

Flutter and Dart Cookbook
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

Rich Rose

Flutter and Dart Cookbook
by Rich Rose

Copyright © 2022 Richard Rose. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Development Editor: Jeff Bleiel
Production Editor: Jonathon Owen
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

Revision History for the Early Release
2022-03-24 First Release
2022-05-05 Second Release
2022-06-30 Third Release
2022-08-11 Fourth Release
2022-09-16 Fifth Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098119515 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Flutter
and Dart Cookbook, the cover image, and related trade dress are trademarks
of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not
represent the publisher’s views. While the publisher and the author have

http://oreilly.com/
http://oreilly.com/catalog/errata.csp?isbn=9781098119515

used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-098-11945-4

Chapter 1. Starting with Dart

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 1st chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

Building beautiful, multi-platform applications has never been easy. The
only constant has been the steep learning curve to understand and
implement the desired design. Enter Dart and Flutter from Google. The
combination of the Dart language and Flutter framework has established a
synthesis between function, style, and ease of use.

In this chapter we begin our journey by learning Dart fundamentals. Dart is
a feature-rich language that provides variables, data handling, control flow
and much more. Experience with languages such as JavaScript, Python and
C will mean your transition to Dart should not be difficult. If you are new to
programming, I believe you will be pleasantly surprised how quickly you
can produce an application.

The Dart and Flutter teams have provided a comprehensive treasure trove of
tutorials. Even better, the community working in these technologies have
raised the bar for immersive solutions and demonstrations to quickly get
you up to speed.

Over the course of this chapter, you will learn how to install the Dart
software development kit (SDK). Multiple options exist to run a Dart
environment so I will walk you through the most common options e.g.
DartPad, Android Studio and VS Code).

1.1 Determining which Dart installation to
use

Problem
You are unsure how to access the Dart software development kit (SDK).

Solution
Identify the platform on which you wish to use the Dart SDK.

Discussion
Dart can be used directly from the browser in a pre-defined environment
such as https://dartpad.dev.

Using Dart from the browser will be sufficient for a large number of
situations. If you intend to build a modest application and do not require
external dependencies e.g. graphics, files etc the browser environment will
be aligned with your use case.

If you already have an IDE environment such as VS Code or Android
Studio, use a plugin to add support for Dart/Flutter development.

Alternatively if you have the hardware to support it, the Dart SDK can be
installed locally on your device. In this instance, there are a number of steps
to fulfill prior to being able to start developing with Dart. Over the course
of this chapter the main options are discussed in further detail to get you
started. Personal preference will play a major part in the choice of
installation followed.

1.2 Running Dart in DartPad

Problem

You want to develop with the Dart SDK without installing additional
software.

Solution
Dart provides an online environment to test and run code. DartPad is an
excellent online editor that can be used through a browser to develop and
test your code. By using DartPad, you can quickly develop code and share
that with a selected audience e.g. dart.dev or flutter.dev. Go to
https://dartpad.dev and start to enter your code there.

Discussion
DartPad is a really powerful tool that you should consider irrespective of
which type of installation you have selected. Figure 1-1 shows how a
simple “Hello World” application would look in the DartPad interface.

https://dartpad.dev/

Figure 1-1. The DartPad interface

Starting DartPad presents a new instance ready to develop. The interface
presents a simple editor environment with a code editor, a console and
documentation windows. The code editor on the left hand side enables you
to start coding in an intelligent window. The editor constantly provides
feedback on helpful information for you to develop your code.

Once your code is ready to run, the output will be displayed in the console
window. In the above example our program output is shown. Note: DartPad
also works with Flutter applications, so you get the best of both worlds.

Another helpful feature is that there are a number of predefined sample
applications available that cover both Dart and Flutter. If you want to try the
Dart language you will find the samples will quickly demonstrate a variety
of use cases. The typical use case for DartPad is to quickly write small
sections of code that can be publicly shared using GitHub gists. When using
this approach the rendered output can then be accessed via a unique URL
associated with the gist.

1.3 Extending Android Studio to support Dart

Problem
You want to use Android Studio to build Dart applications.

Solution
Use Android Studio as an integrated developer environment (IDE).

To use Android Studio, you can simply select the Flutter or Dart plugin.
Doing this will add the desired functionality to the development
environment. Once selected, Android Studio will then go about configuring
your environment with defaults to use the necessary plugin.

Discussion
The main use case for Android Studio is developing Android based
applications. Adding support for Flutter and Dart is relatively easy via the
application interface. Instructions for Android Studio are documented at
https://docs.flutter.dev/development/tools/android-studio#installation-and-
setup

https://docs.flutter.dev/development/tools/android-studio#installation-and-setup

Despite the name, Android Studio can actually work with other languages.
The process of adding Flutter is available at the click of a button and is fully
integrated into the environment.

Once installed Dart/Flutter applications can be selected as the target
platform from project initiation. To get started, Android Studio will offer
access to Flutter templates as part of the user interface.

1.4 Developing with VS Code

Problem
You want to use VS Code to build Dart/Flutter applications.

Solution
Use VS Code as an integrated developer environment or IDE. If you choose
to work in this environment, adding Dart/Flutter is just a case of adding the
relevant extension. Instructions for VS Code are documented at
https://docs.flutter.dev/development/tools/vs-code

From within the editor, select the extension icon and search for Flutter.
Click the install icon to add both Flutter and Dart functionality.

Discussion
VS Code provides a low barrier to entry when working with Dart/Flutter.
The maintainers of this extension assume you will want both Dart and
Flutter, so the installation process invokes both.

Once the extensions are installed, you will be able to create a Dart
application within the environment. At this point, there will be some
additional elements added to the user interface. Specifically the ability to
run Dart directly from within the editor. In addition, VS Code will show
information based on the user context. When code is being developed, the
IDE will check on the validity of that code automatically. The code editor

https://docs.flutter.dev/development/tools/vs-code

will also render run/debug icons dynamically when code compiles without
errors. When you graduate to using Flutter, VS Code will seek to target a
particular device (e.g. web, android, iOS etc) based on your operating
system setup.

If you are already working within this environment, this will be a no brainer
to add this extension. In terms of updates, the environment will
automatically indicate when a new version is available and allow the update
to take place.

To uninstall the extension, you would select it and then choose the uninstall
option.

1.5 Installing the Dart SDK

Problem
You want to use the Dart software development kit (SDK) with another
Editor e.g. Emacs/VIM.

Solution
To develop using the Dart SDK outside of an IDE, will typically require
you to install the software. You can quickly gain access to by following the
instructions at https://dart.dev/get-dart. The SDK supports Linux (e.g.
Debian and Ubuntu), MacOS and Windows platforms. Up to date
instructions on the installation of the Dart SDK are available via the
dart.dev site.

Discussion
Performing an SDK installation directly to the operating system means the
SDK can be made accessible from any software running on your device. In
general performing an installation outside of an IDE is a more sophisticated
process. If your favorite editor is Vim or Emacs and you want to develop
with Dart, then this recipe is likely how you would want to proceed. If you

https://dart.dev/get-dart
https://dart.dev/get-dart

have another preference then you will need to investigate how best to
integrate with the Dart SDK.

For the majority of folks, using Android Studio or VS Code with plugins
may be preferable. Reference this recipe if you are wanting to directly
control the dart and flutter packages on a device.

1.6 Running a Dart application

Problem
You want to run a dart application.

Solution
Once the SDK is correctly installed, Dart code can be run within your
environment. Open a terminal session to allow the entry of commands. If
you are using an IDE, the terminal needs to be opened within that
application. Now confirm that Dart is installed on the device by checking
the version as shown below:
dart --version

If the command responds successfully, you should see the version of the
SDK installed as well as the platform you are running on. If the command is
unsuccessful, you will need to check the installation and path for your
device.

Now create a new file named `main.dart` and add the following contents:
void main() {
 print('Hello, Dart World!');
}

Run your example code from the command line as below:
dart main.dart

The above command should output the ‘Hello, Dart World!’

Discussion
The dart command is available as part of the Dart SDK installation. In the
above example, the command will run a file named main.dart. Dart
applications have the extension `.dart` and can be run either from the
command line or within an IDE (e.g. Android Studio or VS Code). Note:
Neither Android Studio or VS Code are pre-configured to include
Dart/Flutter functionality. You will need to install the relevant plugin prior
to being able to run any code.

If you don’t want to install Dart within your environment use the online
editor available at https://dartpad.dev/.

If you are unable to run the dart command, it’s likely that the SDK has not
been installed correctly. Use the latest installation instructions available at
https://dart.dev/get-dart to confirm the installation on your device.

1.7 Selecting a release channel

Problem
You need to run against a specific version of the SDK.

Solution
Install the Dart SDK, which is compatible with Windows, MacOS and
Linux (e.g. Debian and Ubuntu). Up to date instructions on the installation
of the Dart SDK are available via the dart.dev site.

Dart works with the operating system and enables code to be run via the
command line or an editor plugin.

Discussion
Release channels provide a mechanism to build code against a specific
version of the Dart SDK. The channels are:

https://dart.dev/get-dart
https://dart.dev/get-dart

Channel DescriptionChannel Description
Stable This channel is meant for production and is updated on a quarterly basis.

Beta This channel is meant for working with leading edge updates on a monthly basis.

Dev This channel is meant for bleeding edge with updates on a weekly basis.

Based on the above, I would suggest that you should be on the stable
channel for the majority of use cases. Unless you have a very good reason
to use another release channel, stable should be where you do the majority
of your development.

Chapter 2. Learning Dart
Variables

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

In this chapter, we focus on learning the basics of using variables in Dart.
As you might expect Dart offers a rich set of variable data types. To quickly
get up to speed in the language, it is vitally important to know the basic data
types.

If you are familiar with the use of variables in other programming
languages, understanding variables in Dart should not be too difficult to
grasp. Use this chapter as a quick guide to cement your understanding,
before moving on to move complex topics.

For beginners this chapter will introduce you to the fundamentals.
Ultimately it should offer a quick technical guide as you progress in your
journey to learn Dart/Flutter.

Across the chapter, the code examples are self contained and are focused on
a typical use case. We start by discussing the four main variable types (i.e.
int, double, bool and String) and how each is used. Finally we learn how to
let Dart to know what we want to do with our variables (i.e. Final, const and
null).

As of Dart 2.0 the language is type-safe, meaning that once a variable is
declared the type cannot be changed. For example if a variable of type
double is declared, it cannot then be used as an int without explicit casting.

2.1 Declaring an Integer variable

Problem
You want to store a number without a decimal point.

Solution
Use an integer variable to store a number without a decimal point.

If you want to store an integer value of 35, the declaration would be as
follows:
int demoIntegerValue = 35;

In the Dart language an integer uses the reference int In the above code
example, the data type e.g. int is the first part of the declaration. Next a
label is assigned to the data type to be used e.g. demoIntegerValue. Finally
we assign a value to the data type, in this example the value of 35.

Discussion
In the above example you begin by indicating the data type to be used, in
this case. int. Following that, we provide a variable name for the data type,
which in our example is demoIntegerValue. Finally we can optionally
assign a value to the named variable.

If a value is not assigned to the int variable, then the value cannot be
accessed. In this case, you would need to tell Dart how to handle this
situation. Reference recipe 2.8 working with Null.

The typical use case is a number that doesn’t require a decimal point (i.e.
precision). An integer is defined as a 64 bit integer number. The integer data
type is a subtype of num which includes basic operations e.g. +/- etc.

2.2 Declaring a Double variable

Problem
You want to store a number with a decimal point.

Solution
Use a double variable to store a number including a decimal point.

If we want to store a double value of 2.99, declare the following:
double demoDoubleValue = 2.99;

Similar to other variables, prefix the variable with the desired data type e.g.
double. The variable will then require a label to be assigned e.g.
demoDoubleValue. Finally assign a value to the data type, in this example
the value of 2.99.

Discussion
In the above example you begin by indicating the data type to be used, i.e.
double. Following that we provide a variable name (in our example,
demoDoubleValue) for double. The last part is optional, where we assign a
value to the named variable.

The typical use case for a double data type is a number requiring a level of
precision. A double data type is a 64 bit floating point number. Double is a
subtype of num which includes basic operations e.g. +/- etc.

2.3 Declaring a Bool variable

Problem
You want to store a true/false value.

Solution

Use a bool variable to store a true/false state.

Declare a Boolean variable using the keyword bool. Following the data type
declaration with a label for the variable name i.e. demoBoolValue. Finally
assign a value to the variable of either true or false.

Here’s an example of a how to declare a bool:
bool demoBoolValue = true;

Discussion
In the above example you begin by indicating the data type to be used, i.e.
bool. Following that we provide a variable name for the defined data type.
The last part is optional, where we assign a value to the named variable.

The use case for a bool is that of a true/false scenario. Note that true and
false are reserved words in Dart. A boolean data type includes logic
operations e.g. and/equality/inclusive or/exclusive or.

2.4 Declaring a String variable

Problem
You want to store a sequence of characters.

Solution
Use a String variable to store a series of text.

Here’s an example of a how to declare a String:
String demoStringValue = 'I am a string';

Discussion
In the above example you begin by indicating the data type to be used, i.e.
String. Following that we provide a variable name for the defined data type.
The last part is optional, where we assign a value to the named variable.

The typical use case for a String data type is collection of text. A String
data type uses UTF-16 code units. String is used to represent text characters
but due to encoding can also support an extended range of characters e.g.
emojis.

When using a string, you can use either a matching single or double quotes
to identify the text to be displayed. If you require a multiline text, this can
be achieved using triple quotes.

2.5 Using a Print statement

Problem
You want to display programmatic output from a Dart application.

Solution
Use a print statement to display information from an application. The print
statement can display both static (i.e. a string literal) and variable content.

Example 2-5. Example 1: Here’s an example of a how to print static
content:
void main() {

 print('Hello World!');
}

Example 2-6. Example 2: Here’s an example of a how print the content of a
variable:
void main() {
 int intVariable = 10;
 var boolVariable = true;

 print(intVariable);
 print('$intVariable');
 print('The bool variable is $boolVariable');
}

Example 2-7. Example 3: Here’s an example of a how print the complex
data type:

import 'dart:convert';
void main() {
 // Create JSON value
 Map<String, dynamic> data = {
 jsonEncode('title'): json.encode('Star Wars'),
 jsonEncode('year'): json.encode(1979)
 };

 // Decode the JSON
 Map<String, dynamic> items = json.decode(data.toString());

 print(items);
 print(items['title']);
 print("This is the title: $items['title']");
 print('This is the title: ${items['title']}');
}

Discussion
Use the `$` character to reference a variable in a print statement. Prefixing a
variable with the `$` tells Dart that a variable is being used and it should
replace this value.

The print statement is useful in a number of scenarios. Printing static
content doesn’t require any additional steps to display information. To use
with static content enclose the value in quotes and the print statement will
take care of the rest.

Printing a variable value will require the variable to be prefixed with the ‘$’
sign. Where Dart is being used to print content, you can tell the language
that you want the value to be displayed. In example 2 you see three
common ways to reference a variable in a print statement.

Example 3 illustrates a use case, you will come across where the variable
value needs a bit of help to be displayed correctly. Specifically in the last
two print statements:

String interpolation without braces
 print("This is the title: $items['title']");

String interpolation with braces
 print('This is the title: ${items['title']}');

The above statements look equivalent, but they are not. In the first print
statement Dart will interpret the variable to be displayed as items. To
display the variable correctly, it actually requires that it be enclosed in
braces, as per the second line. Doing this will ensure that the value
associated with items [‘title’] is correctly interpreted by the print statement.

Dart will provide feedback on whether a brace is required, typically it is
not. However, if you create a complex variable type, do check to ensure you
are referencing the element desired.

2.6 Using a Const

Problem
You want to create a variable that cannot be changed

Solution
Use a const to create a variable whose value cannot be reassigned.

Here’s an example of using a const variable:
void main() {
 const daysInYear = 365;

 print ('There are $daysInYear days in a year');
}

Discussion
In Dart, Const represents a value that will not change. Where a value is not
subject to change in an application, the Const keyword should be used.
Const indicates that the variable represents immutable data.

2.7 Using Final

Problem

You want to create a variable that cannot be changed, but you will not know
the value until runtime.

Solution
Use final to create a variable whose value cannot be reassigned. In contrast
to a const variable, a final variable value is assigned at runtime.

Here’s an example using a final variable:
void main() {
 final today = DateTime.now();
 print('Today is day ${today.weekday}');
}

Discussion
Final represents a value that needs to be determined at runtime and is not
subject to change. The final keyword is used in situations where a value is
derived at runtime (i.e. when the application is active). Again the value
assigned is immutable, however unlike a const value it cannot be known at
compile time.

In the code example, the day output by the print statement will be
determined when the application is run, so it will display based on the
actual weekday available on the host machine.

2.8 Working with Null

Problem
You want to assign a variable a default value of null.

Solution
Use null to apply a consistent value to a declared variable. Null is an
interesting concept as it is meant to represent the absence of content.
Typically a null value is used to initialize variables that do not have a

default value to be assigned. In this instance null can be used to represent a
variable that has not explicitly been assigned a value.

Here’s an example of how to declare a variable as null in Dart:
void main(){
 int? ten = null;
 print ('ten: $ten');

 ten = 10;
 print ('ten: $ten');
}

Discussion
Note: As of Dart v2.0 null type safety is now the default, meaning it is no
longer possible to assign null to all data types.

In Dart, Null is also an object which means it can be used beyond the
simple `no value` use case. To assign a null to a data type, it is expected that
the ? type is appended to the data type to explicitly indicate a value can also
be null.

More recent versions of the Dart SDK also require explicit
acknowledgement of whether a data type is nullable or non nullable.

For further information consult the Null class reference in the dart API (i.e.
https://api.dart.dev/stable/2.14.4/dart-core/Null-class.xhtml)

https://api.dart.dev/stable/2.14.4/dart-core/Null-class.xhtml

Chapter 3. Exploring Control
Flow

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

Control flow relates to the way instructions will be executed in an
application. Typical logic flows exist such as conditional and looping flows
used to determine the instructional processing order. Dart provides a
number of methods to manage how the application operates and coordinates
based on this decision flow.

If you have used other languages such as Python, JavaScript etc, then you
will be very familiar with the content covered in this chapter. For those of
you who are new to development, this chapter is super important! Control
flow statements are common across most languages you will be exposed to.
Part of learning a language is the ability to incorporate these types of
statements.

In this chapter, you will learn how to use control flow to incorporate logic
in your application. You’ll also see use cases for each statement. Many of
the flows include a condition statement which is used to dictate what
actions are taken. Pay special attention to these conditions and look to
efficiently use control flow within your application.

3.1 Using an If statement

Problem
You want to provide a logical check on a condition before executing an
instruction.

Solution
Use an if statement, to provide a control statement for a binary option. An If
statement provides a step to confirm that a logic statement is valid.

If there are multiple options consider using a `switch` statement. (reference
recipe 3.4 Using a Switch statement)

This example shows how to use the if condition. The if statement is used to
check the value of a bool variable. If the bool variable is set to `true` then
the first message is displayed. If the bool variable is set to `false` an
alternative message is displayed.
void main() {
 bool isFootball = true;
 if (isFootball) {
 print('Go Football!');
 } else {
 print('Go Sports!');
 }
}

Discussion
Working with an IF statement allows control over the logic progression
within an application. Control flow of this type is essential to building
applications and provides a simple mechanism to select between choices

Note: in the example, the `if` statement validation is implicit, meaning it is
checking if the value assigned is true.

The typical use case for an `if` statement is to make a choice between two
or more options. Ideally if you have two options, this type of control flow is
ideal.

3.2 Using While/Do While

Problem
You want a method to loop until a condition is satisfied within an
application.

Solution
Use a While loop when you need the entry condition to be validated at the
start of the control flow. Note: the loop check is performed at the start of the
loop condition. A While loop therefore has a minimum of zero iterations
and a max iteration of N.

Here’s an example of a while loop control flow:
void main() {
 bool isTrue = true;

 while (isTrue) {
 print ('Hello');
 isTrue = false;
 }
}

Use a Do While loop when you need the loop to be executed a minimum of
one iteration. With this control structure the condition is validated at the end
of each iteration.

Here’s an example of a control flow: do while loop
void main() {
 bool isTrue = true;

 do {
 print ('Hello');
 isTrue = false;
 } while (isTrue) ;
}

Discussion

The key nuance to observe from these examples is the nature of execution
and what that means for processing of the control flow.

In the while loop example, the demo application will only output a value
when the bool variable is set to `true`. The do while loop example will
output a print statement irrespective of the initial value of the isTrue
variable.

A while loop will test a condition before executing the loop, meaning you
can use this to perform 0..N iterations. A typical use case would be where a
variable is used to control the number of iterations performed.

In a `do while` statement the typical use case would be where there is at
least a single loop iteration. If the situation requires a single iteration then
using this type of control flow is a good choice.

3.3 Using a For statement

Problem
You want a method to loop through a defined range of items.

Solution
Use a For statement to perform a defined number of iterations within a
defined range. The specific range is determined as part of the initialisation
of the `for` statement.

Here’s an example of a for statement:
void main() {
 int maxIterations = 10;
 for (var i = 0; i < maxIterations; i++) {
 print ('Iteration: $i');
 }
}

In addition where you have an iterable object, you can also use forEach:
void main() {
 List daysOfWeek = ['Sunday', 'Monday', 'Tuesday'];

 daysOfWeek.forEach((print));
}

Discussion
A `for` statement can be used for a variety of use cases, such as performing
an action an exact number of times (e.g. initializing variables).

As the second example shows, a forEach statement is a very useful
technique to access information within an object. Where you have an
iterable type (e.g. the List object), a forEach statement provides the ability
to directly access the content. Appending the forEach to the List object,
enables a shortcut in which a print statement can be directly attributed to
each item in the list.

The typical use case for a `for` statement is to perform iterations where a
range is defined. It can also be used to efficiently process a List or similar
data type in an efficient manner.

3.4 Using a Switch statement

Problem
You want to perform multiple logical checks on a presented value.

Solution
Use a Switch statement where you have multiple logic statements. Typically
where multiple logical checks are required the first control flow to come to
mind might be an `if` statement (which we saw in Recipe 3.1). However it
may be more efficient to use a `switch` statement.

Here’s an example of a switch statement:
void main() {
 int myValue = 1;

 switch (myValue) {
 case 1: print('Monday');

 break;
 case 2: print('Tuesday');
 break;
 default:
 print('Error: Value not defined?');
 break;
 }
}

Discussion
A switch statement can present better readability than multiple `if`
statements. In most cases where the requirements need a logical check, the
switch statement may be a more efficient choice.

Note: In the above code, the switch statement has two valid choices i.e. 1 or
2. You can imagine expanding this code to incorporate more choices. In this
instance, the switch statement will render the default statement where the
relevant value has not been added. That is any other choice is sent to the
default option which acts as a clean up section. Incorporating explicit
statements is helpful to reduce errors in processing of information.

3.5 Using an Enum

Problem
You want to define a grouping of constant values to use within an
application.

Solution
Use an enum (enumerator) to provide a grouping of information that is a
consistent model for associated data.

Here’s an example of declaring and printing the values associated with the
enum:
enum Day { sun, mon, tues }
void main() {

 print('$Day.values');
}

Here’s an example of declaring and printing the enum reference at index
zero:
enum Day { sun, mon, tues }
void main() {
 print('${Day.values[0]}');
}

Here’s an example of declaring and using a list assignment:
enum Day { sun, mon, tues }
void main() {
 List<Day> daysOfWeek = Day.values;
 print('${daysOfWeek[0]}');
}

Discussion
In the third example above, an enum is defined for the days of the week.
When the print command is run, the debug output shows the values
associated with the enum i.e. “sun”, “mon”, “tues”. Enum is indexed,
meaning each item declared has a value based on its position.

An enum (or enumeration) is used to define related items. Think of an enum
as an ordered collection, for example days of the week, months of the year.
In the examples the order can be transposed with the value e.g. the first
month is January or the twelfth month is December.

The use of a list in the above example provides an opportunity to increase
the readability of code.

3.6 Handling Exceptions

Problem
You want to provide a way to handle error processing within an application.

Solution

Use the `try`, `catch` and `finally` blocks to provide exception management
in Dart.

Here’s an example of how to handle exceptions in Dart:
void main(){
 String name = "Dart";

 try{
 print ('Name: $name');
 // The following line generates a RangeError
 name.indexOf(name[0], name.length - (name.length+2));
 } catch (exception) {
 print ('Exception: $exception');
 } finally {
 print ('Mission completed!');
 }
}

Discussion
The example code defines the relevant sections and sets up a String to hold
the work `Dart`. To generate an exception the indexOf method is used with
an invalid range (i.e. one greater than the length of the name String). An
exception will then be displayed indicating a `RangeError`.

A try block is used for normal processing of code. The block of code will
continue executing until an event indicates something abnormal is
occurring.

A catch block is used to handle processing where an abnormal event occurs.
Using a catch block provides an opportunity to safely recover or handle the
event that took place.

A finally block is used to perform an action that should take place
irrespective of whether code is successfully executed or generates an
exception. Typically a finally block is used for clean up e.g. to close any
open files etc. In addition it will output a message to indicate the processing
has been completed irrespective of the exception occurring.

Exception management is certainly a type of control flow although not in
the traditional sense. Adding exception management will become ever more
important to your application as it increases in complexity.

Chapter 4. Implementing
Functions

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

In this chapter, we will move beyond the fundamentals of Dart, and
introduce functions. As you may have noticed we have already used a
number of functions already (e.g. main and print). During this chapter we
will explore the main use cases for using functions.

Building more complex applications will certainly require developers to
progress beyond simple constructs. At a minimum an awareness of some
essential concepts and algorithms is desirable. Over the course of this
chapter learn the foundations of code isolation.

The main use cases for functions is to group instructions. The chapter
begins by illustrating how to define a basic function without parameters or a
return value. In most situations, this is not the pattern you will want to use.
However for learning purposes it has been included. Beyond this you will
be introduced to parameters and return values. At this point, hopefully it
will become clearer why adding parameters and return values is so powerful
and the desired pattern to follow.

Towards the end of the chapter you will see examples of other ways to use
functions. You’ll discover that, as your skills grow as a developer, so will
your use of functions.

4.1 Declaring Functions

Problem
You want a common group name for instructions that perform a specific
task.

Solution
Declare a function. In the following example, the getCurrentDateTime
function is used to print out a date/time value.
void main() {
 getCurrentDateTime();
}
void getCurrentDateTime() {
 var timeLondon = DateTime.now();
 print('London: $timeLondon');
}

Discussion
In the above example a function named getCurrentDateTime is defined.
Note that the function is declared as requiring no parameters, and a void
return.

Here the function’s only job is to print out the current date and time.

In the real world, it doesn’t have input parameters or a return value, which
means this type of function has limited use.

4.2 Adding parameters to Functions

Problem
You want to pass variable information to a function.

Solution

Use a parameter to pass information to a function. In the following
example, a parameter is provided to a function as used as part of the control
flow

void main() {
 getCurrentDateTime(-7);
}
void getCurrentDateTime(int hourDifference) {
 var timeNow = DateTime.now();
 var timeDifference = timeNow.add(Duration(hours:
hourDifference));

 print('London: $timeNow');
 print('New York: $timeDifference');
}

Discussion
In the above example, the parameter provided to the function is used to
determine an action. The function is used to determine the time in New
York by using the current time in London.

Given we have added a parameter value to the function, we can now state
the number of hours difference required. Doing this has made the function
more applicable to a wider series of use cases. However because the
function doesn’t return the value, the function isn’t as flexible as it could
be.

Using parameters enhances the flexibility of a function by adding a
variable. The addition of variables to the function signature makes the
function more general in nature. Creating generalized functions in this way
is a good approach to reduce the amount of code that needs to be created for
a task.

4.3 Returning values from Functions

Problem

You want a common group name for instructions that returns a computed
value.

Solution
Use a named function that computes a value and return this to the calling
method. is a common mechanism for grouping instructions together.

Here’s an example of declaring a function that returns a value:
void main() {
 DateTime timeLondon = getCurrentDateTime(0);
 DateTime timeNewYork = getCurrentDateTime(-7);

 print('London: $timeLondon');
 print('New York: $timeNewYork');
}
DateTime getCurrentDateTime(int hourDifference) {
 DateTime timeNow = DateTime.now();
 DateTime timeDifference = timeNow.add(Duration(hours:
hourDifference));

 return timeDifference;
}

Discussion
In the above example the function named getCurrentDateTime is enhanced
to return a value. The function is declared to accept parameters and return a
value. Now we have a more generic function that can be utilized in a wider
series of settings.

In this instance, the function accepting parameters means you are able to
provide different hour values. The function only knows that it should accept
an int value representing the number of hours to be used. From the example
we see we make two calls to the function to initialize the London time with
a zero hours difference, followed by New York with negative 7 hours.

The return value from the getCurrentDateTime function presents a Datetime
object. By capturing the return value, you can output the relative date time
combination.

Note how we have reused the function to be invoked with an integer
parameter and then return a DateTime object. Dart provides the opportunity
to create simple functionality like this to help with your development.
Having a rich set of methods associated with the class objects like
DateTime saves an enormous amount of development time.

4.4 Declaring Anonymous functions

Problem
You want to enclose an expression within a function.

Solution
Declare an anonymous function to perform a simple expression. Often a
function only requires a single expression, in which case an anonymous
function can provide an elegant solution.

Here’s an example of how to use an anonymous function:
void main() {
 int value = 5;
 int intSquared(value) => value * value;
 int intCubed(value) => value * value * value;
 print('$value squared is ${intSquared(value)}');
 print('$value cubed is ${intCubed(value)}');
}

Discussion
In the example, a function to square a number is required. The algorithm
requires the input to be multiplied without any additional steps. In this case,
an anonymous function provides a good way to simplify the declaration.

Anonymous functions use the `=>` to indicate a function. Prior to the
function, a variable is declared to hold the result from the function. Note:
the variable can include parameters by adding these within the bracket
declaration. In the example, the anonymous function accepts an integer and
this is used within the function declaration. An explicit return is used to

assign the value of the function back to the variable (i.e. the result of
multiplier * multiplier is stored in the variable intSquared).

4.5 Using optional parameters

Problem
You want to vary the number of parameters to a function.

Solution
Provide an optional parameter. Dart supports optional parameters that
enable values to be omitted. Two distinct types of optional parameters are
available i.e. Named and Positional.

Here’s an example of how to use named parameters:
void main() {
 printGreetingNamed();
 printGreetingNamed(personName: "Rich");
 printGreetingNamed(personName: "Mary", clientId: 001);
}
void printGreetingNamed({String personName = 'Stranger',
 int clientId = 999}){
 if (personName.contains('Stranger')) {
 print('Employee: $clientId Stranger danger ');
 } else {
 print('Employee: $clientId $personName ');
 }
}

Here’s an example of how to use positional parameters:
void main() {
 printGreetingPositional("Rich");
 printGreetingPositional("Rich", "Rose");
}
void printGreetingPositional(String personName, [String?
personSurname]){
 print(personName);
 if (personSurname != null){
 print(personSurname);
 }
}

Discussion
Dart provides additional flexibility for the use of parameters to functions.
Where parameters can be omitted it can be useful to consider the use of
optional parameters.

Named parameters provide the ability to include named variables within the
function declaration. To use this type of parameter, include braces to define
the necessary values to be presented. In the first example optional
parameters are used to pass across a name and clientId. If the function is not
supplied with the information it will still operate as expected by defaulting
to a value. Default values can be supplied if it is necessary to provide a
value and perform specific logic e.g. “int clientId = 999”.

Positional parameters perform similar to normal parameters with the
flexibility to be omitted as necessary. In the example the second parameter
is defined as a positional parameter using the square brackets. Additionally
Dart allows the variable to be defined as a potentially null value by the
inclusion of the `?` character.

Both named and positional parameters offer increased flexibility to your
functions. You can use them in a variety of scenarios where parameters are
needed (for example, in a person object where firstname and surname are
mandatory, but the middle name is optional).

Chapter 5. Handling Maps and
Lists

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 5th chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

In this section the fundamentals of data handling is outlined. The aim of this
chapter is to cover Lists and Maps that are used to provide foundational
data structures for information handling in Dart.

If you are lucky enough to be familiar with other languages, then many of
the concepts presented should be familiar. However if this is the first time
seeing these techniques, the example pieces of code are self contained. It
would be helpful to run and experiment with the examples to gain a feel of
the workings of the language. Over the course of this chapter learn how to
utilize maps and lists within your application.

5.1 Using a Map to handle objects

Problem
You want to handle a key/value pair in a Dart application.

Solution

Use a Map to handle key/value objects of any type. Map keys are required
to be unique as they act as the index to access Map values. Map values are
not required to be unique and can be duplicated as required.

Here’s an example of how to declare a Map in Dart:
void main() {
 Map<int, dynamic> movieInformation = {0: 'Star wars'};

 // Add element to Map
 movieInformation[1] = 'Empire Strikes Back';
 movieInformation[2] = 'Return of the Jedi';

 // Loop through Map
 movieInformation.keys.forEach(
 (k) => print('Key: $k, Value: ${movieInformation[k]}')
);

 // Show the keys
 print('Keys: ${movieInformation.keys}');

 // Show the values
 print('Values: ${movieInformation.values}');

 // Remove element from map using the key
 movieInformation.remove(0);

 // Loop through Map
 movieInformation.keys.forEach(
 (k) => print('Key: $k, Value: ${movieInformation[k]}')
);

 // Check if a key exists
 print('Key 1 exists: ${movieInformation.containsKey(1)}');
 print('Value Star Wars exists:
${movieInformation.containsValue('Star Wars')}');
}

Discussion
In the code example, a Map is used to define a collection of data based on
series order and film name. A construct of this type is very useful when
combining pieces of information together.

Declaration of the Map follows a standard variable declaration. Note: Map
is actually a function call so requires braces. To populate the Map, define a

key (e.g. movieInformation[0]) and then assign a value to the key (e.g. Star
Wars). The assignment of values can be made in any order, just be careful
not to duplicate the keys.

To access the information within the Map, use the Map function. Map has a
number of methods available that can be used to access the associated data
items held within the Map. In this instance to loop through each item, the
key is used to access the forEach method. An anonymous function is then
used to print the details of each movie stored in the map.

5.2 Retrieving Map content

Problem
You want to assign a Map value to a variable

Solution
Use a variable in conjunction with a Map to reference an indexed item. Map
values are referenced as key/value combinations which can be assigned to a
variable for easier access.

Here’s an example of retrieving a Map value and assigning it to a variable
with Dart:
void main() {
 Map starWars = {"title": "Star Wars", "year": 1977};
 Map theEmpireStrikesBack = {"title": "The Empire Strikes Back",
"year": 1980};
 Map listFilms = {"first": starWars, "second":
theEmpireStrikesBack};
 Map currentFilm = listFilms['first'];
 String title = currentFilm['title'];
 int year = currentFilm['year'];
 print (title);
 print (year);
}

Discussion

In the code example, the value within the Map structure is accessed via its
key,and the key is ‘title’. When a value is required, we provide the key to
index the map to retrieve the desired value.

You can see in the above code that where we have a more complex data
construct being able to dereference a variable reduces complexity. In the
example code, listFilms is a complex data type in which we assign a key
e.g. ‘first’ and the value is represented by another Map. To uniquely
reference a Map value we again use the key. A more convenient method to
access a Map value is shown with the title and year variables. Now rather
than accessing the Map object, you can use the direct data type to perform
an additional action e.g. print the variable value.

5.3 Validating key existence within a Map

Problem
You want to confirm a key exists in a Map

Solution
Use the indexing functionality of a Map to identify if a key explicitly exists.

Here’s an example of validating that a key exists in a Map with Dart:
void main() {
 Map starWars = {"title": "Star Wars", "year": 1977};
 Map theEmpireStrikesBack = {"title": "The Empire Strikes Back",
"year": 1980};
 Map listFilms = {"first": starWars, "second":
theEmpireStrikesBack};
 if (listFilms['first']==null) {
 print ('Key does not exist');
 } else {
 print ('Key exists!');
 }
}

Discussion

Maps are indexed using key values, so validating the existence of a key can
quickly be performed. To find a key, use the required key to index the Map.

In the example the Map will return a null value where the key is not present
in the Map. If the key exists in the Map, the information returned will be the
value associated with the key.

5.4 Working with Lists

Problem
You want a way to use an array of values within a Dart application.

Solution
Use a list to organize objects as an ordered collection. A List represents an
array object that can hold information. It provides a simple construct that
uses a zero indexed grouping of elements.

Here’s an example of how to use a List in Dart:
void main() {
 List listMonths = ['January', 'February', 'March'];
 listMonths.forEach(print);
}

Discussion
Lists are very versatile and can be used in a variety of circumstances. In the
above example, a list is used to hold the months of the year. The List
declaration is used to hold a String, but it can actually hold a variety of data
types making this object extremely flexible.

A List is denoted by using square start and end brackets that indicate the
values are defined within the square braces. The length of the List is
available as a method which identifies how many elements have been
declared. Note the list is indexed from zero so if you intend to manually
access elements, you will need to use zero if you want the first element.

Another nice feature of Lists is that it includes a range of methods to handle
processing information. In the example, the forEach method is used to
perform a print of the elements contained in the list.

5.5 Adding List content

Problem
You want to add new content to an existing List

Solution
Use the list add method to incorporate new content into a List. Lists support
the dynamic addition of new elements and can be expanded as required.

Here’s an example of how to add a List element in Dart:
void main() {
 List listMonths = ['January', 'February', 'March'];
 listMonths.add('April');
 listMonths.forEach(print);
}

Discussion
In the above example, a List is defined with three elements. If you want to
expand the number of elements, this can be done by using the add method.
The add method will append the new element at the end of the List.
Therefore in the example you would see the month’s output as ‘January’,
‘February’, ‘March’, ‘April’.

The dynamic nature of a List makes it perfect for multiple situations where
data structure manipulation is required. You will see Lists used across a
number of situations to handle a variety of data types.

5.6 Using Lists with complex types

Problem
You want to make an array of complex data types.

Solution
Use Lists to organize other data. Lists can be especially useful for handling
other data structures such as Maps.

Here’s an example of how to use a List with complex data types in Dart:
void main() {
 Map<String, dynamic> filmStarWars = {"title": "Star Wars",
 "year": 1977};
 Map<String, dynamic> filmEmpire = {"title": "The Empire Strikes
Back",
 "year": 1980};
 Map<String, dynamic> filmJedi = {"title": "The Return of the
Jedi",
 "year": 1983};
 List listFilms = [filmStarWars, filmEmpire, filmJedi];
 Map<String, dynamic> currentFilm = listFilms[0];
 print(currentFilm);
 print(currentFilm['title']);
}

Discussion
In the example, film data is added to a Map that encloses title and year
information. Here we use a List to manage the individual Maps, so the
individual elements can be combined. The resultant List provides a
convenient data structure for accessing the information to be stored.

To access the information you need to dereference the variable. The
listFilms[0] means to access the first element in the list. As each element is
a Map, you now have the data associated with this. Use the dereferenced
value to store in a new variable currentFilm, which can be accessed directly
or with a key.

Using Lists can provide an elegant method to access complex data types in
a consistent manner. If you need to coordinate data types, consider using a
List to make this process more manageable.

Chapter 6. Leveraging Classes

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 6th chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

In this chapter, we introduce Classes and how these can be used together
with Dart. Over the course of the chapter you will explore both declaration
and extension of objects. These techniques are important and will provide a
good reference as your Dart skills increase over time.

The chapter covers how to incorporate a Class which represents a basic
requirement for object oriented programming. In addition we also cover the
need for constructors, extending classes and using multiple classes together.

As your development becomes more sophisticated, you will be able to
utilize custom classes to achieve your requirements. Becoming efficient
with Classes is a steep learning curve, so take small steps. Overtime, you
will naturally improve and be able to incorporate very complex subject
matter into your general solutions.

6.1 Defining Classes

Problem
You want to create an object that allows both functions and variables to be
invoked via a common method.

Solution
Use a class to collate information into a new object providing both variable
storage and functionality to process information. Here’s an example of how
to declare a class in Dart:
const numDays = 7;
class DaysLeftInWeek {
 int currentDay = DateTime.now().weekday.toInt();
 int howManyDaysLeft(){
 return numDays - currentDay;
 }
}
void main() {
 var currentDay = DaysLeftInWeek();

 print ('Today is day ${currentDay.currentDay}');
 print ('We have ${currentDay.howManyDaysLeft()} day(s) left in
the week');
}

Discussion
Dart is an object oriented language and has the Object class for all Dart
Objects except null. The result is that a non-nullable object is a subclass of
Object.

In the example the class is used to determine how many days are left in the
week. The declaration uses `class` to denote the definition that follows
including elements for both variables and functions.

To use the class, declare a variable e.g. currentDay to instantiate the class.
Now the variable currentDay is able to access both the variable and
functions associated with the class. The print statements demonstrate how
to access a variable and a function to access the underlying data.

6.2 Using Class Constructors

Problem
You want to initialize defaults within the class.

https://api.dart.dev/stable/2.14.4/dart-core/Object-class.xhtml

Solution
Use a class constructor to perform initialization of the object instance. The
initialization can be used to set sensible defaults to class values.

Here’s an example1 of how to declare and use a Class constructor:
const numDays = 7;
class DaysLeftInWeek {
 int currentDay = 0;

 DaysLeftInWeek(){
 currentDay = DateTime.now().weekday.toInt();
 }

 int howManyDaysLeft(){
 return numDays - currentDay;
 }
}
void main() {
 var currentDay = DaysLeftInWeek();

 print ('Today is day ${currentDay.currentDay}');
 print ('We have ${currentDay.howManyDaysLeft()} day(s) left in
the week');
}

Discussion
In the example the class is used to determine how many months are left in
the year. The declaration uses `class` to denote the definition that follows
includes elements for both variables and functions.

Within the class DaysLeftInWeek, note there is a function defined with the
same name as the class. A constructor takes the same name as the class and
will be called on instantiation of the class. In this instance the constructor
sets the class variable currentDay with the value of today’s date.

To instantiate the class, in the main function, a variable currentDay is
declared. The variable is now set to the class construct and has access to
both the variables and associated methods of the DaysLeftInweek class.

6.3 Extending Classes

Problem
You want to enhance an existing class by introducing additional
functionality.

Solution
Use a class with extends to incorporate new functionalities. When using
extends, this creates a subclass for existing class functionality. As an object
oriented language Dart provides extensive class support in each new
release.

Here’s an example of how to extend a class in Dart:
class Media {
 String title = "";
 String type = "";

 Media(){ type = "Class"; }

 void setMediaTitle(String mediaTitle){ title = mediaTitle; }

 String getMediaTitle(){ return title; }

 String getMediaType(){ return type; }
}
class Book extends Media {
 String author = "";
 String isbn = "";

 Book(){ type = "Subclass"; }

 void setBookTitle(String bookTitle){ title = bookTitle; }

 void setBookAuthor(String bookAuthor){ author = bookAuthor; }

 void setBookISBN(String bookISBN){ isbn = bookISBN; }

 String getBookTitle(){ return title; }

 String getBookAuthor(){ return author; }

 String getBookISBN(){ return isbn; }
}
void main() {
 var myMedia = Media();

 myMedia.setMediaTitle('Tron');
 print ('Title: ${myMedia.getMediaTitle()}');
 print ('Type: ${myMedia.getMediaType()}');

 var myBook = Book();
 myBook.setBookTitle("Jungle Book");
 myBook.setBookAuthor("R Kipling");
 print ('Title: ${myBook.getMediaTitle()}');
 print ('Author: ${myBook.getBookAuthor()}');
 print ('Type: ${myBook.getMediaType()}');
}

Discussion
When using a subclass it is possible to override existing class functionality
e.g. methods, etc.

In the code example, the Media class is extended through the Book
subclass. The book subclass extends the Media class meaning it can access
the methods and variables instantiated within it.

Using extends is a useful approach where there are similar data structures
available that potentially need slightly different methods. In the example the
Media class is a generic abstraction that is set up to hold base information.
The Book class is a specialization of the Media class offering the ability to
add book specific information.

6.4 Extending Classes with Mixins

Problem
You want to extend an existing class with functionality from multiple class
hierarchies.

Solution
Use `mixins` when requiring functionality from multiple classes. Mixins are
a powerful tool when working with classes and allow information to be
incorporated from multiple classes.

Here’s an example of how to use a Mixin:
abstract class SnickersOriginal {
 bool hasHazelnut = true;
 bool hasRice = false;
 bool hasAlmond = false;
}
abstract class SnickersCrisp {
 bool hasHazelnut = true;
 bool hasRice = true;
 bool hasAlmond = false;
}
class ChocolateBar {
 bool hasChocolate = true;
}
class CandyBar extends ChocolateBar with SnickersOriginal {
 List<String> ingredients = [];

 CandyBar(){
 if (hasChocolate){
 ingredients.add('Chocolate');
 }
 if (hasHazelnut){
 ingredients.add('Hazelnut');
 }
 if (hasRice){
 ingredients.add('Hazelnut');
 }
 if (hasAlmond){
 ingredients.add('Almonds');
 }
 }

 List<String> getIngredients(){
 return ingredients;
 }
}
void main() {
 var snickersOriginal = CandyBar();
 print ('Ingredients:');
 snickersOriginal.getIngredients().forEach((ingredient) =>
print(ingredient));
}

Discussion
Mixins require the use of the `with` keyword. The base class should not
override the default constructor.

Define an abstract class to include the relevant markers for the object to be
created. In the example, the class denotes the key ingredients of a candy
bar. In addition a chocolate bar class is created that can be used to hold the
specifics of the object.

Using a mixin allows the subclass object to incorporate a lot more
functionality without having to write specific code. In the example, a
combination of multiple classes is used to define the nature of the subclass.
The general ingredients can then be listed by validating the general
ingredients for the candy bar.

6.5 Importing a package

Problem
You want to incorporate functionality derived from a library.

Solution
Use a package to incorporate pre-existing functionality into a Dart
application.

Import statements enable external packages to be used within a Dart
application. To utilize a package within an application, use the `import`
statement to include the library.

Dart has a feature-rich set of libraries, which are packages of code for a
particular task. These libraries are published on sites such as
https://pub.dev/. Use the package repository to find and import packages for
a specific task to reduce development time.

Here’s an example to use an import in Dart:
import 'dart:math';
void main() {
 // Generate random number between 0-9
 int seed = Random().nextInt(10);

 print ('Seed: $seed');
}

https://pub.dev/

Discussion
In the above example code, we are importing the dart:math library. Dart
uses the pub package manager to handle dependencies. The command line
supports downloading of the appropriate package and some IDEs also
provide the ability to load information. In the example shown, `dart:math` is
bundled with the SDK, so it does not need additional dependencies to be
added.

Where an external package is used, a pubspec.yaml file will need to be
defined to indicate information about the package to be used. A
pubspec.yaml file is metadata about the library being used. The file uses
yaml format and enables dependencies to be listed in a consistent manner.
For example the `google_fonts` package would use the following
declaration in the pubspec.yaml definition.
dependencies:
 google_fonts: ^2.1.0

In the Dart source code, the import statement can then reference the
package.
import 'package:google_fonts/google_fonts.dart';

In the above example, the keyword `this` has been omitted from the currentDay variable
assignment. Dart best practice indicates the keyword `this` should be omitted unless required.

1

Chapter 7. Introducing the
Flutter Framework

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 7th chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

In this chapter, we begin our journey with the Flutter Framework, and focus
on some of the fundamentals of Flutter.

When beginning with Flutter it is important to cover the fundamentals. For
me the best place to start a Flutter application is a diagram of how your
application will look and operate. The Flutter team has your back as they
provide a wide range of templates to get you started coding your
application. Once we have a starter code, it’s time to understand the
difference between stateful and stateless widgets, which will be a continual
question as you build out your designs.

We take a brief moment to look at refactoring widgets. Adding complexity
to your applications will mean this activity will be something you will
iterate on multiple times. Refactoring your code is a skill that I highly
recommend to avoid bugs and aid general performance. Thankfully Flutters
ability to create ever more complex interfaces, means this investment in
time really pays off.

7.1 Mocking an interface

Problem
You want a way to mock an interface to understand layout before creating a
Flutter application.

Solution
Use a graphics package to design your application. Depending on your
budget and use case, the following options may prove helpful.

Product Link Price Description
Excalidraw https://excalidraw.com/ Free A general web based graphic design

tool.

Figma https://www.figma.com/ Free/Paid A shared design and build solution
for applications.

FlutterFlow https://flutterflow.io/ Free/Subscription Interactive UI templates and
components that generate the Flutter
code.

Discussion
Mocking an interface is an excellent way to get started with a visual
framework like Flutter. There are many ways to design an interface ranging
from free online tools to dedicated applications specifically created for
Flutter.

When creating a mock of an application, I aim to capture the interface from
the perspective of widgets to be used. Doing this makes it easier to build
certain designs. If you are dealing with more complex designs, building an
understanding of the application demands leads to a cleaner interface and
design aesthetic.

Figure 7-1 is an example output using Excalidraw of the first Flutter
application I created.

Figure 7-1. Example Excalidraw drawing

In the diagram, I include the functionality and screen transition required.
Breaking down the interface is a good way to learn how the various widgets
interact. Also learning the correct terminology for widgets, etc helps to find
the appropriate solution. While the application is not very sophisticated, it
did help me to learn the fundamentals of widget construction using Flutter.

From the diagram you should be aware that this type of interface is very
common among Flutter applications. Learning to incorporate a ListView is
essential as is handling gestures and navigation. Each of these patterns is
covered in this chapter and can act as a reference for future
implementations.

7.2 Creating a Flutter project

Problem
You want to create a new Flutter application based on a template.

Solution
Use a Flutter template to start your application. You don’t have to start from
scratch, because Flutter provides a range of application templates. There are
a number of different templates available that provide a basic setup.

In more recent versions of the Flutter framework, templates have been
improved to include the following templates:

Type Description
app This is the default for flutter create and is used to generate a Flutter application.

module This option will enable you to create a module that can be integrated with other
applications.

package This option will enable a sharable Flutter project

plugin This option provides an api base for use with Android and iOS

skeleton This option provides a best practice application based on a Detail View

By appending the template command i.e. --template or -t, you can indicate
to Flutter that a template is to be applied at creation. Here’s some examples
of how the templates are used:

To create the default application type:
flutter create my_awesome_app

To create a module:
flutter create -t module my_awesome_module

To create a package:
flutter create -t package my_awesome_package

To create a plugin:
flutter create -t plugin my_awesome_plugin --platforms web --
platform android

NOTE
NOTE: When creating a plugin you must specify the platform to be supported. Each
platform to be added requires the addition of the “--platform” prefix.

To create a package:
flutter create -t skeleton my_awesome_skeleton

Discussion
When you create a project based on a template, you must consider the
device currently available on your machine. In addition to templates, you
may also reference sample code from the API documentation website
http://docs.flutter.dev/. To use the code from the site you need to reference
the sample id located on the page for the widget to be used. In the example
below, the code can be found on the webpage
https://api.flutter.dev/flutter/widgets/GestureDetector-class.xhtml.
flutter create -s widgets.GestureDetector.1 my_awesome_sample

Samples are available to provide a quick way to access the multitude of
content available online. As a developer you should aim to target the Web
in addition to the desired host platform. Including the web makes sense as it
includes a very effective method of enabling application testing within a
browser. During the development phase, this approach can certainly
improve developer velocity for both small and large enhancements.

http://docs.flutter.dev/

7.3 Working with a Stateful Widget

Problem
You want to store a state (i.e. a value) associated with a Flutter widget.

Solution
Use the Flutter StatefulWidget to retain a value within an application. The
declaration of a stateful widget indicates that a value is to be retained.

In the example below a widget is declared to hold the state.
import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 const title = 'Stateless Widget demo';
 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: const Text(title),
),
 body: const MyTextWidget(),
),
);
 }
}
class MyTextWidget extends StatefulWidget {
 const MyTextWidget({Key? key}) : super(key: key);
 @override
 _MyTextWidget createState() => _MyTextWidget();
}
class _MyTextWidget extends State<MyTextWidget> {
 int count = 0;

 @override
 Widget build(BuildContext context){
 return GestureDetector(
 onTap: () {
 setState((){
 count++;

 });
 },
 child: Center(child: Text('Click Me: $count')),
);
 }
}

Discussion
Storing state adds complexity to a Flutter application as the value needs to
be tracked. A good pattern to observe when using a stateful widget is to
reduce the number of widgets associated with state management.

State management in Flutter typically utilizes the pattern shown in Figure 7-
2. A stateful widget requires the creation of a few methods that are used to
retain information.

Figure 7-2. Example stateful widget interaction

The class MyTextWidget Stateful widget implements a createState method.
The value returned from this method is assigned to a private variable i.e.
_MyTextWidget. In Flutter private variables are prefixed with the
underscore character. Observe how the private variable is constructed
similar to the stateless widgets seen previously. The introduction of a new
function setState is used to store a value based on an onTap event. In the

example, the count variable is incremented each time an onTap event is
triggered.

The private class _MyTexWidget is then used to initiate state change. In the
diagram we can see that the onTap() is used to increment the count variable.
Now when a user of the application interacts and presses the button the
variable will be incremented and the state change reflected in the
application.

Working with stateful widgets is more of a challenge than working with
stateless, but with some consideration of design, it can be just as effective.
As a developer you should be in a position to design a minimal state
application. Doing so will reduce the overall complexity and minimize the
potential impact on performance associated with redraw to update on state
changes.

Another consideration when using Stateful widgets is how to pass
information. Reference recipe 11.5 for an overview of how to utilize keys to
communicate parameters.

7.4 Working with a Stateless Widget

Problem
You want do not need to save state (i.e. not save a value) associated with on
screen content

Solution
Use a stateless widget which will be just used to render on screen content.
The following example shows how.
import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}
class MyApp e
xtends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 const title = 'Stateless Widget demo';
 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: const Text(title),
),
 body: const MyTextWidget(),
),
);
 }
}
class MyTextWidget extends StatelessWidget {
 const MyTextWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return const Center(
 child: Text('Hello'),
);
 }
}

Discussion
In the example the StatelessWidget is used to render a Text widget. A
stateless widget essentially means that value retention is not required. Often
you will be in a situation where you may need to consider saving state.
Consider how to best incorporate the demands of the widgets to be used.
Flutter is super flexible on the interaction between stateless and stateful,
don’t be under the impression it is one or the other.

In the example there is no value to store. Use this type of Widget where
rendering a value on screen doesn’t require storing of information. Working
without state is the easiest option as you have a lot less to consider in terms
of how your application works. If you can, try and veer towards a stateless
design to reduce the overall complexity of developing code where practical.

7.5 Refactoring Widgets

Problem
You want a way to improve the readability of code.

Solution
Use refactoring to improve the general reliability of your code. Refactoring
allows you to simplify code.

The following code provides an example of code requiring refactoring
based on the Build function.
 body: Container(
 width: 200,
 height: 180,
 color: Colors.black,
 child: Column(
 children: [
 Image.network(
 'https://images.unsplash.com/photo-1499028344343-
cd173ffc68a9'),
 const Text(
 'itemTitle',
 style: TextStyle(fontSize: 20, color: Colors.white),
),
 const Text(
 'itemSubTitle',
 style: TextStyle(fontSize: 16, color: Colors.grey),
),
],
),
),

The following example provides an example of code that has been
refactored.
import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 const title = 'Image Widget';
 return MaterialApp(
 title: title,
 home: Scaffold(

 appBar: AppBar(
 title: const Text(title),
),
 body: const MyContainerWidget(),
),
);
 }
}
class ImageItem {
 final String title;
 final String subtitle;
 final String url;

 const ImageItem({
 required this.title,
 required this.subtitle,
 required this.url,
 });
}
class MyContainerWidget extends StatelessWidget {
 const MyContainerWidget();
 final ImageItem imageItem = const ImageItem(
 title: 'Hello',
 subtitle: 'subtitle',
 url: 'https://images.unsplash.com/photo-1499028344343-
cd173ffc68a9'
);

 @override
 Widget build(BuildContext context) {
 return Container(
 width: 200,
 height: 180,
 color: Colors.black,
 child: Column(
 children: [
 Image.network(imageItem.url),
 Text(
 imageItem.title,
 style: const TextStyle(fontSize: 20, color:
Colors.white),
),
 Text(
 imageItem.subtitle,
 style: const TextStyle(fontSize: 16, color:
Colors.grey),
),
],
),
);

 }
}

Discussion
Readability is a big subject and beyond the scope of this book. Put simply
we are referring to whether the meaning of the code can be easily discerned.

There are two things to note in the code requiring refactoring. First the
linked image data is embedded in the main codebase. Embedding data in
code makes it hard to understand and subject to errors, when the code is
changed. The code also embeds the Container widget within the body,
which again makes this hard to change, but also makes it difficult to
enhance.

A better practice is to isolate the code such that it can be enhanced
independently without affecting the existing code. Moving the widget
element to its own class introduces a significant advantage in that the class
is both independent and can now be called by any method.

To manage the data requirement, we create a new data class to hold the
required variables for the MyContainerWidget. The data class includes a
constructor (e.g. required this.title, etc) that expects you to pass the values
to be used. Abstracted the data requirement from the widget is a good
practice to follow and gives your applications a lot of flexibility in terms of
code reuse.

Observe the class definition of “MyContainerWidget” which defines the
new widget as a StatelessWidget. The class constructor indicates that it
expects our ImageItem data class to be provided. The ImageItem variable is
declared as final, which means the value is to be determined at runtime.

Finally the build function is used to provide the widget functionality. In this
function we return our new Container widget to the calling function. This
type of code abstraction enables the “MyContainerWidget” to be
functionally independent of “MyApp”. In taking this approach we have
enhanced the overall readability of the application.

Overall the changes made ensure that when creating and using the
MyContainerWidget the process is both consistent and repeatable. As a
developer making reference to MyContainerWidget, you now only need to
be aware of the data requirement and the class invocation. Ultimately based
on the changes made, you now have two classes representing the data and
implementation.

Now we know the basics of refactoring code, we incorporate these simple
ideas in our thinking going forward.

7.6 Removing the Flutter Debug banner

Problem
You want a way to remove the debug banner from your Flutter application.

Solution
Use the debugShowCheckModeBanner to remove the debug banner applied
to Flutter applications.

In the example below the debug property is turned off.
import 'package:flutter/material.dart';
void main() {
 runApp(MyApp());
}
class MyApp extends StatelessWidget {
 final appTitle = 'Cert In';
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: appTitle,
 theme: ThemeData(
 primarySwatch: Colors.blue,
 visualDensity: VisualDensity.adaptivePlatformDensity,
 textTheme: GoogleFonts.montserratTextTheme(),
),
 debugShowMaterialGrid: false,
 debugShowCheckedModeBanner: false,
 home: Professional(title: appTitle),
);

 }
}

Discussion
The debugShowCheckedModeBanner accepts a boolean value to indicate
whether the notification should be shown. In the example, the “Debug”
message is turned off by setting the property to false.

Flutter has a default value of true set for the
debugShowCheckedModeBanner. Developers are required to explicitly set
this value as false to remove the temporary banner from applications. The
table below outlines the various settings for the application states of Debug
and Release.

Mode Property Discussion

Debug debugShowCheckedModeBanner The banner can be controlled via the
boolean value. Setting the property to
true will show the banner, this is the
default for new applications.
Amending the property to false, will
remove the banner from your application.

Release debugShowCheckedModeBanner The banner is not displayed when in
Release mode, irrespective of the
property setting.

The debugShowMaterialGrid setting provides a grid overlay for your
application. To use this setting your application needs to be in debug mode.

Chapter 8. Working with
Widgets

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 8th chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

In this chapter we continue our journey with the Flutter Framework. We
now progress to a high level overview of the most common widgets.

Widgets are an essential concept in Flutter and provide the basis of most
applications. Learning how to integrate the numerous widget types
available will significantly enhance your development skills. Understanding
how to use Scaffold, Row, and Container, together with other widgets, will
allow you to develop a wide range of applications.

As part of this introduction you will hopefully also note how to combine
widgets to deliver feature rich and beautiful interfaces. Knowing how to
build beyond the basics building blocks of a Flutter application will steadily
increase your confidence and provide the basis for more complex
applications.

8.1 Using the Scaffold class

Problem

You want to work with the material design layout in your application.

Solution
Use the Scaffold to present a material interface within an application.

In the example we define the typical elements of a Scaffold layout.
import 'package:flutter/material.dart';
void main() => runApp(const MyApp());
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 static const String _title = 'Example';
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 title: _title,
 home: MyStatelessWidget(),
);
 }
}
class MyStatelessWidget extends StatelessWidget {
 const MyStatelessWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('Scaffold Example')),
 backgroundColor: Colors.blueGrey,
 bottomNavigationBar: const BottomAppBar(
 color: Colors.blueAccent,
 shape: CircularNotchedRectangle(),
 child: SizedBox(
 height: 300,
 child: Center(child: Text("bottomNavigationBar")),
),
),
 body: _buildCardWidget(),
);
 }
 Widget _buildCardWidget() {
 return const SizedBox(
 height: 200,
 child: Card(
 child: Center(
 child: Text('Top Level Card'),
),
),
);

 }
}

Discussion
When you use Scaffold it expands to fill the available space and it will
dynamically adjust based on screen alterations. This behavior is desirable as
you will mainly want your application to fill the screen. If an onscreen
keyboard is present, the default Scaffold will adjust dynamically without
additional logic being added to your application.

Scaffold provides the ability to enhance your application with AppBar (see
Recipe 8.2) and Drawer widgets (Recipe TBC). If you wish to use Scaffold
with a FloatingActionButton, use a Stateful widget to retain the associated
button state. The Stateful widget (recipe TBC) can be followed to add this
to your code.

In general, avoid nesting the Scaffold class as it is designed to be a top level
container for a MaterialApp.

8.2 Using an AppBar

Problem
You want to show a toolbar header section at the top of your application.

Solution
Use an AppBar widget to control the header section of your application.

Here’s an example of how to work with an AppBar widget in Flutter:
import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 final String title = 'Container Widget';
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {

 return MaterialApp(
 debugShowCheckedModeBanner: false,
 title: title,
 home: Scaffold(
 appBar: MyAppBar(title:title),
 body: const MyCenterWidget(),
),
);
 }
}
class MyAppBar extends StatelessWidget implements
PreferredSizeWidget {
 final String title;
 final double sizeAppBar = 200.0;

 const MyAppBar({Key? key, required this.title}) : super(key:
key);

 @override
 Size get preferredSize => Size.fromHeight(sizeAppBar);

 @override build(BuildContext context) {

 return AppBar(
 title: Text(title),
 backgroundColor: Colors.black,
 elevation: 0.0,
 leading: IconButton(onPressed: (){}, icon: const
Icon(Icons.menu)),
 actions: [
 IconButton(
 onPressed: (){}, icon: const Icon(Icons.settings))
],
);
 }
}
class MyCenterWidget extends StatelessWidget {
 const MyCenterWidget({Key? key}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 return const Center(
 child: Text('Hello Flutter!'),
);
 }
}

Discussion

In the above example, the AppBar
(https://api.flutter.dev/flutter/material/AppBar/AppBar.xhtml) Widget has
been moved to its own class. The AppBar requires an awareness of the
dimensions for the header to be used. To address this, we call a static
AppBar and use this to provide the appropriate dimension for our widget.
The preferredSize is dynamic and will resize based on the content to be
displayed.

Using an AppBar provides access to a number of properties. Typically
developers will use the main properties such as Title, backgroundColor and
elevation. Set the backgroundColor property of the AppBar directly to use a
range of available colors. Add an elevation property to display a flat (zero)
or raised (>zero) graphical interface.

In addition there are many more options available. If you need a menu
option, use the leading property to add Icons to the left hand side of the
interface. Actions buttons can also be added to the interface to provide
further interaction. The example code demonstrates how to incorporate both
types of properties.

8.3 Using an Expanded widget

Problem
You want to automatically utilize any available onscreen space.

Solution
Use the Expanded widget to coordinate the available space visible to the
user (i.e. the viewport).

In the example we use an expanded widget to define three onscreen
elements that will coordinate to use the available onscreen dimensions.
import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}

class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 const title = 'Expanded Widget';
 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: const Text(title),
),
 body: const MyExpandedWidget(),
),
);
 }
}
class MyExpandedWidget extends StatelessWidget {
 const MyExpandedWidget();
 @override
 Widget build(BuildContext context) {
 return Column(
 children: [
 Expanded(
 child: Container(
 color: Colors.red,
),
),
 Expanded(
 child: Container(
),
),
 RichText(
 text: const TextSpan(
 text: 'Luxembourg',
 style: TextStyle(
 fontWeight: FontWeight.bold,
 fontSize: 24,
 color: Colors.grey,
),
),
),
 Expanded(
 child: Container(
),
),
 Expanded(
 child: Container(
 color: Colors.blue,
),
),

],
);
 }
}

Discussion
Despite the simplicity of the Expanded widget, it can be used in a variety of
use cases. In the example, rather than perform a query on the dimensions on
the screen, the Expanded widget is used to automatically fill the available
space. Expanded (as the name suggests) will expand to the screen
dimensions automatically. You do not have to specify the proportions, this
will be calculated dynamically.

An Expanded widget’s behavior is beneficial when working with Lists.
Consider the above ListView widget, which dynamically populates a
vertical list with the ListTile widgets at runtime. When using a ListView by
itself, it will try to consume the available dimensions in the viewport.

Figure 8-1. A ListView widget

Here the Expanded widget is used to tell the ListView it should consume
the remaining viewport (i.e. the user’s visible area on screen).

Figure 8-2. A ListView widget enclosed within an Expanded widget

If you choose to incorporate other on screen widgets, your application will
want to know how to ratio the viewport allocation between each item. In
this instance the Expanded widget can be used to automatically provide the
correct dimensions available within the viewport.

8.4 Building with a Container

Problem
You want a way to isolate settings for a child widget or series of widgets.

Solution
Use a Container widget to provide configuration (e.g. padding, border,
colors) for other child widgets. The container widget provides a defined
structure in which to place other widgets.

In the example below a container widget is used to define an area that can
be used to define additional widgets.

import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 const title = 'Container Widget';
 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: const Text(title),
),
 body: const MyCenterContainerWidget(),
),
);
 }
}
class MyCenterContainerWidget extends StatelessWidget {
 const MyCenterContainerWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Center(
 child: Container(
 alignment: Alignment.center,
 height: 200,
 width: 200,
 color: Colors.red[300],
 transform: Matrix4.rotationZ(0.5),
 child: Container(
 color: Colors.blue[300],
 transform: Matrix4.rotationZ(0.5),
 child: Container(
 color: Colors.yellow[300],
 transform: Matrix4.rotationZ(0.5),
 child: Container(
 color: Colors.grey[300],
 transform: Matrix4.rotationZ(0.5),
 child: Container(
 color: Colors.orange[300],
 transform: Matrix4.rotationZ(0.5),
 child: Container(
 color: Colors.black,
 transform: Matrix4.rotationZ(0.5),
 child: Container(
 color: Colors.green[300],
 transform: Matrix4.rotationZ(0.5),
 child: Container(

 color: Colors.indigo[300],
 transform: Matrix4.rotationZ(0.5),
 child: Container(
 color: Colors.purple[300],
 transform: Matrix4.rotationZ(0.5),
 child: Container(
 color: Colors.lime[300],
 transform: Matrix4.rotationZ(0.5),
 child: Container(
 color: Colors.brown[300],
 transform: Matrix4.rotationZ(0.5),
 child: Container(
 color: Colors.teal[300],
 transform: Matrix4.rotationZ(0.5),
),
),
),
),
),
),
),
),
),
),
),
),
);
 }
}

Discussion
Containers with no children will attempt to fill the space available to them.
Containers support width and height values, but these can be omitted.
Typically a container will be sized based on the dimensions of its children.
When specifying the size and height of the child widget, it is constrained to
the dimensions of the parent. To override this behavior use the width and
height properties on the parent Container.

Note child element is constrained by the parent Container widget. You can
still specify the size and height, but it is relative to the parent. If you want to
provide whitespace in an application look to use SizedBox (Recipe 8.6).

8.5 Using a Center widget

Problem
You want to ensure that content is centered on screen.

Solution
Use the Center widget to align a child element on screen.

In the example the Center widget is used to center on the horizontal and
vertical axis.
import 'package:flutter/material.dart';
void main() => runApp(const MyApp());
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 static const String _title = 'Example';
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 title: _title,
 home: MyStatelessWidget(),
);
 }
}
class MyStatelessWidget extends StatelessWidget {
 const MyStatelessWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('Center Example')),
 body: _buildCenterWidget(),
);
 }
 Widget _buildCenterWidget() {
 return Column(
 children: [
 const Center(
 child: Text("Center Text"),
),
 Row(children: [
 Container(
 color: Colors.green,
 child: const Center(child: Text("Container
Center"))),
 Container(
 color: Colors.teal,
 child: const Center(child: Text("Container
Center"))),
 Expanded(

 child: Container(
 color: Colors.yellow,
 child: const Center(child: Text("Container
Center"))),
),
]),
 Container(
 color: Colors.blue,
 child: const Center(child: Text("Container Center"))),
 Container(
 color: Colors.red,
 child: const Center(child: Text("Container Center"))),
 Expanded(
 child: Container(
 color: Colors.yellow,
 child: const Center(child: Text("Container
Center"))),
),
],
);
 }
}

Discussion
The Center widget provides a great way to center on screen objects. While
it is relatively straightforward to use in an application, do not underestimate
the power it provides. It can be used in conjunction with a wide range of
widgets and will save you a fair bit of time in the development process.

8.6 Using a SizedBox

Problem
You want to add whitespace to a user interface.

Solution
Use the SizedBox widget to apply a defined space to the onscreen interface.

In the example we apply the SizedBox widget to the user interface.

import 'package:flutter/material.dart';
void main() => runApp(const MyApp());
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 static const String _title = 'Example';
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 title: _title,
 home: MyStatelessWidget(),
);
 }
}
class MyStatelessWidget extends StatelessWidget {
 const MyStatelessWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('SizedBox Example')),
 body: _buildSizedBoxWidget(),
);
 }
 Widget _buildSizedBoxWidget() {
 return Column(
 children: [
 Container(
 width: 200,
 height: 200,
 color: Colors.red,
),
 const SizedBox(
 width: 100,
 height: 100,
),
 const SizedBox(
 width: 400,
 height: 300,
 child: Card(
 child: Center(
 child: Text('Hello World'),
)
),
),
],
);
 }
}

Discussion

The SizedBox widget provides a simple method to specify a box size to be
used in your application. By applying a size, you can apply a constraint on
child widgets.

If a size is not provided, the widget can be sized appropriately based on the
dimension of the child widget presented. The typical use case for SizedBox
is to provide whitespace in an application, but it can also be used in a
similar manner to a Container Widget (Recipe 8.4).

8.7 Using a Column

Problem
You need a flexible widget to present as a vertical layout on screen.

Solution
Use a Column widget to allow information to be displayed as a vertical
array.

Here’s an example of how to use the Column widget in Flutter:
import 'package:flutter/material.dart';
void main() => runApp(const MyApp());
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 static const String _title = 'Example';
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 title: _title,
 home: MyStatelessWidget(),
);
 }
}
class MyStatelessWidget extends StatelessWidget {
 const MyStatelessWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('Column Example')),
 body: _buildColumnWidget(),
);

 }
 Widget _buildColumnWidget() {
 return Column(
 mainAxisAlignment: MainAxisAlignment.center,
 crossAxisAlignment: CrossAxisAlignment.start,
 children: <Widget> [
 Container(
 height: 200,
 width: 50,
 color: Colors.red,
 child: const Center(child: Text("50"),),
),
 Container(
 height: 200,
 width: 100,
 color: Colors.green,
 child: const Center(child: Text("100"),),
),
 Container(
 height: 200,
 width: 200,
 color: Colors.orange,
 child: const Center(child: Text("200"),),
),
 Container(
 height: 200,
 width: 500,
 color: Colors.blue,
 child: const Center(child: Text("1000"),),
),
]
);
 }
}

Discussion
In the example code we have three columns created on the vertical (Y) axis.
The area defined for the column is non-scrolling. Allocation of height and
width properties can be used to constrain the area available to the Column
widget.

If a constraint is applied, then the widget will attempt to handle the changes
presented. In some situations, the changes cannot be correctly interpreted,
which leads to an overflow error. Overflows are a very common error and
are displayed as a series of yellow and black stripes on screen. The error is

accompanied by an overflow warning indicating why the error occurred. To
understand the options applicable to constraints, consult the Flutter
documentation at https://docs.flutter.dev/development/ui/layout/constraints.

When using a Column widget, you can align content on the X and Y axis.
Alignment on the horizontal (X) axis is enabled with crossAxisAlignment.
Use this to set start, center or end alignment.

To incorporate alignment, use the mainAxisAlignment property for the Y
axis. Alignment ensures that the free space is evenly distributed between
children, including before, and after the first/last child in the array. The
mainAxisAlignment supports start, center and end properties to shift the Y
axis anchor.

Column and Row widgets share a lot of commonality. Reference Recipe 8.8
for a direct comparative with a Row widget.

8.8 Using a Row

Problem
You need a flexible widget to present as a horizontal layout on screen.

Solution
Use a Row widget to allow its children widgets to be displayed as a
horizontal array.

Here’s an example of how to use the Row widget in Flutter:
import 'package:flutter/material.dart';
void main() => runApp(const MyApp());
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 static const String _title = 'Example';
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 title: _title,
 home: MyStatelessWidget(),
);

https://docs.flutter.dev/development/ui/layout/constraints

 }
}
class MyStatelessWidget extends StatelessWidget {
 const MyStatelessWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('Row Example')),
 body: _buildRowWidget(),
);
 }
 Widget _buildRowWidget() {
 return Row(
 mainAxisAlignment: MainAxisAlignment.start,
 crossAxisAlignment: CrossAxisAlignment.end,
 children: [
 Container(
 width: 5,
 color: Colors.transparent,
),
 Expanded(
 child: Container(
 height: 50,
 width: 200,
 color: Colors.red,
 child: const Center(
 child: Text("50"),
),
),
),
 Expanded(
 child: Container(
 height: 100,
 width: 200,
 color: Colors.green,
 child: const Center(
 child: Text("100"),
),
),
),
 Expanded(
 child: Container(
 height: 200,
 width: 200,
 color: Colors.orange,
 child: const Center(
 child: Text("200"),
),
),
),

 Container(
 width: 5,
 color: Colors.transparent,
),
]);
 }
}

Discussion
In the example code data rows are created on the horizontal (X) axis. Row
Widgets are static, meaning they do not enable scrolling.

If data displayed overflows beyond the screen dimensions, it is displayed as
a series of yellow and black stripes on screen. The example applies a
constraint to the widget displayed, so it will dynamically adjust to the
screen size. To understand the options applicable to constraints, consult the
Flutter documentation at
https://docs.flutter.dev/development/ui/layout/constraints.

The alignment of the vertical (Y) axis uses the mainAxisAlignment
property to use the start of the screen as an anchor. The mainAxisAlignment
supports start, center and end properties to shift the Y axis anchor.

Alignment on the horizontal (X) axis is performed by crossAxisAlignment.
Again this method supports start, center and end properties to shift the X
axis anchor.

Column and Row widgets share a lot of commonality. Reference Recipe 8.7
for a direct comparative with a Column widget.

https://docs.flutter.dev/development/ui/layout/constraints

Chapter 9. Developing User
Interfaces

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 9th chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

In this chapter, we move on to the topic of building user interfaces. The
discussion focuses on the key technical elements of designing a beautiful
interface. You will learn how to utilize Fonts to enhance the text interface,
define the onscreen layout for better placement and address identification of
the host platform.

Leverage the features of Flutter to fundamentally improve your
applications. Understand how to address platform specific areas of
functionality through the Dart SDK. Construct code that works with Flutter
to present information in the most performant manner. The recipes shown in
this chapter will be key to building extensible applications to delight your
users.

9.1 Incorporating Rich Text

Problem
You want to have more control over the text displayed on screen.

Solution
In the example the Rich Text widget is used to customize the text rendered
on screen.
import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 const title = 'Rich Text';
 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: const Text(title),
),
 body: const MyRichText(),
),
);
 }
}
double screenHeight = 0.0;
class MyRichText extends StatelessWidget {
 const MyRichText();
 @override
 Widget build(BuildContext context) {
 screenHeight = MediaQuery.of(context).size.height/3;

 return SingleChildScrollView(
 child: Column(
 children: [
 Container(
 height: screenHeight,
 color: Colors.red,
),
 Row(
 mainAxisAlignment: MainAxisAlignment.center,
 children: [
 SizedBox(height: screenHeight),
 RichText(
 text: const TextSpan(
 children: [
 TextSpan(
 text: 'Hello',
 style: TextStyle(fontWeight: FontWeight.bold,
fontSize: 24),

),
 TextSpan(
 text: 'Luxembourg',
 style: TextStyle(
 fontWeight: FontWeight.bold,
 fontSize: 32,
 color: Colors.grey),
),
],
),
),
]),
 Container(
 height: screenHeight,
 color: Colors.blue,
),
],
),
);
 }
}

Discussion
In the example the flag of Luxembourg is shown on screen. Use Rich Text
when you need more control over the text to be displayed in an application.

The RichText widget provides greater control over the placement and
styling associated with application text.

9.2 Incorporating the Google fonts package

Problem
You want to use a package to use external fonts in a Flutter application.

Solution
Flutter allows you to incorporate external fonts as part of your application.
The following example demonstrates how to use Google Fonts1.

pubspec.yaml

.

.

.
dependencies:
 flutter:
 sdk: flutter
 cupertino_icon: ^1.0.2
 google_fonts: 2.2.0

Main.dart
import 'package:flutter/material.dart';
import 'package:google_fonts/google_fonts.dart';
void main() => runApp(MyApp());
class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Cookbook Demo',
 debugShowCheckedModeBanner: false,
 theme: ThemeData(
 primarySwatch: Colors.blue,
 textTheme: TextTheme(
 bodyText1: GoogleFonts.aBeeZee(fontSize: 30, color:
Colors.deepOrange),
 bodyText2: GoogleFonts.aBeeZee(fontSize: 30, color:
Colors.white60))
),
 home: const MyHomePage(title: 'Flutter Cookbook'),
);
 }
}
class MyHomePage extends StatelessWidget {
 final String title;
 const MyHomePage({
 Key? key,
 required this.title,
 }) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 backgroundColor: Colors.black,
 body: Column(children: [
 const Text('Yo MTV Raps'),
 Text('Yo MTV Raps', style: GoogleFonts.coiny(fontSize: 30,
color: Colors.blueGrey),),
 Text('Yo MTV Raps', style: GoogleFonts.actor(fontSize: 30,
color: Colors.indigo),),
]),
);

 }
}

Discussion
If you are getting a package from the pub.dev, the instructions typically
provide most of the information required. There are some general
assumptions regarding placement and updates made, so it is worthwhile
becoming familiar with how to integrate an external package with your
application.

One of the places folks become confused is the addition to the pubspec
dependencies section. The section to update is based on what entry you
intend to make. For the addition of fonts, the addition already has an entry
for Cupertino Fonts, so just add the Google Fonts entry below this setting.

In the application two approaches are used to set the Google Font. First the
textTheme is set as part of the general application theme. Use this approach
if you want to set a default for your application. A common question is why
bodyText2 takes precedence. The default text style for Material is
bodyText2.

The second approach applies the Google Font directly to the text widget.
Here we can individually set the font as required.

9.3 Identifying the host platform

Problem
You want to verify which platform the application is being run on.

Solution
In some instances you may wish to know the specific host platform the
application is running on. This can be useful, if you need to observe the
user criteria to be applied within an application such as Android or iOS.

In the example below, the settings are assigned to variables that can be
checked to identify which host platform the application is running on.
import 'package:flutter/material.dart';
import 'dart:io' show Platform;
import 'package:flutter/foundation.dart' show kIsWeb;
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 const title = 'Platform demo';
 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: const Text(title),
),
 body: const MyPlatformWidget(),
),
);
 }
}
class MyPlatformWidget extends StatelessWidget {
 const MyPlatformWidget({Key? key}) : super(key: key);
 bool get isMobileDevice => !kIsWeb && (Platform.isIOS ||
Platform.isAndroid);
 bool get isDesktopDevice =>
 !kIsWeb && (Platform.isMacOS || Platform.isWindows ||
Platform.isLinux);
 bool get isMobileDeviceOrWeb => kIsWeb || isMobileDevice;
 bool get isDesktopDeviceOrWeb => kIsWeb || isDesktopDevice;
 bool get isAndroid => !kIsWeb && Platform.isAndroid;
 bool get isFuchsia => !kIsWeb && Platform.isFuchsia;
 bool get isIOS => !kIsWeb && Platform.isIOS;
 bool get isLinux => !kIsWeb && Platform.isLinux;
 bool get isMacOS => !kIsWeb && Platform.isMacOS;
 bool get isWindows => !kIsWeb && Platform.isWindows;
 @override
 Widget build(BuildContext context) {
 return Column(
 children: [
 const Text(
 'Web: $kIsWeb',
 style: TextStyle(fontSize: 20, color: Colors.grey),
),
 Text(
 'Android: $isAndroid',

 style: const TextStyle(fontSize: 20, color: Colors.grey),
),
 Text(
 'Fuchsia: $isFuchsia',
 style: const TextStyle(fontSize: 20, color: Colors.grey),
),
 Text(
 'IOS: $isIOS',
 style: const TextStyle(fontSize: 20, color: Colors.grey),
),
 Text(
 'Linux: $isLinux',
 style: const TextStyle(fontSize: 20, color: Colors.grey),
),
 Text(
 'MacOS: $isMacOS',
 style: const TextStyle(fontSize: 20, color: Colors.grey),
),
 Text(
 'Windows: $isWindows',
 style: const TextStyle(fontSize: 20, color: Colors.grey),
),
 Text(
 'isMobileDevice: $isMobileDevice',
 style: const TextStyle(fontSize: 20, color: Colors.grey),
),
 Text(
 'isDesktopDevice: $isDesktopDevice',
 style: const TextStyle(fontSize: 20, color: Colors.grey),
),
 Text(
 'isMobileDeviceOrWeb: $isMobileDeviceOrWeb',
 style: const TextStyle(fontSize: 20, color: Colors.grey),
),
 Text(
 'isDesktopDeviceOrWeb: $isDesktopDeviceOrWeb',
 style: const TextStyle(fontSize: 20, color: Colors.grey),
),
],
);
 }
}

Discussion
Typically when testing it is useful to understand which host platform the
application is running on. Flutter enables you to detect the host platform
using pre-defined Platform constants. In the documentation the information

relating to the host platform is located under device segmentation and
referenced in the Platform API.

The Platform API supports the main platforms (i.e. Android, Fuchsia, IOS,
Linux, MacOS and Windows). As part of the example each test for a
specific configuration can be used to identify the host platform. In addition
there is a separate setting (i.e. kIsWeb) for Web based applications.

9.4 Using a Placeholder widget

Problem
You want to build a user interface when not all graphical assets are
available.

Solution
Use the Placeholder widget to represent interface resources that have yet to
be added to an application

In the example we revisit our flag example from Recipe 9.1.
import 'package:flutter/material.dart';
void main() => runApp(const MyApp());
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 static const String _title = 'Example';
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 title: _title,
 home: MyStatelessWidget(),
);
 }
}
class MyStatelessWidget extends StatelessWidget {
 const MyStatelessWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('Placeholder Example')),
 body: _buildPlaceholderWidget(),
);

 }
 Widget _buildPlaceholderWidget() {
 return Column(
 children: const <Widget> [
 Placeholder(fallbackHeight: 400, strokeWidth: 10, color:
Colors.red),
 Expanded(
 child: Text("Expanded Text")
),
 Placeholder(fallbackHeight: 200, strokeWidth: 5, color:
Colors.green),
 Expanded(
 child: Text("Expanded Text")
),
 Placeholder(fallbackHeight: 100, strokeWidth: 1, color:
Colors.blue),
]
);
 }
}

Discussion
The example illustrates how a placeholder can be used to fill space that
would otherwise be used. An expanded widget would utilize the space
specified automatically unless we add a placeholder. If you need to allocate
visual space without necessarily needing to add the supporting resource, a
Placeholder widget can be super helpful.

The Placeholder supports additional properties such as widget height
(fallbackHeight) and width (fallbackWidth). In addition the widget also
supports color (color) and line width (strokeWidth) to provide additional
flexibility in the design stage of building an application.

9.5 Using a Layout Builder

Problem
You want your layout to dynamically resize using an adaptive layout.

Solution

Use a LayoutBuilder widget to handle the screen adaptive layout
requirements automatically.

In this example we revisit our flag example from Rich Text.
import 'package:flutter/material.dart';
void main() => runApp(const MyApp());
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 static const String _title = 'LayoutBuilder';
 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 title: _title,
 home: MyStatelessWidget(),
);
 }
}
class MyStatelessWidget extends StatelessWidget {
 const MyStatelessWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('LayoutBuilder Example')),
 body: LayoutBuilder(
 builder: (BuildContext context, BoxConstraints constraints)
{
 // Restrict based on Width
 if (constraints.maxWidth > 800) {
 return _buildTripleContainers();
 } else
 if (constraints.maxWidth > 600 &&
constraints.maxWidth<=800) {
 return _buildDoubleContainers();
 } else {
 return _buildSingleContainer();
 }
 },
),
);
 }
 Widget _buildSingleContainer() {
 return Center(
 child: Container(
 height: 400.0,
 width: 100.0,
 color: Colors.red,
),
);
 }

 Widget _buildDoubleContainers() {
 return Center(
 child: Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 Container(
 height: 400.0,
 width: 100.0,
 color: Colors.yellow,
),
 Container(
 height: 400.0,
 width: 100.0,
 color: Colors.yellow,
),
],
),
);
 }

 Widget _buildTripleContainers() {
 return Center(
 child: Row(
 mainAxisAlignment: MainAxisAlignment.spaceEvenly,
 children: <Widget>[
 Container(
 height: 400.0,
 width: 100.0,
 color: Colors.green,
),
 Container(
 height: 400.0,
 width: 100.0,
 color: Colors.green,
),
 Container(
 height: 400.0,
 width: 100.0,
 color: Colors.green,
),
],
),
);
 }
}

Discussion

LayoutBuilder can be used in situations where you need to understand the
available onscreen constraints.

The LayoutBuilder widget provides an adaptive interface which is defined
as an app running on different devices. The scope associated with this
moves beyond screen dimensions and includes the hardware to be
interrogated such as type of input, visual density and selection type.

Return a LayoutBuilder to provide the current context with constraints that
can be queried dynamically. The typical use case for this functionality is to
use the constraints structure to define thresholds. These thresholds can be
used to marshal the available dimensions in an efficient manner. Use
LayoutBuilder to enable smart composition of screens to be displayed based
on interrogation of the device.

Contrast LayoutBuilder with the Media Query (Recipe 9.6) which takes into
account the application size and orientation.

9.6 Getting screen dimensions with Media
Query

Problem
You want to access the dimensions of a device.

Solution
Use the Media Query class to find the dimensions of a device. It will return
properties such as the current width and height.

In the example we use the MediaQuery class to provide the dimensions on
which the screen ratio is determined.
import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);

 @override
 Widget build(BuildContext context) {
 const title = 'MediaQuery demo';
 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: const Text(title),
),
 body: const MyMediaQueryWidget(),
),
);
 }
}
class MyMediaQueryWidget extends StatelessWidget {
 const MyMediaQueryWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Column(
 children: [
 Text('Screen Width: ${MediaQuery.of(context).size.width}',
 style: const TextStyle(fontSize: 40, color: Colors.grey),
),
 Text('Screen Height:
${MediaQuery.of(context).size.height}',
 style: const TextStyle(fontSize: 40, color: Colors.grey),
),
 Text('Aspect Ratio:
${MediaQuery.of(context).size.aspectRatio}',
 style: const TextStyle(fontSize: 40, color: Colors.grey),
),
 Text('Orientation: ${MediaQuery.of(context).orientation}',
 style: const TextStyle(fontSize: 40, color: Colors.grey),
),
],
);
 }
}

Discussion
A media query provides the ability to learn information about the device
and the application. If you have performed web development previously,
you will most likely be familiar with the meida query.Typically this class
can be used to help with providing properties used to assist with having a
responsive interface.

In the Flutter documentation, a key point raised is the difference between
Responsiveness vs Adaptability2. The Bottom line is that responsiveness is
attuned to the available screen size. If you intend to consider different
device types then you are more likely to want to incorporate adaptability
(Reference recipe 9.5) e.g. mouse, keyboard, component selection strategy.

MediaQuery also provides access to the aspectRatio and Orientation
making it useful for tracking the device context. The supplied information
is not without cost. When invoking MediaQuery.of, as per the example, will
mean a rebuild of the widget tree if the properties change. For example if
the viewport is enlarged or the orientation is changed.

https://fonts.google.com/
https://docs.flutter.dev/development/ui/layout/adaptive-responsive

1

2

Chapter 10. Organizing
onscreen data

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 10th chapter of the final book. Please note that the GitHub repo will be made
active later on.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

In this section we continue our journey with the Flutter Framework. Here
we learn how to introduce some complementary techniques to take your
application to the next level.

An important factor of developing Flutter applications is starting with the
correct foundation. In many instances how the code is laid out will bring
forward both strengths and weaknesses. Understanding when to use
particular techniques or data structures will most definitely increase your
enjoyment and efficiency when building with Flutter.

When creating more complex applications, always try to make Dart +
Flutter do the hard work. Each iteration of the language and framework
delivers better efficiencies. Incorporating these features will help you to
avoid certain errors and encourage better coding practice.

Within this chapter you will learn about many of the fundamentals and tips
that can be in your applications. Applications often have a number of
moving parts and taking advantage of the existing patterns and approaches
of Flutter will be highly beneficial to you as a developer.

10.1 Implementing a vertical list

Problem
You want to incorporate a list of items in a Flutter application.

Solution
In Flutter, a list of text items is typically rendered using the ListView
widget. The ListView widget provides a simple mechanism for capturing
data.
import 'package:flutter/material.dart';
class ListTileItem {
 final String monthItem;
 const ListTileItem({
 required this.monthItem,
 });
}
class ListDataItems {
 final List<ListTileItem> monthItems = [
 const ListTileItem(monthItem: 'January'),
 const ListTileItem(monthItem: 'February'),
 const ListTileItem(monthItem: 'March'),
 const ListTileItem(monthItem: 'April'),
 const ListTileItem(monthItem: 'May'),
 const ListTileItem(monthItem: 'June'),
 const ListTileItem(monthItem: 'July'),
 const ListTileItem(monthItem: 'August'),
 const ListTileItem(monthItem: 'September'),
 const ListTileItem(monthItem: 'October'),
 const ListTileItem(monthItem: 'November'),
 const ListTileItem(monthItem: 'December'),
];

 ListDataItems();
}
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 const title = 'MyAwesome App';

 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: const Text(title),
),
 body: MyListView(),
),
);
 }
}
class MyListView extends StatelessWidget {
 MyListView();
 final ListDataItems item = ListDataItems();
 @override
 Widget build(BuildContext context) {
 return ListView.builder(
 itemCount: item.monthItems.length,
 itemBuilder: (context, index) {
 return MyListTile(item.monthItems[index]);
 },
);
 }
}
class MyListTile extends StatelessWidget {
 const MyListTile(this.item);
 final ListTileItem item;
 @override
 Widget build(BuildContext context) {
 return ListTile(
 title: Text(item.monthItem),
 onTap: () {
 ScaffoldMessenger.of(context).showSnackBar(
 SnackBar(
 content: Text('You selected ${item.monthItem}'),
),
);
 },
);
 }
}

Discussion
For the majority of use cases where an on screen list is required, a ListView
can be partnered with a builder. A combination of ListView and builder
provides a memory efficient method for managing large volumes of data
that are to be rendered on screen.

In the example you have a class defined for the data to be shown in the
ListView. The class ListDataItems holds the information to be rendered on
screen. Observe how the data is separate to the ListView definition,
meaning the values held can be changed without impacting the functionality
used to populate the ListView.

The ListView function defines a local variable that instantiates the data
class. Once initiated the ListView can then use the Builder design pattern to
populate the list with the contents of the data class.

A ListTile widget function is created to isolate the onscreen rendering of the
data. The widget uses a ListTile and is passed an index data item that will
be shown on screen. Finally an onTap method is declared so that each
ListView item will display a notification when the user taps the onscreen
value.

The data element to data declaration from the rendering processing required
for a list.

In the example code the ListView is declared to use an existing list defined
in a separate class. To render items, the ListView expects its data to be
presented as a List. Reference recipe 2.7 for information on how to declare
a list. The ListTileItem provides a group of information that will be
displayed as the contents for the ListTile widget used by ListView.

10.2 Implementing a horizontal list

Problem
You want to create a horizontal list of items

Solution
Creating a horizontal list can be performed in a similar manner to theway
we create a vertical list (as done in recipe 10.1).. However in most use
cases, you will want the list to react dynamically (i.e. height and width)
based on the contents to be displayed.

import 'package:flutter/material.dart';
class MenuItem {
 final String title;
 final String subtitle;
 final String url;
 const MenuItem({
 required this.title,
 required this.subtitle,
 required this.url,
 });
}
class ListDataItems {
 final List<MenuItem> menuItems = [
 const MenuItem(
 title: 'Burger #1',
 subtitle: 'House Special',
 url:
 'https://images.unsplash.com/photo-1499028344343-
cd173ffc68a9?ixlib=rb-
1.2.1&ixid=MnwxMjA3fDB8MHxleHBsb3JlLWZlZWR8MTV8fHxlbnwwfHx8fA%3D%3D
&auto=format&fit=crop&w=500&q=60',
),
 const MenuItem(
 title: 'Burger #2',
 subtitle: 'Tall Boy Special',
 url:
 'https://images.unsplash.com/photo-1542574271-
7f3b92e6c821?ixlib=rb-
1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MTN8fGJ1cmdlcnxlbnwwfHwwfHw%3D&a
uto=format&fit=crop&w=500&q=60',
),
 const MenuItem(
 title: 'Burger #3',
 subtitle: 'Gastro Special',
 url:
 'https://images.unsplash.com/photo-1596662951482-
0c4ba74a6df6?ixlib=rb-
1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8N3x8YnVyZ2VyfGVufDB8fDB8fA%3D%3D
&auto=format&fit=crop&w=500&q=60',
),
 const MenuItem(
 title: 'Burger #4',
 subtitle: 'Chicken Special',
 url:
 'https://images.unsplash.com/photo-1551782450-
17144efb9c50?ixlib=rb-
1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MTB8fGJ1cmdlcnxlbnwwfHwwfHw%3D&a
uto=format&fit=crop&w=500&q=60',
),
];

 ListDataItems();
}
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 const title = 'Horizontal List';
 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: const Text(title),
),
 body: const MyHorizontalListView(),
),
);
 }
}
class MyHorizontalListView extends StatelessWidget {
 const MyHorizontalListView({Key? key}) : super(key: key);
 //final index = listMonthItems.length;
 @override
 Widget build(BuildContext context) {
 return MySizedBox();
 }
}
class MySizedBox extends StatelessWidget {
 MySizedBox({Key? key}) : super(key: key);

 final ListDataItems item = ListDataItems();

 final itemWidth = 12.0;
 @override
 Widget build(BuildContext context) {
 return SizedBox(
 height: 250,
 child: ListView.separated(
 scrollDirection: Axis.horizontal,
 itemCount: item.menuItems.length,
 separatorBuilder: (context, _) => SizedBox(width:
itemWidth),
 itemBuilder: (context, index) =>
MyListViewItem(item.menuItems[index]),
),
);
 }
}

class MyListViewItem extends StatelessWidget {
 const MyListViewItem(this.item);
 final MenuItem item;
 @override
 Widget build(BuildContext context) {
 return SizedBox(
 width: 200,
 child: Column(
 children: [
 Expanded(
 child: AspectRatio(
 aspectRatio: 4 / 3,
 child: Image.network(
 item.url,
 fit: BoxFit.cover,
),
),
),
 Text(
 item.title,
 style: const TextStyle(fontSize: 20, color:
Colors.black),
),
 Text(
 item.subtitle,
 style: const TextStyle(fontSize: 16, color:
Colors.grey),
),
],
),
);
 }
}

Discussion
In the solution you create a row object which will pass information to a
widget. To ensure the list presented in the screen is respectful of position
and content use a ‘SingleChildScrollView’ together with a Row widget.

The SingleChildScrollView is a scrollable widget for multi-axis directional
content. In this instance it is useful for a horizontal scrollable list as content
to be displayed will require a degree of flexibility.

To simplify the code, the imageItem displayed has been extracted to its own
function. Readability can often be increased by refactoring code to simple

widget functions.

10.3 Adding a SliverAppBar

Problem
You want to create a responsive header area for an application based on user
scrolling activity.

Solution
Add SliverAppBar(floating: true,) to make the AppBar reappear when the
user screens up. The default is to not show the app bar until the top of the
list is present. Here’s how to add the SilverAppBar:
import 'package:flutter/material.dart';
class CarItem {
 final String title;
 final String subtitle;
 final String url;
 CarItem({
 required this.title,
 required this.subtitle,
 required this.url,
 });
}
class ListDataItems {
 final List<CarItem> carItems = [
 CarItem(
 title: '911 Cabriolet',
 subtitle: '911 Carrera Cabriolet Porsche',
 url:

'https://files.porsche.com/filestore/image/multimedia/none/992-
c2cab-modelimage-sideshot/thumbwhite/9806daa1-d97f-11eb-80d9-
005056bbdc38;sD;twebp/porsche-thumbwhite.webp'),
 CarItem(
 title: '718 Spyder',
 subtitle: '718 Spyder Porsche',
 url:

'https://files.porsche.com/filestore/image/multimedia/none/982-
718spyder-modelimage-sideshot/thumbwhite/e9f11134-fa4e-11e9-80c6-
005056bbdc38;sD;twebp/porsche-thumbwhite.webp'),

 CarItem(
 title: '718 Boxster T',
 subtitle: '718 Boxster T Porsche',
 url:

'https://files.porsche.com/filestore/image/multimedia/none/982-718-
bo-t-modelimage-sideshot/thumbwhite/70f6828b-ac0d-11eb-80d5-
005056bbdc38;sO;twebp/porsche-thumbwhite.webp'),
 CarItem(
 title: 'Cayenne',
 subtitle: 'Cayenne S Porsche',
 url:

'https://files.porsche.com/filestore/image/multimedia/none/9ya-e3-
s-modelimage-sideshot/thumbwhite/e814b368-a8d3-11eb-80d5-
005056bbdc38;sO;twebp/porsche-thumbwhite.webp'),
];

 ListDataItems();
}
void main() => runApp(MyApp());
class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Cookbook Demo',
 debugShowCheckedModeBanner: false,
 theme: ThemeData(
 primarySwatch: Colors.blue,
),
 home: const MyHomePage(title: 'Flutter Cookbook'),
);
 }
}
class MyHomePage extends StatelessWidget {
 final String title;
 const MyHomePage({
 Key? key,
 required this.title,
 }) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 backgroundColor: Colors.grey[300],
 body: CustomScrollView(
 slivers: [
 const SliverAppBar(
 leading: Icon(Icons.menu),
 title: Text('Sliver App Bar + List'),
 expandedHeight: 300,

 collapsedHeight: 150,
),
 // Next, create a SliverList
 MySliverList(),
], // End
),
);
 }
}
class MySliverList extends StatelessWidget {
 MySliverList();

 final ListDataItems item = ListDataItems();
 @override
 Widget build(BuildContext context) {
 return // Next, create a SliverList
 SliverList(
 // Use a delegate to build items as they're scrolled on
screen.
 delegate: SliverChildBuilderDelegate(
 (context, index) => MyListTile(item.carItems[index]),
 // Builds 1000 ListTiles
 childCount: item.carItems.length,
),
);
 }
}
class MyListTile extends StatelessWidget {
 const MyListTile(this.carItem);
 final CarItem carItem;
 @override
 Widget build(BuildContext context) {
 return ListTile(
 leading: CircleAvatar(
 backgroundImage: NetworkImage(carItem.url),
),
 title: Text(carItem.title),
 subtitle: Text(carItem.subtitle),
);
 }
}

Discussion
If you are familiar with a ListView/Builder pattern, using a SliverAppBar
with a List should be a familiar approach. The SliverAppBar widget
provides a nice way to add a scroll context to an application.

When using a SliverAppBar, you as the developer take responsibility for the
on screen widget management. In this instance, to establish a scrollable
interface, a CustomScrollView is added to handle this processing.

The usual AppBar widget is removed from the example and replaced by
SliverAppBar. Initially we use a SliverAppBar that will shrink as the user
scrolls up and down the application viewport. The SliverAppBar header is
attached to the screen and reacts to user interaction.

From the example, note how a SliverList rather than a ListView is used for
the processing of the information. The SliverList is used in conjunction
with a SliverAppBar and will dynamically adjust based on the content to be
shown on screen. In addition to this list processing a special
SliverChildBuilderDelegate function is used to process the items to be
viewed.

10.4 Adding a grid of items

Problem
You want a way to display a grid of items.

Solution
In the example below there are two types of GridView rendered
import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 const title = 'Drawer demo';
 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: const Text(title),
),

 body: const MyGridViewBuilderWidget(),
),
);
 }
}
class MyGridViewWidget extends StatelessWidget {
 const MyGridViewWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return GridView.count(crossAxisCount: 2, children: [
 (Padding(
 padding: const EdgeInsets.all(8.0),
 child: Container(
 height: 50,
 width: 50,
 color: Colors.blue,
),
)),
 (Padding(
 padding: const EdgeInsets.all(8.0),
 child: Container(
 height: 50,
 width: 50,
 color: Colors.blue,
),
)),
 (Padding(
 padding: const EdgeInsets.all(8.0),
 child: Container(
 height: 50,
 width: 50,
 color: Colors.blue,
),
)),
 (Padding(
 padding: const EdgeInsets.all(8.0),
 child: Container(
 height: 50,
 width: 50,
 color: Colors.blue,
),
)),
]);
 }
}
class MyGridViewBuilderWidget extends StatelessWidget {
 const MyGridViewBuilderWidget({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 return GridView.builder(

 physics: const NeverScrollableScrollPhysics(),
 itemCount: 10,
 gridDelegate:
 const
SliverGridDelegateWithFixedCrossAxisCount(crossAxisCount: 5),
 itemBuilder: (context, index) {
 return Padding(
 padding: const EdgeInsets.all(8.0),
 child: Container(
 height: 50,
 width: 50,
 color: Colors.blue,
));
 });
 }
}

Discussion
If you have used a ListView/Builder combination previously, hopefully
using a GridView will be familiar to you. The GridView.builder follows the
same principles as a ListView Builder. .

GridView.count

As with a ListView, you need to indicate how many items are to be
displayed as part of the GridView. The count property is used to indicate the
quantity to be displayed and should be set accordingly. In the example, we
indicated that X items should be displayed.

The addition of NeverScrollableScrollPhysics prevents a scrollable area for
the user.

The display of the widget can be constructed as you wish. In the example
code Padding and a Container widget are used for the data to be displayed.

10.5 Adding a Snackbar (Popup notification)

Problem
You want a way to display a short lived notification to the user.

Solution
Brief notifications to the user are facilitated by a snackbar. A snackbar will
momentarily be presented on screen with the designated text.
import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}
class MyApp extends StatelessWidget {
 const MyApp({Key? key}) : super(key: key);
 @override
 Widget build(BuildContext context) {
 const title = 'MyAwesome App';

 return MaterialApp(
 title: title,
 home: Scaffold(
 appBar: AppBar(
 title: const Text(title),
),
 body: MyListView(),
),
);
 }
}
class ListTileItem {
 final String monthItem;
 const ListTileItem({
 required this.monthItem,
 });
}
class MyListView extends StatelessWidget {
 MyListView();
 final List<ListTileItem> monthItems = [
 const ListTileItem(monthItem: 'January'),
 const ListTileItem(monthItem: 'February'),
 const ListTileItem(monthItem: 'March'),
 const ListTileItem(monthItem: 'April'),
 const ListTileItem(monthItem: 'May'),
 const ListTileItem(monthItem: 'June'),
 const ListTileItem(monthItem: 'July'),
 const ListTileItem(monthItem: 'August'),
 const ListTileItem(monthItem: 'September'),
 const ListTileItem(monthItem: 'October'),
 const ListTileItem(monthItem: 'November'),
 const ListTileItem(monthItem: 'December'),
];
 @override
 Widget build(BuildContext context) {

 return ListView.builder(
 itemCount: monthItems.length,
 itemBuilder: (context, index) {
 return MyListTile(monthItems[index]);
 },
);
 }
}
class MyListTile extends StatelessWidget {
 const MyListTile(this.item);
 final ListTileItem item;
 @override
 Widget build(BuildContext context) {
 return ListTile(
 title: Text(item.monthItem),
 onTap: () {
 ScaffoldMessenger.of(context).showSnackBar(
 SnackBar(
 content: Text('You selected ${item.monthItem}'),
),
);
 },
);
 }
}

Discussion
A snackbar is useful where you need to indicate an activity has been
performed. For example, indicating a button has been tapped or a file has
been downloaded.

The SnackBar widget provides a notification back to the user. You can
override the default settings of the snackbar as desired. For example the
default duration of 4 secs can be overridden, by introducing the following
code:
 SnackBar(
 duration: const Duration(seconds: 10, milliseconds:
500),
 content: Text('You selected $listTitle'),
),

In addition to providing feedback to the user, the snackbar can also perform
additional actions. Extend the snackbar definition to include a label and a
gesture to initiate a complementary action.

 SnackBar(
 action: SnackBarAction(
 label: 'action',
 onPressed: () {},

),
 duration: const Duration(seconds: 10, milliseconds:
500),
 content: Text('You selected $listTitle'),
),

You can utilize this feature to invoke additional activities similar to that
seen with the more common menu based options.

About the Author
Rich loves building things in the cloud and tinkering with different
technologies. Lately this involves either Kubernetes or Serverless. Based in
the UK, he enjoys attending (Ya remember that!) technical conferences and
speaking to other people about new technologies. When he’s not working,
he likes spending time with his family, playing the guitar and riding his
mountain bike. To improve his development skills he has also started
writing smaller utility applications to simplify the more repetitive tasks (e.g.
image manipulation, text manipulation, studying for certifications). Rich is
also the author of Hands-On Serverless Computing with Google Cloud.

Table of Contents
Cover
Flutter and Dart Cookbook
Copyright

Revision History for the Early Release
Chapter 1. Starting with Dart

A Note for Early Release Readers
1.1 Determining which Dart installation to use

Problem
Solution
Discussion

1.2 Running Dart in DartPad
Problem
Solution
Discussion

Figure 1-1. The DartPad interface
1.3 Extending Android Studio to support Dart

Problem
Solution
Discussion

1.4 Developing with VS Code
Problem
Solution
Discussion

1.5 Installing the Dart SDK
Problem
Solution
Discussion

1.6 Running a Dart application
Problem
Solution
Discussion

1.7 Selecting a release channel
Problem

clbr://internal.invalid/book/OEBPS/cover.xhtml

Solution
Discussion

Chapter 2. Learning Dart Variables
A Note for Early Release Readers
2.1 Declaring an Integer variable

Problem
Solution
Discussion

2.2 Declaring a Double variable
Problem
Solution
Discussion

2.3 Declaring a Bool variable
Problem
Solution
Discussion

2.4 Declaring a String variable
Problem
Solution
Discussion

2.5 Using a Print statement
Problem
Solution

Example 2-5. Example 1: Here’s an example of a how
to print static content:
Example 2-6. Example 2: Here’s an example of a how
print the content of a variable:
Example 2-7. Example 3: Here’s an example of a how
print the complex data type:

Discussion
2.6 Using a Const

Problem
Solution
Discussion

2.7 Using Final
Problem
Solution

Discussion
2.8 Working with Null

Problem
Solution
Discussion

Chapter 3. Exploring Control Flow
A Note for Early Release Readers
3.1 Using an If statement

Problem
Solution
Discussion

3.2 Using While/Do While
Problem
Solution
Discussion

3.3 Using a For statement
Problem
Solution
Discussion

3.4 Using a Switch statement
Problem
Solution
Discussion

3.5 Using an Enum
Problem
Solution
Discussion

3.6 Handling Exceptions
Problem
Solution
Discussion

Chapter 4. Implementing Functions
A Note for Early Release Readers
4.1 Declaring Functions

Problem
Solution
Discussion

4.2 Adding parameters to Functions
Problem
Solution
Discussion

4.3 Returning values from Functions
Problem
Solution
Discussion

4.4 Declaring Anonymous functions
Problem
Solution
Discussion

4.5 Using optional parameters
Problem
Solution
Discussion

Chapter 5. Handling Maps and Lists
A Note for Early Release Readers
5.1 Using a Map to handle objects

Problem
Solution
Discussion

5.2 Retrieving Map content
Problem
Solution
Discussion

5.3 Validating key existence within a Map
Problem
Solution
Discussion

5.4 Working with Lists
Problem
Solution
Discussion

5.5 Adding List content
Problem
Solution

Discussion
5.6 Using Lists with complex types

Problem
Solution
Discussion

Chapter 6. Leveraging Classes
A Note for Early Release Readers
6.1 Defining Classes

Problem
Solution
Discussion

6.2 Using Class Constructors
Problem
Solution
Discussion

6.3 Extending Classes
Problem
Solution
Discussion

6.4 Extending Classes with Mixins
Problem
Solution
Discussion

6.5 Importing a package
Problem
Solution
Discussion

Chapter 7. Introducing the Flutter Framework
A Note for Early Release Readers
7.1 Mocking an interface

Problem
Solution
Discussion

Figure 7-1. Example Excalidraw drawing
7.2 Creating a Flutter project

Problem
Solution

Note
Discussion

7.3 Working with a Stateful Widget
Problem
Solution
Discussion

Figure 7-2. Example stateful widget interaction
7.4 Working with a Stateless Widget

Problem
Solution
Discussion

7.5 Refactoring Widgets
Problem
Solution
Discussion

7.6 Removing the Flutter Debug banner
Problem
Solution
Discussion

Chapter 8. Working with Widgets
A Note for Early Release Readers
8.1 Using the Scaffold class

Problem
Solution
Discussion

8.2 Using an AppBar
Problem
Solution
Discussion

8.3 Using an Expanded widget
Problem
Solution
Discussion

Figure 8-1. A ListView widget
Figure 8-2. A ListView widget enclosed within an
Expanded widget

8.4 Building with a Container

Problem
Solution
Discussion

8.5 Using a Center widget
Problem
Solution
Discussion

8.6 Using a SizedBox
Problem
Solution
Discussion

8.7 Using a Column
Problem
Solution
Discussion

8.8 Using a Row
Problem
Solution
Discussion

Chapter 9. Developing User Interfaces
A Note for Early Release Readers
9.1 Incorporating Rich Text

Problem
Solution
Discussion

9.2 Incorporating the Google fonts package
Problem
Solution
Discussion

9.3 Identifying the host platform
Problem
Solution
Discussion

9.4 Using a Placeholder widget
Problem
Solution
Discussion

9.5 Using a Layout Builder
Problem
Solution
Discussion

9.6 Getting screen dimensions with Media Query
Problem
Solution
Discussion

Chapter 10. Organizing onscreen data
A Note for Early Release Readers
10.1 Implementing a vertical list

Problem
Solution
Discussion

10.2 Implementing a horizontal list
Problem
Solution
Discussion

10.3 Adding a SliverAppBar
Problem
Solution
Discussion

10.4 Adding a grid of items
Problem
Solution
Discussion

10.5 Adding a Snackbar (Popup notification)
Problem
Solution
Discussion

About the Author

	Flutter and Dart Cookbook
	Copyright
	Revision History for the Early Release

	Chapter 1. Starting with Dart
	A Note for Early Release Readers
	1.1 Determining which Dart installation to use
	Problem
	Solution
	Discussion

	1.2 Running Dart in DartPad
	Problem
	Solution
	Discussion
	Figure 1-1. The DartPad interface

	1.3 Extending Android Studio to support Dart
	Problem
	Solution
	Discussion

	1.4 Developing with VS Code
	Problem
	Solution
	Discussion

	1.5 Installing the Dart SDK
	Problem
	Solution
	Discussion

	1.6 Running a Dart application
	Problem
	Solution
	Discussion

	1.7 Selecting a release channel
	Problem
	Solution
	Discussion

	Chapter 2. Learning Dart Variables
	A Note for Early Release Readers
	2.1 Declaring an Integer variable
	Problem
	Solution
	Discussion

	2.2 Declaring a Double variable
	Problem
	Solution
	Discussion

	2.3 Declaring a Bool variable
	Problem
	Solution
	Discussion

	2.4 Declaring a String variable
	Problem
	Solution
	Discussion

	2.5 Using a Print statement
	Problem
	Solution
	Example 2-5. Example 1: Here’s an example of a how to print static content:
	Example 2-6. Example 2: Here’s an example of a how print the content of a variable:
	Example 2-7. Example 3: Here’s an example of a how print the complex data type:

	Discussion

	2.6 Using a Const
	Problem
	Solution
	Discussion

	2.7 Using Final
	Problem
	Solution
	Discussion

	2.8 Working with Null
	Problem
	Solution
	Discussion

	Chapter 3. Exploring Control Flow
	A Note for Early Release Readers
	3.1 Using an If statement
	Problem
	Solution
	Discussion

	3.2 Using While/Do While
	Problem
	Solution
	Discussion

	3.3 Using a For statement
	Problem
	Solution
	Discussion

	3.4 Using a Switch statement
	Problem
	Solution
	Discussion

	3.5 Using an Enum
	Problem
	Solution
	Discussion

	3.6 Handling Exceptions
	Problem
	Solution
	Discussion

	Chapter 4. Implementing Functions
	A Note for Early Release Readers
	4.1 Declaring Functions
	Problem
	Solution
	Discussion

	4.2 Adding parameters to Functions
	Problem
	Solution
	Discussion

	4.3 Returning values from Functions
	Problem
	Solution
	Discussion

	4.4 Declaring Anonymous functions
	Problem
	Solution
	Discussion

	4.5 Using optional parameters
	Problem
	Solution
	Discussion

	Chapter 5. Handling Maps and Lists
	A Note for Early Release Readers
	5.1 Using a Map to handle objects
	Problem
	Solution
	Discussion

	5.2 Retrieving Map content
	Problem
	Solution
	Discussion

	5.3 Validating key existence within a Map
	Problem
	Solution
	Discussion

	5.4 Working with Lists
	Problem
	Solution
	Discussion

	5.5 Adding List content
	Problem
	Solution
	Discussion

	5.6 Using Lists with complex types
	Problem
	Solution
	Discussion

	Chapter 6. Leveraging Classes
	A Note for Early Release Readers
	6.1 Defining Classes
	Problem
	Solution
	Discussion

	6.2 Using Class Constructors
	Problem
	Solution
	Discussion

	6.3 Extending Classes
	Problem
	Solution
	Discussion

	6.4 Extending Classes with Mixins
	Problem
	Solution
	Discussion

	6.5 Importing a package
	Problem
	Solution
	Discussion

	Chapter 7. Introducing the Flutter Framework
	A Note for Early Release Readers
	7.1 Mocking an interface
	Problem
	Solution
	Discussion
	Figure 7-1. Example Excalidraw drawing

	7.2 Creating a Flutter project
	Problem
	Solution
	Note

	Discussion

	7.3 Working with a Stateful Widget
	Problem
	Solution
	Discussion
	Figure 7-2. Example stateful widget interaction

	7.4 Working with a Stateless Widget
	Problem
	Solution
	Discussion

	7.5 Refactoring Widgets
	Problem
	Solution
	Discussion

	7.6 Removing the Flutter Debug banner
	Problem
	Solution
	Discussion

	Chapter 8. Working with Widgets
	A Note for Early Release Readers
	8.1 Using the Scaffold class
	Problem
	Solution
	Discussion

	8.2 Using an AppBar
	Problem
	Solution
	Discussion

	8.3 Using an Expanded widget
	Problem
	Solution
	Discussion
	Figure 8-1. A ListView widget
	Figure 8-2. A ListView widget enclosed within an Expanded widget

	8.4 Building with a Container
	Problem
	Solution
	Discussion

	8.5 Using a Center widget
	Problem
	Solution
	Discussion

	8.6 Using a SizedBox
	Problem
	Solution
	Discussion

	8.7 Using a Column
	Problem
	Solution
	Discussion

	8.8 Using a Row
	Problem
	Solution
	Discussion

	Chapter 9. Developing User Interfaces
	A Note for Early Release Readers
	9.1 Incorporating Rich Text
	Problem
	Solution
	Discussion

	9.2 Incorporating the Google fonts package
	Problem
	Solution
	Discussion

	9.3 Identifying the host platform
	Problem
	Solution
	Discussion

	9.4 Using a Placeholder widget
	Problem
	Solution
	Discussion

	9.5 Using a Layout Builder
	Problem
	Solution
	Discussion

	9.6 Getting screen dimensions with Media Query
	Problem
	Solution
	Discussion

	Chapter 10. Organizing onscreen data
	A Note for Early Release Readers
	10.1 Implementing a vertical list
	Problem
	Solution
	Discussion

	10.2 Implementing a horizontal list
	Problem
	Solution
	Discussion

	10.3 Adding a SliverAppBar
	Problem
	Solution
	Discussion

	10.4 Adding a grid of items
	Problem
	Solution
	Discussion

	10.5 Adding a Snackbar (Popup notification)
	Problem
	Solution
	Discussion

	About the Author

