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FOREWORD

This volume, edited by Dr. Peter Edmonds, is the first of the Methods
to be devoted to acoustics. Future volumes will deal with the more
classical aspects of acoustics, a field that has been adopted by our col-
leagues in engineering as well.

Ultrasonics plays many roles, ranging from physical and bioengineering
applications to the study of the fundamental properties of materials. Dr.
Edmonds and his contributors cover these areas in a manner that should
make this volume a definitive reference work on the subject. We expect
that researchers in a given specialization will find much useful information
and have their imaginations stimulated by going through the book as a
whole.

L. MARTON
C. MARTON

Xvii



PREFACE

This volume offers detailed and comprehensive treatments of a number
of important topics in the broad field of ultrasonics. It is intended to
serve the needs of graduate students and also of specialists in other fields
who may desire an assessment of the capabilities of ultrasonics as a tech-
nique with the potential for solving specific problems.

Ultrasonics interfaces with many fields, including optics, low tempera-
ture and solid state physics, chemical kinetics, cavitation, viscoelasticity,
lubrication, nondestructive evaluation, medical diagnostic imaging, signal
processing, and materials processing. The authors of one or more of the
following parts discuss these fields. However, other important topics
have been omitted, e.g., ultrasonics in gaseous media, plasma- and
magneto-acoustics,and phonon phenomena in general. Ultrasonic scatter-
ing in noncrystalline media proved to be insufficiently developed for treat-
ment in this treatise . (Seekers of information on these topics should
consult the excellent treatise ‘‘Physical Acoustics,”” edited by W. P.
Mason and R. N. Thurston, published by Academic Press.)

I wish to thank all authors for their cooperation and hard work in writ-
ing and many supplementary tasks. The essential contributions made by
the secretarial assistants to the authors and by their institutions are also
acknowledged.

I am grateful to several anonymous reviewers of parts of this volume,
whose excellent advice has been freely given and usually heeded. Valu-
able support provided by the management and staff of SRI International
is acknowledged with thanks.

All who have contributed to this volume profoundly regret that one of
its editors-in-chief, Dr. Ladislaus Marton, did not live to see its publica-
tion. In his absence, the functions of editor-in-chief have been admirably
fulfilled by Mrs. Claire Marton.

PeETER D. EDMONDS

xviii
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0. INTRODUCTION: PHYSICAL
DESCRIPTION OF ULTRASONIC FIELDST

By Peter D. Edmonds and F. Dunn

List of Symbois

a subscript denoting amplitude

A magnitude of «/f* contributed by a relaxation process (except
viscosity) at f << f;

B magnitude of a/f* contributed by the viscosity relaxation process
at f << fy

C, specific heat of medium at constant pressure

Cp specific heat per unit mass of medium at constant pressure

Cy specific heat of medium at constant volume

D logarithmic decrement

E, acoustic energy density = energy stored per unit volume

AE, energy loss per cycle due to absorption

f frequency

f relaxation frequency for viscosity

£:(7) distribution function for relaxation times

G shear modulus of elasticity

G*(jw) complex shear modulus of elasticity

G'(w), G"(w) real and imaginary parts of G*

G* infinite frequency asymptote of G’

I intensity

Li I, I, intensities of incident, reflected, and transmitted waves

i V-1

k wave vector

X magnitude of k

K bulk modulus of elasticity

n integer

p acoustic pressure

P amplitude of p

P, ambient pressure

* Portions of this introduction have been adapted with permission from W. J. Fry and F.
Dunn, Ultrasound: Analysis and experimental methods in biological research, in **Physical
Techniques in Biological Research,” (W. L. Nastuk, ed.), Vol. 4, pp. 265-275. Academic
Press, New York, 1962; and from F. Dunn, P. D. Edmonds, and W. J. Fry, Absorption and
dispersion of ultrasound in biological media, in ‘*Biological Engineering”” (H. P. Schwan,
ed.), pp. 207-233. McGraw-Hill, New York, 1969.

1 Copyright © 1981 by Academic Press, Inc.
METHODS OF EXPERIMENTAL PHYSICS, VOL. 19 All rights of reproduction in any form reserved.
ISBN 0-12-475551-0
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P, P
P1+v Pl—v P’+7 PI—
Praxs Poin see Table IV
Plh Plr; P’lh P’lr
Py, Py
q general field variable
Q amplitude of ¢
Cn quality factor = #/D
e general spatial coordinate
Tens Tons Tus } see Table IV
Tiin> Tan
R, amplitude reflection coefficient
R, intensity reflection coefficient
s condensation = (p — pg)/po
amplitude of condensation; entropy (as subscript)
SWR standing wave ratio
t time
I decay time of field amplitude parameter in an absorbing medium
T absolute temperature
T shear stress
T initial value of shear stress
T asymptotic final value of shear stress
T amplitude of sinusoidal shear stress
T amplitude of asymptotic final value of shear stress
Ta amplitude transmission coefficient
T intensity transmission coefficient
v wave propagation velocity; sound speed
v limiting sound speed at zero frequency (compressional wave)
v compressional wave speed
v? limiting shear wave speed at zero frequency
b1s O3, 1y } see Table IV
Viis Vigs Va1s Ung
Av velocity dispersion
x spatial coordinate
Xy see Table IV
Zy,2,,2 characteristic acoustic impedance
a amplitude absorption coefficient
o generalized relaxational contribution to «
@y contribution to « from viscosity
Bs adiabatic compressibility
Br isothermal compressibility
v ratio of specific heats = C,/C,
8 phase lag between acoustic pressure and particle velocity in an ab-
sorbing medium
n(w) shear viscosity coefficient
n° limiting shear viscosity as frequency tends to zero
n*(jw) complex shear viscosity
n'(w) real part of n*
é isobaric thermal expansion coefficient

6., 65, 0, 63 see Table IV
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(2] amplitude of temperature peturbation

A wavelength

As see Table IV

& ‘‘particle’’ (elemental volume) displacement

é: particle displacement in x direction

& particle velocity

& particle velocity in x direction

é: particle acceleration in x direction

= amplitudes of particle displacement for waves in the positive and
negative directions

= amplitude of particle velocity

= amplitude of particle acceleration

P density

Po mean density

P15 Ps> Ps see Table IV

T relaxation time

Tar To limits of relaxation time distribution

Ty relaxation time for viscosity

Y instantaneous temperature increment in medium
¢ scalar displacement potential (irrotational)

[} vector displacement potential (rotational)

o scalar velocity potential

) angular frequency

(dot over symbol)  differentiation with respect to time

0.1. Development of Propagation Relations

The propagation of an acoustic disturbance or the presence of an
acoustic field in an elastic medium is characterized by changes in a
number of the physical variables that describe the state of the system or
medium. Examples of these variables are pressure, temperature, and
density.

For a traveling, sinusoidal, plane wave propagating in the positive
direction of the x axis (when no attenuation of the waves occurs because
we assume absorption of energy by the medium is absent), the changes
in the physical variables can each be expressed in the form of Eq. (0.1.1),
provided that the medium responds linearly to the stresses imposed upon
it.

g = Qcos w(t — x/v) or q = Re{Q explju(t — x/v)]}. (0.1.1)

In this equation g designates any one of the variables that undergoes sinu-
soidal change owing to the presence of the disturbance in the medium and
Q designates the amplitude of the cyclic change in that variable; ¢ and x
are the time and space coordinates, respectively, w is the angular fre-
quency (w = 2#f), fthe frequency, and v the free-field sound speed, i.e.,
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the propagation speed of a plane wave traveling through a liquid medium
of infinite extent. Equation (0.1.1) is one solution, namely, that repre-
senting a wave traveling in the positive x direction, of the one-dimensional
elastic wave equation as it applies to an ideal, linear, homogenous, per-
fectly elastic (dissipationless), fluid medium

d%qg/at® = (1/v?) a%q/ox>. (0.1.2)

In this equation g could represent the instantaneous displacement & of an
element of volume of the medium. This approximation to the more gen-
eral hydrodynamical equation is valid under conditions that permit lin-
earization, that is, when the velocity amplitude = = (3£/8f)max Of the ele-
mentary volume is small in comparison with the speed of sound v and
when the adiabatic compressibility 85, which is the reciprocal of the adia-
batic elastic bulk modulus X, is not significantly dependent on pressure
over the range of pressure variations present in the acoustic field.

Since sound propagation is very close to an adiabatic process at most
frequencies of interest, the adiabatic compressibility is a significant
parameter in the description of sound propagation. It is related to the
free-field sound speed for compressional waves as follows:

1y =C,,/Cv
PoBs  poBr poBr’

where g is the adiabatic compressibility of the medium and p, the mean
density of the medium. The sound speed can be expressed, as indicated
in Eq. (0.1.3), in terms of the isothermal compressibility 8; by introducing
the ratio of specific heats y = C,/C,, where C, and C, are the specific
heats of the medium at constant pressure and constant volume, respec-
tively. Clearly, a measurement of the speed of a plane compressional
wave can be interpreted immediately to yield the adiabatic compress-
ibility of the medium if the density is known; and if the value of vy is also
known, the isothermal compressibility can be determined.
Equation (0.1.2) is a special case of the more general wave equation

that is applicable to three-dimensional propagation:

¥ _ 1 o

3t = puB V¢, 0.1.9)
Solutions of Eq. (0.1.4) include not only waves propagating in the positive
r direction away from the origin but also those propagating in the negative
r direction toward the origin. All are represented when the * sign is
placed in the exponent for one-dimensional propagation, e.g.,

& = Ez(r) expljlwt = k* 1)]. 0.1.5)

(0.1.3)

v?=pf =
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The wave vector k that appears in the solution is related to the angular fre-
quency and the sound speed as

k = ¥*n; K = —w/v=2m/\; v =FfA. (0.1.6)

Equation (0.1.4) is itself a specialization, applicable to fluids of the type
indicated, of the following wave equation describing propagation of dis-
turbances in a dissipationless, isotropic, elastic solid:

%6 K + 4G/3 G

— =—VV - - —V XV XE¢, 0.1.7

ar Po ¢ Po ¢ ( )
where K and G are, respectively, the bulk and shear moduli of elasticity of
the medium.

It is possible to express the displacement vector as the sum of terms in-
volving a scalar potential ¢ and a vector potential ¢ as

E=Vo+Vxd (0.1.8)

For irrotational motion, such as in a spherical wave, the vector potential
® = 0 and only the scalar displacement potential ¢ remains; that is,

£ =V (0.1.92)

The time derivative of the displacement potential is the velocity potential
Y, i.e.,

op/ot = ; & = V. (0.1.9b)
These potentials are fundamental functions (analogous to electric field po-
tentials) in terms of which acoustic field parameters may be expressed.
The specialization of Eq. (0.1.7) for fluids is obtained when the modulus
of shear rigidity G is set equal to zero, which is true for lossless fiuids,
since the latter are characterized by an inability to support an elastic shear
strain, and @ = 0,

Returning to a consideration of the simple plane wave propagating in an
ideal isotropic elastic medium in the positive x direction, we can express
the sinusoidally varying acoustic parameters in terms of the displacement
potential or velocity potential and in terms of one another.

p = —podp/dt, & = (V),, (0.1.10)
s =(p — po)/po = Bsp, 0.1.11)
Y = (T6/psCp)p = (v — 1)(Bs/6)p, 0.1.12)

where s is the condensation or the fractional change in density, p the
instantaneous density, Y the instantaneous temperature increment re-
sulting from adiabatic compression of the medium, 7 the absolute temper-
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TaBLE L
Parameter Amplitude
Parameter symbol g symbol Q P A)
Pressure p P —_ * pot?
Condensation s A) t—l—z —
Po?
Particle dis- ¢ = s 1 n
placement = ~ jwper Yiw
Particle . : |
= o +
velocity § = “pov v
Particle ac- . . Jjw .
& +J9 +
celeration & = ~pov +Hwv
1 1 v? 1
Temperature Y e 1= ( - —) +L0 < - )
p! g Br pol” ) Br PR

% Multiply expression in the table by the column heading to obtain the relations equal to
the amplitude quantities tabulated in the amplitude symbol column. Note that j = \/—1.
The relations apply to plane waves traveling in either direction. The upper sign applies to
waves traveling in the positive direction and the lower sign to the negative direction [see Eq.
(0.1.5)). The amplitude of a change in any one physical parameter is equal to the amplitude
of the change in any other physical parameter multiplied by the absolute value of the ap-
propriate quantity in the table. A self-consistent set of units is used throughout the table
(e.g., mks or cgs).

ature of the medium, @ the isobaric thermal expansion coefficient, and C},
the heat capacity at constant pressure per unit mass. The interrelation of
the acoustic field parameters is shown in Table I,

The method of detection and description of the field, in any specific
case, may depend on the measurement of one or several of these parame-
ters. The quantity pev, the product of density and sound speed, which ap-
pears in many relations in the table, is known as the characteristic
acoustic impedance of the medium Z,; that is,

Zy = pov. (0.1.13)

For plane traveling waves, Z, is numerically equal to the specific acoustic
impedance, which is defined as the ratio of the pressure p to the particle
velocity ¢ at any point in the field. For other field configurations, in-
cluding plane standing waves, the specific acoustic impedance differs nu-
merically from pgv and is, in general, a function of position. It should
also be noted that the characteristic acoustic impedance is dependent on
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Relations between Amplitudes of the Various Physical Parameters®

= B = (5]
* ropet s +Lob S R—
Jjwpy Pav jw " (Br ~ (1/pev®)
1—-[2 il 1._1* t—————-e——
v v Jov pot*[Br — (1/pet?)]
_ L -4 - L
Jo o Jwpet[ Br — (1/pev™)]
. 1 ]
" _ + 2 7
e *jo “pot Br — (1/pev?)]
. i 0
- + _ o Jed
+He pot] Br — (1/per?)]
&m( _1> +m( _¢> +ov( *1> —
g \Pr pov? ~g \Pr pot? “jwb \Pr pot?

the type of wave that is propagating, since the speed of shear waves is dif-
ferent from that of compressional waves.

The intensity I of the sound wave is defined as the time average of the
rate of propagation of energy through unit area normal to the direction of
propagation; for plane traveling waves, I is related to field-parameter am-
plitudes by

I =P)2Z, = PE/2 = Z,5%/2. 0.1.14)

The energy density E, of the wave motion at a specific position in the
field is the sum of the kinetic energy per unit volume of the moving vol-
ume element and the potential energy per unit volume of compression (or
expansion) of the element. For plane traveling waves, it is equal to the
ratio of the intensity to the sound speed, i.c.,

Eo = po=2/2 = I)v. (0.1.15)

Root mean square (rms) quantities are not employed in the majority of
publications in acoustics, and consequently the symbols in Eqgs. (0.1.14)
and (0.1.15) are the amplitudes of the acoustic field parameters. If rms
values had been used, the factors 2 would have been eliminated from the
equations.

As stated previously, linearizing of the hydrodynamical equations de-
pends on two assumptions which can now be expressed symbolically as

E/v << 1, [(Bs)porr — (Bs)pe—prl/(Bs)p, << 1, (0.1.16)



TaBLE II. Numerical Example of Physical Parameters for Water

Material f T Py 1 P s E E g o E/v

To obtain results in: MHz °C atm W/em? atm cm cm/sec  cm/sec? °C

Mutltiply figures in table by: 1 1 1 1 1 10—5 10—¢ 1 108 10~ 10~

To obtain results in: N/m?2e W/m? N/m2¢ m m/s m/s?

Multiply figures in table by: 1.013 x 108 10 1.013 x 10* 10—8 10~ 10¢

Water 0.01 0.171 0.762 0.183 1.15 7.22 3.82 0.762
degassed and distilled 1 30 1 1 1.71 7.62 1.83 11.5 72.2 38.2 7.62

100 17.1 76.2 18.3 115 722 382 76.2

% N/m? = Pascal (Pa).
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where P, represents the ambient pressure in the absence of a sound wave.
Nonlinear or second-order effects still may be of importance for values of
= /v smaller, for example, than 0.01, but the linearized equations consti-
tute a good first approximation for calculating values of the physical
parameters when this numerical limit is placed on the interpretation of the
symbol << 1.

Table II shows values of the numerical magnitudes of the acoustic field
parameters for a plane traveling wave, when the propagation medium is
water, for representative intensity values of the wave spanning four
orders of magnitude. It may be noted in particular that the temperature
excursion in water is small and that this parameter is entirely unrelated to
the monotonic rise in temperature of the specimen that occurs when en-
ergy is absorbed by the specimen. However, even for low-amplitude ul-
trasonic waves, which may be used as a probe to measure the response of
a system to an extremely small perturbation, the pressure amplitude may
be comparable to one atmosphere, and the amplitude of the particle ac-
celeration can be exceedingly high and give rise to significant local
stresses.

Table III lists values for the various characteristic constants of a
number of materials of general utility. These data may be used in con-
nection with the relations appearing in Table I to obtain numerical values
of field parameters such as those listed in Table II. It is usually conve-
nient to express the intensity in watts per square centimeter and the
acoustic pressure amplitude in atmospheres. However, for calculations
using the expressions of Table I, the intensity should be expressed in ergs
per square centimeter per second and the pressure amplitude in dynes per
square centimeter if the other parameters are expressed in the indicated
units. Equivalent mks units may also be used.

0.2. Reflection and Refraction

Reflection and refraction of acoustic waves occur in a manner analo-
gous to that for electromagnetic waves, and many of the concepts that
arise in the theory of transmission lines are applicable in ‘‘one-
dimensional’’ situations. The formulas listed in Table IV are for media
within which no acoustic absorption occurs and for which the normals to
the planar wave fronts and the normals to the interfaces lie in the same
plane.

Case |. Reflection and transmission occur at a single interface between
two media. The reflection coefficient ®,, the transmission coefficient
T ., and the standing wave ratio (SWR) for waves incident on the interface



TaBLE IIIA. Physical Constants of Various Materials

Material

T

Po Po v PoV C,,/Cv BT [¢] o
To obtain results in: °C atm g/cm? cm/sec  g/(cm’®sec) cm¥/d  (°O)! Np/cm
Multiply figures in tabie by: 1 1 1 10 10° 1 10712 103 1
To obtain results in: N/m?® kg/m? m/s kg/(m? s) m2/N¢ Np/m
Multiply figures in table by: 1.013 x 10° 1 10° 108 101 102
Water
Degassed, distilled 0 1 0.999841 1.4027 1.4025 1.000583 50.86 -5.89
a proportional to f2? 10 1 0.999701 1.4476 1.4472 1.001085 47.79 +9.45
20 1 0.998207  1.4827 1.4800 1.00656 45.86 21.19 25 x 1073
30 1 0.995651 1.5094 1.5028 1.01526 44.76 30.75
40 1 0.992220  1.5292 1.5173 1.02575 44.20 38.93
0 136 0.9941 1.4245 1.4161 1.00012 49.58 2.01
10 136 0.9946 1.4700 1.4621 1.00356 46.69 15.09
20 136 0.9961 1.5057 1.4998 1.01041 44.74 25.10
30 136 0:9986 1.5329 1.5308 1.01827 43.40 34.05
40 136 1.0019 1.5531 1.5560 1.02672 42.48 40.92
Water Solutions
0.9% normal saline® 0 1 1.00668 1.4134 1.4228 1.98
« proportional to f2 10 1 1.00631 1.4582 1.4674 8.46
20 1 1.00460 1.4932 1.5001 23.89 25 x 105
30 1 1.00189 1.5198 1.5268 29.94
40 1 0.99837 1.5354 1.5369 40.07



Oils
Castor, at 30°C
a proportional to 3354

Phenylated silicone
Dow-Corning No. 710
a proportional to f* to ~20 MHz¢

Aluminum (rolled)
Ceramics (approximate range)
Glasses
Borate crown (light)
Pyrex (702)
Silicate flint (heavy)
Silica ¢fused)
Stainless steel (347)

10
20
30

10
20
30
40

— ket ket ke

0.972
0.960
0.952
0.946
0.941
1.124
1.112
1.102
1.095
1.089
2.70

2.5-3.4

2.24
2.32
3.88
2.2

7.91

1.580
1.536
1.494
1.452
1.411
1.446
1.409
1.378
1.349
1.321
6.42
4.6-6.8

5.10
5.64
3.98
5.97
5.79

1.536
1.474
1.422
1.374
1.328
1.625
1.567
1.518
1.477
1.438
17.3
12-18

11.4
13.1
15.4
13.1
45.8

0.26
0.16
0.096
0.057
0.037

0.135
0.070
0.040
0.024




TabLE IIIB. Physical Constants of Biological Media’

Material T P, Po v pPov o
To obtain results in: °C atm g/cm? cm/sec g/(cm?® sec) Np/cm
Multiply figures in table by: 1 1 1 10° 10° 1
To obtain results in: N/m?e kg/m? m/sec kg/(m? sec) Np/m
Multiply figures in table by: 1.013 x 10® 10° 108 108 10%
Central nervous system®*
Brain (average) 37 1 1.03 1.51 1.56
Soft parenchymal tissues, } See Table I1IC
e.g., liver, kidney (average) 37 1 1.05 1.56 1.64
Muscle (skeletal)>#-# 37 i 1.07 1.57 1.68 0.13
Fatb:* 37 1 0.97 1.44 1.40 0.05
Bone
Skull (human)* 37 1 1.7 3.36 6.0
Frequency (MHz) 0.6 1 0.4
0.8 1 0.9
1.2 1 1.7
1.6 1 12
1.8 1 4.2
2.25 1 5.3
3.5 1 7.8




TaBrLe IIIC. Ultrasonic Absorption in Biological Tissues!

Regression
Frequency f (MHz) analysis fit
Tissue 0.5 0.7 1 3 4 7 a R
Brain — 0.014 = 0.003 0.029 + 0.004 — — 0.23 = 0.09 0.02451.18 0.993
Heart — 0.018 = 0.009 0.033 = 0.006 — — 0.21 = 0.03 0.028f1-04 0.995
Kidney — 0.017 = 0.007 0.033 = 0.004 — — 0.20 = 0.002 0.028/1-0 0.994
Liver 0.010 = 0.006 0.020 = 0.003 0.023 = 0.004 — 0.14 = 0.03 0.24 = 0.02 0.026/1-17 0.995
Tendon 0.050 =~ 0.03 0.16 = 0.1 0.11 = 0.04 0.53 = 0.2 0.75 £ 0.4 1.4 £ 05 0.145117 0.973
Testis 0.0078 = 0.002 0.0085 = 0.001 0.015 = 0.003 — 0.079 = 0.02 0.12 = 0.02 0.01511 0.995

% N/m? = Pascal (Pa); (m?/N) = (Pa™).

b Values of o for | MHz.

¢ Measurements of W.D. Wilson, U.S. Naval Ordnance Laboratory.

4 Indicated power dependence holds over entire range of measurements from 400 kHz to 500 MHz at 30°C.

¢ Measurements at 26°C over the frequency range 1 to 2000 MHz indicate (assuming negligible velocity dispersion) the presence of a single
relaxation process centered at 40 MHz.

 Extensive tabular and graphical data are given by Goss et al.,! Goss et al.,? Chivers and Parry,® and Bamber and Hill .4

7 o varies with direction of sound propagation relative to fiber orientation.

* o proportional to frequency.

i Absorption coefficient listed for bone mcludes effects of reflections at interfaces within the bone structure. More extensive data are
given by Fry and Barger.®

1 Goss et al.? The absorption coefficient & + standard deviation is given in nepers per centimeter at 37°C.
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TasLE IIID. Ultrasonic Attenuation in Biological Tissues?

Regression
Frequency f (MHz) analysis fit
Tissue 0.5 0.7 1 3 4 7 A R
Brain 0.032 0.047 0.07 0.24 0.34 0.64 0.07f114 0.822
Heart 0.060 0.086 0.13 0.41 0.56 1.0 0.13f1.07 0.98
Kidney 0.049 0.070 0.10 0.34 0.47 0.87 0.10f1.08 0.973
Liver 0.038 0.055 0.08 0.29 0.40 0.75 0.08f1-13 0.934
Tendon 0.33 0.42 0.56 1.3 1.6 2.5 0.56f0-763 0.998

2 Goss et al.? The attenuation coefficient A is given in nepers per centimeter at 37°C.

from medium 1 are functions only of the ratio of the characteristic acoustic
impedances of the two media, ry;; = pyvs/pivs.

For the partial reflection at normal incidence, the complete expression
for the pressure variation for a sinusoidal disturbance of infinite extent
can be represented by the summation of two waves, one traveling in the
positive and the second in the negative x direction:

p = P, exp[jw(t — x/v)] + P- expljow(t + x/v)], 0.2.1)

where P, is the amplitude of the pressure wave traveling in the positive
direction and P_ the amplitude of a similar wave traveling in the negative
direction. The standing wave ratio in either medium may be defined as

Paw _ 1+ [P/P.]
lelnl 1 - 'P—/P-V,,

where P, is the maximum value of the pressure amplitude in the field of
interference of the incident and reflected waves and P, the minimum
value of the pressure amplitude.

A distinction is required between reflection and transmission coeffi-
cients referring to the amplitude of the disturbance and those referring to
the power carried by the acoustic waves. The coefficients are defined,
respectjvely, as the ratios of the amplitudes or the intensities of the re-

SWR =

0.2.2)

1 8. A. Goss, R. L. Johnston, and F. Dunn, J. Acoust. Soc. Am. 64, 423-467 (1978).
28S. A. Goss, L. A, Frizzell, and F. Dunn, Ultrasound Med. Biol. §, 181186 (1979).
3 R. C. Chivers and R. J. Parry, J. Acoust. Soc. Am. 63, 940-953 (1978).

4 ). C. Bamber and C. R. Hill, Ultrasound Med. Biol. 5, 149157 (1979).

8 F. J. Fry and J. E. Barger, J. Acoust. Soc. Am. 63, 1576-1590 (1978).



TaBLE IV. Pressure Amplitude of Reflected and Transmitted Waves for Various Combinations of Media®

Configuration Definition Formula

Case 1. Wave in medium 1 at normal incidence on boundary between medium 1 and medium 2. No energy returned to interface from
medium 2. No absorption in media.

_ Pty AP L= ry
Pr1s U1 P2, Vs Tain 0101 Ra Py 1+ ran
- - T, = Pay _ 2rap
Py Py, BoAPw | 1+
— — r. when ry, > 1
SWR), = { n mn
P_ Py, = 0 ( h l/r,,, when rgy <1
—_—t
Case 2. Wave in medium 1 at normal incidence. Slab of medium 3 interposed between media t and 2. No energy returned to interface from
medium 2. No absorption in media.
= LD, = _& = 4’2[1 ] Ve
P11, 01 Ps3s U P25 Vg e P10 Qal P, (re;s + 1) cos(wxy /va) + (ran + ran)? Sin?(wXs /0q)
roy = 235 s = Payf_ [ “ryn ¥ ]”z
Py P,, s Mmv, | Py (rzn + 1F cos*(@x3 /v3) + (rzn + rzp)? sin®(wx, Jv3)
«— X3 —
- - ’ - 201
P, P =0 M s
—t

2 Only the ratios of the magnitudes of the pressure amplitudes are shown in the table, i.e., phase factors are not shown.
P



TaBLE IV (Continued)

Configuration Definition Formulas

Case 3. Wave in medium 1 incident at angle 6, to normal to boundary between media 1 and 2. Fluid media. No energy returned to interface
from medium 2. No absorption in media.

L P _|Pur|_ (cos 65/cos 8) — ren
M 2 TPyl (cos @g/cos By) + ryy
P11V Pa,Vq g =’_PA|= 2ry; €OS B
2Pyt cos 0y + ryy
) singy _ v
Py Sin 6, v
)
6 6,
Py
Plr




Case 4. Longitudinal or shear wave in medium 1 incident at angle 4, to normal to boundary. Solid or viscoelastic media. Mode conversion
with generation of shear and longitudinal waves in media 1 and 2. No energy returned to interface from medium 2. Absorption in media
sufficiently small for impedances of media to be approximated by their real parts.?

_ P2l sin 6, _ by

sn = F =
Py s 0g U

N RO .

Praverr'a Pr¥orto o = Palm sind, _ vy
7 pavy sin @y vg
O U sin 6, _n
e P1vn sind; vy

b See Muskat and Meres® for expressions for ratios of normal components of wave amplitudes.

8 M. Muskat and M. W. Meres, Geophysics 5, 115 (1940).
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flected and transmitted waves to the amplitude or intensity of the incident
wave, i.e.,

_&_22_21 _P2+_ 2Z,
= Pe Zr 2y TP ZmTZy 02.3
I (P_\? L, Z
% = —_—— = (———) = %az’ g = ﬁ- = —l 2. 0.2.4
A Vo =l oz, 0 (029

In these expressions the subscript a designates amplitude coefficients and
the subscript I power or intensity coefficients., Conservation of energy
requires that the sum of the power reflection and transmission coefficients
should always equal unity whereas the sum of the amplitude coefficients
is not in general equal to unity.

R+ T = 1. (0.2.5)

The coefficients described here as transmission coefficients are fre-
quently described as absorption coefficients in experiments involving irra-
diation of a specimen. This difference in viewpoint arises from the fact
that in irradiation experiments interest is confined to measuring the
standing wave ratio in the medium situated in front of the specimen. Any
energy transmitted into the specimen is therefore effectively lost or ap-
pears to be absorbed. From the point of view of the properties of the in-
terface between two media, this ‘‘lost’’ energy is merely transmitted into
the second medium. The term ‘‘absorption coefficient’” will be reserved
for later use when a study is made of the attenuation of the transmitted
wave amplitude mechanisms operative within the second medium.

Case 2. A slab of a third medium of thickness x; is interposed between
two media. The reflection coefficient &, and the transmission coefficient
J, are functions of the ratios of the characteristic impedances and of the
quantity wxs/vs (equal to 2wx3/A3), wWhich is determined by the ratio of the
thickness of medium 3 and the wavelength in it. If the characteristic
impedance of medium 3 is intermediate between those of media 1 and 2,
then the transmission coefficient can be maximized by choosing thickness
x3 to satisfy the relation

x3/As=Q2n—1/4, n=123.... (0.2.6)
The transmission coefficient then becomes
Ta = [2ran/(rsi + ras); 0.2.7)

that is, for maximum transmission, the best choice of thickness that can
be made for any interposed material (if its characteristic acoustic imped-
ance has any value between those of the other media) is one-quarter
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wavelength or odd multiples thereof. In addition, if one is free to choose
the interposed material so that its characteristic acoustic impedance is op-
timum for transmitting the acoustic energy, then the reflected wave in
medium 1 can be eliminated by choosing the intermediate material so that

(pav3)? = (pv ) patsy). 0.2.8)

If the characteristic acoustic impedance of medium 3 does not have a
value between those of the other two media, then the optimum choice of
thickness for the slab to obtain the maximum value to the transmission
coefficient is an integral multiple of a half-wavelength, i.e.,

x3/As = n}), n=1273,.... (0.2.9)

The transmission coefficient then becomes identical with Eq. (0.2.3). If
media | and 2 have nearly equal characteristic acoustic impedances that
are less than that of medium 3 and if the thickness of the interposed slab
satisfies the relation rg;(wx3/v3) < 75, then the transmission coefficient
does not differ from that of case 1 by more than 1%. If the characteristic
acoustic impedance of medium 3 is less than that of media 1 and 2, then
ry3 should be used in place of ry, in the foregoing inequality.

Case 3. A plane wave is incident at any angle 8, on the plane interface
between two fluid media. The angle of refraction 6, is a function of the
angle of incidence and the ratio of the velocities of sound in the two
media. The pressure transmission and reflection coefficients also involve
the ratio of characteristic impedances. If sin 8, > v,/v,, then the incident
wave is totally reflected, and there is no propagation of a refracted wave
in medium 2. It should also be observed from the form of the reflection
coefficient that there is no refiected wave if the ratio of velocities satisfies
either of the relations p,/p, > vy/v; > 1 or py/p, < v,/v, < 1 and if the
angle of incidence satisfies the relation

. r{n — 1
sin 8, o — (a0 0.2.10)

Case 4. When the waves are incident obliquely and both media are
solid or viscoelastic, the effects of shear rigidity are exhibited. The
boundary conditions to be satisfied are: continuity of pressure and conti-
nuity of the normal and parallel components of particle displacement.
The condition on the parallel component is satisfied by the occurrence of
shear waves in one or both media. In the configuration of Table IV, the
direction of polarization of the shear waves is in the plane of the diagram.
An obliquely incident longitudinal wave generates reflected and refracted
longitudinal waves and, in addition, reflected and refracted shear waves.
An incident shear wave polarized in the plane of the diagram generates a
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similar set of four waves. A shear wave obliquely incident as indicated
and polarized perpendicularly to the diagram, that is, parallel to the inter-
face, will generate only refracted and reflected shear waves of the same
polarization since there is no component of motion perpendicular to the
interface.” If either medium behaves as an ideal fluid, then it does not
support shear wave propagation.® Muskat and Meres® derived expres-
sions for the ratios of the components of displacements perpendicular to
an interface between two perfectly elastic solids; their results may be
used not only for perfectly elastic solids but also, with caution, for those
viscoelastic solids exhibiting small absorption of energy. Absorption can
be regarded as the result of independent processes influencing the wave
amplitudes during propagation toward and away from the interface.

The formulas given in this section (Cases 1-4) are important, for ex-
ample, in calculating, at least approximately, sound speed values from
standing wave data, the magnitude of the effect of the reflected acoustic
energy on driving transducers, the amplitude of the waves reflected at
tissue interfaces, the accuracy of geometric placement or localization of a
beam focus deep in tissue, etc. The formulas are also useful in the design
of ultrasonic instruments where considerations of energy transfer from
the transducer to the material of interest arise. More complicated config-
urations of materials and interfaces may arise in practice. The effects on
the field of absorption within a medium will be considered in the following
sections dealing with the physical mechanisms of absorption.

0.3. Absorption

When an ultrasonic wave propagates through any real medium, energy
is absorbed from the wave and converted into heat. The rate of heat pro-
duction in a selected volume of a medium in which such a field exists is
determined by the amplitude, frequency, and spatial distribution of the
field parameters. A variety of different mechanisms may play a role in
the conversion of sonic energy into heat.

The occurrence of absorption modifies the phenomenological descrip-
tion of lossless plane wave propagation by the introduction of an absorp-
tion coefficient into Eq. (0.1.1), i.e.,

q = Q exp(—ax) Re{exp[jw(t — x/v)]}, 0.3.1)
where a is the amplitude absorption coefficient per unit distance. The in-

7 M. R. Redwood, ‘‘Mechanical Waveguides.”” Pergamon, Oxford, 1960.
8 W. G. Mayer, IEEE Trans. Sonics Ultrason. SU-11, 1 (1964).
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tensity absorption coefficient per unit distance is equal to 2a. The frac-
tional energy loss per unit volume per cycle is

AE, 1 fm

E, "L J, (Py + p) dV = 2aA, 0.3.2)
where E, is the energy stored per unit volume. This quantity may also be
expressed in terms of a quality factor Q,, or the logarithmic decrement D
of a field parameter per cycle, defined by Eq. (0.3.3), both of which are
commonly used to describe the behavior of acoustic or electrical resona-
tors:

= - —-tanb=— = — for a<<%, 0.3.3)

where § is the angle of lag between a perturbation applied to the medium
and an appropriate response parameter and ¢, is the decay constant of a
field-amplitude parameter. Absorption occurs in a homogeneous
medium when the changes in density are not in time phase with the
changes in pressure, i.e., when the time at which the maximum pressure
occurs differs from the time at which the maximum density occurs. This
type of behavior is produced by a variety of mechanisms classified under
two general categories: relaxation and hysteresis for homogeneous media;
relative motion and bubble mechanisms, for inhomogeneous media.

0.3.1. Relaxation Processes

It will be convenient to discuss relaxation phenomena first in terms of a
specific example. The relaxation mechanism that is related to the shear
viscosity of the medium is chosen for this purpose. If viscosity is the
only mechanism responsible for absorption of a traveling, plane, com-
pressional wave, then the absorption coefficient is given by

2

a, = %}l@ : ; n=Bft for ‘;;‘ <1, (0.3.4)
where 7 is the shear viscosity coefficient of the medium and B =
872n/3pevs® is the classical absorption parameter related to viscosity. In
many nonmetallic liquids, particularly those which are associated and
thus exhibit appreciable viscosity, it is found that the measured absorp-
tion coefficient is approximately described by the classical absorption ex-
pression (0.3.4) within a factor of about 3. In other cases the classical
and measured absorption coefficient values differ by orders of magnitude.
Consider first a hypothetical liquid for which Eq. (0.3.4) accurately de-
scribes the measured absorption coefficient at lower frequencies. At
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higher frequencies it appears that the absorption coefficient should in-
crease in proportion to the square of the frequency, assuming that the vis-
cosity remains constant while the frequency is allowed to increase. This
prediction is approximately true over only a limited frequency range for
which the effective value of the viscosity coefficient is the same as the
value at low frequencies, that is, under ‘‘static’’ conditions. As the fre-
quency increases, the effective viscosity decreases monotonically toward
zero, owing to the finite time required for the transfer of momentum
between adjacent regions of the medium.

Under nonequilibrium conditions the instantaneous shear stress T
across a planar element at any position in a medium is not equal to the
**static’” value given by the product of the ‘‘static’’ shear viscosity coeffi-
cient and the space gradient of the particle velocity, but this product con-
stitutes an asymptotic value T° toward which T tends as time increases.
The simplest assumption regarding the approach to the ‘‘static’’ value is
that the rate is proportional to the difference between the instantaneous
value and the ‘‘static’’ value; i.e.,

oT 1 a.f
92 _ 2 (05 _
T (7; 3 T), (0.3.5)

where 7, is the proportionality constant which is in the nature of a time
constant, the relaxation time, and »° is the low-frequency viscosity coeffi-
cient.

Consider a step function change of velocity to be imposed on the x
boundary of the system. Since transfer of momentum in the x direction is
necessary to change the internal stress conditions, the shear stress T(r)
will not rise to T° immediately but will tend asymptotically to this limit.
An approximate solution to Eq. (0.3.5) is obtained by equating the instan-
taneous viscous and inertial forces and by regarding n°® 3£/ox as the
time-independent stress T%; Eq. (0.3.5) becomes

aT 1

==, (0.3.6)

yielding the solution
T=1T"— (T — T) exp(—¢t/7,),

where T; was the initial value of T. Consequently the shear stress in this
hypothetical experiment increases approximately exponentially toward
T° with time constant 7,. A time delay is exhibited in the response of the
liquid, where ‘‘response’’ refers to the changes in the time-dependent
stress T(?), after imposition of the step function.

The concept of T? as a stress toward which the instantaneous stress in
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the liquid tends, even though it may never reach it, can be helpful in vi-
sualizing the response of a viscous liquid to a sinusoidal change in the im-
posed strain rate. In this case it is evident that a time delay in the
response of the liquid will result in a phase delay between stress and im-
posed strain rate. Such a phase delay is characteristic of relaxing
systems subjected to sinusoidal perturbation.

When the ultrasonic perturbation is a sinusoidal change in the rate of
strain, the following substitutions are made in Eqgs. (0.3.5) and (0.3.6):

T = T(x)e¥wt+® & = Ex)e™,
T = To)e,

where 8 is the phase delay between stress and particle velocity. The sub-
stitution of these expressions leads to a description of the response of the
system in terms of a frequency-dependent effective viscosity:

T TP g0
o&jox  aEJox T 1+ jary - " U

The effective viscosity obtained here is a complex number and contains a
contribution [the imaginary part of n*(jw)] which implies that such a
medium has the property of a dynamic shear modulus G*(jw) = G’ +
JG'' with a nonzero real part. The real part of the complex viscosity coef-
ficient at any frequency decreases uniformly from the low-frequency
value n° to zero as the frequency increases.

7' (@) = n°/[1 + (w7,)%]. (0.3.9)
It is appropriate to define the equivalent complex shear modulus
G*(jw) = G'(w) + jG''(w) by
Tee?®  jo*  G*(wr)? ., Gror
Ejax 1 +jor, 1+ (@nl T+ (wr)f

(0.3.7)

(0.3.8)

G*(jw) =

(0.3.10)

where G* = 7°/7,. The real part of the complex shear modulus (shown
in Fig. 2b of Part 3) varies from zero at zero frequency to an asymptotic
value G®at frequencies very much greater than f, = 1/2zr,. The fre-
quency f, is thus called the relaxation frequency for the viscous mecha-
nism. The imaginary part of the complex shear modulus increases from
zero at zero frequency to a maximum at the relaxation frequency and falls
again to zero at indefinitely high frequencies. As the frequency in-
creases, the liquid exhibits an effective nonzero real part of the shear
modulus and this property allows the propagation of heavily damped
shear waves to occur. The propagation velogity as well as the absorption
coefficient will be strongly dependent on frequency:
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_ [+ (GG _2af __sin(G"/2G")
BTN T0sGTRG) 0 T v T [+ GG

where v = (G’ /p,)'%, the limiting shear wave speed as the frequency ap-
proaches zero. We therefore observe a drastic change in the behavior of
a liquid medium of moderate viscosity as the frequency of an applied
acoustic perturbation is varied. At low frequencies it behaves like a
viscous liquid that does not allow the propagation of shear waves. At fre-
quencies considerably higher than the relaxation frequency, the equations
predict that the absorption coefficient due to viscosity should approach a
constant nonzero value and that the velocity of propagation of such waves
should approach a constant value which is determined by G*. It is found
in the case of some hydrocarbon oils? that G is of the order of magnitude
10'® dyn/cm?, i.e., within two orders of magnitude of the values charac-
teristic of metals. In other words, the liquid is behaving much like a
glass. The first known example of materials exhibiting behavior that is
determined predominately by a single viscous relaxation mechanism of
the type just described was molten zinc chloride.!® Many other liquids
behave as if several such viscous relaxation processes, described by dif-
ferent relaxation times and magnitudes, were superposed, as described in
Part 3.

As one might expect, the observed behavior of most materials, in-
cluding those of biological interest, is by no means so simple that it can be
described adequately by a single relaxation time. It is found that sonic
parameter magnitudes generally vary less drastically with frequency than
the predictions of a single relaxation process require. Such behavior can
be encompassed within the theory of relaxation processes by supposing
that a discrete number of such processes are operative at the same fre-
quency (each process may be described by a different value of the relax-
ation time) or, alternatively, by supposing that a continuous distribution
of relaxation times exists. Since the latter possibility is more general,
attention here will be confined to it. For the viscosity relaxation mecha-
nism, Eq. (0.3.10) would be replaced by

(wr)? dr
1+ (wr)?

(0.3.11)

T, d
+jG°°f g‘(T)l_TETT?’ 0.3.12)

G*(jw) = G f " g

where 7, and 7, are bounds of the distribution of relaxation times. The
distribution function g,(7), bounded by the values zero and one, expresses
the contribution to the complex shear modulus which is derived from pro-

® A. J. Barlow and J. Lamb, Proc. R. Soc. London Ser. A 253, 52 (1959).
1 G. Gruber and T. A. Litovitz, J. Chem. Phys. 40, 13 (1964).



0.3. ABSORPTION 25

cesses having relaxation times between r and 7 + dr. These concepts are
considered in detail by Harrison and Barlow in Part 3.
Equations (0.3.4) and (0.3.9) may be combined and represented by

ay0/f = ayh = 2ayMNmaxor,/[1 + (@7,)?], (0.3.13)

where 7’ is identified with n and (@,A)nax = 4721°%,/3povs? is the max-
imum value of the relaxational absorption in unit wavelength, attained at
the relaxation frequency f, = 1/2wr,, i.e., when f/f, =wr =1 or
log(wr) = 0. An alternative formulation of Eq. (0.3.13) is

ay/f* = B/[1 + (fIA)], (0.3.14)

where B = 87%n/3pov® = 2(ayN)max/Vf -

The relaxational concept can now be extended to include processes that
respond with a time delay to local changes of pressure or temperature.
Examples of such processes are structural changes responding to pres-
sure and redistribution of energy among vibrational degrees of freedom at
the molecular level responding to temperature. Any process involving a
change of molar volume or molar enthalpy will respond to the perturba-
tions of local pressure [as given by Eq. (0.1.10)] or local temperature [as
given by Eq. (0.1.12)]. Ifthe reactants and products of the process are ini-
tially present in approximately equal mole fractions (i.e., if the process is
approximately in equilibrium), then its contribution to the absorption of
ultrasonic energy can be significant and expressions (0.3.13) and (0.3.14)
apply with values of A, (@A)max, and 7 governed by the process

av/f = ah = 2 Nmaxet/[1 + (07)¥] 0.3.15)
a./f? = A/[1 + (f/ft)], (0.3.16)

where a;, 7, and A are generalizations of a,, 7,, and B, respectively.
Consequently, ultrasonic absorption measurements as a function of fre-
quency offer a technique for exploring the kinetics of certain fast physico-
chemical reactions. In general, both volumetric and enthalpic changes
accompany a reaction and complexities arise early in the interpretation of
such measurements. The subject is discussed in detail by Slutsky in Part
4,

In liquids of low viscosity the relaxation times 7 = 1/2xf; for the volu-
metric and enthalpic processes are frequently several orders of magnitude
greater than 7, for the viscosity relaxation process. Therefore, the
viscous process contributes the frequency-independent amount B to the
quantity «/f? in the range of interest for studying many physicochemical
reactions.

Three options for representing such typical relaxational behavior of
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Fi1G. 1. (a) Relaxational contribution to the ultrasonic absorption per wavelength a.A for a
single relaxation process. (b) Absorption in unit wavelength a,A for a single relaxation
process added to absorption due to viscosity a, = Bf®. (c) Absorption parameter a,/f?fora
single relaxation process and background absorption due to viscosity.

media are shown in Fig. 1. Figure 1a in analogy with Fig. 2b of Part 3
shows a peak in the absorption in unit wavelength for a general relaxation
process other than viscosity (which would give rise to another peak at
much higher frequencies). Figure 1b shows the same quantities with the
ordinate plotted on a logarithmic scale. A relaxation process causes the
curve to transfer from one line of slope 2 to another displaced to higher
frequencies. Figure l¢ shows the measured value of the absorption
parameter «/f? where the viscosity contributes the background absorp-
tion B (which tends to zero only at much higher frequencies):
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A
(%)m “irgrr B 0.3.17)

The occurrence of relaxation is shown by the sigmoid form of «/f2 plotted
against frequency. Two measurements of a/f? (for example, at the
highest and lowest frequencies available) are sufficient to show whether at
least one relaxation region lies between the frequencies employed.
Methods of measuring « are discussed in detail by Breazeale, Cantrell,
and Heyman in Part 2.

The occurrence of relaxation is not only associated with a peak in the
relation between the absorption in unit wavelength and the frequency but
it is also accompanied by dispersion of the sound speed in the same fre-
quency range, i.e.,

T

2 — (1,032 0 A, BT
v (U) + 2v AUI+(M)2’

(0.3.18)
where ¢° is the limiting sound speed as frequency tends to zero. The am-
plitude of the absorption peak and the increment of sound dispersion Ay
are related as

AU/U = (ar}‘)max/‘”s 0.3.19)

provided (a,A)max/7 << 1, which is the case for compressional waves in
most materials of interest.

Since the magnitude of the velocity dispersion is very small (usually
less than 19%), very accurate measurement of velocity is required if quan-
titative deductions are to be made. Observation of velocity dispersion in
connection with an absorption maximum provides valuable confirmation
that relaxational behavior is being observed. If only part of the relax-
ational spectrum is accessible experimentally, the following equation pro-
vides a useful relationship between a; A and the slope of the velocity dis-
persion curve at the same frequency:

=51+ o). 0.3.20)

0.4. Attenuation

Any process that removes energy from a traveling acoustic wave but
does not dissipate that energy as heat contributes to the attenuation of the
acoustic wave but not the absorption by the medium. The primary con-
tribution to attenuation in addition to absorption is acoustic scattering by
inhomogeneities in the medium.
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Scattering of ultrasound is governed by the same principles as scat-
tering of electromagnetic radiation, e.g., radar signals in the atmosphere
or light in a turbid liquid. Three cases are distinguished, depending on
the ratio of the wavelength of the radiation to the linear dimension of the
inhomogeneities in ‘‘refractive index’’; i.e., much less than unity, much
greater than unity, or comparable in magnitude. When the ratio is much
less than unity, behavior is approximately described by the theory for re-
flection and refraction at plane interfaces. When the ratio is much greater
than unity (small scatterers), Rayleigh’s theory is applicable. The
greatest complexity arises when wavelength and linear dimension of the
inhomogeneities are comparable in magnitude.

In all three cases, however, the acoustic problem is inherently more
complicated than the electromagnetic problem, because elastic media
support both bulk compressional and shear waves, in general, and surface
waves can be generated at interfaces. Furthermore the acoustic *‘‘refrac-
tive index’’ will vary in response to variations of either density or elastic
modulus or both, Further difficulties arise when the absorption by the
medium is not negligible and when the locations and properties of the in-
homogeneities are time dependent. It is therefore hardly surprising that
the theory of scattering of ultrasound is in an early stage of development.

Scattering in polycrystalline media is discussed in detail by Papadakis
in Part 5. Scattering by noncrystalline media, such as biological tissues,
is a subject of ongoing research on which a consensus is not yet available.
Readers seeking information on this subject may consult original articles
by Sigelmann and Reid,!! Shung et al.,'? and Waag et al.'® and a review by
Chivers.* Texts by Morse and Ingard'®* and Chernow!® provide theo-
retical bases for the two major aspects of the problem, i.e., scattering from
discrete entities or in inhomogeneous continua. Twersky’s!” work pro-
vides a foundation for studies of multiple scattering.

1 R. A. Sigelmann and J. M. Reid, J. Acoust. Soc. Am. 53, 1351 (1973).

1 K. K. Shung, R. A. Sigelmann, and J. M. Reid, IEEE Trans. Biomed. Eng. BME-24, 460
(1976).

13 R. C. Waag, R. M. Lerner, and R. Gramiak, ‘‘Seminar on Tissue Characterization,”’
NBS Special Publication 453, pp. 213-228, U.S. Government Printing Office, Washington,
D.C., 1976.

14 R. C. Chivers, Ultrasd. Med. Biol. 3, 1 (1977).

15 P. M. Morseand K. U. Ingard, ‘*Theoretical Acoustics,”” McGraw-Hill, New York, 1968.

16 L. A. Chernow, ‘‘Wave Propagation in a Random Medium,”’ Dover, New York, 1960.

17 V. Twersky, J. Res. Nat. Bur. Stand. 64D, 715 (1960).
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1. PIEZOELECTRIC TRANSDUCERS

By Matthew O’Donnell, L. J. Busse, and J. G. Miller

List of Symbols

cross-sectional area

elastic stiffness constant

elastic stiffness constant at constant
electric displacement

elastic stiffness constant at constant
electric field

equivalent electrical (mechanical) ca-
pacitance (compliance)

plate capacitance at constant strain
(i.e., clamped)

piezoelectric strain constant

electric displacement

piezoelectric stress constant

electric field

frequency

force

piezoelectric constants

V=1

current

wave number

electromechanical coupling efficiency

electromechanical coupling constant

electric charge

mechanical or electrical quality factor

equivalent electrical or mechanical
resistance

strain

C o o

ES QO M>D

time

stress

particle velocity

speed of sound

speed of sound at constant electric
displacement

speed of sound at constant electric
field

voltage

equivalent electrical or mechanical
impedance

characteristic impedance

attenuation coefficient

dielectric permittivity

dielectric permittivity of free space

dielectric permittivity at constant
strain

dielectric permittivity at constant
stress

propagation constant [a + i(w/v)]

wavelength

particle displacement

density

surface charge density

ideal transformer turns ratio

angular frequency (2mf)

1.1. Introduction

Transducers are used as both transmitters and receivers of mechanical
vibrations, converting electrical energy to acoustical energy and vice
versa. For ultrasonic applications, transducers constructed of piezoelec-
tric materials are used most commonly. Consequently, the goal of this
part is to present a coherent discussion of piezoelectric transducers for
use in experimental ultrasonics.
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The design or selection of a particular transducer must be dictated, ulti-
mately, by the specific application. In light of the vastly divergent appli-
cations of ultrasonic methods that will be described in subsequent
chapters of this book, a coherent treatment can be achieved only by iden-
tifying the underlying physical principles common to all transducer appli-
cations. Thus in the following sections the constitutive relations appropri-
ate to piezoelectric materials, the physical basis for the generation and de-
tection of ultrasonic signals in piezoelectric materials, and equivalent cir-
cuits describing the electrical and mechanical behavior of piezoelectric
plates will be described. Following an elementary discussion of these un-
derlying physical principles, we shall summarize certain specific features
of commonly used piezoelectric materials and address some problems as-
sociated with the design and construction of ultrasonic transducers. The
part will conclude with a description of the acoustical and electrical prop-
erties of several transducers which serves to illustrate the use of the un-
derlying physical principles with practical examples.

An overview of piezoelectric transducer design and construction
follows to provide a framework in the context of which subsequent spe-
cific discussions can be understood.

The term piezoelectricity describes the generation of an electrical polar-
ization in a substance by the application of a mechanical stress and, con-
versely, a change in the shape of a substance when an electric field is ap-
plied.! An essential feature of piezoelectricity is the validity of a linear
relationship between applied electric field and mechanical stress or strain
that occurs only in materials exhibiting the absence of a center of sym-
metry. Although a large number of solids satisfy this criterion, practical
piezoelectric transducers are fabricated from a modest number of mate-
rials that exhibit a favorable combination of mechanical, electrical, and
piezoelectric properties. Among these are naturally occurring crystals,
such as quartz, and certain man-made ceramic materials, such as barium
titanates, lead zirconate—titanates, and lead metaniobates. Crystals such
as quartz are inherently piezoelectric, with properties determined by their
crystallographic features. In contrast, ferroelectric ceramics are initially
isotropic and are subsequently polarized above the Curie temperature by
the application of strong electric fields to induce the anisotropy responsi-
ble for their strong piezoelectric properties.

Although piezoelectricity is a bulk property, the conversion of elec-
trical to mechanical energy occurs principally at the surfaces of piezoelec-
tric devices. The physical basis for this is related to the driving term for
electrical to mechanical conversion, which involves a spatial gradient of

' H. Jaffe, Piezoelectricity, in Encyclopzdia Brittanica, Chicago, Illinois, 1961.
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certain electrical and piezoelectric parameters. Consequently, substan-
tial contributions to this driving term occur only at the discontinuities in
material properties represented by surfaces.

The active element in a typical ultrasonic transducer is a thin plate fab-
ricated from a piezoelectric material. Such a plate functions as a reso-
nator in a thickness expander mode for the generation and detection of
longitudinal waves or in a thickness shear mode for the generation and de-
tection of transverse waves. A plate in the form of a disk of diameter
approximately 10 mm and thickness of an order of 1 mm is typical for
operation in the low megahertz frequency range. Electrical contact to
the piezoelectric element is usually accomplished by vacuum depositing
or electroplating metal electrodes. The mechanical coupling to the pi-
ezoelectric plate and the electrical coupling to the appropriate electrical
transmitting or receiving circuitry depends on the specific application.
Many applications fall into either of two categories: narrowband or broad-
band.

In a number of narrowband applications, the transducer is used to mea-
sure the mechanical properties of a specimen that has been prepared in
the form of an ultrasonic resonator. Transducers chosen for these applica-
tions are usually coupled directly to the specimen of interest and become
part of a composite ultrasonic resonator consisting of specimen plus
transducer. To determine the ultrasonic properties of the specimen from
measurements carried out on the composite resonator, the ultrasonic
losses in the transducer should be small compared to those in the speci-
men. Furthermore, the mechanical properties of the composite resona-
tor must be isolated sufficiently from the electrical system so that only an
insignificant amount of energy is dissipated in the external circuitry.
Electrical isolation can be accomplished by using ‘‘weakly coupled’ pi-
ezoelectric materials. Transducers made from quartz, for example, satisfy
these requirements since quartz exhibits low ultrasonic attenuation (high
mechanical Q) and low electromechanical coupling. Additional isolation
can be obtained by using electrical matching schemes designed to mis-
match purposely the electrical properties of the transducer and the elec-
trical properties of the transmitting or receiving electrical circuitry.

In Fig. 1 we illustrate the pulse-echo and standing wave responses in
the neighborhood of 90 MHz of a composite resonator consisting of a
single crystal vanadium specimen and two piezoelectric plates. Determi-
nation of the ultrasonic attenuation and phase velocity can be made from
either of these composite resonator responses. For example, the ultra-
sonic attenuation can be related to either the time constant of the expo-
nential decay of tha pulse-echo pattern or the frequency width of the indi-
vidual mechanical resonances in the standing wave pattern. The ultra-
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Fic. 1. Response patterns in the neighborhood of 90 MHz for a composite resonator con-
sisting of a single crystal of vanadium with AT-cut quartz transducers bonded to opposite
faces: (a) the pulse-echo pattern is the time-domain response; (b) the cw standing-wave pat-
tern is the frequency-domain response. (Adapted from Miller.?)

sonic phase velocity can be related to either the temporal spacing of the
echoes in the pulse-echo pattern or the frequency spacing of the mechan-
ical resonances in the standing wave pattern. Methods used to extract
the ultrasonic attenuation and phase velocity from narrowband measure-
ments such as those presented in Fig. 1 are described in Part 2.

Broadband transducers are used in applications ranging from imaging
with short ultrasonic pulses to quantitative measurements of the phase
velocity and attenuation over a continuous range of frequencies. Conse-
quently, quite different criteria apply to the choice of piezoelectric ele-
ments for use in broadband as opposed to narrowband applications. To
achieve acceptable signal-to-noise ratios over a broad bandwidth, high
electromechanical conversion efficiencies are usually required. In addi-
tion, to achieve satisfactory time-domain resolution in imaging applica-
tions, short-duration pulses are usually desired. The use of ‘‘strongly
coupled,”’ relatively low mechanical Q, ceramic, piezoelectric elements is
consistent with these needs.

For broadband applications, the transducer itself often takes the form
of a composite resonator with a low mechanical 0. One method fre-
quently used to achieve a low mechanical Q is the bonding of a well-
matched material to the back of the piezoelectric plate. This backing
material is fabricated to exhibit very high ultrasonic attenuation and thus
to appear as an infinite transmission line representing a purely resistive

% J. G. Miller, J. Acoust. Soc. Am. 53, 710 (1973).
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mechanical load. Such an approach leads to a relatively broadband
frequency-domain response and a compact time-domain response.
These characteristics are achieved at the expense of a substantial inser-
tion loss since a large fraction of the ultrasonic energy is absorbed in the
lossy backing layer. Time-domain and frequency-domain response char-
acteristics of a transducer of this design radiating through a quarter-wave
matching layer into a water load are shown in Fig. 2. Transducers of this
sort can be excited with an electromagnetic impulse of several hundred
volts amplitude and broadband ultrasonic measurements carried out using
spectral analysis techniques. An alternative approach, which achieves
broadband frequency characteristics without the high insertion loss asso-
ciated with the lossy backing layer, consists of the use of an air-backed
piezoelectric element coupled to the load through several intermediate
quarter-wave matching layers. Improved insertion losses are achieved
using this approach since energy which would have been dissipated in the
lossy backing material is now reflected at the piezoelectric-to-air interface
and directed toward the specimen.

The preceding two examples serve to indicate the range of consider-
ations that enter into the design or selection of an appropriate piezoelec-
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FiG. 2. Response patterns of a broadband lead metaniobate transducer: (a) the response
as a function of frequency over the range 1~11 MHz; (b) the time-domain response to an
“impulse’’ stimulus.
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tric transducer. The next several sections will be devoted to those under-
lying physical principles common to all applications of piezoelectric trans-
ducers. . The electrical and mechanical properties of piezoelectric mate-
rials in common use will be discussed following the review of the general
principles. This part will conclude with a description of a number of
practical transducers for broadband or narrowband ultrasonic applica-
tions,

1.2. Physical Principles of Piezoelectricity

1.2.1. Piezoelectric Constitutive Relations

The mechanical constitutive relations for a nonpiezoelectric, linear,
elastic solid express the proportionality between stress and strain. This
generalization of Hooke’s law takes the form?

TU = cﬁklskla i; j9 k9 = 1’ 2’ 3; (1~2-1)

where Ty; is the second-rank stress tensor, S, the second-rank strain
tensor, and cyu, the fourth-rank tensor of elastic stiffness constants. The
Einstein summation convention for repeated indices is implied. In an
elastic solid both the stress and strain tensors are symmetric. Conse-
quently, at most 36 of the 81 components of ¢, are independent. These
36 components can be reorganized into a 6 X 6 matrix, which is the basis
of the condensed Voigt notation.®* Since the symmetric stress and strain
tensors have at most six independent elements each, the two-index Carte-
sian notation is replaced by a single-index notation with range of 1-6.
The relationship between the two classification schemes is illustrated by
the following expressions for the strain:

Szz Szy Sz S, 1S, %55
S = S-‘w Slm Sy | = ‘L’Se S ‘L‘S4 . (1.2.2)
Sez Suz Sz 1S 1S, S

The factor of % is introduced in Eq. (1.2.2) to simplify the general expres-
sion for Hooke’s law in the Voigt classification scheme. Using this con-
densed notation, the relationship between stress and strain takes the form

T = ¢Sy, LJ=12...,6, (1.2.3)

3 B. A. Auld, ‘‘Acoustic Fields and Waves in Solid,” Vols. I and II. Wiley, New York,
1973.

¢ D. A. Berlincourt, D. R. Curran, and H. Jaffe, Piezoelectric and piezomagnetic mate-
rials and their function in transducers, in ‘‘Physical Acoustics’” (W. P. Mason, ed.), Vol. 1A,
Chapter 3. Academic Press, New York, 1964,
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or in matrix notation,

[ 7,] S, ]
Tg Sz
Ts| _ S
r|= (c,,) AL (1.2.4)
T.’s S.’s
| 7| | Se

where ¢, is the 6 X 6 matrix of elastic stiffness constants. In Voigt nota-
tion, uppercase letters are used as subscripts to denote summation over
the six indices. If parameters described by Voigt notation and parame-
ters described by Cartesian subscripts appear in the same equation, the
Cartesian subscripts are written as lowercase letters and the Voigt sub-
scripts as uppercase letters.

In piezoelectric materials the elastic and electrical properties are cou-
pled, so a further generalization of both the mechanical and electrical con-
stitutive relations is necessary.®#* To describe this coupling it is usually
adequate to consider the relationship among the mechanical parameters
stress T and strain S and the electrical parameters field E and displace-
ment D. The piezoelectric constitutive relations involving these four
parameters can take four representations depending on which set of two
variables is chosen as independent. In Table I the commonly used
symbol for the appropriate piezoelectric constant is listed for each choice
of independent and dependent variables. As an illustration of the use of
Table 1, the piezoelectric constitutive relations for the case where the
electric field and the mechanical strain are taken as the independent vari-
ables are

T_] = CF,S, - e”E,, (1253)
D( = G(SJEJ + euS,. (125b)

In Eqgs. (1.2.5), ¢} is the elastic stiffness tensor for constant applied elec-
tric field and €§, the permittivity matrix for constant strain. The piezo-

TaBLE I. Piezoelectric Constants

Piezoelectric coupling

Independent variable Dependent variable constant
E,S D, T e
E,T D.S d
D,S ET h
D,T E.S g
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electric coupling constants e;; and e;; are third-rank tensors relating
second-rank tensors 7, and S, to first-rank quantities, i.e., vectors, E; and
D,;. In the absence of piezoelectricity (i.e., for e;; = ¢;; = 0), Eqgs.
(1.2.5) reduce to the familiar constitutive relations for isolated mechanical
and electrical systems.

Constitutive relations such as those of Egs. (1.2.5) involve complicated
combinations of tensor quantities. In practice, the complexity can be re-
duced substantially by an appropriate choice of plate orientation relative
to either the crystalline lattice or poling axis so that a single piezoelectric
coupling coefficient is dominant. Under these conditions, a one-dimen-
sional representation of the constitutive relationships is frequently ade-
quate. An example is the case of a piezoelectric ceramic with ultrasonic
waves propagating either parallel or perpendicular to the axis of polari-
zation. The piezoelectric coupling constants in the one-dimensional
representation are scalar quantities describing the magnitude of the pi-
ezoelectric effect for a particular configuration. Numerical values of
the piezoelectric constants in a number of materials are presented in
Table V in Section 1.4.

1.2.2. Propagation of Ultrasound in Piezoelectric Materials

Equations governing the propagation of acoustic waves in a piezoelec-
tric material are obtained by combining an equation of motion (Newton’s
second law) with the appropriate constitutive relations. We consider the
case of longitudinal waves propagating in a piezoelectric material.
Newton’s second law takes the form

p 2/orr =V - T, (1.2.6)

where £ is the particle displacement. The strain § = V§, stress T, and
electric field E are related by a constitutive equation [Eq. (1.2.5a)], which
can be combined with Eq. (1.2.6) to yield®

p 92£/01 = cEV2E — V(eE). (1.2.7)

For one-dimensional propagation, Eq. (1.2.7) can be written to yield an
inhomogeneous wave equation for the particle displacement

92 192 1 9
T o = ¥ ) (.28

where v = (cE/p)'? is the velocity of propagation.
To specify the problem further, we assume that the piezoelectric mate-

® A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40 (1962).
® E. H. Jacobsen, J. Acoust. Soc. Am. 32, 949 (1960).
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rial is prepared in the form of a plate with metal electrodes on each face
and we use Maxwell’s equations in conjunction with Eq. (1.2.8). If the
electrodes on opposite faces are short circuited, the electric field E is
forced to be zero and Eq. (1.2.8) reduces to a homogeneous wave equa-
tion exhibiting an ultrasonic wave propagation velocity of (cE/p)2. In
contrast, if the electrodes are open circuited, the electric field is nonzero
and the value of E on the right-hand side of Eq. (1.2.8) must be obtained
from the one-dimensional representation of the constitutive relation given
in Eq. (1.2.5b).* Using this substitution, Eq. (1.2.8) can be written

9% 18% e aD & 3% (1.2.9)

ax2 12312 €5cE ax  €5cF ax?’

Since there are no free charges, Maxwell's equations require that
V - D = 0, which eliminates the first term on the right side of Eq. (1.2.9).
Thus for an open-circuited plate, Eq. (1.2.9) also reduces to a homoge-
neous wave equation

% 1%

ax?  v*(1 + e%/e5cF) ar =0. (1.2.19)

Ultrasonic waves propagate with a higher velocity (¢®/p)!’? and the mate-
rial is described as being piezoelectrically stiffened. The elastic stiffness
constant for the open-circuited plate cP is related to that for the short-
circuited plate cE by

c? = cE(1 + e%/e5ch). (1.2.11)

The quantity e?/e5c¥ is the ‘‘electromechanical coupling constant’’ and is
written 42, The magnitude of the electromechanical coupling constant is
a useful index of the strength of the piezoelectric effect in a particular
material.

1.2.3. Piezoelectric Generation and Detection of Ultrasound

Ultrasonic waves are generated by the application of an external elec-
tric field to a piezoelectric material. The inhomogeneous wave equation
represented by Eq. (1.2.8) indicates that a gradient in the product of the
piezoelectric constant of the material and the electric field serves as the
source term for the generation of mechanical disturbances. In practice,
the surfaces of a piezoelectric material offer the sharpest discontinuity in
both e and E, and thus represent the strongest source of sound.®

The phenomenon of surface generation may be illustrated with the fol-
lowing simplified picture. Figure 3 shows a parallel plate capacitor con-
taining a piezoelectric material of dielectric constant €. In Fig. 3b and c,
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FiG. 3. Simplified illustration of surface generation in a piezoelectric plate: (a) parallel
plate capacitor containing a piezoelectric material of dielectric constant ¢; (b) and (c),
respectively, the electrical displacement D and electric field E depicted at a particular time
shortly after a surface charge density has been applied to the capacitor; (d) the spatial distri-
bution of mechanical disturbance shortly after a voltage step is applied; () the response of the
crystal to a harmonic voltage excitation. (Adapted in part from Redwood.”)

respectively, the electrical displacement D and electric field E are de-
picted a particular time ¢ shortly after a charge density o has been applied
to the capacitor. Since there are no free charges between the plates of
the capacitor, V * D = 0 and hence D is constant as illustrated in (b). Be-
cause D = €E and D is constant, the magnitude of E is smaller inside the
piezoelectric where the dielectric constant is larger, as illustrated in (¢),
from which it is clear that the only gradient in the electric fields occurs at
the surfaces of the material. In addition, there is a large discontinuity in e
at the surface of the crystal. Consequently, the surfaces of the piezoelec-
tric material are the predominate sources for the generation of ultrasound.
Figure 3d illustrates the spatial distribution of mechanical disturbance
shortly after a voltage impulse is applied. Short acoustic transients are
launched from both surfaces of the crystal.”® The response of the crystal
to a harmonic voltage excitation is illustrated in Fig. 3e. If a voltage at
frequency w is applied to the piezoelectric material, both surfaces of the
material launch mechanical waves at frequency w.

At microwave frequencies, high Q reentrant electromagnetic cavities

7 M. Redwood, J. Acoust. Soc. Am. 33, 527 (1961).
8 E. F. Carome, P. E. Parks, and S. ). Mraz, J. Acoust. Soc. Am. 36, 946 (1964).
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MEDIUM | PIEZOELECTRIC MEDIUM 2

MEDIUM
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FiG. 4. The process of piezoelectric detection when an ultrasonic wave of amplitude A
impinges upon a piezoelectric plate bounded on each side by nonpiezoelectric media.

are frequently employed to concentrate large electric fields near the sur-
face of the piezoelectric material in order to launch ultrasonic waves.%#712
At frequencies in the megahertz range, mechanically resonant structures
are usually used to enhance the process of launching sound waves illus-
trated in Fig. 3. Particular mechanical modes of oscillation are selec-
tively enhanced by bringing the surfaces of the piezoelectric material
close together. The ultrasonic properties of the resulting thickness-mode
resonant plates are best described in terms of acoustic transmission
line theory using an approach discussed in the next section.

Piezoelectric detection of ultrasonic waves is reciprocal to the process
of wave generation. That is, the conversion of mechanical energy into
electrical energy is also a phenomenon dominated by the behavior at the
surfaces of the piezoelectric material.!* To illustrate this surface detec-
tion process, we consider a simple example of an ultrasonic wave of am-
plitude A impinging from medium 1 upon a piezoelectric plate that is
bounded on each side by nonpiezoelectric media, as depicted in Fig. 4. A
wave of (complex) amplitude B is reflected from the piezoelectric material
and a wave of amplitude £ is transmitted into medium 2. In addition, two
waves of amplitude C and D propagate in opposite directions within the
piezoelectric material. The voltage measured across the plate under
these conditions is the integral of the electric field over the thickness of
the crystal

!
V= f E dx. (1.2.12)
)

9 H. E. Bommel and K. Dransfeld, Phys. Rev. Lett. 1, 234 (1958).

10 K N. Baranskii, Dokl. Akad. Nauk SSSR 114, 517 (1957) [English transl.: Sov. Phys.
Dokl. 24, 237 (1958)].

11 H, E. Bommel and K. Dransfeld, Phys. Rev. 119, 1245 (1960).

12 J Lamb and H. Sequin, J. Acoust. Soc. Am. 39, 752 (1966).

18 R. T. Beyer and S. V. Letcher, ‘‘Physical Ultrasonics.’”” Academic Press, New York,
1969.
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Using the constitutive relation relating the electric field to the strain and
the electric displacement, the voltage is given by

i lD
VE]— hS dx +f = dx. (1.2.13)
0 0o €

From Gauss’s law the electric displacement D is independent of x and is
equal to the surface charge density o, where o = g/A and q is the total
charge on area A. Consequently, Eq. (1.2.13) reduces to’

v——hfidx+—‘1— h[g(z)—g(0)1+—q—

_ N I
= —h[¢() 5(0)]+—l.wco, (1.2.14)

where C, is the clamped (i.e., constant strain) plate capacitance of the pi-
ezoelectric plate and I the current available to the external load. Equation
(1.2.13) indicates that the open-circuit voltage (I = 0) developed across
the piezoelectric plate is proportional to the relative displacements of the
front and back surfaces of the material. The magnitude of the net dis-
placement can be calculated from the boundary conditions placed on the
five acoustic waves at the surfaces of the piezoelectric plate. Provided
that medium 1 and medium 2 do not ‘‘clamp’’ the piezoelectric material,
then the relative displacement of the front and back surfaces, ¢(I) — £(0),
is largest if the thickness of the plate corresponds to an odd integral
number of half-wavelengths of the ultrasonic wave impinging upon the
material, in which case the two surfaces oscillate 180° out of phase. Ifthe
thickness of the crystal is an even number of half-wavelengths, then the
amplitude of oscillation of the two surfaces is in phase and, therefore,
£() — £(0) = 0. In the next section we shall examine the properties of
piezoelectric plate resonators using transmission line and lumped element
equivalent circuits.

1.3. Distributed and Lumped Element
Equivalent Circuits

The propagation of plane acoustic waves in a material can be described
with the aid of transmission line theory. In this way, the time delays, re-
flection properties, and dispersion and attenuation effects that take place
in materials can be modeled. The transmission line model of acoustic
wave propagation has proved useful in exploring the mechanical proper-
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ties of ultrasonic resonators and delay lines.*!4"!7 Furthermore, this
model can be generalized to include the electrical as well as the mechan-
ical properties of piezoelectric materials. In this section we shall use the
transmission line model of acoustic wave propagation to explore equiva-
lent circuits for a piezoelectric plate operating in the thickness expander
or thickness shear mode.

1.3.1. Transmission Line Model

For one-dimensional propagation the equation of motion, Eq. (1.2.6),
takes the form

aT/ax = pd*/ot® = pou/at, (1.3.1)

where T is the external stress and u the particle velocity. For distur-
bances that can be described in terms of a harmonic time dependence of
the form e, Eq. (1.3.1) leads to the relationship

u= (i/wp) 9T/0x. (1.3.2)

It is sometimes convenient to appeal to an analogy between mechanical
and electrical variables in terms of which Eq. (1.3.2) corresponds to
Ohm’s law, wherein ‘‘current’’ (particle velocity «) is proportional to the
“voltage difference’’ (gradient of the stress 37/dx). We are primarily
interested in the propagation of plane acoustic waves that can be
described in terms of harmonic space and time dependences of the form
expli(wt — kx)]. The wave number k = 27/\ is related to the frequency
w by an algebraic expression, usually referred to as a dispersion relation-
ship. The dispersion relationship is obtained by combining an equation
of motion [Eq. (1.3.1)] with an appropriate constitutive relationship such
as T = ¢S (i.e., Hooke’s law), where ¢ is the elastic stiffness constant.
The dispersion relationship for a lossless medium is w = vk, where
v = (c/p)*** is the velocity of plane wave propagation. For a plane wave
propagating in a lossless (nonattenuating) medium in which no reflections
occur (i.e., an ‘‘infinite transmission line’’), the ratio of stress T to particle
velocity u defines an impedance per unit cross-sectional area A that is spe-

*W. P. Mason, ‘'Electromechanical Transducers and Wave Filters,”” 2nd ed. Van
Nostrand-Reinhold, Princeton, New Jersey, 1948.

15 W. P. Mason, Use of piezoelectric crystals and mechanical resonators in filters and os-
cillators, in *‘Physical Acoustics’’ (W. P. Mason, ed.) Vol. 1A, Chapter S. Academic Press,
New York, 1964,

16 J, E. May, Guided wave ultrasonic delay lines, in ‘‘Physical Acoustics’ (W. P. Mason,
ed.) Vol. 1A, Chapter 6. Academic Press, New York, 1964.

7 E. K. Sittig, IEEE Trans. Sonics Ultrason. SU-14, 167 (1967).
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G=a+ik
k = w/v

F16. 5. General representation of a one-dimensional acoustic transmission line.

cific to the mechanical transmission line. From Eq. (1.3.2) and the dis-
persion relationship w = vk, the characteristic impedance Z, of a lossless
line is

Zy = pvA. (1.3.3)

For a lossy (attenuating) transmission line, the dispersion relationship
w = vk can be satisfied if the wave vector is allowed to be complex (k).
Therefore, defining w/v as the real part of the wave vector and a as the
imaginary part of the wave vector (i.e., the attenuation coefficient), the
characteristic impedance of a lossy transmission line is

Zo = pvA [1 - fr2], (1.3.4)
where r = av/w. In the usual case, where the real part of the wave
vector is much larger than the imaginary part (i.e., r << 1), Eq. (1.3.4) re-
duces approximately to Eq. (1.3.3).

For an acoustic transmission line of finite length /, the formalism must
take into account reflection and transmission effects that depend on how
the line is terminated. The (complex) specific acoustic impedance is a
function of position along the transmission line and is defined as the ratio
of stress to the particle velocity at that position. A well-known result
from transmission line theory establishes that the (complex) input imped-
ance Z;, of an acoustical line with length I, real part of the wave number
w/v, imaginary part of the wave number a, and characteristic impedance
Z,, which is terminated at / with a complex impedance Z,, is given by!®

5 _ 5 [Zit Z, tanh(ﬂl)]
Zin=Zo [Zo + Z; tanh(8))

where # = a + iw/v. The two-port network corresponding to Eq. (1.3.5)
is illustrated in Fig. 5. The result expressed in Eq. (1.3.5) can be used to
describe the behavior of a composite mechanical system consisting of an
arbitrary number of segments each of which exhibits arbitrary length,

(1.3.5)

18 F. E. Terman, ‘‘Radio Engineers Handbook,” Sect. 3. McGraw-Hill, New York,
1943,
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FiG. 6. Equivalent T network of a one-dimensional acoustic transmission line. (Adapted
in part from Terman'® and Mason.4)

propagation parameters, and characteristic acoustic impedance. The
input impedance for the composite structure is evaluated in a sequential
fashion, beginning with the terminal segment whose input impedance is
obtained directly from Eq. (1.3.5). The input impedance of the next-
to-last segment is then evaluated using a form of Eq. (1.3.5) in which the
terminating impedance is set equal to the input impedance previously cal-
culated for the terminal segment. This process is continued until an ex-
pression for the input impedance of the entire composite structure is ob-
tained.

Although the transmission line model presented in Fig. 5 represents a
complete description of the acoustic properties of a sample of arbitrary
length, it is often useful to replace this general transmission line with an
equivalent T network when the length of the specimen becomes compara-
ble to the acoustic wavelengths of interest.!* The equivalent T network is
presented in Fig. 6. The input impedance presented by the network
shown in this figure is identical to that shown in Fig. 5 [i.e., Zj, is given by
Eq. (1.3.5)] provided that the T section is terminated in an impedance Z;.
A mechanical resonance of an acoustic transmission line occurs whenever
the magnitude of the mechanical impedance reaches a minimum. The
condition for mechanical resonance of a length of transmission line ter-
minated in a low impedance (e.g., a free surface) is that the length of the
transmission line be equal to an integral number of half-wavelengths of ul-
trasound, i.e., k/ equals nr for all integral values of n.

Starting with a transmission line model, a number of equivalent circuits
have been derived for a piezoelectric plate operating in the thickness ex-
pander or thickness shear mode.%'"23 In the next section we shall

8 R. Krimholtz, D. Leedom, and G. Matthaei, Electron. Letr. 6, 398 (1970).

® D. Leedom, R. Krimholtz, and G. Matthaei, JEEE Trans. Sonics Ultrason. SU-18, 128
(1971).

1 T, R. Meeker, Ultrasonics 10, 26 (1972).

® E. K. Sittig, IEEE Trans. Sonics Ultrason. SU-16, 2 (1969).

8 T. L. Rhyne, IEEE Trans. Sonics Ultrason. SU-28, 98 (1978).
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discuss the Mason equivalent circuit,** a widely used model for character-
izing the behavior of piezoelectric plates. Another model, derived by
Krimholtz et al.,*®?° which retains the intrinsic transmission line charac-
ter of the mechanical system but permits a lumped circuit analysis of the
electrical system, will be discussed in Section 1.3.3.

1.3.2. Mason Equivalent Circuit

In a piezoelectric material the mechanical and electrical properties are
coupled. Consequently, the equivalent circuit for a piezoelectric plate
might be expected to consist of elements exhibiting complicated mixtures
of electrical and mechanical parameters. However, Mason developed an
equivalent circuit in which mechanical and electrical properties are cou-
pled only through an ideal transformer!! with turns ratio 1:¢, where
¢ = gCoc®. The Mason equivalent circuit for a piezoelectric plate
operating in a thickness expander or thickness shear mode is presented in
Fig. 7. A comparison of Figs. 6 and 7 illustrates that the Mason equiva-
lent circuit is a generalization of the equivalent T network describing an
arbitrary mechanical transmission line of length (i.e., thickness) /. In this
generalization the mechanical impedances are obtained by using open-
circuit electrical boundary conditions [i.e., v = v = (c¢®/p)}? and § =
a + iw/vP]. The Mason equivalent circuit consists of two mechanical
ports, corresponding to the front and back surfaces of the plate, and one
electrical port.

Usually we are interested in coupling a piezoelectric element to other
materials and transmitting or receiving mechanical forces across the faces

o
2, = 2, tanh(62/2)

~Cp Z, =7, csch(éz)
I ¢, = €San
Co D
¢ =gCqe
v

F1G. 7. Mason equivalent circuit of a piezoelectric plate operating in a thickness mode.
(Adapted in part from Mason.™)
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of the crystal. In general, both the front and back surfaces of the crystal
are loaded by mechanical impedances. The circuit describing arbitrary
loading on both faces of the crystal is illustrated in Fig. 8a. Here Zy is the
load on the front face of the crystal, Zj the load on the back face of the
crystal, F the mechanical force imparted to the front load, and Fy the
force imparted to the back load.

Mason demonstrated!* that the equivalent circuit presented in Fig. 8a

Fic. 8. Equivalent circuits for piezoelectric plates: (a) the equivalent circuit of a piezo-
electric plate that is mechanically loaded on both the front and back faces; (b) the equivalent
circuit of (a) redrawn using a circuit identity first developed by Norton; (c) an approximation
to the circuit of (b). (Adapted in part from Mason.}*)
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can be cast into a more useful form by the application of a circuit identity
developed by Norton. Figure 8b shows the equivalent circuit for a piezo-
electric plate loaded by complex impedances Z and Zj after the appli-
cation of the Norton identity. The circuit presented in Fig. 8b offers the
advantage that the impedance of the branch containing the element 2Z, is
very large compared to that of the parallel branch for frequencies in the
neighborhood of a mechanical resonance. Thus the branch containing
2Z, can be neglected and the circuit can be simplified to yield Fig. 8c.
Formally, Fig. 8¢ represents an approximate form of Figs. 8a and 8b;
however, it is adequate for describing the operation of piezoelectric plates
near resonance driving a wide variety of mechanical loads (e.g., solids,
liquids, and gases). In the limit of an unloaded piezoelectric plate
(Zg = Zg = 0) with no losses [@ = i(w/v®)), electrical resonances of the
plate occur for | = n(A/2) for odd values of n. That is, electrical energy is
optimally converted to mechanical energy only near odd mechanical reso-
nances of the plate. This behavior was described physically in conjunc-
tion with the discussion of Eq. (1.2.14). At even mechanical resonances
of the plate (i.e., for [ = n(A/2) for even values of n), no ‘‘current’’ flows
through the mechanical portion of the equivalent circuit and so the elec-
trical impedance presented by the plate to external circuitry is simply that
of the clamped plate capacitance C,.

Near any odd mechanical resonance, the equivalent circuit of the plate
can be simplified further. For example, near the fundamental plate reso-
nance (n = 1, f, = vP/2[), the impedance 2Z; in Fig. 8c can be approxi-
mately represented by a series resistance—inductance—capacitance
(RLC) circuit exhibiting a resonance at frequency f,. This situation is il-
lustrated in Fig. 9a. The values for the equivalent capacitance (compli-
ance), inductance (mass), and resistance are

Cm = (7o Zo)7}, (1.3.6a)
L = Zo/(4fs), (1.3.6b)
Ry = alZ,. (1.3.6¢)

The equivalent circuit of Fig. 9a can be redrawn as illustrated in Fig. 9b,
where the effects of the transformer have been included in the circuit ele-
ments. The resonant frequency f§ for the circuit illustrated in Fig. 9b is

fo = foll — 4¢*(Cr/Co)I'?, (1.3.7)

which is decreased from the nominal resonant frequency f, = v°/2/ by an
amount related to the strength of the piezoelectric coupling coefficient g,
where ¢ = gCoc®. We note, however, from Eq. (1.2.11), that the veloc-
ity of sound »? in a piezoelectric plate increases with the strength of elec-
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F16. 9. Equivalent circuits for piezoelectric plates: (a) the equivalent circuit of a piezo-
electric plate operating near a mechanical resonance of the plate; (b) the effects of the trans-
former of (a) have been included in the lumped component equivalents. (Adapted in part
from Mason.!¢)

tromechanical coupling. The net effect of Egs. (1.2.11) and (1.3.7) is to
produce a resonant frequency of approximately v®/2l.

1.3.3. KLM Equivalent Circuit

Although the Mason equivalent circuit has proved useful in many appli-
cations, an alternative equivalent circuit appears to be better suited for
determining the optimum electrical and mechanical matching for broad-
band operation. The Krimholtz et al.!®*° (KLM) equivalent circuit, illus-
trated in Fig. 10, models the piezoelectric transducer as a lossless me-
chanical transmission line of length / coupled at the midpoint //2 to a
lumped element electrical network. The mechanical and electrical
systems are coupled through an ideal transformer of turns ratio 1:¢,
where ¢ is a function of frequency as well as other physical parameters:

¢ = [k'r(‘ﬂ'/wocozo)”z sinc(w/2w,)] ™!, (1.3.8)

and sinc(x) equals sin(arx)/m7x. In Eq. (1.3.8), o (= 27fy) is the mechan-
ical resonant frequency of the transmission line of length / and k,? the
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Fic. 10. KLM equivalent circuit of a piezoelectric plate operating in a thickness mode.
(Adapted in part from Krimholtz et al.,'® Leedom et al.,* and Auld.?)

electromechanical coupling constant. The lumped element electrical net-
work consists of two capacitors in series with the transformer. One
capacitor represents the clamped capacitance of the transducer C, and the
other capacitor is an explicit function of frequency and electromechanical
coupling coefficients, written

C' = _C‘o/[k'r2 SinC(w/wo)] (139)

The distinction between the ways in which mechanical and electrical
components are treated in the KLM model is quite natural for describing
the operation of broadband transducers designed to operate in the low-
megahertz frequency range. Acoustical matching techniques over this
frequency range require a transmission line approach whereas electrical
matching can be accomplished with lumped components. DeSilets et
al.* have used this approach in an attempt to design the optimal electrical
and mechanical matching schemes for transferring mechanical energy
from a high-impedance piezoelectric plate to a low-impedance mechanical
load such as water. These authors assert that the condition for maximum
bandwidth of a piezoelectric transducer is that the Q of the mechanical
branch of the KLM circuit Q,, be matched to the Q of the electrical
branch Q..

The Q of the mechanical branch of the KLLM equivalent circuit can be
estimated as follows. We consider the case of a lossless mechanical plate
of high characteristic acoustic impedance Z, with mechanical impedences
Zeand Zy. The transmission line theory developed earlier tells us that if
|Z¥| << |Zo| and |Z| << |Z,|, then the plate will resonate at frequencies

¥ C. S. DeSilets, J. D. Fraser, and G. S. Kino, IEEE Trans. Son. Ultrason. SU-28, 115
(1978).
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fn, where f, = nv®/2/ and n is an integer. If one further assumes that the
mechanical loads can be represented as purely resistive loads (i.e.,
Zy— Ry and Z; — Ry), then the Q of any particular mechanical reso-
nance of the plate is determined by these mechanical loads. Thus Q,,
the mechanical Q of the fundamental plate resonance, is

w Zo

The Q of the electrical branch of the circuit @ can be estimated as
follows. Mechanical transmission line theory is used to represent the ex-
ternal mechanical loads Ry and Ry as a single equivalent resistor R,
placed across the ideal transformer at the center of the mechanical trans-
mission line. The value of this resistor is determined by using Eq. (1.3.5)
to write expressions for Ry and Ry as seen at the center tap of the mechan-
ical transmission line looking through the lossless transmission lines of
length [/2. We note that at a plate resonance the segments of length //2
constitute quarter-wavelength sections. The value of the equivalent me-
chanical resistance R is the parallel combination of these transformed re-
sistances; at the resonant frequency it is given by

R = Z&/(Ry + Rug). (1.3.11)

In the electrical branch of the equivalent circuit, Cy is in series with C'.
Over the typical frequency range of interest in broadband applications, C’
is very large (i.e., |C’| >> C,). Consequently, the effects of C’ on the
electrical branch are negligible. To maximize current flow near the reso-
nant frequency, an external inductor L, can be inserted in series with the
electrical branch of the transducer, with a value chosen to resonate with
the plate capacitance at the center frequency (i.e., Ly = Co/wo?). The re-
sulting expression for the Q of the electrical branch can be written as

Q = ¢2 - ™ (RF + RB)
E (l)oCoR 4kT2 Zo ’

where R/@?, the transformed value of the equivalent mechanical resis-
tance R, represents the effects of the mechanical loads upon the electri-
cal Q.

Imposing the condition that Oy = @, and making use of Eqs. (1.3.10)
and (1.3.12), one obtains

Re + Rg = V2 Zok~. (1.3.13)

Equation (1.3.13) specifies the optimum value of Ry + Ry to achieve max-
imum bandwidth using a piezoelectric plate of characteristic impedance
Z, and electromechanical coupling constant k2. Using Eq. (1.3.11) and

(1.3.12)
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TaBLE IL.® Matching Formulas®

Number of
matching sections R Zor Zos Zos e Zon
1 R, Zo — —
Z$/R Z,  ZYRP —
3 Z(GJI‘I/R}H ZO ZS7RFSI‘I Z%7R‘g/‘l
N

¢ Adapted in part from DeSilets ef al.**
® For the nth matching layer in an N-layer system Zox = Zyn+n{Zo/Rgl*, where x =
NYIQ¥ — Dni(N — n)1].

writing R, to specify this optimum value of Ry + Rj, one obtains®*
Ropt = Zo/N 2 kr. (1.3.14)

For the case in which a high characteristic acoustic impedance piezoelec-
tric material is radiating into a low impedance load such as water, the
value of R determined from Eq. (1.3.11) is usually much less than the op-
timum value R, obtained from Eq. (1.3.14). Consequently, to optimize
the bandwidth, the equivalent mechanical resistance R is adjusted up-
wards by inserting quarter-wave matching layers between the transducer
faces and the ultimate loads.

Quarter-wave matching schemes designed to yield maximally flat trans-
mission properties have been formulated by Collins,?® Riblet,?® and
Young? for microwave transmission lines and were adapted by DeSilets
et al.?* to the case of the acoustic transmission line. The goal is to insert
the minimum number of quarter-wave matching layers necessary to trans-
form the impedance of the terminal mechanical load up to a value approxi-
mately equal to the optimum value specified by Eq. (1.3.14). An inspec-
tion of the KLLM model shown in Fig. 10 indicates that the front half of the
transducer constitutes the first quarter-wave matching layer. In Table 11
we indicate the values of R for a small number N of quarter-wave
matching layers with characteristic impedance Z,,. By knowing the
impedances of the transducer Z, and the ultimate load Ry, the value of R
can be determined from Table II for as many as three quarter-wave
matching layers. The appropriate number of matching layers is deter-
mined by comparing the value of R obtained from Table II for a fixed

3 R. E. Collins, Proc. IRE 43, 179 (1955).
36 H. Riblet, IRE Trans. MTT-$, 233 (1957).
¥ L. Young, IRE Trans. MTT-7, 223 (1959).
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number of layers to R, calculated in Eq. (1.3.14). If R differs substan-
tially from R,,, then additional layers must be added. In Section 1.4.2
we shall show how this scheme is used to fabricate high-sensitivity broad-
band transducers.

1.4. Design Considerations for Practical Devices

1.4.1. Material Properties

Piezoelectric transducers are fabricated from a number of crystalline
and ceramic solids that are usually prepared in the form of plate resona-
tors. Although plate resonators exhibiting a variety of modes of vibration
can be used, the most common are the thickness expander mode and
thickness shear mode, which are illustrated in Fig. 11.!>?® Transducers
fabricated from piezoelectric plates exhibiting these modes of vibration
are used to launch longitudinal and transverse ultrasonic waves, respec-
tively.

In the case of crystalline piezoelectrics, the mode of vibration is deter-
mined by the orientation of the plate relative to the crystalline axes. The
crystallographic axes of quartz are illustrated in Fig. 12a and frequently
used plate orientations (‘‘cuts’’) are shown in Figs. 12b and ¢.2**® Trans-
ducers for the generation of longitudinal waves are made from X-cut
quartz. Transducers for the generation of transverse waves are made
from Y-cut plates or rotated Y-cut plates such as the AT-cut. The desig-

RS e/

{a)

+/ -
g N e =
(b)
Fig. 11. Mechanical displacement for a piezoelectric quartz plate operating in the

thickness shear mode (a) and the thickness expander mode (b). Part (a) shows a transverse
AT-cut and part (b) a longitudinal X-cut, (Adapted in part from Posakony.¢)

8 G, J, Posakony, Ultrason. Symp. Proc. IEEE Cat. #75 CHO 994-4SU (1975).

% **An Introduction to Piezoelectric Transducers,”’ 6th Printing Valpey-Fisher Corp.,
Holliston, Massachusetts 1972.

% V., Bottoms, ‘‘The Theory and Design of Quartz Crystal Units.”” McMurray Press,
Abilene, Texas, 1968.
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{b)

2:AC

3:AT

X

{0

FiG. 12. Crystallographic axes (part a) and frequently used plate orientations. Part (b)
shows an X-cut in quartz and part (c) a rotated Y-cut. (Adapted in part from Mason!® and
Bottoms.>)

nation of a number of standard cuts of quartz along with the corre-
sponding modes of vibration and useful frequency range are presented in
Table I11.

In the case of ceramic piezoelectrics, the mode of vibration is deter-
mined by the orientation of the plate relative to an axis that is imposed on
the material by a process known as poling.*43.%2 (Ceramic piezoelectric

TaBLE III.¢ Quartz Plate Orientations

Plate number Reference Mode
1 X-cut Thickness expander
2 AC-cut Thickness shear
3 AT-cut Thickness shear
4 DT-cut Plate shear

@ Adapted in part from Mason.!®

31 W, P. Mason, Phys. Rev. 74, 1134 (1948).
3 P. W. Forsbergh, Piezoelectricity, electrostriction and ferroelectricity, ** Handbuch der
Physik’’ (S. Flugge, ed.), Vol. 17, Sect. 2. Springer-Verlag, Berlin and New York, 1956.
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F1G. 13. Mechanical displacements relative to the poling axis z in ferroelectric ceramics
for two modes: (a) the thickness shear mode with transverse orientation is poled perpendic-

ular to the applied field; (b) the thickness expander mode with longitudinal orientation is
poled parallel to the applied field. (Adapted in part from Posakony.?)

elements are fabricated from polycrystalline ferroelectric materials. Ini-
tially, local regions (‘‘domains’’) within the material exhibit electrical
polarization, but the orientations of adjacent domains in a plate of such a
material are random. Consequently, there is no net polarization and the
plate is at most weakly piezoelectric. A preferred orientation for the do-
mains is achieved by raising the temperature of the plate above the Curie
point for the ceramic and imposing a large dc electric field (‘‘poling’’).
The applied electric field causes a significant fraction of the domains to
align parallel to the field, and the resulting net polarization is maintained if
the ceramic is cooled before it is removed from the poling field. The
direction of poling is conventionally designated as the z axis. Figure 13il-
lustrates that ceramic plates can be operated in thickness expander or
thickness shear modes depending on the orientation of the plate axis rela-
tive to the axis of polarization.

The choice of a piezoelectric material is ultimately dictated by the spe-
cific application.?®® Certain distinct differences exist between crystal-
line piezoelectrics (most notably quartz) and ceramic piezoelectrics. In
general, ceramics exhibit higher electromechanical coupling factors and
lower mechanical Qs (i.e., higher mechanical losses) than crystalline pi-
ezoelectrics. Consequently, crystalline piezoelectrics are frequently used
in narrowband applications whereas ceramics are commonly used in
broadband applications. The principal parameters that are useful in
choosing a particular material for a specific application are listed in Table
IV. In Table V these properties are listed for a variety of crystalline and
ceramic transducer materials operating in the thickness expander mode
(longitudinal) or the thickness shear mode (transverse).

3 J. Callerame, R. H. Tancrell, and D. T. Wilson, Ultrason. Symp. Proc. IEEE Cat. No.
78 CH 1344-ISU (1978).
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TaBLE IV. Acoustic and Piezoelectric Parameters

Symbol Definition

d Transmission constant — (strain out/field in)

g Receiving constant — (field out/stress in)

p Density

ve Ultrasonic velocity in a particular direction [(c®/p)?]

Z, Characteristic acoustic impedance (lossless approximation) (= pv)

€T Free dielectric constant (unclamped)

kr Electromechanical coupling efficiency (k1* = ¢?/e5cE)

Onm Mechanical quality factor

TaBLE V.* Material Properties
Longitudinal
Quartz
(0° X-cut) PZT-4* PZT-5* PZT-SH® PbNb,Os® BaTiOy
d (1072 m/V) 2 289 374 593 75 149
g (107 Vm/N) 50 26 25 20 35 14
p (kg/m%) 2650 7600 7500 7500 5900 5700
vE (m/sec) 5650 3950 3870 4000 2700 4390
Z, (10 kg/m?sec) 15 30 29 30 16 25
/e 4.5 1300 1700 3400 240 1700
k1 (%) 11 70 70 75 40 48
On >25000 <500 <75 <65 <5 <400
Transverse
Quartz Quartz
(0° Y-cut) (AT-cut) PZT-4 PZT-5* PZT-5SH® BaTiO¢®

d (1072 m/V) 4.4 3.4 496 584 741 260
g (107 Vm/N) 110 80 38 38 27 20
p (kg/m?) 2650 2650 7600 7500 7500 5700
vE (m/sec) 3850 3320 1850 1680 1770 2725
Z, (10° kg/m?*sec) 10.2 8.8 14.0 12.6 133 15.5
€"/€ 4.5 4.6 1475 1730 3130 1450
ky (%) 14 9 71 68 65 50
On >25000 >25000 <500 <75 <75 <300

@ Adapted in part from Auld,® Posakony,?® Mason,? and Berlincourt.®

% Values quoted are typical; some variations can occur.

3 W. P. Mason,”* American Institute of Physics Handbook”’ (D. E. Gray, ed.), Chapter 3,

pp- 118-129. McGraw-Hill, New York, 1972.

3 D. Berlincourt, Piezoelectric crystals and ceramics, in **Ultrasonic Transducer Mate-
rials” (O. E. Mattiat, ed.), Chapter 2. Plenum Press, New York, 1971.
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A large d constant indicates a material that would be an efficient trans-
mitter of ultrasonic energy and a large g constant marks a material that
would be a sensitive receiver of ultrasonic energy.?® For applications
where a single transducer is to be used as both transmitter and receiver, a
material with a large dg product should be considered. The efficiency
and sensitivity factors, however, must be weighed against other factors
(such as mechanical Q and characteristic impedance) when practical de-
vices are being designed. Design considerations will be discussed.in Sec-
tion 1.4.2,

1.4.2. Practical Transducers

Using the equivalent circuits of Chapter 1.3 with the electrical and me-
chanical properties of particular piezoelectric materials presented in Sec-
tion 1.4.1, practical transducers can be designed for either narrowband
(typically a few percent bandwidth) or broadband (typically 30-70%
bandwidth) applications. Narrowband transducers are frequently used
as components of a composite ultrasonic resonator to make precise mea-
surements of phase velocity and attenuation near a specific frequency.*
Broadband transducers are used in applications ranging from
imaging,?"~%% using short ultrasonic pulses, to quantitative measurements
of phase velocity*™*' and attenuation**~* over a wide range of fre-
quencies. In the next two sections we investigate some of the electrical
and mechanical characteristics of practical transducers used for narrow-
band and broadband applications.

1.4.2.1. Narrowband Transducers. In narrowband applications piezo-
electric transducers usually form part of a composite resonator consisting
of transducer plus specimen. To determine the ultrasonic properties of
the specimen from measurements carried out on the composite resonator,
the ultrasonic attenuation of the transducer must be small compared

38 R. Truell, C. Elbaum, and B. B. Chick, *‘Ultrasonic Methods in Solid State Physics.”’
Academic Press, New York, 1969.

37 F. L. Thurstone, IEEE Trans. Sonics Ultrason. SU-17, 154 (1970).

38 ¢ Acoustical Holography,” Vols. 1-7. Plenum Press, New York, 1967-1976.

% G. Kossoff, D. E. Robinson, and W. J. Garret, IEEE Trans. Sonics Ultrason. 12, 31
(1965).

“ E. H. Young, Jr., IRE Trans. Ultrason. Eng. UE-9, 13-21 (1962).

4t W. Sachse and Y. H. Pao, J. Appl. Phys. 49, 4320 (1978).

4 E. P. Papadakis and K. A. Fowler, J. Acoust. Soc. Am. 50, 729 (1971).

1. G. Miller et al., Ultrason. Symp. Proc. IEEE Cat. No. 76 CH1120-SSU, 33 (1976).

“ F. Lizzi, L. Katz, L. St. Louis, and P. S. Coleman, Ultrasonics 13, 77-80 (1976).

% P. D. Lele, A. B. Mansfield, A. 1. Murphy, J. Namery, and N. Senapati, Proc. Seminar
Ultrason. Tissue Characterization Natl. Bur. Std. Publ. #453, pp. 167-196 (1976).
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F1G. 14. A simple circuit for determining the magnitude of the electrical impedance of a
piezoelectric plate. (Adapted in part from Bottoms.20)

to that of the specimen.*>* Furthermore, the mechanical properties
of the composite resonator must be sufficiently isolated from the elec-
trical system that only an insignificant amount of energy is dissipated in
the external circuitry.4®4” Transducers made from crystalline materials
such as quartz satisfy these requirements, exhibiting both low ultrasonic
attenuation (high mechanical Q) and small electromechanical conversion
efficiency.

For the design of narrowband transducers, the simple lumped equiva-
lent circuit of Fig. 9 is usually adequate. The electrical properties can be
characterized by measuring the frequency dependence of the impedance
over a narrow range of frequencies in the neighborhood of a mechanical
resonance of the transducer. One method for measuring the magnitude
of the impedance is illustrated in Fig. 14.3° Here the voltages V,(w) and
V,(w) are measured over a range of frequencies near the mechanical reso-
nance of the transducer and the impedance lZ(w)l is calculated as shown.

An illustration of the response characteristics of a narrowband trans-
ducer is presented in Fig. 15. In Fig. 15a the magnitude of the electrical
impedance is presented as a function of frequency in the neighborhood of
‘the fundamental mechanical resonance of an unloaded, 0.2-cm-thick,
X-cut quartz crystal operating in the thickness expander mode. The
electrical impedance of the quartz plate exhibits a minimum at a fre-
quency corresponding to the mechanical resonance frequency of the
series mechanical RLC equivalent circuit of Fig. 9. At the resonant fre-
quency the impedance measured consists of the parallel combination of
R’ and Cy. Using the data of Fig. 15a, R’ is computed to be approxi-
mately 350 Q) for this quartz plate. The impedance of the quartz plate
exhibits a maximum at a frequency slightly above the mechanical reso-
nance frequency. This impedance maximum (sometimes described as an

“ N. F. Foster and A. H. Meitzler, J. Appl. Phys. 39, 4460 (1968).
4 J. G. Miller and D. 1. Bolef, J. Appl. Phys. 41, 2282 (1970).
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F1G. 15. Response characteristics of an isolated, 5-MHz, X-cut quartz plate operating

near the fundamental frequency: (a) the frequency dependence of the magnitude of the elec-
trical impedance; (b) the frequency-domain acoustic response with Q = 2500.

ACOUSTIC AMPLITUDE (Arbitrary Units)

‘‘antiresonance’’) corresponds to the parallel resonance of the plate capa-
citance C, with the net inductive reactance presented by the mechanical
equivalent RLC network above the mechanical resonance frequency.
The mechanical response characteristics of a narrowband transducer
can be measured using a number of time-domain or frequency-domain
techniques discussed in Part 2. The sampled cw technique?484®
described in Part 2 can be used to measure the frequency dependence of a
signal related to the total mechanical energy stored in the resonator.
With the sampled cw technique, a continuously running oscillator is gated
on for a time sufficiently long that steady-state conditions are achieved in

4 J. G. Miller and D. 1. Bolef, Rev. Sci. Instrum. 40, 915 (1969).
“ D. L. Bolef and J. G. Miller, High frequency continuous wave ultrasonics, in *‘Physical
Acoustics’’ (W. P. Mason, ed.), Vol. 8, Chapter 3. Academic Press, New York, 1971.
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the ultrasonic resonator. After steady-state conditions are achieved, the
oscillator is gated off and the electrical response of the transducer is gated
into a detector. Consequently, the transducer ‘‘samples’ the steady-
state ultrasonic signal that was established in the resonator during the
oscillator-on interval. The square of the magnitude of the detected signal
is proportional to the total mechanical energy stored in the resonator. In
Fig. 15b we present the sampled c¢cw frequency-domain response (the
square of which is proportional to the acoustic energy stored in the un-
loaded quartz resonator) as a function of frequency in the neighborhood
of the fundamental mechanical resonance of the plate. The Q for this iso-
lated resonator is estimated to be approximately 2500.

The effects of coupling a narrowband transducer to a specimen that
approximates an infinite acoustical transmission line are illustrated in Fig.
16. The sampled cw frequency-domain response in the neighborhood of
5 MHz of the isolated quartz resonator is presented again in Fig. 16a.
The response pattern resulting when the quartz resonator radiates into a

o)
.

AOf =2 kHz

O
[$4)
T

(Arbitrary Units)

o
(@)

‘ (@)

Af 2355 kHz
0.5+

ACOUSTIC AMPLITUDE
o
T

0.0r

)| .
5 MHz
FREQUENCY
(b)

Fic. 16. Frequency-domain acoustic responses of the same quartz plate used in Fig. 15.
This figure illustrates the alteration in the frequency domain acoustic response of the iso-
lated quartz plate [part (a) with Q = 2500] when it is loaded on one side [part (b) with
Q = 14] by a *‘purely resistive mechanical load’’ in the form of a long column of castor oil.
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long column of castor oil is presented in Fig. 16b. The responses pre-
sented have been normalized to unit amplitude to facilitate a comparison
of the widths of the resonance lines. The magnitude of the response of
the castor oil loaded resonator is substantially lower than that of the un-
loaded resonator. Because castor oil is a highly attenuating substance,
no ultrasonic energy transmitted into the castor oil is returned to the
quartz plate. Thus the castor oil column represents an infinite transmis-
sion line. The equivalent circuit illustrated in Fig. 9 can be used to pre-
dict the extent to which the castor oil should lower the Q of the quartz res-
onator. The measured Q is reduced from the value of approximately 2500
shown in Fig. 16a to the value of approximately 14 shown in Fig. 16b. On
the basis of the equivalent circuit of Fig. 9 and using handbook values for
the material properties of X-cut quartz?® and castor oil,* the Q is predicted
to fall to 16, which is in reasonably good agreement with the experimental
value of 14.

Transducers are frequently coupled to another mechanical resonator
rather than to an infinite transmission line. The transducer-specimen
combination then represents a composite ultrasonic resonator. The
response characteristics of a composite resonator consisting of an AT-cut
quartz transducer bonded to a 1.2-cm-thick sample of vanadium were pre-
sented in Fig. 1.2 The sharp multiple resonances correspond approxi-
mately to half-wavelength mechanical resonances in the vanadium speci-
men. The spacing between the individual maxima is related to the phase
velocity in the vanadium as discussed in Part 2. In addition, because the
total acoustic loss in the sample is much larger than that in the transducer,
the Q of the individual resonance lines is directly related to the attenua-
tion in the sample. The envelope of the resonance pattern illustrated in
Fig. 2 corresponds approximately to the response that would be exhibited
by the quartz transducer if it were loaded by an infinite length of vana-
dium.

The use of a piezoelectric transducer to estimate the mechanical prop-
erties of a specimen from measurements carried out on a composite reso-
nator is valid only in the limit where the mechanical properties of the com-
posite resonator are approximately isolated from the external electrical
system. If the electrical impedance of a narrowband transducer is well
matched to the impedance of the electrical system, then the conversion of
acoustical to electrical energy may result in nonnegligible dissipation of
energy in the electrical circuit and a corresponding broadening of the

% F. Dunn, P. D. Edmonds, and W. I. Fry, Absorption and dispersion of ultrasound in
biological media, ‘‘Biological Engineering” (H. Schwan, ed.), Chapter 3, p. 214.
McGraw-Hill, New York, 1969.
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FiG. 17. The frequency-domain acoustic response of a composite resonator consisting of
a 10-MHz, fundamental frequency, AT-cut quartz transducer bonded to a single crystal of
InSb of thickness 1.2 cm is illustrated near a mechanical resonance for two conditions of
electrical impedance matching. The response presented in part (a) was obtained with a
large electrical mismatch, (Q = 5300), whereas the response presented in part (b) was ob-
tained with reasonably good electrical match (Q = 1800). (Adapted in part from Miller
and Bolef.*")

frequency-domain response of the mechanical resonator.*” As a conse-
quence, the ultrasonic attenuation of the specimen might be overesti-
mated. Effects arising from loading due to the electrical system can be
minimized by deliberate electrical mismatch. In Fig. 17 the sampled cw
frequency-domain response of a composite resonator is illustrated for two
different states of impedance matching.*” The composite resonator con-
sists of a 10-MHz, fundamental frequency, AT-cut quartz plate bonded
to a 1.2-cm-thick single crystal of InSb. The responses illustrated in Fig.
17 are centered at 10.2 MHz. The response presented in Fig. 17a was ob-
tained with a large electrical mismatch whereas the response presented in
Fig. 17b was obtained with a reasonably good electrical match. The me-
chanical resonance of the composite resonator has been artificially broad-
ened from 194 Hz, corresponding to the true attenuation of the InSb spec-
imen, to 558 Hz. As illustrated by these results, care must be taken to en-
sure that the mechanical properties of the composite resonator are ade-
quately isolated from the external electrical system in order to determine
correctly the attenuation of a specimen.
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1.4.2.2. Broadband and Pulse-Echo Transducers. Broadband trans-
ducers are necessary in many applications including imaging3’~® using
short ultrasonic pulses and for rapid measurement of the phase veloc-
ity**# and attenuation*>=* over a continuous range of frequencies. Pi-
ezoelectric materials exhibiting large electromechanical coupling coeffi-
cients are necessary to achieve adequate sensitivity over a broad fre-
quency range. For imaging applications, a short impulse response is de-
sired whereas for attenuation and velocity measurements, it may be de-
sirable to sacrifice a short impulse response for additional sensitivity over
the same passband. The following three examples of broadband trans-
ducers are meant to illustrate the tradeoffs that must be made in the de-
sign of a practical ultrasonic system.

Transducers constructed for optimal impulse response usually consist
of piezoelectric ceramics that are mechanically backed by high-loss
materials® exhibiting mechanical impedances approximately equal to that
of the piezoelectric element. The backing has the effect of ‘*spoiling the
Q' of the mechanical resonance of the piezoelectric plate and thus
increasing the bandwidth. In Fig. 18 the electromechanical efficiency
and impulse response of a commercially available lead metaniobate disk
transducer backed by lossy tungsten-loaded epoxy are illustrated.?* The
disk transducer is 12.7 mm in diameter and has a resonance frequency of
approximately 4.5 MHz. 1In Fig. 18a the two-way insertion loss of this
transducer is illustrated as a function of frequency. The two-way inser-
tion loss is a measure of the electromechanical efficiency of the trans-
ducer. It is defined as the ratio of the available electrical power gen-
erated by the device as a receiver to the electrical power dissipated in the
device as a transmitter under conditions in which the acoustic wave pro-
duced is reflected from a perfectly reflecting interface and received by the
same transducer.’273 The insertion loss plot indicates that this trans-
ducer is not highly efficient (35-dB insertion loss at the center of the pass-
band) but exhibits a significant bandwidth and a smooth bandshape. The
transducer also exhibits a very short impulse response, as is evident from
Fig. 18b. In general, the spoiled Q resonator approach yields broad
bandwidth and a compact impulse response, but at the expense of sensi-
tivity.

51 G. Kossoff, IEEE Trans. Sonics Ultrason. SU-13, 20 (1966).

52 1. L. Foldy and H. Primakoff, J. Acoust. Soc. Am. 17, 109 (1945).
83 H. Primakoff and L. L. Foldy, J. Acoust. Soc. Am. 19, 50 (1947).
8 W. R. MacLean, J. Acoust. Soc. Am. 12, 140 (1940).

5 E. L. Carstensen, J. Acoust. Soc. Am. 19, 961 (1947).

% G. A. Sabin, J. Acoust. Soc. Am. 36, 168 (1964).

87 J. M. Reid, J. Acoust. Soc. Am. 58, 862 (1974).



62 1. PIEZOELECTRIC TRANSDUCERS

(dB)
P
o O

T T T

o
o)

TWO WAY INSERTION LOSS
; 5
&)

W
)]

P ) R "
-0.50 -025 0.00 025 0.50
NORMALIZED FREQUENCY (af/fo)
(a)

= ¥ 200 nanoseconds

TIME
(b)
FiG. 18. Response of a broadband composite transducer consisting of a lead metaniobate

disk backed by a lossy tungsten-loaded epoxy: (a) the two-way insertion loss as a function of
frequency with fo = 4.5 MHz; (b) the time-domain response to an electrical impulse.

An approach for constructing broadband piezoelectric transducers with
improved sensitivity combines the use of electrical tuning with mechan-
ical backing layers bonded to the piezoelectric element. In Fig. 19, the
two-way insertion loss and impulse response of this type of broadband
transducer are illustrated. An inductor placed in parallel with the piezo-
electric element is used as a tuning element for this system. The value of
the inductor is chosen to resonate with the static capacitance C, of the
piezoelectric plate at the operating frequency of the transducer. The in-
sertion loss, illustrated in Fig. 19a, is reduced using this technique (15-dB
insertion loss at band center). However, the improvement in sensitivity
is gained at the expense of a compact time-domain response (Fig. 19b).

Broadband transducers possessing substantially lower insertion losses
with bandwidths comparable to those of spoiled Q resonators can be con-
structed,®® again, however, at the expense of a compact impuise
response.?* As discussed in Section 1.3.3, De Silets, Fraser, and Kino
have used the KLM model (see Fig. 10) to design low-insertion-loss, broad-
band transducers using one or more quarter-wave matching schemes on

%8 J. H. Goll and B. A. Auld, IEEE Trans. Sonics Ultrason. SU-22, 52 (1975).
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FiG. 19. Response of a composite transducer electrically tuned by the use of an inductor
placed in parallel with the piezoelectric element: (a) the two-way insertion loss as a func-
tion of frequency with f, = 2.4 MHz; (b) the time-domain response to an electrical impulse.

the front (i.e., radiating) surface of an air-backed piezoelectric plate. In
Fig. 20a the real and imaginary parts of the impedance measured by De
Silets, Fraser, and Kino are illustrated for a 2-MHz, center frequency,
lead metaniobate transducer. This transducer is air backed and has a
single quarter-wave matching layer consisting of a thin layer of Dow
Epoxy Resin 332, which was used to obtain the optimal acoustic match
between lead metaniobate and water. For minimum insertion loss, the
electrical reactance must be tuned out over the passband. Since the reac-
tance of this transducer is negative, it can be tuned out approximately by
an external series inductor. In Fig. 20b the two-way insertion loss of this
transducer (including a 13.9-uH series inductor) is illustrated. The 3-dB
bandwidth of this transducer is 409, the bandshape is flat over the pass-
band, and the two-way insertion loss is only 6.5 dB at the center of the
passband. Figure 20c illustrates the impulse response of this transducer.
The impulse response is notably less compact than that of the spoiled Q
resonator response. The impulse response of an air-backed, multiple
quarter-wave matching layer device can be anticipated on the basis of its



64 1. PIEZOELECTRIC TRANSDUCERS

200

L Re(2)
100+

o _A_
-100F Im(Z)

-200} /
[ il s A

-300
-l6 05 00 05 1.0
NORMALIZED FREQUENCY (at/fg)

(a)

IMPEDANCE {Ohms)

O
—T

R
o

F

(
w
o

r 1 1

10 05 00 05 10
NORMALIZED FREQUENCY {af/fo)
(b)

l -+ | microsecond

TIME
(c)
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and the time-domain impulse response [part (c)] of a transducer consisting of an air-backed
lead metaniobate disk bonded to a single quarter-wave matching layer. (Adapted from De
Silets et al. ™)
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frequency-domain response. Although the steady-state response of the
air-backed, quarter-wave matching layer transducer exhibits a relatively
broad bandwidth, the magnitude of the response exhibits relatively steep
skirts which are accompanied by relatively rapid variations in phase.
These frequency-domain characteristics mitigate against a compact
response in the time domain. In contrast, the spoiled Q resonator design
exhibits moderate roll off in the skirts, leading to a compact time-domain
response.

All of the transducers considered must be appropriately matched to the
electrical system for maximum bandwidth and minimum insertion loss.
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To ensure minimum losses, the negative (i.e., capacitivelike) reactance of
the transducer must be tuned out over the entire band. More sophisti-
cated tuning networks than those mentioned above might be designed to
compensate the specific frequency dependence of the negative reactance
of a particular transducer. Once the reactance has been tuned out, the
real part of the impedance at the center frequency can be matched to the
electrical source impedance by using standard electrical impedance
matching techniques.

1.5 Concluding Remarks

In this part, which dealt with piezoelectric transducers, we have sur-
veyed many of the underlying physical principles of piezoelectricity as
well as some practical details of transducer design and construction. By
necessity, no one subject has been treated in the detail necessary for a
thorough understanding. Consequently, we suggest the following general
references as a starting point for further reading. The physics of piezo-
electricity and its application to ultrasonic transducers is discussed in
detail by Berlincourt er al.* A general account of wave propagation in
elastic and piezoelectric solids is given by Auld.® For discussions of a
number of practical aspects of ultrasonic transduction, the reader is re-
ferred to Hueter and Bolt,>® Truell er al.,?*® and Sachse and Hsu.®
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2. ULTRASONIC WAVE VELOCITY AND
ATTENUATION MEASUREMENTS

By M. A. Breazeale, John H. Cantrell, Jr., and
Joseph S. Heyman

2.1. Introduction

During the past four decades the measurement of the velocity and
attenuation of ultrasonic waves has been the basis of evaluation of a wide
variety of physical properties of gases, liquids, and solids. In some cases
the measurements have been made with great precision and accuracy. In
other cases the ready availability of the result was more important than
extreme precision. In developing the discussion that follows we have
considered not only the precision achieved but also, wherever possible,
the inherent accuracy of the system.

In writing this part we often encountered the fact that an author mea-
sured both velocity and attenuation and reported them in the same publi-
cation. Although this is appropriate in reporting scientific results, it nev-
ertheless has created problems in our description of measurement of these
two distinct phenomena. We found it possible to separate attenuation
measurements from velocity measurements in the section on pulse tech-
niques, but were not able to do this as completely in the section on contin-
uous wave methods, because of the way the data are analyzed and re-
ported. With optical techniques this is not a problem because, with
certain exceptions, optical techniques are used primarily for velocity mea-
surements only.

We recognize that other authors have addressed the task of writing a re-
view of velocity and attenuation measurements. Notable among them
are McSkimin,! who gave a thorough treatment of the fundamentals and
of pulse techniques, and Papadakis, who described ultrasonic attenuation
caused by scattering in polycrystalline media,? considered the effect of

t H. J. McSkimin, in ‘‘Physical Acoustics’” (W. P. Mason, ed.), Vol. 1A, pp. 271-417.
Academic Press, New York, 1964.

2 E. P. Papadakis, in ‘‘Physical Acoustics’’ (W. P. Mason, ed.), Vol IVB, pp. 269-328.
Academic Press, New York, 1968.
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diffraction,? and described pulse techniques with scientific and industrial
applications.*

Our treatment of the subject of velocity and attenuation measurements
is intended to cover a wider range of topics than has been attempted pre-
viously. The analysis covers optical techniques, pulse techniques, and
continuous wave techniques in sufficient depth that the strong points, as
well as some of the limitations, of each technique can be appreciated.
The breadth of the discussion is intended to aid in the comparison of tech-
niques at the time one is deciding which technique would be best to make
a specific measurement or series of measurements.

2.1.1. Sources of Error

A number of sources of error need to be considered if one is measuring
velocity and attenuation. In the first place, error is associated with the
measurement of such quantities as time and distance. The effect of these
errors can be evaluated directly. Thus, they need no further discussion
here. Among the less-easily evaluated errors are those arising from
velocity dispersion, from the transducer bond, from phase cancellation
(resulting from lack of parallelism of the transducers), from material inho-
mogeneity, and from diffraction.

2.1.1.1. Dispersion. In general, measurement of velocity involves
measurement either of the time required for the ultrasonic wave to travel
a known distance or of the wavelength and frequency. In the first case,
one is measuring what corresponds to group velocity; in the second, one
is measuring the phase velocity. The difference between group velocity
and phase velocity of ultrasonic waves in infinitely extended media most
often is negligible, for, in general, the dispersion is quite small. On the
other hand, in situations in which the sample is not effectively infinite in
extent, the difference can be appreciable. In this case a correction of the
data for velocity dispersion is essential.

2.1.1.2. Transducer Bond. An insidious source of error in velocity
measurements in solids is the effect of the transducer producing the ultra-
sonic waves and of the bond coupling the transducer to the sample. With
the optical technique one is measuring in the sample volume and, there-
fore, can neglect completely any complications caused by the transduc-
ers. With electronic pulse techniques and continuous wave techniques,
however, effect of bonding the transducer to solid samples often is of the

3 E. P. Papadakis, in **Physical Acoustics’* (W. P. Mason and R. N. Thurston, eds.), Vol.
XI, pp. 151-211. Academic Press, New York, 1975.

4 E. P. Papadakis, in *‘Physical Acoustics’ (W, P. Mason and R. N. Thurston, eds.), Vol.
XI1, pp. 277-374. Academic Press, New York, 1976.
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order of 1% in the measured velocity. In this situation, one can correct the
data, as described by McSkimin® and Papadakis.® Such corrections have
been made in most of the measurements in solids we report in this study.

An alternative, which has appeal from the fundamental point of view, is
the use of noncontact transducers. With this type of transducer the ends
of the sample satisfy the free—free boundary conditions exactly. Data
can be used without correction for phase shifts at the ends of the sample
because the transducers do not load the ends of the sample appreciably.
In a recent review article, Thompson’ enumerates three general types of
noncontact transducers: electromagnetic acoustic transducers (EMAT),
capacitive transducers, and optical techniques.

With the EMAT a current is induced in a conducting sample by the
Lorentz forces resulting from interaction with a static magnetic field.®®
A coil near the end of the sample couples the acoustical system to the
electronic system. An EMAT can generate both longitudinal and trans-
verse ultrasonic waves.!? Also, an EMAT can be used to study surface
waves,!12 angled bulk waves,'® and other configurations.!*

A capacitive transducer uses an electric field rather than a magnetic
field. An electrode is spaced a distance of approximately 5 um from the
optically flat solid sample and is biased with a dc voltage. Vibration of
the end of the sample induces an ac signal whose amplitude is propor-
tional to the amplitude of the ultrasonic wave. Since the proportionality
constant is known, the amplitude measurements are absolute. Gauster
and Breazeale!® describe a capacitive transducer capable of measurement
of longitudinal wave amplitudes of the order of 107° cm at 30 MHz.
Later, Peters and Breazeale!® were able to measure amplitudes as low as
102cm = 10~* A with a similar system. For measurements at low tem-
peratures, differential expansion causes problems. To make measure-

5 H. J. McSkimin, J. Acoust. Soc. Am. 33, 12-16 (1961).

8 E. P. Papadakis, J. Acoust. Soc. Am. 42, 1045-1051 (1967).

7 R. B. Thompson, Proc. IEEE Ultrason. Symp., Phoenix, p. 74 (1977).

8 M. R. Gaerttner, W. D. Wallace, and B. W. Maxfield, Phys. Rev. 184, 702 (1969).

8 D. J. Meredith, R. J. Watts-Tobin, and E. R. Dobbs, J. Acoust. Soc. Am. 45, 1393-1401
(1969).

1 A. G. Betjemann, H. V. Bohm, D. J. Meredith, and E. R. Dobbs, Phys. Lett. 25A, 753
(1967).

11 R. B. Thompson, IEEE Trans. Sonics Ultrason. SU-20, 340 (1973).

12T, L. Szabo and A. M. Frost, IEEE Trans. Sonics Ultrason. SU-23, 323 (1976).

13T, J. Moran and R. M. Panos, J. Appl. Phys. 47, 2225 (1976).

4 C. M. Fortunko and R. B. Thompson, Proc. IEEE Ultrason. Symp., Annapolis, p. 12
(1976).

18 W. B. Gauster and M. A. Breazeale, Rev. Sci. Instrum. 37, 1544-1548 (1966).

18 R. D. Peters and M. A. Breazeale, Appl. Phys. Lett. 12, 106—-108 (1968).
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ments down to liquid helium temperatures, Peters er al.'” developed a
capacitive transducer in which the spacing could be adjusted between 3
and 10 um by application of a pressure differential. Cantrell and Brea-
zeale!® developed a capacitive driver for use in ultrasonic wave velocity
measurements, and later!® they used two capacitive transducers for veloc-
ity measurements in which bond corrections were no longer necessary.
More recently, a capacitive transducer for use in liquids has been con-
structed.?’

As has been mentioned, bond corrections need not be made with op-
tical techniques. Optical techniques traditionally have been used with
compressional waves and, hence, traditionally have been limited to trans-
parent media. However, in recent years there has been considerable
emphasis on study of surface acoustic waves. In this case, even opaque
materials can be studied by optical techniques since the light is reflected
from the surface. Discussions of acousto-optical techniques and of sur-
face acoustic waves are given in Parts 9 and 10.

2.1.1.3. Phase Cancellation. Fuller et al.?! and Miller et al.?* have
pointed out that even with initially plane wave fronts phase cancellation
of different portions of the wave fronts can occur and that this phase can-
cellation sets a limit on the measurement accuracy, especially at high fre-
quencies. This is the reason for the use of optical tolerances in many of
the measurements of solid samples made with quartz or other phase-
sensitive transducers. The effect of lack of parallelism was carefully in-
vestigated by Truell and Qats.??

An interesting alternative from the fundamental point of view would be
a phase-insensitive transducer. Southgate?® reported a new type of trans-
ducer that is sensitive to acoustic flux rather than pressure. The device is
based on phonon-charge carrier coupling in piezoelectric semicon-
ductors.?® A momentum transfer accompanies the coupling mechanism

17 R. D. Peters, M. A. Breazeale, and V. K. Paré, Rev. Sci. Instrum. 39, 1505—-1506
(1968).

18 J. H. Cantrell, Jr. and M. A. Breazeale, Proc. IEEE Ultrason. Symp., Milwaukee, p.
537 (1974).

19 J, H. Cantrell, Jr. and M. A. Breazeale, J. Acoust. Soc. Am. 61, 403-406 (1977).

% J. H. Cantrell, Jr., J. S. Heyman, W. T. Yost, M. A. Torbett, and M. A. Breazeale,
Rev. Sci. Instrum. 50, 31-33 (1979).

3 E. R. Fuller, Jr., A. V. Granato, J. Holder, and E. R. Naimon, in ‘‘Methods of Ex-
perimental Physics’’ (R. V. Coleman, ed.), Vol. 11, pp. 371-441. Academic Press, New
York, 1974.

2 J. G. Miller, J. S. Heyman, D. E. Yuhas, and A. N, Weiss, in *‘Ultrasound in Medi-
cine’’ (D. White, ed.), Vol. 1, pp. 447-453. Plenum, New York, 1975.

13 R. Truell and W. OQates, J. Acoust. Soc. Am. 38, 1382-1386 (1963).

# P. D. Southgate, J. Acoust. Soc. Am. 39, 480 (1966).

3 A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40 (1962).
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and causes a net transport of charge carriers in the direction of wave
propagation.?® The physical process is called the ‘‘acoustoelectric ef-
fect,”” and the current resulting from it is proportional to the incident
acoustic flux rather than the pressure, as is the case with other transduc-
ers. This means that the device is insensitive to phase in the acoustic
wave. A practical device called an ‘‘acoustoelectric transducer’’ (AET)
has been applied in medical measurements?” and in material measure-
ments.?® Its advantages are demonstrated by Heyman.?® With further
testing, it appears likely that this transducer will make a fundamental
improvement in precision velocity and attenuation measurements in
which phase cancellation is present with conventional transducers.

2.1.1.4. Diffraction Corrections. The acoustic waves emitted by a
transducer into a sample are not confined to a region defined by the area
of the transducer and the normal to its emitting surface as often is as-
sumed. Because of the finite size of the transducer, the acoustic beam
spreads out into a diffraction field, a phenomenon that can introduce
errors in both attenuation and velocity measurements, The diffraction
error is related to the ratio of source dimension to acoustic wavelength
and thus is especially large for low frequencies and small transducers.
For attenuation measurements, it can be of the same order of magnitude
as the measured value.

Investigations of the effect of diffraction on velocity and attenuation
measurements have been made by a number of authors for the case of cir-
cular, axially concentric transmitting and receiving transducers of the
same radius. The transmitting tranducer is treated as a finite piston
source in an infinite rigid baffle radiating into a semi-infinite medium.
The acoustic field is found at each point in the propagation medium and an
integration is performed over the area in the field presented by the re-
ceiving transducer. The results show that the diffraction error involves
two interference effects: one is intensity variation in the diffraction pat-
tern and the other is the fact that the wave front is not strictly plane.
Phase variations in the surface plane of the receiving transducer give rise
to interference effects when integrated over a phase-sensitive transducer
surface.

Huntington er al.®° calculated diffraction corrections by numerical inte-

8 G. Weinreich, Phys. Rev. 107, 317 (1957).

373, R. Klepper, G. H. Brandenburger, L. J. Busse, and J. G. Miller, Proc. IEEE Ul-
trason. Symp., Phoenix, p. 182 (1977).

%8 J. S. Heyman and J. H. Cantrell, Jr., Proc. IEEE Ultrason. Symp., Phoenix, p. 124
1977).

® J, S. Heyman, J. Acoust. Soc. Am. 64, 243-249 (1978).

% H. B. Huntington, A. G. Emslie, and V. W. Hughes, J. Franklin Inst. 245, 1 (1948).
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gration of an approximate expression for the piston field attributable to
Lommel 3! who had obtained the expressions, valid for large ka, by apply-
ing the Kirchhoff approximation to Fresnel diffraction of light by a cir-
cular hole in an opaque screen. Noting the similarity between Lommel’s
light diffraction problem and the acoustic diffraction problem for a piston
source, Huntington et al. used Lommel’s expression to approximate the
piston field and obtained the so-called Lommel diffraction correction inte-
gral. The integral depends on a single-component variable s = 2nz/ka?,
where k is the wave number, a the transducer radius, and z the axial dis-
tance from the piston source. Numerically integrating the tabulated data
of Lommel, Huntington et al. found the Lommel diffraction correction
integral to be a monotonically decreasing function of s.

In a different approach to the problem, Williams3? used an expression
by King® to obtain an exact integral expression for the acoustic diffrac-
tion correction, which is a function of both s and ka. He also obtained an
approximate expression, valid for large ka and z/a, which he numeri-
cally evaluated and found, as Huntington et al. did, to be a monotonically
decreasing function of s. A better approximation to Williams’s exact ex-
pression, valid for z/a = 1, was found by Bass* (with an error corrected
by Williams39),

Seki et al.?® noted that the monotonic decrease of the diffraction correc-
tion with increasing s, predicted by Huntington et a/.3° and Williams,32
was inconsistent with experiment, particularly near s = 1, where they ob-
served a maximum independent of ka. They surmised that the previous
calculations used s intervals that were too large. Therefore they recalcu-
lated the diffraction correction using smaller s intervals and performed the
integration graphically to find the experimentally observed peak at s =
1.05.

Khimunin?®” published extensive tables of the magnitude of the diffrac-
tion correction as a function of both ka and s, obtained by numerical inte-
gration of Williams’s exact expression, Later Benson and Kiyohara®
used a high-speed digital computer to evaluate Lommel’s integral and
published tables of both the magnitude and phase of the diffraction cor-

8t E. Lommel, Abh. Bayer. Akad. Wiss. Math. Naturwiss. Kl. 15, 233 (1886).
3 A O. Williams, J. Acoust. Soc. Am. 23, 1-6 (1951).

8 L. V. King, Can. J. Res. 11, 135 (1934).

¥ R. Bass, J. Acoust. Soc. Am. 30, 602-605 (1958).

3 A. O. Williams, Jr., J. Acoust. Soc. Am. 48, 285-289 (1970).

3 H. Seki, A. Granato, and R. Truell, J. Acoust. Soc. Am. 28, 230 (1956).

37 A. S. Khimunin, Acustica 27, 173 (1972).

38 G. C. Benson and O. Kiyohara, J. Acoust. Soc. Am. 55, 184 (1974).
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FiG. 1. Magnitude of the Lommel diffraction correction integral |D,| plotted as a function
of s = 2mz/ka®.®®

rection to great precision. Comparison of the two calculations shows
good agreement particularly in the range of large s and ka.

Rogers and Van Buren® showed that the required integral of Lommel’s
expression can be evaluated analytically to obtain a simple closed-form
expression for the diffraction correction that is valid for all values of z/aq,
provided (ka)'? >> 1. Their results are shown in Fig. 1.

Papadakis* derived an expression for the diffraction correction to
pulse-echo attenuation measurements that takes into consideration which
echoes are used in the measurement. He also studied the effect of anisot-
ropy of the propagation medium on the diffraction.®?~** Figure 2 shows
curves of relative loss for various degrees of anisotropy represented by
the parameter 5. (The value b = 0 corresponds to the purely isotropic
case.)

3 P, H. Rogers and A. L. Van Buren, J. Acoust. Soc. Am. §8, 724 (1974).
4 E. P. Papadakis, J. Acoust. Soc. Am. 31, 150-152 (1959).

41 E. P. Papadakis, J. Acoust. Soc. Am. 3§, 490-494 (1963).

4 E. P. Papadakis, J. Acoust. Soc. Am. 36, 414—422 (1964).

4 E. P. Papadakis, J. Acoust. Soc, Am. 40, 863 (1966).
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Fig. 2. Diffraction loss for a circular piston radiating longitudinal waves into an aniso-
tropic medium along a direction of three-, four-, or fivefold symmetry.*® Values of the an-
isotropy parameter b from — 1 to +0.4 are shown. The upper limit of b is 0.5. The position
of peak A is given by s, = 0.8/(0.5 — b).

The effect of diffraction on velocity measurements also was studied.®
Pertinent to the diffraction corrections for velocity is the phase advance
of the wave as a function of 5. Figure 3 shows curves of relative phase for
various degrees of anisotropy. Papadakis’s results show that the effect of
diffraction is to increase the measured velocity of propagation over the
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Fic. 3. Phase advance ¢ for the wave from a circular piston source.*® This advance
occurs as the secondary lobes leave the region of the main beam. The total advance from
s = Oto infinity is 7/2 rad. The phase advance can be used in correcting both phase veloc-
ity and group velocity measurements. For group velocity it would be advantageous to place
the echoes where a¢/ds = 0.
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plane wave value ‘‘only slightly,”” in agreement with the experimental
work of McSkimin* and of Barshauskas et al.*® A correction of 0.005%
is quoted by Cantrell and Breazeale!® for velocity measurements in fused
silica at 30 MHz. The effective diffraction loss and phase change in the
field of broadband ultrasonic pulses were calculated® in terms of the s
parameter at the center frequency of the pulse.

2.2. Systems for Making Measurements

2.2.1. Optical Systems

2.2.1.1. Light Diffraction (Fraunhofer Zone). The interaction of light
and ultrasonic waves has been investigated since the fundamental experi-
ments of Debye and Sears*” and Lucas and Biquard.*® A theory describ-
ing the diffraction of light by ultrasonic waves was developed in a series of
papers by Raman and Nath.#7%3 In the study of diffraction of light by ul-
trasonic waves, one distinguishes two regimes. Raman-Nath diffrac-
tion, named in honor of the two scientists who developed the fundamental
theory, is analogous to the diffraction of light by a ruled grating. A theo-
retical treatment of Raman—Nath diffraction can be made by considering
the effect of variations in refractive index caused by the ultrasonic wave.
This produces a phase modulation of the light wave front and, hence, the
diffraction pattern.

The second regime, Bragg diffraction, is more analogous to the diffrac-
tion of x rays by a crystalline lattice. A general treatment of both types of
diffraction has been made by Bhatia and Noble.* Careful experimental

#“ H. J. McSkimin, J. Acoust. Soc. Am. 32, 1401-1404 (1560),

45 K. Barshauskas, V. Ilgunas, and O. Kubilynnene, Sov. Phys. Acoust. 10, 21 (1964).

4 E, P. Papadakis, J. Acoust. Soc. Am. 52, 843-846, 847-849 (1972).

47 P. Debye and F. W. Sears, Proc. Natl. Acad. Sci. U.S. 18, 409 (1932).

48 R, Lucas and P. Biquard, J. Phys. Radium 3, 464 (1932).

49 C. V. Raman and N. S. N. Nath, Proc. Indian Acad. Sci. Sect. A Part I 2, 406—-412
(1935).

% C. V. Raman and N. S. N. Nath, Proc. Indian Acad. Sci. Sect. A Part II 2, 413-420
(1935).

51 C, V. Raman and N. S. N. Nath, Proc. Indian Acad. Sci. Sect. A Part III 3, 75-84
(1936).

52 C. V. Raman and N. S. N. Nath, Proc. Indian Acad. Sci. Sect. A Part IV 3, 119-125
(1936).

58 C. V. Raman and N. S. N. Nath, Proc. Indian Acad. Sci. Sect. A Part V 3, 459-465
(1936).

3¢ A. B. Bhatia and W. J. Noble, Proc. R. Soc. London Ser. A 220, 356-368, 369-385
(1953).
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investigation of the overlap region of Raman-Nath diffraction and Bragg
diffraction has been made by Nomoto.®® Theoretical analysis of this
region of overlap has been made by Klein et al.,’® who define a dimen-
sionless parameter

Q = K*’L/uK, (2.2.1)

where K* is the ultrasonic propagation constant 27/\*, L the width of the
ultrasonic beam, u, the refractive index of the medium in which the ultra-
sonic wave propagates, and K the light propagation constant 2ar/\. The
magnitude of Q allows one to determine which type of diffraction is domi-
nant. This parameter was experimentally investigated by Klein ez al.®”
and by Martin er al.®® For ultrasonic waves in water, Q > 9 indicates
that the diffraction is totally Bragg diffraction. For 9 > Q > 1, the dif-
fraction is mixed. For Q < 1, the diffraction is Raman—Nath diffraction.
Effectively, this means that one most readily uses Raman—Nath diffrac-
tion for velocity measurements at low frequencies and Bragg diffraction at
high frequencies. Transition from one type of diffraction to the other
occurs between 10 and 20 MHz in usual laboratory situations.

2.2.1.1.1. RaMAN-—NATH DIFFRACTION. Figure 4 allows one to distin-
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Fic. 4. Diffraction orders of light incident on an ultrasonic wave in a liquid.>®

8 O, Nomoto, Proc. Phys. Math. Soc. Jpn. 24, 380-400, 613-639 (1942).

s¢ W. R. Klein, B. D. Cook, and W. G. Mayer, Acustica 15, 67-74 (1965).

8 W. R. Klein, C. B. Tipnis, and E. A. Hiedemann, J. Acoust. Soc. Am. 38, 229-233
(1965).

58 F. D. Martin, L. Adler, and M. A. Breazeale, J. Appl. Phys. 43, 1480—1487 (1972).
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guish the optical arrangements. For nonnormal incidence, the diffraction
orders are located at angles 6, that satisfy

sin(@, + ¢) — sin ¢ = nA/A*. 2.2.2)

For Raman-Nath diffraction, @ < 1implies that the ultrasonic frequency
is typically less than 10 MHz. Good separation of the diffraction orders
puts a lower limit on the frequency in the neighborhood of 1 MHz. In the
frequency range, then, of 1—-10 MHz, one can use normal incidence (¢ =
0) and reduce Eq. (2.2.2) to

sin 0, = nA/\*. 2.2.3)

This equation is valid for both progressive and standing ultrasonic waves.

A very simple and direct measurement of A* and, hence, the ultrasonic
wave velocity is suggested by Eq. (2.2.3). A monochromatic light
source, an optical bench, a transducer, and a source of rf voltage consti-
tute the necessary equipment. Figure 5 shows two optical systems ca-

S L S, L, A SL, L SLy P

LASER ‘

a
st P

T
(b)

F1G. 5. Optical arrangements for studying the diffraction of light by ultrasonic waves: (a)
with mercury vapor light source S; (b) with laser. Lenses are labeled L, slits SL,, aperture
A, quartz transducer Q, tank T, and photomultiplier P.
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pable of measurement to accuracies of the order of 1%. Figure 5a is the
optical system used with a mercury vapor or similar light source; Fig. 5b
is the system used with a laser. A ground glass screen can be used in
place of the photomultiplier P if one is interested in velocity measurement
only.

Figure 6a is a diffraction pattern observed with a mercury vapor lamp
and a source slit. The propagating medium is water. The number of dif-
fraction orders increases with an increase of ultrasonic wave intensity,
and the light intensity in the diffraction orders goes through maxima and
minima as shown. For truly progressive ultrasonic waves, the minima are
actually zeros of intensity. If the ultrasonic wave undergoes waveform
distortion because of nonlinear effects, this diffraction pattern becomes

FiG. 6. Diffraction patterns produced: (a) by progressive ultrasonic waves in water®®; (b)
by standing waves.
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asymmetrical.?® On the other hand, if the ultrasonic wave is a standing
wave, the zeros of intensity in the lower diffraction orders disappear, as
shown in Fig. 6b (a laser light source was used). The diffraction of light
by ultrasonic waves of various standing wave ratios was considered by
Cook and Hiedemann,® who showed how the light intensity in the diffrac-
tion orders changes as the ultrasonic standing wave ratio changes from
SWR = » (progressive waves) to SWR = 1 (standing waves). For pur-
poses of velocity measurement, however, the important point is that the
position of the diffraction order is unaffected either by nonlinearity or by
the SWR. Thus, Eq. (2.2.3) can be used to evaluate the ultrasonic wave-
length for any SWR in any transparent medium.

The use of Raman—Nath diffraction for measurements of ultrasonic
wave velocity in fluids is very direct and convenient, but the fact that the
position of the diffraction order is unaffected by the SWR is especially im-
portant to measurement of velocity in transparent solids in which the
attenuation is so small that reflected waves are inevitable. Barnes and
Hiedemann® set up resonances between parallel faces of glass samples
and obtained an improved accuracy in the measurements because the res-
onance condition increases the number of diffraction orders. The light
source was a slit, which made possible observation of high diffraction
orders.

A second type of measurement was realized by setting up volume reso-
nances. With a point light source, Barnes and Hiedemann®! observed
that the diffraction orders were located on circles around the zero order.
One circle corresponded to the longitudinal wave and a (larger) second
circle corresponded to the transverse wave arising from mode conversion
at the sample surface. These diffraction patterns previously had been
studied by Schaefer and Bergmann,®? who used them to determine the
elastic constants of glasses.®® An example of the diffraction pattern pro-
duced by volume resonance of a glass sample is shown in Fig. 7.%¢ The
inner circle is the locus of first orders produced by longitudinal waves pro-
pagating in different directions in the sample. On the outer circles are
found the first orders produced by transverse waves. The radii of these
circles are measures of the corresponding wavelengths in the glass
sample.

¥ M. A. Breazeale and E. A. Hiedemann, J. Acoust. Soc. Am. 33, 700-701 (1961).

% B. D. Cook and E. A. Hiedemann, J. Acoust. Soc. Am. 33, 945-948 (1961).

@ J. M. Bamnes and E. A. Hiedemann, J. Acoust. Soc. Am. 28, 1218-1221 (1956); 29, 865
(1957).

% Cl. Schaefer and L. Bergmann, Naturwissenschaften 23, 799-800 (1935).

8 Cl. Schaefer and L. Bergmann, Ann. Phys. 3, 72-81 (1948).

& L. Bergmann, ‘‘Der Ultraschall,” p. 568. Hirzel Verlag, Stuttgart, Germany, 1954; Cl.
Schaefer and L. Bergmann, Naturwissenschafien 22, 685-690 (1934).
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FiG. 7. Optical diffraction pattern produced by ultrasonic waves in a glass cube under vol-
ume resonance conditions.%

A very interesting extension of this technique was made by Schaefer
and Bergmann,® who found that the diffraction pattern produced by vol-
ume resonance of anisotropic crystals gave a measure of the velocity in
various directions and, hence, of the elastic constants of the crystals. An
example of the diffraction of light by ultrasonic waves in crystalline
quartz is shown in Fig. 8. The similarity between these figures and Laue
diagrams obtained by diffracting x rays by crystalline lattices is not coin-
cidental. The same lattice spacing among the atoms that determines the
spacing of the diffraction orders in a Laue diagram also leads to anisot-
ropy of the ultrasonic wave velocity. This anisotropy is responsible for
the directional variation of the positions of the orders in Fig. 8. In fact,
Hiedemann® called these figures ‘‘Laue diagrams (obtained) with optical
waves.”” The actual diagram observed is dependent on the state of polar-
ization of the incident light since the crystal is birefringent. Figure 8
compares the experimental results of Schaefer and Bergmann® with the
predictions of the theory of Mueller.%¢

% E. A. Hiedemann, '‘Grundlagen und Ergebnisse der Ultraschallforschung.’”” de
Gruyter, Berlin, 1939,
% H. Mueller, Phys. Rev. 52, 223-229 (1937).
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FiG. 8. Optical diffraction patterns produced by ultrasonic waves in quartz.®® The light is
incident parallel to the crystalline y axis: (a) unpolarized light; (b) electric vector parallel to
the z axis; (c) electric vector perpendicular to the z axis; (d)-(f) corresponding interference
figures calculated by Mueller.®®

2.2.1.1.2. BraGaG DIFrFrAacTION. For Bragg diffraction, two conditions
must be met (see Fig. 4): (1) the angle of incidence ¢ must be a particular
angle ¢y, and (2) the parameter Q, defined by Eq. (2.2.1), must satisfy
Q > 9. If both of these conditions are met, one can rewrite Eq. (2.2.2) in
the form

n\ = 2\* sin ¢g, (2.2.4)

from which the ultrasonic wavelength A* can be evaluated. In practical
experimental situations one satisfies 0 > 9 and uses convergent incident
light. The ultrasonic beam then selectively diffracts only that portion of
the light that is incident at the Bragg angle.

Although the subject has been investigated in considerable detail in
other connections, it is only relatively recentiy that it was realized that
Bragg diffraction is ideally suited for measurement of ultrasonic wave
velocity at high frequencies. It has proved to be a very effective means
of measuring velocity in the frequency range between 100 MHz and a few
gigahertz. Krischer®” measured ultrasonic wave pulses in lanthanum
fluoride in the frequency range 200-800 MHz. The estimated absolute
accuracy was better than 0.1%. It was limited primarily by the accuracy

87 C. Krischer, Appl. Phys. Lett. 13, 310 (1968).



2.2. SYSTEMS FOR MAKING MEASUREMENTS 83

STRIP CHART Q
RECORDER CHAN.1 DETECTOR e
CHAN.2
TUNED
LE AMP
7
osc , w-o
o @
ATTEN MIXER
COUPLER COUPLER .
-3d8 -10dB FREQ
osc —| ATTEN |—----\-~ reE
o ADAPTER
L +14 dB
L] 2
e PHOTODIODE H.F. AMP
1 — 1000 MHz
A1 A Y
INTERFEROMETER
(MICHELSON) REGULATED
POWER SUPPLY
M, LASER

F1G. 9. Experimental arrangement for precision measurement of ultrasonic wave velocity
by Bragg diffraction of light.®®

with which the angle 8 coulds be measured. Krischer points out that the
velocity is measured within a very small volume. (The light beam diame-
ter could be as small as 1 mm.)

Local values of the velocity have been measured with more precision
by Simondet et al.® The Bragg diffracted light is Doppler shifted by an
amount equal to the frequency of the uitrasonic wave. Therefore, super-
position of the diffracted light and undiffracted light produces optical het-
erodyning. The two light beams simultaneously incident upon a photo-
diode produce an electrical signal whose amplitude depends on the rela-
tive phase of the two beams. As the sample is moved in the direction of
propagation of the ultrasonic wave, a periodic photodiode output is ob-
served. This period, correlated with the distance of motion of the
sample, gives a measure of the wavelength and, hence, the velocity of the
ultrasonic wave. Figure 9 is a diagram of a system in which the sample

% F. Simondet, F. Michard, and R. Torquet, Opt. Commun. 16, 411-416 (1976); see also
F. Michard and B. Perrin, J. Acoust. Soc. Am. 64, 1447-1456 (1978).
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- : iIi

S L SL L, A T sSM

FiG. 10. Experimental arrangement for visibility method. Light from mercury vapor
source S passes through lenses L; and L, and slit SL and is collimated when it passes
through aperture A and tank T containing the liquid to be measured. Standing ultrasonic
waves generated by quartz transducer Q and reflected from reflector R are imaged in the
focal plane of the microscope SM with superimposed micrometer scale.

motion is measured by a Michelson interferometer. The strip chart
recorder output is a measure of the ultrasonic wavelength in terms of the
light wavelength (6328 A). Measurements at 300 MHz by Simondet et
al.%8 in a very homogeneous KBr sample gave a precision of 0.3 m/sec ina
measurement of 3035.7 m/sec, or 0.01%. This is significant because it is
an accurate rneasure of the velocity in a very small sample volume. Thus
local variations in velocity caused by sample inhomogeneities can be mea-
sured.

2.2.1.1.3. ATTENUATION MEASUREMENT. Light diffraction also offers
a technique for measuring ultrasonic wave attenuation. For example,
Farrow et al.® have developed an automatic ultrasonic attenuation spec-
trometer for measurements between 5 and 250 MHz. Either Bragg diffrac-
tion or Raman—-Nath diffraction can be used. The method depends on
satisfying the conditions for linearity between ultrasonic wave intensity
and light intensity in the first diffraction order, as does the schlieren
technique used by Kannuna.” One then scans the length of the ultra-
sonic beam and measures the attenuation. This method is especially
useful at high frequencies and/or high attenuation coefficients.

2.2.1.2. Visibility Method (Fresnel Diffraction Zone). A very conve-
nient and reasonably accurate (between 0.1 and 0.01%) technique for
measuring velocity is the visibility method, used extensively by Hiede-

® M. M. Farrow, S. L. Olsen, N. Purdie, and E. M. Eyring, Rev. Sci. Instrum. 47, 657
(1976).
™ M. M. Kannuna, J. Acoust. Soc. Am. 27, 5-8 (1955).
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mann.® 7178 This method makes use of the diffraction pattern in the op-
tical Fresnel zone, the region along the optical axis immediately behind
the ultrasonic wave. Collimated light is incident onto a standing ultra-
sonic wave. The resulting Fresnel diffraction pattern, which is a series of
real images of the ultrasonic wave fronts, is examined by a microscope, as
shown in Fig. 10. By interposing a micrometer scale in the focal plane of
the microscope, one sees the scale superimposed on the wave field as
shown in Fig. 11. This technique has been used by Mayer and Hiede-
mann’3~" for measurements of the elastic constants of sapphire. Since
the images of the wave fronts are A/2 apart, one can quickly obtain the
ultrasonic wave velocity in transparent liquids and solids. An even
quicker technique is to mount the microscope on a calibrated screw and
count fringes as they pass the microscope cross hairs.

It should be pointed out that interference causes the images to change,
fade, and reappear as the microscope is moved along the optical axis
toward or away from the ultrasonic beam. An image such as the one
shown in Fig. 11 appears a short distance behind the ultrasonic beam.
Examples of images seen at greater distances are shown in Fig. 12. As
this sequence of images is periodic,” there is no difficulty in determining
the location of the images spaced A/2.

The visibility method is one of the most direct methods for measuring
ultrasonic wave velocity in transparent samples. Its inherent accuracy is
great enough (of the order of 0.01%7®) that local variations in velocity can
be detected.”

2.2.2. Pulse Systems

2.2.2.1. Velocity Measurements. 2.2.2.1.1. Basic PuULSE-EcHO
METHOD. The basic pulse-echo method for measuring velocity and atten-
uation has been described by several authors.”* A typical equipment

7 E. A. Hiedemann and K. H. Hoesch, Z. Phys. 90, 322-326 (1934); 96, 268-272 (1935).
7 E. A. Hiedemann and K. H. Hoesch, Z. Phys. 107, 463-473 (1937).

 W. G. Mayer and E. A. Hiedemann, Acta Crystallogr. 12, 1 (1959).

™ W. G. Mayer and E. A. Hiedemann, J. Acoust. Soc. Am. 30, 756-760 (1958).

™ W. G. Mayer and E. A. Hiedemann, J. Acoust. Soc. Am. 32, 1639-1700 (1960).
 W. G. Mayer and E. A. Hiedemann, Acta Crystallogr. 14, 323 (1961).

7 E. A. Hiedemann and M. A. Breazeale, J. Opt. Soc. Am. 49, 372-375 (1959).

78 E. Schreuver, Akustische Z. 4, 215 (1939).

7 F. A. Firestone, J. Acoust. Soc. Am. 18, 200 (1946).

8 J R. Pellam and J. K. Galt, J. Chem. Phys. 14, 608 (1946).

8 C. E. Teeter, Ir., J. Acoust. Soc. Am. 18, 488 (1946).

J. M. M. Pinkerton, Nature (London) 160, 128 (1947).

8 H. B. Huntington, Phys. Rev. 72, 321 (1947).

8 J. R. Neighbours, F. W. Bratten, and C. S. Smith, J. Appl. Phys. 23, 389 (1952).
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F16. 11. Visibility fringes observed at 4 MHz in water. The scale is in millimeters.

arrangement is shown in Fig. 13. A pulsed rf signal of given frequency is
converted by means of a transducer into a pulsed ultrasonic wave of the
same frequency. The ultrasonic pulse travels through the sample and is
reflected between the sample boundaries until it decays away. Each time
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FiG. 12. Images seen at increasing distances (measured in centimeters) from the ultra-
sonic waves in Fig. 10. The pattern is periodically repeated at a distance D' = 17.3 ¢cm with
D'/4 =45,D'/2 = 8.6, and 3D'/4 = 13.6.77
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F1G. 13. Basic pulse-echo system.

the ultrasonic pulse strikes the sample end coupled to the transducer, an
electrical signal is generated which is amplified and displayed on an oscil-
loscope. If the pulse length is small compared to a round-trip transit time
in the sample, a pulse-echo decay pattern develops as shown in Fig. 14.
The velocity of ultrasonic wave propagation is determined by measuring
the transit time between the reflected pulses and the corresponding pulse
propagation distance in the sample.

A continuously variable time delay may be used to measure the transit
time between the pulses that are individually displayed on the oscillo-
scope by means of an expanded sweep. It is common in such cases to
use a detected (i.e., rectified and filtered) signal and to measure the time
interval between corresponding reference points of each echo (e.g., the
leading edge of the pulse—but see below for refinements). Adjusting the
attenuator so that the receiver input signal is constant for each displayed
echo minimizes the error due to amplifier nonlinearities and reduces (but
does not eliminate) the uncertainty in the signal reference points. Such a

FiG. 14. Typical pulse-echo decay pattern.}s
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procedure also allows one to read directly the ultrasonic attenuation from
the calibrated attenuator.

In measurements of solids using contact transducers, Lazarus® was
among the first to point out that a small transit time error is incurred due
to the ultrasonic wave propagating into the transducer and bond. His so-
lution was to measure pulse transit times in samples of different lengths.
He plotted the transit times as a function of the sample lengths and as-
sumed that the intercept of the resulting curve was the transit time error.
The reciprocal of the slope was assumed to be proportional to the true
velocity.

A qualitative explanation of this error was given by Eros and Reitz.®
They found that partial transmission and reflection of the ultrasonic pulse
at the sample—transducer interface changed the shape of the pulse with
each successive echo. This means that any attempt to find some charac-
teristic ‘‘mark’’ on the pulses to use as a reference point to measure
transit time always leads to limited measurement accuracy. Papadakis®
pointed out that matching the leading edges of the echoes is an improper
procedure for accurate phase velocity measurements and may lead to
errors of as much as a few parts in 102. McSkimin®-®® (see Section
2.2.2.1.4) developed a technique that allows cycle-for-cycle matching of
the echoes and, hence, eliminates this problem. The related problem of
ultrasonic phase shifts upon reflection at the sample—transducer interface
is discussed in Section 2.2.2.1.3. In solids, using contact transducers for
phase velocity measurements accurate to a few parts in 10° and attenua-
tion measurements accurate to about 5 parts in 10%, the basic pulse-echo
method using leading edge echo matching is expedient and in some cases
it is adequate.

For samples in which the path length is variable, accuracy may be im-
proved. Pellam and Galt,® working with liquids, determined the sound
velocity by measuring the distance the transducers had to be moved from
the reflector to delay the received echo by a specified increment. With
this technique phase distortion due to reflections is less serious, since only
the effect of a change in path length is important. They reported velocity
measurements accurate to 5 parts in 104

2.2.2.1.2. SING-AROUND METHOD. The sing-around method® %

8 D, Lazarus, Phys. Rev. 76, 545-553 (1949).

% S. Eros and J. R. Reitz, J. Appl. Phys. 29, 683 (1958).

87 E. P. Papadakis, J. Acoust. Soc. Am. 42, 1045-1051 (1967).

88 H. J. McSkimin, J. Acoust. Soc. Am. 33, 12-16 (1961).

® M. J. McSkimin, J. Acoust. Soc. Am. 34, 404-409 (1962).

8 R. D. Holbrook, J. Acoust. Soc. Am. 20, 590 (1948).

81 N. P. Cedrone and D. R. Curran, J. Acoust. Soc. Am. 26, 963 (1954).

% M. Greenspan and C. E. Tschiegg, J. Acoust. Soc. Am. 28, 158 (1956).

3 G. W. Ficken, Jr. and E. A. Hiedemann, J. Acoust. Soc. Am. 28, 921-923 (1956).
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FIG. 15. Block diagram of basic sing-around system.®

differs from the basic pulse-echo method by the way in which the pulse
timing is done. A block diagram of the basic system is shown in Fig. 15.
Usually in this method a second transducer (used as a receiver) is placed
at the end of the sample opposite the transmitting transducer. The re-
ceived signal is used to retrigger the pulse generator thereby generating a
continuous succession of pulses. Since the repetition rate of this pulse
sequence depends on the travel time (i.e., on the path length and the ultra-
sonic velocity) in the sample, the ultrasonic velocity may be determined
from the measurement of this repetition rate.

An inherent error in the pulse repetition rate (due to time delays in the
electronic circuits) limits the accuracy of this method for absolute veloc-
ity measurements. Changes in pulse shape resulting from attenuation
and the presence of the interface between the contact transducer and the
sample also contribute to the error. Accuracies of a few parts in 10* for
absolute velocity measurements are possible with this method. An
improvement to the sing-around method by Forgacs® allows relative
velocity measurements (i.e., changes in velocity) to be made to one part
in 107, Millero and Kubinski®® used this technique to measure relative
values of velocity in seawater and pure water.

2.2.2.1.3. GATED DouUBLE-PULSE SUPERPOSITION METHOD. The gated
double-pulse superposition method, introduced by Williams and Lamb,®¢
may be understood by referring to Fig. 16. A pulsed ultrasonic signal is
transmitted into the sample folowed by a second pulsed ultrasonic signal
phase locked but delayed in time with respect to the first. The phase
locking is obtained by gating a continuously running oscillator as shown in

™ R. L. Forgacs, IRE Trans. Instrum. 9, 359 (1960).
® F. J. Millero and T. Kubinski, J. Acoust. Soc. Am. §7, 312-319 (1975).
% J. Williams and J. Lamb, J. Acoust. Soc. Am. 30, 308-313 (1958).
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F1G. 16. Diagrammatic representation of the acoustic delay in the specimen and reflec-
tions of pulses.®

Fig. 17. The two pulsed ultrasonic signals reflect between the sample
walls giving rise to two pulse-echo trains. The time delay is adjusted
such that superposition of the desired echoes from the two pulse trains is
achieved. The resulting signal is received by a transducer at the other

i
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F16. 17. Block diagram of the gated double-pulse superposition method for velocity mea-
surements in solids .
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end of the sample, amplified, and displayed on an oscilloscope as shown
in Fig. 18.

If care is taken to make the signals flat topped, a continuous wave anal-
ysis may be made with good approximation. Let the signal received from
the delayed pulse be

Y2 = A sin of, (2.2.9)

where A is the pulse amplitude and f = w/2w the ultrasonic frequency.
Let 7 be the time for a single trip through the sample and vy the phase shift
due to reflection at the sample ends. Assuming that the phase shifts at all
reflections are equal, we may write, for the initial pulse after one round
trip delay,

y, = A sinfw(t — 27) + 2v]. (2.2.6)
Superposition of the two signals gives the receiving transducer output
y1 + y3 = 2A sin[w(t — 7) + y] cos(wr — ). 2.2.7)

The superimposed signal may be made zero, independently of time, by
adjusting the carrier frequency f such that the condition

L_I_-L_._J_‘L__

t ——

(a)

__J—I._J_—L__

t——»
(b
|
t—

(c)

FiG. 18. Oscilloscope displays of demodulated signals demonstrating the method of can-
cellation in the gated double-pulse method: (a) received signals due to multiple reflection of
first pulse; (b) received signals due to multiple reflection of second pulse; (c) cancellation
due to addition of parts (a) and (b).%



2.2. SYSTEMS FOR MAKING MEASUREMENTS 93

cos(wr — 1) =0 (2.2.8)
or
wr —y=Q2n + Dn/2, n=20,12,3,... 2.2.9)

is satisfied. The pulse transit time 7 can be obtained from Eq. (2.2.9)
once n and y have been evaluated by the following procedures.

Redwood and Lamb,?” working with solids, published an analytical
treatment of the effect that contact transducers have on the reflection of
ultrasonic waves. Their analysis showed that the phase angle y may be
expressed by

y=mo—2tan"1aq, (2.2.10)

where

ZB [ZT tan 0T + ZB tan 03]

a—Z_s ZB—ZTtanoTtanOB

with Zy, Z;, and Zg the mechanical characteristic impedances of the
bonding material, transducer, and sample, respectively; 67 = 2mf(lx/vr)
and g = 2xwf(lz/vp), Where Iy and v, are the thickness and velocity of
sound in the transducer, respectively, and /5 and vg are the corresponding
parameters in the bonding material.

For zero thickness of the transducer bond, v may be approximated near
the resonance frequency of the transducer f by

'y—‘rr[l—Zé(ffofo):l. (2.2.12)

Substituting Eq. (2.2.12) into Eq. (2.2.9), we obtain, at each null fre-
quency f,,

(2.2.11)

o= fo]_, 1
2f,,f—1+2zs[ I3 ]—n+2. (2.2.13)

If the bond thickness cannot be neglected, this equation becomes more

complicated.
A similar expression for f,.; allows the frequency difference Af
between nulls to be expressed as

Af = for1 — fo = [27 + 2 Z1/Zsfo] (2.2.14)
Substituting Eq. (2.2.14) into Eq. (2.2.13) gives
So/Af = 221/Zs = n + 3. (2.2.15)

%7 M. Redwood and J. Lamb, Proc. Inst. Electr. Eng. 103B, 773-780 (1956).
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Fi1c. 19. Block diagram of apparatus for pulse superposition method.®

If Z/Z4 is known to within +0.1, n may be calculated from Eq. (2.2.15)
from measurements of the null frequencies £, and the frequency difference
Af close to the resonant frequency of the transducer f;. This value of n is
then substituted into Eq. (2.2.13) from which the transit time 7 is calcu-
lated. Some error remains because of the above uncertainty in Z;/Z;.
However, accuracy can be improved by calculating 7 for a series of null
frequencies on either side of /. By interpolation, a value of r is obtained
for which f= f; and the factor 2(Z./Zs(fx — fo)/f;] vanishes in Eq.
(2.2.13). Accuracies of one part in 10* have been reported with the gated
double-pulse superposition method using contact transducers.*® For
noncontact transducers, this procedure is unnecessary since Z; = 0 and
the factor vanishes regardless of frequency.®

2.2.2.1.4. PULSE SUPERPOSITION METHOD. The arrangement of appa-
ratus for the pulse superposition method (developed by McSkimin®®-1%) is
shown in Fig. 19. A series of rf pulses from a pulse generator is intro-
duced into the sample. The repetition rate of these pulses, controlled by
the frequency of a continuous wave (cw) oscillator, is adjusted to corre-

% J. H. Cantrell, Jr. and M. A. Breazeale, J. Acoust. Soc. Am. 61, 403—-406 (1977).

% H. J. McSkimin, J. Acoust. Soc. Am. 37, 864—871 (1965).

100 H. J. McSkimin and P. Andreatch, Jr.,J. Acoust. Soc. Am. 41, 1052—1057 (1967); 34,
609-615 (1962).
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spond approximately to some multiple p of an acoustic round-trip transit
time 8 (=27) in the sample. The actually measured time delay T between
superimposed ‘‘in phase’’ pulses is the reciprocal of the cw oscillator fre-
quency and may be written

_ _ (PY n
T = ps (360f) + 2.2.16)

where vy is the phase angle associated with the wave reflection, fthe ultra-
sonic frequency, and »n an integer (positive or negative) that indicates the
cyclic mismatch between the pulses.

The ““in phase’’ condition is obtained by adjusting T so that the super-
imposed pulse amplitude is maximized. For p = 1, the applied pulse
occurs once for every round-trip delay and obscures the echoes if the se-
quence is not interrupted. In this case the gate and phase inverter are
used to interrupt the sequence after it has been on long enough to estab-
lish a stable interference pattern. The observed echo pattern during the
“interrupt period’’ is the superimposed sum of all previously applied
pulses (see Fig. 20).

For the case p > 1, the gate and phase inverter are not necessary.
However, the advantages of the p = 1 case justify the additional equip-
ment in some situations. In samples in which the attenuation is quite
large, the resonance condition can be obtained with greater precision for
p = 1, and more accurate measurements can be made.

The pulse transit time 7 can be obtained from Eq. (2.2.16) if a value of T
can be found corresponding to n = 0 (i.e., cycle-for-cycle matching of the
pulses). This is done by comparing experimental and theoretical values
of the quantity AT defined by

1 pyL 1 Pyn

AT:E('I—?%—O)—TH('I—W)’ 2.2.17)
where AT is the change in T required to maintain the ‘‘in phase’’ condition
as the frequency fis changed from some value fy; (usually the transducer
resonance frequency) to some other value f;,, 5—10% lower. The phase
angles vy, and vy, associated with fy and f; , respectively, are calculated
from Eq. (2.2.10). The experimentally determined T having a AT nearest
the value calculated from Eq. (2.2.17) for n = 0 is the value of T to be
used in Eq. (2.2.16).

For measurements in solids involving bonded contact transducers,
there is some uncertainty in the values of the ys because the bond
thickness is not known. In this case the phase angles are calculated as a
function of bond thickness and these values are used to plot AT versus
bond thickness. A typical example of this is shown in Fig. 21 for different



F1G. 20. Pulse superposition oscilloscope patterns for p = 1. The top pattern is for re-
peated rf pulses, the middle pattern for applied rf pulses; and the bottom pattern for enve-
lopes showing received waves.%

96
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FiG. 21. Change of delay time required to maintain the *‘in phase’’ condition with the
pulse superposition method plotted as a function of bond thickness.®

values of p and n. It is seen that AT has a limited range for a given value
of p and n. Thus all experimentally measured values of T having a AT
outside the limits for the n = 0 case can be eliminated from consideration.
For further details the reader is referred to the work of McSkimin,88-89
Accuracies of 2 parts in 10* were initially reported for absolute velocity
measurements with the pulse superposition method. Refinements in the
electronic circuitry®®!% have led to an increase in the precision of transit
time measurements to approximately one part in 107 for high Q materials.
2.2.2.1.5. EcHo-OvERLAP METHOD. The echo-overlap method using
two transducers was first reported by May.!®! Later a single-transducer
modification was used by Papadakis®"'®? to measure the transit time
between any pair of echoes in a pulse-echo pattern. A block diagram of
the arrangement of the apparatus for use of a single transducer is shown in
Fig. 22. As with the pulse superposition method, a series of rf pulses
from a pulse generator (4) is introduced into the sample. However, in
contrast with that method, the repetition rate of these pulses is low
enough that all echoes from a given rf pulse decay away before the next
pulse is applied. The pulse repetition rate is controlled by a continuous
wave (cw) oscillator (1) (100-1000 KHz) after frequency division (2) by a
factor of 103 and trigger-shaping by a dc pulse generator (3). The dc pulse
generator also is used to trigger a two-channel time delay generator (8)
that actuates the Z axis intensity gate on the oscilloscope (7). The hy-

1§ E. May, Jr., IRE Nat. Conv. Rec. 6, 134 (1958).
8 E, P. Papadakis, J. Appl. Phys. 35, 1474 (1964).
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Fi1G. 22. Block diagram of the circuitry for the ultrasonic pulse-echo-overlap method of
velocity measurements.®” All the units can be obtained commercially.

bridge (5) allows returning echoes, but not the applied rf pulse, to reach
the oscilloscope. The delays (8) are adjusted so that any chosen pair of
echoes is intensified. The oscilloscope is operated with a linear sweep
during this adjustment so that many echoes appear on the screen.
During the acoustic transit time measurement the oscilloscope is
switched to an X -Y mode of operation in which the cw oscillator (1) pro-
vides the sweep. In this mode the CRT intensity is reduced so that only
the two intensified echoes of interest are visible. The echoes can be
made to overlap cycle-for-cycle as shown in Fig. 23 by adjusting the cw
oscillator frequency to correspond to the reciprocal of the travel time
between the echoes. An integral multiple m of this frequency also allows
this overlap, since an echo then appears for every mth sweep. The time
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F1G. 23. Cycle-for-cycle overlap of echoes in pulse-echo-overlap method.

delay T actually measured between the echoes is m times the reciprocal of
the cw oscillator frequency. The round-trip acoustic transit time & (=27)
in the sample is obtained from Eq. (2.2.16) as in the pulse superposition
method. The procedure for obtaining the correct cycle-for-cycle
matching of the chosen echo pair (i.e., » = 0 condition) and the calcula-
tion of the phase shift due to reflection are outlined in Section 2.2.2.1.4.

The counter (9) used to measure the cw oscillator (1) frequency is also
used to measure the frequency of the rf oscillator (10), whose output may
be superimposed on the ultrasonic echo display to determine the fre-
quency of the ultrasonic pulses.

Absolute velocity measurement accuracies of a few parts in 10° have
been reported with this method.?” A critical analysis!®® of the absolute
accuracy of the pulse-echo overlap method and the pulse superposition
method shows that under favorable circumstances absolute accuracies of
a few parts in 10% are possible with either method, if phase corrections for
diffraction are included in the velocity measurements. A commercial in-
strument is available.!%¢

2.2.2.1.6. PULSE INTERFEROMETER METHODS. A block diagram of a

103 E_ P. Papadakis, J. Acoust. Soc. Am. 52, 843846, 847-849 (1972).
14 E, P. Papadakis, in ‘‘Physical Acoustics’’ (W. P. Mason and R. N. Thurston, eds.),
Vol. XII, pp. 277-374. Academic Press, New York, 1976.
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F1G. 24. Block diagram of electronic circuitry of pulse interferometer.'®

typical pulse interferometer is shown in Fig. 24. An ultrasonic pulse is
transmitted into the sample by gating a cw reference oscillator and the re-
ceived pulse is combined with the cw reference signal in a phase-sensitive
detector, whose output is responsive to variations in acoustic path length
and frequency. As the relative phase between the received acoustic
signal and the cw reference frequency is changed by varying either the
acoustic path or the frequency, the output of the phase-sensitive detector
varies periodically to give a measure of the wavelength.

Several variations of this arrangement have been used for velocity and
attenuation measurements. Pervushin and Filippov'® report a single-
transducer arrangement in which the acoustic path length is fixed and the
reference frequency is varied to produce a series of interference maxima
and minima that are detected and viewed directly on an oscilloscope.
Absolute velocity v is determined from

v = 2s(fy — f2}/n, (2.2.18)

where [ is the length of the sample, s the number of acoustic reflections in
the sample, and n the number of interference maxima (or minima) corre-
sponding to a change in frequency (f; — fz). If contact transducers are

1 R. C. Williamson and D. Eden, J. Acoust. Soc. Am. 47, 1278-1281 (1970).
108 1. I. Pervushin and L. P. Filippov, Sov. Phys. Acoust. 7, 307-309 (1962).
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used, corrections for phase shifts at the appropriate boundaries must be
made for accurate measurements.

Chase'%-1% employed a fixed-path, fixed-frequency arrangement using
a variable delay line between the reference-signal source and the phase-
sensitive detector. Changes in velocity were obtained by measuring the
change in delay necessary to maintain a null output from the phase-
sensitive detector. Carstensen'® described a technique that determines
the difference in the velocity of sound in two liquids separated by a parti-
tioning membrane. By keeping a fixed distance between transmitter and
receiver and moving both relative to the membrane, one can measure the
distance the transmitting and receiving transducers must be moved simul-
taneously to obtain a 360° phase shift in the phase-detected output. This
procedure gives a very accurate measure of relative velocity and velocity
dispersion. Dispersion of the order of 0.1% of the velocity can be mea-
sured to between 3 and 5%. Blume!'® described a fixed acoustic path,
phase-locked pulse technique in which the cw reference oscillator was
placed under the direct control of a gated automatic frequency control
(AFC) oscillator. The AFC oscillator was used to shift the reference fre-
quency to preserve the quadrature condition (i.e., zero of phase detec-
tion) between the echo and the reference signals. A fractional change in
the transit time of the echo pulse then caused the same fractional change
in the reference frequency, which was continuously monitored. Ac-
curacies of a few parts in 108 for relative velocity measurements have
been reported with this technique.

Williamson and Eden'® used the variable acoustic path arrangement
shown in Fig. 24 at a fixed frequency f. A balanced mixer was used as a
phase detector and the mixer output was averaged with a boxcar inte-
grator. The resulting dc signal A is linearly proportional to the amplitude
of the received acoustic pulse and is a sinusoidal function of the phase dif-
ference ¢ between the reference and received signals as given by

A = Age~*? sin[Qaf/v)d + &), (2.2.19)

where d is the transducer separation and « the acoustic attenuation. The
velocity is obtained by tracking a portion of the received pulse through a
series of quadrature conditions corresponding to half-wavelength dis-
placements of the receiving transducer. The amplitude of the pulse at
each ‘‘fringe’” is obtained by adjusting the variable delay line to corre-
spond to a 90° phase shift in the reference signal and recording the re-

17 C, E. Chase, J. Phys. Fluids 1, 193 (1958).

108 W. M. Whitney and C. E. Chase, Phys. Rev. Lett. 9, 243 (1962).
1% g L. Carstensen, J. Acoust. Soc. Am. 26, 858—861 (1954).

110 R, J. Blume, Rev. Sci. Instrum. 34, 1400 (1963).
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Fi1G. 25. Experimental arrangement for holding specimen with the long pulse buffer rod
method.**

sulting output from the boxcar integrator. After each such recording the
delay is reset to its original position before proceeding to the next
‘‘fringe.”” Absolute velocity measurements with accuracies of 1 part in
10* and attenuation measurements in highly attenuating liquids to 1 part in
10? have been reported with this technique.

2.2.2.1.7. LonG PuLse BUFFER Rop METHOD. The long pulse buffer
rod method is useful for small, very lossy samples. Several variations of
the method have been reported.'®!!'~!4 Figure 25 shows a two-
transducer arrangement for a solid sample. An ultrasonic pulse is trans-
mitted through a buffer rod (typically made of fused silica) and impinges
on the sample. The quarter-wavelength seals minimize phase shifts.
Partial reflections and transmissions of the pulse between the sample-
buffer interfaces give rise to the pulse-echo pattern shown in Fig. 26.
Figure 26a shows the case in which the pulse length is short compared to
the sample length. The ‘‘stepladder’’ pattern in Fig. 26b results from ex-
tending the length of the pulse until the echoes overlap and adjusting the rf
frequency until the ‘‘in phase’’ condition is satisfied. (The length of the
‘“stepladder’’ pattern is shorter than the round-trip travel time in either
buffer rod.) The ‘‘in phase’’ condition may be obtained from Eq. (2.2.7)
by substituting 7 = /v for the transit time 7; / is the sample length and v
the phase velocity. The time-independent ‘‘in phase’’ condition is

@ul/v ~ Yo = nm, n=20,12,3, ... (2.2.20)

or

"t H. J. McSkimin, J. Acoust. Soc. Am. 22, 413-418 (1950).

12 Y, J. McSkimin, J. Acoust. Soc. Am. 29, 1185-1192 (1957).

13 H. J. McSkimin, IRE Trans. Ultrason. Eng. §, 25 (1957).

14 H. J. McSkimin, in **Physical Acoustics’’ (W. P. Mason, ed.), Vol. 1A, pp. 271-417.
Academic Press, New York, 1964.
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(a)

FiG. 26. Long pulse buffer rod method puise-echo patterns®!!: (a) Pulse length shorter
than sample; (b) Pulse length longer than sample so that overiap occurs. Both patterns are
for *‘in phase’’ frequency adjustment.

v = U (2.2.21)

ot y/m
where v, is the phase change due to reflection at the sample—buffer inter-
face.
If f,, is any other frequency for which the *‘in phase’” condition is satis-
fied, we may write the analog to Eq. (2.2.20) as

Qaful/v) — ym = mm. (2.2.22)
From Egs. (2.2.20) and (2.2.22) we may evaluate n from
_fdn v Sa (ym - vn)
n = AF po + - Af s (2.2.23)

where Af = f, — f, and An = m — n. The phase shifts may be experi-
mentally evaluated!!! by using the single-transducer arrangement shown
in Fig. 27. Phase balance is first made with the buffers and transducers in
place as shown. Buffer B and its transducers are then removed and the
‘change in phase necessary to restore the balance condition is the value of
v at the frequency used.

For the case of liquid samples,!*? the phase shifts are negligible, except
for samples of extremely high attenuation, and Eqgs. (2.2.21) and (2.2.23)
may be used with y,, = vy, = 0.

A single-transducer arrangement for solids!'® is shown in Fig. 28. The
inverted ‘‘stepladder’’ pattern shown on the oscilloscope results from the
condition that the waves in the sample are all ‘‘in phase’’ with each other
but out of phase with the reflected incident wave. The analysis is analo-
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Fic. 27. Circuit for measuring the phase shift at a refiecting interface.''!

gous to the two-transducer case for solids except that the phase shift cor-
rection results from one sample—buffer interface. The y,/# term in Eq.
(2.2.21) becomes y,/2= in this case.

A detailed analysis'® for the single-transducer arrangement in which
the effect of the reflection coefficient between the specimen and buffer
rod is included reveals that, in fact, two characteristic ‘‘stepladder’’ pat-
terns (depending on frequency used) are possible as shown in Fig. 29.
Type I [part (a)] results if the overlapping echoes are out of phase; type II
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Fi1c. 28. Block diagram of measuring circuit for single-transducer, long pulse, buffer rod
method.11®
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F1G. 29. Echo patterns for ultrasonic pulses much longer than the sample: (a) type I; (b)
type 11.11% Multiple reflections of individual echoes interfere to give these two characteristic
patterns which differ by # rad of phase in one round trip in the specimen. Velocity mea-
surements are made by noting the phase change as the applied frequency is changed. Atten-
uation can be computed from the amplitudes Ag, Bs, and Cg of the steps.

[part (b)] results if they are in phase. Velocity measurements good to 1

part in 10* have been reported with this method.!
2.2.2.1.8. OTHER PULSE VELocITY METHODS. A number of other

useful pulse techniques have been reported in the literature, all of which

U8 B, P. Papadakis, J. Acoust. Soc. Am. 44, 724-734 (1968).
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are variations or combinations of the methods already discussed. Any at-
tempt to describe all of them would make this review too cumbersome.
Therefore, a representative summary is presented which may prove bene-
ficial to the reader wishing to investigate them further.

McConnell and Mruk!¢ describe a pulse technique to measure velocity
using a thin, resonant layer of test liquid less than 0.1 cm® in volume. Li-
tovitz et al.’*? reported a phase-comparison arrangement using two
acoustic paths to measure sonic velocity in highly attenuating liquids.
Mason and Bommel'!® reported a double-balanced modulator circuit to
determine changes in velocity to one part in 107.

Cunningham and Ivey''® suggested a buffer technique using two
samples of different length bonded to the ends of two fused silica rods to
measure velocity and attenuation in rubberlike material. Nolle and
Sieck'? published a method in which the pulse amplitude and transit time
delay were measured first in two buffer rods placed end-to-end and then
compared with the corresponding measurements made when the sample
was sandwiched between the buffer rods. The differences in values were
assumed to be due to the additional attenuation and delay time in the
sample after correcting for the effects of acoustic impedance mismatch
between sample and buffer rods. Nolle and Mowry'*' recommended
using a liquid buffer and a reflector in place of the receiving transducer
(liquid immersion technique).

Mason et al.'?® and Barlow and Lamb!?? reported a technique in which
the shear wave velocity and attenuation in highly viscous liquids are cal-
culated from the measurement of the complex reflection coefficient ob-
tained from waves reflected at a liquid—solid interface. Reissner,!*
Schneider and Burton,'? and Kono'® suggested a method using mode
conversion to obtain the ratio of shear to longitudinal wave velocities. Mc-
Skimin!*" used pulsed torsional waves in a rod to measure the impedance
of the surrounding liquid from which the velocity and attenuation may be

16 R, A, McConnell and W. F. Mruk, J. Acoust. Soc. Am. 27, 672 (1955).

n7 T, A. Litovitz, T. Lyon, and P. Peselnick, J. Acoust. Soc. Am. 26, 566 (1954).

18 W, P. Mason and H. E. Bémmel, J. Acoust. Soc. Am. 28, 930—943 (1956).

119 J R. Cunningham and D. G. Ivey, J. Appl. Phys. 27, 967 (1956).

120 A W. Nolle and P. W. Sieck, J. Appl. Phys. 23, 888 (1952).

121 A W. Nolle and S. C. Mowry, J. Acoust. Soc. Am. 20, 432 (1948).

12 W, P. Mason, W. O. Baker, H. J. McSkimin, and J. H. Heiss, Phys. Rev. 75, 936
(1949).

12 °A. J. Barlow and J. Lamb, Proc. R. Soc. London Ser. A 253, 52—69 (1959).

124 H. Reissner, Helv. Phys. Acta 7, 140 (1938).

12 W. C. Schneider and C. J. Burton, J. Appl. Phys. 20, 48 (1949).

128 R. Kono, J. Phys. Soc. Jpn. 18, 718 (1960).

121 H. J. McSkimin, J. Acoust. Soc. Am. 24, 355-365 (1952).
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calculated. McKinney et al.*?® developed a system for the direct determi-
nation of the dynamic bulk modulus up to approximately 10 kHz. Lacy
and Daniel’?® used a digital averaging technique to measure the velocity in
solids up to 50 MHz. Asay ef al.*® published a modified version of the
gated double-pulse superposition technique to measure small changes in
velocity in highly attenuating materials to one part in 104

2.2.2.2. Attenuation Measurements. When an ultrasonic wave propa-
gates through any medium its amplitude changes because of the interplay
of many mechanisms. 'In addition to the thermodynamic mechanisms
that lead to an increase in temperature in the propagating medium (assum-
ing a thermodynamically closed system), there are mechanisms such as
diffraction and reflection that in fact may lead to an increase in amplitude
as well as a decrease. It is convenient to separate the mechanisms into
two classes by using the word ‘‘attenuation’’ to refer to the total change in
amplitude resulting from the action of all mechanisms and to reserve the
word ‘‘absorption’’ for that loss of amplitude that results in an increase of
temperature (however slight) in the propagating medium. The other
major contribution to attenuation is scattering, which is treated in detail
elsewhere in this book. The measurements described lead to a value of
attenuation. The particular situation must be considered before one can
determine the magnitude of the absorption or scattering and identify with
it a particular physical mechanism.

2.2.2.2.1. Basic PuLse-EcHO METHODs. In Section 2.2.2.1.1 we
pointed out that the basic pulse-echo method can be used for measure-
ment of acoustic attenuation as well as velocity. The acoustic attenua-
tion is obtained from the amount of electrical attenuation introduced into
the circuit of Fig. 13 to maintain a constant amplitude of a selected echo
into the receiver. In aliquid this is done for a selected echo while moving
the reflecting boundary over some measured distance. In a solid the
changes in electrical attenuation are recorded individually for a series of
echoes in the pulse-echo train, since in this case the sample boundaries re-
main fixed. A simpler but less accurate technique would be to remove
the calibrated attenuator of Fig. 13 and to usg the calibrated oscilloscope
graticules to measure the pulse height. An advantage of the calibrated at-
tenuator technique is that the receiver nonlinearity does not contribute to
the measurement error, whereas in the calibrated oscilloscope technique,
it does.

128 J. E. McKinney, S. Edelman, and R. S. Martin, J. Appl. Phys. 27, 425 (1956).

129 |, L. Lacy and A. C. Daniel, J. Acoust. Soc. Am. §2, 189-195 (1972).

130 J, R. Asay, D. L. Lamberson, and A. H. Guenther, J. Acoust. Soc. Am. 48, 566-571
(1969).
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F1G. 30. Apparatus for measuring attenuation using either a calibrated attenuator or a cal-
ibrated exponential generator.

An improvement in measurement accuracy can be made with the
arrangement shown in Fig. 30. The calibrated attenuator shown in Fig.
13 is removed and either a pulser with calibrated attenuator or a cali-
brated, continuously variable, exponential generator is added to the cir-
cuit as indicated. If the pulser arrangement is used,'3!:'32 measurements
are made by matching the comparison pulse amplitude to the selected
echo amplitude as described above. (The comparison pulses and echoes
are displayed on alternate sweeps of the oscilloscope.) Any parallax
problems associated with the previous methods are now eliminated. Ac-
curacies of the order of 2 parts in 10? for measurements in liquids have
been reported with this technique.!3® If the exponential generator is
used,'3 the generated curve is matched to a selected pair of peaks of the
decaying echo train, as shown in Fig. 31. Correction for diffraction
losses is made for the echoes selected. For highly attenuating samples
the exponential generator technique becomes unreliable but at lower
attenuation it is convenient and sensitive.

Automated systems using peak detection of two selected echoes have

11 R L. Roderick and R. Truell, J. Appl. Phys. 23, 267-279 (1952).

132 J M. M. Pinkerton, Proc. Phys. Soc. London 362, 286 (1949).

133 J. H. Andreae, R. Bass, E. L. Heasell, and J. Lamb, Acustica 8, 131 (1958).

14 B. Chick, G. Anderson, and R. Truell, J. Acoust. Soc. Am. 32, 186—193 (1960).
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F1G. 31. Pulse-echo decay pattern with superimposed exponential as seen on oscillo-
scope. 138

been described by Truell et al.'* and Kamm and Bohm.!*¢ They are re-
ported to have achieved sensitivities greater than the manual systems.
For measurements of the change in attenuation caused by changes in the
sample conditions (e.g., temperature or pressure), monitoring the time-
averaged value of a selected echo with a calibrated integrator produces re-
sults expeditiously with excellent sensitivity. Commercial versions of
the system are available.

2.2.2.2.2. PULSE SPECTRUM ANALYSIS. For comparison with theory,
one often is interested in measurement of attenuation as a function of fre-
quency. For making these measurements the use of a broad frequency
bandwidth ultrasonic wave and a spectrum analyzer as a receiver has con-
siderable appeal. The pulse spectrum analysis technique was introduced
by Gericke® to study the frequency characterization of flaws in materials
and was popularized by Adler and Whaley,'®® who first established a
quantitative basis for the observed spectrum. Although the system most

138 R. Truell, C. Elbaum, and B. B. Chick, ‘‘Ultrasonic Methods in Solid State Physics.""
Academic Press, New York, 1969.

138 G, N. Kamm and H. V. Bohm, Rev. Sci. Instrum. 33, 957 (1962).

137 9, R. Gericke, J. Acoust, Soc. Am. 35, 364 (1963).

138 1, Adler and H. L. Whaley, J. Acoust. Soc. Am. 51, 881-887 (1972).
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F1G. 32. Typical spectrum analysis equipment arrangement.

often is used for flaw characterization,® it is capable of giving attenuation
measurements as well. A typical experimental arrangement using a
single transducer is shown in Fig. 32. A short, untuned, voltage spike
from a pulser shock-excites a highly damped transducer. The highly
damped transducer emits a sharp ultrasonic pulse with a relatively large
frequency bandwidth which propagates through a delay line (liquid or
solid) before striking the sample. The returning echoes from two dif-
ferent regions of the sample are gated singly or together, depending on the
properties to be investigated, into a spectrum analyzer. The spectrum
analyzer performs a Fourier transform of the time-domain pulses. This
information can be used to determine absolute attenuation as well as the
velocity of the material under investigation. Papadakis et al.'® reported
a spectrum analysis technique in which both the absolute attenuation and
the reflection coefficient are obtained by separately gating into the spec-
trum analyzer the pulse reflected from the front surface and the first two
echoes from the back surface of the sample. Simpson'#! has given the
theoretical foundations of pulse spectrum analysis, which would be of
great value to the reader interested in using this technique.

An expedient, single-transducer, spectrum analysis technique that is
useful for relative attenuation measurements was used by Lizzi et al.'%
for measurement of the attenuation of the lens of the eye. It also has
been used for characterization of skin tissue.!*® Let F,(w) and Eg(w)
denote the frequency spectrum of the returning echoes from surfaces A
and B of a sample, respectively. Denoting the magnitude of the ratio
Eg(w)/E(w) by R(w), they determined the attenuation a(w) from the ex-

1% 1.. Adler, K. V. Cook, and W. A. Simpson, in **Research Techniques in Nondestruc-
tive Testing” (R. S. Sharpe, ed.), Vol. 3, pp. 1-49. Academic Press, New York, 1977.

M0 E. P. Papadakis, K. A. Fowler, and L. C. Lynnworth, J. Acoust. Soc. Am. 53,
1336-1343 (1973).

4 W. A. Simpson, J. Acoust. Soc. Am. 56, 1776 (1974).

4 F, Lizzi, L. Katz, L. St. Louis, and D. J. Coleman, Ultrasonics 14, 77 (1976).

9‘;’ J. H. Cantrell, Ir., R. E. Goans, and R. L. Roswell, J. Acoust. Soc. Am. 64,731-735
(1978).
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pression
20 loglo R(w) =20 loglo(pB/pA) - 17.4(11', (2.2.24)

where pg and p, are the pressure reflection coefficients and 7 is the pulse
transit time between surfaces A and B. A variation of this method using a
two-transducer through transmission arrangement was proposed by
Miller et al.'* in an ultrasonic investigation of myocardial injury.

2.2.2.2.3. OTHER PULSE ATTENUATION METHODS. Variations of the
techniques described previously for the measurement of sonic velocity
are also adaptable to the measurement of attenuation. The use of the
pulse interferometer as suggested by Williamson and Eden!®® for both
attenuation and velocity measurements in liquids was described in Sec-
tion 2.2.2,1.6. Schwan and Carstensen'® and Carstensen et al.'
suggested a technique in which transmitting and receiving transducers are
mounted on a rigid sliding assembly and immersed in a partitioned test
vessel. Half of the vessel is filled with degassed water and the other half
filled with the test liquid. The variation of the receiver intensity as a
function of assembly displacement is used to calculate the attenuation of
the test liquid.

A technique based on the long pulse buffer method (Section 2.2.2.1.7)
has been reported!®*!!5 for attenuation measurements in thin, highly ab-
sorptive materials. Hayford et al.'*" published a modification of this
technique applicable to highly attenuating specimens of intermediate
thickness. McSkimin!'? used two buffer rods separated by a liquid speci-
men to calculate the attenuation from the measured amplitudes of multi-
ply reflected pulses within the sample.

Fry and Fry'*® have developed a technique using a thermocouple probe
capable of measuring absolute acoustic absorption in liquid and biological
media.

2.2.3. Continuous Wave Techniques

A third class of techniques for determining the acoustical properties of
materials is based on continuous wave (cw) methods. Whereas pulse-echo
measurements have a more nearly transient nature, cw measurements are
associated with steady-state or near-equilibrium conditions. The infor-

4 3 G. Miller et al., Proc. IEEE Ultrason. Symp., Annapolis, p. 33 (1976).

5 H. P. Schwan and E. L. Carstensen, Electronics 216-220 (1952).

48 E_ L. Carstensen, K. Li, and H. P. Schwan, J. Acoust. Soc. Am. 28, 286-288 (1953).

W7 D T. Hayford, E. G. Hennecke II, and W. W. Stinchcomb, J. Compos. Mater. 11, 429
(1977).

148 W, I. Fry and R. B. Fry, J. Acoust. Soc. Am. 26, 294-310 (1954); 26, 311-317 (1954).
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mation contained in cw measurements, however, is related to that in pulse
measurements through a Fourier transform and, theoretically, is identical
to it. In essence, the Fourier transform correlates the pulse-echo time
base sweep of an oscilloscope with the continuous wave frequency sweep
of a frequency-modulated oscillator.

In this section we examine the basic theory of cw analysis for plane pro-
pagating waves and describe the experimental apparatus for cw measure-
ments. Attenuation and velocity measurements are discussed in parallel,
as they arise together in the discussion of most cw techniques. Varia-
tions of the basic cw apparatus have led to successful systems for making
measurements. Several of these systems are described and their
operating characteristics are discussed.

2.2.3.1. Theory of Continuous Wave Techniques. 2.2.3.1.1. Pro-
PAGATING WAVE MoDEL. The basic theory for ultrasonic techniques can
be analyzed by use of the one-dimensional propagating plane wave model
of Miller and Bolef.4*13® For simplicity we consider an isolated sample
and neglect diffraction effects. The sample has a length a/2 with flat and
parallel opposing faces where complete internal acoustical reflection
occurs.

At time ¢t = 0 the x = 0face is caused to vibrate with a particle velocity
Re %' = cos wt.* The resulting disturbance propagates with velocity v
into the sample as a plane wave of the form exp[i(w?t — kx) — ax], where
k = w/v and «a is the acoustic absorption coefficient. At the x = 0 face
the wave is superimposed on the original driving velocity, resulting in a
complex particle velocity U, at time ¢ = a/v, where U = exp(iwf){1 +
exp[— (ika + aa)]}. The wave continues to propagate and reflect at the
boundaries, and finally at the x = 0 face one finds a particle velocity su-
perposition of the form

U = exp(iot)(1 + exp[— (ika + aa)] + exp[—2(ika + aa)] + - - ).

(2.2.25)
The infinite sum converges for the case of @ > 0 and may be written
U = exp(iot)/{1 — exp[—(ika + aa)]} (2.2.26)

or, taking the real part,

0 J_ G. Miller and D. L. Bolef, J. Appl. Phys. 39, 4589 (1968).
150 . 1. Bolef and J. G. Miller, in ‘‘Physical Acoustics’’ (W. P. Mason and R. N. Thurs-
ton, eds.), Vol. VIIL, pp. 96-201. Academic Press, New York, 1971,

* All such expressions will be written as ¢** with the understanding that only the real part
Re ¢** = cos wr has physical significance.
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U=Re U= U, cos wt + U, sin wt, (2.2.27)
where
U, = (e*® — cos ka)/2(cosh aa — cos ka) (2.2.28)
and _
U, = sin ka/2(cosh aa — cos ka). (2.2.29)

The amplitude of U is found to be
|U| = [U? + U212 = e22/[\/2(cosh aa — cos ka)'*]. (2.2.30)

The U, term is in phase with the driving stimulus, while the U, term is in
quadrature. These expressions are plotted as a function of frequency in
Fig. 33.

The particle velocity response [Eq. (2.2.27)] as a function of frequency
consists of a series of standing wave or mechanical resonances whose fre-
quencies correspond to the condition that an integral number of half-

FiG. 33. Plots of U, (dashed curve), U (— - — ), and U2 = U, + Ug® (solid curve), in
arbitrary units, as functions of ka in the vicinity of the mechanical resonance.'*® The ver-
tical scale for U? differs from that of U, and U;. The zero of ka is taken at the center of the
mechanical resonance.
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wavelengths exist in the sample. The resonance condition exists for
ka = 2am (aa << 1), where m is the harmonic integer. Since k& = /v,
the mth mechanical resonance frequency is written

2amv/a (2.2.31)

W,
and
Om — Wm—y = 270/a. 2.2.32)

Equation (2.2.32) can be used to determine the ultrasonic velocity from
measured resonance frequencies. The acoustic attenuation is determined
from the frequency width Aw of the resonance at half-power by a =
Aw/2v. As an example, if we assume a sample length of 2.5 cm with a
velocity of 5 X 10° cm sec™ and an absorption of 0.01 cm™, (@, —
®m-1)/2m = 10°* Hz, and Aw/27 = 10*/27 Hz for a Q of 10® at 27) %
10" Hz.

2.2.3.1.2. SENsSITIVITY ENHANCEMENT FaAcToRrs. In many situations
measurements of relative acoustic parameters are desired. For example,
one may wish to determine the effect of temperature, stress, conductivity,
magnetic field, etc., on the ultrasonic velocity or attenuation. The use of
resonance conditions with cw measurements provides an increased sensi-
tivity to the results of these changes. Furthermore, since the gain is re-
lated to the superposition of acoustic signals (not unlike pulse superposi-
tion), the signal-to-noise ratio is improved as well. For such experi-
ments, a change in the measured observable (e.g., |U|, U;, or U,) must be
related to the parameter of interest (v, a, etc.).

The effective gains, called ‘‘sensitivity enhancement factors’” by Miller
and co-workers, 415! gre derived from Eqs. (2.2.28)-(2.2.30). The vari-
ation of the amplitude |A| of any measured observable is

|, Al
da o ak

for small Aa and Ak. The partial derivatives are the sensitivity enhance-
ment factors for attenuation and dispersion, respectively. If the mea-
sured observable is the particle velocity |U|, the sensitivity enhancement
factors are

AlA| = Ak (2.2.33)

U] aV2 (72 — ¢ cos ka)

da _ 4(cosh aa — cos ka)*? (2.2.34)
Ul _ av/2 %2 sin ka
ok~ 4(cosh aa — cos ka)*®’ (2.2.35)

8t J. 8. Heyman and J. G. Miller, J. Appl. Phys. 44, 3398-3400 (1973).
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FiG. 34. (a) Theoretical sensitivity enhancement factors for attenuation (6U/da) (solid

curve) and dispersion (a1 /ak) (— - — ) superimposed on a plot of |U| (dotted curve).'*!
Experimental values are shown by X. (b) Theoretical line shapes for attenuation (4U,/da)
(solid curve) and dispersion (3U, /8k) (— - — ) superimposed on a plot of U, (dotted curve).

Pure attenuation signals are obtained for the frequency corresponding to 3U,/ak = 0, while
pure dispersion signals are obtained for aU,/da = 0." Experimental values are indicated
for attenuation (x) and dispersion (0).

These sensitivity enhancement factors are plotted as a functon of fre-
quency in Fig. 34a with |U| for comparison.
Likewise, we may evaluate the partial derivatives of U, and U, as
oU, _ —dU, _a (1 — cosh aa cos ka)

da dk 2 (cosh aa — cos ka)?’

(2.2.36)
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8U, 48U, —a sinh aa sin ka

ok a2 (cosh aa — cos ka)* (2.2.37)

These line shapes are shown in Fig. 34b with U, for comparison.

Note that at the peak of a mechanical resonance one has, respectively,
maximum sensitivity for change in attenuation when measuring A|U)| or
AU, with maximum sensitivity for dispersion (changes in velocity) when
measuring AU,. Furthermore, both a|U|/dk and 8U,/ak vanish at the res-
onance peak. The presence of zeros in these sensitivity enhancement
factors indicates that the experimenter can isolate dispersion from
changes in attenuation. In addition, the sensitivity enhancement factor
dU,/da passes twice through zero, as shown in Fig. 34b. These zeros
occur at frequencies such that the observed amplitude of U, is ~50% of
its maximum and the dispersion sensitivity enhancement factor is ~75%
of its maximum value. Thus, measuring under conditions of slight de-
crease in signal strength as well as sensitivity may be warranted in order
that the output be dispersion data only.

Table I shows the magnitude of many cw expressions for fixed values of
a, k, Aa, and Ak and for two different values of «, assuming a unity input
of particle velocity amplitude, with measurements taken at the resonance
peak. The large values of these expressions and their sensitivity to small
changes result from the wave superposition inherent with cw resonant
techniques. For example, we may note that for aa = 0.001 and a = 1.0
cm, substitution of Aa = 107* results in a A|U|/|U]| of nearly 10~ and a
sensitivity enhancement factor 8|U|/da of nearly 10%. Such a large sensi-
tivity enhancement factor provides obvious experimental advantages.

2.2.3.1.3. EFFECT OF TRANSDUCERS ON MEASUREMENTS. Most prac-
tical systems involve the use of a transducer to convert electrical energy
into acoustical energy. We therefore briefly examine the effect of trans-
ducers on measurement. Transducers of the contacting variety violate
the assumptions of the isolated resonator model and produce a composite
resonator system.'#*152 The composite system resonances occur at a fre-
quency w,° and require a correction'3%152 (1 + 28) to Eq. (2.2.32). Rear-
ranging for velocity determination by a two-transducer transmission mea-
surement, one can write

U = (m® — wS4)(1 + 28)a/27. (2.2.38)

Here, 8 = apr/asp,, the sample length is a,/2, the transducer length is
ar/2, and the sample and transducer densities are, respectively, p, and
pr. The (1 + 28) correction is adequate for small 8 (<0.01) and for per-

152 D 1. Bolef and M. Menes, J. Appl. Phys. 31, 1010-1017 (1960).



TaBLE 1. Magnitude of cw Expressions |U|, U,, Uy, etc. for Fixed Values of q, &, Aa, and Ak for Two Different Values of o

aa = 0.01 aa = 0.001
Expression Aa=10 Aa = 1074 Ak = 10 Aa=0 Aa = 104 Ak = 10~
U] 1.01 x 10® 995 x 10 1.01 x 10® 10° 9.10 x 102 9.96 x 102
U, 1.01 x 102 9.95 x 10 1.01 x 10* 10° 9.10 x 10? 991 x 102
U, 0 0 -1.00 0 0 -9.9 x 100
AU/ U — -9.95 x 1073 5.00 x 103 — 9.09 x 10~ 4.96 X 1072
AU/ U, —_ -9.95 x 1073 995 x 103 —_ 9.09 x 102 9.90 x 1073
AU/ U, J— ) ) — o )

a=1cm a=1cm

a|U|/ o —-10* -9.8 x 10° -10* —-108 —8.26 x 10® -9.85 x 10®
a|Uj/ok 0 0 1.01 x 102 0 0 9.86 x 10*
al,/da -10* -9.8 x 10° —10* —108 —8.26 x 10° -9.71 x 10°
aU,/ak 0 0 -2.0 x 10? 0 0 —1.96 x 10°

2 To obtain these values it is assumed that the particle velocity amplitude has unit magnitude and that the measurements are taken at the
resonance peaks.
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cent errors of 1072, Ringermacher et al.'*3 have given an improved cor-
rection factor for one-transducer and two-transducer systems. With their
more complex correction factors, errors as small as 1077 are possible.
For & < 0.005, uncorrected formula (2.2.32) is accurate to about 1.0%
and, therefore, is widely used as an approximation.

2.2.3.2. Systems for cw Measurements. The complexity of a cw ul-
trasonic spectrometer depends on the nature of the experiment or mea-
surement in which it is used. In this and the next few sections, we exam-
ine several cw techniques and indicate their attributes and shortcomings
in order that the reader can choose an adequate system with the least
complexity for the desired measurement.

2.2.3.2.1. THE cw ULTRASONIC INTERFEROMETER. The ultrasonic in-
terferometer provides a straightforward method for measuring attenua-
tion and velocity in liquids and gases. The technique, first reported in
1925 by Pierce,'® uses a variable path length ultrasonic cell with flat and
parallel perfectly reflecting walls perpendicular to the acoustic axis. Sev-
eral reflection interferometers have been described.!34-16° Ap example!s!
is shown in Fig. 35. By varying only cavity path length and keeping other
parameters constant, one can minimize corrections for transducer effects.

Equation (2.2.31) can be used to derive the acoustic velocity from two
cavity lengths a,/2 and an+,/2, which correspond to neighboring me-
chanical resonances of the acoustic path in the fluid. For a fixed-
frequency interferometer, the velocity is found to be

v = fulamer — am), (2.2.39)

where f,, is the frequency.

The absolute attenuation may be determined in a similar fashion by
measuring the acoustic signal amplitude at a,, and ap,+,. Using the reso-
nance condition cos ka = 1 in Eq. (2.2.30), we find the square of the par-
ticle velocity amplitude

183 H. 1. Ringermacher, W. E. Moemer, and J. G. Miller, J. Appl. Phys. 45, 549-552
(1974).

14 G, W. Pierce, Proc. Am. Acad. Arts Sci. 60, 271 (1925).

18 7 C. Hubbard, Phys. Rev. 38, 1011 (1931).

158 J_ C. Hubbard, Phys. Rev. 41, 523 (1932).

187 J, C. Hubbard, Phys. Rev. 46, 525 (1934).

188 . R. McMillan, Jr. and R. T. Lagemann, J. Acoust. Soc. Am. 19, 956 (1947).

182 J L. Hunter and F. E. Fox, J. Acoust. Soc. Am. 22, 238-242 (1950); J. L. Hunter, ibid.
22, 243-246 (1950).

® |G, Eggers and Th. Funck, Rev. Sci. Instrum. 44, 969-977 (1973).

181 A L. Loomis and J. C. Hubbard, J. Opr. Soc. Am. Rev. Sci. Instrum. 17, 295-307
(1928).
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J)

FiG. 35. Typical ultrasonic interferometer.!®

[Uam) = G?e /(20 + 728 — 2), (2.2.40)

where G, the electronic gain, is inserted to show the effect of amplifica-

tion of the signal by electronic means. This gain factor is eliminated by

taking the ratio of the particle velocity amplitudes for two cavity lengths.
The natural logarithm of this ratio becomes

l 2(a ) eaa. + e—aa_ - 2
In Til]‘z(:;—)l = a(am+1 — am) + In (eau,... + et — 2 ) (2241)

Simplifying and keeping terms to third order, we obtain an expression for

the attenuation written

o= 1 [ln (lUlz(amﬂ)
Am+1 — Qm |Ulz(am)

) —2n2m ] 2.2.42)

Am+1
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Other expressions derived from electrical equivalent circuit analysis also
may be used.155—157,159.161—163

A fixed-length “‘interferometer’’ or resonator, described by Eggers and
Funck,!® requires very small sample volumes (about 1 ml). Their analy-
sis results in equations similar to those obtained with the propagating
plane wave model. A correction formula is presented for the attenuation
determined from resonance width at half-power.

The importance of reflector wall parallelism for accurate interferomet-
ric measurements is demonstrated by McMillan and Lagemann.'*® Lack
of parallelism leads to inhomogeneous broadening of mechanical reso-
nances along with an uncertainty in the position of the resonance peak.'®
Also, lateral wall losses must be considered if the diameter of the con-
tainer is not great enough.

Many variations of the basic interferometer have been reported. An
automatic device which records velocity and attenuation®® uses a
double-crystal resonant cell.!$2:18  Another technique uses an air-liquid
reflecting surface'®® to eliminate corrections resulting from transmission
of acoustic energy into the reflector itself. With a free liquid surface this
system is sensitive to mechanical vibrations; however, a thin mica sheet
at the interface!®” produces a very effective reflector.

2.2.3.2.2. cw TRAaNsMISSION TECHNIQUES. The cw technique can be
used for acoustic transmission measurements'® through flat and parallel
homogeneous samples. A block diagram of this technique is shown in
Fig. 36, which has been subdivided to show a succession of modifications.
Figure 36a is the basic cw apparatus. A stable oscillator is tuned to a me-
chanical resonance peak (ka = 1mw), determined by peaking the signal
observed on the oscilloscope. The frequency separation between corre-
sponding resonances (m — m + 1) is measured and the ultrasonic veloc-
ity calculated from Eq. (2.2.32). The full-frequency width Aw of each
resonance at 50% power (0.707 voltage) is used with the relation a =
Aw/2v to determine the sample attenuation.

Several modifications of the basic cw technique are desirable.!*® Fig-
ure 36b shows the addition of a voltage-swept frequency capability along
with diode detection so that |U] is electronically plotted as a function of

162 W, J. Fry, J. Acoust. Soc. 21, 17 (1949).

183 W. P. Mason, *‘Piezoelectric Crystals and Their Application to Ultrasonics.”’ Van
Nostrand-Reinhold, Princeton New Jersey, 1950.

184 J. G. Miller and D. 1. Bolef, J. Appl. Phys. 41, 2282 (1970).

1% M. Greenspan and M. C. Thompson, Jr., J. Acoust. Soc. Am. 28, 92 (1953).

18 M. Greenspan, J. Acoust. Soc. Am. 22, 568 (1950).

1¢7 E. M. Bains and M. A. Breazeale, J. Chem. Phys. 61, 1238-1243 (1974).

18 D. 1. Bolef, J. de Klerk, and R. B. Gosser, Rev. Sci. Instrum. 33, 631-638 (1962).
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F1G. 36. (a) Black diagram of a simple cw ultrasonic spectrometer. (b) Addition of a
voltage-controlled oscillator and a diode detector. (c) Use of a mixer with a 0° phase refer-
ence to obtain the A, resonator signal. (d) Use of a mixer with a 90° phase reference to ob-
tain the A, resonator signal.

frequency.!%-1%% By combining a zero-degree phase reference from the
oscillator with the output in a double-balanced mixer—modulator!s®
shown in Fig. 36¢, pure attenuation as well as pure dispersion data may be
obtained separately and simultaneously. The mixer and low-pass filter
(wpass < wm°) give the in-phase response U, shown in Fig. 36¢c. By adding
a 90° phase shifter to the mixer—modulator combination, one obtains the
quadrature response U, as shown in Fig. 36d. Zeros in the corresponding

18 D, 1. Bolef and J. de Klerk, IEEE Trans. Ultrason. Eng. UE-10, 19 (1963).
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LOCK-IN CORRECTION
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FiG. 37. Block diagram of automatic frequency tracking ultrasonic spectrometer.!”®

sensitivity enhancement factors ensure that small changes in the signal
|U|, U,, or U, result only from changes in attenuation (dispersion).

A more complex system?”® provides for automatic frequency tracking of
a mechanical resonance using an FM technique. A block diagram of the
tracking ultrasonic spectrometer is shown in Fig. 37. The frequency
modulation leads to an amplitude modulation at the f detector. The AM
signal is in phase with the FM signal for frequencies w < w, and 180°.out
of phase for frequencies w = w,,. The abrupt phase shift at w,, provides a
feedback signal locking the frequency to w, (AM phase equals 90°). Rel-
ative changes in velocity of a few parts in 10® are measured with this

technique.!??

17 R, G. Leisure and R. W. Moss, Rev. Sci. Instrum. 40, 946-948 (1969).
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Fic. 38. Block diagram of a cw acoustic transmission spectrometer with the additional
components comprising the locking section shown in detail in the box.!™ The spectrometer
is adjusted using the sweep generator with switches in position A; then switches are thrown
to position B for frequency-locked cw operation.

A second method of frequency locking is possible.!™ The technique
utilizes the abrupt 180° phase shift that occurs in the rf signal as the fre-
quency passes through w,, but does not require frequency modulation of
the source. Details of this technique are shown in Fig. 38. As with the
FM techniques, the feedback path provides a correction voltage to main-
tain the spectrometer at the frequency wy,.

In cw transmission spectroscopy at rf frequencies, sample and trans-
ducer construction requires precision and care to prevent direct electro-
magnetic rf leakage (‘‘cross talk’’) across the sample.!™ The signal su-
perposition resulting from the presence of leakage leads to anomalous line
shapes and can lead to erroneous measurement of amplitudes. Sample
probes which minimize cross talk are constructed of well-grounded con-
ductors with any void between the sample and probe packed with indium
foil or conductive paint.!?

2.2.3.2.3. SAMPLED CoNTINUOUS WAVE TECHNIQUE. In situations in
which electromagnetic cross talk is a problem, one can measure velocity
and attenuation by using a sampled continuous wave (scw) spectro-

171 J, G. Miller and D. 1. Bolef, Rev. Sci. Instrum. 40, 361 (1969).
17 J. G. Miller, J. Acoust. Soc. Am. 83, 710-713 (1973).
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meter.!”® The scw spectrometer eliminates electromagnetic cross talk,'”
provides for both time-domain as well as frequency-domain measure-
ments, and requires transducer contact to only one side of a sample. A
basic scw spectrometer is shown in the block diagram of Fig. 39a. The rf
oscillator output is connected to a sample via the transmitter gate which is
turned on (see Fig. 39b) for a sufficient time period to achieve steady-state
conditions in the sample. The receiver gate is turned on after a suitable
time delay (~200 nsec) following closure of the transmitter gate. The
delay ensures that transmitter switching transients are kept out of the re-
ceiver.

Ultrasonic signals typically produced by an scw spectrometer with
transducers on both sides of the sample are shown in Fig. 39c. For this
figure. the oscilloscope is triggered at T,y. The upper trace shows the T,
pulse so that the transmission signal (lower trace) displays the build up
and decay in the sample of an acoustic steady-state standing wave mode.
The upper trace shows. the standard one-transducer (reflection) scw mode
decay. The characteristic steplike response is the result of round-trip
times in the sample or individual terms in the infinite sum of Eq. (2.2.25)
vanishing with time. For example, consider the terms in the parentheses:
the term ‘‘1’’ vanishes at Ty, the term exp[—(ika + aa)] vanishes at
T, + a/v, the term exp[—2(ika + aa)] vanishes at Toy + 2a/v . . .,
etc. Thus the acoustic wave decays in a way similar to that by which it
is formed —stepping to an equilibrium condition.

In addition to the time-domain decay information, which is useful for
determining attenuation, the scw can provide frequency-domain informa-
tion for determining velocities. This is accomplished by plotting the
signal amplitude while sweeping the oscillator frequency. An example of
such a plot is shown in Figure. 40. The scw spectrometers use the same
fundamental principles as the cw spectrometer, but they often are more
complex. They can be designed to measure U, or U, or to frequency lock
to a mechanical resonance. Furthermore, pulse-echo data may be ob-
tained with an scw spectrometer by narrowing the transmitter gate width.

2.2.3.2.4. TRANSMISSION OSCILLATOR ULTRASONIC SPECTROMETER.
The transmission oscillator ultrasonic spectrometer (TOUS)!" is a funda-
mentally different type of cw spectrometer. The instrument does not use
an external oscillator and, in fact, derives its desirable characteristics
from its instability. Basically, the device is an acoustic analog of the
marginal oscillator called the ‘‘Pound box,’’ used in nuclear magnetic res-
onance (NMR) techniques.!™ The first use of marginal oscillators for

17 J. G. Miller and D. 1. Bolef, Rev. Sci. Instrum. 40, 915 (1969).
14 M. S. Conradi, J. G. Miller, and J. S. Heyman, Rev. Sci. Instrum. 48, 358-360 (1974).
1™ E. M. Purcell, H. C. Torrey, and R. V. Pound, Phys. Rev. 69, 37 (1946).
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FiG. 39. (a) Block diagram of a basic, sampled, continuous wave, ultrasonic spectrometry
(scw). (b) Transmitter and receiver gate logic for the scw. (c¢) Time-domain decay of an
acoustic resonator as measured by a reflection scw instrument (upper trace) and by a trans-

mission scw instrument (lower trace).

continuously.

In the lower trace the receiver gate was left open
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FiG. 40. Frequency-domain response of an acoustic resonator as measured by an scw in-
strument.

measurements of small changes in acoustic parameters was reported with
the discovery of nuclear acoustic resonance (NAR).!”® The device now is
called a marginal oscillator ultrasonic spectrometer (MOUS).!”” The
MOUS is reported!®-17¢ to be able to detect changes in acoustic absorp-
tion of 1078-10~? cm™ and is considered to exhibit the highest sensitivity
to changes in ultrasonic absorption.!'*!3® The TOUS appears to have the
same high sensitivity characteristics of the MOUS without its inherent
complexity and limitations. The TOUS locks to the sample’s resonant
frequency and therefore utilizes maximum sensitivity enhancement (see
Section 2.2.3.1.2) for attenuation measurements. Changes in velocity (or
phase) may be determined from changes in the oscillation frequency.

A block diagram of the TOUS is shown in Fig. 41. The circuit oscil-
lates if the closed-loop feedback path has proper gain and phase relation-
ships. Under steady-state conditions, oscillations are stable if the gain
factor G and loss factor p product equals 1 and if the phase shift around
the loop equals an integral multiple of 2. If the assumption is made that
p is constant, a change in resonance frequency of the sample causes a
phase shift around the loop resulting in a change in the oscillation fre-
quency. The frequency change is stabilizing for every second mechan-

178 D. 1. Bolef and M. Menes, Phys. Rev. 114, 14411451 (1959).
17 W. D. Smith, J. G. Miller, D. I. Bolef, and R. K. Sundfors, J. Appl. Phys. 40, 4967
(1969).
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F1G. 41. Block diagram of a transmission oscillator ultrasonic spectrometer (TOUS).
Dashed lines indicate connections required to lock the center frequency of the tuning net-
work to the center frequency of the sample’s mechanical resonance.

ical resonance since a 180° phase shift exists between succeeding reso-
nances. Therefore, the phase shifts cause the TOUS to track shifts of
mechanical resonance frequency, e.g., in response to changes of a con-
trolled environment around the sample.

An analysis of amplitude stability requires a more detailed discussion.
A typical rf amplifier has a response curve similar to that in Fig. 42a. For
sufficiently small input voltages, the response is nearly linear, and thus
the gain G = V,y/Vi, (shown in Fig. 42a as the solid line) is nearly inde-
pendent of V. We assume that the TOUS rf amplifier saturates at high
input voltages as shown; i.e., dG/dVy, < 0. Thus, for any nonzero V,,
the circuit gain is less than it would be for Vi, —» 0. The parameter
—(dG/dV,,) ! has the general shape shown in Fig. 42b; it approaches in-
finity as V,, — 0. The change in output voltage for a small fractional
change in loss Ap/p resulting from an increase in acoustic attenuation is
given by'™

AVot.lt == (dG/dVin)_le Ap/p. (2243)

Since the term ~(dG/dV)™! becomes large for small V,, (‘‘linear’’ range of
amplification), AV, also becomes large, even for relatively small changes
in Ap/p.

Using the assumption that the phase is constant, we analyze the circuit
for signal amplitudes from the ‘‘zero’’ V), (start-up) condition. Since
G(Vin = 0) > G(V, > 0), thermal noise in the frequency bandwidth of
the tuning network and transducer will increase in amplitude if G - p > 1.
As V,, increases, G decreases until G - p = 1 at which point the circuit
will be stable. If the acoustic loss increases, V;, decreases and G in-
creases until a new G- p =1 condition is met. Conversely, if the
acoustic loss decreases, G decreases, so the circuit conditions are always
tending toward equilibrium.
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F1G. 42. Response curves of a typical rf amplifier'™: (a) output voltage V,, (— + — *) and
gain G = V,,,/V,, (solid line) plotted as a function of input voltage V,; (b) the behavior of
the parameter — (dG/dV,,)™* as a function of input voltage V,,. Dashed lines represent the
response of a truly linear amplifier.

Calibration of marginal oscillator systems involves use of electrical in-
sertion loss methods.7®17® Use is made of the nearly linear changes in re-
sistance of a small fuse (typically 1/100 A) with current. Other methods
use mixer—modulators as variable attenuators'™ to provide changes in in-
sertion loss. A true acoustic calibration is possible with an ultrasonic
calibrator,'*! which makes use of the attenuation changes that accompany
conductivity changes in piezoelectric semiconductors.!™

To obtain both attenuation and phase shift data, the TOUS must be
operated near the linear range of the amplifier since phase shifts in a satu-
rated amplifier can lead to tracking errors. A wide range of magnitudes of
sample attenuation is possible if automatic gain control (AGC) is used
with the rf amplifier. Details of such a system have been described!® in
connection with the observation of particulates in flowing liquids. A fur-

'™ W. D. Smith and R. K. Sundfors, Rev. Sci. Instrum. 41, 288 (1970).
17 A. R. Hutson and D. L. White, J. Appl. Phys. 33, 40 (1962).

18 J. S. Heyman, D. Dietz, and J. G. Miller, Proc. IEEE Ultrason. Symp., Los Angeles,
p. 561 (1975).
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F1G. 43. Output voltages of a TOUS (OJ) and a more conventional transmission cw spec-

trometer (O) as functions of the change in ultrasonic attenuation Aa.!” The error bars rep-
resent the noise present in the spectrometer outputs.

ther refinement of the TOUS uses an FM frequency tracking technique
(AFC)™ to lock the center frequency of the tuning network to that of the
sample’s mechanical resonance. The locking schemes are shown in Fig.
41 as dashed connections.

Attenuation data obtained with a TOUS!™ are shown in Fig. 43 and are
contrasted with data obtained from a simple transmission cw spectro-
meter (see Fig. 36). For resolving small changes in sample attenuation,
the TOUS is shown to have significantly less noise than the cw system
which included a high-quality oscillator with which it is compared.

2.2.3.2.5. REFLECTION OSCILLATOR ULTRASONIC SPECTROMETER. An
instrumental technique similar to the TOUS is the reflection oscillator ul-
trasonic spectrometer (ROUS).'® Unlike the TOUS, the ROUS requires
contact to only one side of the sample resonator. It uses the diffracted
acoustic beam to close the oscillator feedback path. More complex
transducer geometry, as shown in Fig. 44, is required for the ROUS tech-

8 ], S. Heyman, Proc. IEEE Ultrason. Symp., Annapolis, p. 113 (1976).
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F1G. 44. Reflection oscillator ultrasonic spectrometer (ROUS) transducer electrode con-
figuration'®!: (a) back; (b) front.

nique. The electrode geometry shown electrically isolates the receiver
from the amplifier output. Without proper isolation, the effects of elec-
tromagnetic leakage!™ severely limit the usefulness of this technique.
The electrode pattern shown in Fig. 44 was evaporated on a 5-MHz PZT-5
transducer and provided about 60-dB electrical isolation between the
transmitter and receiver electrodes when the transducer was mounted in
its housing. For operation with a ratio of acoustic signal-to-leakage of at
least 20 dB, the ROUS is limited to samples with aa < 1, if a 1% conver-
sion efficiency for the transducer-receiver combination is assumed. For
samples of greater aa, increased total isolation between the receiver and
transmitter are necessary. Higher acoustic isolation may be achieved by
milling a slot through ground ring #5 in Fig. 44 or using two separate
transducers.

Several applications of the ROUS have been reported, including a tech-
nique for measuring changes in bolt preloading!®!% and changes in atten-
uation in liquids caused by the passage of particles through the ultrasonic
beam.!8!

2.2.3.2.6. OTHER cw METHODS. Another cw technique that is suitable
for measuring acoustic absorption is the resonance reverberation

182 . S. Heyman, Exp. Mech. 17, 183 (1977).
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method.'® In the modern forms of this method!#-18 yltrasound is cou-
pled into an isolated spherical cavity (usually a thin-walled glass flask)
filled with a test liquid. With the excitation turned off, the cavity modes
decay with a time constant related to acoustic absorption in the liquid and
boundary layer losses at the walls of the cavity. One attempts to mini-
mize wall lossess by selecting a radially symmetric mode when exciting
the cavity. The time 7 for the signal to decay to 1/e of its initial amplitude
is related by * = 1/av to total energy absorption by the test liquid, the
viscous and thermal boundary layer at the walls, the glass flask and its
supports and transducers, and the surrounding air, if any. Relative mea-
surements of 7 are obtained with this technique by using calibration lig-
uids. It is important that the calibration liquids have the same acoustic
velocity as the test liquids to minimize changes in wall effects.!®®
Although an accuracy on the order of 30% was indicated for one measure-
ment set, a possible accuracy of about 5% was reported from minimum
values of many measurements.!®” Some doubt about the ability to excite
radially symmetric modes has been raised.!®® Absolute decay times of
1/100 the calculated decay times have been measured for radial resonant
modes of nearly perfectly ground spherical shells of fused quartz filled
with distilled water. This discrepancy cannot be attributed to cavity
asymmetry resulting from fabrication error; therefore Andreae and Ed-
monds'® implicated energy loss associated with suspension of the system
and cavity wall losses associated with residual asymmetric modes.
These discrepancies should be more fully investigated before analysis of
the effects of extraneous energy losses on the reverberation decay time
can be considered complete.

A different and important resonance technique®-1%1-1% makes use of a
sealed cylindrical resonator consisting of two transducers, a thin spacer

18 ¢, E. Mulders, Appl. Sci. Res., Sect. B 1(3), 149 (1948), 1(5), 341 (1950).

184 W_ Kuhn and H. Kuhn, J. Colloid Sci. 3, 11 (1948).

18 C. J, Moen, J. Acoust. Soc. Am. 23, 62 (1951).

188 GG, Kurtze and K. Tamm, Acustica 3, 33 (1953).

187 J. Karpovich, J. Acoust. Soc. Am. 26, 819 (1954).

188 7 Stuehr and E. Yeager, in ‘‘Physical Acoustics” (W. P. Mason, ed.), Vol. IIA, pp.
351-462. Academic Press, New York, 1965.

1® T, Ohsawa and Y. Wada, Jpn. J. Appl. Phys. 6, 1351 (1967).

190 I H. Andreae and P. D. Edmonds, Proc. Int. Congr. Acoust., 3rd (L. Cremer, ed.),
Vol. 1, pp. 556558 (1959).

Wt F, Eggers and Th. Funck, J. Acoust. Soc. Am. 57, 331-333 (1975); Naturwissen-
schaften 63, 280-285 (1976).

9 F, Eggers, Th. Funck, and K. H. Richmann, *‘Fonschritte der Akustik,” p. 577.
DAGA, Braunschweig, 1975, Rev. Sci. Instrum. 47, 361-367 (1976).

183 A Labhardt and G. Schwarz, Ber. Bunsenges. Phys. Chem. 80, 83-92 (1976).
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F1G. 45. Cross section of the inner part of a pressurized, 15-mliter ultrasonic, resonator
cell with X-cut, 2-MHz quartz transducers (Q,, Q; radius a = 30 mm) mounted between
rubber O-rings (R).!”® Transducer separation x. Liquid storage vessel connected to ni-
trogen bottle (N;). Themostated, adjustable, holding frame not shown.

with O-rings, and a housing to hold the components and provide electrical
coupling, as shown in Fig. 45. Very high Q resonance of the liquid-filled
cylindrical cavity is achieved by applying pressure to the liquid under
study (~ 1 bar), thus producing a concave bending of both transducers and
a net focusing. The result is similar to that achieved with confocal reso-
nators for optical or electromagnetic waves. An improvement factor of
nearly 40 in cavity Q was produced by a 1-bar-liquid overpressure. Use
of liquid samples as small as 2 ml with a resonance Q = 3.4 x 10%at 1.8
MHz has been reported.*®® For a larger cavity (15 ml), a Q of 1.1 x 10°
has been achieved at 0.4 MHz.1®*> The benefits of this system are high
accuracy, small volume, lower frequency range, and fewer effects of gas
inclusion. Furthermore, diffraction and side-wall effects are reduced by
the focusing geometry.

An ultrasonic technique for observing attenuation with perhaps the old-
est antecedants is the acoustic streaming method. Although this effect
was recognized by Faraday!® and Lord Rayleigh,®® it was not until 1948
that a serious analysis was published.’®® Modern interpretations of
streaming!®’~'% are based on momentum conservation. If a medium ab-
sorbs energy from a propagating acoustic wave, then it must also acquire

1 M. Faraday, Proc. R. Soc. London 3, 49-51 (1831).

1% Tord Rayleigh, ““Theory of Sound,” Vol. II, p. 217. Macmillan, London, 1896.
1% C. Eckart, Phys. Rev. 73, 68 (1948).

197 J, J. Markham, Phys. Rev. 86, 497 (1952).

198 W. L. Nyborg, J. Acoust. Soc. Am. 28, 68 (1953).

19 J, E. Piercy and J. Lamb, Proc. R. Soc. London Ser. A 226, 43 (1954).
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a corresponding amount of momentum. Therefore, absorption in liquids
and gases produces force gradients and material transport. An improved
method for observing streaming has been reported!®®2® which employs a
main and an auxilliary tube containing the test liquid. The main tube is
bounded at one end by a transducer and at the other end by a thin dia-
phragm separating the test liquid from a highly absorbing liquid (acetic
acid or methyl cyclohexane). The small, auxiliary sight tube is connected
to two points Z, and Z, , between which there is a pressure gradient of the
main tube in such a manner that it does not disturb the acoustic beam.
Flow of suspended inert particles (e.g., aluminum) in the sight tube is ob-
served through a microscope. The change in pressure from Z, and Z, can
be shown to be?*¢®

AP = E[exp(—2aZ,;) — exp(—2aZ,;)], (2.2.44)

where E is the energy density of the acoustic plane wave. The liquid
velocity in the sight tube may be determined from Poiseuille’s law as

V = AP R*/4n, (2.2.45)

where R is the sight tube radius, / its length, and 5 the shear viscosity of
the liquid in question. If the velocity of flow in the sight tube is measured
(i.e., by microscopic observation of time of flight of small particles sus-
pended in the liquid), the acoustic attenuation may be calculated by com-
bining Eqgs. (2.2.44) and (2.2.45). Accuracies on the order of 6% over the
frequency range 0.5-1.5 MHz are reported.?®®

A novel approach to measuring attenuation makes use of an amplitude
modulated (AM) radio-frequency source connected to an ultrasonic
system.2°%202  Radiation pressure, which is the rate of change of mo-
mentum through a unit area,?® is also modulated at the AM frequency. A
low-frequency sensor measures the variation in radiation pressure at the
AM frequency with changing path length so that & may be calculated. An
improvement of this method uses a vibrating reed nulling electrodynamic
balance as the sensor element.2%4

2.3. Conclusion

The three fundamental classes of techniques that have been considered
are based on optical, pulse-echo, and continuous wave methods. Optical

200 D, N. Hall and J. Lamb, Proc. Phys. Soc. London 73, 354 (1959).

20t A, Barone and M. Nuovo, Ric. Sci. 21, 516 (1951).

32 F, L. McNamara and R. T. Beyer, J. Acoust. Soc. Am. 28, 259 (1953).
23 T F. Hueter and R. H. Bolt, ‘‘Sonics,”” p. 43. Wiley, New York, 1955.
204 M, Mokhtar and H. Youssef, J. Acoust. Soc. Am. 28, 651 (1956),
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techniques have advantages of simplicity and accuracy for velocity mea-
surements, and the visibility method of Hiedemann?® probably presents
the optimum combination of simplicity and.accuracy in the megahertz fre-
quency range. Although optical techniques were among the earliest to be
investigated, the advantages of the use of Bragg diffraction at high fre-
quencies (of the order of 0.3—-2 GHz) and the related subject of Brillouin
scattering of light by ultrasonic waves were recognized relatively late.®”

Pulse techniques and continuous wave techniques, in fact, represent a
Fourier transform pair of classes and therefore theoretically contain
equivalent information. However, in practice, the equivalency may be
obscured by lack of experimental precision or by the data processing.
Although it was not possible for us to deal with data processing in any
detail, it is obvious that it occasionally can introduce errors in the results
when the calculations become extensive in the evaluation of a quantity
from its measured Fourier transform. This means that the highly sophis-
ticated automated systems must be analyzed with an eye to determining
the actual experimental significance of the data output. A good general
practice is to use the simplest apparatus capable of achieving the desired
result.

With pulse-echo systems it may be necessary to consider the effects of
medium nonlinearity if one uses large amplitude drive pulses or to con-
sider the effect of broadband detection and the corresponding increase in
background noise. The signal-to-noise ratio may be enhanced in pulse-
echo systems by signal averaging, provided the signal sufficiently decays
away between pulses.

With continuous wave systems diffraction and nonparalielism of the
transducers and/or reflecting surfaces produce complex standing wave
mode structures which are awkward to analyze. For liquids this situation
has been improved by the approach to a confocal arrangement made by
Eggers and Funck.?® There is no reason a similar arrangement could not
be used with solids, although to date the approach has been more in the
direction of making use of the diffracted ultrasonic beam to close the os-
cillator feedback path.®!

With both pulse and cw techniques to measure solids, the effect of
phase shifts in the transducer bond must be considered unless one uses a
noncontact transducer.?® The effect of phase variations in the wave front
caused by diffraction can be reduced by using a phase-insensitive trans-

25 E. Hiedemann, ‘‘Grundlagen und Ergebnisse der Ultraschallforschung,”’ p. 80. de
Gruyter, Berlin, 1939; L. Bergmann, *‘Der Ultraschall und Seine Anwendung in Wissen-
schaft und Technik,” p. 310. Hirzel, Stuttgart, 1954,

28 F. Eggers and Th. Funck, Rev. Sci. Instrum. 44, 969-977 (1973); J. Acoust. Soc. Am.
57, 331-333 (1975).
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ducer.?? In most cases after correction for diffraction and the effects of
transducer bonds, the accuracy of velocity and attenuation measurements
is limited primarily by parallelism of sample faces and the accuracies with
which the sample length, beam diffraction, and wall losses are deter-
mined. Thus, even though a resolution of a few parts in 108 may be avail-
able, the most careful length measurement, good to 5 parts in 103, be-
comes the limit to the accuracy of absolute results. Relative measure-
ments, on the other hand, can approach the limits set by resolution if care
is taken to eliminate the effects of equipment instability and temperature
and pressure variations.
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3. DYNAMIC VISCOSITY MEASUREMENT
By Gilroy Harrison and A. John Barlow

List of Symbols

a transducer radius

A constant in the viscosity equation

AA amplitude change of received signal

B constant in the viscosity equation

AB phase angle change of received signal

c velocity of shear wave propagation

o temperature dependence of shear compliance
Co transducer equivalent circuit capacitance
AD decay rate change

f frequency

Ja wn/27, Maxwell relaxation frequency
Af frequency change

G shear modulus

G, retardational modulus

G*(jw) complex shear modulus [=G'(w) + jG"(w)]

Go instantaneous shear elastic modulus

h depth of immersion of rod in liquid

H(r) relaxation time spectral distribution function

A equilibrium compliance

I, retardational compliance [=J;(w) — j/2(w)]

Je instantaneous shear compliance

J*(jw) complex shear compliance [=J'(w) — jJ"(w)]

X instrument constant

K,, K; transducer constants

L(r) retardation time spectral distribution function

m ratio of inner to outer radii of tube

n number of harmonic

r radius of delay rod

R magnitude of complex reflection coefficient

R* complex shear wave reflection coefficient

R, transducer equivalent circuit resistance at resonance
AR change in resistance at resonance

T, glass transition temperature

T, viscosity equation reference temperature

Z, complex mechanical impedance for cylindrical shear waves
Z, complex mechanical impedance for plane shear waves (=R, + jX})
Z,, Zy shear impedances

B8 retardation compliance equation parameter
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shear strain (=9¢/0y)

propagation constant for shear waves

viscosity

retardational viscosity

phase angle associated with complex reflection coefficient
shear wavelength

displacement in shear

density

shear stress

Maxweil relaxation time

retardation time

angle of incidence of shear wave at an interface
angle of refraction of shear wave at an interface
angular frequency

Maxwell relaxation angular frequency
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3.1. Introduction

This part is concerned with the dynamic behavior of liquids when the
existing molecular equilibrium is disturbed by an applied mechanical
stress. In general, the stress may be shear or compressional or both, but
any compressional component, as occurs, for example, in the propagation
of a longitudinal wave at sonic or ultrasonic frequencies, causes a cyclic
adiabatic volume change. The resulting local temperature variation will
perturb any temperature-sensitive equilibria such as those involving rota-
tional isomers. The present discussion is restricted to the behavior of lig-
uids in shear, in which dynamic volume and temperature variations do not
occur. The response of a liquid depends on the relative durations of the
applied stress and the time constant or relaxation time associated with the
change in equilibrium. If the time over which the shear stress is applied
is long compared with the relaxation time, the liquid can respond to the
stress and the behavior is then characterized entirely by viscous flow. If
the time scale of the deformation is less than the time taken for molecules
to diffuse to a new equilibrium position, then the response is elastic and
the strain is recoverable. In the region where both elastic and viscous
responses to stress are present, the liquid is viscoelastic. A useful guide
to the order of magnitude of the time involved is the Maxwell relaxation
time 7, = /G, where 7 is the viscosity and G the instantaneous shear
elastic modulus (i.e., as observed at high frequencies or short times). For
most liquids, G is found to be about 10° Pa (=10 dyne cm™%), giving
™m = 107®n sec, where 7 is the viscosity in Pascal seconds (1 Pa sec = 10
P). In general, the response is characterized not by a single relaxation
time but, in phenomenological terms, by a spectrum of relaxation times.

Conventional methods of generating shear waves are limited to fre-
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quencies below about 10° Hz; consequently the study of the viscoelastic
behavior of liquids is usually restricted to those with viscosities above 1
Pa sec. Most simple organic liquids have viscosities less than this value
and, consequently, can only be investigated if the viscosity, and, there-
fore, the relaxation time, can be increased by cooling or by hydrostatic
pressure without crystallization. Materials of very high viscosity, such
as high-molecular-mass polymers, may be studied most conveniently by
techniques involving direct observation of the stress—strain relationship,
either in a stress relaxation experiment in which a step function of strain is
applied and the time decay of stress determined or in a creep experiment
in which the deformation in response to a step function of stress is mea-
sured. These techniques are applicable when the relaxation times range
from seconds to weeks. When relaxation times are somewhat less, down
to 1073 sec, oscillatory methods are preferred, using mechanical drives in
the low-frequency region up to a few hertz and electromechanical trans-
ducers up to a few kilohertz. Adequate descriptions of such experi-
mental techniques and of the properties of high-molecular-mass polymers
are readily available.!? Methods for investigating the dynamic behavior
of liquids in shear at higher frequencies are less widely known, and,
accordingly, the majority (Section 3.3) of this part is devoted to a survey
of a number of such techniques. The necessary terminology and theoreti-
cal background material is presented in Section 3.2 and examples of the
results obtained and their interpretation in Section 3.4.

3.2. Phenomenological Theory of Viscoelastic Liquids

3.2.1. Plane Shear Wave Propagation in a Viscoelastic Liquid

Experimental methods for the measurement of dynamic shear proper-
ties at high frequencies usually involve the generation and propagation of
a shear wave into the liquid. By considering an element dx dy dz of the
liquid, as shown in Fig. 1, with shear stresses ¢ and o + ds acting on
faces normal to the y direction, the equation of motion for a wave pro-
pagating in the y direction can be written

p dx dy dz (6%¢/1%) = (30 /dy) dx dy dz, (3.2.1)

where p is the density of the liquid and ¢ the displacement in the x direc-
tion. By defining the shear modulus G as o/y, where y (= 3¢/dy) is the
shear strain, and substituting in Eq. (3.2.1),

1 J. D. Ferry, *‘Viscoelastic Properties of Polymers,” 2nd ed. Wiley, New York, 1970,
2 F, R. Eirich ‘‘Rheology,”” Vols 1-5. Academic Press, New York, 1958-1970.
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dx

dy

—_————t— -

dz o+ 8o

y
FiG. 1. Shear stresses on an element of material.

a¢/ar* = (G/p) 8*¢/0y*, (3.2.2)

which is the general equation for shear wave propagation in the y direc-
tion. For a sinusoidally varying displacement of angular frequency w, the
solution for a wave propagating in the positive y direction is

€ = £ expljo(t — y/c)] = & expljlwt — T'y)]. (3.2.3)

The velocity of propagation is ¢ = (G/p)'"? and the propagation constant
I' = w/c.

For a lossless elastic solid, G is a real quantity, the stress and strain are
in phase, and the wave propagates with zero attenuation. For a purely
viscous or Newtonian liquid, the stress is 90° out of phase with the strain
and the wave is highly attenuated. Newton’s law states that o = vy, and
since y = d[y, exp(jwt)]/dt = jery, the stress is given by

o =y = jony
and the shear modulus G = o/y = jom. Generally, however, the shear
modulus is complex, is usually denoted by G*(jw), and has frequency-
dependent real and imaginary components: G*(jw) = G'(w) + jG''(w).

In principle, the shear modulus components can be determined from
measurements of the velocity and attenuation of the shear wave. How-
ever, this is usually impractical except at very low frequencies because of
the very high attenuation. For example, for a purely viscous liquid of
n = 1 Pa sec, p = 10® kg m™ and a wave of frequency f (= w/27) = 30
MHz, the distance over which the wave travels before it is attenuated to
1/e of its original amplitude is about 6 um. In practice, recourse is made
to determination of the mechanical shear impedance, defined as

Z,= —o/(d¢/dt) = Ry + jX,. (3.2.49)



3.2. PHENOMENOLOGICAL THEORY 141

by analogy with the specific acoustic impedance for a sound wave
(Kinsler and Frey,? p. 122). Thus the effect of the liquid on the surface
generating the wave is measured rather than the properties of the wave it-
self. From Egs. (3.2.3) and (3.2.4).

Z? = pG*(jw)
or, in terms of modulus and impedance components,
G'(w) = (R2? - X, 3)/p, G'(w) = 2R X, /p. (3.2.5)

For a purely viscous or Newtonian liquid, it follows that G'(w) = 0, R, =
X., and G''(w) = wm. These relationships also apply in general for a vis-
coelastic liquid as w — 0. Conversely, for an elastic solid or for a visco-
elastic liquid, as w = %, G'(w) = Go = R %/p, XL = 0, and G''(w) = 0.
The simplest system to exhibit both viscous and elastic properties is the
Maxwell model, for which G*(jw) = G.jwry/(1 + jwry). Figure 2 shows
the variations of the components of the shear modulus and impedance for
the Maxwell model. In mechanical terms, this model can be represented
by a spring and a dashpot connected in series, as shown in Fig. 3a.
Alternatively, viscoelastic behavior may be described by the complex
compliance J*(jw), defined as the inverse of the complex modulus:

J*(jw) = J'(w) — jJ"(w) = 1/G*(jw). (3.2.6)

In general, as w — =, J'(w) tends to the high-frequency limiting or instan-
taneous compliance J. = 1/G.. For this particular case of the simple
Maxwell model, J'(w) = J, and is constant (independent of frequency).
As mentioned in Chapter 3.1, the behavior of liquids is almost invariably
more complicated, and J'(w) usually increases with decreasing frequency
to reach a limiting value J, as w — 0, where J,, defined as the equilibrium
compliance, is the sum of J,, and the retardational compliance J, (which is
zero for the Maxwell model).

3.2.2. The Creep Response

The significance of J, may be more readily appreciated by considering
the time-dependent strain of a liquid in response to a step function of
stress. For the Maxwell model, the response is an instantaneous elastic
strain determined by G. plus a strain proportional to time which is deter-
mined by the viscosity. The creep compliance (ratio of strain to stress is
given by

* L. E. Kinsler and A. R. Frey, ‘‘Fundamentals of Acoustics,” 2nd ed. Wiley, New York,
1962.
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Fi1G. 3. Mechanical viscoelastic models: (a) Maxwell; (b) Voigt; (c) Burgers.

J() = y/oo = 1/Gx + t/m. 3.2.7

If the stress is removed, the elastic deformation is immediately recovered,
but the viscous strain remains. In the more general case, an additional
deformation occurs: the retarded elastic response, which, after a delay
described by a retardation time 7., attains a magnitude determined by J,.
Again, if the stress is removed, this strain is recovered, but the recovery
is delayed. Equation (3.2.7) is therefore generalized to

J) =y/oe =Jo + t/m + Jf(t/1,) 3.2.8)

with f(¢t/7,) — 1 as (t/7;) = =,

By analogy with the delayed response of solids to constant stress, the
retarded strain is termed ‘‘creep.’”’ (Strictly, only this component is the
creep response, but it is common to find the complete response repre-
sented by Eq. (3.2.8) described as the creep response.)

The simplest model to embody the general property of viscoelastic liq-
uids, i.e., both instantaneous and retarded elastic responses and
steady-state flow, is the Burgers model.* This combines the Maxwell and
Voigt elements, the latter being defined by the stress—strain relationship

o=ny + y/J. (3.2.9

The retardation time 7, is n.J.. Whereas the mechanical model of a
Maxwell element consists of a spring and dashpot in series, the Voigt
model comprises a spring and dashpot in parallel. These models are illus-
trated in Fig. 3.

An alternative arrangement with a response identical to that of the
Burgers model is a parallel combination of two Maxwell elements.

3.2.3. Relaxation and Retardation Spectra

The creep of the Voigt element in the Burgers model is an exponential
function of time proportional to (1 — e7")]; most observed creep

4 M. Reiner ‘‘Handbuch der Physik®’ (S. Fligge, ed.), Vol. VI, p. 472. Springer-Verlag,
Berlin and New York, 1958.
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responses and, correspondingly, the frequency dependencies of the com-
ponents of the complex modulus and compliance change more gradually
than this simple model allows. In practice, a closer approach to the
behavior of real liquids is obtained by extending the Burgers model to in-
clude m Voigt elements in series or by using the alternative formofm + 1
Maxwell elements in parallel. The choice of extended model is quite arbi-
trary; the same description of liquid behavior is given by both forms. The
first involves m separate retardation times, the second m + 1 relaxation
times. The interrelations of such canonic forms of model are well under-
stood in terms of the theories of the analogous electrical filter networks,
and considerable literature on the subject is available.>® Although it
may be mathematically convenient to describe liquid properties in terms
of such series or spectra of relaxation and retardation times, the process is
quite empirical and the characteristic times obtained are not necessarily
related to any physical processes in the liquid. Furthermore, it can be
shown that for a given material the retardation and relaxation times are
not the same and are not even necessarily similar.

More elegantly, but with an equal lack of physical basis, the discrete
spectra may be replaced by distributed spectra. Conventionally, the
relaxation spectrum is described by a distribution function H(r) and the
retardation spectrum by L(r), where, taking the latter for example, L(7) dr
defines the contribution to the compliance of retardation processes with
times in the range 7 to 7 + dr. An extensive analysis of the interrelations
among the distribution functions, the complex compliance, and the com-
plex modulus has been given by Gross.?

3.2.4. Data Reduction: Time-Temperature/Time—Pressure
Superposition

As mentioned in the introduction, the Maxwell relaxation time 7, =
1n/G» = MJ» serves as a guide to the order of magnitude of the time or fre-
quency scale involved in the viscoelastic relaxation process. The varia-
tion of J.. with temperature is approximately linear and usually small, typ-
ically doubling in a few tens of degrees Celsius, while the variation of vis-
cosity is approximately exponential and may change by orders of magni-

5 S. Whitehead, J. Sci. Instrum. 21, 73-80 (1944),

8 T. Alfrey, Jr., Q. Appl. Math. 3, 143-150 (1945).

TE. A. Guillemin, ‘‘Communications Networks,”’ Vol. 2, p. 211. Wiley, New York,
1947.

B R. Roscoe, Brit. J. Appl. Phys. 1, 171-173 (1950).

? B. Gross, ‘‘Mathematical Structure of the Theories of Viscoelasticity.”* Hermann,
Paris, 1953.
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tude in a similar range. The variation of 7, is thus closely linked to the
variation of viscosity, and temperature can be used as a variable with
which to explore the relaxation region and not simply as a means to bring
the region within the frequency or time scale of a particular experimental
system. Indeed, the use of temperature as a variable may be unavoid-
able, if the width of the relaxation region exceeds the limited range of the
experimental system or systems available. For example, the range of
most high-frequency techniques does not normally exceed one or two
decades of frequency, while the relaxation region of comparatively simple
organic liquids typically extends over about 2 to 3 decades and that for
polymer solutions and melts may be up to 10 or 15 decades wide.?

The procedure of reducing data obtained over a temperature range to
the equivalent results that would have been obtained at a single (or ‘‘refer-
ence’’) temperature over a wide time or frequency range is commonly re-
ferred to as the ‘‘method of reduced variables’ or the use of ‘‘time-
temperature superposition, time—-temperature reduction,”’ or ‘‘ther-
morheological simplicity.”” For a Maxwell liquid, this is a reliable proce-
dure, as only one relaxation time is present. Although, ideally, the varia-
tion of n and J,, with temperature should be known, it is possible to re-
duce data obtained at various temperatures by the empirical process of
shifting the curves until a smooth master curve is obtained. A compre-
hensive summary of the method is given by Harrison!* (pp. 56-61).
However, in the usual case of results that can only be adequately
described by a series of distribution of relaxation processes, the applica-
tion of time-temperature superposition rests on the assumption that all
the physical mechanisms involved have the same temperature depend-
ence. Care must be taken to avoid erroneous results, especially if only a
narrow frequency or time range is available experimentally (Ferry,!
Chapter 11). Conversely, the clear failure of results to reduce to a single
curve is a good indication that more than one type of physical process is
occurring.

When the variations of n and G, are known, the most convenient
method of reducing data is to use normalized variables, each function
being divided by the limiting value at the temperature used. For ex-
ample, the shear modulus components are plotted as G'(w)/G. and
G''(w)/ G against wry, (= 0n/Gx) or log(wr,,) as appropriate. Choice of a
reference temperature is then unnecessary.

The use of hydrostatic pressure as an alternative or additional variable

LRI YY

1 A, V. Tobolsky, in ‘‘Rheology’” (F. R. Eirich, ed.), Vol. II, pp. 63-81. Academic
Press, New York, 1958.

11 G, Harrison, ‘‘The Dynamic Properties of Supercooled Liquids.” Academic Press,
New York, 1976,
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to temperature may be treated in the same way, and the foregoing com-
ments apply equally. The pressure dependencies of both n and G
should be determined, so that normalized variables may be used.

3.3. Experimental Techniques

3.3.1. General Considerations

Measurements of the limiting shear elasticity G, are essentially those
of G'(w) in the region where G'(w) ~ G., i.e., at frequencies above and
beyond the relaxation region. Even for a Maxwell liquid (with the min-
imum width of relaxation region), this approximation is only valid for
angular frequencies above about 10w, where w, = 1/7, = G»/m. The
practical lower limit of usable frequency is set by the glass transition tem-
perature T for the liquid. Below T, the liquid behaves as a glass; that is,
the material is not in a state of thermodynamic equilibrium. The value of
T, depends on the time scale of the experiment. By convention, T is
taken as the temperature at which n = 10 Pa sec since G, is typically 10°
Pa and the corresponding value of 7, is approximately 10° sec, which is
comparable with the duration of a normal experiment. At T, or just
above, G, may therefore be determined by very low-frequency alternat-
ing stress techniques (w ~ 1 rad sec™) or by short time (¢ ~ 1 sec) tran-
sient methods. At lower temperatures, the time required to attain equi-
librium becomes very large.!? Above T,, the viscosity decreases by
orders of magnitude for a few degrees’ rise in temperature. To establish
the temperature dependence of G,, a minimum range of perhaps 20°C
might be required. At T, + 20°C, n may typically have fallen to 10® Pa
sec, giving 1, = 108/10° sec or f;, = wy/27m = 1/27r, = 1.6 X 10> Hz.
Measurements of G, at T, + 20°C therefore require experimental tech-
niques using shear waves in the megahertz frequency range. Naturally,
the higher the frequency available, the greater is the temperature range
over which G, may be defined and the more reliable becomes any extra-
polation of the variation to higher temperatures. Furthermore, the equiv-
alence of G'(w) and G is only confirmed if measurement of G'(w) made at
two distinct frequencies at a given temperature are in agreement: a fre-
quency dependence of G'(w) indicates that G'(w) has not reached its limit-
ing value. An example of the determination of G, in this way is given in
Chapter 3.4.

For these reasons, most studies of the viscoelastic behavior of super-
cooled liquids have been made at frequencies above 1 MHz, and descrip-

2 A. Kovacs, J. Polym. Sci. 30, 131-147 (1958).
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tions of suitable experimental techniques are given in Chapter 3.3.2,
Measurements at lower frequencies are useful as they extend the avail-
able frequency range thereby providing a better check on the validity of
time—temperature reduction (Chapters 3.3.3 and 3.3.4). They are also
useful in investigating the behavior of polymers and polymer solutions,
where particular modes of motion may occur and have long relaxation
times, even though the viscosity of the liquid may be comparatively low.
Above 1 MHz, most experimental techniques are based on the use of pi-
ezoelectric transducers, following the pioneering work of Mason et al.'?
and McSkimin.* Although measurements have been made up to 3000
MHz,'3 the useful limit of piezoelectric techniques is around 1000
MHz.*%17 It should be noted that since viscoelastic properties tend to
vary logarithmically with frequency rather than linearly, smali extensions
of the frequency range are not of great utility, particularly if accompanied
by loss of accuracy.

Recently, practical and theoretical developments in the study of light
scattered from the naturally occurring orientational fluctuations of aniso-
tropic molecules in liquids have complemented and extended the existing
frequency range. In several liquids, the depolarized spectrum has been
found to consist of a doublet with a spacing of about 1 GHz from the excit-
ing frequency.'®~2! A response of this kind was predicted by Leonto-
vich?? and Rytov.?2 In principle, measurements yield the frequency of
thermally generated shear waves in the liquid and their propagation veloc-
ity. Interpretation of the measurements in terms of the Maxwell model is
at present limited to an evaluation of a relaxation time and a shear modu-
lus. However, the values obtained are closer to the values for the retar-
dation time and the retardation modulus,?* and at the present time the
light-scattering method cannot be regarded as an established means for
the routine investigation of the shear behavior of liquids. It is hoped that

13 W. P. Mason, W. O. Baker, H. J. McSkimin, and H. J. Heiss, Phys. Rev. 7§, 936-946
(1949).

4 H. J. McSkimin, J. Acoust. Soc. Am. 24, 355-365 (1952).

13 J, Lamb and H. Seguin, J. Acoust. Soc. Am. 39, 519-526 (1966).

18 J. Lamb and J. Richter, Electron. Lett. 2, 73-74 (1966).

17 J. Lamb and J. Richter, Proc. R. Soc. London Ser. A 293, 479-492 (1966).

18 V. S. Starunov, E. V. Tiganov, and I. L. Fabelinskii, JETP Lett. §, 260-262 (1967).

1 G. I. A. Stegeman and B. P. Stoicheff, Phys. Rev. Lett. 21, 202-206 (1968).

¥ G. 1. A. Stegeman and B. P. Stoicheff, Phys. Rev. 3rd Ser. A 7, 1160-1177 (1973).

2 G. D. Enright, G. I. A. Stegeman, and B. P. Stoicheff, /. Phys. (Paris) 33, Cl, 207-213
(1972).

22 M. A. Leontovich, J. Phys. USSR 4, 499-514 (1941).

2 §. M. Rytov, Sov. Phys. JETP 6, 401-408, 513523 (1958).

# A.J. Barlow, A, Erginsav, and J. Lamb, Nature (London) Phys. Sci. 237, 87-88 (1972).
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further progress may lead to the feasibility of investigating liquids that
crystallize (at » < 0.01 Pa sec) rather than supercool.

3.3.2. Reflection of Plane Shear Waves

The shear impedance of a liquid may be determined from measure-
ments of the complex reflection coefficient for shear waves at a solid-
liquid interface. In general, reflection of shear waves incident to an
impedance discontinuity gives rise to both longitudinal and shear waves,
but by polarizing the shear wave so that the particle motion is parallel to
the interface, the conversion to longitudinal is avoided (Thurston,? p. 79).
Both reflected and refracted waves are then plane shear waves, the angles
of incidence and reflection are equal, and the angle of refraction is given
by Snell's law. At the interface, two conditions apply: (1) the particle
velocity (or displacement) is continuous, and (2) the shear stress is contin-
uous. Consider the simplest case when incident, reflected, and trans-
mitted waves all propagate normal to the interface: using these condi-
tions, the stress amplitude reflection coefficient R* for normal incidence is
given by

R* = (Zy - Z)/(Z3 + Zy), (3.3.1)

where Z, and Z, are the shear impedances of the two media. In general,
R* is complex, but if the second medium is a vacuum (or air), Z, = 0 (or
very small). If the first medium is a virtually lossless solid, Z, is real; R*
is then close to —1. If the second medium is a liquid, Z, = Z, = R, +
JX1 and both Z, and R* are complex. Putting R* = R/(mr — 6) = —Rcos 6
+ jR sin 6.

Z, =Z,(1 — R* + j2R sin )/(1 + R* + 2R cos 6). (3.3.2)

Except for measurements of high accuracy (i.e., errors < *+ 1%) some sim-
plification of Eq. (3.3.2) is possible.

Because G, for a liquid is typically one or two orders of magnitude less
than the shear elastic modulus of a solid, Z, rarely exceeds 0.1Z,; there-
fore R is only a few percent less than —1 and @ is small (usually less than
3°). It is then valid to assume cos 6 = 1, and Eq. (3.3.2) becomes

. 1-R]l, . 2Rsiné
ZL=RL+JXL=ZI []__R]+lem'

Knowing Z,, one may then determine the value of R, from measurements

(3.3.3)

5 R, N, Thurston, in ‘‘Physical Acoustics’’ (W. P. Mason, ed.), Vol. 1A, pp. 1-110.
Academic Press, New York, 1964.



3.3. EXPERIMENTAL TECHNIQUES 149

of the magnitude of the reflection coefficient only. Furthermore, as the
change in the phase shift 8 is so small, its accurate measurement is diffi-
cult; this ‘‘normal incidence technique’’ is therefore usually restricted to
measurement of R;. However, McSkimin has shown that phase mea-
surements can be made at frequencies up to 500 MHz using a normal inci-
dence method,?® and attempts to measure phase at 3000 MHz have been
made by Lamb and Seguin.'®* The lack of X data is not necessarily a
serious disadvantage, as G'(w) = (R? — X;*)/p = R/*/p in any region
where X; < 0.2R; and particularly when G’ (w) approaches G.. When R,
and X, are comparable in magnitude and measurements of both are neces-
sary, the sensitivity of the reflection coefficient to the liquid impedance
can be enhanced by directing the incident shear wave at an oblique angle
to the interface rather than normally. O’Neill?” has shown that the liquid
impedance is then related to the components of the complex reflection
coefficient by

cos¢pl — R + 2R sin 6
cosy 1 + R* + 2Rcos ¢’

Z, =R, +jX, = (3.3.4)
where ¢ is the angle of incidence and s the angle of the refracted shear
wave in the liquid. For the usual range of values of Z; (Z, < 0.1Z,), ¢ is
small and, with negligible loss of accuracy, cos ¥ can be taken as unity.
The angle ¢ is typically about 75 to 80°, cos ¢ = 0.2, and the sensitivity is
thereby increased five times.

The preceding analysis assumes, for both normal and inclined inci-
dence, that media 1 and 2 are each semi-infinite and that steady-state con-
ditions apply. These conditions are valid for medium 2 if it is a liquid of
finite thickness, (e.g., 1 mm), since any wave transmitted into the liquid is
highly attenuated and the amplitude of any wave reflected back to the in-
terface is negligible. Medium 1 is a low-loss solid of finite thickness, and
a standing wave pattern would be established if continuous excitation
were used, making the measurement of the reflection coefficient at the
solid-liquid interface difficult. Pulse techniques are therefore employed
in shear reflection measurements. The pulse durations are short enough
for the successive reflections from the interface to be time separated and
identifiable but long enough to contain a sufficient number of cycles so
that a single-frequency wave is propagated, and, after the decay of initial
transients, steady-state conditions are established.

3.3.2.1. Normal Incidence Method, 1-200 MHz. 3.3.2.1.1. Acous-
TIC SYSTEM. To generate plane shear waves in this frequency range, flat

28 H. J. McSkimin, J. Acoust. Soc. Am. 47, 163—167 (1970).
2 H. T. O’Neill, Phys. Rev. 75, 928-935 (1949).
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BC- or BT-cut plates of crystal quartz are most commonly used.?® Other
materials such as lithium niobate have higher piezoelectric coupling coef-
ficients but are more expensive and less readily available. The transducer
is bonded to one end of a rod or bar, fused quartz being a convenient
material for the bar because of its reasonably low-loss, mechanical and
chemical stability and because it is easily cut and polished to optical limits
of accuracy. The length of the bar is determined by the frequency range.
For example, for operation at 10 MHz, steady-state conditions will be
valid within a pulse of about 100 cycles or 10-usec duration. The velocity
of shear waves in fused quartz is 3.76 X 10° msec™!, and the minimum
length of bar necessary for the separation of transmitted and received
pulses is therefore 4 X 3.76 x 10° X 1075 m or about 2 cm. In practice,
longer bars—typically 5 cm—are used at this frequency; the greater
delay allows separation of the shear wave pulses and any spurious longi-
tudinal waves that may be present, and the delay may also simplify the
method of determining the amplitudes of the pulses. Bonding is a peren-
nial problem: whereas a liquid bond is adequate for longitudinal waves, a
solid or near-solid bond is necessary for shear waves. The bonding mate-
rial must be of uniform thickness, thin compared to the wavelength, and
have a high shear modulus. Good bonds with a wide working tempera-
ture range may be made by a cold-welding technique using indium, gold
alloys, or other soft metals.? Many other materials have been used, in-
cluding silicones, epoxy cements, grease, wax, phenyl salicylate, and su-
percooled liquids.3°

A transducer may be operated at the fundamental resonant frequency
and at its odd harmonics, and a given combination of transducer and rod
can be used to cover at least a decade of frequency. The upper limit of
the range tends to be limited by higher losses in the bond and in the fused
quartz. For example, a 5-MHz transducer bonded to a bar 5§ cm long may
be used at §, 15, etc., to perhaps 75 MHz. For higher frequencies, either
the loss in the fused quartz may be reduced by using a shorter bar, neces-
sitating shorter pulses, or low-loss material such as BT-cut crystal quartz
may be employed. The tolerances on the mechanical dimensions of the
bar are important but are not particularly severe in this frequency range.
A plane wave front launched by the transducer into the bar must return,
after reflection at the free surface or solid—liquid interface, as a plane
wave front at the same angle; otherwise, variations in the time of arrival
across the wave front result in partial cancellation of the received signal.

2 W. P. Mason, ‘‘Piezoelectric Crystals and Their Application to Ultrasonics.”” Van
Nostrand-Reinhold, Princeton, New Jersey, 1950.

2 A. J. Barlow and S. Subramanian, Brit. J. Appl. Phys. 17, 1201-1214 (1966).

% A, J. Matheson, J. Phys. E. Sci. Instrum. 4, 796 (1971).
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A difference in angle of 1 minute of arc between launched and returning
waves results in a path difference of /10 across a transducer 1.5 cm wide
at 75 MHz. For the normal incidence method, where the end faces are
parallel, this requirement is easily met since it is not unduly difficult to
manufacture bars with optically polished end faces flat to a tenth of a
wavelength of light and parallel to a few seconds of arc. The cross-
sectional dimensions of the bar and transducer are determined by the di-
vergence of the beam of shear waves. Ideally, the total propagation dis-
tance (i.e., twice the length of the bar times the number of reflection
echoes) should be within the Fresnel zone and, therefore, less than a2/A,
where q is the radius of the transducer. In practice, this specification can
be relaxed somewhat, and it is usual to make the minimum width or diam-
eter of the active area of the transducer at least 20\, i.e., 1.5 cm at S MHz.
To alleviate the effects of beam spreading, the bar is made somewhat
wider than the transducer. In order to disperse reflections, the sides are
left roughly ground rather than made smooth and polished. Several
acoustic systems are described in the literature,® "3 and examples are
shown in Figs. 4a and b. As the transducer is excited by an electric field
across the thickness of the plate, electrodes on each side of the plate are
necessary. One electrode may be the bond itself if it is metallic or con-
ducting; if not, then a metallic coating is evaporated on to the end of the
bar before bonding. For good adhesion, chromium or nichrome are suit-
able, followed by gold or aluminium for good conduction. The second
electrode on the surface of the transducer should also be an evaporated
metallic film, but a less-permanent electrode may be formed by con-
ducting paint or even a thin metal foil.

3.3.2.1.2. ELECTRICAL SYSTEM. A schematic diagram of the simplest
electrical system is given in Fig. 4c. The transmitter should be capable of
‘providing a peak-to-peak voltage across the transducer electrodes of a
few tens to a few hundred volts, the higher level being necessary at the
upper end of the frequency range to compensate for increased acoustic
losses. Either vacuum tubes or transistors may be used in a push—pull
configuration, with simple coupling networks to match the transmitter
output to the predominantly capacitive load presented by the transducer.
The transmitter may be a self-excited oscillator or preferably, for better
frequency stability, consist of an output stage driven by a separately
pulsed oscillator. A crystal-controlled frequency source is not normally
required when, as in this case, phase measurements are not attempted.

31 H. J. McSkimin and P. Andreatch, Jr., J. Acoust. Soc. Am. 42, 248-252 (1967).

8 H. J. McSkimin and P. Andreatch, Jr., J. Acoust. Soc. Am. 41, 1052-1057 (1967).

3 A. J. Barlow, G. Harrison, J. Richter, H. Seguin, and J. Lamb, Lab. Pract. 10, 786-801
(1961).
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FiG. 4. Two acoustic systems for normal incidence method: (a) Fused quartz cylinder,
with BT-cut quartz crystal; (b) AT-cut quartz, with AT-cut quartz crystal. Schematic dia-
gram of normal incidence system is shown in part (c).

The output stage must be operated in Class C, and not Class A, otherwise
the quiescent current would generate excessive noise at the receiver
input.

The maximum pulse repetition frequency (prf) is set by the time re-
quired for the train of successive echoes in the acoustic range to decay to
the noise level. For example, using a bar 5 cm long, having a round-trip
transit time of 26 usec, perhaps 100 received echoes may have significant
amplitudes, and the maximum prf is then 1/(26 usec x 100) or about 385
Hz. (Although useful measurements may only be feasible of the first ten
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of these when the bar is loaded by a liquid, accurate readings of these
pulses in the initial unloaded state is necessary.) There are advantages in
using a prf equal to or locked to the supply frequency of 50 or 60 Hz,
mainly as problems arising from hum pickup in the receiver are thereby
alleviated.

The comparison pulse generator provides a pulse at the same frequency
and repetition rate as produced by the transmitter but at only a few volts
or less amplitude. It is also delayed by a variable amount, so that the
comparison pulse can be placed adjacent to a received echo on the oscillo-
scope display. (An alternative technique is to pulse the transmitter and
comparison pulse generator alternately, so that the comparison pulse and
the received echo train appear on the display to be superimposed.) Am-
plitude measurements are made by adjusting the attenuator setting to
equalize the heights of the comparison pulse and a particular received
echo. From the differences in the settings for a number of echoes, taken
before and after application of a liquid to the bar, the average attenuation
per reflection is readily determined. An accurate and continuously
adjustable attenuator is necessary: stepwise attenuators are generally
inconvenient and of insufficient precision, and a piston attenuator is al-
most invariably used. With skill and a clean pulse train, amplitude equal-
ization to +0.03 dB or better is possible. Direct radiation from the com-
parison pulse generator to the receiver input must be avoided, since it
would invalidate the amplitude measurements. The received signals
from the transducer and the output from the attenuator are combined and
amplified in the receiver before being displayed on the oscilloscope. De-
modulation of the receiver output is unnecessary if the frequency
response of the oscilloscope is sufficient to allow direct display of the rf
pulses. A receiver bandwidth of about 1 MHz is required, compatible
with pulse rise and fall times of about 1 usec.

A possible error of +0.03 dB in the measurement of the average loss
per reflection at the interface due to the application of a liquid corre-
sponds to a possible error of about =1.5 x 104 N sec m™ in the determi-
nation of R;. For comparison, the maximum value of R, (i.e., when
R.;2/p = G,) is typically 108 N sec m~3, so that while the error in R, may
be only *1.5% near this maximum, the percentage error becomes unac-
ceptably large for values of R, that are one-tenth or less of the maximum.
In this range higher accuracy can be achieved be designing both acoustic
and electronic parts of the system for optimum performance at a single
frequency and by using the inclined incidence reflection method.

3.3.2.2. Inclined Incidence Method: 5-100 MHz. 3.3.2.2.1.

3 A.J. Barlow and A. Erginsav, Proc. R. Soc. London Ser. A 327, 175-190 (1972).
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FiG. 5 (a) Acoustic system for inclined incidence technique; (b) schematic diagram of the
electrical system for inclined incidence system (after Barlow and Lamb?®).

AcousTICc SYSTEM. As noted earlier, use of the more sensitive inclined
incidence method is preferable when X, is to be determined. The
measurement of the phase change at the solid-liquid interface pre-
sents both acoustic and electronic difficulties. Figure Sa gives the typ-
ical form and dimensions of the acoustic system. The requirement that
the wave fronts propagated from and returned to the transducer should be
coplanar still applies. However, it is difficult to manufacture bars with

3 A.J. Barlow and J. Lamb, Proc. R. Soc. London Ser. A 253, 52-69 (1959).
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the angle of the end faces defined to significantly better than 1 min and this
sets the upper-frequency limit of the method to about 80 or 100 MHz. At
higher frequencies recourse has to be made to less-sensitive normal-
incidence methods. Temperature stabilization requirements are severe.
For a bar in which the distance of a single round trip is 15 cm (Fig. 5a), the
first received pulse differs in phase from the transmitted pulse by about
3000 wavelengths at 75 MHz. The velocity of shear waves in fused
quartz increases by about 100 ppm/°C temperature rise. For changes in
velocity to cause phase changes of less than the errors in phase measure-
ment, i.e., about +0.3°, the temperature of the bar and of the liquid to be
applied to it must be stabilized to better than +0.003°C. Some advantage
may accrue from the use of two identical bars, one to which the liquid is
applied and the other to provide a phase reference, so that the effects of
common temperature changes cancel, but at the cost and difficulty of pro-
viding two matched bars, and errors may still arise from differential tem-
perature changes.

3.3.2.2.2. ELECTRICAL SysTEM. Figure 5b gives a schematic diagram
of the electrical system used with two bars. The specifications of the re-
ceiver and the components for pulse amplitude measurements are similar
to those for the normal incidence method. The transmitter frequency
should be stable to 1 part in 108 or better during the time required to make
a measurement, and a crystal controlled oscillator is necessary. If the
drive to a transmitter output stages is obtained by gating the output of a cw
oscillator at the required frequency, the gating circuits must have a min-
imum rejection ratio of 120 dB to prevent residual cw signals interfering
with the received signals from the acoustic system. Alternatively, the cw
oscillator may be operated at a different frequency and pulsed harmonic
multipliers®® or dividers used to derive the required frequency. For phase
measurement, the transducers on each bar are excited simultaneously and
the received pulse trains are combined. An attenuator and a variable
delay line in the reference channel allows selected pulses from each bar to
be made equal in amplitude and opposite in phase, so that cancellation
occurs. On applying a liquid to the reflecting surface of the test bar, the
resulting phase change is matched by a change in the delay line setting so
that cancellation is restored. Because the amplitude of the pulse is re-
duced, a change in the attenuator setting is also necessary. It is essential
that this change not affect the total phase shift in the reference channel; a
piston attenuator is therefore used because there is no phase shift along a
waveguide operating in an evanescent mode well below cutoff frequency.
The change in attenuator setting does not provide a reliable determina-

38 H. J. McSkimin, J. Acoust. Soc. Am. 34, 404—409 (1962).



156 3. DYNAMIC VISCOSITY MEASUREMENT

tion of the amplitude change caused by the liquid, since small amplitude
changes are produced by changes in the variable delay line. For this
reason the use of a separate comparison pulse for amplitude measure-
ments is retained. The line is formed from lengths of precision coaxial
cable, together with a short continuously variable line. Typically, phase
measurements are made with a possible error of +0.3°, giving measure-
ments of X, to within about +5 X 10® N sec m™®. A similar uncertainty
in R, arises from a possible error of =0.03 dB in the amplitude measure-
ments.

The accuracy can be improved by carefully designing each component
of the system for optimum operation at only one frequency and by en-
suring adequate thermal and electrical stability. Barlow and Erginsav®
used a system designed for optimum operation at 30 MHz and showed
that the errors in the measured values of R, and X}, could be reduced to
about =500 N sec m™3 + 0.5% for values in the range 104-—10° N sec m™3.

When only a single bar is used, the phase reference signal must be
derived from the same crystal-controlled cw source as used for the trans-
mitter, either by direct gating or by using pulsed multipliers or dividers.
It is convenient to obtain the amplitude-comparison pulse in this way and
to include the variable delay line in this channel, so that the same pulse is
used for both amplitude and phase measurements. Amplitude measure-
ments may then be made in the previous manner, with comparison and re-
ceived pulses adjacent, while phase measurements are made by making
the pulses coincident. Details of the method are given by Barlow and Su-
bramanian.?®

It is common practice to use a single transducer to transmit and receive
the pulse of shear waves in a given bar, and consequently there is a direct
connection between the transmitter output and the receiver input. The
receiver must therefore be designed to withstand the severe overloading
on transmission and to recover rapidly so that it is sensitive to the re-
ceived echoes. With suitable design a recovery time of 1 usec is readily
obtained; the electronic problems involved are less than those that arise
from the assembly of an acoustic system with separate transducers for
transmission and reception.

3.3.2.3. Normal Incidence Methods: 40~500 MHz. The simple elec-
trical system described in the previous section for use with the
inclined-incidence method can also be used for amplitude and phase mea-
surements with a normal-incidence technique: the acoustic system is
simpler but the sensitivity and accuracy are lower. Other electrical
systems have been devised to allow phase measurements of reasonable
accuracy to be made using a normal-incidence acoustic system and to ex-
tend the frequency range beyond the useful limit of the inclined-incidence
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method. For example, instead of measuring the phase change directly,
the time delay caused by a liquid at the reflecting interface may be deter-
mined. The change in the duration of a round trip for the pulse in the bar
is small, and a measurement of the time to 1 part in 107 or better is neces-
sary. This method avoids the need for a variable-phase line, but requires
a very stable pulse repetition frequency and a precise measurement of this
frequency.?3 The train of echoes is not allowed to decay to zero
between each transmitted pulse. The transmitter pulse occurs at in-
tervals approximately equal to the round-trip time, and the received
pulses therefore interfere. The delay T for additive interference between
the high-frequency content of selected pulses in successive trains is given
by McSkimin?* as

T = pd — (pyo/2nf) + nf, (3.3.5)

where p is the number of round trips between the superposed echoes, &
the delay due to the bar alone, v, the phase angle associated with reflec-
tion at the ends of the bar, and fthe (rf) wave frequency. The integer n is
the difference in the cycle number in the superposed pulses and should be
made zero. McSkimin® and Papadakis® discuss the detailed require-
ments for correct operation. The pulse repetition rate is adjusted so that
the superposed odd-number echoes have the same phase, and the resul-
tant amplitude is then a maximum. When a liquid is applied, vy, is modi-
fied to yo — 6, and the repetition frequency for a maximum changes from
fi to fo. McSkimin® has shown that the phase shift 8 is given by

0 = 2aflfy — f)/phte, (3.3.6)

where p = 2 for this particular mode of operation. By this method values
of R, and X;, in the range 10*-10° N sec m™~%, have been determined to
within + 5% or better.

In an ingenious variation of this technique, McSkimin?® uses a sequence
of two transmitter pulses, the interval between them being chosen so that
a selected echo from the first received pulse train is superposed on the
first echo of the second train. The interval is kept fixed, and in this in-
terval the frequency of the cw source, from which both transmitter pulses
are derived, is temporarily shifted by a small amount. This shift results in
a variation of the relative phase between the two superposed received
pulses and can be adjusted so that cancellation occurs. Phase measure-
ments with a resolution of 1° have been made at 500 MHz by this method,
giving values of X to within +5% at about 10° N sec m3,

37 H. J. McSkimin, J. Acoust. Soc. Am. 33, 12-16 (1961).
38 E. P. Papadakis, J. Acoust. Soc. Am. 42, 1045-1051 (1967).
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3.3.2.4. Normal Incidence Method: Above 200 MHz. Acoustic
systems using bonded transducers operating at high harmonics have been
used up to at least 1 GHz. However, the losses in the propagating
medium and the bond become increasingly serious above about 200 MHz,
and in this region it is difficult to ensure an adequate signal-to-noise ratio
at the receiver input. For measurements of useful accuracy, this ratio
should be at least 40 dB. The practical limit of the voltage between the
transducer electrodes is of the order of a few kilovolts; when the acoustic
losses are high, the received-pulse amplitudes may still be insufficient
even with such high transmitter voltages. A more efficient acoustic
system can be made by eliminating the bond. A thin-film piezoelectric
transducer is evaporated or sputtered directly on to the end surface of the
bar. A single-crystal film has to be formed, correctly oriented to ensure
the generation of shear waves. The delay-rod material need not be pi-
ezoelectric, but chosen for low-loss properties. For example, cadmium
sulphide, lithium niobate, and zinc oxide transducers have been formed
on sapphire, fused and crystal quartz rods and operated at frequencies up
to 3 GHz.3*~2® However, a simpler method is to use a bar of piezoelectric
material and to generate a shear wave directly at the end surface.** The
end of the bar is subjected to a high electric field, either by inserting it into
a resonant cavity or by the use of specially arranged and phased electrodes,
A detailed analysis of this method, using crystal quartz for the bar, has
been given by Lamb and Richter.!%!"% The orientation of the bar and the
direction of the electric field relative to the surface must be carefully
chosen if a pure shear mode is to be propagated. Using a BC-cut quartz
rod 10 mm in diameter and 15 mm long, about 50 echoes may be observed
at 500 MHz. The method of determining the change in pulse amplitudes
is the same as that used at lower frequencies, and measurements of R;,
have been made in the frequency range 300-200 MHz. The values ob-
tained are estimated to be accurate to within + 5000 N sec m™3.

As in any receiving system in which repetitive signals occur, various
correlation techniques can be used to improve the signal-to-noise ratio.
The effect of random noise is reduced by averaging the received pulses

% N. F. Foster, G. A. Coquin, G. A. Rozgonyi, and F. A. Vanaatta, IEEE Trans. SU-15,
28-41 (1968).

# E. K. Sittig and H. D. Cook, Proc. IEEE 56, 1375-1376 (1968).

“ N. F. Foster, J. Appl. Phys. 40, 4202—-4204 (1969).

2 W. Duncan, R. H. Hutchins, and P. A. M. Stewant, J. Vac. Sci. Tech. 6, 555-558
(1969).

4 A. H. Meitzler and E. K. Sittig, J. Appl. Phys. 40, 4341-4352 (1969).

“ H. E. Bommel and K. Dransfeld, Phys. Rev. 117, 1245-1252 (1960).

4 J. Lamb and J. Richter, J. Acoust. Soc. Am. 41, 1043-1051 (1967).
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over many echo trains. Improvements of up to about 20 dB are possible
without undue complications. Correlation methods may be considered
as an alternative or addition to increasing transmitter output, particularly
at high frequencies or when the losses in the acoustic system become ap-
preciable.4¢—4®

3.3.3. Guided Traveling Waves

The techniques described in the previous section use a free-space
wave, where the area of the wave front is determined by the size of the
transducer and is independent of the size of the delay rod. The minimum
diameter of the rod is controlled by the spreading of the beam in the
Fraunhoffer zone and will be inversely proportional to the frequency.
Thus the use of free-space-wave techniques at frequencies much below 5
MHz requires delay bars of an inconveniently large size. The techniques
described in this section use guided waves in which the boundary of the
wave is the surface of the delay medium. This can take the form of a cy-
lindrical rod or tube which will support the propagation of torsional waves
or a thin plate in which plane shear waves can be propagated. In both
cases the cross section of the waveguide is chosen so that only a single
fundamental mode is propagated.

3.3.3.1. Plane Shear Waves: 0.2-2 MHz. A technique using shear
waves in a metal-strip delay line has been described by Hunston et al.3%5!
A nondispersive shear wave will propagate in a thin plate provided the
thickness of the plate is less than a half-wavelength.5> In aluminum, the
wavelength at a frequency of 2 MHz is 1.6 mm; thus at this frequency the
strip must be less than 0.8 mm thick. At 0.2 MHz the corresponding
maximum thickness is 8 mm. Under these conditions the displacement is
uniform over the thickness of the strip and is at right angles to the direc-
tion of propagation (Fig. 6a).

A pulse technique is used, the schematic diagram of which is shown in
Fig. 6b. A pulse of shear waves generated by the transducer travels
down the strip, is reflected at the end, and returns to the transducer. The
resulting train of echoes from successive reflections is displayed on an os-

# B, R. Tittman and H. E. Bommel, Rev. Sci. Instrum. 38, 1491-1496 (1967).

47 ], H. Simmons and P. B. Macedo, J. Acoust. Soc. Am. 43, 1295-1301 (1968).

4 H. J. McSkimin and T. B. Bateman, J. Acoust. Soc. Am. 45, 852858 (1969).

% R. B. Hemphill, Rev. Sci. Instrum. 40, 175-176 (1969).

% D, L. Hunston, R. R. Myers, and M. B. Palmer, Trans. Soc. Rheol. 16, 33—44 (1972).

81 D, L. Hunston, C. J. Knauss, M. B. Palmer, and R. R. Myers, Trans. Soc. Rheol. 16,
45-57 (1972).

2 J. E. May, Jr., in ‘‘Physical Acoustics,”” (W. P. Mason, ed.), Vol. 1A, pp. 417483,
Academic Press, New York, 1964.
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FiG. 6. (a) Shear waves in strip delay line; (b) schematic diagram of measuring system.
(After Hunston et al.5!).

cilloscope in the usual way, the train of echoes being allowed to decay to
zero amplitude before the next pulse is applied. The shear impedance of
a liquid is measured by determining the change in the propagation con-
stant of the shear wave when the strip is immersed in the liquid. The
impedance is given by the equation

Z, = (pct/2D(AA + j AB), 3.3.7

where p is the density of the strip material, ¢ the velocity of shear waves
in the strip, ¢ and / the thickness and length of the strip, respectively, AA
the measured change in the amplitude of the received signal per reflec-
tion, and AB the measured change in the phase angle. Measurements of
these changes in amplitude and phase of the echoes are made using the
method of Papadakis.®® The oscilloscope sweep is triggered at a fre-
quency f,, which is an integer multiple of the reciprocal of the transit time
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within the strip, so that a pair of echoes is visually superposed on the os-
cilloscope display. These echoes are intensified and others blanked out
so that only the two chosen echoes are visible. The new repetition fre-
quency f, necessary to maintain superposition of the echoes when the
strip is immersed in the liquid is used in Eq. (3.3.6) to determine AB. The
amplitude change AA is measured by noting the change in the setting of a
series attenuator required to maintain an echo at the same amplitude on
the oscilloscope display.

The width of the transducer, and hence, the width of the strip, is deter-
mined by the effects of beam spreading and the need to avoid reflections
of the wave at the edge of the strip. Such reflections generate longitu-
dinal waves, which lead to spurious echoes. Satisfactory operation was
obtained provided the width was more than 2 cm. A delay line of
between 5 and 10 cm in length was found to be adequate to obtain time
separation of the echoes and to enable steady-state conditions to be
reached during the pulse. Hunston ef al. claim that a delay time of the
order of 50 usec can be measured to an accuracy of 3 nsec corresponding
to a change in phase angle of +2°. The corresponding accuracy in Xj is
approximately 1000 N sec m™3. A similar accuracy can be achieved in
the measurement of R;.

3.3.3.2. Torsional Waves: 10-500 kHz. A technique using torsional
waves generated by a quartz crystal and traveling in a metal rod was first
proposed by McSkimin.* The transducer is a cylinder of crystal quartz
which is cut with the crystallographic x axis parallel to the axis of the
cylinder?® (Fig. 7a). Four electrodes on, or near to, the cylindrical sur-
face provide a field in the direction of the y axis. By arranging that the
fields on opposite sides of the y axis are of opposite sign, the two resulting
shears in the x—y plane cause the crystal to twist about the axis of the cyl-
inder. At the fundamental resonance, the transducer length is equal to a
half-wavelength with a node in the center. The resonant frequency is
inversely proportional to the length, and a frequency range from 20 to 100
kHz is covered by lengths in the range 10-2cm. To minimize the change
in length of the crystal as it twists and to ensure a pure torsional motion,
the diameter of the crystal should be small compared with its length: a
ratio of 1:5 has been found to be satisfactory.

The crystal is rigidly attached to the end of a long metal rod having the
same diameter as the crystal. Epoxy resin and cyanoacrylate cement
have been found to be suitable bonding materials. The measuring system
used with this technique is shown in Fig. 7b. A high-stability oscillator or
frequency synthesizer is gated to provide pulses containing several cycles
of oscillation which are applied to the crystal via a drive amplifier. The
gate is a conventional six-diode balanced gate driven from a pulse genera-
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Fic. 7. (a) The 38-kHz torsional quartz crystal; (b) schematic diagram of measuring
system for traveling torsional wave technique.

tor. In the equipment currently in use in the authors’ laboratory, the tor-
sional crystal is connected to either the drive amplifier or the receiving
system by a pair of reed switches acting as a change-over switch. The
pulse of torsional waves generated in the rod by the transducer travels the
length of the rod, is reflected at the free end, and returns to the trans-
ducer. During this time interval the reed switch connects the crystal to
the preamplifier, adder, and amplifier, so that the received echoes are dis-
played on the oscilloscope. The torsional pulse is allowed to travel up
and down the rod, generating a train of echoes from successive reflec-
tions. The next pulse of torsional waves is generated when the amplitude
of the echoes is negligible. This typically results in a pulse repetition rate
of between 20 and 50 Hz.

For any selected echo, an amplitude and phase reference is established
by comparing the received echo against an attenuated continuous wave
from the oscillator. The phase delay, in wavelengths, of the 1f signal in
the received pulse, relative to the oscillator signal, is equal to the product
of the transit time of the echo in the rod and the oscillator frequency. By
suitable adjustment of the oscillator frequency and the attenuator setting,
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the two signals can be made equal in amplitude and opposite in phase,
thus giving cancellation for the duration of the pulse. When a liquid is
introduced around the rod, the attenuation and velocity of the torsional
wave in the rod are changed, and changes in the attenuator and frequency
settings are necessary to restore the pulse cancellation. Measurements
are made using several pulses, and the average values of the changes in
attenuation and frequency are determined. The frequency interval f,
between two successive cancellations in the unloaded rod is determined:
this corresponds to a phase change of one wavelength or 27r rad. The
phase change introduced by the liquid is then determined from the mea-
sured frequency change Af using the equation

AB = 27 Af/f. rad. (3.3.8)

The shear impedance Z. of the liquid is calculated from the measured
change in amplitude per reflection AA and phase change per reflection AB,
using the equation

Z, = (pcr/21)(AA + j AB). (3.3.9)

In this equation, p is the density of the rod material, r the radius of the
rod, ¢ the velocity of propagation of the torsional wave in the unloaded
rod, / the length of rod immersed in the liquid, and Z, is the impedance of
the cylindrical shear waves generated in the liquid at the surface of the
rod, from which the plane wave impedance Z; may be calculated. The
two impedances differ significantly only at high values of impedance
(Z, > 10* N sec m™3),

The length of rod required is determined largely by the need to establish
steady conditions during the pulse and to separate the successive reflec-
tions in time. The rod material must be resistant to corrosion and be ca-
pable of receiving good surface finish, so that surface irregularities are
small compared with the wavelength of the shear wave in the liquid.
Glass, aluminum, stainless steel, and nickel silver have been used by dif-
ferent workers. The velocity of torsional waves in nickel silver, 2 x 10?
m sec™!, is lower than for many other materials, so giving increased sensi-
tivity. A pulse containing 10 cycles at a frequency of 50 kHz would then
require a rod at least 40 cm long to ensure time separation of the echoes.
The comparatively small number of wavelengths in the rod results in the
changes in phase delay caused by the variation of the velocity with tem-
perature being small. A double-wall jacket containing a circulated ther-
mostating liquid controlled to +0.01°C is found to be adequate.

The analysis used in obtaining Eq. (3.3.9) assumes that no energy loss
occurs when the torsional wave is reflected at the end of the loaded rod
and neglects the effects of reflection of torsional waves at the surface of
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the liquid. These simplifications lead to negligible error when a substan-
tial part of the rod is immersed in the liquid, but significant errors can be
introduced when short lengths of the rod are immersed in liquids of high
shear impedance.

When results are averaged over several pulses, it is possible to measure
the amplitude change per reflection to an accuracy of +0.05 dB and the
frequency change to an accuracy of + 1 Hz. The values of AA and AB are
then accurate to +0.006 Np and +0.006 rad, respectively, leading to errors
in each of the components of Z; of approximately + 500 N sec m™3 for a
typical rod. A modification of this technique has been described by
Wada and his co-workers.?3* The major feature of their system, which
differs from that described above, is that the electrodes for the quartz
transducer are not plated on to the quartz but are arranged coaxially
around the transducer with a 0.5-mm air gap. This enables the effective
length of the electrodes to be varied and leads to an increased conversion
efficiency at higher frequencies, up to 500 kHz. Details of the circuits
used by these workers are given in the above references.

Torsional traveling waves in a rod can be generated by a magnetostric-
tive transducer using the Wiedemann effect.®> A nickel rod or tube is
magnetized circumferentially by passing a large current along it for a short
time. The transducer consists of a small coil wound round the rod. Cur-
rent passing through the coil produces a magnetic field along the axis of
the rod. This field interacts with the magnetized rod and produces a tor-
sional motion. A pulse of torsional waves can be generated by supplying
the coil with a pulse containing several cycles of oscillation of the re-
quired frequency. Glover er al.?® have described a technique using this
type of transducer with a hollow nickel rod.

A schematic diagram of the technique is shown in Fig. 8. The trans-
mitter coil is placed over one end of a long tube and a receiver coil placed
a short distance below it. The generated pulse of torsional waves travels
down the rod and is detected as it passes through the receiving coil.
After reflection at the end of the rod, a second signal is received as it
passes through the receiving coil again. Further reflections are prevented
by coating the upper end of the rod with a high-viscosity liquid or grease;
this also absorbs the generated signal which travels up the rod. The am-
plitude and time delay of the echo which has traveled down the rod and
back are determined by transmitting a second pulse which is timed to ar-

3 H. Nakajima and Y. Wada, Polym. J. 1, 727-735 (1970).

84 H. Nakajima, H. Okamoto, and Y. Wada, Polym. J. §, 268-277 (1973).

8 J. F. W. Bell, B. P. Doyle, and B. S. Smith, J. Sci. Instrum. 43, 28-31 (1966).

® G. M. Glover, G. Hall, A. J. Matheson and J. L. Stretton, J. Phys. E. Sci. Instrum. 1,
383-388 (1968).
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Fig. 8. Traveling torsional wave system using magnetostrictive transducers. (After
Glover er al.® Copyright the Institute of Physics.)

rive at the receiving coil at the same time. The signal frequency and the
amplitude of this pulse are adjusted to make the two signals equal in am-
plitude and opposite in phase so that the returning echo is cancelled at the
receiving transducer. A portion of the tube is then immersed in the test
liquid, and the changes in amplitude and frequency necessary to maintain
the cancellation of the returning echo are noted. The shear impedance of
the liquid is then calculated in the same manner as described above for the
system using the piezoelectric transducer, except that Eq. (3.3.9) for a
solid rod is modified to give

Z, = (per/2D(AA + j AB(1 — mYH/(1 + m®)], (3.3.10)

where m is the ratio of the inner to the outer radii. For a tube of outside
diameter 0.125 in. and wall thickness 0.004 in., m = 0.93 and the quantity
(1 — m%/(1 + m3) has a value of 0.128; thus the sensitivity of the system
is increased about eight times. Gloveret al. claim an accuracy of + 1SON
sec m~3 for their system over a frequency range from 20 to 100 kHz.

A further advantage over the solid rod is that the liquid wets both inner
and outer surfaces of the tube, and the plane wave impedance Z,, is deter-
mined directly, so that the correction required to obtain Z, from the cylin-
drical wave impedance Z; is avoided. Also, reflection from the air-
liquid interface, which is significant with liquids of high shear impedance,
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can be allowed for by arranging the geometry so that any interfering
pulses do not overlap the measuring pulses.

Continuous frequency coverage is possible as the transducer is nonre-
sonant. The upper frequency limit is set by the reduced efficiency of the
transducer as the length of the coil becomes comparable to the acoustic
wavelength in the rod. With transducers 3 mm in length, an upper limit of
500 kHz is suggested, provided that the electronic system for switching in
the extra attenuation for the second transmitter pulse is rapid enough. In
all the techniques described in this section, it is essential that the transmit-
ting and receiving systems are broadband, so that the changes in fre-
quency necessary to maintain pulse cancellations are not accompanied by
unwanted phase shifts.

3.3.4. Resonance Techniques

This group of techniques involves the measurement of the loading ef-
fect on a resonant system when it is immersed in a liquid. A resonant
system can be characterized by the frequency of resonance and the width
of the resonance curve. The latter property, which depends on the losses
in the system, can be expressed in terms of the quality or Q factor, the
decay rate of the amplitude of free vibrations, or the effective electrical
resistance of the transducer at resonance.

When a transducer is immersed in a liquid, the mechanical motion gen-
erates a shear wave in the liquid. The reaction on the transducer results
in an increase in the effective inertia, which produces a drop in the reso-
nant frequency, and an increase in the loss which reduces the Q factor and
increases the bandwidth of the resonant curve, the decay rate of the oscil-
lations, and the resistance at resonance. Measurement of the changes in
the resonant frequency and one of the properties associated with the loss
enables the two components of the shear mechanical impedance to be de-
termined.

3.3.4.1. Piezoelectric Techniques: 1~100 kHz. The use of a quartz
crystal vibrating in torsion for the measurement of liquid properties was
first described by Mason.3” The cylindrical crystal has been described
earlier (Section 3.3.3.2). In this application it is supported at the central
nodal region, either by the four wires providing the contact to the elec-
trodes or by four needle points which both support the crystal and make
electrical contact with the electrodes. The equivalent circuit of the
crystal can be represented as shown in Fig. 9a, where the values of the
circuit elements depend on the mechanical and piezoelectric properties of
the crystal but are independent of frequency. When the electrical proper-

7 W. P. Mason, Trans. Am. Soc. Mech. Eng. 69, 359-367 (1947).
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F16. 9. (a) Equivalent circuit of torsional crystal resonator; (b) variation of parallel eqiva-
lent resistance and capacitance of torsional crystal in vacuum with frequency in the vicinity
of resonance.

ties are measured using an alternating-current bridge, it is usual to repre-
sent the impedance of the crystal in terms of a parallel combination of re-
sistance (or conductance) and capacitance. These values of resistance
and capacitance show a characteristic variation with frequency which is
shown in Fig. 9b. The parallel resistance has a minimum value at reso-
nance, equal to Rg, when the parallel capacitance is equal to Cy, which in-
cludes stray capacitance associated with the crystal mount. The reso-
nant frequency and the resistance at resonance can be determined by ob-
taining a bridge balance with the capacitance reading equal to Cy, where
the value of C, is measured at a frequency remote from the resonant fre-
quency. This technique is simple to carry out unless the bridge has
‘‘zero’’ or calibration settings which vary with frequency. In this situa-
tion a rather more complicated measurement procedure has to be em-
ployed.?” The use of a three-terminal bridge network eliminates the large
capacitance of the connecting leads from the measurement and leads to
greater accuracy.

Measurements are made of the resonant frequency and the resistance
at resonance, initially with the crystal in vacuum and then immersed in the

872 G, Harrison, Ph. D. Thesis, Univ. of London (1964).
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liquid. The changes in the resonant frequency Af and the resistance at
resonance AR are related to the components R, and X, of the shear modu-
lus by the equations

AR = K R,, Af = KpX,. (3.3.11)

The quantities K, and K, are constants for a particular transducer, except
at viscosities of less than 2 X 1072 Pa sec.%%® They can be determined
either from measurements on liquids of known viscosity and density or
calculated from the dimensions and electrical characteristics of the
crystal.

A length-to-diameter ratio of 5 to 1 or greater is desirable in order to en-
sure a pure torsional mode of vibration. Under these conditions mea-
surements to an accuracy of a few percent are readily obtained on liquids
having viscosities of less than about 1 Pa sec. The range of the technique
has been extended to about 20 Pa sec by Philippoff3® using a crystal of
length-to-diameter ratio of only 3 to 1 but with some loss of accuracy.

The application of this technique is limited to liguids of low conduc-
tivity. Any conduction in the liquid between the electrodes appears as a
resistance in parallel with the effective resistance of the crystal. While
some allowance can be made for this resistance, considerable reduction in
resolution and accuracy occurs especially with liquids of high shear
impedance when the resistance of the crystal at resonance may be well
above 108 ().

This difficulty can be overcome by using a more involved technique
developed by Robinson and Smedley.®® They use a composite resonator
comprising two matched torsional quartz crystals and a glass rod which
has a length of 3A/2 at the crystal resonance (Fig. 10). The three sections
of the resonator are assembled using a cyanoacrylate adhesive. One
crystal is used as a driver, the other as a gauge to monitor the amplitude
of the motion. The liquid covers only a length A/4 at the free end of the
glass probe so that the liquid—air interface occurs at a displacement node.
A rubber O-ring, or a permanent glass seal, can be made at this point
without modifying the resonance of the system. The technique can there-
fore be used with conducting liquids or for measurements at high tempera-
tures, as only the end of the glass rod is in contact with the test liquid.
The measurements consist of determining the resonant frequency and Q
factor in air and then with the end section of the probe immersed in lig-
vid. The equations relating the changes in resonant frequency and Q

8 P. E. Rouse, Jr., E. D. Bailey, and J. A. Minkin, Proc. Am. Pet. Inst. 30-111, 54-78
(1950).

% W. Philipoff, Trans. Soc. Rheol. 8, 117-135 (1964).

% W. H. Robinson and S. 1. Smedley, J. Appl. Phys. 49, 1070-1076 (1978).
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FiG. 10. Composite resonator of Robinson and Smedley.®

factor to the liquid properties are complicated, and reference should be
made to the original publication. The authors claim a measurement accu-
racy of better than 0.5% for liquids in the viscosity range 0.0009-2 Pa sec
at a temperature of 25°C and a frequency of 40 kHz.

Wada and his co-workers have developed a resonance technique that
extends the frequency range down to 2 kHz.33:%* They use a torsional
quartz crystal cemented to a long rod, as in the traveling-wave technique
described in Section 3.3.2.2, but operate the system at the resonant fre-
quency of the complete assembly and at harmonics of this frequency.
The increased length of the resonator results in a much lower resonant
frequency. At this frequency the electrical impedance of the transducer
is very large, even at the system resonance, and direct measurement of
the impedance is impracticable. Instead, the free decay of the torsional
oscillations is observed and measurements are made of the frequency and
decay rate with the rod in air and, then, with a known length of the rod im-
mersed in the liquid. The changes in resonant frequency Af and decay
rate AD are related to X and R, by the equations

AD = KR, Af = (K/2m)X,. (3.3.12)
The quantity K is an instrument constant,
2 Th sin2nwh/)
= or [7 + T]’ (3.3.13)

where p, r, and [ are the density, radius, and length of the rod, respec-
tively, h is the length of rod immersed in the liquid, and # is the number of
the harmonic at which the system is operated. The decay rate is deter-
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mined by measuring the amplitude of a reference signal which will cancel
the decaying oscillation at a given time after the exciting signal is switched
off. In this technique, the height of the liquid surrounding the rod must
be chosen carefully so that bending oscillations are not excited. The sen-
sitivity of this technique makes it suitable for the measurement of the
properties of dilute solutions of polymers.

3.3.4.2. Magnetostrictive Technique: 4-200 kHz. Waterman® has
described a technique in which a thin-walled nickel tube is excited into
torsional resonance using the Wiedemann effect (Section 3.3.3.2). The
tube, typically 40 cm long, is clamped at the center inside a glass tube con-
taining the sample to be measured. Separate driving and receiving coils
are used, placed on opposite sides of the central clamp. The resonance
curve is determined using a synthesizer, which varies the frequency of the
driving signal in small steps, and a digital voltmeter and printer, which
monitor the amplitude of the oscillation. The resonant frequency and Q
factor of the resonance are determined in air and with the tube immersed
in the test liquid. The system is calibrated using a fluid of known proper-
ties. By suitable positioning of the drive and pickup coils, higher har-
monics up to the 50th can be excited.

3.3.5. High-Pressure Techniques

Some of the techniques described in earlier sections can be modified for
use under high hydrostatic pressure. The major difficulties are the
restricted space available in a high-pressure vessel, typically 2.5 cm dia
by 20 cm long in a vessel for use up to 1.4 GPa, and the restricted number
of electrical leads that can be fitted in the vessel closure plug.

The normal-incidence shear wave reflection technique operating at 30
MHz (Section 3.3.2.1) has been used at pressures up to 1.4 GPa.%2 The
usual preliminary measurements with a quartz—air interface cannot be
made under pressure, and measurements are first made using a liquid of
low and known shear impedance as a reference. If the viscosity of the
liquid is sufficiently low, then even at the highest pressure of measure-
ment the shear impedance is given by the expression for a Newtonian lig-
uid, i.e., Z;, = (jump)'?; isopentane has been found to be a satisfactory
reference liquid.

Figure 11 shows a typical arrangement of the acoustic system for use
under pressure. An O-ring seal separates the test liquid from the liquid

81 H. A. Waterman, Rheol. Acta 16, 652 (1977).
8 A.J. Barlow, G. Harrison, J. B. Irving, M. G. Kim, J. Lamb, and W. C. Pursley, Proc.
R. Soc. London Ser. A 327, 403-412 (1972).
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FiG. 11. Arrangement of the acoustic system for measurements of mechanical shear resis-
tance under pressure (Barlow er al.%%).

backing the transducer and metal bellows allow for the compression of the
liquids under pressure.

At lower frequencies, the resonant torsional quartz crystal technique
(Section 3.3.4.1) can be readily mounted in a pressure vessel and, subject
to the maximum viscosity limitation of about 1 Pa sec, provides a simple
means of determining the variation of shear impedance with pressure.
Careful calibration is necessary, as the transducer constants K; and K,
show significant changes with pressure.

Measurement of the density and viscosity of a liquid as a function of
pressure is also necessary if the shear impedance data are to be plotted
using reduced variables (Section 3.2.4). Volume changes can be deter-
mined by measuring the change in the length of a metal bellows containing
the test liquid with a linear voltage differential transformer.5 The viscos-
ity may be measured by timing the fall of a sinker over a given distance in
a tube containing the liquid; coils mounted outside the tube can be used to

% G. P. Shakhovskoi, 1. A. Lavrov, M. D. Pushinskii, and M. G. Gonikberg, Prib. Tekh.
Eksp. No. 1, 181-183 English transl.: Instrum. Exp. Tech. No. 1, 184-186 (1963)].
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sense the position of the sinker.® Alternatively a linear voltage differen-
tial transformer can be used to monitor the fall of a sinker over a short dis-
tance; viscosities up to 107 Pa sec can be measured with this technique.®

3.4. Analysis and Interpretation of Results

The limited experimental frequency range of most of the techniques
described in Chapter 3.3 requires that temperatures (or pressure) be used
as an additional variable if the complete relaxation region is to be ex-
plored. Data obtained at different temperatures may be reduced to a
single temperature, using the time-temperature superposition technique
described in Section 3.2.4, and then combined to give a composite, or
‘‘master,”’ curve which shows the behavior as a function of frequency at a
single temperature. Data obtained as a function of pressure may be simi-
larly reduced to a single pressure, which is usually atmospheric pressure.
To carry out this reduction process, the variation of both viscosity n and
high-frequency, limiting, shear modulus G. as a function of temperature
(or pressure) is required. When shear impedance data are to be reduced,
a knowledge of the density variation with temperature is also required in
order to calculate the components of the complex elastic modulus using
Eq. (3.2.9).

The viscosity variation with temperature is commonly described using
either the Arrhenius equation

log(n/A) = B/T, (3.4.1)
where A and B are constant, or the ‘‘free-volume’’ equation
log(n/A) = B/(T — T), (3.4.2)

where A, B, and T, are constant.

The Arrhenius equation is found to apply to low-viscosity liquids at
temperatures well above the melting point, but for supercooled liquids, it
is necessary to use the free-volume equation to obtain a satisfactory
description of the considerable variation of viscosity with temperature.
Harrison!* gives a detailed review of these and other viscosity-
temperature and viscosity —pressure equations,

Measurement of the value and the temperature dependence of G, re-
quires the use of techniques using shear waves at frequencies of the order
of 1000 MHz in order to reach the region where the liquid is behaving elas-
tically. Figure 12 shows a typical set of measurements of the quantity

8 J. B. Irving and A. J. Barlow, J. Phys. E. Sci. Inst. 4, 232-234 (1971).
8 R. J. McLachlan, J. Phys. E Sci. Instrum. 9, 391-394 (1976).
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FiG. 12. Variation of the quantity R, ?/p with temperature at frequencies of 30 MHz(O),
450 MHz(+), and 1000 MHz (O) for sec-butyl benzene.%

R;%/p plotted as a function of temperature. In the lower temperature
region of the plot, near T,, the measured value of R;%/p becomes inde-
pendent of frequency. In this region, R, >> X, and from Eq. (3.2.9),
G'(w) = R\*/p.

When G'(w) becomes independent of frequency, it is, by definition,
equal to G,. Thus, the variation of G, with temperature is given by the
extreme-low-temperature region of the curve. To make an extrapolation
of G, into the relaxation region at higher temperatures, it is desirable that
the variation of G. with temperature be known over as large a tempera-
ture range as possible. It is clear from Fig. 12 that a combination of high

8 A J. Barlow, J. Lamb, A. J. Matheson, P. R. K. L.. Padmini, and J. Richter, Proc. R.
Soc. London Ser. A 298, 467480 (1967).
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FI1G. 13. Variation of the quantity p/R;® with temperature for sec-butyl benzene. The

dashed line shows the linear variation of 1/G. with temperature at frequencies of 30 MHz
{O), 450 MHz (+), and 1000 MHz ([0).%8

frequencies and low temperatures is necessary in order to observe the
variation of G, with temperature over a sufficiently extensive region.

Results from measurements in many liquids have shown that G, does
not decrease linearly with temperature but that the limiting compliance J
(=1/G.) can be described by the linear equation

Jo = 1/Gs = Jy + C(T — Ty), (3.4.3)

as shown in Fig. 13. The extrapolation of J,, into the relaxation region is
shown by the dashed line in this figure. Harrison! has tabulated values
of G, and the temperature coefficient C for many simple supercooling lig-
uids. For most liquids, G, has a value of between 0.9 and 5 GPa at the
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FiG. 14. Variation of G. with pressure for di(2-ethylhexyl)phthalate at several tempera-
tures.®”

glass transition temperature T,, and the coefficient C is of the order of
0.01 GPa™! K1,

The results of a more restricted number of measurements made under
pressure indicate that G.. varies linearly with pressure, as shown in Fig.
14,

When the variation of n and G, has been established, the experimen-
tal data can be reduced to a single curve; satisfactory reduction to within
experimental error is usually an indication that the assumptions inherent
in the time —temperature superposition principle have been fulfilled. Fig-
ure 15 shows data for a wide range of liquids which all reduced to a single
empirical curve.®®

The behavior shown in Fig. 15, which is found to be typical of many
simple liquids, can be described by the empirical equation

1

1 1 vz
*( i) = —— + ——
J*(jw) Go +jam + z(jwnGw> . (3.449)

7 §. F. Hutton and M. C. Phillips. Nature (London) Phys. Sci. 238, 141-142 (1972).
% 1 Lamb. Proc. Inst. Mech. Eng. 182, Part 3A, 293-310 (1967).
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F1G. 15. Normalized plots of R, /(pG.)"? and X,/(pGx)'"? against wn/G. for a number of
supercooled liquids: squalane (V); squalene (®); 6,6,11,11-tetramethyl hexadecane (R);
trichlorethyl phosphate ({J); tri(m-tolyl)phosphate (©); tris(2-ethylhexyl)phosphate (X);
tetra(2-ethylhexyl)silicate (+); bis(m-(m-phenoxy phenoxy)phenyl)ether (A); di(iso-
butyl)phthalate (D); di(n-butylphthalate (@); iso-propyl benzene (Ml); n-propyl benzene
(©); sec-butyl benzene (A). (Reproduced by permission of the Council of the Institution of
Mechanical Engineers from their Proce‘edings.)

where there are no arbitrary parameters. Recent work has shown that a
more accurate representation is given by the equation
1 1 J;

Fjw) = = +

— e, 3.4.5
Go Jjom (1 + joyr) ( )

where J; is a retardation compliance, 7, a retardation time, and 8 a con-
stant lying between 0 and 1. The two equations become effectively
equivalent when 8 = 0.5, as is often the case, and in the region where
wr, >> 1. When the data are sufficiently accurate, a plot of the compo-
nents of the retardational compliance

1 1

J* (o) = J/'(jo) — J''(jo) = J*(jw) — G_ - m

= Ji(®) — jJz (o) (3.4.6)

may be made, to evaluate the values of J;, 7., and 8. Typical examples
are shown in Fig. 16.3¢
The results obtained from measurements of the type described in this
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FiG. 16. Components of the retardational compliance at 30 MHz for various liquids:
tri(8-chloroethyl)phosphate  (©); squalane (Xx); tri(m-tolyl)phosphate (+); tri(o-
tolyl)phosphate (V); di(n-butyl)phthalate (A); di(isobutyl)phthalate (O) (Barlow and
Erginsav34).

chapter are of both theoretical and practical importance. When com-
pared with the solid and gas phases, the liquid state is poorly understood,
and experimental data are required to test theoretical developments.
The measurements made using the techniques described in this chapter
are complementary to measurements of dielectric relaxation phenomena.
Both types of measurement involve perturbing the equilibrium state of a
liquid, and the observed phenomena depend on the resulting molecular
motions. In many supercooled liquids the dielectric and shear relaxation
processes are similar and have the same temperature dependence which
closely follows the viscosity variation. No simple relation can be estab-
lished between the dielectric relaxation time and the viscoelastic relax-
ation time, however, although they appear to be related to the same kind
of molecular motion.

Attempts to evaluate macroscopic liquid properties from a rigorous
analysis of the interactions between molecules have met with some suc-
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cess for the simpler of molecules, such as the rare gases, but yield unreal-
istic results for liquids containing more complex molecules. In such
cases empirical hypotheses, based on Egs. such as (3.4.4) and (3.4.5) or
derived from postulates regarding a particular type of molecular motion
such as diffusion, are able to provide a satisfactory description of the ob-
served phenomena. While such equations do not, in general, lead to a
further understanding of the fundamental molecular interactions, they
have value in characterizing different types of behavior and in describing
liquid properties in many practical situations.

For example, in the lubrication of high-speed bearings or gears sub-
jected to high stresses, the hydrostatic pressure in the thin film of lubri-
cant between the elastically deformed surfaces can readily exceed several
thousand atmospheres. In such elastohydrodynamic lubrication situa-
tions, the transit time of the lubricant through the load-bearing surfaces
may be of the same order as the relaxation time which governs the flow of
the molecules: the liquid will then exhibit elastic rather than viscous
behavior. Similar problems are encountered at much lower shear rates in
systems that are exposed to relatively low temperatures. While there are
considerable differences of opinion regarding the causes of observed de-
viations in behavior from the predictions of the existing theoretical analy-
sis, a common feature is the treatment of the lubricant as a viscoelastic
material. Inrecent years, a wide range of new lubricating fluids has been
developed, including polymer-additive oils and synthetic lubricants, and
it is of interest to compare the properties of these with those of conven-
tional mineral oils. A better understanding of elastohydrodynamic lubri-
cation will require an increased knowledge of liquid properties over wide
ranges of time scale, pressure, and temperature. Such information can
be obtained using the techniques described in this chapter.



4. ULTRASONIC CHEMICAL
RELAXATION SPECTROSCOPY

By Leon J. Slutsky

Remarks on Notation

A unique symbol for each quantity used in this chapter would exhaust
the latin and greek alphabets. Thus a number of ambiguities and near am-
biguities in notation have been tolerated in circumstance where (it is
hoped) multiple use of a given symbol will not lead to real confusion.
Specifically, ‘““/’” and ‘‘k’’ are used as running indices and also with their
usual meanings as v/ — 1 and the Boltzmann constant K, respectively. In
separate sections ‘‘y’’ and ‘‘y;"” have been used to denote, respectively,
the specific heat ratio and the activity coefficient of the /th chemical
species. The symbol ‘‘I’’ has been used for both the acoustic intensity
and the ionic strength and “‘x’’ for the thermal conductivity and the in-
verse Debye length. In Chapter 4.1, ‘X"’ has been used as a symbol for a
general thermodynamic variable and in Chapter 4.4 to denote the concen-
tration of a specific species.

Variously modified forms of ‘¢’ represent both the isobaric heat
capacity per unit volume (c,) or per unit mass (¢,) and the concentration
(¢,) or equilibrium concentration (cg) of the ith species in cgs units. The
symbol *‘R’’ has been used for the gas constant and, in inflected forms
(Ry, R)), for the rates of chemical reactions in terms of concentrations.
The symbols ‘‘r’’ and *‘r,’’ are reserved for the often less ambiguous defi-
nition of reaction rate in terms of the rate of change of the number of
moles of a given component. Short definitions or references to the de-
fining equations for the symbols used in this part are given below.

List of Symbols

a coefficient of a basis reaction in a Ay Debye-Hiickel constant when /
normal reaction is expressed in moles per liter

a; activity of the ith chemical species b see a

am activity of the ith chemical species B, ith species participating in a given
at equilibrium chemical reaction

A relaxation amplitude (Eq. (4.1.21)] [8] molar concentration of the /th

A affinity [Eq. (4.1.12)] species

Ay affinity for the ith reaction [Bi)o molar concentration of the ith

Ay Debye -Hiickel constant (cgs) species at equilibrium

179

Copyright © 1981 by Academic Press, Inc.
METHODS OF EXPERIMENTAL PHYSICS, VOL. 19 All rights of reproduction in any form reserved.
ISBN 0-12-475961-0



180

Cpx

Fl’Fi
8 8y

AH
AH

L'
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high-frequency limit of a/f?
{Eq. 4.1.21)]

concentration in moles per
milliliter of the /th species

concentration in grams per milli-
liter of the ith species

heat capacity at constant pressure
per unit volume

“frozen’’ heat capacity per unit
volume

heat capacity (at constant pres-
sure) per unit mass

heat capacity at constant pressure

“frozen’’ heat capacity at con-
stant pressure

heat capacity per mole (Cp/Ny)

“frozen’’ heat capacity per mole

heat capacity at constant volume

exclusion radius of an iron pair

dielectric constant of a solvent

(8w Nye?/ Dok T)V2

charge of the electron

energy of activation

frequency

relaxation frequency (= 1/2n7)

initial approximation to secular
determinant

functions of frequency defined in
Eqgs. (4.4.6)

defined in Eq. (4.3.17)

diffusion coefficient

enthalpy change

a row vector, the components of
which are the enthalpy changes
of the basis reactions

acoustic intensity; ionic strength

n X n diagonal unit matrix

a vector with one in the jth
position, zeros elsewhere

diffusion current density for
species A

a rate constant

a kinetic coefficient

Boltzmann’s constant

rate constant for forward reaction

rate constant for reverse reaction

equilibrium constant for the ith
reaction

transformation that di-
agonalizes Rg

transformation that di-
agonalizes RgR!%

LO

ng
ny
N,
N,

transformation that diagonalizes F°

number of independent segments
(**Kuhn’’ segments) in a
polymer chain

molecular weight

number of moles of ith species

number of moles of solvent

Avogadro’s number

total number of moles

(M =3 )

i
pressure

variable specifying the thermo-
dynamic state of a system

an eigenvector representing a
normal reaction

coefficient of the ith basis reaction
in the equation that represents
a normal reaction

a coefficient in the Bronsted
equation {Eq. (4.2.31)]

a particular choice of 24

defined by Eq. (4.3.14)

position vector

rate in moles per second of a
chemical reaction

effective radius for reaction

gas constant

a diagonal matrix with ele-
ments R,

overall rate (in terms of concen-
trations) of the jth reaction

exchange rate of the jth reac-
tion [Eq. 4.3.13)]

rate of the forward reaction for
the jth reaction

rate of the reverse reaction for
the jth reaction

condensation (= Ap/p)

entropy

entropy change

partial molar entropy of the ith
species

time

temperature

velocity of sound

low-frequency limit of the velocity
of sound

high-frequency limit of the
velocity of sound

velocity of flow

volume
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volume change

partial molal volume of the ith
species

a row vector, the components of
which are the volume changes
for the basis reactions

molecular weight of the solvent

a thermodynamic variable

mole fraction of the ith
component

wave vector

Iyl

real part of y

a thermodynamic variable

a Cartesian coordinate

charge of the ith species (in
units of the electronic charge)

acoustic absorption coefficient
(in nepers per centimeter)

classical acoustic absorption
coefficient [Eq. (4.1.20)]

excess acoustic absorption
coefficient (= a — &f?)

adiabatic compressibility

**frozen'” adiabatic compressibility

static adiabatic compressibility

Cp/Cy

activity coefficient of the ith
species

defined by [Eq. (4.1.19)]

I'/N,

r/v

advancement [Eq. (4.1.10)] of a
chemical reaction in terms of
number of moles

advancement in terms of con-
centrations

shear viscosity

o
[k
Nv
8

BE

1<
Yy

Vuis

Ta
W(r,t)

Wyis

Q
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shear viscosity of solvent

intrinsic viscosity

volume viscosity

coefficient of thermal expansion

*‘frozen’’ coefficient of thermal
expansion

thermal conductivity ; inverse
Debye length

wavelength

chemical potential of the ith
species

chemical potential of the ith
species in its standard state

coefficient of the ith species in a
given chemical reaction

coefficient of the ith species in
the jth chemical reaction

viscous damping frequency

[defined by Eq. (4.4.10)]

density

steric factor in a bimolecular
reaction

relaxation time (variously sub-
scripted to indicate which
thermodynamic variables are
held constant). Unsub-
scripted r represents relaxation
time at constant pressure and
entropy.

(Gyz)—l

a vector specifying the local
temperature, pressure, velocity,
and chemical composition

circular frequency

circular relaxation frequency
=7

3/48sm

defined in Eq. (4.4.8)

4.1. General and Historical Introduction

4.1.1. Relaxation Spectroscopy, Thermodynamic Preliminaries

Relaxation spectroscopy might reasonably be considered to have its
origins in Maxwell’s *“On the Dynamical Theory of Gases,’’ ! wherein the
introduction of ‘‘a time of relaxation’’ into the stress—strain relations of a
viscoelastic medium is discussed. More generally, any process in which,

1J. C. Maxwell, **Scientific Papers,” Vol. II, p. 26. Cambridge Univ. Press, London and
New York, 1890. or Philos. Trans. R. Soc. London 157, 49 (1867).
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at constant values of the external thernodynamic parameters, the rate of
change of any quantity ¢ when displaced from its equilibrium value g, is

dq/dt = —w.(g — qo) = —(q — qo)/7 4.1.1)

is referred to as a relaxation process with relaxation time r; the constant
w, in Eq. (4.1.1), dimensionally a frequency, is often called the *‘relax-
ation frequency.”

If in a system initially at equilibrium with g = g, a thermodynamic
parameter X undergoes a small change at t = 0 from X, to X, + 8.X, then
fort > 0, go = qoo + (dqo/dX) 8X and

dq _
q=dqu+ g 8X (1 - e (4.1.2)
If X = X, + |8X]|e', then
- dqe {_1—_""1} wt
q doo + dx 1 + (021'2 IBXle . (4.1'3)

The family of techniques for the determination of the rate of energy
transfer or structural or chemical change in which the exponential return
to equilibrium of an internal parameter such as the chemical composition
is observed after equilibrium is perturbed by a fast step in a thermody-
namic parameter (temperature, pressure, electric field, etc.) or, alterna-
tively, in which the equilibrium is perturbed periodically and the phase lag
between the external field and the internal state is observed indirectly as
dispersion or absorption is collectively called ‘‘relaxation spectroscopy.’

In general, for any function Y(X, g) of the thermodynamic parameters
X and the internal coordinate ¢,

){ 1 —iwr }
1+ (w7)?)"’

- (), (), - (0, G (b=s)
4.1.

Derivatives at constant values of g may be interpreted as specifying the
variation in Y at frequencies much higher than w, when the relaxation
process is too slow to admit of significant variation in g within a period of
the perturbation and are thus identified with the high-frequency limit of
dY/dX and designated by a subscript . Herzfeld and Litovitz? refer to
derivatives at constant values of the internal parameters as ‘‘frozen’’
compressibilities, heat capacities, coefficients of thermal expansion, etc.,
and that locution is also used here. Similarly, the low-frequency limit is

S

? K. F. Herzfeld and T. A. Litovitz, **Absorption and Dispersion of Ultrasonic Waves.”
Academic Press, New York, 1959.
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designated by a subscript 0, thus

dy _ (dY dr) _ (&) }{1zier)

x= (&%), &), - @) i) @
Specializing Eq. (4.1.5) to the variation of V with respect to P at constant

entropy, the frequency-dependent adiabatic compressibility 85 = V!

1 — jor
Bs = Bsa + (Bgo — Bsw) 17 @ 4.1.6)
For a plane acoustic wave propagating in the z direction, we may write
OP = |§P|etet—vz,

where wisreal andy = y, — ia. For small-amplitude adiabatic propaga-
tion in an isotropic fluid with negligible viscosity,

Y w? = Bsp = v, 4.1.7)

where v is the velocity of sound.

In the usual circumstance, when the ‘‘relaxing compressibility”’ is small
compared to ., the acoustic dispersion and the absorption coefficient «
due to a single process with relaxation time 7 as a function of the circular
frequency w are,? respectively,

(Bl)z - Va2 — Vg2 (w7)?
v/ v 1+ (1)’
and (4.1.8a)

_ (vmz — Uoz) wz’r
T 20020 1+ (w7)?’

where v, is the low-frequency limit of the velocity of sound and v, the
velocity at frequencies much higher than the relaxation frequency where
the internal equilibrium does not respond to the temperature and pressure
variations of the acoustic wave. When the dispersion is not small, the ab-
sorption coefficient is given by

b ? — (O vg?) wlr
* (vo) T 202y 1+ (wr)? (4.1.8b)

Explicitly, in the case of chemical reaction, we let B, designate the ith
chemical species and write the equation representing the reaction as
|v1|By + |vg|By + + + « = |va|By + |Va+1|Br+s + - - - or, if the stoichio-
metric coefficients », are taken to be positive for products and negative for
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reactants, as
2 V{B( = (. (41'9)
i

Then, if n; designates the number of moles of the ith species in an element
of volume V, with dimensions small compared to the wavelength of
sound, within which the temperature, pressure, and composition may be
taken to be uniform, and if the change in local composition is the result of
the progress of a single chemical reaction or structural transformation,
then a single parameter ¢ (the ‘‘advancement’’) defined by

dn; = v; de 4.1.10)

suffices to specify the variation in composition and plays the role of the
relaxing quantity g in Eq. (4.1.1). The rate of the reaction r is then unam-
biguously defined in terms of the number of moles of any participating
species by

r= /vy dni/dt = de/ds. 4.1.11)

In Section 4.4.1 we shall attempt to make plausible the assumption
implicit in Eqgs. (4.1.10) and (4.1.11) that for even the shortest ultrasonic
wavelengths, diffusion does not contribute significantly to the variation in
local composition.

The equations that determine the time evolution of the chemical com-
position in a system far from equilibrium are not, in general, linear.
However, it will be shown in Section 4.2.1 that the propagation of an ul-
trasonic wave of moderate intensity in a system initially at equilibrium in-
duces only very small displacement from the equilibrium chemical com-
position. Hence, the rate equations can be linearized; the relaxation
times being functions of both the equilibrium concentrations and rate con-
stants. Explicit examples will be considered in Section 4.3.1.

In general, it is required for chemical equilibrium that %; v,u; = 0,
where w; is the chemical potential of the ith species or, defining the af-
finity A by A = —3; vy, the requirement for equilibrium is A = 0. At
equilibrium the rate is zero and near equilibrium the rate is proportional®
to A. If both the rate and the affinity are expanded about €,, the equilib-
rium value of ¢, retaining only linear terms

de/dt = —k (3A/d€) (€ — &), (4.1.12)

where the relaxation time 7 is [k(3A/8€)]".
In a classical kinetic study the rate of a reaction is observed, insofar as

3 1. Prigogine, ‘*Thermodynamics of Irreversible Processes,’” 3rd ed., p. 55. Wiley (In-
terscience), New York, 1967.
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is possible, at constant temperature and pressure; relaxation processes
may well proceed isoentropically or at constant volume. The relation-
ships between relaxation times observed under various conditions are
implicit in Eq. (4.1.12). For example, if A is considered to be a function
of T, P, and the chemical composition, then

dA = (3A/3T)p, dT + (0A/0P)r,. dP + (3A/3€)r,p de. (4.1.13)

Since (0A/8T)pe = — 2y vy Opi/dp.e = ¢ v S; = AS, where S, is the
partial molal entropy of the ith species and AS the entropy change for
the process in question, and similarly, since (8A/dP)r, =
=2y vi Oui/dP)r e = — 2y vy Vi = —AV, Eq. (4.1.13) may be rewritten

dA = AS dT — AV dP + (0A/d€)rp de 4.1.14)
and
dA/de = AS dT/de — AV dP/de + (3A/3€)1p- 4.1.15)
In general,
(8y/dx); = —(32/9x)y (8y/82)2 (4.1.16)

and, in particular, (8T/d€)sp = —(05/0€)rp (0T/38)ep = — T AS/Cpw,
where C, is the heat capacity at constant pressure and chemical compo-
sition.

Thus, if Eq. (4.1.15) is specialized to constant pressure and entropy,
then

(0A/3€)sp = (3A/3€)1,p — (T/Cpa)(AS)>. (4.1.17)
From Eq. (4.1.12),
T1.0/Tsp = 1 = (T/Cu)(AS)?/(0A/3€)1p = 1 + T(AS)’/RCpw, (4.1.18)
where I' is defined by the relation
' = —(1/RT)(3A/0€)r,p- (4.1.19)

By appropriate specialization of Eq. (4.1.15) and use of Eq. (4.1.16), rela-
tions between relaxation times with various constraints on the external
thermodynamic parameters are easily derived. The relaxation time in
Eqgs. (4.1.6) and (4.1.8) is appropriately 75,p. For acoustic relaxation in a
relatively incompressible system 75,y = (Bsw/Bso)Ts.p = (Vo/Ve)?Ts,p iS
also of particular interest.

An estimate of the magnitude of the difference between isoentropic and
isothermal relaxation times must await the explicit evaluation of I' in
terms of the equilibrium thermodynamic properties in Section 4.2.1. It
will be found that in many cases of interest the distinction may be ignored.
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4.1.2. Acoustic Relaxation

Lord Rayleigh*3 conjectured in 1899 that slow energy exchange
between translational and internal degrees of freedom might be a major
source of the absorption of sound in polyatomic gases. In 1920 Ein-
stein®’ nominated chemical reaction as a relaxing internal degree of
freedom, briefly discussed frequency-dependent acoustic absorption,
derived an expression for the dispersion due to the perturbation of a
vapor-phase dissociation equilibrium, and suggested that acoustic disper-
sion might be a suitable technique for the determination of the rates of fast
gas-phase reactions. Experimental work addressed to this end was initi-
ated in Nernst’s laboratory® and by Gruneisen and Goens.®

Much of the theory relevant to the propagation of sound in a chemically
reacting fluid is equally applicable to the effect of slow energy exchange
between translational and rotational or vibrational states, and in this later
context, Rice and Herzfeld!® developed explicit expressions for acoustic
absorption as well as dispersion at low frequencies in a relaxing medium.
From Eq. (4.1.8) it is clear that measurement of the frequency depen-
dence of either the absorption or the velocity will permit the determina-
tion of . Dispersion has proven useful in the investigation of energy-
transfer rates in gases. It has, however, been the absorption that has
played the central role in the applications of physical acoustics to chemi-
cal kinetics.

In the absence of any relaxation processes, viscosity!! and the devia-
tion from perfectly adiabatic propagation due to conduction of heat from
compressed to rarefied regions'? will produce absorption. At frequencies
low compared to w.;, = (3/48s7m), this ‘‘classical’” absorption «, in terms
of the viscosity m, thermal conductivity k, ratio of the heat capacity at
constant pressure to heat capacity at constant volume vy, and the specific
heat (per gram) of the medium ¢, is?

wan?

%73 v°po

{n + % (y - 1)%} = B.f2, (4.1.20)

4 Lord Rayleigh, Philos. Mag. 47, 308 (1899).

® R. B. Lindsay (ed.), **Acoustics, Historical and Philosophical Development.”” Bench-
mark Papers in Acoustics, Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, 1973.

8 A. Einstein, Sirzberichte Preuss. Akad. Wiss. Berlin 24, 380 (1920).

? R. B. Lindsay (ed.), ‘‘Physical Acoustics.”” Benchmark Papers in Acoustics, Dowden,
'Hutchinson & Ross , Stroudsburg, Pennsylvania, 1974.

® F. Keutel, Dissertation, Berlin, 1910, cited in Einstein.®

® E. Gruneisen and E. Goens, Ann. Phys. (Leipzig) 72, 193 (1923).

10 K. F. Herzfeld and F. O. Rice, Phys. Rev. 31, 691 (1928).

1t G, Stokes, Trans. Cambridge Philos. Soc. 8, 287 (1845).

2 G, Kirchhoff, Poggendorf's Ann. Phys. 184, 177 (1868).
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where p, is the unperturbed density of the medium. For water at 4°C,
Wy = 6 X 10" sec™!; for air at 300°K and 1 atm, wy = 10° sec™’. In
polymer solution it may be necessary to introduce a frequency-dependent
shear viscosity, otherwise in simple solvents losses due to viscosity and
thermal conductivity are proportional to w? over the range of frequencies
of interest in chemical kinetics. For relaxation times sufficiently short so
that wr << 1, Eq. (4.1.8) also predicts an acoustic absorption propor-
tional to w?. The classical absorption and the absorption due to any pro-
cesses much faster than the process of immediate interest are thus often
combined and Eq. (4.1.8) is rewritten in terms of the frequency

f(f = w/2m) as
_ 27 (e? — vod) T Ar

a p—
F B V20 1 + (m-‘-)z + B = 1+ (f/fr)2 + B (4121)

or in terms of the excess absorption (@, = a — Bf*?) per wavelength (A),

_mt —ve®)  Qufr)  mw —v?)  (f/f)
- Voo 1+ Qafrt Da? : 1+ (fFIf. 2’ 4.1.22)

where the relaxation frequency f; = w,/27 = 1/2%7.

In the solvents most commonly employed in studies of chemical relax-
ation in solution, % is about three times a, as calculated from Egq.
(4.1.20).2 Moreover, in the moderately concentrated solutions (0.1-1
molar) often employed in such studies, 9 may vary significantly from its
value in the pure solvent. Hence, Eqgs. (4.1.21) and (4.1.22) involve three
experimentally determined parameters and a really satisfactory deduction
of v will, in general, require measurement of « from roughly a decade
below to a decade above f,. Data at low or high frequencies determine
At + Bor A/ and B, only. It will be seen in Section 4.2.2 that of in Eq.
(4.1.21) can be calculated from the volume change, enthalpy change, and
equilibrium constant for the reaction and the thermal expansion, heat
capacity, and density of the medium. Thus, given sufficient knowledge
of the thermodynamics of a process, it will in favorable cases be possible
to obtain kinetic information from data which does not span a large range
on either side of the relaxation frequency.

“Conventional’’ ultrasonic equipment (cylindrical resonators!®* and
pulse-echo spectrometers operating on overtones of quartz transducers)
span roughly the range w = 10%-3 X 10° sec™*. Large spherical resona-
tors and sputtered thin-film transducers can add something more than a
decade to this range. Hence, processes with relaxation times between

acA

13 F. Eggers and Th. Funck, J. Acoust. Soc. Am. §7, 331 (1975); F. Eggers, Th. Funck,
and K. H. Richman, Rev. Sci. Instrum. 47, 361 (1976).
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FiG. 1. Total acoustic absorption (dashed curve) and excess acoustic absorption (solid
curve) as a function of frequency for a single relaxation with amplitude &fr = 100 x 1077
sec?/cm and a relaxation frequency of 10 MHz (r = 1.6 X 1078 sec) in a medium with

RB =20 x 107! sec?/cm.
1075 and 107'° sec are potentially accessible to study by acoustic tech-

niques.

By way of illustration, we show in Fig. 1 the total absorption and the
excess absorption associated with a single process with a relaxation fre-
quency of 10 MHz (r = 1.6 X 1078 sec) and &7 = 100 X 1077 sec®/cm
in aqueous solution near room temperature (8 = 20 x 10~'7 sec?/cm).
In Fig. 2, a/f* and a.\ are displayed. For this relaxation (v, — v¢)/ve =
2 X 10~ and it has proved to be easier to measure the excess absorp-
tion coefficient even in circumstances where «. is a relatively small

fraction of the total absorption (in this case 5% at 100 MHz) than to
measure the velocity with the accuracy necessary to determine 7 from
the dispersion. (However, with the development'* of accurate ‘‘au-

1 D, Eden and J. G. Elias, J. Acoust. Soc. Am. 68, S48 (1979); Rev. Sci. Instrum. 50, 1299

(1979).
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FiG. 2. a/f® (solid curve) and a A (dashed curve) versus frequency for a single relaxation
with o7 =100 X 1077 sec®/cm and f; =10 MHz in a medium with & = 20 x
10717 sec?/cm.

tomated’’ systems for the determination of the velocity of sound, disper-
sion may well be a more attractive alternative.) It will be obvious from
an inspection of Fig. 1 that, particularly for fast processes, there is a con-
siderable incentive to work in media with low B—water, methanol, and
acetone being common choices. Table I briefly lists the physical proper-
ties of these solvents.

Representative experimental results for a 0.01-molar solution of the
peptide antibiotic bacitracin in 0.1-molar phosphate buffer at pH 7 and
4°C are displayed in Fig. 3 where filled circles represent data obtained ina
1.5-ml capacity cylindrical resonator, open circles measurements in a
15-ml cylindrical resonator, and crosses results in a variable path length
apparatus of conventional design. The relaxation parameters that define
the continuous curves are 8 = 13 x 1077 sec?/cm, &1 = 2300 x 107
sec’/cm, and f; = 1.2 MHz. The value of 3 used to construct the plot of
a.\ versus In fis deduced from measurements in the frequency range
30-150 MHz (not plotted). In circumstances where a reasonably accu-
rate high-frequency limit of «/f? can be determined, a plot of a.\ versus f
or In fis probably the most convenient representation of experimental re-
sults. However, it should be noted that even in this rather dilute solu-
tion, & is about 25% higher than in the pure buffer, and there is presum-
ably a second relaxation process with f; higher than 150 MHz. Other-
wise, with conventional equipment the relaxation parameters are in this



TaBLE 1. Physical Properties of Three Important Solvents

Temperature
derivative of
V = Ve{l + al0~3 + 103z  Velocity of velocity of ¢, J/°K) i
Liquid  Density + ¢107%9%} (¢ in °C) sound X 107° sound B x 107
range (°C) (g/cc) (cm/sec) (cm/sec °K) at at (sec’/cm) dIn 3B
Solvent at 1atm  at 25°C a b c at 25°C at 25°C -23°C  25°C at 25° dT
Methanol  —-98-65 0.7868 1.1324  1.3635 0.8741 1.104 325 94.48 81.6 33 —0.011
Acetone —94-56 0.7850 1.324 3.809 0.8798 1.177 430 119 125 29 —
Water 0-100 0.99707 -0.6427 8.5053 -6.79 1.40273 +5.03358 x 107%
—5.79506 x 10752
+3.31636 x 107¢
+1.45262 x 1079 _ 75.15 22 -0.036

+3.0449 x 1072
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(a)

0"7a/f2 (sec?/cm)

8

(b)

1 1l L =
=1 o [ 2 3 4 5

in f(MH:)

FiG. 3. The excess acoustic absorption in a 0.01-molar solution of the peptide antibiotic
bacitracin in 0.1-molar phosphate buffer at pH 7 and 4°C as a function of frequency. In part
(a), a/f® for the solution —a/f* for the pure buffer is plotted. In part (b), wherein aA is
plotted as a function of frequency, the open circles represent measurements in a 15-ml
capacity cylindrical resonator, the filled circles represent data taken in a 1.5-ml capacity cy-
lindrical resonator,* and the crosses show results in a variable path length pulse-echo appa-
ratus.

case rather easily determined on rather small sample volumes in rather di-
lute solution. What remains problematic is an unambiguous identifica-
tion of the microscopic process responsible for the observed relaxation.
This problem will be considered in Section 4.5.

Equation (4.1.21) or (4.1.22) has been the basis of the applications of
acoustics to chemical kinetics and our principal concern in the next two
sections will be an explicit expression for the relaxation amplitude & in
terms of the equilibrium thermodynamic properties of the medium and for
7 in terms of the parameters of the kinetic model of the chemical reaction
or structural change under consideration. However, the absorption due
to chemical relaxation is not strictly independent of and additive to the ef-
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fects of diffusion, viscosity, thermal conduction, and electrical transport,
and although the coupling between reaction and transport has not in fact
proven to be important'>~'? in the ultrasonic determination of reaction
rates, it might legitimately be judged more satisfying logically to develop
these topics together. Meixner and his co-workers!® have made such a
development in terms of the phenomenological coupling coefficients of
irreversible thermodynamics, concluding that when, as is almost univer-
sally the case, (@A) is small, Eq. (4.1.21) is satisfactory. Schurr'®!” has
developed a more detailed hydrodynamic theory of the coupling between
chemical reaction and transport in a context (dynamical light scattering)
where such coupling may well be important.

There is at present a substantial literature?'®'? on the determination of
characteristic times for energy transfer in gases by studies of acoustic
propagation as well as by such mixed techniques as the *‘spectrophone’’ 20
or the ‘‘acoustic calorimeter,”’?! wherein the phase lag or time delay
between a periodic or pulsed optical perturbation and an acoustic
response is determined. However, although interest in gas-phase chemi-
cal kinetics provided the impetus both for Einstein’s theoretical work and
for the early experiments, acoustic methods have not yet proven to be of
great importance in this discipline. The theoretical situation®!'%!? and
what experimental results are available'® with respect to the effect of
small perturbations of chemical equilibria on acoustic propagation in
gases have been thoroughly reviewed by Kneser,!® Bauer,'® and Herzfeld
and Litovitz.?

More recently there has been some theoretical interest?*~%¢ and at least
one experimental investigation®® of the propagation of sound in a vapor
with a chemical reaction far from equilibrium. Interesting phenomena
such as spontaneous acoustic oscillation and acoustic gain have been pre-

13 J. Meixner, Acustica 2, 101 (1952); S. M. T. de la Selva, L. S. Garcia-Colin, and J.
Meixner, Adv. Mol. Relaxation Processes 11, 73 (1977).

16 J. M. Schurr, J. Phys. Chem. 73, 2820 (1969).

17 J, M. Schurr Crit. Rev. Biochem. 4, 371 (1977).

18 H. O. Kneser, Relaxation processes in gases, in ‘‘Physical Acoustics’’ (W. P. Mason,
ed.) Vol IIA, p. 133. Academic Press, New York, 1965.

19 {, J. Bauer, Phenomenological theory of the relaxation phenomena in gases, in ‘‘Physi-
cal Acoustics’” (W. P. Mason, ed.), Vol. IIA, p. 48. Academic Press, New York, 1965.

2 H. J. Bauer, J. Chem. Phys. 87, 3130 (1977).

21 J, Callis, W. W. Parson, and M. Gouterman, Biochim. Biophys. Acta 267, 348 (1972); 1.
Callis, J. Res. Natl. Bur. Stand. 80A, 413 (1976).

2 R. Gilbert, P. Ortoleva, and J. Ross, J. Chem. Phys. §8, 3625 (1973).

23 R. G. Gilbert, H. S. Hahn, P. Ortoleva, and J. Ross, J. Chem. Phys. §7, 2672 (1972).

* C. A. Garris, T. Y. Toong, and J. P. Patureau, Acta Astronaut. 2, 981 (1975).

28 J, P. Patureau, T. Y. Toong, and C. A. Garris, Proc. Int. Symp. Combust. (1976).
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dicted and perhaps observed.?® These phenomena are considered, also
rather briefly, in Section 4.4.

Ultrasonic investigations of fast chemical and conformational equilibria
in condensed phases are more recent and have proven somewhat more
profitable than studies in the gas phase. In 1949 Leonard®® determined
that the excess acoustic absorption in sea water was primarily due to the
presence of MgSO,, and Liebermann® concluded that the observed
acoustic relaxation in sea water was the result of the perturbation of what
he denominated as the *‘dissociation’’ equilibrium of MgSQ, but which in
more modern parlance? would be regarded as the transition between an
Mg?*-S0O,~ ion pair and a solvent-separated ion pair. In 1953
Freedman?®® interpreted the acoustic relaxation observed by Lamb and
Pinkerton® in liquid acetic acid as the result of the perturbation of an
equilibrium between monomers and cyclic hydrogen-bonded dimers and
at about the same time Kurtze and Tamm initiated their work on
proton-transfer reactions® and relaxation in aqueous solutions of divalent
electrolytes.® Since these early studies, measurement of the frequency
dependence of acoustic attenuation in liquids and solutions has developed
into a specialized but occasionally very useful technique for the determi-
nation of the kinetic and thermodynamic parameters of fast chemical and
structural change; processes with characteristic times as short as 107° sec
and as long as 107 sec having been successfully investigated.

We shall be concerned with the theory, utility, limitations, interpreta-
tive problems, and techniques of acoustic methods in chemical kinetics,
principally solution kinetics. Only a few representative recent results
will be cited by way of illustration. Reviews by Lamb® and by Stuehr
and Yeager®® report an extensive body of experimental results of ultra-
sonic studies in, respectively, nonelectrolytes and electrolyte solution.
The merit of an acoustic technique for any specific problem is of course
appropriately judged in comparison with the other methods for determina-
tion of the rates of fast processes. Bernasconi® has given a readable gen-

26 R. Leonard, P. Combs, and L. Skidmore, J. Acoust. Soc. Am. 21, 63A (1949),

21 .. Liebermann, Phys. Rev. 76, 1520 (1949).

2 H. Diebler and M. Eigen, Z. Phys. Chem. (Frankfurt) 20, 299 (1959).

#* E. Freedman, J. Chem. Phys. 21, 1784 (1953).

30 J. Lamb and J. Pinkerton, Proc. R. Soc. London Ser. A 199, 114 (1949).

3 K. Tamm, G. Kurtze, and H. Kaiser, Acustica 4, 380 (1954).

2 G. Kurtze and K. Tamm, Acustica 3, 33 (1953).

33 J, Lamb, in **Physical Acoustics’ (W. P. Mason, ed.) Vol. IIA, p. 203. Academic Press,
New York, 1965.

34 1. Stuehr and E. Yeager, in ‘' Physical Acoustics’” (W. P. Mason, ed.), Vol. IIA, p. 351.
Academic Press, New York, 1965.

3 C. Bernasconi, ‘‘Relaxation Kinetics.”” Academic Press, New York, 1976.
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eral introduction to relaxation spectroscopy and a very useful survey of
the recent literature. A more extensive discussion of the theory,
methods, and results of all forms of relaxation spectroscopy has appeared
under the general editorship of Hammes.*® The 1963 review by Eigen and
DeMaeyer® is still in many respects the standard work in this field.

To summarize briefly, techniques based on perturbation by rapid joule
heating?-%:3 or on rapid pressure jump®-%% with conductiometric or
spectrophotometric detection of the change in composition have generally
been most successful for times greater than 1078 sec. Perturbation of an
equilibrium by a pulsed electrical field or studies of high-field dielectric
relaxation have been used in media of low conductivity to determine
relaxation times of chemical reactions as fast as 107 sec.3® In ultrasonics
the identification of the process or processes responsible for the observed
acoustic absorption is often difficult. In favorable cases, fast pulse or
step methods with optical sensing (spectrophotometric, fluorimetric, op-
tical rotation, light scattering) offer the possibility of monitoring the con-
centration of a given species or class of species with a concommitant sim-
plification of interpretative problems.

Relaxation times as short as 3 X 107® sec have been observed in ‘‘cable
temperature jump'’ % systems and recently*! a temperature jump of 1°K
with a rise time of 10~® sec has been achieved in a sample volume of
0.1 ml of aqueous solution with a pulsed iodine laser operating at
13,150 A. Inthe future, refinement of the laser temperature jump method
may well offer an attractive alternative to ultrasonic methods for some
fast processes.

As we proceed with the development of the basic equations for ultra-
sonic relaxation times and relaxation amplitudes, the comparative advan-
tages and limitations of acoustic methods will, we believe, become appar-
ent. In general, determination of acoustic absorption, particularly in the
range w = 107-10° sec™!, is not technically difficult in comparison to the
fast-pulsed methods and there is a substantial area of research in chemical
kinetics in which ultrasonics will be found to be the most suitable tech-
nique.

% G. Hammes (ed.), ‘‘Techniques of Chemistry,” 3rd ed., Vol. 6, Part 2. Wiley (Inter-
science), New York, 1974,

8. L. Friess, E. S. Lewis, and A. Weissburger (eds.), ‘‘Techniques of Organic Chemis-
try,”” Vol. 8, No. 2. Wiley (Interscience), New York, 1963.

38 G. H. Czerlinski and M. Eigen, Z. Electrochem. 63, 652 (1959).

% 8. Ljunggren and O. Lamm, Acta Chem. Scand. 12, 1834 (1958).

4 D. Porschke, Biopolymers 17, 315 (1978); G. W. Hoffman, Rev. Sci. Instrum. 42, 1643
(1971).

1], F. Holsworth, A. Schmitt, H. Wolf, and R. Volk, J. Phys. Chem. 81, 2300 (1977).
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4.2. Relaxation Amplitudes and the Magnitude of the
Chemical Contribution to the Equation of State

In Section 4.2.1 the magnitude of the deviation from the local equilib-
rium chemical composition induced by an acoustic wave is calculated and
a justification is presented for the linerization of the equations that de-
scribe the reaction kinetics. In Section 4.2.2 the size of the chemical con-
tribution to the heat capacity, coefficient of thermal expansion, and adia-
batic compressibility is explored and the basic equation [Eq. (4.2.19)] for
the relaxation amplitude in terms of the thermodynamic properties of an
ideal mixture is derived. In Section 4.2.3 the appropriate modification of
Eq. (4.2.19) in a real solution is discussed and in Table II representative
volume changes, which might enter into a consideration of the feasibility
or the analysis of the results of an ultrasonic investigation of reaction
kinetics, are tabulated.

4.2.1. The Variation of Equilibrium Chemical Composition
with Temperature and Pressure

In a medium with a density p in which the velocity of sound is v, the
pressure amplitude |8P| associated with an acoustic wave of intensity /
is* given by (8P| = (pvI)'?. In water at room temperature p = 1 gm/ml
and v =1.5x% 10® cm/sec. Thus, for a ‘‘typical”’ intensity of
1 mW/cm?, the pressure amplitude is about 4 x 10* dyn/cm? or 0.04 atm.
In representative organic solvents such as acetone or benzene, the pres-
sure variation associated with a 1-mW/cm? acoustic intensity is about
0.03 atm.

Assuming that the propagation of the sound wave is very nearly adia-
batic, the temperature variation is readily calculated from

(8T/3P)s = TV8/C, = TO/c,, @.2.1)

where V is the volume, 6 the coefficient of thermal expansion, C;, the heat
capacity at constant pressure and c, the isobaric heat capacity per unit
volume. For water at room temperature, c, = lcal/°’K ml = 4.2 x 107
ergs/’K ml and 8 = 0.2 x 107®°K. Hence, (3T/dP)s = 1.5 x 107° °K
cm?/dyn = 1.5 x 107 °K/atm and the temperature variation AT asso-
ciated with an ultrasonic intensity of 1 mW/cm? is approximately
6 x 1073 °K.

Near room temperature the coefficients of thermal expansion of most

# P, M. Morse and K. O. Ingard, ‘‘Theoretical Acoustics.”” McGraw Hill, New York,
1968.
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organic liquids are appreciably greater than that of water (.e.,
1.24 x 1073/°K for benzene, 1.49 x 1073/°K for acetone at 298°K)? and
cp is significantly smaller (i.e., at 298°K, ¢, = 1.56 X 107 ergs/°K ml for
acetone, 1.72 x 107 erg/°K ml for benzene). Thus the temperature varia-
tion associated with an adiabatic pressure fluctuation in a typical organic
liquid is larger than in water (approximately 0.001°K for 1 mW/cm?), but
AT/T nonetheless remains small.

The heat capacity, compressibility, and coefficient of volume expan-
sion of a concentrated solution may, to be sure, be rather different from
those of the solvent and the contribution of a chemical or structural equi-
librium to these properties may in certain circumstances be large. These
effects will be dealt with explicitly in succeeding sections. However, the
conclusions of this introductory section as to the order of magnitude of
the temperature and pressure variation and the consequent variations in
equilibrium chemical composition associated with moderate acoustic in-
tensities will not be greatly altered.

If the local temperature and pressure are varied subject to the condition
that chemical equilibrium is maintained, then dA = 0 or, from Eq.
4.1.14),

(0A/3€)rp de = —AS dT + AV dP. 4.2.2)

Introducing I as defined by Eq. (4.1.19) and making use of the require-
ment that AG = AH — T AS = 0 (since we suppose chemical equilibrium
to be maintained), one obtains

de = (I'/RTYX(AH/T) dT — AV dP}. 4.2.3)

The chemical potential of any species in a complex mixture may be ex-
pressed in terms of u%, the chemical potential of that species in its stan-
dard state, and q; the activity of the species as

Hi = [L(o + RT In ag. (4.24)

In mixtures of nonelectrolytes, u is taken to be the chemical potential of
the pure ith species in its stable state of aggregation at the temperature
and pressure in question. An ideal solution is defined by the relation
@i = 1 + RT In X;, where X; (the mole fraction of the ith component) is
defined by X; = n;/%; ny = n;/N, and, since p® is by definition indepen-
dent of the composition,

ad ad
Tidea = 5 (2 vy lan) =2 (2 vy [ln ng — lnzm])
i i

i
_mdng dny
2n,;de zv'(gde)

(continues)
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R ASE)
= Vt {ZVY" - (2{‘, v )2} 4.2.5)

In aqueous solutions of electrolytes and, more generally, in dilute solu-
tion, the standard state is often taken to be a (hypothetical) 1-molar or
1-molal ideal solution. The relative activity in an ‘‘ideal dilute’’ solution
is then the molar concentration ([B;] = 1000n,/V) or the molality
(my = n;1000/n,W,, where ny and W, are, respectively, the number of
moles and the molecular weight of the solvent). Equation (4.2.5) is, of
course, not altered by an alternate choice of the standard state.

T', as defined by Eq. (4.1.19) and approximated by Eq. (4.2.5), is an ex-
tensive quantity. It is often useful to define an intensive analog

z=T/NyorT,=T/V. Then

|4

2 2
rm=yr=y%_Y ( ) , 4.2.6
[ Z C‘ Nt 2 V‘ ( )

where ¢; = ny/V. Usually the volume per mole (~ 18 ml in an aqueous
solution) is small compared to the reciprocal concentrations of the least
abundant reactants and Eq. (4.2.6) may be approximated by

Fc" = z (V42/01). (4.2.7)
i

The calculation of T for a real solution will be discussed in the next sec-
tion; however, we are now in a position to estimate the order of magni-
tude of the deviations from the equilibrium chemical composition which
may be induced by the passage of an ultrasonic wave. From Egs. (4.1.10)
and (4.2.3), the relative variation in the equilibrium composition is

an; _ vy, _ vl ar _ )
= thde = on (AH AV dP (4.2.8)

Equation (4.2.8) also specifies the maximum deviation of the local compo-
sition from the equilibrium composition; the maximum deviation ob-
viously corresponding to a circumstance where the reaction is too slow to
permit significant variation in composition in a period of the pressure os-
cillation.

From Eq. (4.2.5) it is easy to show that the maximum value of I'/n; is
vi2. Hence,

ny 1 21

dn, _ 1 {AHdT AVdP}
RT T RT |-
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If Eq. (4.1.9) is written in such a way that the coefficients are one or
small integers, AV in a condensed phase will rarely exceed 100 ml/mole.
At room temperature RT is 2.5 x 10" ergs/mole. Thus AV/RT is rarely
larger than 4 x 10~ cm?/dyn and for a 4 x 10* dyn/cm? pressure ampli-
tude, the second term on the right-hand side of Eq. (4.2.8) is not usually
larger than 2 x 107¢. Similarly, if AH is as large as 100 kcal, at room
temperature AH/RT = 170. For a typical organic liquid at room temper-
ature dT/T = 3 X 107% when the acoustic intensity is 1 mW/cm?; the first
term in Eq. (4.2.8) is then about 5 X 104, Thus, even for rather large
volume and enthalpy changes in condensed phases, one may assume that
the deviations from equilibrium composition induced by moderate
acoustic intensities are small and that the kinetic equations that describe
the time evolution of the composition may be linearized without signifi-
cant error. If one were to seek for exceptions, one might perhaps imag-
ine a highly ‘“‘cooperative’’ process, more nearly a phase transition than a
chemical reaction, of the form IA = A;, where, for sufficiently large /,
dn/n for A; would not necessarily be small at moderate acoustic inten-
sities.

4.2.2. Chemical Contributions to the Heat Capacity,
Coefficient of Thermal Expansion, and
Adiabatic Compressibility

With the aid of Eq. (4.1.10), the general expression for the variation in
the volume

_ (v av £14
dv = <6T>P.n, dT + (aP )M dP + Et: (am )T,m dn,

av Vv v
(aT)PJIj ar+ <aP >T"'5 dp * 21: Vi dnt

(where V; is the partial molar volume of the ith species) may be rewritten

_ (3 av 7
dV— (aT)p,ng+ (aP)T_¢ dP+§i:V¢V¢d€

_ (v av
= (aT),,,( daT + (aP )T’e dP + AV de, 4.2.9)
where AV is the volume change for the chemical reaction under the actual

experimetal (as opposed to standard) conditions. Thus, from Eq. (4.2.3),

=L (V) _1(3V AV (de) _ I AH AV

- (8H\ _ (8H de\ _ T AH?
Co = (aT)p‘ (aT )p,f AH <6T>p = Com + 7 4.2.11)
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or for the heat capacity per unit volume ¢, and the heat capacity per mole
Cp = Cp/Nt, _ .
Cp = Cpw + ' AH?/RT?, C, = Cyo + ', AH?/RT>.

With the requirement that at equilibrium AH = T AS, Eq. (4.2.11)
permits the simplification of Eq. (4.1.18) to

Tr.p/Tsp = Co/Cpw. 4.2.12)

The chemical contribution to the heat capacity is not usually large. For
example, for a two-state equilibrium in a pure substance, I'; =
K/(1 + K)?, where K is the equilibrium constant for the process in ques-
tion. For processes such as equilibrium between two rotational isomers,
for which AS° is presumably small, K = exp(— AH°/RT) and the chemi-
cal contribution to the heat capacity reaches a maximum value of
(Cp — Cpw)/R = 0.44 when AH°/RT = 2.4. In the absence of any large
contribution from conformational or chemical equilibrium, C,/R for
“‘typical’’ liquids at room temperature is approximately 10.

For processes in solution, even with an optimal equilibrium constant, I’
is smaller than in a pure liquid. Thus, I'(AH/RT)? is usually considerably
less than C,»/R and in most cases it is possible to ignore the distinction
between adiabatic and isothermal relaxation times.*

To obtain the chemical contribution to the equilibrium adiabatic com-
pressibility, one may specialize Eq. (4.2.9) to adiabatic conditions:

VY _ (V) (2TY , (2V B¢

(57), = (aT)p.f (37 ), * (37 ), * v (G )s’ #4213
de\ _ L [AH (3T\ _

<6P)s h RT{ T (aP )s AV] 4.2.14)

or, substituting Eq. (4.2.14) in (4.2.13) and dividing both sides by V,

_g. -1 (ﬂ)
BSO V aP s .

(), T e 3 ) ran:
V 1\aT /p. RT? aP)s V\aP).. RTV

and using Eq. (4.2.1) and (4.2.10) one obtains

_ 8TV 1(6V) _Tavy
Tse

se="¢c. *v\ep VRT
Since the adiabatic compressibility at infinite frequency is

— V7 QV/3P) e — TVOE/Cpa,

® J. Meixner, Kolloid Z. 134, 3 (1953).
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then

2 mz A 2
Bow — Bro= TV {& - =) -Io 4.2.15)

By appropriate substitution of Egs. (4.2.10) and (4.2.11) and some alge-
braic rearrangement, Eq. (4.2.15) may be rewritten

TV Cpe {o, AH_ﬂ}” _ T Cpm {o., AH _ Avr

Cre v] RTC, Cpm
Lo (08P .16
T RTCpe | ¢y Av (4.2.16)
or, if the relaxing heat capacity is small,
— g =Xe {Q_A_Ii _ }”
Bso — Bs» = RT | o, AV, . 4.2.17)

From Eq. (4.1.7) the velocity of sound v = (pfs)~"*; hence

EETLR MY NN IV
Ucoz ﬁSO RT Cp

and the constant & in Eq. (4.1.21) is
o = 2m? v’ G I'e {M — AV}Z

2 ¢
- AV} S 4.2.18)
Cor

TP Coo RT \ ¢y
2 2
= 2p2p 208 Cpo Lo {M _ }
27p v C, RT | cpe AV (4.2.19a)
. [0 AH z
= 2 —c —_
= 2m%puv, RT { c AV} . (4.2.19b)

It is Eq. (4.2.19b), satisfactory when the dispersion, relaxing heat capac-
ity, and relaxing thermal expansion are small, that has been the usual basis
for the estimation and analysis of relaxation amplitudes.

1t is possible to devise examples, principally reactions with large AH°
and large compensatory entropy changes of the same sign, in which the
use of (4.2.19b) is not altogether appropriate. For example, for a reaction
of the form A = B in 1 molar aqueous solution at 298°K with AH° =
AH = 10,000 cal, AV = 10 ml and AS° = 33.6 cal/°K, the equilibrium
constant is one and ¢, — cpe = 0.28 cal/°K ml, Cp/Cpa = 1.29, 6 -
0, = —2.8 x 107*/°K, and 6. AH/cp» = 2 ml. The value of (Bgs; —
Bsw)/Bso calculated from Eq. (4.2.16) is 0.05 and o = 6.7 x 107® sec/cm.
An error in & of 28% is made by the use of Eq. (4.2.19b), and there is a
similar error in the assumption that the adiabatic and isothermal relaxation
times are equivalent. The adiabatic relaxation time at constant volume
Tgy = (Bs«/Bso)Tsp is about 5% less than the value at constant pressure.
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Thus on occasion one may encounter a reaction with simultaneously a
large AH and a large I', in which case Eq. (4.2.19a) is the appropriate form
for the amplitude and the distinctions between the various relaxation
times implicit in Eq. (4.1.12) are of some importance. In any case, when
the amplitude is large, Eq. (4.1.8b) is the more appropriate form for a.
More usually, however, Eqs. (4.1.8a) and (4.2.19b) suffice.

For a reaction to be amenable to kinetic study by ultrasonic techniques,
there must be an appreciable AV or, in nonaqueous systems, an appre-
ciable AH and all the reactants and products must be present at equilib-
rium at appreciable concentrations. The calorimetric data necessary for
the evaluation of AH and the equilibrium composition are extensively and
systematically tabulated.** Volume changes are perhaps not always so
conveniently available. However, as discussed previously, in aqueous
solution it is usually the volume change that provides the important
coupling between an acoustic wave and a chemical equilibrium. We
have, therefore, provided a short table of volume changes for some repre-
sentative chemical reactions and a number of references to the literature.
Of the classes of reactions enumerated in Table II, proton-transfer reac-
tions, association reactions between small ions or small molecules, and
conformational changes in small molecules have been extensively and
successfully investigated by ultrasonic techniques. Conformational
changes in large molecules and micelle formation have likewise been
widely studied, but these systems present greater interpretative diffi-
culties and the results of such studies are correspondingly less conclusive.

4.2.3 The Evaluation of ' in a Nonideal System

The activity of any component of a real solution is conventionally spe-
cified in terms of the mole fraction and an activity coefficient y; by
a; = yiX;. The activity coefficient will, in general, depend on the com-
position as well as on the temperature and pressure. Thus, from Eq.
4.1.19),

9
F“=—( vlnyX)
afz“ [ Saal |
bipg- (o) 30 (22),)
N, {ZX{ ;Vi +ZV‘ de T.P
% (2% (3n) =3 G, bw - S n])
N¢ {2 X¢ z Vy + 2 BX, P ViV; V(X, ; Vi .

‘ (4.2.20)

“ U.S. National Bureau of Standards Circ. 500. US Govt. Printing Office, Washington,
D.C.; **Handbook of Chemistry and Physics.”” CRC Press, Cleveland, Ohio; Thermal
Properties of Aqueous Uni-Univalent Electrolytes, NSRDS Circ. 2. US Govt. Printing
Office, Washington, D.C., 1965.

2
2



TasLE II. Volume Changes for Representative Reactions®

Reaction Formula Value (ml) Ref.
Acidic and basic ionization CH3;COOH — CH;COO™ + H* -10.3 45
reactions of small HOOC—COOH — HOOC—COO~ + H* -10.5 47
molecules** HOOC—CO0™ — G40, + H* -15.0 47
HsO — OH™ + H* -21.0 45
H,PO, — HPO,~ + H* -21.7 51
CO, + H;O0 — HCO,™ + H* -27.¢ 53
...88:
(valine)*NH;—CH(C3H;)—COOH — *NH;—CH(C3H;)—COO~ + H* -8 49
CN™ + H,0 — HCN + OH"™ -12 54
“O0C—CH;—NH, + H;O — "00C—CH;—NH;* + OH~ -26 48
CHyNH,; + HyO — CHyNH;* + OH™ -27 45
Interconversion between NH;—CH;—COOH — *NH;—CH,—COO"~ —-13.5 46
classical and zwitterionic
forms?*6-58.56
Ion Pairing®® Be!* + SO~ — Be**—H,0—S0,*" 10 57
(free ions) —— (solvent-separated ion pair)
Be**—H,0—S0,~ — Be?*SO,~ + H,0 3 57
(solvent-separated ion pair) —— (*‘inner sphere’’ ion pair)
Li* + CI” — Li*Cl~ (in 2-propanol) 21.2 59
Other association reactions Na* + dinactin (in methanol) —-16.5 60
Dimerization of adenosine-5'-phosphate +7.8 61
Stacking of 9-methyl purine —4 62
Stacking of ®N, ®N dimethyl adenine -7 63
Binding of small molecules myoglobin + F~ -33 64
to proteins® myoglobin + imidazole 0 64
myoglobin + HCOO~ 7.5 64
ribonuclease + cytidine 2'3’monophosphate 23 65,66
‘‘riboflavin binding protein’’ + flavin mononucleotide -33 67



Conformational change® Isomerization of 1,1,2 trichloroethane (in n-heptane) ~1 68

cis-trans isomerization of ethyl acetate 0 69
syn-anti conversion in adenosine 0.5 70,71
Helix-coil transition in poly-L-glutamic acid 0.5-1.0 72
Helix-coil transition in poly-L-lysine 1.0-1.5 73
Internal complexation between ring systems in flavinyl trypotophan peptides —-1.8-4.3 74
Denaturation of Chymotrypsinogen —94 75
proteins™~"7
Macromolecular Dimerization of lyzozyme (pH 6.7) 0 76
associations® Polymerization of myosin 6.4 x 107*/gm 77
2 hexamer —> dodecamer, lobster haemocyanin <0? 78
390°
120
Melting of DNA (c. perfringens) 0-8.6 x 1073/gm 79
Micelle formation? Na*CH3(CH,),SO,” 4.9 80
Na*CH,(CH,)%S0, 7.9 80
Na*CH;(CH,);; SO~ 10.0 80
Na*CHy(CHj,),sSO, 11.3 80

¢ Results are in water at 25°C unless otherwise noted. General references for classes of reactions are given when appropriate, as well as
references for data cited.

® Value computed at 25°C.

¢ Value computed at 250°C.

? Value computed at pH = 8.

¢ Value computed at pH = 8.46.

f Value computed at pH = 9.6.

? YVolumes changes per mole of monomer.
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In electrolyte solution the activity coefficient is expressed most naturally
in terms of the concentration. Hence

8 § In y_i) ¢
aez veln v, % i ( dc; /¢p O€

aln y
VE (BR22)  pws-wmeav] @220
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and

If the activity coefficients depend on the composition only through the
ionic strength I = % X, ¢,z%, where z,; is the charge in units of the elec-
tronic charge e, then Eq. (4.2.22) simplifies to

S v_f_L( )2
FI_V{2C¢ N‘ Eilq

i
1 d1n
+5 3 Wzt~ cz? AV) R (—TIY-‘)TP} (4.2.23)

In dilute ionic solution the activity coefficient of a species with charge
zie in a medium of dielectric constant D, may be approximated by the
Debye-Hiickel limiting law

In y; = —(z,22/2kTDy)x. (4.2.24)
where, if Ny is Avogadro’s number, the inverse Debye length « is

k = (8wNye?l/DokT)*2. (4.2.25)

When the Debye—Hiickel Law is applicable, the last term of Eq. (4.2.23)
becomes

3 min = -5 (Sver) (57) ()
= 4kTD 1 (2 vz )(2 (%Cj))
- 8kTVDo (2 vizi )(Z vizi? — 21 AV)

S - (2 vz )2 (4.2.26)
8KTID, V \ & V% &

7 A. Zipp and W. Kauzmann, Biochemistry 12, 4217 (1973).

8 V. P. Saxena, G. Kegeles, and R. Kikas, Biophys. Chem. §, 161 (1976).

™ S. A. Hawley and R. M. Macleod, Biopolymers 13, 1417 (1974).

% §, Kaneshima, N. Tankaka, T. Tomida, and R. Matuura, J. Colloid Interface Sci. 48,
450 (1974).
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— 1 V{z V ( )2
1= 2 2 ¥
r |4 { 1 Cy Nl 21: Vi
viz )( 22 — 21Av)} 4.2.27)
8kTDo (2{: (241 E‘ ViZy

and usually with small error,
1

=y {Z%‘Z ShabiT (2 vt ) } 4.2.28

If the ionic strength is expressed in moles per liter, then in water at
room temperature k =~ 0.3 X 108\/7 cm™ and e?x/8kTD, =~ 0.3V/1.
Even in the absence of supporting electrolyte, the ionic strength is of
course always larger than the concentration of any ionic species and thus,
unless X, v;z2 is quite large, the contribution of the variation of the activ-
ity coefficients to I'? is relatively small.

In solutions that are too concentrated to reasonably expect the
Debye-Huckel limiting law to apply, there are a number of theoretical and
semi-empirical expressions for the single ion and mean activity coeffi-
cients of electrolytes. Among the most useful are the Debye—-Hiickel
equation

Iny, = —z2e?k/2kTDy(1 + dix) = —z2A,NI/1 + 2d\/T, (4.2.29)

where A, = 27wNy)"%(e?/DKT)*?, 2 = (8wNoe?/DokT)V2, and d, is the
exclusion radius of the ith ion, and the simplification, suggested by
Guggenheim,5!:# js

Iny, = —A}z22VI/Q + VD), (4.2.30)

where [ is expressed in moles per liter and Ay = A, (p/1000)'2 (where p is
the density of the solvent and a standard value of 3 A is assumed for d,).
In more concentrated solution the Bronsted equation,®-# written

1
Iny, = Alz————=+ Dycy, 4.2.31
neast g e w2

where j is restricted to ions of charge opposite in sign to that of the ithion,
provides a useful semiempirical form for the activity coefficient. Exten-
sive tables of &;; for various ion pairs as a function of the temperature are
available® and these may serve as a basis for the estimation, by analogy,
of @y in solutions where the equilibrium thermodynamic properties are

8 E. A. Guggenheim, Philos. Mag. 19, 588 (1935).
 J. N. Bronsted, J. Am. Chem. Soc. 44, 1938 (1922); G. N. Lewis, M. Randall, K. S.
Pitzer, and L. Brewer, ‘‘Thermodynamics,’’ 2nd ed. McGraw-Hill, New York, 1961,
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not well known. Alternatively, Davies has suggested®? a standard choice
of @y, for all ions. With this approximation

Iny, = —Ay (D1 + ') + DI
and (4.2.32)

=yl () o)
=y 2 -4 (Sved) | v @

Scatchard®-® has given empirical expressions for the activity coeffi-
cients of dipolar ions in ionic solution that may be used in conjunction
with Eq. (4.2.21) to compute I'. (Note, however, that the equations in
Scatchard and Prentiss® and Scatchard® are in terms of weight molalities
and must be transformed® to moles per milliliter). Hussey and Ed-
monds®” have discussed explicitly the effect of various approximate forms
on the calculated value of I" for aqueous solutions of glycine.

4 3. Linearized Rate Equations

4.3.1. Rate Laws, Elementary Steps, Reaction Mechanisms

The term “‘rate law’’ is us used here to designate an expression that re-
lates the rate (in terms of molar concentrations) of a chemical reaction
proceeding isothermally to the concentrations of the reactants; that is,
Ry = Vde/dt = Viry = dl/dt = f({B,], [B2], ..., [Bs, .. .)
Often even a reaction of rather simple stoichiometry will occur via a se-
quence of elementary steps, a ‘‘reaction mechanism,’’” which may involve
the formation of intermediate species or the participation of substances
not appearing in the equation which represents the overall process, and it
is not, in general, possible to deduce the rate law from the stoichiometric
equation for the reaction. However, the rates of each of the elementary
steps should be proportional to the number of encounters among the par-
ticipating species. Thus, in an ideal system, for each elementary step,
although not for the overall reaction,

Re= k[T [BJ™, Ry = ko [][B™, 4.3.1)

i i

83 C. W. Davies, ‘‘Ion Association.'’ Butterworths, London, 1962.

8 G. Scatchard and S. S. Prentiss, J. Am. Chem. Soc. 86, 2314 (1934).

8 G. Scatchard, ‘‘Proteins, Amino Acids and Peptides as Ions and Dipolar lons’’ (E. J.
Cohn and J. T. Edsall, eds.). Van Nostrand-Reinhold, Princeton, New Jersey, 1943.

% H, Harned and B. Owen, ‘‘The Physical Chemistry of Electrolytes.”” Van
Nostrand-Reinhold, Princeton, New Jersey, 1958.

8 M. Hussey and P. D. Edmonds, J. Acoust. Soc. Am. 49, 1907 (1971).
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where R, and R, and k; and k, are, respectively, the rates and rate con-
stants for the forward and reverse reactions, and the continued product
extends only over reactants for the forward reaction and only over prod-
ucts for the reverse reaction.

In a nonideal mixture, Eq. (4.3.1) becomes®®

R = ki (H yirt ) (1:[ (BI™), Ry~ K, (U vl"")(l?[ (81" ).,
4.3.2)

where 1, is the activity coefficient of the ith species. The rate constants
k¢ and k¢, are functions of the temperature and pressure, as are k, and &,,,
but the activity coefficients will, in general, depend on the concentration;
thus in a nonideal solution, even for an elementary step, deviations from
the simple mass action expression for the rate [Eq. (4.3.1)] may be en-
countered. However, in many systems Eq. (4.3.1) does in fact give an
adequate description of the rate of change of the composition and in any
case the use of Eq. (4.3.2) introduces considerable algebraic and nu-
merical complication but no conceptual difficulties. Thus, we shall ini-
tially discuss reaction Kinetics in an ideal system and then extend the
argument to include nonideal mixtures.

4.3.2. A Simple Example

If the reaction HA = H* + A~ is displaced from equilibrium, the
molar concentrations of the various reactants [B;] may be expressed in
terms of the advancement and the equilibrium concentrations [B;], by
[HA] = [HA]o — ¢, [H*] = [H"]o + {, and [A"] = [A7], + {, or in gen-
eral [B;] = [ByJo + v¢{. If the simple mass action expression for the rate
of the reaction is valid, then

d[HA)/dt = —d{/dt = kJ[HA] — %, [H*][A]

= k((HAlo — ) — ko((H*]o + OD([A"]e + O
4.3.3)

Neglecting terms in {2 and making use of the requirement that the net rate
at equilibrium (k,[HA], — k,[H*Jo[A™]o) is zero, one obtains

df/dt = —{k¢ + ky((H*]o + [A7]}, = —ko{K + [H*], + [A]o}L,
4.3.9)

where K = k;/ky is the equilibrium constant for the dissociation reaction.
The solution to Eq. (4.3.4) is then { = I, exp(—w.?) or { = {o exp(—t/7),

% 1. Amdur and G. Hammes, **‘Chemical Kinetics.”” McGraw-Hill, New York, 1966.
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where
Wy = I/T = kr + kb([H+]0 + [A_]o). (4.3.5)

The relaxation time 7 or relaxation frequency w, corresponding to any
presumed rate law is easily obtained, as above, as a function of rate con-
stants and equilibrium concentration of the reactants by substitution of
[B;] = [Bi)e + v:{ into the rate law and the linearization and solution of
the resulting equation subject to the requirement that the rate at equilib-
rium is zero. Bernasconi,? Castellan,® and Eigen and DeMaeyer?” have
given tabulations of formulas for various rate laws.

4.3.3. Coupled Reactions

Consider the dissociation of an unsymmetrical dibasic acid

HABH:%:HAB-+LV, (4.3.62)
HABH _:—_- ABH- + H*. (4.3.6b)

If the advancements of reactions (4.3.6a) and (4.3.6b) are, respectively, {,
and {,, then [HABH] = [HABH], — {; — &, [HAB™] = [HAB )y + {4,
[ABH™] = [ABH ], + {;, and [H*] = [H*]y + {; + {s. More gener-
ally, if vy is the coefficient of the ith species in the equation that repre-
sents the jth reaction, [B;] = [B;]o + Z; v4;¢;, and the linearized kinetic
equations corresponding to Eq. (4.3.6) are

d[HAB~]/dt = d{,/dt = k{{HABH] - k,[H*][HAB™]
= —{k¢ + ko((HAB ], + [H*]o)}4s
= {k¢ + ky[HAB 10}z, 4.3.7)
d[ABH7)/dt = ds/dt = —{k{ + ki [ABH ]o}¢,
= {kt + kit {ABH ]o + [H]o)}¢z.
Substitution of £, = q; exp(—at), {s = g2 exp(— w?), or, in general,
b= qe™ (4.3.8)

into Eq. (4.3.7) gives a pair of linear homogeneous equations in the ampli-
tudes ¢, and g,

{k¢ + ky((HAB ], + [H*]o) — wlq; + {k; + ky[HAB Jo}qz = O,
{k{ + k{[ABH ]o}q: + {kt + ki ((ABH ], + [H*]o) — w}q: = 0,

® G, W. Castellan, Ber. Bunsenges. Phys. Chem. 67, 898 (1963).
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which have either the trivial solution g, = g, = 0 or

kf + kb([HAB_]o + [H+]0) - W kf + kb[HAB_]o

k! + kjJABH-], ki + ki([ABH-Jo + [H*]) — @ = O

For a system of n reactions linearization of the rate equations and substi-
tution of Eq. (4.3.8) gives an n X n secular equation analogous to Eq.
(4.3.9). The linear response of a system with n reactions to a step or peri-
odic perturbation is a superposition of the » independent normal modes of
relaxation defined by the eigenvectors of the secular determinant with
characteristic times given by the corresponding eigenvalues.

In the case of two coupled reactions, the quadratic secular equation
that determines the relaxation frequencies and the relative magnitudes of
g, and g, is easily solved algebraically. For more complex schemes nu-
merical or approximate methods are necessary and these shall be briefly
discussed in Section 4.3.5. By way of illustration, we consider here the
simple case in which k, = k; and k, = k[. With this additional sym-
metry, the eigenvectorsare g, = 1, g; = land g, = 1, g, = — 1, the cor-
responding relaxation frequencies and normal reactions being

7 G) qz(—ll)’

wr = 2k¢ + ky((ABH7]o + [HAB7]o + 2[H']o) o = ky[H']o,
= 2ky(K + [ABH], + [H']0),
2HABH — HAB~ + ABH™ + 2H*, HAB~ = ABH",

where K = k;/k, = k{/ki, and, for the simple case here, [ABH ], =
[HAB ;.

The normal modes of the system of two dissociation reactions repre-
sented by Eq. (4.3.6) (the ‘‘basis reactions’’) are, for the symmetrical ex-
ample chosen here, overall dissociation and intramolecular proton
transfer (not independent dissociation of — AH and — BH). The volume
and enthalpy changes for the normal reactions are simply the sum and dif-
ference of the volume and enthalpy changes of the basis reactions. More
generally, if the volume and enthalpy changes for the basis reactions are
represented as row vectors [i.e., AV = (AV;, AV,, . . . ) and AH =
(AH,, AH,, . . . )] and q; is the eigenvector corresponding to the kth
normal mode, then the volume and enthalpy changes for the kth normal
reaction (AV, and AH,) are simply

AV =qx* AV, AH; = q;* AH. (4.3.10)
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As may be seen by inspection of Eq. (4.3.9), the secular determinant is
not, in general, symmetric, and it is the transpose of the matrix generated
by the elementary methods of this section that should be used for the
explicit computation of the eigenvectors.

4.3.4. Redundant Reactions

Intramolecular proton transfer based on Eq. (4.3.6) proceeds by ioniza-
tion at one site and bimolecular recombination at the other. However,
there might well be competing unimolecular modes of internal proton ex-
change either direct or through water bridges as represented schemati-
cally in Eq. (4.3.11).

- /H
8 B B H
= B\H or HOH = Ho
M . (4.3.11)
A A A/ A

or generally
HAB™ = ABH".

The addition of Eq. (4.3.11) to the basis set adds nothing to the thermody-
namic constraints on the equilibrium composition of the system since Eq.
(4.3.11) is a linear combination of equations already in the basis set [i.e.,
Eq. (4.3.6b) — Eq. (4.3.6a)]. However, Eq. (4.3.11) does represent a
new path for reaction and if direct transfers proceed with appreciable
rate, Eq. (4.3.11) must be added to the kinetic basis set.

For the basis set of Egs. (4.3.6) and (4.3.11), Eq. (4.3.7) becomes

[HABH] = [HABH], = {; — s,  [HAB7] = [HAB]o + {; — {5,
[ABHT] = [ABH ], + {2 + s, [H*] = [H]o + & + &,
and the linearized kinetic equations
dii/dt = —{ke + ko((H]o + [HAB7])}: — {ke + ky[HAB ]o}¢e
+ ko[H*Jo L,
diy/dt = —{ki + kilABH 1o}¢ — {ki + ki([ABH ]y + [H*Jo)}L
— kb[H*Jo&s,
dls/dt = ki’ s — ki Lo — (kt' + ki')Ls.
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The secular equation is

ke + ko((H*], + [HAB™]p) — @ k¢ + ky,[HAB™ ], —ky[H*]o
ki + ki[ABH ], ki + Ki([ABH ], + [H*])) — @  ki[H']o
ki’ k! ke + K - o

equals 0, where @ = 0 is an eigenvalue independent of any assumptions
about the rate constants. The corresponding normal reaction is Eq.
(4.3.6a) — Eq. (4.3.6b) + Eq. (4.3.11) or (ABH- — HAB") + (HAB- —
ABH"™) or no reaction. In general, the introduction of p linear depend-
ences into the basis set will introduce p zero eigenvalues.

If, as previously, we assume k; = k{ andk, = k{, and, hence,k;’ = k{’
then g, = gq; = 1, g3 = 0 is an eigenvector; neither the eigenvector nor
the eigenvalue corresponding to overall dissociation is affected by the in-
troduction of Eq. (4.3.11). The third eigenvector and eigenvalue are

1
q= ( -1 ); w, + kp[H*]p + 2k¢'.
—2kt" /kp[H"]

Intramolecular proton exchange remains a normal mode, and the eigen-
vector q specifies the relative importance of the alternate dissociative and
direct pathways.

4.3.5. A More General Formulation
From Eq. (4.3.2), the rate of the jth elementary step is
Rj = de/dt = kﬂ H al““' - kbj H al"‘!', (43.12)
[] i

where in the first term the continued product extends over reactants in the
second term over products. At equilibrium the rates of the forward and
reverse reactions are equal, so, defining the exchange rate® R; in terms of
the equilibrium activities aq;, one obtains

Rl = kﬂ H a&‘u' = ka H a‘l)“’ul’
i i

4.3.13)
R, = R; {H (ai/aed™ — [] (aa/aoi)“""}-
i

t
Again the continued product extends over negative vy (i.e., reactants) in
the first term and positive vy, in the second term.
The equilibrium constant for the jth reaction is K; = I, a%; , where the
continued product here and in all subsequent relations extends over all i.
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If Q, is defined by Q; = II, af, then Eq. (4.3.13) may be rewritten
Ry = R, [] (ai/ae)™'{1 — Qi/K}}. (4.3.14)
i

The affinity of the jth reaction is expressed by A; = — 3, vyu; =
-3 viy(w® + RT In a;). More generally, in terms of the quantities de-
fined here, A; = RT(In K; — In Q,) or Q;/K; = exp(—A;/RT). Thus,
when A,;/RT is small, 1 — Q;/K; = A;/RT. For small departure from
equilibrium, a;/ay = 1 and A;/RT << 1. Hence, Eq. (4.3.14) becomes

R; = R,;A;/RT. 4.3.15)

Near equilibrium at constant temperature and pressure
dA d In ai
A= (—1) ,==-RTS » ( ) ,
1= 2 5y, e & 2 og )oY

0 CJ’ ij’

~RT Y vy <a ;r;ka( ) (g—g‘,) s

iy

dIn a,)
~RT ) vyv ,( ,
”‘Zjl R e &

i

ac,,

—-RT; {; " (6(ln ci+ Invyy) )T

} Ly
i

WP
_ V‘iV‘il (d ln ! ) }
RT; {Z c + g VisViy < 3 p CJ'

Ck
= —RTJZ girly, (4.3.16)
where
gy = Z i‘-cii‘i + %‘, ViV (a—al‘;f—’)”. 4.3.17)

Substitution of Eq. (4.3.16) into (4.3.15) gives
d -
R, = Ti{tl = - 2 R’g”rc’:. (4.3.18)
jl

If for a system of n reactions, R is an n X n diagonal matrix with diag-
onal elements R; as defined by Eq. (4.3.13), gis an n X n matrix with ele-
ments defined by Eq. (4.3.17), and £ is an n-dimensional column vector
with components {;, then Eq. (4.3.18) may be written in matrix notation
as

dy/dt = —Rgl, (4.3.19)
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and on substitution of Eq. (4.3.8), the secular equation
Rg — Iw| = 0, (4.3.20)

which determines the normal modes and relaxation frequencies, is ob-
tained. Here, I is the n X n diagonal unit matrix.

Although R and g are both symmetric, the product Rg in general is not.
It is often convenient to rewrite Eq. (4.3.20) in a symmetrical form. If
R!? and its inverse R~"? are diagonal matrices with elements, respec-
tively, equal to R}{? and Rj;** and if new reaction coordinates z defined by
z = (R™){ are introduced, then Eq. (4.3.19) becomes

dz/dt = —R"2gR'?z. 4.3.21)
The symmetrized secular equation
[R12gR'2 — Jw| = 0 4.3.22)

is better adapted to many computational routines than Eq. (4.3.20).
Normal reactions q in terms of the original basis set { are easily recovered
from q' the eigenvectors of Eq. (4.3.22) by the transformation ¢ = R!2q’.
Similarly, the transformation L which diagonalizes Rg is given in terms of
the matrix L' which diagonalizes R'2gR!? by L = R'2L’. Since the
eigenvectors contain an arbitrary multiplicative constant, R'? and R~/
may be scaled as convenient in these operations. The volume change,
the enthalpy change, and I'"! for any normal reaction will individually de-
pend on the ‘‘normalization.” The quantity C in Eq. (4.2.19) is indepen-
dent of the choice of multiplicative constant.

To illustrate the utility of Eq. (4.3.22), we may consider the reactions

A=2Band A k:‘—"‘ C in ideal solution. In this case

ky ky
k:[A]o 0 )
0 k:[A]o
1
[A]o [B]o [Ale
L, 1)
[A]o [Ale  [Clo

ke
Rg = o K +1)
l K’
(kok} )2

' K +1 ’
ki 1 D o

(K + 1)
R112 R112 =
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where K and K' are the equilibrium constants for A =—Band A =—=C
and [A], denotes the equilibrium constant of species A, etc. If, for ex-
ample, K = 1, K’ =2, k, = 10% sec™, and k; = (4/3) x 10® sec™, then
the roots of Eq. (4.3.20) or (4.3.22) are w = 3.2 X 10® sec™* and 0.8 x 10°
sec”!. The eigenvectors of (4.3.20) are (1, 1) and 1, —1). The normal
reactions in terms of the original basis set are then

1 0 1
L( 1): _2 ) or 115C—>B+0.15A
0 \/3_ -1 \/3— ’
1 0 1
2 (1)= 2 or 2.15A—> B + 1.15C,
0 /M V3
and
1 1
L={2 __2}
Vi V3

The columns of L directly give the coefficients of the basis reactions in
the normal reactions. If one chooses to represent the volume changes
and enthalpy changes of the basis reactions as column vectors, then Eq.
(4.3.10) of for AH and I'"? of the jth normal reaction can be rewritten in
matrix notation as

AV;=j+ Lt AV, AH; =)+ Lt AH, Iyt = jLtgLjt,

where j is a row vector with 1 in the jth position, zero elsewhere, and jT is
the corresponding column vector.

The development here rather closely parallels that of Castellan.?®
White has given a similar derivation®® in terms of a somewhat more com-
pact notation. Castellan proceeds to show how, in the case of a set of
basis reaction with linear dependences, one can reduce the order of Eq.
(4.3.20) through the use of the coefficients of the equations that explicitly
express the dependent reactions in terms of the subset of reactions chosen
to be the independent basis set. If such a procedure is adopted, the
eigenvectors of the reduced system of equations are no longer susceptible
of easy physical interpretation. Equations (4.3.17) and (4.3.18), which, in
the case of reactions in ideal systems, allow the secular equation to be
written by inspection from the stoichiometric equations representing the
basis reactions and which permit simple intuitive interpretation of the
eigenvectors, will generally prove to be a satisfactory basis for calcula-
tion.

80 R. D. White, Ph.D. Thesis, Univ. of Washington, Seattle, Washington (1969).
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The numerical solution of secular equations is of course routine, and the
determination of the relaxation times and normal reactions of even a large
system of basis reactions for a given set of rate constants and equilibrium
concentrations present no difficulty. The inverse problem of determining
the rate constants from observed relaxation times in the absence of an
explicit algebraic solution of the secular equation is not quite so routine.
Formally this problem is equivalent to the determination of force con-
stants from molecular vibrational frequencies and the methods®—®* used
by spectroscopists may occasionally be of value.

In order to perform a least-squares adjustment of the rate constants, it
is necessary to know the derivatives of the calculated relaxation fre-
quencies with respect to the rate constants. In the absence of an exact or
approximate algebraic solution of the secular equation, one may guess
“‘reasonable’’ trial values of the rate constants and so generate an approx-
imation (F®) to Rg or RY2gR'2. The secular equation

|F® — Iw| = 0

so generated may be solved computationally for the eigenvalues w,°, the
eigenvectors, and hence for the transformation L° that diagonalizes F°.
The variation of the eigenvalues when the matrix elements are varied is
then approximately

Awgp = (Li)* AFy + 2 E Lz LYy AF,. (4.3.23)
1

>l 1p

Since the matrix elements are simple linear functions of the rate con-
stants, the variation of the relaxation frequency with variation in each rate
constant is easily calculated from Eq. (4.3.23). If Aw,, is identified with
the difference between the observed frequency and w,,’ and if a number of
relaxation frequencies equal to or greater than the number of independent
rate constants is observed or, alternatively and more probably, if a single
relaxation frequency has been observed at a sufficient number of different
equilibrium compositions, then application of linear least squares to Eq.
(4.3.23) permits the computation of corrections to the trial rate constants.
A new F° and a new L°® may then be calculated and the process repeated
until convergence. As in determination of force constants, the identifica-
tion of a given experimental frequency with a calculated eigenvalue is

" D, E. Mann, T. Shimanouchi, J. H. Meal, and L. Fano, J. Chem. Phys. 27, 43, 51
(1957).

® W. T. King, I. M. Mills, and B. L. Crawford, J. Chem. Phys. 27, 455 (1957).

% J. H. Schachtschneider and R. G. Snyder, Spectrochem. Acta 19, 117 (1963).

# J. Overend and J. R. Scherer, J. Chem. Phys. 32, 1289, 1296, 1720 (1960); 33, 446 (1960).
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prerequisite to the numerical procedure and multiple solutions always
exist.

4.4. Coupling with Transport and
Irreversible Reactions

In this section we are concerned primarily with providing a plausible
foundation, if not a genuine theoretical justification, for the assumptions
that underlie Eqgs. (4.1.10), and (4.1.21), and (4.1.22) and with a brief in-
troduction to the theoretical literature on interaction of sound with a reac-
tion far from equilibrium. With the exception of Patureau et al.,? the re-
sults of this section have not, in fact, been important in the analysis of
experimental data. Section 4.4.1 is offered only as a justification of the
conventional analysis and Section 4.4.2 as introducing an (at least to this
reviewer) interesting body of predictions not yet extensively exploited
experimentally.

4.41. Coupling between Reaction and Diffusion

Apart from any conceptual difficulties, a general consideration of the
coupling between transport and chemical reaction is inevitably rather in-
volved algebraically. A greatly simplified example may serve to illustrate
the general approach of Schurr,'® to justify partially the assumption made
uniformly throughout this part that chemical reaction is the important
source of any variation in the local composition induced by an acoustic
wave and to lend some credence to the proposition that the contributions
of chemical reaction to acoustic absorption and dispersion are to a good
approximation additive to the contributions of transport.

Consider the reaction A = B in an aqueous solution sufficiently dilute
that the solution may be taken to be ideal and at a temperature sufficiently
close to the density maximum so that acoustic propagation may be as-
sumed to be isothermal. Some further simplification in notation can be
obtained by taking the equilibrium constant at zero applied pressure to be
1 so that, in the absence of external pressure, k; = k, = k and the equilib-
rium concentrations of the reactants are equal or cox = cop = X.

The partial molal volumes V, and V of the reactants, the standard vol-
ume change for the reaction AV?, and the diffusion coefficient (which will
be assumed to be equal to G for both species) are assumed to be indepen-
dent of the pressure and local composition. We shall consider only
coupling between reaction and diffusion and thus the viscous terms in the
equation of motion of the fluid shall be neglected.
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With these simplifications, the rates of change of the local concentra-
tions of the two reactants are

dé AV® 8PX
de="k(8"A_acB“ RT )_V'JA’

ds AV §PX @41

——df”=k (acA—acB————RT )—V-JB,

where 8¢, represents the displacement of the concentration of the ith
species from its equilibrium value at zero applied pressure.

The diffusion current density for the ith species J; is proportional to the
diffusion coefficient, to the local concentration, and to the gradient in the
chemical potential. Since the solution is ideal and the temperature uni-
form, Vu; = V(u® + RTIn ¢;) = Vu® + (RT/cy)V 8¢;. Taking the di-
vergence of J; and retaining only first-order terms in small quantities, Eq.
(4.4.1) becomes

0 2
dbcy _ —k (5CA_5CB_M_8£) +G{w+vz80A},

dr RT RT

(4.4.2)
db XAV 8P =
T;:E =k (60A - 6cg — T) + G{V5XV? 8cp + V35cg}.

To obtain a dispersion relation, the equations of motion and continuity
for the fluid

p dév/dt = —VP,
d08s/dt = =V - &v

must be added to the set of relations represented by Eqgs. (4.4.2). The
velocity of the fluid is v, the density is p, and the condensation §s is de-
fined by 8s = 8p/p. Interms of the variations in concentration and pres-
sure, s may be expressed as

8s = {Mw/po — Vi) 8ca + {Mw/po — Vs} 8¢y + BSP, (4.4.9)

where My is the molecular weight of A and B, p, the equilibrium density,
and B the compressibility at constant composition. Solutions of the form

(4.4.3)

8P SP°
8¢, Sc 0
Scpi = {cp?l e Telt 4.4.5)
v 3v°

8s 550
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are sought. The substitution of Eq. (4.4.5) into Egs. (4.4.2)—(4.4.4) gives
(iw+ k + Gy?) 8c,® — k 8¢y = RLT (k AV® — Gy*V,) 8P°,

—k 8CA0 + (i(l) + k + Gyz) SCBO = _%‘(k AVO + VBGyz) 8P0,

2
(‘Lz - PB) 5P = Mu 50,0 1 5cy9)
0] Po
= (Vadc,® + Vg bcp?). (4.4.6)

Introducing the definitions

F, o= 26 F, = —2k+ Gy*
' 7w + Gy¥’ 27 o+ 2k + Gy*’

one obtains the solutions of Eq. (4.4.6)
X j— —
8ca’ = W[AVO F; — (Vi + Vp)F,] 8P°,

(]

Scg® = — 7’1% [AV® Fy + (VA + Vg)F,] 8P°,

2 —_ — — —_
2= oo+ o | [ L Ta 4 Vo) | (T + ToFs + AWR .
Defining 74 = 1/Gy?, one may express F, as F,=2(1 — iwrq)/
[1 + (wrq)?). Since y = w/vw, then 74 = v,%/Go? and wTy = v.°/Gw.
For a rapidly diffusing species in aqueous solution G = 1075 cm?/sec.
Thus, even at the highest ultrasonic frequencies (w = 10* sec), 74 = 1075,
oty = 10° and both the real and imaginary parts of F, are negligibly
small. Hence, even at the shortest ultrasonic wavelength, concentration
variations due to diffusion can be neglected as can the contribution of
diffusion to acoustic absorption and dispersion.

In a viscous medium, the equation of motion (4.4.3) becomes
padv/ot = —V 8P + [An + nyv][V (V- 8v) + V2 §v],

where 7 and ny are the shear and volume viscosities, respectively. Fora
longitudinal wave V « v = i|y||v|] and V2v = —y?v; thus for Eq. (4.4.3) one
obtains

p dbv/ot = —{VP + ({9 + ny)y? &v
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or
piw 8v° = —iy 8P° — (0 + my)y? 80°,
 85° = —y|&vY. (4.4.7)

The simultaneous solution of Eqs. (4.4.7), (4.4.4), and the linearized
chemical rate equation (4.4.2) involves only algebraic complication.
Markham et al.,% give a general expression for the complex dispersion re-
lation in a viscous medium with a single relaxation that reduces to Eq.
(4.1.21) when the viscous and chemical absorptions (per wavelength) are
both small. In aqueous solution at room temperature, the total classical
absorption per wavelength is less than 0.04 at 1000 MHz, the dispersion
due to chemical reaction is rarely larger than 1%, and neglect of the
coupling between reactive volume change and viscous processes is almost
always justifiable.

4.4.2. Reactions Far from Equilibrium

Gilbert et al.* have discussed the propagation of acoustic waves in a
system with a single chemical reaction sufficiently far from equilibrium
that the contribution of the reverse reaction to the time dependence of the
chemical composition may be ignored. The local state as characterized
by the pressure, velocity, temperature, and chemical composition, all
functions of position r and time ¢, is designated by a vector (P, v,
T, X) = ¥(r, 1) that is decomposed into a spatially homogeneous part
¥°(»), which specifies the development in time of the properties of the
system averaged over the volume, and a small deviation 8¥ys(r, 1)
described in terms of its Fourier components &i(y, 1).

Formally the equation of motion for &y(y, ¢) is

a8Y(y, 1)/ot = 0 8yi(y, ). (4.4.8)

In Gilbert et al.,* the operator £} is constructed from the usual linearized
hydrodynamic equations, neglecting thermal conductivity and diffusion,
and the kinetic equations for the reaction in question, presuming that the
rate constant may depend on both the temperature and the pressure. The
viscosity and heat capacity are assumed not to vary as the reaction pro-
ceeds.

The general result of Gilbert et al.?® for the pressure amplitude of a

8 J, J. Markham, R. T. Beyer, and R. B. Lindsay, Rev. Mod. Phys. 23, 353 (1951).
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standing wave with inverse wavelength |y| is

8P() _ (Bs@\™ [ 1 or ,
5P(0) (ﬁs(t) > exp [ Vol + 5 J: (Qpp + e Qpy) dt J
4.4.9)

where p is the density, ¢, the heat capacity per unit mass, and

Vyis = i{i'fl + "lv}yz/P- (4410)

The same result is applicable to the amplitude 8P(r, ¢) at the middle 7 of
a wave packet composed of a narrow band of Fourier components cen-
tered about y and initially centered (in space) at r = 0 if §P(£)/8P(0) is re-
placed by 8P(r, t)/8P(0, 0), where r is calculated from the (time-
dependent) group velocity (pBs)~** by

r= f " (pBs)V dr'. 4.4.11)
0

Gilbert et al.?? evaluate ) explicitly for reactions of the form A — B
and A — B + C in ideal gases with Ac, for the reaction equal to zero.
Their result for A — B, further specialized to the case where the rate
coefficient is independent of the pressure, is

20 = (o ) o0 [~ = L2297 0 e S o)

4.4.12)

If the usual Arrhenius temperature dependence of the rate is assumed,
then (8 In k/aT) = E*/RT?, where E* is the energy of activation. It is
clear that for an exothermic reaction sufficiently far from equilibrium the
integral in Eq. (4.4.12) is negative and may, for long waves, be greater
than v, t. Thus, amplification of a propagating wave packet and instabil-
ity of the homogeneously evolving state with respect to long-wave
acoustic oscillation are predicted.

Patureau et al.?® have studied the propagation of 300-Hz pulses in a
mixture of hydrogen and chlorine diluted with argon before, during, and
after the interval in which the photochemically initiated reaction
H; + Cl; — 2HCl runs its course. They find, if not overall amplification,
a decreased attenuation due to the irreversible reaction.

At present it is not unfair to say that the topic of acoustic propagation in
irreversibly reacting systems has been rather more popular with theoreti-
cians than experimentalists. The phenomena associated with coupling
between the irreversible reaction and a sound wave seem at this time to be
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more interesting for their own sake than as experimental methods in
chemical kinetics.

4.5. Interpretative Problems

The identification of the particular chemical or structural equilibria per-
turbed in a given acoustic experiment is the principal interpretative
problem encountered in the applications of acoustics to chemical kinetics.
The specific expressions for the dependence of the relaxation amplitudes
and relaxation times on the equilibrium chemical composition, the volume
and enthalpy changes for the reaction, and the properties of the medium
that are developed in Chapters 4.2 and 4.3 are the usual basis for the attri-
bution of an observed relaxation to a given microscopic process. In Sec-
tions 4.5.1 and 4.5.2, examples, drawn from the literature of proton-
transfer kinetics, where we believe a reasonably convincing attribution is
possible, will be offered by way of illustration. In Section 4.5.3 some
possible sources of absorption in polymer and polyelectrolyte solution
will be discussed as examples of an area of endeavor where interpretative
problems rather than experimental difficulties predominate.

4.5.1. A Straightforward Case

Ionizations of glutamic acid in basic solution of the form
R—NH, + H,0 == R—NH," + OH" (4.5.1)

are more than usually amenable to study by ultrasonic techniques. The
volume changes are large (20—30 ml/mole) and the equilibrium constants
are easily determined by classical techniques or estimated by analogy
from rather extensive tabulations.®

If we denote the total concentration of amine ((R—NH,] +
[R—NH;*)) by C, and the equilibrium constant for the reverse reaction
by K, then

r___ KG[OHT]
laeal = KCo + (1 + K[OH)?’
o =7 = ky(R—NH,"] + [OHD + k, 4.5.2)

_ ko{KCo + (1 + K[OH])}
K(1 + K[OH™)) ’

% M. Kotake (ed.), ‘‘Constants of Organic Compounds.’’ Asakura Pub., Tokyo, 1963.
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where I' has a maximum value at [OH™] = (1 + KC,)'*/K and r a max-
imum at [OH™] = (KCo)"* — 1. Unless R—NH, is a rather strong base
and the solution is rather dilute, KC, >> 1. Hence the relaxation ampli-
tude o7 as a function of pH will be a steep-sided bell-shaped curve with a
maximum at

PHpax = #(pK,, + pK, + log Cy),

where pK,, and pK, are the negative logarithms of, respectively, the dis-
sociation constant of water and the acid ionization constant of R—NH,™.

In any case, from Egs. (4.5.2) it is possible to calculate the form of the
variation of the amplitude with pH. From a single kinetic parameter &,
determined at any pH, it is possible to predict the form of the variation of
a, with pH. From k,, and a known or estimated volume change, one may
deduce the magnitude of a, due to the process represented by Eq. (4.5.1)
at any frequency and pH. Thus it is not at all difficult to decide whether
the acoustic absorption which might be observed in basic solutions of an
amine is attributable to an ionization reaction. Indeed, if the form of the
variation of a, with pH is such as to justify such an attribution, the equi-
librium constant and volume change for the reaction, if not known, are
easily deducible from Eqs. (4.5.2) and (4.2.19).

In the example chosen here, 0.5 M L-glutamic acid [R = —OO0C
—CH(CH,);COO™] at pH 11.73, a was measured from 3 to 100 MHz
and fitted to the form of Eqs. (4.1.21)-(4.1.22) with 7 = 1.3 X 1078 sec,
HAr = 140 X 1077 sec®*/cm, and B = 31.8 X 10~ sec?/cm. The data
are presented in the form of a plot of a A versus frequency in Fig. 4.

From the known K (2 x 10* liters/mole), k, and AV are deduced from
the experimentally determined & and = and, assuming ideal-solution
behavior, the absorption at 5.26 MHz is calculated as a function of pH and
compared with experiment in Fig. 5. The agreement is sufficiently good
to nominate the process represented by Eq. (4.5.1), proceeding by the
simple Kinetic scheme implied by Eq. (4.5.1), as the important source of
absorption. Only the fact that & is significantly higher than the absorp-
tion in pure water suggests the existence of a second process (conforma-
tional change? association? modification of structural relaxation in water
by the solute? perturbation of solvation equilibria?) with a relaxation fre-
quency much higher than the highest measuring frequency.

There are to be sure other proton-transfer processes possible in glu-
tamic acid solution. However, I' is less than ¢/»? for the least abundant
species and, thus, at the high pH at which these measurements were per-
formed, T for any process which involves protonation or deprotonation of
the carboxyl groups (pK, = 2.115 and 4.346) are neglible. Similarly, at
low pH, proton transfers at the carboxyl groups can be investigated*®-#?



224 4. ULTRASONIC CHEMICAL RELAXATION SPECTROSCOPY

10 2.0
log f(MHz)

F1G. 4. Plot of a.\ versus frequency for 0.5 M aqueous glutamic acid at 25°C and pH
11.73.

150 : —
r E
I 4
00~ T
€
o
> L i
o
©
LA
~ - -
<
Y 1
14 .
Q
50 -
i | 1
10 H 12 13

pH
F1G. 5. Plot of a/f* at 5.26 MHz as a function of pH for 0.5 M agueous 1-glutamic acid at

25°C; the solid curve represents a theoretical fit using the known dissociation constant and a
rate constant and volume change derived from the data in Fig. 4.
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uncomplicated by reaction at the amine group. It will be seen that it is
not always possible to choose conditions so that only a single process
contributes significantly to the relaxation of proton-transfer equilibria.
Simple reactions of the form of Eq. (4.5.1) or its counterpart in acid so-
lution (HA == H* + A~) have been extensively investigated by ultrasonic
techniques. For weak acids with reasonable exceptions (i.e., sterically
hindered or internally hydrogen-bonded systems), the rates of the bimo-
lecular step have been successfully rationalized in terms of the Debye -
Smoluchowski theory with r,, the effective radius for reaction, taken to
be of the order of an O—-H—O or N-H—O hydrogen bond distance
(2.7 A) and the effective dielectric constant D being equal to the bulk di-
electric constant of water. The Debye-Smoluchowski result is®”

ky = 4moNozpazpe (G, + Gg)/DkT[exp(zazpeol/DrakT) — 1],
4.5.3)

where N, is Avogadro’s number, z, and zy the algebraic charges of
species A and B, e, the electronic charge, T the temperature in degrees
Kelvin, rq the reaction radius, G, and Gy the diffusion coefficients of
species A and B, k the Boltzmann constant, and o the steric factor. The
diffusion coefficient of the hydroxide or hydronium ion is almost always
much greater than that of the other acid or base; hence, except for
systems with exceptionally small steric factors, &, is roughly independent
of the chemical nature of the acid or base. The approximate transferrabil-
ity of bimolecular rate constants as deduced from observations on simple
systems will be of considerable assistance in interpreting results in more
complex cases.

4.5.2. lonization Reactions of p-Aminobenzoic Acid:
Kinetic Modeis

In contrast to glutamic acid, in the neutral form of p-aminobenzoic acid,
both the classical (HAB) and zwitterionic (ABH) forms are present in ap-
preciable concentrations. The kinetics of the interconversion of the clas-
sical and zwitterionic forms

+
o s
C .
H—C/,»-\\?—H N HCT i—H
l S ,‘ A l ‘\ ,’
H—C\‘f’,C—H -G & -H (4.5.4)
COOH oo™
HAB ABH

97 P, Debye, Trans. Electrochem. Soc. 82, 265 (1942).
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are not easily accessible to other techniques and the equilibrium constant,
6.8, and volume change, — 11.4 ml/mole, are such as to suggest that even
with the limited solubility (~0.03 M) of aminobenzoic acid in water an ul-
trasonic method might be appropriate. In slightly acidic solutions of p-
aminobenzoic acid, the species AB~, H*, and HABH™ are present in ap-
preciable concentration and a reasonable choice of linearly independent
basis reactions might be as summarized in the accompanying tabulation.

Reaction K (M/liter) AV (ml) No.

HAB % H* + AB- 1.4 x 1075 -9.4 R
ABH .—:_:-‘- H* + AB- 9.3 x 10°% 2.0 (R2)
HABH* .%— HAB + H* 6.2 x 10~ -9.4 (R3)

The intramolecular proton-exchange process is contained in this set
[(R1)-R2)]. The circumstances under which Eq. (4.5.4) corresponds to a
kinetic process distinct from ionization and recombination is a question
one might hope to answer in an experimental study.

There are, however, a larger number of thermodynamically redundant
but kinetically distinct reactions that might also contribute to the relax-
ation of internal and overall ionization equilibria.

HABH* :;“ ABH + H*, (R4)
HABH* + ~AB :.: 2HAB, (RS)
-AB + HABH* ::_ 2ABH, (R6)
HABH* + ABH :.: HAB + HABH*, (R7)

ABH + ~AB === “AB + HAB. (R8)

The number of independent rate constants in such a scheme is too large
to permit progress from an observed relaxation time to rate constants for
the individual steps. Indeed, the limited solubility of p-aminobenzoic
acid in water makes it rather difficult to determine « at low frequencies in
a pulse-echo apparatus with sufficient accuracy to determine uniquely a
relaxation time or times (Fig. 6). However, the reverse process of pro-
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Fi1G. 6. (a) Measured and calculated (solid curve) values of a/f* in 0.025 molar p-
aminobenzoic acid at 5.4 MHz and 25°C as a function of pH. (b) The quantity a which spe-
cifies the deviation of the important normal mode from pure interconversion of classical and
zwitterionic forms is.plotted as a function of pH.

ceeding from known equilibrium constants and volume changes and from
assumed rate constants, that is, from a kinetic model, to normal reactions,
relaxation times, and amplitudes and then to acoustic absorption as a
function of pH and frequency, remains relatively easy. Thus, if there is
sufficient knowledge of the equilibrium thermodynamics, the adequacy of
a complex kinetic scheme may on occasion be tested in circumstances
where resolution of the observed acoustic absorption into distinct relax-
ation times and amplitudes is difficult. The system of equations
(R1)~(R8) are offered as an illustration of this approach.

As discussed previously, the rate constants for the bimolecular recom-
bination reaction between H* and the carboxylate group [(R1) and (R4)]
or the primary amine group [(R2) and (R3)] do not depend greatly on the
chemical nature of the acid or amine, Average values for (R1) and (R4)
are 4 x 10'° moles/liter sec; 1.5 X 10'° moles/liter sec is typical for (R2)
and (R3). Bimolecular proton transfer processes with equilibrium con-
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FiG. 7. Measured and calculated (solid curve) frequency dependence of a/f* in 0.025
molar p-aminobenzoic acid at pH 3.56 and 25°C.

stants greater than one [(RS—RS8)] are in general diffusion controlled.
From the known diffusion coefficient of p-aminobenzoic acid
(0.843 x 1073 mole/cm? sec) and for a reaction radius of 2.7 A, Eq. (4.5.3)
predicts in water at 25°C a rate constant k; = 0.98 x 10'° mole/sec when
the transfer is between a negatively charged carboxylate group and a posi-
tive — NHy* as in (R5) and k; = 0.34 x 10'° mole/sec when the transfer is
between neutral groups (protonated carboxyl and —NH,;) as in (R6).
Reactions (R5)-(R8) all require simultaneous orientation of one reactive
site in each molecule along the line joining the two molecules; hence, tis a
reasonable rough estimate for o.

The equilibrium constants and volume changes for reactions (R4)-(R8)
are deducible from those for the basis reactions (R1)-(R3). Thus, all the
information necessary to compute the frequency dependence and pH
dependence of the absorption is available. The predictions from the
kinetic model shown in Figs. 6 and 7 are in fairly good agreement with
experiment and this agreement could easily be improved by chemically
reasonable ad hoc adjustment of the kinetic parameters.

At pH greater than 2.5, a single mode accounts for more than 90% of
the calculated absorption. With a redundant set of reactions there is
always latitude in the representation of a normal mode in terms of inde-
pendent basis reactions. If the important mode is expressed as ABH —
HAB + a("AB + HABH* — 2HAB) + b(HABH'* —» HAB + HY),
then b is large (3.7) at pH 2, significant at pH 2.5 (.27), and negligible
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above pH 3. The quantity a is plotted as a function of pH in Fig. 6b. It
will be seen that in this analysis that the acoustic absorption is primarily
due to perturbation of the equilibrium between the classical and zwit-
terionic forms of p-aminobenzoic acid, although over part of the pH range
there is a significant admixture of the reaction between cationic and an-
ionic forms to give the neutral acid. Moreover, the intramolecular proton
transfer proceeds by a series of biomolecular diffusion-controlled steps.
There is no reason to adduce a direct intramolecular transfer mechanism.

It should also be noted that the mixture of an ionization reaction into a
normal mode, which is principally internal proton transfer, means that
there is a second Wien effect and a conductivity change associated with
that mode, and one should not immediately reject the possibility that such
a process might contribute to the relaxation spectrum observed in, for ex-
ample, a pulsed E field experiment.®®

As one proceeds to yet more complicated systems (i.e., biological mac-
romolecules), one must expect to find many cases where it is not pos-
sible to resolve the observed acoustic absorption into a set of discrete
relaxations, each one identifiable by the methods of Section 4.5.1 with a
single elementary process chosen as one of the basis reactions. The al-
ternate analysis illustrated here, of constructing a model consonant with
what is known about the physical chemistry of these systems and then
using the acoustic absorption to refine the parameters of the model, may
on occasion be preferable.

4.5.3. Polymers and Other Complex Systems

Many of the relaxation phenomena observed in polymer solution are of
course in no sense peculiar to macromolecules. For example, such phe-
nomena as relaxation of side-chain ionization equilibria in polypeptides or
proteins are interpreted by the methods appropriate to small molecules,
somewhat complicated by the distribution of effective ionization con-
stants inevitable in a polyelectrolyte. In polymer solution, as discussed
previously, Egs. (4.1.20) and (4.1.21) should be modified by the introduc-
tion of a frequency-dependent shear viscosity. Fortunately, there is a
simple and fairly satisfactory theory® that allows an estimate of the relax-
ation times and amplitudes associated with shear viscous relaxation.

Explicitly, for the dynamic shear viscosity of a dilute solution of
free-draining Gaussian-coiled macromolecules, Zimm and Rouse obtain®

- < B
n=mt M. RT; 1+ ion’ (4.5.5)

% M. Eigen and E. Eyring, J. Am. Chem. Soc. 84, 3254 (1962).
® B, H. Zimm, J. Chem. Phys. 24, 269 (1956); P. E. Rouse, ibid. 21, 1272 (1953).
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Fi1G. 8. The solid curve represents a.A versus frequency for a system with two relaxation
process, both with & = 6.3 x 10™® sec/cm. For one process f; = 10 MHz (47 =
100 x 107" sec?/cm); for the second process f. = 30 MHz (&1 = 33 x 1077 sec?/cm).
The dashed curve represents a.A for a single relaxation with f, = 17 MHz and & = 1.1 X
1077 sec/cm.

where 7, is the shear viscosity of the solvent, ¢ the concentration in grams
of polymer per milliliter, M, the molecular weight of the polymer, and the
relaxation times 7; are given by

11 = 6Mymo[n]o/7m*RTE, (4.5.6)

where [7], is the intrinsic viscosity of the solution at zero frequency. The
substitution of Eqs. (4.5.5) and (4.5.6) into Eq. (4.1.20) gives for the
acoustic absorption

a _ 87 RT¢ T

£ 3M,pvd Z 1+ Qufr)*

(4.5.7)

The sum over /in Eqs. (4.5.5) and (4.5.7) extends from 1 to L, the total
number of independent segments in the polymer chain. A precise defini-
tion of L is not without its difficulties; fortunately, the acoustic absorption
is principally associated with the lower / modes and is not very sensitive
to the choice of the length of an independent segment of the coil. Equa-
tion (4.5.6) has been modified,®® with only slight complication, to take
hydrodynamic interactions into account. Unfortunately, there is not a
comparably simple and satisfactory theory of dynamic volume viscosity.

It is natural to seek the simplest explanation of any observed acoustic
relaxation, and often when a single relaxation apparently gives a satisfac-
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tory account of the data, viscous relaxation is ignored. Figure 8 consti-
tutes an argument in support of the proposition that with only a modest
experimental error it is as easy to arrive at an erroneously oversimplified
interpretation as it is to err by overinterpretation.

The absorption predicted by Eq. (4.5.7) is usually not large. For ex-
ample, for a 10% by weight aqueous solution of polyethylene oxide of
molecular weight 20,000, 7, = 1.6 X 1077 sec 1/27r7, = 1 MHz, and o7, =
12 X 107¥ sec?/cm. Shear viscous relaxation is not usually the sole, and
often not the principal, acoustic relaxation phenomenon in polymer solu-
tion. It is, however, generally present and its contribution is approxi-
mately calculable from easily measured quantities.

The results in Markham et al.®s or Chapter 4.4 imply that the effect of
viscous relaxation is, to a good approximation, independent of and addi-
tive to the effect of chemical relaxation. A valid interpretation'® of
excess absorption in dilute solutions of flexible macromolecules probably
begins with a deduction of the contribution of shear relaxation as obtained
from Eq. (4.5.7) or from the somewhat more sophisticated theories which
include hydrodynamic interactions. It has been suggested!®-1%2 that if the
contribution of the Zimm-Rouse modes to the volume viscosity were
properly evaluated, viscous relaxation might fully account for the ob-
served absorption in such systems as aqueous polyethylene oxide and
Dextran. Theoretical progress in this matter would be of considerable
utility.

In the absence of a satisfactory theory of the contribution of structural
relaxation, it is a distinct temptation to attribute any absorption with con-
centration dependence appropriate to a unimolecular process to perturba-
tion of solvation equilibria,'®~% where ‘‘solvation’’ is not necessarily to
be understood simply as association between a solvent molecule and a
segment of the polymer but includes the induction of altered *‘structures’’
of solvent in the neighborhood of the polymer. In the case of aqueous so-
lution in particular, by assuming a suitable degree of cooperativity, one
may make plausible whatever volume change one wills and the antic-
ipated characteristic times can be slowed from the very fast relaxations
associated with molecular reorientation and structural relaxation in liquid
water to a desired value in the ultrasonic range.

100 M. A. Cochran, J. H. Dunbar, A. M. North, and R. A. Pethrick, J. Chem. Soc.
Faraday 11 70, 215 (1973).

101 g A. Hawley and F. Dunn, J. Chem. Phys. 50, 3523 (1969).

1027, W. Kessler, W. D. O’Brien, Jr., and F. Dunn, J. Phys. Chem. 74, 4096 (1970).

169 G, Hammes and T. B. Lewis, J. Phys. Chem. 70, 1610.

14 G, Hammes and P. Schimmel, J. Am. Chem. Soc. 89, 442 (1967).

15 G. Hammes, and P. B. Roberts, J. Am. Chem. Soc. 90, 7119 (1968); J. Chem. Phys. 52,
5496 (1970).
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It is to be hoped that more sophisticated computation of solvent—
macromolecule'® potentials, large-scale Monte Carlo and molecular
dynamics calculations which may make the kinetic and structural'®’ con-
sequences of a potential explicit, and the increased ability of crystallog-
raphers to locate the water molecules associated with macromolecules
may shortly place some theoretical and experimental constraints on the
relaxation parameters associated with solvation, but with the present
state of knowledge as it is, it is indeed possible to postulate that perturba-
tion of the translational or orientational distribution of solvent molecules
in the neighborhood of a polymer molecule is the principal source of
acoustic absorption in a given system or to conclude, in this particular
case, as have others more generally'®® that the concept of structural relax-
ation of solvated water is so ill-defined as to be without substantial utility.

The case of aqueous polyethylene oxide may serve to illustrate some
difficulties and possible interpretative pitfalls. Hammes and Schimmel'*
and Hammes and Lewis'® have made what is, on the basis of the internal
ultrasonic evidence, a plausible case for perturbation of a cooperative hy-
dration equilibrium as the important source of ultrasonic absorption.
They find that their results can be described by a single relaxation time
which increases with increasing molecular weight up to M, = 3400 (pre-
sumably the approximate size of the cooperative unit) and is independent
of molecular weight thereafter and also that 7 at high molecular weight
exhibits a rather sharp transition from higher to lower values as the con-
centration of the ‘‘structure-breaking’’ solute urea is increased. The pre-
sumably less cooperative relaxation at low molecular weight is relatively
insensitive to the presence of urea.

On the other hand, Kessler et al.1*? working over a somewhat greater
range of frequencies found that more than one relaxation was required to
describe their data and that the contribution of shear viscous relaxation as
calculated from Eq. (4.5.7) was a significant fraction of the observed ab-
sorption. Hawley and Dunn!® argued plausibly that if both shear relax-
ation and a sécond process contribute to the absorption, then as the
molecular weight increases and the frequency of the first Zimm-Rouse
mode drops, f; for the best single-relaxation approximation to the data
will decrease until the viscous relaxation frequency falls well below the
lowest measuring frequency at which point 7 becomes independent of
molecular weight as observed in Hammes and Lewis'® and Hammes and

1% 1. Carazzo, G. Corongiu, C. Petronglio, and E. Clementi, J. Chem. Phys. 68, 787
(1978).

19" A. Rahman and F. Stillinger, J. Am. Chem. Soc. 95, 7943 (1973); J. Chem. Phys. 60,
1545 (1974).

1% A. Holtzer and M. F. Emerson, J. Phys. Chem. 73, 26 (1969).
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Schimmel.!™ Moreover, Jones and Stockmayer!® found that the spin-—
spin and spin-lattice relaxation times as well as the chemical shifts of the
polymer protons showed only a small and gradual transition with urea
concentration arguing strongly against a highly cooperative transition in
water structure. Thus, even in a rather simple polymer in which no
chemical relaxation is possible, interpretation of the acoustic observa-
tions is difficult.

The helix-coil transition in uniform polypeptides is perhaps the best
characterized of the reversible conformational transitions in macromo-
lecular systems. In particular, the conveniently synthesized, water-
soluble, polyamino acids, poly-L-lysine,!'® poly-L-ornithine,'' and poly-
L-glutamic,*#7'15 have been fairly extensively studied by ultrasonic and
other relaxation techniques. The number of processes possible in a fairly
concentrated solution of flexible polyelectrolytes is large and it is easier to
determine a relaxation time and relaxation amplitude than it is to arrive at
a unique attribution of the observed relaxation to a given microscopic
process. In the case of the helix-coil transition, perturbation of side-
chain ionization or intramolecular proton-transfer equilibria''® remain rea-
sonable alternative explanations of the acoustic and other relaxation
spectra which are observed in the regime of temperature, pH, and ionic
strength in which the helix-coil transition occurs and neither studies by
pulsed electrical field,!*”!*® T jump,''® or ultrasonic techniques have yet
produced an unequivocal result for the characteristic time for the addition
of a helical segment to a preexisting sequence of helical segments. Pro-
teins and other nonuniform polyelectrolytes present yet greater
problems. 118122

With the recent development of instruments capable of accurate mea-
surements on small sample volumes'3-1?2 and sensitive automated pulse

1% A. A. Jones and W. H. Stockmayer, J. Phys. Chem. 78, 1528 (1974).

10 R. C. Parker, L. J. Slutsky, and K. R. Applegate, J. Phys. Chem. 72, 3177 (1968).

11 G. Hammes and P. B. Roberts, J. Am. Chem. Soc. 91, 1812 (1969).

112 3, Burke, G. Hammes, and T. Lewis, J. Chem. Phys. 42, 3520 (1965).

u3 A, Barksdale and J. Stuehr, J. Am. Chem. Soc. 94, 3334 (1972).

14 R, Zana, J. Am. Chem. Soc. 94, 3646 (1972).

us F. Eggers and Th. Funck, Stud. Biophys. §7, 101 (1976).

118 1. Madsen and L. J. Slutsky, J. Phys. Chem. 81, 2264 (1977).

17 A. L. Cummings and E. M. Eyring, ‘‘Chemical and Biological Applications of Relax-
ation Spectrometry’’ (E. Wyn-Jones, ed.). Reidel, Boston, Massachusetts, 1975.

U8 T. Yasunaga, Y. Tsuji, T. Sano, and H. Takenaka, J. Am. Chem. Soc. 98, 813 (1976).

"8 B, L. Carstensen and H. F. Schwann, J. Acoust. Soc. Am. 31, 305 (1959).

120 R. D. White and L. J. Slutsky, Biopolymers 11, 1973 (1972).

121 p. D. Edmonds, Biochem. Biophys. Acta 63, 216 (1962).

122 M. A. Breazeale, J. H. Cantrell, Jr., and J. S. Heyman, Part 2, this volume, pp. 67135
(1981).
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systems! suitable for the determination of differential acoustic absorption
in very dilute solution, ultrasonics has become a kinetic technique of con-
siderable generality applicable to most fast equilibria in which, at some
set of experimentally accessible conditions, all reactants and products are
present at appreciable concentrations. However, when there is not a sat-
isfactory theory or body of experimental knowledge for the relaxation am-
plitudes associated with the process in question, and with plausible alter-
native or concomitant processes, the generality of the technique is a
source of ambiguity. The case of reversible conformation transitions in
macromolecules is, we believe, representative of the difficulties that can
be encountered in interpreting results in systems with many chemical and
structural degrees of freedom. It should be noted, however, that
others!?® have taken a more optimistic view of the current state of knowl-
edge, at least for polymers with nonionic side chains.

Greater success has been achieved in systems of lower molecular
weight but greater chemical complexity. Kinetic studies of the confor-
mational changes coupled to the ion complexation reactions of small pep-
tide antibiotics'2* and synthetic analogs of ionophore antibiotics'?3:!2¢ have
yielded information only difficultly accessible by other techniques. Inad-
dition to the established utility of ultrasonics in fast association reactions,
proton-transfer reactions, and conformational changes in small mole-
cules, there seems every prospect that the technique will continue to
prove useful in the study of fast processes in chemically complex systems
where it is possible either from an adequate experimental or theoretical
knowledge of the equilibrium thermodynamics to make an unequivocal
identification of the chemical processes which contribute to the relaxing
volume or heat capacity.

We have been concerned almost exclusively with the utility of acoustic
relaxation as a method for the study of very fast chemical and structural
transformations. However, pulse-echo techniques do lend themselves
naturally to time-resolved measurements of ultrasonic velocity and ab-
sorption. Thus either velocity or absorption can be used as an analytical
technique to monitor changing chemical composition as a reaction runs its
course whether or not there is an adequate microscopic understanding of

123 B. Gruenewald, C. U. Nicola, A. Lustig, and G. Schwarz, Biophys. Chem. 9, 137
(1979).

% F. Eggers and Th. Funck, Die Naturwiss. 63, 280 (1976); E. Grell and Th. Funck, J. Su-
pramol. Struct. 1, 307 (1973).

128 1., J. Rodriquez, G. W. Liesegang, R. D. White, M. M. Farrow, N. Purdie, and E. M.
Eyring, J. Phys. Chem. 81, 2118 (1977).

128 1,. J. Rodriquez, G. W. Liesegang, M. M. Farrow, N. Purdie, and E. M. Eyring, J.
Phys. Chem. 82, 647 (1978).
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the differences in the acoustic properties of reactants and products. Ul-
trasonic studies of the kinetics of protein denaturation with a sampling in-
terval of 5 msec'?” have been reported and, although the technique has not
been extensively exploited, acoustic methods may occasionally offer a
useful alternative to the traditional optical or conductiometric methods of
following moderately fast reactions. Similarly, a technique in which
equilibrium is perturbed optically and the response sensed by condensor
microphone has been used to determine the kinetics of the release of pro-
tons from membrane-bound bacteriorhodopsin into the surrounding buf-
fered aqueous medium.!?® Although the characteristic time for this
process (~400 usec) is in a range accessible to a variety of relaxation
methods, the “‘hybrid’’ acoustic technique, which places no restriction on
the concentration of the buffer and which requires no, indicator, has
proven convenient in this rather complex system.

¥ K. Yamanaka, H. Nakajima, and Y. Wada, Biopolymers 17, 2159 (1978).
2 D. R. Ort and W. W. Parson, J. Biol. Chem. 253, 6158 (1978).
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5. SCATTERING IN POLYCRYSTALLINE MEDIA
By Emmanuel P. Papadakis

5.1. Introduction

5.1.1. General Comments

5.1.1.1. Interest in Engineering and Science. Polycrystalline media
present particular problems and afford special opportunities for the scien-
tist or engineer working with ultrasound. Both the problems and the
opportunities can be traced directly to the polycrystalline constitution of
the medium because the grains of the polycrystal affect ultrasonic waves
very strongly. For one scientist the grains of the polycrystal obscure the
properties of the crystal structure he would study, while for another sci-
entist the grains permit the performance of scattering experiments in clas-
sical physics. For one engineer the grains make the penetration inade-
quate for testing for flaws in forgings, while for another engineer the
grains permit testing for the improper fabrication and heat treatment of
parts. Other specialists have their unique problems; for instance, com-
munications personnel working with ultrasonic delay lines are concerned
with the interactions of elastic waves and grains because they are inter-
ested in propagating ultrasonic waves with no loss of information. In
general, persons working with ultrasound are interested in the rate of
change of energy in an ultrasonic wave for one of two purposes: to find
what these parameters can tell them about a material and to find the way
the parameters characterize the material as a propagation medium. The
outlooks and approaches are different: persons of the first group use ultra-
sonic waves to investigate materials, whereas those of the second group
use materials to support the propagation of ultrasonic waves. Both
groups need to know how to handle the propagation of ultrasonic waves in
polycrystalline media. This part is concerned with scattering that ab-
stracts energy from the wave, resulting in attenuation.

5.1.1.2. Description of Polycrystallinity. A polycrystalline medium
consists of grains of the constituent material.'? In general, these grains

1 C. S. Barrett, ‘‘Structure of Metals,"’ 2nd ed. McGraw-Hill, New York, 1952.
? R. M. Brick and A. Phillips, ‘‘Structure and Properties of Alloys,”’ 2nd ed. McGraw-
Hill, New York, 1949,
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are of various shapes and sizes, filling all space within the boundaries of
the medium. The grain boundaries themselves are fairly flat curved sur-
faces. The grains may form by crystallization from the melt or by recrys-
tallization during heat treatment, as in a metal, or they may be brought
together by pressure and sintering, as in a ceramic. Other forms of
growth, such as pyrolysis or devitrification, can produce polycrystalline
media. Partial devitrification can result in the presence of grains within
an amorphous matrix filling the rest of space in the sample —an interest-
ing situation. If the grains have voids or inclusions at their boundaries,
then the situation is more complicated than if the boundaries are between
the constituent material of the grains themselves. A single grain may be a
single crystal of the constituent material or it may have two or more
phases breaking up the grain. Not all the grains in one piece of metal
need have the same proportion of chemical constituents, the same lattice
constant, or even the same crystal structure. A two-phase alloy, for in-
stance, may have some grains of one phase and some of the other. Some-
times one phase can be grown or precipitated within grains of another
phase. At any rate, each grain can be assigned a set of axes corre-
sponding to the crystal axes of its major constituent or of its contents as
they were before the multiple phases subdivided it. These grain axes are
oriented differently from grain to grain. If any orientation with respect to
the symmetry of the sample is more probable than others, then there is
preferred orientation. The geometry of the grains as a whole may be
elongated, flattened, or fairly spherical. Grains of a more or less spheri-
cal shape are termed equiaxed. If a treatment has made all the grains of a
sample fairly spherical, thery one says that the sample has been equiaxed.
The simplest polycrystalline sample is an equiaxed, homogeneous,
single-phase material with no preferred orientation, no inclusions, and no
voids. Many metals and alloys can be processed to yield such samples,
although preferred orientation is difficult to remove. Much theoretical
and experimental work has been done on the propagation of elastic waves
in such media. Modifying any of the restrictions mentioned above, how-
ever, makes the analysis more complex and the experiments more inter-
esting.

5.1.1.3. Wave Propagation. To discuss the propagation of ultrasonic
waves? let us first consider a plane wave passing through a medium that
can abstract energy from the wave. Then the wave is represented by

A = Age °L? sin(Bz — w!), (5.1.1)

where A is the magnitude of some quantity such as stress, strain, pres-

3 R. B. Lindsay, ‘‘Mechanical Radiation.”” McGraw-Hill, New York, 1960.
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sure, particle displacement, particle velocity, or particle acceleration and
A, that magnitude at the origin. The wave of frequency f = w/27 has a
propagation constant 8 = 2#f/v, v being the phase velocity. The wave
decays with a rate constant of attenuation «; per unit length of travel in
the medium. Often the attenuation oy is measured in nepers per unit time
on an oscilloscope. Then ot = vay. For traveling waves, a and v are
the measurable quantities. In this part the attenuation will be the quan-
tity studied.

5.1.1.4. Principal Effects of Polycrystallinity on Measurabie Quan-
tities. How does the structure of a polycrystalline material influence
attenuation and velocity? Principally, in two ways. The attenuation of a
polycrystalline material in most cases is determined almost entirely by
grain scattering, which disperses the energy in the traveling wave. The
velocity is determined by the elastic moduli and the preferred orientation
of the grains, the latter property making the medium as a whole elastically
anisotropic, so that the velocity is a function of the direction of propaga-
tion. Every parameter and condition mentioned in the description of
polycrystallinity affects the grain scattering strongly and the velocity to
some degree. Anisotropy in the velocity affects the beam spreading cor-
rections to be applied to attenuation measurements.

5.1.2. Scope of the Part

This part will cover attenuation caused by grain scattering and will
touch on the subject of velocity anisotropy caused by preferred orienta-
tion as it affects beam spreading. Both theory and experiment will be
treated, with the emphasis on results. The theoretical approach will be
outlined, and the results presented with enough detail to make them
useful to most workers. Similarly, the experimental methods and equip-
ment will be sketched out sufficiently to permit most readers to grasp the
essentials of an experiment without being burdened with details. Empha-
sis will be placed on the way the results of the experiment verify a particu-
lar theory or illustrate a certain point of interest. For the worker desiring
a complete knowledge of a theory, experiment, or technique there will be
copious references to the literature. Material already summarized in
textbooks and reference works will be treated briefly; brevity does not in-
dicate disfavor or lack of value. Some of the older work may be super-
seded by more modern treatments, of course. Where this is so, it will be
noted. Where effects other than those under study appear in ex periments
to obscure the results, methods of correcting for them will be given. The
emphasis, as has been stated, will be on attenuation caused by grain scat-
tering. First, consideration will be given to theory and experiment on
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scattering by single-crystal grains, by grains exhibiting preferred orienta-
tion, by grains broken up into several phases or disoriented regions, and
by nonequiaxed grains. Carbon steel will be emphasized as a case of
phase transformations.

5.2. Attenuation Caused by Grain Scattering

5.2.1. Theory of Grain Scattering

5.2.1.1. General Considerations. A wave impinging upon an inho-
mogeneity in a medium will be scattered. The disturbance within the in-
homogeneity will differ from the incident wave; the difference will give
rise to other waves outside the inhomogeneity. The scattered waves will
depend on the propagation characteristics within the inhomogeneity and
outside it, on the mode of the incident wave, and on the boundary condi-
tions at the surface of the inhomogeneity. The boundary conditions xor
elastic waves are the continuity of stress and displacement across the
boundary. After the scattered waves are found, the power they carry off
may be computed as the outgoing flux density integrated over a sphere in
the radiation region far from the inhomogeneity. The scattered. power
will be a fraction of the incident power; for a unit volume containing N in-
homogeneities scattering independently (no multiple scattering), the frac-
tion will be N times as large and will determine the rate of attenuation of
the incident wave,

Scattering by single inhomogeneities, particularly spheres and cylin-
ders, has been studied extensively.?"1° In general, an inhomogeneity will
scatter elastic waves if it differs in modulus or density from the sur-
rounding medium. The scattering depends also on the wavelength X rela-
tive to the size of the inhomogeneity. For scattering by single inho-
mogeneities of diameter D this scattered power is proportional to D*, D
being the particle diameter, when A = D, and to D% when A > D.

A polycrystalline medium is a space totally filled with inhomogeneities.
One grain is different from all those around it since it is elastically aniso-
tropic and since its crystallographic axes are misoriented with respect to

* Lord Rayleigh, ‘“The Theory of Sound,” pp. 149-152. Macmillan, London, 1894,
and Dover, New York (first Am. ed., 1945).

3 P. M. Morse, ** Vibration and Sound,”” 2nd ed., pp. 346—357. McGraw-Hill, New York,
1948.

8 C. F. Ying and R. Truell, J. Appl. Phys. 27, 10861097 (1956).

7" R. M. White, J. Acoust. Soc. Am. 30, 771-785 (1958).

8 N. G. Einspruch and R. Truell, J. Acoust. Soc. Am. 32, 214-220 (1960).

® N. G. Einspruch, E. J. Witterholdt, and R. Truell, J. Appl. Phys. 31, 806—818 (1960).

10y, H. Pao, and C. C. Mow, J. Appl. Phys. 34, 493-499 (1963).
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the axes of its neighbors. The latter condition makes the modulus dif-
ferent from grain to grain. The grains may also differ in density; a
two-phase alloy is a possible example. However, the elastic anisotropy of
a grain, resulting from its crystalline nature, usually has the larger effect.
The preferred orientation, if any, has a large effect, since it modifies the
change in modulus from grain to grain by aligning the crystallographic
axes. It is a secondary aspect, however, and will be considered later.

From what has been said, it will be seen that the treatment of the elastic
anisotropy of a grain is of central importance in the grain scattering
problem. Another question, of equal importance, is the grain-size distri-
bution in the polycrystalline medium, for the scattering depends strongly
on the particle size. Obviously, averaging over a grain-size distribution
will affect powers of D considerably. Similarly, the number of scatterers
per unit volume (which is taken as the reciprocal of the average grain vol-
ume) will be affected by a grain-size distribution.

In the next two sections the twin problems of the elastic anisotropy and
the grain-size distribution as they contribute to grain scattering will be
treated. The current theories will be summarized and the results ex-
plained in useful forms. After that there will be two short sections on the
effects of microstructure and preferred orientation. Theories on these
are only qualitative so far; the analytical treatment being restricted to cer-
tain simplified two-dimensional models. However, they represent
progress toward understanding the experiments on scattering in polycrys-
talline media with microstructure or preferred orientation. Various
experimental work on scattering will be presented in Section 5.2.3.

5.2.1.2. Grain Scattering Formulas for Anisotropic Grains. The
early work on grain scattering by Mason and McSkimin!!-'? was an at-
tempt to adapt the formula of Rayleigh* to scattering by grains in a metal.
Rayleigh’s work originally applied to an inhomogeneity in a fluid for the
case A >> D. Two concepts were introduced by Mason and McSkimin:
the idea that the number of scatterers was inversely proportional to the
average grain volume and the idea that the mean-square fractional varia-
tion of the modulus of a grain with azimuth and declination could express
the elastic difference between the grain as an inhomogeneity and all the
other grains as a medium in which the one scatters. The first concept is
still used, but the second has been modified considerably in the more
exact formulations of the grain scattering theory made more recently. An
acknowledged shortcoming of the early theory was its failure to account
for mode conversion. More recent theoretical and experimental work
has shown that most (80%) of the scattered energy from an incident longi-

11w, P. Mason and H. J. McSkimin, J. Acoust. Soc. Am. 19, 464—-473 (1947).
12 W. P. Mason and H. J. McSkimin, J. Appl. Phys. 19, 940-946 (1948).
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tudinal wave is carried off by shear waves in the case A >> D, so the
more exact formulation is necessary. Other investigators!®~** have
suggested mechanisms for grain scattering for the cases A = D and
A << D.

The grain scattering problem was solved in the presently accepted
manner by Lifshits and Parkhomovskii.'® The restrictions on the validity
of their solution are as follows:

(1) The anisotropy of the grains must be small; that is, the variation in
modulus with azimuth and declination must be much smaller than the
average value of the modulus.

(2) Preferred orientation must be absent.

(3) The grains must be equiaxed.

(4) The material must have single-crystal grains of a single phase with
no voids or inclusions.

Solutions emerge for two ratios of A to D, namely, A >2#D and A <
27D, where D is the average grain diameter. Merkulov!? specialized the
general solution to the common cases of cubic and hexagonal metals. His
expressions are summarized here. The following material will be re-
ferred to as the LPM theory (Lifshits - Parkhomovskii —-Merkulov theory).

Case I: Rayleigh scattering with X > 2nD.

Cubic Crystallites:

87 ulTr* (2 3
a = _—_375[)2013 {U_l"’ + ;;g}, (5.2.1)
273l Tt (2 3
o 125p%02 {U_t"’ + ;J?}’ (5.2.2)
with
M= Cip — C1g — ZC“. (5.2.3)
Hexagonal Crystallites:
_ 47Tf* (a, b
* = 350pt0 {v_z’ vt’}’ 5.2.4)
_ 4773Tf‘ ay bg}
ay = 450P2U13 {vl(, vt5 s (525)

18 H. B. Huntington, J. Acoust. Soc. Am. 22, 362-364 (1950).

M C. L. Pekeris, Phys. Rev. 71, 268—269 (1947).

13 W. Roth, J. Appl. Phys. 19, 901-910 (1948).

18 E, M. Lifshitz and G. D. Parkhomovskii, Zh. Eksp. Teor. Fiz. 20, 175-182 (1950).

" L. G. Merkulov, Sov. Phys. Tech. Phys. (English transl.) 1, 59—69 (1956); Zh. Tekh.
Fiz. 26, 64-75 (1956).
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with
a; = #y? + 40x* + 967® + ¥xy + Hiyn + H¥xm,  (5.2.6)
b, = #y% + 30x* + #2n? + 30xy + 43yn + 80xm, (5.2.7)
a, = Hy? + 15¢ + H0n? + 10xy + Hyn + 40xn,  (5.2.8)
by = &% + 28m% + 8y, (5.2.9)
where
Y = C1p + C33 — 2(C13 + 2¢44), (5.2.10)
X = C13 — C12, (5.2.11)
M= Ca t+ (Cr2 — €11)/2. (5.2.12)

Case II: Intermediate scattering with A < 2aD.
Cubic Crystallites:

1672 " zﬁiz
525v8p% °

o = 472u2Df?
t 210080 ° (5.2.14)

(5.2.13)

a; =

with p as given in (5.2.3).
Hexagonal Crystallites:

_ 1672Df2aq

= T15750%07

(5.2.15)
with
a; = 79 + 35x* + 140n% + 140ym + 30xy + 609y, (5.2.16)

where vy, x, and n as given in Egs. (5.2.10)-(5.2.12). Unfortunately, «,
has not been given.

In these formulas the attenuation « is in nepers per unit length, The
subscripts / and t refer to longitudinal and transverse incident waves,
respectively, the elastic moduli of the crystalline material in the grains are
designated cy, and the anisotropy is expressed by u, vy, x, and . The
density is p, the elastic wave velocity is v, and the ultrasonic frequency is
f. In Rayleigh scattering, T is a measure of the grain size with the dimen-
sions of volume, and in the intermediate scattering range D is the average
grain diameter.

An equivalent theoretical analysis was performed by Bhatia and
Moore,!8 based on Bhatia,!? for Rayleigh scattering in materials of ortho-

18 A. B. Bhatia and R. A. Moore, J. Acoust. Soc. Am. 31, 1140-1142 (1959).
19 A, B. Bhatia, J. Acoust. Soc. Am. 31, 16-23 (1959).
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rhombic grain symmetry. By equating certain pairs of moduli this sym-
metry can be reduced to a hexagonal or cubic one. The attenuation for-
mulas derived by Bhatia and Moore!® do indeed reduce to those presented
by Merkulov'? when this reduction is performed. The orthorhombic Ray-
leigh formulas are presented here. _

Case 1: Rayleigh scattering with A > 2znD.

Orthorhombic Crystallites:

_4mTf* [ B, ﬁ}
ap = szl)la {21)[5 + vf‘ s (5.2.17)
_ﬂ{ﬁ é_e}
@ =g {5t 5 ) (5.2.18)
with
A =By= o P+ —(a+Tb + B + d 5.2.19
1T T s 135 ctd, G219
By = P+ S (da +2b+ 3¢+ d 5.2.20
el s ¢+d) 5.2.20)
1
= 2 4 —
Ao =755 P* + 55 (12a + b + 4c — 2d), (5.2.21)
where

P =(cy + Cas + c33) — (€13 + €13 + C33) — 2(Caq + Cs5 + Cos)» (5.2.22)

a = (cy + Cs5 + Cep)® — 3(CauCss + CysCes + CeaCes), (5.2.23)
b = (c11 + cas + c33)* — 3(C11Cse + CaaCag + C11Cs3), (5.2.29)
¢ = (c13 + C13 + €23)* — 3(cra1s + C13Ca3 + C13C29), (5.2.25)

d = c1y(Cig + €13 — 2ca3) + (12 + Cas — 2¢43)
+ caglcis + €3 — 2c49). (5.2.26)

The definitions of the quantities in these formulas are the same as those
given above with Merkulov’s expressions. Bhatia and Moore!® give more
general formulas for the As and Bs for use in further studies of other grain
symmetries.

5.2.1.3. Grain Scattering Tables. Equations (5.2.1), (5.2.2), (5.2.4),
and (5.2.5) can be written in the form

a = TfiS (5.2.27)

to separate the dependence of the attenuation into a constant coefficient .S
and two experimental variables: f, the ultrasonic frequency, and T, the
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TaBLE I. Scattering Coefficients and Elastic-Wave Velocities

S (dB/cm 3 (dB/cm v (10°
(MH2z)* cm?) (MHz)? cm) cm/sec)
Material Y] S 21 2' 7] Uy
Aluminum 40.2 284 0.059 3.27 6.42 3.04
Chromium® 49.3 164 0.271 3.33 6.77 4.12
Copper 3065 24,600 2.19 158 5.01 227
CugAu® 5850 48,100 2.73 205 4.11 1.85
Gold 16,300 241,000 1.80 438 324 120
Iron 700 3260 1.73 42.0 595 3.24
Iron® 977 4290 2.04 57.7 5.83 3.09
Fe-30%Ni 4210 14,000 10.4 128 455 2.7
Lead 54,500 938,000 1.71 562 1.96 0.69
Lead® 147,000 1,960,000 8.96 1760 221  0.85
Nickel 896 5480 1.46 61.1 6.04 3.00
Niobium® 801 6990 0.541 45.8 5.19 2.29
Palladium® 4240 43,600 1.70 199 4.57 191
Silver 9810 85,700 3.27 277 3.65 1.61
Tantalum® 1080 7530 0.676 359 4.11 1.96
Thorium?® 33,700 163,000 17.7 46.3 2.83 1.52
Tungsten 0.023 0.151 28 x 107 1.3x107® 541 2.64
Vanadium® 63.1 445 0.082 4.56 6.06 2.87

% Voigt velocities used and listed.?®

appropriate average grain volume, where S is a parameter of the material
and will vary little from sample to sample since p, v;, v, and the ¢y vary
little among equiaxed samples of the same nominal composition. Simi-
larly, Eqs. (5.2.13)—-(5.2.15) can be written

a = Df3, (5.2.28)

with a different coefficient 3. The scattering coefficients S and 3, have
been tabulated for a number of elements and compounds by Papadakis.2’
This tabulation is different from earlier tabulations in the literature
(Mason,?! p. 208) because the earlier ones used the formulas of the semi-
quantitative theory of Mason and McSkimin.!> Some of the scattering
coefficients from the 1965 reference are listed in Table I. These calcula-
tions used Merkulov’s expressions!” and, where available, elastic-wave
velocities found experimentally in polycrystalline samples (Mason,? pp.
17-20); in other cases, Voigt velocities?? found from single-crystal moduli

 E, P. Papadakis, J. Acoust. Soc. Am. 37, 703-710 (1965).

21 W, P. Mason, ‘‘Physical Acoustics and the Properties of Solids.”” Van Nostrand-
Reinhold, Princeton, New Jersey, 1958.

22 R. F. S. Hearmon, ‘‘Applied Anisotropic Elasticity,’” pp. 41-44. Oxford Univ. Press,
London and New York, 1961.
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(Mason,?! pp. 355-373) were used. The velocities v; and v, are also listed
in Table I. Where they are Voigt velocities, this fact is indicated.

In two cases in Table I, iron and lead, calculations were made for both
measured velocities and Voigt velocities. The scattering factors differ
appreciably. It is not known whether the discrepancies are caused by
errors in the measured velocities (possibly due to preferred orientation) or
by the bias in the Voigt averaging of the moduli. Hearmon?? mentions
that the Voigt and Reuss velocities differ by up to 30%. As is well
known, Voigt's averaging method assumed continuity of strain across
boundaries, whereas Reuss’s method was based on continuity of stress.
Discrepancies from this cause are to be expected.

In Table I no hexagonal materials were included, since formulas
(5.2.6)-(5.2.12) permit negative values of the scattering factors because
of the cross terms yy, xn, and ny. This anomaly was pointed out ear-
lier.2? Some hexagonal materials actually yield negative values.

5.2.1.4. Graphing of Attenuation Data. Values from Table I will be
used in later sections, in which theory and experiment will be compared.
Generally the method is as follows. The condition Az = 27D is the di-
viding line, or boundary, between the Rayleigh scattering region and the
intermediate region. Corresponding to Ag there is a frequency f3, called
the boundary frequency. At fiz = 0.1f3 the attenuation is computed as
ap = Tfy'S for the Rayleigh region and at f; = 10f3 it is found from ¢; =
Dfi%, for the intermediate region. On logarithmic graph paper a pair of
lines is drawn through these points with slope 4 at f; and 2 at f;. The data
are compared with a curve for which these lines are asymptotic.

At even higher frequencies, where A << D, the scattering is purely a
reflection problem,'? the grain boundaries being considered partially re-
flecting mirrors. In this region the attenuation due to scattering is inde-
pendent of frequency and inversely proportional to the grain diameter.
However, elastic hysteresis again becomes important, and thermoelastic
damping enters once more.?? In the frequency-dependent scattering
region these two effects are swamped by the scattering in most cases.
They produce attenuation linear and quadratic with frequency, respec-
tively. Merkulov®® has seen evidence of hysteresis and thermoelastic
damping when A << Din aluminum. The functional dependence of the
attenuation upon frequency and grain size is summarized in Table II.
This summary was graphed conveniently by Smith and Stephens.?*

3 L. G. Merkulov, Sov. Phys. Tech. Phys. (English transl.) 2, 953-957 (1957).

¥ R. T. Smith and R. W. B. Stephens, In ‘‘Progress in Applied Materials Research’’ (E.
G. Stanford, J. H. Fearon, and W. J. McGonnagle, eds.), Vol. 5, pp. 41-64. Gordon and
Breach, New York, 1964.
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TaBLE II. Functional Dependence

of Attenuation®
Range Dependence™?
A > 211'2 B,f + ADf!
A <2aD A,Df? _
A «Dmln Blf+ Bzfz + AO/D

¢ B, fis elastic hysteresis loss and B, f?
is thermoelastic loss.

b Coefficients A and B are not related
to those given in Egs. (5.1.1), (5.2.17)-
(5.2.21), (5.2.35¢)-(5.2.38), or (5.2.52)-
(5.2.55).

5.2.1.5. Grain-Size Distribution. After the derivation of the scattering
formulas in Section 5.2.1.2, the last remaining difficulty in comparing
theory and experiment lay in finding the proper grain size to insert into the
formulas. Outlined here is a statistical solution, proposed by the
author,?3-2¢ which is appropriate to the problem for approximately spheri-
cal grains.

Several writers?’~3 have pointed out that a polycrystal (particularly a
metal prepared by ordinary mechanical working and heat-treatment
methods) has a distribution of grain sizes. In the ordinary metal the dis-
tribution is approximately lognormal. Let Ny(R) dR be the number of
grains per unit volume of radius between R and R + dR. The average of
a power of R over the distribution is

(R4 = JGR"NV(R) dR/J§NW(R) dR. (5.2.29)

Since the scattering power of a single grain in Rayleigh scattering is pro-
portional to the square of the volume 7% = (47r/3)2R®, one needs (R®),,
over the distribution to find (T2),,. The assumption that the number of
grains per unit volume is inversely proportional to the average grain vol-
ume means that one needs (R?),, to find (T),,. The quantity T appearing
in the equations of Section 5.2.1.2 is not (T),, but, in a strict sense, is
(T?),y/{T)ay, Which is larger than (T),,. Hence it should be understood

# E. P. Papadakis, J. Acoust. Soc. Am. 33, 1616-1621 (1961).

% E. P, Papadakis, J. Appl. Phys. 35, 15861594 (1964).

¥ S, D. Wicksell, Biometrika 17, 85-89 (1925).

28 E. Scheil, Z. Metallkd. 27, 199209 (1935).

# E. Scheil and H. Wurst, Z. Metallkd. 28, 340-343 (1936).

% H. J. Seemann and W. Bentz, Z. Metallkd. 45, 663-669 (1954).
31 P, Feltham, Acta Metall. 8, 97-105 (1957).

32 R. T. DeHoff, Trans. AIME 233, 25-29 (1965).
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that everywhere T appears in Section 5.2.1.2, the following substitutions
are to be made:

47 (R®) 4y
T— T (5.2.30)
D —> 2(R),,. (5.2.31)

How is Ny(R) to be found so that the averaging may be performed?
The value of Ny(R), a distribution of three-dimensional objects in three-
dimensional space, must be found from data in two dimensions on a plane
surface. The best datum is a good photomicrograph showing many
grain images. The images are slices through grains and show diameters
smaller than the true grain diameters. Let r be the radius of a grain image
and let n,(r) dr be the number of grain images per unit area of radius
between r and r + dr. Also let N,(r) be the number of grain images per
unit area smaller than or equal to r. For spherical grains randomly dis-
tributed in space, it can be shown?®: that N,(r) is

Nu(r) =2 f " RNW(R) dR — 2 f " NuR)R® — 1'% dR. (5.2.32)
0 r

Differentiation of this formula?® produces an equation

= 2rNy(R) dR
na(r) dr = f ’(%?%? dr, (5.2.33)

which can be changed to a summation

m 2r‘Nv(R,) ARJ Ar,
r) Ary =
na(ry) Ary 121 (R,"‘ _ r‘z)llz
for numerical analysis. Now R terminates at R_,, instead of infinity.
With the definitions

(5.2.34

ng = na(ry) Ary, (5.2.35a)
N; = Ny(R)), (5.2.35b)
2r; AR; Ar
AU = (Rjg _ ",‘2)1523 (5.2.35C)
Eq. (5.2.34) becomes
n = 2 AgN;. (5.2.36)

j=1
The grain-size distribution N, can be found by inverting the A matrix and
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postmultiplying by the image distribution to give
m
Ny = 2 Agtny. (5.2.37)
i=1

For computational purposes, one must choose the magnitudes of R; and
r;. In this choice the difference R; — r, is defined; this quantity is crucial
because (R — r?)'/? appears in the denominators of the diagonal ele-
ments in the matrix (Ay). If equal intervals AR = Ar are taken and R, —
r; is made proportional to AR or R; — r; = ¢ AR, the matrix elements be-
come

(RR; AR AR[1 - (AR/R)(j — i + ¢)]
Ay ={U — i+ ™1 ~ (AR/2R)(j — i + O]

0 for j <.

for j=i
(5.2.38)

In the work by Papadakis?® a computer program was written to compute
the matrix elements, invert the matrix, and multiply the inverse by the
area-distribution column to find the grain-size distribution within the poly-
crystalline medium. The computer program also calculated (R),,,
(R¥) .y, {(R®,., and (4m/3){R%),,/(R*,, for the ultrasonic scattering.
The computer program was tested on hypothetical grain-size distributions
operated on first by Eq. (5.2.23) to produce grain-image area distributions
n, to feed back into Eq. (5.2.37). The program produced the best replicas
of the original distributions when ¢ was setat ¢ = 0,25. A 10 X 10 matrix
yielded adequate definition of the distributions. An inverse matrix nor-
malized to unit maximum grain radius is presented in Table III for the
casem = 10,¢ = 0.25,R; = 0.1, AR = 0.1, and R,y = Rpax = 1.0. The
grain-size distribution N; can be found by postmultiplying by the grain-
image area distribution 5, as a ten-element column matrix made up of the
number of grain images of radii between r;and r,_,. Intervals are taken at
r; = Ry and Ar = AR. (The fact that ¢ = 0.25 means that one should
write r; = R; — 0.25 AR did not seem to make a measurable difference
in the results, and r; was taken as R, with adequate accuracy.) From the
grain-size distribution the necessary averages are calculated.

In practice one makes an enlargement of 2 photomicrograph containing
200 or more images of equiaxed grains. Then Ry, is chosen as slightly
larger than the radius of the largest image and AR = R,/10. Overlays,
either circles or octagons for convenience, are cut from an opaque mate-
rial and attached to handles for ease in manipulation. Their diameters are
2Ry, 2Rg, 2R;, . . . , 2R,. With the aid of the overlays grain images
larger than 2R, (that is, from 2Ry to 2R,,) are checked off and counted as



TaBLE II1.2% Inverse 10 x 10 Matrix®

44.005855 —9.8692758  —1.8736601 —0.68360014  —0.32656580  —0.18166478

0 27.664167 -8.6621376  —1.9520020 —0.79488678  —0.41004926
0 0 21.799234 —17.6604916 —1.8635616 —0.80286200
0 0 0 18.559214 —6.9168850 —1.7575630
0 0 0 0 16.434205 —6.3475218
0 0 0 0 0 14.903598

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

—0.11157226
—0.24144197
—0.43253311
—0.78370619
—1.6589414
—5.8961218
13.733701

0

0

0

—0.073481978
—0.15491877
—0.26361767
—0.43419285
—0.75711851
—~1.5716352
—-5.5277571
12.802023
0
0

—0.050982716
—0.10563838
—0.17396461
-0.27084567
—0.42774978
—0.72939104
—1.4950712
—5.2201025
12.037357
0

—~0.036830361
—0.075395154
—0.12142337
—0.18227003
—0.27132484
—0.41808648
—0.70269606
—1.4277798
—4.9582967
11.395121

2 Computed for the case where ¢ = 0.25, R, = 0.1, and AR = 0.1.
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Ny, then the remaining ones larger than 2Rg become ny, and so on, giving
the nys.

Papadakis?® showed that the average grain diameter D was larger than
the median grain-image diameter ds, = 2rs, by a factor of 1.45 (half the
images are larger in diameter than dy,, half are smaller), so

D = 2(R),, = 1.45ds,. (5.2.39)

Similarly, it was shown that the scattering volume T of Eq. (5.2.30) could
be approximated by

T = 1.0d3s, (5.2.40)

where dy; is the grain-image diameter in the 95th percentile where only 5%
of the images are larger. These largest images cover about 25% of the
photomicrograph, so dygs can be found quickly. Much better estimates of
D and T are found by going through the entire counting procedure, doing
the matrix multiplication, and then performing the required averages.
Examples of the entire procedure will be given in Section 5.2.3. It should
be noted in passing that the largest grains in a distribution may be too
large to contribute to Rayleigh scattering in some samples, so the average
(R®%) ,,/(R3),, may be excessive.

5.2.1.6. Effect of Preferred Orientation. How may preferred orienta-
tion change the grain scattering of elastic waves? The answer has not
been worked out quantitatively, but we may make some qualitative re-
marks. First, the mechanism will be an interaction of the elastic moduli
among the anisotropic grains. If the orienting operation increases the
probability of high-modulus directions in some grains coinciding with
low-modulus directions in adjacent grains, then the scattering should in-
crease. Metals with more than one texture contributing to their final state
(Barrett,! Chapters 18, 19, 21) might very well exhibit this property. On
the other hand, if the orienting operation increases the probability of the
alignment of high-modulus directions in adjacent grains, then the scat-
tering should decrease. In an ideal case, such as that of cube-texture
material (Barrett,! pp. 478-480, 494—-502), in which the crystallographic
axes of all the grains are parallel to one another, the scattering should dis-
appear. Examples of such structures are cube-textured copper and
oriented electrical steel.

A semiquantitative, two-dimensional analysis by Papadakis®® for
slightly anisotropic grains of hexagonal symmetry aligned with a small de-
gree of preferred orientation along one direction is summarized here. For
the coordinates, see Fig. 1. A grain with axes a—c is imbedded in an

3 E. P. Papadakis, J. Appl. Phys. 36, 1738~1740 (1965).
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ENVIRONMENT

j+ QR cos2 @
2
y c
@ A¥

aC

"

GRAIN 1+acos2v¥

FiG. 1. Two-dimensional model of the elastic modulus of a grain in an environment pro-
vided by other grains with preferred orientation. The rms value of the difference in modulus
between a grain and its environment is reduced by the worked texture. (Papadakis,® by
permission of American Institute of Physics.)

environment with axes x—y. The normalized elastic modulus of the grain
is

C=1+ acos?2y, (5.2.41)

where  is measured from axis c. The orientation of axis c is at an angle
& from axis y. The preferred orientation of axis ¢ with respect to axis y is
given by a weight W(®) expressing the probability that a grain will be
found with axis ¢ at angle ®. The weight is

W(@®) =1 + b cos 2. (5.2.42)

The average modulus of the environment C is found as a weighted average
of the grain modulus, Eq. (5.2.41), over all orientations. This treatment
is analogous to the analysis of Mason and McSkimin.*'*? Thus,

C =1+ (ab/2) cos 2. (5.2.43)
The mean-square average ((AC/C)%),y is
((AC/C)® v = (a%/2) — (a?h?/8) + O(a*b? and a*h®). (5.2.44)

Here a expresses the grain anisotropy and b the degree of preferred orien-
tation. By the assumptions of small anisotropy and small preferred orien-
tation, @2 << 1 and b* << 1. The scattering factor for a random mate-
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rial is a®/2; with the introduction of the preferred orientation, the scat-
tering is reduced by a*b?/8. It seems that a three-dimensional analysis
along this line would be of value.

5.2.1.7. Effect of Polyphase or Muitiparticle Structure within
Grains. How may structure within grains change the scattering? Here,
as in the case of the effect of preferred orientation, the problem has not
been worked out in detail. Qualitative statements can be made, however,
concerning microstructure and scattering. As will be seen in Section
5.2.3, several experimentalists have found corroborating evidence. With
the formation of a polyphase, or multiparticle structure, within a grain,
the grain is broken up into a number of smaller sections—often a very
large number—which differ in crystallographic orientation and some-
times in composition from each other and from the original grain (Brick
and Phillips,? Chapters 3, 5-12, 14-16). In a diffusionless transformation
such as the martensitic transformation, in which the rearrangement of
atoms comes about by shearing strains, there is a difference in orientation
(but not composition) among the small sections of the microstructure. In
a diffusion-controlled transformation the regions differ in both composi-
tion and crystal lattice structure. Examples are the growth of pearlite in
carbon steel, the precipitation of the 8’ phase in zinc-rich brass, and the
age-hardening of g-titanium alloy. The effect of this structure within the
original grain boundaries is twofold: each region of the structure may.
scatter individually and the original grain may scatter as a unit, its proper-
ties being determined by a summation over its structure, as suggested by
Kamigaki.?* The attenuation is then the sum of these two contributions.

The first of these is an obvious corollary of the general grain scattering
theory. A region of the structure may be a large fraction of the original
grain, as in the case of a reglon of pearlite (parallel layers of iron and iron
carbide) in a slowly cooled carbon steel, or it may be less than one
one-thousandth of the grain in the hardened-steel structure of martensite.
Thus, depending on the size and anisotropy of the regions of intragranular
structure and on their relative densities, the scattering by individual
regions might be either larger or smaller than the scattering by the original
grain. The effect of preferred orientation may have to be introduced, of
course, because the crystallographic axes of the microstructure may form
in only a few directions with respect to the axes of the host grain. An ex-
ample is martensite in carbon steel, in which the [110] planes and [111]
directions of the body-centered-tetragonal martensite lie parallel to the
[111] planes and the [110] directions in the prior face-centered-cubic aus-
tenite grain.® In carbon-free iron alloys the martensite is body-

3 K. Kamigaki, Sci. Rep. Tohoku Univ. First Ser. A-9, 48-77 (1957).
% G. Kurdjumov and G. Sachs, Z. Phys. 64, 325-343 (1930).
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FiG. 2. The shear transformation from (a) austenite (fcc) to (b) martensite (bcc or bct).
The pyramid of five atoms changes shape slightly during the transformation, such that the
angles of the rhombic base plane (shaded) change and the angle between the base plane and
the line from the fifth atom to the center of the base plane also changes. (Adapted from
Brick and Phillips,® pp. 269-271. Used by permission of McGraw-Hill.)

centered-cubic. The total number of possible orientations is 24. The for-
mation of martensite from austenite by a shear transformation (Brick and
Phillips,? pp. 269-271) is illustrated in Fig. 2.

The second effect of microstructure is not so obvious but becomes clear
after a consideration of the *‘preferred orientation’’ of the interior struc-
ture of the grain relative to the original grain axes. If the structure forms
in only a finite number of directions within each grain, then the grain vol-
ume will remain anisotropic and will continue to be a scattering center.3
The anisotropy factor (u for cubic grains and combinations of y, x, and 5
for hexagonal grains; Section 5.2.1.2) will be reduced. The scattering
factor will change in proportion to the change in ((AC/C)¥),,. In this
case C will be a sum over all the orientations of the moduli weighted by
the prevalence of the orientation and AC = C — C.

The following is a brief analysis of a model of cubic martensite in two
dimensions. Figure 3 defines the axes of the model. The [111]and[111]
directions in the face-centered-cubic austenite are rotated about the y axis
into the x—y plane to form the two-dimensional model of austenite.
These directions are at 35° and 145° to the positive x axis and are the direc-
tions of the [110] type of axis of the two-dimensional model of martensite
formed from the austenite. For the austenite with its modulus written

C = Cy(1 + a cos 46), (5.2.45)
the average modulus C is Cy, and the value of ((AC/C)?),, is

((AC/OP) gy = a¥/2. (5.2.46)
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CuCo (1+a cos 49)
AVERAGE = C, AVERAGE
(a) (b)

Fic. 3. Elastic anisotropy of grains: (a) single-crystal grain; (b) martensite at +35°
Coordinates for the analysis of the two-dimensional martensite model. The directions at 35°
and 145° to the x axis correspond to the [111] direction in the two-dimensional austenite
model and to the [110] type of direction in the two-dimensional martensite model. The ro-
settes represent the martensite modulus, and the flattened rosette is the sum of the moduli of
the two possible orientations. The average ((A C/C)*),, of the sum is smaller than the anisot-
ropy of the single martensite platelet and may be smaller than the anisotropy of the aus-
tenite.%®

Here, the A subscript indicates the austenite average. On the other hand,
the martensite modulus in Fig. 3 is

C' = C{[1 + b cos 48 + 35°] (5.2.47)
for half the regions and
C' = C{1 + b cos 40 + 145%)] (5.2.48)

for the other half, so the effective modulus is
C" = C{1 + (b/2)[cos 48 + 35°) + cos 40 + 145°)]}. (5.2.49)
Performing the averaging to find ((AC/C)?),,, one obtains
((AC/OP)ayim = 0.4135%/2. (5.2.50)

Here, M indicates the martensite average. The ratio of Eq. (5.2.50) to
Eq. (5.2.46) is

((AC/CY®) auim/{(AC/CP®) ayia = 0.413(b/a)?. (5.2.51)

The equation expresses the change in the anisotropy factor in the two-
dimensional model of the transformation from austenite to martensite.
Besides the constant factor 0.413, the ratio depends only on the ratio b/a

3 E. P. Papadakis, in ‘‘Physical Acoustics,” (W. P. Mason, ed.), Vol. 4, Part B, pp.
269-328. Academic Press, New York, 1968.
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TaBLE IV.?® Anisotropy for Fe—30%Ni, Fe, and Ni

Metal Lattice Value
Fe-30%Ni a —15.5 x' 10" dyn/cm?®
Fe b —13.9 x 10! dyn/cm?
Ni —14.7 x 10" dyn/cm?

ratio b/a: 0.897

of anisotropies of the martensite lattice b and the austenite lattice a. If
b/a < V2, the scattering will decrease appreciably in a hypothetical mar-
tensitic transformation in two dimensions. In three-dimensional mar-
tensite the coefficient multiplying (b/a)? probably will be smaller than 0.4
because of the larger number of orientations of the martensite axes. In
other types of transformation, too, the coefficient is likely to be smaller
than unity. Thus it is likely that a phase transformation producing sev-
eral particles within the original grain volume would reduce the attenua-
tion of ultrasound by lowering the scattering. Only if b/a were consider-
ably larger than unity could scattering increase. Kamigaki®* has
suggested b/a => 1 in pearlite versus austenite. What is a likely range
of b/a in comparing martensite to austenite? The best values will be
hardly more than a guess, because one of the two phases is usually inac-
cessible to elastic-modulus measurements, either because it exists only at
elevated temperatures or because it exists only in microscopic particles.
For one guess, the difference between fcc Fe—30%Ni alloy®” and bcc iron
(Mason,?! pp. 355-373) can be examined. Computing s = ¢y — 2 —
2c4 for each and calling them a and b, respectively, one finds the values in
Table IV for a, b, and their ratio. It is near 0.9. Nickel by itself
(Mason,?! pp. 355-373) is included for comparison.

Investigations must cover two types of transformation: the diffu-
sionless and the diffusion controlled. In the first category one has the
martensitic transformation in carbon steel on one hand, and in various
alloys (not necessarily containing iron) on the other. In the second cate-
gory there is the growth of pearlite and bainite in carbon steel and the
growth of secondary phases in other metastable alloys through annealing.
Other interesting examples could be found.

5.2.1.8. Nonequiaxed Grains. If the grains of a metal are elongated or
flattened, then the scattering is changed. Besides the preferred orienta-
tion, which is likely to be present, the grain shape will introduce a factor
affecting not only the magnitude but also the functional dependence of the
scattering. For instance, scattering by severely elongated grains will re-

37 G. A. Alers, J. R. Neighbours, and H. Sato, Phys. Chem. Solids 13, 40-55 (1960).
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duce to scattering by cylinders. In Rayleigh scattering by cylinders,’ the
scattering power of a single cylinder depends on the square of the
cross-sectional area and the cube of the frequency. Other shapes will
have other shape factors. Another problem arises owing to the possibil-
ity that the long dimension or dimensions of a grain are in the size cate-
gory A < 2¢D,, while the short dimension or dimensions fulfill the condi-
tion A > 2#D,, in this case D, being the average short dimension and D,
the average long dimension. Then the scattering must obey different
laws in different directions. This is analogous to the possibility that the
largest grains in an equiaxed distribution fall under a different scattering
law from that of the rest of the grains. Nothing quantitative has been
worked out so far on scattering by nonequiaxed grain samples. For a
rough estimate one could use the formulas of Morse® for the scattering
powers of rigid spheres and the cylinders in a fluid. Taking objects of the
same diameter D, one finds that a cylinder scatters more strongly by a
factor of A/D than a group of spheres which, if placed on a line and
touching, would equal the cylinder in length.

5.2.2. Some Experimental Methods

5.2.2.1. Scope. This section on experimentation is subdivided to cor-
respond to various experimental techniques that can be applied success-
fully to Section 5.2.1 on theory. A short subsection concerns the
pulse-echo method of ultrasonic measurement, since all the experiments
discussed depend on it, Both rf bursts and short pulses with spectrum
analysis are treated.

5.2.2.2. Pulse-Echo Method with Direct Bonding. The pulse-echo
method of measuring ultrasonic attenuation and velocity is widely used in
the megahertz and gigahertz regions of frequency. The work reported in
this part lies below 100 MHz, at which the ultrasonic wave is usually gen-
erated by a piezoelectric transducer bonded to one of two plane-parallel
faces of the sample. The method is explained here with reference to the
block diagram in Fig. 4. Various authors describe it more fully.38~4° The
transducer of radius a is excited by a burst of rf voltage from a pulsed or
gated source. The trigger initiating the burst has also initiated the hori-
zontal sweep of an oscilloscope. The burst passes through a hybrid cir-
cuit (or a gate) arranged to allow the burst to reach the transducer but not
the amplifiers. The radio frequency is set at the frequency at which the
transducer is half a wavelength thick, or (2n 4+ 1) A’/2 for odd harmonics,
for the wavelength A’ of the elastic wave in a bulk sample of the trans-

3 R. L. Roderick and R. Truell, J. Acoust. Soc. Am. 23, 267-279 (1952).
3 B. Chick, G. Anderson, and R. Truell, J. Acoust. Soc. Am. 32, 186—193 (1960).
% E. P. Papadakis, IEEE Trans. Sonics Ultrason. SU-11, 19-29 (1964).
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FiG. 4. Block diagram of the pulse-echo system in its simplest form. A repetitive trigger
activates the pulsed oscillator and the oscilloscope sweep. The 1f pulse from the oscillator
arrives at the transducer by way of a hybrid circuit or a gate, which prevents the rf pulse
from overloading the amplifier. An ultrasonic wave train is generated by the transducer; the
waves echo back and forth within the sample bonded to the transducer, which picks up the
echoes again. They are amplified and displayed on the oscilloscope. The applied fre-
quency must be exactly proper to operate the transducer plate at an odd harmonic.3¢

ducer material. The transducer is many wavelengths in diameter; that is,
a > \'. The rf burst excites the piezoelectric transducer, which in turn
radiates elastic waves into the sample. The burst is shorter than the
travel time in the sample, so, as the elastic wave echoes back and forth
between the plane-parallel faces, the echoes are separate. In the sample
the wavelength is A. The piezoelectric transducer picks up a signal pro-
portional to the amplitude of each echo while abstracting only a small por-
tion of the wave energy. The signal is permitted to pass into the amplifi-
ers and be displayed on the oscilloscope. The attenuation is found from
the ratio of echo amplitudes and the velocity from the travel time between
echoes, as described in Section 5.1.1.3. Various calibration and compari-
son methods are used for improving the accuracy of the measurements.
See Roderick and Trueli.?® May,* Chick er al.,? Forgacs,* McSkimin,*
McSkimin and Andreatch,** Bolef and deKlerk,* and Papadakis.®

“1]. E. May, Jr., IRE Nat. Conv. Record 6, Pt. 2, 134—142 (1958).

@ R. L. Forgacs, IRE Trans. Instrum. 1-9, 359-367 (1960).

4 H. J. McSkimin, J. Acoust. Soc. Am. 33, 12-16 (1961).

#“ H. J. McSkimin and P. Andreatch, J. Acoust. Soc. Am. 34, 609-615 (1962).
4 D. I. Bolef and J. de Klerk, JEEE Trans. Ultrason. Eng. UE~10, 19-26 (1963).
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F16. 5. Nonuniform pressure bonding jig. A rubber sphere or ball presses the bonding
agent (e.g., epoxy) into a thin layer because the pressure distribution under the ball is a
hemiellipse with a radial gradient at all points.

5.2.2.3. Bonding of Transducer Plates. It is necessary to produce
thin flat bonds between transducer plates and the specimens of interest.
The specimens must be flat and parallel. As a rule of thumb, finely
ground faces with a parallelism of 10— are adequate up to 100 MHz.
Transducer plates polished for overtone operation should be used. These
should be ground, lapped, and polished to the desired thickness and then
plated with a durable coating of minimum thickness compatible with high
conductivity, not ‘‘plated-to-frequency’’ as crystal manufacturers are
wont to do.

Bonding layers must be dirt free and thin. For permanent bonds,
epoxy pressed out by the nonuniform pressure method* is advised. A
sketch of a bonding fixture is shown in Fig. 5. The epoxy must be filtered
(2 um or better) and outgassed; it is handled in a clean atmosphere, pref-
erably in a laminar-flow hood.

For temporary bonds in the vicinity of room temperature, phenyl sali-
cylate (salol) is adequate. It is a chemical melting at 43°C and recrystal-
lizing by seeding after supercooling to room temperature. The best tech-
nique for its application is to place a few small crystals next to the trans-

“ E. P. Papadakis, J. Adhes. 3, 181-194 (1971).
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FiG. 6. Bonding fixture adequate for use with salol. The pressure is distributed over thin
transducer plates with a slide glass or other flat material. (Papadakis,*” by permission of the
Institute of Electrical and Electronics Engineers.)

ducer plate which is precleaned and laid in position on the cleaned speci-
men, heat the group with a hot plate or heat lamp, let the salol melt and
flow under the transducer plate, apply a pressure to the top of the trans-
ducer plate, let the system cool, and seed. Again, the nonuniform pres-
sure bonding method may be used with a rubber sphere pressure appli-
cator. Another adequate method is to use a jig such as in Fig. 6 which
distributes a point force over the transducer through a flat plate such as a
piece cut from a microscope slide. Telfon tape keeps the salol from
bonding the slide to the transducer. Cleansing of all surfaces can be ac-
complished with an artist’s brush and reagent grade acetone.

5.2.2.4. Beam Spreading. Inasmuch as one is propagating a wave
from a finite transducer, the effect of beam spreading upon his loss and
travel-time measurements must be considered. The beam-spreading
problem is one of diffraction from a single aperture. It has been solved
by Seki et al.#® and by Tjadens*® for longitudinal waves from a circular
transducer of radius a, radiating waves of wavelength A into fluids along

SE. P. ‘Papadakis, IEEE Trans. Sonics Ultrason. SU-16, 210-218 (1969).
¥ H. Seki, A. Granato, and R. Truell, J. Acoust. Soc. Am. 28, 230-238 (1956).
® K. Tjadens, Acustica 11, 127-136 (1964).
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Fic. 7. Loss versus normalized distance for circular, longitudinal, wave transducers on
isotropic media. This plot shows the nonmonotonic character of the loss in the Fresnel
region of the radiation pattern of the transducer. The normalized distance § = zA/a® allows
all distances z, wavelengths A, and transducer radii a to be represented by one curve. The
diffraction loss can change the attenuation measured between echoes; diffraction correc-
tions®® must be applied to attenuation measurements*® 1956). (Papadakis,® by permission
of American Institute of Physics.)

the coordinate z. These solutions work well for isotropic solids.3®-51 The
curve of loss versus normalized distance S = zA/a?, given by Sekiet al.,®
is presented in Fig. 7; the loss is not a monotonic function. This curve is
used for making diffraction corrections for the loss of longitudinal waves
supported by isotropic media, as outlined by Papadakis.’? The problem
has not been solved for shear waves. It has, however, been solved by
Papadakis®35 for longitudinal waves in anisotropic media along axes of
threefold, fourfold, and sixfold symmetry. The solution is of some im-
portance in materials with preferred orientation, since the diffraction loss
will depend on the degree and symmetry of the preferred orientation.
For instance, circular bar stock has sixfold symmetry along its axis and is
amenable to treatment by the existing diffraction theory. Care should
always be taken to propagate only one pure mode at a time in anisotropic
samples. For a complete treatment of diffraction corrections, see the
work of Papadakis.s

% E. P. Papadakis, J. Acoust. Soc. Am. 38, 490-494 (1963).

5t E. P. Papadakis, J. Appl. Phys. 34, 265-269 (1963).

82 E. P. Papadakis, J. Acoust. Soc. Am. 31, 150-152 (1959).

33 E. P. Papadakis, J. Acoust. Soc. Am. 40, 863876 (1966).

54 E. P. Papadakis, J. Acoust. Soc. Am. 36, 414-422 (1964).

5 E. P. Papadakis, in *‘Physical Acoustics’’ (W. P. Mason and R. N. Thurston, eds.), Vol.
11, pp. 151-211. Academic Press, New York, 1975.
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FiG. 8. Definition of echoes A, B, and C from a specimen at the end of a buffer, where
A=RB=(~RYe?* and C = —R(1 — R¥)e~*L, (From Papadakis ef al.,* by permis-
sion of the American Institute of Physics.)

5.2.2.5. Use of Buffer Rods. The curve shown in Fig. 7 of loss versus
normalized distance (dB versus § = zA/a?) can be used in the case of
buffer rods or liquid columns which convey the ultrasonic waves from the
transducer to the specimen and back as in Fig. 8. The theory for diffrac-
tion corrections in-buffer—specimen systems was presented earlier.%®

In a buffer—specimen system, one needs the amplitudes of three sepa-
rate echoes, A, B, and C (or A’, A, and B, where echo A’ is echo A before
the specimen is attached in Fig. 8), for the calculation of the attenuation
and reflection coefficients. In bulk specimens, these three echoes are af-
fected to different degrees by diffraction (beam spreading). To be spe-
cific, each echo is smaller than it would have been in the absence of dif-
fraction. The principle invoked in diffraction corrections in this case
is the correction of each echo amplitude to its undiffracted value and the
subsequent calculation of R and « from the corrected echo amplitudes.

First, S is calculated for each echo, since § is the abscissa of the loss
versus distance curve in Fig. 7. For anisotropic materials, use the appro-
priate curves.’®% Then, look up the corresponding losses on the ordi-
nate. After that, correct the amplitudes A’, A, B, and C of the echoes to
eliminate the above loss, getting Ay’, A¢, By, and C,. The formulas for R
and « are then used:

Echoes A, B, and C:
R = [A¢Co/(AsCy — 1112 (5.2.52)
and
a = [In(—R/Cy)]/2L, (5.2.53)
where Ay = Ao/B,, Co/B,, and L is specimen length.

% E. P. Papadakis, K. A. Fowler, and L. C. Lynnworth, J. Acoust. Soc. Am. 53,
1336-1343 (1973).
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FiG. 9. Nomogram for finding attenuation loss 2«L and reflection coefficient R from echo
amplitudes A, B, and C of separate echoes in a buffer system as in Egs. (5.2.52) and (5.2.53).
The subscript 0 indicates that diffraction corrections have been applied if needed (for bulk
and plate waves, not for wire waves). (From Papadakis et al.,* by permission of American
Institute of Physics.)

Echoes A, A’, and B
R = A/Ay (5.2.54)
and
a = {In[A,'(1 — R?®)/B,J}/2L. (5.2.55)

In the present formulation, the relative signs of A’, A, B, and C must be
used. The experimenter must note whether A’, B, or C are inverted with
respect to A using unrectified echoes.

The sign of R may be determined from the equation

R = (Zy — Z5)/(Zy + Zy), (5.2.56)

where Zy and Z are the specific acoustic impedances of the buffer and the
specimen, respectively. Equation (5.2.56) is not adequate for deter-
mining the exact numerical value of R because of phase shifts in the bond
layer between the buffer and the specimen. Best results are obtained for
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F1G. 10. The probable error in R (dashed curves) and 2aL (solid curves) as a function of
the magnitude of R for various values of 2L when the probable error in the magnitudes A,
B, and C of separate echoes in a buffer system is 1% of the largest of these magnitudes. The
measurement of a is best when R is between 0.4 and 0.6. (From Papadakis,® by permission
of American Institute of Physics.)

The relative signs of A, B, and C must be recorded in order for the equa-
tions for R and a to apply. Because of the reflections at the buffer—
specimen interface, echoes A and C are always of opposnte sign; B may be
of either s1gn with respect to A. As a result, A, and C, are of opposite
sign. If C, is positive, R must be negative to satisfy Eq. (5.2.53) and vice
versa. It will be found that the sign of R agrees with the definition in Eq.
(5.2.56) for the reflection coefficient.

A nomogram®®* is presented in Fig. 9 for determining R and 2al from A,
and C,. From the curved isolines on logarithmic graph paper it can be
seen that the accuracy must be a function of Ag and €,. A graph is pre-
sented in Fig. 10 for estimating the errors to be expected in R and 2aL if the
error in measuring each of A, B, and C is = 1% of the largest of the three
amplitudes. It can be seen that the errors are lowest if R is made about
0.6. The buffer method is useful in wires where there is no beam
spreading. It is indispensable in the momentary-contact method with

87 L.. C. Lynnworth, Ultrasonics 12, 72-75 (1974).
$8 E, P. Papadakis, J. Acoust. Soc. Am. 44, 1437—1441 (1968).
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FiG. 11. Block diagram of the electrical and ultrasonic system for spectrum analysis of
separate echoes in a buffer—specimen system. The gate transfers one echo at a time to the
spectrum analyzer, which gives amplitude as a function of frequency. Equations (5.2.52)
and (5.2.53) or the nomogram in Fig. 9 can then be used to find R and «. (From Papadakis er
al.,*® with permission of The Institute of Electrical and Electronics Engineers, and American
Institute of Physics, respectively.)

pressure coupling® for measuring hot specimens where the transducer
must be mounted on the end of a buffer rod to protect it from the high tem-
peratures. It is also useful when commercial nondestructive testing
(NDT) transducers are to be used. One must evaluate commercial trans-
ducers to assure that they act as piston sources % before using them for
accurate measurements.

5.2.2.6. Spectrum Analysis of Broadband Echoes. Earlier work on

% E. P. Papadakis, L. C. Lynnworth, K. A. Fowler, and E. H. Carnevale, J. Acous!. Soc.
Am. 52, 850-857 (1972).

% E. P. Papadakis, Proc. IEEE Ultrason. Symp., Phoenix, Arizona, October 26-28,
Paper DD-1, pp. 104-112 (1977).
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FiG. 12. Spectra of echoes A [part(a)], B[part(b)], and C[part(c)] in the buffer—specimen
system shown in Fig. 11. In part (d) is shown the video view of the echoes and the gate syn-
chronized with echo A. (From Papadakis®® © 1972 IEEE.)

spectrum analysis of ultrasonic pulses®?2 has been refined®® to permit
quantitative measurement of ultrasonic attenuation. A buffer rod is inter-
posed between a transducer plate or a commercial broadband transducer
(such as those used in nondestructive testing applications) and the speci-
men to eliminate the transducer’s effect upon multiple echoes. Each
echo and reverberation A, B, and C is gated separately into a spectrum an-
alyzer by the system shown in Fig. 11. The resulting spectra shown in
Fig. 12 are A(f), B(f), and C(f). Use of Egs. (5.2.52) and (5.2.53), or of
the nomogram in Fig. 9, yields the attenuation «(f) as a function of fre-

82 O, R. Gericke, Mater. Res. Stand. §, 23-30 (1965).
%% g, P. Papadakis, Proc. IEEE Ultrason. Symp., Boston, Massachusetts, October 4-7,
pp. 81-86 (1972).
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quency. In this way, one rugged transducer or one permanently bonded
transducer plate can do the work of ten fragile removable quartz plates in
less time with no need for inconvenient details like tuning. It is necessary
to perform diffraction corrections properly® at each frequency utilized
from within the spectrum.

5.2.3. Experiments on Grain Scattering

5.2.3.1. Early Experiments. In the early experiments!!~13:16 there was
some uncertainty about whether the highest power of frequency visible in
the attenuation was f, %, or f4. Mason’s contention that f* was present
for A > 3D was accepted at least as a working hypothesis for experi-
mentalists. In the Rayleigh region the attenuation'? was written

a=a,f+ aft, (5.2.57)

where the linear term accounted for elastic hysteresis found by Wegel and
Walther.®* At higher frequencies the attenuation varied as Df?, and at
still higher frequencies it became inversely proportional to D and seem-
ingly dependent on f° or f!. Hirone and Kamigaki®*-%® Merkulov,'” and
Kamigaki** used Eq. (5.2.57) to express the attenuation in the Rayleigh
region in later work. Merkulov found experimentally that: (1) there is
Rayleigh scattering proportional to D‘*f‘ when A\ > 10D; (2) the depend-
ence of the scattering goes over to Df? in the range 4 < A\/D < 10; (3) the
dependence becomes 1/D at higher frequencies (x/D < 4); and (4) the
LPM theory (Section 5.2.1.2) underestimates the attenuation by a factor
of 3 to 5 but gives the correct ratio for shear to longitudinal wave attenua-
tion. One suspects that a large part of the discrepancy in magnitude lay
in the grain-size determination. Hirone and Kamigaki® found the attenu-
ation in aluminum to be proportional to l/ D when A < D. In other work
Hirone and Kamigaki® and Kamigaki® found that the coefficient a4 for
Rayleigh scattering in Eq. (5.2.57) was proportional to the austenitic grain
volume in carbon steel, stainless steel, and cast iron. They inferred that
the prior austenite grain was a scattering center with an anisotropy
dependent upon its interior structure. They found that the anisotropy of
a grain transformed to lamellar pearlite was 10,000 times higher than that
of an aluminum grain and, hence, higher than that of iron. Merkulov® re-
ported, however, that the grain anisotropy of pearlite was lower than that
of iron.

# R. L. Wegel and H. Walther, Physics 6, 141-157 (1935).

8 T, Hirone and K. Kamigaki, Sci. Rep. Tohoku Univ. First Ser. A-7, 455-464 (1955).
8 T, Hirone and K. Kamigaki, Sci. Rep. Tohoku Univ. First Ser. A-10, 276-282 (1958).
& .. G. Merkulov, Sov. Phys. Tech. Phys. (English transl.) 2, 1282-1286 (1957).
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TABLE V.3 Treatment and Properties of the Metal Specimens Studied
in Section 5.2.3.2

Metal
Property Nickel Fe-30%NiAU1

Annealing temp. (°C) 700 815
Annealing time (hours) 3 1
Quench Air Air
Velocity?® (10° cm/sec)

Polarization (a) 5.730 _

Polarization (b) 5.732 4.65

Polarization (c) 2.988 —

Polarization (d) 2.980 2.69

Polarization (e) 2.989 —
(R)ay (cm) 5.54 x 1073 2.80 x 1073
T (cm®) 1.10 x 1078 5.76 x 1077

¢ Values are for polarization (a)—(e) in Fig. 13.

These experiments have shown that the basic elements of elastic-
wave-scattering theory are essentially correct and have opened up new
avenues of research, especially on microstructure. Quantitative verifica-
tion of the LPM scattering theory will be presented in the next section.

5.2.3.2. Quantitative Agreement with Scattering Theory. Ultrasonic

DY

(b}
LONGITUDINAL

DO

(d) (e)
TRANSVERSE

Fig. 13. Polarization directions in specimens cut from bar stock. The dotted arrows indi-
cate the propagation direction and the solid arrows show the direction of particle motion.
Longitudinal [parts (a) and (b)] and transverse [parts (c)-(e)] waves were generated, respec-
tively, by X-cut and Y-cut circular quartz transducers 1.27 cm in diameter. Specimens were
about 1.78 cm thick and 3 cm in diameter, except the Fe—30%Ni specimens which were
about 2 cm in diameter but had rough side-walls (Papadakis,® by permission of American In-
stitute of Physics.)
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FiG. 14. Photomicrographs of recrystallized nickel specimen: (a) axial view; (b) radial
view. The grains are equiaxed single crystals with no preferred orientation (the latter being
inferred from the isotropy in the velocity given in Table V). (Papadakis,® by permission of
American Institute of Physics.)

attenuation measurements of four polycrystalline metals with well-
determined grain-size distributions have been presented.® The data
were analyzed by the methods presented in Sections 5.2.1.2-5.2.1.5,
5.2.2.5, and 5.2.2.6. One of these metals, nickel, will be treated as an ex-
ample here. Another alloy, 30%Ni in Fe, will also be treated. Data on
this alloy were taken in conjunction with a study of microstructure, made
by Papadakis and Reed,® and have since been analyzed.?® Two austen-
itic stainless steels also were studied,? but they will not be treated here,
because the single-crystal moduli are not known.

% E. P. Papadakis, J. Acoust. Soc. Am. 37, T11-717 (1965).
% E. P. Papadakis and E. L. Reed, J. Appl. Phys. 32, 682—687 (1961).
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FiG. 15. Photomicrograph of equiaxed and quenched Fe-30%Ni. The quench into liquid
nitrogen transformed the alloy 90% to a martensitic microstructure, but the austenitic (fcc)
grain size is still clearly visible. The ultrasonic measurements discussed in this section were
performed on the equiaxed material in the 100% fcc condition at room temperature before
quenching. (Papadakis and Reed,% by permission of American Institute of Physics.)

The moduli of nickel are well known (Mason,?! pp. 355-373). Alers ef
al.®” measured the moduli of the Fe—30%Ni alloy. The longitudinal and
shear velocities were measured in the course of the attenuation work 8566
Data on the annealing treatments, ultrasonic velocities, and moments of
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FiG. 16.. (a) Grain-image area distribution from the photomicrographs of recrystallized
nickel in Fig. 14; (b) grain-size distribution within the nickel, computed from the image dis-
tribution. The radii r and R refer to images and grains, respectively (Papadakis,® by per-
mission of American Institute of Physics.)

o]

the grain-size distributions, (R),, and T = (47/3)(R®),,/(R?),,, are sum-
marized in Table V. Polarizations 1-5 in the table are defined in Fig. 13.
The metal specimens in question were homogeneous and essentially iso-
tropic with equiaxed single-crystal grains showing no other characier-
istics in their microstructure.

Micrographs of the nickel and Fe-30%Ni alloy appear in Figs. 14 and
15, respectively. Grain-image area histograms were made from these,
and grain-size distribution curves were then computed. These pairs of
graphs are shown in Figs. 16 and 17. From the grain-size distributions
the moments (R),, and T were computed. This procedure followed Sec-
tion 5.2.1.5 exactly. The moments and other data in Table V were then
used in the attenuation formulas given in Section 5.2.1.2, for constructing
graphs such as those described in Section 5.2.1.4.

Figures 18 and 19 are the logarithmic graphs of attenuation versus fre-
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Fig. 17. (a) Grain-image area distribution from the photomicrograph of recrystallized
Fe-30%Ni alloy in Fig. 15, with the austenite grains measured; (b) grain-size distribution in
this alloy (Papadkis,? by permission of American Institute of Physics.)
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Fic. 18. Attenuation versus frequency of longitudinal waves in polycrystalline nickel.
The data points (©) are to be compared with the theoretical curve approximated by the arc
of a circle drawn through the Rayleigh point () at frequency f; with a slope 4 and through
the intermediate frequency f; with a slope 2; f; is the boundary frequency. The theoretical
intermediate point (CJ) for longitudinal waves seems too low in this case (Papadakis,® by
permission of American Institute of Physics.)

quency for longitudinal and shear waves, respectively, in the nickel speci-
mens. Note that there is a discrepancy in the longitudinal theory. One
cannot draw a curve of monotonically decreasing slope through the theo-
retical points and make the slope 4 at the Rayleigh scattering frequency
and 2 at the intermediate frequency. Either the slope is less than2 at f =
fror one of the two points is of the wrong magnitude. Figure 18 illustrates
one useful ad hoc approximation, if one assumes the theory predicts an
intermediate frequency attenuation too small in magnitude. The approxi-
mation consists of an arc of a circle passing through the Rayleigh scat-
tering point with a slope of 4 and having a slope of 2 at the intermediate
frequency. The data points fall fairly close to this curve. Figure 19, on
the other hand, contains a curve drawn through the two theoretical points
with the proper slope at both of them. The shear wave data points lie
above it by factors of from 2 to 3. The ratio of shear to longitudinal atten-
uation at S MHz is about 4, close to the proper value, according to the
LPM theory. According to Table I, the ratio a;/a;, With « in decibels per
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Fi16. 19. Attenuation versus frequency of shear waves in polycrystalline nickel. The data
points (O) are to be compared with the theoretical curve drawn through the Rayleigh point
(CD) at frequency fr with a slope 4 and through the intermediate frequency f; with a slope 2
(&)). These shear wave data points are excessive in attenuation because no diffraction cor-
rection was available. The circular arc approximation is not needed for shear waves (Papa-
dakis,® by permission of American Institute of Physics.)

microsecond, should be 3 in the Rayleigh region and higher above it.
This ratio is simply (3/4)(v;/vy)? for attenuation per unit time; see Eqgs.
(5.2.1) and (5.2.2) with ay = vey as in Section 5.1.1.3.

Figure 20 is a graph on logarithmic scales of attenuation versus fre-
quency for longitudinal waves in the equiaxed Fe-30%Ni specimen. In
this case the data points lie on the properly sloping curve connecting the
theoretical points; the theory for A < 27D is adequate.

Thus, in some cases the theory and data agree in this range, while in
other cases the theory seems low. Between f; and f;; the data agree with
the properly sloping curve through the theoretical points if a(f;) is large
enough for this curve to be drawn; if not, then the data agree with the arc
of a circle drawn through the Rayleigh point as described. Agreement is
within a factor of 2 in all cases and sometimes is much better. Pre-
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F1G. 20. Attenuation versus frequency in an equiaxed Fe-30%Ni specimen. The data
points (®) fall on the curve drawn between the theoretical points (CJ) with the proper slopes
at those points. In this case the scattering theory for the attenuation of longitudinal waves is
adequate over the whole frequency range (Papadakis,®® by permission of American Institute
of Physics.)

viously,? discrepancies of factors of 5 were common. The accuracies of
the LPM theory for Rayleigh scattering and of the grain-counting proce-
dure are attested to by the agreement of the attenuation with curves of
monotonic decreasing slope beginning with slope 4 at the Rayleigh point.
The LPM theory also gives the ratio a;/a; correctly between f; and f5.

Note, however, that in both the metals studied by the author and in all
the metals studied by Merkulov'’ the data for comparing the ratios a,/a;
of theory and of experiment were obtained in the range 7 < (A\/D) < 10,
which is not far from the value Ag = 27D defining f;,. This means that a
really good comparison deep in the Rayleigh region has not yet been
made.

The buffer method with spectrum analysis® as set forth in Sections
5.2.2.5 and 5.2.2.6 was applied to the same nickel specimen reported on
above. Agreement between this method and the direct bonding method
in Section 5.2.2.2 was exact. The data are presented in Fig. 21. Only
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F1G. 21. Attenuation in a specimen of grade A nickel on a water buffer column. Agree-
ment between 1f bursts from a directly bonded quartz transducer (@) and the spectrum anal-
ysis of broadband pulses using the buffer (©) is essentially perfect. Diffraction corrections
were performed by the appropriate methods3® for the rf bursts and for the spectrum-analyzed
echoes in the buffer column. (From Papadakis et al.,* by permission of American Institute
of Physics.)

005 |
8

longitudinal waves were used, as water was used for the buffer column.
Experimental parameters are given in Table VI.

5.2.3.3. Effect of Preferred Orientation on Scattering. Although a
great deal has been done on elastic anisotropy arising from preferred ori-
entation, not much work has been reported on the effect of preferred ori-
entation on ultrasonic attenuation. Wilson®” discovered a maximum in

87 R. Wilson, Sheet Metal Ind. 30, 146-160 (1953).
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TasLE VI. Data on Water Buffer, Nickel Specimen, and Transducer®

Datum Transducer Buffer Specimen
Mode Longitudinal — —
Crystal 5 MHz — —
Diameter (cm) 1.27 1.53 3.78
Length (cm) — 1.335 1.775
Velocity (cm/usec) —_ 0.150 0.573

¢ From Papadakis et al.,%® by permission of the American Institute of Physics.

the attenuation of shear waves in rolled mild steel when the propagation
direction coincided with the direction transverse to rolling. Frederick®
suggested preferred orientation as one possible cause of anomalous atten-
uation in uranium. Truell® found that the orientation of striations in a
Cr-Ni-Mo steel could be correlated with the attenuation of longitudinal
waves; the loss was highest for propagation parallel to the striations and
lowest for propagation normal to them.

An experiment3? on material with preferred orientation has shown an-
isotropic attenuation explicable in terms of the scattering theory pre-
sented in Section 5.2.1.6. A drawn zinc bar was cut into slabs at various
angles to its axis, as in Fig. 22. Longitudinal ultrasonic waves were
propagated through the slabs; velocity and attenuation were measured.
The velocities are listed in Table VII.

The velocity in the 0° specimen is only 8% lower than the velocity along
the g axis of a zinc crystal (Mason,?! pp. 355-373), whereas the velocity
in the 90° specimen is 26% lower than the velocity along the a axis of a
zinc crystal and 30% higher than the velocity along its ¢ axis. Thus, along
the bar axis there are crystalline a axes almost exclusively, whereas along
the bar diameter there are crystalline g and ¢ axes almost equally. This
type of orientation is expected in drawn zinc (Barrett,! pp. 444-445) and
other hexagonal metals.

The effect upon the ultrasonic attenuation was striking; see Fig. 23.
At 3 MHz the attenuation in the radial direction was six times that in the
axial direction and amounted to an extra 10 dB or more between echoes.
Since anisotropy would change the diffraction corrections 2 dB at
most33-* and since dislocation damping? is probably small, the major por-
tion of the attenuation must come from scattering. The explanation is

% C. L. Frederick, REP. W-31-109-Eng-52. Hanford Works, Hanford, Washington
(1960).

% R. Truell, Mech. Eng. 77, 585-587 (1955).

1 A. Granato and K. Lucke, J. Appl. Phys. 27, 583-593, 789-805 (1956).
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FiG. 22. Specimens cut from zinc bar stock having a axes of grains aligned strongly with
the bar axis. Longitudinal ultrasonic waves were propagated normal to the finished faces.
Both the velocity and the attenuation were found to be very anisotropic (Papadakis,3® by
permission of American Institute of Physics.)

this: As the longitudinal wave propagates along the bar axis, it traverses
grains with their a axes along that direction. From grain to grain there is
no change in modulus, so the wave solution in any grain is identical with
the solution outside it. Thus the boundary conditions are matched ex-
actly without recourse to a scattered wave. Hence, almost no scattering!
In the radial direction, however, the wave traverses grains rotated in any
degree about one a axis parallel to the bar axis. In one grain the propaga-
tion vector may be along an « axis; in the next, along a ¢ axis. This is a
condition of maximal scattering and is found to be such experimentally.

5.2.3.4. Effects of Microstructure on Grain Scattering. 5.2.3.4.1.
TRIPARTITE APPROACH To THis SECTION. In the earlier discussion of
theory it was pointed out that the scattering could arise both from the
regions of the microstructure acting as scattering centers with their own
anisotropy and from the original grains with modified anisotropy. The
earliest experiments on grains with interior structure were carried out
with carbon steel, a very complicated system. Chronological order will
be reversed in this presentation, in order to present simple systems first.

TaBLE VIL3 Longitudinal Wave Velocities in
Zinc Bar Stock

Specimen orientation (deg) Velocity (10°%cm/sec)
0 4.40
15 4.29
30 3.98
45 3.86
60 3.76
75 3.60

90 3.54
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Fi6. 23. Attenuation of longitudinal ultrasonic waves in zinc bar stock cut as in Fig. 22 at
the following angles: 0° (©), 15° (©), 30° (A), 45° (), 60° (+), 75° (X), and 90° (A). The
waves propagating axially and encountering only a axes of zinc grains were attenuated much
less than waves propagating radially and encountering both « and ¢ axes (Papadakis,® by
permission of American Institute of Physics.)

Two simple systems will be discussed. They have the following features
in common:

(1) No parameter of the original grain shape or grain-size distribution
changes during the procedure introducing complex int