rG
◦ for the reaction equation

Fe(s) + H2O(g) = FeO(s) + H2(g)

is combined with that for the reaction equation

H2(g) + 1
2 O2(g) = H2O(g)

for which �rG
◦ is known with great accuracy, it then becomes possible to

obtain �f G
◦(FeO(s),T ) from the equilibrium measurements. When �rG

◦
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Figure 17.2 Simple apparatus for measurement of equilibrium for chemical reaction
equation Fe(s) + H2O(g) = FeO(s) + H2(g).

is measured as a function of T , both �f H
◦(FeO(s),T ) and �f S

◦(FeO(s),T )
can be obtained.

In most of the databases available for pure substances, approximately one-half
of the data for �f G

◦ have come from calorimetric measurements and the other
half from equilibrium measurements similar to those described above.

17.4 CALCULATING THE EQUILIBRIUM POSITION

Calculating the final chemical equilibrium from a set of chosen initial amounts
of substances and system conditions can be approached in exactly the same man-
ner as has been described previously for phase equilibrium. The whole system,
comprising either one or several phases and which is assumed to be closed and
at constant total p and T , leads toward a minimization of the Gibbs energy in its
approach to equilibrium. When chemical reaction equations are involved, how-
ever, the constraints on the minimization are different from those found for the
case of phase equilibrium since the element mass balance for each element may
involve more than one species containing that element and these may be in more
than one phase.

A straightforward minimization of G subject to the constraints is not the only
way of calculating the position of chemical equilibrium and, in the following, we
will describe three different methods for calculating the equilibrium in a system
which contains species related by a single reaction equation.

For illustration purposes, we will refer to the reaction equation

SO2(g) + 1
2 O2(g) = SO3(g) (17.22)

Note that, since there is a change in the total amounts of substance in going
from reactants to products in this particular reaction equation, the position of
equilibrium depends on the total pressure.

(A) Using the Mass Action Law For this example, the element mass balances
for S and O and for the total number of species moles, ntot, can be written
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as follows:

nS = n0
SO2

+ n0
SO3

= nSO2 + nSO3 (17.23)

nO = 2n0
SO2

+ 2n0
O2

+ 3n0
SO3

= 2nSO2 + 2nO2 + 3nSO3 (17.24)

ntot = nSO2 + nO2 + nSO3 (17.25)

where n0
j represents the initial amount of species j and ntot the total amounts of

substances in the gas phase. The gaseous species partial pressures are related to
the amounts and total pressure by

pj = xjptot =
(

nj

ntot

)
ptot (17.26)

The equilibrium condition (17.6) for this reaction is

μSO3 − μSO2 − 1
2μO2 = 0 (17.27)

which, for perfect gas mixtures, can be rewritten as

[
μ

◦
SO3

− μ
◦
SO2

− 1
2μ

◦
O2

]
+ RT loge

(
pSO3

pSO2 × p
1/2
O2

)
= 0 (17.28)

or

�rG
◦ + RT loge

(
pSO3

pSO2 × p
1/2
O2

)
= 0 (17.29)

or

K
◦ =

(
pSO3

pSO2 × p
1/2
O2

)
(17.30)

This last equation is usually known as the mass action law when K
◦ is replaced

wth Kp.
The mass balance requirements (17.23)–(17.25), the partial pressure conver-

sion (17.26), and the equilibrium condition (17.30) may be used to calculate
the individual equilibrium partial pressures. The solution requires solving several
nonlinear simultaneous equations.

In this simple case of a single reaction, a hand calculation may be carried out
by using the mass balance equations to eliminate two of the species, for example,

nSO2 = nS − nSO3

nO2 = 1
2 (nO − 2nS − nSO3)
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and substitute the resulting partial pressures from (17.26) into (17.30) to solve for
pSO3. The other equilibrium partial pressures can then be obtained subsequently.

(B) Using the Extent of Reaction, ξ In this method the element mass balance
equations are circumvented by taking advantage of the fact that the changes in
the species amounts, dnj , during a reaction are not independent but are related
through the stoichiometry of the reaction equation. As a result, only one parameter
per reaction equation is required to specify the changes in the amounts of the
species. The differential changes in the species amounts for the reaction equation
under consideration are seen to be

dnSO2

−1
= dnO2

−1/2
= dnSO3

+1
= dξ (17.31)

The variable ξ is called the extent of reaction (units are moles), and it can be
seen that this one variable expresses the changes in the amount of any species,
j , in the chemical reaction equation, that is, dnj = νj dξ , which on integration
gives

nj = n0
j + νj ξ (17.32)

where ξ is taken to be zero in the initial state. For the reaction equation (17.22)
the input amounts are given by:

nSO2 = n0
SO2

− ξ (17.33)

nO2 = n0
O2

− 1
2ξ (17.34)

nSO3 = n0
SO3

+ ξ (17.35)

ntot = n0
SO2

+ n0
O2

+ n0
SO3

− 1
2ξ (17.36)

Equations (17.33)–(17.36) together with (17.26) and (17.30) may be solved
simultaneously to obtain the individual partial pressures. Alternatively, the equi-
librium constant can be expressed solely in terms of ξ and the starting amounts
of species.

(C) Using Lagrangian Multipliers With both of the previous methods it is
necessary to know the chemical reaction equation. While this causes no prob-
lem in a simple system, the advantage of the method based on Lagrangian
multipliers is that a reaction equation is not required. It is only necessary to
specify the species designated as comprising the system. The element mass bal-
ance equations, for example, (17.23)–(17.25), are also used once the system is
specified.

The introduction of the Lagrangian multipliers λi transforms the constrained
minimization of the G = ∑

j niμj problem into an unconstrained minimization
of a Lagrangian function L with Lagrangian multipliers assigned to the element
mass balances.
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In this example,

λS : nS − (nSO2 + nSO3) = 0 (17.37)

λO : nO − (2nSO2 + 2nO2 + 3nSO3) = 0 (17.38)

and the Lagrangian is

L =
∑

j

njμj + λS[nS − (nSO2 + nSO3)]

+ λO[nO − (2nSO2 + 2nO2 + 3nSO3)] (17.39)

Minimization of L with respect to the amounts of the molar species gives the
following equations for the minimum:

∂L
∂nSO2

= μSO2 − λS − 2λO = 0 (17.40)

∂L
∂nO2

= μO2 − 2λO = 0 (17.41)

∂L
∂nSO3

= μSO3 − λS − 3λO = 0 (17.42)

These equations, in conjunction with the mass balances (17.23)–(17.25), the
partial pressure equation (17.26), and the chemical potential expression (17.7),
may be solved simultaneously to obtain the equilibrium partial pressures.

Although they are not required in the evaluation of the partial pressures, elim-
ination of the Lagrangian multipliers from (17.40)–(17.42) gives the relation
between the chemical potentials which hold at equilibrium when the Gibbs energy
is at its minimum. This relation is, of course,

μSO3 − μSO2 − 1
2μO2 = 0 (17.43)

Naturally, all three methods described give the same answer and all could, in
principle, be used for the more complex situations where more than one reaction
equation must be introduced. The use of Lagrangian multipliers, however, has
the clear advantage of not requiring a set of independent reaction equations to be
specified beforehand and is, therefore, the method usually preferred in computer
calculations on more complex systems.

Because of its importance, we will generalize the approach described above
for a specific example by introducing the conservation (or formula) matrix , A,
which lists the elements (number M) as columns and the species (number N ) as
rows. The matrix stores the mass balances.
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For the above example system the conservation matrix is written as

A =
⎛
⎝ SO2 O2 SO3

S 1 0 1
O 2 2 3

⎞
⎠

where the member Aij gives the number of i elements in the j th species.
In general, the mass balance relations can be written in terms of the members

of A as

ni −
N∑

j=1

Aijnj = 0 ∀ elements i (17.44)

and the Lagrangian function as

L =
N∑

j=1

njμj +
M∑
i=1

λi

⎛
⎝ni −

N∑
j=1

Aijnj

⎞
⎠ (17.45)

where M is the number of elements and N the number of species. This equation
is a generalization of (17.39).

Differentiation of the Lagrangian with respect to the amount of each species
and setting the derivatives to zero gives the equilibrium conditions

∂L
∂nj

= μj +
M∑
i

λiAij = 0 ∀ elements i (17.46)

which is a generalization of (17.40)–(17.42).

17.5 APPLICATION OF THE PHASE RULE

We have seen that, when chemical reaction equations have to be considered, the
constraints on the chemical potentials are different from those met when consid-
ering phase equilibria. This influences the number of independent components ,
C, to be used in the phase rule, F = C − φ + 2. In the case of alloy-phase
equilibria, we simply equated C with the number of elements. The number of
constraints on the μα

i = μ
β

i relations is C(φ − 1) (see Chapter 8). There is also
a Gibbs–Duhem constraint for each phase.

In the case of a single-chemical-reaction equation involving N species there
is just the one constraint given in (17.6), namely,

∑N
j νjμj = 0, so that the

number of independent components C = N − 1. The phase rule for this case is
then modified to read

F = (N − 1) − φ + 2 = N − φ + 1 (17.47)
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If we apply this to the example of the homogeneous gas reaction equation

SO2(g) + 1
2 O2(g) = SO3(g)

then

F = 3 − 1 + 1 = 3 (17.48)

and we see that, if we fix ptot, T , and the initial amount of one substance, the
system is fully specified.

In the case of the reaction equation CaCO3(s) = CaO(s) + CO2(g), we have
to consider a three-phase system so that

F = 3 − 3 + 1 = 1 (17.49)

and fixing T is sufficient to specify the equilibrium state.
We will return to the application of the phase rule to more complex chemical

reaction equation situations in the next chapter.

EXERCISES

17.1 A gas mixture of 50% CO, 25% CO2, and 25% H2 (percentages by
volume) is fed into a furnace at 900◦C. Find the composition of the equi-
librium CO–CO2 –H2O–H2 gas if the total pressure in the furnace is 1 bar.

17.2 How much heat is evolved when 1 mol of SO2 and 1
2 mol of O2 react

to form the equilibrium SO3 –SO2 –O2 mixture at 1000 K and at a total
pressure of 1 bar?

17.3 What is the oxygen partial pressure exerted by an equilibrium gas mixture
of CO2 –CO–H2 –H2O produced at 1600◦C by mixing CO2 and H2 in the
ratio of 3 : 1?

17.4 If you wish to make a mixture of CO2 –CO–H2 –H2O at 1600◦C with an
oxygen partial pressure of 10−7 bar at a total pressure of 1 bar, what is the
initial ratio of CO2 and H2 needed to produce this equilibrium mixture?

17.5 .(a) Calculate �rG
◦(1000 K) for the reaction

CH4(g) + CO2(g) = 2CO(g) + 2H2(g)

(b) Assuming that K
◦ = Kp, at what temperature does Kp = 1?

(c) In which direction does the equilibrium shift when:
(i) The temperature of an equilibrated CH4 –CO2 –CO–H2 gas mix-

ture is increased?
(ii) The total pressure is decreased?
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17.6 By establishing the equilibrium PCl5 = PCl3 + Cl2 in a mixture of PCl5
and PCl3, it is required to obtain a partial pressure of Cl2 of 0.1 bar at
500 K when the total pressure is 1 bar. In what ratio must PCl5 and PCl3
be mixed?

17.7 A producer of copper parts uses the powder metallurgy technique to make
these parts. To increase the strength of these parts, they are dispersion
hardened with fine Al2O3 powders.

The producer can buy Cu powder containing 2% Fe much cheaper than
the pure Cu powder he has been using. (The less pure Cu powder is a
by-product of the cement copper process.) Also, he finds that magnetite
(Fe3O4) is almost as effective in dispersion hardening of copper as Al2O3.

If he sinters the less pure powder in the normal H2 atmosphere (or
vacuum), the result is a (Cu, Fe) alloy containing 2% Fe. Such an alloy
is unsuitable for the requirements of his parts, however. Describe an oxi-
dizing/sintering step that he can use in order to internally oxidize the Fe
to produce a relatively pure Cu part in which are well dispersed fine iron
oxide particles. What is the lowest aFe obtainable in the Cu solid solution?
Just how, in practice, would be a reasonable way to conduct the internal
oxidation step?

Assume (Cu, Fe) solid solution behaves like a strictly regular solution
with L0 ≈ 30,750 J mol−1.





18 Chemical Equilibria II:
Complex Gas Equilibria

Most chemically reacting systems of interest in MS&E are complex so that it
is rare that such systems can be expressed in terms of just the one chemical
reaction equation, as was discussed in Chapter 17. Atmospheres generated from
fossil fuel combustion, for example, contain, principally, molecules, atoms, and
ions containing the elements C, H, O, S, and N and the number of possible
molecular species based on these five elements can be extremely large. The most
familiar are H2, O2, S2, N2, H2O, H2S, NH3, CH4, CO, CO2, SO2, and SO3 but
there are countless others, often including undesirable dioxins as well as elements
like U, Th, and As.

Figure 18.1 shows the gas phase composition resulting from the combustion
of methane in oxygen as function of temperature. Considerably more complex
gas phase compositions can result, for example, in Chemical Vapor Deposition
processes.’’

System complexity is also the norm in the metal-processing industries. There,
it is common to find more than two phases in contact, for example, in the copper
extraction industry the system may comprise gas, slag, matte, and metal phases,
each of which is chemically complex, with material passing between the phases
by chemical interaction in the attempt to reach thermodynamic equilibrium.

The keyword to be borne in mind here is complexity. We need to learn how
thermodynamics can be gainfully applied to such complex, chemically react-
ing systems. As a preliminary, in this chapter, we consider the calculation of
equilibrium in complex gas mixtures. Chemical equilibria involving gases and
condensed phases will be discussed in Chapters 19 and 20.

18.1 THE IMPORTANCE OF SYSTEM DEFINITION

Any discussion of equilibrium in chemically reacting systems leads to an appre-
ciation of what thermodynamics can and cannot do:

Although thermodynamics is used to accurately predict properties or data from
other properties or data, it can only make these predictions for the system defined
by the thermodynamicist.

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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Figure 18.1 Calculated gas phase composition in the combustion of 1 mole of methane
with 0.75 mole oxygen. Reproduced with permission from H. Yokokawa, J. Phase Equilib.
26, p. 155, 2002.

A poorly defined system will lead to an incorrect prediction of properties. The
most common way in which this is encountered is the failure to include some
species in the system specification. This neglect, which may be due to ignorance
or oversight, cannot be attributed to a failure of thermodynamics.

Problems associated with system definition are much less frequently encoun-
tered in the case of phase equilibrium calculations. Thus, if a calculated stable
Al–Zn phase diagram were to be presented as shown in Figure 18.2a , one would
quickly be alerted to the fact that the hcp phase had been overlooked in the cal-
culation. When this oversight is rectified, the more familiar phase diagram shown
in Figure 18.2b can then be calculated.

This type of neglect, however, with the user often being unaware of it, happens
frequently in calculations of chemically reacting systems, particularly for those
involving high-temperature calculations of heterogeneous equilibria.

Example 18.1 Combustion of H2(g) with O2(g)
A very simple illustration of the importance of the role of the thermodynamicist
in performing meaningful thermodynamic calculations arises in the calculation
of the adiabatic flame temperature for the stoichiometric combustion of H2(g)
with O2(g) at a total pressure of 1 bar. This calculation entails assuming that the
reaction between H2(g) and O2(g) takes place in a closed system whose volume
can vary in order to maintain a constant pressure of 1 bar. The combustion takes
place without any heat flow to or from the surroundings. This results in the
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Figure 18.2 Calculated Al–Zn phase diagrams: (a) Without hcp phase taken into
account; (b) with all phases taken into account.

enthalpy of the input gases being equal to the enthalpy of the product gases, that
is, �rH

◦ for the following reaction equation is zero:

H2(g)(298.15 K) + 1
2 O2(g)(298.15 K) = H2O(g)(T ) (18.1)

Consider the different outcomes from three different decisions by the thermody-
namicist concerning the calculation:

(i) Thermodynamicist A assumes that the reaction goes to completion, that is,
T is calculated from the enthalpy changes for the two following reaction
equations:

H2(g)(298.15 K) + 1
2 O2(g)(298.15 K) = H2O(g)(298.15 K)

�H = �f H
◦(298.15 K)

H2O(g)(298.15 K) = H2O(g)(T ) �H =
∫ T

298.15 K
C

◦
p(H2O) dT

(ii) Thermodynamicist B defines the system as comprising H2(g), O2(g), and
H2O(g) but considers the possibility that the chemical reaction equation
given in (18.1) does not go to completion, that is, all three species may
be present at the final temperature. The relative amounts of the three gases
are governed by �rG

◦ at the final temperature as well as by mass balance
constraints.

(iii) Thermodynamicist C defines the system as comprising all the gaseous
species contained in a comprehensive database containing the elements H
and O in addition to the species H2(g), O2(g), and H2O(g). All these extra
species may be present at the final temperature.
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The calculated flame temperature and partial pressure results obtained from
these three different assumptions are as follows:

Species p (bars) Species p (bars)
Flame Temperature: 4894 K Flame Temperature: 3146.31 K
H2O 1.0 H2O 0.618
H2 0.0 H2 0.157
O2 0.0 H 0.0964

O2 0.0774
Flame Temperature: 3508.91 K O 0.0508
H2O 0.569 H2O2 3.57 × 10−6

H2 0.287 O3 4.19 × 10−8

O2 0.144

It can be seen that the results obtained for the calculated adiabatic flame tem-
perature differ markedly (the result obtained by thermodynamicist C will be close
to the experimental value). The important point to appreciate is that the differ-
ences in the calculated results stem from the different decisions made by the
thermodynamicists. They do not represent any failure on the part of thermody-
namics.

This problem of system definition is exacerbated when more complex situa-
tions than this simple example are considered. We will encounter it again when
we come to discuss equilibrium involving both gaseous and condensed phases.
For the present, we emphasize that the failure to properly define the system in
thermodynamic calculations of chemical equilibria is a common occurrence.

18.2 CALCULATION OF CHEMICAL EQUILIBRIUM

In Chapter 17 we examined some different approaches to the calculation of the
position of chemical equilibrium for single-reaction equations involving perfect
gas mixtures and pure solids. All these methods can be applied to more complex
situations, but when the gases are not perfect and the condensed phases are
nonideal solutions, then, just as in the case of phase equilibria, local minima in
the Gibbs energy can arise. These local minima make the equilibrium calculations
considerably more difficult. In this chapter we will restrict ourselves to some
fairly straightforward examples which avoid these complications by considering
the case of several species present in a perfect gas mixture. Even here, some
calculation methods are preferable to others.

Specifically, we will illustrate with a system defined as containing the gaseous
molecular species CH4(g), O2(g), CO2(g), H2O(g), CO(g), and H2(g). Note that,
although there are many other molecular species which contain the elements C,
H, and O, we have elected to define the system as containing just these six
species. We might elect to do this, for example, if we know that under the
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conditions where the results from the calculations are to be used it is known that
the concentration of, say, C2H2(g), is unimportant.

18.2.1 Using the Extent of Reaction

A principal objective of chemical reaction stoichiometry is to determine the num-
ber of independent chemical reaction equations, R, required to determine the
equilibrium in the defined system. In this relatively simple case, it is possible to
see, by inspection, that one set of independent chemical reaction equations is the
following:

CH4(g) + 2O2(g) = CO2(g) + 2H2O(g) (18.2)

2CO2(g) = 2CO(g) + O2(g) (18.3)

CH4(g) + O2(g) = CO2(g) + 2H2(g) (18.4)

so that, in this case, R = 3. This selection is, of course, not the only set of
independent reaction equations which can be written involving these six species.
The number of independent equations will, however, always be three.

When the number of species is much larger than that in our example, it is
necessary to have a more general method for determining R. In order to do this,
we first set up the formula or conservation matrix A. For our example, this is an
M × N matrix:

A =

⎛
⎜⎜⎝

CH4 O2 CO2 H2O CO H2

C 1 0 1 0 1 0
H 4 0 0 2 0 2
O 0 2 2 1 1 0

⎞
⎟⎟⎠

The number of independent components, C, is given by rank(A). In this example,
C = 3. The value of R can then be obtained from R = N − C. In this example,
R = 6 − 3 = 3.

Having obtained the number of independent reaction equations, it is necessary
to assign an extent of reaction, ξ , to each of the chosen reaction equations. In
our example, ξ1, ξ2, and ξ3 are assigned to (18.2)–(18.4), respectively. Then we
may proceed exactly as we did for a single reaction in Chapter 17. For example,
for (18.2), we may write

dnCH4

−1
= dnO2

−2
= dnCO2

+1
= dnH2O

+2
= dξ1 (18.5)

From this and similar equations for the reaction equations (18.3) and (18.4), we
may integrate and obtain the values of the species amounts in terms of the three
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reaction variables:

nCH4 = no
CH4

− ξ1 − ξ3 (18.6)

nO2 = no
O2

− 2ξ1 + ξ2 − ξ3 (18.7)

nCO2 = no
CO2

+ ξ1 − 2ξ2 + ξ3 (18.8)

nH2O = no
H2O + 2ξ1 (18.9)

nCO = no
CO + 2ξ2 (18.10)

nH2 = no
H2

+ 2ξ3 (18.11)

ntot = no
CH4

+ no
O2

+ no
CO2

+ no
H2O + no

CO + no
H2

+ ξ2 + ξ3 (18.12)

The partial pressures are related to the amounts and total pressure by

pj =
(

nj

ntot

)
ptot (18.13)

and the equilibrium conditions for these reactions are

�rG
◦
1 + RT loge

(
pCO2 × p2

H2O

pCH4 × p2
O2

)
= 0 (18.14)

�rG
◦
2 + RT loge

(
p2

CO × pO2

p2
CO2

)
= 0 (18.15)

�rG
◦
3 + RT loge

(
pCO2 × p2

H2

pCH4 × pO2

)
= 0 (18.16)

The set of mass balance equations 18.6–18.12 plus the relation between molar
amounts and the partial and total pressures, (18.13), together with the equilibrium
relations (18.14)–(18.16) can be used to solve for the final chemical equilibrium.

Figure 18.3 shows, qualitatively, how the Gibbs energy varies as a function
of ξ1 and ξ2 for a system defined by two independent reaction equations. The
equilibrium position is given by the minimum in the Gibbs energy, which can
be obtained by satisfying

(
∂G

∂ξ1

)
=
(

∂G

∂ξ2

)
= 0 (18.17)
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Figure 18.3 Variation of G as function of ξ1 and ξ2, drawn using Maple®.

18.2.2 Using Lagrangian Multipliers

In the example which involves only six species and three independent reactions,
application of the extent of the reaction method is straightforward. When the
system comprises on the order of 100 molecular species derived from just a few
elements, it is more difficult and the method based on Lagrangian multipliers is
to be preferred.

A Lagrangian multiplier, λi , is assigned to the mass balance for each element:

λC : nC − (nCO + nCO2 + nCH4) (18.18)

λH : nH − (2nH2 + 2nH2O + 4nCH4) (18.19)

λO : nO − (nCO + 2nO2 + 2nCO2 + nH2O) (18.20)

and the Lagrangian function is written as

L =
N∑

j=1

njμj +
M∑
i=1

λi

⎛
⎝ni −

N∑
j=1

Aijnj

⎞
⎠ (18.21)

Differentiation of this function with respect to the amount of each species and
setting the derivatives to zero gives the equilibrium conditions. For our example,
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these partial derivatives are

∂L
∂nH2

= μH2 − 2λH = 0 (18.22)

∂L
∂nO2

= μO2 − 2λO = 0 (18.23)

∂L
∂nH2O

= μH2O − 2λH − λO = 0 (18.24)

∂L
∂nCO

= μCO − λC − λO = 0 (18.25)

∂L
∂nCO2

= μCO2 − λC − 2λO = 0 (18.26)

∂L
∂nCH4

= μCH4 − λC − 4λH = 0 (18.27)

The chemical potential for a component of a perfect gas mixture is given by

μj = μ
◦
j + RT loge

(
pj

p
◦
j

)
(18.28)

By using this equation, the element mass balances, pj = xjptot, and
(18.22)–(18.27), we can obtain all the partial pressures.

Although it is not required in the equilibrium calculation, it can be seen that
the elimination of the Lagrangian multipliers in (18.22)–(18.27) gives three inde-
pendent relations between the chemical potentials which hold at equilibrium. One
possible set is

μCO2 + 2μH2O − μCH4 − 2μO2 = 0 (18.29)

2μCO + μO2 − 2μCO2 = 0 (18.30)

μCO2 + 2μH2O − μCH4 − 2μO2 = 0 (18.31)

Equations (18.29)–(18.31) can be interpreted as referring to the equilibrium con-
ditions for the reaction equations already given in (18.2)–(18.4).

But the three relations (18.29)–(18.31) are not the only three possible inde-
pendent relations which can be obtained from (18.22)–(18.27) by elimination of
the Lagrangian multipliers. For example, we could just as easily have obtained

2μH2 + 2μCO − μCH4 − μCO2 = 0

μCO + 3μH2 − μCH4 − μH2O = 0

2μH2O − 2μH2 − μO2 = 0
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This emphasizes the point that, although there are only three independent relations
between the chemical potentials of the species, the relations can be selected in
different ways. It also follows that there is nothing in a balanced chemical reaction
equation which relates to any actual mechanisms of chemical reactions occurring
within the system.

18.3 EVALUATION OF ELEMENTAL CHEMICAL POTENTIALS
IN COMPLEX GAS MIXTURES

Usually, it is the behavior of one or, occasionally, two particular elements in a
complex gas atmosphere which is of primary interest. We may wish to know,
for example, whether a gas at a given p, T and initial composition is oxidizing,
reducing, sulfurizing, carburizing, nitriding, and so on, to the particular condensed
phase the gas phase is contacting. Complete knowledge of the chemical analysis
of the gas becomes of secondary importance in these situations.

If we concentrate on the oxidizing/reducing power of a gas mixture for the
moment, then it is the chemical potential of oxygen which is of interest. At
high oxygen potentials the gas is likely to be oxidizing, at low oxygen potentials
reducing. The oxygen potential is defined (in a perfect gas mixture) by

�μO2 = μO2 − μ
◦
O2

= RT loge

(
pO2

p
◦
O2

)
(18.32)

It is often the case that the partial pressure of O2(g) is much too small to be
obtained from chemical analysis. In such cases it is useful to be able to get a
handle on its magnitude by other means.

No physical meaning was given to the Lagrangian parameters in
(18.22)–(18.27) since this was unnecessary in the solution of the chemical
equilibrium problem. But it is clear from these equations that the Lagrangian
parameters are in fact chemical potentials of the elements. For example, we may
appreciate their meaning by considering (18.25):

μCO − λC − λO = 0

which is equivalent to writing

μCO − μC − μO = 0 (18.33)

or

μCO − μC − 1
2μO2 = 0 (18.34)

so that we already know the element chemical potentials when the Lagrangian
method is used for calculating chemical equilibrium. They are just the Lagrangian
parameters associated with the mass balances.
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The relation of element chemical potentials to molecular species chemical
potentials can also be seen directly by considering particular reaction equations.
By doing this we can see how to obtain an element chemical potential from the
molecular gas analysis. Consider, for example, the reaction equation

2CO(g) + O2(g) = 2CO2(g)

By using the relation between the standard Gibbs energy of reaction and the
standard equilibrium constant and assuming that the latter is the same as the
empirical equilibrium constant (perfect gas mixtures), we can write

�rG
◦
(T ) = −2RT loge

(
pCO2

pCO

)
+ RT loge pO2 (18.35)

Rearranging gives

�μO2(T ) = 2
[
�f G

◦
(CO2(g), T ) − �f G

◦
(CO(g), T )

]
+ 2RT loge

(
pCO2

pCO

)
(18.36)

Similarly, by considering the reaction equation,

2H2(g) + O2(g) = 2H2O(g)

we have

�rG
◦
(T ) = −2RT loge

(
pH2O

pH2

)
+ RT loge pO2 (18.37)

�μO2(T ) = 2 �f G
◦
(H2O(g), T ) + 2RT loge

(
pH2O

pH2

)
(18.38)

This type of procedure can be used for other elements to specify the elemental
chemical potentials in terms of the ratios of different constituents of a complex
mixture.

For example, carbon potentials can be obtained from consideration of one of
the following reaction equations:

C(s) + 2H2(g) = CH4(g) (18.39)

C(s) + CO2(g) = 2CO(g) (18.40)

sulfur potentials from

S2(g) + 2H2(g) = 2H2S(g) (18.41)

S2(g) + 4SO3(g) = 6SO2(g) (18.42)
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and nitrogen potentials from

N2(g) + 3H2(g) = 2NH3(g) (18.43)

18.4 APPLICATION OF THE PHASE RULE

If we apply the most frequently used form of the phase rule, (8.26), namely,
F = C − φ + 2, to the single-reaction equation CO(g) + 1

2 O2(g) = CO2(g) and
take the number of components to be the same as the number of molecular
species, that is, three, then application of this equation gives F = 3 − 1 + 2 = 4,
which is incorrect. If, on the other hand, we take C = N − R = 3 − 1 = 2, then
F = 2 − 1 + 2 = 3, which is correct. If, for example, we fix p, T , and pCO2 ,
then the two remaining partial pressures can be obtained from the equilibrium
constant and the fact that the sum of the partial pressures is equal to the fixed
total pressure.

Similar reasoning applies to more complex situations. In our example of a
system comprising six molecular species, if we use F = 6 − 1 + 2 = 7, we obtain
an incorrect answer. If, however, we use C = N − R = 6 − 3 = 3, then F =
3 − 1 + 2 = 4, which is correct. Fixing p, T , pO2, and pCO2 leaves us with four
unknowns. These can be obtained from the three equilibrium constants and the
partial pressure sum.

The selection of constituents (the independent species) required to describe a
system is not unique but their number is. The number of components is the same
as the number of constituents , but the components may or may not involve the
constituents.

The selected components may be these constituents but other selections may
be made. The only requirement of a component is that it can be used to express
composition over the range of interest for the system under consideration.

With some selections of components, it is possible for some compositions to
have negative amounts of the selected components. As an illustration, consider
the following selections of components for the Fe–O system. In the first we
choose Fe and O as the components and in the second we choose FeO and
Fe2O3.

The conservation matrices for these two choices are as follows:

A =

⎛
⎜⎜⎝

phase

component
Fe(s) FeO(s) Fe3O4(s) Fe2O3(s) O2(g)

Fe 1 1 3 2 0
O 0 1 4 3 2

⎞
⎟⎟⎠

A =

⎛
⎜⎜⎝

phase

component
Fe(s) FeO(s) Fe3O4(s) Fe2O3(s) O2(g)

FeO 3 1 1 0 −4
Fe2O3 −1 0 1 1 2

⎞
⎟⎟⎠
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Although the selection of components is different in these two formula matri-
ces, their rank, and hence the number of independent components, remains the
same.

EXERCISES

18.1 Acetylene, C2H2(g), is burnt at room temperature with O2(g).
Assume the system comprises C(s), C2H2(g), CH4(g), CO(g), CO2(g),
H2(g), and H2O(g).

(a) Using the Lagrangian multiplier method, evaluate the equilibrium com-
position, the oxygen potential, and the carbon potential as a function
of temperature and C2H2(g)/O2(g) ratio.

(b) Evaluate the adiabatic flame temperature as a function of the
C2H2(g)/O2(g) ratio.

(c) What molar ratio of C2H2(g)/O2(g) is required in order to avoid C
deposition at all temperatures?

18.2 A system is assumed to comprise the species C(s), CO2(g), CO(g), and
O2(g) at 1000 K.

(i) Construct the formula matrix.
(ii) Use the Lagrangian multiplier method to derive a set of independent

chemical reactions for this system.
(iii) Write down the equations for the empirical equilibrium constants

assuming perfect gas mixtures.
(iv) Derive the relation between G and the extents of reaction if the system

initially contains 1 mol C(s) and 1 mol CO2(g) at 2 bars.
(v) Obtain expressions for the derivatives of G with respect to the extents

of reaction.

18.3 Solve this same problem using the Lagrangian multiplier method.

18.4 Derive the expressions for carbon, sulfur, and nitrogen potentials in terms
of molecular gas species using the reaction equations discussed in this
chapter.
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Chemical reactors in which a complex gas mixture is in contact with a condensed
phase are often used in materials production and processing. The thermodynamic
problem of interest here is in deciding whether or not the condensed-phase mate-
rial is carburized, hydrided, oxidized, sulfurized, nitrided, silicided, phosphorized,
and so on, by the surrounding complex gas mixture.

We have seen earlier how the thermodynamic data for many pure substances
in their standard states are presented in different forms in computer databases as
compared with their presentation in tables:

(i) In computer databases the SER state is usually preferred. This involves the
storing of several coefficients from which all the thermodynamic properties
can be derived.

(ii) In many tabular presentations the SSR state is used. All the necessary
differentiations/integrations have already been carried out and the various
thermodynamic properties can be read at regular temperature intervals.

19.1 GRAPHICAL PRESENTATION OF STANDARD
THERMOCHEMICAL DATA

Computer calculations of complex heterogeneous chemical equilibria can lead to
voluminous data outputs so that there is much to be said in favor of a simpler
graphical presentation of the results, just as phase diagrams are so useful in
the case of phase equilibria. While there is a loss of accuracy in presenting the
data this way and hence in any calculations performed in using them, graphical
solutions can be very useful for carrying out back-of-the-envelope calculations
and obtaining a bird’s eye view of the behavior for a class of systems. It is on
this aspect of the graphical representation of heterogeneous chemical equilibria
which this and the following chapters are concerned.

The graphical representation is made particularly useful from the realization
that, for almost all compounds, �f G

◦ is, to a very good approximation, usually

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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Figure 19.1 Near linearity of �f G
◦(H2O(g)) as a function of temperature: (a) JANAF

table values for �f G
◦(H2O(g)) together with linear representation; (b) residuals between

JANAF table values and linear plot values.

a linear function of temperature (in a transformation-free region). This is particu-
larly true when the accuracy of much high-temperature data is taken into account.
As an illustration, consider �f G

◦
(H2O(g)) since the thermodynamic properties

for this substance are among the most accurately known. Figure 19.1a shows
�f G

◦
(H2O(g)) as a function of temperature according to data in the JANAF

tables. There is a slight nonlinearity in this curve. Also shown (dashed) in the
figure is a linear curve obtained from a least-squares fit to the JANAF data.
The small deviation from linearity is made more apparent in Figure 19.1b where
the residuals of the linear representation from the tabulated values are shown.
It can be seen that the differences in �f G

◦
(H2O(g)) calculated from the lin-

ear approximation are only slightly different from the JANAF values. For other
substances, where the thermodynamic properties are not known with the same
degree of accuracy as for H2O(g), it is clear that a linear representation is often
of sufficient accuracy in most calculations.

The near linearity of �f G
◦ –T plots is emphasized in Figure 19.2, which

shows such a plot for several oxides. In some cases a phase transformation occurs
in either metal or oxide causing a change of slope, but, otherwise, the variation
with temperature is seen to be essentially linear. We will continue to use linear
representations of the �f G

◦ –T variation for compound formation throughout
the remainder of this Chapter.

A table of some linear approximations for �f G
◦ –T for some compounds

which are required in the exercises in this and other Chapters is given in
Appendix A.

19.2 ELLINGHAM DIAGRAMS

It was pointed out by Ellingham that there are advantages to be gained by plot-
ting not just �f G

◦ –T , where formation refers to 1 mol of compound, but also
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◦ as function of temperature for several oxides.

�rG
◦ –T , where the reaction refers to 1 mol of O2(g). Figure 19.3 shows the

same data as plotted previously in Figure 19.2 but now on a per mole of O2(g)
basis rather than per mole of compound.

As we discuss below, the reason for plotting per mole of O2(g) lies in the abil-
ity of being able to use plots in this form for carrying out equilibrium calculations
rather than as just a means of presenting thermodynamic data.

Most of the lines shown in Figure 19.4 are for the formation of an oxide
from the elements but some are not. What they have in common is that all the
reactions refer to 1 mol of O2(g), for example,

2Fe(s) + O2(g) = 2FeO(s)

6FeO(s) + O2(g) = 2Fe3O4(s)
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Figure 19.3 Same thermochemical data as used in Figure 19.2 but plotted per mole
O2(g).
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A more complete set of �rG
◦ –T curves for the formation of oxides is

shown in Figure 19.4. Similar collections of curves for different groups of
compounds—sulfides, carbides, nitrides, chlorides, and so on—have been pub-
lished. We will continue to concentrate on metal/metal oxide Ellingham diagrams,
but the following remarks pertaining to the �rG

◦ –T curves in Figure 19.4 are
equally valid to diagrams for other kinds of compounds:
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Figure 19.4 Meta/metal oxide Ellingham diagram. Adapted from D.R. Gaskell, Ther-
modynamics of Materials , 3rd Edition, Taylor and Francis, Washington, DC, 2002.
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1. The slope of the tangent to a curve at any chosen temperature gives the
negative of the standard entropy of reaction at that temperature:

�rS
◦
(T ) = −d�rG

◦
(T )

dT

2. The intercept at T = 0 K of the tangent to the curve at T gives �rH
◦
(T ).

3. The curves of �rG
◦
(T ) versus T are almost straight lines between tran-

sition points so that a good approximation for �rG
◦
(T ), over a specified

temperature range, is

�rG
◦
(T ) ≈ 〈�rH

◦〉 − T 〈�rS
◦〉

4. Although good estimates of �rG
◦
(T ) can be obtained from the straight-line

approximation, it is less accurate to try and obtain �rH
◦
(T ) and �rS

◦
(T )

from 〈�rH
◦〉 and 〈�rS

◦〉; that is, there is some canceling of errors in the
sum, �rG

◦.
5. A majority of the curves in Figure 19.4 are approximately parallel, the

occasional one is approximately horizontal and, rarely, a curve may have a
negative slope. These patterns in the slopes of the curves can be understood
from the equation

�rS
◦
(T ) =

∑
i

νiS
◦
i (T ) (19.1)

and the fact that S
◦(gases) � S

◦(solids or liquids).
If we now look at the different types of reaction equations whose values
are plotted in Figure 19.4, we can then see, using (19.1), that

M(s) + O2(g) = MO2(s) �rS
◦ ≈ −S

◦
(g)

2H2(g) + O2(g) = 2H2O(g) �rS
◦ ≈ −S

◦
(g)

C(s) + O2(g) = CO2(g) �rS
◦ ≈ 0

2C(s) + O2(g) = 2CO2(g) �rS
◦ ≈ +S

◦
(g)

6. Changes in the slope are found when phase transformations occur in either
the reactant or product phases. These can be understood by considering the
melting of either the reactant or product:

M(s) + O2(g) = MO2(s) �rG
◦
(T ) = −A + BT

M(s) = M(l) �fusG
◦
(T ) = C − DT

MO2(s) = MO2(l) �fusG
◦
(T ) = E − FT

M(l) + O2(g) = MO2(s) �rG
◦
(T ) = −(A + C) + (B + D)T

M(s) + O2 = MO2(l) �rG
◦
(T ) = −(A − E) + (B − F)T
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Figure 19.5 Variations in slope caused by phase transformations in reactant and product
phases: (a) increase in slope occurring at phase transformation occurring in reactant phase;
(b) decrease in slope occurring at phase transformation occurring in product phase.

As is apparent from these equations and from Figure 19.5a , there is an
increase in slope with T when a reactant condensed phase undergoes a
phase transition and, in Figure 19.5b, a decrease in slope with T when
a product condensed phase undergoes a phase transition.

Since �vapS
◦ � �fusS

◦ >�
β
αS

◦, these changes in slope are much greater
at vaporization transitions than at fusion.

Although the above discussion relates to a discussion of metal/metal oxide sys-
tems, the same principles apply to the other types of Ellingham diagrams.

19.2.1 Chemical Potentials

We now discuss why Ellingham diagrams are of value when examining het-
erogeneous chemical equilibria. In the next chapter we will emphasize that this
statement comes with an extremely important proviso when they are used cor-
rectly . It is very easy to use them incorrectly.

Concentrating on the metal/metal oxide Ellingham diagram, the equivalence
of �rG

◦
(T ) with the oxygen chemical potential is easily demonstrated by con-

sidering the reaction

M(s) + O2(g) = MO2(s) (19.2)

for which we may write

�rG = �rG
◦ + RT loge Qp

where Qp is the reaction equation quotient previously defined in (17.4). Since
the metal and metal oxide being considered are pure, this last equation can be
rewritten as

�rG = �rG
◦ − RT loge pO2 perfect gas, pure condensed (19.3)
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At equilibrium �rG = 0 so that, for any pO2,

�rG
◦ = RT loge p

eq
O2

= �μ
eq
O2

perfect gas, pure condensed (19.4)

The term oxygen chemical potential is usually abbreviated to oxygen potential and
we will use this terminology here. Similarly, we can speak of carbon potential.

Equation (19.4) means that the ordinate in Figure 19.4, �rG
◦, can equally

well be regarded as the oxygen potential, �μ
eq
O2

, when equilibrium between gas
and pure condensed phases is being discussed. Away from equilibrium, we can
use (19.3) and (19.4) to obtain

�rG = RT loge p
eq
O2

− RT loge pO2 (19.5)

which may be rewritten as

�rG = �μ
eq
O2

− �μO2 (19.6)

From this last equation we can see that:

(i) If �μO2 >�μ
eq
O2

or, equivalently, pO2 > p
eq
O2

, then �rG < 0, which means
that the reaction equation given in (19.2) favors product formation.

(ii) If �μO2 < �μ
eq
O2

or, equivalently, pO2 < p
eq
O2

, then �rG> 0, which means
that the reaction equation given in (19.2) favors reactant formation.

This information can be included on a �μO2 –T diagram, as shown in the
sketch given in Figure 19.6. Equilibrium between all three phases (two solids, one
gas) only exists along the heavy �rG

◦ line. The dashed line intersects the heavy
line at a temperature where �rG = 0. At a lower temperature than this, �rG < 0
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Figure 19.6 Driving Forces on a �μO2 versus T diagram.
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Figure 19.7 Domains of stability for various phases.

(product phase stable), the equilibrium pO2 at this temperature being given by
the intersection of the dotted line with the heavy line. Similar reasoning follows
for temperatures higher than those corresponding with the original intersection,
where the reactant phase is now stable.

Summarizing: at oxygen potentials higher than those corresponding to the
heavy line, the product phase is stable, the reactant phase unstable. The reverse
is true for lower oxygen potentials than those corresponding to the heavy line.

This recognition of the importance of driving force leads to the concept of
domains of stability for the different phases. These can be indicated on an Elling-
ham diagram. One is shown schematically in Figure 19.7. Note that, if M(g)
or MO2(g) are involved, the lines on the diagram refer to these phases at the
standard pressure so that the marked domains of stability also refer to these
conditions.

EXERCISES

19.1 One step in the manufacture of specially purified nitrogen is the removal
of small amounts of residual oxygen by passing the gas over copper gauze
at approximately 500◦C. The following reaction takes place:

Cu(s) + 1
2 O2(g) = Cu2O(s)

.(a) Assuming that equilibrium is reached in this process, calculate the
oxygen pressure in the purified nitrogen.

(b) What would be the effect of raising the temperature to 800◦C? What
if the temperature is lowered to 300◦C? What is the probable reason
for using 500◦C?

(c) What would be the effect of increasing the pressure?
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19.2 In a gas analysis train which is part of a vacuum fusion apparatus, car-
bon monoxide is oxidized to carbon dioxide by cupric oxide (which is
subsequently reduced to cuprous oxide) at about 300◦C. .

(a) Calculate the concentration of residual carbon monoxide in equilibrium
with carbon dioxide, assuming the latter to be at 0.5 bar pressure.

(b) In the operation of this equipment, the gases are passed through an effi-
cient adsorber of carbon dioxide and recirculated over the cupric oxide.
How does this affect the residual carbon monoxide concentration?

19.3 The partial pressure of oxygen in equilibrium with Cu2O(s) and CuO has
been found to be 0.028 bar at 900◦C and 0.1303 bar at 1000◦C. Calculate
�rH

◦ for the reaction

2Cu2O(s) + O2(g) = 4CuO(s)

at 298, 1173, and 1273 K.

19.4 Hydrogen is often used to protect Cr from oxidation at high temperatures.
However, H2(g) always contains trace amounts of H2O(g). .

(a) How much moisture content in H2(g) can be tolerated at 1300 K before
chromium becomes oxidized?

(b) Is the oxidation of Cr by H2O endothermic or exothermic at 1300 K?
What, if anything, can be said from this reaction about the heat effect
at 1300 K by the oxidation of Cr by pure O2?

(c) Would the equilibrium in the above reaction be affected by a change
in the pressure of the H2 –H2O mixture from 1 bar to 2 bars? What if
it were changed to 200 bars?

�f H
◦(298 K)/kJ mol−1 gef/J mol−1 K−1

H2(g) 0 130.68
H2O(g) −241.8 188.83
Cr(s) 0 23.64
Cr2O3(s) −1134.7 81.17

19.5 A mixture of argon gas and hydrogen gas at 1 bar total pressure is passed
through a reaction chamber containing a mixture of liquid Sn and liquid
SnCl2 at 900 K. The composition of the gas leaving the reaction chamber
is 50% H2, 0.01% HCl, and 49.99% Ar. Has equilibrium been attained
between the gas phase and the liquid phase in the reaction chamber?

19.6 A solid metal M can form two oxides, MO and M3O4. The metal can
exist in equilibrium with one of these oxides at low temperatures and can
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exist in equilibrium with the other oxide at high temperatures. The Gibbs
energies of formation of these oxides are

�f G
◦
(MO(s), T )/kJ mol−1 = −259.6 + 0.06255T

�f G
◦
(M3O4(s), T )/kJ mol−1 = −1090.8 + 0.3128T

Determine which of the two oxides is in equilibrium with the metal at
room temperature and the maximum temperature at which this oxide is in
equilibrium with M.

19.7 Plot %CO2 as a function of temperature from 400 to 1200◦C for the
oxidation of: .

(a) Fe to magnetite (Fe3O4) at low temperatures and to wustite (FeO) at
high temperatures

(b) wustite (FeO) to magnetite (Fe3O4)

(c) magnetite (Fe3O4) to hematite (Fe2O3)

Would you use CO2 to oxidize magnetite to hematite (Fe2O3) at these
temperatures?

19.8 Calculate the equilibrium oxygen pressure between Al2O3 and Al(l) at
1000 K. Could a vacuum of 10−10 torr prevent the oxidation of Al?
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In the previous chapter, we introduced the graphical presentation of �f G
◦ and

�rG
◦ for a selected group of compounds, for example, oxides and sulfides. It

was noted that, when phase transitions do not interfere, these two thermodynamic
quantities are, usually, nearly linear functions of temperature. In practice, a linear
representation of �f G

◦ versus T is often within the accuracy of the experimental
results. Some examples of such representations are given in Appendix A, and
these can be used in many of the exercises in this chapter and Chapter 21.

We also noted that a graphical presentation of standard Gibbs energies which is
of particular value is the one introduced by Ellingham where, instead of plotting
�f G

◦ versus T , a graph of �rG
◦ versus T is plotted, where all the members of

a group of reaction equations refer to 1 mol of O2(g) (or, e.g., S2). The advantage
of this method of plotting comes from the fact that, when the condensed phases
are in their pure state, then, from the relation between the empirical equilibrium
constant (for the metal/metal oxide case),

�rG
◦ per mole O2(g) = RT loge pO2 = �μO2 (20.1)

In this case, all the domains of stability for the condensed-phase substances
presented on the Ellingham diagram are categorized in terms of the oxygen
potential. By plotting all reaction equations on the basis of 1 mol of O2(g),
the graph has been transformed from one of just being the graphical presen-
tation of thermochemical data to one of value in carrying out equilibrium
calculations.

Ellingham diagrams are particularly useful for back-of-the-envelope calcula-
tions and for visualizing heterogeneous chemical equilibria. They can, however,
be used badly and we will pay particular attention to this aspect.

For illustration purposes, we will mainly concentrate on metal/metal oxide
diagrams, but the same principles apply to Ellingham diagrams for all the other
groups of compounds.

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.

243



244 CHEMICAL EQUILIBRIA BETWEEN GASEOUS AND CONDENSED PHASES II

20.1 SUBSIDIARY SCALES ON ELLINGHAM DIAGRAMS

The value of Ellingham diagrams can be enhanced by the inclusion of various
subsidiary scales placed around the perimeter of a diagram. We can illustrate this
by first considering how �μO2 varies for a fixed value of pO2.

Using (20.1), this variation is illustrated in Figure 20.1 for pO2 = 10−10 bar.
At 2000 K, the point on the figure indicates a value of �μO2 = −382.9 kJ (mol
O2)−1 for this oxygen pressure.

It can be seen that the whole diagram can be covered by an oxygen pressure
fan, with origin at zero oxygen potential and 0 K. In order to be able to have a
fairly accurate idea of pO2 at any point on the diagram, it is convenient to add
a nomogram around the perimeter of the diagram. This enables the connection
between pO2, �μO2, and T to be read immediately at any point on the diagram.
The construction of the nomogram is illustrated in Figure 20.1b. Note that the
anchor point at 0 K is at �μO2 = 0 for all values of pO2 .

It is also possible to include information about the oxygen potentials of
complex gas mixtures on the �μO2 –T diagram. In Chapter 18 we saw how
knowledge of �rG

◦ for the reaction equations

2CO(g) + O2(g) = 2CO2(g)

2H2(g) + O2(g) = 2H2O(g)

could be used to define �μO2 in terms of the (pCO2/pCO) or (pH2O/pH2) ratios:

�μO2 = 2
[
�f G

◦
(CO2(g), T ) − �f G

◦
(CO(g), T )

]
+ 2RT loge

(
pCO2

pCO

)
(20.2)
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Figure 20.1 Construction of pO2 nomogram on metal/metal oxide Ellingham diagram:
(a) oxygen potential as function of T for pO2 = 10−10; (b) fan of lines for various pO2 .
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�μO2 = 2 �f G
◦
(H2O(g), T ) + 2RT loge

(
pH2O

pH2

)
(20.3)

It can be seen that there are fans of lines for the oxygen potentials obtainable
from gas mixtures containing different ratios of these molecular species. Showing
the dependence of oxygen potential on these ratios is again most conveniently
done with the aid of nomograms, comprising an anchor point for the fan at 0 K
together with a perimeter scale. Figure 20.2 shows how the oxygen potential can
be specified at any T through pO2 , pCO2/pCO, or pH2O/pH2 .
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Figure 20.2 �μO2 versus T , showing how oxygen potential can be specified in terms
of gas mixture composition. Adapted from D. R. Gaskell, Thermodynamics of Materials ,
Taylor and Francis, Washington, DC, 2002.
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With the aid of the subsidiary scales, it is now possible to assign values to
T , pO2, �μO2, as well as pCO2/pCO or pH2O/pH2 ratios. The dashed lines in
Figure 20.2 are for pH2O/pH2 = pCO2/pCO = 1. They correspond with �rG

◦

for both reactions. The point marked A in the figure is where a gas mixture
containing equal amounts of all four gases can exist and is known as the water
gas equilibrium. The temperature is ≈1095 K and the oxygen pressure there is
≈5 × 10−18 bar, a quite low oxygen potential but one easily controlled using gas
mixtures containing the four molecular species under consideration.

Figure 20.3 shows how the database for �rG
◦ /kJ mol O−1

2 shown in Figure
19.4 can be combined with the plot given in Figure 20.2 for �μO2 /kJ mol O−1
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to yield a very useful way of carrying out calculations of heterogenous chemical
equilibria. Although we have concentrated our discussion on oxide equilibria,
analogous diagrams can be constructed for sulfides, nitrides, carbides, halides,
etc. Provided that these diagrams are used correctly (we illustrate later how it
is very easy to reach wrong conclusions when Ellingham Diagrams are used
incorrectly), they provide a very useful means for quickly obtaining approximate
answers for equilibrium calculations.

It is worth noting that, if the oxygen potential is being controlled by using
CO2/CO mixtures (or by any other gas mixture), it is unnecessary for O2(g) to be
actually present in the gas phase to obtain the desired oxygen potential. It may
or may not be actually present (usually in immeasurably small concentrations
when it is), this being a function of the kinetics of the reactions involved. From a
thermodynamic point of view, this is of no consequence; only the CO2/CO ratio
at the selected temperature is important.

This example of using a gas mixture to control an elemental chemical potential
when the actual element itself is not present (a metastable equilibrium) can be
particularly well illustrated by another example. A mixture of H2(g) and NH3(g)
can be used to control the nitrogen potential of the gas phase. The appropriate
reaction equation is

3H2(g) + N2(g) = 2NH3(g)

from which we can see that

�μN2 = �rG
◦ + RT loge

(
(pNH3)

2

(pH2)
3

)
(20.4)

At high temperatures, however, �rG
◦ for this reaction is positive and, as a

result, NH3(g) should start to decompose to N2(g) and H2(g). This would mean
that the gas ratio and hence the nitrogen potential would be quite different from
that intended. But the decomposition of NH3(g) requires a catalyst and may not
occur. If the decomposition can be avoided, a gas mixture of H2(g) and NH3(g)
can actually be used to obtain high nitrogen potentials; this is taken advantage
of in the nitriding of steel, summarized in the reaction equation

3H2(g) + 2N(in Fe) = 2NH3(g)

20.2 SYSTEM DEFINITION

Having said that a primary concern of thermodynamics is in predicting properties
of systems in equilibrium, we emphasize again that the application of thermody-
namics will provide the wrong output if it is fed the wrong input . It is absolutely
essential that the system should be defined appropriately .

We introduced the important point in Chapter 18 that the responsibility
for defining the system lies in the hands of the thermodynamicist. A simple
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adiabatic flame temperature calculation in the combustion of hydrogen with oxy-
gen was used as an example. In systems comprising only a gas phase, poor system
definition is rare these days since all relevant species will normally be contained
in the computer database used. This may not be the case, however, when the
system involves condensed phases since the thermodynamicist may, sometimes,
be unaware of all the phases which should be taken into account. In such cases,
it is very easy to carry out calculations for a metastable equilibrium in a poorly
defined system instead of on the true equilibrium for a properlydefined system.

Relying on the information presented in Ellingham diagrams can be par-
ticularly dangerous in this regard because many of the lines presented refer
to metastable equilibria and not all known species occurring in a particular
metal/metal oxide (e.g., sulfide) system are taken into account. We will illustrate
these important points by considering two examples.

Example 20.1 The Fe–O System
Figure 20.4 shows �rG

◦ per mole O2 as a function of temperature for the six
possible reaction equations which involve Fe(s), FeO(s), Fe3O4(s), and Fe2O3(s);
that is, these lines are a mini–Ellingham diagram. The kinks in the curves are
where phase transformations occur. The temperature–composition phase diagram
for this system is shown in Figure 20.5. From this we can immediately see which
of the six curves in Figure 20.4 represent metastable equilibria and which are for
the stable equilibria. It follows that the oxygen potential–temperature relation for
this system is not that presented in our mini–Ellingham diagram, Figure 20.4. We
require a phase diagram in oxygen potential–temperature space analogous to the
T –xO phase diagram given in Figure 20.5. In order to distinguish the Ellingham
diagram from the equilibrium phase diagram, we plot T versus μO2 rather than
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Figure 20.4 Standard Gibbs energies of reaction per mole of O2 for various reactions
in Fe–O system.
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Figure 20.5 T –xO phase diagram for Fe–O system.

the reverse. This mode of plotting, shown in Figure 20.6, also has the advantage
that its appearance is more like the more familiar T –xO phase diagram. It is also
the method of presentation introduced earlier in Chapter 11.

The phase diagram given in Figure 20.6 may safely be used in true equilibrium
calculations in the Fe–O system. It could, of course, incorporate subsidiary scales
for pO2 , pCO2/pCO, or pH2O/pH2 just as on the Ellingham diagram.

Example 20.2 Melting of Ti in Al2O3 Crucibles
A good example illustrating poor system definition by the thermodynamicist
concerns the feasibility of melting Ti metal in an alumina (Al2O3) crucible with
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Figure 20.6 T –μO2 phase diagram for Fe–O system.
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the aim of producing ductile Ti, a property which depends on the metal having
a very low O content.

We will proceed as we did in calculating the adiabatic flame temperature in
Chapter 18; namely, we make three different assumptions, of increasing sophis-
tication concerning the definition of the system. The standard melting point of Ti
is 1943 K. We will concentrate on calculations at 2200 K (chosen so that Ti–O
alloys are liquid at all concentrations of O):

(i) Thermodynamicist A defines the system as comprising Ti(l), Al2O3(s),
Al(l), and TiO2(s), all pure. Consequently, the following chemical reaction
equation is relevant:

3
2 Ti(l) + Al2O3(s) = 2Al(l) + 3

2 TiO2(s) (20.5)

Thermodynamicist A uses the Ellingham diagram in Figure 20.3 for his or her
source of data.

Consider any pair of reactions on that diagram that evaluate the Gibbs reaction
energy for a condensed-phase reaction equation such as

A(s) + BO2(s) = B(s) + AO2(s)

Then �rG
◦ (T ) for this reaction is given by

�rG
◦
(T ) = �f G

◦
(AO2(s), T ) − �f G

◦
(BO2(s), T )

= �μ
eq
O2

(A/AO2) − �μ
eq
O2

(B/BO2)

and we see that �rG
◦

< 0 when �f G
◦
(AO2(s), T ) < �f G

◦
(BO2(s), T ). Put

another way: If the A/AO2 line is lower down on the Ellingham diagram than
the B/BO2 line, then A(s) will reduce BO2(s) and vice versa.

Using Figure 20.3, thermodynamicist A concludes that, since the Al/Al2O3

line lies below that for Ti/TiO2 on the Ellingham diagram, it is safe to melt Ti
in an Al2O3 crucible.

(ii) Thermodynamicist B is aware that, in order for Ti to be technologically
useful, it must possess a very low oxygen concentration and is also aware, as
is apparent in Figure 20.7, that both solid and liquid Ti can absorb considerable
amounts of oxygen. It is also clear from this phase diagram that the coexistence
of Ti with TiO2, as might be implied from using Figure 20.3, is very much a
metastable equilibrium. The important thing to ask is what oxygen potential is
required to melt Ti with a low oxygen content? He or she calculates the T –μO2

phase diagram shown in Figure 20.8. This reveals that extremely low oxygen
potentials are required in order to obtain the necessary low O concentrations
in liquid Ti at 2200 K. These low oxygen potentials are compared with the
oxygen potentials associated with Al/Al2O3 in Figure 20.9. According to the
Ellingham diagram calculation by thermodynamicist A, the fact that the Ti/TiO2

curve lies above (at higher oxygen potentials) than the Al/Al2O3 curve, leads
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Figure 20.7 Temperature–composition diagram for Ti–O system. The black area com-
prises several closely spaced intermediate phases.
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Figure 20.8 Temperature–oxygen potential diagram for Ti–O system.

thermodynamicist A to conclude that it is safe to melt Ti in an Al2O3 crucible.
It can be seen from Figure 20.9 that the oxygen potential required to obtain
O-free Ti is approximately −1100 kJ (mol O2)

−1, which is much lower than
that required for the stability of Al2 O3, as can be seen from the location of the
Al/Al2O3 curve. Thermodynamicist B concludes, correctly, that it is not possible
to obtain O-free Ti by melting in Al2O3 crucibles.
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Figure 20.9 Oxygen potentials required for obtaining oxygen-free Ti(l) are shown cir-
cled.

(iii) Thermodynamicist C realizes that thermodynamicist B’s system def-
inition is much better that thermodynamicist A’s, who reached an incorrect
conclusion resulting from a very poor system definition. Although thermodynam-
icist B reached the correct conclusion, thermodynamicist C realizes that it has
been reached via a system definition which is still not complete: It is necessary
to consider all possible phases occurring in the ternary Ti–Al–O system.

Since we are only considering binary systems in this chapter, discussion of
thermodynamicist C’s deliberations is postponed until Chapter 22.

EXERCISES

20.1 The following reactions are sufficient to evaluate the equilibrium in a C(s),
O2(g), CO(g), CO2(g) system:

CO(g) + 1
2 O2(g) = CO2(g) (20.6)

C(s) + O2(g) = CO2(g) (20.7)

Obtain �rG
◦ for reactions (1) and (2) from the oxide Ellingham diagram

shown in Figure 20.3. .

(a) If we start with 1 mol CO(g) and feed it into a closed quartz box
maintained at a total external pressure of 1 bar and 1000 K, evaluate
the final partial pressures of the gases.
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(b) Repeat the calculation for the case where the box is made of Fe and
also calculate how much C is formed. Note: You will simplify the
calculation in this part considerably if you use the metal oxide Elling-
ham diagram to help you make a good approximation.

Important Note: Carbon deposition from CO(g) requires a catalyst
before it can occur. Iron is one such catalyst, quartz is not.

20.2 .(a) Draw a carbon potential �μC(T )–T diagram. Make the T axis
0–2000 K and the ordinate axis run from +200 to −200 kJ (mol
C)−1.

(b) Put on a fan (anchor point and perimeter scale) which enables speci-
fication of �μC(T ) in terms of a combination of CH4 and H2 partial
pressures.

(c) Put on a fan (anchor point and perimeter scale) which enables speci-
fication of �μC(T ) in terms of a combination of CO and CO2 partial
pressures.

(d) Assume a gas containing equimolar amounts of CO and CO2 at 1 bar
total pressure is passed into a furnace at 1300 K:

(i) Will the C(s) either deposit (assuming the furnace structure con-
tains lots of Fe) in the furnace or exit from the furnace?

(ii) Will pure Si(s) in the furnace be converted and, if so, to what?

20.3 Calculate the equilibrium oxygen pressure between Al2O3 and Al(l) at
1000 K. Would a vacuum of 10−8 Pa prevent the oxidation of Al at this
temperature?





21 Thermodynamics of Ternary
Systems

In the earlier chapters the focus has been on the thermodynamics of unary
and binary systems. However, multicomponent systems are often encountered
in MS&E. Engineering alloys, for example, usually consist of more than 2 ele-
ments, sometimes more than 10. In this and the following chapter, we extend
our discussion of the thermodynamics of binaries to that of ternaries. Once the
thermodynamic properties of ternaries are understood, it is usually straightfor-
ward to extend the concepts to higher order alloys. Experience shows that once
all the binary and ternary thermodynamic properties are known, extrapolation to
higher order systems can usually be carried out with confidence. This is because
the number of near neighbor contacts which involve more than three different
types of atoms will usually be very small in multicomponent alloys. Rarely, when
strong chemical interactions are present, this can break down due to the formation
of multicomponent compound phases.

In line with our earlier discussions of binary alloys, we will first discuss the
thermodynamics of ternary solution phases and then discuss phase equilibria.
More general aspects of the geometric presentation of phase equilibria in ternary
alloys, including heterogeneous chemical equilibria, are discussed in the next
chapter.

We have seen that, for two preselected phases α and β, the conditions of
equilibrium, assuming all species are mobile between both phases, are given by

μα
i = μ

β

i ∀ i (21.1)

In order to be able to apply (21.1) to ternary phase equilibria we need to know the
μi in the participating ternary phases. Because of the relatively poor availability
of experimental results for ternary systems, the estimation of the thermodynamic
properties of ternaries from those of the constituent binaries takes on a cardinal
role and we first discuss some ways by which this is done.

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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21.1 ANALYTICAL REPRESENTATION OF THERMODYNAMIC
PROPERTIES

21.1.1 Substitutional Solution Phases

It is necessary to decide which composition of a binary alloy should be used in
estimating the contribution of the properties from that binary to the properties
of a selected ternary alloy. Figure 21.1 shows just four of an infinite number of
possible ways which could be used in deciding which composition of the binary
BC would be the most appropriate for estimating the contribution of this binary’s
property to the ternary alloy’s property (at the circled point). Two widely used
symmetric geometric methods for adding the binary contributions to the ternary,
due to Kohler and Muggianu, respectively, are shown in Figure 21.2. An asym-
metric addition may be more appropriate in other circumstances, for example,
if one of the components is an interstitial element. Here we will concentrate on
symmetric extrapolations for substitutional solutions.

If both the binaries and the ternary are assumed to be regular solutions and also
that the various binary interaction energies are the same in the ternary as they are
in the relevant binary system, then it is straightforward to calculate the ternary
alloy’s properties. In this case, the numbers of A–B, B–C, and C–A contacts in
the A–B–C ternary are known because of the random mixing assumption. The
ternary properties are given by

GE
m(xA, xB, xC) = xAxBLAB

0 + xBxCLBC
0 + xCxALCA

0 (21.2)

This estimation is just that expected from the Muggianu extrapolation shown
in Figure 21.2b. This then suggests an obvious way to extend (21.2), namely,

OO

O O

A A

AA

BB

B B

C

C C

C

(a) (b)

(d)(c)

Figure 21.1 Some of the infinite number of possible ways of estimating the B–C con-
tribution to the properties of a ternary A–B–C alloy.
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Figure 21.2 Example of two different ways for estimating ternary system properties from
constituent binary system properties: (a) Kohler extrapolation; (b) Muggianu extrapola-
tion.

use the Redlich–Kister polynomial to allow for any deviations from the regular
solution model in the binary systems and add them as in (21.2). This assumption
leads to the so-called Redlich–Kister–Muggianu (RKM) equation, which is the
most widely used extrapolation equation for substitutional and liquid alloys:

GE
m(xA, xB, xC) = xAxB

n∑
i=0

LAB
i (xA − xB)i

+ xBxC

n∑
i=0

LBC
i (xB − xC)i

+ xCxA

n∑
i=0

LCA
i (xC − xA)i (21.3)

Equations for μE
A can be obtained from this equation by using the framed equation

given below, which is a general equation for obtaining partial molar quantities
from integral quantities for multicomponent systems. Its derivation (we use i for
the component of interest and j for any component) is as follows:

μE
i =

(
∂GE

∂Ni

)
p,T ,{Nj }

=
(

∂NGE
m

∂Ni

)
p,T ,{Nj }

(21.4)

where N = ∑
i Ni and j �= i.

∂NGE
m

∂Ni

= GE
m + N

(
∂GE

m

∂Ni

)

= GE
m + N

⎡
⎣∂GE

m

∂xi

· ∂xi

∂Ni

+
∑
j �=i

∂GE
m

∂xj

· ∂xj

∂Ni

⎤
⎦
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The relations between the mole fractions and the amounts can be obtained from
the differentiation of

xi = 1 −
∑

j

Nj

N
(21.5)

and they are given by

∂xi

∂Ni

= 1 − xi

N

∂xi

∂Nj

= −xi

N
j �= i

Finally we can obtain the relation between the partial molar quantity and the
integral quantity:

μE
i = GE

m + (1 − xi)

(
∂GE

m

∂xi

)
−
∑
j �=i

xj

(
∂GE

m

∂xj

)

μE
i = GE

m +
(

∂GE
m

∂xi

)
−
∑

j

xj

(
∂GE

m

∂xj

)
(21.6)

This equation represents a generalization of the equation corresponding with the
tangent–intercept method discussed earlier for binary solutions. The equation for
binaries can be obtained directly from this general equation, (21.6).

The excess chemical potentials may be obtained from (21.3) for GE
m by using

(21.6). For component A:

μE
A = LAB

0 xB(1 − xA) + LCA
0 xC(1 − xA)

+
n∑

i=1

LAB
i xB(xA − xB)(i−1)[(1 − xA)(xA − xB)(i + 1) + ixB ]

+
n∑

i=1

LCA
i xC(xC − xA)(i−1)[(1 − xA)(xC − xA)(i + 1) + ixC]

− xBxC

[
LBC

0 +
n∑

i=1

LBC
i (xB − xC)i(i + 1)

]
(21.7)

Similar relations can be written for μE
B and μE

C .
If extra parameters are required in the fitting to experimental results, the RKM

equation can be extended by adding ternary interaction terms to (21.3). These
extra terms must be selected so that they reduce to the correct binary solution
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equation when there are only two components. If we consider just the first two
ternary interaction terms, the additional contribution to GE

m is given by

GE
m(xA, xB, xC) = xAxBxCLABC

0 + 1
3 (1 + 2xA − xB − xC)LABC

1

+ 1
3 (1 + 2xB − xC − xA)LBCA

1

+ 1
3 (1 + 2xC − xA − xB)LCAB

1 (21.8)

and the extra contribution to μE
A is given by

μE
A = xBxC(1 − 2xA)LABC

0 + LABC
1 (21.9)

with analogous equations for the extra contributions to μE
B and μE

C .

21.1.2 Sublattice Phases

We have already met, in Chapter 14, the following modeling equation for a
binary sublattice phase with two equally sized sublattices and whose configura-
tional energy is determined by nearest neighbor interaction energies. In the BW
approximation,

�mixA
conf
m = z

2
WAB

(
yα

Ay
β

B + yα
By

β

A

)
+
∑

α

f α
∑

i

yα
i loge yα

i (21.10)

Assuming there are no additional ternary terms, this can be extended for use with
ternary alloys in a manner similar to that used for substitutional phases:

�mixA
conf
m = z

2
WAB

(
yα

Ay
β

B + yα
By

β

A

)
+ z

2
WBC

(
yα

By
β

C + yα
Cy

β

B

)
+ z

2
WCA

(
yα

Cy
β

A + yα
Ay

β

C

)
+
∑
α

f α
∑

i

yα
i loge yα

i (21.11)

from which it can be shown that the chemical potential of A is given by

μA = zWAByα
By

β

B + zWCAyα
Cy

β

C + 1
2 loge(y

α
Ay

β

A) (21.12)

with analogous relations for μB and μC .
Equation (21.11) is a free-energy functional with internal variables, the y

(j)

i ,
and has to be minimized subject to the mass balance constraints, for example,
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xC = 0.5(yα
C + y

β

C), in order to obtain the equilibrium values of the sublattice
mole fractions and the thermodynamic properties.

Similar equations can be used for the four-point cluster model discussed pre-
viously for binary alloys.

For both the two- and four-sublattice modeling equations, extra terms, involv-
ing ternary and/or quaternary parameters, could be added if required in the fitting
to experimental results.

21.2 PHASE EQUILIBRIA

The most common type of binary phase diagram encountered in MS&E shows
temperature as a function of composition at constant p, normally at 1 bar. With
an additional component, one further variable must be fixed if a two-dimensional
phase diagram is required for the ternary system. The phase diagrams are most
frequently presented as isothermal sections at constant p (1 bar). Many such
isothermal sections are required in order to gain a complete understanding of the
temperature–composition relationships for a ternary system.

Equation (21.1) together with the use of either (21.7) (substitutional phases)
or (21.12) (sublattice phases) may be solved to calculate the position of phase
equilibrium between two preselected phases. We will illustrate the procedure by
considering three examples.

Example 21.1 Miscibility Gap System
Assume as given the following RK parameters for the constituent binary systems:

LAB
0 = +20 kJ mol−1

LAB
1 = −5 kJ mol−1

LCA
0 = LBC

0 = +10 kJ mol−1

Calculate an isothermal section at 1000 K for the A–B–C system by using the
RKM equation.

There is only a single phase to consider in this simple example. It is clear
from Figure 21.3a that, at 1000 K, the A–B binary exhibits a miscibility gap
while the other two binaries do not.

For a ternary alloy with an overall composition inside the miscibility gap, there
are five unknowns, namely, xα

A, xα′
A , xα

B, xα′
B , and f , the fraction of the α-phase.

The equilibrium values of the independent variables can be obtained from the
solution of the following five equations:

μα
A(xα

A) = μα′
A (xα′

A ) (21.13)

μα
B(xα

B) = μα′
B (xα′

B ) (21.14)

μα
C(xα

C) = μα′
C (xα′

C ) (21.15)
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Figure 21.3 Binary �mixGm and calculated ternary isothermal section at 1000 K:
(a) �mixGm for binaries; (b) isothermal section for ternary system.

xA = f xα
A + (1 − f )xα′

A (21.16)

xB = f xα
B + (1 − f )xα′

B (21.17)

where the chemical potentials are given by

μα
i = μ

◦,α
i + RT loge xα

i + μ
E,α
i (21.18)

and μ
E,α
i is given by (21.7).

These equations may be solved at a fixed value of xC and a fixed ratio of
xB/xA, which guarantees a composition lying within the two-phase region. Using
xC = 0.05 and xB/xA = 1.111, the solution of these equations at 1000 K gives
the solution for the independent variables:

xα
A = 0.09749 xα

B = 0.8412

xα′
A = 0.7119 xα′

B = 0.244 (21.19)

f = 0.3449

The phase diagram shown in Figure 21.3b shows the complete isothermal section
at 1000 K plotted on triangular coordinates (Gibbs triangle). An example of a
real system which shows a phase diagram similar to this is the fcc (Au,Cu,Ni)
phase in the Au–Cu–Ni system, with the miscibility gap extending from the
binary Au–Ni.

Example 21.2 Liquid-Phase/Sublattice-Phase equilibrium
An isothermal section of a calculated phase diagram for the equilibrium between
liquid and B2 phases is shown in Figure 21.4. We wish to confirm this phase
diagram by calculating the tie-line marked as l–b on the diagram.



262 THERMODYNAMICS OF TERNARY SYSTEMS

0.20.0
0.0

0.2

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
C A

B

xA

x
Bx C

1.0

0.8

0.6

0.4

0.2

0.0

Liquid

Liquid

l

b

B2

Li
qu

id
+ B

2

Li
qu

id
+ 

B
2

Figure 21.4 Isothermal phase diagram for system showing equilibrium between liquid
phase and sublattice phase. One tie-line in the two-phase region is shown.

The isothermal section is for a temperature of 1050 K and the endpoints of
the tie-line are given in Table 21.1.

The parameters used in the calculation of Figure 21.4, are as follows: The
stabilities of the pure bcc components relative to the pure liquid components are
given by

G(A, bcc) = G(B, bcc) = G(C, bcc) = −10 + 0.01T kJ mol−1

For the liquid solution phase, the binary RK parameters are

LAB
0 = −5 kJ mol−1 LAC

0 = −4 kJ mol−1 LBC
0 = 0

These may be used to calculate the ternary properties by using simplified forms
of the RKM equation given in (21.7)—only the L0 terms have to be considered.

For the two-sublattice B2 (bcc) phase, the pair exchange energies are

WAB = WBA = −5 kJ mol−1

WAC = WCA = −4 kJ mol−1

WBC = WCB = +1.25 kJ mol−1

TABLE 21-1 Compositions of the Tie-Line 1-B in Figure 21.4

xA xB xC

Liquid 0.460173 0.403839 0.135988
B2 0.331947 0.533263 0.134789
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These pair exchange parameters may be used with (21.12) and similar equations
for μB and μC to calculate the chemical potentials in the B2 phase relative to
the pure bcc components.

We start by using, as the starting composition, the mean of the tie-line end-
points. We will again use (21.13)–(21.17) but these must be supplemented since
there are now seven independent variables, xl

A, xl
B , y′

A, y′′
A, y′

B , y′′
B , and f . The

two extra constraints are

xA(B2) = 0.5(y ′
A + y′′

A) (21.20)

xB(B2) = 0.5(y ′
B + y′′

B) (21.21)

Solution of the seven equations yields the values for the seven independent vari-
ables. The calculated mole fractions are given in Table 21.1 and f = 0.5 since
we took the average of the tie-line endpoints as a starting point in the calculation.

An example of a real system which shows features rather similar to the hypo-
thetical one used in the calculation is the Au–Zn–Cd system. There are many
other phases to be considered in this real system so that the simple features
shown in our calculated isothermal section for the stable equilibria would be
modified considerably due to the interference from the presence of other phases.
Nevertheless, a metastable phase diagram which considered only the liquid and
B2 phases would be rather similar in the real and hypothetical system.

Example 21.3 A System with Binary Line Compound Phases
Figure 21.5 shows possible phase diagrams for a prototype ternary system where
the binary Intermetallic Compounds (IMCs) exhibit a negligible range of homo-
geneity. This is a limiting case but, nevertheless, is found to occur quite frequently
in real systems, particularly in nonmetallic systems. The lack of solution phases
in this type of ternary makes phase diagram calculation rather straightforward; a
computer solution is not required provided the thermodynamic properties of the
IMCs are known.

We will illustrate a method for calculating a phase diagram which involves
such line compounds. We assume that the Gibbs energies of all the phases are
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B C
BC
.

.
.
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B CBC
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.
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(a) (b) (c)

A2B A2B A2B
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Figure 21.5 Possible isothermal sections for A–B–C system.
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known with the following values of �f G
◦
m at 1000 K:

A2B = −10.00 kJ mol−1

AB2 = −9.67 kJ mol−1

BC = −9.00 kJ mol−1

The three possibilities for this phase diagram are shown in Figure 21.5. There
it can be seen that the AB2 –BC join is common to all three possible phase
diagrams. The other two joins are seen to vary between where both involve
BC (Fig. 21.5a), both involve C (Fig. 21.5b), and one involves BC and one C
(Fig.21.5c). We may determine which is the correct phase diagram by considering
the reaction equations

3BC + A2B = C + 2AB2 (21.22)

3C + 2A = C + A2B (21.23)

The values for �rG
◦ for these two reactions are

2(−9.67) − [3(−9) + (−10)] = +27.66

(−10) − [(−9)] = −1

from which we conclude that Figure 21.5c represents the stable phase diagram
in this case.

EXERCISES

21.1 Derive (21.12).

21.2 Confirm the results given in (21.19).

21.3 Confirm the results given in Table 21.1.

21.4 Derive the equation for the Kohler interpolation for the case where all
three binaries are strictly regular. (Hint: The ratio of two components is
the same in the ternary and binary alloys.) Compare the estimated values
for GE in ternary solutions of composition (xA = 0.333, xB = 0.333) and
(xA = 0.8, xB = 0.1) when the RKM and Kohler methods are used for
strictly regular solutions. Which extrapolation method do you think is the
better?

21.5 .(a) There is one intermediate phase in the In–P system, InP, two IMCs
in the In–Co system, CoIn3 and CoIn2, and three IMCs in the Co–P
system, PCo2, PCo, and P3Co.
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The enthalpies of formation of these IMCs at 298.15 K are InP
(−18.85); CoIn3 (−0.975), CoIn2 (−2.17); PCo2 (−21.77), PCo
(−39.55), and P3Co (−18.1), all expressed in term of kilojoules per
mole of atoms.

On the basis of these data, calculate the composition isotherm for
the In–Co–P system at 298.15 K. What assumption do you have to
make in order to calculate this diagram?

(b) Suppose that you need to make an electrical contact to an InP alloy.
Would you recommend the use of Co at room temperature? What
about at 373 K? Why?

21.6 Ni and Si form three IMCs, Ni3Si, Ni5Si2, and Ni2Si. Si and C form only
one, SiC. Calculate the ternary phase diagram of Ni–Si–C at 600◦C.

The standard Gibbs energies of formation of these phases are Ni2Si
(−142.7), Ni5Si2 (−315.0), Ni3Si (−160.0), and SiC (−66.9), all
expressed in term of kilojoules per mole of formula.

21.7 For a ternary A–B–C system, there exist three binary intermetallic phases,
AB, BC, and AC.

The standard Gibbs energies of formation of these three compounds
at 1000 K are A0.5B0.5 (−10), A0.5C0.5 (−20), and B0.5C0.5 (−5), all
expressed in terms of kilojoules per mole of atoms. .

(a) Calculate the 1000-K isotherm assuming there are mutual solubilities
in pure A, B, and C and the three binary compounds are negligible.

(b) Calculate and plot an isothermal field–density phase diagram using
μC/RT as a function of xB /(xB + xA) at 1000 K. Assume that there
are no mutual solubilities between any of the phases. Draw another
(schematic) diagram where finite solubilities between these phases is
assumed.





22 Generalized Phase Diagrams for
Ternary Systems

In discussing unary and binary systems, we have already met some different ways
of graphically presenting the results from equilibrium calculations in the form of
two-dimensional phase diagrams.

(A) Unary For unary systems, phase diagrams can be plotted in two dimen-
sions without any constraints. This can be understood from the Gibbs–Duhem
equation for a unary system:

S dT − V dp + n dμ = 0

or, in molar form,

Sm dT − Vm dp + dμ = 0 (22.1)

from which it can be seen that, for given values of any two of the field variables,
the third is automatically adjusted.

This leads to the following classification for unary, two-dimensional phase
diagrams:

(i) field–field phase diagrams, for example, p versus T

(ii) field–density phase diagrams, for example, p versus Sm but not
involving conjugate variables such as T versus Sm

(iii) density–density phase diagrams, for example, Sm versus Vm

(B) Binary For binary systems, it is necessary to fix one independent vari-
able in order to be able to plot a two-dimensional phase diagram. Most binary
phase diagrams used in MS&E refer to a constant total pressure of 1 bar and,
under these constant-pressure conditions, the Gibbs–Duhem equation is

S dT + nA dμA + nB dμB = 0

or, in molar form,

Sm dT + (1 − xB) dμA + xB dμB = 0 (22.2)

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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from which it can be seen that, if two field variables are fixed, the third is
automatically adjusted. As a result, constant-total-pressure two-dimensional phase
diagrams can be classified in the same way as for unary systems:

(i) field–field phase diagrams, for example, T versus μB

(ii) field–density phase diagrams, for example, T versus xB and μB

versus Sm but not involving conjugate variables such as T versus Sm

(iii) density–density phase diagrams, for example, Sm versus xB

(C) Ternary The situation for ternary systems may be understood by again
considering the constant-total-pressure Gibbs–Duhem equation:

S dT + nA dμA + nB dμB + nC dμC = 0

This equation can be manipulated in different ways to convert the extensive
quantity to a density:

S

nC

dT + nA

nC

dμA + nB

nC

dμB + dμC = 0

S

nA + nB

dT + nA

nA + nB

dμA + nB

nA + nB

dμB + nC

nA + nB

dμC = 0

This last equation can be written more compactly as

Sn dT + (1 − ξ) dμA + ξ dμB + r dμC = 0 (22.3)

where

Sn = S

nA + nB

ξ = nB

nA + nB

r = nC

nA + nB

The use of ξ and r takes advantage of the fact that there are only two independent
composition variables (xA + xB + xC = 1).

It is clear that, for ternaries, it is now necessary to fix two properties before
a two-dimensional phase diagram can be drawn. Constant total pressure is one
obvious choice with a constant field or density being the other obvious choice.
However, another possibility exists and we first discuss this before returning to
a classification of the different possible phase diagrams for ternary systems.

Special Constraints in Ternary Systems. A situation with no counterpart
in binary alloys may occur when one of the three alloying elements diffuses
much more rapidly than the other two, for example, when one of the elements
dissolves interstitially (e.g., H, C, N). The best known example of this, which we
will consider, occurs during the transformation of austenite (γ ) to ferrite (α) in
Fe–C–X alloys, where X is a substitutional alloying element. The interface will
be mobile during an actual transformation but, since we are concerned only with
thermodynamics, we will consider the situation where the interface is immobile
but where the Fe/X ratio remains constant.
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In the case of complete equilibrium (all species are considered mobile), we can
use μα

i = μ
γ

i for all three elements as the condition of equilibrium. At constant
total p, a single phase in the ternary alloy has three degrees of freedom and it is
therefore necessary to fix another variable if we wish to plot a two-dimensional
phase diagram. The most obvious one to fix is T . Figure 22.1 shows a schematic
complete equilibrium field–density phase diagram at high Fe concentrations (the
dashed curves). If we start with the α-phase and increase the carbon potential,
the α will first transform into the γ -phase of a different Fe/X ratio. Eventually,
at the completion of the transformation, the γ -phase will have the same Fe/X
ratio as the original.

The constrained equilibrium situation is quite different. First, because
(Fe/X)α = (Fe/X)γ at all times, the system acts like a pseudobinary and,
second, we can no longer use μα

i = μ
γ

i for all three components but only for
C, μα

C = μ
γ

C. We may obtain another constraining condition for the chemical
potentials via the use of a Lagrangian multiplier, λ, for the mass balance
constraint Nα

FeN
γ
X − N

γ
FeN

α
X = 0. The Lagrangian for the α/γ is given by

L = Gα + Gγ + λ(Nα
FeN

γ
X − N

γ
FeN

α
X)

and its minimization gives

∂L
∂Nα

Fe
= μα

Fe + N
γ
Xλ = 0

∂L
∂Nα

Fe
= μα

X − N
γ
Feλ = 0

∂L
∂Nα

Fe
= μ

γ
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Xλ = 0
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∂Nα
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γ
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x
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Figure 22.1 Schematic μC –ξ isotherm for Fe–C–X system. Both complete (dashed
curves) and constrained (solid curve) equilibrium phase diagrams are shown.
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The λ may be eliminated from these equations to give the equilibrium relation
between the chemical potentials for this constrained equilibrium:

(1 − ξ)μα
Fe + ξμα

X = (1 − ξ)μ
γ
Fe + ξμ

γ
X (22.4)

This last equation can be written as

Gα
n = Gβ

n (22.5)

where the subscript refers to the unit amount of the immobile (Fe and X) com-
ponents.

Another, rather similar, constraint may also occur in a ternary system. This
can be seen by referring to Figure 22.2, which shows an isothermal section at
1600 K for the FeO–Fe2O3 –SiO2 system. It can be seen that the liquid phase
can be saturated with either metallic or oxide phases. The metallic phase is
not pure Fe but is an Fe–Si alloy. Following a similar argument to that given
above for the constrained equilibrium in the Fe–X–C system, we can see that
the equilibrium condition along this metal-saturated boundary, with pure Fe and
pure Si as reference states, is

(1 − ξ)μFe + ξμSi = 0 (22.6)
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Figure 22.2 Isothermal section for FeO–Fe2O3 –SiO2 system at 1600 K.
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We can now return to the classification of two-dimensional, constant-total-
pressure phase diagrams for ternary systems:

(a) Field–field phase diagrams
(i) at a constant field, for example, μA versus μB at constant T

(ii) at a constant density, for example, T versus μC at constant ξ

(iii) under a special constraint
(b) Field–density phase diagrams

(i) at a constant field, for example, T versus ξ at constant μC

(ii) at a constant density, for example, T versus r at constant ξ

(iii) under a special constraint
(c) Density–density phase diagrams

(i) at a constant field, for example, r versus ξ at constant T

(ii) at a constant density, for example, Vm versus r at constant ξ

(iii) under special constraint
Attention to the topological similarity of the three types of phase diagrams in
one-, two-, and three-component systems should be emphasized. This is apparent
in Figure 22.3, where some field–field phase diagrams are shown. All three
figures show triple points with three lines emanating from the triple point. These
lines can have a maximum (congruent point) or a minimum or may terminate at
a (critical) point.

The topological similarity between unary, binary, and ternary systems is also
found for field–density and density–density phase diagrams when the appropriate
number of variables are held constant.

Some examples of these three types of two–dimensional phase diagrams for
ternary systems are discussed in more detail below.

Example 22.1 μA versus μB at constant T
Figure 22.4a shows a plot of μO2 versus μS2 for the Fe–S–O system at 1000
K. As in any field–field phase diagram, this diagram is seen to be divided into

s
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g
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0<0 mB 0<0
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Figure 22.3 Topological similarity of field–field phase diagrams for unary, binary, and
ternary systems: (a) unary system; (b) binary system, at constant p; (c) ternary system,
at constant p, T .
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the various domains of stability for the various condensed phases and hence the
name often given to this type of phase diagram is predominance area diagram.

In the diagram shown in Figure 22.4a the horizontal lines refer to simple
oxidation reactions, for example,

2Fe(s) + O2(g) = 2FeO(s)

while the vertical line refers to a simple sulfidation reactions, for example,

2Fe(s) + S2(g) = 2FeS(s)
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The sloping lines refer to reactions which involve both O2 and S2, for example,

FeO(s) + S2(g) = FeS(s) + O2(g)

The diagram axes selected for Figure 22.4a are not necessarily the most con-
venient ones to use in a practical application. It is straightforward to change
to a more suitable pair of variables. These will be related to the two used in
Figure 22.4a. Consider, for example, the chemical reaction equations

2SO2 + O2 = 2SO3 (22.7)

4SO3 + S2 = 6SO2 (22.8)

S2 + 2O2 = 2SO2 (22.9)

It can seen that the sulfur potential can be specified through (pSO2)6/(pSO3)
4

or through (pSO2)/pO2)2 and the oxygen potential through (pSO3/pSO2)
2. If we

were to select log10 pSO2 as one axis, then we have several possible choices for
the other axis (e.g., log10 pO2). A phase diagram equivalent to Figure 22.4a is
shown in Figure 22.4b.

Example 22.2 T –μi under Special Constraint
In the FeO–Fe2O3 –SiO2 system, an isothermal section for which was shown in
Figure 22.2, oxygen potentials will vary as a function of composition across the
liquid phase region. If we wish to introduce temperature as a variable, then it
will be necessary to fix a different variable if a two-dimensional phase diagram
is still required. One possibility is to fix the oxygen potential or partial pressure
and show the phase diagram, for example, at 1 bar of air. Another is to show the
temperature variation of the oxygen potentials along the alloy-saturated boundary
which, thermodynamically, corresponds with the chemical potential condition
given previously in (22.6). Under this constraint, the T –μO2 phase diagram
shown in Figure 22.5 is obtained.

A brief explanation of this phase diagram is warranted. The curve shown
at the highest oxygen potentials in Figure 22.5 corresponds with the Fe/FeO
equilibrium. At oxygen potentials higher than those given by this curve, we will
no longer have metal saturation with the higher oxides of Fe becoming stable. The
curve shown at the lowest oxygen potentials in the diagram corresponds with the
Si/SiO2 equilibrium. At oxygen potentials lower than those given by this curve,
only Si can exist. In the region between the upper and lower bounds set by
the Fe/FeO and Si/SiO2 curves metal saturation must correspond with alloys of
intermediate compositions: Si-rich alloys at low oxygen potentials and Fe-rich
alloys as the Fe/FeO curve is approached. In other words, the domains of stability
for the different phases in the intermediate region must resemble those found in
a T –μSi phase diagram for the Fe–Si system. These domains of stability for the
different phases are indicated on the areas in Figure 22.5. It is also possible to
insert lines for different compositions of both the metallic and oxide phases on
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Figure 22.5 Alloy-saturated T –�μO2 phase diagram for Fe–Si–O system.

this phase diagram. In the liquid-phase region for the liquid alloys, lines for the
concentration of O as well as those for Si could also be inserted. Such lines are
useful for indicating the deoxidation behavior of molten steel by Si.

Example 22.3 Field–Density at a Constant Field
A 773-K isotherm for the Fe–Cr–O ternary system is shown in Figure 22.6a .
Several line compounds are present in this system, that is, Fe3O4 and Fe2O3

in the binary Fe–O and Cr2O3 in the binary Cr–O. Solution phases of (Fe,Cr)
are present in the binary Fe–Cr system and in (Fe,Cr)2O3 in the pseudobinary
Fe2O3 –Cr2O3 system. A ternary spinel phase (Fe,Cr)3O4 is found along the 57.1
at % O join, but this phase is stable only in the ternary composition region, not
in the binary Fe–O and Cr–O systems.

The type of phase diagram presentation given in Figure 22.6a can be supple-
mented by a field–density isotherm like that presented in Figure 22.6b.

The relative utility of these different forms of presentation will vary: For
those interested in open systems, Figure 22.6b is the more useful method of
presentation, while the reverse is true for those interested in closed systems.

Example 22.4 Three-Dimensional Phase Diagrams
Three-dimensional phase diagrams overcome the constraints imposed by plotting
two-dimensional diagrams. A μA − μB − μC isotherm for the Fe–S–O system is
shown in Figure 22.7. While such phase diagrams have a role, it is apparent from
this figure that it is difficult to obtain quantitative information about equilibria
occurring in the center of the figure.
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22.1 SYSTEM DEFINITION

Here we will further develop the discussion begun in Chapter 20 concerning the
importance of using a good system definition before performing thermodynamic
calculations.

Example 22.5 Melting of Ti in Al2O3 Crucibles

(i) Thermodynamicist A simply used the data presented on an Ellingham dia-
gram. The system definition is poor and, as a result, an incorrect answer
was obtained.

(ii) Thermodynamicist B defined the system better and obtained the correct
answer by appreciating that a low O concentration in Ti(l) requires an
extremely low oxygen potential.

(iii) Thermodynamicist C realized that it is necessary to consider all possible
phases occurring in the ternary Ti–Al–O system.

If the system is assumed to be completely closed at 2200 K (no loss of Ti,
Al, or O from the system), then any contact between Ti and Al2O3 must result
in some final composition along the heavy dashed curve in Figure 22.8. The
heavy solid curve in that figure represents a crude guess of the location of the
liquid compositions at this temperature. It can be seen that the intersection of
this phase boundary curve with the dashed mass balance constraint curve will
result in a liquid phase which is high in both O and Al. The oxygen potential of
this (Ti,Al,O)(l)–Al2O3 system will be considerably higher than that required for



SYSTEM DEFINITION 277

Ti Al

O

Al2O3

(Ti,Al,O)(l)

Figure 22.8 Isothermal section for Ti–Al–O system at 2200 K.

the preparation of O–free Ti (a guess of around −600 instead of approximately
−1100 kJ (mol O2)−1)

Thermodynamicist C is also aware that this conclusion may be faulty because
of the closed-system assumption. He or she is aware of the possibility of volatile
species being present and carries out a back-of-the-envelope calculation for the
Al–O system by constructing an Ellingham diagram as shown in Figure 22.9. It
can be seen that, at 2200 K and an oxygen potential of around −600 kJ (mol
O2)−1, the partial pressure of Al2O(g) could be significant so that volatile species
should be considered in a full thermodynamic analysis.

These considerations by thermodynamicist C emphasize not only the impor-
tance of having a good system definition but also the difficulties associated with
trying to arrive at this aim. In high-temperature systems like the one discussed,
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Figure 22.9 Ellingham diagram which takes into account some vapor species for Al–O
system.
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the calculation may be very difficult qualitatively and often impossible quan-
titatively because of the lack of the necessary thermochemical data for all the
species in the defined system.

EXERCISES

22.1 .(a) Calculate the 1300-K isotherm for the section Cu–Co–CoO–CuO.
Ignore any equilibria on the oxygen-rich side of the CuO–CoO section
and assume that there is negligible solubility between the following
phases: Cu and Co, Co and CoO, Cu and Cu2O, Cu2O and CuO, CuO
and CoO.

(b) Calculate the values of log pO2 at the phase equilibria.

22.2 For the unary, binary, and ternary field–field phase diagrams given in
Figure 22.3, sketch the corresponding field–density and density–density
phase diagrams.



APPENDIX A
Some Linearized Standard Gibbs
Energies of Formation

Substance Temperature Range/K �f G
◦
m/J mol−1

CO2(g) 298.15–2500 −394,886−0.77T
CO(g) 298.15–2500 −113,262−86.37T
CH4(g) 298.15–2500 −86,846 + 107.77T
H2O(g) 298.15–1500 −246,490 + 54.8T
SO2(g) 298.15–2500 362,420 + 72.4T
SO3(g) 298.15–2500 −456,980 + 161.8T
SiO2(quartz) 298.15–1687 −906.71 + 0.176T
SiO2(quartz) 1687–1983 −947.29 + 0.199T
Fe0.95O(s) 298.15–1184 −263,376 + 64.9T
Fe0.95O(s) 1184–1600 −263,332 + 64.8T
Cu2O(s) 298.15–1357 −169,337 + 73.4T
CuO(s) 298.15–1357 −152,728 + 86.0T
CoO(s) 298.15–2000 −234,689.5 + 71.1T
Al2O3(s) 298–933.47 −167,5430 + 313T
Al2O3(s) 933.47–2323 −1,682,880 + 324T

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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APPENDIX B
Some Useful Calculus

RELATIONS BETWEEN PARTIAL DERIVATIVES

For simple unary systems (those which undergo only p−V work), the principal
thermodynamic functions are p, V, T , U, S, A,H , and G. More than 300 partial
derivatives can be formed from these 8 variables and more than 5 × 108 formulas
can be formed from the derivatives.

Some rationalization of the most important formulas can be obtained by
expressing all other derivatives in terms of the standard observable quantities,
(∂V/∂T )p , (∂V/∂p)T , and (∂H/∂T )p.

The following four methods can be used for this purpose:

1. The standard relation between a total differential and the partial derivatives
for a function z = z(x, y) is

dz =
(

∂z

∂x

)
y

dx +
(

∂z

∂y

)
x

dy (B-1)

This relation allows us to use a Gibbs equation like dG = V dp − S dT to
obtain the relations (

∂G

∂p

)
T

= V (B-2)

(
∂G

∂T

)
p

= −S (B-3)

2. The relation between ordinary derivatives,

dy

dx
= dy/du

dx/du
(B-4)

Materials Thermodynamics. By Y. Austin Chang and W. Alan Oates
Copyright 2010 John Wiley & Sons, Inc.
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also applies to partial derivatives, for example,(
∂y

∂x

)
z

= (∂y/∂u)z

(∂x/∂u)z
(B-5)

We can use this equation to see, for example, that(
∂A

∂p

)
T

= (∂A/∂V )T

(∂p/∂V )T
(B-6)

When this is used in conjunction with a Gibbs equation, for example,
dA = −p dV − S dT , from which(

∂A

∂V

)
T

= −p (B-7)

then we obtain (
∂A

∂p

)
T

= −p

(
∂V

∂p

)
T

(B-8)

3. Equation (B.1) can also be used to obtain another relation which is often
used for changing variables. If z is maintained constant in (B.1), then

0 =
(

∂z

∂x

)
y

+
(

∂z

∂y

)
x

(
∂y

∂x

)
z

(B-9)

or (
∂z

∂y

)
x

(
∂y

∂x

)
z

(
∂x

∂z

)
y

= −1 (B-10)

As a thermodynamic example, we can use this equation to see that(
∂p

∂T

)
V

(
∂T

∂V

)
p

(
∂V

∂p

)
T

= −1 (B-11)

4. There is an important theorem for reciprocal relations between the second
partial derivatives. Using (B.1), this theorem is given by(

∂

∂y

(
∂z

∂x

)
y

)
x

=
(

∂

∂x

(
∂z

∂y

)
x

)
y

(B-12)

The so-called Maxwell relations are obtained by applying this theorem to
the Gibbs equations. For example, for the Gibbs equation dG = V dp −
S dT , its application leads to(

∂V

∂T

)
p

= −
(

∂S

∂p

)
T

(B-13)
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Example B.1 As an illustration of the use of these four methods, we will obtain
an expression for (∂G/∂T )V in terms of the standard measurable partial deriva-
tives.
From dG = V dp − S dT , we see that(

∂G

∂T

)
p

= −S

(
∂G

∂p

)
T

= V (B-14)

and then, using (B.1) for G = G(p, T ),

dG =
(

∂G

∂T

)
p

dT +
(

∂G

∂p

)
T

dp (B-15)

we can now obtain the desired partial derivative:(
∂G

∂T

)
V

=
(

∂G

∂T

)
p

(
∂T

∂T

)
V

+
(

∂G

∂p

)
T

(
∂p

∂T

)
V

(B-16)

= −S + V

(
∂p

∂T

)
V

(B-17)

= −S − V
(∂V/∂T )p

(∂V/∂p)T
(B-18)

EULER’S THEOREM FOR HOMOGENEOUS FUNCTIONS

If we can write

f (αx1, . . . , αxN) = αnf (x1, . . . , xN) (B-19)

then f (x1, . . . , xN) is said to be a homogeneous function of degree n.
As an example, consider the function

f (x, y) = x

x2 + y2
(B-20)

Then

f (αx, αy) = αx

α2x2 + α2y2
= α−1f (x, y) (B-21)

so that this function is homogeneous of degree −1.
In thermodynamics we deal with homogeneous functions of degree 1. For

these functions, Euler’s theorem states that

N∑
i

xi

∂f

∂xi

= f (x1, . . . , xN) (B-22)
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Its proof is given in standard texts on advanced calculus. We will illustrate the
application of the theorem to some thermodynamic situations.

(i) For volume, V (p, T , n1, . . . , nN), only the amounts enter into the theorem:

V (p, T , αna, . . . , αnN) = αV (p, T , n1, . . . , nN) (B-23)

and so

V (p, T , n1, . . . , nN) =
N∑
i

ni

(
∂V

∂ni

)
p,T {nj }

(B-24)

=
N∑
i

niVi (B-25)

(ii) The Helmholtz energy for a unary system is homogeneous of degree 1 in
the volume and the amount of substance. Application of Euler’s theorem in
this case gives

A(T , V, N) = V

(
∂A

∂V

)
T ,N

+ N

(
∂A

∂N

)
T ,V

(B-26)

= −pV + μN (B-27)

(iii) The Gibbs energy for a multicomponent system is homogeneous of degree
1 in the amounts of substances. Application of Euler’s theorem gives

G(T , p, n1, . . . , nN) =
N∑
i

ni

(
∂G

∂ni

)
T ,p

(B-28)

=
N∑
i

niμi (B-29)

STATIONARY VALUES UNDER CONSTRAINTS

A situation which is often encountered in thermodynamics is the need to minimize
a function subject to certain other constraints which arise from the fact that some
or all of the other variables are not truly independent. We can illustrate this by
considering a simple example.

Example B.2 Find the minimum of

z = (x − 2)2 + (y − 3)2
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subject to the constraint

4x + y = 3

The unconstrained minimum of the function, when x and y are independent,
can be found from dz = 0:

dz =
(

∂z

∂x

)
y

dx +
(

∂z

∂y

)
x

dy (B-30)

0 =
(

∂z

∂x

)
y

(B-31)

0 =
(

∂z

∂y

)
x

(B-32)

In our example,

Min z = (x − 2)2 + (y − 3)2 (B-33)

0 =
(

∂z

∂y

)
x

= 2x − 4 (B-34)

0 =
(

∂z

∂x

)
y

= 2y − 6 (B-35)

that is, the minimum for this function, which is shown in Figure B.1a , occurs at
x = 2, y = 3.

The effect of the constraint is to shift the attainable minimum in the function,
as can be seen from the intersection of the function and the constraining relation
in Figure B.1b.
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Figure B.1 Minimum in function z = (x − 2)2 + (y − 3)2: (a) no constraints; (b) under
constraint 4x + y = 3.
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It is possible to solve this constrained minimization problem by incorporating
the constraint equation into the function equation (B.33). If we substitute for y,
we obtain

z = (x − 2)2 + (−4x)2 (B-36)

and we may now obtain the stationary point from (dz/dx) = 0:

dz

dx
= 34x − 4 = 0 (B-37)

x = 4
34 = 0.118 (B-38)

The value of y = 2.529 at the stationary point can be obtained by substituting
for x in the constraint equation.

An alternative method for solving this problem is to use Lagrange’s method
of undetermined multipliers . This method, which is superior to the substitution
method when there are several constraints or when some constraints are nonlinear,
is the one which has been used throughout this text.

The total differentials for both the original function z = z(x, y) and the con-
straining function, which we can write as g(x, y) = 0, are zero at the constrained
minimum, that is, dz = 0 and dg = 0. But neither (∂z/∂x)y nor (∂z/∂y)x are
zero at this minimum because we now have only one independent variable. But
if we define a new Lagrangian function L as

L = z + λg (B-39)

then

dL = dz + λ dg (B-40)

=
(

∂z

∂x
+ λ

∂g

∂x

)
+
(

∂z

∂y
+ λ

∂g

∂y

)
(B-41)

The unconstrained Lagrangian is now zero at the stationary point so that the two
bracketed terms are individually also zero. Applying this to our example,

L = (x − 2)2 + (y − 3)2 + λ(4x + y − 3) (B-42)

∂L
∂x

= 2x − 4 + 4λ = 0 (B-43)

∂L
∂y

= 2y − 6 + λ = 0 (B-44)
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Elimination of the λ gives

x − 4y + 10 = 0 (B-45)

which can be combined with the constraining equation 4x + y − 3 = 0 to give
the same values for x and y at the constrained minimum as obtained previously
by the substitution method.
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system definition, importance of, 221

Composition, expressing, 67–68
mass fraction, 67
mole fraction, 67
volume fraction, 67

Condensed phases I
chemical equilibria between gaseous and,

233–240
Ellingham diagrams, 234–240
graphical presentation of standard

thermochemical data, 233–234
Condensed phases II

chemical equilibria between gaseous and,
243–252

Ellingham diagrams, subsidiary scales on,
244–247

Fe–O system, 248–249
melting of Ti in Al2O3 crucibles, 249–252
system definition, 247–252

Configurational disorder, 168
Configurational energy, 177–187

cluster model, 183–187
pair interaction model, 178–183

Configurational entropies, 165–174
intermediate phase, 169–172
interstitial solutions, 172–174
substitutional solutions, 168–169

Configurational free energy, 189–196
critical temperature for order/disorder,

193–196
Helmholtz energy minimization, 190–193

Congruent point, 119, 159–160
Conjugate variables, 51, 126
Conservation matrix, 225
Constant-pressure/constant-volume conversions,

36–37
Constrained equilibrium situation, 269
Conventions, thermodynamics, 3
Critical point, 49, 159–160
Crystal structure factor, 167
Curie temperature, 43

Debye function/model, 39–45, 202–203
Density–density phase diagrams, 125–127
Density–density type phase equilibria in unary

systems, 50
Dilute solutions, 161–162

reference states, 83–85
Dulong and Petit’s equation, 40

Electrochemical equilibria, binary solutions II,
88–89

Electrochemical factor, 167
Electronic excitations in pure solids, 41–42
Ellingham diagrams, 234–240

advantage, 243
chemical potentials, 238–240
subsidiary scales on, 244

Empirical equilibrium constant, 207–208
Energy, concept, 2
Enthalpy (H) concept, 9
Entropy (S), concept, 6
Equation of state (EOS), 4
Equations, thermodynamic, 8–9
Equilibrium state, 14–15

global equilibrium, 15
local equilibrium, 15

Equilibrium, systems at, 1
Equipartition of energy, 38
Euler’s equation/theorem, 72, 283–284
Eutectic phase diagrams, 132
Eutectic system, 144
Evaporation, in unary systems, 58
Excitations in gases, unary systems, 37–39
Extensive property, 4–5
Extent of reaction, 215, 225–227

Fe–O system, 248–2249
standard Gibbs energies of reaction, 248
T –xO phase diagram, 249
T–μO2 phase diagram, 249

Field–density phase diagrams, 125–127
Field–density type phase equilibria in unary

systems, 49–50
Field–field phase diagrams, 125–127
Field–field type phase equilibria in unary

systems, 49–50
First Law of thermodynamics, 5–6
Force, concept, 2
Formula matrix, 225
Frustration, 177
Fugacity, 29, 75
Fusion, in unary systems, 58

GaAs, preparation of, 145–146
phase diagrams, 145–146

Gases, 28–30
condensed phases, 29–30
perfect gases, 28
real gases, 28–29

Gibbs energy (G), 10, 168
changes in phase transformations, 57–59

Gibbs energy, total, 197–205
atomic size mismatch contributions, 199–202



INDEX 291

contributions from thermal excitations,
202–203

in empirical model calculations, 204–205
Gibbs’s phase rule, 61–62, 108–109, 151
Gibbs–Duhem equation, 30–31, 62, 72–73, 155
Gibbs–Konovalov equation, 150, 154–162

applications, 159–162
phase boundary slopes, 156, 158–159
slopes of T –xi phase boundaries, 156–159
slopes of T –μi phase boundaries, 155

Global equilibrium, 15
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Miscible solutions, 67
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Mole fraction, 67
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Perfect gases, 28

chemical potentials in, 74
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Peritectic phase diagrams, 132
Phase diagram topology, 149–162

combinatorial analysis, 151–152
Gibbs’s phase rule, 151
Gibbs–Konovalov equation, 154–162
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congruent melting points, 132
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density variables, 49
density–density type, 50
field variables, 49
field–density type, 49–50
field–field type, 49–50
phase changes, 54–59
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Phase equilibria in unary systems (contd.)
allotropic transformations, 58
evaporation, 58
fusion, 58
Gibbs energy changes, 57–59
slopes of boundaries in phase diagrams,

54–57
stability and critical phenomena, 59–61

spinodal curve, 60
thermodynamic condition for, 52–54

Phase equilibria
binary solutions II, 86–87
ternary systems, 260–264

miscibility gap system, 260–261
Phase rules, 149
application of, 217–218, 231–232

Phase stability map, 180
Planck postulate, 21
Polymorphism, 135
Pure solids, excitations in, 39–43

electronic, 41–42
magnetic, 42–43
thermodynamic properties, 43–46
vibrational, 39

Raoultian ideal solution, 80–81
Reaction calorimeters, 32
Reaction types, 149
Real gas mixtures, 75
Real gases, 28–29
Real solutions, 82–83
Redlich–Kister equation/polynomial, 98, 101,

115, 165, 257
Redlich–Kister–Muggianu (RKM) equation, 257
Regular solution, 99
Relative lattice stabilities, 58
Retrograde solubility, 154, 160
Richard’s rule, 58

Sackur–Tetrode equation, 39
Schreinemaker’s rules, 57, 149, 153
Second Law of thermodynamics, 6
Single chemical reaction equations, 207–218

empirical equilibrium constant, 207–208
equilibrium position calculation, 213–217
phase rule, application of, 217–218
standard equilibrium constant, 208–213

Solid alloys, 95–97
Solution models

I, 165–174
II, 177–187
III, 189–196
IV, 197–205

Solution phases, equilibrium between two
solution phases, 104–107

Solutions, 67
miscible solutions, 67
mutual solubility, 67
saturated solution, 67

Standard equilibrium constant, 208–213
effect of temperature, 210
measurement of �r G◦, 211–213
relation to �rG

◦, 208–211
Standard state properties, 19–27

standard element reference (SER) state, 24
standard enthalpies of formation, 21
standard entropies of formation, 20
standard heat capacities, 20
standard substance reference (SSR) state, 22

Stationary values under constraints, 284–287
Stirling’s approximation, 169
Strictly regular solution, 99

T − xi phase diagrams for, 128–135
Sublattice phases, 259–260
Substance calorimeters, 31
Substitutional solution phases, 165–169

analytical representation, 256–259
Kohler extrapolation, 257
Muggianu extrapolation, 257
Redlich–Kister polynomial, 257
Redlich–Kister–Muggianu (RKM)

equation, 257
Surroundings, concept, 2–4
Systems, concept, 2–4

adiabatic system, 2
closed system, 2
isolated system, 2
open system, 2
ternary systems, definition, 276–278

Temperature–composition diagrams, 125–135,
139–146

complex system, 144
density–density phase diagrams, 125–127
field–density phase diagrams, 125–127
field–field phase diagrams, 125–127
GaAs, preparation of, 145–146
simple eutectic system, 144
true phase diagrams, 126–128
two ideal solution phases, system with,

140–144
Ternary systems, generalized phase diagrams for,

267–278
binary, 267–268
field–density at a constant field, 274
μA versus μB at constant T, 271–272
special constraints in, 268
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system definition, 276–278
ternary, 268
three-dimensional phase diagrams, 274
T –μi under special constraint, 273
unary, 267

Ternary systems, thermodynamics of, 255–264,
See also Phase equilibria

analytical representation, 256–260, See also
Substitutional solution phases

liquid-phase/sublattice-phase equilibrium, 261
sublattice phases, 259–260
system with binary line compound phases, 263

Thermal disorder, 168
Thermal excitations, 202–203

coupling between configurational and, 203
Thermodynamic properties, 4–5

extensive, 4–5
intensive, 4–5

Third Law of thermodynamics, 7
Three-phase equilibria, 149
Ti–O system

temperature–composition diagram, 251
temperature–oxygen potential diagram, 251

Total molar quantity, 68–73
Tricritical point, 204
Triple point, 49
Trouton’s rule, 58
True phase diagrams, 126–128
Two-phase equilibrium I, theory, 103–110

Gibbs’s phase rule, 108–109
number of constraints on field variables, 108
number of independent variables, 109
total number of field variables, 108

solution phase and stoichiometric compound
phase, equilibrium between, 107–108

two specified phases, equilibrium between,
criterion for, 104–108

phase compositions, 106
phase fractions, 106
two solution phases, 104–107

Two-phase equilibrium II, calculations, 113–121
Al–Zn system, miscibility gap formation in,

115–116
appropriate solution-phase model, introducing,

115

Fe–Mo system, solution/solution-phase
equilibrium in, 117

Mg–Si system, solution/stoichiometric
compound phase equilibrium in,
118

reference states, selecting, 113–114
thermodynamic relations, introducing,

113
T − xi phase diagrams for strictly regular

solutions, 128–135
complete solubility phase diagrams, 132
eutectic phase diagrams, 132
monotectic, syntectic, and monotectic +

syntectic phase diagrams, 132
peritectic phase diagrams, 132
phase diagrams with maximum and minimum

congruent melting points, 132

Unary systems, thermodynamic properties
calculation, 35–46

constant-pressure/constant-volume
conversions, 36–37

excitations in gases, 37–39, See also Perfect
monatomic gas

inadequacies of the model, 46
Unary systems, thermodynamics, 19–32, See

also Standard state properties; Phase
equilibria

condensed phases, 29–30
experimental methods, 31–32
pressure, effect of, 27–30

Valence factor, 167
van der Waals equation, 59–60
Vibrational excitations in pure solids, 39
Volume fraction, 67

Water gas equilibrium, 246
Work, concept, 2–4

conventions, 3
related definitions, 11–13

Zero-point energy (ZPE), 41
Zeroth Law of thermodynamics, 5
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