

Building Wireless Sensor Networks

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Building Wireless Sensor Networks

Robert Faludi

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Building Wireless Sensor Networks
by Robert Faludi

Copyright © 2011 Robert Faludi. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Adam Zaremba
Copyeditor: Sharon Terdeman
Technical Editors: Kate Hartman and Jordan Husney
Proofreader: Sada Preisch

Indexer: Angela Howard
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
December 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Building Wireless Sensor Networks, the image of dachshunds, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80773-3

[M]

1292271061

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . xi

1. Getting Ready . 1
Buying an XBee Radio 1

Hardware 1
Antennas 4
Vendors 6

Buying an Adapter 6
Digi Evaluation Board 7
USB Adapters 7
Breakout Boards 10
Arduino Board Adapter Hack 12
What Are All Those Pins? 15

Choosing a Terminal Program 15
Firmware Update Software 17
Terminal Software for Configuring Settings 17

Summary 20

2. Up and Running . 23
Radio Basics 23

Electromagnetic Spectrum 24
Inverse Square Law 24

Introduction to ZigBee 25
Network Topology 27
Addressing Basics 28
PAN Addresses 29
Channels 29
All Together Now 29

XBee Firmware Updates 32
Reading Current Firmware and Configuration 35

Configuring XBee 40

v

Settings 40
Connecting from Windows 41
Connecting from Macintosh 43
Command Mode and Transparent Mode 46
AT Commands (Are Your Friend) 47
Using AT Commands 49

Basic ZigBee Chat 50
Parts 50
Addresses 50
Coordinator 51
Router 53
Two Computers 53
One Computer 54
Chat 54
Troubleshooting 55

Success! 56

3. Build a Better Doorbell . 57
ZigBee and Arduino 57

About Arduino 57
Arduino Basics 59
Connecting to Arduino 65

Doorbell Projects 67
Parts 67
Prepare Your Radios 68
Connect Power from Arduino to Breadboard 68
XBee Breakout Board 68
XBee Connections 69
Doorbell Introduction 72
Switch Input... 72
...and Buzzer Output 73
Configure Your XBees 75
Program the Arduino Doorbell 77
Feedback Doorbell 80
Feedback Light 81
Program the Arduino Feedback Doorbell 81
Extra: Nap Doorbells and More 83

4. Ins and Outs . 85
The Story of Data 85

Direct, Indirect, Subtext 85
I/O Concepts 87

Why XBee Direct? 88

vi | Table of Contents

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

XBee Direct Limitations 88
XBee I/O Features 89
AT Configuration I/O Commands 90
Advanced I/O Commands 93

Romantic Lighting Sensor 93
Basic Romantic Lighting Sensor 93
Prepare the Sensor Board 97
Prepare the Base Station 99
Romantic Lighting Sensor with Feedback 104
API Ahead 109

5. API and a Sensor Network . 111
What’s an API? 111
Protocols 113

Humans 113
Computers 113

XBee API Protocol 116
Start Delimiter 117
Length Bytes 118
Frame Data Bytes 118
Checksum 118

API Frame Types 119
AT Commands 120
AT Responses 122
ZigBee Transmit Request 124
ZigBee Transmit Status 127
ZigBee Receive Packet 129
I/O Data Sample Rx Indicator 131
Remote AT Command Request 135
Remote Command Response 137
Using What You Need 138
Libraries 141

Simple Sensor Network 142
Parts 142
Prepare Your Coordinator Radio 143
Prepare Your Router Radios 144
Prepare the Sensor Boards 144
Prepare the Base Station 148
Program the Base Station 152

Yay! 160

6. Sleeping, Then Changing the World . 161
Sleep Mode 161

Table of Contents | vii

End Devices 161
Configuring Sleep 163
Easy Sleeping 167

Simple Sensor with Sleep Project 167
Parts 168
Prepare Your End Device Radios 168
Configure Your End Device XBees 168

Direct Actuation 171
Direct Actuation Example 172

Parts 172
Prepare Your Coordinator Radio 173
Prepare Your Router Radios 174
Prepare the Actuator Boards 174
Configure Your Router XBees 174
Prepare the Base Station 177
Simple Actuator Node Code in Processing 180

Summary 187

7. Over the Borders . 189
Gateways 189

XBee as Embedded Gateway 190
Other Embedded Gateways 190
Internet Gateways 192
Internet Media 194
Computers Versus Dedicated Devices 194

ConnectPorts 195
Selecting a ConnectPort 196
Setting Up a ConnectPort 197
Configuring a ConnectPort 198

Remote Management 203
iDigi Connectivity Server 204
iDigi Features 204
Adding a ConnectPort 206
Viewing Configurations 209
Firmware Updates and Remote Reboot 210
Viewing an XBee Network 212

XBee Internet Gateway (XIG) 214
Installing and Configuring XIG 216
Testing XIG 218
XIG Example 220

Twitter Reader 221
Parts 222
Prepare Your ConnectPort with XBee Internet Gateway 223

viii | Table of Contents

Prepare Your Router Radio 223
Configure Your Router Radio 223
Prepare the Twitter Reader Board 224
Program the Arduino 227

Moving Forward 233

8. More to Love . 235
Advanced ZigBee 235

ZigBee Stack Layers 236
Application Support Layer 237
Routing 240
Security 242
ZigBee Protocol References 243

Serial Flow Control 244
RTS and CTS 244

Sharing Data 245
Pachube 245

Simple Sensor Network with Pachube 246
API Key 248
Build the Simple Sensor Network in Chapter 5 248
Program the Base Station 249
Simple Sensor Network Pachube Code in Processing 250

The Future of ZigBee 257
Next Steps for You 258

Making Stuff 258
Sharing Your Work 259

Appendix: Resource Guide . 261

Index . 293

Table of Contents | ix

Preface

Building Wireless Sensor Networks is an essential guide for anyone interested in wireless
communications for sensor networks, home networking, or device hacking. It is a first
step in becoming proficient in making these systems. It is not a textbook on protocols
or a complete guide to networking theory. No engineering or computer science back-
ground is expected or required. Those who have fooled around a bit with electronics
or programming will certainly have a leg up, but in general, this book is aimed at hob-
byists, students, makers, hardware hackers, designers, artists, and prototypers. In the
chapters to come, you will scaffold your way up toward greater comfort and proficiency
with hardware, software, radio, and communications. I’ll explain everything necessary
to get started, at least briefly. We’ll create examples using accessible environments,
such as Arduino for hardware and Processing for displays. And I’ll provide a full range
of resources, including helpful references to outside works for the electronics and net-
working novice. Whether you are a young inventor or an experienced engineer, this
book focuses on getting your projects up and running as efficiently as possible.

All the projects you’ll create in this book use radio signals that pass invisibly through
the air. This “wirelessness” is essential whenever you want to place sensors where no
cables can be installed, or where such tethering is undesirable. With radio, you can
employ sensing and actuation in pristine natural settings, minimalist building interiors,
or complex urban environments. Mobile devices like children’s toys can benefit greatly
by being communicative without being chained to the wall or to each other. Sensors
can be attached to people or animals in a humane manner that doesn’t hinder their
movement. In short, lots of data can move freely from where it is gathered to where it
can do the most good. That’s why wireless is worth it.

The ZigBee protocol is a very popular way of creating radio sensor networks for a
number of reasons. Wireless networks and connected devices in general tend to be used
in situations where power is hard to come by and must be conserved. Many times the
communications these networks send are small in nature, compared to systems that
transfer huge files such as videos. Often, each device in the network transmits or re-
ceives unique information, so a robust system of individual addressing is extremely
helpful. Security and design flexibility are frequently indispensable. That’s why this
book focuses on ZigBee, the protocol defined by various industry players who together

xi

form the ZigBee Alliance. In the past few years, ZigBee has found its way into com-
mercial systems for home automation, smart energy systems, consumer electronics,
industrial sensing, and health care. It features full addressing, many power-saving op-
tions, optimizations for efficiency in low-bandwidth applications, and a layered ap-
proach to communications design and security. Most importantly, ZigBee
automatically forms entire networks that can heal themselves, routing around problem
areas without manual intervention. Designers, hackers, inventors, artists, and engineers
are currently making use of this popular wireless protocol to create the systems that
inform, enable, and delight their various users.

We will make a new project in almost every chapter of this book to demonstrate how
everyday people, not just electrical engineers and computer scientists, can develop these
systems. A number of full sensor networks, an array of doorbells, a two-way lighting
detector, a household control system, and several types of Internet-connected con-
traptions will be demonstrated step by step for you to build. After reading this book
you’ll have a solid understanding of what it takes to create scalable sensor and device
networks because you’ll have brought a variety of them into being with your own hands.
This book’s website makes even more resources available to you.

You may wonder what drives humans to create reactive sensor systems and connected
devices. Since before written history, there have been people and cultures that believed
every object in the world was imbued with spirits—that even rocks are alive. This
worldview, termed animism by modern scholars, isn’t something validated by science.
And yet the tacit belief that objects are in some way alive seems to resonate as a fun-
damentally human way of thinking. “That mixer doesn’t like it when the batter is too
thick.” “The DVD player doesn’t want to eject that disk.” “My computer hates me!”
We seem to want our things to be alive and frequently consider them willful—though,
on an intellectual level we know they aren’t. This book isn’t about animism, of course;
it’s about making networks using ZigBee radios. However, one reason we do this—
our motivation for making systems that are sensitive, active, reactive, and
communicative—could just be some inherent desire to create the world we believe
should exist: one where everything is imbued with a willful spirit and works together
to help us live more richly. If so, this book is offered as a practical step in the right
direction. I hope it will help you bring your own creations to life.

How This Book Is Organized
The chapters in this book are organized as follows:

Chapter 1, Getting Ready
This chapter offers a shopping guide and an introduction to all the major compo-
nents we’ll be using. We focus on just what you need to get up and running, in-
cluding XBee radios, adapters, breakout boards, terminal programs, and software.

xii | Preface

http://zigbee.org
http://oreilly.com/catalog/9780596807733

Chapter 2, Up and Running
Right at the start of the book, you’ll go from a bag of parts to a working ZigBee
network in one chapter, taking the simplest path to early success. Radios, ZigBee,
networks, and addressing are introduced, and then you’ll configure your compo-
nents to achieve a simple chat session.

Chapter 3, Build a Better Doorbell
This section focuses on creating something practical using the Arduino microcon-
troller system, which is briefly introduced. After getting up to speed on basic serial
concepts and simple protocols, you’ll execute a series of doorbell projects that
increase in creative complexity as you gain skill.

Chapter 4, Ins and Outs
Here you’ll take a closer look at the unique features of the XBee-brand ZigBee
radios so we can start building fully scalable sensor networks. You’ll begin with
input/output concepts and commands, then immediately put these to use in a small
set of progressively intricate projects.

Chapter 5, API and a Sensor Network
At this point you have everything you need to conquer the XBee’s application pro-
gramming interface. We start by laying a foundation of ideas and scaffold you up
to a full understanding of the structured API communication frames. You are then
ready to create a fully scalable sensor network of your own, using the complete
example at the end of this chapter.

Chapter 6, Sleeping, Then Changing the World
We ease the development pace a bit here to address some nuances of ZigBee mesh
networking, including sleep mode, end devices, and power management. Then it’s
time to change things in the physical world using direct actuation. This chapter
features a powerful control project you can use to automate your home or turn just
about anything on and off remotely.

Chapter 7, Over the Borders
In this chapter you learn to make gateways that connect ZigBee with neighboring
networks, including a remarkably easy path to the Internet. You’ll see full exam-
ples, showing how to allow anything to talk to everything everywhere—plus there’s
a special project for starry-eyed celebrity fans.

Chapter 8, More to Love
The final chapter is really a broader introduction. We explore advanced ZigBee
techniques, demonstrate how to publish and share your data online, and then wrap
things up with a peek at where ZigBee is headed.

Appendix, Resource Guide
To ensure that the book remains useful even after you have read it, we’ve included
links to online resources and other texts for learning more about Arduino, Pro-
cessing, Python, and ZigBee, along with a handy troubleshooting guide to get you
unstuck from common mistakes. There are also tables to use as a fast daily reference
to Digi radios, other brands of ZigBee modules, network analyzers, packet sniffers,

Preface | xiii

connectors, shields, hexadecimals, binary numbers, ASCII codes, and finally a
complete guide to XBee AT commands.

About the Title
You will notice that for a book called Building Wireless Sensor Networks, we spend quite
a bit of time talking about actuation: outputs that make things happen in the physical
world. The source of this is a deep-seated point of view that is backed up by some long-
standing cognitive science.

“Thinking is for doing” is a phrase popularized by social psychologist Susan Fiske. Her
point (and William James’ when he commented similarly a century earlier) is that our
brains exist first and last for creating physical actions. In fact, the brain is just the
midpoint of the perception-action chain. The real action starts with our sensory sys-
tems. We see, smell, and feel, then we process those sensations for the purpose of
choosing and executing our next move. Sensing never happens in a vacuum for its own
sake. There’s always a physical purpose. This is as true for wireless networks as it is for
living organisms. The data we collect is always aimed at an action of some kind. Alarm
systems trigger an immediate police response, while environmental sensing studies of-
ten have a much longer cycle that results in policies to guide real-world development.
In both cases there’s a purpose to the sensing that ends up, sooner or later, creating
changes in the physical world. This book takes a comprehensive approach to cover
both the input and output stages of the information-action cycle—sensing and actua-
tion. In doing so, we hope to encourage projects to do more with data than simply
collect it, hopefully enabling implementations that use their sensory input to create the
rich physical experiences that humans crave.

About the Examples
All of the example circuits and code in this book are designed with clarity in mind.
Astute electrical engineers will certainly notice that some corners have been cut. For
example, we draw close to the rated output for the 3.3-volt pin on the Arduino board
in some projects, and we rely on the microcontroller to throttle the current going to
LEDs where we can. While that wouldn’t be advisable in a commercial product, it does
produce working circuits that are very simple for the beginner to build and understand.
The same is true for the example code. Production-quality programming usually in-
cludes much more error correction and thriftier memory management than we offer
here. Our purpose is to strip the code down to the basics as much as possible so that
it can serve as a transparent tool for learning.

If you prefer to enhance the circuits and code to make them more robust, by all means
do so! Feel free to share your suggestions or enhancements on the forums, and by
sending them to us at bookquestions@oreilly.com. Feedback and community partici-
pation is always welcome!

xiv | Preface

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Additional code and circuit diagrams that are made available in the future will be linked
from this book’s website.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context

This icon signifies a tip, suggestion, or general note.

This icon signifies a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation, and the projects as a foundation for
creations of your own. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code or schematics. For example, writing a
program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O’Reilly books does require per-
mission. Answering a question by citing this book and quoting example code does not
require permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building Wireless Sensor Networks by
Robert Faludi. Copyright 2011 Robert Faludi, 978-0-596-80773-3.”

Preface | xv

http://oreilly.com/catalog/9780596807733

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596807733

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://oreilly.com

xvi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://oreilly.com/catalog/9780596807733
mailto:bookquestions@oreilly.com
http://oreilly.com

Acknowledgments
This book was strongly affected by my tag team of editors Brian Jepson and Tom
Sgouros. Brian’s fractured wit paired with his expert strategies constantly guided my
hand, while Tom’s attention to details and scientific discipline provided the rigor any
technical book demands. Even when process and schedule left me breathless, I never
lost appreciation for the wisdom and craft they supplied. I’m grateful for all their help.

My technical editors imparted a level of feedback that went well beyond their respective
calls of duty. Kate Hartman, who encouraged this book from the get-go, spent many
hours combing the text for confusing constructions and omitted explanations. Her
project assessments and clarity of voice are felt throughout. Jordan Husney cheerfully
reviewed many of these chapters from his perch at 35,000 feet. His deep knowledge of
the ZigBee protocol is matched only by his competence as a wordsmith. Thanks to both
for their efforts and uncommon friendships.

Building Wireless Sensor Networks is loosely structured around the Sociable Objects
class I created at NYU’s ITP graduate program in media and technology. There, Tom
Igoe loaned me my first ZigBee radio, encouraged my projects, mentored my develop-
ment as a teacher, and continues to be a seemingly bottomless well of excellent advice
and terrible puns. This book almost certainly could not have happened without him.
Clay Shirky, Nancy Hechinger, Marianne Petit, Dan Shiffman, Danny Rozen, and Dan
O’Sullivan are but a few of the instructors who provided invaluable inspiration. George
Agudow and the sensational staff at ITP have granted support to my work at every turn.
My fellow resident researchers Jeff, John, Jenny, Kate, Gabe, and Demetrie influenced
my ideas and enriched my experience during the year we were all lucky enough to work
together. Almost all the concepts in this book were trialed by my Sociable Objects
students and I am grateful for their feedback, which is incorporated throughout. Ev-
eryone in the ITP community owes a debt toward longtime Chair and perpetual guiding
star Red Burns. Her steely stare, firm love, and rare brilliance continue to illuminate us
all.

This book would have been immeasurably more difficult without Paul Cole’s flexibility,
generous spirit, and unflagging support. I am thankful for the grand company of my
entire day job crew at GroundedPower, especially longtime collaborators Terence Arjo,
Mike Bukhin, and Demetrie Tyler. They caught my bullets on countless occasions when
I needed extra concentration for penning these pages. At SVA’s MFA program in In-
teraction Design, Liz Danzico’s words of wisdom and my graduate students’ insightful
creations brought depth to my thinking and clarity to my explanations.

My mother and father taught me to craft with words, wood, and wires—priceless skills
that I am honored to share in some small measure here. I am lucky to come from two
people with such talent, creative motivation, and quick-witted humor. My sister, Susan,
and her partner, Russ, tirelessly guided me through the tricks of the writing trade. When
enthusiasm flagged, Sue and Russ assured me that my writerly doldrums were distinctly
underwhelming, cannily undermining my laments and restoring my cheer. I’m

Preface | xvii

phenomenally lucky to have them in my life. Liz Arum bestowed suggestions, solace,
affection, and perpetual patience as I alternately plodded and sprinted through the
birthing of this book. Her family has pampered me with their hospitality, and her mid-
dle school students effortlessly completed several of the book’s projects, just as she
knew they could. I’m grateful to all of them, and to Liz especially.

One more thing: John Dobson’s telescope-building class and indomitable spirit con-
tinue to be an inspiration in my work. If you ever get a chance to build your own
sidewalk telescope, don’t hesitate for a minute. Everyone deserves to meet the universe
in person.

xviii | Preface

CHAPTER 1

Getting Ready

Let’s get right down to business. This chapter offers a shopping guide and an intro-
duction to all the major components you’ll need to prep your networking toolbox with
essential parts and programs. There are plenty of options, so we’re going to focus on
just what you need to get up and running. Check the Appendix for a comprehensive
list of resources. For now, here are the essentials, distilled for your convenience.

In this book we focus on XBee brand ZigBee radios because they have
a host of features that make them especially easy for beginners to work
with. Many other brands exist, however most are best suited to those
with an electrical engineering background. If that’s you, the resource
guide at the end of this book lists other ZigBee options you can consider.
Professional engineers often prefer XBees for prototyping or anytime a
reduced development effort makes them the most cost-effective option.

Buying an XBee Radio
Digi International manufactures a bewildering array of XBee-branded radios. All told
there are at least 30 different combinations of component hardware, firmware proto-
cols, transmission powers, and antenna options. We’ll first take a look at what’s out
there, and then narrow that down to the devices we will be using in this book.

Hardware
There are two basic varieties of XBee radio physical hardware:

XBee Series 1 hardware
These radios use a microchip made by Freescale to provide simple, standards-based
point-to-point communications, as well as a proprietary implementation of mesh
networking. We won’t use the Series 1 hardware at all in this book.

1

The sidebar “Series 1 Radios” on page 3 takes a quick look at
the Series 1, but remember that the examples in this book won’t
work with Series 1 hardware.

XBee Series 2 hardware
The Series 2 uses a microchip from Ember Networks that enables several different
flavors of standards-based ZigBee mesh networking. Mesh networking is the heart
of creating robust sensor networks, the systems that can generate immensely rich
data sets or support intricate human-scale interactions. Everything we do in this
book from here on out will use the Series 2 hardware exclusively.

Digi has just released the newer Series 2B. Series 2B features include
reduced power consumption, additional antenna options, and an op-
tional programmable microprocessor. For the most part, Series 2 and
2B are interchangeable.

Both the Series 1 and Series 2 radios are available in two different transmission powers,
regular and PRO (see Figure 1-1). The regular version is called simply an XBee. The
XBee-PRO radio has more power and is larger and more expensive.

Figure 1-1. XBee radios in regular and PRO flavors

The regular version is a slightly less expensive way to get started. For now, we won’t
worry about distinguishing between the regular and PRO radios because they are con-
figured in the same way.

2 | Chapter 1: Getting Ready

Series 1 Radios
Series 1 XBee modules are quite popular with the do-it-yourself crowd, while Series 2
hardware supports the full ZigBee protocol. Series 1 is great for simple cable replace-
ments and smaller-sized systems. Series 2 is designed with larger sensor networks in
mind and is essential for the robust interactions with the ZigBee standards-based sys-
tems that are now being widely deployed in residential, academic, and commercial
settings.

The Series 2 hardware has a little better range and uses slightly less power than the
Series 1; yet these small improvements would not be a reason to choose one format
over the other. Both use the same physical footprint and can be easily interchanged,
often with only minor changes to the underlying software. However, the Series 2 will
not talk to or interoperate with the Series 1 at all. Each network must use only one
version. Table 1-1 shows a summary of the similarities and differences.

Table 1-1. Series 1 versus Series 2 for regular XBees

 Series 1 Series 2

Typical (indoor/urban) range 30 meters 40 meters

Best (line of sight) range 100 meters 120 meters

Transmit/Receive current 45/50 mA 40/40 mA

Firmware (typical) 802.15.4 point-to-point ZB ZigBee mesh

Digital input/output pins 8 (plus 1 input-only) 11

Analog input pins 7 4

Analog (PWM) output pins 2 None

Low power, low bandwidth, low cost, addressable, standar-
dized, small, popular

Yes Yes

Interoperable mesh routing, ad hoc network creation, self-
healing networks

No Yes

Point-to-point, star topologies Yes Yes

Mesh, cluster tree topologies No Yes

Single firmware for all modes Yes No

Requires coordinator node No Yes

Point-to-point configuration Simple More involved

Standards-based networking Yes Yes

Standards-based applications No Yes

Underlying chipset Freescale Ember

Firmware available 802.15.4 (IEEE standard),
DigiMesh (proprietary)

ZB (ZigBee 2007), ZNet
2.5 (obsolete)

Up-to-date and actively supported Yes Yes

Buying an XBee Radio | 3

While this book uses the Series 2 hardware exclusively, what you learn here can help
you with both series. Picking up the Series 1 commands should be a snap after reading
this book because, for the most part, they are a subset of the Series 2 that we cover here.
You will already know pretty much everything you need to work with them! Tom Igoe’s
excellent volume Making Things Talk (O’Reilly) has several appealing example projects
for Series 1 XBees, and many more are available online.

Antennas
Radios need antennas to transmit and receive signals. There’s more than one way to
build an antenna, each with advantages and disadvantages. You probably won’t be
surprised to learn that Digi decided to offer plenty of choices. Here are the kinds of
antenna options currently available (see Figure 1-2):

Whip or wire antenna
This is just what it sounds like—a single piece of wire sticking up from the body
of the radio. In most cases, the wire antenna is just what you need. It’s simple and
offers omnidirectional radiation, meaning the maximum transmission distance is
pretty much the same in all directions when its wire is straight and perpendicular
to the module.

Chip antenna
Again, this is pretty much what it sounds like. The chip antenna is a flat ceramic
chip that’s flush with the body of the XBee. That makes it smaller and sturdier, but
those advantages come at a price. Chip antennas have a cardioid (heart-shaped)
radiation pattern, meaning that the signal is attenuated in many directions. How-
ever, if you’re making a device where mechanical stress to the wire antenna might
break it, or you need to put the radio in a very small space, then the chip antenna
may be your best bet. Chip antennas are often the right choice for anything
wearable.

PCB antenna
Introduced with the XBee-PRO S2B, the PCB antenna is printed directly on the
circuit board of the XBee. It is composed of a series of conducting traces laid out
in a fractal pattern. The PCB antenna offers many of the same advantages (and
disadvantages) as the chip antenna with a much lower cost to manufacture.

U.FL connector
This is the smaller of the two types of external antenna connectors. More often
than not, an external antenna is not needed: it is an additional expense if a simple
wire antenna will do. However, when your radio is going to live on the inside of a
metal box then the antenna will need to live on the outside. That way the signal is
not attenuated by the enclosure. Also, it is sometimes advantageous to orient an
external antenna differently than the XBee itself to or use a special-purpose antenna
with a specific radiation pattern, such as a high-gain antenna that passes signals in
a single direction over a broader distance. The U.FL connector is small, somewhat

4 | Chapter 1: Getting Ready

http://oreilly.com/catalog/0636920010920/

fragile, and almost always used with a short connecting cable that carries the signal
from a remotely mounted antenna.

RPSMA connector
The RPSMA connector is just a different type of socket from the U.FL connector.
It’s bigger and bulkier, but you can use it with an external antenna, mounted di-
rectly to the XBee without a connecting cable. For most introductory projects,
you’re still best off with the simple wire antenna that is smaller, cheaper, and usu-
ally just as good.

Figure 1-2. Antenna types

To keep it simple you can get started by purchasing two (or more) of the regular Series
2 XBees with wire antennas. Don’t buy just one! You’ll be as disappointed as a kid at
Christmas who finds a single walkie-talkie under the tree. Here’s the model number to
get you started: XB24-Z7WIT-004. At the time of this writing, this module cost about
$25.

Buying an XBee Radio | 5

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

If you need a chip antenna, the part number is XB24-Z7CIT-004. If you
require a PRO high-power radio, use part number XBP24BZ7WIT-004.

Vendors
Now that you know what you want to buy, you also need to decide where to buy it.
XBee radios are available directly from Digi, and also from many online resellers. This
is a list of vendors that typically stock XBees, as well as many other nifty electronic
components you may need for your projects:

Digi International
Digi manufactures and sells all varieties of XBee radios and some interesting XBee
starter kits, generally at the suggested retail price. They don’t sell any other elec-
tronic components.

Maker SHED
MAKE: magazine (which is published by O’Reilly, the publisher of this book) offers
a kit specifically designed for this book, via their in-house maker emporium. The
kit includes many of the parts you’ll need, including appropriate XBees.

SparkFun Electronics
SparkFun carries a rapidly growing array of prototyping supplies designed specif-
ically for DIY electronics enthusiasts, including most of the XBee modules. You’ll
find documentation links for each part, as well as handy tutorials for using many
of the components.

DigiKey
DigiKey offers a dizzying array of electronic components for the professional
electrical-engineering market. It’s normal to feel overwhelmed at first by the se-
lection of about half a million different parts, but it’s worth learning the ropes
because you’ll be able to buy almost anything you want and receive it the next day.
The entire XBee line is usually represented at DigiKey (which has no relationship
at all to Digi International).

Part numbers have been supplied for most of the parts recommended
in this book. You’ll see the vendors abbreviated in those lists: SparkFun
is SFE; DigiKey, DK; Maker Shed, MS; Radio Shack, RS; Adafruit, AF.

Buying an Adapter
You’ll be using a computer to configure your XBee and to send and receive data directly
from your desktop or laptop. The XBee is made to be soldered directly into a printed
circuit board, so you’ll need an adapter to connect it to your computer’s USB port. If

6 | Chapter 1: Getting Ready

http://www.digi.com
http://www.makershed.com
http://sparkfun.com
http://www.digikey.com

you need to connect to an older 9-pin or 25-pin serial port instead, check the Appen-
dix for other options.

There are several different adapters available, along with a few handy hacks if you want
to avoid buying one or if you get caught without one.

Digi Evaluation Board
If you buy a complete drop-in networking starter kit from Digi, such as their iDigi
Professional Development Kit ZB (part no. XK-Z11-PD), it will include an evaluation
board with a power supply, a USB connector, and some handy buttons and lights. The
kits are a good value if you need everything they include. However, if you only want
some radios and an adapter, other approaches are more cost-effective. Also, the Digi
evaluation board is substantially larger than most third-party adapters, making it
somewhat cumbersome to carry around. At the time of this writing, the development
kit was available for $300, though occasional promotions have brought it down to $150.
(See Figure 1-3.)

Figure 1-3. Digi evaluation board

USB Adapters
Several different XBee USB adapters are available from third-party manufacturers (see
Figure 1-4):

Buying an Adapter | 7

Figure 1-4. XBee adapters are available from many vendors in a variety of different formats

Almost all XBee USB adapters require drivers from FTDI (http://www
.ftdichip.com/Drivers/VCP.htm). Be sure to install these before using
your adapter.

SparkFun XBee Explorer
The Explorer is a very popular adapter that uses a fairly standard USB A to mini-
B cable to connect with your computer. We’ll be using it in most of the examples
in this book. The cable is sold separately, but before you buy, check to see if you
already have one. Many digital cameras come with this type of cable. Be aware that
if you add male headers to use it in a breadboard, the pin order will not be the same
as on the XBee. Check the data sheet carefully if you are using the Explorer with a
breadboard setup. (About $25; http://www.sparkfun.com/commerce/product_info
.php?products_id=8687.)

Adafruit XBee Adapter Kit
This is an inexpensive board that you’ll need to solder together yourself. It also
must be used with a special USB cable called the FTDI USB TTL-232, which can
attach to its pin headers. The cable can be used with certain Arduino-type boards
as well. Male headers can be added so that this adapter can be used in a breadboard.
(About $10; http://www.adafruit.com/index.php?main_page=product_info&cPath
=29&products_id=126. Cable about $20; http://www.adafruit.com/index.php
?main_page=product_info&cPath=29&products_id=70.)

8 | Chapter 1: Getting Ready

http://www.ftdichip.com/Drivers/VCP.htm
http://www.ftdichip.com/Drivers/VCP.htm
http://www.sparkfun.com/commerce/product_info.php?products_id=8687
http://www.sparkfun.com/commerce/product_info.php?products_id=8687
http://www.adafruit.com/index.php?main_page=product_info&cPath=29&products_id=126
http://www.adafruit.com/index.php?main_page=product_info&cPath=29&products_id=126
http://www.adafruit.com/index.php?main_page=product_info&cPath=29&products_id=70
http://www.adafruit.com/index.php?main_page=product_info&cPath=29&products_id=70

New Micros XBee Dongle
One of the smallest adapters, it needs no external cable. The Dongle does not
provide any access to the radio beyond USB. Also, because it has no cable, its shape
sometimes interferes with other cables or the computer casing. On the other hand,
it’s a very small all-in-one device that’s easy to carry in a pocket. It’s terrific for use
on the go. (About $39; http://www.newmicros.com/cgi-bin/store/order.cgi?form=
prod_detail&part=USB-XBEE-DONGLE-CARRIER.)

Gravitech XBee to USB Adapter
Like the Explorer, this is another simple adapter board that uses the USB A to mini-
B cable (not included). This one also has standard breadboard pinouts. (About
$28; http://store.gravitech.us/xbtousbad.html.)

Breadboards
Solderless breadboards (Figure 1-5) provide an easy test bed for hooking up electronic
circuits without needing to make permanent connections. They consist of a plastic
housing riddled with small holes. Metal clips that lurk beneath the holes in the bread-
board provide a way to hold and connect components. Each metal clip is called a bus,
and everything attached to the same bus is connected together electrically. Many
breadboards have two power and ground buses running down each side, with shorter
buses oriented to them at right angles (Figure 1-6). Components like LEDs, capacitors,
radios, and microchips are placed in the shorter buses, called terminal strips. These are
connected to the power buses and each other using jumper wires.

Figure 1-5. Breadboard front and back, showing metal clips

Buying an Adapter | 9

http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=USB-XBEE-DONGLE-CARRIER
http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=USB-XBEE-DONGLE-CARRIER
http://store.gravitech.us/xbtousbad.html

Breakout Boards
All XBee radios have 20 connection pins, each spaced 2 mm apart. The tight spacing
of the pins helps to keep the radios very small, but doesn’t allow them to fit into a
solderless breadboard. Luckily, this is a very easy problem to solve. Simple XBee break-
out boards that adapt to 0.1″ breadboard spacing (see Figure 1-7) are available from:

• SparkFun

• Adafruit

• Cutedigi

• Gravitech

You will generally need to solder 2 mm female pin headers to one side of these breakout
boards, and regular 0.1-inch male headers to the other side.

Note that the XBee Explorer (Figure 1-8), Adafruit XBee Adapter Kit, and the MCPros
XBee Simple Board each have mounting holes for 0.1-inch male headers. Solder a set
of male header pins into them to adapt these for breadboard use.

Figure 1-6. Breadboard with bus strips and terminal strips indicated

10 | Chapter 1: Getting Ready

http://www.sparkfun.com/commerce/product_info.php?products_id=8276
http://www.adafruit.com/index.php?main_page=product_info&products_id=127
http://www.cutedigi.com/product_info.php?products_id=4241
http://store.gravitech.us/xbeeadapter33v.html

Adapters, Breakout Boards, and Shields
In case you are still a bit mystified by the different ways that an XBee radio can be
attached to another device, here’s a quick review:

Adapters
Typically used to connect the XBee to a USB port on your computer. Some also
provide breakout-board functionality.

Breakout boards
Used to plug your XBee into a standard breadboard and facilitate wired connec-
tions to other components, including the Arduino board.

Figure 1-7. Breakout board showing pin spacing

Figure 1-8. XBee Explorer board from SparkFun

Buying an Adapter | 11

Shields
These attach an XBee directly to an Arduino microcontroller. Shields are printed
circuit boards engineered to seat directly on top of an Arduino board. When you
are not including other components, the shield eliminates the need for breadboards
and wiring.

Arduino Board Adapter Hack
The Arduino microcontroller board we’ll be using in Chapter 4 can be modified to
function as an adapter for XBee radios. This is a useful hack if you don’t want to buy
an adapter—or anytime you find yourself caught without your regular XBee adapter
setup. You’ll still need a breakout board, however.

This hack allows you to connect to the XBee from a terminal program
(described later in this chapter). It lets you use some features of X-CTU
(also described later), but it does not support firmware upgrades. For
that, you should use a proper XBee adapter.

Here’s what you’ll need:

• XBee radio (see “Buying an XBee Radio” on page 1)

• XBee breakout board (see “Breakout Boards” on page 10)

• Arduino microcontroller board with USB connection (Uno or similar) (SFE
DEV-09950, AF 50)

• USB A-to-B-type cable (AF 62, DK 88732-9002, SFE CAB-00512)

• Solderless breadboard (AF 64, DK 438-1045-ND, SFE PRT-09567)

• Hookup wire (22 gauge or similar, different colors) or jumper wire kit (AF 153, DK
923351-ND, SFE PRT-00124)

• Wire strippers (AF 147, DK PAL70057-ND, SFE TOL-08696)

• IC extractor (DK K374-ND, RS 276-1581) or small flat-blade screwdriver (SFE
TOL-09146)

These part numbers are prefaced with abbreviations for the suppliers:
DK, DigiKey; SFE, SparkFun Electronics; AF, Adafruit; RS, Radio
Shack.

Insert the XBee into the breakout board, then mount the breakout board in the bread-
board so that one set of legs is on each side of the breadboard’s center channel. Cut
four lengths of wire or select some precut jumper wires long enough to reach from the
Arduino to the XBee. Use red, black, and two other colors of wire if you have them.

12 | Chapter 1: Getting Ready

Figure 1-9 shows the Arduino adapter hack breadboard layout, while Figure 1-10 shows
the schematic:

1. Make sure that the Arduino is unplugged from the USB and disconnected from any
other external power supply before setting up your wiring.

2. Carefully remove the ATMEGA chip from the Arduino, using an integrated circuit
(IC) extractor or a small flat-blade screwdriver (when you replace it later, be sure
the notch at one end of the chip is aligned with the notch in the socket). Or, if you
don’t want to pull the chip, program the Arduino with the following null code,
which prevents the Arduino chip’s bootloader from responding accidentally:

void setup() {
}
void loop() {
}

3. Connect a (red) wire from the 3.3 V socket on the Arduino so that it mates with
the XBee’s pin 1, the 3.3 V input pin in the upper-left corner of the XBee.

4. Next, connect a (black) wire from either GND socket on the Arduino so that it
mates with pin 10 on the XBee in its lower-left corner.

5. Now wire up a connection from the TX pin (pin 1) on the Arduino to pin 2, the
TX/DOUT pin on the XBee. See Table 1-2 and Figures 1-11 and 1-12 for a full list
of the XBee’s hardware pins and their functions.

6. Finally, wire a connection from the RX pin (pin 0) on the Arduino to pin 3, the
RX/DIN pin on the XBee.

7. Check all your connections. It is very important that you supply only 3.3 V power
to your radio.

XBee radios will not work with voltages larger than 3.3. Giving them
more than 7 volts will burn them out. When in doubt, remove the radio
from your project and confirm the voltage with a multimeter (AF 71,
DK BK117B-ND, SFE TOL-09141) before proceeding.

When you’re done with the hack, set it aside for now. You won’t need to power up this
circuit until you get to “Configuring XBee” on page 40 in Chapter 2.

If you already have an Arduino Mini, you can use the same USB adapter
you use for uploading code to the Arduino Mini as a connector for an
XBee on a breakout board. For this adapter, wire RX to RX on the XBee
and TX to TX on the XBee (http://www.makershed.com/ProductDetails
.asp?ProductCode=MKSP3).

Buying an Adapter | 13

http://www.makershed.com/ProductDetails.asp?ProductCode=MKSP3
http://www.makershed.com/ProductDetails.asp?ProductCode=MKSP3

Figure 1-9. Arduino adapter hack breadboard layout

Figure 1-10. Arduino adapter hack schematic

14 | Chapter 1: Getting Ready

What Are All Those Pins?
Table 1-2. XBee pin descriptions

Pin # Name(s) Description

1 VCC 3.3 V power supply

2 DOUT Data Out (TX)

3 DIN Data In (RX)

4 DIO12 Digital I/O 12

5 RESET Module reset (asserted low by bringing pin to ground)

6 PWM0/RSSI/DIO10 Pulse-width modulation analog output 0, Received Signal Strength Indicator, Digital I/O 10

7 DIO11 Digital I/O 11

8 Reserved Do not connect

9 DTR/SLEEP_RQ/ DIO8 Data Terminal Ready (hardware handshaking signal), Pin Sleep Control (asserted low), Digital
I/O 8

10 GND Ground

11 DIO4 Digital I/O 4

12 CTS/DIO7 Clear to Send (hardware handshaking), Digital I/O 7

13 ON/SLEEP Sleep indicator (off when module is sleeping)

14 VREF Not used in Series 2

15 ASSOC/DIO5 Association indicator: blinks if module is associated with a network, steady if not; Digital I/O
5

16 RTS/DIO6 Request to Send (hardware handshaking), Digital I/O 6

17 AD3/DIO3 Analog Input 3, Digital I/O 3

18 AD2/DIO2 Analog Input 2, Digital I/O 2

19 AD1/DIO1 Analog Input 1, Digital I/O 1

20 AD0/DIO0/COMMIS Analog Input 0, Digital I/O 0, Commissioning Button

Choosing a Terminal Program
Each XBee radio has a tiny computer on board. This internal microcontroller runs a
program, also known as firmware, that performs all its addressing, communication,
security, and utility functions. You can configure this firmware with different settings
that define things like its local address, which type of security is enforced, who it should
send messages to, and how it should read sensors connected to its local input pins.

Choosing a Terminal Program | 15

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Figure 1-11. XBee physical pin numbering, front view

Figure 1-12. XBee physical pin numbering, back view

16 | Chapter 1: Getting Ready

To change or upgrade the firmware, we will use a program called X-CTU that you can
download from the Digi website. On the upside, this program is totally free. On the
downside, it runs only on Windows. Don’t worry if you have limited access to Win-
dows, though. Chances are you’ll only need X-CTU initially, to load the proper firm-
ware onto your XBee radio. Going forward, you can use serial terminal programs on
Macintosh, Linux, or Windows to change many of the settings you’ll be working with
on a day-to-day basis. Let’s take a look at some of these programs and how they operate.

Firmware Update Software
There is only one option for updating the low-level firmware on XBee radios: Digi’s
configuration tool, which is available for free.

X-CTU

The X-CTU program is the official configuration program for XBee radios. As noted,
X-CTU is available only for the Microsoft Windows operating system. If you have ac-
cess to a native Windows computer, a Macintosh running Windows under Boot Camp
or Parallels, or a Linux computer running the WINE Windows emulator (see “X-CTU
in Linux” on page 33 in Chapter 2), you’re all set. Luckily X-CTU is required only for
updating firmware, which is a relatively infrequent task. It does have a number of other
handy features, though, including fully commented setup commands, range tests, and
easier access to the API features we’ll be examining in Chapter 5.

To use X-CTU, plug your XBee radio into a USB adapter and plug that adapter into
one of your computer’s USB ports. Next, launch the X-CTU program. It should show
your USB connection as one of the available ports, similar to what you see in Fig-
ure 1-13. Select the appropriate port and then click on the Modem Configuration tab
to get to a basic configuration screen (Figure 1-14). Clicking on the Read button will
generally access the radio’s setup, though this depends upon which firmware is cur-
rently loaded. Don’t be concerned if you get an error message instead. We’ll go over
the details in the next chapter.

Terminal Software for Configuring Settings
Once you’ve loaded the firmware, you may want to use a different program to com-
municate with your XBee. It’s very helpful to have some familiarity with one or more
serial terminals because you may not always have access to X-CTU when you need it.
At a friend’s house, a hacking workshop, a public demo, or in the midst of a Maker
Faire, you might need to check something or change a setting on a non-Windows com-
puter. Or you may run into a Windows machine where you don’t have the rights to
download and install new software. Here’s a host of different options that can save you
in such cases. We’ll talk about how to set them up and use them in the next chapter.

Choosing a Terminal Program | 17

http://www.digi.com/support/kbase/kbaseresultdetl.jsp?kb=125

CoolTerm

CoolTerm is a terrific open source serial terminal program created by Roger Meier that
runs well on both Windows and Macintosh. It’s a relatively simple program that’s
perfect for most basic tasks you need to perform with XBee radios. CoolTerm is free.
Consider making a small donation to show your appreciation and encourage continued
support for the program (http://freeware.the-meiers.org).

HyperTerminal

Windows XP and older Windows versions come with a serial terminal program called
HyperTerminal. If you are using Windows Vista or Windows 7, HyperTerminal may
still be available as a free demo, or for purchase from http://www.hilgraeve.com/hyper
terminal.html.

Figure 1-13. Using X-CTU

18 | Chapter 1: Getting Ready

http://freeware.the-meiers.org
http://www.hilgraeve.com/hyperterminal.html
http://www.hilgraeve.com/hyperterminal.html

Tera Term

Tera Term is a free, open source Windows program that performs a wide variety of
terminal functions, including acting as a serial terminal. Those using Vista or Windows
7 will appreciate having a free option, since HyperTerminal is no longer bundled with
Windows and must be purchased separately. This is the Windows software we’ll use
to demonstrate serial terminal use (http://ttssh2.sourceforge.jp/).

ZTerm

An old favorite terminal program on the Macintosh, ZTerm has been showing its age
for quite some time. It was designed in 1992 and was last updated in 2002. Still, it is
widely used and despite its anachronistic features and idiosyncratic design, it’s been

Figure 1-14. X-CTU Modem Configuration tab

Choosing a Terminal Program | 19

http://ttssh2.sourceforge.jp/

stable for almost 20 years. You’ll find some brief setup documentation on my blog, and
you can download ZTerm and pay its small shareware fee online (http://homepage.mac
.com/dalverson/zterm/).

screen

For Linux users and for those comfortable in the Macintosh Terminal, there’s a
command-line program named screen that allows direct access to serial ports, including
USB devices. On Mac OS X, the command ls dev/tty.* will list the available ports,
returning a list like this:

/dev/tty.Bluetooth-Modem /dev/tty.Bluetooth-PDA-Sync /dev/tty.usb-A410032.

On Linux, try ls dev/ttyUSB*. Your serial port will probably be something like /dev/
ttyUSB0.

Once you know what your USB port is called, you can invoke the screen program, using
the port and a data rate of 9600 baud. For example:

screen /dev/tty.usb-A410032 9600

To exit, type Ctrl-A followed by Ctrl-\ and then y to quit.

The picocom program, described in the sidebar “A Serial Terminal Program for Li-
nux” on page 40 in Chapter 2, is an alternative to screen and has certain features
(such as local echo) that can be useful for working with XBees.

Others

Here are some other popular options for serial terminals. Some are free, and some
aren’t:

• RealTerm

• Termite

• PuTTY

• MacWise

Summary
Here is a basic shopping list that will work well for this book. Feel free to customize it
according to your interests and the projects you have planned:

• Three XBee ZBs with wire antenna (Digi: XB24-Z7WIT-004, DK602-1098-ND)

• One or two XBee Explorers (SFE: WRL-08687)

• One or two USB A to Mini-B cables (SFE: CAB-00598)

• X-CTU for Windows (free)

• CoolTerm (free)

20 | Chapter 1: Getting Ready

http://www.faludi.com/2009/09/25/zterm-settings/
http://homepage.mac.com/dalverson/zterm/
http://homepage.mac.com/dalverson/zterm/
http://realterm.sourceforge.net/
http://www.compuphase.com/software_termite.htm
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.macwise.com/

Now that you know what to get, go do it! As soon as your components arrive, you will
probably be itching to use them. The next chapter will help you transform your box of
parts into a working ZigBee network. You’ll be chatting wirelessly in no time.

Summary | 21

CHAPTER 2

Up and Running

Here is the heart of the book. We go from a bag of parts to a working ZigBee network
in one chapter, taking the simplest path to early success. Addresses, firmware, and
configuration steps culminate in a simple chat session for a satisfying exchange of
greetings. Hello world, you are up and running.

Let’s get started.

Radio Basics
What exactly is this thing called radio? In any dictionary or encyclopedia, you’ll find a
definition that describes the transmission of information via modulation of waves in
the electromagnetic spectrum. Whoa, that’s pretty mysterious, especially when cou-
pled with the mathematics and equations that describe the behavior of radio. These
certainly help us work with the medium, yet they still may not answer the question of
what it is. If you feel unsatisfied by the words or the math, that’s OK. One helpful way
to think of radio is as a well-described mystery. After all, we can’t see radio. We can’t
touch radio or hear it or smell it or feel it. Billions of years of evolution haven’t provided
us with any direct sensory apparatus for perceiving the radio part of the electromagnetic
spectrum at all. Our language around the phenomenon reveals this. The word radio
comes from radius, the Latin for a ray or spoke in a wheel, something that propagates
from a center outward. True, but pretty vague. Around the turn of the last century it
was referred to as “ethereal communication” in a nod to the “ether” that was incorrectly
thought to pervade outer space. That turned out to be just wrong. Today it’s often
referred to as wireless communication, but that’s not what it is. That’s what it isn’t.
Radio is also tomato-less, cheese-less, and bread-less, but that does no better to help
us understand it. The element of mystery is fundamental to the human experience of
radio, and a reassuring clue that your grasp on it will always be a little loose. Luckily,
we do have a tremendous ability to describe radio’s propagation, predict its behavior,
and use it efficiently for a huge number of purposes. For example, you are about to use
it in the creation of your own sensor mesh network, cleverly manipulating a phenom-
enon that is beyond your direct powers of perception. That’s pretty neat.

23

Electromagnetic Spectrum
Radio is only one slice of the broad array of energy we call the electromagnetic spectrum
(see Figure 2-1). This spectrum includes high-power gamma rays that arrive from su-
pernovas in outer space, the X-rays we use to sneak a peek at broken bones, microwaves
that cook our food, infrared that we sense broadly as heat, and the one tiny slice of the
spectrum that about a third of our brain is devoted to decoding: visible light. Radio
waves are much longer than light waves and many can travel through opaque substan-
ces such as clothing, furniture, and brick walls. Radio energy requires no medium. It
can propagate perfectly well in a vacuum and is therefore ideal for communications
where metal wire connections are impractical, or where visual line of sight may be
impeded by obstructions. When radio waves impinge on a conductor, like metal, they
induce an electrical current that transforms their energy into another form. This means
that radio will not travel well through metal walls, but it also means that we can employ
metallic antennas to transduce radio energy into electrical signals that computers can
detect and process. Engineers have a comprehensive body of theories, equations, and
laws for predicting and manipulating the behavior of radio. Luckily, we can make do
for the time being with just one of these tools, the inverse square law.

Figure 2-1. Chart of the electromagnetic spectrum

Inverse Square Law
Radio signals require a lot of power because, unlike messages running through a wire,
they decay in an accelerated fashion. The reason for this is easy to understand. As radio
signals radiate away from their source, they rapidly spread out like ripples in a pool.
Sound works pretty much the same way, which is why it’s easy to hear a whisper up
close, but impossible to understand it even a few feet away. Both sound and radio decay
according to the inverse square law. Each time you double the distance, you require
four times the amount of power (as Figure 2-2 shows), so traversing long distances
requires tremendous expenditures of energy compared to shorter ones.

ZigBee mesh networks are designed with the inverse square law in mind. Rather than
using big batteries to generate the large amount of power needed to send a signal over
a great distance, each radio needs only small amounts of power to go a short distance
to its nearest neighbor in the network. By adding nodes to the network, great distances
can be traversed without any node needing access to large amounts of energy.

24 | Chapter 2: Up and Running

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Introduction to ZigBee
Many people think that ZigBee and XBee are the same thing. That’s not true. ZigBee
is a standard communications protocol for low-power, wireless mesh networking. XBee
is a brand of radio that supports a variety of communication protocols, including Zig-
Bee, 802.15.4, and WiFi, among others.

The ZigBee protocol is a standard the same way that Bluetooth is a standard. Any
manufacturer’s device that fully supports the ZigBee standard can communicate with
any other company’s ZigBee device. So just as your Motorola Bluetooth headset can
communicate with your Apple iPhone, a CentralLite ZigBee light switch can commu-
nicate with a Black & Decker door lock. How does this work? Well, just like a great
cake, robust network protocols are all about layers.

Most modern network protocols employ a concept of layers to separate different com-
ponents and functions into independent modules that can be assembled in different
ways. We’re not going to bother with a lot of network theory here, just enough for you
to complete the tasks at hand.

Every network has a physical layer where signals are actually transmitted. For example,
your computer may be connected via an Ethernet cable to the Internet. On the other
hand, it may be going wireless with a WiFi connection, using radio signals to traverse
the real world. That’s all happening in the physical layer, and doesn’t change a thing
about, for example, what’s going on at the application layer, which is where your web
browser lives. Firefox doesn’t care a whit if you switch from Ethernet to WiFi. It is
protected by the interfaces between layers that allow each software and hardware
module to change how it does its job, but still talk to the other layers in exactly the
same way.

Figure 2-2. Inverse square law

Introduction to ZigBee | 25

Another way to conceptualize this is to consider your car. You can drive over concrete
highways, asphalt driveways, metal bridges, and dirt parking lots without changing
vehicles. Your tires provide an interface between the vehicle layer and the road layer.
It would work just as well if you were driving a motorcycle or an ice cream truck. Either
layer can be changed out independently without affecting the other.

The network layer below ZigBee that supports its advanced features is known as IEEE
802.15.4. This is a set of standards that define power management, addressing, error
correction, message formats, and other point-to-point specifics necessary for proper
communication to take place from one radio to another. XBee-brand radios can be
purchased with or without ZigBee. For example, the XBee Series 1 hardware—which
we don’t work with in this book (but do mention in Chapter 1)—supports 802.15.4
directly in its native form. ZigBee is a set of layers built on top of 802.15.4. These layers
add three important things:

Routing
Routing tables define how one radio can pass messages through a series of other
radios along the way to their final destination.

Ad hoc network creation
This is an automated process that creates an entire network of radios on the fly,
without any human intervention. Pretty cool.

Self-healing mesh
Self-healing is a related process that automatically figures out if one or more radios
is missing from the network and reconfigures the network to repair any broken
routes.

A ZigBee network is a little like a basketball team. Both are composed of various players,
and each player specializes in certain types of actions. Without the different players,
neither can function properly. Of course, ZigBee is not quite basketball. For one thing,
the radios are not particularly tall. Also, there are really only three kinds of players, or
device types. Every ZigBee network will have a single coordinator device. You can’t call
anything a network until you have at least two things connected. So every ZigBee net-
work will also have at least one other player, either a router device or an end device.
Many networks will have both, and most will be much larger than just two or three
radios:

Coordinator
ZigBee networks always have a single coordinator device. This radio is responsible
for forming the network, handing out addresses, and managing the other functions
that define the network, secure it, and keep it healthy. Remember that each net-
work must be formed by a coordinator and that you’ll never have more than one
coordinator in your network.

Router
A router is a full-featured ZigBee node. It can join existing networks, send infor-
mation, receive information, and route information. Routing means acting as a

26 | Chapter 2: Up and Running

messenger for communications between other devices that are too far apart to
convey information on their own. Routers are typically plugged into an electrical
outlet because they must be turned on all the time. A network may have multiple
router radios.

End device
There are many situations where the hardware and full-time power of a router are
excessive for what a particular radio node needs to do. End devices are essentially
stripped-down versions of a router. They can join networks and send and receive
information, but that’s about it. They don’t act as messengers between any other
devices, so they can use less expensive hardware and can power themselves down
intermittently, saving energy by going temporarily into a nonresponsive sleep
mode. End devices always need a router or the coordinator to be their parent device.
The parent helps end devices join the network, and stores messages for them when
they are asleep. ZigBee networks may have any number of end devices. In fact, a
network can be composed of one coordinator, multiple end devices, and no routers
at all.

Network Topology
In basketball, once the players are selected, they still need to assemble as a team. ZigBee
networks are the same way. They can connect together in several different layouts or
topologies to give the network its structure. These topologies indicate how the radios
are logically connected to each other. Their physical arrangement, of course, may be
different. There are three major ZigBee topologies, illustrated in Figure 2-3:

Pair
The simplest network is one with just two radios, or nodes. One node must be a
coordinator so that the network can be formed. The other can be configured as a
router or an end device.

In general, projects that will never need more than a single pair of
radios won’t get much advantage out of ZigBee and should con-
sider using the simpler Series 1 802.15.4 protocol radios discussed
in Chapter 1.

Star
This network arrangement is also fairly simple. A coordinator radio sits at the
center of the star topology and connects to a circle of end devices. Every message
in the system must pass through the coordinator radio, which routes them as nee-
ded between devices. The end devices do not communicate with each other
directly.

Introduction to ZigBee | 27

Mesh
The mesh configuration employs router nodes in addition to the coordinator radio.
These radios can pass messages along to other routers and end devices as needed.
The coordinator (really just a special form of router) acts to manage the network.
It can also route messages. Various end devices may be attached to any router or
to the coordinator. These can generate and receive information, but will need their
parent’s help to communicate with the other nodes.

Cluster tree
This is a network layout where routers form a backbone of sorts, with end devices
clustered around each router. It’s not very different from a mesh configuration.

Addressing Basics
Almost every person has an address where he can be reached, usually one that is unique
to him. Many people have more than one. We have mailing addresses, email addresses,
phone numbers, passport numbers, and the list goes on. Each kind of address or iden-
tifier serves a slightly different purpose. It’s the same with radios (see Table 2-1). If you
want to send a ZigBee message, you need to know the address of the destination radio.
Just like with people, each radio is known by several different addresses, each of which
serves a purpose. For starters, each radio has a unique and permanently assigned 64-
bit serial number. No other ZigBee radio on earth will have that same serial number.

Figure 2-3. ZigBee pair, star, mesh, and cluster tree topologies

28 | Chapter 2: Up and Running

Then there’s a shorter 16-bit address that is dynamically assigned to each radio by the
coordinator when it sets up a network. This address is unique only within a given
network, but since it’s shorter, many more of them can be manipulated in the very
limited memory available on a ZigBee chip. Finally, each XBee radio can be assigned a
short string of text called the node identifier. This allows the radio to be addressed with
a more human-friendly name. Four out of five humans prefer a friendly machine.

Table 2-1. Address types

Type Example Unique

64-bit 0013A200403E0750 Yes, always and everywhere

16-bit 23F7 Yes, but only within a network

Node identifier FRED’S RADIO Uniqueness not guaranteed

PAN Addresses
In the United States, nearly every town has a Main Street. Thousands of different fam-
ilies live at, for example, 123 Main Street. We can tell them apart because while their
street address is the same, their town or city is different. Each ZigBee network creates
a virtual “city” in the same way, and labels that city not with a name but with a number,
the Personal Area Network (PAN) address. This is another 16-bit address. There are
65,536 different PAN addresses available, each having the capability to generate an-
other 65,536 16-bit radio addresses below it. In theory, therefore, this addressing
scheme has room for more than 4 billion total radios, more than you’ll ever need, no
matter how ambitious a project you may have planned!

Channels
Even if all the addressing is perfect, your message still won’t get through unless both
radios are tuned to the same frequency. When the ZigBee coordinator picks a network
PAN address, it also checks over all the available channels, typically 12 different ones,
and picks a single one for that network’s conversations. All the radios in that network
must use the same channel. By default, XBee radios handle channel selection automat-
ically so you usually don’t need to worry about this, unless of course something goes
wrong.

All Together Now
So for a message to get through from one radio to another, the radios need to be on the
same channel and have the same PAN information, and the sending radio must know
at least one of the receiving radio’s addresses (see Figure 2-4). In addition, some net-
works have security protocols that require an exchange of keys; however, encryption
and security protocols (discussed in Chapter 8) are not required for any of the projects

Introduction to ZigBee | 29

we describe. For now, remember that you’ll need a PAN and a radio address to get your
messages through. You’ll learn how these are set up in the next sections.

You may run into terminology regarding ZigBee application layer ad-
dressing, including discussions of ZigBee profiles, clusters, and end-
points. You won’t need these terms to do the projects in this book, so
they are mentioned here only to reassure you that you can safely ignore
them for now. We will cover application layer concepts in Chapter 8.

Figure 2-4. Venn diagram showing channel, PAN, and addressing

Hexadecimals
There’s no question about it: if you want to use an XBee, you’ll need to understand
hexadecimal notation. Every time you set an XBee’s address, configure one of its timers,
or read the signal strength, the numbers you use are all formatted in base 16.

Relax! It’s pretty easy and we’re going to show you everything you need to know about
these special numbers. If you’ve worked with computers at all, you’ve almost certainly
seen these numbers, called hexadecimals, hex, or base 16 (these all mean the same
thing).

Normally, we express numbers in base 10, counting with numerals from 0 to 9, then
carrying to the next place to get 10 like this:

1...2...3...4...5...6...7...8...9...10

In decimal, there’s a ones place, a tens place, a hundreds place,and so on. Let’s take
the decimal number 7,453:

30 | Chapter 2: Up and Running

 7 4 5 3
 thousands hundreds tens ones
 103 102 101 100

This probably looks pretty familiar. However, if you came from another planet and
didn’t know how to read decimals, you could multiply each number by its place to get
the total value. (7 * 1,000) + (4 * 100) + (5 * 10) + (3 * 1) = 7,453. Hold that thought;
this method will come in handy below.

You might be interested to learn that decimal is only one of many ways to write down
numbers. Imagine how compact your notation would be if you could count from 0 to
15 before you had to carry to the next place, for example:

1...2...3...4...5...6...7...8...9... UH-OH!

We don’t have a single numeral to express 10! We could make up a new squiggle and
that would work fine, except it would be easier if we could use something already on
the computer keyboard. So let’s just use the letter A and say that stands for 10. We can
then use the letter B to stand for 11, and so forth:

1...2...3...4...5...6...7...8...9...A...B...C...D...E...F...10

It may look weird but we didn’t make a mistake at the end. F stands for 15, and then
to express 16 we carried so we had 1 in the sixteens place and 0 in the ones place:

 1 0
 sixteens ones
 161 160

That’s right, in hexadecimal the notation 10 means 16. To avoid confusion, we usually
mark hexadecimal numbers in a special way, with a leading zero and a letter x, like this:
0x10. The leading zero and x don’t mean that we’re multiplying by zero or anything.
They’re simply a prefix, like the dollar sign, to let us know what kind of notation will
follow. So if you see the hexadecimal 0x7E2 here’s how to break it down:

 7 E 2
two-hundred-fifty-sixes sixteens ones
 162 161 160

So what number is this anyway? Remember that multiplication exercise we did with
decimals? Let’s try it with this unfamiliar hexadecimal. (7 * 256) + (E * 16) + (2 * 1) = ??
Oh bother, we need to translate that letter E into its decimal form. Let’s do that right
now: (7 * 256) + (14 * 16) + (2 * 1) = 2,018.

Try translating these decimals into hex. The first few are filled in to get you started:

10 = 0xA

16 = 0x10

17 = 0x11

18 = ___

160 = ___ (Hint: think of how many sixteens are in 160)

256 = ___

Introduction to ZigBee | 31

Now try translating these hexadecimals into decimals:

0xFF = ___

0x3 = ___

0x4B = ___

0x4C = ___

0x186A0 = ___

That last one is hard, so it’s only fair to tell you now that both Windows and Macintosh
have hex calculators. On the regular Windows calculator, change the View menu from
Standard to Scientific. On the Macintosh calculator (Figure 2-5), change the View menu
to Programmer. Now, click the Dec and Hex buttons to switch from decimal to hexa-
decimal notation. You were promised easy, and what could be simpler than clicking a
button? Enjoy.

Figure 2-5. Mac calculator in programmer mode

XBee Firmware Updates
Your brain is brimming with facts, and your shiny new hardware sparkles with possi-
bilities. The time has arrived to put your hands to work. Their first job will be to ensure
that the right types and versions of the firmware are installed on your XBees. You’ll be
using the X-CTU program for this, so fire up the Windows operating system (or Linux;
see “X-CTU in Linux” on page 33), then download and install X-CTU.

32 | Chapter 2: Up and Running

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The X-CTU program and installation instructions are available at http://www.digi.com/
support/kbase/kbaseresultdetl.jsp?kb=125. During the installation process, if you are
asked if you want to download new firmware versions, go ahead and get them. In
addition to X-CTU, you’ll need to install the appropriate drivers for your XBee adapter
board. Most adapter boards, such as the SparkFun XBee Explorer and the New Micros
XBee Dongle, use FTDI drivers. The drivers and installation instructions are located at
http://www.ftdichip.com/FTDrivers.htm. Windows may be able to discover the drivers
on its own if you have Windows Update enabled and are connected to a network.

X-CTU in Linux
To use X-CTU under Linux, you’ll need to first install Wine, which lets you run Win-
dows applications under the X Window System. On a Linux system, you can usually
install Wine using your Linux package manager.

Next, using Wine, download the X-CTU installer and run this command:

wine 40002637_c.exe

(If the filename is not 40002637_c.exe, replace it with the name of the file you
downloaded.)

Now create a symbolic link between the serial port that corresponds to your XBee and
a Windows serial port, such as COM10:

 ln -s /dev/ttyUSB0 ~/.wine/dosdevices/com10

The actual device filename (ttyUSB0 in the example) will vary, so look at the output of
the dmesg command shortly after you plug in the XBee adapter to see which device was
added.

Next, launch X-CTU using a command something like:

wine .wine/drive_c/Program\ Files/Digi/XCTU/X-CTU.exe

Click the User Com Ports tab and type in the name of the Com port you created (such
as COM10), then click Add. Unfortunately, you will need to do this each time you
launch X-CTU, as it does not remember the custom Com ports.

Plug one of your XBee radios into your XBee adapter and connect the adapter to one
of your Windows computer’s USB ports. Launch the X-CTU application. You should
see your XBee’s USB connection listed under Select Com Port. Click on the appropriate
port to select it, as shown in Figure 2-6.

The default settings in X-CTU will usually work for brand-new XBee radios that were
configured at the factory. The easiest way to confirm that everything is set up correctly
is to click on the Test/Query button once you’ve selected a COM port. If all goes well,
you’ll see a message that communication with the modem is OK and that gives you the
modem type and firmware version, as shown in Figure 2-7.

XBee Firmware Updates | 33

http://www.digi.com/support/kbase/kbaseresultdetl.jsp?kb=125
http://www.digi.com/support/kbase/kbaseresultdetl.jsp?kb=125
http://www.ftdichip.com/FTDrivers.htm
http://www.winehq.org

Figure 2-6. X-CTU starting screen

Figure 2-7. X-CTU test confirmation

34 | Chapter 2: Up and Running

If you get the message “Unable to communicate with modem,” make
sure your XBee is seated properly in its adapter, that it isn’t too far for-
ward or back by a pin, and that it wasn’t inserted backward (see Figures
2-8 and 2-9). Also, check to make sure you selected the correct COM
port. (If you suspect that your XBee may be using the API firmware, try
checking the Enable API Mode box. API mode is covered in Chap-
ter 5.) It’s also possible that your XBee has been configured to a baud
rate different from the default of 9600 baud. Try switching to one of the
other baud rates and trying again. If you still can’t get an OK response
to the test, don’t despair. Most of the time, your hardware is just fine.
There are plenty of other fixes you can attempt. Check the Appendix
for additional troubleshooting steps, or contact Digi for technical sup-
port at http://www.digi.com/support. Sometimes, just moving on to the
next step helps with connection issues, so let’s do that now.

Figure 2-8. An XBee misaligned and seated incorrectly. Note that one of the metal pins is showing
ahead of the socket. This radio will not work until it is properly reseated.

Reading Current Firmware and Configuration
Now that you’ve tested the XBee for basic communication, you’ll want to take a look
at what firmware it’s sporting and how that firmware is currently configured. Switch
to the Modem Configuration tab, then click on the Read button under Modem Pa-
rameters. If all goes well, this will populate the window below with all kinds of useful
information, as shown in Figure 2-10.

XBee Firmware Updates | 35

http://www.digi.com/support

Note the “Download new versions” button. Use this button occasionally to have X-
CTU check the Digi website for new versions of firmware (click “Download new ver-
sions,” then click Web).

Linux Troubleshooting
If you’re running X-CTU under Wine on Linux, you may see a dialog box that tells you
the modem configuration file could not be found. This dialog will offer to download
the latest configuration files from the website. If it fails:

1. Visit the Digi FTP site.

2. Next, look in both the xbee_s2 (series 2) and xbee_zb (ZigBee firmware) subdir-
ectories to find the firmware file that matches what you saw in Figure 2-7 (for
example, XB24-ZB_2041.zip for a regular XBee, XBP24-ZB_2041.zip for an XBee-
PRO).

3. Then, find the highest numbered XB (for XBee) or XBP (for XBee-PRO) firmware
in the xbee_zb directory, sort by date, and download all of the most recent available
ZIP files. For example, at the time of this writing, the most recent firmware files
for the regular XBee were XB24-ZB_2070.zip, XB24-ZB_2170.zip, XB24-
ZB_2270.zip, XB24-ZB_2370.zip, XB24-ZB_2870.zip, and XB24-ZB_2970.zip.

4. In X-CTU, go to the Modem Configuration tab, click Download New Versions,
and use the File option to install each of the files (one at a time, unfortunately) you
just downloaded.

5. Click the Read button again, and X-CTU should recognize your XBee.

Figure 2-9. The XBee aligned and seated correctly in its adapter. All the metal pins are inserted into
the sockets.

36 | Chapter 2: Up and Running

http://ftp1.digi.com/support/firmware/update

The Modem type listed needs to be XB24-ZB or XBP24-ZB. Modem
types XB24-B, XB24P-B, XB24-SE, and XB24P-SE can be updated to the
ZB firmware. If you see another model listed when you Read from the
radio, it may not be the correct hardware, in which case it will not work
with this book. Chapter 1 has information on where to obtain the correct
hardware.

Figure 2-10. XBee coordinator AT configuration

XBee Firmware Updates | 37

If you get a dialog box that says there’s a problem (Figure 2-11), with a
suggestion for pressing the XBee reset switch, try gently pulling the XBee
out of its socket on the adapter and reseating it. Be sure to wait 10 sec-
onds for X-CTU to recognize the radio; after it does, it will close the
dialog box on its own.

Doing this while the adapter is still plugged in effectively resets it. The
Digi Evaluation Board has a reset button, so if that’s your adapter, sim-
ply press the button.

Figure 2-11. If you get this message, you can reset the XBee by gently pulling it out of its socket and
reseating it

Let’s configure the first XBee:

1. The class of radio modem is shown under Modem: XBEE (Figure 2-10). For ev-
erything we do in the main part of this book, it should be XB24-ZB (or XBP24-ZB
if you’re using the higher-power PRO version of the radios). If it’s set to something
else, select either of these options from the menu.

2. Under Function Set, you’ll see a list of different firmware that can be loaded for
this class of radio modem. To start, we’ll be configuring one coordinator radio and
one router, both in AT command mode. So for your first radio, if it’s not already
selected, choose ZIGBEE COORDINATOR AT for your function set. Any version
2070 or greater should be fine; in general you want the highest-number version
(they’re hexadecimals) listed for that particular function set.

38 | Chapter 2: Up and Running

3. Click on the Write button to program your radio with the coordinator firmware.
For later reference, use a piece of tape or a small sticker to identify this radio as the
coordinator.

If you get a Windows error such as “Could not open output file.
System error. Access denied.”, check that your account has ad-
ministrator access.

Once you’ve installed your first radio with the coordinator AT command software,
gently remove that radio from the adapter and carefully seat a second radio in the same
adapter. Click on Read in the Modem Configuration screen to see what firmware is on
that radio, then select XB24-ZB (or XBP24-ZB for PRO radios), ZIGBEE ROUTER AT,
and the highest-number version available. Any version 2270 or greater should be fine.
Again, click on Write to program your second radio with the router firmware. Mark
the router radio as well to identify it.

If your radio has API firmware and you had to check the Enable API box
on the PC Settings tab, when you switch to AT command firmware, the
last step of the update may fail with a message about an “Error Setting
AT Parameters” (Figure 2-12). You can safely ignore this error, change
back to the PC Settings tab, uncheck the Enable API box, and then select
the Modem Configuration tab and Read in the Modem Parameters
again. Phew!

Figure 2-12. Error when switching from API to AT firmware

In addition to selecting firmware, you can use X-CTU to configure your radios’ settings.
Because you may not have full-time access to Windows and X-CTU, it’s a good idea to
learn how to change these settings with a regular serial terminal program. We’ll start
by setting up your XBees in this way.

XBee Firmware Updates | 39

Configuring XBee
Any time you aren’t able to use X-CTU, you can configure any XBee that’s in AT com-
mand mode by using a serial terminal program. In the previous chapter we covered a
variety of serial terminal software. Here we’ll show two different programs, Tera Term
for Windows and CoolTerm for Macintosh (CoolTerm also works on Windows).

A Serial Terminal Program for Linux
If you’re on Linux, you’ll probably find picocom to be a suitable terminal program. The
newer versions of picocom support local echo, which lets you see what you’re typing.
To use picocom, you’ll need to compile and install it, then run it at the command line.
For example, to connect to the first USB-serial port (if you’ve only got one XBee plugged
into your Linux system, it will probably be this port), use:

picocom --echo --imap crcrlf /dev/ttyUSB0

You can exit picocom by typing Ctrl-A followed by Ctrl-X.

Settings
No matter what program you use, you’ll need to configure your software to use the
communication settings shown in Table 2-2.

Table 2-2. Default XBee settings for serial terminal software

Baud 9600

Data 8 bit

Parity None

Stop bits 1

Flow control None

Line feed CR+LF or Auto Line Feed

Local echo On

Ports
You always need to select the USB port your XBee adapter is attached to. On Windows,
this will probably be listed as one of the COM ports; on Macintosh, as a port with the
word usbserial in the title; and on Linux, as a port with ttyUSB in the title. Many people
figure out which port is right via trial and error. Honestly, this isn’t a bad way to do it.
The other option is to remove the XBee adapter from the USB port and see which port
name disappears from your port list. The port name that disappears is your XBee
adapter. Windows users can also find a list of the active COM ports by selecting the
Device Manager from the Windows Control Panel on the Start menu. Macintosh users

40 | Chapter 2: Up and Running

http://code.google.com/p/picocom/

can see a list of ports by opening the Terminal program, typing ls /dev/tty.* (Linux
users should use ls /dev/ttyUSB*), and then pressing the Return key.

Connecting from Windows
To begin using your XBee via Tera Term on Windows, plug the XBee adapter into one
of your USB ports and launch the Tera Term application. Tera Term can generally be
selected right from the Windows Start menu. The opening screen (Figure 2-13) will
prompt for a new connection.

Figure 2-13. Tera Term opening screen

Select Serial on the “New connection” screen, then choose the port that is connected
to your XBee adapter. Click on OK and you should see a blank Tera Term window.
Choose Terminal from the Setup menu. In the dialog box that’s presented (Fig-
ure 2-14), choose CR+LF for New-line Receive and check the “Local echo” box. Click
OK to close this panel.

Next, select Serial from the Setup menu to confirm that the communication settings
are correct. You’ve already selected your port, and the default of 9600 baud, 8 data
bits, no parity, one stop bit, and no flow control will be perfect (Figure 2-15). Click OK
to close the panel.

If you want to permanently save this setup, choose Save Setup... from the Setup menu
and click the Save button. You’re ready to get started with configuring your XBee!

Configuring XBee | 41

Figure 2-14. Tera Term terminal setup

Figure 2-15. Tera Term serial port setup

42 | Chapter 2: Up and Running

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

To confirm that your XBee is connected properly, you can try putting it into command
mode. Type three plus signs in a row, but don’t press Return, just wait a moment after
entering them:

+++

If you don’t get a response, try typing the three plus signs again. Make sure you don’t
type anything before or after them. You should see an OK response (Figure 2-16). If you
do, congratulations—you’re successfully connected to your XBee! Skip to “Command
Mode and Transparent Mode” on page 46 to continue.

Your radio requires one second of guard time before and one second of
guard time after you type the +++ or it won’t go into command mode.
Begin by typing nothing for at least one second, then type the three plus
signs, and then don’t type anything else for at least one second more.
Remember, don’t press the return key! That counts as typing something
and will prevent you from going into command mode.

Figure 2-16. Tera Term with XBee in command mode

Connecting from Macintosh
To communicate with the XBee from the Macintosh OS, we will use an open source
program called CoolTerm (Figure 2-17). CoolTerm is in ongoing development, so it
will probably evolve rapidly and may behave somewhat differently or offer new features

Configuring XBee | 43

by the time you read this. Once you’ve downloaded and installed CoolTerm, double-
click on the application to launch it. Click on the Options button to display the current
settings (Figure 2-18). Choose the port your XBee adapter is connected to from the
Device list at the top of the screen. The port will probably have usbserial as part of its
title. The defaults of 9600 baud, 8-N-1 packets, and None for flow control will be
perfect for initial connections to XBee radios. You’ll want to check the Local Echo box
so you can see the commands you’re typing on-screen. Click the OK button to save
your settings.

Figure 2-17. CoolTerm window

To open the serial connection, press the Connect button. Now you can put your XBee
into command mode by typing three plus signs (+++) into the lower window. Don’t
press Return! The XBee should respond with OK about a second later. You’ll see this
response in the CoolTerm window (Figure 2-19).

44 | Chapter 2: Up and Running

http://freeware.the-meiers.org

Figure 2-18. CoolTerm settings; select your port and check the Local Echo box

Figure 2-19. CoolTerm +++ with OK response for entering command mode

If you don’t see the OK, check to make sure you’ve selected the correct port on the
Options screen, and that you connected using the Connect button. Also make sure that
you entered only +++. Don’t press Return! The radio must get only the three plus signs
or it won’t go into command mode.

Configuring XBee | 45

Troubleshooting
Here are some things to check if you aren’t getting an OK response from your radio when
you try to put it into command mode:

• Is the radio connected properly to the XBee adapter?

• Is the XBee adapter plugged into the computer?

• Have you selected the correct port?

• Are you communicating at 9600 baud?

• Could your radio be set to some other baud rate?

• Could your radio be in API mode? See Chapter 5.

• Are you pressing the Return key after typing +++?

• Are you waiting a full second of “guard time” before typing +++?

• Are you waiting a full second of “guard time” after typing +++?

Command Mode and Transparent Mode
All XBees communicate over radio with each other in the same way. However, they can
use their local serial connection in two very different ways. Radios configured for API
mode utilize a data-enveloping format that’s great for computers talking to each other
but is not easily human-readable. We’ll be covering this in a later chapter. XBees that
are configured to use “AT” commands are designed for more direct human interaction.
AT-configured radios switch back and forth between two modes:

Transparent mode
This is the default state for XBee radios using AT firmware. It’s called transparent
because the radio simply passes information along exactly as it receives it. Trans-
parent mode is used to send data through the XBee to a remote destination radio.
When data is received, it is sent out through the serial port exactly as it was received.
What you send is what they get. Very simple.

Command mode
Sometimes we don’t want to send any data at all. Instead, we want to talk directly
to the local radio, perhaps to ask about its configuration or alter the way it behaves.
In this case we want to talk to the radio rather than through it. Rather than passing
along what we type, the radio should stop, listen, and react. This is called command
mode.

Table 2-3 summarizes these modes.

Table 2-3. Transparent versus command mode for AT radios

Transparent mode Command mode

Talk through the XBee Talk to the XBee itself

46 | Chapter 2: Up and Running

Transparent mode Command mode

Any data can be sent through Only responds to AT commands

Default state +++ to enter mode

Wait 10 seconds to return to this mode Times out after 10 seconds of no input

AT-configured XBees are normally in transparent mode. To get a radio to switch into
command mode, we must issue a unique string of text in a special way. This is where
those three plus signs come in (Table 2-4). When the radio sees a full second of silence
in the data stream, followed by +++ and another full second of silence, it knows to stop
sending data through and start accepting commands locally. (It’s very unlikely that this
particular combination would appear in the serial data by chance.) Once the radio is
in command mode, it listens for user input for a while. If 10 seconds go by without any
user input, the XBee automatically drops out of command mode and goes back into
transparent mode.

Table 2-4. Entering command mode

Guard time silence Command sequence Guard time silence

One second before +++ One second after

Remember that you must not press Return or Enter after typing the
+++ because it will interrupt the guard time silence and prevent you from
going into command mode!

AT Commands (Are Your Friend)
The AT commands that XBee radios use for interactive setup are a descendant of the
Hayes command set that was originally developed for configuring telephone modems.
The Hayes command set was never a codified standard, but many other modem man-
ufacturers styled their command set after Hayes and today a variety of communications
devices use the same format to accept configuration messages from serial connections.

You always need to press Enter or Return after issuing an AT command.
Now just to be clear, the deal is to never press Enter after +++ and al-
ways press Enter after your AT command. You’ll probably make mis-
takes with this at first, but it will come naturally soon enough.

Every AT command starts with the letters “AT,” which stands for “attention.” The idea
is to get the attention of the device, in this case our XBee radio. The AT is followed by
two characters that indicate which command is being issued, then by some optional
configuration values. Here’s an example:

ATID 1966<CR>

Configuring XBee | 47

Don’t type the <CR> literally. You just need to add a carriage return at the end, usually
by pressing the Return key on the keyboard. It’s a pretty simple structure that will be
clear once you’ve issued a few commands. Here are some basic ones:

AT
When the AT command is issued by itself, the radio will simply return OK. This is
like asking “Are you there?” and the radio replying “Yup!” If you type AT and press
Return, and don’t see an OK in response, you’ve probably timed out of command
mode and will need to type the +++ to go back into it. This will happen a lot at first,
but eventually you’ll get used to the timing.

ATID
Typing ATID by itself will show you the Personal Area Network ID that is currently
assigned to the radio. PAN addresses define the network that a radio will attach
to, using a hexadecimal number in the range 0x0–0xFFFF. Adding an address after
the ATID command will assign a new PAN address to the radio. This is demonstrated
below.

ATSH/ATSL
Each XBee radio has a 64-bit serial number that serves as a permanent address
that’s unique to it in the world. The serial number address is split into two parts,
a high part and a low part. This is because a single register is not big enough to
hold the whole address. It can’t be changed, so while typing ATSH or ATSL will show
you the high and low parts of that serial number respectively, adding any address
information after this command will cause an ERROR response.

ATDH/ATDL
These show or assign the destination address that the local radio will send infor-
mation to. Typing ATDH will show you the current high part of the destination ad-
dress, while putting address information after ATDH will set a new high part to the
destination address.

ATCN
This command will drop you out of command mode immediately, returning the
radio to transparent mode. You can also type nothing for 10 seconds and the radio
will drop out of command mode automatically.

ATWR
This writes the complete current configuration to firmware, so that the next time
the radio powers up it has the new configuration. ATWR is similar to a Save command
on a computer that writes your document to the hard drive so it’s stored even after
the computer is turned off.

ATMY
This command shows you the current 16-bit address. The coordinator assigns this
address dynamically so it can be displayed (but not set) for the Series 2 ZigBee
radios.

48 | Chapter 2: Up and Running

Using AT Commands
Issuing any of these AT commands is very easy on both Windows and Macintosh. Here
are the steps:

1. Use +++ to ask the radio to go into command mode.

2. Wait for an OK response.

3. To read a register, type an AT command such as ATID, followed by a carriage return.

4. To set a register, type an AT command followed by the parameter you want to set,
like this: ATID 1966, followed by a carriage return. The space before the parameter
is optional so this also works: ATID1966.

Figure 2-20 shows how this looks in Windows.

Figure 2-20. Reading, setting, and then rereading a register in Tera Term

In CoolTerm on a Macintosh, the procedure works pretty much the same. After putting
the radio into command mode with +++, issue an AT command by typing it in the
window, followed by a carriage return.

The results from querying with ATID, setting ATID 1966, and then querying with ATID
again are shown in Figure 2-21.

Now that you know how to connect to your XBee, put it in command mode, and issue
AT commands, you’re ready to configure two radios to chat with each other. Let’s start
that scintillating conversation.

Configuring XBee | 49

Basic ZigBee Chat
Networks are all about connections, so configuring a single radio doesn’t qualify as
making a network because it’s not connected to anything. You need at least two radios
to make a network, so here’s what you’ll need to create your first project—a simple
ZigBee chat session.

Parts
• One XBee Series 2 radio, configured as a ZigBee Coordinator AT (Digi: XB24-

Z7WIT-004, DK 602-1098-ND).

• One XBee Series 2 radio, configured as a ZigBee Router AT (same as previous).

• Two XBee USB adapter boards (SFE: WRL-08687).

• Two computers, each running a serial terminal program, or one computer running
two different serial terminal programs. Using two computers is less confusing, so
find a buddy if you can.

Addresses
Every XBee radio has a 64-bit serial number address printed on the back (Fig-
ure 2-22). The beginning or “high” part of the address will be 0013A200, Digi’s pre-
assigned range of address space. The last or “low” part of the address will be different
for every radio. It will look something like this: 4052DAE3.

Write down your coordinator and router addresses so you can refer to them later:

Coordinator address Router address

0013A200 _________________ 0013A200 _________________

Figure 2-21. Reading and setting registers in CoolTerm

50 | Chapter 2: Up and Running

Coordinator
Start with the XBee ZIGBEE COORDINATOR AT radio you configured earlier in this
chapter. Remember that every ZigBee network must have one coordinator radio—and
only one coordinator radio—so that the network can be properly defined and managed.
Use your serial terminal program and AT commands (or X-CTU if you have access) to
configure the coordinator radio with the settings in Table 2-5.

Table 2-5. Coordinator setup for paired chat

Function Command Parameter

PAN ID ATID 2001 (any address from 0 to FFFF will do)

Destination address high ATDH 0013A200

Destination address low ATDL <see your recorded Router Address>

When you’re finished, check your work by reissuing each AT command without any
parameter so the radio can show you the addresses it’s using (Figure 2-23).

As a final step, use the ATWR command to write the new configuration to your radio’s
firmware so it’s saved for the next power-up.

Figure 2-22. Back of XBee showing 64-bit address

Basic ZigBee Chat | 51

Here’s what a session might look like:

+++
OK
ATID 2001
OK
ATDH 0013A300
OK
ATDL 43023E45
OK
ATID
2001
ATDH
13A200
ATDL
43023E45
ATWR
OK

Figure 2-23. Setting and checking the coordinator radio

52 | Chapter 2: Up and Running

You should get an OK response after issuing each command to set pa-
rameters, and another OK response when you write the changes to
firmware. If you don’t get an OK response, most likely you took more
than 10 seconds to issue the command and you’ve dropped out of com-
mand mode. This can happen quite frequently when you’re starting out,
but you’ll get better at it as you go along. The other common mistake
is not issuing the ATWR command to save your changes, then losing your
configuration when the radio is powered down.

The command mode timeout can be changed to a longer value with
ATCT, but it’s best to wait on doing this until you are more comfortable
with the radios so you don’t set the timeout to an impossibly short value
by accident.

Router
Replace the coordinator radio with the XBee ZigBee Router AT radio you configured
earlier in this chapter. Use your serial terminal program and AT commands (or X-CTU
if you have access) to configure the router radio with the settings in Table 2-6.

Table 2-6. Router setup for paired chat

Function Command Parameter

PAN ID ATID 2001 (must be the same for all radios on your network)

Destination address high ATDH 0013A200

Destination address low ATDL <see your recorded Coordinator Address>

When you’ve finished configuring the radio, check your work by reissuing each AT
command without any parameter so the radio can show you the addresses it’s using
(see Figure 2-24).

As a final step, use the ATWR command to write the new configuration to your radio’s
firmware so it’s saved for the next power-up. Disconnect the XBee from the computer
for now.

Two Computers
Get ready to chat. Connect your coordinator XBee via an adapter to one computer’s
USB port. Launch a serial terminal application, or use the Terminal tab in X-CTU.
(Make sure you select the current port and configure the terminal application for the
right baud rate and other settings.) Your router radio should be connected in the same
way to the second computer, which should be running its own serial terminal
application.

Basic ZigBee Chat | 53

One Computer
If you have only one computer, connect both radios to that computer’s USB ports. Then
choose two different terminal windows, like Tera Term and HyperTerminal on Win-
dows, or CoolTerm and ZTerm on Macintosh. Pick one radio’s port in one program
and the other radio’s port in the other program. Pretend that your first terminal program
is one computer, and that your second terminal program is another one. Keeping all of
this straight might make your head hurt a bit, but it’s a valid test when you can’t find
a real second computer.

Chat
This is the moment you’ve been waiting for. If everything is set up properly, the text
that you type in the serial terminal program on the first computer will be relayed to the
second computer and appear on its serial terminal screen as well. Give it a try.

Remember that chatting will happen only when the radios are in trans-
parent mode. If you are in command mode, type ATCN and press Return,
or simply wait 10 seconds for command mode to time out.

Figure 2-24. Setting and checking the router radio

54 | Chapter 2: Up and Running

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Troubleshooting
If everything works perfectly the first time around, that’s GREAT! However, experience
shows that it sometimes takes a few tries to get everything right. You’ve just set up a
pretty complex system. Don’t despair if your chat doesn’t work right away. In almost
every case, there’s nothing wrong with any of your hardware or even with most of your
setup. It takes only one wrong parameter to throw a wrench in the works. Learning
how to find that wrench and fix it is an essential skill, so here are some tips on what to
try if things don’t work at first:

1. Start with the simple stuff. Make sure your radios are seated properly in the adapter
boards and that all the USB cables are plugged in the way they should be.

2. Check that each radio is responding properly in the terminal window by trying to
use +++ to put it into command mode. If you don’t get an OK back, check your
port selection, baud rate, and the other settings until you find the reason the radio
is not communicating properly. (If you accidentally configured either radio with
API firmware, it will not respond and you will need to change firmware to the AT
version in X-CTU.)

3. If both radios are responding, use AT commands to check the settings. The most
common problems are: not using the same PAN ID on both radios, not setting the
destination address on each radio to the serial number of the other radio, and not
saving the settings properly.

4. If the settings all seem to be correct, check to make sure that you have the coordi-
nator firmware on one radio and the router firmware on the other radio. You can
use the ATVR command to show which firmware is in use. The coordinator’s version
number will begin 20xx and the router’s version number will begin 22xx. If you see
other values, go back to X-CTU and load the proper firmware.

5. Sometimes the radios will be perfectly configured and connected, but your router
will have joined a different network. This often happens in classroom situations,
where many people are using the same PAN ID in the same room. Try using dif-
ferent PAN IDs for each pair.

6. A router will normally find the coordinator on the same PAN and join itself to the
network. Very occasionally this won’t happen properly. You can force each radio
to rebuild its networking setup from scratch by issuing a network reset with ATNR.
Do this on both radios, then recheck to see if they are now connecting properly.

7. Sometimes setting both radios back to factory defaults and reconfiguring them will
flush out a bad setting that was left over from a previous setup, or an unrecognized
typo. The ATRE command will wipe out your radio’s custom configuration and leave
the firmware set cleanly to factory defaults. Follow it with the ATWR command to
write those defaults to the firmware, then go back to the configuration steps and
try putting in your settings again.

Basic ZigBee Chat | 55

8. Don’t forget that Digi’s technical support is a great resource. While they needn’t
be your first step, if you’re really stuck they can help you confirm that your radios
are working properly at the hardware level. There are also a number of great online
resources and forums you can read for ideas and where you can ask for more help.
Check the resource guide in the Appendix.

Success!
When you do get the chat working, this is cause for a major celebration. Dance the
hokey-pokey, sing Norway’s national anthem, eat pudding, or do all three at the same
time. Your very first ZigBee network is up and running!

56 | Chapter 2: Up and Running

CHAPTER 3

Build a Better Doorbell

Now that the wheels are in motion, you’re probably itching to create something prac-
tical. Let’s get on with it. We’ll briefly introduce the Arduino microcontroller system,
with basic instructions for configuration and use. Since this isn’t an Arduino book,
we’ll cover only what you need to know to get this project done. If you’re new to
Arduino and interested in learning more, ample references to other books and sites will
be provided to help you learn whatever is beyond our fairly narrow scope. After getting
up to speed on basic serial concepts and simple protocols, we’ll execute a series of
doorbell projects that build in creative complexity as you gain skill. Knock, knock.
Who’s there? Wireless interaction!

ZigBee and Arduino
Arduino and XBees can work extremely well together in wireless sensor systems. They
are both great prototyping tools.

About Arduino
Arduino (Figure 3-1) is an open source microcontroller system that’s very popular with
prototypers, do-it-yourself enthusiasts, interaction designers, and educators. The sys-
tem is designed to be easy to learn, easy to use, flexible, and fast to develop with.
Microcontrollers are little computers that do specific jobs, such as taking input from
switches and sensors and then deciding whether to turn on a light or ring a bell. They’re
widely used in portable devices, including the types you might want to use in a wireless
sensor network. Here’s how the Arduino project describes itself on its website:

Arduino can sense the environment by receiving input from a variety of sensors and can
affect its surroundings by controlling lights, motors, and other actuators. The micro-
controller on the board is programmed using the Arduino programming language (based
on Wiring) and the Arduino development environment (based on Processing). Arduino
projects can be stand-alone or they can communicate with software running on a com-
puter (e.g., Flash, Processing, MaxMSP).

57

http://www.arduino.cc

The boards can be built by hand or purchased preassembled; the software can be down-
loaded for free.

Figure 3-1. The basic Arduino USB board

In addition to Arduino, there are a slew of other microcontroller systems available,
including the PIC chip, BASIC Stamp, Beagle Boards, and more. If you happen to prefer
one of those platforms, simply use this book’s examples and code as a guide.

We will see in upcoming chapters that the XBee is capable of doing some sensing and
actuation without an external microcontroller, yet we’re already starting with an ad-
ditional piece of equipment. Actually, it’s for a good reason. External microcontrollers
bring several important advantages to a wireless project, including:

Local logic
While the basic XBee radios can be a source of sensor data or a trigger for local
output, they can’t be programmed to perform logical information processing. If
your sensor or device needs local decision-making, you will almost certainly want
to add a microcontroller to handle those processes.

Additional input/output lines
Series 2 XBee hardware comes with 10 digital input/output lines, 4 of which can
be configured for analog (variable) input. While using an XBee, you can configure
the basic Arduino to use up to 17 digital input/output lines, 6 of which can take
analog input while 6 others offer hardware support for analog output. If you have
extensive input or output needs, an external microcontroller may be just the thing.

58 | Chapter 3: Build a Better Doorbell

Fast prototyping
It is generally much easier to deploy and test a solution using a simple, high-level
development system like Arduino than to mess with the XBee’s application pro-
gramming interface and data envelope frames. Even if you just want to do simple
input/output on the XBee module, adding an external microcontroller will prob-
ably save you time as you try out your initial idea. If everything pans out, you can
always slim your project down later.

Lots of connection options
With the help of an Arduino, your XBee can drive large motors, interact with GPS
modules, drive LCD display screens, store data in local memory banks, and interact
directly with the Internet via WiFi or your mobile phone. Working together, the
possibilities are limitless.

Arduino Basics
Here’s how to get ready to work with the Arduino microcontroller system.

Buying an Arduino

Arduino hardware comes in many flavors. The basic Arduino as of this writing is the
Uno. This model supports 13 digital input/outputs along with 6 analog inputs. It can
run off of USB power or via an external “wall wart” power supply. The onboard mi-
crocontroller supports up to 32K of program code with 2K of RAM. This may not seem
like a lot, but in 8-bit microcontroller terms it’s probably more than most prototypers
need. The main Arduino website hosts an exhaustive list of sources at http://www.ar
duino.cc/en/Main/Buy, or you can find it at Maker Shed, SparkFun, Adafruit, and many
other online retailers.

There are plenty of other options if your project has special needs. For example, the
Arduino Mega is good for very big jobs. It has 54 digital input/outputs and 16 analog
inputs, along with 4 hardware serial connections. Should you want to go small, check
out the Arduino Mini, which omits USB and female headers to allow a much smaller
form factor, though at the expense of some prototyping ease. You’ll find plenty of
Arduino clones available too, all of which are configured a little differently to suit par-
ticular needs and tastes. If you feel bewildered by the options, the Uno is a fine choice
for getting started. All the examples in this book are based on it.

Don’t forget the cable

You’ll want a USB cable for programming your Arduino board. For the Uno or Mega,
you need the easily obtained A-to-B-style USB cable. Radio Shack carries these and you
can also find them online at places like OutletPC.com, where they often are on sale for
less than $1.

ZigBee and Arduino | 59

http://www.arduino.cc/en/Main/Buy
http://www.arduino.cc/en/Main/Buy

Downloading the software

The Arduino is programmed using an open source application that runs on your com-
puter. This is known as the IDE (or integrated development environment) and you can
download it for free directly from the Arduino website’s software area. There are ver-
sions available for Macintosh, Windows, and Linux. Download the appropriate version
for your computer. You’ll find a basic guide to getting started at http://arduino.cc/en/
Guide/HomePage.

Using the Arduino IDE

The Arduino IDE (Figure 3-2) is split into three areas. The blue area at the top of the
window features a toolbar of buttons that control program behavior. The white area
in the middle is where you enter and modify code. The black section at the bottom of
the window is where status messages appear, and where you should look for error
messages that can help you debug your code.

As described in the online Arduino guide, the toolbar buttons perform the following
functions:

Verify/Compile Checks your code for errors.

Stop Stops the serial monitor or removes the highlight from other buttons.

New Creates a new sketch (what Arduino programmers call their programs).

Open Presents a menu of all the sketches in your sketchbook (the Arduino program directory). Clicking
one will open it within the current window.

Save Saves your sketch.

Upload to I/O Board Compiles your code and uploads it to the Arduino board.

Serial Monitor Opens the serial monitor.

Selecting the board and port

To connect to your Arduino board, you must plug it into your computer using a USB
A-to-B-style cable. Next, select the model of your Arduino board from the Board menu.
Finally, select your serial port from the Serial menu. On Windows computers, the serial
port will be one of the COM ports. On Macintosh, the serial port will have a name that
includes usbserial, followed by some identifying letters and numbers. Once you’ve
selected your board type and port, you’re ready to do some programming!

Code structure

The Arduino language is based on C/C++ and as such it shares a specific set of struc-
tures that have been simplified for people new to programming. A simple program
might look something like this:

// variable definitions always come first

60 | Chapter 3: Build a Better Doorbell

http://www.arduino.cc/en/Main/Software
http://arduino.cc/en/Guide/HomePage
http://arduino.cc/en/Guide/HomePage

int ledPin = 13;

// The setup() method runs once, when the sketch starts

void setup() {
 // initialize the digital pin as an output:
 pinMode(ledPin, OUTPUT);
}

// the loop() method runs over and over again,
// as long as the Arduino has power

void loop()
{
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(1000); // wait for a second
 digitalWrite(ledPin, LOW); // set the LED off
 delay(1000); // wait for a second
}

A basic program begins with statements that declare the names, types, and initial values
for named containers that are used throughout the program, also known as global
variables. Next comes a section that begins with void setup(). Everything between the
curly braces for this section is code that runs only once, right after the Arduino is
powered up or reset. Typically this section contains procedures that get the Arduino
board ready to do its work, like initializing pins, setting up serial ports, and anything
else that needs to happen only once, on startup. Finally, there’s a section that starts
with void loop(). The code contained in the loop section, between its curly braces,
runs constantly. In the example above, this code will turn on an LED light, wait a
moment, then turn it off and wait a moment. That’s one blink of a blinking light. As
soon as the first blink is complete, the loop code runs again, meaning the light will blink
on and off indefinitely. Sometimes there will be other sections following the loop. These
describe additional functions that are typically called from the main loop, but also could
be called from setup or by each other. For full information on getting started with
Arduino programming, take a look at the longer explanation at http://arduino.cc/en/
Tutorial/Foundations and the many examples that can be downloaded from http://ar
duino.cc/en/Tutorial/HomePage. You’ll find the complete language reference at http://
arduino.cc/en/Reference/HomePage. These resources are also available from the Help
menu in the Arduino IDE. Figure 3-3 shows the Arduino board in detail.

Buying electronics supplies

Arduino projects almost always require additional components, such as switches,
lights, sensors, knobs, wiring, or motors. Here are some resources where you can find
the electronics goodies you need:

ZigBee and Arduino | 61

http://arduino.cc/en/Tutorial/Foundations
http://arduino.cc/en/Tutorial/Foundations
http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage

Figure 3-2. Arduino IDE programming software

Maker Shed
Has lots of projects and some good components, including a kit specifically
designed for use with this book.

62 | Chapter 3: Build a Better Doorbell

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.makershed.com/

Adafruit
Has a great collection of electronics kits with a small but useful selection of
electronic components that are very appropriate for beginners.

SparkFun
Contains a wealth of terrific prototyping components, each well-explained for the
amateur electronics enthusiast.

DigiKey
A complete resource for electrical engineering, DigiKey stocks half a million dif-
ferent components and can deliver any of them overnight. Take a deep breath
before shopping because almost every part is available in a hundred different
variations.

Jameco
Another electrical engineering resource, Jameco tends to have a more limited se-
lection. This, along with its full-color catalog, can be a boon for those new to
selecting components.

Mouser
Similar to DigiKey, Mouser carries a huge selection of parts. If you can’t find it
from one, check the other.

Figure 3-3. Arduino board features and connections. Notice that some pin connections can be
configured for several different purposes.

ZigBee and Arduino | 63

http://adafruit.com/
http://www.sparkfun.com
http://www.digikey.com
http://www.jameco.com
http://www.mouser.com

Learning More About Arduino
There’s lots to know about the Arduino system, more than we could possibly cover in
this chapter. Luckily, there are plenty of resources available to ease your journey from
novice to expert.

On the Arduino site:

• The Getting Started guide (http://arduino.cc/en/Guide/HomePage).

• The Language Reference area lists all the commands and shows how to use them
(http://arduino.cc/en/Reference/HomePage).

• The Arduino Playground hosts a cornucopia of resources, including a wealth of
completed projects and information on extending the basics with more advanced
techniques (http://www.arduino.cc/playground/).

• The Hardware area lists most available boards as well as “shields” to extend them
(http://arduino.cc/en/Main/Hardware).

On the Internet:

• The LadyAda Arduino Tutorial (http://www.ladyada.net/learn/arduino/).

• The NYU ITP Physical Computing tutorials for getting started (http://itp.nyu.edu/
physcomp/Tutorials/) and the sensor wiki for understanding a variety of compo-
nents (http://itp.nyu.edu/physcomp/sensors/).

• The SparkFun set of tutorials, from basic to iPhone (http://www.sparkfun.com/
commerce/tutorials.php).

• The Sheepdog Guides Arduino Course (http://sheepdogguides.com/arduino/
FA1main.htm).

• The Freeduino online index features links to guides and tutorials from all over
(http://www.freeduino.org/).

In Arduino communities:

• The Arduino site forum is a good place to meet people, see if your question has
already been answered, and if not, ask it (http://www.arduino.cc/cgi-bin/yabb2/
YaBB.pl).

• Both SparkFun and Adafruit have very active forums as well (http://forum.sparkfun
.com/; http://forums.adafruit.com/).

At hacker spaces:

• The local one in New York is NYC Resistor (http://www.nycresistor.com/).

• Hundreds more from Maui to West Bengal are listed on Hackerspaces (http://hack
erspaces.org/wiki/List_of_Hacker_Spaces).

In books:

• Getting Started with Arduino by Massimo Banzi (O’Reilly, 2008).

64 | Chapter 3: Build a Better Doorbell

http://arduino.cc/en/Guide/HomePage
http://arduino.cc/en/Reference/HomePage
http://www.arduino.cc/playground/
http://arduino.cc/en/Main/Hardware
http://www.ladyada.net/learn/arduino/
http://itp.nyu.edu/physcomp/Tutorials/
http://itp.nyu.edu/physcomp/Tutorials/
http://itp.nyu.edu/physcomp/sensors/
http://www.sparkfun.com/commerce/tutorials.php
http://www.sparkfun.com/commerce/tutorials.php
http://sheepdogguides.com/arduino/FA1main.htm
http://sheepdogguides.com/arduino/FA1main.htm
http://www.freeduino.org/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://forum.sparkfun.com/
http://forum.sparkfun.com/
http://forums.adafruit.com/
http://www.nycresistor.com/
http://hackerspaces.org/wiki/List_of_Hacker_Spaces
http://hackerspaces.org/wiki/List_of_Hacker_Spaces
http://oreilly.com/catalog/9780596155520/

• Practical Arduino: Cool Projects for Open Source Hardware by Jonathan Oxner and
Hugh Blemings (Apress, 2009).

• Arduino Cookbook by Michael Margolis (O’Reilly, 2011).

• Physical Computing: Sensing and Controlling the Physical World with Computers
by Dan O’Sullivan and Tom Igoe (Thomson, 2004) is a great reference to the
process of building humanized interactive systems.

Finally, here’s a brief history of the Arduino:

• Clive Thompson’s great story about Arduino and open source hardware, “Build
It. Share It. Profit. Can Open Source Hardware Work?” http://www.wired.com/
techbiz/startups/magazine/16-11/ff_openmanufacturing).

Connecting to Arduino
The solderless breadboard and XBee breakout boards described in Chapter 1 provide
an easy way to link your Arduino board to an XBee. While the XBee has many pins, it
takes only four of them to create a working connection so that your Arduino can com-
municate wirelessly, using its built-in serial communications protocol.

Remember that the XBee pins are spaced 2 mm apart, so the XBee can’t be placed
directly into a breadboard. A basic breakout board is the least expensive adapter for
connecting to an Arduino. You can also use an XBee Explorer as a breakout board, but
keep in mind that the pins are arranged differently. The four connecting wires will
provide power, electrical ground, transmit, and receive. Table 3-1 shows the pin con-
nections between Arduino and XBee, and Figure 3-4 shows them on an XBee breakout
board.

Table 3-1. Pin connections between Arduino and XBee

XBee Arduino

VCC or 3.3 V 3V3

TX or DOUT RX or 0

RX or DIN TX or 1

GND GND

Remember, if you are using the XBee Explorer you’ll connect the same pins but their
physical layout will be different, as shown in Figure 3-5.

After plugging your XBee into a small breadboard, you can use different colors of
hookup wire to make the connections between your Arduino and XBee (see Fig-
ure 3-6). Once connected, the Arduino uses serial commands to send information out
via the XBee, and to read in any information that’s received. This is how our doorbells
will operate.

ZigBee and Arduino | 65

http://oreilly.com/catalog/9780596802486/
http://www.wired.com/techbiz/startups/magazine/16-11/ff_openmanufacturing
http://www.wired.com/techbiz/startups/magazine/16-11/ff_openmanufacturing

Figure 3-4. Breakout board pins for serial connection to Arduino

Figure 3-5. XBee Explorer pins for serial connection to Arduino

66 | Chapter 3: Build a Better Doorbell

Doorbell Projects
You are now ready to create your first stand-alone wireless systems. The projects in
this chapter use pairs of radios to help you learn networking basics. In a couple of
chapters, you’ll be creating much larger networks, using the skills you’ll learn here.

Parts
• Two solderless breadboards (MS MKKN2, AF 64, DK 438-1045-ND, SFE

PRT-09567)

• Hookup wire or jumper wire kit (MS MKSEEED3, AF 153, DK 923351-ND, SFE
PRT-00124)

• Two Arduino boards (MS MKSP4, SFE DEV-09950, AF 50)

• USB A-to-B cable for Arduinos (AF 62, DK 88732-9002, SFE CAB-00512)

• An LED (try the 5 mm size, and make sure you don’t buy any surface mount (SMT)
parts) (DK 160-1707-ND, RS 276-041, SFE COM-09590)

• One 10K ohm resistor (DK P10KBACT-ND, SFE COM-08374)

• One momentary switch for input (DK EG2025-ND, RS 275-618, SFE COM-09179)

• One buzzer for output (DK 102-1621-ND, RS 273-060)

• One XBee radio (Series 2/ZB firmware) configured as a ZigBee Coordinator AT
mode (Digi: XB24-Z7WIT-004, DK 602-1098-ND)

• One XBee radio (Series 2/ZB firmware) configured as a ZigBee Router AT mode
(Digi: XB24-Z7WIT-004, DK 602-1098-ND)

• Two XBee breakout boards with male headers and 2 mm female headers installed
(AF 126 [add SFE PRT-00116], SFE BOB-08669, PRT-08272, and PRT-00116)

• XBee USB Serial adapter (XBee Explorer, Digi Evaluation board, or similar) (AF
247, SFE WRL-08687)

• USB cable for XBee adapter (AF 260, SFE CAB-00598)

• Wire strippers (AF 147, DK PAL70057-ND, SFE TOL-08696)

Figure 3-6. Arduino connected to an XBee radio, using a solderless breadboard and hookup wire

Doorbell Projects | 67

Prepare Your Radios
Every ZigBee network needs one and only one node configured as a coordinator. The
other nodes can be configured as routers (or end devices):

1. Follow the instructions under “Reading Current Firmware and Configura-
tion” on page 35 in Chapter 2 to configure one of your radios as a ZigBee Coordi-
nator AT.

2. Using the same instructions, configure your other radio as a ZigBee Router AT.

3. Label the coordinator radio with a “C” so you know which one it is later on. Label
the router radio with an “R.”

Connect Power from Arduino to Breadboard
1. Hook up a red wire from the 3.3 V output of the Arduino to one of the power rails

on the breadboard (see Figure 3-7).

2. Hook up a black wire from either ground (GND) connection on the Arduino to a
ground rail on the breadboard.

3. Hook up power and ground across the breadboard so that the rails on both sides
are live.

Make sure you are using 3.3 V power. The XBee will not run on 5 volts,
and any more than 7 volts will permanently damage it.

XBee Breakout Board
Your XBee radio has pins spaced 2 mm apart. This helps keep the component small,
but it means you can’t use it directly on a standard 0.1″-spaced solderless breadboard.
To mate it with the breadboard, you need to use a breakout board. Basic breakout
boards have no other electrical components. Another option is to use certain XBee USB-
serial adapters, such as the XBee Explorer, Adafruit XBee Adapter, or MCPros XBee
Simple Board, all of which come with standard-spaced holes where you can solder on
male headers. In this example, we’ll just work with a basic breakout board:

1. Solder regular 0.1″-spaced male headers onto the two center rows of holes on your
basic XBee breakout board. The male headers come in long strips, and must be cut
down to fit the breakout board before soldering. It’s a good idea to place the male
headers into the breakout board and insert them into the breadboard, as this helps
with stability while soldering.

2. Next, flip the board over and solder two strips of female 2 mm-spaced sockets onto
the opposite side of the breakout board.

68 | Chapter 3: Build a Better Doorbell

3. Test-fit the XBee into the female sockets, being careful not to bend its pins (see
Figure 3-8).

Figure 3-7. Power connections on Arduino

Figure 3-8. Finished breakout board with XBee mounted

XBee Connections
1. With the XBee mounted on its breakout board, position the breakout board in the

center of your breadboard so that the two rows of male header pins are inserted
on opposite sides of the center trough.

Doorbell Projects | 69

2. Use red hookup wire to connect pin 1 (VCC) of the XBee to 3.3 volt power. See
Figure 3-7.

3. Use black hookup wire to connect pin 10 (GND) of the XBee to ground.

4. Use yellow (or another color) hookup wire to connect pin 2 (TX/DOUT) of the
XBee to digital pin 0 (RX) on your Arduino (see Figure 3-9).

5. Finally, use blue (or another color) hookup wire to connect pin 3 (RX/DIN) of your
XBee to digital pin 1 (TX) on your Arduino. Figure 3-10 shows the connections to
the XBee.

Figure 3-9. Transmit and receive connections on Arduino

Repeat these steps again with the other Arduino and XBee. Figure 3-11 shows the circuit
diagram, and Figure 3-12 shows the schematic.

Sometimes it’s a good idea to use a 1 μF capacitor to decouple the power
supply and filter out high-frequency noise that might interfere with your
radio’s ability to transmit or receive a clean signal. The Arduino typically
provides clean enough power on its own. Decoupling is essential if you
use a separate 3.3 V voltage regulator. In that case place the negative leg
of the capacitor into ground and the positive leg into power, as near as
you can to where your XBee is in the circuit.

70 | Chapter 3: Build a Better Doorbell

Figure 3-10. Power, ground, transmit, and receive connections on XBee. Note that Arduino TX goes
to XBee RX and vice versa.

Figure 3-11. Arduino XBee TX/RX connection on breadboard

Doorbell Projects | 71

Figure 3-12. XBee Arduino TX/RX connections in schematic view

Doorbell Introduction
Radios aren’t much fun on their own, so consider working with a friend on the next
two projects, the first to make a simple doorbell and the second to make one with
feedback. One of your boards will have the doorbell button input and the other will
have a buzzer, speaker, or other noisemaker to act as the doorbell output. The two
boards will run different Arduino code, so make sure you load the correct program on
each.

Switch Input...
One of your boards will serve as the doorbell button:

72 | Chapter 3: Build a Better Doorbell

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

1. Pick the board with the coordinator to act as the doorbell button. (Either the board
with the coordinator or the one with the router would work equally well, so the
choice here is arbitrary.)

2. On that board, attach a momentary switch between power and Arduino digital
input 2. Make sure you use a 10K ohm pull-down resistor from digital input 2 to
ground. This ensures the pin has a reference to zero voltage while the switch is open.

Figure 3-13 shows the circuit diagram, and Figure 3-14 shows the schematic.

Figure 3-13. Basic doorbell: BUTTON system on breadboard. The button is represented here by the
little white thingy, top right.

...and Buzzer Output
Your second board will act as the bell part of the doorbell. On the second board:

1. Attach the red power lead of your buzzer to digital pin 5 of your Arduino board.

2. Attach the black ground lead from your buzzer to ground.

3. If you are already familiar with analog output on the Arduino, you can also use a
speaker or other sound output device, in which case employ what you already know
to make the proper connections and adjust the Arduino code for that device. Re-
member that there are a lot of ways to make sound. If you decide to use a servo or
to hack a toy, a relay might take the place of the buzzer. Imagination makes this
project more fun, so go ahead and amuse your friends or confound your cat.

Figure 3-15 shows the circuit diagram, and Figure 3-16 shows the schematic.

Doorbell Projects | 73

Figure 3-14. Basic doorbell: BUTTON system schematic

Figure 3-15. Basic doorbell: BELL system on breadboard

74 | Chapter 3: Build a Better Doorbell

Figure 3-16. Basic doorbell: BELL system schematic

Configure Your XBees
Keep in mind that there are many ways to configure your XBee radios from your com-
puter. We’ll be using the CoolTerm (Mac, Windows) terminal program and an XBee
Explorer USB adapter. (If you’re on Linux, see the sidebar “A Serial Terminal Program
for Linux” on page 40 in Chapter 2.) You could also use Digi’s X-CTU program and
the Digi evaluation board to accomplish the same task, or one of the many other com-
binations of serial terminal programs and USB adapter setups.

Remember that every XBee radio has a 64-bit serial number address printed on the
underside. The beginning or “high” part of the address is 0013A200. The last or “low”
part of the address will be different for every radio. It will look something like
4052DAE3.

Write down your coordinator and router radio’s addresses so that you can refer to them
during configuration:

Doorbell Projects | 75

Coordinator address Router address

0013A200 _________________ 0013A200 _________________

1. Select the coordinator XBee you labeled with a “C” and place it into the XBee
Explorer. (Technically, either radio will work.)

2. Plug the XBee Explorer into your computer.

3. Run the CoolTerm program and press the Options button to configure it.

4. Select the appropriate serial port, which will probably have the words usbserial
(Mac) or COM (Windows) in its name, and check the Local Echo box so you can see
your commands as you type them.

5. Click on the Connect button to connect to the serial port.

6. Select a PAN ID between 0x0 and 0xFFFFFFFFFFFFFFFF to define your personal
area network.

7. Put the radio into command mode by typing +++ (remember not to press Return).
Next, enter ATID followed by the PAN ID you selected. For example, if you selected
0x2001 as your PAN ID, you’d enter ATID 2001 and press Enter on the keyboard.
You should receive OK as a reply. If you don’t receive an OK, you probably timed
out of command mode and will need to start over with the +++ and try again.

8. Enter ATDH followed by the first “high” part of your radio’s destination address. In
this case we’re making a pair of radios, so each one will have the other as its des-
tination. All XBee-brand radios have the same high part—0013A200. Type
ATDH 0013A200 and press Enter on the keyboard.

9. Enter ATDL followed by the second “low” part of your radio’s destination address—
the eight-character hexadecimal address of the router radio that follows 0013A200.
Type ATDL followed by that second part of the destination address, then press Enter
on the keyboard. (Don’t forget to go into command mode first if you waited more
than 10 seconds after your last command.)

10. To save your new settings as the radio’s default, type ATWR and press Enter.

11. Remove the XBee from the serial adapter.

You set up your second radio in the same way:

1. Select the router XBee you labeled with an “R” and place it into the XBee Explorer.

2. CoolTerm should still be running; if not, repeat steps 2–6 above.

3. Select the same PAN ID you entered for your first radio above.

4. Type +++ to go into command mode. You should receive an OK reply from the
radio.

5. Type ATID followed by the PAN ID you selected and press Enter on the keyboard.
You should receive OK again as a reply.

76 | Chapter 3: Build a Better Doorbell

6. Enter ATDH followed by the high part of your radio’s destination address—always
the same for the XBees. Type ATDH 0013A200 and press Enter on the keyboard. You
should receive an OK response.

7. Enter ATDL followed by the low part of your radio’s destination address—the eight-
character hexadecimal address of the coordinator radio that follows 0013A200.
Type ATDL followed by that low part of the destination address, then press Enter.
You should receive an OK response.

8. Again, save your new settings as the radio’s default by typing ATWR and pressing
Enter.

Your radios are now configured as a pair. Sometimes when people are first starting out
with XBees, it takes a few tries to get everything typed in just right to pair the radios.
If they don’t work at first, don’t panic; usually it’s just because you missed a single step
or made a typo. Try again. Remember that if you are in command mode and type an
AT command without an argument, the radio will reply with the current setting. This
is a good way to check that your configuration is correct.

Program the Arduino Doorbell

When uploading programs to the Arduino boards, disconnect the wir-
ing from digital pin 0 (RX) first, then reconnect the wiring after loading.
If you see an error message from “AVR dude,” you probably forgot to
do this.

There are two programs that run the doorbell system. One goes with the button and
the other goes with the output buzzer or bell. Load this program onto your button
board:

/*
 * ********* Doorbell Basic BUTTON ********
 * requires pre-paired XBee Radios
 * and the BELL program on the receiving end
 * by Rob Faludi http://faludi.com
 */

#define VERSION "1.00a0"

int BUTTON = 2;

void setup() {
 pinMode(BUTTON, INPUT);
 Serial.begin(9600);
}

void loop() {
 // send a capital D over the serial port if the button is pressed

Doorbell Projects | 77

 if (digitalRead(BUTTON) == HIGH) {
 Serial.print('D');
 delay(10); // prevents overwhelming the serial port
 }
}

Program your second board with the bell code. This enables the board to receive a signal
from the button board when its switch is activated and to ring the bell:

/*
 * ********* Doorbell Basic BELL ********
 * requires pre-paired XBee Radios
 * and the BUTTON program on the receiving end
 * by Rob Faludi http://faludi.com
 */

#define VERSION "1.00a0"

int BELL = 5;

void setup() {
 pinMode(BELL, OUTPUT);
 Serial.begin(9600);
}

void loop() {
 // look for a capital D over the serial port and ring the bell if found
 if (Serial.available() > 0) {
 if (Serial.read() == 'D'){
 //ring the bell briefly
 digitalWrite(BELL, HIGH);
 delay(10);
 digitalWrite(BELL, LOW);
 }
 }
}

Don’t forget to reconnect the wiring to digital pin 0 (RX) after loading
your code!

Troubleshooting

Sometimes it takes a few tries to get things right. This is a normal part of the learning
process, so if your doorbell doesn’t ring at first, keep up your good cheer and dig into
figuring out the reason why:

1. Start with the simple stuff. Check to make sure your radios are seated correctly in
the adapter boards, and that all the wiring is connected properly.

2. Use a serial adapter and a terminal program to check that the radios are paired to
communicate with each other. You should be able to use them to chat between

78 | Chapter 3: Build a Better Doorbell

two computers, the way we demonstrated in the previous chapter. Check through
the troubleshooting guide for the chat project if it seems like you’re having radio
issues.

3. If both radios are responding and paired properly, seat them back into the doorbell
project. Make sure they’re inserted into the sockets properly and facing the correct
way.

4. Check your wiring again. The most common problems are simple electrical ones,
where one wire is not making good contact or has accidentally been inserted into
a socket one away from where it should be. Check for any wires where the bare
ends might be touching each other and creating a short circuit.

5. Make sure that RX on the Arduino is connected to TX on the XBee and vice versa.

6. Use a multimeter to confirm that your XBee is getting 3.3 V power. Check that
both Arduino boards have a power light illuminated.

7. Reload the Arduino code onto both boards. Remember that your button board
takes one program, and that your buzzer board takes a different program. Make
sure you’re loading the right program onto the right Arduino board.

8. If you have any questions about Arduino, the best place to learn more is on the
Arduino site itself. You’ll find a complete reference guide there and extensive fo-
rums where you can search for answers or ask a question yourself.

Revelations and Indications
Electricity is invisible. Radio is invisible. How in the world are you going to confirm
that your radio has power and is receiving information? There are three places on the
XBee radio where you can attach a light to see what’s going on:

1. Physical pin 13 is the On/Sleep indicator pin and can tell you if your radio is getting
power and currently awake. As you are still a few chapters away from learning how
to put the module to sleep, this indicator should always be on. Place an LED with
the positive lead (the longer one) into a breadboard socket associated with XBee
physical pin 13, and the negative lead (the shorter one) into the ground bus. If the
LED lights up, your radio has power and is awake. If it doesn’t, check to make sure
you put the LED in the right way, with the shorter leg to ground, and that you
attached it to the proper XBee pin. After that, check to see that the radio is seated
properly in its breakout board, and that it’s powered properly with 3.3 volts.

2. An LED placed between the Association indicator on physical pin 15 and ground
will light steadily while the radio searches for a network, and then blink once it
has associated itself with one. Coordinator radios always blink because they are
always associated with the network they created themselves. Router radios (and
end devices) will give a steady light when they are powered up and looking for a
coordinator. When they find a network to join, their association light will start
blinking. If you don’t see a light at all, check for power problems. If the light is
steady and not blinking, check the configuration of that radio to ensure that it has
the same PAN ID as the coordinator and is within range of a radio that it can join.

Doorbell Projects | 79

http://arduino.cc

3. One of the most helpful indicators is on the other side of the XBee, on physical pin
6. Place an LED between this pin and ground. The Received Signal Strength Indi-
cator (RSSI) will light up on this pin when the radio receives information that’s
addressed to it. By default, the RSSI light will remain on for 10 seconds after it
receives information and then go out again. The RSSI LED will be slightly brighter
when the signal is strong than when it is weak, but in practice this difference is
extremely hard to see. If you think the radio should be receiving information but
the RSSI light remains dark, check the configuration of the sender radio to make
sure it is on the same PAN ID as the destination, is associated with the network,
and has the destination address set correctly.

Figure 3-17 shows an XBee adorned with plenty of LEDs. The bottom right light
is the On/Sleep indicator; the top right light is the Association indicator; and the
left light shows Received Signal Strength for 10 seconds after data is received.
Normally, the On/Sleep light should be on steadily, the Association light should
be blinking, and the RSSI light should be on when data is received.

Figure 3-17. XBee with indicator LEDs attached.

Feedback Doorbell
The next project builds on the previous one-way signal to provide two-way feedback
that the bell unit has received the doorbell button press and has rung. This is useful so
the person at the door knows she actually rang the bell.

80 | Chapter 3: Build a Better Doorbell

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Feedback Light
Add an LED as an output from Arduino digital pin 11 on the button board. Fig-
ure 3-18 shows the diagram, and Figure 3-19 shows the schematic.

Figure 3-18. Feedback doorbell: BUTTON system on breadboard

Program the Arduino Feedback Doorbell

Remember to disconnect the wiring from digital pin 0 (RX) first, then
reconnect the wiring after loading.

Use the following code for the button board with its new feedback light:

/*
 * ********* Doorbell Feedback BUTTON ********
 * requires pre-paired XBee Radios
 * and the BELL program on the receiving end
 * by Rob Faludi http://faludi.com
 */

#define VERSION "1.00a0"

int BUTTON = 2;
int LED = 11;

void setup() {
 pinMode(BUTTON, INPUT);
 pinMode(LED, OUTPUT);
 Serial.begin(9600);

Doorbell Projects | 81

}

void loop() {
 // send a capital D over the serial port if the button is pressed
 if (digitalRead(BUTTON) == HIGH) {
 Serial.print('D');
 delay(10); // prevents overwhelming the serial port
 }

 // if a capital K is received back, light the feedback LED
 if (Serial.available() > 0) {
 if (Serial.read() == 'K') {
 digitalWrite(LED, HIGH);
 }
 }

 // when the button is released, turn off the LED
 if (digitalRead(BUTTON) == LOW) {
 digitalWrite(LED, LOW);
 }

}

Figure 3-19. Feedback doorbell: BUTTON system schematic

82 | Chapter 3: Build a Better Doorbell

On the second bell board, use this code; it accepts the incoming ring request and
responds that the bell has been rung:

/*
 * ********* Doorbell Feedback BELL ********
 * requires pre-paired XBee Radios
 * and the BUTTON program on the receiving end
 * by Rob Faludi http://faludi.com
 */

#define VERSION "1.00a0"

int BELL = 5;

void setup() {
 pinMode(BELL, OUTPUT);
 Serial.begin(9600);
}

void loop() {
 // look for a capital D over the serial port and ring the bell if found
 if (Serial.available() > 0) {
 if (Serial.read() == 'D'){
 //send feedback that the message was received
 Serial.print('K');
 //ring the bell briefly
 digitalWrite(BELL, HIGH);
 delay(10);
 digitalWrite(BELL, LOW);
 }
 }
}

Don’t forget to reconnect the wiring to digital pin 0 (RX) after loading
your code!

Extra: Nap Doorbells and More
There are many ways to take this project one step further. For example, let’s imagine
a situation where you wanted to take a nap and not be disturbed by the doorbell unless
it was extremely urgent. In this case, initial presses of the doorbell button might only
illuminate a signal light, rather than waking you with a bell. Eventually, after a large
number of presses, the system would kick over into bell mode and wake you up. The
caller would initially see a red light at the button to indicate that the bell hadn’t been
rung yet, then eventually after a large number of presses would see a green light to
confirm that the bell had finally rung. Try creating this system or another of your
choosing by extending the Feedback Doorbell system with new, useful features. For
example, you could create a doorbell that rings only when the button is pressed in a

Doorbell Projects | 83

special coded sequence, or a doorbell that can store and replay a history of its rings, or
one with an SMS feature to send you a text message when somebody comes calling, or
an LCD text display where the visitor can select messages to send with the ring. The
possibilities are endless!

84 | Chapter 3: Build a Better Doorbell

CHAPTER 4

Ins and Outs

Congratulations—you now have configurations, communications, and some solid
projects under your belt! It’s time to take a closer look at the unique features of the
XBee brand of ZigBee radio so we can start building fully scalable sensor networks. We
begin with input/output concepts and commands, then immediately put these to use
in a small set of progressive projects that whimsically inculcate the basics.

The Story of Data
Before getting into the technical aspects of sensing data, it’s useful to take a step back
and consider why it is we want to collect this type of information in the first place. After
all, data has no value by itself. In its purest form, data is just a collection of numbers,
and one set of numbers is as good as any other. Our real interest in data always comes
from the story it might tell us. Gathering data is the first step in noticing new things in
the world, proving a hunch, disproving a fallacy, or teaching a truth. It can also be a
path to action. Patterns in data can trigger events, shape public policy, or just determine
when it’s time to feed the cat. We should always have a purpose in mind when collecting
data because that purpose will guide us in how the data is collected. This doesn’t mean
we need to know what the data will tell us. Our purpose might be to simply gather
results to examine for events or patterns that create new questions. This is known in
science circles as exploratory data analysis—a well-accepted form of initial investiga-
tion. In other cases, our plan might be to seek out a highly specific event as a trigger
for a fixed response. That sounds complicated, but really it describes most doorbells,
including the ones you made in the last chapter. Data is collected from a button for the
express purpose of triggering an audio alert. Simple enough, but what else could we
learn from it?

Direct, Indirect, Subtext
A huge number of electronic sensors are available. Table 4-1 contains a partial list of
those within reach of the average tinkerer.

85

Table 4-1. Kinds of electronic sensors

Sensor Detects
Example (SparkFun part num-
bers unless otherwise noted)

Accelerometer Accelerations (changes in speed) SEN-00252

Capacitance Electrical properties often associated with human touch SEN-07918

Color Wavelengths of light SEN-08663

Flex angular position and changes SEN-08606

Force Physical pressure in an analog scale SEN-09673

Gas Alcohol, methane, CO2, CO, propane, and many others SEN-08880

SEN-09404

GSR Galvanic skin response, typically associated with emotional arousal http://www.extremenxt.com/
gsr.htm

Gyroscope Rotation SEN-09423

Hall effect Magnetic fields COM-09312

Microphone/acoustic Sound BOB-08669

Motion Changes in relative distance SEN-08630

Photocell Light SEN-09088

Potentiometer Rotation or linear position on an analog scale COM-09288

Pressure Air or fluid pressure SEN-09694

Pulse Heartbeat rate SEN-08660

Ranging Distance between objects SEN-00639

Rotary encoder Rotation on a digital scale COM-09117

Smoke Airborne particles COM-09689

Stretch Physical deformation or strain http://www.imagesco.com/sen
sors/stretch-sensor.html

Switch Physical pressure on a digital scale COM-09336

Thermistor Temperature SEN-00250

Tilt Angular attitude Adafruit 173

Although the table describes detection of one phenomenon per sensor, each sensor is
really capable of simultaneously detecting three distinct but intrinsically related cate-
gories of events:

Direct or proximal phenomena
These are the incidents that directly trigger the sensor apparatus. For example, in
the case of a photocell, the proximal event would be photons striking the sensor.
Sometimes the proximal phenomenon is not quite as obvious. For instance, a tilt
sensor’s proximal trigger would be the repositioning of a metal ball against two

86 | Chapter 4: Ins and Outs

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.extremenxt.com/gsr.htm
http://www.extremenxt.com/gsr.htm
http://www.imagesco.com/sensors/stretch-sensor.html
http://www.imagesco.com/sensors/stretch-sensor.html

electrical contacts. A Hall-effect sensor reports changes in magnetic fields, though
that’s only rarely the phenomenon of interest.

Indirect or distal phenomena
Distal events are the remote causes of the local events actually triggering the sensor.
The sun coming out from behind a cloud would be the distal phenomenon that
results in a higher reading from a photocell. A window being opened might cause
a Hall-effect magnetic sensor to move away from a magnet and open its contacts.
These indirect events produce the proximal phenomena that our sensors can re-
spond to, and they are frequently the ones we are most interested in.

Context and subtext
Sometimes neither the proximal or even distal events are what we’re after. We
aren’t interested in magnetic fields at all. In fact, most window openings are not a
cause for concern. What we really want to know is if a burglar is entering our house.
Our sensor directly detects a change in a magnetic field. That change is an indirect
result of a window changing position. But the context is human presence; in this
case, definitely a presence that’s undesired. Contextual leaps usually entail some
degree of uncertainty. A window might swing open in a gust of wind. A houseguest
might open up a window that we’d normally leave closed. This creates a need for
determining more information to avoid false alerts or missed alarms. Sensing for
multiple phenomena can reduce uncertainty. For example, security systems often
include window sensors, motion detectors, and pressure mats. When all of these
activate simultaneously, it is a more certain indication of criminal presence than
hearing from any one on its own.

When choosing a sensor, always think about which category of events you’re interested
in detecting. Sometimes a surprising relationship can exist where a simple sensor can
provide reliable indication of an intricate contextual event. A photocell can report when
a bathroom cabinet is opened, by detecting that the interior is no longer totally dark.
A microphone can detect the wind noise made when someone blows on a pinwheel,
and therefore detect both pressure and presence. A switch on the handle of a toilet
might indicate human absence if not triggered for two days, signaling an unsecured
front door to lock itself.

Now that we’ve thought about sensing in theory, let’s move on to the practical matter
of getting the job done.

I/O Concepts
Each XBee radio has the capability to directly gather sensor data and transmit it, without
the use of an external microcontroller. This means that you don’t always need some-
thing like the Arduino when building simple sensor nodes with XBee radios. In addi-
tion, the XBee offers some simple output functions so that basic actuations can also
take place without an external microcontroller being present. For example, it’s possible
to send digital information directly to a standalone XBee radio to have it turn on a light

I/O Concepts | 87

or start up a motor. For clarity, we’ll refer to these independent input/output functions
as XBee direct, to distinguish them from the use of input and output that happens in
conjunction with an external microcontroller.

Why XBee Direct?
There are lots of good reasons to use the XBee for direct input or output. By not having
an external microcontroller, the overall size of your project is reduced. This is especially
important when creating sensors that need to be inconspicuous or fit into tight spaces.
By using the XBee alone you’ll also save weight, which can be important if the system
is to be lofted skyward in a kite or balloon, or worn on your body, or by your pet. When
it comes to wearables, lighter is almost always better. Omitting an external microcon-
troller also reduces power consumption. This can be a critical advantage for projects
that run on batteries, a necessary situation for any project that is truly wireless, and
something we’ll talk about more in Chapter 6. Of course, eliminating the external mi-
crocontroller means saving money, and for sensor networks with hundreds of nodes,
it can mean saving a lot of money. Finally, using the XBee alone is sometimes the least-
complicated approach to a project. There’s a lot going for the XBee direct model.
However, there are also some important trade-offs to consider.

XBee Direct Limitations
Projects that use the XBee alone for its input/output features may face significant lim-
itations compared to projects that incorporate an external microcontroller such as the
Arduino. The XBee has limited input and output pins, with no simple way to extend
them. Also, the Series 2 hardware that the ZigBee firmware requires doesn’t currently
support analog output at all, which means it can’t be employed to dim a light or control
the speed of a motor without additional electronic components. The single biggest
limitation is that the basic standalone XBee radio doesn’t allow access to any kind of
logic. This means no decisions can be made on the local device and no standalone
operations can be performed besides transmitting data or changing the state of digital
pins as the result of remote commands.

A new variation of the XBee radio was recently released that incorpo-
rates a second microcontroller to allow some forms of local logic. How-
ever, this comes at additional cost, will need to be accessed with special
programming methods, and requires knowledge of C or Assembly, both
lower-level approaches than using Arduino.

88 | Chapter 4: Ins and Outs

XBee I/O Features
The XBee Series 2 hardware offers several flexible features for projects that need simple
input and output. There are 10 pins that can be configured either as digital inputs for
sensing switches and other things that operate like switches, or as digital outputs for
controlling LEDs and small motors directly. Larger loads, including ones that run on
alternating current, can be operated using these digital outputs via a relay. The first
four of these pins can be configured as analog inputs for sensing a huge array of phe-
nomena that scale over a range, like light, temperature, force, acceleration, humidity,
gas levels, and so forth. On the Series 2 radios, there are currently no user-configurable
analog or pulse-width modulated (PWM) outputs, so you cannot directly control the
speed of a motor or the brightness of an LED light. However, the underlying chipset
does support these types of outputs so perhaps they will be available in a future firm-
ware upgrade.

XBees have all these different features available, but this doesn’t mean you can use them
all at once! There are only 10 pins total so you if you have all 10 digital inputs configured,
you are out of pins and can’t use any digital output or analog input. Happily, the pins
can be used in a mix. For example, three analog inputs, four digital inputs, and three
digital outputs would be fine. The only other thing to be aware of is that many of the
10 configurable pins are used for other optional duties. These other duties are important
in many applications, but they’ve been carefully selected so that they are ones that don’t
tend to be needed in remote sensing and actuation projects. For example, some of the
duties are serial hardware handshaking (CTS and RTS), an advanced feature that is
generally not needed unless there is another microcontroller or logic-based device in
the mix. Certain I/O pins do double duty as debugging light outputs for signal strength
(RSSI) and association (ASSOC), which are handy for development but generally un-
important on a remote sensor that will not be viewed directly. There are also several
pin-controlled sleep features (ON and SLEEP) that are not usually required for stand-
alone sensing or actuation. Of course, on the off chance that one or more of those
features is required, it would reduce the number of pins available only by one or two,
so you’ll generally have enough left over to cover the vast majority of application
projects you can dream up. Table 4-2 shows the input/output pin names with physical
numbers, corresponding AT commands, and other functions. Note that DIO8 and
DIO9 are not supported in the current firmware so they can’t be used for I/O at this
time. Figure 4-1 shows the I/O pins on a breakout board.

Table 4-2. Input/output pin names with physical numbers, commands, and other functions

Pin name Physical pin # AT command Other functions

DIO0, AD0 20 D0 Analog input, Commissioning Button

DIO1, AD1 19 D1 Analog input

DIO2, AD2 18 D2 Analog input

DIO3, AD3 17 D3 Analog input

I/O Concepts | 89

Pin name Physical pin # AT command Other functions

DIO4 11 D4

DIO5 15 D5 Association indicator

DIO6 16 D6 RTS

DIO7 12 D7 CTS

(DIO8) 9 None Pin sleep control, DTR

(DIO9) 13 None On/Sleep indicator

DIO10 6 P0 Received Signal Strength Indicator (RSSI)

DIO11 7 P1

DIO12 4 P2

Figure 4-1. I/O pins as seen from below on a breakout board

AT Configuration I/O Commands
To configure the XBee radio for direct input, output, or both, you’ll use a set of AT
commands that select each pin’s mode and the sample rate for sending the data. There
are several steps involved in getting this done, so read carefully through this section at
least once before starting to configure your radio.

90 | Chapter 4: Ins and Outs

Here’s the basic I/O command set:

ATD0...ATD7
Configures pins 0 through 7 for I/O mode (pins 8 and 9 are not supported in the
current firmware version). The number after the D indicates which pin you’ll be
configuring. The command is followed by a numeric code that indicates whether
the pin is tasked with digital input, output, analog input (pins 0 to 3 only), some
other function, or nothing at all. For example, to configure I/O pin 2 as a digital
input (code 3), the command would be ATD23. See the I/O settings codes in Ta-
ble 4-3 for a complete list of the codes.

ATP0...ATP1
Configures pins 10 and 11 for I/O mode (there’s a P3 for pin 12, but it is not
supported in the current firmware). Again, the number after the P indicates which
pin you’ll be configuring, and is followed by a numeric code to indicate what pur-
pose the pin will serve—digital in, digital out, or nothing. For example, to configure
I/O pin 11 as a high digital output (code 5) the command would be ATP15. Pins 10
and 11 do not support any analog functions.

ATIR
This sets the I/O sample rate—how frequently to report the current pin state and
transmit it to the destination address. The rate is set in milliseconds, using hexa-
decimal notation. So, for example, let’s say you want to take a sample 10 times
every second. There are 1,000 milliseconds in a second so we divide this by 10 to
get 100 milliseconds. Now we just need to find the hexadecimal equivalent of 100.
This happens to be 0x64, so the command would be ATIR64. To disable periodic
sampling, simply set ATIR to zero.

ATWR
Don’t forget to write the configuration to firmware using ATWR so that the next time
your radio powers up it retains the correct settings!

The settings codes for each I/O pin (Table 4-3) designate whether it will do nothing,
perform a built-in function, take analog input, take digital input, or give digital output.

Table 4-3. I/O settings codes for use with ATDx and ATPx (where x is the pin #)

ATDx or ATPx followed by: Purpose:

0 Disables I/O on that pin

1 Built-in function, if available on that pin

2 Analog input, only on pins D0 through D3

3 Digital input

4 Digital output, low (0 volts)

5 Digital output, high (3.3 volts)

I/O Concepts | 91

Analog input pins D0 through D3 read a range from 0 volts to 1.2 volts
maximum. Voltages above 1.2 are ignored and result in the same max-
imum reading. Because most circuits using the XBee Series 2 run at 3.3
volts, if your input is a variable resistor, like a photoresistor, flex sensor,
or force sensor, you’ll need to create a voltage divider circuit that cuts
maximum voltage by two-thirds to keep it within the range of the
analog-digital converter (ADC).

The formula for voltage divider output between the two resistors is:

A fast implementation for transforming a 3.3 V input into one that stays
below 1.2 V max is to have the fixed resistor R1 be twice the maximum
resistance of the variable resistor R2. So in the circuit shown in Fig-
ure 4-2, if R2 is a flex sensor with a maximum resistance of 10K ohm,
then R1 would be a 20K ohm fixed resistor. Or, for a photocell rated at
300 ohms, a good choice of fixed resistor would be 600 ohms.

Figure 4-2. Voltage divider circuit to map 3.3 V range to 1.2 V range

92 | Chapter 4: Ins and Outs

Advanced I/O Commands
Several other AT commands may come in handy for projects with special I/O needs.
These are worth knowing about even if you don’t need to use them right away. The
XBee manual has detailed specifications for each of these commands:

AT%V
Returns the current supply voltage for the module. This is useful for keeping track
of battery status.

ATPR
Configures the internal 30K ohm pull-up resistors, using a binary value to set for
each pin you’ve configured as an input. This is useful if your input component is
a momentary digital switch that connects to ground, so you don’t need to add the
required external pull-up resistor. By default, the internal pull-ups are all enabled.

ATIC
Configures the digital I/O pins to monitor for changes in state, using a binary value
to set for each pin. The pin(s) would also need to be configured as digital inputs.
When change-detection is enabled, a sample is sent immediately any time a pin
shifts from low to high or vice versa. This is useful if you are monitoring a switch,
and care about triggering a transmission only when a button is pressed or released.

Romantic Lighting Sensor
Wireless networking is not nearly as tricky as navigating romance. Luckily, the former
can help you with the latter, as this next project will demonstrate. Imagine for a moment
that you are a brilliant engineer, hacker, interaction designer, or scientist—and perhaps
you actually are. Let’s say you’ve mastered math, manual skills, and usability, but
nothing in your schooling has prepared you for the daunting task of setting a scene
where love can blossom. What to do? The dining table is laid out perfectly; your date
is moments away from ringing your wireless doorbell; now how to set the lights? We
all know that glaringly bright lighting tends to hamper courtship. This is a date after
all, not an interrogation. On the other hand, dimming the lights too far can seem creepy.
What you need is a sensing system that lets you know you’ve lit things in the sweet
spot for romance.

To get you started, here’s a project that creates a remote wireless lighting sensor with
a base station that lights a green LED when the mood is just right. It also happens to
be a fine example for developing a variety of your own wireless I/O projects.

Basic Romantic Lighting Sensor
We’ll start by creating a simple wireless lighting sensor that gives feedback at the base
station.

Romantic Lighting Sensor | 93

Parts

• Two solderless breadboards (MS MKKN2, AF 64, DK 438-1045-ND, SFE
PRT-09567)

• Hookup wire or jumper wire kit (MS MKSEEED3, AF 153, DK 923351-ND, SFE
PRT-00124)

• One Arduino board (MS MKSP4, SFE DEV-09950, AF 50)

• USB A-to-B cable for Arduino (AF 62, DK 88732-9002, SFE CAB-00512)

• Two AA battery holders with connection wires (RS 270-408, SFE PRT-09547)

• Two AA batteries (alkaline or NIMH rechargeable, fully charged) (RS 23-873, SFE
PRT-09100 or PRT-00335)

• Two 5 mm LEDs (DK 160-1707-ND, RS 276-041, SFE COM-09590)

• One 20K ohm resistor (or twice the max value of your photoresistor) (DK
P20KBACT-ND, SFE COM-08374 * 2 in series)

• One 10K ohm photoresistor (also called an LDR or light-dependent resistor) (AF
161, DK PDV-P8001-ND, SFE SEN-09088)

• One XBee radio (Series 2/ZB firmware) configured as a ZigBee Coordinator API
mode (Digi: XB24-Z7WIT-004, DK 602-1098-ND)

• One XBee radio (Series 2/ZB firmware) configured as a ZigBee Router AT mode
(Digi: XB24-Z7WIT-004, DK 602-1098-ND)

• Two XBee breakout boards with male headers and 2 mm female headers installed
(AF 126 [add SFE PRT-00116], SFE BOB-08276, PRT-08272, and PRT-00116)

• XBee USB Serial adapter (XBee Explorer, Digi Evaluation board, or similar) (AF
247, SFE WRL-08687)

• USB cable for XBee adapter (AF 260, SFE CAB-00598)

• Wire strippers (AF 147, DK PAL70057-ND, SFE TOL-08696)

Prepare your coordinator radio

Write down your coordinator and router radios’ addresses (printed on the back) so
that you can refer to them during configuration:

Coordinator address Router address

0013A200 _________________ 0013A200 _________________

1. Follow the instructions under “Reading Current Firmware and Configura-
tion” on page 35 in Chapter 2 to configure one of your radios as a ZigBee
Coordinator API.

94 | Chapter 4: Ins and Outs

Your coordinator radio must use the API firmware for this project
to work, because I/O data is delivered only in API mode. Be sure
to select the API version for your coordinator!

When you change from AT to API mode using X-CTU, you may
get an error message that the radio is no longer communicating.
Go back to the PC Settings tab and check the Enable API box
(Figure 4-3) to enable communications with your radio.

Figure 4-3. Enable API checkbox on PC Settings tab in X-CTU

2. Once a radio has been set to API mode, it can only be configured in X-CTU. You
will not be able to make adjustments to this radio’s configuration in CoolTerm or
any other terminal program. Use X-CTU to configure the coordinator with a PAN
ID (between 0x0 and 0xFFFFFFFFFFFFFFFF) you’ve selected. Write down this
PAN ID so you can program your router radio with the same one. Every radio in
your network must use the same PAN ID so they can communicate with each other:

Pan ID:

3. Use X-CTU (Figure 4-4) to set ATDH to the high part of your router radio’s address
(always 0013A200 for XBees) and ATDL to the remainder of your router radio’s ad-
dress (the unique part of the number you noted above).

4. Click on the Write button to save your settings to the radio.

Romantic Lighting Sensor | 95

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Figure 4-4. Setting ID, DH, and DL in X-CTU

Prepare your router radio

1. Follow the instructions under “Reading Current Firmware and Configura-
tion” on page 35 in Chapter 2 to configure one of your radios as a ZigBee Router AT.

Your router radio will use the AT firmware, so you can easily con-
figure it using a serial terminal. Be sure you select the AT version
for your router!

When you change from an API radio to an AT radio, you may get
an error message that the radio is no longer communicating. If so,
go back to the PC Settings tab and uncheck the Enable API Mode
box (Figure 4-5).

96 | Chapter 4: Ins and Outs

Figure 4-5. Disabled API checkbox on PC Settings tab in X-CTU

2. Label the coordinator radio with a “C” so you know which one it is later on. Label
the router radio with an “R.”

Prepare the Sensor Board
We’ll use the CoolTerm terminal program (Mac, Windows) and an XBee Explorer USB
adapter again to set up your radios. (If you’re on Linux, see the sidebar “A Serial Ter-
minal Program for Linux” on page 40 in Chapter 2.)

Configure your router XBee

1. Select the router XBee you labeled with an “R” and place it into the XBee Explorer.

2. Plug the XBee Explorer into your computer.

3. Run the CoolTerm program and press the Options button to configure it.

4. Select the appropriate serial port, and check the Local Echo box so you can see
your commands as you type them.

5. Click on the Connect button to connect to the serial port.

6. Type +++ to go into command mode. You should receive an OK reply from the
radio.

7. Select the same PAN ID you entered for your first radio. PAN ID: ______

Romantic Lighting Sensor | 97

8. Type ATID followed by the PAN ID you selected and press Enter on the keyboard.
You should receive OK again as a reply.

9. Enter ATDH followed by the high part of your radio’s destination address—always
the same for the XBees. Type ATDH 0013A200 and press Enter on the keyboard. You
should receive an OK response.

10. Enter ATDL followed by the low part of your radio’s destination address—the eight-
character hexadecimal address of the coordinator radio that follows 0013A200.
Type ATDL followed by that low part of the destination address, then press Enter.
You should receive an OK response. Remember that your destination will be the
coordinator radio.

11. Enter ATJV1 to ensure that your router attempts to rejoin the coordinator on startup.

12. Enter ATD02 to put pin 0 in analog mode.

13. Enter ATIR64 to set the sample rate to 100 milliseconds (hex 64).

14. Save your new settings as the radio’s default by typing ATWR and pressing Enter.

It’s not a bad idea to check your configurations after you enter them.
For example, to check that you entered the destination address cor-
rectly, from command mode type ATDL and press Return to see the cur-
rent setting.

Connect power from battery to breadboard

Your remote sensor will use a breadboard connected to two AA batteries:

1. Hook up the positive (usually red) battery lead to one of the power rails on the
breadboard.

2. Hook up the ground (usually black) battery lead to a ground rail on the breadboard.

3. Hook up power and ground across the breadboard so that the rails on both sides
are live.

Router XBee connection to battery

1. With the router XBee mounted on its breakout board, position the breakout board
in the center of your other breadboard so that the two rows of male header pins
are inserted on opposite sides of the center trough.

2. Use red hookup wire to connect pin 1 (VCC) of the XBee to 3-volt battery power.

3. Use black hookup wire to connect pin 10 (GND) of the XBee to ground.

Photoresistor input

The battery-powered board with the router radio will be your remote sensor. On that
board:

98 | Chapter 4: Ins and Outs

1. Attach a photoresistor between ground and XBee digital input 0 (physical pin 20).

2. Make sure you use the 20K ohm (or other value that’s double your photoresistor’s
max value) pull-up resistor from digital input 0 to power. This ensures the sensor
has a proper voltage divider circuit, which is required to get correct readings.

Figure 4-6 shows the layout of the board, and Figure 4-7 shows the schematic.

Figure 4-6. Romantic lighting sensor BASIC SENSOR breadboard layout

Prepare the Base Station
Your base station radio will use a breadboard connected to an Arduino board.

Connect power from Arduino to breadboard

1. Hook up a red wire from the 3.3 V output of the Arduino to one of the power rails
on the breadboard.

2. Hook up a black wire from either ground (GND) connection on the Arduino to a
ground rail on the breadboard.

3. Hook up power and ground across the breadboard so that the rails on both sides
are live.

Make sure you are using 3.3 V power.

Romantic Lighting Sensor | 99

Coordinator XBee connection to Arduino

1. With the coordinator XBee mounted on its breakout board, position the breakout
board in the center of one of your breadboards so that the two rows of male header
pins are inserted on opposite sides of the center trough.

2. Use red hookup wire to connect pin 1 (VCC) of the XBee to 3.3-volt power.

3. Use black hookup wire to connect pin 10 (GND) of the XBee to ground.

4. Use yellow (or another color) hookup wire to connect pin 2 (TX/DOUT) of the
XBee to digital pin 0 (RX) on your Arduino.

5. Finally, use blue (or another color) hookup wire to connect pin 3 (RX/DIN) of your
XBee to digital pin 1 (TX) on your Arduino.

Light output

1. Attach the positive (longer) lead of an LED to Arduino digital pin 11.

2. Attach the shorter ground lead from your LED to ground.

3. If you prefer to use another output, like an audio buzzer or pager motor, you can
hook it up in the same way. Perhaps your romance chops are best demonstrated
by a puff of scented air freshener. Then again, maybe a monkey playing the drums
is more your style. The key to romance is being yourself, so don’t hesitate to get
creative!

Figure 4-7. Romantic lighting sensor BASIC SENSOR schematic

100 | Chapter 4: Ins and Outs

Figure 4-8 shows the layout of the board, and Figure 4-9 shows the schematic.

Figure 4-8. Romantic lighting sensor BASE breadboard configuration

Program the romantic lighting sensor base station

The romantic lighting sensor base station uses the following Arduino program. Upload
it to your Arduino board and you’re ready to test the mood:

When uploading programs to the Arduino board, disconnect the wiring
from digital pin 0 (RX) first, then reconnect the wiring after loading.

/*
 * *********ROMANTIC LIGHTING SENSOR ********
 * detects whether your lighting is
 * setting the right mood
 * USES PREVIOUSLY PAIRED XBEE ZB RADIOS
 * by Rob Faludi http://faludi.com
 */

/*
*** CONFIGURATION ***

 SENDER: (REMOTE SENSOR RADIO)
 ATID3456 (PAN ID)
 ATDH -> set to SH of partner radio
 ATDL -> set to SL of partner radio
 ATJV1 -> rejoin with coordinator on startup
 ATD02 pin 0 in analog in mode
 ATIR64 sample rate 100 millisecs (hex 64)

Romantic Lighting Sensor | 101

 * THE LOCAL RADIO _MUST_ BE IN API MODE *

 RECEIVER: (LOCAL RADIO)
 ATID3456 (PAN ID)
 ATDH -> set to SH of partner radio
 ATDL -> set to SL of partner radio

 */

#define VERSION "1.02"

int LED = 11;
int debugLED = 13;
int analogValue = 0;

void setup() {
 pinMode(LED,OUTPUT);
 pinMode(debugLED,OUTPUT);
 Serial.begin(9600);
}

void loop() {
 // make sure everything we need is in the buffer
 if (Serial.available() >= 21) {
 // look for the start byte
 if (Serial.read() == 0x7E) {
 //blink debug LED to indicate when data is received
 digitalWrite(debugLED, HIGH);
 delay(10);
 digitalWrite(debugLED, LOW);
 // read the variables that we're not using out of the buffer
 for (int i = 0; i<18; i++) {
 byte discard = Serial.read();
 }
 int analogHigh = Serial.read();
 int analogLow = Serial.read();
 analogValue = analogLow + (analogHigh * 256);
 }
 }

 /*
 * The values in this section will probably
 * need to be adjusted according to your
 * photoresistor, ambient lighting, and tastes.
 * For example, if you find that the darkness
 * threshold is too dim, change the 350 value
 * to a larger number.
 */

 // darkness is too creepy for romance
 if (analogValue > 0 && analogValue <= 350) {
 digitalWrite(LED, LOW);
 }

102 | Chapter 4: Ins and Outs

 // medium light is the perfect mood for romance
 if (analogValue > 350 && analogValue <= 750) {
 digitalWrite(LED, HIGH);
 }
 // bright light kills the romantic mood
 if (analogValue > 750 && analogValue <= 1023) {
 digitalWrite(LED, LOW);
 }

}

Figure 4-9. Romantic lighting sensor BASE schematic

Troubleshooting

If things don’t work at first, here are some steps to take to try to figure out what’s wrong:

1. Check all your electrical connections to make sure there are no loose wires and
that all the components are connected properly.

Romantic Lighting Sensor | 103

2. Check the coordinator configuration in X-CTU again, including that the correct
modem type (XB24-ZB) and function set (ZigBee Coordinator API) have been se-
lected. Also check that the PAN ID, destination high, and destination low are con-
figured as you expect. Remember the destination is the other radio.

3. Check the router configuration in X-CTU to confirm that the correct modem type
(XB24-ZB) and function set (ZigBee Coordinator AT) have been selected. Also
check that the PAN ID, destination high, and destination low are configured as
you expect, and that ATJV, ATD0, and ATIR have been configured as described
above.

4. Make sure that the Arduino is programmed with the correct code for this project
(the basic version above and the feedback version below have different code and
must be matched to the correct board setup and radio settings).

5. The debug LED on the Arduino board (pin 13) will flash if you are receiving data.
If this light is flashing but your output light doesn’t change, try adjusting the sensor
threshold values in the Arduino code.

6. An LED placed from the ASSOC pin of the XBee (physical pin 15) to ground should
show a flashing light.

7. An LED placed from the RSSI pin of the XBee (physical pin 6) to ground should
show a steady light when the radio is receiving information. If messages stop com-
ing in, this light will time out and go dark after 10 seconds.

8. Use a multimeter to see if the voltage at the D0 pin of the XBee (physical pin 20)
varies with changes in the lighting. It should be somewhere in the range between
0 and 1.2 volts and change as you shadow the light sensor with your hand.

9. We are not always able to see our own mistakes. Have a friend check everything
for you. Sometimes only a second pair of eyes will catch the one (or more) issues
standing in the way of success.

10. When all else fails: Try taking a break and coming back to the project after a good
night’s rest. Many of midnight’s intractable puzzles are morning’s simple fix.

Romantic Lighting Sensor with Feedback
The basic sensor works pretty well as long as you are at the base station. However, it’s
a pain to run back and forth between the sensor and the base to see if the mood is right.
Let’s improve on things by putting the feedback right where the sensor is. This is also
a nice example to start with for any project where you want both sensing and actuation
on a remote device.

Add light output to the sensor

On the sensor board:

1. Attach the positive (longer) lead of an LED to XBee digital input 1 (physical pin 19).

104 | Chapter 4: Ins and Outs

2. Attach the shorter ground lead from your LED to ground.

Figure 4-10 shows the layout of the board, and Figure 4-11 shows the schematic.

Figure 4-10. Romantic lighting sensor FEEDBACK SENSOR breadboard layout

Configure your router XBee

We’ll use the CoolTerm terminal program and an XBee Explorer USB adapter again to
set up the radios. The setup is the same as in the basic version above, with the addition
of a digital output pin to control the sensor LED:

1. Select the router XBee you labeled with an “R” and place it into the XBee Explorer.

2. Plug the XBee Explorer into your computer.

3. Run the CoolTerm program and press the Options button to configure it.

4. Select the appropriate serial port, and check the Local Echo box so you can see
your commands as you type them.

5. Click on the Connect button to connect to the serial port.

6. Type +++ to go into command mode. You should receive an OK reply from the
radio.

7. Enter ATD14 to put pin 1 in low digital output mode.

8. Save your new settings as the radio’s default by typing ATWR and pressing Enter.

Romantic Lighting Sensor | 105

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Program the romantic lighting sensor with feedback base station

The romantic lighting sensor with feedback base station uses the following Arduino
program. Upload it to your Arduino board and you’re ready to test the mood right from
the sensor:

When uploading programs to the Arduino board, disconnect the wiring
from digital pin 0 (RX) first, then reconnect the wiring after loading.

/*
 * *********ROMANTIC LIGHTING SENSOR WITH FEEDBACK********
 * detects whether your lighting is
 * setting the right mood and shows
 * you the results on the sensor module
 * USES PREVIOUSLY PAIRED XBEE ZB RADIOS
 * by Rob Faludi http://faludi.com
 */

/*
*** CONFIGURATION ***

 SENDER: (REMOTE SENSOR RADIO)
 ATID3456 (PAN ID)
 ATDH -> set to SH of partner radio
 ATDL -> set to SL of partner radio
 ATJV1 -> rejoin with coordinator on startup
 ATD02 pin 0 in analog in mode with a photo resistor

Figure 4-11. Romantic lighting sensor FEEDBACK SENSOR schematic

106 | Chapter 4: Ins and Outs

 (don't forget the voltage divider circuit--resistor
 to ground is good)
 ATD14 pin 1 in digital output (default low) mode with an
 LED from that pin to ground
 ATIR64 sample rate 100 millisecs (hex 64)

 * THE LOCAL RADIO _MUST_ BE IN API MODE *

 RECEIVER: (LOCAL RADIO)
 ATID3456 (PAN ID)
 ATDH -> set to SH of partner radio
 ATDL -> set to SL of partner radio

 */

#define VERSION "1.02"

int LED = 11;
int debugLED = 13;
int analogValue = 0;
int remoteIndicator = false; // keeps track of the desired remote
 // on/off state
int lastRemoteIndicator = false; // record of prior remote state
unsigned long lastSent = 0; // records last time the remote was
 // reset to keep it in sync

void setup() {
 pinMode(LED,OUTPUT);
 pinMode(debugLED,OUTPUT);
 Serial.begin(9600);
}

void loop() {
 // make sure everything we need is in the buffer
 if (Serial.available() >= 23) {
 // look for the start byte
 if (Serial.read() == 0x7E) {
 //blink debug LED to indicate when data is received
 digitalWrite(debugLED, HIGH);
 delay(10);
 digitalWrite(debugLED, LOW);
 // read the variables that we're not using out of the buffer
 // (includes two more for the digital pin report)
 for (int i = 0; i<20; i++) {
 byte discard = Serial.read();
 }
 int analogHigh = Serial.read();
 int analogLow = Serial.read();
 analogValue = analogLow + (analogHigh * 256);
 }
 }

Romantic Lighting Sensor | 107

 /*
 * The values in this section will probably
 * need to be adjusted according to your
 * photoresistor, ambient lighting, and tastes.
 * For example, if you find that the darkness
 * threshold is too dim, change the 350 value
 * to a larger number.
 */

 // darkness is too creepy for romance
 if (analogValue > 0 && analogValue <= 350) {
 digitalWrite(LED, LOW);
 remoteIndicator = false;
 }
 // medium light is the perfect mood for romance
 if (analogValue > 350 && analogValue <= 750) {
 digitalWrite(LED, HIGH);
 remoteIndicator = true;
 }
 // bright light kills the romantic mood
 if (analogValue > 750 && analogValue <= 1023) {
 digitalWrite(LED, LOW);
 remoteIndicator = false;
 }

 // set the indicator immediately when there's a state change
 if (remoteIndicator != lastRemoteIndicator) {
 if (remoteIndicator==false) setRemoteState(0x4);
 if (remoteIndicator==true) setRemoteState(0x5);
 lastRemoteIndicator = remoteIndicator;
 }

 // reset the indicator occasionally in case it's out of sync
 if (millis() - lastSent > 10000) {
 if (remoteIndicator==false) setRemoteState(0x4);
 if (remoteIndicator==true) setRemoteState(0x5);
 lastSent = millis();
 }

}

void setRemoteState(int value) { // pass either a 0x4 or 0x5 to turn the pin on/off
 Serial.print(0x7E, BYTE); // start byte
 Serial.print(0x0, BYTE); // high part of length (always zero)
 Serial.print(0x10, BYTE); // low part of length (the number of bytes
 // that follow, not including checksum)
 Serial.print(0x17, BYTE); // 0x17 is a remote AT command
 Serial.print(0x0, BYTE); // frame id set to zero for no reply
 // ID of recipient, or use 0xFFFF for broadcast
 Serial.print(00, BYTE);
 Serial.print(00, BYTE);
 Serial.print(00, BYTE);
 Serial.print(00, BYTE);
 Serial.print(00, BYTE);

108 | Chapter 4: Ins and Outs

 Serial.print(00, BYTE);
 Serial.print(0xFF, BYTE); // 0xFF for broadcast
 Serial.print(0xFF, BYTE); // 0xFF for broadcast
 // 16 bit of recipient or 0xFFFE if unknown
 Serial.print(0xFF, BYTE);
 Serial.print(0xFE, BYTE);
 Serial.print(0x02, BYTE); // 0x02 to apply changes immediately on remote
 // command name in ASCII characters
 Serial.print('D', BYTE);
 Serial.print('1', BYTE);
 // command data in as many bytes as needed
 Serial.print(value, BYTE);
 // checksum is all bytes after length bytes
 long sum = 0x17 + 0xFF + 0xFF + 0xFF + 0xFE + 0x02 + 'D' + '1' + value;
 Serial.print(0xFF - (sum & 0xFF) , BYTE); // calculate the proper checksum
 delay(10); // safety pause to avoid overwhelming the
 // serial port (if this function is not implemented properly)
}

API Ahead
These last code examples contain something we haven’t really looked at yet, API mode.
The next chapter will explore the XBee Application Programming Interface, a highly
structured way of communicating with your XBee radio. You’ve already used it, so let’s
find out how it works and why it is essential to certain projects.

Romantic Lighting Sensor | 109

CHAPTER 5

API and a Sensor Network

Here the plot heats up. You now have everything you need to conquer the XBee’s
application programming interface. This is something we need to do so we can use all
the data our networks can provide. We will start with simple concepts and scaffold you
up to a full understanding of the structured API communication frames. That will get
you ready to create a fully scalable sensor network of your own, using the example at
the end of the chapter.

What’s an API?
An application programming interface (API) is simply a set of standard interfaces cre-
ated to allow one software program to interact with another. APIs let one computer
application request services from another application in a standard manner. For our
purposes, the most important thing to note is that APIs are specifically engineered to
enable computers to talk efficiently to other computers. They are not generally designed
for direct human interaction.

So far, we’ve been using the XBee radios in transparent/command mode. For example,
in the simple chat we set up in Chapter 2, we were able to type text at a keyboard to
enter command mode, then issue AT commands by typing them right in. When we
were done with configuration, we exited command mode and went right into trans-
parent mode, where everything typed at the keyboard was transferred verbatim to the
destination radio and read directly on the screen. This was a simple way to get started
with wireless networking, and it’s one of the great strengths of the XBee platform. It’s
very easy for humans to get started using direct interactions in the transparent/com-
mand modes. However, there is also a catch. When interactions are made easy for
humans, they are not as robust, explicit, and efficient for computers. Computers care
about things like algorithmic error correction, airtight mode identification, and efficient
data transfer to get their job done quickly, predictably, and reliably. As the same time,
they could care less about readability. Computers prefer to deal with numbers, and do
best when the organization of these numbers provides an unambiguous and highly
structured method for transfer. This is where API mode comes in to save the day. By

111

providing an interface for programmatic communication with the XBee, API mode
enables the radios to serve humans and computers equally well, each according to their
needs.

Transparent, command, and API interaction modes with an XBee are
local to that particular radio. “Local” means that they apply to interac-
tions with users, computers, or microcontrollers that take place via the
XBee’s serial connection (also known as its UART). Wireless commu-
nications between XBees are independent of the local interaction mode,
as shown in Figure 5-1. So a radio in transparent mode can send to
another in API mode just fine. It’s only in local serial communications
where transparent/command mode and API mode make a difference.

Figure 5-1. Local communications over serial wires happen in API mode or AT (transparent/
command) mode. Wireless communications are not affected by the choice of local modes.

Before we dive into the XBee API, let’s review protocols in general and build a hypo-
thetical one to examine just how they work.

112 | Chapter 5: API and a Sensor Network

Protocols
Every transfer of information requires a protocol. Protocols are easy to understand;
they’re simply agreements on some rules for communication. There are established
protocols for wireless computer communications, just as there are protocols for two
human beings who want to have a casual conversation. Both people and computers
face the same types of communication problems and we solve them in very similar ways.

Humans
Let’s say that Jane and Michael have something to discuss. If Michael starts off in
nonstop Chinese and Jane begins to shout over him in Icelandic, very little is going to
be accomplished. It’s best for them to agree on a common language first, and then
follow some rules for speaking and listening so that an exchange of information can
take place. If Jane begins speaking first, Michael will wait for her to finish, and then
respond to her remarks. While Michael is talking, Jane will listen. If a fire truck goes
by and Jane can’t hear, she’ll ask Michael to repeat whatever she missed. If what
Michael says doesn’t make sense to Jane, she’ll either ignore his misspeak or request
clarification depending upon the specifics of that particular statement. Much of the
protocol of human conversation is so well ingrained that we usually don’t think about
the rules. We just follow them naturally. It’s only when we discard protocol, by talking
over each other, mumbling incoherently, or failing to voice our confusion that com-
munications fall apart.

Computers
When computers talk to each other, they try to fulfill a given purpose in the simplest
manner possible. In some contexts, that can be pretty simple indeed! For example, let’s
look at the least complicated communications protocol: basic streaming. One com-
puter talks nonstop and the other listens. This is the perfect solution for conveying
simple data from one point to another as long as some errors can be tolerated. More
complicated protocols will define whether there’s some kind of handshaking involved
to set up the exchange, timing issues, what replies are sent in response to what messages,
routing strategies, and so forth. But we don’t need to worry about any of that for now
because we’re keeping it simple.

Let’s say we want to send a number between 0 and 255 to represent in real time how
bright it is outside.

Protocols | 113

We use the range 0–255 because 255 is the largest number that can be
represented in a single byte of data. All common forms of serial com-
munication break data up into bytes. A byte is a set of eight digital
bits. A single bit can be either 0 or 1, thereby representing two states.
Add another bit and you now have four states: 00, 01, 10, and 11. A
third bit allows for eight states (000, 001, 010, 011, 100, 101, 110, and
111), and so on and so forth until you get to eight bits that can represent
256 different states (including the zero state). That’s a byte! In decimal,
the numbers go from zero to 255, and in hexadecimal notation they go
from 0x0 to 0xFF. For more on binary and bytes, see: http://en.wikipedia
.org/wiki/Byte.

If we send our brightness data once every second, it would look something like this:

136...137...137...138...138...138...139...135...128...110...125...130...136...

Well, these numbers are just numbers so interpreting them requires a protocol to set
an agreement about what they mean. Whatever is receiving them needs to already know
that it’s getting brightness data, and that the range from 0 to 255 represents from dark
to dazzling. There is no way of telling if there’s an error in the data or determining
which sensor might be sending them to us. But if we’re just making a single lamp that
matches the current brightness from a single sensor on the roof, this may be all we need.
If we get a wrong number every once in a while, the worst that may happen is the lamp
might flicker for a moment. No big deal! So in this case we’re all set. But what if our
roof sensor is getting both light and temperature data? How can we tell the difference?

Start bytes

If we’re sending two pieces of data, the first solution you might come up with is to
always send them in order, first light and then temperature, like this:

136...14...137...14...137...14...138...14...138...15...138...15...139...15...

For clarity in this example we’ve made the temperature numbers much smaller than
the light numbers, but we certainly couldn’t count on that always being the case in real
data. If we plugged in our lamp at some arbitrary moment, we might see the following
instead:

...137...137...138...137...138...138...139...138...138...138...139...139...138...

Which number represents light and which number represents temperature? There isn’t
any way to be sure, and that’s no good. We have to come up with a better solution.
Maybe we could add a special number at the beginning of the sequence, like 255, so
that every time we see it we’d know the very next number would be a light value,
followed by a temperature value. That would look like this:

255...136...14...255...137...14...255...137...14...255...138...14...255...138...15...

114 | Chapter 5: API and a Sensor Network

http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Byte

Great! Now our data is all organized in a sequence. The 255 in this case is known as a
start byte. The start byte concept is so useful that you’ll find it in many other protocols,
including in the XBee’s API. (By the way, we should make sure that our data values
stop at 254 so that the start byte will always be unique.) For a computer to read this,
we simply tell it to look for a 255, then read in the next byte as a light value and the
third as a temperature value. It’s a total solution, as long as the sequence and type of
sensor values we’re sending are fixed. But what if they aren’t?

Length byte

What if sometimes our node sends light and temperature, but other times it sends light,
temperature, and humidity? No problem. In this case we need to add a value to our
protocol to indicate the length of data coming after the start byte:

255...2...136...14...255...3...137...14...87...255...3...137...14...89...

In the sequence above, the numbers 2 and 3 indicate the length of the data. So this is
the length byte. Now when a computer reads the sequence, it can know without a doubt
that after the start byte, it gets a number that tells it how many more data values to read
in.

Protocol structures like these are often described as frames, packets, or
envelopes. Each of those terms means pretty much the same thing—a
repeating sequence containing useful data (sometimes called the pay-
load) packaged with information about the data (sometimes called
metadata). We’ll use the term frame from here on out to describe our
hypothetical protocol.

Contents ID

The length byte is handy, but it doesn’t fully ensure that we know what the frame of
data contains. For example, maybe sometimes we have light, temperature, and hu-
midity, but other times we’re sending pressure, rainfall, and wind speed. In both cases
there are three pieces of data, so we also need to describe the contents of each frame.
The simple thing is to add a contents byte, a number that acts as an ID for the type of
data in a particular frame. We can decide arbitrarily that 1 will indicate a light/tem-
perature/humidity frame and that 2 will indicate a pressure/rainfall/windspeed frame:

255...3...1...137...14...87...255...3...2...119...28...54...

So our sequence here is start byte, length byte, ID byte, and then the data itself. This
kind of predictable format is just what computers adore! It transmits everything we
need to know, in as little space as possible. There’s no limit to the type of useful meta-
information we could add in this manner. For example, we might include an address
byte to say which sensor node was sending the information, or a voltage byte to indicate
the charge remaining in the sensor node’s battery. As long as the sequence is

Protocols | 115

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

predictable, it’s an airtight method for communicating both the data and contextual
information about that data.

There’s one more item we should probably append to our message format. We’ve done
a good job sequencing the numbers so that each one means something, but what if
there’s a transmission error? All methods of transmitting data are subject to corruption.
Radio transmissions in particular are notoriously noisy. Static or interference of any
kind could potentially introduce a stray bit into our data sequence. For example, in
binary a single click of radio noise could easily turn a 21 into the number 149. While
there isn’t any way to prevent corruption like this from happening, there are thankfully
many ways of detecting it. Error-correction schemes can be rather complex, but the
concepts that they use are quite simple to understand.

Jane and Michael are having a conversation across a noisy room. Michael wants Jane
to bring him a glass of wine, a napkin, and a celery stick. He could yell to her, “Bring
me a glass of wine, a napkin, and a celery stick! Three things!” That last part is for error
correction. If Jane only heard the glass of wine and the celery stick, that’s not going to
match up with “three things.” In this case, she’d probably yell back, “What?” to let
Michael know he needed to repeat himself. Computers use the same strategies that
people do to detect problems in their communications. This particular method would
be described as a checksum, meaning a sum of items used solely to check for commu-
nication errors. Computer protocols often use more sophisticated arithmetic than sim-
ply counting the items, but the principle of sending some frame information followed
by a number that can be used to check the frame is widely employed to detect errors
in everything from spacecraft communications to credit card numbers.

It’s important to note that checksums don’t provide a guarantee of error-
free communications. For example, if Jane brings Michael a beer, a fork,
and a slice of cake, those are still three things, but definitely not the
correct ones. More sophisticated checksums drastically decrease the
probability of such “substitution” errors, but don’t entirely eliminate
them. For example, read about the cyclic redundancy check (CRC) at
http://wikipedia.org/wiki/Cyclic_redundancy_check.

XBee API Protocol
Now that you know something about how protocols are designed, it should be fairly
easy to understand the API format for XBee radios. The XBee API uses the same struc-
tures as our hypothetical protocol, and does so for the exact same reasons. The goal of
API-mode communications is to transmit highly structured data quickly, predictably,
and reliably. We will begin by taking a look at the structures shared by all API data
frames and work our way into the specifics for each frame type.

116 | Chapter 5: API and a Sensor Network

http://wikipedia.org/wiki/Cyclic_redundancy_check

The tiny microcontroller inside the Series 2 XBee radio doesn’t have
enough room to hold all the instructions for both AT mode (transpar-
ent/command modes) and API mode. Therefore, different firmware
must be loaded onto the radio with X-CTU depending upon which
mode you’d like to use to communicate over the local serial port. All
the ZigBee firmware versions end in either AT or API (see Figure 5-2) to
indicate how they will talk to you on their serial ports.

Figure 5-2. To use API mode, be sure to select a firmware function set that ends in “API”

The XBee API frame consists of a series of bytes, each new one building on the infor-
mation already transmitted.

Let’s dig in. You’ve already read about all the concepts that the API format uses, so
hopefully each byte we discuss will now seem like an old friend. Table 5-1 shows the
basic structure of the frame.

Table 5-1. Basic API frame structure

Start delimiter Length Frame data Checksum

Byte 1 Byte 2 Byte 3 Byte 4 . . . Byte n Byte n+1

0x7E MSB LSB API-specific structure Single byte

Start Delimiter
Every API frame begins with a start byte. This is a unique number that indicates we are
at the beginning of the data frame. In our hypothetical example above, we used decimal
255 for this. The XBee API employs decimal 126 for the exact same purpose. Because
everything in the API documentation is described in hexadecimal format, we’ll do that
here, too. Remember that hex is just notation: decimal 126 and 0x7E are exactly the
same number, just written down in different styles. (If you need to brush up on hexa-
decimals, this is a good time to flip back to the sidebar “Hexadecimals” on page 30 in
Chapter 2.)

If we start reading bytes that are arriving from the XBee’s serial port in midstream, we
won’t know what they represent until we know their order. So the first thing to do is
look for a start byte of 0x7E. Once we get that, we know where we are and everything
else can fall into place. The start byte is like the front cover of a book.

XBee API Protocol | 117

Length Bytes
The next two numbers we receive after the start byte indicate the overall length of the
data frame. This lets us know how long to keep reading before we stop, in effect letting
us know where the back cover of the book is. Right now the second byte, listed as MSB
(most significant byte), is usually zero and the third one, listed as LSB (least significant
byte), usually contains the entire length.

Because a very long data frame could exceed the number that can be
described in a byte (remember, that’s 0–255), we use a second byte to
extend the value to a 16-bit number (0–65,535). In this case, the large
part of the number will be covered in byte 2, the MSB, while the small
part of the number would go into byte 3, the LSB. See the sidebar
“Breaking Large Numbers into Bytes” on page 135 for more
information.

Frame Data Bytes
The frame data is specific to each type of message we receive from the XBee radio. This
is the guts of the information, and we’ll expand on its internal structure below. Some
frames will carry a great deal of internal data while the smallest frame contains only 2
bytes. For now, you can consider frame data to be like the inside pages of a book.
Different kinds of books have different layouts, and the frame data functions in the
same way. Remember that since we’ve read in the length byte, we already know exactly
how long this frame data will be.

Checksum
The very last byte of the frame is always a checksum, so we can think of it as the back
cover of our book. The checksum is calculated based on all the bytes that came before
it. It’s a simple sum of all the bytes that made up the frame, used at the receiving end
to check and see if there was a transmission error. The calculation is regular arithmetic,
designed to be extremely efficient for computers to process.

Here’s the checksum formula, as stated in the official documentation:

• To calculate: Not including frame delimiters and length, add all
bytes, keeping only the lowest 8 bits of the result, and subtract the
result from 0xFF.

• To verify: Add all bytes (include checksum, but not the delimiter
and length bytes). If the checksum is correct, the sum will equal
0xFF.

118 | Chapter 5: API and a Sensor Network

The checksum formula is mostly addition and subtraction, so it’s very easy to program.
(Keeping the lowest 8 bits of the result is accomplished in code with a bit mask operation
that typically looks something like this: & 0xFF.) Usually you’d write a function in your
program to do the whole checksum calculation for you. In most of our examples, even
that isn’t necessary because we use software libraries to do this work for us.

API Frame Types
Inside the general frame structure there are substructures that cover all the different
kinds of data that you might want to send to and receive from your local XBee radio.
Different types of frames contain different types of data structures in much the same
way as different types of books contain different internal formats. When you pick up
a cookbook, you expect to see a title page, an explanation of techniques, then a bunch
of recipes (ingredients first), and finally a comprehensive index at the end. That’s like
one API frame type. A novel is totally different. After its title page, you expect to see a
series of chapters, followed by an acknowledgments section that expresses gratitude to
everyone ignored during the writing process, and finally a paragraph about the author’s
expensive schooling and trendy place of residence. The novel is like a second different
API frame type. The cookbook and the novel both have front and back covers. Both
have title pages. However, their internal structures follow different standardized pat-
terns to help convey the different kinds of information the books contain.

There are more than a dozen different API frame types currently defined for the XBee
ZB. We’ll look at eight of them here.

The frame type byte tells us what type of API frame we are looking at. Knowing the
frame type is crucial to knowing what information is coming next. For example, if the
frame type is 0x08, that indicates it is an AT command frame. So by reading the first
four bytes we will know:

• Where the frame begins (start byte)

• How long the frame is going to be (length bytes)

• What kind of frame we’re looking at (frame type)

Every frame type is assigned a number. Table 5-2 lists the basic ones, including all the
frame types we’ll cover in this chapter.

Table 5-2. Some API mode frame types

Frame type Description

0x08 AT command (immediate)

0x09 AT command (queued)

0x17 Remote Command Request

0x88 AT command response

0x8A Modem Status

API Frame Types | 119

Frame type Description

0x10 TX request

0x8B TX response

0x90 RX received

0x92 RX I/O data received

0x95 Node Identification Indicator

0x97 Remote Command Response

AT Commands
AT-type commands can be sent via API frames to configure your local radio. They can
query the settings on the local radio or set parameters. These are all the same commands
you typed in transparent/command mode.

Just like all the other frame types, AT command frames begin with our old buddy the
start byte: 0x7E (see Table 5-3). This is followed by two bytes that indicate the frame
length. There’s also a checksum at the end. The data that makes the AT command
frame unique goes in the Frame-specific section, starting right after the length byte.

Table 5-3. API format for AT commands

Frame fields Offset Example Description

Start delimiter 0 0x7E

Length MSB 1 0x00
Number of bytes between the length and the checksum.

 LSB 2 0x04

Frame-specific
data

Frame type 3 0x08

 Frame ID 4 0x52 Identifies the UART data frame for the host to correlate with a
subsequent ACK (acknowledgment). If set to 0, no response is sent.

 AT command 5 0x4E (N) The command name—two ASCII characters that identify the AT
command. 6 0x4A (J)

 Parameter
value

(optional)

 If present, indicates the requested parameter value to set the
given register.

If no characters present, the register is queried.

Checksum 7 0x0D 0xFF – the 8-bit sum of bytes from offset 3 to this byte.

Frame type

The AT command frame is identified with 0x08. This lets the receiving radio know that
the bytes that follow are going to be in the AT command frame order.

120 | Chapter 5: API and a Sensor Network

Frame ID

Since we set a frame type of 0x08, the XBee receiving this data from us knows that the
next byte contains a frame ID. The frame ID is simply a serial number that we attach
to the command. Results will be tagged with the same ID. That way, if we’ve sent a
number of commands, we can tell which ones came back OK and which ones might
have been lost or gotten an error. By the way, if you set the frame ID to 0x0, you suppress
any response from the XBee, but it will still carry out your command.

Generally, you’ll set the frame ID to 0x1 for the first command you send, then 0x2 for
the next one, and so forth, until you get to 0xFF (the largest number that a single byte
can hold). At that point you can start over again with 0x1.

AT command

The two bytes that follow the frame ID contain the AT command itself. The letters AT
are omitted. Since we already know this is an AT command frame, we just use the two-
letter code of the command itself. For example, if we are sending the NJ command, the
first byte will be the ASCII equivalent of a capital N in hexadecimal format: 0x4E. The
second will be a capital J, notated as 0x4A.

You can find the ASCII equivalents table for any character in the
Appendix.

Parameter value

If the command you’re sending requires a parameter, such as a specific register setting,
those bytes will follow the AT command. If no parameter value is given, the command
will be treated as a query, with the results sent back in a response frame as detailed
below. Parameters that are larger than a single byte can be split across several bytes
with the larger, “most significant” part of the split-up number coming first.

Checksum

The AT command frame, like all API frames, ends with a checksum as described above.

Here’s what a whole AT command frame looks like. It’s the same one as in Table 5-3:

0x7E...0x00...0x04...0x08...0x52...0x4E...0x4A...0x0D

API Frame Types | 121

Mostly you’ll use the API format coded into a program you modify that
talks directly over the serial port to the local XBee. Alternatively, you
might work with a software library that is programmed to talk in API
format. However, it’s entirely possible to figure out the bytes yourself
and type them manually into any terminal program that provides a hex-
adecimal interface. Both X-CTU and CoolTerm have hex modes. In the
X-CTU Terminal tab, click on Assemble Packet to be able to type in hex,
and click on Show Hex to be able to see the responses from your radio
formatted in hex. In CoolTerm, select Send String from the Connection
menu and click on the Hex button to type in hex. Click on the View Hex
button to see hex-formatted responses from the XBee.

AT Responses
In API mode, every AT command sent to a local XBee radio can receive a response back
from the XBee that contains the status of the command and optionally the registry value
if one was requested in a query. This is a frame that the radio generates so you will
read these but will never write one yourself. Table 5-4 shows the response format.

Whether your program cares about these responses will depend on your
particular context. In some cases, the quick-and-dirty method of simply
sending commands and ignoring the responses is a perfectly serviceable
solution. For example, if you are prototyping an error-tolerant interac-
tive sculpture project, then dealing with AT command responses may
be far more trouble than it’s worth. On the off chance that an error
happens, your audience might not even notice. Naturally there are other
applications where you wouldn’t want to be so tolerant. If you’re leaving
a sensor network out in the desert by itself for a year, every detail must
be addressed with strict response processing and error handling. The
important thing is to pick the level of thoroughness that’s appropriate
to your project and not go overboard without a good reason.

Table 5-4. API format for AT command responses

Frame fields Offset Example Description

Start
delimiter

 0 0x7E

Length MSB 1 0x00
Number of bytes between the length and the checksum.

 LSB 2 0x05

Frame-
specific data

Frame type 3 0x88

 Frame ID 4 0x01 Identifies the UART data frame being reported. Note: If frame ID
= 0 in AT command mode, no AT command response will be
given.

122 | Chapter 5: API and a Sensor Network

Frame fields Offset Example Description

 AT command 5 ‘B’ = 0x42 The command name—two ASCII characters that identify the AT
command. 6 ‘D’ = 0x44

 Command
status

7 0x00 0 = OK

1 = ERROR

2 = Invalid Command

3 = Invalid Parameter

4 = Tx Failure

Command data Register data in binary format. If the register was set, this field
is not returned, as in this example.

Checksum 8 0xF0 0xFF – the 8-bit sum of bytes from offset 3 to this byte.

AT command response frames received back from the local XBee should look fairly
familiar by now. There’s a start byte, length bytes, a frame type, and a frame ID, fol-
lowed by the type of AT command you sent. This is followed by the command status
and data, which we’ll look at in detail. As you might expect, the last byte is a checksum,
calculated in the usual way.

Frame type

The AT command response frame type is always 0x88.

Frame ID

The frame ID you get back will be the same as the one you sent with the original AT
command request. You can use the ID to match up your request with this response.
Remember that if you set your request frame ID to 0x0, you won’t get any response
frame in the first place.

AT command

These two bytes will be the ASCII equivalents of the two command characters you sent.

Command status

This next byte indicates how your command fared. 0x0 indicates that everything went
fine. It’s like receiving an OK in transparent/command mode and should cause you
and your program to do a happy dance. A value of 0x1 indicates that your command
resulted in an ERROR. This means it was recognized but could not be carried out for
some reason. Receiving 0x2 indicates that your command itself was invalid. Maybe you
got one of the letters wrong? A value of 0x3 indicates that the command was recognized
but the parameters you sent with it were out of range. Finally, 0x4 indicates a trans-
mission failure.

API Frame Types | 123

Command data

If you queried a register by sending a command with no parameters, these bytes will
contain the response information. The response will be broken up into bytes and may
represent a number or hex-encoded ASCII string.

By the way, viewing a stream of API frames displayed as ASCII characters
in a terminal program will look something like this:

~.......@R..].........F|~.......@R..].........F|~.......@R..
].........E}~..@R..].........E}~.......@R..].........
F|~.......@R..].........F|~..... ..@R..].........E}~.......@R..
].........E}~.......@R..].........E}~.......@ R..].........
F|~.......@R..].........E}~.......@R..].........F|~.......@R..
].........E}~.......@R..].........E}~.......@R..].........F|

Note the repeating tilde (~) character. This is the ASCII equivalent of
0x7E, the start byte, and is a clear indication that rather than seeing
garbage, you are seeing good data being delivered in API mode. Switch
into viewing hex to see the API frame contents properly.

ZigBee Transmit Request
Let’s send some real data! This frame is how you tell your local radio to send informa-
tion to some other remote radio. The ZigBee Transmit Request frame encapsulates your
payload information (the data itself) with a batch of addressing and transmission op-
tions that describe how the payload should be delivered. This frame is a great example
of how API mode facilitates something that can’t easily be accomplished in transparent/
command mode: setting destination addresses on the fly. Now instead of issuing a
+++ and a bunch of commands each time we want to change the destination address,
we simply attach that destination to each a frame of data and send it on its way. This
is a much more efficient process, especially if you have a network with hundreds of
different nodes that you might need to use as destinations. Table 5-5 shows the ZigBee
Transmit Request format.

Table 5-5. API format for ZigBee Transmit Request

Frame fields Offset Example Description

Start
delimiter

 0 0x7E

Length MSB 1 0x00
Number of bytes between the length and the checksum.

 LSB 2 0x16

Frame-
specific
data

Frame type 3 0x10

 Frame ID 4 0x01 Identifies the UART data frame for the host to correlate with a
subsequent ACK (acknowledgment). If set to 0, no response is sent.

124 | Chapter 5: API and a Sensor Network

Frame fields Offset Example Description

64-bit
destination
address

MSB 5 0x00

Set to the 64-bit address of the destination device. The following
addresses are also supported:

0x0000000000000000 – Reserved 64-bit address for the
coordinator.

0x000000000000FFFF – Broadcast address.

6 0x13

7 0xA2

8 0x00

9 0x40

10 0x0A

11 0x01

LSB 12 0x27

16-bit
destination
network
address

MSB 13 0xFF
Set to the 16-bit address of the destination device, if known. Set
to 0xFFFE if the address is unknown, or if sending a broadcast.

LSB 14 0xFE

Broadcast
radius

15 0x00 Sets maximum number of hops a broadcast transmission can take.
If set to 0, the broadcast radius will be set to the maximum hops
value.

Options 16 0x00

Bit field of supported transmission options. Supported values
include:

0x01 – Disable ACK

0x20 – Enable APS encryption (if EE=1)

0x40 – Use the extended transmission timeout for this destination

Enabling APS encryption decreases the maximum number of RF
payload bytes by 4 (below the value reported by NP).

Setting the extended timeout bit causes the stack to set the ex-
tended transmission timeout for the destination address.

All unused and unsupported bits must be set to 0.

RF data

17 0x54

Data that is sent to the destination device.

18 0x78

19 0x44

20 0x61

21 0x74

22 0x61

23 0x30

24 0x41

Checksum 25 0x13 0xFF – the 8-bit sum of bytes from offset 3 to this byte.

API Frame Types | 125

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Again, our frame begins with a start byte, length bytes, a frame type (in this case 0x10,
indicating the ZigBee Transmit Request format), and a frame ID. This preamble is
followed by addressing information that we’ll look at in detail, and then by the data
payload itself. The frame concludes as always with a single-byte checksum.

64-bit destination address

These eight bytes indicate the unique-in-the-world destination address for this trans-
mission, for example 0x0013A200400A0127. There are two special addresses that you
can also use. If you want to reach the network coordinator, you can set this address to
0x0000000000000000 (that’s 16 zeros) and it will be routed automatically. To send a
broadcast message that is delivered to all nodes on the network, set the 64-bit desti-
nation address to 0x000000000000FFFF. Check Chapter 7 for information about the
ATND node discovery command that can be used to discover all the 64-bit addresses
currently present on the network.

16-bit destination network address

These two bytes can be set to the 16-bit address of the destination radio, if you know
what that is. Assigning this address manually is optional, but it will greatly speed up
your transmission. This can be essential on larger networks. See “Limits of 64-bit Ad-
dressing” on page 126 for a description of the lookup process. If you don’t know the
16-bit address that the coordinator has assigned for the destination, simply set these
two bits to 0xFF and 0xFE respectively. This will cause an address lookup to occur so
that the transmission can be properly delivered. 0xFFFE is also the proper 16-bit ad-
dress setting for broadcast transmissions to be delivered to all the devices on the
network.

Limits of 64-bit Addressing
Using 64-bit addressing to route messages requires broadcast transmissions to discover
the 16-bit address. This is almost never a good idea when using the Series 2 on networks
that are larger than around 10 nodes. Here’s what happens during a transmission cycle
when the 16-bit address is set to 0xFFFE for broadcast:

1. A broadcast is sent three times (a value controlled by the ZigBee stack profile) on
the network asking to resolve the 64-bit address to the 16-bit network address.
These broadcasts are very, very expensive in terms of routing and network over-
head because they create three additional messages to every node on the network
for every single message sent by any radio.

2. One or more nodes respond to the requester with a point-to-point frame containing
the 16-bit address.

3. The transmission proceeds with the newly discovered 16-bit address being used.

If you have started with 64-bit addressing for your messages and your network grows,
you will want to migrate your application toward either discovering and using the

126 | Chapter 5: API and a Sensor Network

16-bit addresses in advance via the API or saving them offboard on your computer or
device when it receives incoming data from the remote node. (If you do this, also con-
sider tracking the TX status of any transmissions using the short address to see if the
transmission fails so that you can invalidate the known 16-bit address to 0xFFFE and
start the process again.) Remember that you don’t need to worry about any of this if
your network is relatively small, if messages are not sent too frequently, or if you are
using a ConnectPort X gateway—as this is handled for you automatically. Phew!

Set this to 0x0. Each broadcast message can be constrained to a certain
radius, usually defined by the default broadcast timeout value set in ATNH. This is an
advanced setting for dealing with very specific application or network issues. You
should almost always leave this at 0x0 and use the defaults.

Set this to 0x0. As of this writing, there are no options defined for this frame
type, though future versions of the firmware might implement additional features using
this byte.

At long last we come to the payload. The payload is the data we wanted to send
in the first place! It is the meat of our protocol sandwich (or the tasty eggplant, in case
meat isn’t your thing). Assemble your data into a string of bytes. On many small net-
works you can usually put up to 84 bytes in your payload transmission. Of course, if
you keep your individual data transmissions small, you won’t need to worry about this
limit.

The exact number of allowed payload bytes in each frame is reduced
when encryption or source routing are enabled (see Chapter 8). There’s
nothing in this book that requires you to use those features; however,
if at some point in the future you decide to go with encryption or source
routing, you can query the ATNP register to determine the current payload
size limits for your network.

ZigBee Transmit Status
Another advantage to API mode is that transmissions don’t just flow out into a virtual
black hole. For each transmission where the frame ID is set to something other than
0x0, we receive back a full status report on any discovery, transmission, or delivery
issues. Sometimes this doesn’t matter one whit, especially if you’re just doing a quick
prototype or are running an application that’s tolerant of an occasional failure. Trans-
missions to blink your holiday lighting don’t require detailed status reports. Trans-
missions that monitor your home security probably do. Here’s what that status message
looks like. It contains all the now-familiar components (see Table 5-6). The frame type
is set to 0x8B so you know it’s a ZigBee Transmit Status. The frame ID will be the one
you put in the original ZigBee Transmit Request that this Status frame is reporting on.
There are also a few new components to indicate the transmit retry count, delivery
status, and discovery status.

Broadcast radius.

Options.

RF data.

API Frame Types | 127

Table 5-6. API format for ZigBee Transmit Status

Frame fields Offset Example Description

Start
delimiter

 0 0x7E

Length MSB 1 0x00
Number of bytes between the length and the checksum.

 LSB 2 0x07

Frame-
specific data

Frame type 3 0x8B

Frame ID 4 0x01 Identifies the UART data frame being reported. Note: If frame ID
= 0 in AT command mode, no AT command response will be
given.

16-bit address
destination

5 0x7D If successful, this is the 16-bit network address the packet was
delivered to. If not successful, this address matches the destina-
tion network address that was provided in the Transmit Request
frame.

6 0x84

Transmit retry
count

7 0x00 The number of application transmission retries that took place.

Delivery status 8 0x00

0x00 = Success

0x01 = MAC ACK failure

0x02 = CCA failure

0x15 = Invalid destination endpoint

0x21 = Network ACK failure

0x22 = Not joined to network

0x23 = Self-addressed

0x24 = Address not found

0x25 = Route not found

0x26 = Broadcast source failed to hear a neighbor relay the
message

0x2B = Invalid binding table index

0x2C = Resource error, lack of free buffers, timers, etc.

0x2D = Attempted broadcast with APS transmission

0x2E = Attempted unicast with APS transmission, but EE=0

0x32 = Resource error, lack of free buffers, timers, etc.

0x74 = Data payload too large

0x75 = Indirect message unrequested

Discovery status 9 0x01
0x00 = No discovery overhead

0x01 = Address discovery

128 | Chapter 5: API and a Sensor Network

Frame fields Offset Example Description
0x02 = Route discovery

0x03 = Address and route

0x40 = Extended timeout discovery

Checksum 10 0x71 0xFF – the 8-bit sum of bytes from offset 3 to this byte.

Transmit retry count

Every transmission will be attempted up to three times by the transmitting radio (other
retries may happen invisibly along the mesh route). The count of these retries is listed
in this byte. Retries are a normal part of wireless networking, so individually they are
of no concern, though considered in aggregate they might indicate layout or interfer-
ence issues. For now, there’s no need to be particularly concerned about this count.

Delivery status

If this byte is 0x0, then hurray! Your transmission was successfully delivered to the
destination address. Otherwise, the number you receive in this byte will indicate the
kind of issue that prevented delivery, which is useful for debugging and possibly for
deciding whether to send the information again. The error numbers are listed in Ta-
ble 5-6. Many applications don’t care why the error happened; they just need to know
that it did. In this case, anything greater than 0x0 might tell your project to try the
transmission again or to report an error to the user.

Discovery status

This byte gives a bit of information about how much overhead it took to discover the
route for this transmission. In general, smaller numbers are better. For very large net-
works, you might want to keep an eye on this and consider using advanced source
routing. For small networks like the ones we create in this book, the discovery status
can be safely ignored.

ZigBee Receive Packet
Here’s another API frame that gives us far more than we could get from simple trans-
parent/command mode interactions. When a transmission is received in transparent
mode, it comes with no indication of who the sender was. On a simple pair network
that’s fine because there’s only one possible sender. But on a larger network, it’s usually
of considerable interest to know not only what was received but where it came from.
So in addition to the usual preamble bytes, including the frame type of 0x90 to indicate
a ZigBee Receive Packet and a frame ID that was sent by the transmitter, we get to see
the 64-bit and 16-bit source addresses along with a receive options indicator, and of
course the payload data itself, followed by a checksum. Table 5-7 shows this frame’s
format.

API Frame Types | 129

Table 5-7. API format for ZigBee RX Packet

Frame fields Offset Example Description

Start delimiter 0 0x7E

Length MSB 1 0x00 Number of bytes between the length and the
checksum. LSB 2 0x11

Frame-specific
data

Frame type 3 0x90

64-bit
source address

MSB 4 0x00

64-bit address of sender. Set to 0xFFFFFFFFFFFFFFFF
(unknown 64-bit address) if the sender’s 64-bit
address is unknown.

5 0x13

6 0xA2

7 0x00

8 0x40

9 0x52

10 0x2B

LSB 11 0xAA

16-bit source
network address

MSB 12 0x7D
16-bit address of sender.

LSB 13 0x84

Receive options 14 0x01

0x01 – Packet acknowledged.

0x02 – Packet was a broadcast packet.

0x20 – Packet encrypted with APS encryption.

0x40 – Packet was sent from an end device (if known).

Received data

15 0x52

Received RF data.

16 0x78

17 0x44

18 0x61

19 0x74

20 0x61

Checksum 21 0x0D 0xFF – the 8-bit sum of bytes from offset 3 to this byte.

64-bit source address

These eight bytes report the address that this transmission was sent from. It’s how we
can tell which radio is associated with the data we just received.

16-bit source network address

These two bytes tell us the short network address of the sender. Feel free to ignore this
for now, but keep in mind that later it could be handy in case we want to speed up the

130 | Chapter 5: API and a Sensor Network

reply process. If the 16-bit address is included in a future transmission frame, we can
save time and some overhead by not forcing the network to look it up again.

Receive options

This byte provides just a little info. It indicates 0x1 if receipt of transmission was ac-
knowledged, or 0x2 if the received information was sent as a broadcast, in which case
no acknowledgment will be sent. In most cases this byte can be safely ignored.

Received data

This is the data itself, organized as bytes in the exact same order it was in when the
sender sent it. This data, by the way, could be anything from a doorbell push indicator
to a poem. We refer to it as arbitrary data. It isn’t arbitrary in the sense that it is random
but rather because it doesn’t need to follow a specific structure.

I/O Data Sample Rx Indicator
We’ve covered all the basic API frame types used to issue local commands, transmit
information, receive information, and check on the status of our commands and trans-
missions. Since you’ve made it this far, it should be pretty easy to understand the next
API frame type. It contains the juiciest type of information—direct sensor data! This is
how you will obtain real values from networks of remote sensors via the XBee’s direct
input/output functionality. Your room temperature, soil moisture, monkey-trap status,
or whatever, will arrive encased in this frame type.

The ZigBee I/O Sample Rx Indicator is really just an extension of the ZigBee Receive
Packet discussed above. The main difference is that instead of the payload having an
arbitrary or unconstrained format, it is organized in a highly structured way that lets
us decode a set of digital and/or analog samples that were taken directly by the trans-
mitting XBee. It’s important to note that I/O samples can’t be received in transparent/
command mode at all. Using API mode is essential to receiving XBee direct I/O infor-
mation. It’s one of the most important reasons for us to cover the API in this book.

All I/O samples are received inside what otherwise would appear to be a simple ZigBee
Receive Packet. The first clue that it’s any different is its frame type of 0x92, which
indicates that we’ll be getting an I/O data sample in the payload. After that, everything
is the same up until the first payload byte, which gives us the number of samples fol-
lowed by the analog and digital channel masks that tell us how the sender’s pins are
configured. Then the digital and analog samples themselves are provided, all in a highly
structured format that allows the data, when correctly interpreted, to be absolutely
unambiguous. Table 5-8 shows the format for this frame.

API Frame Types | 131

Table 5-8. API format for ZigBee I/O Data Sample Rx Indicator

Frame fields Offset Example Description

Start delimiter 0 0x7E

Length MSB 1 0x00 Number of bytes between the length and the
checksum. LSB 2 0x14

Frame-specific
data

Frame type 3 0x92

64-bit
source address

MSB 4 0x00

64-bit address of sender.

5 0x13

6 0xA2

7 0x00

8 0x40

9 0x52

10 0x2B

LSB 11 0xAA

16-bit source
network address

MSB
12

0x7D
16-bit address of sender.

LSB 13 0x84

Receive options 14 0x01 0x01 – Packet acknowledged.

0x02 – Packet was a broadcast packet.

Number of samples 15 0x01 Number of sample sets included in the payload.
(Always set to 1.)

Digital channel mask 16 0x00 Bit mask field that indicates which digital I/O lines on
the remote have sampling enabled (if any).17 0x1C

Analog channel mask 18 0x02 Bit mask field that indicates which analog I/O lines on
the remote have sampling enabled (if any).

Digital samples (if
included)

19 0x00 If the sample set includes any digital I/O lines (digital
channel mask > 0), these two bytes contain samples
for all enabled digital I/O lines.

DIO lines that do not have sampling enabled return 0.
Bits in these two bytes map the same as they do in the
Digital Channels Mask field.

20 0x14

Analog sample 21 0x02 If the sample set includes any analog input lines
(analog channel mask > 0), each enabled analog input
returns a 2-byte value indicating the A/D measurement
of that input. Analog samples are ordered
sequentially from AD0/DIO0 to AD3/DIO3, to the supply
voltage.

22 0x25

Checksum 23 0xF5 0xFF – the 8-bit sum of bytes from offset 3 to this byte.

132 | Chapter 5: API and a Sensor Network

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Number of samples

This single byte indicates how many sampling collections are contained in this frame.
Currently this is always set to 0x1 to indicate a single collection, because multiple
collections are not yet supported on the Series 2 hardware. You can safely ignore this
byte.

Digital channel mask

These two bytes indicate which of the sending XBee’s pins are configured as digital
inputs. Each hexadecimal can be translated to a binary number that will tell you which
pins are configured as digital inputs. See the sidebar “Mapping Binary to Switches and
Pins” on page 134 for information about how to do that. Once the numbers have been
translated, you can read them using Tables 5-9 and 5-10.

Table 5-9. First byte of digital channel mask

n/a n/a n/a D12 D11 D10 n/a n/a

Table 5-10. Second byte of digital channel mask

D7 D6 D5 D4 D3 D2 D1 D0

As an example, let’s say you received 0x0 as the first digital channel mask byte and
0x1C as the second one. The first byte in binary is 0000 0000. (The space in the middle
doesn’t mean anything; it just makes the number easier to look at.) Using Table 5-11,
we can see that none of pins D12, D11, and D10 are configured as digital inputs because
they’re all set to zero. 0 means that pin is not configured as a digital input; 1 means that
it is. The second byte, 0x1C, translates to 0001 1100 in binary. Placing this number
into Table 5-12, we can see that pins D4, D3, and D2 are configured to be digital inputs
because that’s where the 1s show up.

Table 5-11. Example: first byte of digital channel mask showing that pins D10–D12 are NOT
configured as digital inputs

n/a n/a n/a D12 D11 D10 n/a n/a

0 0 0 0 0 0 0 0

Table 5-12. Example: second byte of digital channel mask showing that ONLY pins D2–D4 are
configured to be digital inputs

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 1 1 1 0 0

API Frame Types | 133

Mapping Binary to Switches and Pins
The XBee API uses an elegant, if somewhat commonplace, trick to accomplish repre-
senting pin states as hexadecimals—using the arrangement of ones and zeros in binary
notation to directly describe pins as being either on or off. We discussed binary briefly
earlier in this chapter as a method for indicating a certain number of states. We can
also map a number directly to a set of switches (or pins in this case) that can be either
on or off. So if you had eight switches that were all off you could represent their on/off
state with 0000 0000. (Remember, the space is just for readability.) If the first, third,
and eighth switches were flipped on, the mapped number would look like 1000 0101.
(Binary numbers increase from right to left, just like decimal numbers.) Translating
that map from a binary number into decimal notation gives us 133, which in hexadec-
imal notation is 0x85. So by receiving the number 0x85 and looking at its binary equiv-
alent, we can know which switches are on and off. Another example: if we received the
hex number 0x1C, we could translate that to binary notation of 0001 1100. So that
means the third, fourth, and fifth switches are on. Remember that there are calculators
available on most computers that will do the hex-to-binary translation for you.

Analog channel mask

There is only one byte for the analog channel mask. This is because we have only four
analog inputs to consider. This mask uses the same system as the digital ones (see
Table 5-13).

Table 5-13. Single byte for analog channel mask

(voltage) n/a n/a n/a A3 A2 A1 A0

Using Table 5-13, we can decode the binary version of the byte into a pin configuration.
For example, if we received 0x2 as the analog channel mask, that would translate into
the binary number 0000 0010. This would indicate that pin A1 is configured as an
analog input, but none of the other pins are.

You may note that the highest bit in the analog channel mask indicates if system voltage
readings have been enabled as part of the analog data set. By default they are not.

Digital samples

If you are receiving digital samples, these two bytes will appear and let you know
whether the enabled pins are currently high or low, in the same arrangement as the
mask. So if you receive 0x0 in the first digital sample byte and 0x14 in the second one,
that indicates high voltage is being received only on pins D4 and D2. Any other pins
configured as digital inputs are currently reading low. You can use the preceding tables
to decode these samples, just like with the mask.

134 | Chapter 5: API and a Sensor Network

These two bytes will be received only if at least one pin is enabled as a
digital input. If your digital channel mask bytes are both 0x0, no pins
have been enabled and these two bytes will be omitted.

Analog samples

The last component of the I/O Data Sample frame is a set of two bytes for each analog
sample taken. We know how many to expect from the analog channel mask, which
tells us what pins have been configured as analog inputs. So if data is being received
from two analog pins, we can expect to receive four bytes of data in all. Each two-byte
sample consists of a most significant and a least significant byte. This is because the
sample itself is represented as a 10-bit number. 10 bits are enough to represent values
from 0–1,023, which gives us a pretty smooth resolution for our data.

Breaking Large Numbers into Bytes
Large numbers that are broken up into bytes for transmission can easily be reassembled
once they are received. For example, the number 987 can’t fit in a single byte. When
the XBee radio needs to transmit this 10-bit number, it breaks it into two bytes. The
lower part represents the part of the binary number that falls into the place values 0–
255. The higher part represents the place values from 256 to 1,023. We receive 0x3 as
the first, most significant byte (MSB) and 0xDB as the second, least significant byte
(LSB). Pasting these together gives us 0x3DB, and the decimal equivalent of that is 987.
In code, we can accomplish this paste process arithmetically: multiplying the MSB 0xFF
(same as decimal 255) and then adding the result to the LSB will give us the correct
results:

(0x3 * 0xFF) + 0xDB = 0x3DB ...same as 987 in decimal

Remote AT Command Request
Sending commands to configure the local radio is useful. Sending commands over the
wireless network to configure remote radios is kind of exhilarating. It is also something
you can accomplish only in API mode—yet another reason to master the API.

Any AT-type command that you can issue locally can also be sent wirelessly for exe-
cution on a remote radio. This is especially useful for remote actuation, where you
might want to change the state of a digital output from low to high to trigger a real-
world action. We’ll use this command type to do just that in the next chapter. Ta-
ble 5-14 shows the format of the Remote AT Command Request.

API Frame Types | 135

Table 5-14. API format for Remote AT Command Request

Frame fields Offset Example Description

Start
delimiter

 0 0x7E

Length MSB 1 0x00
Number of bytes between the length and the checksum.

 LSB 2 0x10

Frame-
specific
data

Frame type 3 0x17

 Frame ID 4 0x01 Identifies the UART data frame for the host to correlate with a
subsequent ACK (acknowledgment). If set to 0, no response is sent.

64-bit
destination
address

MSB 5 0x00 Set to the 64-bit address of the destination device. The following
addresses are also supported:

0x0000000000000000 – Reserved 64-bit address for the
coordinator

0x000000000000FFFF – Broadcast address

6 0x13

7 0xA2

8 0x00

9 0x40

10 0x40

11 0x11

LSB 12 0x22

16-bit
destination
network
address

MSB 13 0xFF
Set to the 16-bit address of the destination device, if known. Set
to 0xFFFE if the address is unknown, or if sending a broadcast.

LSB 14 0xFE

Remote
command
options

15
0x02
(apply
changes)

Bit field to enable various remote command options. Supported
values include:

0x01 – Disable ACK.

0x02 – Apply changes on remote. (If not set, AC command must
be sent before changes will take effect.)

0x40 – Use the extended transmission timeout for this
destination.

Setting the extended timeout bit causes the stack to set the ex-
tended transmission timeout for the destination address.

All unused and unsupported bits must be set to 0.

AT command
16 0x42 (B)

The name of the command.
17 0x48 (H)

 Command
parameter

18 0x01 If present, indicates the requested parameter value to set the
given register. If no characters present, the register is queried.

Checksum 19 0xF5 0xFF – the 8-bit sum of bytes from offset 3 to this byte.

136 | Chapter 5: API and a Sensor Network

The Remote AT Command Request is made up almost entirely of components we have
already covered. The frame type is 0x17, followed by an ID, then the 64-bit and 16-bit
addresses. The next byte is for remote command options, which we will look at below.
That’s followed by two bytes for the two characters of the command, one or more bytes
to contain any parameter being sent, and finally the checksum. This is starting to get
easy!

Remote command options

This byte can currently be set to one of two states. Normally you should set it to 0x02
to indicate that any changes requested by this remote AT command should be applied
immediately. Occasionally you might not want to apply a command until a specific
moment, for example if you wanted a bunch of output pins to all change at the same
instant. To delay command execution, set this byte to be 0x0 and then issue an AC
command later when you are ready for all your changes to take effect.

Applying a set of changes all at once is known in the computing world
as atomicity. As with the original conception of an atom as an indivisible
bit of matter, atomicity is used when each change can’t be separated out
from the others.

Remote Command Response
Every Remote Command Request that is sent with a frame ID other than zero will
receive a response frame to report on how the remote command fared. This frame type
is 0x97, followed by the ID of the request, 64- and 16-bit address, the AT command
you sent, a command status (just like the one for local AT commands), command data
if you queried a register, and finally the checksum. There is nothing at all in this frame
that is new to you. In fact, you may start to consider yourself something of an API
expert! Table 5-15 shows the Remote Command Response format.

Table 5-15. API format for Remote Command Response

Frame Fields Offset Example Description

Start delimiter 0 0x7E

Length MSB 1 0x00 Number of bytes between the length and the
checksum.LSB 2 0x13

Frame-specific
data

Frame type 3 0x97

Frame ID 4 0x55 This is the same value passed in to the request.

64-bit source
(remote) address

MSB 5 0x00

The address of the remote radio returning this
response.

6 0x13

7 0xA2

8 0x00

API Frame Types | 137

Frame Fields Offset Example Description

9 0x40

10 0x52

11 0x2B

LSB 12 0xAA

16-bit source
(remote) address

MSB 13 0x7D Set to the 16-bit network address of the remote.

Set to 0xFFFE if unknown.LSB 14 0x84

AT commands
15 0x53

The name of the command.
16 0x4C

Command status 17 0x00 0 = OK

1 = ERROR

2 = Invalid Command

3 = Invalid Parameter

4 = Remote Command Transmission Failed

Command data 18 0x40

Register data in binary format. If the register was
set, then this field is not returned.

19 0x52

20 0x2B

21 0xAA

Checksum 22 0xF0 0xFF – the 8-bit sum of bytes from offset 3 to this
byte.

Using What You Need
Now that you understand how API mode works and how the structures around it
function, we can talk about using it. It’s pretty simple to write your own microcontroller
code to work with the API, especially if you use only what you need. While the API is
capable of supplying your application with an airtight protocol that covers any possible
radio configuration, in most cases you’ll be using only a small subset of that radio’s
capabilities. For example, in many sensor network applications your I/O data samples
will all be the same length. This means you can get away with never checking the length
byte. It also means that your data will show up in the same place in every frame. There’s
no need to calculate the digital mask or look for digital samples if you already know
that your network never uses digital inputs.

The romantic lighting sensor example in the previous chapter takes advantage of this
minimalist strategy. Here’s the code from the loop that reads the I/O Data Sample
frame:

// make sure everything we need is in the buffer
 if (Serial.available() >= 21) {
 // look for the start byte

138 | Chapter 5: API and a Sensor Network

 if (Serial.read() == 0x7E) {
 // blink debug LED to indicate when data is received
 digitalWrite(debugLED, HIGH);
 delay(10);
 digitalWrite(debugLED, LOW);
 // read the variables that we're not using out of the buffer
 for (int i = 0; i<18; i++) {
 byte discard = Serial.read();
 }
 int analogHigh = Serial.read();
 int analogLow = Serial.read();
 analogValue = analogLow + (analogHigh * 256);
 }
 }

We start by seeing if there’s potentially a full frame of information waiting in the buffer.
Because we set the sensor radio’s configuration ourselves, we already know how long
a frame will be: 22 bytes, or in this case 21 because we ignore the checksum. So we
begin by checking the Arduino’s serial buffer to see if there’s potentially a full frame of
data waiting for us:

// make sure everything we need is in the buffer
 if (Serial.available() >= 21) {

and then we read a byte in to see if it is a start byte of 0x7E. If it isn’t we’ll skip to the
next byte until we do find a 0x7E and know we’re most likely at the beginning of a data
frame:

 // look for the start byte
 if (Serial.read() == 0x7E) {

When we know we’re at the start of a data frame, we can skip over most of the frame
contents. Length we already know. Same goes for frame type; we’re only sending I/O
sample frames so we can assume that whatever we receive will be the reply to one. The
source address will always be the paired sensor, so that information can be ignored as
well in this case. The receive options, number of samples, and all the channel mask
information will never change in this project so we merrily read in all those bytes and
throw them away:

// read the variables that we're not using out of the buffer
 for (int i = 0; i<18; i++) {
 byte discard = Serial.read();
 }

Finally we get to the bytes we do care about, the analog sensor readings from the remote
photocell. The two bytes (MSB and LSB) get read into two variables:

 int analogHigh = Serial.read();
 int analogLow = Serial.read();

...and then pasted together arithmetically to reconstitute the original 10-bit sensor
reading:

 analogValue = analogLow + (analogHigh * 256);

API Frame Types | 139

This whole process is very fast to program and will run just fine. Granted, there are
more careful ways to go about this. A commercial application might want to do some
additional error checking. In this case, however, we simply write the code that suits
our romantic lighting purposes and get on with making the evening’s fondue.

You may also want to take a close look at the setRemoteState function in “Program the
romantic lighting sensor with feedback base station” on page 106. That function issues
a Remote AT Command Request to turn on an LED that is connected to the remote
sensor XBee in that project. It has all the elements that you are now familiar with, so
the code comments probably make a great deal of sense to you now. Here is that func-
tion again. Read it through and admire just how technically adept you have become:

void setRemoteState(int value) { // pass either a 0x4 or 0x5 to turn
 // the pin on or off
 Serial.print(0x7E, BYTE); // start byte
 Serial.print(0x0, BYTE); // high part of length (always zero)
 Serial.print(0x10, BYTE); // low part of length (the number of bytes
 // that follow, not including checksum)
 Serial.print(0x17, BYTE); // 0x17 is a remote AT command
 Serial.print(0x0, BYTE); // frame id set to zero for no reply

 // ID of recipient, or use 0xFFFF for broadcast
 Serial.print(00, BYTE);
 Serial.print(00, BYTE);
 Serial.print(00, BYTE);
 Serial.print(00, BYTE);
 Serial.print(00, BYTE);
 Serial.print(00, BYTE);
 Serial.print(0xFF, BYTE); // 0xFF for broadcast
 Serial.print(0xFF, BYTE); // 0xFF for broadcast

 // 16 bit of recipient or 0xFFFE if unknown
 Serial.print(0xFF, BYTE);
 Serial.print(0xFE, BYTE);
 Serial.print(0x02, BYTE); // 0x02 to apply changes immediately on remote

 // command name in ASCII characters
 Serial.print('D', BYTE);
 Serial.print('1', BYTE);

 // command data in as many bytes as needed
 Serial.print(value, BYTE);

 // checksum is all bytes after length bytes
 long sum = 0x17 + 0xFF + 0xFF + 0xFF + 0xFE + 0x02 + 'D' + '1' + value;
 Serial.print(0xFF - (sum & 0xFF) , BYTE); // calculate the proper checksum
}

140 | Chapter 5: API and a Sensor Network

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Libraries
Another way to take advantage of the API is to use a software library that parses the
API frames for you and presents the internal information in a slightly more human-
friendly format. The upside is that everything is already written for you. The downside
is that you may need to dig through considerable documentation to find the methods
and attributes that apply to your situation. And you will definitely be glad that you
know a thing or two about API frame format because most of these libraries use struc-
tures and terminology that exactly mirror it:

Arduino & C/C++
This library by Andrew Rapp offers full support for both Series 1 and Series 2 XBee
hardware in Arduino. It can be ported relatively easily into pure C/C++ environ-
ments as long as they support serial available/read/write/flush. (http://code.google
.com/p/xbee-arduino/)

Processing & Java
Another good library by Andrew Rapp is written for use in Java and can be ported
over to work well in Processing, as we have done for the example that concludes
this chapter. (http://code.google.com/p/xbee-api/)

Python
Amit Snyderman created a library for Python environments that has been devel-
oped with significant contributions from several other developers. It requires the
pySerial library. (http://code.google.com/p/python-xbee/)

Max/MSP
A community-developed patch is available for reading API info into the Max/MSP
graphical programming environment for multimedia. (http://www.faludi.com/
xbee/max)

PureData
A similar patch has been ported over to the open source Pure Data multimedia
graphical programming environment. (http://www.faludi.com/xbee/pd)

You should be aware that there are two slightly different API frame
specifications used by these libraries. The first one is the default, pre-
selected with ATAP 1. The second can be selected by setting ATAP to 2,
and it uses what are called “escaped” characters that avoid any possible
confusion between data and control characters. The Java library we use
in the example below does employ API operation with escaped charac-
ters. However, outside of being sure to select the proper ATAP setting
when you configure your coordinator radio, you won’t need to do any-
thing differently in your code since the library will handle all the escap-
ing for you.

API Frame Types | 141

http://code.google.com/p/xbee-arduino/
http://code.google.com/p/xbee-arduino/
http://code.google.com/p/xbee-api/
http://pyserial.sourceforge.net/
http://code.google.com/p/python-xbee/
http://www.faludi.com/xbee/max
http://www.faludi.com/xbee/max
http://www.faludi.com/xbee/pd

Simple Sensor Network
This project can serve as a model for almost any sensor network you’d like to build.
You will create a set of inexpensive temperature sensors that are mesh-networked to-
gether to stream their data to a base station radio. This base station will be connected
to a computer where the real-time temperature data will be visualized on the screen.
In the next chapter we will discuss making the sensor nodes very power-efficient so
that they can be run effectively from batteries. For now, these nodes can be powered
from wall outlets so we can concentrate on the business of building our first complete
wireless sensor network.

The example project in Figure 5-3 shows two sensor nodes and a base
station. That’s three radios in total. If you have only two radios, you can
build it with a single sensor node and the base station. You can also
create many more sensor nodes. If your network has more than 10
nodes, remember to extend the Processing code to change the display
size and limits so that it can show all the data.

Figure 5-3. Simple sensor network

Parts
• Two solderless breadboards (AF 64, DK 438-1045-ND, SFE PRT-09567)

• Hookup wire or jumper wire kit (AF 153, DK 923351-ND, SFE PRT-00124)

142 | Chapter 5: API and a Sensor Network

• Two 9-volt or 5-volt power supplies (9-volt batteries also work well for short-term
use) (AF 63, or 80 with 9 V battery, RS 273-355, SFE TOL-08269 or TOL-00298)

• Two 3.3 V voltage regulators (TO-220 package) (DK 497-1491-5-ND, SFE
COM-00526)

• Two DC power jacks (2.1 mm ID, 5.5 mm OD) (DK CP-024A-ND, RS 274-1577,
SFE PRT-00119)

• Two 100K ohm resistors (DK P100KBACT-ND, RS 271-1347, SFE has an assorted
resistor kit: COM-09258)

• Two 200K ohm resistors (DK P200KBACT-ND, or use two 100K resistors in series
for each board)

• Two 300 ohm resistors (DK P300BACT-ND, RS 271-012)

• Two 10 μF electrolytic capacitors (DK P966-ND, RS 272-1025, SFE COM-00523)

• Two 1 μF electrolytic capacitors (DK P993-ND, RS 272-1434)

• Two LM335 temperature sensors (in TO-92 packaging) (DK 497-2977-5-ND, SFE
SEN-09438)

• One XBee radio (Series 2/ZB firmware) configured as a ZigBee Coordinator API
mode (Digi: XB24-Z7WIT-004, DK 602-1098-ND)

• Two XBee radios (Series 2/ZB firmware) configured as a ZigBee Router AT mode
(Digi: XB24-Z7WIT-004, DK 602-1098-ND)

• Two XBee breakout boards with male headers and 2 mm female headers installed
(AF 126 (add SFE PRT-00116), SFE BOB-08276, PRT-08272, and PRT-00116)

• XBee USB serial adapter (XBee Explorer, Digi Evaluation board, or similar) (AF
247, SFE WRL-08687)

• USB cable for XBee adapter (AF 260, SFE CAB-00598)

• Wire strippers (AF 147, DK PAL70057-ND, SFE TOL-08696)

Prepare Your Coordinator Radio
1. Follow the instructions under “Reading Current Firmware and Configura-

tion” on page 35 in Chapter 2 to configure one of your radios as a ZigBee Coordi-
nator API. Note that your coordinator radio must use the API firmware for this
project to work because I/O data is only delivered in API mode. Be sure to select
the API version for your coordinator!

When you change from AT to API mode using X-CTU, you may
get an error message that the radio is no longer communicating.
Go back to the PC Settings tab and check the Enable API box to
enable communications with your radio. When you later change
API mode to 2, go back to that tab and choose “Use escape char-
acters (ATAP = 2).”

Simple Sensor Network | 143

2. Once a radio has been set to API mode it can only be configured in X-CTU. You
will not be able to make adjustments to this radio’s configuration in CoolTerm.
Use X-CTU to configure the coordinator with a PAN ID (between 0x0 and
0xFFFFFFFFFFFFFFFF) that you’ve selected, then click Write. Write down this
PAN ID so you can program your router radio with the same one. Every radio in
your network must use the same PAN ID so that they can communicate with each
other (there’s no need to set the DH and DL in this case, because the coordinator
will only be receiving data, not sending it):

Pan ID:

3. The software libraries that we are using in Processing require that the base station
XBee be in API Mode 2 (API Operation with escaped characters). Use X-CTU to
set AP (API Enable) to 2, and Write the configuration to your radio.

Be sure that you set the coordinator’s API to mode 2, otherwise the
project will not work!

Prepare Your Router Radios
1. Follow the instructions under “Reading Current Firmware and Configura-

tion” on page 35 in Chapter 2 to configure each of your sensor node radios as a
ZigBee Router AT. Your router radios will use the AT firmware so that you can
easily configure them using a serial terminal. Be sure you select the AT version for
your routers!

When you change from an API radio to an AT radio, you may get
an error message that the radio is no longer communicating. If so,
go back to the PC Settings tab and uncheck the Enable API Mode
box.

2. Label the coordinator radio with a “C” so that you know which one it is later on.
Each router radio can be labeled with an “R.”

Prepare the Sensor Boards
We’ll begin by configuring the router XBees. We’ll use the CoolTerm terminal program
and an XBee Explorer USB adapter again to set up your radios. For each of your sensor
node radios:

1. Select a router XBee you’ve labeled with an “R” and place it into the XBee Explorer.

2. Plug the XBee Explorer into your computer.

144 | Chapter 5: API and a Sensor Network

3. Run the CoolTerm program and press the Options button to configure it.

4. Select the appropriate serial port, and check the Local Echo box so you can see
your commands as you type them.

5. Click on the Connect button to connect to the serial port.

6. Type +++ to go into command mode. You should receive an OK reply from the
radio.

7. Select the same PAN ID you entered for your first radio above.

8. Type ATID followed by the PAN ID you selected and press Enter on the keyboard.
You should receive OK again as a reply.

9. Every ZigBee coordinator always has 0 as its 16-bit network address. In fact, that’s
the default destination address for any newly configured XBee radio. To use 16-bit
addressing, the high part of your radio’s destination address will be zero. Type
ATDH 0 and press Enter on the keyboard. You should receive an OK response.

10. Enter ATDL followed by the low part of your radio’s destination address, in this case
also a zero because that’s the fixed address for the coordinator. Type ATDL 0 and
press Enter. You should receive an OK response.

11. Enter ATJV1 to ensure that your router attempts to rejoin the coordinator on startup.

12. Enter ATD02 to put pin 0 in analog mode.

13. Enter ATIR3E8 to set the sample rate to 1,000 milliseconds (hex 3E8).

14. Save your new settings as the radio’s default by typing ATWR and pressing Enter.

It’s not a bad idea to recheck your configurations after you enter them.
For example, to recheck that you entered the destination address cor-
rectly, from command mode type ATDL and press Enter to see the current
setting.

Connect voltage regulator circuit and power jack to breadboard

1. Wire up a breadboard with a 3.3-volt voltage regulator (LD1117V33) as shown in
Figure 5-4. The regulator has three legs—typically, ground, output, and input—
when viewed from the front (where the writing is). Sometimes these legs are in a
different order, so find and check the data sheet if you’re not sure! Input is where
a high voltage, for example 5 or 9 volts, is applied to the regulator. Output is where
you will get the regulated 3.3 volts. Ground is the common ground for your entire
circuit, including input, output, and all the other components. Bring ground out
to both blue ground rails that run along the sides of your breadboard. Bring 3.3-
volt output power to both of the red power rails.

Simple Sensor Network | 145

Figure 5-4. Voltage regulator circuit on breadboard

2. Solder a red wire (about 10 cm) to the short center pin of your power jack, and
solder a similar black wire to the longer outer pin, as shown in Figure 5-5. Don’t
allow the two connections to touch each other since that will create a short circuit
when you power up!

3. Attach the red wire from the power jack, using the breadboard to connect it to the
input pin of the voltage regulator. Attach the black ground wire to the ground pin
of the voltage regulator in the same way.

4. Hook up the output pin of the voltage regulator to one of the power rails of the
breadboard using a red wire. Hook up the ground pin to one of the ground rails
on the breadboard.

5. Use the two capacitors to “decouple” the power supply in the following way: attach
the short ground lead of the 10 μF capacitor (also marked with a stripe on the
capacitor’s ground side) to ground near the voltage regulator. Attach the other
positive lead of the 10 μF capacitor to the voltage regulator’s input pin. This will
remove some lower-frequency noise coming from the wall power supply. Also at-
tach the short ground lead of the 1 μF capacitor to ground, and the other positive
lead to the 3.3 V output pin. This will remove some higher-frequency noise coming
out of the voltage regulator. Decoupling will prevent noisy power from reaching
your radio and interfering with its signal.

146 | Chapter 5: API and a Sensor Network

6. Hook up power and ground across the breadboard so that the rails on both sides
are live.

It’s a really good idea to check the voltage levels using a multimeter after
you first wire up the breadboard for power. Make sure that your power
rails have 3.3 volts on both sides where you expect it. You don’t want
to send 9 volts to your radio and cook it!

Router XBee connection to power

1. With a router XBee mounted on its breakout board, position the breakout board
in the center of your other breadboard so that the two rows of male header pins
are inserted on opposite sides of the center trough.

2. Use red hookup wire to connect pin 1 (VCC) of the XBee to 3.3-volt regulated
power.

3. Use black hookup wire to connect pin 10 (GND) of the XBee to ground.

Figure 5-5. Power jack with wiring soldered in place

Simple Sensor Network | 147

Temperature input

This project uses the LM335 precision analog temperature sensor. This sensor has a
linear output of +10 mV per degree Kelvin. It has an adjustment pin for calibration,
but this can be safely ignored unless you mind one or two degrees of error at room
temperature. You can get the entire data sheet for the LM335 at http://www.national
.com/ds/LM/LM135.pdf:

1. The LM335 temperature sensor has three leads. When the sensor’s flat side is facing
you, the leads from left to right are adjustment, positive, and negative. Insert the
LM335 so that each lead is in its own row on the breadboard.

2. Use a black wire to connect the rightmost, negative lead to one of the ground rails.

3. Insert the 300 ohm resistor so that it’s connected to power on one end and to the
positive center pin of the LM335 on the other. You can use jumper wires to make
the connection if that’s more convenient in your breadboard layout.

4. Insert a 200K ohm resistor so that it’s connected to the positive center pin on one
end and to an empty breadboard row on the other.

5. Use a jumper wire to connect between the unattached end of the 200K ohm resistor
to XBee digital input 0 (physical pin 20).

6. Insert a 100K ohm resistor so that one end connects to XBee digital input 0 (and
the 200K resistor). The other end of the 100K ohm resistor goes to ground. Again,
use jumper wires as needed to complete these electrical connections.

Second sensor board

Create the second sensor board in the same way as the first. You can make as many
sensor boards as you like. The system will work with as few as 1 or as many as 10
without any adjustment to the software. Figure 5-6 shows the breadboard layout for
our simple sensor network, and Figure 5-7 shows the schematic.

Prepare the Base Station

Connect to computer

Your base station radio is simply an XBee serial adapter connected to your computer:

1. Select the coordinator XBee you’ve labeled with a “C” and place it into the XBee
Explorer.

2. Plug the XBee Explorer into your computer.

148 | Chapter 5: API and a Sensor Network

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.national.com/ds/LM/LM135.pdf
http://www.national.com/ds/LM/LM135.pdf

Figure 5-6. Simple sensor network LM335 breadboard layout

Figure 5-7. Simple sensor network LM335 schematic

Simple Sensor Network | 149

All About Processing
Processing is an open source software development environment designed for novice
programmers and geared toward visual displays. It was originally created as a way of
teaching beginning programmers and has evolved into a highly popular environment
for artists, interaction designers, software hackers, students, and professionals to create
visually oriented applications. Processing is available for free, under the GNU General
Pubic License. It operates on Macintosh, Windows, and Linux and can export both
fully functional web applets and standalone applications for all three platforms.

You can download Processing from http://processing.org/download (see Figure 5-8). On
the Mac, you’ll get a disk image (.dmg) file that contains the Processing application.
Simply drag it to your local Applications folder to install it and then double-click on the
Processing icon to start the program. Windows downloads come in the form of a .zip
file. Double-click the .zip file to open it, then drag the Processing folder into the Program
Files directory (or any other location on your hard drive) and double-click process-
ing.exe to begin. Linux users will download a tar.gz file. Processing can then be ex-
panded in the terminal with tar xvfz processing-xxxx.tgz (replacing xxxx with the
rest of the downloaded file’s name, which is the version number). This will create a
folder named something like processing-1.0. To start the program, change to that di-
rectory with cd processing-xxxx and run it with ./processing. If you run into any
problems, check the troubleshooting page at http://wiki.processing.org/w/Troubleshoot
ing for help.

The Processing Interactive Development Environment (IDE) is very easy to use, and
has similar controls to the Arduino IDE. In fact, the Arduino development environment
was based on Processing’s and uses many of the same concepts, with one very important
difference. Arduino is fundamentally a C/C++ environment, while Processing’s un-
derlying language is Java. So while the code syntax you use will look similar at first, be
aware that there are distinct differences in the commands and structure. One good way
to get to know Processing is by learning about it in the online Getting Started guide.
The language itself is fully documented at http://processing.org/reference/ (see Fig-
ure 5-9). There’s also a comprehensive list of books at http://processing.org/learning/
books/, including Getting Started with Processing by Casey Reas and Ben Fry (O’Reilly)
and Learning Processing by Daniel Shiffman (Kaufmann).

The Processing window has the same basic structure as Arduino’s (see Figure 5-10).
Programs are referred to as sketches. Buttons at the top allow the user to Run these
sketches and Stop them; create New sketches; Open existing ones; Save them; and
Export sketches as web applets. The center area is where code is edited, and the bottom
of the window has a small gray space for messages, and for console output from the
sketch. Sketches display visual output in a separate window.

150 | Chapter 5: API and a Sensor Network

http://processing.org/download
http://wiki.processing.org/w/Troubleshooting
http://wiki.processing.org/w/Troubleshooting
http://processing.org/learning/gettingstarted
http://processing.org/reference/
http://processing.org/learning/books/
http://processing.org/learning/books/
http://oreilly.com/catalog/0636920000570/

Figure 5-8. The Download page on the Processing.org website

Figure 5-9. Processing’s syntax and commands are fully documented on the website

Simple Sensor Network | 151

Program the Base Station
The simple sensor network base station uses the following Processing program. Down-
load the ZIP file of all the libraries and resources from this book’s website. Inside the
Processing sketch folder for the Simple Sensor Network program are two subdirectories
called code and data (see Figure 5-11). The code folder contains the log4j.jar and
xbee-api-0.5.5.jar library files. These contain all the code for communication with the

Figure 5-10. The Processing IDE with control buttons at the top, text area in the middle, and space
for messages and console output at the bottom

152 | Chapter 5: API and a Sensor Network

XBee in API mode. The data folder holds the log4j.properties file, required by
log4j.jar. It also has a font file for a sans serif 10-point font used for screen display.

Figure 5-11. Directory structure for the Processing sketch program Simple Sensor Network, including
all required libraries, config files, a font file, and the Processing “.pde” sketch itself

You must replace the COM port listed in this code with your actual
COM port. Look for it in the code around line 20. Port names are listed
in the console in Processing, as your program starts up.

Once you have loaded the files and directories onto your computer and opened the
Simple_Sensor_Network.pde file in Processing, press the Run button (labeled with a
triangle) to launch the display code. It will open in a new window and show a ther-
mometer for each sensor node detected, as shown in Figure 5-12.

Figure 5-12. Simple Sensor Network temperature display screen in Processing

Simple Sensor Network | 153

Simple Sensor Network display code in Processing

Here’s the source code for the Processing sketch. The comment shown in bold about
the serial port highlights an essential change. Other commented instructions are only
important if you didn’t download the source from the website listed in the Preface:

/*
 * Draws a set of thermometers for incoming XBee Sensor data
 * by Rob Faludi http://faludi.com
 */

// used for communication via xbee api
import processing.serial.*;

// xbee api libraries available at http://code.google.com/p/xbee-api/
// Download the zip file, extract it, and copy the xbee-api jar file
// and the log4j.jar file (located in the lib folder) inside a "code"
// folder under this Processing sketch's folder (save this sketch, then
// click the Sketch menu and choose Show Sketch Folder).
import com.rapplogic.xbee.api.ApiId;
import com.rapplogic.xbee.api.PacketListener;
import com.rapplogic.xbee.api.XBee;
import com.rapplogic.xbee.api.XBeeResponse;
import com.rapplogic.xbee.api.zigbee.ZNetRxIoSampleResponse;

String version = "1.01";

// *** REPLACE WITH THE SERIAL PORT (COM PORT) FOR YOUR LOCAL XBEE ***
String mySerialPort = "/dev/tty.usbserial-A1000iMG";

// create and initialize a new xbee object
XBee xbee = new XBee();

// make an array list of thermometer objects for display
ArrayList thermometers = new ArrayList();
// create a font for display
PFont font;

void setup() {
 size(800, 600); // screen size
 smooth(); // anti-aliasing for graphic display

 // You'll need to generate a font before you can run this sketch.
 // Click the Tools menu and choose Create Font. Click Sans Serif,
 // choose a size of 10, and click OK.
 font = loadFont("SansSerif-10.vlw");
 textFont(font); // use the font for text

 // The log4j.properties file is required by the xbee api library, and
 // needs to be in your data folder. You can find this file in the xbee
 // api library you downloaded earlier
 PropertyConfigurator.configure(dataPath("")+"log4j.properties");
 // Print a list in case the selected one doesn't work out
 println("Available serial ports:");

154 | Chapter 5: API and a Sensor Network

 println(Serial.list());
 try {
 // opens your serial port defined above, at 9600 baud
 xbee.open(mySerialPort, 9600);
 }
 catch (XBeeException e) {
 println("** Error opening XBee port: " + e + " **");
 println("Is your XBee plugged in to your computer?");
 println("Did you set your COM port in the code near line 20?");
 }
}

// draw loop executes continuously
void draw() {
 background(224); // draw a light gray background
 SensorData data = new SensorData(); // create a data object
 data = getData(); // put data into the data object
 //data = getSimulatedData(); // uncomment this to use random data for testing

 // check that actual data came in:
 if (data.value >=0 && data.address != null) {

 // check to see if a thermometer object already exists for this sensor
 int i;
 boolean foundIt = false;
 for (i=0; i <thermometers.size(); i++) {
 if (((Thermometer) thermometers.get(i)).address.equals(data.address)) {
 foundIt = true;
 break;
 }
 }

 // process the data value into a Celsius temperature reading for
 // LM335 with a 1/3 voltage divider
 // (value as a ratio of 1023 times max ADC voltage times
 // 3 (voltage divider value) divided by 10mV per degree
 // minus zero Celsius in Kelvin)
 float temperatureCelsius = (data.value/1023.0*1.2*3.0*100)-273.15;
 println(" temp: " + round(temperatureCelsius) + "°C");

 // update the thermometer if it exists, otherwise create a new one
 if (foundIt) {
 ((Thermometer) thermometers.get(i)).temp = temperatureCelsius;
 }
 else if (thermometers.size() < 10) {
 thermometers.add(new Thermometer(data.address,35,450,
 (thermometers.size()) * 75 + 40, 20));
 ((Thermometer) thermometers.get(i)).temp = temperatureCelsius;
 }

 // draw the thermometers on the screen
 for (int j =0; j<thermometers.size(); j++) {
 ((Thermometer) thermometers.get(j)).render();
 }

Simple Sensor Network | 155

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 }
} // end of draw loop

// defines the data object
class SensorData {
 int value;
 String address;
}

// defines the thermometer objects
class Thermometer {
 int sizeX, sizeY, posX, posY;
 int maxTemp = 40; // max of scale in degrees Celsius
 int minTemp = −10; // min of scale in degrees Celsius
 float temp; // stores the temperature locally
 String address; // stores the address locally

 Thermometer(String _address, int _sizeX, int _sizeY,
 int _posX, int _posY) { // initialize thermometer object
 address = _address;
 sizeX = _sizeX;
 sizeY = _sizeY;
 posX = _posX;
 posY = _posY;
 }

 void render() { // draw thermometer on screen
 noStroke(); // remove shape edges
 ellipseMode(CENTER); // center bulb
 float bulbSize = sizeX + (sizeX * 0.5); // determine bulb size
 int stemSize = 30; // stem augments fixed red bulb
 // to help separate it from moving mercury
 // limit display to range
 float displayTemp = round(temp);
 if (temp > maxTemp) {
 displayTemp = maxTemp + 1;

 }
 if ((int)temp < minTemp) {
 displayTemp = minTemp;
 }
 // size for variable red area:
 float mercury = (1 - ((displayTemp-minTemp) / (maxTemp-minTemp)));
 // draw edges of objects in black
 fill(0);
 rect(posX-3,posY-3,sizeX+5,sizeY+5);
 ellipse(posX+sizeX/2,posY+sizeY+stemSize, bulbSize+4,bulbSize+4);
 rect(posX-3, posY+sizeY, sizeX+5,stemSize+5);
 // draw gray mercury background
 fill(64);
 rect(posX,posY,sizeX,sizeY);
 // draw red areas
 fill(255,16,16);

156 | Chapter 5: API and a Sensor Network

 // draw mercury area:
 rect(posX,posY+(sizeY * mercury),
 sizeX, sizeY-(sizeY * mercury));

 // draw stem area:
 rect(posX, posY+sizeY, sizeX,stemSize);

 // draw red bulb:
 ellipse(posX+sizeX/2,posY+sizeY + stemSize, bulbSize,bulbSize);

 // show text
 textAlign(LEFT);
 fill(0);
 textSize(10);

 // show sensor address:
 text(address, posX-10, posY + sizeY + bulbSize + stemSize + 4, 65, 40);

 // show maximum temperature:
 text(maxTemp + "°C", posX+sizeX + 5, posY);

 // show minimum temperature:
 text(minTemp + "°C", posX+sizeX + 5, posY + sizeY);

 // show temperature:
 text(round(temp) + " °C", posX+2 ,posY+(sizeY * mercury+ 14));
 }
}

// used only if getSimulatedData is uncommented in draw loop
//
SensorData getSimulatedData() {
 SensorData data = new SensorData();
 int value = int(random(750,890));
 String address = "00:13:A2:00:12:34:AB:C" + str(round(random(0,9)));
 data.value = value;
 data.address = address;
 delay(200);
 return data;
}

// queries the XBee for incoming I/O data frames
// and parses them into a data object
SensorData getData() {

 SensorData data = new SensorData();
 int value = −1; // returns an impossible value if there's an error
 String address = ""; // returns a null value if there's an error

 try {
 // we wait here until a packet is received.
 XBeeResponse response = xbee.getResponse();
 // uncomment next line for additional debugging information
 //println("Received response " + response.toString());

Simple Sensor Network | 157

 // check that this frame is a valid I/O sample, then parse it as such
 if (response.getApiId() == ApiId.ZNET_IO_SAMPLE_RESPONSE
 && !response.isError()) {
 ZNetRxIoSampleResponse ioSample =
 (ZNetRxIoSampleResponse)(XBeeResponse) response;

 // get the sender's 64-bit address
 int[] addressArray = ioSample.getRemoteAddress64().getAddress();
 // parse the address int array into a formatted string
 String[] hexAddress = new String[addressArray.length];
 for (int i=0; i<addressArray.length;i++) {
 // format each address byte with leading zeros:
 hexAddress[i] = String.format("%02x", addressArray[i]);
 }

 // join the array together with colons for readability:
 String senderAddress = join(hexAddress, ":");
 print("Sender address: " + senderAddress);
 data.address = senderAddress;
 // get the value of the first input pin
 value = ioSample.getAnalog0();
 print(" analog value: " + value);
 data.value = value;
 }
 else if (!response.isError()) {
 println("Got error in data frame");
 }
 else {
 println("Got non-i/o data frame");
 }
 }
 catch (XBeeException e) {
 println("Error receiving response: " + e);
 }
 return data; // sends the data back to the calling function
}

Troubleshooting

If things don’t work at first, here are some steps to try:

1. Check all your electrical connections to make sure there are no loose wires and
that all the components are connected properly.

2. Check the coordinator configuration in X-CTU again, including that the correct
modem type (XB24-ZB) and function set (ZigBee Coordinator API) have been se-
lected. Make sure that ATAP has been set to 2 for this project! Also check that the
PAN ID is configured as you expect.

3. Check the router configuration in X-CTU to confirm that the correct modem type
(XB24-ZB) and function set (ZigBee Router AT) have been selected. Also check
that the PAN ID, destination high, and destination low are configured as you ex-
pect, and that ATJV, ATD0, and ATIR have been configured as described above.

158 | Chapter 5: API and a Sensor Network

4. An LED placed from the ASSOC pin of each sensor XBee (physical pin 15) to
ground should show a flashing light.

5. If your serial adapter has an RSSI light, it should illuminate when the radio is
receiving information. If messages stop coming in, this light will time out and go
dark after 10 seconds.

6. Use a multimeter to see if the voltage at the D0 pin of each sensor XBee (physical
pin 20) varies with changes in the temperature. It should be somewhere in the range
between 0 and 1.2 volts and change as you warm or cool the LM335.

7. If your temperature readings are somewhat off, you can calibrate the sensor by
connecting a potentiometer across the LM335 with the output connected to the
adjustment pin as in Figure 5-13. Also, check to see if it is next to another com-
ponent on your circuit board that’s generating a bit of heat, like the voltage
regulator.

Figure 5-13. LM335 calibration schematic showing a potentiometer attached to power, ground, and
the adjustment pin

8. We are not always able to see our own mistakes. Have a friend check everything
for you. Sometimes only a second pair of eyes will catch the one or more issues
that are standing in the way of success.

Simple Sensor Network | 159

9. When all else fails, try taking a break and coming back to the project after a good
night’s rest.

Yay!
You have learned a lot and built your very first complete wireless sensor network.
Congratulations! While you won’t always need to worry about the API mode, having
some understanding of it will help you both in your work with the XBees and in general
as new wireless communications protocols are developed and dispensed to the net-
working community. In the next chapter we will dial back the intensity a little to
show you some useful power management tricks, and build a second network that
allows you to control household appliances. Before that, take a moment to revel in
securing your official Sensor Networking Merit Badge. You’ve earned it!

160 | Chapter 5: API and a Sensor Network

CHAPTER 6

Sleeping, Then Changing the World

Whew! At this point, the book has covered a lot of ground and you have come a long
way in a very short time. Now we’ll ease the pace just a bit and address some nuances
of ZigBee mesh networking, including sleep mode, end devices, and power manage-
ment. Then it’s time to change things in the world with direct actuation. This chapter
features a powerful control project you could use to automate your home or to play
Pong using the window lights in a skyscraper.

Sleep Mode
Going wireless often means cutting the electric cord. Projects that are mobile or
remotely located frequently use batteries or another constrained power source that
demands economizing on energy. XBee radios, like many other communications and
microcontroller devices, can put themselves into a temporary sleep state where nearly
no current is consumed. The trade-off is that during this state no activities can take
place. During sleep, the device is almost completely turned off and is incapable of
receiving or sending messages until it wakes back up. ZigBee mesh networking is spe-
cifically designed to smoothly handle communications on a network where at any mo-
ment many radios might be in this type of low-power state. In fact, by getting very stingy
and using the right kind of power cell, we can envision ZigBee networks where batteries
last many years at a time, while the networks still perform sufficient sensing and de-
pendable actuation.

End Devices
We introduced end devices in Chapter 2. You may recall that end devices are essentially
stripped-down versions of router radios. They can join networks and participate in
communications, but because they power down intermittently, they explicitly do not
act as messengers between any other devices. End devices always require a router or
the coordinator to be their parent device. The end devices’ parent helps them join the
network to begin with and then stores messages for them when they are asleep. ZigBee

161

networks may have any number of end devices. It’s perfectly legitimate to create a
network with a single coordinator acting as the sole parent for many end devices.

Storing and forwarding

When an end device is asleep, it is pretty much dead to the world. Any attempt to
contact it by radio will fail because during hibernation the end device turns off its
transmitter and receiver to conserve energy. That’s why it needs a parent. One of the
parent’s jobs is to act as its mailbox, storing messages while the end device is asleep
and forwarding them when the end device wakes back up. The portion of the protocol
enabling network communications with sleeping end devices is automatically managed
right inside the mesh network radios. ZigBee networks get this feature without any
additional components or code required to manage the process.

Constraints

Alas, the power-saving lunch does not come entirely for free. The longer a node sleeps,
the longer any message to it must be stored. XBee routers that act as the parent to end
devices generally store only a single message, so communications must be carefully
designed with those limitations in mind. Network chatter must be kept to a minimum
to avoid overwhelming the parent device’s storage resources and discarding important
information. Also, radios configured as end devices are by definition incapable of acting
as mesh routers themselves. After all, while the radio is asleep it is useless for retrans-
mitting data and therefore presents a virtual cul de sac to the mesh network. On the
upside, considerable power is conserved by forgoing these responsiveness and range
extension features. You will want to carefully consider these trade-offs when designing
your networks.

An XBee router must reserve memory to store mailbox data for each of
its end device children. Usually the number of child nodes per router is
limited to about 8 or 10. If you like, you can check on how many re-
maining children a given router or coordinator will support with the
ATNC command.

Advantages

Using sleep mode, an end device can stretch battery life from hours into days, weeks,
and sometimes even years. For example, if full-time use of a (hypothetical) battery
would drain it in four hours, putting the radio into a cycle where it slept for one second,
then woke for one second before sleeping again could (roughly) double that battery’s
life to eight hours. Cyclically sleeping for 59 seconds and then waking for a single second
might keep the same battery going for something on the order of 10 days. Taking this
further, sleeping for the same 59.98 seconds and then only waking up for 20 millisec-
onds would extend the available power to over a year. Sleep mode can have tremendous

162 | Chapter 6: Sleeping, Then Changing the World

benefits. Keep in mind, though, that real-world battery life predictions aren’t quite so
simple.

Batteries are physical, chemically active devices. Every type of battery
chemistry has its own complex characteristics that bedevil any attempt
to make simplistic calculations on power use. Factors like temperature,
charge state, instantaneous draw levels, aging timetables, self-draining
curves, and materials purity all weigh into the complex nonlinear func-
tions required to properly estimate battery life. Nevertheless, sometimes
simplistic estimations are all that’s needed to select an appropriate sleep
state that works within the context of your project. Build an ample safety
factor into your back-of-the-napkin battery arithmetic and you’ll find
you can get a lot of reasonable estimations accomplished without getting
mired in the awesome complexities of chemical engineering.

Configuring Sleep
There are six AT commands associated with sleeping (see Table 6-1). These commands
work together to configure the specific behaviors that are most appropriate for your
particular project. In many cases, you’ll only really need to set three of them: Sleep
Mode, Sleep Period, and Time Before Sleep. The other three commands are for more
unusual configurations so they are less commonly needed.

Sleep Mode

The XBee ZigBee End Device radios have four basic sleep behaviors. These are set with
the ATSM command:

ATSM 0: Disables sleep mode
The radio will always be awake and using power, but because it is running the end
device firmware it will not route for other radios and it still requires a parent device.

ATSM 1: Pin wake mode
In this mode the XBee module will sleep when its sleep control pin—physical pin
9—is asserted or pulled high by connecting it to 3.3 volts (Figure 6-1). The radio
will finish transmitting or receiving before it goes to sleep. When the sleep control
pin is brought low by connecting it to ground, the radio will wake from sleep and
be able to transmit and receive again. When asleep in this mode, the radio uses less
than 10 microamps, a minuscule amount of power. Waking it up takes about 13
milliseconds. You use pin wake mode when there’s another device—most com-
monly some kind of microcontroller—available to assert and de-assert the signal
going to pin 9.

ATSM 2 and 3
These modes are currently undefined.

Sleep Mode | 163

ATSM 4: Cyclic sleep mode
When an XBee radio is running independently and there is no other device to switch
it in and out of sleep mode, it still has the internal capacity to sleep and wake on
a fixed schedule. This is the most common way of conserving power when a radio
is being used as a simple sensor node. You set how often the device sleeps and for
how long using ATSP and ATST as described below. Upon wake-up, the end device
will poll its parent to see if there are any incoming messages waiting for it. When
asleep in cyclic mode, the radio uses less than 50 microamps, a very modest amount
of power. Waking it up takes only 2 milliseconds.

ATSM 5: Cyclic sleep with pin wake
This is basically the same as regular cyclic sleep mode but with the option of also
waking the module using physical pin 9.

Sleep Period

The length of time an XBee radio remains asleep is set with the ATSP command. The
sleep period setting gets multiplied by 10, with the result being the number of milli-
seconds of sleep time. SP will accept any setting in the hexadecimal range for 0x20 to
0xAF0. When multiplied by 10, this means that the basic sleep period can be as short
as 320 milliseconds and as long as 28 seconds. The sleep period can effectively be
extended by setting the number of consecutive sleeps with ATSN and ATSO (as described
below).

Figure 6-1. XBee sleep control pin 9 accepts external input for putting the module to sleep. The On/
Sleep pin 13 goes low when the radio sleeps and is brought high while the XBee is awake.

164 | Chapter 6: Sleeping, Then Changing the World

The coordinator and router radios in an interactive network should have
their SP register set to the same or greater value as the end devices. On
parent nodes, SP defines how long to store messages in the forwarding
buffer before discarding them. This way parents won’t throw away
messages before the child end-nodes have a chance to wake up and re-
trieve them.

Time Before Sleep

With the ATST command, you can set the minimum timeout for the radio to remain
awake before returning into cyclic sleep. The XBee module will never go into its low
power mode while a message is being transmitted or received, so think of this timeout
as a period of silence that is required before the radio can fall asleep again. Time before
sleep can be set to as little as 0x1 for one millisecond of timeout, or as high as 0xFFFF
for about 65 seconds of delay before returning to low-power cyclic sleep.

Advanced commands

Several more sleep commands go beyond the basics. These are often used when an XBee
radio is working with an external device, and controlling it with the XBee’s internal
timers. Imagine a weather station that might need to warm up for a short time before
it is ready to supply a data sample. Alternately, imagine an application that uses the
radio to remotely wake and activate a traffic information sign. If there’s no incoming
information, it’s not necessary to wake the sign and consume valuable battery power
for no reason. The following commands are intended to help in these special situations,
and can also be employed in cases where a particularly lengthy sleep time is desired.

The On/Sleep pin, physical pin 13 on the XBee, goes high when the
module is awake and low when it is sleeping. Attaching an LED to this
pin gives a visual indication of the radio’s current sleep state. This pin
can also be used to control an external device—for example, so that it
is powered up only when the radio is awake. (See Figure 6-1.)

ATSN: Number of Sleep Periods
This command specifies how many sleep periods to skip asserting the On/Sleep
pin if no data is received on wake-up. Setting it to the default of 0x01 causes the
On/Sleep pin to be asserted on every wake-up. Setting it higher—for example, to
0x09—would allow eight wake-ups with no incoming data to pass before asserting
the On/Sleep pin. The maximum value for this register is 0xFFFF or 65,535 wake-
up checks before the On/Sleep pin is forcibly asserted. Remember that if incoming
data is received during any wake-up, the On/Sleep pin will be brought high, no
matter how ATSN is set. A secondary use of this register is as a multiplier for ATSP,
when you need the radio to sleep for very long times. See ATSO below.

Sleep Mode | 165

ATWH: Wake Host
In some applications, a sensor or device might need time to be turned on, boot up,
and stabilize before the XBee either sends received messages out of its local serial
port or samples its local pins for I/O data. In these cases it’s helpful to have a specific
delay after the On/Sleep pin is asserted to turn on the attached device. The wake
host delay can be as little as the default of 0x0 for no delay, or as long as 0xFFFF
for about 65 seconds of waiting time before communication or I/O sampling.

ATSO: Sleep Options
There are currently three states for this register. 0x0 is the default setting of no
options enabled. 0x02 tells the radio to always wake up for the entire ST time, even
when no data is waiting to be sent or received. This is useful only in specialized
external device control situations. The 0x04 option setting forces the radio to sleep
continuously for the entire period specified by SN * SP, to a maximum total time of
1,834,980,000 milliseconds or just over three weeks between wake-ups. This last
option has the potential to allow the right battery to last for many years!

The complete formula for calculating sleep time when you are using the
advanced options is SP * 10 * SN, when SO is set to 0x04.

Table 6-1. Summary of AT commands for sleeping the XBee radios

AT
command Name and description

Node
type Parameter range Default

SM Sleep Mode. Sets the sleep mode on the RF module. E 0 - Sleep disabled

1 - Pin sleep
enabled

4 - Cyclic sleep
enabled

5 - Cyclic sleep, pin
wake

0

SN Number of Sleep Periods. Sets the number of sleep periods
to not assert the On/Sleep pin on wake-up if no RF data is waiting
for the end device. This command allows a host application to
sleep for an extended time if no RF data is present.

CRE 1–0xFFFF 1

SP Sleep Period. Determines how long the end device will sleep
at a time, up to 28 seconds. (The sleep time can selectively be
extended past 28 seconds using the SN command.) On the
parent, this value determines how long the parent will buffer
messages for the sleeping end device. It should be set at least
equal to the longest SP time of any child end device.

CRE 0x20–0xAFO (× 10
ms) (Quarter-
second resolution)

0x20

ST Time Before Sleep. Sets the time-before-sleep timer on an
end device. The timer is reset each time serial or RF data is

E 1–0xFFFE (× 1 ms) 0x1388 (5
seconds)

166 | Chapter 6: Sleeping, Then Changing the World

AT
command Name and description

Node
type Parameter range Default

received. Once the timer expires, an end device may enter low-
power operation. Applicable for cyclic sleep end devices only.

SO Sleep Options. Configures options for sleep. Unused option
bits should be set to 0. Sleep options include:

0X02 – Always wake for ST time

Ox04 – Sleep entire SN * SP time

Sleep options should not be used for most applications.

E 0–0xFF 0

WH Wake Host. Sets or reads the wake host timer value. If the
wake host timer is set to a nonzero value, this timer specifies a
time (in millisecond units) that the device should allow after
waking from sleep before sending data out the UART or trans-
mitting an I/O sample. If serial characters are received, the
WH timer is stopped immediately.

E 0–0xFFFF (× 1 ms)

Easy Sleeping
There are a lot of sleep options but the good news is that you only have to set them
once for your application and, in most cases, you only need one or two settings. For
instance, if we just want the XBee module to wake up briefly every five seconds, se-
lecting ATSM 4, and ATSP 1F4 turns on cyclic sleep mode and sets the period of time the
radio is asleep to 5000 milliseconds. Remember that all the commands use hexadeci-
mals and that the SP register is always multiplied by 10. So the hexadecimal 0x1F4
translates to 500 in decimal, and when multiplied by 10 results in 5,000 milliseconds,
or 5 seconds.

Waking up from sleep always triggers an I/O sample, as long as ATIR is
set to a nonzero number and at least one pin is configured as a digital
or analog input. Samples will continue at the IR rate until the ST timer
has expired, and then the radio will sleep again.

Simple Sensor with Sleep Project
The simple sensor network from the previous chapter is a prime candidate for some
power-saving assistance from sleep mode. You’ll use the same base station configura-
tion, but you can either add new end nodes to the network or replace your existing
hardwired nodes with battery-powered ones. The following instructions are for a single
sleeping node. Create as many of these as you like; just remember the base station still
needs to be a coordinator radio, so its configuration should remain the same.

Simple Sensor with Sleep Project | 167

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The parts listed below supply enough battery voltage to continue using
the voltage regulator circuits you already built. Alternatively, you could
remove the voltage regulation and use two AA batteries to power the
end nodes.

Parts
• 9-volt batteries (RS 23-866)

• 9-volt to barrel jack adapters (SFE PRT-09518)

...or

• AA batteries (RS 23-942)

• 4xAA to barrel jack connectors (SFE PRT-09835)

...and

• XBee radios (Series 2/ZB firmware) configured as a ZigBee End Device AT mode
(Digi: XB24-Z7WIT-004, DK 602-1098-ND)

Prepare Your End Device Radios
Follow the instructions under “Reading Current Firmware and Configura-
tion” on page 35 in Chapter 2 to configure each of your actuator node radios as a ZigBee
End Device AT.

Your end device radios will use the AT firmware so you can easily con-
figure them using a serial terminal. Be sure you select the AT version for
your routers!

Each end device radio can be labeled with an “E.”

Configure Your End Device XBees
We’ll continue to use CoolTerm and an XBee Explorer USB adapter to set up the radios.
For each of your sleeping end device sensor node radios:

1. Select an end device XBee you’ve labeled with an “E” and place it into the XBee
Explorer.

2. Plug the XBee Explorer into your computer.

3. Run the CoolTerm program and press the Options button to configure it.

4. Select the appropriate serial port and check the Local Echo box so you can see your
commands as you type them.

5. Click on the Connect button to connect to the serial port.

168 | Chapter 6: Sleeping, Then Changing the World

6. Type +++ to go into command mode. You should receive an OK reply from the
radio.

7. Select the same PAN ID that you entered for your original simple sensor network.

8. Type ATID followed by the PAN ID you selected and press Enter on the keyboard.
You should receive OK again as a reply.

9. Every ZigBee coordinator always has 0 as its 16-bit network address. Type
ATDH 0 and press Enter on the keyboard. You should receive an OK response.

10. Enter ATDL followed by the low part of your radio’s destination address (0, the ad-
dress of the coordinator). Type ATDL 0 and press Enter. You should receive an OK
response.

11. Enter ATD02 to put pin 0 in analog mode.

12. Enter ATIR3E8 to set the sample rate to 1,000 milliseconds.

13. Enter ATSM4 to put the radio into cyclic sleep mode.

14. Enter ATSP64 to sleep the radio for one second (100 * 10 ms).

15. Enter ATST14 to time out and sleep 20 milliseconds after each sample transmission.

16. Save your new settings as the radio’s default by typing ATWR and pressing Enter.

Once you put your radio into sleep mode it may appear to become
unresponsive. That’s because it is sleeping! Don’t panic if you can’t
wake it up. See the sidebar “Wake-Up Issues and Reset Strat-
egies” on page 170 for more information on waking a sleeping
radio.

Add sensor nodes...

1. If you’ve decided to add new temperature sensor nodes, make them exactly like
those in the previous chapter. The radios you just configured can be plugged right
into these new sensor boards.

2. Power your new sensor boards with a battery pack to make them totally untethered.

...or replace sensor nodes

1. If you don’t want to add any new sensor nodes, you can also replace the radios in
your existing sensor boards with the ones you just programmed for sleep mode.

2. Power your newly sleeping sensor boards with a battery pack for full mobility.

3. Run the Simple Sensor Network program in Processing to test your new and/or
replaced sensor nodes.

Figure 6-2 illustrates the simple sensor network with end devices.

Simple Sensor with Sleep Project | 169

In the Simple Sensor with Sleep project, it is not necessary to add the
SP setting to the parent routers or coordinator. This is because they
won’t be storing any outgoing messages so the buffer timeout won’t ever
be used. However, it doesn’t hurt and it is a good habit to have. Set
ATSP to 1F4 on every device in the network, but only if you want to.

Wake-Up Issues and Reset Strategies
Once you set ATSM (sleep mode) to something other than zero, there will be times when
the radio refuses to respond at all. This is because it is sleeping! Don’t worry; you can
still wake the radio up to talk to it. Here are some strategies to rouse your snoozing
radio for reconfiguration:

• If the radio is in sleep mode 1 (pin sleep) or sleep mode 5 (cyclic sleep with pin
wake-up), bringing physical pin 9 high by connecting it to 3.3 volts will wake the
radio.

• For radios in sleep mode 4, there are a few options. Assuming the radio is using
AT command firmware, you could keep issuing the +++ sequence with a one-
second or longer pause in between each attempt. Sooner or later the radio will
respond with an OK and you can take it out of sleep mode (ATSM0) or issue other

Figure 6-2. Simple sensor network with sleeping end devices

170 | Chapter 6: Sleeping, Then Changing the World

commands. If you’ve set the sleep period (ATSP) to be very long or the time before
sleep (ATST) to be very short, it may take quite some time to get lucky enough to
issue the command just as the radio wakes up. Be patient and don’t forget to pause
at least one second between +++ attempts.

If you are using a full-featured serial adapter, you may be able
to see the CTS indicator in your terminal program light up when
the radio is awake. Both CoolTerm and X-CTU have this indi-
cator. Time your +++ attempts to happen when CTS is active for
fastest results.

• X-CTU is your wake-up buddy. If the radio is sleeping when you attempt to con-
figure it with X-CTU, X-CTU will show a dialog box (refer back to Figure 2-11)
that suggests resetting the radio. If your adapter board doesn’t have a reset button,
carefully lifting the radio out of its serial adapter sockets (yes, while the socket is
still plugged into USB) and reseating it will effectively reset it and should wake it up.

• If all else fails, you can always force-download new firmware to the radio. This
type of drastic step is usually not necessary. On the PC Settings tab, set Flow
Control to Hardware. On the Modem Configuration tab, check the Always Update
Firmware checkbox. In the Modem pop-up list, select XB24-ZB along with the
function set you desire, such as ZigBee End Device AT. Press the Show Defaults
button and then the Write button. You may be asked to reset the radio, in which
case carefully unseat it and reseat it in its serial adapter sockets. It may take several
tries to get the firmware to reload, but patience tends to pay off here.

• When all else fails, don’t forget that Digi has excellent tech support staff that can
probably help you resuscitate your radio (http://digi.com/support).

Direct Actuation
Creating sensor networks is a lot of fun and tremendously useful. There are plenty of
reasons to collect data from multiple nodes and bring it to a central location. There are
equally great reasons to take commands from a central location and create real events
in multiple physical locations remotely. The XBee radio is capable of receiving com-
mands that set its digital I/O output pins to trigger real-world events without the use
of any external microcontroller. By itself, the XBee can power an LED, sound a small
buzzer, or even operate a tiny motor. Many more devices can be operated directly from
the XBee with the use of a relay. Relays are really just electrically operated switches.
They allow low currents to turn on and off devices that require much higher currents
to operate. Relay-type devices for our purposes include transistors that can transform
low current outputs into medium ones, as well as the larger mechanical and electrical
relays that typically use medium currents to switch high-power loads, such as large DC
motors or even wall-plug A/C appliances. The example at the end of this chapter will

Direct Actuation | 171

http://digi.com/support

have you turning on and off home electronics quite reliably with just an XBee and a set
of relays doing all the actuation work.

Naturally, not every application that wants to have real-world effects can forgo an
external microcontroller. Many devices will benefit from additional local decision-
making. For example, a lamp that can be turned on remotely may behave more intel-
ligently if it first checks a photocell to see whether the room is already flooded with
daylight. Many applications also require more digital outputs than the 10 that XBee
radios provide. A simple 12-segment bar graph is going to need a microcontroller to
provide the required outputs to drive its display. Don’t be afraid to use an external
microcontroller if it makes your project easier to prototype, or of course if it is required
to enable basic functionality.

Direct Actuation Example
Remote control impresses people quite a lot, even though it isn’t terribly difficult. This
project will allow you to control lamps and other small home appliances wirelessly
from your computer. It can serve as the basis for any number of interesting control
systems, from basic automated home lighting to that complex interactive robotic opera
that’s been kicking around in your head the past few years. Or you could create Pong
on the side of a building (http://blinkenlights.net/blinkenlights). A wireless switch is a
wonderful thing.

This project has two remote nodes. It can be completed with just a single
remote node if you are on a tight budget.

Parts
• Two solderless breadboards (AF 64, DK 438-1045-ND, SFE PRT-09567)

• Hookup wire or jumper wire kit (AF 153, DK 923351-ND, SFE PRT-00124)

• Two 9-volt or 5-volt power supplies (9-volt batteries also work well for short-term
use) (AF 63 or 80 with 9 V battery, RS 273-355, SFE TOL-08269 or TOL-00298)

• Two 3.3 V voltage regulators (TO-220 package) (DK 497-1491-5-ND, SFE
COM-00526)

• Two DC power jacks (2.1 mm ID, 5.5 mm OD) (DK CP-024A-ND, RS 274-1577,
SFE PRT-00119)

• Assorted 5 mm LEDs (DK 160-1707-ND, RS 276-041, SFE COM-09590)

• Two 10K ohm resistors (DK P10KBACT-ND, SFE COM-08374)

• Two 10 μF electrolytic capacitors (DK P966-ND, RS 272-1025, SFE COM-00523)

• Two 1 μF electrolytic capacitors (DK P993-ND, RS 272-1434)

172 | Chapter 6: Sleeping, Then Changing the World

http://blinkenlights.net/blinkenlights

• Two 2N3904 transistors (DK 2N3904TFCT-ND, RS276-2016, SFE COM-00521)

• Two PowerSwitch Tails, 5-volt relay for A/C loads (http://powerswitchtail.com or
SFE COM-09842)

• One XBee radio (Series 2/ZB firmware) configured as a ZigBee Coordinator API
mode (Digi: XB24-Z7WIT-004, DK 602-1098-ND)

• Two XBee radios (Series 2/ZB firmware) configured as a ZigBee Router AT mode
(Digi: XB24-Z7WIT-004, DK 602-1098-ND)

• Two XBee breakout boards with male headers and 2 mm female headers installed
(AF 126 [add SFE PRT-00116], SFE BOB-08276, PRT-08272, and PRT-00116)

• XBee USB serial adapter (XBee Explorer, Digi Evaluation board, or similar) (AF
247, SFE WRL-08687)

• USB cable for XBee adapter (AF 260, SFE CAB-00598)

• Wire strippers (AF 147, DK PAL70057-ND, SFE TOL-08696)

• Small screwdriver (RS 64-069, SFE TOL-09146)

• A lamp or any other small A/C appliance that draws less than 10 resistive amps

Prepare Your Coordinator Radio
1. Follow the instructions under “Reading Current Firmware and Configura-

tion” on page 35 in Chapter 2 to configure one of your radios as a ZigBee Coordi-
nator API.

Your coordinator radio must use the API firmware for this project
to work because I/O data is only delivered in API mode. Be sure to
select the API version for your coordinator!

2. Use X-CTU to configure the coordinator with a PAN ID (between 0x0 and
0xFFFFFFFFFFFFFFFF) that you’ve selected. Write down this PAN ID so you can
program your router radios with the same one. Every radio in your network must
use the same PAN ID so that they can communicate with each other:

Pan ID:

3. The software libraries that we are using in Processing require that the base station
XBee be in API Mode 2 (API Operation with escaped characters). Use X-CTU to
set ATAP to 2, and Write the configuration to your radio.

4. Label the coordinator radio with a “C” so that later you’ll know which one it is.

Direct Actuation Example | 173

http://powerswitchtail.com

The XBee Java API Library communicates using escaped character
mode, as described in a note under “Libraries” on page 141. Be sure
that you set the coordinator’s API to mode 2; otherwise the project
will not work!

Prepare Your Router Radios
1. Follow the instructions under “Reading Current Firmware and Configura-

tion” on page 35 in Chapter 2 to configure each of your actuator node radios as a
ZigBee Router AT.

2. Your router radios will use the AT firmware so you can easily configure them using
a serial terminal. Be sure you select the AT version for your routers!

3. Each router radio can be labeled with an “R.”

Prepare the Actuator Boards

It’s not a bad idea to use ATRE to reset your router radios to factory
defaults if you are reusing them after another project. This way the radio
won’t have any weird legacy configurations lurking in its registers.

Configure Your Router XBees
We’ll use the CoolTerm terminal program and an XBee Explorer USB adapter again to
set up your radios. For each of your sensor node radios:

1. Select a router XBee you’ve labeled with an “R” and place it into the XBee Explorer.

2. Plug the XBee Explorer into your computer.

3. Run the CoolTerm program and press the Options button to configure it.

4. Select the appropriate serial port, and check the Local Echo box so you can see
your commands as you type them.

5. Click on the Connect button to connect to the serial port.

6. Type +++ to go into command mode. You should receive an OK reply from the
radio.

7. Select the same PAN ID you entered for your first radio above.

8. Type ATID followed by the PAN ID you selected and press Enter on the keyboard.
You should receive OK again as a reply.

9. Every ZigBee coordinator always has 0 as its 16-bit network address. Type
ATDH 0 and press Enter on the keyboard. You should receive an OK response.

174 | Chapter 6: Sleeping, Then Changing the World

10. Enter ATDL followed by the low part of your radio’s destination address, in this case
also a zero because that’s the fixed address for the coordinator. Type ATDL 0 and
press Enter. You should receive an OK response.

11. Enter ATJV1 to ensure that your router attempts to rejoin the coordinator on startup.

12. Enter ATD04 to set pin 0 as low digital output to begin with.

13. Save your new settings as the radio’s default by typing ATWR and pressing Enter.

It’s always good to recheck your configurations after you enter
them. For example, to recheck that you entered the destination
address correctly, from command mode, type ATDL and press Enter
to see the current setting.

Connect voltage regulator circuit and power jack to breadboard

1. Wire up a breadboard with a 3.3-volt voltage regulator (LD1117V33) as shown.
The regulator has three legs—typically, ground, output, and input—when viewed
from the front (where the writing is). Sometimes these legs are in a different order,
so find and check the data sheet if you’re not sure! Input is where a high voltage,
for example 5 or 9 volts, is applied to the regulator. Output is where you will get
the regulated 3.3 volts. Ground is the common ground for your entire circuit, in-
cluding input, output, and all the other components. Bring ground out to both
blue ground rails that run along the sides of your breadboard. Bring 3.3-volt output
power to both of the red power rails (refer back to Figure 5-4).

2. Solder a red wire (about 10 cm) to the short center pin of your power jack, and
solder a similar black wire to the longer outer pin (refer back to Figure 5-5). Don’t
allow the two connections to touch each other since that will create a short circuit
when you power up!

3. Attach the red wire from the power jack, using the breadboard to connect it to the
input pin of the voltage regulator. Attach the black ground wire to the ground pin
of the voltage regulator in the same way.

4. Hook up the output pin of the voltage regulator to one of the power rails of the
breadboard using a red wire. Hook up the ground pin to one of the ground rails
on the breadboard.

5. Use the two capacitors to “decouple” the power supply in the following way: attach
the short ground lead of the 10 μF capacitor (also marked with a stripe on the
capacitor’s ground side) to ground near the voltage regulator. Attach the other
positive lead of the 10 μF capacitor to the voltage regulator’s input pin. This will
remove some lower-frequency noise coming from the wall power supply. Also at-
tach the short ground lead of the 1μF capacitor to ground, and the other positive
lead to the 3.3 V output pin. This will remove some higher-frequency noise coming
out of the voltage regulator. Decoupling will prevent noisy power from reaching
your radio and interfering with its signal.

Direct Actuation Example | 175

6. Hook up power and ground across the breadboard so that the rails on both sides
are live.

It’s a really good idea to check the voltage levels using a multimeter
after you first wire up the breadboard for power. Make sure that
your power rails have 3.3 volts on both sides where you expect it.
You don’t want to send 9 volts to your radio and cook it!

Router XBee connection to power

1. With a router XBee mounted on its breakout board, position the breakout board
in the center of your other breadboard so that the two rows of male header pins
are inserted on opposite sides of the center trough.

2. Use red hookup wire to connect pin 1 (VCC) of the XBee to 3.3-volt regulated
power.

3. Use black hookup wire to connect pin 10 (GND) of the XBee to ground.

Transistor and relay output

This project uses the PowerSwitch Tail A/C relay (see Figure 6-3). This relay is usually
activated by at least 5 V of direct current. The XBee can’t provide enough voltage or
amperage by itself to drive that relay, so we use an NPN transistor as an electronic
switch to send 5 or 9 volts directly to the relay. Think of it as a switch that throws
another switch. You can get the data sheet for the 2N3904 transistor at http://www
.fairchildsemi.com/ds/2N%2F2N3904.pdf, and the schematic for the PowerSwitch Tail
at http://powerswitchtail.com/Documents/PST%20Instructions%20v1.03.pdf.

Figure 6-3. PowerSwitch Tail 5 V relay for A/C loads

176 | Chapter 6: Sleeping, Then Changing the World

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.fairchildsemi.com/ds/2N%2F2N3904.pdf
http://www.fairchildsemi.com/ds/2N%2F2N3904.pdf
http://powerswitchtail.com/Documents/PST%20Instructions%20v1.03.pdf

1. The 2N3904 transistor has three leads. When the sensor’s flat side is facing you,
the leads from left to right are emitter, base, and collector. Insert the 2N3904 so
that each lead is in its own row on the breadboard.

2. Use a black wire to connect the leftmost emitter lead to one of the ground rails.

3. Insert the 10K ohm resistor so that it is connected to XBee digital output 0 (physical
pin 20) on one end and to the center base pin of the 2N3904 on the other. You can
use jumper wires to make the connection if that’s more convenient in your bread-
board layout.

4. Connect a black wire from the rightmost collector pin of the 2N3904 to the negative
screw terminal on the PowerSwitch Tail. It should be marked with a – (minus sign).
Use a small screwdriver to tighten the screw terminal so that the black wire is
securely attached.

5. Connect a red wire from the input voltage coming from your DC power jack (the
same pin that feeds the input of your voltage regulator with 5 to 9 volts) to the
positive screw terminal on the PowerSwitch Tail. That screw terminal should be
marked with a +. Use a small screwdriver to tighten the screw so that the red wire
is securely attached.

Second actuator board

Create the second actuator board in the same way as the first. You can make as many
actuator systems as you like. The software will work with as few as one or as many as
five without any adjustment to the software. Figure 6-4 shows the breadboard layout
for the simple actuator node, and Figure 6-5 shows the schematic.

PowerSwitch Tail A/C relay

Plug one end of the PowerSwitch Tail into an A/C wall outlet. The other end can have
a lamp or any similar appliance that draws less than 10 amps at 120 V plugged into it.
See the data sheet for additional information (http://powerswitchtail.com/Documents/
PST%20Instructions%20v1.03.pdf). You’ll be able to turn this device on and off wire-
lessly, right from your computer using the on-screen switches displayed by the Pro-
cessing program.

Prepare the Base Station
Your base station radio is simply an XBee serial adapter connected to your computer.

Connect to your computer

1. Select the coordinator XBee you’ve labeled with a “C” and place it into the XBee
Explorer.

2. Plug the XBee Explorer into your computer.

Direct Actuation Example | 177

http://powerswitchtail.com/Documents/PST%20Instructions%20v1.03.pdf
http://powerswitchtail.com/Documents/PST%20Instructions%20v1.03.pdf

Program the actuator network base station

The simple actuator network base station uses the Processing program that follows.
You can download a ZIP file of all the libraries and resources from this book’s website.
You can also find the XBee API library at http://code.google.com/p/xbee-api/ and Pro-
cessing at http://processing.org/download for Linux, Macintosh, or Windows.

Inside the Processing sketch folder for the Simple Actuator Network program are two
subdirectories called code and data (see Figure 6-6). The code folder contains the
log4j.jar and xbee-api-0.5.5.jar library files. These contain all the code for communi-
cation with the XBee in API mode. The data folder holds the log4j.properties file, re-
quired by log4j.jar. It also has a font file for a sans serif 10-point font used for screen
display and two .jpg images for the on and off switch positions.

If you download the file from this book’s website, simply unzip it and launch the
Simple_Actuator_Network.pde file using Processing.

Be sure to replace the COM port listed in this code with your actual
COM port. Port names are listed in the console in Processing, as your
program starts up.

Figure 6-4. Simple actuator node breadboard layout

178 | Chapter 6: Sleeping, Then Changing the World

http://code.google.com/p/xbee-api/
http://processing.org/download

Figure 6-5. Simple actuator node schematic

Figure 6-6. Directory structure for the Processing sketch program Simple Actuator Network, including
all required libraries, config files, a font file, two image files, and the Processing “.pde” sketch itself

Direct Actuation Example | 179

Once you have loaded the files and directories onto your computer and opened the
Simple_Actuator_Network.pde file in Processing, press the Run button (labeled with a
triangle) to launch the display code. It will open in a new window and show a switch
for each actuator node detected, as shown in Figure 6-7.

Figure 6-7. Simple Actuator Network switch display screen in Processing

Simple Actuator Node Code in Processing
Here’s the source code for the Processing sketch. The comment shown in bold about
the serial port highlights an essential change. Other commented instructions are only
important if you didn’t download the source from the website listed in the Preface
(however, you’ll still need to download this source code to obtain the on.jpg and
off.jpg images used in this example):

/*
 * Draws a set of switches for managing XBee Actuators
 * by Rob Faludi http://faludi.com
 */

// used for communication via xbee api
import processing.serial.*;

// xbee api libraries available at http://code.google.com/p/xbee-api/
// Download the zip file, extract it, and copy the xbee-api jar file
// and the log4j.jar file (located in the lib folder) inside a "code"
// folder under this Processing sketch's folder (save this sketch, then
// click the Sketch menu and choose Show Sketch Folder).
import com.rapplogic.xbee.api.XBee;
import com.rapplogic.xbee.api.XBeeAddress64;
import com.rapplogic.xbee.api.XBeeException;
import com.rapplogic.xbee.api.XBeeTimeoutException;
import com.rapplogic.xbee.api.zigbee.ZNetRemoteAtRequest;
import com.rapplogic.xbee.api.zigbee.ZNetRemoteAtResponse;

import com.rapplogic.xbee.api.ApiId;
import com.rapplogic.xbee.api.AtCommand;
import com.rapplogic.xbee.api.AtCommandResponse;
import com.rapplogic.xbee.api.XBeeResponse;

180 | Chapter 6: Sleeping, Then Changing the World

import com.rapplogic.xbee.api.zigbee.NodeDiscover;

String version = "1.02";

// *** REPLACE WITH THE SERIAL PORT (COM PORT) FOR YOUR LOCAL XBEE ***
String mySerialPort = "/dev/tty.usbserial-A1000iMG";

// create and initialize a new xbee object
XBee xbee = new XBee();

int error=0;

// make an array list of thermometer objects for display
ArrayList switches = new ArrayList();
ArrayList nodes = new ArrayList();

// create a font for display
PFont font;
float lastNodeDiscovery;

void setup() {

 size(800, 230); // screen size
 smooth(); // anti-aliasing for graphic display

 // You'll need to generate a font before you can run this sketch.
 // Click the Tools menu and choose Create Font. Click Sans Serif,
 // choose a size of 10, and click OK.
 font = loadFont("SansSerif-10.vlw");
 textFont(font);

 // The log4j.properties file is required by the xbee api library, and
 // needs to be in your data folder. You can find this file in the xbee
 // api library you downloaded earlier
 PropertyConfigurator.configure(dataPath("")+"log4j.properties");

 // Print a list in case the selected serial port doesn't work out
 println("Available serial ports:");
 println(Serial.list());
 try {
 // opens your serial port defined above, at 9600 baud
 xbee.open(mySerialPort, 9600);
 }
 catch (XBeeException e) {
 println("");
 println(" ** Error opening XBee port: " + e + " **");
 println("");
 println("Is your XBee plugged in to your computer?");
 println("Did you set your COM port in the code near line 30?");
 error=1;
 }

 // run a node discovery to find all the radios currently on the network
 // (this assumes that all the network radios are Actuator nodes)

Direct Actuation Example | 181

 nodeDiscovery();
 lastNodeDiscovery = millis(); // note the time when the discovery was made
}

// draw loop executes continuously
void draw() {

 background(255); // draw a white background

 // report any serial port problems in the main window
 if (error == 1) {
 fill(0);
 text("** Error opening XBee port: **\n"+
 "Is your XBee plugged in to your computer?\n" +
 "Did you set your COM port in the code near line 27?",
 width/3, height/2);
 }

 // create a switch object for each node that doesn't have one yet
 // ...and get current state of every new node
 for (int j=0; j < nodes.size(); j++) {
 XBeeAddress64 address64 = ((NodeDiscover) nodes.get(j)).getNodeAddress64();
 int i = 0;
 boolean foundIt = false;
 for (i=0; i < switches.size(); i++) {
 if (((Switch) switches.get(i)).addr64.equals(address64)) {
 foundIt = true;
 break;
 }
 }

 // if the switch does not yet exist, create a new one
 // stop if there's more than can fit on the screen
 if (foundIt == false && switches.size() < 5) {
 switches.add(new Switch(address64, (switches.size())));
 ((Switch) switches.get(i)).getState();
 }
 }

 // draw the switches on the screen
 for (int i =0; i<switches.size(); i++) {
 ((Switch) switches.get(i)).render();
 }

 // periodic node rediscovery
 if (millis() - lastNodeDiscovery > 15 * 60 * 1000) { // every 15 minutes
 nodeDiscovery();
 lastNodeDiscovery = millis();
 }
} // end of draw loop

182 | Chapter 6: Sleeping, Then Changing the World

// function to look up all the nodes on the network
// and add them to an ArrayList
void nodeDiscovery() {

 long nodeDiscoveryTimeout = 6000;
 nodes.clear(); // reset node list, removing all old records
 switches.clear(); // reset switch list, removing all old records
 print ("cleared node list, looking up nodes...");

 try {
 println("sending node discover command");

 // send the node discover command:
 xbee.sendAsynchronous(new AtCommand("ND"));
 long startTime = millis();

 // spend some time waiting for replies:
 while (millis() - startTime < nodeDiscoveryTimeout) {
 try {
 // look for incoming responses:
 XBeeResponse response = (XBeeResponse) xbee.getResponse(1000);

 // check to make sure it's a response to an AT command
 if (response.getApiId() == ApiId.AT_RESPONSE) {
 // parse the node information from the response:
 NodeDiscover node = NodeDiscover.parse((AtCommandResponse)response);
 nodes.add(node); // add the node to an existing Array List
 println("node discover response is: " + node);
 }
 else {
 // println("ignoring unexpected response: " + response);
 }
 }
 catch (XBeeTimeoutException e) {
 print("."); // prints dots while radio lookups are in progress
 }
 }
 }
 // if the ND response times out, note the error
 catch (XBeeTimeoutException e) {
 println("request timed out. make sure your " +
 "remote XBee is configured and powered on");
 }
 // if some other error happens, print it to the status window
 catch (Exception e) {
 println("unexpected error" + e);
 }
 println("Node Discovery Complete");
 println("number of nodes: " + nodes.size());
}

Direct Actuation Example | 183

// this function runs once every time the mouse is pressed
void mousePressed() {
 // check every switch object on the screen to see
 // if the mouse press was within its borders
 // and toggle the state if it was (turn it on or off)
 for (int i=0; i < switches.size(); i++) {
 ((Switch) switches.get(i)).toggleState();
 }
}

// defines the switch objects and their behaviors
class Switch {

 int switchNumber, posX, posY;
 boolean state = false; // current switch state
 XBeeAddress64 addr64; // stores the raw address locally
 String address; // stores the formatted address locally
 PImage on, off; // stores the pictures of the on and off switches

 // initialize switch object:
 Switch(XBeeAddress64 _addr64, int _switchNumber) {
 on = loadImage("on.jpg");
 off = loadImage("off.jpg");
 addr64 = _addr64;
 switchNumber = _switchNumber;
 posX = switchNumber * (on.width+ 40) + 40;
 posY = 50;

 // parse the address int array into a formatted string
 String[] hexAddress = new String[addr64.getAddress().length];
 for (int i=0; i<addr64.getAddress().length;i++) {
 // format each address byte with leading zeros:
 hexAddress[i] = String.format("%02x", addr64.getAddress()[i]);
 }
 // join the array together with colons for readability:
 address = join(hexAddress, ":");

 println("Sender address: " + address);
 }

 void render() { // draw switch on screen
 noStroke(); // remove shape edges
 if(state) image(on, posX, posY); // if the switch is on, draw the on image
 else image(off, posX, posY); // otherwise, if the switch is off,
 // draw the off image
 // show text
 textAlign(CENTER);
 fill(0);
 textSize(10);
 // show actuator address
 text(address, posX+on.width/2, posY + on.height + 10);
 // show on/off state

184 | Chapter 6: Sleeping, Then Changing the World

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 String stateText = "OFF";
 fill (255,0,0);
 if (state) {
 stateText = "ON";
 fill(0,127,0);
 }
 text(stateText, posX + on.width/2, posY-8);
 }

 // checks the remote actuator node to see if it's on or off currently
 void getState() {
 try {
 println("node to query: " + addr64);

 // query actuator device (pin 20) D0 (Digital output high = 5, low = 4)
 // ask for the state of the D0 pin:
 ZNetRemoteAtRequest request= new ZNetRemoteAtRequest(addr64, "D0");

 // parse the response with a 10s timeout
 ZNetRemoteAtResponse response = (ZNetRemoteAtResponse)
 xbee.sendSynchronous(request, 10000);

 if (response.isOk()) {

 // get the state of the actuator from the response
 int[] responseArray = response.getValue();
 int responseInt = (int) (responseArray[0]);

 // if the response is good then store the on/off state:
 if(responseInt == 4|| responseInt == 5) {
 // state of pin is 4 for off and 5 for on:
 state = boolean(responseInt - 4);
 println("successfully got state " + state + " for pin 20 (D0)");
 }
 else {
 // if the current state is unsupported (like an analog input),
 // then print an error to the console
 println("unsupported setting " + responseInt + " on pin 20 (D0)");
 }
 }
 // if there's an error in the response, print that to the
 // console and throw an exception
 else {
 throw new RuntimeException("failed to get state for pin 20. " +
 " status is " + response.getStatus());
 }
 }
 // print an error if there's a timeout waiting for the response
 catch (XBeeTimeoutException e) {
 println("XBee request timed out. Check remote's configuration, " +
 " range and power");
 }
 // print an error message for any other errors that occur
 catch (Exception e) {
 println("unexpected error: " + e + " Error text: " + e.getMessage());

Direct Actuation Example | 185

 }
 }

 // this function is called to check for a mouse click
 // on the switch object, and toggle the switch accordingly.
 // it is called by the MousePressed() function so we already
 // know that the user just clicked the mouse somewhere
 void toggleState() {

 // check to see if the user clicked the mouse on this particular switch
 if(mouseX >=posX && mouseY >= posY &&
 mouseX <=posX+on.width && mouseY <= posY+on.height)
 {
 println("clicked on " + address);
 state = !state; // change the state of the switch if it was clicked

 try {
 // turn the actuator on or off (pin 20)
 // D0 (Digital output high = 5, low = 4)
 int[] command = {
 4
 }; // start with the off command
 if (state) command[0]=5; // change to the on command
 // if the current state is on
 else command[0]=4; // otherwise set the state to off

 ZNetRemoteAtRequest request =
 new ZNetRemoteAtRequest(addr64, "D0", command);
 ZNetRemoteAtResponse response =
 (ZNetRemoteAtResponse) xbee.sendSynchronous(request, 10000);

 // if everything worked, print a message to the console
 if (response.isOk()) {
 println("toggled pin 20 (D0) on node " + address);
 }
 // if there was a problem, throw an exception
 else {
 throw new RuntimeException(
 "failed to toggle pin 20. status is " + response.getStatus());
 }
 }
 // if the request timed out, print
 // that error to the console and
 // change the state back to what
 // it was originally
 catch (XBeeTimeoutException e) {
 println("XBee request timed out. Check remote's " +
 "configuaration, range and power");
 state = !state;
 }
 // if some other error occured, print that
 // to the console and change the state back
 // to what it was originally
 catch (Exception e) {
 println("unexpected error: " + e +

186 | Chapter 6: Sleeping, Then Changing the World

 " Error text: " + e.getMessage());
 state = !state;
 }
 }
 }
} // end of switch class

Summary
One minute you’re collecting meaningful data from a sensor network, and the next
you’re remotely activating your home appliances. It is not a stretch to consider yourself
a wireless networking expert at this point, easily traversing multiple nodes in a single
bound! Now you may be wondering how to make the next big leap. How do you push
your powers beyond the surly bonds of ZigBee to touch other networks, like the In-
ternet? The next chapter will unfurl the glory of gateways, opening up a pathway for
your wireless networks to talk to almost anything or anyone, in whatever protocol is
spoken in that realm. Take a moment to pat yourself on the back first. You deserve it.

Summary | 187

CHAPTER 7

Over the Borders

ZigBee is only one of the great flavors of networking. In this chapter we learn to make
gateways that cross borders to connect with neighboring networks, including a re-
markably easy path to the Internet. You’ll see full examples, showing how to allow
anything to talk to everything everywhere; plus there’s something special for you starry-
eyed celebrity fans. Let this chapter be your passport.

Gateways
The great thing about standards is there are so many of them. Bluetooth, IPv6, UDP,
ZigBee, SMS, VoIP, WiFi, Ethernet, 4G, SMTP, and TCP/IP all define different net-
working protocols and layers within those protocols. There’s no such thing as a perfect
network; that’s why there are so many different ways to get networking done. Each
protocol is designed to solve a specific type of problem. Most do a great job at their
task. For example, Bluetooth performs solidly when connecting up eight local devices
as a personal area network. At the same time, many of the engineering choices that
solve one kind of problem create barriers when the protocol is pushed into unfamiliar
territory. Bluetooth’s simple pairing and addressing schemes don’t readily scale to net-
works of hundreds or thousands of nodes, while other protocols may sacrifice such
simplicity for flexibility and scalability. Luckily, there’s no need to stick to a single
protocol. Each can do what it’s best at, and connections can be made so they all work
well together. Using the best network means using many networks. Gateways are the
glue that holds them all together.

A gateway is any device that provides connectivity between different networks. In some
cases, the two networks use the same protocol and are separated by a gateway for traffic
or security reasons. These won’t be our focus here. We’re mostly interested in gateways
that expand our capabilities by opening up a world beyond the local mesh. These gate-
ways will allow the information we’ve made available with ZigBee to traverse a whole
web of interesting networks, accomplishing worthwhile and sometimes extraordinary
tasks.

189

XBee as Embedded Gateway
Any XBee radio that is using local serial communications is actually acting as a gateway
between two very important protocols. As you are well aware of by now, the XBees use
ZigBee to communicate wirelessly between radios. They simultaneously use TTL
(sometimes called board-level or logic-level) serial to communicate over metal wiring
to other local devices, such as microcontrollers and desktop computers. Everything
that happens on the RX and TX pins of the XBee is using TTL serial. Everything that
happens over our XBee’s radio antenna is ZigBee. It’s the XBee’s internal circuitry and
software that serves as a translator between these two protocols. This is how your
computer or Arduino, which only speak to the XBee using serial over wires, gain the
capability to talk using radio waves to remote devices. The XBee acts as their gateway
and extends them onto ZigBee networks. That’s pretty important, and it’s only the tip
of the iceberg when it comes to the power of gateways.

Other Embedded Gateways
Many other gateway modules are available to connect from the TTL serial communi-
cations commonly found on circuit boards to a myriad of other useful protocols. In
many cases, simply wiring TX/RX on the XBee directly to RX/TX on the other embed-
ded module effectively creates a bare-bones gateway between the two protocols, as long
as the other device has been properly configured for transparent retransmissions. Here
are just a few of the embedded possibilities you could explore:

Bluetooth
The Bluetooth protocol is commonly used for small, short-range mobile personal
area networks. Roving Networks makes a variety of embedded modules, including
the RN-41, available on a breakout board for prototyping from SparkFun (SFE
WRL-00582). This module could be used to link your ZigBee network to Bluetooth
Serial Port Profile to communicate directly with certain mobile phones. (See http:
//www.sparkfun.com/.)

CAN (or CAN-bus)
Controller-Area Networking is a standard form of communication used widely in
the automotive industry for moving information between the various devices and
subsystems inside cars and trucks. Every time you take a drive, your brakes, engine,
airbags, and transmission are probably communicating with CAN. The Microchip
MCP2515 CAN controller and MCP2551 CAN transceiver are available on an Ar-
duino shield that you could use to stream data to and from your car. (See http://
www.skpang.co.uk/content/view/32/42/.)

Ethernet
This is a big category. Ethernet is the primary wired interface to the Internet, and
embedded modules are just one of many ways to bridge our communications
worldwide. One useful embedded gateway is the Lantronix XPort, which can
transparently connect TTL serial signals (RX/TX) to Ethernet and TCP/IP,

190 | Chapter 7: Over the Borders

http://www.sparkfun.com/
http://www.sparkfun.com/
http://www.skpang.co.uk/content/view/32/42/
http://www.skpang.co.uk/content/view/32/42/

thereby forging a circuit-board-level connection to the Internet (module: http://
www.lantronix.com/device-networking/embedded-device-servers/xport.html,
breakout board: SFE BOB-08845). Later in this chapter we will examine some
external Internet gateways, including a powerful system that makes device com-
munications almost as simple as using a web browser.

GPRS, 3G, 4G cellular modems
Getting data out into the world isn’t all about wires. As long as your project is not
too far away from the places frequented by humans, you are probably within range
of the mobile wireless network. The Telit GE865, for example, is an embedded
module that can bridge from your XBee’s TX/RX pins to GPRS mobile data net-
works and all the way out to the Internet. It can also provide additional onboard
logic using its built-in Python interpreter. Since the GE865 doesn’t have pins that
connect to a breadboard, you’ll almost certainly want to start with an evaluation
system (SFE CEL-09342) that makes the module ready for prototyping.

HomePlug
The HomePlug Alliance specifies a protocol for creating networks over residential
electrical wiring. Though just one of many powerline networking protocols, it has
gained traction recently as a popular profile for managing audio/visual systems.
There is a HomePlug modem board available (SFE SEN-09080) to gateway TTL
serial to HomePlug, and it even includes a pin-compatible XBee header so you can
plug a radio right into it! Also see X-10 below for an older method of accomplishing
communications over power lines.

RF without protocols
Certain very inexpensive transmitter modules (SFE WRL-08946) can be paired
with receiver modules (SFE WRL-08950) for a low-cost one-way link. In general
the reliability and flexibility of these connections is poor enough that they can’t be
recommended. However, their limitations often create a fine demonstration of how
much ZigBee’s addressing, network infrastructure, and error handling are helping
you out. Proceed with caution, but don’t be afraid to try them.

RFID
Radio Frequency ID tags (RFID) are small microchips that typically use radio en-
ergy as a passive power source for transmitting a serial number. RFID readers (for
example, SFE SEN-08419) can detect these transmissions and repeat them as a
TTL serial TX that could be retransmitted through your XBee radio. RFID is a lot
like a bar code and sometimes disappoints those who try to extend it beyond its
limits.

USB
Computers commonly communicate with other devices using the Universal Serial
Bus protocol. Several different USB-to-TTL serial gateways have already been de-
scribed in Chapter 1 since they are required for serial configuration of the XBee.
Many of these use a very popular microchip from FTDI so computer drivers are
readily available (http://www.ftdichip.com/FTDrivers.htm). This FTDI chip is

Gateways | 191

http://www.lantronix.com/device-networking/embedded-device-servers/xport.html
http://www.lantronix.com/device-networking/embedded-device-servers/xport.html
http://www.ftdichip.com/FTDrivers.htm

available on breakout boards (SFE BOB-00718), making it easy to create generic
connections between board-level TTL serial and USB host devices like computers.

WiFi
Another very popular on-ramp to the Internet is WiFi, the wireless networking
protocol generally used by laptop computers and many smartphones. There are so
many modules to keep track of in this space that an entire book could be written
about them. Two worth knowing about are the Lantronix MatchPort because its
configuration matches the Ethernet XPort, and the WiFly module because it’s
available on a breakout board (SFE WRL-09333) for prototyping. Remember that
WiFi connections need to be configured with a different system name and security
key each time they attach to a new network, so unless your device sits in one place,
or incorporates a screen and keyboard, WiFi might not work for your project.
Think this through before getting started.

X-10
One of the oldest home automation protocols is X-10. Originally devised as a
powerline networking protocol, it has since been extended to wireless as well.
Newer protocols like HomePlug may someday render X-10 obsolete but today it
remains in wide use so you might have cause to use a gateway module like the
TW523 to control existing home automation systems.

Z-Wave
The Z-Wave Alliance defined this proprietary wireless communications protocol,
which has gained some traction in the home automation market. Like ZigBee, it is
designed for low-power, low-bandwidth data interactions. It operates in a different
frequency spectrum (900 MHz versus ZigBee’s 2.4 GHz) and, unlike ZigBee, the
protocol itself is only available under a nondisclosure agreement. Development
kits (DK 703-1056-ND) are probably the best way to start working with Z-Wave,
though they are far more expensive than the modules themselves (DK 703-1023-
ND).

Internet Gateways
Of all the places to take your data, nothing is quite as compelling as passing it through
a gateway to the Internet. That’s because the Internet reaches almost everywhere and
has the capability to touch almost anything. Some people think of the Internet as mostly
web pages, but that’s only one of a dazzling array of destinations for the data streaming
from your device or sensor network. Really the Internet is a vast collection of pathways
and services that has already grown so complex that it is sometimes described as beyond
the grasp of human comprehension. Luckily you don’t need to understand the whole
thing to move information from place to place in a reasonably efficient manner. There
are a lot of reasons to do it:

192 | Chapter 7: Over the Borders

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://lantronix.com
http://www.x10.com/products/x10_tw523.htm

Data storage
Any sensor network that is devoted to amassing data will need to store that data
someplace. It may be fine to bring the data onto a local computer and work with
it there, but in many cases that isn’t going to be enough. If there’s a lot of data it
may be more than you can store locally. Also there may be other people who are
interested in access to your data, such as your project partners, colleagues, clients,
customers, or even the general public. The great thing about the Internet is that
storage can really be anywhere. It’s quite common to stash data in places whose
physical location is totally unknown to the user. Amazon’s S3 service, for example,
synchronizes your data onto a suite of servers located around the world. Customers
of the service do not generally know the actual locations and physical storage media
that hold their data. They usually don’t care because access is far more important
than the mechanics involved. Whether your data resides on a private MySQL da-
tabase with a hosting provider such as Dreamhost or HostMonster, or in a shared
compendium of public data like Pachube’s system, the advantages of outsourcing
your data storage will be the same. Storage can be endlessly expanded and access
can occur from any place at any time.

Data presentation
Everyone can see the Internet, so it’s a good place to show your data. You may
decide to roll your own display using something like Processing, or hook up with
any of the online data visualization services like Google Charts or Microsoft’s Pivot
Viewer. Data sharing sites like Pachube (see Chapter 8) often embed other sites’
visualization services, so you may be using these big companies’ systems indirectly.
Once your data is on the Internet, there’s no end to the ways it can be displayed
to tell its story.

Remote actuation
Objects are on the Internet, and some of them move. Robots, door locks, plant
watering systems, lights, bells, whistles, and interactive kinetic sculptures all can
take data from remote sensors to perform actions based upon real-world informa-
tion. Remember that a sensor can be as simple as a switch. Perhaps you want to
make a lamp in London react to the current amount of daylight in Delhi. Or maybe
you want the tide in Tiburon to create motion in Melbourne. Unless you’re going
to lay the cable yourself, the Internet is the best way to join your widely separated
inputs and outputs together to create something amazing.

Everything
There’s no reason to do just one of these things. You will have the most fun doing
them all at the same time, uploading your data to a system that creates remote
actuations (perhaps generating sensor data of its own at the other end), and creating
an interface to control the systems and present their resulting tale. The Internet is
big and it is new, so it presents endless opportunities to do things that have never
been done before. Make your mark.

Gateways | 193

http://dreamhost.com
http://hostmonster.com
http://pachube.com
http://code.google.com/apis/charttools/

Internet Media
The why of Internet gateways should be clear and compelling. Let’s take a look at the
how. In most cases you’ll be choosing among three options for your physical network
connection: wired Ethernet, local WiFi connections, or mobile data connections that
use the cell phone network. Of course there are other possibilities, like old-school
telephone modems or amateur packet radio that might apply to special situations, but
those won’t be discussed here:

Ethernet
Ethernet uses physical wiring, which means your gateway will be tethered in place.
Ethernet connections are fast and very reliable because their wires are not exposed
to much noise disruption. Configuration is often not necessary at all. Ethernet is
also very cheap to physically implement so generally this will be the lowest-cost
option.

WiFi
WiFi provides a high-bandwidth wireless connection that’s locally available in
many homes, schools, businesses, and even some public parks. Configuration is
almost always required to select the network you want to attach to and to issue the
password or keys that secure each system. WiFi connections (wireless using IEEE
802.11x standards) typically communicate using unlicensed parts of the radio
spectrum, which means they need to be tolerant of noise, and their physical com-
ponents are more expensive. Generally, using a WiFi gateway will cost more and
be somewhat less reliable than using Ethernet; however, in certain locations it may
be the only practical choice.

Mobile data
This type of connection goes by various names, including carrier wireless, cellular
data, mobile Internet, GPRS, 2G/3G/4G, and several other vague or inscrutable
monikers. Data plans are offered by large carriers such as Orange, AT&T, Verizon,
or NTT. Mobile data is available at most locations that have mobile phone cover-
age. The components are similar in cost to WiFi, but the connection itself is gen-
erally far more expensive. An account with a carrier is required and needs to be
provisioned in advance. Data charges can quickly accumulate into an exorbitant
bill. Even so, mobile data reaches to places where Ethernet and WiFi are not a
possibility. Because configuration is not location-specific, this is the best choice for
any gateway that will be moving from place to place. If you want to wire up a freight
truck with sensors, mobile data services will almost certainly be part of your
solution.

Computers Versus Dedicated Devices
Most Internet gateways are either implemented on a personal computer or manufac-
tured as dedicated devices. It is certainly possible to build your own dedicated gateway

194 | Chapter 7: Over the Borders

from scratch, though in most cases it will cost more and do less than one of the com-
mercially available ones.

Computers are a good choice for gateways in quick prototype systems. Most likely you
already have a computer, and that computer almost certainly comes with all the equip-
ment needed to connect to both Ethernet and WiFi for access to the Internet. It’s a safe
bet that it also has a serial port (probably USB) for plugging in your XBee radio. In a
certain sense using your computer is free, assuming you already own one. It also con-
tains an extremely powerful processor that will have no problem performing complex
manipulations to the information passing through it. So for a quick prototype, you can
write some code in any number of languages (including Processing) to translate your
data from ZigBee to TCP/IP.

Many people find that personal computers don’t work as well for projects installed over
the long term. For one thing, computers run a very complex operating system that needs
regular upgrades to keep it stable and secure. In the course of running other programs,
you may slow down or crash the system, disabling your gateway at the same time. Your
computer also uses quite a bit of electricity, takes up a fair amount of physical space,
and in the case of a personal laptop, periodically gets moved away from the location
where the gateway operates. This is where a dedicated device can do a better job.

Dedicated gateways are simple pleasures. They typically come in the form of a nonde-
script rectangular box. For ZigBee gateways there’s a radio to talk to your wireless
sensor network, often a small processor chip, and another module to talk to whatever
you’re gatewaying to, typically either an Ethernet module, WiFi radio, or mobile data
system. These types of gateway devices rarely have any kind of screen or keyboard.
Configuration is usually done through a web browser or another type of remote con-
nection. They also tend to be small, use far less power than a full-size computer, and
run a slimmed-down operating system that has only a few essential features. Finally,
they tend to cost less than a full computer and run stably without rebooting, potentially
for years at a time. Some of them are even designed to use renewable energy sources,
operate outdoors, or survive in harsh environments with extended temperature ranges.
There are many flavors and brands of gateway. Since we’re already working with XBee
radios, we’ll examine the ConnectPort line of devices made by Digi International. These
are specifically designed to work seamlessly with all the features that the XBee has to
offer. Other ZigBee gateways are available from Pervasa, RFM, Crestron, Exegin, AMX,
Alektrona, and many others.

ConnectPorts
Digi’s ConnectPort line of gateways provides many advantages: they use the XBee ra-
dios you’re already familiar with, and they have an easy-to-use web interface and an
internal Python programming language interpreter. Having Python inside means you
can write and run programs to manipulate your incoming and outgoing data. You can
provide your sensor readings in just the way a remote system wants them, interpret

ConnectPorts | 195

remote commands to turn them into meaningful actions, or do a little of both at the
same time so that your sensors and actuators can work locally together, only contacting
the outside world when it’s essential to do so. The internal Python interpreter comes
preloaded with XBee libraries that make it very easy to script commands, communi-
cations, and transformations right inside the gateway.

Selecting a ConnectPort
All of the ConnectPort models described below (and shown in Figure 7-1) support
connections between ZigBee and another Internet medium. Many are optionally of-
fered with 802.15.4 Series 1 radios (not compatible with ZigBee), so be sure you choose
the ZigBee version when you purchase your ConnectPort! Some support serial/USB
connections to control devices that are plugged into the gateway itself. Here we’ll focus
on the Internet connectivity because that’s what’s important for our networks:

ConnectPort X8
This gateway supports ZigBee, Ethernet, WiFi, two different mobile data networks,
two USB ports, one standard serial port, and a local sensor port. This Cadillac of
the ConnectPort line costs from $800 to $1,000 depending upon configuration.

ConnectPort X5
Designed for Vehicle Area Networks (winkingly abbreviated VAN), this gateway
comes with ZigBee, satellite radio, mobile data, WiFi, and a GPS feed. It is a rugged
unit designed with fleet trucks in mind. The X5 runs about $1,000.

ConnectPort X4
The X4 router is available with Ethernet or WiFi and a slot for a mobile data radio
along with one USB port and one plain serial port. A ConnectPort X4 runs from
$450–700 depending upon configuration.

ConnectPort X3
This is a brand-new and fairly inexpensive option for mobile data connections from
ZigBee. The X3 offers a GSM/GPRS radio that with the addition of a data plan will
let you connect from just about anywhere. The base cost is about $250.

ConnectPort X2
Here’s the simplest option. The base X2 comes with a ZigBee radio and one Ether-
net port. (There’s also a WiFi version that costs more). The X2 isn’t brimming with
memory but you can get a surprising amount done inside its 8 MB of RAM. The
X2 was originally manufactured with a metal enclosure and an external antenna
that retailed for about $200. Recently a slimmed-down design has been released at
$99, with a plastic case that allows for an internal antenna (X2-Z11-EC-A). That’s
the one to get started with.

196 | Chapter 7: Over the Borders

Setting Up a ConnectPort
It is extremely easy to set up a ConnectPort. This section will demonstrate setup and
configuration for the low-cost ConnectPort X2 ZB Ethernet (Digi X2-Z11-EC-A). Set-
ting up the X4 or X8 is very similar:

1. Begin by plugging the ConnectPort into a wall outlet using its supplied power
adapter.

2. Next, use a standard Ethernet cable to attach the ConnectPort to any available
Ethernet jack on your Internet router. Your home network is probably already
configured to assign IP addresses using DHCP, in which case simply powering it
on and plugging it into the Ethernet port will allow it to configure its own network
settings. If not, you’ll have an opportunity to do manual configuration in the next
step.

3. Connect a computer running Windows to the same network as the ConnectPort.
In many cases, using the local WiFi connection will be fine, but if you aren’t sure,
plugging into the same Ethernet switch as your ConnectPort will ensure that you’re
using the same local network. Business and educational networks often have ad-
ditional restrictions that your system administrator will need to help you with.

4. Some ConnectPorts come with a software CD that includes a Windows program
called Device_Discovery.exe. Insert the CD into your Windows computer and
launch Gateway Software→ConnectPort X→Configuration→Device Discovery.
This will open a window that will show you all the devices on your local network.
(If you don’t have the CD, the program can also be downloaded from Digi’s website
at http://www.digi.com/support/getasset.jsp?fn=40002265&tp=4.)

Troubleshooting

If you don’t see any devices listed in the Device Discovery program, check to make sure
that the ConnectPort is showing a power light on the front, and that it is properly
connected to Ethernet. A yellow link light on the Ethernet jack will illuminate as long
as there is some kind of Ethernet connection active. Also make sure your computer is

Figure 7-1. The ConnectPort line of gateways, including, from left to right: the X8 with a wide offering
of interfaces, the inexpensive X2 for Ethernet, and the midrange X4, which can also come configured
for WiFi or mobile data

ConnectPorts | 197

http://www.digi.com/support/getasset.jsp?fn=40002265&tp=4

on the same network. Some home Internet setups are multiple boxes that operate on
different TCP/IP networks from each other. If possible, try plugging your computer
into the same set of Ethernet jacks as your ConnectPort, turn off WiFi, and see if clicking
on “Refresh view” convinces the ConnectPort to pop up in your device list, as shown
in Figure 7-2.

Figure 7-2. Using Device_Discovery.exe to locate the ConnectPort on your local TCP/IP network

If your network does not assign IP addresses automatically (via DHCP),
click on the listed device to select it, then click “Configure network set-
tings” under Device Tasks to enter the IP address information for your
network.

Configuring a ConnectPort
Once you can see the ConnectPort listed in the Device Discovery window, make a note
of its IP address. In most cases double-clicking on the device in the list will open a web
browser; however, if it doesn’t, you can also simply type its IP address into your
browser’s URL field. For example, if the IP address listed is 10.0.1.9, putting http://
10.0.1.9 into your web browser should open up a configuration screen similar to the
one shown in Figure 7-3.

198 | Chapter 7: Over the Borders

If you are familiar with the Telnet program, you can use it to contact
the ConnectPort by connecting to its IP address on the default port 23
for a command-line interface. Type a ? at the prompt to get a list of valid
commands. Then type a ? after any command name to examine available
options.

The ConnectPort comes preconfigured to obtain its IP address automatically via DHCP.
If you’d prefer that it had a fixed address, or if you need to change any other TCP/IP
network settings, they can be accessed by clicking on Network, displaying the screen
shown in Figure 7-4.

Inside the ConnectPort is a ZigBee radio that is preconfigured to be a network coordi-
nator. To view or change its settings, first click on XBee Network to see a list like the
one shown in Figure 7-5. This list will include the internal radio, as well as any other
devices that have joined the ZigBee network.

Figure 7-3. ConnectPort Home screen accessed using a web browser

ConnectPorts | 199

Figure 7-4. Network configuration for the ConnectPort’s TCP/IP connection to the Internet

Figure 7-5. XBee Network lists the radio inside the ConnectPort, as well as any other radios that have
joined the network

200 | Chapter 7: Over the Borders

Each radio listed in the XBee Network screen can be configured through your browser.
This includes the local radio inside the ConnectPort. But wait, there’s more. It also
includes any other remote radio that has joined the ConnectPort’s network. You can
now change the configurations of all the radios on your network from the comfort of
your laptop computer by clicking on that XBee in the list to see its detail screen, as
shown in Figure 7-6. These can be changed right from your browser! You may notice
that these figures show a node ID that labels the radio. See the sidebar “Naming Ra-
dios” on page 202 for information about how to set and discover these node
identifiers.

Be careful changing the settings on remote radios. If you make a change
that accidentally causes one to leave the network, you may then need
to physically access that radio to fix the situation, which might be dif-
ficult if your remote radio is miles away, or on the ceiling, or strapped
to an angry goat. Think before you click!

Figure 7-6. XBee Configuration details show both basic and advanced settings for every radio joined
to your ConnectPort’s network

ConnectPorts | 201

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

We will look at several other configuration screens in detail when we set up the XBee
Internet Gateway later in this chapter. In the meantime, you might want to browse
around and familiarize yourself with the various settings. The Help link at the top right
of each screen will link you to a basic explanation of the functions. Of course, you
should be somewhat cautious about changing any settings you don’t understand, but
remember that measured bravery is the prime gateway to technical expertise.

If you do something that colossally messes up the configuration, to the
point where you can no longer access the ConnectPort, you can always
return the device to its factory defaults by powering it up while holding
down the recessed reset switch with a paper clip. Continue pressing the
reset switch for 20–40 seconds. The Status light will begin blinking in a
1-5-1 pattern, indicating that the ConnectPort should now be back to
its factory configuration.

Naming Radios
Each ZigBee radio has at least two addresses: its permanent and unique 64-bit address
and its coordinator-assigned 16-bit address. Human beings have a much easier time
remembering names than numbers, especially long numbers. In a welcome nod to the
human race, XBee radios offer another, more humane option. Each radio can be con-
figured with a node identifier text string that names it over the network. The ATNI
command will set this Node Identifier with any phrase up to 20 characters long. For
example, to set the name of your radio to Mary’s Temperature Sensor, the command
in AT mode would be ATNI Mary's Temperature Sensor (the space after ATNI is optional
but makes for easier reading). Typing ATNI by itself and hitting Enter will cause the local
radio to reply with its current node identifier. In most cases, though, you will want to
use this human-friendly name to find a remote radio that’s out on your network.

The Node Discovery command ATND will start this process. In AT mode (transparent/
command mode), the Node Discovery command will be broadcast to the entire net-
work and each radio that can hear it will respond with a block of information about
itself, including its node identifier if that’s been set. That format for each block you
receive will be:

16-bit MY address
First half (SH) of 64-bit address
Second half (SL) of 64-bit address
Node Identifier text string (this line blank if NI has not been set)
Parent Network address (you can ignore this information)
Device Type (0=Coordinator, 1=Router, 2=End Device)
Status (can be ignored)
Profile ID (can be ignored)
Manufacturer ID (can be ignored)

In API mode, issuing this command (inside an AT command frame, of course) will
result in a separate response frame being returned for each radio. The command data
will contain response blocks similar to the one above.

202 | Chapter 7: Over the Borders

It’s also possible to configure any radio’s destination address by using the ATDN com-
mand to tell it the destination’s node identifier you’d like it to speak to. In AT command
mode, ATDN Mary's Temperature Sensor will attempt to discover that node’s numeric
address over the air, and if it’s found will automatically set the DL and DH registers
to the appropriate 64-bit address. When the ATDN command is successful, it returns
OK to let you know, then exits command mode immediately. If the ATDN command fails
to find the radio you requested on the network, it will return ERROR and remain in
command mode. If you are using API firmware, issuing this command inside an AT
Command frame will result in a response frame that contains both the 16- and 64-bit
addresses of the remote radio, along with a success or error indicator in the Command
Status byte. The Destination Node command allows you to implement a whole system
of radio naming and name lookups that bypass using any numeric addresses in your
code. Consider this if your project involves creating many duplicate networks where
each node is in a role that could be called by a specific name, no matter what its physical
or assigned numeric address might happen to be.

Remote Management
You may still be glowing with excitement about your newfound ability to configure
radios wirelessly from the ConnectPort’s web interface. It is certainly pretty cool but it
does require that you have direct network access to your ConnectPort, something that’s
not always possible once you leave the location where your ConnectPort lives. In most
cases a firewall, network address translation, or other network obstacle of some kind
means you’ll need to be physically near the device and plugged into the same network
to access the ConnectPort’s web interface. But if you think that’s going to limit your
powers, well hang on to your hats and glasses because the ride is about to get about 10
times better. At the Remote Management screen you can configure your ConnectPort
to open a special connection that links it to a central access server at Digi International
called iDigi. Once that link is set up, logging on to the iDigi server’s web interface from
anywhere gives you full configuration access to all of your ConnectPorts and every radio
that’s joined to any of those ConnectPorts . This is a massively powerful feature. It’s like
suddenly discovering you are in command of a robot army, willing to do your world-
wide bidding. Here’s how to get started:

1. Click on Remote Management in the web interface to show the configuration
screen. Check the box for “Enable Remote Management and Configuration using
a client-initiated connection,” then enter developer.idigi.com for the Server Ad-
dress as shown in Figure 7-7. This is where you can link to a central server and
command your robot army of sensor networks.

2. Check the box to “Automatically reconnect to the server after being disconnected.”
The default setting of 1 minute should be fine. This will ensure a persistent
connection.

Remote Management | 203

Figure 7-7. The Remote Management Configuration screen on the ConnectPort

3. Click the Apply button at the bottom of the screen to save your changes. The
ConnectPort will now attempt to make an outgoing connection to the iDigi server.

iDigi Connectivity Server
iDigi is a cloud service that aggregates ConnectPorts and their networks so that they
can be accessed and configured remotely from anywhere in the world. Currently anyone
can set up a free account to control up to five ConnectPorts, along with an unlimited
number of radios connected to each of those ConnectPorts. To begin, go to http://
developer.idigi.com (Figure 7-8). Before you can log in, you’ll need an account. Select
the New User link and fill out the registration forms (Figure 7-9). At the end you’ll be
taken back to the login screen where you can now access your account. Enter your
newly selected username and password to begin your remote networking adventure.

iDigi Features
The iDigi service is intended as a platform for application-to-device messaging, data
storage, and administration. We’ll mostly be considering the administration features
here, because you’ll want to use them with your ConnectPort.

204 | Chapter 7: Over the Borders

http://developer.idigi.com
http://developer.idigi.com

Figure 7-8. iDigi login screen at http://developer.idigi.com

Figure 7-9. iDigi registration will set you up with a free account for remote management of up to five
different ConnectPorts

Remote Management | 205

http://developer.idigi.com

On every iDigi screen (see Figure 7-10), you have access to a menu that includes:

Home
This contains the Welcome link that describes the system and a Documentation
area that connects to support forums and various downloadable documents.

Management
Here is where most of your iDigi work will get done. It’s where you can administer
your ConnectPort devices and their networks of XBees, along with iDigi’s data
storage and messaging features.

Devices
Every piece of equipment that connects directly to iDigi will be listed here. You’ll
want to add your ConnectPort to this list, and we’ll show you how below.

XBee Networks
Once some ConnectPort devices have been added, their ZigBee networks can be
discovered. They will then be listed here where they can all be remotely configured.

Storage
This is where uploaded data can be stored. Check the online documentation for
more information about storage features.

Web Services Console
Web services are a standard for exchanging information that use HTTP browser
protocols and URLs as an application programming interface. This is where the
application-to-device messaging features of iDigi are implemented. Check the doc-
umentation area for an entire manual on these services if you’re interested in learn-
ing more about them.

Subscriptions
The Summary and Details links under Subscriptions show you the features and
limitations associated with your account. Contact iDigi if you need to raise the
number of devices or allowable traffic limits for your project.

Administration
The My Account, Messages, and Operations links are where you can update your
settings, read about system updates, and review a logfile of the operations that
you’ve performed during your iDigi session.

Adding a ConnectPort
Your first order of business is to add your ConnectPort to the Devices list so you can
begin managing it.

It is best to complete the local configuration steps described in “Remote
Management” on page 203 before attempting to add your device to
iDigi. This will ensure that your ConnectPort is preconfigured to open
a socket connection to iDigi even if it can’t be discovered automatically.

206 | Chapter 7: Over the Borders

Select the Devices link and then click on the blue plus sign icon on the button bar to
begin adding a new device. You’ll see a dialog box called Add Devices, as shown in
Figure 7-11.

If your ConnectPort is on the same local network as the computer where you are using
iDigi’s web interface, it may be listed here automatically. If it is, simply click on the
device in the list and then click the OK button to add it to iDigi. Not all browsers or
networks will allow this automatic discovery to happen properly, so if you don’t see
your device listed, try clicking the Add Manually button to see the display shown in
Figure 7-12.

To add a ConnectPort manually, enter its MAC address (the unique hardware address
assigned to every Ethernet device) in the MAC field and click on the Add button. You
can find the MAC address printed on the back of each ConnectPort. It will begin with
00409D, which is the official prefix for all Ethernet addresses assigned to Digi devices.
You can either use the XXXXXX:XXXXXX or XX:XX:XX:XX:XX:XX format. In Fig-
ure 7-12 the MAC address entered is 00:40:9D:33:B7:0C; yours, of course, will be
different. Once you enter that address and click on the Add button, you can click the
OK button at the bottom of the screen to complete the process of adding the new device
to your iDigi account. A green bar at the top of the screen will briefly appear to indicate
that your device was added successfully, as shown in Figure 7-13.

Figure 7-10. iDigi Devices screen, before any devices have been added

Remote Management | 207

Figure 7-11. The iDigi Add Devices dialog box will automatically attempt to discover any devices that
are on your local network

Figure 7-12. iDigi’s Add Manually feature lets you search iDigi for any ConnectPort that is already
configured for remote administration

208 | Chapter 7: Over the Borders

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

If your device’s status is initially listed as Disconnected, try waiting a minute and then
clicking on the circling yellow arrows in the button bar to refresh the list. Also, check
your ConnectPort’s connection to the Internet, and be sure that you ran through all
the steps listed in “Remote Management” on page 203.

Viewing Configurations
Once you have added your ConnectPort to the Devices list and its Status is listed as
Connected, simply double-click on the listed device to open up its properties page.
You’ll first see a Home screen as shown in Figure 7-14, along with a list of links to
configure the various properties of the ConnectPort. Any system information that has
been entered will be shown here as well. Now you can perform many types of config-
uration from anywhere in the world that you can find an Internet connection!

Some features differ between the direct web interface and the iDigi in-
terface. For example, iDigi does not currently show you a list of active
connections or read the event log. These features may be added in the
future, as iDigi is under active development.

Figure 7-13. Devices newly added to iDigi will be confirmed by an announcement in green at the top
of the screen

Remote Management | 209

Figure 7-14. The ConnectPort’s Devices Home screen on iDigi lists its MAC address and model

For example, the Python link shows a screen (Figure 7-15) that lists all the programs
and libraries loaded onto this device. iDigi gives you full access to remotely upload and
delete these files, as well as to indicate which ones should start up automatically when
the device is powered on. We will talk more about Python files in “XBee Internet Gate-
way (XIG)” on page 214.

Another useful screen is the System screen (Figure 7-16) under the Advanced Config-
uration link visible in Figure 7-15. Here you can enter a text description for your
ConnectPort that will show up in the device list. It’s very helpful to set this information
if you have a number of ConnectPorts, so that it’s easy to see in the listing which one
is which.

Firmware Updates and Remote Reboot
Several more essential features can be accessed via the Devices list. (Clicking on the
Devices tab at the top of the screen will take you back there.) Each ConnectPort can
remotely receive upgrades to its internal OS firmware, as well as upgrades to the firm-
ware that drives its internal XBee radio. (We’ll talk about configuring the other XBees
in the network below.) The Firmware icon in the button bar (Figure 7-17) displays a
menu that includes these options.

210 | Chapter 7: Over the Borders

Figure 7-15. ConnectPort’s Devices Python administration screen on iDigi; program files and startup
can be managed here

Figure 7-16. System information, including a description, can be entered under the Advanced
Configuration link

Remote Management | 211

Figure 7-17. The firmware update menu on iDigi gives remote access for upgrading and changing the
low-level device firmware

Firmware for the ConnectPort and the XBees can be downloaded to your local hard
drive from the Support area on the regular Digi website. Back at iDigi, you can select
the appropriate menu item to upload firmware with the .bin extension for the Con-
nectPort and with an .ebl extension for the Gateway XBee. Updating the firmware on
remote XBee nodes takes two steps. First, select the Update XBee Node Firmware menu
item to place the appropriate .ebl files onto the ConnectPort. For example, to update
to the version of the ZigBee Router AT that’s current as of this writing, you could upload
a file called XB24-ZB_2270.ebl that’s available in the Digi website’s Support area. The
second step is to make sure that the ConnectPort is configured for over-the-air firmware
updates. Navigate to the device’s properties and select the XBee link to show a screen
like the one in Figure 7-18. Check all four boxes to ensure that your update is distributed
automatically over the air to any radio that’s out of date. You can also upload and delete
XBee firmware files using the interface on this screen. Over-the-air firmware updates
are an extremely powerful feature of iDigi. As long as your radios are joined to a Con-
nectPort, you are able to send them new firmware over the Internet using their own
radio connection. Amazing!

Viewing an XBee Network
It’s easy to examine your remote XBee networks with iDigi. Click on the XBee Networks
link to see a list of all the radios that have currently been discovered (Figure 7-19).
Initially you’ll probably see only a single radio, the XBee that’s inside the ConnectPort
gateway. If other radios have joined your ConnectPort’s network, you can discover

212 | Chapter 7: Over the Borders

http://www.digi.com/support

them by clicking on one of the flashlight icons in the button bar—the first to do a regular
discovery and the second to clear the cache and rediscover the network from scratch.

Figure 7-18. XBee firmware updates can be automatically distributed from the ConnectPort, using
the configuration and files listed on the device’s XBee screen

Figure 7-19. In iDigi, XBee Networks lists all the radios that have currently been discovered on all
your networks, in this case just the internal gateway radio that displays initially

Remote Management | 213

To configure any of the remote XBees or the gateway XBee, simply double-click on its
name in the list to open up a tab with its properties, as shown in Figure 7-20. Most of
the interesting settings are on the Advanced screen (Figure 7-21). Some of these are old
friends because they are the exact same settings you’ve been configuring with AT com-
mands all along. Now you can change those settings from anywhere! For example, you
can change the node identifier by entering a new one in the field called “Node identifier”
on the Basic screen and then pressing the Save button at the bottom. (See the sidebar
“Naming Radios” on page 202 for more information.) Use a reasonable amount of
caution when you make changes because they will be executed immediately, and any
changes that cause your remote radios to leave the network might require physical
access to get them to rejoin.

Figure 7-20. Basic view of an XBee’s properties shows a few frequently used settings

Now that you’ve had a solid tour of the ConnectPort and iDigi’s management services,
you are probably eager to create a working system of your own. The next section will
show you how to install and run the XBee Internet Gateway, getting you ready for the
example Twitter Reader project at the end of this chapter.

XBee Internet Gateway (XIG)
The ConnectPorts are very flexible and powerful devices that can connect your ZigBee
network to any Internet service in pretty much any way you like. The seemingly un-
limited range of options can sometimes feel overwhelming to a beginner. Rather than
learn about TCP/IP addressing, port numbering, DNS, application-layer protocols, and

214 | Chapter 7: Over the Borders

Python programming—terrific as all those things are to know—you probably would
like to start with something simple that opens a path between your prototype and the
teeming mass of terrific services that are available on the Web.

The XBee Internet Gateway is a Python program that can be loaded onto any Con-
nectPort right out of the box. It’s an interface that mirrors the interactions humans have
in web browsers. Once XIG is running, any radio that sends it a standard plain-text
URL will receive back the regular results from that URL. Redirects to other pages,
timeouts, security, retries, and so forth, are all handled behind the scenes just like they
are in a web browser. Take a look at View Source in your browser; you can see the web
page’s underlying HTML. With the XIG, the radios in your project see the exact same
thing. Each can send out a URL and receive back the source for that web page—
whatever it is. This simple service shifts all the hard stuff about interacting with the
Web to the gateway. There’s no need to handle security, domain lookups, or redirects
locally. That’s all taken care of for you by the XIG on the ConnectPort, giving your
prototype a very simple yet completely flexible pathway to any web service you can
imagine.

XIG is an open source team effort lead by your author, Jordan Husney, and Ted Hayes,
with valuable support from a community of commercial and educational users. You
can view the code and contribute your own efforts at http://code.google.com/p/xig.

Figure 7-21. Advanced view of an XBee’s properties shows many familiar AT command settings

XBee Internet Gateway (XIG) | 215

http://code.google.com/p/xig

Installing and Configuring XIG
Setting up the XIG is easy, now that you’re familiar with the general administration of
a ConnectPort gateway. If you haven’t already, follow the instructions in the previous
sections “Setting Up a ConnectPort” on page 197 and “Configuring a Connect-
Port” on page 198. Next, download the XIG code, which is linked from this book’s
website. It should also be available at http://code.google.com/p/xig/downloads/list in the
form of a ZIP file that contains xig.py and _xig.zip. Make sure the main file (xig-x.x.x-
bin.zip) gets unzipped, but leave _xig.zip and any other internal files in their compressed
form.

The XBee Internet Gateway is still undergoing active development and
may have been upgraded and changed by the time you read this. Check
this book’s website (see the Preface) to make sure you have the latest
files and instructions.

Once you are looking at the ConnectPort’s administration interface, click on the Python
link to begin uploading files. The ConnectPorts all come with the required python.zip
libraries preloaded. There may be other resource files here as well, including
zigbee.py, which is not needed for this project but can safely remain in the directory.
Click the Browse button to navigate to and select each file you’d like to upload, starting
with xig.py. Click the Upload button and wait for a File Uploaded message to appear
at the top of the screen, as shown in Figure 7-22. Repeat this process for _xig.zip.

Next, click the Auto-start Settings link at the bottom of the screen. Check the first
Enable box and then type xig.py into the first Auto-start command line field, as shown
in Figure 7-23.

For XIG version 1.1.0, it’s necessary to manually configure the Exten-
ded PAN ID for the ConnectPort’s XBee radio. Click on the XBee Net-
work link to view a list of the radios in the network (Figure 7-5). Select
the gateway’s radio—its node type will be listed as “coordinator”—to
view its Basic Settings (Figure 7-6). Enter 0xAAAA in the Extended PAN
ID field and click the Apply button.

It’s fine to pick any other PAN ID; just remember what it is and substi-
tute it in the examples below. Also keep in mind that future versions of
the XIG might configure the PAN ID automatically. Check the RE-
ADME file that comes with your download for the latest information.

216 | Chapter 7: Over the Borders

http://code.google.com/p/xig/downloads/list

Figure 7-22. XIG files uploaded to ConnectPort

Figure 7-23. Auto-start configuration for XIG on ConnectPort

XBee Internet Gateway (XIG) | 217

It’s a good idea to set some security on your XIG. It will be connected directly to the
public Internet so protecting it with a password will prevent anyone else from trying
to get in and mess with your configuration. Click the Security link to enter a password
(Figure 7-24). You can also change the username if you like for an extra layer of security.
After you click the Apply button to make this change, you’ll immediately be prompted
for your user ID and password.

Figure 7-24. Entering security information on the ConnectPort

Finally, select the Reboot link and press the Reboot button. The XIG will now run
automatically at startup.

Testing XIG
Before you start hooking up any projects, it’s a good idea to confirm that your XIG is
working properly. This can be done with the help of our old friend CoolTerm, or any
other serial terminal program:

1. Use X-CTU to configure an XBee as a ZigBee router in AT mode.

2. Place that router into an XBee Explorer, plug it into your computer, and run the
CoolTerm program.

3. Press the Options button in CoolTerm to configure the serial connection.

218 | Chapter 7: Over the Borders

4. Select the appropriate serial port and check the Local Echo box.

5. Click on the Connect button to connect to the serial port.

6. Type +++ to go into command mode.

7. Type ATID followed by the PAN ID. The recommended PAN for the XIG is AAAA,
so ATID AAAA will get you configured.

8. Every ZigBee coordinator always has 0 as its 16-bit network address, and this is
the default destination address for any newly configured XBee radio. Enter
ATDL 0 and ATDH 0 to be sure that you are in the default configuration for the des-
tination address.

9. Enter ATJV 1 to ensure that your router attempts to rejoin the coordinator on
startup.

The XIG often needs to send a lot of data, so it can be helpful to raise the baud rate.
This is optional:

1. To raise the baud rate, type ATBD followed by the code for the baud rate you’d like
to use—in this case 7 for 115,200 bps, which is the fastest speed—so type ATBD 7
and hit Enter.

2. Once the baud rate has been raised, you’ll need to select the same baud rate in
CoolTerm (and later on, the same baud rate in your own project). Click Disconnect
to drop the serial connection, then Options to open the settings, and switch the
Baudrate setting to 115200. Press OK and then Connect to reconnect to your XBee.
It should now be responding at the higher baud rate.

To check the XIG, try typing the word help in the connected CoolTerm window, then
pressing Return. You should get a text response with basic information on using the
XIG. If that works, try entering in a URL like http://www.faludi.com/test.html. The
HTML source for that URL should be returned, something like this:

<html>
<head>
<title>Rob Faludi's Test Page</title>
</head>
<body>
<p>
This is a very simple test page.
</p>
</body>
</html>

If you have problems, try double-checking the baud rate. You can make sure that the
router XBee has joined a network by using ATAI and looking for a response of 0. You
may also want to confirm your router is connected to the right network by issuing the
ATND command and seeing if the gateway radio’s listing comes back. Once you have
confirmed everything is working, you’re ready to make some stuff that’s connected to
the Internet!

XBee Internet Gateway (XIG) | 219

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.faludi.com/test.html

XIG Example
PHP is a very common language for writing applications that run on web servers. A full
explanation of PHP and Internet protocols is beyond the scope of this book (see http:
//oreilly.com/pub/topic/php for some books and resources on PHP). We will supply a
very simple example that you can upload to your server. Use this as a starting point for
creating simple URLs that your project can connect to via the XIG. On the XIG website,
there is more example code that can be used to download and upload information for
sensing and control.

Here’s a quick look at some PHP code. Place it in a file on your server called
XIG_download_example.php. When you access it online, whatever value you put in the
$value variable will be returned to your web browser. In this case, you’ll simply see an
8.

XIG download example in PHP
<?php
 // xig_download_example.php
 // this code posts a simple value in ASCII when the page is loaded
 $value = "8";
 echo $value;
?>

To read this in on an Arduino connected to a router XBee that you configured as de-
scribed above, try the following sketch that reads in the returned value. Figure 7-25
shows a diagram of the connections. Note that it doesn’t do anything with the returned
value; that part is for you to write with your own purposes in mind (you must replace
<your server URL here> with the hostname and path to wherever you uploaded
XIG_download_example.php):

/*
 * *********XBee Internet Gateway Download Example********
 * by Rob Faludi http://faludi.com
 */

#define NAME "XIG Download Example"
#define VERSION "1.00"

int outputLED = 9; // define pin 9 as a PWM analog output light

void setup() {
 Serial.begin(115200); // faster is better for XIG
 pinMode(outputLED, OUTPUT);
}

void loop() {
 if (millis() % 1000 == 0) { // wait a second before sending the next request
 // request the current value
 Serial.println("http://<your server URL here>/XIG_download_example.php");
 }
 if (Serial.available() > 0) { // if there's a byte waiting

220 | Chapter 7: Over the Borders

http://oreilly.com/pub/topic/php
http://oreilly.com/pub/topic/php

 int value = Serial.read(); // read a single byte

 analogWrite(value, outputLED); // set an LED's brightness
 // to match the value
 // *** OTHER USEFUL THINGS COULD BE DONE WITH THE VALUE VARIABLE HERE ***

 }
}

You’ve seen how to download data using the XIG—a significant task that can be ac-
complished in a small amount of code. Examples for controlling output and uploading
data are available on the XIG site that’s linked from the book’s website (see the Preface).
Given your freshly obtained networking powers, you are probably wondering, “How
can I use my new skills to display a real-time stream of celebrity gossip?” Glad you
asked.

Figure 7-25. System diagram for XBee Internet Gateway connecting an Arduino project to PHP on a
web server

Twitter Reader
These days, no event seems truly real until it has been reported on Twitter. From the
minor details of everyday life to the tectonic shifts of the continents, an endless stream
of information gushes forth from “tweeters” around the world. These missives are typ-
ically viewed on a computer screen or in a text message, but there’s no reason they can’t

Twitter Reader | 221

be unshackled and invited to join us off-screen out in the physical world. Why not
display your Twitter feed on your office door, so people know why you aren’t available?
Perhaps you’d like to enjoy a feed of haikus while riding the elevator in the morning.
Or maybe your tastes run a little less zen and you want to know Julia Roberts’ matri-
monial status as scrutinized by US Magazine. In all cases, the Twitter Reader example
is here to help. It displays the latest message from any tweet feed wirelessly on a standard
32-character LCD display. The Reader downloads from a specially designed “twans-
form” online application via the XBee Internet Gateway. Twansform was written in
Google App Engine by Jordan Husney. The web service used by our project can be
found at http://twansform.appspot.com and the code is available at http://code.google
.com/p/twansform/. It uses simple URL requests that include the feed name. In the code
below the feed is usweekly, great for keeping tabs on the stars. Of course you can easily
change it to any other account you like. For example you could use the earthquake feed
to keep tabs on tremors, or try out schnitzeltruck if you have a hankering for flat meat
in Manhattan. The Twitterverse’s offerings are endless, so let’s get started reading feeds.

Parts
• One solderless breadboard (large size) (AF 239, DK 438-1045-ND, RS 276-002,

SFE PRT-00112)

• Hookup wire (assorted colors are particularly helpful for this project) (AF 153, DK
923351-ND, SFE PRT-00124)

• One Arduino Uno (SFE DEV-09950, AF 50) (If you use an older model, be sure it
is using the new ATMEGA328 chip!)

• USB A-to-B cable for Arduino (AF 62, DK 88732-9002, SFE CAB-00512)

• Assorted 5 mm LEDs (DK 160-1707-ND, RS 276-041, SFE COM-09590)

• One 10K Ω potentiometer (panel mount) (DK P3C3103-ND, RS 271-1715, SFE
COM-09288)

• One 16×2 character LCD display (with HD44780 parallel interface) (AF 181, DK
67-1758-ND, SFE LCD-00255)

• 16-pin single-row male header (generally sold in longer breakaway strips) (DK
S1012E-36-ND, SFE PRT-00116)

• One ConnectPort X2 – ZB, running the XBee Internet Gateway software (Digi X2-
Z11-EC-A is the new version; DK 602-1173-ND is the older version)

• One XBee radio (Series 2/ZB firmware) configured as a ZigBee Router API mode
(Digi: XB24-Z7WIT-004, DK 602-1098-ND)

• One XBee breakout board with male headers and 2 mm female headers installed
(AF 126 (add SFE PRT-00116), SFE BOB-08276, PRT-08272, and PRT-00116)

• XBee USB serial adapter (XBee Explorer, Digi Evaluation board, or similar) (AF
247, SFE WRL-08687)

222 | Chapter 7: Over the Borders

http://twansform.appspot.com
http://code.google.com/p/twansform/
http://code.google.com/p/twansform/

• USB cable for XBee adapter (AF 260, SFE CAB-00598)

• Wire strippers (AF 147, DK PAL70057-ND, SFE TOL-08696)

Prepare Your ConnectPort with XBee Internet Gateway
Follow the instructions for “Installing and Configuring XIG” on page 216 to install and
configure the ConnectPort X2 with the XBee Internet Gateway software. If this is a new
installation, use the instructions from “Testing XIG” on page 218 to test it using a
terminal program from your computer.

Prepare Your Router Radio
1. Follow the instructions under “Reading Current Firmware and Configura-

tion” on page 35 to configure your Twitter Reader radio as a ZigBee Router AT.

Your router radio will use the AT firmware so it can pass messages
in plain text to the XIG on the ConnectPort. Be sure you select the
AT version for your router!

2. Label the router radio with an “R” so that you know which one it is later on.

Configure Your Router Radio
Using the CoolTerm terminal program and an XBee Explorer USB adapter, you can set
up your router radio for the Twitter Reader:

1. Select the router XBee you’ve labeled with an “R” and place it into the XBee
Explorer.

2. Plug the XBee Explorer into your computer.

3. Run the CoolTerm program and press the Options button to configure it.

4. Select the appropriate serial port, and check the Local Echo box so you can see
your commands as you type them.

5. Click on the Connect button to connect to the serial port.

6. Type +++ to go into command mode. You should receive an OK reply from the
radio.

7. Type ATID followed by AAAA, the PAN ID for the XIG on the ConnectPort, and press
Enter on the keyboard. You should receive OK again as a reply.

8. Every ZigBee coordinator always has 0 as its 16-bit network address, and that’s the
default destination address for any newly configured XBee radio. To use 16-bit
addressing, the high part of your radio’s destination address will be zero. Type
ATDH 0 and press Enter on the keyboard. You should receive an OK response.

Twitter Reader | 223

9. Enter ATDL followed by the low part of your radio’s destination address, in this case
also a zero because that’s the fixed address for the coordinator. Type ATDL 0 and
press Enter. You should receive an OK response.

10. Enter ATJV1 to ensure that your router attempts to rejoin a coordinator on startup.

11. Save your new settings as the radio’s default by typing ATWR and pressing Enter.

Tweets are very short, so for this project we are fine to avoid addi-
tional configuration steps and stick with the default serial commu-
nications rate of 9,600 baud (ATBD3, in case you changed it earlier).
Projects that download larger datafiles will benefit from using
higher baud rates.

Prepare the Twitter Reader Board
Your base station radio will use a breadboard connected to an Arduino board.

Connect power from Arduino to breadboard

1. Hook up a red wire from the 5 V output of the Arduino to one of the power rails
on the breadboard. This is a higher voltage than we used in previous projects. The
5-volt supply is required for running the LCD screen. We will send the XBee 3.3
volts separately, directly from the Arduino as described below.

2. Hook up a black wire from either ground (GND) connection on the Arduino to a
ground rail on the breadboard.

3. Hook up power and ground across the breadboard so that the rails on both sides
are live.

Make sure you are using 5 V power to supply the main breadboard.

XBee connection to Arduino

1. With the router XBee mounted on its breakout board, position the breakout board
toward one end of your large breadboard so that the two rows of male header pins
are inserted on opposite sides of the center trough. Leave enough free space on the
breadboard for the LCD screen!

2. Use a long red hookup wire to connect pin 1 (VCC) of the XBee directly to the
Arduino board’s 3.3-volt output.

Make sure you are supplying 3.3 V power to the XBee.

224 | Chapter 7: Over the Borders

3. Use black hookup wire to connect pin 10 (GND) of the XBee to ground.

4. Use yellow (or another color) hookup wire to connect pin 2 (TX/DOUT) of the
XBee to digital pin 6 on your Arduino.

This project does not use the Arduino’s hardware serial pins (0 and
1) because it employs the NewSoftSerial library. This handy library
enables any two digital pins to be used for serial communications.
Avoiding the hardware serial pins allows us to reprogram the Ar-
duino successfully without removing any wiring. Using the
NewSoftSerial library requires a little more sophisticated code,
which is why we didn’t do it in earlier examples. You’re ready now.

5. Finally, use blue (or another color) hookup wire to connect pin 3 (RX/DIN) of your
XBee to digital pin 7 on your Arduino.

Liquid crystal display (LCD) output

Tweets will be displayed on a 16-character-wide, 2-row LCD with a standard HD44780
parallel interface. These displays are very common and generally have a 16-pin inter-
face. Displays without a backlight typically omit the last two pins. The instructions
below are for backlit displays. If your LCD doesn’t have one, simply ignore anything
to do with pins 15 and 16. Here is a typical data sheet for a 16×2 HD44780 display:
http://www.xmocular.com/upload_img/2008013150690297.pdf.

1. Trim your male headers down to 16 (or 14) pins to match the number of connection
holes available on your LCD. Solder the row of male headers into the LCD as shown
in Figure 7-26.

Figure 7-26. Male headers soldered to LCD

Twitter Reader | 225

http://www.xmocular.com/upload_img/2008013150690297.pdf

2. Insert the LCD into your breadboard. It takes up quite a bit of room, which is why
you are using a larger breadboard for this project!

3. On most LCD units, the first or last pin is labeled on at least one side of its circuit
board. If not, you can always consult the data sheet. Locate physical pin 1 and use
a black wire to connect the LCD’s physical pin 1 to one of the ground rails.

4. Use a red wire to connect the LCD’s physical pin 2 to one of the power rails.

5. Attach the potentiometer to the breadboard near the LCD. Some models of po-
tentiometer will fit right in the breadboard, while others may need jumper wires
soldered onto them to make that connection happen. There are three pins, two
terminals (typically the outer pins), and a wiper pin. Connect one terminal of the
potentiometer to power and the other to ground. It doesn’t matter which one.
Connect the wiper (typically the center pin) to the LCD’s physical pin 3.

You can test your potentiometer with a multimeter to determine
which pin is the wiper. Turn the potentiometer until it is about
halfway between the two stops. Set your multimeter to measure
resistance in ohms (Ω). A test between either terminal and the
wiper will show the resistance changing as you move the knob.

6. Hook up the remaining LCD pins as shown in Table 7-1. You can also use the
diagram in Figure 7-27 and the schematic in Figure 7-28 as a guide.

Table 7-1. LCD pin connections for Twitter Reader project

LCD pin # LCD pin name Connection

1 GND Ground

2 +5V 5-volt power

3 Contrast adjustment Potentiometer wiper

4 Register select Arduino digital 12

5 Read/Write Ground

6 Enable Arduino digital 11

7 Data bus No connection

8 Data bus No connection

9 Data bus No connection

10 Data bus No connection

11 Data bus Arduino digital 5

12 Data bus Arduino digital 4

13 Data bus Arduino digital 3

14 Data bus Arduino digital 2

15 Backlight power (if available) +5-volt power

226 | Chapter 7: Over the Borders

LCD pin # LCD pin name Connection

16 Backlight GND (if available) Ground

7. When everything is set up, plug the Arduino into your computer using the USB
cable. If your LCD has a backlight, you should see it come on. You can also try
adjusting the contrast on the display by turning the potentiometer so that the rec-
tangles behind each character position just barely disappear.

Figure 7-27. Twitter Reader breadboard layout

Program the Arduino
The Twitter Reader uses the Arduino sketch shown later in this section. You’ll also
need the NewSoftSerial library.

Installing the NewSoftSerial library

Download the library from http://arduiniana.org/libraries/newsoftserial and unzip it. It
will be in a NewSoftSerial folder that contains NewSoftSerial.h, NewSoftSerial.cpp,
keywords.txt, and an Examples subfolder.

Open your Arduino sketchbook folder (if you’re not sure where this is, open a saved
sketch, choose Sketch→Show Sketch Folder, then go up to its parent directory). There
is probably already a folder there called libraries, but if not you can create one. Place
the entire NewSoftSerial folder inside the libraries folder.

If Arduino is already running, quit it and then start it up again. You should see
NewSoftSerial listed on the Sketch→Import Library menu.

Twitter Reader | 227

http://arduiniana.org/libraries/newsoftserial

If you get a message like error: NewSoftSerial.h: No such file or
directory when you compile your program or load it, you probably
don’t have a folder in the right place. Try going through the above in-
structions again or check http://www.arduino.cc/en/Reference/Libraries
for more information on adding libraries to Arduino.

Once you’ve loaded the files and directories onto your computer, open
Twitter_Reader.pde (full code listed below, or you can download it from the website
listed in the Preface) in Arduino, press the Upload button (labeled with a right arrow)
to upload the code to your Arduino. The code will run and should briefly show the
words “Twitter Reader” and a version number on the LCD screen. After that the phrase
loading... will be displayed while the system attempts to connect to the Internet via
the XBee Internet Gateway. Here are the two lines of code that send that URL lookup
request to a special Google App Engine program that parses the Twitter feed:

mySerial.print("http://twansform.appspot.com/usweekly/text/1");
mySerial.print("\r");

Figure 7-28. Twitter Reader schematic

228 | Chapter 7: Over the Borders

http://www.arduino.cc/en/Reference/Libraries

And here’s the bit of code that reads the reply received back from the XIG into a text
string:

// parse the incoming characters into a local String variable
 char newChar;
 int timeout = 4000;
 while (millis()-startTime < timeout) {
 if (mySerial.available()) {
 newChar = (char)mySerial.read();
 if (newChar == '\r' || newChar == '\n') {
 break;
 }
 else {
 text.append(newChar);
 }
 }
 }

When the lookup succeeds, you will see the latest tweet for that feed displayed. The
vast majority of the program is devoted to properly displaying the tweet on the LCD,
including splitting up the message properly and adding line breaks between words for
maximum readability. Getting the message from the Internet is easy, thanks to the XIG!
(See Figures 7-29 through 7-31.)

Figure 7-29. Twitter Reader startup display

Figure 7-30. Twitter Reader shows “loading...” message while accessing the Twansform URL via
XBee Internet Gateway

Twitter Reader | 229

Twitter Reader code
/*
 * ********* Twitter Reader ********
 * by Rob Faludi http://faludi.com
 *
 * displays 140 characters sourced from a URL
 * using an XBee radio and a Digi ConnectPort running the XBee Internet Gateway
 * http://faludi.com/projects/xig/
 */

#include <LiquidCrystal.h>
#include <NewSoftSerial.h>

// create a software serial port for the XBee
NewSoftSerial mySerial(6, 7);
// connect to an LCD using the following pins for rs, enable, d4, d5, d6, d7
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
// defines the character width of the LCD display
#define WIDTH 16

void setup() {
 // set up the display and print the version
 lcd.begin(WIDTH, 2);
 lcd.clear();
 lcd.print("Twitter_Reader");
 lcd.setCursor(0,1);
 lcd.print("v1.04");
 delay(1000);
 lcd.clear();
 lcd.print("powered by XIG");
 lcd.setCursor(0,1);
 lcd.print("->faludi.com/xig");
 delay(2000);
 // set the data rate for the NewSoftSerial port,
 // can be slow when only small amounts of data are being returned
 mySerial.begin(9600);
}

void loop() {
 // prepare to load some text

Figure 7-31. Twitter Reader displaying a tweet

230 | Chapter 7: Over the Borders

 String text;
 unsigned long startTime = millis();
 lcd.clear();
 lcd.print("loading...");
 // remove anything weird from the buffer
 mySerial.flush();
 // request the text string from the server
 mySerial.print("http://twansform.appspot.com/usweekly/text/1");
 mySerial.print("\r");

 // parse the incoming characters into a local String variable
 char newChar;
 int timeout = 4000;
 while (millis()-startTime < timeout) {
 if (mySerial.available()) {
 newChar = (char)mySerial.read();
 if (newChar == '\r' || newChar == '\n') {
 break;
 }
 else {
 text += newChar;
 }
 }
 }

 // clear the lcd and present the String
 if (text.length()>0) {
 unsigned long displayTime = 60000; //300000 = 5 minutes
 while(millis()-startTime < displayTime){
 lcd.clear();
 showText(text);
 // pause after showing the string
 delay(2000);
 lcd.clear();
 }
 }
}

// displays the text on an lcd with correct line breaks between words
void showText(String theText) {
 String text; // String variable for the text we are displaying
 text += theText; // puts the incoming text into our String variable
 String lineBuffer; // temporary storage for the last displayed line
 int cpos=0; // keeps track of the current cursor position
 int line=0; // keeps track of the current line
 // step through the text one character at a time
 for (int i=0; i<text.length(); i++) {
 // in general, don't make a linefeed
 boolean linefeed = false;
 if (text[i]==' ') {
 // if the current character is a space, then make a line feed
 linefeed = true;
 // ...but check first that there isn't another space before
 // the edge of the screen

Twitter Reader | 231

 for (int j=i+1; j< i + WIDTH - cpos + 1 && j<text.length() ; j++) {
 if (text[j]==' ') linefeed=false; // another space before
 // the edge of the screen
 else if (j == text.length()-1) linefeed=false; // all of the text
 // completes before
 // the edge of the screen
 }
 }
 // make a linefeed if we reach the edge of the screen
 // (if a word is greater in length than the width)
 if (cpos==WIDTH) {
 linefeed==true;
 }

 // on linefeeds
 if (linefeed==true) {
 switch (line) {
 case 0:
 lcd.setCursor(0,1);
 line = 1;
 break;
 case 1:
 delay(400); // brief pause at end of line
 // clear the screen
 lcd.clear();
 lcd.setCursor(0,0);
 line = 0;
 break;
 }
 cpos=0; // reset the cursor tracker to the beginning of the screen
 }

 // if this isn't a line feed
 else {
 // print the current character, add it to the line buffer and
 // advance the cursor position
 lcd.print(text[i]);
 switch (text[i]) {
 case '.':
 delay (500);
 break;
 case ',':
 delay(300);
 break;
 }
 cpos++;
 delay(100); // wait a moment after each character
 }
 }
}

232 | Chapter 7: Over the Borders

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Troubleshooting

If things don’t work at first, here are some steps to try:

1. Check all your electrical connections to make sure there are no loose wires and
that all the components are connected properly.

2. Check the router configuration in X-CTU to confirm that the correct modem type
(XB24-ZB) and function set (ZigBee Router AT) have been selected. Also check
that the PAN ID, baud rate, destination high, and destination low are configured
as you expect, and that ATJV has been configured as described above.

3. An LED placed from the ASSOC pin of the reader’s XBee (physical pin 15) to
ground should show a flashing light.

4. Check the XBee Network screen in the ConnectPort’s management window to see
if it shows the Twitter Reader’s XBee when you Refresh the listing. The Extended
ID is the same number that is printed on the back of the XBee radio.

5. Make sure you see “Twitter Reader” and version information on your LCD when
the system starts up. If not, check your connections and make sure that you have
adjusted the contrast properly with the potentiometer.

6. The Twitter Reader will generally run best on an Arduino using the ATMEGA328
chipset. This will be printed on the large black microchip. You may have incon-
sistent results with the ATMEGA168 chipset, which only has 1K of RAM and can’t
always handle long strings of text.

7. We are not always able to see our own mistakes. Have a friend check everything
for you. Sometimes only a second pair of eyes will catch the one or more issues
that are standing in the way of success.

8. When all else fails: Try taking a break and coming back to the project after a good
night’s rest. Remember, many of midnight’s intractable puzzles are morning’s sim-
ple fixes.

Moving Forward
We’re coming near the end of our fast journey through the vast world of wireless net-
working. You now know how to reach beyond local ZigBee environments to traverse
many other systems, most notably the Internet. We’ve given you a great way to get
started on making connections using the XBee Internet Gateway, and a full example of
that connection being used in an Arduino project. The next and last chapter will give
you a starting point for further expeditions into the ZigBee protocol, and outline a few
advanced features that will help you in your explorations going forward. This will not
be the end of the road; it’s merely a stepping-off point to begin your own journey.

Moving Forward | 233

CHAPTER 8

More to Love

Our final chapter serves as a broader introduction to sensor networking. You are now
prepared to explore advanced communication techniques, share your data, and develop
your own projects. Good job! Some of the ideas and techniques we look at in this
chapter are pretty technical. That’s why they come here at the end, when you are in the
best position to understand them. We’ll start with an overview of ZigBee application
messaging, examine alternate routing techniques, peruse security options, and shine a
light on serial flow control. To make sure that your data doesn’t languish on some local
hard drive, this chapter also offers an example project for publishing your sensor net-
work results publicly. Finally, we wrap up with a peek at the future of ZigBee and some
suggestions for sharing your results with others.

Enjoyed what came before? There’s more to adore. Let’s go take a dip in the deep end!

Advanced ZigBee
While much of advanced ZigBee is beyond the general scope of this book, there are
several things worth knowing when you need to enable larger systems or pursue inter-
operation. You are now ready to meet these higher-level concepts and consider their
implications for your projects. We’ll discuss ZigBee stack layers, standardized APS
messaging, routing scenarios, security, and serial flow control. Finally we’ll point you
toward reference material on the ZigBee standard.

Each of these sections is intended as a jumping-off point to get you started. Need to
know more? You’ll find additional detailed technical documentation in the Product
Manual for the XBee ZB radios, available at: http://www.digi.com/support/supporttype
.jsp?tp=3.

235

http://www.digi.com/support/supporttype.jsp?tp=3
http://www.digi.com/support/supporttype.jsp?tp=3

ZigBee Stack Layers
As discussed in Chapter 2, the ZigBee protocol is divided into layers (Figure 8-1). These
are portions of the protocol that do distinct jobs, and come together to create the entire
mesh communications structure in an organized and flexible fashion.

Figure 8-1. ZigBee protocol stack showing the PHY, MAC, Network, APS, and ZDO layers

We briefly covered ZigBee’s physical layer (PHY) in Chapter 2, as well as the media
access controller (MAC) that defines low-level addressing, among other things. Both
are part of the 802.15.4 protocol that underlies ZigBee. We’ve also described the ZigBee
Network layer that handles routing information from place to place, creating full mesh
networking. There are two higher levels in the protocol that were somewhat beyond
the scope of our initial forays, but may become important to you as your projects evolve
and perhaps connect to other systems. They’re like the frosting and decorations on the
ZigBee cake:

Application Support Sublayer (APS)
The APS layer defines standardized messaging for specific tasks where ZigBee ra-
dios are commonly employed. By creating standard messages, ZigBee devices cre-
ated by different manufacturers can all carry on conversations with each other and
collaborate seamlessly in predefined applications such as home automation. We
will describe this layer in more detail shortly.

ZigBee Device Objects (ZDO)
The ZDO layer is an application profile for dealing with the radios themselves. It
provides device and service discovery along with certain network management ca-
pabilities. We won’t discuss this layer in any more detail here and only note it for
completeness. If you find yourself in a situation where requesting routing or end-
point information from a neighboring radio becomes necessary to your application,

236 | Chapter 8: More to Love

you can learn more about it in the XBee ZB Product Manual under “ZDO
Transmissions.”

These higher layers will matter when you’re talking to other brands of
radios, or when you’re building something that needs to interact with
ZigBee-certified device profiles such as Smart Energy, Home
Automation, Consumer Electronics, or Health Care (see “Pro-
files” on page 237). If your projects only involve XBees talking to each
other, then keep it simple! Read these sections purely for entertainment
and don’t fret about implementing the concepts.

Application Support Layer
The APS layer implements application profiles, clusters, and endpoints. You can think
of these as describing the general kind of thing you’re doing (profile), the more specific
action you’re taking (cluster), and the location within a device where that action will
be carried out (endpoint). On the XBee, these APS messages are all sent and received
by special API frames (see “Next steps” on page 239). We’ll go through the concepts
one by one to make it easier to understand them.

Profiles

ZigBee application profiles are collections of common definitions and protocols that
allow various devices to work together in a particular domain, such as home automa-
tion. Each profile defines device types and required functionality. The most interesting
profiles are the public ones that are developed and maintained by the ZigBee Alliance—
the official standards organization for the ZigBee protocol—so that all ZigBee-
certified devices from any manufacturer can interoperate in systems for:

• Health Care

• Home Automation

• Building Automation

• Smart Energy

• Telecommunication Services

• Consumer Electronics

• ...and new profiles that are added on a regular basis

For example, in the case of Smart Energy, the profile allows different brands of electric
meters, thermostats, appliances, and in-home display units to share a common lan-
guage. Any Smart Energy-certified brand of thermostat can request pricing data
through any brand of certified electric meter to decide whether an extra three degrees
of cooling is an affordable comfort or a pricey luxury. Similarly, any ZigBee Health
Care-certified patient sensor can communicate medical data to any other brand of

Advanced ZigBee | 237

Heath Care-certified patient monitor. Public profiles are available to all manufacturers
who want to participate in these networks.

Manufacturers can define their own profiles internally as well. These are referred to as
private profiles and are generally used within one company’s products or shared in
business partnerships.

The XBee ZB communications you have been using are all part of Digi’s
private, manufacturer-specific Drop-in Networking profile. This is how
your radios can communicate about proprietary data like analog I/O
readings.

Each public or private profile has a name and a 16-bit numeric identifier to tag its
messages. For example, the Smart Energy profile uses 0x0109. Any device that wants
to support the Smart Energy profile is required to provide certain standard functions
and to identify its messages with 0x0109 to all other devices.

XBee-brand radios pass profile, cluster, and endpoint information
inside Explicit ZigBee API frames. See “Next steps” on page 239 for
references to detailed information in the Product Manual.

Every profile defines a number of clusters, which describe how two radios in a profile
interact with one another. Many clusters can exist on a single endpoint. We’ll look at
those next.

Endpoints

In ZigBee, endpoints exist so that a device can implement multiple profiles. For exam-
ple, you can have a device that belongs to both the Home Automation and Consumer
Electronics profiles. It’s an endpoint’s job to describe applications that are running on
a particular device. You can think of endpoints as mailboxes in an apartment building.
To access a particular apartment, you need to know the building address but also its
mailbox number. Devices frequently have many endpoints. (Readers with a basic
knowledge of Internet protocols may recognize that ZigBee endpoints function simi-
larly to port numbers in TCP/IP.) All ZigBee APS messages are sent from some endpoint
on one device to some other endpoint on another device. Endpoints contain a number
of clusters that are specific to a profile. Each endpoint is identified with an 8-bit number
from 0x0 to 0xF0.

Clusters

In ZigBee, device profiles interact with one another through their clusters. ZigBee clus-
ters are collections of functionality that applications can perform within a profile. Each
cluster is associated with a particular action or service. For example, in the Smart Energy

238 | Chapter 8: More to Love

profile one of the clusters is devoted to price, including the various attributes and ac-
tions around setting, changing, and labeling different energy pricing scenarios and
states. There are two types of clusters, client clusters and server clusters. A radio im-
plementing a particular service—such as sending pricing information—implements the
server cluster. When it has a price to transmit, it interacts with the client cluster on
another radio. Likewise, client clusters may send commands that manipulate attributes
or perform commands on a corresponding server cluster. Each cluster has a 16-bit ID
(price messages are cluster 0x0700) and can contain various attributes and command
types identified by other numeric IDs. On the XBee, for example, an API frame pub-
lishing an energy price will contain command ID 0x00 and pass a payload that includes
all of the following: Provider ID, Rate Label, Issuer Event ID, Current Time, Unit of
Measure, Currency, Price Trailing Digit & Price Tier, Number of Price Tiers & Register
Tier, Start Time, Duration In Minutes, and finally Price. Programmers may recognize
that clusters are a little like software objects, in that both contain bundles of related
states and behaviors.

The ZigBee Cluster Library
Many ZigBee application profiles use a specific protocol called the ZigBee Cluster Li-
brary (or ZCL) protocol. The ZCL defines both a method for how clusters talk to one
another and a collection of common actions that can be used in multiple ZigBee ap-
plication profiles. For example, someone defining a new ZigBee profile for electric au-
tomobiles (a Vehicle Area Network) may import clusters of functionality from the ZCL
that are already used in Home Automation or Smart Energy profiles. The ZCL exists
to promote reuse, both the reuse of ideas and the reuse of source code.

The ZCL protocol encourages people to define clusters as collections of data attributes,
each with a specific data type. For example, a vehicle may define a cluster of attributes
for the dashboard, including the vehicle speed, the engine speed, and the amount of
charge left in the battery—each defined as a whole number. The ZCL allows devices
to discover which attributes are available on a cluster, read attributes, write attributes,
receive periodic reports about attributes, or even receive an update when an attribute
changes.

The ZCL builds on top of ZigBee clusters. Each ZCL protocol command is simply an
operation sent from one cluster on one radio to another cluster on another a radio.
Most commands—such as the ZCL Attribute Read command—are sent from a client
cluster to a corresponding server cluster.

Next steps

Now that you know some of the basic concepts used in ZigBee APS layer communica-
tions, you can learn more by looking in the XBee ZB Product Manual (available from
http://www.digi.com/support/supporttype.jsp?tp=3) under the API section for:

• Explicit Addressing ZigBee Command Frames

Advanced ZigBee | 239

http://www.digi.com/support/supporttype.jsp?tp=3

• ZigBee Explicit Rx Indicator

• Sending ZigBee Device Objects (ZDO) Commands

• Sending ZigBee Cluster Library (ZCL) Commands

• Sending Public Profile Commands with the API

Also check the latest ZigBee Specification and Public Application Profile documenta-
tion at http://www.zigbee.org/Products/DownloadZigBeeTechnicalDocuments.aspx.

Routing
To get data from one place in the network to another, ZigBee employs several different
routing methods. The first is familiar to you and is the default that’s available at all
times. The next two are being introduced for the first time. They must be specified
using the AR command and, in some cases, special API frames:

Ad hoc On-demand Distance Vector (AODV) mesh routing
This default method that we’ve been using all along automatically creates routing
paths between every source and destination radio as needed. These AODV paths
can hop through multiple router nodes as necessary, with every intermediate hop
discovering the next step on the way to the destination address. Limitations in
space for internal routing tables mean that repeated route discoveries usually need
to take place to keep messages moving properly.

Many-to-one routing
The purpose of a sensor network is often to route data messages in from a large
number of remote nodes to one central location. Many-to-one routing is optimized
for this situation. The central location broadcasts a single routing configuration
message out to the network, allowing all remote devices to set up and save a reverse
path back toward the central destination node. After this path is created, no more
discoveries are needed for information to be properly delivered. The AR command
is used to enable many-to-one broadcasting on an XBee device.

Source routing
The purpose of other networks is to send messages from a central location out to
multiple remote nodes. Source routing allows the central location to discover and
store individual routes to a large number of remote nodes. These routes are not
stored on the central location’s radio, but obtained by the device or computer
controlling it using the XBee’s Route Record API frame. When the time comes to
send a message to one particular remote node, the central location specifies a route
to the remote node with the Create Source Route API frame. It then includes the
data and the destination address in an API Transmit Request. Routes include the
address of each intermediate hop that messages need to pass through to reach their
destination.

Each routing method has its pros and cons, outlined here in Table 8-1.

240 | Chapter 8: More to Love

http://www.zigbee.org/Products/DownloadZigBeeTechnicalDocuments.aspx

Table 8-1. ZigBee routing methods compared

Routing
method Pros Cons

AODV routing Default method, automatically creates routes,
works on any network topology.

Poor performance on large networks (more than 40
nodes) due to overhead for repeated routing requests.

Many-to-one
routing

Excellent performance for multiple paths in-
bound to a single central location.

Not appropriate for messages outbound from a central
location or networks with remote-to-remote messaging.
Requires custom configuration.

Source
routing

Excellent performance for outbound messages
from one or more central locations, especially
from highly capable devices such as computers.
Good for networks of more than 40 nodes.

Requires considerable preconfiguration, including spe-
cial device programming and offboard route storage.
Routes must be programmatically acquired, stored, and
recovered for sending.

The good news is that you won’t need to worry too much about advanced routing
methods on networks that are smaller than 40 nodes. However, as your networks grow,
more skills with routing will become essential.

Next steps

This overview of ZigBee routing serves as a guide to learning more. You can find
additional information in the XBee ZB Product Manual. Look in the Transmission,
Addressing, and Routing section for RF packet routing. You’ll see a detailed discussion
of and instructions for:

• Link status transmission

• AODV mesh routing

• Many-to-one routing

• Source routing

In the API section look at the frame types for:

• Route record indicator

• Many-to-one route request indicator

• Create source route

Finally, check the AR, NI, and DN commands in the XBee Command Reference Tables,
as these also relate to source routing. Take your time and work through your setup
slowly. The concepts may not initially seem intuitive but they are very powerful and
can help you build networks that are extremely large while still being remarkably
efficient.

Advanced ZigBee | 241

Security
ZigBee users are often anxious to employ encryption and security on their wireless
networks. Security can be essential when communications or the network itself needs
to be protected. Security can also be a liability, in terms of network resources and added
development effort, so always consider your project. What is at risk? Do the benefits
of adding security outweigh the costs? If you are transferring financial billing informa-
tion, clearly your network needs all sorts of protection. On the other hand, if you are
creating interactive kitty toys, adding security is only going to slow down your efforts,
bog down your network, and bore your cat.

Network and link keys

ZigBee uses mathematical keys to encrypt data that is passed over the wireless network.
There are two kinds of key-based security that can be used at the same time if desired:
network keys and link keys.

Network keys protect your data frames as they pass between nodes. Each packet of
data gets encrypted, sent to the next hop in the network, and decrypted before being
reencrypted and passed along to the following node. Network security is hop-to-hop
and fully protects your transmissions on private networks where all the radios are under
the control of one entity. Encrypting and decrypting the packet at every hop in the route
does add some transmission delay or latency. In addition, 18 bytes of overhead are
required for the key, so data packet size is decreased from 72 to 54. This means more
packets have to be sent to convey the same amount of information.

Link keys provide an added layer of end-to-end protection. Data is encrypted by the
sender and remains secure as it hops along the network. Each packet is only decrypted
when it reaches its destination. Use link keys to prevent intermediary hops from ex-
amining your data—useful on a shared network where individual nodes can’t be
trusted. For example, if you were sending personal information across a ZigBee network
set up at your school, you might want to secure that data from being seen unencrypted
by some radio that was legitimately a part of the network, but that you didn’t control.
The coordinator’s link key should also be used to encrypt the distribution of the net-
work key. Latency increases slightly and packet size is also decreased some more, so
there’s an additional cost to this type of layered security.

Technical details

Network security applies to data and routing messages, but not to the lower MAC-level
beacon requests used by radios to first join the network. The network key is either
preselected on the coordinator or set there randomly. Packets are encrypted and au-
thenticated using 128-bit Advanced Encryption Standard (AES), a symmetric-key en-
cryption standard adopted by the U.S. government’s National Institute of Standards.
A frame counter protects against replay attacks but tops out at 4 million (32 bits). If
you are going to send more than 4 million messages (unlikely, as even at 10 messages

242 | Chapter 8: More to Love

per second it would take 13 full years), check the radio documentation for advanced
suggestions about getting beyond that limit—for example, automatically leaving and
rejoining the network.

APS link security (end-to-end) is also 128-bit AES. It can’t be used in broadcast mode.
Both network and APS link security can be used at the same time, and often are since
they provide different types of protection.

Fast guide to turning on XBee network security

1. Set ATEE (Encryption Enable) to 1 for all devices on the network.

2. Set ATNK (Network Key) to 0 only on the coordinator. 0 is the default and selects a
random key, which is usually fine. You could also pick a 16-position hexadecimal.
The network key will be distributed to all nodes automatically. Keys are 128 bits
long and the NK register is write-only.

3. Set ATKY (link KeY) to any 16-position hexadecimal (0x0000000000000001 to
0xFFFFFFFFFFFFFFFF). Use the same key for all radios on the network. Manually
setting the coordinator’s link key on each radio allows encrypted distribution of
the network key. Keys are 128 bits long and the KY register is write-only.

Using optional APS encryption

APS end-to-end encryption can be selected on a per-packet basis by setting the enable
APS options bit in the API transmit frame (see Chapter 5). Using APS encryption de-
creases the maximum data payload size by 9 additional bytes. This is a good example
of how security is a trade-off, because it adds network latency and reduces communi-
cations efficiency. Only use it if you need it! For most, network-key-based security will
be enough.

ZigBee Protocol References
If this section’s taste of complexity has you hungry for more, here’s where to find a
cornucopia of information and documentation on the ZigBee protocol:

ZigBee Alliance Protocol Documentation
http://www.zigbee.org/Products/DownloadZigBeeTechnicalDocuments.aspx

ZigBee Alliance White Papers
http://www.zigbee.org/LearnMore/WhitePapers.aspx

XBee Product Manuals
http://www.digi.com/support

http://www.digi.com/support/supporttype.jsp?tp=3

Digi White Papers
http://www.digi.com/learningcenter/literature/whitepapers.jsp

Advanced ZigBee | 243

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.zigbee.org/Products/DownloadZigBeeTechnicalDocuments.aspx
http://www.zigbee.org/LearnMore/WhitePapers.aspx
http://www.digi.com/support
http://www.digi.com/support/supporttype.jsp?tp=3
http://www.digi.com/learningcenter/literature/whitepapers.jsp

Other ZigBee technical books
http://www.zigbee.org/LearnMore/BooksGuides.aspx

Serial Flow Control
Throughout this book we have been using two pins on the XBee to handle serial com-
munications. In some situations, simple TX and RX connections aren’t enough to en-
sure your data gets delivered intact. In these cases, serial flow control can help make
sure nothing is lost in transmission. Let’s get some background to help understand this.

Data is held in buffers inside the XBee module during the transmit and receive process.
Buffers are temporary memory locations that accumulate and hold information until
it is ready to be sent to the radio antenna or serial port. They are limited in size and
therefore sometimes need to be actively managed to prevent losing important data.

The serial transmit buffer inside the XBee holds data that is waiting to go out via radio
over the antenna. Information is accumulated there until a full packet is ready to go or
enough time has passed that the XBee decides that no more information is coming right
away. Data will also wait in the transmit buffer while the XBee is receiving information,
because it can’t talk and listen at the same time.

The serial receive buffer holds information that is waiting to be sent from the XBee’s
serial port (TX pin) to the host computer or microcontroller. Computers usually can
receive all the information the XBee has to send; however, in some cases microcon-
trollers won’t always be ready to process incoming data due to limited buffer size or
during times when the microcontroller program is busy doing other things.

RTS and CTS
The RTS (physical pin 16) and CTS (physical pin 12) pins on the XBee act like electronic
traffic lights to control the flow of information over the RX and TX pins:

CTS
Clear to send data to the XBee. When this pin is low, it is OK for the host computer
or microcontroller to proceed with sending serial information. For example, you
can connect this pin to one of the Arduino’s digital inputs and then read its state
before trying to send serial output, something like this:

if (digitalRead(ctsPin == LOW)) {
 Serial.print(important_data);
}

The CTS pin is de-asserted (set high) by the XBee when its serial receive buffer is
almost full so that incoming data from the host doesn’t overflow it and get lost.

244 | Chapter 8: More to Love

http://www.zigbee.org/LearnMore/BooksGuides.aspx

RTS
Request to send data from the XBee. When the RTS pin is low, it is OK for the
XBee to send serial information back to the host computer or microcontroller. The
RTS pin is de-asserted (set high) by the host during times when it is not able to
receive data into its own buffers. For example, you could attach one of the Ardu-
ino’s digital outputs to the RTS pin, and bring the pin high anytime you are not
ready to process incoming data:

digitalWrite(rtsPin, LOW);
if (Serial.available() > 0) {
 inVar = Serial.read();
}
//now go off do to something else
digitalWrite(rtsPin, HIGH);

Arduino does not currently include a native implementation of hard-
ware flow control. These basic code examples are provided for clarity.
They do not cover all the complexities you might run into when using
RTS and CTS together in the same application. Check the Arduino Fo-
rums if you want to learn more: http://arduino.cc/forum.

Sharing Data
You’ve put a lot of effort into collecting data from your sensor networks. There are
plenty of reasons to share the interesting information you’ve acquired. By putting your
data someplace accessible, you’ll be able to strut your stuff, share with colleagues, and
possibly pipe your information into other projects all over the world. You’ll also be
able to monitor your own data remotely. There are a myriad of methods for sharing
your data, so we’ll start you off with a popular one and let that serve as your guide to
self-promotion, collaboration, and cooperation.

Pachube
The Pachube site (pronounced “patch-bay”) offers public upload, download, and dis-
play of data for Internet-connected sensor networks. Device data, building information,
energy readings, and environmental results can be stored, shown, displayed, and
downloaded from anywhere in the world. The system is free to start with as long as
you make all of your data publicly available and don’t upload too much at once. Privacy
and extended features are available with paid accounts.

Pachube offers a wide variety of upload and download formats, including a full web
services API; downloads in XML, CSV, and JSON; online graphs of various kinds; and
the RSS format to track tags for new updates. Much of the data is available in Extended
Environmental Markup Language, a type of XML documented at http://eeml.org/. You
can get started with Pachube at http://www.pachube.com/, shown in Figure 8-2.

Sharing Data | 245

http://arduino.cc/forum
http://eeml.org/
http://www.pachube.com/

The next project modifies the simple sensor network you made in Chapter 5 to push
temperature data up to Pachube for sharing. The upload code is intentionally kept very
simple to show that sharing your data can be accomplished even without complex error
handling, state tracking, and the like. All you need to do is create data streams and push
your sensor information out to them on a regular basis.

Simple Sensor Network with Pachube
Sharing your data on the Pachube site involves setting up an account, obtaining some
ID numbers, downloading an additional Processing library, and running some lightly
amended Processing code that pushes your temperature network data to the site.

You’ll need to sign up for a Pachube account at http://www.pachube.com/signup (see
Figure 8-3). Accounts are free and require very little information, just a username, email
address, and password to get going.

Once you are signed up, the first thing to do is register a new feed using the Register a
Feed link on the home page. A feed is any collection of related data. For this project
you’ll use manual mode, meaning that your program will manually contact the Pachube
site every time there is data it wants to place there. Your feed will need a title, and you
can optionally enter other descriptive information as you see fit (see Figure 8-4).

Figure 8-2. Pachube’s home page, where you can sign up and register a feed

246 | Chapter 8: More to Love

http://www.pachube.com/signup

Figure 8-3. Pachube signup is free for a basic account

Figure 8-4. Pachube Input screen for registering a feed—any collection of related data streams

Simple Sensor Network with Pachube | 247

When you are done entering data, click the Save button at the bottom of the screen.
This takes you to the Output window that shows you the basic feed information and
several URLs for accessing data in XML, CSV, and JSON formats (Figure 8-5).

The number in each URL is your feed ID—for example http://api.pa
chube.com/v2/feeds/10298.xml. Make a note of that feed ID number.
You will need to enter it in your code for the project below!

Figure 8-5. Pachube’s Feed Output screen shows information about the feed, with links to receive that
data in XML, CSV, or JSON formats. The number listed in the URL is the feed ID.

API Key
To access your feed remotely, Pachube requires that you pass it an API key, which is
really just a long, private number to identify that it’s really you uploading the data.
Once you are signed in, you can get your API key by clicking on the My Profile link and
selecting the Settings tab (see Figure 8-6). You’ll want to copy this master API key so
that you can paste it into your Processing program later.

Build the Simple Sensor Network in Chapter 5
Create the hardware and configure all the radios exactly as you did for Chapter 5’s
Simple Sensor Network project. Don’t use the Processing code for the Chapter 5 project
though! The program sketch and associated libraries in Processing are different for this
Pachube version.

248 | Chapter 8: More to Love

http://api.pachube.com/v2/feeds/10298.xml
http://api.pachube.com/v2/feeds/10298.xml

Figure 8-6. Pachube Master API Key screen at the My Profile→Settings tab; your personal API key
must be entered in your program’s code and passed on each time you update feeds manually

Program the Base Station
The simple sensor network Pachube base station uses the Processing program below.
Download the ZIP file of all the libraries and resources from this book’s website (see
the Preface for more information). Inside the Processing sketch folder for the Simple
Sensor Network are two subdirectories called code and data (see Figure 8-7). The code
folder contains the log4j.jar and xbee-api-0.5.5.jar library files, just like in Chapter 5.
There’s also a new library here called JPachube that handles connections with Pachube.
The JPachube library is available at http://code.google.com/p/jpachube/, where you can
check for the latest version if necessary. The data folder still holds the log4j.properties
file, required by log4j.jar, and the font file for the sans serif 10-point font used for screen
display.

Figure 8-7. Directory structure for the Processing sketch program Simple Sensor Network Pachube,
including the JPachube library used for sharing data online

You must replace the COM port listed in this code with your actual
COM port. Look for it in the code around line 27. Port names are listed
in the console in Processing, as your program starts up.

You must also enter your API key and the Feed ID you created in this
code. Look for a string variable called apiKey and an integer variable
called feedID starting near line 36.

Simple Sensor Network with Pachube | 249

http://code.google.com/p/jpachube/

Once you’ve loaded the files and directories onto your computer and opened
Simple_Sensor_Network_Pachube.pde in Processing, press the Run button (labeled
with a triangle) to launch the display code. It will open in a new window and show a
thermometer for each sensor node detected. Every minute, it will attempt to upload a
reading to Pachube.

If all goes well, your data will now start showing up in Pachube. Check your feed at the
Pachube home page→My Feeds tab. Clicking on the feed title will show the Output
screen (Figure 8-5).

The latest data will be displayed at the bottom of the Output page, with an entry for
each data stream, in this case one for each temperature sensor, as shown in Figure 8-8.

Figure 8-8. Pachube data streams are at the bottom of the Output screen for each Feed. In this case
the ID created is the decimal version of the XBee’s 64-bit ID, so that each ID is unique.

Simple Sensor Network Pachube Code in Processing
Here’s the source code for the Processing sketch. The comments shown in bold about
the serial port, API key, and feed ID highlight essential changes. Other commented
instructions are only important if you didn’t download the source from the website
listed in the Preface:

/*
 * Draws a set of thermometers for incoming XBee Sensor data
 * by Rob Faludi http://faludi.com
 */

// used for Pachube connection http://pachube.com
// JPachube library available at http://code.google.com/p/jpachube/
import Pachube.*;

// used for communication via xbee api

250 | Chapter 8: More to Love

import processing.serial.*;

// xbee api libraries available at http://code.google.com/p/xbee-api/
// Download the zip file, extract it, and copy the xbee-api jar file
// and the log4j.jar file (located in the lib folder) inside a "code"
// folder under this Processing sketch's folder (save this sketch, then
// click the Sketch menu and choose Show Sketch Folder).
import com.rapplogic.xbee.api.ApiId;
import com.rapplogic.xbee.api.PacketListener;
import com.rapplogic.xbee.api.XBee;
import com.rapplogic.xbee.api.XBeeResponse;
import com.rapplogic.xbee.api.zigbee.ZNetRxIoSampleResponse;

String version = "1.04";

// *** REPLACE WITH THE SERIAL PORT (COM PORT) FOR YOUR LOCAL XBEE ***
String mySerialPort = "/dev/tty.usbserial-A1000iMG";

// *** REPLACE WITH YOUR OWN PACHUBE API KEY AND FEED ID ***
String apiKey="your_api_key_here";
int feedID=your_feed_id_here;

// create and initialize a new xbee object
XBee xbee = new XBee();

int error=0;

// used to record time of last data post
float lastUpdate;

// make an array list of thermometer objects for display
ArrayList thermometers = new ArrayList();
// create a font for display
PFont font;

void setup() {
 size(800, 600); // screen size
 smooth(); // anti-aliasing for graphic display

 // You'll need to generate a font before you can run this sketch.
 // Click the Tools menu and choose Create Font. Click Sans Serif,
 // choose a size of 10, and click OK.
 font = loadFont("SansSerif-10.vlw");
 textFont(font); // use the font for text

 // The log4j.properties file is required by the xbee api library, and
 // needs to be in your data folder. You can find this file in the xbee
 // api library you downloaded earlier
 PropertyConfigurator.configure(dataPath("")+"log4j.properties");
 // Print a list in case the selected one doesn't work out
 println("Available serial ports:");

Simple Sensor Network with Pachube | 251

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 println(Serial.list());
 try {
 // opens your serial port defined above, at 9600 baud
 xbee.open(mySerialPort, 9600);
 }
 catch (XBeeException e) {
 println("** Error opening XBee port: " + e + " **");
 println("Is your XBee plugged in to your computer?");
 println(
 "Did you set your COM port in the code near line 27?");
 error=1;
 }
}

// draw loop executes continuously
void draw() {
 background(224); // draw a light gray background
 // report any serial port problems in the main window
 if (error == 1) {
 fill(0);
 text("** Error opening XBee port: **\n"+
 "Is your XBee plugged in to your computer?\n" +
 "Did you set your COM port in the code near line 20?", width/3, height/2);
 }
 SensorData data = new SensorData(); // create a data object
 data = getData(); // put data into the data object
 //data = getSimulatedData(); // uncomment this to use random data for testing

 // check that actual data came in:
 if (data.value >=0 && data.address != null) {

 // check to see if a thermometer object already exists for this sensor
 int i;
 boolean foundIt = false;
 for (i=0; i <thermometers.size(); i++) {
 if (((Thermometer) thermometers.get(i)).address.equals(data.address)) {
 foundIt = true;
 break;
 }
 }

 // process the data value into a Celsius temperature reading for
 // LM335 with a 1/3 voltage divider
 // (value as a ratio of 1023 times max ADC voltage times
 // 3 [voltage divider value] divided by 10mV per degree
 // minus zero Celsius in Kelvin)
 float temperatureCelsius = (data.value/1023.0*1.2*3.0*100)-273.15;
 println(" temp: " + round(temperatureCelsius) + "°C");

 // update the thermometer if it exists, otherwise create a new one
 if (foundIt) {
 ((Thermometer) thermometers.get(i)).temp = temperatureCelsius;
 }
 else if (thermometers.size() < 10) {

252 | Chapter 8: More to Love

 thermometers.add(new Thermometer(data.address,35,450,
 (thermometers.size()) * 75 + 40, 20, data.numericAddr));
 ((Thermometer) thermometers.get(i)).temp = temperatureCelsius;
 }

 // draw the thermometers on the screen
 for (int j =0; j<thermometers.size(); j++) {
 ((Thermometer) thermometers.get(j)).render();
 }
 // post data to Pachube every minute
 if ((millis() - lastUpdate) > 60000) {
 for (int j =0; j<thermometers.size(); j++) {
 ((Thermometer) thermometers.get(j)).dataPost();
 }
 lastUpdate = millis();
 }
 }
} // end of draw loop

// defines the data object
class SensorData {
 int value;
 String address;
 long numericAddr;
}

// defines the thermometer objects
class Thermometer {
 int sizeX, sizeY, posX, posY;
 int maxTemp = 40; // max of scale in degrees Celsius
 int minTemp = −10; // min of scale in degrees Celsius
 float temp; // stores the temperature locally
 String address; // stores the address locally
 long numAddr; // stores the numeric version of the address

 Thermometer(String _address, int _sizeX, int _sizeY,
 int _posX, int _posY, long _numAddr) { // initialize thermometer object
 address = _address;
 sizeX = _sizeX;
 sizeY = _sizeY;
 posX = _posX;
 posY = _posY;
 numAddr = _numAddr;
 }

 void dataPost() {
 // add and tag a datastream
 int thermometerFeedID = (int) (numAddr);
 println("thermometerFeedID: " + thermometerFeedID);
 // initialize Pachube and Feed objects
 try {
 Pachube p = new Pachube(apiKey);

Simple Sensor Network with Pachube | 253

 // get the feed by its ID
 Feed f = p.getFeed(feedID);

 Data a = new Data();
 a.setId(thermometerFeedID);
 a.setMaxValue(40d);
 a.setMinValue(-10d);
 a.setTag("\"celsius temperature\", " + "\"" + address + "\"");

 // attempt to create it
 try {
 f.createDatastream(a);
 }
 catch (PachubeException e) {
 // Not a problem; this just means the feed for this
 // thermometer ID exists, and we're adding more data
 // to it now.
 if (e.errorMessage.equals("HTTP/1.1 400 Bad Request")) {
 println("feed already exists");
 }
 else {
 println(e.errorMessage);
 }
 }

 println("posting to Pachube...");
 f.updateDatastream(thermometerFeedID,
 (double) temp); // update the datastream
 }
 catch (PachubeException e) {
 println(e.errorMessage);
 }
 }

 void render() { // draw thermometer on screen
 noStroke(); // remove shape edges
 ellipseMode(CENTER); // center bulb
 float bulbSize = sizeX + (sizeX * 0.5); // determine bulb size
 int stemSize = 30; // stem augments fixed red bulb
 // to help separate it from moving mercury
 // limit display to range
 float displayTemp = round(temp);
 if (temp > maxTemp) {
 displayTemp = maxTemp + 1;
 }
 if ((int)temp < minTemp) {
 displayTemp = minTemp;
 }
 // size for variable red area:
 float mercury = (1 - ((displayTemp-minTemp) / (maxTemp-minTemp)));
 // draw edges of objects in black
 fill(0);
 rect(posX-3,posY-3,sizeX+5,sizeY+5);
 ellipse(posX+sizeX/2,posY+sizeY+stemSize, bulbSize+4,bulbSize+4);
 rect(posX-3, posY+sizeY, sizeX+5,stemSize+5);

254 | Chapter 8: More to Love

 // draw gray mercury background
 fill(64);
 rect(posX,posY,sizeX,sizeY);
 // draw red areas
 fill(255,16,16);

 // draw mercury area:
 rect(posX,posY+(sizeY * mercury),
 sizeX, sizeY-(sizeY * mercury));

 // draw stem area:
 rect(posX, posY+sizeY, sizeX,stemSize);

 // draw red bulb:
 ellipse(posX+sizeX/2,posY+sizeY + stemSize, bulbSize,bulbSize);

 // show text
 textAlign(LEFT);
 fill(0);
 textSize(10);

 // show sensor address:
 text(address, posX-10, posY + sizeY + bulbSize + stemSize + 4, 65, 40);

 // show maximum temperature:
 text(maxTemp + "°C", posX+sizeX + 5, posY);

 // show minimum temperature:
 text(minTemp + "°C", posX+sizeX + 5, posY + sizeY);

 // show temperature:
 text(round(temp) + " °C", posX+2,posY+(sizeY * mercury+ 14));
 }
}

// used only if getSimulatedData is uncommented in draw loop
//
SensorData getSimulatedData() {
 SensorData data = new SensorData();
 int value = int(random(750,890));
 String address = "00:13:A2:00:12:34:AB:C" + str(round(random(0,2)));
 data.value = value;
 data.address = address;
 data.numericAddr = unhex(data.address.replaceAll(":", ""));
 delay(200);
 return data;
}

// queries the XBee for incoming I/O data frames
// and parses them into a data object
SensorData getData() {

 SensorData data = new SensorData();
 int value = −1; // returns an impossible value if there's an error
 String address = ""; // returns a null value if there's an error

Simple Sensor Network with Pachube | 255

 try {
 // we wait here until a packet is received.
 XBeeResponse response = xbee.getResponse();
 // uncomment next line for additional debugging information
 //println("Received response " + response.toString());

 // check that this frame is a valid I/O sample, then parse it as such
 if (response.getApiId() == ApiId.ZNET_IO_SAMPLE_RESPONSE
 && !response.isError()) {
 ZNetRxIoSampleResponse ioSample =
 (ZNetRxIoSampleResponse)(XBeeResponse) response;

 // get the sender's 64-bit address
 int[] addressArray = ioSample.getRemoteAddress64().getAddress();
 // parse the address int array into a formatted string
 String[] hexAddress = new String[addressArray.length];
 for (int i=0; i<addressArray.length;i++) {
 // format each address byte with leading zeros:
 hexAddress[i] = String.format("%02x", addressArray[i]);
 }
 // join the array together for a numeric address:
 long numericAddress = unhex(join(hexAddress,""));
 data.numericAddr = numericAddress;
 print("numeric address: " + numericAddress);
 // join the array together with colons for readability:
 String senderAddress = join(hexAddress, ":");
 print(" sender address: " + senderAddress);
 data.address = senderAddress;
 // get the value of the first input pin
 value = ioSample.getAnalog0();
 print(" analog value: " + value);
 data.value = value;
 }
 else if (!response.isError()) {
 println("Got error in data frame");
 }
 else {
 println("Got non-i/o data frame");
 }
 }
 catch (XBeeException e) {
 println("Error receiving response: " + e);
 }
 return data; // sends the data back to the calling function
}

Troubleshooting

If things don’t work at first, here are some steps to try:

1. Run through all the troubleshooting steps in Chapter 5 to ensure that the basic
project’s electronics and configuration are functioning properly.

2. Confirm that you entered your API key correctly in the Processing code.

256 | Chapter 8: More to Love

3. Check that the feed ID you entered in the code matches the ID number of the feed
you set up in Pachube.

4. Make sure you entered the correct port information for your XBee adapter in the
Processing code.

5. Third-party services often change without warning. Check the Pachube website
and the JPachube code library site to see if there have been any updates that might
alter the way Pachube or the library functions.

The Future of ZigBee
One thing is for certain: ZigBee won’t stay the way it is for long. The protocol is finding
its way into lots of new markets so new capabilities are bound to develop quickly. One
of the most interesting ventures from the ZigBee Alliance is a new protocol being de-
veloped in cooperation with the HomePlug Alliance: ZigBee Smart Energy 2.0. This
new standard is broadly envisioned as a networking and application integration plat-
form for messages between customer devices and energy services providers. The stated
goal of the ZigBee+HomePlug collaboration is to “Develop a common system archi-
tecture and application profile interfaces for home energy devices, supported by a
comprehensive certification process that delivers secure, robust, reliable, plug and play
interoperability with AMI and Smart Grid applications.”

It is reasonable to expect that innovations made in the Smart Energy 2.0 specification
will inform other application profiles and, therefore, the path of ZigBee going forward.
While the specifications are still being drafted, here are some of the most interesting
features being discussed:

• Plans to add support for additional networking protocols, including WiFi (802.11),
and HomePlug powerline. These will be in addition to the existing wireless
802.15.4. support.

• Communications over both wireless and wired networks.

• Internet Protocol addressing, including the new IPv6 standard that allows for 128-
bit addresses. This creates an addressable space large enough for every device in
the world to have a unique address.

• Standard UDP and TCP support so that seamless interconnections with the Inter-
net will become possible.

• HTTP or other RESTful application protocols are expected to be included to extend
these popular interconnection standards for the Web to home area devices.

This push to adopt and incorporate addressing, protocols, and interconnection stand-
ards from the global Internet should mean that direct communications between devices
anywhere will become much easier to implement. Look for a future where common
household objects like lamps and wall clocks can join Internet conversations as easily

The Future of ZigBee | 257

as a teenager can join Facebook. ZigBee stands to be a strong player in giving sensors
and devices access to the world at large.

Next Steps for You
You’ve finally come to the end of the book, but your journey is just beginning! There’s
no end to the projects you can create—and plenty of excellent resources that can guide
you in making your new creations.

Making Stuff
To whet your appetite, here’s a list of 20 whimsically envisioned projects that could be
brought into being with ZigBee radios and sensor networks. Hopefully one or more
will inspire a creation of your own:

• Manage a model airplane competition.

• Make a room into a musical instrument.

• Create an electronic game of hide-and-seek.

• Monitor and display your electrical use to help reduce your bills.

• Entertain or perturb your pets.

• Keep track of open spots in a parking lot.

• Keep an eye on your grandmother’s home health care.

• Link a feed of worldwide earthquakes to your massage chair.

• Network your sailboat.

• Create sock sensors to detect cold feet.

• Design reactive furniture.

• Bring a swarm of toy dinosaurs to life and simulate their migration.

• Record rainfall in an apple orchard.

• Make bracelets that sparkle when you’re with your best friend.

• Create an interactive haunted house.

• Track air quality in a nearby forest.

• Send secret signals to your friends.

• Plant a garden that cares for itself.

• Sensor suit + robotic puppet = new form of ballet.

• Link a wind gauge to a fan in your cubicle and bring the outside in.

• ___ (because your
own idea is the one that will change the world!).

258 | Chapter 8: More to Love

Sharing Your Work
Networks aren’t just for devices. By reading this book and creating some of its systems,
you have joined a community of makers—people who include artists, engineers,
crafters, scientists, hobbyists, students, teachers, entrepreneurs, hackers, and inven-
tors. You are also one of many people using Arduino, XBee, Processing, and Python.
Communities require communication and, just like networks, they work best when the
whole is greater than the sum of its parts. You will find that sharing your process and
projects can net feedback and recommendations from all over the world. This can make
the outcome of your hard work even better. To share your projects, your code, and
your hard-won wisdom:

• Participate in the forums linked from this book’s website.

• On Twitter: use #BWSN to tag your tweets.

• For Instructables: use keyword BWSN.

• In Flickr: tag your photos with BWSN and add them to the BWSN group.

• For Pachube: tag your feed with BWSN.

• On YouTube and other video sites: tag your videos with BWSN.

Makers everywhere will be looking forward to seeing what you invented and hearing
about how your projects made the journey from imagination to reality. Best of luck
with your fabulous creations, and happy networking!

Next Steps for You | 259

http://www.flickr.com/groups/bwsn/

APPENDIX

Resource Guide

You’ve savored the glamour and glitz of wireless networking; now here’s some extra
substance to ensure that you’re fully satisfied with your high-tech meal. Since you have
already launched yourself into the wireless mesh, to keep the book useful we’ve inclu-
ded links to online resources for learning more about Arduino, Processing, Python, and
of course, ZigBee. There’s a list of recommended books that can help you flesh out your
technical library. And because every project sees its share of errors and glitches, you
will find a handy troubleshooting guide to get you unstuck from common mistakes.
There are tables to use as a fast daily reference of Digi radio flavors, other brands of
ZigBee modules, network analyzers, packet sniffers, and XBee connectors and shields.
There are also cross-referenced tables for hexadecimals, binary numbers, and ASCII
codes to help keep your bytes organized, and finally, a complete guide to AT commands
for the ZB radio modules.

Remember that URLs and offerings will change as time goes by, so check the book’s
website (listed in the Preface) for updated references to new resources.

Arduino Resources
Here are some Arduino resources you’ll find useful:

Arduino Blog (http://arduino.cc/blog/)
This is the official blog, featuring Arduino news, announcements, cool projects,
and more.

Arduino Forum (http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl)
This is the official Arduino forum site, which contains subforums on many Arduino
topics such as troubleshooting, programming, cool projects, and more.

Arduino Playground (http://www.arduino.cc/playground/)
The Playground is a wiki containing Arduino tutorials, circuits, and code. This is
a good place to start if you’re trying to connect Arduino to an unfamiliar device.

261

http://arduino.cc/blog/
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl
http://www.arduino.cc/playground/

Ladyada.net Arduino Tutorials (http://www.ladyada.net/learn/arduino/)
This is a great set of lessons from the folks behind Adafruit Industries.

Make: Online’s Arduino section (http://blog.makezine.com/archive/arduino/)
This section of Make: Online’s blog is devoted to all things Arduino.

Make: Projects’ Arduino section (http://makeprojects.com/Topic/Arduino)
Make: Projects is an editable wiki full of projects.

Processing Resources
Here are some resources for the Processing language:

Processing Wiki (http://wiki.processing.org/w/Main_Page)
This wiki features documentation, example programs, reference material, and
other resources.

The Processing Feed (http://feed.processing.org/)
Keep up-to-date on the latest news from the world of Processing.

Tutorials (http://processing.org/learning/)
These tutorials will get you up and running with Processing and also teach you
advanced Processing topics.

Processing examples (http://processing.org/learning/topics/)
This section of the site contains many short Processing examples that can run in
your browser.

Python Resources
Here are some resources for the Python language:

Python Documentation (http://www.python.org/doc/)
This documentation covers all the currently supported versions of Python and has
links to various learning resources.

Python News (http://www.python.org/news/)
Keep up-to-date on the latest news from the Python community.

Community (http://www.python.org/community/)
This page links to various mailing lists, wikis, user groups, and more.

The Python Tutorial (http://docs.python.org/tutorial/)
This is the official Python tutorial.

262 | Appendix: Resource Guide

http://www.ladyada.net/learn/arduino/
http://www.adafruit.com/
http://blog.makezine.com/archive/arduino/
http://makeprojects.com/Topic/Arduino
http://wiki.processing.org/w/Main_Page
http://feed.processing.org/
http://processing.org/learning/
http://processing.org/learning/topics/
http://www.python.org/doc/
http://www.python.org/news/
http://www.python.org/community/
http://docs.python.org/tutorial/

ZigBee Resources Online
The Internet has plenty of important ZigBee resources, including specifications and
information from the various standards organizations, interesting white papers, com-
munity forums, and additional tidbits compiled by other organizations.

Standards Organizations
ZigBee Alliance (http://www.zigbee.org)

The Alliance is an association of companies that defines the protocol layers for
ZigBee and promotes the standard itself as a brand.

Official ZigBee Specifications & Public Application Profiles (http://www.zigbee.org/Prod
ucts/DownloadZigBeeTechnicalDocuments.aspx)

These documents contain the official definitions for how the ZigBee protocol and
ZigBee public application profiles operate.

ZigBee Alliance White Papers (http://www.zigbee.org/LearnMore/WhitePapers.aspx)
The white papers contain longer narrative explanations of application profiles,
interoperation, and vision for the ZigBee project going forward.

ZigBee Alliance guide to technical books (http://www.zigbee.org/LearnMore/Book
sGuides.aspx)

This guide is a short list of technical books and resources related to ZigBee.

ZigBee Alliance guide to testing and development solutions (http://www.zigbee.org/Prod
ucts/TestDevelopmentSolutions.aspx)

Here you’ll find tools and devices for testing new ZigBee products for official
certification.

IEEE 802.15.4 (http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf)
This is the official specification for the network layers that live below ZigBee.

6LoWPAN ITEF (http://tools.ietf.org/html/rfc4944)
This is the initial specification that will define ZigBee IP addressing in the future
using IPv6 for low-power wireless personal area networks.

6LoWPAN document library (http://datatracker.ietf.org/wg/6lowpan)
This library contains additional documents on 6LoWPAN.

Digi International Resources
Digi Developer Wiki (http://www.digi.com/wiki/developer)

Here you’ll find evolving documentation and examples for working with Digi
products.

Digi Forums (http://www.digi.com/support/forum/listforums?category=16)
This is the official discussion area for XBee-brand ZigBee radios.

ZigBee Resources Online | 263

http://www.zigbee.org
http://www.zigbee.org/Products/DownloadZigBeeTechnicalDocuments.aspx
http://www.zigbee.org/Products/DownloadZigBeeTechnicalDocuments.aspx
http://www.zigbee.org/LearnMore/WhitePapers.aspx
http://www.zigbee.org/LearnMore/BooksGuides.aspx
http://www.zigbee.org/LearnMore/BooksGuides.aspx
http://www.zigbee.org/Products/TestDevelopmentSolutions.aspx
http://www.zigbee.org/Products/TestDevelopmentSolutions.aspx
http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf
http://tools.ietf.org/html/rfc4944
http://datatracker.ietf.org/wg/6lowpan
http://www.digi.com/wiki/developer
http://www.digi.com/support/forum/listforums?category=16

White paper: Demystifying 802.15.4 & ZigBee (http://www.digi.com/pdf/wp_zigbee.pdf)
Read a cogent explanation of how ZigBee is related to its underlying 802.15.4 layer.

White paper: Untangling the Mesh (http://www.digi.com/pdf/wp_untanglingthemesh
.pdf)

This guide discusses mesh networks, including wireless network basics, and gives
an overview of mesh-related technologies.

White paper: Source Routing (http://www.digi.com/wiki/developer/index.php/Large_Zig
Bee_Networks_and_Source_Routing)

If you need to use the advanced source routing protocol discussed in Chapter 8,
this guide can help you implement it on XBee ZB radio modules.

White paper: Antenna Considerations (http://ftp1.digi.com/support/images/XST
-AN019a_XBeeAntennas.pdf)

This is an older but still relevant guide to the different antenna options available
for XBee modules.

Additional Online Resource Lists
Daintree Networks ZigBee Information (http://www.daintree.net/resources/index.php)

This guide includes useful white papers, a comparison matrix for older versions of
the ZigBee protocol, and a glossary of terms.

Palo Wireless ZigBee resources (http://www.palowireless.com/zigbee/tutorials.asp)
This is an interesting article list that focuses on the rationale behind ZigBee and
gives some comparisons to other standards, including Bluetooth.

Webcom’s ZigBee Resource Guide (http://www.zigbeeresourceguide.com)
Webcom publishes this commercially sponsored guide to ZigBee resources that
includes advertising from various industry players.

ZDNet ZigBee Topics (http://www.zdnet.com/topics/zigbee)
This is a collection of articles published by ZDNet and tagged as ZigBee-related.

Recommended Books
The following publications can help you learn more about some of the topics briefly
covered in this book:

• Programming PHP by Rasmus Lerdorf, et al. (O’Reilly)

• The Visual Display of Quantitative Information by Edward Tufte (Graphics Press)

• The Design of Everyday Things by Donald Norman (Basic Books)

• Getting Started with Arduino by Massimo Banzi (O’Reilly)

• Learning Processing: A Beginner’s Guide to Programming Images, Animation, and
Interaction by Daniel Shiffman (Morgan Kaufmann)

264 | Appendix: Resource Guide

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.digi.com/pdf/wp_zigbee.pdf
http://www.digi.com/pdf/wp_untanglingthemesh.pdf
http://www.digi.com/pdf/wp_untanglingthemesh.pdf
http://www.digi.com/wiki/developer/index.php/Large_ZigBee_Networks_and_Source_Routing
http://www.digi.com/wiki/developer/index.php/Large_ZigBee_Networks_and_Source_Routing
http://ftp1.digi.com/support/images/XST-AN019a_XBeeAntennas.pdf
http://ftp1.digi.com/support/images/XST-AN019a_XBeeAntennas.pdf
http://www.daintree.net/resources/index.php
http://www.palowireless.com/zigbee/tutorials.asp
http://www.zigbeeresourceguide.com
http://www.zdnet.com/topics/zigbee
http://oreilly.com/catalog/9780596006815/
http://oreilly.com/catalog/9780596155520/

• Making Things Talk: Physical Computing with Sensors, Networks, and Arduino by
Tom Igoe (O’Reilly)

• Getting Started with Processing by Casey Reas and Ben Fry (O’Reilly)

• Practical Electronics for Inventors by Paul Scher (McGraw-Hill)

• Make: Electronics by Charles Platt (O’Reilly)

• Physical Computing: Sensing and Controlling the Physical World with Computers by
Tom Igoe and Dan O’Sullivan (Course Technology PTR)

Sidewalk Telescopes
At the end of the Preface, I mention sidewalk telescopes are a source of inspiration. If
you’d like to build a sensor that detects the universe, here are some links to get you
started:

• http://www.telescopesineducation.com/dobson/index.html

• http://www.sfsidewalkastronomers.org

• http://quanta-gaia.org/dobson/

Troubleshooting
When it’s late at night and you just can’t get your network working, more than likely
a simple solution is waiting in the wings. Here are some tips for resolving issues typically
encountered when working with XBee and Arduino systems.

Common XBee Mistakes
If your project won’t work, check through this list of common mistakes that both be-
ginners and experts make:

• Not using the correct firmware (choose coordinator, router, end device, and AT
or API mode).

• Using ZNet 2.5 firmware, which is obsolete and will not interoperate with ZB
firmware.

• Forgetting that AT commands use hexadecimals.

• Hitting Return after +++ (or otherwise not respecting the 1-second default guard
times).

• Conversely, not hitting Return after an AT command.

• Letting the XBee time out of command mode before issuing an AT command (you’ll
know because you get no response).

• Forgetting to write the configuration to firmware with ATWR (unless your application
configures the radio interactively).

Troubleshooting | 265

http://oreilly.com/catalog/0636920010920/
http://oreilly.com/catalog/0636920000570/
http://oreilly.com/catalog/9780596153755/
http://www.telescopesineducation.com/dobson/index.html
http://www.sfsidewalkastronomers.org
http://quanta-gaia.org/dobson/

• Not using ATRE (restore factory defaults) before reconfiguring a previously used
radio. Previous settings lurk unless you manually reset them all.

• Using a voltage regulator without decoupling capacitors (10 μF on input, 1 μF on
output is usually good).

• Mixing up TX and RX pins. The fastest way to check this is to switch the wires and
see if things start working.

• Trying to read more than 1.2 volts on the ZB analog inputs (1.2 V is the upper limit).

• Buying PRO radios when you don’t need them. Pros cost more, are bigger, and use
a lot more battery power.

• Deciding the XBees are flaky. (You may not be using them correctly; they are very
reliable.)

• Deciding an XBee is burned out when it’s set to a different baud rate. Check that
the ON and ASSOC lights are functioning to confirm proper operation.

• Deciding an XBee is burned out when it is just sleeping. Check the ON light to see
if it blinks occasionally.

• Forgetting to supply power or ground. (The ON light may go on and ASSOC light
may blink, but both will be significantly dimmer.)

• Neglecting to check whether you are joined to the right network using ATAI to test
for joining, and/or ATND to discover other network nodes.

• Not enabling rejoining for radios on smaller-sized networks (by setting ATJV to 1).

• Not contacting Digi sooner for support, especially if your radio seems dead or you
keep getting an error you don’t understand.

XBee Arduino Mistakes
Here are a few more mistakes commonly made during XBee projects that work with
Arduino:

• Sending values continuously without any delay. (Try a 10 ms delay in case you are
overwhelming the receiving end.)

• Not removing RX and TX connections before uploading code. (Arduino will give
an error.)

• Not removing the RX connection when resetting, if you are continuously receiving
data. (Arduino will never reset.)

Reference Tables
The information in this section provides a reference to radio modules, useful tools,
numbering systems, and all of the XBee AT command set for the ZB radios.

266 | Appendix: Resource Guide

Other ZigBee Modules
Although Digi’s XBee radios are certainly the most popular option for certain markets,
they are hardly the only option for ZigBee modules. Table A-1 shows some of the many
manufacturers and components you might consider for your projects, including some
of the ZigBee integrated circuit (IC) chips that modules use internally.

Table A-1. ZigBee module options

Manufacturer URL Components

Atmel http://www.atmel.com ICs, modules, development environment

California Eastern Laboratories http://www.cel.com/ ICs, modules

Digi International http://www.digi.com Modules, development kits and environments

Freescale http://www.freescale.com ICs, development kits and environments

Ember http://www.ember.com ICs, development kits and environments

Jennic http://www.jennic.com ICs, modules, development environments

Laird Technologies http://www.lairdtech.com Modules, development kits

LS Research http://www.lsr.com/ Modules, development kits, test environments

Microchip http://www.microchip.com Modules

Panasonic http://www.panasonic.com Modules

Radiocrafts http://www.radiocrafts.com Modules

RadioPulse http://www.radiopulse.co.kr ICs

Radiotronix http://www.radiotronix.com/ Modules

Telegesis http://www.telegesis.com/ Modules, development kits, USB dongles

Telit http://www.telit.com Modules, development environments, USB dongles

Texas Instruments http://www.ti.com ICs, development kits and environments

ZigBee Packet Sniffers
Table A-2 shows devices that detect and capture 802.15.4 and ZigBee radio signals for
analysis. Packet sniffers are somewhat expensive but indispensable troubleshooting
tools, typically used in professional network design. If you get really serious about
ZigBee, you’ll want to own one.

Reference Tables | 267

http://www.atmel.com
http://www.cel.com/
http://www.digi.com
http://www.freescale.com
http://www.ember.com
http://www.jennic.com
http://www.lairdtech.com
http://www.lsr.com/
http://www.microchip.com
http://www.panasonic.com
http://www.radiocrafts.com
http://www.radiopulse.co.kr
http://www.radiotronix.com/
http://www.telegesis.com/
http://www.telit.com
http://www.ti.com

Table A-2. Network analyzers and packet sniffers

Device Manufacturer URL

Perytons Analyzer Perytons http://www.perytons.com/products_perytonS.php

Sensor Network Analyzer Daintree Networks http://www.daintree.net/sna/sna.php

WiSens BzWorks Ltd. http://bzworks.com/wisenssoftware.htm

ZENA Network Analyzer Microchip Technology http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&
nodeId=1406&dDocName=en520682

Digi XBee Radio Modules
Table A-3 shows the various XBee radio modules that are available.

Table A-3. Guide to XBee radio module versions

XBee radio type Protocol Frequency Notes

XBee ZB ZigBee PRO 2.4 GHz Regular and PRO high-power versions are available.

XBee ZB SMT ZigBee PRO 2.4 GHz Surface mount for soldering directly to printed circuit
boards. Regular and PRO versions available.

XBee ZNet 2.5 ZigBee (obsolete
version!)

2.4 GHz Obsolete, but firmware can be replaced with newer ZB
ZigBee PRO version in X-CTU.

XBee DigiMesh DigiMesh 2.4 GHz Proprietary protocol. Regular and PRO versions available.

XBee-PRO DigiMesh
900

DigiMesh 900 MHz Proprietary protocol. Only the PRO version is available.

XBee-PRO 868 Proprietary 868 MHz Licensed for use in Europe only.

XBee 802.15.4 IEEE 802.15.4 2.4 GHz Regular and PRO versions are available.

XBee-PRO XSC Proprietary 900 MHz ~10 km outdoor range.

XBee Connectors and Shields
Chapters 1 and 3 showed you some excellent options for connecting the XBee to com-
puters via USB and directly to Arduino. Table A-4 is more comprehensive list of com-
ponents that you can use to link the XBee to other devices.

268 | Appendix: Resource Guide

http://www.perytons.com/products_perytonS.php
http://www.daintree.net/sna/sna.php
http://bzworks.com/wisenssoftware.htm
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en520682
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en520682

Table A-4. Connectors and shields for XBee

Component Connection Manufacturer URL

XBee Adapter Kit Computer via FTDI
cable, breadboard

Adafruit http://www.adafruit.com/index.php?main_page=
product_info&products_id=126

Arduino XBee Shield Arduino Arduino/Libelium http://arduino.cc/en/Main/ArduinoXbeeShield

USB Development
Board (part of kit)

Computer Digi International http://store.digi.com/index.cfm?fuseaction=product
.display&Product_ID=2352

FIO Arduino Funnel http://funnel.cc

XBee to USB Adapter Computer Gravitech http://store.gravitech.us/xbtousbad.html

XBee Dongle Computer New Micros http://www.newmicros.com/cgi-bin/store/order.cgi
?form=prod_detail&part=USB-XBEE-DONGLE-CAR
RIER

USB XBee Adapter Computer,
breadboard

Parallax http://www.parallax.com/Store/Accessories/Commu
nicationRF/tabid/161/ProductID/643/List/0/Default
.aspx

LilyPad XBee Wearables (e.g.,
clothing)

SparkFun
Electronics

http://www.sparkfun.com/commerce/product_info
.php?products_id=8937

Seeeduino XBee
Shield

Arduino Seeed Studio http://www.seeedstudio.com/depot/xbee-shield
-v11-by-seeedstudio-p-419.html

XBee Explorer Computer,
breadboard

SparkFun
Electronics

http://www.sparkfun.com/commerce/product_info
.php?products_id=8687

XBee Explorer Serial Computer with
RS-232 serial

SparkFun
Electronics

http://www.sparkfun.com/commerce/product_info
.php?products_id=9111

SparkFun XBee
Shield

Arduino SparkFun
Electronics

http://www.sparkfun.com/commerce/product_info
.php?products_id=9588

Hex, Decimal, and Binary
Table A-5 shows the numbers 0 through 32 represented in three different numeric
bases: base 16 (hexadecimal), base 10 (decimal), and base 2 (binary).

Reference Tables | 269

http://www.adafruit.com/index.php?main_page=product_info&products_id=126
http://www.adafruit.com/index.php?main_page=product_info&products_id=126
http://arduino.cc/en/Main/ArduinoXbeeShield
http://store.digi.com/index.cfm?fuseaction=product.display&Product_ID=2352
http://store.digi.com/index.cfm?fuseaction=product.display&Product_ID=2352
http://funnel.cc
http://store.gravitech.us/xbtousbad.html
http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=USB-XBEE-DONGLE-CARRIER
http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=USB-XBEE-DONGLE-CARRIER
http://www.newmicros.com/cgi-bin/store/order.cgi?form=prod_detail&part=USB-XBEE-DONGLE-CARRIER
http://www.parallax.com/Store/Accessories/CommunicationRF/tabid/161/ProductID/643/List/0/Default.aspx
http://www.parallax.com/Store/Accessories/CommunicationRF/tabid/161/ProductID/643/List/0/Default.aspx
http://www.parallax.com/Store/Accessories/CommunicationRF/tabid/161/ProductID/643/List/0/Default.aspx
http://www.sparkfun.com/commerce/product_info.php?products_id=8937
http://www.sparkfun.com/commerce/product_info.php?products_id=8937
http://www.seeedstudio.com/depot/xbee-shield-v11-by-seeedstudio-p-419.html
http://www.seeedstudio.com/depot/xbee-shield-v11-by-seeedstudio-p-419.html
http://www.sparkfun.com/commerce/product_info.php?products_id=8687
http://www.sparkfun.com/commerce/product_info.php?products_id=8687
http://www.sparkfun.com/commerce/product_info.php?products_id=9111
http://www.sparkfun.com/commerce/product_info.php?products_id=9111
http://www.sparkfun.com/commerce/product_info.php?products_id=9588
http://www.sparkfun.com/commerce/product_info.php?products_id=9588

Table A-5. The numbers 0 through 32 in hex, decimal, and binary

Hexadecimal Decimal Binary

0x00 00 00000000

0x01 01 00000001

0x02 02 00000010

0x03 03 00000011

0x04 04 00000100

0x05 05 00000101

0x06 06 00000110

0x07 07 00000111

0x08 08 00001000

0x09 09 00001001

0x0a 10 00001010

0x0b 11 00001011

0x0c 12 00001100

0x0d 13 00001101

0x0e 14 00001110

0x0f 15 00001111

0x10 16 00010000

0x11 17 00010001

0x12 18 00010010

0x13 19 00010011

0x14 20 00010100

0x15 21 00010101

0x16 22 00010110

0x17 23 00010111

0x18 24 00011000

0x19 25 00011001

0x1a 26 00011010

0x1b 27 00011011

0x1c 28 00011100

0x1d 29 00011101

0x1e 30 00011110

0x1f 31 00011111

0x20 32 00100000

270 | Appendix: Resource Guide

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

ASCII Codes
Table A-6 shows hexadecimal and decimal ASCII codes. The first 32 codes (0 through
31) are control codes used to signify changes in transmission (such as end-of-file) or
special characters embedded in strings, such as tabs and line feeds. Some control codes
are not in common use. These are shown in italic in the “ASCII character” column.

Table A-6. ASCII chart

Hexadecimal Decimal ASCII character

0x00 0 nul (null)

0x01 1 soh (start of heading)

0x02 2 stx (start of text)

0x03 3 etx (end of text)

0x04 4 eot (end-of-transmission or end-of-file)

0x05 5 enq (enquiry)

0x06 6 ack (acknowledge)

0x07 7 bel (bell/beep)

0x08 8 bs (backspace)

0x09 9 ht (horizontal tab)

0x0a 10 nl (line feed or newline)

0x0b 11 vt (vertical tab)

0x0c 12 np (form feed, page break, or new page)

0x0d 13 cr (carriage return)

0x0e 14 so (shift out)

0x0f 15 si (shift in)

0x10 16 dle (data link escape)

0x11 17 dc1 (device control one)

0x12 18 dc2 (device control two)

0x13 19 dc3 (device control three)

0x14 20 dc4 (device control four)

0x15 21 nak (negative acknowledge)

0x16 22 syn (synchronous idle)

0x17 23 etb (end transmission block)

0x18 24 can (cancel)

0x19 25 em (end-of-medium)

0x1a 26 sub (substitute)

0x1b 27 esc (escape)

Reference Tables | 271

Hexadecimal Decimal ASCII character

0x1c 28 fs (file separator)

0x1d 29 gs (group separator)

0x1e 30 rs (record separator)

0x1f 31 us (unit separator)

0x20 32 sp (space)

0x21 33 !

0x22 34 "

0x23 35 #

0x24 36 $

0x25 37 %

0x26 38 &

0x27 39 '

0x28 40 (

0x29 41)

0x2a 42 *

0x2b 43 +

0x2c 44 ,

0x2d 45 -

0x2e 46 .

0x2f 47 /

0x30 48 0

0x31 49 1

0x32 50 2

0x33 51 3

0x34 52 4

0x35 53 5

0x36 54 6

0x37 55 7

0x38 56 8

0x39 57 9

0x3a 58 :

0x3b 59 ;

0x3c 60 <

0x3d 61 =

0x3e 62 >

272 | Appendix: Resource Guide

Hexadecimal Decimal ASCII character

0x3f 63 ?

0x40 64 @

0x41 65 A

0x42 66 B

0x43 67 C

0x44 68 D

0x45 69 E

0x46 70 F

0x47 71 G

0x48 72 H

0x49 73 I

0x4a 74 J

0x4b 75 K

0x4c 76 L

0x4d 77 M

0x4e 78 N

0x4f 79 O

0x50 80 P

0x51 81 Q

0x52 82 R

0x53 83 S

0x54 84 T

0x55 85 U

0x56 86 V

0x57 87 W

0x58 88 X

0x59 89 Y

0x5a 90 Z

0x5b 91 [

0x5c 92 \

0x5d 93]

0x5e 94 ^

0x5f 95 _

0x60 96 `

0x61 97 a

Reference Tables | 273

Hexadecimal Decimal ASCII character

0x62 98 b

0x63 99 c

0x64 100 d

0x65 101 e

0x66 102 f

0x67 103 g

0x68 104 h

0x69 105 i

0x6a 106 j

0x6b 107 k

0x6c 108 l

0x6d 109 m

0x6e 110 n

0x6f 111 o

0x70 112 p

0x71 113 q

0x72 114 r

0x73 115 s

0x74 116 t

0x75 117 u

0x76 118 v

0x77 119 w

0x78 120 x

0x79 121 y

0x7a 122 z

0x7b 123 {

0x7c 124 |

0x7d 125 }

0x7e 126 ~

0x7f 127 del (delete)

274 | Appendix: Resource Guide

XBee Command Reference
The tables in this section describe all the commands available to you on the XBee ZB
firmware as of version 2x70. They are:

Table A-7
These addressing commands allow you to specify and retrieve destinations, end-
points, parent addresses, and more. Several are discussed in Chapters 2 and 7.

Table A-8
Networking commands allow you to work with settings such as network (PAN)
IDs, router configuration, and channel configuration. Chapter 2 discusses a few of
these commands.

Table A-9
You can use the security settings to configure various encryption options. Security
is covered in Chapter 8.

Table A-10
These RF interfacing commands let you configure power settings and retrieve the
RSSI (received signal strength indication) for the last packet received.

Table A-11
Serial interfacing commands allow you to work with serial settings, switch into API
mode, and more. See Chapters 7 and 8.

Table A-12
You can use the I/O commands to work with features such as PWM, digital I/O,
and analog input. I/O is the focus of Chapter 4.

Table A-13
These diagnostic commands let you consult the firmware and hardware versions,
and also to check whether the module has associated with a network. Association
indication is discussed in Chapter 7.

Table A-14
The AT command settings let you configure how the module handles AT com-
mands that you send it. Chapter 2 discusses several of these.

Table A-15
Use these commands to configure the module’s sleep mode, as covered in
Chapter 6.

Table A-16
The execution commands let you restore defaults, write the current settings to non-
volatile memory, and more. Execution commands are noted throughout the book.

For each command, the “Node type” column indicates which node
types support the command: C = Coordinator, R = Router, E = End
Device.

Reference Tables | 275

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Table A-7. Addressing commands

AT
command Name and description

Node
type Parameter range Default

DH Destination Address High. Sets/gets the upper 32
bits of the 64-bit destination address. When com-
bined with DL, it defines the 64-bit destination ad-
dress for data transmission. Special definitions for
DH and DL include 0x000000000000FFFF (broadcast)
and 0x0000000000000000 (coordinator).

CRE 0–0xFFFFFFFF 0

DL Destination Address Low. Sets/gets the lower 32
bits of the 64-bit destination address. When com-
bined with DH, it defines the 64-bit destination ad-
dress for data transmissions. Special definitions for
DH and DL include 0x000000000000FFFF (broadcast)
and 0x0000000000000000 (coordinator).

CRE 0–0xFFFFFFFF 0xFFFF(coordinator)

0 (router/end device)

MY 16-bit Network Address. Reads the 16-bit network
address of the module. A value of 0xFFFE means the
module has not joined a ZigBee network.

CRE 0–0xFFFE
(read-only)

0xFFFE

MP 16-bit Parent Network Address. Reads the 16-bit
network address of the module’s parent. A value of
0xFFFE means the module does not have a parent.

E 0–0xFFFE
(read-only)

0xFFFE

NC Number of Remaining Children. Reads the num-
ber of end device children that can join the device. If
NC returns 0, then the device cannot allow any more
end device children to join.

CR 0–
MAX_CHILDREN

(maximum varies)

Read-only

SH Serial Number High. Reads the high 32 bits of the
module’s unique 64-bit address.

CRE 0–0xFFFFFFFF
(read-only)

Factory-set

SL Serial Number Low. Reads the low 32 bits of the
module’s unique 64-bit address.

CRE 0–0xFFFFFFFF
(read-only)

Factory-set

NI Node Identifier. Stores a string identifier. The reg-
ister only accepts printable ASCII data. In AT com-
mand mode, a string cannot start with a space. A
carriage return ends the command. The command
will automatically end when maximum bytes for the
string have been entered. This string is returned as
part of the ND (Node Discover) command. This iden-
tifier is also used with the DN (Destination Node)
command. In AT command mode, an ASCII comma
(0x2C) cannot be used in the NI string.

CRE 20-Byte printable

ASCII string

ASCII space character
(0x20)

SE Source Endpoint. Sets/reads the ZigBee application
layer source endpoint value. This value will be used
as the source endpoint for all data transmissions.
SE is only supported in AT firmware. The default value
(0xE8) is the Digi data endpoint.

CRE 0–0xFF 0xE8

276 | Appendix: Resource Guide

AT
command Name and description

Node
type Parameter range Default

DE Destination Endpoint. Sets/reads ZigBee applica-
tion layer destination ID value. This value will be used
as the destination endpoint for all data transmissions.
DE is only supported in AT firmware. The default value
(0xE8) is the Digi data endpoint.

CRE 0–0xFF 0xE8

CI Cluster Identifier. Sets/reads ZigBee application
layer cluster ID value. This value will be used as the
cluster ID for all data transmissions. CI is only sup-
ported in AT firmware. The default value (0x11) is the
transparent data cluster ID.

CRE 0–0xFFFF 0x11

NP Maximum RF Payload Bytes. This value returns
the maximum number of RF payload bytes that can
be sent in a unicast transmission. If APS encryption
is used (API transmit option bit enabled), the maxi-
mum payload size is reduced by 9 bytes. If source
routing is used (AR < 0xFF), the maximum payload
size is reduced further.

Note: NP returns a hexadecimal value (e.g., if NP
returns 0x54, this is equivalent to 84 bytes).

CRE 0–0xFFFF (read-only)

DD Device Type Identifier. Stores a device type value.
This value can be used to differentiate different XBee-
based devices. Digi reserves the range 0–0xFFFFFF.

For example, Digi currently uses the following DD
values to identify various ZigBee products:

0x30001 - ConnectPort X8 Gateway

0x30002 - ConnectPort X4 Gateway

0x30003 - ConnectPort X2 Gateway

0x30005 - RS-232 Adapter

0x30006 - RS-485 Adapter

0x30007 - XBee Sensor Adapter

0x30008 - Wall Router

0x3000A - Digital I/O Adapter

0x3000B - Analog I/O Adapter

0x3000C - XStick

0x3000F - Smart Plug

0x30011 - XBee Large Display

0x30012 - XBee Small Display

CRE 0–0xFFFFFFFF 0x30000

Reference Tables | 277

Table A-8. Networking commands

AT
command Name and description

Node
type Parameter range Default

CH Operating Channel. Reads the channel number used for
transmitting and receiving between RF modules. Uses
802.15.4 channel numbers. A value of 0 means the device has
not joined a PAN and is not operating on any channel.

CRE XBee

0, 0x0B–0x1A

(Channels 11–26)

XBee-PRO (S2)

0, 0x0B–0x18

(Channels 11–24)

XBee-PRO (S2B)

0, 0x0B–0x19

(Channels 11–25)

(Read-
only)

ID Extended PAN ID. Sets/reads the 64-bit extended PAN ID. If
set to 0, the coordinator will select a random extended PAN
ID, and the router / end device will join any extended PAN ID.
Changes to ID should be written to nonvolatile memory using
the WR command to preserve the ID setting if a power cycle
occurs.

CRE 0–
0xFFFFFFFFFFFFFFFF

0

OP Operating Extended PAN ID. Reads the 64-bit extended
PAN ID. The OP value reflects the operating extended PAN ID
that the module is running on. If ID > 0, OP will equal ID.

CRE 0x01–
0xFFFFFFFFFFFFFFFF

(Read-
only)

NH Maximum Unicast Hops. Sets/reads the maximum hops
limit. This limit sets the maximum broadcast hops value
(BH) and determines the unicast timeout. The timeout is com-
puted as (50 * NH) + 100 ms. The default unicast timeout of
1.6 seconds (NH=0x1E) is enough time for data and the
acknowledgment to traverse about 8 hops.

CRE 0–0xFF 0x1E

BH Broadcast Hops. Sets/reads the maximum number of hops
for each broadcast data transmission. Setting this to 0 will use
the maximum number of hops.

CRE 0–0x1E 0

OI Operating 16-bit PAN ID. Reads the 16-bit PAN ID. The OI
value reflects the actual 16-bit PAN ID the module is running
on.

CRE 0–0xFFFF (Read-
only)

NT Node Discovery Timeout. Sets/reads the node discovery
timeout. When the network discovery (ND) command is is-
sued, the NT value is included in the transmission to provide
all remote devices with a response timeout. Remote devices
wait a random time, less than NT, before sending their
response.

CRE 0x20–0xFF
(× 100 msec)

0x3C
(60d)

NO Network Discovery options. Sets/reads the options value
for the network discovery command. The options bit field value
can change the behavior of the ND (network discovery)

CRE 0–0x03 (bit field) 0

278 | Appendix: Resource Guide

AT
command Name and description

Node
type Parameter range Default

command and/or change what optional values are returned
in any received ND responses or API node identification frames.
Options include:

0x01 = Appends DD value (to ND responses or API node iden-
tification frames)

002 = Local device sends ND response frame when ND is issued

SC Scan Channels. Sets/reads the list of channels to scan.

Coordinator - Bit field list of channels to choose from prior
to starting network.

Router/End Device - Bit field list of channels that will be
scanned to find a coordinator/router to join.

Changes to SC should be written using the WR command to
preserve the SC setting if a power cycle occurs.

Bit (Channel):

0 (0x0B) 4 (0x0F) 8 (0x13) 12 (0x17)
1 (0x0C) 5 (0x10) 9 (0x14) 13 (0x18)
2 (0x0D) 6 (0x11) 10 (0x15) 14 (0x19)
3 (0x0E) 7 (0x12) 11 (0x16) 15 (0x1A)

CRE XBee

1–0xFFFF (bit field)

XBee-PRO (S2)

1–0x3FFF (bit field)

(bits 14, 15 not
allowed)

XBee-PRO (S2B)

1–0x7FFF

(bit 15 is not allowed)

1FFE

SD Scan Duration. Sets/reads the scan duration exponent.
Changes to SD should be written using the WR command.

Coordinator - Duration of the Active and Energy Scans (on
each channel) that are used to determine an acceptable chan-
nel and Pan ID for the coordinator to start up on.

Router/End Device - Duration of Active Scan (on each chan-
nel) used to locate an available coordinator/router to join
during association.

Scan Time is measured as: (# Channels to Scan) * (2 ^ SD) *
15.36 ms - the number of channels to scan is determined by
the SC parameter. The XBee can scan up to 16 channels (SC
= 0xFFFF).

Sample Scan Duration times (13 channel scan):

If SD = 0, time = 0.200 sec
If SD = 2, time = 0.799 sec
If SD = 4, time = 3.190 sec
If SD = 6, time = 12.780 sec

SD influences the time the MAC listens for beacons or runs an
energy scan on a given channel. The SD time is not a good
estimate of the router/end device joining-time requirements.
ZigBee joining adds additional overhead including beacon
processing on each channel, sending a join request, etc., that
extend the actual joining time.

CRE 0–7 (exponent) 3

Reference Tables | 279

AT
command Name and description

Node
type Parameter range Default

ZS ZigBee Stack Profile. Sets/reads the ZigBee stack profile
value. This must be set the same on all devices that should
join the same network.

CRE 0–2 0

NJ Node Join Time. Sets/reads the time that a coordinator/
router allows nodes to join. This value can be changed at
runtime without requiring a coordinator or router to restart.
The time starts once the coordinator or router has started. The
timer is reset on power-cycle or when NJ changes.

For an end device to enable rejoining, NJ should be set less
than 0xFF on the device that will join. If NJ < 0xFF, the device
assumes the network is not allowing joining and first tries to
join a network using rejoining. If multiple rejoining attempts
fail, or if NJ=0xFF, the device will attempt to join using
association.

CR 0–0xFF

(× 1 sec)

0xFF

(always
allows
joining)

JV Channel Verification. Sets/reads the channel verification
parameter. If JV=1, a router will verify the coordinator is on
its operating channel when joining or coming up from a power
cycle. If a coordinator is not detected, the router will leave its
current channel and attempt to join a new PAN. If JV=0, the
router will continue operating on its current channel even if a
coordinator is not detected.

R 0 - Channel verifica-
tion disabled

1 - Channel verifica-
tion enabled

0

NW Network Watchdog Timeout. Sets/reads the network
watchdog timeout value. If NW is set > 0, the router will mon-
itor communication from the coordinator (or data collector)
and leave the network if it cannot communicate with the
coordinator for three NW periods. The timer is reset each time
data is received from or sent to a coordinator, or if a many-to-
one broadcast is received.

R 0–0x64FF

(× 1 minute)

(up to over 17 days)

0
(disabled)

JN Join Notification. Sets/reads the join notification setting. If
enabled, the module will transmit a broadcast node identifi-
cation packet on power-up and when joining. This action blinks
the Association LED rapidly on all devices that receive the
transmission, and sends an API frame out the UART of API
devices. This feature should be disabled for large networks to
prevent excessive broadcasts.

RE 0–1 0

AR Aggregate Routing Notification. Sets/reads the time be-
tween consecutive aggregate route broadcast messages. If
used, AR should be set on only one device to enable many-to-
one routing to the device. Setting AR to 0 sends only one
broadcast.

CR 0–0xFF 0xFF

280 | Appendix: Resource Guide

Table A-9. Security commands

AT
command Name and description

Node
type

Parameter
range Default

EE Encryption Enable. Sets/reads the encryption enable setting. CRE 0 - Encryption
disabled

1 - Encryption
enabled

0

EO Encryption Options. Configures options for encryption. Unused
option bits should be set to 0. Options include:

0x01 - Send the security key unsecured over the air during joins

0x02 - Use trust center (coordinator only)

CRE 0–0xFF --

NK Network Encryption Key. Sets the 128-bit AES network encryp-
tion key. This command is write-only; NK cannot be read. If set to
0 (default), the module will select a random network key.

C 128-bit value 0

KY Link Key. Sets the 128-bit AES link key. This command is write-
only; KY cannot be read. Setting KY to 0 will cause the coordinator
to transmit the network key in the clear to joining devices, and will
cause joining devices to acquire the network key in the clear when
joining.

CRE 128-bit value 0

Table A-10. RF interfacing commands

AT
command Name and description

Node
type Parameter range Default

PL Power Level. Selects/reads the power level at
which the RF module transmits conducted power.
For XBee-PRO (S2B) Power Level 4 is calibrated and
the other power levels are approximate.

CRE XBee

(boost mode disabled)

0 = –8 dBm

1 = –4 dBm

2 = –2 dBm

3 = 0 dBm

4 = +2 dBm

XBee-PRO (S2)

4 = 17 dBm

XBee-PRO (S2)

(International Variant)

4 = 10 dBm

XBee-PRO (S2B)

(Boost mode enabled)

4 = 18 dBm

4

Reference Tables | 281

AT
command Name and description

Node
type Parameter range Default

3 = 16 dBm

2 = 14 dBm

1 = 12 dBm

0 = 10 dBm

XBee-PRO (S2B)

(International Variant)

(Boost mode enabled)

4 = 10 dBm

3 = 8 dBm

2 = 6 dBm

1 = 4 dBm

0 = 2 dBm

PM Power Mode. Sets/reads the power mode of the
device. Enabling boost mode will improve the re-
ceive sensitivity by 1 dB and increase the transmit
power by 2 dB.

Note: Enabling boost mode on the XBee-PRO (S2)
will not affect the output power. Boost mode im-
poses a slight increase in current draw.

CRE 0–1,

0 = Boost mode disabled, 1 =
Boost mode enabled

1

DB Received Signal Strength. This command reports
the received signal strength of the last received RF
data packet. The DB command only indicates the
signal strength of the last hop. It does not provide
an accurate quality measurement for a multihop
link. DB can be set to 0 to clear it. The DB command
value is measured in –dBm. For example, if DB re-
turns 0x50, then the RSSI of the last packet received
was –80dBm. As of 2x6x firmware, the DB command
value is also updated when an APS acknowledgment
is received.

CRE 0–0xFF

Observed range for

XBee-PRO:

0x1A–0x58

For XBee:

0x1A–0x5C

PP Peak Power. Reads the dBm output when maxi-
mum power is selected (PL4).

CRE 0x0–0x12 (Read-
only)

282 | Appendix: Resource Guide

Table A-11. Serial interfacing commands

AT
command Name and description

Node
type Parameter range Default

AP API Enable. Enables API mode.

The AP command is only supported when
using API firmware: 21xx (API coordinator),
23xx (API router), and 29xx (API end device).

CRE 1–2

1 = API-enabled

2 = API-enabled

(w/ escaped control characters)

1

AO API Options. Configures options for API.
Current options select the type of receive
API frame to send out the UART for received
RF data packets.

CRE 0 - Default receive API indicators enabled

1 - Explicit Rx data indicator API frame
enabled (0x91)

3 - Enable ZDO pass-through of ZDO re-
quests to the UART, which are not sup-
ported by the stack, as well as Sim
ple_Desc_req, Active_EP_req,
and Match_Desc_req.

0

BD Interface Data Rate. Sets/reads the serial
interface data rate for communication be-
tween the module serial port and host.

Any value above 0x07 will be interpreted as
an actual baud rate. When a value above
0x07 is sent, the closest interface data rate
represented by the number is stored in the
BD register.

CRE 0–7

(standard baud rates)

0 = 1,200 bps

1 = 2,400

2 = 4,800

3 = 9,600

4 = 19,200

5 = 38,400

6 = 57,600

7 = 115,200

0x80–0xE1000

(nonstandard rates up to 921 kbps)

3

NB Serial Parity. Sets/reads the serial parity
setting on the module.

CRE 0 = No parity

1 = Even parity

2 = Odd parity

3 = Mark parity

0

SB Stop Bits. Sets/reads the number of stop
bits for the UART. (Two stop bits are not
supported if mark parity is enabled.)

CRE 0 = 1 stop bit

1 = 2 stop bits

0

RO Packetization Timeout. Sets/reads num-
ber of character times of intercharacter si-
lence required before packetization. Set
(RO=0) to transmit characters as they arrive

CRE 0–0xFF

(× character times)

3

Reference Tables | 283

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

AT
command Name and description

Node
type Parameter range Default

instead of buffering them into one RF
packet. The RO command is only supported
when using AT firmware: 20xx (AT coordi-
nator), 22xx (AT router), and 28xx (AT end
device).

D7 DIO7 Configuration. Selects/reads op-
tions for the DIO7 line of the RF module.

CRE 0 = Disabled

1 = CTS flow control

3 = Digital input

4 = Digital output, low

5 = Digital output, high

6 = RS-485 transmit enable (low enable)

7 = RS-485 transmit enable (high enable)

1

D6 DIO6 Configuration. Configures options
for the DIO6 line of the RF module.

CRE 0 = Disabled

1 = RTS flow control

3 = Digital input

4 = Digital output, low

5 = Digital output, high

0

Table A-12. I/O commands

AT
command Name and description

Node
type Parameter range Default

IR IO Sample Rate. Sets/reads the IO sample rate to
enable periodic sampling. For periodic sampling to
be enabled, IR must be set to a nonzero value, and
at least one module pin must have analog or digital
IO functionality enabled (see D0–D8, P0–P2
commands). The sample rate is measured in
milliseconds.

CRE 0, 0x32:0xFFFF (ms) 0

IC IO Digital Change Detection. Sets/reads the dig-
ital IO pins to monitor for changes in the IO state.
IC works with the individual pin configuration
commands (D0–D8, P0–P2). If a pin is enabled as
a digital input/output, the IC command can be used
to force an immediate IO sample transmission when
the DIO state changes. IC is a bit mask that can be
used to enable or disable edge detection on indi-
vidual channels. Unused bits should be set to 0.

Bit (IO pin):

0 (DIO0) 4 (DIO4) 8 (DIO8)

CRE 0–0xFFFF 0

284 | Appendix: Resource Guide

AT
command Name and description

Node
type Parameter range Default

1 (DIO1) 5 (DIO5) 9 (DIO9)

2 (DIO2) 6 (DIO6) 10 (DIO10)

3 (DIO3) 7 (DIO7) 11 (DIO11)

P0 PWM0 Configuration. Selects/reads function for
PWM0.

CRE 0 - Disabled

1 - RSSI PWM

3 - Digital input, monitored

4 - Digital output, default low

5 - Digital output, default high

1

P1 DIO11 Configuration. Configures options for the
DIO11 line of the RF module.

CRE 0 - Unmonitored digital input

3 - Digital input, monitored

4 - Digital output, default low

5 - Digital output, default high

0

P2 DIO12 Configuration. Configures options for the
DIO12 line of the RF module.

CRE 0 - Unmonitored digital input

3 - Digital input, monitored

4 - Digital output, default low

5 - Digital output, default high

0

P3 DIO13 Configuration. Sets/reads function for
DIO13. This command is not yet supported.

CRE 0, 3–5

0 – Disabled

3 – Digital input

4 – Digital output, low

5 – Digital output, high

--

D0 AD0/DIO0 Configuration. Selects/reads function
for AD0/DIO0.

CRE 1 - Commissioning button
enabled

2 - Analog input, single-ended

3 - Digital input

4 - Digital output, low

5 - Digital output, high

1

D1 AD1/DIO1 Configuration. Selects/reads function
for AD1/DIO1.

CRE 0, 2–5

0 – Disabled

2 - Analog input, single-ended

3 - Digital input

4 - Digital output, low

5 - Digital output, high

0

Reference Tables | 285

AT
command Name and description

Node
type Parameter range Default

D2 AD2/DIO2 Configuration. Selects/reads function
for AD2/DIO2.

CRE 0, 2–5

0 - Disabled

2 - Analog input, single-ended

3 - Digital input

4 - Digital output, low

5 - Digital output, high

0

D3 AD3/DIO3 Configuration. Selects/reads function
for AD3/DIO3.

CRE 0, 2-5

0 - Disabled

2 - Analog input, single-ended

3 - Digital input

4 - Digital output, low

5 - Digital output, high

0

D4 DIO4 Configuration. Selects/reads function for
DIO4.

CRE 0, 3–5

0 - Disabled

3 - Digital input

4 - Digital output, low

5 - Digital output, high

0

D5 DIO5 Configuration. Configures options for the
DIO5 line of the RF module.

CRE 0 - Disabled

1 - Associated

indication LED

3 - Digital input

4 - Digital output, default low

5 - Digital output, default high

1

D8 DIO8 Configuration. Sets/reads function for DIO8.
This command is not yet supported.

CRE 0, 3–5

0 - Disabled

3 - Digital input

4 - Digital output, low

5 - Digital output, high

LT Assoc LED Blink Time. Sets/reads the Association
LED blink time. If the Association LED functionality
is enabled (D5 command), this value determines
the on and off blink times for the LED when the
module has joined a network. If LT=0, the default
blink rate will be used (500 ms for coordinator, 250

CRE 0, 0x0A–0xFF (100–2,550 ms) 0

286 | Appendix: Resource Guide

AT
command Name and description

Node
type Parameter range Default

ms for router/end device). For all other LT values,
LT is measured in 10 ms.

PR Pull-up Resistor. Sets/reads the bit field that con-
figures the internal pull-up resistor status for the
I/O lines. “1” specifies the pull-up resistor is enabled.
“0” specifies no pull-up. (30k pull-up resistors.)

Bits:

0 - DIO4 (Pin 11)

1 - AD3 / DIO3 (Pin 17)

2 - AD2 / DIO2 (Pin 18)

3 - AD1 / DIO1 (Pin 19)

4 - AD0 / DIO0 (Pin 20)

5 - RTS / DIO6 (Pin 16)

6 - DTR / Sleep Request / DIO8 (Pin 9)

7 - DIN / Config (Pin 3)

8 - Associate / DIO5 (Pin 15)

9 - On/Sleep / DIO9 (Pin 13)

10 - DIO12 (Pin 4)

11 - PWM0 / RSSI / DIO10 (Pin 6)

12 - PWM1 / DIO11 (Pin 7)

13 - CTS / DIO7 (Pin 12)

CRE 0–0x3FFF 0–
0x1FFF

RP RSSI PWM Timer. Number of times the RSSI signal
will be output on the PWM after the last RF data
reception or APS acknowledgment. When RP =
0xFF, output will always be on.

CRE 0–0xFF (× 100 ms) 0x28
(40d)

%V Supply Voltage. Reads the voltage on the Vcc pin.
Scale by 1200/1024 to convert to mV units. For ex-
ample, a %V reading of 0x900 (2,304 decimal) rep-
resents 2,700 mV or 2.7 OV.

CRE −0x–0xFFFF (read-only) --

V+ Voltage Supply Monitoring. The voltage supply
threshold is set with the V+ command. If the meas-
ured supply voltage falls below or equal to this
threshold, the supply voltage will be included in the
IO sample set. V+ is set to 0 by default (do not include
the supply voltage). Scale mV units by 1,024/1,200
to convert to internal units. For example, for a 2,700
mV threshold enter 0x900.

CRE 0–0xFFFF 0

Reference Tables | 287

AT
command Name and description

Node
type Parameter range Default

Given the operating Vcc ranges for different plat-
forms, and scaling by 1,024/1,200, the useful pa-
rameter ranges are:

XBee 2,100–3,600 mV, 0,0x0700–0x0c00

PRO 3,000–3,400 mV, 0,0x0a00–0x0b55

S2B 2,700–3,600 mV, 0,0x0900–0x0c00

TP Reads the module temperature in degrees Celsius.
Accuracy +/– 7 degrees.

1°C = 0x0001 and –1°C = 0xFFFF. Command is only
available in PRO S2B.

CRE 0x0–0xFFFF --

Table A-13. Diagnostics commands

AT
command Name and description

Node
type

Parameter
range Default

VR Firmware Version. Reads firmware version of the module.

The firmware version returns 4 hexadecimal values (2 bytes) “ABCD”.
Digits “ABC” are the main release number and “D” is the revision
number from the main release. “B” is a variant designator.

XBee and XBee-PRO ZB modules return:

0x2xxx versions.

XBee and XBee-PRO ZNet modules return:

0x1xxx versions. ZNet firmware is not compatible with ZB firmware.

CRE 0–0xFFFF
(read-only)

Factory-
set

HV Hardware Version. Reads the hardware version of the module. This
command can be used to distinguish among different hardware
platforms. The upper byte returns a value that is unique to each
module type. The lower byte indicates the hardware revision.

XBee ZB and XBee ZNet modules return the following (hexadecimal)
values:

0x19xx - XBee module

0x1Axx - XBee-PRO module

CRE 0–0xFFFF
(read-only)

Factory-
set

AI Association Indication. Reads information regarding last node
join request:

0x00 - Successfully formed or joined a network. (Coordinators form
a network, routers and end devices join a network.)

0x21 - Scan found no PANs.

0x22 - Scan found no valid PANs based on current SC and ID settings.

CRE 0–0xFF
(read-only)

--

288 | Appendix: Resource Guide

AT
command Name and description

Node
type

Parameter
range Default

0x23 - Valid coordinator or routers found, but they are not allowing
joining (NJ expired).

0x24 - No joinable beacons were found.

0x25 - Unexpected state; node should not be attempting to join at
this time.

0x27 - Node joining attempt failed (typically due to incompatible
security settings).

0x2A - Coordinator start attempt failed.

0x2B - Checking for an existing coordinator.

0x2C - Attempt to leave the network failed.

0xAB - Attempted to join a device that did not respond.

0xAC - Secure join error—network security key received unsecured.

0xAD - Secure join error—network security key not received.

0xAF - Secure join error—joining device does not have the right
preconfigured link key.

0xFF - Scanning for a ZigBee network (routers and end devices).

Note: New nonzero AI values may be added in later firmware ver-
sions. Applications should read AI until it returns 0x00, indicating a
successful startup (coordinator) or join (routers and end devices).

Table A-14. AT Command Options commands

AT
command Name and description

Node
type

Parameter
range Default

CT Command Mode Timeout. Sets/reads the period of inactivity (no
valid commands received) after which the RF module automatically
exits AT command mode and returns to idle mode.

CRE 2–0x028F
(× 100 ms)

0x64
(100d)

CN Exit Command Mode. Explicitly exits the module from AT command
mode.

CRE -- --

GT Guard Times. Sets required period of silence before and after the
Command Sequence Characters of the AT Command Mode Sequence
(GT + CC + GT). The period of silence is used to prevent inadvertent
entrance into AT command mode.

CRE 1–0x0CE4
(× 1 ms)

(max of 3.3
decimal sec)

0x3E8

(1,000 d)

CC Command Sequence Character. Sets/reads the ASCII character
value to be used between Guard Times of the AT Command Mode
Sequence (GT + CC + GT). The AT Command Mode Sequence enters
the RF module into AT command mode.

The CC command is only supported when using AT firmware:
20xx (AT coordinator), 22xx (AT router), and 28xx (AT end device).

CRE 0 –0xFF 0x2B

(’+’ ASCII)

Reference Tables | 289

Table A-15. Sleep commands

AT
command Name and description

Node
type

Parameter
range Default

SM Sleep Mode. Sets the sleep mode on the RF module. An XBee
loaded with router firmware can be configured as either a router
(SM set to 0) or an end device (SM > 0). Changing a device from
a router to an end device (or vice versa) forces the device to leave
the network and attempt to join as the new device type when
changes are applied.

RE 0 - Sleep disa-
bled (router)

1 - Pin sleep
enabled

4 - Cyclic sleep
enabled

5 - Cyclic sleep,
pin wake

0 - Router

4 - End
device

SN Number of Sleep Periods. Sets the number of sleep periods to
not assert the On/Sleep pin on wake-up if no RF data is waiting
for the end device. This command allows a host application to
sleep for an extended time if no RF data is present.

CRE 1–0xFFFF 1

SP Sleep Period. This value determines how long the end device
will sleep at a time, up to 28 seconds. (The sleep time can effec-
tively be extended past 28 seconds using the SN command.) On
the parent, this value determines how long the parent will buffer
a message for the sleeping end device. It should be set at least
equal to the longest SP time of any child end device.

CRE 0x20–0xAF0
(× 10 ms)
(Quarter-second
resolution)

0x20

ST Time Before Sleep. Sets the time-before-sleep timer on an end
device. The timer is reset each time serial or RF data is received.
Once the timer expires, an end device may enter low-power op-
eration. Applicable for cyclic sleep end devices only.

E 1–0xFFFE
(× 1 ms)

0x1388 (5
seconds)

SO Sleep Options. Configures options for sleep. Unused option bits
should be set to 0. Sleep options include:

0x02 - Always wake for ST time

0x04 - Sleep entire SN * SP time

Sleep options should not be used for most applications. See
Chapter 6 for more information.

E 0–0xFF 0

WH Wake Host. Sets/reads the wake host timer value. If the wake
host timer is set to a nonzero value, this timer specifies a time (in
millisecond units) that the device should allow after waking from
sleep before sending data out the UART or transmitting an IO
sample. If serial characters are received, the WH timer is stopped
immediately.

E 0–0xFFFF
(× 1 ms)

SI Sleep Immediately. See Table A-16.

PO Polling Rate. Sets/reads the end device poll rate. Setting this to
0 (default) enables polling at 100 ms (default rate). Adaptive
polling may allow the end device to poll more rapidly for a short
time when receiving RF data.

E 0–0x3E8 0x00 (100
msec)

290 | Appendix: Resource Guide

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Table A-16. Execution commands

AT
command Name and description

Node
type

Parameter
range Default

AC Apply Changes. Applies changes to all command registers, causing
queued command register values to be applied. For example, changing
the serial interface rate with the BD command will not change the UART
interface rate until changes are applied with the AC command. The CN
command and 0x08 API command frame also apply changes.

CRE -- --

WR Write. Writes parameter values to nonvolatile memory so that param-
eter modifications persist through subsequent resets.

Note: Once WR is issued, no additional characters should be sent to the
module until after the “OK\r” response is received. The WR command
should be used sparingly. The EM250 supports a limited number of write
cycles.

CRE -- --

RE Restore Defaults. Restores module parameters to factory defaults. CRE -- --

FR Software Reset. Resets module. Responds immediately with an OK
status, and then performs a software reset about 2 seconds later.

CRE -- --

NR Network Reset. Resets network layer parameters on one or more mod-
ules within a PAN. Responds immediately with an “OK,” then causes a
network restart. All network configuration and routing information is
consequently lost.

If NR = 0: Resets network layer parameters on the node issuing the
command.

If NR = 1: Sends broadcast transmission to reset network layer param-
eters on all nodes in the PAN.

CRE 0–1 --

SI Sleep Immediately. Causes a cyclic sleep module to sleep immediately
rather than wait for the ST timer to expire.

E -- --

CB Commissioning Pushbutton. This command can be used to simulate
commissioning button presses in software. The parameter value should
be set to the number of button presses to be simulated. For example,
sending the ATCB1 command will execute the action associated with
one commissioning button press.

CRE -- --

ND Node Discover. Discovers and reports all RF modules found. The fol-
lowing information is reported for each module discovered:

MY<CR>
 SH<CR>
 SL<CR>
 NI<CR> (Variable length)
 PARENT_NETWORK ADDRESS (2 Bytes)<CR>
 DEVICE_TYPE<CR> (1 Byte:
 0=Coord, 1=Router, 2=End Device)
 STATUS<CR> (1 Byte: Reserved)
 PROFILE_ID<CR> (2 Bytes)
 MANUFACTURER_ID<CR> (2 Bytes)
 <CR>

CRE Optional 20-
byte

NI or MY
value

--

Reference Tables | 291

AT
command Name and description

Node
type

Parameter
range Default

After (NT * 100) milliseconds, the command ends by returning a <CR>.
ND also accepts a Node Identifier (NI) as a parameter (optional). In this
case, only a module that matches the supplied identifier will respond.

If ND is sent through the API, each response is returned as a separate
AT_CMD_Response packet. The data consists of the above-listed
bytes without the carriage return delimiters. The NI string will end in a
“0x00” null character. The radius of the ND command is set by the BH
command.

DN Destination Node. Resolves an NI (Node Identifier) string to a physical
address (case-sensitive). The following events occur after the destination
node is discovered:

AT Firmware

1. DL and DH are set to the extended (64-bit) address of the module
with the matching NI (Node Identifier) string.

2. OK (or ERROR)\r is returned.

3. Command mode is exited to allow immediate communication.

API Firmware

The 16-bit network and 64-bit extended addresses are returned in an
API Command Response frame.

If there is no response from a module within (NT * 100) milliseconds or
a parameter is not specified (left blank), the command is terminated and
an “ERROR” message is returned.

In the case of an ERROR, command mode is not exited. The radius of the
DN command is set by the BH command.

CRE Up to 20-
byte
printable
ASCII string

--

IS Force Sample. Forces a read of all enabled digital and analog input lines. CRE -- --

1S XBee Sensor Sample. Forces a sample to be taken on an XBee sensor
device. This command can only be issued to an XBee sensor device using
an API remote command.

RE -- --

292 | Appendix: Resource Guide

Index

Symbols
16-bit addressing, 29, 126
3G and 4G protocol, 191
64-bit addressing, 28, 126
128-bit Advanced Encryption Standard (AES),

242

A
accelerometer, 86
acoustic sensor, 86, 87
actuation, xiv

(see also direct actuation; remote actuation)
ad hoc network creation, 26
Ad hoc On-demand Distance Vector (AODV)

mesh routing, 240
AD0…AD3 Analog Input pins, 15, 89
Adafruit electronics kits, 63
Adafruit XBee Adapter Kit, 8
adapter

Arduino board for, 12–15
breakout board, 10–11
buying, 6–15
Digi evaluation board, 7
drivers for, 8, 33
ports for, 40
USB adapter, 7–9

addresses, network, 28–29
addressing commands, 276–277
AES (Advanced Encryption Standard), 242
Analog Input pins (AD0...AD3), 15, 89
animism, xii
antennas, 4–5
AODV (Ad hoc On-demand Distance Vector)

mesh routing, 240

API (application programming interface), 111–
112, 116–119

API frame, 117–119
AT Command frame, 120–122
AT Response frame, 122–124
checksum, 118
data bytes, 118
I/O Data Sample Rx Indicator frame, 131–

135
length bytes, 118
parsing, API code for, 138–140
parsing, libraries for, 141
Remote AT Command Request frame, 135–

137
Remote Command Response frame, 137–

138
start delimiter, 117
types of, 119–142
ZigBee Receive Packet frame, 129–131
ZigBee Transmit Request frame, 124–127
ZigBee Transmit Status frame, 127–129

API protocol, 116–119
application layer, 30
application profiles, 237–238
application programming interface (see API)
APS (Application Support Sublayer) layer, 236,

237–240
APS encryption, 243
APS link security, 243
AR command, 240
Arduino & C/C++ library, 141
Arduino board, 57–65

adapter hack for, 12–15
buying, 59
cable for, 59, 60

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

293

connecting to, 65
electronics supplies for, 61–63
IDE software for, 60
programming language for, 60–61
resources for, 59, 61, 64–65, 261
troubleshooting, 266

Arduino FIO, 269
Arduino Uno, 59
Arduino XBee Shield, 269
ASCII codes, 271
ASSOC pin, 15
AT command, 48
AT Command frames, 120–122
AT commands, 47–49, 90–93, 275–292

addressing commands, 276–277
command option commands, 289
diagnostic commands, 288–289
execution commands, 291–292
I/O commands, 284–288
networking commands, 278–280
RF interfacing commands, 281–282
security commands, 281
serial interfacing commands, 283–284
sleep commands, 290

AT Response frame, 122–124
AT%V (Supply Voltage), 93, 287
AT1S (XBee Sensor Sample), 292
ATAC (Apply Changes), 291
ATAI (Association Indication), 288
ATAO (API Options), 283
ATAP (API Enable), 283
ATAR (Aggregate Routing Notification), 280
ATBD (Interface Data Rate), 283
ATBH (Broadcast Hops), 278
ATCB (Commissioning Pushbutton), 291
ATCC (Command Sequence Character), 289
ATCH (Operating Channel), 278
ATCI (Cluster Identifier), 277
ATCN (Exit Command Mode), 48, 289
ATCT (Command Mode Timeout), 289
ATD0...ATD8 (Digital I/O Configuration), 91,

284, 285
ATDB (Received Signal Strength), 282
ATDD (Device Type Identifier), 277
ATDE (Destination Endpoint), 277
ATDH (Destination Address High), 48, 276
ATDL (Destination Address Low), 48, 276
ATDN (Destination Node), 203, 292
ATEE (Encryption Enable), 281

ATEO (Encryption Options), 281
ATFR (Software Reset), 291
ATGT (Guard Times), 289
ATHV (Hardware Version), 288
ATIC (I/O Digital Change Detection), 93, 284
ATID (Extended PAN ID), 48, 49, 278
ATIR (I/O Sample Rate), 91, 284
ATIS (Force Sample), 292
ATJN (Join Notification), 280
ATJV (Channel Verification), 280
ATKY (Link Key), 281
ATLT (Assoc LED Blink Time), 286
Atmel components, 267
ATMP (16-bit Parent Network Address), 276
ATMY (16-bit Network Address), 48, 276
ATNB (Serial Parity), 283
ATNC (Number of Remaining Children), 276
ATND (Node Discover), 202, 291
ATNH (Maximum Unicast Hops), 278
ATNI (Node Identifier), 202, 276
ATNJ (Node Join Time), 280
ATNK (Network Encryption Key), 281
ATNO (Network Discovery Options), 278
ATNP (Maximum RF Payload Bytes), 277
ATNR (Network Reset), 291
ATNT (Node Discovery Timeout), 278
ATNW (Network Watchdog Timeout), 280
ATOI (Operating 16-bit PAN ID), 278
ATOP (Operating Extended PAN ID), 278
ATP0...ATP3 (Digital I/O Configuration), 91,

285
ATPL (Power Level), 281
ATPM (Power Mode), 282
ATPO (Polling Rate), 290
ATPP (Peak Power), 282
ATPR (Pull-up Resistor), 93, 287
ATRE (Restore Defaults), 291
ATRO (Packetization Timeout), 283
ATRP (RSSI PWM Timer), 287
ATSB (Stop Bits), 283
ATSC (Scan Channels), 279
ATSD (Scan Duration), 279
ATSE (Source Endpoint), 276
ATSH (Serial Number High), 48, 276
ATSI (Sleep Immediately), 290, 291
ATSL (Serial Number Low), 48, 276
ATSM (Sleep Mode), 163–164, 166, 290
ATSN (Number of Sleep Periods), 165, 166,

290

294 | Index

ATSO (Sleep Options), 166, 167, 290
ATSP (Sleep Period), 164, 166, 290
ATST (Time Before Sleep), 165, 166, 290
ATTP (Module Temperature), 288
ATV+ (Voltage Supply Monitoring), 287
ATVR (Firmware Version), 288
ATWH (Wake Host), 166, 167, 290
ATWR (Write), 48, 91, 291
ATZS (ZigBee Stack Profile), 280

B
battery life, determining, 163
Bluetooth protocol, 189, 190
board-level serial (see TTL serial protocol)
books, recommended, 264
breadboard, 9
breakout board, 10–11
bytes, 114, 135

C
California Eastern Laboratories, 267
CAN (Controller-Area Networking) protocol,

190
CAN-bus protocol, 190
capacitance sensor, 86
cellular data connections, 194
channels, network, 29
chat session, 50–56

addresses for, 50
coordinator for, 51
with one computer, 54
parts for, 50
router for, 53
with two computers, 53

checksum, 116, 118
cluster tree network, 28
clusters, 238–239
code examples, permission to use, xv
color sensor, 86
command mode, 43, 44, 46–47
COMMISioning pin, 15
communication settings, terminal program, 40
computer, as Internet gateway, 195
ConnectPort gateways, 195–202

configuring, 198–202
configuring on iDigi server, 209–210
connecting to iDigi server, 206–209

firmware updates using iDigi server, 210–
212

remote management of, 203–214
setting up, 197–198

contact information for this book, xvi
contents ID, in stream, 115–116
context phenomena, 87
Controller-Area Networking (CAN) protocol,

190
conventions used in this book, xv
CoolTerm program, 18, 43–46
coordinator device, 26
CTS pin, 15, 244

D
data

presentation on Internet, 193
reasons for collecting, 85
sharing, 245–257
storage on Internet, 193

data bytes, API frame, 118
dedicated gateways, 195
diagnostic commands, 288–289
Digi evaluation board, 7
Digi International, 1, 6, 263, 267
DigiKey, 6, 63
DIN pin, 15
DIO0…DIO12 Digital I/O pins, 15, 89
direct actuation, 171–187

base station for, 177–180
code for, 180–187
coordinator for, 173
parts for, 172
routers for, 174–177

direct I/O, 88–89
direct phenomena, 86
distal phenomena, 87
distance, sensors for, 86
doorbell, 67–84

breadboard for, connecting, 68
breakout board for, connecting, 68–69
button input for, 72–73, 77, 81
buzzer output for, 73, 78, 83
coordinator for, 68
feedback for, 80–83
nap doorbell, 83
parts for, 67
programs for, 77–80, 81–83
router for, 68

Index | 295

troubleshooting for, 78
XBee radios, configuring, 75–77
XBee radios, connecting, 69–70

DOUT pin, 15
drivers for adapter, 8, 33
DTR pin, 15

E
EEML (Extended Environmental Markup

Language), 245
electrical power, testing for, 79
electromagnetic spectrum, 24
electronic sensors (see sensors)
electronics supplies, buying, 61–63
embedded gateways, 190–192
Ember components, 2, 267
end device, 27, 161–163
endpoints, 238
errors (see troubleshooting)
Ethernet connections, 194
Ethernet protocol, 190
events, triggering (see direct actuation; remote

actuation)
exploratory data analysis, 85
Explorer adapter, 8
Extended Environmental Markup Language

(EEML), 245

F
feedback doorbell, 80–83
FIO, Arduino, 269
firmware, 15

configuring, 35–39
update software for, 17, 32–39
updating from iDigi server, 210–212

flex sensor, 86
fonts used in this book, xv
force sensor, 86
frame (see API frame)
Freescale components, 1, 267
FTDI drivers, 8, 33

G
galvanic skin response (GSR) sensor, 86
gas sensor, 86
gateways, 189–195, 189

(see also XIG (XBee Internet Gateway))
ConnectPort gateways, 195–202

embedded gateways, 190–192
Internet gateways, 192–195

GND pin, 15
GPRS connections, 194
GPRS protocol, 191
Gravitech XBee to USB Adapter, 9
GSR (galvanic skin response) sensor, 86
gyroscope sensor, 86

H
Hall effect sensor, 86
Hayes command set, 47
hexadecimal notation, 30–32

conversion table for, 269
pin states represented as, 134

HomePlug Alliance protocol, 191, 257
human protocols, 113
HyperTerminal program, 18

I
I/O (input/output), 87–93

AT commands for, 90–92, 284–288
XBee radio capabilities for, 87, 89

I/O Data Sample Rx Indicator frame, 131–135
iDigi server, 203–214

adding ConnectPort to, 206–209
administration of, 204–206
configuring, 209–210
firmware updates using, 210–212
viewing remote XBee networks, 212–214

IEEE 802.15.4 standards, 26, 263
indirect phenomena, 87
input/output (see I/O)
Internet gateways, 192–195, 214

(see also XIG)
inverse square law, 24

J
Jameco, 63
Jennic components, 267
JPachube library, 249

K
key-based security, 242

L
Laird Technologies, 267

296 | Index

large numbers, representing as bytes, 135
layers, ZigBee protocol, 25–26, 30, 236–240
LEDs, testing for power, association, or signal

using, 79
length bytes, 115, 118
libraries for API, 141

JPachube, 249
NewSoftSerial, 225, 227
xbee api, 250

light
doorbell feedback using, 81
romantic lighting sensor, 93–109
sensors for, 86

LilyPad XBee, 269
link keys, 242
Linux

adapter port, determining, 40
terminal program for, 20, 40
X-CTU program with, 33, 36

Linux:downloading Processing IDE, 150
local interactions, 112
logic-level serial (see TTL serial protocol)
LS Research, 267

M
MAC (media access controller) layer, 236
MAC address, 207
Macintosh

adapter port, determining, 40
configuring XBee radio, 43–46
downloading Processing IDE, 150
serial port for, 60
terminal program for, 18, 19, 20

magnetic fields, sensor for, 86
MAKE: magazine, 6
Maker SHED, 6, 62
many-to-one routing, 240
Max/MSP library, 141
media access controller (MAC) layer, 236
Mega, Arduino, 59
mesh networking, 2, 26, 28, 236
messages stored for sleeping devices, 161–162
Microchip components, 267
microcontroller, 57

(see also Arduino)
external, 58
not using, 88

microphone sensor, 86, 87
Mini, Arduino, 59

mobile data connections, 194
motion sensor, 86
Mouser, 63
multimeter, 13, 79, 104, 147, 159, 176, 226

N
nap doorbell, 83
network keys, 242
Network layer, 26, 236
networking commands, 278–280
networks, 27

(see also wireless sensor networks; ZigBee
network)
connectivity between (see gateways)
protocols for, 189

New Micros XBee Dongle, 9
NewSoftSerial library, 225, 227

O
ON pin, 15

P
Pachube site, 245–257

account for, signing up, 246
API key for, 248
program for, 249–256
registering a feed, 246
troubleshooting sensor network using, 256

packet sniffers, 267
pair network, 27
PAN addresses, 29, 216
Panasonic, 267
parent device, messages stored by, 161–162

(see also coordinator device; router device)
photocell, 86, 87
PHP code, running on XIG, 220–221
PHY (physical) layer, 25, 236
picocom program, 20, 40
pin configurations, 15, 89
ports, for adapter, 40
position, sensors for, 86
potentiometer, 86
power (VCC) pin, 15
pressure sensor, 86
PRO version, XBee radio, 2
Processing & Java library, 141
Processing IDE, 150–152, 262
profiles, application, 237–238

Index | 297

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

protocols, 113–119
proximal phenomena, 86
pulse sensor, 86
PureData library, 141
PWM0 pin, 15
Python language

library for, 141
resources for, 262
used for XIG, 215

R
radio, 23–24, 23

(see also XBee radio)
Radio Frequency ID (RFID), 191
radio signal, testing for, 79
radio waves, 24
Radiocrafts components, 267
RadioPulse components, 267
Radiotronix components, 267
ranging sensor, 86
real-world events, triggering (see direct

actuation; remote actuation)
remote actuation, 193
Remote AT Command Request frame, 135–

137
Remote Command Response frame, 137–138
remote control (see direct actuation)
remote interactions, 112
remote management of ConnectPort gateways,

203–214
RESET pin, 15
RF interfacing commands, 281–282
RF without protocols, 191
RFID (Radio Frequency ID), 191
romantic lighting sensor, 93–109

base station for, 99–104, 106
coordinator for, 94
feedback for, 104–109
parts for, 94
program for, 106–109
router for, 96, 105
sensor board for, 97–99, 104
troubleshooting, 103

rotary encoder, 86
rotation, sensors for, 86
router device, 26
routing, 26, 240–241
RSSI pin, 15
RTS pin, 15, 244

RX pin, 15

S
screen program, 20
security, 242–243

AT commands for, 281
protocols for, 29

Seeeduino XBee Shield, 269
self-healing mesh, 26
sensors, types of, 85–87
serial flow control, 244–245
serial interfacing commands, 283–284
serial terminal program, 15–20, 40
Series 1 hardware, XBee radio, 1, 3
Series 2 hardware, XBee radio, 2, 3
sharing data, 245–257
shields, 12, 268
sidewalk telescopes, 265
simple actuator network, 178–187
simple sensor network, 142–160, 246–257
skin response, sensor for, 86
sleep mode, 161–167

advantages of, 162
AT commands for, 290
configuring, 163–167
constraints of, 162
end devices in, 161–163
resetting a device to wake it, 170
storage of messages for sleeping devices,

161–162
for temperature sensor network, 167–171
waking device, 166, 167, 170

SLEEP/ON pin, 15
SLEEP_RQ pin, 15
Smart Energy 2.0 specification, 257
smoke sensor, 86
solderless breadboard, 9
sound, sensor for, 86
source routing, 240
SparkFun Electronics, 6, 63
SparkFun XBee Explorer, 8
SparkFun XBee Shield, 269
stack layers, ZigBee protocol, 236–237
star network, 27
start bytes, 114
start delimiter, API frame, 117
stretch sensor, 86
subtext phenomena, 87
switch sensor, 86, 87

298 | Index

T
Telegesis components, 267
telescopes, sidewalk, 265
Telit components, 267
temperature sensor network, 142–160

base station for, 148–150
coordinator for, 143–144
parts for, 142–143
program for, 152–160
router for, 144
sensor boards for, 144–148
sharing data with Pachube, 246–257
sleep mode for, 167–171
troubleshooting, 158–160

temperature, sensor for, 86
Tera Term program, 19, 41–43
terminal program (see serial terminal program)
Texas Instruments, 267
thermistor, 86
tilt sensor, 86
transparent mode, 46–47
troubleshooting

Arduino board, common mistakes using,
266

chat session problems, 55
command mode, failure to enter, 46
ConnectPort gateway problems, 197, 201,

202
diagnostic commands, 288
doorbell problems, 78
electrical power, testing for, 79
modem configuration file not found, 36
Pachube data sharing in sensor network,

256
radio signal, testing for, 79
resetting a device, 170
romantic lighting sensor, 103
temperature sensor network, 158–160
Twitter reader problems, 233
"Unable to communicate with modem"

error, 35
wake-up problems, 170
XBee radio, common mistakes using, 265
XIG connection problems, 219

TTL serial protocol, 190
Twitter reader, 221–233

Arduino board for, preparing, 224–227
Arduino board for, programming, 227–233
LCD output for, 225–227

parts for, 222
router for, 223–224
troubleshooting, 233

TX pin, 15

U
Uno, Arduino, 59
USB (Universal Serial Bus) protocol, 191
USB adapters, 7–9
USB Development Board, 269
USB XBee Adapter, 269

V
VCC (power) pin, 15
vendors, XBee radio, 6
VREF pin, 15

W
waking a sleeping device, 166, 167, 170
website for this book, xvi
WiFi connections, 194
WiFi protocol, 192
Windows

adapter port, determining, 40
configuring XBee radio, 41–43
downloading Processing IDE, 150
serial port for, 60
setting up ConnectPort, 197
terminal program for, 18, 19

wireless sensor networks
benefits of, xi
chat session project, 50–56
direct actuation project, 172–187
doorbell project, 67–84
romantic lighting sensor project, 93–109
sharing projects with others, 259
suggested projects for, 258
temperature sensor project, 142–160, 167–

171, 246–257
Twitter reader project, 221–233

X
X-10 protocol, 192
X-CTU program, 17, 33–39
XBee Adapter Kit, 269
XBee API frame (see API frame)
xbee api library, 250

Index | 299

XBee API protocol (see API protocol)
XBee Dongle, 269
XBee Explorer, 269
XBee Explorer Serial, 269
XBee Internet Gateway (see XIG)
XBee radio

acting as gateway, 190
addresses for, 202
antennas, 4–5
buying, 1–6
command mode, 43, 44, 46–47
configuring, 40–56
connectors for, 268
direct I/O with, 88–89
documentation for, 235
input/output capabilities of, 87, 89
limitations of, 88
modules for, 268
naming, 202
pin configurations, 15, 89
PRO version, 2
Series 1 hardware, 1, 3
Series 2 hardware, 2, 3
shields for, 12, 268
transparent mode, 46–47
troubleshooting, 265
vendors, 6

XBee remote network, viewing, 212–214
XBee to USB Adapter, 269
XIG (XBee Internet Gateway), 214–233

code for, 216
installing and configuring, 216–218
PHP code running on, 220–221
security for, 218
testing, 218–219

Z
Z-Wave Alliance protocol, 192
ZCL (ZigBee Cluster Library), 239
ZDO (ZigBee Device Objects) layer, 236
ZigBee Alliance, xii, 237, 243, 263
ZigBee Cluster Library (ZCL), 239
ZigBee Device Objects (ZDO) layer, 236
ZigBee network, 25–32

ad hoc creation of, 26
addresses for, 28–29
channels for, 29
devices in, 26
inverse square law and, 24

modules for, 267
packet sniffers for, 267
security for, 242–243
self-healing mesh of, 26
topology of, 27–28

ZigBee protocol, xi, 25
future of, 257
layers of, 25–26, 30, 236–240
resources for, 243, 263–264

ZigBee Receive Packet frame, 129–131
ZigBee Transmit Request frame, 124–127
ZigBee Transmit Status frame, 127–129
ZTerm program, 19

300 | Index

About the Author
Robert Faludi is an NYU professor, SVA professor, and an expert consultant on com-
mercial projects, including large-scale home energy monitoring. His work has appeared
in The New York Times, on CNET, on Good Morning America, and elsewhere. He is a
co-creator of the LilyPad XBee wearable radios, and of Botanicalls, a system that allows
thirsty plants to place phone calls for human help.

Colophon
The animals on the cover of Building Wireless Sensor Networks are dachshunds. The
short-legged, elongated dogs were first bred for hunting in the 17th century in Germany;
in fact, the name literally means “badger dog.” Dachshunds are officially classified as
members of the hound family in the United States, though there are some that argue
that many varieties, especially wire-haired types, look and behave more like members
of the terrier group. The World Canine Organization, which boasts 86 member coun-
tries, takes a middle road and specifies a separate group for dachshunds apart from
both terriers and other scent hounds.

Further disagreement has arisen involving the official varieties of the dachshund breed.
The World Canine Organization defines three sizes: standard, miniature, and rabbit.
The American Kennel Club, on the other hand, recognizes only the standard and min-
iature sizes, arguing that so-called “rabbit” dachshunds are just comparatively smaller
miniature varieties. Three coat types are universally recognized, however: smooth-
haired, long-haired, and wire-haired.

Though dachshunds are popular pets in the United States, the dogs are perhaps most
strongly prized in and associated with Germany. While dachshunds there are generally
called Dackel, worthy specimens that are able to pass blood-tracking tests earn the
moniker Teckel and are held in higher regard. Furthermore, the animal is so popular
that a dachshund, named Waldi, was chosen as the official mascot of the 1972 Summer
Olympics in Munich.

The cover image is from Lydekker’s Royal History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Table of Contents
	Preface
	How This Book Is Organized
	About the Title
	About the Examples
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting Ready
	Buying an XBee Radio
	Hardware
	Antennas
	Vendors

	Buying an Adapter
	Digi Evaluation Board
	USB Adapters
	Breakout Boards
	Arduino Board Adapter Hack
	What Are All Those Pins?

	Choosing a Terminal Program
	Firmware Update Software
	X-CTU

	Terminal Software for Configuring Settings
	CoolTerm
	HyperTerminal
	Tera Term
	ZTerm
	screen
	Others

	Summary

	Chapter 2. Up and Running
	Radio Basics
	Electromagnetic Spectrum
	Inverse Square Law

	Introduction to ZigBee
	Network Topology
	Addressing Basics
	PAN Addresses
	Channels
	All Together Now

	XBee Firmware Updates
	Reading Current Firmware and Configuration

	Configuring XBee
	Settings
	Connecting from Windows
	Connecting from Macintosh
	Command Mode and Transparent Mode
	AT Commands (Are Your Friend)
	Using AT Commands

	Basic ZigBee Chat
	Parts
	Addresses
	Coordinator
	Router
	Two Computers
	One Computer
	Chat
	Troubleshooting

	Success!

	Chapter 3. Build a Better Doorbell
	ZigBee and Arduino
	About Arduino
	Arduino Basics
	Buying an Arduino
	Don’t forget the cable
	Downloading the software
	Using the Arduino IDE
	Selecting the board and port
	Code structure
	Buying electronics supplies

	Connecting to Arduino

	Doorbell Projects
	Parts
	Prepare Your Radios
	Connect Power from Arduino to Breadboard
	XBee Breakout Board
	XBee Connections
	Doorbell Introduction
	Switch Input...
	...and Buzzer Output
	Configure Your XBees
	Program the Arduino Doorbell
	Troubleshooting

	Feedback Doorbell
	Feedback Light
	Program the Arduino Feedback Doorbell
	Extra: Nap Doorbells and More

	Chapter 4. Ins and Outs
	The Story of Data
	Direct, Indirect, Subtext

	I/O Concepts
	Why XBee Direct?
	XBee Direct Limitations
	XBee I/O Features
	AT Configuration I/O Commands
	Advanced I/O Commands

	Romantic Lighting Sensor
	Basic Romantic Lighting Sensor
	Parts
	Prepare your coordinator radio
	Prepare your router radio

	Prepare the Sensor Board
	Configure your router XBee
	Connect power from battery to breadboard
	Router XBee connection to battery
	Photoresistor input

	Prepare the Base Station
	Connect power from Arduino to breadboard
	Coordinator XBee connection to Arduino
	Light output
	Program the romantic lighting sensor base station
	Troubleshooting

	Romantic Lighting Sensor with Feedback
	Add light output to the sensor
	Configure your router XBee
	Program the romantic lighting sensor with feedback base station

	API Ahead

	Chapter 5. API and a Sensor Network
	What’s an API?
	Protocols
	Humans
	Computers
	Start bytes
	Length byte
	Contents ID

	XBee API Protocol
	Start Delimiter
	Length Bytes
	Frame Data Bytes
	Checksum

	API Frame Types
	AT Commands
	Frame type
	Frame ID
	AT command
	Parameter value
	Checksum

	AT Responses
	Frame type
	Frame ID
	AT command
	Command status
	Command data

	ZigBee Transmit Request
	64-bit destination address
	16-bit destination network address

	ZigBee Transmit Status
	Transmit retry count
	Delivery status
	Discovery status

	ZigBee Receive Packet
	64-bit source address
	16-bit source network address
	Receive options
	Received data

	I/O Data Sample Rx Indicator
	Number of samples
	Digital channel mask
	Analog channel mask
	Digital samples
	Analog samples

	Remote AT Command Request
	Remote command options

	Remote Command Response
	Using What You Need
	Libraries

	Simple Sensor Network
	Parts
	Prepare Your Coordinator Radio
	Prepare Your Router Radios
	Prepare the Sensor Boards
	Connect voltage regulator circuit and power jack to breadboard
	Router XBee connection to power
	Temperature input
	Second sensor board

	Prepare the Base Station
	Connect to computer

	Program the Base Station
	Simple Sensor Network display code in Processing
	Troubleshooting

	Yay!

	Chapter 6. Sleeping, Then Changing the World
	Sleep Mode
	End Devices
	Storing and forwarding
	Constraints
	Advantages

	Configuring Sleep
	Sleep Mode
	Sleep Period
	Time Before Sleep
	Advanced commands

	Easy Sleeping

	Simple Sensor with Sleep Project
	Parts
	Prepare Your End Device Radios
	Configure Your End Device XBees
	Add sensor nodes...
	...or replace sensor nodes

	Direct Actuation
	Direct Actuation Example
	Parts
	Prepare Your Coordinator Radio
	Prepare Your Router Radios
	Prepare the Actuator Boards
	Configure Your Router XBees
	Connect voltage regulator circuit and power jack to breadboard
	Router XBee connection to power
	Transistor and relay output
	Second actuator board
	PowerSwitch Tail A/C relay

	Prepare the Base Station
	Connect to your computer
	Program the actuator network base station

	Simple Actuator Node Code in Processing

	Summary

	Chapter 7. Over the Borders
	Gateways
	XBee as Embedded Gateway
	Other Embedded Gateways
	Internet Gateways
	Internet Media
	Computers Versus Dedicated Devices

	ConnectPorts
	Selecting a ConnectPort
	Setting Up a ConnectPort
	Troubleshooting

	Configuring a ConnectPort

	Remote Management
	iDigi Connectivity Server
	iDigi Features
	Adding a ConnectPort
	Viewing Configurations
	Firmware Updates and Remote Reboot
	Viewing an XBee Network

	XBee Internet Gateway (XIG)
	Installing and Configuring XIG
	Testing XIG
	XIG Example
	XIG download example in PHP

	Twitter Reader
	Parts
	Prepare Your ConnectPort with XBee Internet Gateway
	Prepare Your Router Radio
	Configure Your Router Radio
	Prepare the Twitter Reader Board
	Connect power from Arduino to breadboard
	XBee connection to Arduino
	Liquid crystal display (LCD) output

	Program the Arduino
	Installing the NewSoftSerial library
	Twitter Reader code
	Troubleshooting

	Moving Forward

	Chapter 8. More to Love
	Advanced ZigBee
	ZigBee Stack Layers
	Application Support Layer
	Profiles
	Endpoints
	Clusters
	Next steps

	Routing
	Next steps

	Security
	Network and link keys
	Technical details
	Fast guide to turning on XBee network security
	Using optional APS encryption

	ZigBee Protocol References

	Serial Flow Control
	RTS and CTS

	Sharing Data
	Pachube

	Simple Sensor Network with Pachube
	API Key
	Build the Simple Sensor Network in Chapter 5
	Program the Base Station
	Simple Sensor Network Pachube Code in Processing
	Troubleshooting

	The Future of ZigBee
	Next Steps for You
	Making Stuff
	Sharing Your Work

	Appendix. Resource Guide
	Arduino Resources
	Processing Resources
	Python Resources
	ZigBee Resources Online
	Standards Organizations
	Digi International Resources
	Additional Online Resource Lists

	Recommended Books
	Sidewalk Telescopes
	Troubleshooting
	Common XBee Mistakes
	XBee Arduino Mistakes

	Reference Tables
	Other ZigBee Modules
	ZigBee Packet Sniffers
	Digi XBee Radio Modules
	XBee Connectors and Shields
	Hex, Decimal, and Binary
	ASCII Codes
	XBee Command Reference

	Index

