

Object-oriented
Programming with C++

A. K. Sharma
Professor and Dean

Department of Computer Science and Engineering
B. S. Anangpuria Institute of Technology and Management

Faridabad, Haryana, India

Delhi Chennai

Copyright © 2009 Dorling Kindersley (India) Pvt. Ltd.
Licensees of Pearson Education in South Asia

This eBook is licensed subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise
circulated without the publisher’s prior written consent in any form of binding or cover other than that in which it is published
and without a similar condition including this condition being imposed on the subsequent purchaser and without limiting the
rights under copyright reserved above, no part of this publication may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the
prior written permission of both the copyright owner and the above-mentioned publisher of this eBook.

This eBook may or may not include all assets that were part of the print version. The publisher reserves the right to remove any
material in this eBook at any time.

ISBN 978-93-325-1583-3
eISBN 978-93-325-4065-1

Head Office: A-8(A), Sector 62, Knowledge Boulevard, 7th Floor, NOIDA 201 309, India
Registered Office: 11 Local Shopping Centre, Panchsheel Park, New Delhi 110 017, India

Layout designed by Satwinder Singh Channey
Illustrations by Tarak Sharma

Dedicated
to

all the objects around me

This page is intentionally left blank

Preface xi
About the Author xiii

 1. INTRODUCTION TO C++ 1

 1.1 Introduction—1

 1.2 Characters Used in C++—2

 1.3 Basic Data Types—2
1.3.1 Data Types Modif ers 3

 1.4 C++ Tokens—3
1.4.1 Identif ers 3
1.4.2 Keywords 4
1.4.3 Constants 4
1.4.4 Variables 5

 1.5 Input–Output Statements—6

 1.6 Structure of a C++ Program—8
1.6.1 Comments 9

 1.7 Escape Sequence (Backslash Character Constants)—9

 1.8 Operators and Expressions—12
1.8.1 Arithmetic Operators 12
1.8.2 Relational and Logical Operators 13
1.8.3 Conditional Operator 15
1.8.4 Order of Evaluation of Expressions 16
1.8.5 Some Special Operators 16

 1.9 Flow of Control—18
1.9.1 The Compound Statement 19
1.9.2 Selective Execution (Conditional Statements) 20
1.9.3 Repetitive Execution (Iterative Statements) 25
1.9.4 Nested Loops 30

 1.10 Arrays—31
1.10.1 One-dimensional Arrays 32
1.10.2 Multi-dimensional Arrays 33
1.10.3 Array Initialization 35

 1.11 Structures—36
1.11.1 Def ning a Structure in ‘C++’ 36
1.11.2 Arrays of Structures 38

CONTENTS

vi Contents

1.11.3 Initializing Structures 38
1.11.4 Assignment of Complete Structures 39
1.11.5 Nested Structures 39

 1.12 Functions—40
1.12.1 Function Prototypes 41
1.12.2 Calling a Function 41
1.12.3 Parameter Passing in Functions 42
1.12.4 Returning Values from Functions 46

 1.13 I/O Functions—48
1.13.1 getchar() and putchar() Functions 48
1.13.2 getc() and putc() Functions 50
1.13.3 gets() and puts() Functions 50

 1.14 Strings—51

 1.15 Summary—54

Multiple Choice Questions 54
Answers 56
Exercises 56
Answers 58

 2. POINTERS 59

 2.1 Introduction—59
2.1.1 The & Operator 59
2.1.2 The * Operator 60

 2.2 Pointer Variables—61
2.2.1 Dangling Pointers 66

 2.3 Pointers and Arrays—67

 2.4 Array of Pointers—73

 2.5 Pointers and Structures—74

 2.6 Dynamic Allocation—76
2.6.1 Self Referential Structures 82

 2.7 Summary—88

Multiple Choice Questions 89
Answers 89
Exercises 89
Answers 93

 3. PROGRAMMING TECHNIQUES: A SURVEY 94

 3.1 Introduction—94

 3.2 Unstructured Programming—95

 3.3 Structured Programming—96
3.3.1 Procedural Programming 97
3.3.2 Modular Programming 98

 3.4 Drawbacks of Structured Programming—99

Contents vii

 3.5 Object-Oriented Programming—101

 3.6 Summary—103

Multiple Choice Questions 104
Answers 105
Exercises 105

 4. CLASSES AND OBJECTS 106

 4.1 Introduction to Objects—106

 4.2 Classes—109

 4.3 Declaration of Classes in C++—110
4.3.1 Abstraction and Encapsulation 111
4.3.2 Member Function Def nition 112

 4.4 Creating Objects—115
4.4.1 Calling Member Functions 116

 4.5 Array of Objects—119

 4.6 Objects as Function Arguments—121

 4.7 Scope Resolution Operator—124

 4.8 Static Data Members—129

 4.9 Properties of Classes and Objects—131

 4.10 Summary—132

Multiple Choice Questions 132
Answers 133
Exercises 133

 5. MORE ON FUNCTIONS: ADVANCED
CONCEPTS 136

 5.1 Polymorphism—136

 5.2 Function Overloading—136

 5.3 Inline Functions—143

 5.4 Friend Functions—146
5.4.1 Member Functions of a Class as Friends

of Another Class 153
5.4.2 Friend Function as a Bridge Between

Two Classes 153
 5.5 Friend Classes—157

 5.6 Recursion—160
5.6.1 Types of Recursion 167

 5.7 Summary—173

Multiple Choice Questions 173
Answers 174
Exercises 174
Answers 176

viii Contents

 6. CONSTRUCTORS AND DESTRUCTORS 177

 6.1 Constructors—177

 6.2 Types of Constructors—178
6.2.1 Default Constructor and User

Def ned Constructor 178
6.2.2 Parameterized Constructors 181
6.2.3 Copy Constructor 185
6.2.4 Constructors with Default Arguments 193
6.2.5 Rules for Constructor Def nition and Usage 193

 6.3 Destructors—193

 6.4 Summary—195

Multiple Choice Questions 195
Answers 196
Exercises 196

 7. INHERITANCE: EXTENDING CLASSES 198

 7.1 Introduction to Code Reuse—198

 7.2 Containership—198

 7.3 Inheritance—204
7.3.1 Visibility Modes 210

 7.4 Types of Inheritance—211
7.4.1 Multilevel Inheritance 212
7.4.2 Multiple Inheritance 213

 7.5 Function Overriding—214
7.5.1 Virtual Functions 216

 7.6 Role of Constructors and Destructors

in Inheritance—226

 7.7 Virtual Base Class—230

 7.8 Summary—232

Multiple Choice Questions 233
Answers 233
Exercises 233

 8. TEMPLATES: CODE SHARING (GENERICITY) 235

 8.1 Introduction to Code Sharing—235

 8.2 Templates—236

 8.3 Generic Classes—240

 8.4 Templates with More than One Generic Parameter—243

 8.5 Summary—245

Multiple Choice Questions 245
Answers 245
Exercises 245

Contents ix

 9. OPERATOR OVERLOADING 247

 9.1 Introduction—247

 9.2 Operator Overloading—249

 9.3 Binary Operators—250
9.3.1 Arithmetic Assignment Operators 255

 9.4 Unary Operators—256

 9.5 Input/Output Operators—258

 9.6 Rules for Operator Overloading—260

 9.7 Summary—260

Multiple Choice Questions 261
Answers 261
Exercises 261

 10. FILE HANDLING IN C++ 262

 10.1 File Concepts—262

 10.2 Files and Streams—264

 10.3 Opening and Closing a File (Text Files)—266
10.3.1 Function get() 267
10.3.2 Function getline() 269
10.3.3 Function put() 272

 10.4 Opening the Files by Using Function Open()—273

 10.5 Reading and Writing Blocks

and Objects (Binary Files)—274
10.5.1 Storing Objects in Files 280

 10.6 Detecting End of File—284

 10.7 Summary—289

Multiple Choice Questions 289
Answers 290
Exercises 290

 11. EXCEPTION HANDLING 292

 11.1 Introduction—292

 11.2 Traditional Error Handling—292

 11.3 Exception Handling in C++—296
11.3.1 Multiple Throw Statements

and Multiple Catch Blocks 299
11.3.2 Throwing Objects 303

 11.4 Summary—309

Multiple Choice Questions 309
Answers 309
Exercises 309

x Contents

 12. INTRODUCTION TO UML 311

 12.1 Introduction to Uml—311

 12.2 Class Diagrams (Static)—312
12.2.1 Relationships Among Classes 313

 12.3 Use Case Diagrams (Static)—316

 12.4 Behavioral Diagrams (Dynamic)—318
12.4.1 Interaction Diagrams 318
12.4.2 State Chart Diagrams 320
12.4.3 Activity Diagrams 322

 12.5 Implementation Diagrams—324
12.5.1 Component Diagram 324
12.5.2 Deployment Diagram 325

 12.6 Summary—326

Multiple Choice Questions 327
Answers 328
Exercises 328

 13. POLYMORPHISM: A REVIEW 329

 13.1 Polymorphism—329

 13.2 Taxonomy of Polymorphism—330
13.2.1 Universal Polymorphism 330
13.2.2 Ad Hoc Polymorphism 330

Appendix 333

Index 335

My quest for object-oriented programming (OOP) started at University of Roorkee in Novem-
ber 1989 when my guru Prof. J. P. Gupta asked me the question: “what is object-oriented pro-
gramming?” I did not have a compelling answer at that time. However, I started looking into
the available literature to fi nd the answers. A critical look at the literature revealed that OOP
was more of a philosophy than a programming paradigm. In fact, it is nearer to the oriental
philosophy which states that the world around us is not absolute but relative to an individual’s
capacity to perceive the world around him or her. In fact, whatever we perceive through our
senses is nothing but an object.

When we look around, we fi nd that we are surrounded by objects only. Everything around us,
be it a book, pen, paper, laptop, or even me and you, can all be considered as objects. In fact, any
real-world program has to be a collection of objects. For instance, a program about a university
has to involve objects such as students, professors, clerks, class rooms, books, chalk and mark
sheets. Then, why not write programs using objects, which would be a natural way of creating
useful software comprising of interacting objects.

The programming process has evolved through many phases. The journey started with
 programmers who would write programs which somehow worked, without giving importance
to the readability of the program. Languages such as FORTRAN and BASIC neither enforced
any discipline nor were they user-centric. The result was the creation of unstructured programs
that were susceptible to bugs like the Y2K problem acting as time bombs. The major problem
with these programs was that they were not maintainable.

The advent of structured programming techniques did enforce some discipline on the
 programmers by way of shunning the use of ‘goto’ statements and encouraging the ‘easy to
read and diffi cult to write’ style of code statements i.e., choosing long and meaningful names
for the variables, functions, procedures, modules etc. The major emphasis was to use block
structures in the program. For instance, any code enclosed between a pair of curly braces was
termed as a block. Pascal and ‘C’ supported blocks such as compound statements, loops, func-
tions, procedures, and fi les. This technique worked well for hardcore programmers, who were
able to write large and complex programs using structured programming techniques. The Unix
operating system was written using ‘C’.

Nevertheless, procedures that helped to solve the problem at hand were emphasized. For a
developer, algorithm development consumed more time while data was given least importance.
Thus, a program turned out to be a collection of decomposed components i.e., interacting func-
tions or modules exchanging data and data structures among them. Such data, especially the
global data, was vulnerable to inadvertent corruption by the fellow programmers.

PREFACE

xii Preface

The above-mentioned drawbacks are remedied by paying more attention to data and trying
to create reusable software components. The reusable components can further be combined to
get bigger and more powerful software. In our day-to-day life, we create bigger objects from
smaller objects. For example, the desktop computer is made up of many smaller objects such as
the mother board, RAM, HDD, SMPS, the mouse and the keyboard. We utilize the functions of
these objects without being keen to understand how they work or who made them.

OOP is a paradigm shift in programming that defi nes, creates, and manipulates objects to de-
velop reusable software. C++ is an imperative language developed to support OOP components
and features such as classes, objects, abstraction, encapsulation, inheritance, and polymorphism.

I have taught OOP at I.I.I.T.M Gwalior, JMI Delhi, YMCAUST Faridabad, and BSAITM
 Faridabad. And at these institutions, there has been a consistent demand from my students and
f ellow teachers to write a book on this subject.

Object-oriented programming with C++ has been written to help the readers look at OOP
as a philosophy and think of the problem at hand as a collection of objects. It helps the reader
to identify the classes to which the objects belong and also establish the relationship among the
classes.

C++ supports the creation and manipulation of OOP components and tools such as classes,
objects, abstraction, encapsulation, code reuse, code sharing, and polymorphism. Hence, the
book introduces C++ as an object-oriented programming language.

UML is an object-oriented modelling language. An introduction to UML has been given
with a view to acquaint the reader with various graphical tools off ered by UML to represent
OOP components.

This book would not have been possible without the good wishes, comments and suggestions
I had received from many signifi cant people. I place on record my thanks to Dr Atul Mishra,
Dr Jyoti, Dr Anuradha Pillai, Dr Naresh Chauhan, Dr Rahul Rishi, Dr Divya Jyoti, and
Sh. Pawan Bhadana. In fact, Dr. Atul Mishra has already taught his odd-semester class of 2013
using the proofs of this book.

I am indebted to my teachers and research guides Prof. J. P. Gupta, Prof. Padam Kumar,
Prof. Moinuddin, and Prof. D. P. Agarwal for their encouragement. I am also thankful to
my friends Prof. Ashok De, Prof. Qasim Rafi q, Prof. Rajender Sahu, Prof. N. S. Gill, and
Prof. S. S. Tyagi for their support.

I commend the excellent job done by the team at Pearson Education, which made this
 beautiful book happen.

My parents always encouraged me and gave me all the strength I needed. And not to miss the
 everlasting companionship of the two most important people in my life, I convey my heartfelt
thanks to my wife Suman and daughter Sagun for their support throughout.

While this book has been written with meticulous care, it is possible that some errors might
have unwittingly crept in. I shall be grateful if they are brought to my notice. I shall also be
happy to acknowledge suggestions for further improvement of this book.

A. K. Sharma

A. K. Sharma is currently Professor (CSE) and Dean (PG and
Research) at B. S. Anangpuria Institute of Technology and
Management. Earlier, he was Professor and Dean, Faculty of
Engineering and Technology, YMCA University of Science and
Technology, Faridabad.

A member of the board of studies and academic council of
several renowned universities, Dr Sharma has guided more than
twenty students in doctoral programs leading to their Ph.D.
degrees. He has published more than 250 research papers in na-
tional and international journals of repute and made presenta-
tions in numerous academic conferences. He heads a group of
 researchers actively working on the design of Web crawlers.

ABOUT THE AUTHOR

This page is intentionally left blank

1.1 INTRODUCTION
The ‘C’ programming language was created as a structured programming tool for writing large
and complex system programs such as operating systems. No wonder that in 1973, Unix operat-
ing system was developed using ‘C’. The software developers liked ‘C’ because of its charac-
teristics such as speed, compactness, and ability to harness the power of the hardware through
low-level features.

Niklaus Wirth has defined that a program is composed of two components Algorithms and
Data structures, as given below:

Algorithms + Data Structures = Programs

Thus, there can be two approaches towards the development of software, i.e. to develop pro-
grams either centered around functions or with an emphasis given to data. The structured/
top-down/modular programming was focussed on functions, with less importance given to
the associated data. On the contrary, object oriented paradigm of programming, developed in
1960s, focused on data instead of functions.

Simula 67 was the first Object Oriented Programming language developed in 1960s. It was
followed by Smalltalk in 1970s.

In 1980s the computing world grew at a tremendous rate and the need for thousands of
system programmers was felt. Whereas the number of hard core ‘C’ programmers who could
write and manage large and complex programs was hopelessly less. It was found that the struc-
tured programming itself had flaws and limitations, as there was no inherent support for code
reusability, sharing, and extensibility. Therefore, it became necessary to develop a new pro-
gramming language that could support fast development of extremely large, complex, and
 extendable software.

In 1983, Bjarne Stroustrup created C++ on the principles of object-oriented programming.
It supported much-required features such as code reusability, extensibility, sharing and variety
of polymorphism. Obviously, it was quickly adapted by programmers mainly because of its
support for inheritance.

A comparison of various programming paradigms is provided in Chapter 2.
It may be noted that in addition to the Object Oriented Programming features, almost all the

procedural programming features are available in C++. For instance, C++ supports basic data

INTRODUCTION TO
C++

1

2 Object-oriented Programming with C++

types (int, float, char, etc.), control structures, pointers, files, etc. Therefore, to start with, non-
object oriented features of C++ are discussed in the following sections.

1.2 CHARACTERS USED IN C++
The set of characters allowed in C++ consists of alphabets, digits, and special characters as
listed below:

 1. Letters: both lower case and upper case letters of English:
 A, B, C, … X, Y, Z.
 a, b, c, …, x, y, z.

 2. Decimal digits:
 0,1, 2, …, 7, 8, 9.

 3. Special characters:
!, *, +, \, “, <, #, (, =, {, >, %,), ~, :, }, /, ^, −, [, &,], ?, ‘, ., blank.

1.3 BASIC DATA TYPES
Every program specifies a set of operations to be carried out on some data in a particular
sequence. The data can be of many types such as numbers, characters, Boolean, etc. In fact a
data type defines the range of values and the set of operations that could be applied on that type
of data. The range of values allowed for a data type depends upon the number of bytes allocated
for its storage by the system. For example, one byte of allocation allows values ranging from
−128 to +127 and two bytes allow values ranging from −32,768 to +32,767.

The basic data types supported by C++ are integer, floating point, and character types. A
brief discussion on these types is given below:

 1. Integer (int). An integer is an integral whole number without a decimal point. These
numbers are used for counting. Examples of some valid integers are 525, 28, −24, 571,
209, −9.

 C++ supports two types of integers: ‘int’ and ‘long’. These types are used for normal
and extremely large values of counting numbers, respectively. The range of values that
can be held in these data types is given in Table 1.1.

 2. Floating point (float). A floating point number has a decimal point. Even if it has an
integral value, it must include a decimal point at the end. These numbers are used
for measuring quantities. Examples of some valid floating point numbers are 435.21,
−987.1, 123., 0.435.

 C++ supports three types of floating points: ‘float’, ‘double’, ‘long double’. They can
hold values in the increasing order of precision as given in Table1.1

 3. Character (char). It is a non-numeric data type consisting of a single alphanumeric
character. Examples of some valid characters are ‘X’, ‘9’, ‘r’, ‘V’, ‘&’, etc.

 It may be noted that the data items: ‘9’ and 9 are of different types. The former is of type
char and later of type int.

Introduction to C++ 3

 4. void. It is a special type that represents an empty set of different data types. No object
can be defined of type void. At this moment, it is not worthwhile to discuss more on this
data type. We shall discuss more on this type later in the book especially when we reach
a stage where it can be used.

1.3.1 Data Types Modifiers
The range of values supported by a particular data type can be very large. A data type modifier
can be used by programmer to refer to different sub-ranges of the values supported by a data
type. The various data modifiers, their associated data types, range of values, and memory size
occupied in bytes are tabulated in Table 1.1.

Table 1.1 Data Type Modifiers and Range of Values

Data Type Modifier Range of Values Memory Size (bytes)

Integer short
signed short
unsigned short
int
unsigned int
signed int
long

−32,768 to 32,767
−32,768 to 32,767
0–65,535
Same as short
Same as unsigned short
Same as signed short
−2,147,438,648 to 2,147,438,647

2
2
2
2
2
2
4

Floating point fl oat
double
long double

3.4 * 10−38 to 3.4 * 1038

1.7 * 10−308 to 1.7 * 10308

3.4 * 10−4932 to 3.4 * 104932

4
8

10

Character char
signed char
unsigned char

−128 to 127
−128 to 127
0 to 255

1
1
1

1.4 C++ TOKENS
A token is a group of characters that belong together. It is the lowest level of semantic unit of
C++. Therefore, any sentence or statement written in C++ must contain tokens such as if, +,
1008, for, while, etc. C++ supports the following types of tokens:

■ Identifi ers

■ Keywords

■ Constants

■ Operators

1.4.1 Identifiers
An identifier is a symbolic name that is used to identify and refer to data items or objects used
by a programmer in his/her program. For example, if it is desired to store a value (say 27) in a
memory location then the programmer must choose a symbolic name (say Num) and perform
the following assignment:

4 Object-oriented Programming with C++

Num = 27;

The symbol ‘=’ is an assignment operator that stores the value ‘27’ into a memory location
called ‘Num’ as shown in Fig. 1.1. The character ‘;’ marks the end of a statement and therefore
it is called a statement terminator.

27

Num

Num = 27;

Figure 1.1 Identifier ‘Num’ is being assigned the value ‘27’

As defined earlier, an identifier is a token, i.e. a sequence of characters taken from C++
character set. The rules of formation of C++ identifiers are given below:

 1. An identifier can consist of alphabets, digits, and/or underscore. However special char-
acters such as space, comma etc., are not allowed to be included in an identifier name.

 2. It must not start with a digit.

 3. C++ is case sensitive language, i.e. upper case and lower case letters are considered
different from each other. However, the identifier name can be a combination of upper-
case and lower case letters.

 4. An identifier name can start with an underscore.

 Examples of some acceptable identifiers are:

salary
basicPay
_bit
age_of_student
sri1008

 Examples of some unacceptable identifiers are:

Salary (blank not allowed)
Basic,Pay (special characters such as ‘,’ not allowed)
345bit (first character cannot be a digit)

 It may be noted that salary and Salary are two different identifiers.

1.4.2 Keywords
A keyword is a reserved word of C++. This cannot be used as an identifier in a program. The set
of C++ keywords is given in Appendix.

1.4.3 Constants
A symbolic name or identifier, which does not change its contents during execution of a program
is known as a constant. Any attempt to change the contents of a constant will result in an error
message. The C++ constant can be of any basic data types, i.e. integer constants, floating point
constants, and character constants.

Introduction to C++ 5

const qualifier can be used to declare a constant as shown below:

const float Pi = 3.1415;

The above declaration means that identifier ‘Pi’ is a floating point constant having a fixed value
equal to 3.1415.

Examples of some valid constant declarations are:

const int rate = 50;
const float Pi = 3.1415;
const char ch = ‘A’;

It may be noted that a character sequence enclosed within double quotes is called as a string
literal. For instance the character sequence, “saiRam” is a string literal. When a string literal is
assigned to an identifier, declared as a constant, then it is known as a string constant.

1.4.4 Variables
A variable is an identifier. It is the most fundamental aspect of any computer language. It is a
location in the memory whose contents can change. It is given a symbolic name for easy refer-
ence. To understand this concept, let us have a look at the following statements:

 1. total = 500.25;

 2. net = total – 100;

In statement number (1) a value 500.25 is being assigned to a variable called total. The variable
total is used in statement number (2) wherein the result of the expression on right-hand side
(total – 100) is being assigned to another variable called net, appearing on the left-hand side of
‘=’, the assignment operator. The point worth noting is that the variable ‘total’ is being referred
by its name in statement (2) but not by its content. In fact, all variables are referred to by their
names and not by their contents. This important feature of variables makes them a powerful tool
in the hands of a programmer.

However, a variable needs to be defined of a particular type before it is used in a program. This
activity enables the compiler to make available the appropriate amount of memory for the given
type of the variable asked by the programmer. The definition of variable has the following format:

<data type> <variable name>;

where <data type> is the type of data to be stored and <variable name> is the user defined name
of the variable.

For example, a variable called ‘roll’ of type integer can be defined as:

int roll;

Similarly, a variable called ‘salary’ of type float can be defined as:

float salary;

Examples of some valid variable declarations are:

 1. char ch;

 2. int i, j, k;

6 Object-oriented Programming with C++

 3. float payMonth;

 4. int rollStudent;

 5. long num;

C++ also allows initialization of a variable with a value at the time of declaration. For example,
the variable called ‘sum’ of type int can be initialized to a value 100 as shown below:

int sum = 100;

1.5 INPUT–OUTPUT STATEMENTS
Input–output statements are program instructions used for interaction of data and messages
with the user of the program and/or input-output devices. Input statements are used to provide
data to the program. Output statements are used to display data on the screen. These statements
can also be used to store the data on auxiliary devices such as hard disk, pen-Ram, etc.

In hills, the villagers bring an input stream of water underneath their houses from a river as
shown in Fig. 1.2. The water for the kitchen is taken from the input stream and the waste water
is let out into the output stream.

Input Stream

Output Stream

River

Figure 1.2 Input and output streams of water for houses in hills

Likewise, C++ also maintains input and output streams. The input and output devices are
attached to the input and output streams, respectively, as shown in Fig. 1.3.

Input Stream

Mouse
Keyboard

Get From
Operator

Memory

Printer
LCD Monitor

Output Stream Put to
Operator

>>

<<

F igure 1.3 Input–output streams in C++

Introduction to C++ 7

cin is the standard input stream (keyboard) and it can be used to input a value entered by the
user from the keyboard. However, cin uses a get from operator (i.e. >>) to get the typed value
from keyboard. The value is stored at a designated location of a variable in the main memory.
Let us consider the following program segment:

int marks;
cin >> marks;

In the above segment, the user has defined a variable called marks of integer type in the first
statement and in the second statement he/she is asking to read a value from the keyboard into
marks. Once this set of statements is obeyed by the computer, whatever is typed on the keyboard
(say 98) is received by the input stream cin which then hands over the received value to (get
from operator) >>. The operator stores the value in the corresponding memory location called
marks as shown in Fig. 1.4.

Main Memory

98cin >> Marks ≡

Figure 1.4 Value inputted to a variable marks through cin

cout is the standard output stream (visual display unit) and it can be used to display a value stored
in a variable onto a display device such as an LCD display. Similar to cin, cout also uses a put to
operator (i.e. <<) to extract the value from the variable. The value is then sent to the LCD display.

The contents of the variable (marks) can be displayed on the screen by the statement given
below:

cout << marks;

The output of the above statement will be displayed on the screen as:

98

A message can be displayed on the screen as text enclosed within parentheses. Let us consider
a situation where a user desires to display a message “My first attempt” on the screen. This can
be achieved through the following statement:

cout << “My first attempt”;

Once the above statement is executed by the computer, the following message will appear on
the screen.

8 Object-oriented Programming with C++

My first attempt

Similarly, the following program segment defines a variable some of integer type, initializes it
to a value 500 and displays the contents of the variable on the screen

:
int some;
some = 500;
cout << “The value of variable some =”;
cout << some;

:

Once the above program segment is executed by the computer, the following output is displayed
on the screen:

The value of variable some = 500

In fact, we can also use more than one output or put to operators within the same output state-
ment as shown below. This activity is known as cascading of operators:

cout << “The value of variable some = ” << some;

Similarly, cascading of get from operators can also be done with a cin statement. For example,
the following statement would input three variables val1, val2, and val3 from the keyboard.

cin >> val1 >> val2 >> val3;

 Note: A stream acts as an interface between the Input/Output (I/O) system of the oper-
ating system and the program. This helps in making I/O statements independent of the actual
physical devices attached to the system.

1.6 STRUCTURE OF A C++ PROGRAM
Every program written in C++ must follow the format or structure specified by the language.
The general structure of a C++ program is given below:

include <header file>
 main()
 {
 ;
 ;
 ;
 }

It may be observed that the C++ program starts with a function called main(). The body of the
function is enclosed between curly braces. These braces are equivalent to Pascal’s BEGIN and
END keywords. The program statements are written within the braces. Each statement must end
by a semicolon (the statement terminator).

A C++ program may contain as many functions as required. However, when the program is
loaded in the memory, the control is handed over to function main() and it is the first function
to be executed.

Introduction to C++ 9

Let us now write our first program:

#include <iostream.h>
void main()
 {
 cout << “My first attempt”;
 }

When the above program is executed the following output is displayed on the visual display unit
(VDU) screen.

My first attempt

It may be noted here that the statement # include <iostream.h>, has been placed at the top of
the program. This is one of the header files defined by C++. It contains declarations for stan-
dard library functions for stream I/O.

1.6.1 Comments
A comment can be added to the program by enclosing the text between the pair: /* ... */, i.e. /*
indicates the beginning of the comment and */marks the end of it. For example, the following
line is a comment:

/* This is my first program */

A single line comment can be added in a C++ program by using double slash sequence (//) as
shown in the following program:

// This is my first program
#include <iostream.h>
void main()
 {
 cout << “My first attempt”;
 }

It may be noted here that a comment is a non-executable statement in the program.

1.7 ESCAPE SEQUENCE
(BACKSLASH CHARACTER CONSTANTS)

‘C++’ has some special character constants called backslash character constants. These are
unprintable ASCII characters that can perform special functions in the output statements. A
back slash character constant is nothing but a back slash (‘\’) character followed by another
character.

For example, “\n” can be used in a cout statement to send the next output to the beginning
of the next line.

Consider the following program:

#include <iostream.h>
void main()

10 Object-oriented Programming with C++

 {
 cout << “Our body has five Koshas as given below:”;
 cout << “Anna, Prana, Mann, Gyan, and Anand”;
 }

The output of this program would be:

Our body has five Koshas as given below: Anna, Prana, Mann,
Gyan, and Anand

It may be noted that though two separate cout statements were written in the above program, the
output has been displayed on the same line.

In order to display the text in two lines, the “\n” character constant should be placed either
at the end of the text in the first cout statement or at the beginning of the text in the second cout
statement.

Consider the following modified program:

#include <iostream.h>
void main()
 {
 cout << “Our body has five Koshas as given below:”;
 cout << “\n Anna, Prana, Mann, Gyan, and Anand”;
 }

The character constant “\n” has been placed at the beginning of the text of the second cout state-
ment and therefore the output of the program would be:

Our body has five Koshas as given below:
Anna, Prana, Mann, Gyan, and Anand

Some important backslash constants are listed below:

Backslash Character Constant Meaning

\t Tab

\b Backspace

\a Bell (alert)

\n Newline character

 Note: The backslash characters are also known as escape sequences. Such characters
can be used within apostrophes or within double quotes.

A brief discussion on these backslash characters follows:

 1. ‘\t’ (Tab): this character is called as a tab character. Wherever it is inserted in an output
statement, the display moves over to the next present tab stop. Generally a tab is of 8
blank spaces on the screen. An example of usage of character ‘\t’ is given below:

 #include <iostream.h>
 void main()

Introduction to C++ 11

 {
 cout << “\n \tAnna \tPrana \tMann \tGyan \tAnand”;
 }

 The output of the above statement would be on the new line with spacing as shown
below:

Anna Prana Mann Gyan Anand

 2. ‘\b’ (Backspace): this character is also called as backspace character. It is equivalent to
the backspace key symbol (←) available on the computer or typewriter. It moves one
column backward and positions the cursor on the character displayed on that column. An
example of usage of character ‘\b’ is given below:

 #include <iostream.h>
 void main()
 {
 cout << “\n ASHOKA\b?”;
 }

 The output of the above statement would be:

ASHOK?

 We can see that the trailing letter ‘A’ has been overwritten by the character ‘?’ at the end of
the string constant <ASHOKA> the reason being: ‘\b’ moved the cursor one column back-
ward, i.e. at ‘A’ and the cout statement printed the character ‘?’ on that column position.

 3. ‘\a’ (Alert): this character is also called as alert or bell character. Whenever it is inserted
in an output statement, it sounds a bell which can be heard by the user sitting on com-
puter terminal. It can be used in a situation where the programmer wants to catch the
attention of the user of this program. An example of usage of ‘\a’ character is given
below:

 #include <iostream.h>
 void main()
 {
 cout << “\n Error in data \a”;
 }

 The output of the above statement would be the following message on the screen and
thereafter sounding of a bell on the system speaker.

Error in data

 4. ‘\n’ (new line): as discussed earlier, this character is called as newline character. Wher-
ever it appears in the output statement, the immediate next output is taken to the begin-
ning of the next new line on the screen. Consider the program given below:

 #include <iostream.h>
 void main()
 {
 cout << “\n This is \n a test”;
 }

12 Object-oriented Programming with C++

 The output of this program would be:
 This is
 a test

1.8 OPERATORS AND EXPRESSIONS
An operator is a symbol or letter used to indicate a specific operation to be carried out on
variables in a program. For example, the symbol ‘+’ is an add operator that adds two data items
called operands.

An expression is a combination of operands (i.e. constants, variables, numbers, etc.) con-
nected by operators and parenthesis. For example, in the expression given below, A and B are
operands and ‘+’ is an operator.

A + B

C++ supports three basic types of operators: arithmetic, relational, and logical. An expression
that involves arithmetic operators is known as an arithmetic expression. The computed result of
an arithmetic expression is always a numerical value. The expression which involves relational
and/or logical operators is called a Boolean expression or logical expression. The computed
result of such an expression is a logical value, i.e. either 1 (True) or 0 (False).

The rules for formation of an expression are:

 1. A signed or unsigned constant or variable is an expression.

 2. An expression connected by an operator to a variable or a constant is an expression.

 3. Two expressions connected by an operator is also an expression.

 4. Two operators should not occur in continuation.

1.8.1 Arithmetic Operators
The valid arithmetic operators supported by C++ are given in Table 1.2.

Table 1.2 Arithmetic Operators

Symbol Stands For Example

+ Addition x + y

− Subtraction x − y

* Multiplication x*y

/ Division x/y

% Modulus or remainder x%y

−− Decrement −−x
x−−

++ Increment ++x
x++

Introduction to C++ 13

1.8.1.1 Unary Arithmetic Operators

A unary operator requires only one operand or data item. The unary arithmetic operators
 supported by C++ are, unary minus (‘−’), increment (‘++’), and decrement (‘−−’). As compared
to binary operators, the unary operators are right associative in the sense that they evaluate from
right to left.

The unary minus operator is written before a numerical value, variable or an expression.
Examples of usage of unary minus operator are given below:

(i) -57; (ii) -2.923; (iii) -x; (iv) -(a * b); (v) 8 * (-(a + b))

It may be noted here that the result of application of unary minus on an operand is the negation
of its operand.

The operators ‘++’ and ‘−−’ are unique to C and C++. These are called increment and decre-
ment operators, respectively. The increment operator ++ adds 1 to its operand. Therefore, we
can say that, the following expressions are equivalent.

i = i + 1 ≡ ++i;

For example, if the initial value of i is 10 then the expression ++i will increment the contents of
i to 11. Similarly, the decrement operator −− subtracts 1 from its operand. We can say that, the
following expressions are equivalent:

j = j − 1 ≡ −−j ;

For example, if the initial value of j is 5 then the expression −−j will decrement the contents of
j to 4.

The increment and decrement operators can be used both as a prefix and postfix to a variable
as shown below:

++x or x ++
−−y or y−−

As long as the increment or decrement operator is not used as part of an expression, the prefix
and postfix forms of these operators do not make any difference. For example, ++ x and x ++
would produce the same result. However, if such an operator is part of an expression then the
prefix and postfix forms would produce entirely different results.

In the prefix form the operand is incremented or decremented before the operand is used in
the program.

1.8.2 Relational and Logical Operators
A relational operator is used to compare two values and the result of such an operation is always
logical, i.e. either true or false. The valid relational operators supported by C++ are given in
Table 1.3.

14 Object-oriented Programming with C++

Table 1.3 Relational Operators

Symbol Stands For Example

> Greater than x > y

>= Greater than equal to x >= y

< Less than x < y

<= Less than equal to x <= y

== Equal to x == y

!= Not equal to x != y

A logical operator is used to connect two relational expressions or logical expressions. The
result of such an operation is always logical, i.e. either true or false. The valid logical operators
supported by C++ are given in Table 1.4.

Table 1.4 Logical Operators

Symbol Stands For Example

&& Logical AND x && y

|| Logical OR x || y

! Logical NOT !x

Rules of logical operators:

 1. The output of a logical AND operation is true if its both the operands are true. For all
other combinations the result is false.

 2. The output of logical OR operation is false if both of its operands are false. For all other
combinations the result is true.

 3. The logical NOT is a unary operator. It negates the value of the operand.

For initial value of x = 5 and y = 7, consider the following expression

(x < 6) && (y > 6)

The operand x < 6 is true and the operand y > 6 is also true. Thus, the result of above given
logical expression is also true. However, the result of following expression is false because one
of the operands is false:

(x < 6) && (y > 7)

Similarly, consider the following expression:

(x < 6) || (y > 7)

The operand x < 6 is true whereas the operand y > 7 is false. Since these operands are connected
by logical OR, the result of this expression is true (Rule 2). However, the result of following
expression becomes false (negation of true).

Introduction to C++ 15

!(x < 6) || (y > 7)

 Note: The expression on the right-hand side of logical operators && and ||, does not get
evaluated in case the left-hand side determines the outcome.

Consider the expression given below:

x && y

If x evaluates to false (zero) then the outcome of above expression is bound to be false irrespec-
tive of y evaluating to any logical value. Therefore, there is no need to evaluate the term y in the
above expression.

Similarly, in the following expression, if x evaluates to true (non-zero) then the outcome is
bound to be true. Thus, y will not be evaluated.

x || y

1.8.3 Conditional Operator
C++ provides a conditional operator (? :) which can help the programmers in performing simple
conditional operations. It is represented by the symbols ‘?’ and ‘:’. For example, if one desires
to assign the bigger of two variables x and y to a third variable z the conditional operator is an
excellent tool. The general form of this operation is:

E1 ? E2 : E3

where E1, E2 and E3 are expressions.
In the conditional operation, the expression E1 is tested, if E1 is true then E2 is evaluated

otherwise the expression E3 is evaluated as shown in Fig. 1.5.

true

E1 E2 E3

false

? :

Figure 1.5 Conditional operation

Consider the following conditional expression:

z = (x > y) ? x : y;

The expression x > y is evaluated. If x is greater than y, then z is assigned x otherwise z gets y.
Examples of valid conditional expressions are:

 (i) y = (x >= 10) ? 0 : 10;

 (ii) Res = (i < j) ? sum + i : sum + j;

 (iii) q = (a = = 0) ? 0 : (x/y);

16 Object-oriented Programming with C++

It may be noted here that the conditional operator (? :) is also known as a ternary operator
because it operates on three values.

1.8.4 Order of Evaluation of Expressions
A number of logical and relational expressions can be linked together with the help of logical
operators as shown below:

(x < y) || (x > 20) && !(z) || ((x < y) && (z > 5))

For the above complex expression, it becomes difficult to make out as to in what order the
evaluation of sub-expressions would take place.

In C++, the order of evaluation of an expression is carried out according to the operator
precedence given in Table 1.5.

Table 1.5 Operator Precedence

Operators Priority Associativity

− ++ −− ! Highest Right to left

* / % Left to right

+ − Left to right

< <= > >= Left to right

== != Left to right

&& Left to right

|| Lowest Left to right

It may be noted here that in C++, false is represented as zero. True is represented as any non-zero
value. Thus, expressions that use relational and logical operators return either 0 (false) or 1 (true).

1.8.5 Some Special Operators
There are many other operators in C++. In this section, the two frequently used operators: sizeof
and comma operators have been discussed.

1.8.5.1 sizeof() Operator

C++ provides a compile time unary operator called sizeof. When applied on an operand, it
returns the number of bytes the operand occupies in the main memory. The operand could be a
variable, a constant or a data type. For example, the following expressions:

 a = sizeof(“sum”);
b = sizeof(char);
c = sizeof(123L);

would return the sizes occupied by arguments: sum, data type char and constant ‘123L’ on your
machine. It may be noted that

Introduction to C++ 17

 (i) The parentheses used with sizeof are required when the operand is a data type. With
variables or constants, the parentheses are not necessary.

 (ii) sizeof() operator has the same precedence as prefix increment/decrement operators.

Example 1. Write a program that illustrates the usage of sizeof() operator.

Solution: We would print the values of a, b, and c which contain the size of arguments:
“sum”, data type char and constant ‘123L’ respectively. The required program is given below:

// The usage of sizeof operator

include<iostream.h>
void main()
 {
 int a, b, c;
 a = sizeof (“sum”);
 b = sizeof (char);
 c = sizeof (123L);
 cout << “\n size of string : ‘sum’ = “<< a <<” bytes”;
 cout << “\n size of data type : char = “<< b <<” bytes”;
 cout << “\n size of number : 123L= “<< c <<” bytes”;
 }

The output of the program is given below:

size of the string : ‘sum’ =4 bytes
size of the data type :char =1 bytes
size of number : 123L=4 bytes_

1.8.5.2 Comma Operator

The comma operator is used to string together a number of expressions which are performed in
a sequence from left to right.

For example, the following statement

a = (x = 5, x + 2);

executes in the following order

 (i) value 5 is assigned to variable x;

 (ii) x is incremented by 2;

 (iii) the value of expression x + 2 (i.e. 7) is assigned to the variable a.

The following points may be noted regarding comma operators:

 1. A comma-separated list of expressions is always evaluated from left to right.

18 Object-oriented Programming with C++

 2. The final data type of a comma-separated list of expressions is always same as the data
type of the rightmost expression in the list.

 3. The comma operator has the lowest precedence among all C++ operators.

1.8.5.3 Assignment Operator

Statements are the smallest executable units of a C++ program and each statement is terminated with
a semicolon. An assignment statement assigns the value of the expression on the right-hand side to a
variable on the left-hand side of the assignment operator (=). Its general form is given below:

<variable name> = <expression>;

The expression on the right-hand side could be a constant, a variable or an arithmetic, relational,
or logical expression. Some examples of assignment statements are given below:

a = 10;
a = b;
a = b * c;

 (i) The assignment operator is a kind of a store statement, i.e. the computed value of the
expression on the right-hand side is stored in the variable appearing on the left-hand side
of the assignment operator. The variable on the left-hand side of the assignment operator
is also called lvalue and is an accessible address in the memory. Expressions and con-
stants on the right-hand side of the assignment operator are called rvalue.

 (ii) The assignment statement overwrites the original value contained in the variable on the
left-hand side with the new value of the right-hand side.

 (iii) Also the same variable name can appear on both the sides of the assignment operator as
shown below:

count = count +1;

 (iv) Multiple assignments in a single statement can be used specially when same value is to
be assigned to a number of variables.

a = b = c = 30;

 These multiple assignment statements work from right to left and at the end all variables
have the same value. The above statement assigns the value (i.e. 30) to all variables c, b,
and a. However, the variables must be of same type.

 (v) A point worth nothing is that C++ converts the type of value on the right-hand side to the
data type on the left.

1.9 FLOW OF CONTROL
A statement is the smallest executable unit of a C++ program. It is terminated with a semicolon.
It is an instruction given to the computer to perform a particular task like reading input, display-
ing output, evaluating an expression, etc.

A single statement is also called as a simple statement. Some examples of simple statements
are given below:

Introduction to C++ 19

 (i) int a = 100;

 (ii) S = S + a;

 (iii) count ++;

A statement can also be an empty or null statement as shown below:

;

The high-level languages such as Pascal, C, and C++ have been designed for computers based
on Von-Neumann architecture. Since this architecture supports only sequential processing, the
normal flow of execution of statements in a high-level language program is also sequential, i.e.
each statement is executed in the order of its appearance in the program. For example in the fol-
lowing C++ program segment, the order of execution is sequential from top to bottom:

x = 10;
y = 20; Order of execution
z = x + y;
:

The first statement to be executed is ‘x = 10’, and the second statement is ‘y = 20;’. The execution
of statement ‘z = x + y’ will take place only after the execution of the statement ‘y = 20’. Thus,
the processing is strictly sequential. Moreover, every statement is executed one and only once.

Depending upon the requirements of a problem, it is often needed to alter the normal
 sequence of execution in the program. This means that we may desire to selectively and/or
repetitively execute a program segment. A number of ‘C++’ control structures, are available
for controlling the flow of processing. These structures are discussed in the following sections.

1.9.1 The Compound Statement
A compound statement is a group of statements separated from each other by a semicolon. The
group of statements, also called a block of code, is enclosed between a pair of curly braces,
i.e. ‘{’ and ‘}’. The significance of a block is that the sequence of statements enclosed in it, is
treated as a single unit. For example, the following group of statements is a block.

/* a block of code */
{
 cin >> a >> b;
 c = a + b;
 cout << c;
}

One compound statement can be embedded in another as shown below:

 {
 :
 {
 :
 }
 :
 }

20 Object-oriented Programming with C++

In fact, the function of curly braces ‘{’ and ‘}’ in a C or C++ program is same as the function of
Begin and End, the reserved words in Pascal. C and C++ call these braces as delimiters.

1.9.2 Selective Execution (Conditional Statements)
In some cases, it is desired that a selected segment of a program be executed on the basis of a
test, i.e. depending upon the state of a particular condition being true or false. In C++, ‘if state-
ment’ is used for selective execution of a program segment.

1.9.2.1 The if Statement

This statement helps us in the selection of one out of two alternative courses of action. The
general form of if statement is given below:

 if (expression)
 {
 statement sequence
 }

where ‘if ’ is a reserved word; expression is a Boolean expression enclosed within a set of
parentheses. These parentheses are necessary even if there is a single variable in the expression.
Statement sequence is either a simple statement or a block. However, it cannot be a declaration.

Examples of acceptable if statements are:

 (i) if (A > B) A = B;

 (ii) if (total < 100) {
 total = total + val;
 count = count + 1;
 }

 (iii) if ((Net > 7000) && (I_tex == 500)) {
 :
 }

1.9.2.2 The if–else Statement

It may be observed from the above examples that the simple if statement does nothing when the
expression is false. An if–else statement takes care of this aspect.

The general form of this construct is given below:

 if (expression)
 {
 statement sequence1
 }
 else
 {
 statement sequence2
 }

Introduction to C++ 21

where ‘if ’ is a reserved word; expression is a Boolean expression, written within parentheses;
 statement sequence1 can be a simple or a compound statement; ‘else’ is a reserved word; state-
ment sequence2 can be a simple or a compound statement.

Examples of if–else statements are:

 (i) if (A > B) C = A;
 else C = B;

 (ii) if (x == 100)
 cout << “Equal to 100”;
 else
 cout “\n Not Equal to 100”;

It may be noted here that both the if and else parts are terminated by semicolons.

Example 2. Write a program that reads a year and determine whether it is a leap year or not.

Solution: We know that a year is leap if it is evenly divisible by 4 or 400. However, a century
year such as 1900 is not a leap year. Thus, it should not be divisible by 100. The program for
this problem is given below:

//This program determines whether an input
 //year is a leap year or not

 #include <iostream.h>
 # include <conio.h>
 void main()
 {
 int leapyear;
 clrscr();
 cout << “Enter the year =”;
 cin >> leapyear;
 //check if it is divisible by 4 & not divisible by 100
 // or divisible by 400
 if ((leapyear % 4 == 0)&&(leapyear % 100 != 0)
 || (leapyear % 400 == 0))
 cout << leapyear << “is a leap year\n”;
 else
 cout << leapyear << “is not a leap year \n”;
 }

Sample outputs are given below:

Enter the year =2000
2000 is a leap year

Enter the year =2006
2006 is not a leap year

22 Object-oriented Programming with C++

1.9.2.3 Nested if Statements (if–else–if ladder)

The statement sequence of if or if–else may contain another if statement, i.e. the if–else
 statements can be nested within one another as shown below:

 if (exp1)
 if (exp2)
 {
 :
 }
 else
 if (exp3)
 {
 :
 }
 else
 {
 :
 }

It may be noted here that sometimes the nesting may become complex in the sense that it
becomes difficult to decide “which if does the else match”. This is called as “dangling else
problem”. The ‘C++’ compiler follows the following rule in this regard:

Rule: each else matches to its nearest unmatched preceding if.
Consider the following nested if:

if (x < 50) if (y > 5) Net = x + y; else Net = x - y;

In the above statement, the else part matches the second if (i.e. if (y > 5)) because it is the near-
est preceding if. It is suggested that the nested ifs should be written with proper indentation. The
else(s) should be lined up with their matching if(s). Nested if(s) written in this fashion are also
called if–else–if ladder. For example, the nested if given above should be written as:

 if (x < 50)
 if (y > 5)
 Net = x + y;
 else
 Net = x − y;

However, if one desires to match the else with the first if, then the braces should be used as
shown below:

 if (x < 50) {
 if (y > 5)
 Net = x + y;
 }
 else
 Net = x − y;

The evaluation of if–else–if ladder is carried out from top to bottom. Each conditional expres-
sion is tested and if found true only then its corresponding statement is executed. The remaining

Introduction to C++ 23

ladder is, therefore, bypassed. In a situation where none of the nested conditions is found true
then the final else part is executed.

1.9.2.4 Switch Statement (Selection of One Out of Many Alternatives)

If it is required in a program to select one out of several different courses of action then the
switch statement of C++ can be used. In fact, it is a multi-branch selection statement that makes
the control to jump to one of the several statements based on the value of an integer variable or
expression. The general form of this statement is given below:

 switch (expression)
 {
 case constant 1: statement; break;
 case constant 2: statement; break;
 :
 default : statement;
 }

where switch is a reserved word; expression must evaluate to an integer or character value;
case is a reserved word; constant must be an int or char compatible value; statement is a
simple or compound statement; default is a reserved word and is an optional entry; break is a
reserved word that stops the execution within the switch and the control comes out of the switch
 construct.

The switch statement works according to the following rules:

 1. The value of the expression is matched with the random case constants of the switch
 construct.

 2. If a match is found then its corresponding statements are executed and when break is
encountered, the flow of control jumps out of the switch statement. If break statement is
not encountered then the control continues across other statements. In fact, switch is the
only statement in ‘C++’ which is error prone. The reason being that is if the control is in
a particular case then it keeps running through all the cases in the absence of a proper
break statement. Thus, absence of a break statement is a common error. This phenom-
enon is called as “fall-through”.

 3. If no match is found and if a default label is present then the statement corresponding to
default is executed.

 4. The values of the various case constants must be unique.

 5. There can be only one default statement in a switch statement.

Examples of acceptable switch statements are:

 (i) switch (BP)
 {
 case 1 : total + = 100;
 break;
 case 2 : total + = 150;

24 Object-oriented Programming with C++

 break;
 case 3 : total + = 250;
 }

 (ii) switch (code)
 {
 case 101 : Rate = 50; break;
 case 102 : Rate = 70; break;
 case 103 : Rate = 100; break;
 default : Rate = 95;

 }

From the statement (ii) it may be observed that depending on the value of the code one out of
the four instructions is selected and obeyed. For example, for the code 103, the third instruction
(i.e. Rate = 100;) would be selected. On the other hand, if the code evaluates to 101 then the first
instruction (i.e. Rate = 50) would be selected.

Example 3. Write a program that determines in which quadrant an angle lies.

Solution: The program for this problem is given below:

// This program determines the quadrant for a given angle. It checks
for the value of angle
// between the range 0 to 360

include <iostream.h>
void main()
 {
 f oat val_angle;
 int term;
 cout << “Enter the angle in degrees 0–360”;
 cin >> val_angle;
 if ((val_angle > 0) && (val_angle <= 360))
 {
 term = (int) val_angle/90;
 switch (term)
 {
 case 0 : cout << “\n Ist quadrant”; break;
 case 1 : cout << “\n 2nd quadrant”; break;
 case 2 : cout << “\n 3rd quadrant”; break;
 case 3 : cout << “\n 4th quadrant”;
 }
 }
 else
 cout << “\n Error in data”;
}

Introduction to C++ 25

1.9.3 Repetitive Execution (Iterative Statements)
Some problems require that a set of statements be executed a number of times, each time chang-
ing the values of one or more variables, so that every new execution is different from the previ-
ous one. This kind of repetitive execution of a set of statements in a program is known as a Loop.

We can categorize loop structures into two categories: non-deterministic loops and determin-
istic loops. When the number of times the loop is to be executed is not known then the loop is
called as non-deterministic loop, otherwise it is called a deterministic loop.

C++ supports while, do–while, and ‘for’ loop constructs to help repetitive execution of a
compound statement in a program. The ‘while’ and ‘do–while’ loops are non-deterministic
loops and the ‘for’ loop is a deterministic loop.

1.9.3.1 The while Loop

It is the fundamental conditional repetitive control structure in C and C++. The general form of
this construct is given below:

while <cond> statement;

where while is a reserved word of C++; <cond> is a Boolean expression; statement can be a
simple or compound statement.

The sequence of operation in a while loop is as follows:

 1. Test the condition.

 2. If the condition is true then execute the statement and repeat step 1.

 3. If the condition is false, leave the loop and go on with the rest of the program.

Thus, it performs a pre-test before the body of the loop is allowed to execute.

Example 4. Write a program that computes the factorial of a number N.

N! = N * (N − 1) * (N −2) * ··· * 3 * 2 * 1

Solution: We would use the while loop for the iterations required in the computation of the
 factorial.

// This program computes the factorial of a number N

 # include <iostream.h>
 # include <conio.h>
 void main()
 {
 int N;
 int fact;
 clrscr();
 cout << “Enter the Number =”;
 cin >> N;

26 Object-oriented Programming with C++

It may be noted here that the variables used in the <cond> or Boolean expression must be suit-
ably initialized somewhere before the while statement is encountered otherwise the loop may
not execute even once.

1.9.3.2 The do–while Loop

It is another conditional repetitive control structure provided by C and C++. The syntax of this
construct is given below:

 do
 {
 statement;
 }
 while <cond>;

where do is a reserved word; statement can be a simple or a compound statement; while is a
reserved word; <cond> is a Boolean expression.

The sequence of operations in a do–while loop is as follows:

 1. Execute the statement.

 2. Test the condition.

 3. If the condition is true then repeat steps 1–2.

 4. If the condition is false, leave the loop and go on with the rest of the program.

Thus, it performs a post-test in the sense that the condition is not tested until the body of the
loop is executed at least once. Therefore, it is suitable for constructing “Menus”.

Example 5. Write a program that displays the following “Menu” to the user and asks for his/
her choice. Thereafter, appropriate messages are displayed.

 Menu: mode of travel

 Travel by air 1

 // initialize fact
 fact = N;
 // accumulate factorial in fact
 while (N > 1)
 {
 N = N − 1;
 fact = fact * N;
 }
 // print factorial
 cout << “\n The factorial of” << N << “is =” << fact;
 }

Introduction to C++ 27

 Travel by train 2
 Travel by bus 3
 Travel by taxi 4
 Quit 5
 Enter your choice:

Solution: We would use the do–while loop to display the menu and switch statement to pick
the choice entered by the user. The required program is given below:

// This program displays a Menu to the user

 #include <iostream.h>
 # include <conio.h>
 void main()
 {
 int choice;
 clrscr();
 do
 { clrscr(); //display Menu
 cout << “\n \tMenu:mode of travel”;
 cout << “\n”;
 cout << “\n \tTravel by Air 1”;
 cout << “\n \tTravel by Train 2”;
 cout << “\n \tTravel by Bus 3”;
 cout << “\n \tTravel by Taxi 4”;
 cout << “\n \tQuit 5”;
 cout << “\n”;
 cout << “\n Enter your choice:”;
 // Get the choice
 cin >> choice;
 switch (choice)
 {
 case 1 : cout << “\n Fast and Risky”;
 break;
 case 2 : cout << “\n Comfortable and Safe”;
 break;
 case 3 : cout << “\n Slow and Jerky”;
 break;
 case 4 : cout << “\n Quick and costly”;
 }
 getch(); // wait for a key
 }
 while (choice !=5);
 }

28 Object-oriented Programming with C++

1.9.3.3 The for Loop

It is a count-controlled loop in the sense that the program knows in advance how many times the
loop is to be executed. The general form of this construct is given below:

for (initialization; expression; increment)
 {
 statement
 }

where for is a reserved word; initialization is usually an assignment expression wherein a loop
control variable is initialized; expression is a conditional expression required to determine
whether the loop should continue or be terminated; increment modifies the value of the loop
control variable by a certain amount; statement can be a simple or a compound statement.

The loop is executed with the loop control variable at initial value, final value and the values
in between.
We can increase the power of for-loop with the help of the comma operator. This operator allows
the inclusion of more than one expressions in place of a single expression in the for statement
as shown below:

for (exp1a, exp1b; exp2; exp3a, exp3b;) statement;

Example 6. Write a program that computes xy where x and y are integers.

xy = x * x * x * ··· * x

Solution: We would iteratively multiply x to itself y times as shown below:

64 = 6 * 6 * 6 * 6
The required program is given below:

// This program computes x to the power y

 #include <iostream.h>
 # include <conio.h>
 void main()
 {
 int x, y, pow;
 int i;
 clrscr();
 cout << “\n Enter the values for x and y”;
 cin >> x >> y;
 // initialize
 pow = x;
 for (i = 2; i <= y; i++)
 {
 pow = pow * x;
 }
 cout << x << “^” << y << “=” << pow;

Introduction to C++ 29

Consider the following program segment:

 :
 for (i = 1, j = 10; i < = 10; i ++, j −−)
 {
 :
 }

The variables i and j have been initialized to values 1 and 10, respectively. Please note that these
initialization expressions are separated by a ‘comma’. However, the required semicolon remains
as such. During the execution of the loop, i increases from 1 to 10 whereas simultaneously j
decreases from 10 to 1. Similarly the increment and decrement operations have been separated
by a ‘comma’ in the for statement.

Though the power of the loop can be increased by including more than one initialization and
increment expressions separated with the comma operator but there can be only one test expres-
sion which could be simple or complex.

1.9.3.4 The ‘break’ and ‘continue’ Statements

The break statement can be used in a loop to terminate its execution. We have already seen that
it is used to exit from a switch statement. In fact, whenever the break statement is encountered
in a loop, the control is transferred out of the loop. This is used in a situation where some error
is found in the program inside the loop or it becomes unnecessary to continue with the rest of
the execution of the loop.

Consider the following program segment:

 :
 while (val != 0)
 {
 cin >> val;
 cout << “val =” << val;
 if (val < 0){
 cout << “\n Error in input”;
 break;
 }
 :
 }

Whenever the value read in variable val is negative, the message: ‘Error in input’, would be
displayed and because of the break statement the loop will be terminated.

 }

A sample output is given below:

Enter the values for X and y 6 4
6^4=1296

30 Object-oriented Programming with C++

A continue statement can also be used in loop to bypass the rest of the code segment of the
current iteration of the loop. The loop, however, is not terminated. The execution of the loop
resumes with the next iteration. For example, the following loop computes the sum of positive
numbers in a list of 50 numbers:

:
sum = 0;
for (i = 0; i < 50; i ++)
 {
 cout << val;
 if (val < = 0) continue;
 sum = sum + val;
 }
:

It may be noted here that continue statement has no relevance as far as switch statement is con-
cerned. Therefore, it cannot be used in a switch statement.

1.9.3.5 The exit() Function

In the event of encountering a fatal error, the programmer may desire to terminate the program
itself. For such a situation, C++ supports a function called exit() which can be invoked by the
programmer to exit from the program. This function can be called from anywhere inside the
body of the program. For normal termination, the programmer can include an argument 0 while
invoking this library function as shown below:

 #include <iostream.h>
 #include <process.h>
 void main()
 {
 :
 if (error) exit (0);
 :
 }

It may be noted here that the file process.h has to be included as header file because it contains
the function prototype of the library function exit().

1.9.4 Nested Loops
It is possible to nest one loop construct inside the body of another. The inner and outer loops
need not be of the same construct.

 while <cond>
 {
 do
 {
 } while <cond>;
 for (init; exp; inc)
 {

Introduction to C++ 31

 :
 }
 :
 }

The rules for the formation of nested loops are:

 1. An outer for loop and an inner for loop cannot have the same control variable.

 2. The inner loop must be completely nested inside the body of the outer loop.

1.10 ARRAYS
An array is a data structure with the help of which a programmer can refer to and perform
operations on a collection of similar data types such as simple lists or tables of information. For
example, a list of names of ‘N’ number of students of a class can be grouped under a common
name (say studList). This list can be easily represented by an array called studList for ‘N = 45’
students as shown in Fig. 1.6.

studList PrekshaSagun

0

Bhavana

2

Rishi

1

Ridhi

43 44

Figure 1.6 Schematic representation of an array

In fact, the studList shown in Fig. 1.6 can be looked upon by the following two points of views:

 1. It is a linear list of 45 names stored in contiguous locations – an abstract view of a list
having finite number of homogeneous elements (i.e. 45 names) .

 2. It is a set of 0–44 memory locations sharing a common name called studList – it is an
array data structure in which 45 names have been stored.

It may be noted that all the elements in the array are of same type, i.e. string of char in this
case. The individual elements within the array can be designated by an index. The individual
elements are randomly accessible by integers, called the index.

For instance, the 0th element (Sagun) in the list can be referred to as studList [0] and the
43rd element (Ridhi) as studList [43], where 0 and 43 are the indices and an index has to be of
type integer.

An index is also called as a subscript. Therefore, individual elements of an array are called
as subscripted variables. For instance, studList [0] and studList [43] are subscripted variables.

From the above discussion, we can arrive at the following definition:
Array: a finite ordered collection of items of same type. It is a set of index, value pairs.
An array is a built-in data structure in every programming language. Arrays are designed to have

a fixed size. Some languages provide 0-based indexing whereas other languages provide 1-based
indexing. ‘C++’ is an example of 0-based indexing language because the index of its arrays starts
from 0. Pascal is the example of 1-based addressing because the index of its arrays starts from 1.

An array whose elements are specified by a single subscript is known as one-dimensional ar-
ray. The array whose elements are specified by two or more than two subscripts is called as multi-
dimensional array.

32 Object-oriented Programming with C++

1.10.1 One-dimensional Arrays
One-dimensional arrays are suitable for processing lists of items of identical types. They are
very useful for problems that require the same operation to be performed on a group of data.
For example, an array called list of 50 locations of integer type can be declared as shown below:

int LIST [50];

The above declaration means that LIST is an array of 50 memory locations, each of which is of
integer type. Once this declaration is obeyed, we get a group of 50 locations of integer type in
the memory of the computer as shown in Fig. 1.7.

0 1 2 3 49

LIST

Figure 1.7 A one-dimensional array of 50 locations

It may be noted here that in C and C++ the first array element has the subscript 0. Therefore, the
last subscript, in this case, has been designated as 49.

Examples of some valid array declarations are:

 (i) int series [100];

 (ii) char names [20];

 (iii) float sal [50];

Generally, arrays are manipulated in a fashion of component-by-component processing. In simple
words, we can say that similar operations are performed on some or all the components of the array.

Example 7. Write a program which f nds the largest number and its position in a list of N
numbers.

Solution: The basic solution is that if the list contains only one element then that element is
the largest. Therefore, we would consider the zeroth number as the largest. The program is
given below:

// This program f nds the largest number in a list and its position

 # include <iostream.h>
 main()
 {
 int set [100];
 int lar, pos, i;
 int N; // Size of the list
 cout << “\n Enter the size of the list”;
 cin >> N;
 cout << “\n Enter the list \n”;
 for (i = 0; i <= N − 1; i++)

Introduction to C++ 33

1.10.2 Multi-dimensional Arrays
An array having more than one subscript is known as a multi-dimensional array. A two-dimen-
sional array (having two subscripts) is suitable for table processing or matrix manipulations. For
this purpose, we use two subscripts enclosed in square brackets. The first subscript designates
the number of rows and the second subscript designates the number of columns. For example, a
two-dimensional array of 5 rows and 4 columns (i.e. total 5 * 4 = 20 locations) of integer type
can be declared as given below. Let us assume that the name of the array is mat.

int mat [5][4];

The above declaration means that mat is a two-dimensional array having 5 rows and 4 columns,
i.e. totally 20 locations with each location of integer type as shown in Fig. 1.8.

mat

[0][0]
[1][0]

[4][0]
[4][0]

[0][0]

[4][1]

[0][1]

[4][3]

[0][3]

Figure 1.8 A two-dimensional array

 cin >> set [i];
 pos = 0;
 lar = set [0]; // Set the f rst value equal to large
 for (i = 1; i <= N − 1; i++)
 {
 if (set [i] > lar)
 {
 lar = set[i];
 pos = i;
 }
 }
 pos ++;
 cout << “\n The largest =” << lar << “ ” << “pos =” << pos;
 }

A sample output is given below:

Enter the size of the list 5
Enter the list
12 5 67 52 31
The largest =67 Pos =3

34 Object-oriented Programming with C++

An individual element of the array can be referred to by two subscripts, i.e. row and column sub-
scripts. For example, a memory location at 4th row and 2nd column can be designated as mat [4] [2].

Example 8. Given two matrices A and B of order m × n. Compute the sum of the two matrices
such that:

C(I, J) = A(I, J) + B(I, J), I = 1, …, m and J = 1, …, n

Solution: The solution for this problem involves two-dimensional arrays. We would employ
two nested loops, the outer for row traversal and the inner for column traversal. The required
program is given below:

/* This program adds two matrices. The matrices are stored in
the 2-dimensional array MATA and MATB. The result of computation
is stored in a third two-dimensional array MATC */

include <iostream.h>
include <conio.h>
void main()
{
 int MATA [10][10], MATB [10][10], MATC [10][10]; int i, j; //
Indexes of nested loops
 int m, n; //Order of matrices
 cout << “\n Enter the order of matrices \n”;
 cin >> m >> n;
 cout << “\n Enter the elements of matrix A \n”;
 for (i = 0; i < m; i++)
 {
 for (j = 0; j < n; j++)
 cin >> MATA [i][j];
 }
 cout << “\n Enter the elements of matrix B \n”;
 for (i = 0; i < m; i++)
 {
 for (j = 0; j < n; j ++)
 cin >> MATB [i][j];
 }
 // Compute the sum
 for (i = 0; i < m; i++)
 {
 for (j = 0; j < n; j++)
 MATC [i][j] = MATA [i][j]+ MATB [i][j];
 }
 cout << “\n The resultant matrix is ... \n”;
 for (i = 0; i < m; i++)
 {
 for (j = 0; j < n; j++)

Introduction to C++ 35

1.10.3 Array Initialization
A programmer can initialize an array even at the time of its declaration. This is done by specify-
ing the values of some or all its elements. For example, the string “SCHOOL” can be initialized
in an array called ‘texts’ in the following two ways:

char texts [7] = {“SCHOOL”};
char texts [7] = {‘S’, ‘C’, ‘H’, ‘O’, ‘O’, ‘L’, ‘\0’};

In the first case the string “SCHOOL” has been moved to the array text of size 7 where 6 loca-
tions have been used for the characters in the string and 7th for the null character ‘\0’. In the
first case, the null character gets automatically attached at the end. However in second case, the
string “SCHOOL” is being moved character by character. Therefore, it is necessary to provide
the null character ‘\0’ at the end of the string.

During initialization of arrays, one need not specify the dimension of the array as shown below:

int rol [] = {101, 105, 210, 319, 570};

The C++ compiler automatically calculates the dimensions of the un-sized initialized arrays.
This type of un-sized array initialization is also possible for strings in C++. For example, the
following array initialization is a valid initialization:

char text [] = {“SCHOOL”};

In this case also, the C++ compiler automatically computes the dimensions of the array. The multi-
dimensional arrays can also be initialized in the similar fashion. Consider the matrix of order
4 * 3 given below:

A =

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

5 2 7
3 2 9
8 2 5
1 2 6

This matrix can be initialized in a two-dimensional array as shown below:

int A [4][3] = {5, 2, 7,
 3, 2, 9,
 8, 2, 5,
 1, 2, 6};

 Note: The initialization of arrays at the time of declaration is possible only outside a
function. Inside the function the initialized array has to be declared as static.

 cout << MATC [i][j] << ‘ ’;
 cout << ‘\n’;
 }
 }

36 Object-oriented Programming with C++

1.11 STRUCTURES
Arrays are very useful for list and table processing. However, the elements of an array must be
of the same data type. In certain situation, we require a construct that can store data items of
mixed data types. C and C++ support structures for this purpose. The basic concept of a struc-
ture comes from day to day life. We observe that certain items are made up of components or
sub-items of different types. For example, a date is composed of three parts: day, month, and
year as shown in Fig. 1.9.

Day Month Year

17 Aug 2012

Figure 1.9 Date

Similarly, the information about a student is composed of many components such as Name,
Age, Roll No., and Class; each of them belonging to different types.

SACHIN KUMARName

18Age

10196Roll

CE41Class

Figure 1.10 Student

The collective information about the student as shown in Fig. 1.10 is called a structure. It is
similar to a record construct supported by other programming languages. Similarly, the date is
also a structure. The term structure can be precisely defined as a group of related data items
of arbitrary types. Each member of a structure is, in fact, a variable that can be referred to
through the name of the structure.

1.11.1 Defining a Structure in ‘C++’
A structure can be defined by the keyword struct followed by its name and a body enclosed in
curly braces. The body of the structure contains the definition of its members and each member
must have a name. The declaration ends by a semicolon. The general format of structure decla-
ration is given below:

 struct <name> {
 member 1
 member 2
 :

Introduction to C++ 37

 member n
 };

where struct is the keyword; <name> is the name of the structure; member 1, 2, …, n are the
individual member declarations.

Let us now define the C++ structure to describe the information about the student given in
Fig. 1.10.

 struct student
 {
 char Name [20];
 int age;
 int roll;
 char class[5];
 };

The above declaration means that the student is a structure consisting of data members: name,
age, roll, and class. A variable of this type can be declared as given below :

student stud;

Once the above declaration is obeyed, we get a variable stud of type student in the computer
memory which can be visualized as shown in Fig. 1.11.

Stud

Name

Age

Roll

Class

Figure 1.11 Memory space allocated to variable stud of type student

The programmer is also allowed to declare one or more structure variables along with the
 structure declaration as shown below:

 struct student
 {
 char name [20];
 int age;
 int roll;
 char class [5];
 }
 stud1, stud2;

In the above declaration the structure declaration and the variable declaration of the structure
type have been clubbed, i.e. the structure declaration is followed by two variable names stud1
and stud2 and the semicolon.

38 Object-oriented Programming with C++

1.11.1.1 Referencing Structure Elements

The structure variable stud has four members: name, age, roll, and class. These members can
be designated as stud.name, stud.age, stud.roll, and stud.class, respectively. In this notation, an
individual member of the structure is designated or qualified by the structure variable name
followed by a period and the member name. The period is called as structure member operator
or simply a dot operator.

However, the information of a student (Fig. 1.10) can be stored in structure variable stud in
either of the following ways:

 1. Initialize the elements of the structure

 strcpy (stud.name , “SACHIN KUMAR”);
 stud.age = 18;
 stud.roll = 10196;
 strcpy (stud.class, “CE41”);

 2. The variable stud can be read in a C++ program by the I/O statements as shown below:

 cin >> stud.name;
 cin >> stud.age;
 cin >> stud.roll;
 cin >> stud.class;

1.11.2 Arrays of Structures
An array of structures can be declared just like an ordinary array. However, the structure has to
be defined before an array of its type is declared. For example, 50-element array of type student,
called stud_list, can be defined as shown below:

 struct student {
 char name [20];
 int roll;
 int sub1, sub2, sub3, sub4;
 int total;
 };
 student stud_list [50]; /* declaration of an array of structures */

1.11.3 Initializing Structures
When a structure variable is declared, its data members are not initialized and therefore contain
undefined values. Similar to arrays, the structure variables can also be initialized. For instance,
the structure shown in Fig. 1.10 can be declared and initialized as shown below:

 struct student
 {
 char name[20];
 int age;
 int roll;
 char class[5];
 };

Introduction to C++ 39

 // Initialize variable of type student
 struct student stud1 = {“SACHIN KUMAR”,18,10196,“CE41”};

Please note that the values are enclosed within curly braces. The values are assigned to the
members of the structure in the order of their appearance, i.e. first value is assigned to the first
member, second to second, and so on.

1.11.4 Assignment of Complete Structures
It has been appreciated that the individual fields of a structure can be treated as simple vari-
ables. The main benefit of a structure, however, is that it can be treated as a single entity. For
example, if two structure variables stud1 and stud2 have been declared as shown below:

student stud1, stud2;

then the following assignment statement is perfectly valid.

stud1 = stud2;

This statement will perform the necessary internal assignments.

1.11.5 Nested Structures
Nested structures are structures as member of another structure. For instance, the date of birth
(DOB) is a structure within the structure of a student shown in Fig.1.12. These types of struc-
tures are known as nested structures.

Roll DOBName

DD MM YY

Marks

Figure 1.12 Nested structures

The nested structure shown in Fig. 1.12 can be declared in a program as shown below:

// Nested structures
struct date

 {
 int dd;
 int mm;
 int yy;
 };
struct student
 {
 char name[20];
 int roll;
 struct date dob;
 int marks;
 };

40 Object-oriented Programming with C++

It may be noted here that the member of a nested structure is referenced from the outermost to
innermost with the help of dot operators. Let us declare a variable stud of type student:

student stud;

The following statement illustrates the assignment of value 10 to the member mm of this nested
structure stud

stud.dob.dd = 10;

The above statement means store value 10 in dd member of a structure dob which by itself is a
member of structure variable called stud.

1.12 FUNCTIONS
A function is a sub-program that can be defined by the user in his/her program. It is a complete
program by itself in the sense that its structure is similar to main() function except that the name
‘main’ is replaced by the name of the function. The general form of a function is given below:

<type> <name> (arguments)

where <type> is the type of value to be returned by the function. If no value is returned then
keyword void should be used; <name> is a user defined name of the function. A function can be
called from another function by its name; arguments is a list of parameters (parameter is the data
that the function may receive when called from another function).

The program segment enclosed within the opening brace and closing brace is known as
the function body. In C++, the main() function returns an integer to the operating system.
The programmer can avoid returning value to the operating system by putting void before the
 declaration of function main as shown below

void main()
 {

 }

Let us write a function add() which receives two parameters x and y of type integer from the
calling function and returns the sum of x and y.

 int add (int x, int y)
 {
 int temp;
 temp = x + y;
 return temp;
 }

In the above function, we have used a local variable temp to obtain the sum of x and y. The value
contained in temp is returned back through a return statement. In fact, variable temp has been used
to only enhance the readability of the function otherwise it is unnecessary. The function can be
optimised as shown below:

Introduction to C++ 41

 ind add (int x, int y)
 {
 return (x + y);
 }

Thus, a function has following four elements:

 1. A name;

 2. A body;

 3. A return type; and

 4. An argument list.

The name of the function has to be unique so that compiler can identify it. The body of the
 function contains valid C++ statements which define the task performed by the function. The
return type is the type of value that the function is able to return to the calling function. The
argument or parameter list contains the list of values of variables required from outside by the
function to perform the given task. For example, the function given above has a name add. It
has a body enclosed between the curly braces. It can return a value of type int. The argument
list is x and y.

1.12.1 Function Prototypes
Similar to variables, all functions must be declared before they are used in a program. ‘C++’
allows the declaration of a function in the calling program with the help of a function prototype.
The general form of a function prototype in the calling program is given below:

<type> <name> (arguments);

where <type> is the type of value to be returned by the function; <name> is a user-defined
name of the function; and arguments is a list of parameters. The semicolon at the end of the
comment is necessary.

For example, the prototype declarations for the functions add() can be written as shown
below:

int add(int x, int y);

It may be noted that a function prototype ends with a semicolon. In fact, a function prototype
is required for those functions which are intended to be called before they are defined. In the
absence of a prototype, the compiler stops at a function call because, it cannot do the type
checking of the arguments being sent to the function. In simple words, we can say that the main
purpose of function prototype is to help the compiler in static type checking of the data require-
ment of a function.

1.12.2 Calling a Function
A function can be called or invoked from another function by using its name. The function name
must be followed by a set of actual parameters, enclosed in parentheses separated by commas.
A function call to function add() from the main program can be written as:

42 Object-oriented Programming with C++

int val1 = 30, val2 = 45, result;
result = add (val1, val2);

This statement will transfer the control to function add() and the value returned by the function
would be stored into result, the variable written on the left of the assignment operator.

1.12.3 Parameter Passing in Functions
We know that the two-way communication between the various functions can be achieved
through parameters and return statement. The set of parameters defined in a function are called
formal or dummy parameters whereas the set of corresponding parameters sent by the calling
function are called actual parameters. For instance the variables x and y in the argument list of
function add are formal parameters. The parameters included in the function call, i.e. val1 and
val2 of main() are actual parameters.

The actual parameters can be passed to a function in one of the following two ways:

 1. Call by value.

 2. Call by reference.

1.12.3.1 Call by Value

For better understanding of the concept of parameter passing, let us consider the function big()
given below. It receives two values as dummy arguments x and y and returns back the bigger of
the two through a return statement.

 // This function compares two variables and returns the bigger of
the two int big(int x, int y)
 {
 if (x > y)
 return x;
 else
 return y;
 }

The function big() can be called from the function main() by including the variables a and b as
the actual arguments of the function call as shown below:

 void main()
 {
 int a = 30;
 int b = 45;
 int c;
 c = big (a, b);
 cout << “\n The bigger = ” << c;
 }

The output of the above program would be:

The bigger = 45

Introduction to C++ 43

Let us now write a program which reads the values of two variables a and b. The values of a and
b are sent as parameters to a function exchange(). The function exchanges the contents of the
parameters with the help of a variable temp. The changed values of a and b are printed.

// This program sends the parameters to a function called exchange()

include <iostream.h>
include <conio.h>
void exchange(int x, int y);

void main()
 {
 int a, b;
 clrscr(); /* clear screen */
 cout << “\n Enter two values”;
 cin >> a >> b;
 exchange(a, b);
 // print the exchanged contents
 cout << “\n The exchanged contents are: ” << a << “ and ” << b;
 }

void exchange(int x, int y)
 {
 int temp;
 temp = x;
 x = y;
 y = temp;
 }

A sample output of the above program is given below:

Enter two values 34 56

The exchanged contenents are: 34 and 56

The above program seems to be wonderful but it fails badly because the contents of the vari-
ables a and b have not been exchanged. The reason for this behaviour is that at the time of func-
tion call, the values of actual parameters a and b get copied into the memory locations of the
formal parameters x and y of the function exchange() as shown in Fig. 1.13.

34 56

56 34

temp
1 3

34

34

56

56
2

a
a

b
b

x
x

y
y

Function
main ()

Function
exchange ()

Figure 1.13 Call by value

44 Object-oriented Programming with C++

It may be noted that the variables x and y have entirely different memory locations from vari-
ables a and b. Therefore, any changes done to the contents of x and y are not reflected back to
the variables a and b. Thus, the original data remains unaltered. In fact, this type of behaviour
is desirable from a pure function.

Since in this type of parameter passing, only the values are passed from the calling function
to the called function, the technique is called as call by value.

1.12.3.2 Call by Reference

If the programmer desires that the changes made to the formal parameter be reflected back to
the corresponding actual parameters then he/she should use call by reference method of param-
eter passing. This technique passes the addresses or references of the actual parameters to the
called function. Thus, the actual and formal parameters share the same memory locations. This is
achieved by applying an address operator (&) to the formal parameters in the function definition.

Let us rewrite the function exchange.

 void exchange(int &x, int &y)
 {
 int temp;
 temp = x;
 x = y;
 y = temp;
 }

The complete program is given below:

// This program sends the parameters by reference to a function

include <iostream.h>
include <conio.h>
void exchange(int &x, int &y);
void main()
 {
 int a, b;
 clrscr(); /* clear screen */
 cout << “\n Enter two values”;
 cin >> a >> b;
 exchange(a, b);
 // print the exchanged contents
 cout << “\n The exchanged contents are: ” << a << “ and ” << b;
 }

void exchange(int &x, int &y)
 {
 int temp;
 temp = x;
 x = y;
 y = temp;
 }

Introduction to C++ 45

A sample output of the above program is given below:

Enter two values 34 56

The exchanged contenents are: 56 and 34

Now we can see that the program has worked correctly in the sense that changes made to formal
parameters in the function exchange are available to corresponding actual parameters a and b in
the function main(). Thus, the address operator & has done the required task. In fact, the same
memory locations are being looked upon as a and b by function main() and as x and y by the
function exchange() as shown in Fig. 1.14.

34 3456

temp

56

1

2

3

a x a x b yb y

Figure 1.14 Call by reference

It may be noted that similar to variables, the structures can also be passed to other functions as
arguments both by value and by reference.

1.12.3.3 Array Parameters

Arrays can also be passed as parameters to functions. This is always done through call by refer-
ence method. In C++, the name of the array represents the address of the first element of the
array and, therefore, during the function call only the name of the array is passed from the calling
function. For example, if an array xyz of size 100 is to be passed to a function some() then the
function call will be as given below:

some(xyz);

The formal parameters can be declared in the called function in three ways. The following dif-
ferent ways are illustrated with the help of a function some() that receives an array xyz of size
100 of integer type.

First Method. In this method, the array is declared without subscript, i.e. of an unknown size
as shown below:

 void some(int xyz [])
 {

 }

The C++ compiler automatically computes the size of the array based on the actual parameter
sent by the calling function.

46 Object-oriented Programming with C++

Second Method. In this method, an array of specified size and type is declared as shown below:

 void some(int xyz [100])
 {

 }

Third Method. In this method, the operator * is applied on the name of the array indicating
that it is a pointer.

 void some(int *xyz)
 {

 }

All the three methods are equivalent and the function some() can be called by the following
statement.

some(xyz);

 Note:

 1. The arrays are never passed by value and cannot be used as the return type of a function.

 2. In C and C++, the name of the array represents the address of the first element or the
zeroth element of the array. So when an array is used as an argument to a function only
the address of the array gets passed and not the copy of the entire array. Hence, any
changes made to the array inside the called function are automatically reflected in the
calling function. You do not have to use ampersand (&) with array name even though it
is a call by reference method. The ‘&’ operator is implied in case of arrays.

1.12.4 Returning Values from Functions
Earlier in this chapter we have used functions which either return no value or integer values.
The functions that return no value are declared as void. We have been prefixing int to functions
which return integer values. This is valid but unnecessary because the default return value of a
function in C++ is of type int. Thus, the following two declarations are equivalent in the sense
that we need not prefix int to a function which returns an integer value.

int add (int a, int b);
add (int a, int b);

On the other hand, whenever a function returns non-integer values, the function must be
prefixed with the appropriate type. For example, a function myFunc() that returns a value of
type float can be declared as shown below:

 float myFunc(…)
 { float a;
 :
 return a;
 }

Introduction to C++ 47

Similarly, a function yourfunc() that returns a value of type char can be declared as shown
below:

 char yourFunc(…)
 { char ch;
 :
 return ch;
 }

It may be noted that similar to variables, the structures can also be returned from a function.

Example 9. Write a program that generates the nth term of Fibonacci sequence as given
below:

0, 1, 1, 2, 3, 5, 8, 13, …

Solution: From the sequence, it may be observed that except 1st and 2nd terms, an nth term
is equal to the sum of its immediate previous two terms, i.e. (n − 1)th and (n − 2)th terms. The
recursive defi nition of a term of this sequence is given below:

term

term term

()

,

,

() (),

n

n

n

n n n

=
=
=

− + − > =

⎧
⎨
⎪

⎩⎪

0 0

1 1

1 2 2

if

if

if

We would use a function called genTerm() to generate a Fibonacci term. The program is given
below:

// This program generates a Fibonacci term using a function genTerm()

include <iostream.h>
include <conio.h>
int genTerm(int n);
void main()
{
 int N, nthTerm;
 cout << “\n Enter the number of terms (N):”;
 cin >> N;
 nthTerm = genTerm(N);
 cout << “\n The <<” N << “th Term of the Fibonacci series =” <<

nthTerm;
}
int genTerm(int n)
 {
 int i,term1 = 0, term2 = 1, term3;
 if (n == 0) return term1;
 if (n == 1) return term2;

 for (i = 3; i <= n; i++)

48 Object-oriented Programming with C++

1.13 I/O FUNCTIONS
In addition to iostream functions: cin and cout, C++ supports following functions also which
allow the input and output of character type data from standard I/O devices.

 1. getchar()

 2. putchar()

 3. gets()

 4. puts()

The C++ environment assumes keyboard as standard input device and VDU as standard output
device. In order to use the above functions, the programmer should include the stdio.h header
file at the beginning of his/her program as shown below:

include <stdio.h>

1.13.1 getchar() and putchar() Functions
These functions are character-based input and output functions. The getchar() function reads a
single character from the standard input device. For example, if it is desired to read a character
from keyboard in a character variable called ‘ch’ then the following set of statements can be used.

char ch;
ch = getchar();
:

It may be noted here that the function getchar() is buffered in the sense that the character typed
by the user is stored in a buffer and not passed to the variable ch until the user hits the enter or
return key, i.e. ↵.

Since the getchar() function is buffered, it is suggested that after an input operation from
the standard input device (i.e. keyboard) the input buffer should be cleared. This operation is
required to avoid interference with subsequent input operations. The function provided for this
activity is fflush(stdin). The usage is shown below:

 :
 char ch;
 ch = getchar();

 {
 term3 = term1 + term2;
 term1 = term2;
 term2 = term3;
 }
 return term3;
 }

Introduction to C++ 49

 fflush(stdin);
 :

The function putchar() is used to send a single character to the standard output device. The char-
acter to be displayed on the VDU screen is included as an argument to the putchar() function as
shown below:

 ch = ‘A’;
 putchar(ch);
 :

Once the above program segment is executed, the character A has to be displayed on the screen.
The putchar() function is also buffered. The output buffer is cleared only when a new line char-
acter ‘\n’ is used. The function call for this activity is fflush(stdout).

Example 10. Write a program that prints the following output on the screen.

A
AB
ABC
ABCD
ABCDE

Solution: It can be observed that there are fi ve rows to be printed on the screen. Each row con-
tains columns equal to the number of the rows, i.e. in row number 3, there are three columns to be
displayed. Therefore, this is a case of nested loops. We will initialize a variable (say ch) with the
character ‘A’ at the beginning of each row and print it. Subsequent increments of variable ch will
generate the next character (column) required in the row. At the end of each row, the character ‘\n’
will be printed to go to the next line.

The required program is given below:

/* This program illustrates the usage of getchar() and putchar()
functions. It generates a pattern on the screen */

 # include <iostream.h>
 # include <stdio.h>
 main()
 {
 char ch;
 int i, j;
 for (i = 1; i < = 5; i++)
 {
 ch = ‘A’;
 for (j = 1; j <= i; j++)
 { putchar(ch);
 ch++;
 }

50 Object-oriented Programming with C++

1.13.2 getc() and putc() Functions

The getc() and putc() functions are also character based functions. They have been basically
designed to work with the files. However, these functions can also be used to read and write
data from standard input and output devices by specifying stdin and stdout as input and output
files, respectively.

For example, the function getc(stdin) is equivalent to the function getchar(). Both will get a
character from the standard input device (keyboard). Where the function getchar() by default
reads from keyboard, the argument stdin of function getc(stdin) makes it read from a file rep-
resented by the standard input device which is nothing but the keyboard. Similarly, the function
putc(ch, stdout) is equivalent to the function putchar(ch). Both the functions send the character ch
to the standard output device, i.e. VDU screen.

1.13.3 gets() and puts() Functions
These functions are string-based input–output functions. The function gets() reads a string
from the standard input device (keyboard). It is also buffered and therefore the return or enter
key (symbol ↵) has to be typed to terminate the input. The fflush() function should also be used
after each gets() to avoid interference within the succeeding inputs. The program segment given
below reads a string in a variable (name) from keyboard:

name = gets();
fflush(stdin);

:

Similarly the function puts() is used to send a string to the standard output device. The string to be
displayed on the VDU screen is included as an argument to the puts() function as shown below:

city = “New Delhi”;
puts(city);

:

Once this program segment is executed, the following text will be displayed on the screen:

New Delhi

 putchar(‘\n’);
 ff ush(stdout);
 }
 }

Example 11. Write a program that accepts a character from the keyboard and determines if it
is a vowel or not. If yes then it prints the vowel otherwise gives the message:

It is not a vowel

Introduction to C++ 51

Solution: In this program we will use puts() function to print the messages and getchar()
function to read the character from the keyboard. However, a switch construct will be em-
ployed to check if the input character is a vowel. The required program is given below:

// This program determines if an input character is a vowel

include <iostream.h>
include <stdio.h>
void main()
{
 char ch;
 puts(“Enter a lower case character”);
 ch = getchar(); //read character
 ff ush(stdin); //clear input buffer
 switch (ch)
 {
 case ‘a’ : puts(“The vowel is a”);
 break;
 case ‘e’ : puts(“The vowel is e”);
 break;
 case ‘i’ : puts(“The vowel is i”);
 break;
 case ‘o’ : puts(“The vowel is o”);
 break;
 case ‘u’ : puts(“The vowel is u”);
 break;
 default: puts(“It is not a vowel”);
 }
}

1.14 STRINGS
We know that a sequence of characters is called as string. For example, the character sequence:
“India is an ancient civilization”, is a string. ‘C++’ does not provide a built-in data type for
strings. In previous section, it has been discussed that a string can be represented by an array
of characters terminated by the null character ‘\0’.

However, ‘C++’ provides a stream called ‘string.h’ that provides variety of useful functions
for manipulation of strings. Some of the important functions supported by the stream ‘string.h’
are discussed below:

 1. strcpy(): this function copies one string to another. The general form of this function is
given below:

strcpy(dest, source);

 It copies the ‘source’ string into the ‘dest’ string. The copying process stops after the null
character ‘\0’ of ‘source’ is copied to the ‘dest’ string.

52 Object-oriented Programming with C++

 The following program reads a string called ‘source’ and copies it to another string
called ‘dest’. The contents of ‘dest’ are displayed.

 // This program illustrates the usage of function strcpy()

 # include <iostream.h>
 # include <stdio.h>
 # include <string.h>
 void main()
 {
 char source[25], dest[25];
 puts(“\ Enter source string”);
 gets(source);
 strcpy(dest, source);
 puts(“\n The destination string is…”);
 puts(dest);
 }

 A sample output is given below:

 Enter source string
Help ever Hurt never

 The destination string is...
Help ever Hurt Never

 2. strcat(): this function appends one string to the end of another. The general form of this
function is given below:

strcat(dest, source);

 It appends the ‘source’ string to the end of the ‘dest’ string such that the size of the ‘dest’
string becomes equal to the total of both the strings.

 The following program reads a string called ‘source’ and appends it to another string
called ‘dest’. The contents of ‘dest’ are displayed.

 // This program illustrates the usage of function strcat()

 # include <iostream.h>
 # include <stdio.h>
 # include <string.h>
 void main()
 {
 char source[30], dest[15];
 puts(“\n Enter destination string”);
 gets(dest);
 puts(“\n Enter source string”);
 gets(source);
 strcat(dest, source);
 puts(“\n The destination string is…”);
 puts(dest);
 }

Introduction to C++ 53

 A sample output is given below:

Enter source string
Mangal pandey

Enter source string
– The revolutionary

The revolution string is...
Mangal pandey– The revoiutionary

 3. strlen(): it calculates the length of a given string. The general format of this function is
given below:

strlen(string);

 The following program reads a string called ‘text’ and gets its length computed through
the function strlen() and displays the length.

 // This program illustrates the usage of function strlen()

 # include <iostream.h>
 # include <stdio.h>
 # include <string.h>
 void main()
 {
 char text[30];
 int lenth;
 puts(“\n Enter a text”);
 gets(text);
 lenth = strlen(text);
 puts(“\n The length of text string is…”);
 cout << lenth;
 }

 The sample output is given below:

Enter a text
C++ is object oriented langage

The length of text string is...
31

 4. strcmp(string1, string2): this function compares two strings ‘string1’ and ‘string2’. The
comparison begins with the first character of both the strings and continuous with the
subsequent characters until the end of the strings is reached or the compared characters
do not match with each other. This function returns a value as per the following criteria:

st mp string string

if string string

if stringrc =(,)

()

(1 2

0 1 2

0 1

< <

= = sstring

if string string

2

0 1 2> >

⎧

⎨
⎪
⎪

⎩
⎪
⎪ (

54 Object-oriented Programming with C++

 The flowing program compares two strings and gives messages: equal or not equal as per
the types of string provided by the user.

 // This program illustrates the usage of function strcmp()

 # include <iostream.h>
 # include <stdio.h>
 # include <string.h>
 void main()
 {
 char string1[20], string2[20];
 puts(“\n Enter a string1”);
 gets(string1);
 puts(“\n Enter a string2”);
 gets(string2);
 if (!strcmp (string1, string2))
 puts(“\n The strings are equal”);
 else
 puts(“\n The strings are not equal”);
 }

 A sample output is given below:

Enter a string1
Bharat

Enter a string2
Bharat

The strings are equal

1.15 SUMMARY
C++ is a superset of ‘C’ language. Built-in data types of ‘C++’ are int, float, and char. Built-in
data structures of C++ are arrays, structures, files, and pointers. A semicolon (;) acts as a state-
ment terminator. The ‘++’ and ‘−−’ are called increment and decrement operators, respectively.
The while construct, is a pre-test iteration loop. The do–while is a post-test iteration loop. The
for construct is a count-controlled loop. Arrays are manipulated on a component-by-component
basis. A function prototype ends with a semicolon.

 MULTIPLE CHOICE QUESTIONS
 1. Consider the following declaration

 int list [5] = {2, 4, 0,6,1};

 What will be the values assigned to list[0] and list[3]
 (a) 4, 6 (b) 2, 6
 (c) 2, 0 (d) 0, 4

Introduction to C++ 55

 2. Consider the following declaration

 int val = 50;

 Which option would print: half
 (a) if (val < 50) && (val == 50) cout << “half”;
 (b) if (val < 50) && (val != 50) cout << “half”;
 (c) if (val < 50) || (val > 50) cout << “half”;
 (d) if (val < 50) || (val == 50) cout << “half”;

 3. A function call that sends the copy of its actual parameters to a function is called as:
 (a) call by value (b) call by reference
 (c) call by pointer (d) none of the above

 4. A break statement causes the program control to exit:
 (a) from innermost to outermost loop or switch statement
 (b) from innermost to penultimate loop or switch statement
 (c) from all nested loops or switches
 (d) none of the above

 5. A exit () causes the program control to exit:
 (a) from innermost to outermost loop or switch statement
 (b) from the block in which it is encountered.
 (c) from all the loops
 (d) from the program itself

 6. What would be the output of the following code?

 int val1, val2, val3;
 val2 = val3 = 50;
 val1 = (val3 = = val2);
 cout << val1;

 (a) 100 (b) 50
 (c) 0 (d) 1

 7. A ‘for-loop’ is:
 (a) pre-test loop (b) a post-test loop
 (c) count-controlled loop (d) none

 8. A comment is:
 (a) an executable statement (b) a necessary statement in a program
 (c) a non-executable statement (d) none of the above

 9. The variable on the left-hand side of an assignment operator is called
 (a) rvalue (b) lvalue
 (c) realvalue (d) none

10. The “fall through” phenomenon happens in context of a
 (a) for loop (b) switch statement
 (c) if–else construct (d) function

56 Object-oriented Programming with C++

ANSWERS
1. b 2. d 3. a 4. d 5. d 6. d 7. c 8. c 9. b 10. b

 EXERCISES
 1. Differentiate among the following
 (a) Identifier and keyword
 (b) Constant and variable
 (c) cin and cout
 (d) ‘\n’ and ‘\t’

 2. Write a program in C++ that displays the following message on the screen:

“ C++ is an Object Oriented Programming Language”

 3. How comments can be added to a C++ program?

 4. Given the following declarations:

 char ch;
 int i, j ,k;
 const char c = ‘X’;
 float val;

 which of the following assignment is illegal
 (i) j = val; (ii) c = ch; (iii) ch = c; (iv) i = j = 40; (v) val = 67.34

 5. What is the output of the following program?

 # include <iostream.h>
 void main()
 {
 int val;
 cout << “\n val = ” << val;
 }

 (i) An error (ii) 0 (iii) unpredictable

 6. What is the output of the following program?

 # include <iostream.h>
 void main()
 {
 int val;
 val = 12 > 13 ? 40 : 50;
 cout << val;
 }

 7. What is the output of the following program?

 # include <iostream.h>
 void main()
 {

Introduction to C++ 57

 int val = 20;
 val = ++val == 21;
 cout << val;
 }

 8. What is the output of the following program?

 # include <iostream.h>
 void main()
 {
 int val = 20;
 val = val++ == 21;
 cout << val;
 }

 9. What is meant by a nested if statement? Explain if–else–if ladder in brief.

10. Write a program that generates the following pattern on the screen

 1 2 3 4 5
 1 2 3 4
 1 2 3
 1 2
 1

11. What would be the output of the following program?

 # include <iostream.h>
 void main()
 {
 int i;
 for (i = 1; i <= 10; i++);
 cout << “Aloha”;
 }

12. Write a program that removes duplicates from a list, stored in an array.

13. Write a program that computes the sum of diagonal elements of a square matrix.

14. What would be the output of the following program?

 # include <iostream.h>
 void main()
 {
 char Text[6] ={‘1’, ‘2’, ‘3’, ‘4’, ‘\0’, ‘5’};
 cout << Text;
 }

15. A date comprises of three components as given below:

dd

mm

yy

 Write a program that uses above structure to read a date and checks for its validity.

58 Object-oriented Programming with C++

16. The record of a player has following components:

Name Age Game Address

First
Name

Middle
Name

Last
Name

H.No. Street City State

 Give a suitable C++ structure declaration for the above given record.

17. A perfect number is that number that equals the sum of all the numbers that divides it
evenly. For example, 1, 2, and 3 divide evenly the number 6 and their sum is also 6. Write
a function called ifPerfect(int num) function which determines whether num is perfect or
not and accordingly returns 1 or 0, respectively.

18. Write a complete program that uses the function ifPerfect() given in Q.17 to print all
perfect numbers between 1 and 100.

19. Write function f nd(int List[], int X) that searches the number X in a list called List. If the
search is successful, it returns 1 else 0.

20. Write a program that counts the number of non-zero elements present in a two-dimensional
array MAT[][] m * n of type integers.

21. How is it possible to have multiple inputs and outputs in a single cin and cout statements?

ANSWERS
4. (iii) 5. (iii) 6. 50 7. 1 8. 1 11. Aloha 14. 1234

2.1 INTRODUCTION
Pointers are one of the most important features of C++. The beginners of C and C++ fi nd point-
ers hard to understand and manipulate, though the treatment of pointers in C++ is comparatively
simpler than in C. In an attempt to unveil the mystery behind this aspect, the basics of pointers
that generally remain in background are being discussed in the following sections.

2.1.1 The & Operator
When a variable x is declared in a program, a storage location in the main memory is made
available by the compiler. For example, Fig. 2.1 shows the declaration of x as an integer variable
and its storage location in the main memory.

2712

2711

2713

2710

int x;

Memory

x

Figure 2.1 The variable x and its equivalent representation in memory

From Fig. 2.1, it may be observed that x is the name associated by the compiler to a location in
the memory of the computer. Let us assume that, at the time of execution, the physical address
of this memory location (called x) is 2712. Now, a point worth noting is that this memory loca-
tion is viewed by the programmer as variable x and by the operating system as an address 2712.

POINTERS 2

60 Object-oriented Programming with C++

The address of the variable x can be obtained by ‘&’, an address of the operator. This operator
when applied to a variable, gives the physical memory address of the variable. Thus, &x will
provide the address 2712. Consider the following program segment:

x = 15;
cout << “\n Value of x = << x;
cout << “\n Address of x = “<< &x;

The output of the above program segment would be as shown below:

Value of x =15
Address of x = 2712 (assumed value)

The contents of variable x (memory location 2712) are shown in Fig. 2.2.

x = 15 15

2713

2712

2711

2710

x

Memory

Figure 2.2 The contents of variable x

It may be noted here that the value of address of x (i.e. 2712) is assumed, and the actual value is
‘machine and execution’ time dependent.

2.1.2 The * Operator
The * is an indirection operator or value at address operator. In simple words, we can say that
if the address of a variable is known, then the * operator provides the contents of the variable.
Consider the following program segment:

include <iostream.h>
void main()
 {
 int x =15;
 cout <<”\n Value of x” << x;

Pointers 61

 cout <<”\n Address of x” << &x;
 cout <<”\n Value at address” << &x << “is =” << *(&x);
 }

The output of the above program segment would be as shown below:

 Value of x = 15
 Address of x = 2712 (assumed address as per Fig. 2.2)
 Value at address 2712 = 15

Consider the following program:

include <iostream.h>
main()
 {
 int a;
 *& a = 50;
 cout << a;
 }

The output would be 50 because * and & operators complement each other; therefore the 50 is
stored in the variable called a.

2.2 POINTER VARIABLES
An address of a variable can be stored in a special variable called pointer variable. A pointer
variable contains the address of another variable. Let us assume that y is such a variable. Now,
the address of variable x can be assigned to y by the statement: y = &x. The effect of this state-
ment is shown in Fig. 2.3.

int x = 15;
y = &x; x 2712

1232

15

2712

y

Figure 2.3 The address of x is being stored in pointer variable y

From Fig. 2.3, it is clear that y is the variable that contains the address (i.e. 2712) of another
variable x, whereas, the address of y itself is 1232 (assumed value). In other words, we can say
that y is a pointer to variable x. See Fig. 2.4.

15

x y

Figure 2.4 y is a pointer to x

A pointer variable y can be declared in C++ as shown below:

int *y;

62 Object-oriented Programming with C++

The above declaration means that y is a pointer to a variable of type int. Similarly, consider
the following declaration:

char *p;

Name of the pointer

Indicates to be a pointerThe type of variable pointed by p

The above declaration means that p is a pointer to a variable of type char.
Consider the following program segment:

include <iostream.h>
void main()
 {
 int x =15;
 int *y;
 y = &x;
 cout <<”\n Value of x= “ << x;
 cout <<”\n Address of x= “ << &x;
 cout <<”\n Value of x= “ << *y;
 cout <<”\n Address of x=” << y;
 cout <<”\n Address of y=” << &y;
 }

The output of the above program segment would be as shown below. We have shown only the
assumed addresses as per Fig. 2.3.

 Value of x =15
 Address of x =2712
 Value of x =15
 Address of x =2712
 Address of y =1232

Let us now, consider the following statements:

f oat val = 35.67;
f oat *pt;

The fi rst statement declares val to be a variable of type fl oat and initializes it by value 35.67.
The second statement declares pt to be pointer to a variable of type fl oat. Please notice that pt
can point to a variable of type fl oat, but it is currently not pointing to any variable as shown in
Fig. 2.5.

A pointer not
pointing to any variable

A variable val
of type float

pt

35.67

val

Figure 2.5 The pointer pt is not pointing to any variable

Pointers 63

The pointer pt can point to the variable val by assigning the address of val to pt as shown
below.

pt = &val;

Once the above statement is executed, the pointer pt gets the address of val, and we can say
that logically pt points to the variable val as shown in Fig. 2.6.

35.67

valpt

Figure 2.6 The pointer pt pointing to variable val

However, one must keep in mind that the arrow is for illustration sake. Actually, the pointer pt
contains the address of val. The address is an integer that is not a simple value but a reference
to a location in the memory.

Examples of some valid pointer declarations are:

 (i) int *p;

 (ii) char *i, *k;

 (iii) fl oat *pt;

 (iv) int **ptr;

The example (iv) means the ptr is a pointer to a location which itself is a pointer to a variable
of type integer.

It may be noted here that a pointer can also be incremented to point to an immediately next
location of its type. For example, if the contents of a pointer p of type integer are 5224, then the
content of p++ will be 5226 instead of 5225 (see Fig. 2.7). The reason being an int is always of
2 bytes size and therefore stored in two memory locations as shown in Fig. 2.7. The amount of
storage taken by the various types of data is tabulated in Table 2.1.

p

p++

5224

5226

memory

Figure 2.7 The variable of type int occupies two bytes

64 Object-oriented Programming with C++

Table 2.1 Amount of Storage Taken by Data Types

Data Type Amount of Storage

character 1 byte

integer 2 byte

Float 4 byte

Long 4 byte

Double 8 byte

Thus, a pointer of fl oat type will point to an address of 4 bytes of locations, and therefore an
increment to this pointer will increment its contents by 4 locations. It may be further noted that
more than one pointer can point to the same location. Consider the following program segment:

int x = 37
int * p1, * p2;

The following statement

p1=& x;

makes the pointer p1 to point to variable x as shown in Fig. 2.8.

P1 x

37

Figure 2.8 Pointer p1 points to variable x

The following statement

p2 = p1

makes p2 to point to the same location, which is being pointed by p1 as shown in Fig. 2.9.

P1

P2

X

37

Figure 2.9 Pointer p1 and p2 pointing to x

Pointers 65

The contents of variable x are now reachable by both the pointers p1 and p2. Thus, two or more
entities can cooperatively share a single memory structure with the help of pointers. In fact, this
technique can be used to provide effi cient communication between different parts of a program.

The pointers can be used for a variety of purposes in a program. Some of them are given
below.

 1. To pass address of variables from one function to another

 2. To return more than one value from a function to the calling function

 3. For the creation of linked structures such as linked lists and trees.

Consider the following program:

include <iostream.h>
main()
 {
 int i = 50;
 int *j = &i;
 cout <<”\n” << ++ *(j);
 }

The output would be 51 because the contents pointed by pointer j are being incremented before
the display.

Example 1. Write a program that reads from keyboard two variables x and y of type integer.
It prints the exchanged contents of these variables with the help of pointers without altering
the variables.

Solution: We will use two pointers p1 and p2 for variables x and y. A third pointer p3 will be
used as a temporary pointer for the exchange of pointers p1 and p2. The scheme is shown in
Fig. 2.10.

The program is given below:

// This program illustrates the usage of pointers to
exchange the contents of two variables//

 # include <iostream.h>
 void main()
 {
 int x,y;
 int *p1, *p2, *p3; // pointers to integers
 cout << “\n Enter two integer values”;
 cin >> x >> y;
 // Assign the addresses x and y to p1 and p2
 p1 = &x;
 p2 = &y;
 // Exchange the pointers
 p3 = p1;
 p1 = p2;

66 Object-oriented Programming with C++

 Note: The output shows the exchanged values because of exchange of pointers (see
Fig. 2.10), whereas the contents of x and y have remained unaltered.

P2P1P2P1

xy yx

(a) (b)

Figure 2.10 Exchange of contents of variables by exchanging pointers

2.2.1 Dangling Pointers
A dangling pointer is that pointer which has been created but does not point to any entity. Such
an un-initialized pointer is dangerous in the sense that a dereference operation on it will result
in an unpredictable operation or may result in a runtime error.

Consider the following code:

int * ptr;
*ptr = 50;

The fi rst statement declares the pointer called ptr. At runtime it will be created as shown in
Fig. 2.11. It may be noted that currently ptr is a dangling pointer. The second statement is try-
ing to load a value (i.e. 50) to a location that is pointed by ptr. Obviously, this is a dangerous

 p2 = p3;
 // Print the contents through exchanged contents
 cout <<”\n The exchanged contents are “;
 cout << *p1 << “ and “ << *p2;
 }

A sample output is given below:

Enter two interger values 25 34
The exchanged contents are 34 and 25

Pointers 67

 situation because the results will be unpredictable. The C++ compiler does not consider it as an
error though some compilers may give a warning.

ptr

Figure 2.11 The dangling pointer

Therefore, if pointers are being used, the following steps must be followed:

Step 1. Declare the pointer.

Step 2. Allocate the variable or entity to which the pointer is to be pointed.

Step 3. Point the pointer to the entity.

Let us assume that it is desired that the pointer ptr should point to a variable val of type int. The
correct code in that case would be as given below:

int * ptr;
int val;
ptr = &val;
* ptr = 50;

The result of above program segment is shown in Fig. 2.12.

ptr val

50

Figure 2.12 The correct assignment

2.3 POINTERS AND ARRAYS
Pointers and arrays are very closely related to each other. In C++, the name of an array is a
pointer that contains the base address of the array. In fact, it is a pointer to the fi rst element of
the array. Consider the array declaration given below:

int list[] = { 20, 30, 35, 36, 39 };

This array will be stored in the contiguous locations of the main memory with starting address
equal to 1001(assumed value), as shown in Fig. 2.13. Since the array list is of integer type, each
element of this array occupies two bytes. The name of the array contains the starting address of
the array, i.e. 1001

68 Object-oriented Programming with C++

1001 1003

list 20 30

1005

35

1007

36

1009

39

Figure 2.13 The contiguous storage allocation with starting address = 1001

Consider the following program segment:

cout << “\n Address of zeroth element of array list”<< list;
cout << “\n value of zeroth element of array list” << *list;

Once the above program segment is executed, the output would be as shown below:

Address of zeroth element of array list = 1001
Value of zeroth element of array list = 20

We could have achieved the same output also by the following program segment:

cout << “\n Address of zeroth element of list” << & list [0];
cout << “\n value of zeroth element of list” << list [0];

Both the above given approaches are equivalent because of the following equivalence relations:

list ≡ &list [0]—both denote the address of zeroth element of the array
list
*list ≡ list[0]—both denote the value of zeroth element of the array
list

The left-side approach is known as pointer method and right side as array indexing method. Let
us now write a program that prints out a list by array indexing method.

// Array indexing method
#include <iostream.h>
void main()
 {
 static int list [] = { 20,30,35,36,39};
 int i;
 cout << “\n The list is ...”;
 for (i = 0; i < 5; i++)
 cout << “\n “<< list[i];
 }

The output of this program is given below:

The list is ---
20
30
35
36
39_

The above program can also be written by pointer method as shown below:

Pointers 69

/* pointer method of processing an array */

#include <iostream.h>
void main()
 {
 static int list [] = { 20,30,35,36,39};
 int i;
 cout << “\n The list is ...”;
 for (i = 0; i < 5; i++)
 cout << “\n “<< *(list+i);
 }

It may be noted in the above program that we have used the term * (list + i) to print an ith ele-
ment of the array. Let us analyze this term. Since the list designates the address of zeroth ele-
ment of the array, we can access its value through value at address operator, i.e. *. The following
terms are equivalent:

 *list ≡ *(list + 0) ≡ list [0]
 *(list + 1) ≡ list [1] and so on

Thus, we can refer to the ith element of array list by either of the following ways:

*(list + i) or *(i + list) or list [i]

So far, we have used the name of an array to get its base address and manipulate. However, there
is a small difference between an ordinary pointer and the name of an array. The difference is that
the array name is a pointer constant and its contents cannot be changed. Thus, the following
operations on list are illegal because they try to change the contents of list, a pointer constant.

List = NULL; // Not allowed
List = & Val; // Not allowed
list++ // Not allowed
list–– // Not allowed

Consider the following program:

include <iostream.h>
void main()
{
 char text[6] =”Helpme”;
 char *p =”Helpme”;
 cout << “\n”<< text[3];
 cout << “\n”<< p[3];
}

The output of above program would be:

p
p

From the above program, it looks as if the following declarations are equivalent as text [3] and
p[3] behave in identical manner.

70 Object-oriented Programming with C++

char text [6];
char *p;

It may be noted that the above declarations are not at all equivalent, though the behaviour may be same.
In fact, the array declaration ‘text [6]’ asks from the complier for six locations of char type whereas
the pointer declaration char *p asks for a pointer that can point to any variable of following types:

 (i) char—a character

 (ii) string—a string of characters

 (iii) Null—nowhere

Consider the following declarations:

int list = {20,30,35,36,39};
int *p; // pointer variable p
p = list; // assign the starting address of array list to pointer p

Since p is a pointer variable and has been assigned the starting address of array list, the follow-
ing operations become perfectly valid on this pointer:

p++, p–– etc.

Let us now write a third version of the program that prints out the array. We will use pointer
variable p in this program.

// pointer variable method of processing an array

include <iostream.h>
void main()
 {
 static int list [] = { 20,30,35,36,39};
 int *p;
 int i =0;
 p = list; // Assign the starting address of the list
 cout << “\n The list is ...”;
 while (i < 5)
 {
 cout << “\n”<< *p;
 i++;
 p++; //increment pointer
 }
 }

The output of above program is given below:

The list is ---
20
30
35
36
39_

Pointers 71

From our discussion on arrays, we know that the strings are stored and manipulated as array of
characters, with last character being a null character (i.e. \0).

For example, the string ENGINEERING can be stored in an array (say text) as shown in
Fig. 2.14.

Text

1

N

0

E

2

G

3

I

4

N

5

E

6

E

7

R

8

I

9

N

10

G

11

\0

Figure 2.14 The array called ‘Text’

We can declare this string as a normal array by the following array declaration:

char text [11];

Consider the following declaration:

char *p;
p=text;

In the above set of statements, we have declared a pointer p that can point to a character or string
of characters. The next statement assigns the starting address of character string ‘text’ to the
variable pointer p (see Fig. 2.15).

Text

P

E N G G \0I N NE E R I

0 1 2 10 113 4 95 6 7 8

Figure 2.15 Pointer p points to the array called ‘Text’

Since text is a pointer constant, its contents cannot be changed. On the contrary, p is a pointer
variable and can be manipulated like any other pointer as shown in the program given below.

// This program illustrates the usage of pointer to a string

include <iostream.h>
void main()
 {
 char text[] = “ENGINEERING”; // The string
 char *p; // The pointer

 p = text; // Assign the starting address of string to p

 cout <<”\n The string..”; // Print the string
 while (*p != ‘\0’)
 { cout <<” “<< *p;

72 Object-oriented Programming with C++

 p++ ;
 }
 }

The output of the program is given below:

| The string-- E N G I N E E R I N G

Consider the following program:

include <iostream.h>
 main()
 {
 int tab [3][4] = { 5,6,7,8,
 1,2,3,4,
 9,10,0,11 };
 cout << “\n “ << *tab[0] + 1 << “—“ << *(tab[0] + 1);
 cout << “\n “ << *(* (tab + 0) + 1);
 }

The output would be

6 -6
6

Example 2. What would be the output of the following?

include <iostream.h>
void main()
{
 char *ptr;
 ptr = “Nice”;
 cout << “\n”<< * & ptr [1];
}

Solution: The output would be i.

Example 3. What would be the output of the following?

include <iostream.h>
void main ()
{
 int list [5] ={ 2, 5, 6, 0, 9};
 3[list] = 4[list] + 6;
 cout << “\n”<< * (list + 3);
}

Solution: The output would be 15.

Pointers 73

2.4 ARRAY OF POINTERS
Like any other array, we can also have an array of pointers. Each element of such an array can
point to a data item such as variable, array etc. For example, consider the declaration given below:

f oat *x [20];

This declaration means that x is an array of 20 elements, and each element is a pointer to a vari-
able of type fl oat. Let us now construct an array of pointers to strings.

char *item []{ Chair,
 Table,
 Stool,
 Desk,
 };

The above declaration gives an array of pointers called item. Each element of item points to a
string as shown in Fig. 2.16.

C h a i r \0
item

0

1

2

3

T a b l e \0

S t o o l \0

D e s k \0

Figure 2.16 Array of pointers to strings

The advantage of having an array of pointer to strings is that manipulation of strings be-
comes convenient. For example, the string-containing table can be copied into a pointer ptr
without using strcpy() function by the following set of statements.

char *ptr; // declare a pointer to a string
ptr = item [1]; // assign the appropriate pointer to ptr

It may be noted that once the above set of statements are executed, both the pointers item[1]
and ptr will point to the same string table as shown in Fig. 2.17.

C h a i r \0

item

0

1

2

3

ptr

T a b l e \0

S t o o l \0

D e s k \0

Figure 2.17 Effect of statement ptr = item[1]

74 Object-oriented Programming with C++

However, the changes made by the pointer ptr to the string table will defi nitely disturb the con-
tents of the string pointed by the pointer item [1] and vice versa. Therefore, utmost care should
be taken by the programmer while manipulating pointers pointing to same memory locations.

2.5 POINTERS AND STRUCTURES
Similar to the other types of pointers, we can have a pointer to a structure, i.e. we can also point
a pointer to a structure. A pointer to a structure variable can be declared by prefi xing the vari-
able name by a *. Consider the following declaration:

struct xyz { /* structure declaration */
 int a;
 f oat y;
};
struct xyz abc; /* declare a variable of type xyz */
struct xyz *ptr; /* declare a pointer ptr to a variable of type xyz */

Once the above declarations are made, we can assign the address of the structure variable abc to
the structure pointer ptr by the following statement:

ptr = &abc;

Since ptr is a pointer to the structure variable abc, the members of the structure can also
be accessed through a special operator called arrow operator i.e. → (minus sign followed by
greater than sign). For example, the members a and y of the structure variable abc pointed by ptr
can be assigned values 30 and 50.9 respectively by the following statement:

ptr→a = 30;
ptr→y = 50.9;

The arrow operator ‘→’ is also known as a pointer-to-member operator.

Example 4. Write a program that def nes a structure called item for the record structure given
below. It reads the data of the record through dot operator and prints the record by arrow
 operator. Use suitable data types for the members of the structure Item.

Code quantity CostItem

Solution: We will use a pointer ptr to point to the structure called Item. The required program
is given below.

// This program demonstrates the usage of an arrow operator

include <iostream.h>
void main()
 {
 struct item {

Pointers 75

From the above program, we can see that the members of a static structure can be accessed by
both dot and arrow operators. However, dot operator is used for simple variable whereas the
arrow operator for pointer variables.

 char code[5];
 int Qty;
 f oat cost;
 };
 struct item item_rec; // def ne a variable of struct type
 struct item *ptr; // def ne a pointer of type struct
 // Read data through dot operator
 cout <<”\n Enter the data for an item”;
 cout <<”\nCode:”; cin >>item_rec.code;
 cout <<”\nQty :”; cin >> item_rec.Qty;
 cout <<”\nCost :”; cin >>item_rec.cost;
 // Assign the address of item_rec
 ptr = &item_rec;
 // print data through arrow operator
 cout <<”\n The data for the item...”;
 cout <<”\nCode: “ << ptr->code;
 cout <<”\nQty : “ << ptr->Qty;
 cout <<”\nCost : “ << ptr->cost;
 }

Example 5. What is the output of the following program?

#include <iostream.h>
void main()
 {
 struct point
 {
 int x,y;
 } polygon[]= { {1,2},{1,4},{2,4},{2,2}};

 struct point *ptr;
 ptr = polygon;

 ptr++;
 ptr->x++;
 cout << ptr->x;
 }

Solution: From the above program, it can be observed that ptr is a pointer to an array of struc-
tures called polygon. The statement ptr++ moves the pointer from the zeroth location (i.e {1,
2}) to fi rst location (i.e. {1, 4}). Now, the statement x++ has incremented the fi eld x of the
structure by one (i.e. 1 has incremented to 2).

The output would be 2.

76 Object-oriented Programming with C++

2.6 DYNAMIC ALLOCATION
We know that in a program when a variable x is declared, a storage location is made available
to the program as shown below.

This memory location remains available, even if it is not needed, to the program as long as
the program is being executed (Fig. 2.18). Therefore, the variable x is known as a static variable.
Dynamic variables, on the other hand, can be allocated from or returned to the system according
to the needs of a running program. However, a dynamic variable does not have a name and can
be referenced only through a pointer.

Consider the declaration given below.

int x ; ≡ x

Figure 2.18 Memory allocation to variable x

The above declaration gives us a dangling pointer p that points to nowhere (see Fig. 2.19).
Now, we can connect this dangling pointer either to a static variable or to a dynamic variable. In
our previous discussion on pointers, we have always used pointers with static variables. Let us
now see how the pointer can be connected to a dynamic variable.

int *p; ≡ p

Figure 2.19 The dangling pointer p

In C++, dynamic memory can be allocated by an operator called ‘new’. The format of
 dynamic allocation is given below.

<pointer> = new <varType>

where <pointer> : is a pointer to a variable of type varType

new : is a reserved word indicating that memory allocation is
to be done.

.varType : is type of dynamic variable required

Consider the following declaration

int * p;
p = new int

The above set of statements are executed in the following manner:

 1. The pointer p is created. It is dangling, i.e. not connected anywhere (see Fig. 2.20(a))

 2. A dynamic variable of type integer is taken through new operator and the dangling pointer
p is connected to the variable (see Fig. 2.20(b))

Pointers 77

Dynamic variablePointer

p p

(a) (b)

Figure 2.20 The effect of new operator

It may noted from Fig. 2.20(b) that a dynamic variable is anonymous in the sense that it has no
name, and therefore it can be referenced only through the pointer p. For example, a value (say
50) can be assigned to the dynamic variable by the following statement:

*p = 50;

The above statement means that it is desired to store a value 50 in a memory location pointed to
by the pointer p. The effect of this statement is shown in Fig. 2.21.

50p

Figure 2.21 The effect of assignment of *p = 50

It may observed that p is simply a pointer or an address and *p gives the access to the memory
location or the variable where it is pointing to. It is very important to learn the difference between
the pointer and its associated dynamic variable. Let us consider the following program segment.

int *Aptr, *Bptr; // declare pointers
Apt = new int; // allocate dynamic memory
Bptr = new int;
*Aptr = 15;
*Bptr = 70;

The outcome of the above program segment would be as shown in Fig. 2.22.

15

70

Aptr

Bptr

Figure 2.22 Value assignment through pointers

Let us now see the effect of the following assignment statement on the memory allocated to the
pointers Aptr and Bptr.

Aptr = Bptr;

The above assignment makes Aptr to point to the same location or variable, which is already
being pointed by Bptr as shown in Fig. 2.23. Thus, both Aptr and Bptr are now pointing to the
same memory location.

78 Object-oriented Programming with C++

15

70

Aptr

Bptr

Figure 2.23 Both pointers pointing to the same location

A close observation would reveal that the dynamic variable containing value 15 is now lost in
the sense that it is neither available to Aptr anymore and nor it is available to the system. The
reason being that the system gave it to the pointer Aptr and now Aptr is pointing to some other
location. This dynamic variable being anonymous (i.e. without name) is no more accessible.
Even if we want to reverse the process, we cannot simply do it. This phenomenon of losing
dynamic variables is known as memory bleeding. Thus, utmost care should be taken while
manipulating the dynamic variables. It is better to return a dynamic variable whenever it is not
required in the program.

A dynamic variable can be returned to the system by function called delete. The general form
of usage of this operator is given below.

delete <pointer>;

where delete: is a reserved word.
<pointer>: is the pointer to the dynamic variable to be returned to the system

Let us consider pointers shown in Fig. 2.23. If it is desired to return the dynamic variable
pointed by pointer Bptr, we can do so by the following statement:

delete Bptr;

Once the above statement is executed, the dynamic variable is returned back to the system, and
we are left with two dangling pointers Bptr and Aptr as shown in Fig. 2.24. The reason for this
is obvious because both were pointing to the same location. However, the dynamic variable con-
taining value 15 is anonymous and not available anymore and hence a total waste of memory.

15
Aptr

Lost

Bptr

Figure 2.24 The two dangling pointers and a lost memory variable

Pointers 79

Example 6. Write a program that dynamically allocates an integer. It initializes the integer
with a value, increments it and prints the incremented value.

Solution: The required program is given below:

include <iostream.h>
void main()
 {
 int *p; // A pointer to an int
 // allocate a dynamic of size int pointed by p
 p = new int;
 cout << “\n Enter a value :”;
 cin >> *p;
 *p = *p +1;
 // print the incremented value
 cout << “\n The Value =” << *p;
 delete (p);
 }

A sample output is given below:

Enter a value :240
The incremental Value =241_

Example 7. Write a program that dynamically allocates a structure whose structure dia-
gram is given below. It reads the various members of the structure and prints them.

Name Age RollStudent

Solution: We will use the following steps to write the required program

 1. Declare a structure called student.

 2. Declare a pointer ptr to the structure student.

 3. Ask for dynamic memory of type student pointed by the pointer ptr.

 4. Read the data of the various elements using arrow operator.

 5. Print the data.

 6. Return the dynamic memory pointed by ptr.

The required program is given below.

include <iostream.h>
include <stdio.h>

void main()

80 Object-oriented Programming with C++

Example 8. Write a program that dynamically allocates an array of integers. A list of inte-
gers are read from the keyboard and stored in the array. The program determines the smallest
in the list and prints its location in the list.

Solution: The solution to this problem is trivial and the required program is given below.

// This program illustrates the usage of dynamically allocated
array

include <iostream.h>

 {
 struct student { // Declare the structure
 char name[15];
 int age;
 int roll;
 };
 struct student *ptr;
 // Ask for dynamic memory of type student
 ptr = new student;

 cout << “\n Enter the data of the student”;

 cout << “\nName :”; ff ush(stdin); gets(ptr->name);
 cout << “\nAge :”; cin >> ptr->age;
 cout << “\nRoll :”; cin >> ptr->roll;

 cout << “\n The data is...”;

 cout << “\nName :”; puts(ptr->name);
 cout << “\nAge :”<< ptr->age;
 cout << “\nRoll :” << ptr->roll;
 delete (ptr);
 }

A sample output is given below:

Enter the data of the student
Name :Hasan

Age :19
Roll :103

 The data is - - -
Name :Hasan

Age :19
Roll :103

An array can also be dynamically allocated as demonstrated in the following example program.

Pointers 81

From the above example, it can be observed that the size of a dynamically allocated array can
be specifi ed even at the run time and the required amount of memory is allocated. This is in
sharp contrast to static arrays for whom the size has to be declared at the compile time.

void main()
 {
 int i,min, pos;
 int *list;
 int Sz, N;
 cout << “\n Enter the size of the list :”;
 cin >> N;
 // Allocate dynamic array size N
 list = new [N];
 cout << “\n Enter the list”;
 // Read the list
 for (i = 0; i < N; i++)
 {
 cout << “\n Enter Number :”;
 cin >> *(list + i);
 }
 pos = 0; // Assume that the zeroth element is min
 min = *(list + 0);
 // Find the minimum
 for (i = 1; i < N; i++)
 {
 if (min > *(list + i))
 { min = *(list + i);
 pos = i;
 }
 } // Print the minimum and its location
 cout << “\n The minimum is” << min <<” at position = “ << pos;
 delete (list);
 }

A sample output is given below:

Enter the size of the list :5

Enter the list
Enter Number :23
Enter Number :12
Enter Number :41
Enter Number :56
Enter Number :11

The minimum is 11 at position = 4_

82 Object-oriented Programming with C++

2.6.1 Self Referential Structures
When a member of a structure is declared as a pointer to the structure itself, then the structure
is called as self referential structure. Consider the following declaration.

struct chain {
 int val;
 chain *p;
};

The structure chain consists of two members—val and p. The member val is a variable of type
int, whereas the member p is a pointer to a structure of type chain. Thus, the structure chain has
a member that can point to a structure of type chain or may be itself. This type of self referenc-
ing structure can be viewed as shown in Fig. 2.25.

pval

chain

Figure 2.25 Self referential structure chain

Since pointer p can point to a structure variable of type chain, we can connect two such structure
variables A and B to obtain a linked structure as shown in Fig. 2.26.

BA

Figure 2.26 Linked structure

The linked structure given in Fig. 2.26 can be obtained by the following steps:

 1. Declare structure chain.

 2. Declare variables A and B of type chain

 3. Assign the address of structure B to member p of structure A.

These above steps have been coded in the program segment given below.

struct chain { // declare structure chain
 int val;
 chain *p;
};
chain A, B; // declare structure variables A and B
A.p=&B; // connect A to B

From Fig. 2.26 and the above program segment, we observe that the pointer p of structure
variable B is dangling, i.e. it is pointing to nowhere. Such pointer can be assigned to NULL, a
constant indicating that there is no valid address in this pointer. The following statement will
do the desired operation:

Pointers 83

Example 9. Write a program that uses self referential structures to create a linked list of
 dynamic nodes of following structure. While creating the linked list, the student data is read.
The list is also travelled to print the data.

Name roll next

Student

Solution: We will use the following self referential structure for the purpose of creating a
node of the linked list.

struct stud{
 char name [15];
 int roll;

B.p=NULL;

The data elements in this linked structure can be assigned by the following statements:

A.val=50;
B.val=60;

The linked structure now looks like as shown in Fig. 2.27.

B

6050

A

NULL

Figure 2.27 Value assignment to data elements

We can see that the members of structure B can be reached to by two methods:

 1. From its variable name B through dot operator.

 2. From the pointer p of variable A because it is also pointing to the structure B. However,
in this case, the arrow operator is needed.

Consider the statements given below:

cout << “\n the contents of member val of B =” << B.val;
cout << “\n the contents of member val of B =” << A.p→val;

Once the above statements are executed, the output would be:

The contents of member val of B = 60
The contents of member val of B = 60

The linked structures have great potential and can be used in numerous programming situations
such as lists, trees etc.

84 Object-oriented Programming with C++

 stud next;
 };

The required linked list would be created by using three pointers (Fig. 2.28). First far and back.
The following algorithm would be employed to create the list.

Steps:

 1. Take a new node in pointer called fi rst.

 2. Read fi rst→ name and fi rst →roll.

 3. Point back pointer to the same node being pointed by fi rst, i.e. back =fi rst.

 4. Bring a new node in the pointer called far.

 5. Read far→name and far→roll.

 6. Connect next of back to for, i.e. back→next =far.

 7. Take back to far, i.e. back = far.

 8. Repeat steps 4 to 7 till whole of the list is constructed.

 9. Point next of far to NULL, i.e. far→ next=NULL.

 10. Stop.

first

first
back far

first back far

first
back

first
back far

Figure 2.28 Creation of a linked list

Pointers 85

The required program is given below:

include <iostream.h>
include <stdio.h>

void main()
 {
 struct student {
 char name [15];
 int roll;
 student *next;
 };
 student *First, *Far, *back;
 int N,i;
 cout << “\n Enter the number of students in the class”;
 cin >> N;
 // Take f rst node
 First = new student;
 // Read the data of the f rst student

 cout << “\n Enter the data”;
 cout << “\n Name : “; ff ush(stdin); gets(First->name);
 cout << “\n Roll : “; cin >> First->roll;
 // point back where First points
 back = First;

 for (i =2; i <=N; i++)
 { // Bring a new node in Far
 Far = new student;
 // Read Data of next student
 cout << “\n Name : “; ff ush(stdin); gets(Far->name);
 cout << “\n Roll : “; cin >> Far->roll;
 // Connect Back to Far
 back->next = Far;
 // point back where Far points
 back = Far;
 } // reapeat the process
 Far->next = NULL;

 // Print the created linked list
 Far = First; // Point to the f rst node

 cout <<”\n The Data is”;
 while (Far != NULL)
 {
 cout << “\n Name = “ <<Far->name << “ Roll = “ << Far->roll;
 // Point to the next node
 Far = Far->next;
 }
 }

86 Object-oriented Programming with C++

Example 10. Modify the program developed in Example 9 such that:

 1. Assume that the number of students in the list is not known.

 2. The list of students is split into the two sublists pointed by two pointers: front_half and
back_half. The front_half points to the front half of the list and the back_half to the
back half. If the number of students is odd, the extra student should go in the front list.

Solution: The list of students would be created in the same fashion as done in Problem 1. The
following steps would be followed to split the list in the desired manner.

 1. Travel the list to count the number of students.

 2. Compute the middle of the list.

 3. Point the pointer called front_half to fi rst and travel the list again starting from the fi rst
and reach to the middle.

 4. Point back-half to the node that succeeds the middle of the list.

 5. Attach NULL to the next pointer of the middle node.

 6. Print the two lists, i.e. pointed by front-half and back-half.

The required program is given below:

include <iostream.h>
include <stdio.h>
void main()
 {
 struct student {
 char name [15];
 int roll;
 student *next;
 };
 student *First, *Far, *back;
 student *front_half, *back_half;
 int N,i,count, middle;
 cout << “\n Enter the number of students in the class”;
 cin >> N;
 // Take f rst node
 First = new student;
 // Read the data of the f rst student

 cout << “\n Enter the data”;
 cout << “\n Name : “; ff ush(stdin); gets(First->name);
 cout << “\n Roll : “; cin >> First->roll;
 First->next =NULL;
 // Point back where First points
 back = First;

 for (i =2; i <=N; i++)
 { // Bring a new node in Far

Pointers 87

 Far = new student;
 // Read Data of next student
 cout << “\n Name :” ; ff ush(stdin); gets(Far->name);
 cout << “\n Roll :”; cin >> Far->roll;
 // Connect Back to Far
 back->next = Far;
 // Point back where Far points
 back = Far;
 } // Repeat the process
 Far->next = NULL;
 // Count the number of nodes

 Far = First; // Point to the f rst node
 count = 0;
 while (Far != NULL)
 {
 count ++;
 Far = Far->next;
 } // Split the list
 if (count == 1)
 {
 cout << “\n The list cannot be split “;
 front_half = First;
 }
 else
 {
 // Compute the middle
 if ((count % 2) == 0) middle = count/2;
 else middle = count / 2 + 1;
 // Travel the list and split it
 front_half = First;
 Far = First;

 for (i =1; i <= middle; i++)
 {
 back =Far;
 Far = Far->next;
 }
 back_half = Far;
 back->next = NULL;
 }
 /* Print the two lists */
 Far = front_half;
 cout << “\n The Front Half...: “;
 for (i =1; i <=2; i++)
 {
 while (Far != NULL)
 {

88 Object-oriented Programming with C++

2.7 SUMMARY
A pointer is a variable that can only store the address of another variable. If a programmer
assigns a new pointer, already poing to a new dynamic variable, the earlier dynamic variable is
lost. This is also known as memory bleeding. Pointers always contain integers because a pointer
can only contain an address, an integer quantity. A pointer can also be incremented to point to
an immediately next location of its type. An un-initialized pointer is a dangling pointer that may
contain any erroneous address. A NULL pointer does not point to any address location.

Example 11. Give the output of the following program:

include <iostream.h>
void main()
 { int i, j;
 char *str = “CALIFORNIA”;
 for (i = 0; str[i]; i++)
 {
 for (j = 0; j <= i; j++)
 cout << str[j];
 cout <<”\n”;
 }
 }

Solution: The output would be
C
CA
CAL
CALI
CALIF
CALIFO
CALIFOR
CALIFORN
CALIFORNI
CALIFORNIA

 cout << “Name:” << Far->name << “ Roll : “ << Far->roll;
 Far = Far->next;
 }
 if (count == 1 || i == 2) break;
 cout << “\n The Back Half...: “;
 Far = back_half;
 }
 }

Pointers 89

 MULTIPLE CHOICE QUESTIONS
 1. What happens to the dynamic variable if the pointer pointing to it is deleted?
 (a) It is lost (b) It is returned to system
 (c) It can be pointed by a new pointer (d) None of these

 2. Are the expressions (*p)++ and ++*p equivalent?
 (a) Yes (b) No
 (c) Cannot be compared (d) None of these

 3. What does the term **j means?
 (a) It is double pointer (b) j points to two addresses
 (c) j is a pointer to a pointer (d) None of these

 4. The address of a variable can be obtained by
 (a) New operator (b) * operator
 (c) = Operator (d) & operator

 5. The content at address is the
 (a) * operator (b) & operator
 (c) = operator (d) New operator

 6. A pointer contains the
 (a) Name of a variable (b) Type of a variable
 (c) Size of a variable (d) Address of a variable

 7. The increment of a pointer pointing to a fl oat variable will increment its contents by
 (a) 1 location (b) 2 locations
 (c) 4 locations (d) 8 locations

 8. A dangling pointer is:
 (a) Un-instantiated pointer (b) Un-initialized pointer
 (c) Points to NULL (d) Un-defi ned pointer

 9. The name of an array is a
 (a) Constant pointer (b) Pointer variable
 (c) Pointer to a pointer (d) None of these

10. A dynamic variable is a
 (a) Anonymous variable (b) Is a lost variable
 (c) Is a deleted variable (d) A NULL entity

ANSWERS
1. b 2. a 3. c 4. d 5. a 6. d 7. c 8. b 9. a 10. a

 EXERCISES
 1. Explain ‘&’ and ‘*’ operators in detail with suitable examples.

 2. Find the errors in the following program segments

90 Object-oriented Programming with C++

 (a) int val=10
 int * p;
 p=val;
 (b) char list [10];
 char p;
 list=p;

 3. (i) What will be the output of the following programs:

 # include <iostream.h>
 main()
 {
 int val=10;
 int *p, **k;
 p=&val;
 k=&p;
 cout <<”\n “ << p << “ ” <<*p, << “ ” << *k << “ ” << **k;
 }
 (ii) # include <iostream..h>
 main()
 {
 char ch;
 char *p;
 ch =’A’;
 p=&ch;
 cout << “\n “ << ch << “ ” << (*p)++);
 }

 4. What will be the output of the following program:

 # include <iostream.h>
 main()
 {
 int list[5], i;
 *list =5;
 for (i=1; i < 5; i++)
 (list + i) =(list + i-1)*i;
 cout << “\n”;
 for (i=0; i < 5; i++)
 cout <<” “ << *(list + i);
 }

 5. Find the errors in the following program segment:

 struct xyz {
 char *A;
 char *B;
 int val;
 };

Pointers 91

 xyz s;
 A = “First text”;
 B = “Second text”;

 6. What will be the output of the following program segment?

 # include <iostream.h>
 main()
 {
 struct Myrec {
 char ch;
 Myrec *link;
 };
 Myrec x,y,z, *p;
 x.ch=’x’;
 y.ch=’y’;
 z.ch =’z’;
 x.link=&z;
 y.link =&x;
 z.link=NULL;
 p=&y;
 while (p!= NULL)
 {
 cout << p->ch;
 p=p->link;
 }
 }

 7. What will be the output of the following program?

 # include <iostream.h>
 main()
 {
 f oat cost []={ 35.2, 37.2, 35.42, 36.3 };
 f oat *ptr[4];
 int i;
 for (i=0; i < 4; i++)
 *(ptr +i)=cost + i;
 for (i=0; i < 4; i++)
 cout << “ “ << *(*(ptr +i));
 }

 Assume the base address of the array called ‘cost’ to be 2025.

 8. What will be the output of the following program?

 # include <iostream.h>
 main()
 {

92 Object-oriented Programming with C++

 char item[]=”COMPUTER”;
 int i;
 for (i=7; i >=0 ; i--)
 cout << “ “ << *(item + i);
 }

 9. What would be the output of the following program?

 # include <iostream.h>
 main()
 { char *ptr = “abcd”;
 char ch = ++ *ptr ++;
 cout << “\n “, ch;
 }

10. What would be the output of the following program?

 # include <iostream.h>
 main()
 {
 struct val {
 int Net;
 };
 struct val x;
 struct val *p;

 p = &x;
 p->Net = 50;
 cout << “\n”, <<(x.Net)++;
 }

11. What would be the output of the following program?

 # include <iostream.h>
 main()
 {
 struct val {
 int Net;
 };
 struct val x;
 struct val *p;

 p = &x;
 p->Net = 50;
 cout << “\n”, (x.Net)++;
 }

12. Explain how new and delete operators manage memory allocation and deallocation.

Pointers 93

13. Write a program that creates a linked list of dynamic nodes consisteing of N nodes. The
structure of an individual node is given below

Name NextDesig

Emp

ANSWERS
 4. 5 5 10 30 120 6. y x z 7. 35.2 37.2 35.42 36.29 8. RETUPMOC 9. b
10. 50 11. 51

PROGRAMMING
TECHNIQUES:
A SURVEY

3.1 INTRODUCTION
FORTRAN, a computer language, was developed in mid-1950s. Nowadays, there are hundreds
of programming languages available in the market. However, only a small number of them
are popular among the programmers. For example, FORTRAN, BASIC, COBOL, Pascal, ‘C’,
‘C++’, PROLOG, JAVA, etc. are very popular computer languages.

Since a programming language is responsible for human–system communication, it consists
of symbols, characters, and grammar rules which allow programmers to communicate with
computers. As discussed earlier in Chapter 1, a programming language can be defi ned as “a
language used for expressing a set of computer instructions” The set of instructions is called a
program.

In fact, a computer program is written for the following tasks:

 1. To save time by performing complex calculations Examples: weather forecasting,
design of civil structures, continuous simulation of aircrafts, etc.

 2. To process large amount of data Examples: transaction processing applications such as
banks, nation wide common entrance tests such as AIEEE, GATE, MAT, etc.

 3. To control machinery Examples: guided missiles, command aircrafts, automated indus-
tries, modern cars, etc.

 4. Entertainment. Examples: multimedia applications, virtual reality, etc.

The programming practice has evolved through the following four major phases:

 1. Unstructured programming

 2. Procedural programming

 3. Modular programming

 4. Object-oriented programming

A brief discussion on each of the phases is given in following sections.

3

Programming Techniques: A Survey 95

3.2 UNSTRUCTURED PROGRAMMING
In the beginning of the programming era, the main emphasis was to write a program that simply
produced correct results. The programmers wrote programs consisting of a sequence of state-
ments, operating upon variables which were most of the time global (see Fig. 3.1). The ‘goto’
statement of FORTRAN was a preferred tool for uncontrolled jumps.

data

program

Figure 3.1 A program with global data

The global variables coupled with ‘goto’ statements rendered the program a mess of state-
ments making it very diffi cult to understand as shown in Fig. 3.2

20
goto 100

goto 200

goto 70

goto 20

100

70

220

Figure 3.2 An unstructured program

96 Object-oriented Programming with C++

It may be noted that the ‘goto’ statement makes a program unstructured in the sense that
program control fl ows from here to there without making any sense to the reader. Moreover, in
case of large programs, it becomes equally diffi cult to keep track of the history of the global
variables. Therefore, it becomes very diffi cult to understand and maintain the program.

In 1960s, the computing community realized that the cost of maintaining unstructured pro-
grams was even more than the cost of rewriting. This realization was the turning point whereby
discipline was enforced on the programmers to follow structured programming techniques such
as block structured approach, modular approach, etc. The use of ‘goto’ statements in particular
was discouraged.

3.3 STRUCTURED PROGRAMMING
With the advent of block structured programming languages such as Pascal and ‘C’, the pro-
grammers started following a disciplined approach of programming. ‘C’ supports constructs
called blocks wherein each block has one entry point and one exit point as shown in Fig. 3.3.

Entry

Exit

Figure 3.3 A block

It may be noted that a code enclosed between a pair of curly braces can be termed as a block.
The following constructs of ‘C’ are examples of blocks.

 ■ Compound statement

 ■ Loop (for, while, do–while)

 ■ Function

 ■ File

Structured programming: this programming technique allows a limited set of control struc-
tures which the programmer can use to write the programs. The control structures are while, for,
do–while, if–else, etc. Each control structure is a block.

The disciplined approach helped the programmers in easily managing large programs. No
wonder that the fi rst version of UNIX, a huge operating system, was written using ‘C’. Even the
compiler of ‘C’ is written in ‘C’

But in-spite of the structured approaches, some programmers try to quickly assemble a pro-
gram that some how works. The approach of quickly assembling a set of statements to produce
a program is generally called as hacking. For smaller programs, hacking may work but for large
programs, it results in the following types of failures:

 1. The program may contain bugs, i.e. do not gives correct results.

 2. Abnormal program termination, i.e. the program may crash.

Programming Techniques: A Survey 97

 3. The program becomes unstructured, i.e. expensive to maintain.

 4. The program may contain time bombs, i.e. hidden errors – which may affect the program
in future.

Since hacking is generally practiced by beginners, they can also be taught to follow struc-
tured programming rules which would help them to write reliable and robust programs.

Precisely, the structured programming refers to techniques that produce programs with clean
f ow, clear design, and hierarchical program structure. It can be broadly classifi ed into two
categories: procedural programming and modular programming.

3.3.1 Procedural Programming
In procedural programming, importance is given to procedure that can solve a given problem,
i.e. “what do we have to do to solve the problem?”. The problem at hand is divided into sub-
problems. Then each sub-problem is divided into sub-sub-problems and so on till each of them
can be solved separately. Each sub-problem is coded as a procedure or function. The arrange-
ment is as shown in Fig. 3.4. The advantage of a procedure is that if it is correct then on every
call it produces correct results.

Main
Program

Procedure Sub_ProbSub_Prob Procedure

Procedure Procedure ProcedureProcedureProcedure

Figure 3.4 Hierarchy of procedures

Since a procedure can call another procedure, the program can be provided with a carefully
designed structure. In simple words, we can say that “a structured program is a collection of
organized procedures with a clear control f ow as shown in Fig. 3.5.

It may be noted from Fig. 3.4 that the program control fl ows through a sequence of proce-
dures. The various procedures work under the control of the main program. Each procedure is a
block with one entry point and one exit.

Procedural programming: in this technique of programming the programmer gives more
importance to the steps that must be followed to solve a problem. The problem is divided into
a collection of small and manageable functions. The emphasis is more on operations than the
data on which the operations take place.

98 Object-oriented Programming with C++

3.3.2 Modular Programming
Modular programming is one step ahead of the procedural programming. The programmer
identifi es procedures having common functionality and groups them into a module. Therefore,
the program becomes a collection of modules as shown in Fig. 3.6.

Main
Program

Module

Procedure

Data

Module Module

Figure 3.6 Modular structure of a program

Procedure

Procedure

Procedure

call

Main program

call

return
return

return

return

call

call

Figure 3.5 Organized procedures

Programming Techniques: A Survey 99

Each module has its own set of data and procedures. The procedures work on internal data of
the module. Every module controls its own procedures.

Modular programming: in this technique of programming, the program creates a collec-
tion of interacting modules as a solution to a given problem.

3.4 DRAWBACKS OF STRUCTURED PROGRAMMING
In procedural based approach, the main emphasis is on how to solve the problem, i.e. to look for
procedure that can give the required results. This approach works well with small and medium
sized programs. However, for very large programs such as writing compilers/operating sys-
tems/CAD packages/simulators, etc., the complexity increases which only the experienced and
matured programmers can handle.

Consider the following ‘C’ program that implements a Queue. It uses three procedures/func-
tions addQ(), removeQ(), and display() to do the required tasks:

/* This program implements a Queue wherein items are
 added to the Queue at rear end and removed from front end
 The add and remove operations are done through respective functions
*/

include <stdio.h>
include <conio.h>

 /* prototypes of functions */
void addQ(int queue[], int *rear, int item, int size);
void removeQ(int queue[], int *front, int *rear, int *item);
void displayQ (int queue[], int front, int rear);

void main ()
 {
 int queue[30];
 int front, rear;
 int size; /* size of the queue */
 int item; /* item to be added/removed from the queue */
 int choice;

 printf(“\n Enter the size of the queue”);
 scanf (“%d”, &size);

 front = rear = 0; /* indicates that the queue is initially empty

 show a menu */
 do
 {
 printf (“\n Menu”);
 printf (“\n”);
 printf (“\n Add ----- 1”);
 printf (“\n Remove ----- 2”);
 printf (“\n Display ---- 3”);
 printf (“\n Quit ----- 4”);

100 Object-oriented Programming with C++

 printf (“\n”);
 printf (“\n Enter your choice”);
 scanf (“%d”,&choice);
 clrscr(); /* clrear screen */

 switch (choice)
 {
 case 1 :printf (“\n Enter the item to be added”);
 scanf(“%d”, &item);
 addQ(queue,&rear,item,size);
 break;
 case 2 :removeQ(queue, &front, &rear, &item);
 if (item != 9999)
 printf (“\n the removed item = %d”,item);
 break;
 case 3 :displayQ(queue, front, rear);
 break;
 }
 }
 while (choice != 4);
 } // End of main

/* This function adds an item on the queue */

void addQ(int queue[], int *rear, int item, int size)
 {
 if (*rear < size)
 {
 *rear = *rear + 1;
 queue [*rear] = item;
 }
 else
 printf (“\n the queue is Full”);
 }

 /* This function removes an item from the queue */
void removeQ(int queue[], int *front, int *rear, int *item)
 {
 if (*front == *rear)
 {printf (“\n The queue is empty”);
 *item = 9999;
 }
 else
 {
 *front = *front + 1;
 *item = queue[*front];
 }
 }

/* This function displays the contents of the queue */
void displayQ (int queue[], int front, int rear)

Programming Techniques: A Survey 101

 {
 int i;
 printf (“\n The items are…”);
 if (front < rear)
 for (i = front + 1; i <= rear; i++)
 printf (“%d”, queue[i]);
 }

From the above program, the following observations can be made:

 1. The queue works only for 20 locations.

 2. It only works with integers.

 3. The variables front and rear can be corrupted.

 4. It is visible to the user that the queue has been implemented using arrays as data structure.

 5. Without major modifi cation, it is diffi cult to reuse any part of the program.

In fact the focus has been to implement the queue that can work on a fi xed number of inte-
gers. No consideration has been given to produce a reusable code.

In modular programming, all the functions related to queue can be grouped together in a
module. The common functions work upon the data supplied by the main(). However, the fol-
lowing observations can be made:

 1. The emphasis is on to group the functions, i.e. operations.

 2. As per the requirements of the functions, the data representation is chosen.

 3. The functions are then later on made to work on the data.

 4. Data and data structures usually remain unprotected.

Therefore, a module suffers from the following drawbacks:

 1. The emphasis is on to operations instead of the data.

 2. Multiple instances of modules are diffi cult to create.

3.5 OBJECT-ORIENTED PROGRAMMING
The remedy to the above-mentioned drawbacks is that we put more emphasis on data and try to
create reusable software components. The reusable components can further be combined to get
bigger and powerful software.

Let us consider the case of assembly of computer systems. In the market, following compo-
nents are available:

 1. Mother board.

 2. Microprocessor-based CPU.

 3. CPU fan.

 4. RAM.

 5. HDD.

102 Object-oriented Programming with C++

 6. CD-ROM drive.

 7. Video card.

 8. Sound card.

 9. Mouse.

 10. Keyboard.

 11. LCD monitor.

 12. Cabinet with SMPS.

 13. Connectors and cables.

Each component given above is an object capable of providing services through an interface.
The CPU, RAM, video card, and sound card are plugged into the mother board through their
respective interfaces, i.e. the slots. HDD and CD-ROM drives are connected to the mother
board through connectors and cables. This assembly of objects is encased in a cabinet. The
LCD monitor, keyboard, and mouse are connected externally through ports which extrude from
the cabinet. An expert can assemble a system in an hour or so. The process is fast because the
components are available and we have to connect them properly.

It may be noted that while assembling the computer system, we did not bother about the inter-
nal working of the objects or who made them how. Rather, we emphasized more on their proper
interfacing and inter-connection with each other. Moreover, the components like RAM, sound
card, mouse, etc. are reusable, i.e. these components can be used with any other computer system.

Similarly, if we have reusable software objects then we can assemble them to quickly
produce a software system of interacting components, connected through their interfaces as
shown in Fig. 3.7.

Software Object

Software Object

Software Object

Software System

Figure 3.7 Software objects interacting with each other

Programming Techniques: A Survey 103

It may be noted that the data and logic are encased in an object and are hidden from other
objects. In fact they provide services to each other only through their interfaces. The access to
internal components is controlled and limited.

Therefore, the only option to manipulate the objects is through their interfaces. For example, on
a mobile phone we press the various buttons or touch on the screen to get services such as: make a
call, terminate a call, search a contact name/number, etc. Similarly on an ATM machine, we only
work on the 4–6 buttons provided on its interface. What and how it happens inside these machines
is none of our business.

From the above discussions, we can say that the object-oriented programming involves pro-
gramming using objects. An object can be any real time entity which is capable of providing
services. The examples of objects are you, me, chair, fan, air, bank account, bank clerk, etc.
Object-oriented programming has following three prominent aspects:

 1. Encapsulation: grouping and hiding data, information and implementation in a unit
behind an interface. For instance there are many things in a house but only the doors
and windows are provided as interface to the outside world. The inside of the house can
be changed or re-confi gured without changing the doors and windows. Similarly, data
and implementation within an object can be changed without changing its interface. This
OOP technique is called as ‘separateness’, i.e. in an object the interface and implementa-
tion are separated from each other.

 2. Inheritance: this feature of OOP allows code reuse. All the data, data structures, and
implementation of an object become the part of a new object through inheritance. For
instance, the services of a Queue object can be inherited by a Queue Manager object
of operating system for managing the various queues it maintains while allocating the
resources. So, the programmer of Queue manager object need not develop the code for
Queue object. This is similar to a son inheriting the wealth and property of his father
without making any efforts to earn the same.

 3. Polymorphism: polymorphism allows dynamic binding of functions, i.e. at run time it is
decided as to which function to be called for execution. If a new technology has arrived or
developed then it is placed in a new function. Through dynamic binding, the new function
is bound and executed instead of the old function. This feature makes the software exten-
sible and easily modifi able.

Object-oriented Programming: this technique of programming provides a collection of reus-
able objects that interact with each other to offer a solution to a given problem. The main
emphasis is on separating ‘what from how’, i.e. interface from implementation.

More discussion on object-oriented programming is given in subsequent chapters.

3.6 SUMMARY
Some characteristics of procedure-oriented programming are:

 1. Emphasis is on how to solve a problem or to do a job, i.e. develop algorithms.

 2. Program is divided into functions.

104 Object-oriented Programming with C++

 3. Little attention is given to the data part of the program.

 4. The procedures* share global data.

 5. The code is generally not reusable.

 6. Top-down, stepwise refi nement techniques are used.

Some characteristics of object-oriented programming are:

 1. More emphasis is given on data and information. These are generally made hidden to
make them inaccessible.

 2. A program is a collection of objects.

 3. Objects are reusable entities.

 4. Objects communicate with each other through public interfaces.

 5. Only internal members of an object can change the state of an object.

 6. Techniques like polymorphism, encapsulation, inheritance, etc. are used.

 MULTIPLE CHOICE QUESTIONS

 1. A ‘goto’ statement is
 (a) a conditional jump (b) an uncontrolled jump
 (c) a loop (d) none

 2. Global variables and goto statement make a program
 (a) structured (b) modular
 (c) unstructured (d) none

 3. Which of the following is not a block
 (a) loop (b) function
 (c) switch (d) simple statement

 4. In procedural programming, the emphasis is on
 (a) data (b) procedure
 (c) reusability (d) sharing

 5. In object-oriented programming, we have
 (a) interacting objects (b) collection of modules
 (c) collection of functions (d) emphasis on operations

 6. Which of the following feature of OOP supports code reuse:
 (a) encapsulation (b) polymorphism
 (c) inheritance (d) object interface

 7. Objects interact with each other through
 (a) functions (b) data
 (c) private members (d) interfaces

* A procedure is an impure function in which data exchange takes place through variables passed by reference.

Programming Techniques: A Survey 105

 8. A block has
 (a) many entry and many exit points (b) one entry and one exit point
 (c) many entry points and one exit point (d) one entry and no exit point.

ANSWERS
1. b 2. c 3. d 4. b 5. a 6. c 7. d 8. b

 EXERCISES

 1. Why a program is written? Give the major application areas where a computer program
becomes necessary.

 2. What are the phases through which the programming practice has evolved?

 3. Explain unstructured programming in brief.

 4. Explain procedural programming in brief.

 5. Explain modular programming in brief.

 6. List shortcomings of procedure-oriented programming.

 7. What is a procedure?

 8. What are the drawbacks of structured pro-gramming?

 9. Defi ne the terms: encapsulation, inheritance, and polymorphism.

10. List out the characteristics of procedural programming.

11. List out the characteristics of object-oriented programming.

CLASSES AND
OBJECTS

4

4.1 INTRODUCTION TO OBJECTS
We perceive the world around us through our senses. The senses recognize objects present around
us. For instance, visible objects like human beings, buildings, cars, soil, earth, water, cloud, etc.
are all perceived by eyes. The non-visible objects like air, sound, and smell are perceived through
touch, ears, and nose respectively. Distant or abstract objects are generally perceived through
spoken words of an expert. For instance, the structure of an atom or existence of BOSON, the
God particle, can only be perceived through their description by experts. Thus, the world around
us is composed of nothing but objects of varying descriptions as shown in Fig. 4.1.

Figure 4.1 Some of the objects present around us

An object can be precisely defi ned as: an entity around us, perceivable through our senses. If we
look around, we fi nd that we are surrounded by several objects (Fig. 4.1). For example in a Univer-
sity, students, professors, desks, fans, pens, writing pads, computers, etc. are all examples of objects.

Now, a closer look at various objects around us reveals that there are many types of objects
as described below:

Classes and Objects 107

■ Objects that operate independently. Examples: toys, photocopying machines, cameras, etc.

■ Objects that work in associations with each other. Examples: computer–mouse, com-
pany–employee, car–driver, etc.

■ Objects that frequently interact with each other. Example: telephones, fax machines,
nodes of computer networks, etc.

■ Objects that are contained in other objects. Example: ALU contained in a CPU, engine
contained in a car, speaker contained in a phone, etc.

An object has following three characteristics:

 1. Identity: it is the name associated with an object. It helps in identifying the object, i.e.
what we call the object as? For example, cup is the name of the object that is used to store,
serve and drink hot beverages such as tea or coffee.

 2. States: an object can be in many states, for example, a cup, can be in the following states:

 a. Full

 b. Empty

 c. Cold/hot

 d. Broken

 3. Behaviours: what the object does or what is it capable of doing? For example, a cup can
be fi lled, drunk from, washed, broken, etc. Similarly, a person can sit, stand, sleep, walk,
talk, etc.

Consider the clay pitcher given in Fig. 4.2.

Figure 4.2 A clay pitcher

It has the following characteristics:

 1. Identity: pitcher

 2. States:

 a. Upright/upside down

 b. Full/empty

 c. Broken

108 Object-oriented Programming with C++

 d. Material – clay

 e. Colour – brown

 3. Behaviours:

 a. Can be fi lled

 b. Can be emptied

 c. Can be transported

 d. Can be broken

In normal programming, when we write a program about (say) pitcher. The states are repre-
sented by variables and the behaviours as functions. The main() function sends the variables to
various functions to model the overall functionality or behaviour of the pitcher. Thus, by nature,
we fi rst break the pitcher into variables and functions (i.e. pieces) then we try to glue the pieces
through function calls to model its behaviour as shown in Fig. 4.3.

decompose

Different function,
interacting through
variables

Figure 4.3 Normal programming

Now the problem is that in a very large program, when we have large number of broken objects
at hand then it becomes diffi cult for a programmer to keep track of the history of all the vari-
ables which are time and again passed to hundreds of functions and the results received from
them. As the size and complexity of a program increases, the function and module management
becomes equally diffi cult for the programmer. Therefore, the programming becomes cumber-
some and diffi cult and only few hardcore programmers succeed.

However, in real life we don’t break the pitcher or for that matter we don’t break any object
at all. The objects interact with each other without losing their characteristics (see Fig. 3.7).
Therefore, their management is quite easy and comfortable in real life.

Now the question is – can we create a software object that doesn’t lose its characteristics
while being maneuvered in a program. Yes the answer is Object Oriented Programming (OOP)
wherein we can defi ne and create software object which behave like real life objects. Before
we delve more into OOP, let us fi rst understand another concept called ‘class’ as discussed in
following section.

Classes and Objects 109

4.2 CLASSES
Human has a very strong ability to categorize objects. When we see an object we immediately
identify it to be belonging to a particular group or category. Consider the objects given in Fig. 4.4.

Figure 4.4 Collection of objects

The collection of objects shown in Fig. 4.4 can be easily identifi ed to be belonging to the
category called cups. But the question is how we can say that these objects belong to a group or
set called cups? The simple answer is that all these objects have common characteristics belong-
ing to the category called cups. In OOP, a category is called a class.

In fact, the objects around us can be categorized into classes. For instance, we can easily
locate a class of “furniture”, representing the objects such as: chairs, tables, desks, etc. In OOP
terminology, we can say that a chair is an instance of the class furniture. Similarly, a dining
table is also an instance of the class furniture and so on. If we consider book as a class then
Ramayana, Gita, Jungle book are also instances of the class book. Thus, it can be said that an
object is an instance of a class.

 Note: The objects belonging to a class may have different states but their behaviours
remain the same. For instances, the cups given in Fig. 4.4 differ from each other in shape but the
behaviours such as ‘can be f lled’ or ‘can be carried’ remain the same for all instances of cups.

The precise defi nition of class is: “A class def nes common states and behaviours of a group
of objects”. Pictorially a class is represented as shown in Fig. 4.5.

Class name

States

Behaviours

Figure 4.5 Pictorial representation of a class

The class that models a pitcher is given in Fig. 4.6.
In fact in OOP, we develop a program using the concept similar to building a system from its

basic components. For a given problem, the following steps are followed:

 1. Identify the objects that comprise the problem.

 2. Categorize the objects into classes.

110 Object-oriented Programming with C++

Pitcher

Upright / Upside down
Full / Empty
Broken
Material – clay
Colour – brown

Can be filled
Can be emptied
Can be transported
Can be broken

Figure 4.6 Pitcher class

 3. Establish the relationship between the classes.

 4. Create instances of objects as per the requirement.

 5. Manage the objects to solve the problem.

4.3 DECLARATION OF CLASSES IN C++
From the above discussion it is evident that the classes are central to OOP and a class can be
used to create objects of its type. In C++, a class can be defi ned by the keyword “class”. The
format of class declaration is given below:

 class <name >
 {private :
 variable declarations
 function declarations
 public :
 variable declarations
 function declarations
 };

where class is a keyword; <name> is the user defi ned name of the class. It is a C++ identifi er.
Private is a keyword; public is a keyword.

It may be observed that a class declaration is similar to a structure declaration. Therefore,
everything related to structure applies to classes. However, there is a difference in the sense that
a structure is open and accessible to all whereas the access to members of the class is rather
restricted. The class has clearly two sections: private and public. There is also a third special
section available in a class. This section called protected and is discussed later in this book.

Private members: the members declared in private section are not accessible outside the class.
Therefore, the most important members that need to be secured are placed in private section.
The states (i.e. variables) are always made private. The reason being that the internal state of an
object should only be changed by an internal behaviour or function and not by outside stimuli.
For example, the temperature of human body remains constant irrespective of climatic condi-
tions being summer or winter. However, an infection in the body may give rise to high body
 temperature. This feature of hiding states and data structures is called data or information hiding.

Classes and Objects 111

Similarly, the behaviours (i.e. the functions) which implement the business logic are also
hidden from outside by making them private members. The set functions which can modify a
state of the object are also made private. This feature of hiding implementation or set functions
is also called as implementation hiding.

Public members: the functions that need to interact with outside world are made public.
These functions interact with the outside world for the following purposes:

 1. Taking input from users or other objects. For example, the function that reads data from
a user (say read_data()) needs to be made public.

 2. Providing information about states of the object to users. These functions are also called
as get functions. For example, the function that informs about the grade of a student (say
get_grade()) has to made public.

 3. Providing services offered by the object to users or other objects. For instance the push()
and pop() functions of a stack object are made public.

It may be noted that the public functions act as interface to the outside world. In other words we
can say that the important data, information, and implementation are hidden in private section
behind a public interface as shown in Fig. 4.7.

Public
Interface

Private

Internal state/
implementation
/set functions

Figure. 4.7 Data and implementation hiding behind public interface

4.3.1 Abstraction and Encapsulation
From Figure 4.7, the following points are observed:

 1. Only public interface is visible.

 2. The data, information, and implementation are hidden.

The visible part which provides only the bare minimum details about the object is called abstrac-
tion. The data, information and implementation are hidden. In other words, we can say that data,
information and implementation have been placed in a capsule and the activity is called as
encapsulation. An example of abstraction and encapsulation is given in Fig. 4.8.

In a human head, there are many components like arteries, veins, muscles, eyes, ears, nose, mouth,
cheek bones, retina, iris, brain, etc. But most of these have been encapsulated. Only the necessary
components that are needed to interact with others have been abstracted as interface (see Fig. 4.8).

112 Object-oriented Programming with C++

abstraction encapsulation

Figure 4.8 Abstraction and encapsulation

By default, a class contains private members, i.e. all states and behaviours are private and not
accessible to outsiders. Thus, the class encapsulates the data, information, and the implementa-
tion. When a user, by design, declares some members as public then those members become the
interface or abstraction. Thus, the unnecessary details are ignored. The terms abstraction and
encapsulation can be precisely defi ned as:

Abstraction: the activity of separating essential members of a class in the form of public
interface is known as abstraction. It provides a simple view of the object so that the user can
easily use the object.

Encapsulation: the activity of hiding data and implementation within a class as a unit is
called as encapsulation. It creates a separation between the interface and the implementation
thereby reducing the dependency between the components of the system.

In fact the abstraction has to be good so that the object can be used with ease without going
into the details of the implementation. In fact it separates the behaviour of the object from its
implementation. For example, in a camera there are 2–3 buttons and an eye-piece to interact
with. Similarly, a house encapsulates many things but offers doors and windows as abstraction.

4.3.2 Member Function Definition
The member functions can be defi ned inside as well as outside the class declaration. If a member
function is very small then it can be defi ned inside the class itself. Such function defi nitions are
considered by default to be inline. A discussion on inline functions is given later in this book.
Let us consider the following class declaration:

//Example of member function def nition inside class declaration
 class test { private:
 int val;
 public :
 void readvar()
 {
 cin >>val;
 }
 void dispvar()
 {
 cout <<val;
 }
 };

In this class two public functions readvar () and dispvar () have been defi ned. It may be noted
that the actual code for the function is written inside the class defi nition itself. On the contrary,

Classes and Objects 113

if a member function is large then it should be defi ned outside the class declaration. The pro-
totypes of such functions, however, must be provided in the class defi nition. For example, the
above defi ned class can be rewritten as given below:

//Example of member function def nition outside a class declaration
 class test
 {
 private:
 int val;
 public :
 void readvar();
 void dispvar();
 };
 void test :: readvar()
 {
 cin >>val;
 }
 void test :: dispvar()
 {
 cout <<val;
 }

The operator ‘::’ is known as scope resolution operator. This is used to associate member func-
tions to their corresponding class. For example, in the above function declarations, it conveys
to the compiler that the functions readvar() and dispvar() belong to the class called test. The
format of a member function declaration is given below:

type class_name :: function_name (parameter list)
 {
 function body
 }

where type: is the data type of value to be returned;
class_name: the name of the class to which the function belongs;
function_name: the name of the function being declared;
parameter list: list of formal arguments.

From the above discussion, it is clear that a class combines data and functions into a single
programming unit.

Example 1. Def ne a class called student which models the following states and behaviours
of a student:
States
 Name
 Roll
 Marks
 Grade

114 Object-oriented Programming with C++

Behaviours
 Read_data()
 Display_grade()
 Compute_grade()
Compute the grade as per the following rules:

Marks Grade

>=50 < 60 D

>=60 < 70 C

>=70 < 80 B

>=80 A

Solution: We would model the states as variables and place them in private section for the
purpose of data hiding. The behaviours read_data() and display_grade() would be modeled
as functions and placed in public section as these functions are needed by the user to interact
with the student object. Since the compute_grade() is an implementation function, it would
be placed in private section from implementation hiding point of view. The required class is
given below:

include <iostream.h>

class student {

private:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade(); //implementation function

public:
 void read_data();
 void display_grade();
 };
 // Function to read data of a student
 void student:: read_data()
 {
 cout <<”\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;
 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;
 compute_grade(); // compute the grade
 }
 // Function to display grade

Classes and Objects 115

4.4 CREATING OBJECTS
An object is an instance of a class and it can be created of its class type. The syntax for defi ning
an object is given below:

<class_name> <object_name>;

where <class_name> is the name of the class and <object_name> is the name of the object
being defi ned.

For example, we can create an object studObj of class student by the following declaration :

student studObj;

The above declaration says that studObj is an object of class student.
In some situations, especially while sorting of objects, it is required that one object may be

copied to another object. C++ allows assignment of objects of same type. It copies the source
object bit-wise to the destined object. The concept is illustrated through the statements given
below:

class xyz { // CLASS DECLARATION
 :
 };
 xyz obj1, obj2; // OBJECT CREATION
 :
 obj2 = obj1; // OBJECT ASSIGNMENTS

void student:: display_grade()
 {
 cout<< “\n Name:” << name;
 cout << “\n Roll:” << roll;
 cout << “\n Grade:” <<grade;
 }
 // Function to compute grade
 void student::compute_grade()
 {
 if (marks >= 80) grade = ‘A’;
 else
 if (marks >=70) grade =’B’;
 else
 if (marks >=60) grade =’C’;
 else
 if (marks >=50) grade =’D’;
 else
 grade =’E’;
 }

116 Object-oriented Programming with C++

Example 2. Use the class student def ned in Example 1. Write a menu driven program that
tests the class student for following services:

 1. Read the data of a student.
 2. Display the grade of a student.

Solution: We would use a do–while loop to display a menu for asking the choice from the
user. The required program is given below:

include <iostream.h>
include <conio.h>

class student {
private:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();
public:
 void read_data();
 void display_grade();
 };

 // Function to read data of a student
 void student:: read_data()
 {
 cout <<”\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;
 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;
 compute_grade(); // compute the grade
 }
 void student:: display_grade()

4.4.1 Calling Member Functions
Once an object has been created, its member functions (public) can be called in the program
with the help of a dot operator, i.e. the object name is connected to the function name with a
dot. For example, if we desire to call read_data() function of object ‘studOb’ then the following
statement can be used.

studOb.read_data();

The above statement says that a function read_data() of object studOb is being called / invoked.

Classes and Objects 117

 {
 cout<< “\n Name:” << name;
 cout << “\n Roll:” << roll;
 cout << “\n Grade:” <<grade;
 }
 void student::compute_grade()
 {
 if (marks >= 80) grade = ‘A’;
 else
 if (marks >=70) grade =’B’;
 else
 if (marks >=60) grade =’C’;
 else
 if (marks >=50) grade =’D’;
 else
 grade =’E’;
 }

 void main()
 {
 int choice;
 student studOb;

 do
 {
 clrscr();
 cout << “\n Menu”;
 cout <<”\n”;
 cout <<”\nRead data\t 1”;
 cout <<”\n”;
 cout <<”\nDisplay grade \t 2”;
 cout <<”\n”;
 cout <<”\nQuit\t\t 3”;
 cout <<”\n”;
 cout <<”\nEnter your choice:”;
 cin >> choice;

 switch (choice)
 {
 case 1 : studOb.read_data();
 break;
 case 2 : studOb.display_grade();
 }
 getch();
 }
 while (choice != 3);
 }

118 Object-oriented Programming with C++

Example 3. Def ne a class called employee with the following specif cations:

States

 name
 BP: basic pay,
 DA: dearness allowance
 HRA: house rent allowance
 salary

Behaviours

 computeSal(): computes the salary
 readData (): accepts the data values
 dispSal(): prints the data on the screen.
 The salary is computed by the following formula:
 Salary = BP + DA + HRA
 where DA and HRA are 65% and 20% of the BP, respectively.

Write a program that reads the name and BP of the employee and prints the salary.

Solution: We would model the states as variables and place them in private section for the
purpose of data hiding. The behaviours readData() and dispSal() would be modeled as func-
tions and placed in public section as these functions are needed by the user to interact with the
employee object. Since the computeSal() is an implementation function, it would be placed in
private section from implementation hiding point of view.
The required class with a complete program is given below:

// This program reads, compute, and displays the data
 // of an employee

 #include <iostream.h>
 #include <stdio.h>
 class employee
 {

 private:
 char name[20];
 f oat BP, DA, HRA, Salary;
 void computeSal(); // hide implementation
 public:
 void readData();
 void dispSal();
 };

 void employee :: computeSal()
 {
 DA = 0.65 * BP;
 HRA = 0.2 * BP;
 Salary = BP + DA + HRA;
 }

Classes and Objects 119

Example 4. Use the student class of Example 1. Write a program which reads records of
N number of students in an array of objects and prints the list of students in the following
 format:

List of Students

S. No. Name Roll Grade

Solution: The required program, that uses an array of objects of class student type to read and
print a list of students, is given below:

// This program reads a list of students and prints their grade

4.5 ARRAY OF OBJECTS
C++ allows declaration of arrays of objects like arrays of any other type. An individual object
within the array can be accessed by a subscript. The following example illustrates the usage of
an array of objects of class student type.

 void employee :: readData()
 {
 cout <<”\n Enter name of the employee:”;
 gets(name);
 ff ush(stdin);
 cout <<”\n Enter Basic Pay:”;
 cin >> BP;
 computeSal();
 }

 void employee :: dispSal()
 {

 cout <<”\n Name :” << name;
 cout <<”\n Salary= “ << Salary;
 }
 void main()
 {
 employee empOb;
 empOb.readData();
 empOb.dispSal();
 }

120 Object-oriented Programming with C++

 # include <iostream.h>
 # include <conio.h>

 class student {
 private:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();
 public:
 void read_data();
 void display_grade();
 };

 // Function to read data of a student
 void student:: read_data()
 {
 cout <<”\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;
 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;

 compute_grade(); // compute the grade
 }
 void student:: display_grade()
 {
 cout<< “\n” << name;
 cout << “\t” << roll;
 cout << “\t” <<grade;
 }
 void student::compute_grade()
 {
 if (marks >= 80) grade = ‘A’;
 else
 if (marks >= 70) grade =’B’;
 else
 if (marks >= 60) grade =’C’;
 else
 if (marks >= 50) grade =’D’;
 else
 grade =’E’;
 }
void main()
 {
 int n;

Classes and Objects 121

4.6 OBJECTS AS FUNCTION ARGUMENTS
C++ considers objects as built-in data type and therefore, an object can be passed to a function
as an argument. An object can be passed in either of the two ways given below. However, each
method has its own merits and demerits.

 1. Pass by value

 2. Pass by reference

 1. Pass by value: in pass by value method of argument passing, the objects are passed to
functions by value. A copy of the object is received by the called function, not the actual
object. The called function can only use the services of the object because only public
members of the object are accessible to the function. For instance, consider the following
function (test()) that receives an object of student type through ‘pass by value’ and reads
its data and displays its grade.

 void test (student sOb)
 { sOb.read_data();
 cout <<”\n Display in test()”;
 sOb.display_grade();
 }
 void main()
 {
 student studOb;
 clrscr();
 test (studOb); // call test() by pass by value
 cout <<”\n \n Display in main()”;
 studOb.display_grade();
 }

The output of the program is given below:

Enter Name :Atul
Enter Roll :101
Enter Marks :98

 student stud_list[50];
 cout <<”\nENTER THE NUMBER OF STUDENT”;
 cin >>n;
 for(int i = 0;i < n;i++)
 stud_list[i].read_data();
 clrscr();
 cout <<”\n LIST OF STUDENTS: \n”;
 cout <<”\nNAME\t ROLLNO\t GRADE”;
 for(i = 0;i < n; i++)
 stud_list[i].display_grade();
 }

122 Object-oriented Programming with C++

Display in test()
Atul 101 A
Display in main()
Atul 1382 √

It may be noted that the function main is also trying to display the grade but only garbage
is being shown. The reason being that the object studOb, created in main() is different
from the object sOb created in test() as shown in Fig. 4.9. Therefore, the grade computed
by sOb is shown by sOb only and not by studOb of main().

{

{

}

}

sOb

pass by value

studOb

Function main()

Function test()

Figure 4.9 The object being passed by ‘pass by value’ method

 2. Pass by reference: in some situations, it is desired that the changes done to an object in
the called function should be refl ected back into the calling function. This can be resolved
with the help of pass by reference method of argument passing of C++. In this method,
the address of an object is passed to the function as an argument. The address of the
object is represented by preceding the object name with the character ‘&’.

 For instance, consider the following modifi ed function (test()) that receives an object of
student type by ‘pass by reference’ and reads its data and displays its grade.

 void test (student &sOb) // pass by reference
 { sOb.read_data();
 cout <<”\n Display in test()”;
 sOb.display_grade();
 }
 void main()
 {
 student studOb;
 clrscr();
 test (studOb); // call test() by pass by value

Classes and Objects 123

 cout <<”\n \n Display in main()”;
 studOb.display_grade();
 }

 The output of the program is given below:

Enter Name :Atul
Enter Roll :101
Enter Marks :98

Display in test()
Atul 101 A
Display in main()
 101 A

It may be noted that the function main is also able to display the grade. The reason being
that in pass by reference, only the address of the object has been passed resulting in both
test() and main() referring to the same object as sOb and studOb, respectively, as shown
in Fig. 4.10.

{

{

}

}
sOb

studOb

pass by reference

Function main()

Function test()

Figure 4.10 Pass by reference – sOb & studOb refer to the same object

A function can return an object if it has been declared to return the corresponding class
of objects. For example, a function some() which returns an object of class (say) student
type can be defi ned as shown below:

 student some ()
 { student temp;
 .
 .
 return (temp);
 }

124 Object-oriented Programming with C++

4.7 SCOPE RESOLUTION OPERATOR
From our earlier discussion in this chapter we know that, when a member function of a class is
large then it is prototyped inside the class and defi ned outside with the help of a scope resolution
operator. The scope resolution operator is a double colon (::) used to connect the defi nition of
functions to their classes. The general form of usage of this operator is shown below:

<return type> < class_name > :: < function _name > (parameter list)

In addition to above, we can use the scope resolution operator to access hidden global variables
inside a class defi nition. Consider the program segment given below:

 int val; // global variable
 class xyz {
 int val // local variable
 :
 public :
 int int_val()
 {
 return ++ val
 }
 };

We can observe that the variable val declared outside the class is global and the variable val
declared separately inside the class is local. Now, in normal circumstances we cannot access
such a global variable inside the class because any reference to variable val would be consid-
ered as local by the compiler. Thus, the global variable val becomes hidden inside the class on
account of presence of a local variable with the same name.

We can use the scope resolution operator (::) on the hidden global variable to make it
 accessible inside the class as shown below:

 int val; // global variable
 int count;
 class xyz {
 int val; // local variable
 public:
 void in_val()
 {
 :: val = ++ val;
 cout < <“\n THE LOCAL VAL =“ < < val;
 cout < <}\n THE GLOBAL VAL =” < < :: val;
 }
 }

 Note: The major difference between scope resolution operator and the dot operator in
context of classes and objects is: “The dot operator is used to specify a member of an object
whereas the scope resolution operator is used to specify the class name while defi ning a member
function of the class”. The scope resolution operator is also used to make hidden global variable
visible inside a class or a block.

Classes and Objects 125

Example 5. Give the output of following program:

 #include <iostream.h>
 int a = 10;
 void main()
 {
 void test (int &, int, int &);
 int a = 30, b = 10;
 test (::a, a, b);
 cout <<::a << “ “ << a << “ “ << b << “\n”;
 }
 void test (int &x, int y, int &z)
 {
 a += x;
 y *= a;
 z = a + y;
 cout << x << “ “ << y << “ “ << z << “\n”;
 }

Solution: The output would be:

20 600 620

20 30 620

Example 6. Write a class matAdd that is capable of adding two matrix objects matOb1 and
matOb2 of its own type. Also write a main() function to test the working of the class.

Solution: Let us include the members in the required class called addMat as shown in the class
diagram

addMat
i, j
mat [][]

readMat()
displayMat()
addOb()

where readMat() reads a matrix; displayMat() displays a matrix; addOb() adds two objects of
type addMat class.

 Note: The function addOb() has been included as one of the functions of the class. In
the absence of this function it would be impossible to add two matrix objects because the data
members have been declared private and hence not accessible out side the class. It is left as

126 Object-oriented Programming with C++

an exercise for the readers to declare addOb() as stand alone function (not part of the class)
and try to add the matrix objects.

The required program is given below:

// This program adds two matrix objects

include <iostream.h>
include <conio.h>
 class addMat
 {
 int i,j, m,n;
 int mat[10][10];

 public:

 void readMat();
 void displayMat();
 void addOb(addMat ob1,addMat ob2);
 };

 void addMat:: readMat()
 {
 cout << “\n Enter the order of the matrix : m, n”;
 cin >> m >> n;
 cout << “\n Enter the matrix elements one by one\n”;
 for (i =0; i < m; i++)
 {
 for (j = 0; j < n; j++)
 {
 cin >> mat[i][j];
 }
 }
 }
 void addMat :: displayMat()
 {
 cout << “\n the matrix :\n”;
 for (i =0; i < m; i++)
 {
 for (j = 0; j < n; j++)
 {
 cout << mat[i][j] << “ “;
 }
 cout <<”\n”;
 }
 }
 void addMat :: addOb(addMat ob1, addMat ob2)
 {
 if (ob1.m == ob2.m && ob1.n == ob2.n)
 {m = ob1.m; //copy order of the matrices

Classes and Objects 127

 n = ob1.n;
 for (i =0; i < m; i++)
 {
 for (j = 0; j < n; j++)
 {
 mat[i][j] = ob1.mat[i][j] + ob2.mat[i][j];
 }
 }
 }
 else
 cout << “\n addition not possible”;
 }
 void main()
 {
 clrscr();
 addMat matOb1, matOb2, matOb3;
 matOb1.readMat();
 matOb2.readMat();
 matOb3.addOb(matOb1, matOb2);
 matOb3.displayMat();
 }

A sample output of the program is given below:

Enter the order of the matrix : m, n 2 3
Enter the matrix elements one by one
2 1 4
4 2 1

Enter the order of the matrix : m, n2 3
Enter the matrix elements one by one
2 0 3
1 1 1

the matrix :
4 1 7
5 3 2

Example 7. A class called clock24 has following members:

 States
 hour
 minute

 Behaviours
 readtime();
 showtime();

128 Object-oriented Programming with C++

Write a complete program in C++ to input two different objects timeOb1 and timeOb2 of type
clock24. Print their sum (assuming 24 hours clock time).

Solution: The required program is given below:

#include <iostream.h>
include <process.h>
 class clock24
 {
 int hour;
 int minute;
 public:
 void readtime();
 void showtime();
 void addtime(clock24, clock24);
 };
 void clock24::readtime()
 {
 cout <<”\nEnter the time\n” <<”hours:”;
 cin >> hour;
 cout << “min:”;
 cin >> minute;
 if ((hour > 12)||(minute > 60))
 {cout << “\n wrong time data”;
 exit(0);
 }
 }
 void clock24::showtime()
 {
 cout << “\nTime is:” << hour <<”:” << minute <<”\n”;
 }
 void clock24::addtime(clock24 timeOb1 ,clock24 timeOb2)
 {
 hour = timeOb1.hour+timeOb2.hour;
 minute = timeOb1.minute+timeOb2.minute;
 if(minute > 60)
 {
 minute = minute - 60;
 hour++;
 }
 if(hour > 12)
 hour = hour - 12;
 }
 void main()
 {
 clock24 ob1, ob2,ob3;
 ob1.readtime();
 ob2.readtime();

Classes and Objects 129

 ob3.addtime(ob1,ob2);
 cout << “\n The time of object 1 :”;
 ob1.showtime();
 cout << “\n The time of object 2 :”;
 ob2.showtime();
 cout << “\n The sum of time of object 1 & 2 :”;
 ob3.showtime();
 }

The sample output of the program is given below:

Enter the time
hours :5
min :34

Enter the time
hours :6
min :56
The time of object 1 :
Time is :5:34
The time of object 2 :
Time is :6:56
The sum of time of object 1 & 2 :
Time is :12:30

Example 8. Compute the size of the object of class matAdd.

Solution: The member wise size and the total size are given below:

 1. i, j, m, n = 4 * 2 bytes (each) = 8 bytes

 2. mat[10][10] = 100 * 2 bytes = 200 bytes
 Total size = 208 bytes – Ans.

4.8 STATIC DATA MEMBERS
When different instances of a class are created then each instantiated object gets its own set of
states, i.e. variables. For example, every student object (Examples 1 & 2) gets its own set of
variables to store name, roll no., marks, etc.

However, a data member can be declared as static within a function of a class so that it be-
comes common to all instances of the class. In simple words we can say that a static variable is
shared among all instantiated objects of the class.

A static variable, declared within a function of a class has following characteristics:

 1. The static variable is initialized to zero at the time of creation of fi rst object of the class.

130 Object-oriented Programming with C++

 2. It is shared by all instances of the class.

 3. The scope of the static variable is within the function of the class.

 4. Its lifetime starts with the creation of fi rst object and ends with the destruction of last
object of the class.

Example 9. Write a class called testStatic that declares a normal integer variable called
individual as its private member. It uses public function called disp() which declares a static
variable called common and displays the contents of both individual and common variables
for various instances of objects.

Solution: The required program is given below. It may be noted that in function main(), we
are passing the number of the object as an argument to the function disp():

// This program illustrates the usage of static variables

include <iostream.h>
include <conio.h>

class testStatic

 {

 int individual;
 public:

 void disp(int val)
 {
 static int common;
 individual = val;
 common = common+ val;
 cout <<”\nstatic =”<< common <<”\n”;
 cout <<”normal =”<< individual <<”\n”;
 }
 };

 void main()
 {
 testStatic ob1, ob2, ob3;
 clrscr();
 cout << “\n The object1”;
 ob1.disp(1);
 cout << “\n The object2”;
 ob2.disp(2);
 cout << “\n The object3”;
 ob3.disp(3);
 }

The output of the program is given below:

 The object1
Static =1

Classes and Objects 131

Example 10. What is wrong with the following class declaration?

 class test {
 int val = 10;
 char ch;
 public
 int setvar ();
 char read var ();
 void setvar ();
 };

Solution:

 1. The keyword public must be followed by a colon.

 2. No variable can be initialized inside a class declaration.

normal =1

 The object2
Static =3
normal =2

 The object3
Static =6
normal =3

Kindly note that the static variable is common to all the three objects and its contents are get-
ting accumulated (1–3–6) with each invocation of the disp(). However, the normal variable of
each object has independent location and stores only the number of the object. Therefore, the
variable (normal) that contains data of an individual object is also called an instance variable.
Similarly, the static variable that holds data that is common and relevant to all objects is also
called as a class variable. In fact, there is always only one copy of the class variable irrespective
of the number of objects instantiated from the class.

In the light of above we can say that the variables individual and common of class testStatic
are instance and class variables, respectively.

4.9 PROPERTIES OF CLASSES AND OBJECTS
From our discussions on various features of classes, we can observe that the general properties
of classes are:

 1. Classes consist of both data (variables) and functions.

 2. Since a class is only processed at compiler level, no variable can be initialized inside a
class declaration.

132 Object-oriented Programming with C++

 3. Classes allow private, protected and public members.

 4. A member function defi ned inside the class is by default an inline function.

 5. A member of a class is by default a private member unless otherwise specifi ed.

 6. A private member is not available outside the class. However, a member function can
always access such a member.

 7. Objects can be passed as parameters to functions.

 8. Objects can be returned from a function.

The general properties of objects are:

 1. Objects are alive because an object comes into existence. It gets the resources like mem-
ory. It has a lifetime.

 2. Objects are active because an object provides services through its interface.

 3. Objects are intelligent because every object has the coded logic to provide a service or to
solve the problem at hand.

4.10 SUMMARY
Any perceivable entity is an object. Every object can be identifi ed as belonging to a class. The
activity that combines data and functions into one unit is known as encapsulation. Data and func-
tions are linked on a fundamental level in the form of encapsulation. It enables data, information,
and implementation hiding. An abstraction separates the essential part from the implementation
details. A static variable, defi ned in a member function, is common to all instances of the class.

 MULTIPLE CHOICE QUESTIONS

 1. The world around us is composed of:
 (a) functions (b) modules
 (c) data (d) objects

 2. An object can be perceived through our:
 (a) imagination (b) senses
 (c) intuition (d) emotions

 3. Which of the following is not a characteristic of a general object?
 (a) identity (b) structure
 (c) states (d) behaviours

 4. A class defi nes common ____ and ____ of a group of objects.
 (a) identity, states (b) identity, behaviours
 (c) states, behaviours (d) data, data structure

 5. Implementation hiding is carried out by:
 (a) encapsulation (b) abstraction
 (c) static functions (d) scope resolution operator

Classes and Objects 133

 6. An interface is composed of:
 (a) private members (b) public members
 (c) stand alone functions (d) none of these

 7. A private member can be accessed by:
 (a) a stand alone function (b) the interface of the object
 (c) only the private members of the class (d) by all the members of the class

 8. A global variable can be accessed within a class by:
 (a) prefi xing it by a scope resolution operator (b) by declaring it as static
 (c) by a dot operator (d) none of these

 9. A member of a class is by default:
 (a) public (b) static
 (c) private (d) global

10. An object is ____ of a class.
 (a) copy (b) part
 (c) property (d) instance

ANSWERS
1. d 2. b 3. b 4. c 5. a 6. b 7. d 8. a 9. c 10. d

 EXERCISES

 1. Describe the basic concepts of object-oriented programming.

 2. What do you understand by a class in C++?

 3. Write the differences between a structure and a class.

 4. Defi ne the terms class and object. What is the relation between the two?

 5. How does a class accomplish data hiding?

 6. Defi ne the terms: abstraction and encapsulation.

 7. Explain how classes are declared in a C++ program.

 8. Explain the purpose of access specifi ers in a class.

 9. Why it is considered a good practice for declaring data members as private?

10. Explain in brief the rules for defi nition and declaration of functions in a class.

11. Write a class called boxVolume with length, width and height as data members and
 readData(), dispData() and computeVol() as functions. Also write a main() function to test
the boxVolume class.

12. Write a class called bankACNT that models a bank account having following members:

 States
 Name of the client
 Account number

134 Object-oriented Programming with C++

 Type of account
 Balance amount

 Behaviours:
 initVal() – to initialize the values
 depAmount() – to deposit amount
 withdrawAmount() – to withdraw some amount
 checkBalance() – to check the balance amount
 dispInfo() – to display the A/C No. and balance
 Write a main() function to test the class bankACNT.

13. Create a class to represent a book. With following members:

 States
 Book
 Title
 Author
 Acc_No
 Code
 date_issued
 date_received

 Behaviours
 read_data()
 compute_fi ne()
 dispFine()

14. Write a program that uses the class book of excercise 13 and manipulates the data of a book
through various member functions. Assume rules for the computation of fi ne for the late
return of a book.

15. Write a program that creates a list of N number of employee objects having following
 members.

 States
 Name
 Age
 empID
 sex
 address
 H.No.
 Street
 Dist.
 State

 Behaviours:
 readData()
 dispData()

Classes and Objects 135

 The program prints the list of employees in the format given below:

Name EMP_ID Address

H. NO Street Dist State

16. Write a C++ program that inputs today’s date: mm/dd/yy and determines and prints to-
morrow’s date correctly. Choose appropriate class declaration and its member data and
 functions.

17. Differentiate between instance and class variables.

18. Write a program that counts the number of objects in a class.

19. What are the general properties of classes?

5.1 POLYMORPHISM
“The meeting ends with thanks to the Chair”, announced the secretary. This message was taken
differently by different persons. The Chairman went to his/her offi ce. The accounts clerk distributed
the remuneration to the members. The internal members proceeded it to their respective departments.
The external experts marched towards the parking place to pick up their vehicles. The secretary took
his/her personal assistant along to his/her offi ce for dictation of the minutes of the meeting. And the
peon began picking up the papers, littered over the tables. This behaviour is called as polymorphic
in the sense that the same message was processed in different forms by different group of people.

The word ‘polymorphism’ has its roots in ‘polymorphous’, a Greek word meaning: ‘poly’
(many) and ‘morphe’ (forms), i.e. many forms. For example, graphite, diamond, coal, etc. are
different polymorphic forms of carbon.

In OOP, the programming efforts can be drastically reduced by suitably incorporating poly-
morphism. In this chapter, we introduce polymorphism in the form of function overloading as
discussed in the following section.

5.2 FUNCTION OVERLOADING
A signifi cantly large program contains an equally large number of variables and functions. The
programmer has to remember the following:

 1. The names of all variables and their types.

 2. The names of the functions and their return types.

 3. The number of arguments to be sent to the function.

 4. The type of each argument.

 5. The mechanism of sending the arguments, i.e. pass by copy, pass by ref., etc.

Therefore, the programmer spends more time in keeping track of the history of the variables
going to various functions and their returned values. Consequently, the productivity of the pro-
grammer reduces because of not giving the desired attention to the logic of the program.

Object-oriented programming (OOP) tackles this problem by providing ‘Function polymor-
phism’. In C++ this term is better known as ‘Function overloading’ wherein the message or
data can be processed in more than one form by a group of similar functions.

MORE ON FUNCTIONS:
ADVANCED CONCEPTS

5

More on Functions: Advanced Concepts 137

Let us consider a situation wherein a programmer desires to have following functions in his/
her program.

 1. A function to compute area of a circle.

 2. A function to compute area of a triangle.

 3. A function to compute area of a rectangle.

In a non-OOP language like ‘C’, the programmer will have to declare three functions with
unique names (say Area_Cir() Area_Tri(), and Area_Rect()) in his/her program. After the
functions have been declared, he/she has to remember their names and history of related argu-
ments for the computation of area for each trigonometric shape.

C++ allows the programmer to give same name to more than one function having unique parame-
ters. For example, same name (areaShapes()) has been given to following three different functions.

 1. fl oat areaShapes(int radius);

 2. fl oat areaShapes(int base, int height);

 3. fl oat areaShapes(fl oat length, fl oat width);

The name of the function has been overburdened, i.e. it caters to many functions. Therefore, this
kind of polymorphism is called ‘Function name overloading’ or simply ‘Function overloading’.

It may be noted that each function has unique parameter list in terms of number of arguments
or types of arguments. For example, the fi rst function has one argument and the second has two
arguments. Though both the second and third functions have two arguments each but their argu-
ments differ on types, i.e. the arguments of second are of type int whereas the third function has
fl oat type arguments.

Now the programmer has to be careful in providing the right kind of arguments in the func-
tion call so that the compiler intelligently maps this call to the desired function. For example,
if it is desired to compute the area of a triangle then the programmer should include two argu-
ments of type int in the call to areaShape().

In fact the compiler matches the number and types of the actual arguments with the various
signatures of the overloaded functions. A signature of the function is nothing but the header of
the function declaration minus the return type. The signatures of the above overloaded functions
are given below:

 1. areaShapes(int)

 2. areaShapes(int , int)

 3. areaShapes(fl oat, fl oat)

Example 1. Write a program that uses function overloading to compute the area of different
shapes like circle, triangle and rectangle.

Solution: We would use the above given overloaded functions sharing the same name, i.e.
areaShapes(). The user would be prompted to choose from a menu item to compute the area
of a desired shape. The required program is given below:

138 Object-oriented Programming with C++

// This program demonstrates the working of function overloading

include<iostream.h>
include<conio.h>

f oat areaShapes(int); // area of a circle
f oat areaShapes(int, int); // area of a triangle
f oat areaShapes(f oat, f oat); // area of a rectangle

 void main()
 {
 int radius;
 int base, height, choice;
 f oat area, length, width;

 // display menu
 do
 { clrscr();
 cout << “\n Menu - Compute area”;
 cout << “\n”;
 cout << “\n Circle\t\t 1”;
 cout << “\n”;
 cout << “\n Triangle\t 2”;
 cout << “\n”;
 cout << “\n rectangle\t 3”;
 cout << “\n”;
 cout << “\n Quit\t\t 4”;
 cout << “\n”;
 cout << “\n Enter your choice”;
 cin >>choice;
 switch (choice)
 {
 case 1: cout << “\Enter the radius: “;
 cin >> radius;
 area = areaShapes(radius);
 cout << “\n The area of circle is = “ << area;
 break;
 case 2: cout << “\Enter the base and height: “;
 cin >> base >> height;
 area = areaShapes(base, height);
 cout << “\n The area of triangle is = “ << area;
 break;
 case 3: cout << “\Enter the length, width: “;
 cin >> length>> width;
 area = areaShapes(length, width);
 cout << “\n The area of rectangle is = “ << area;
 break;
 }
 getch();

More on Functions: Advanced Concepts 139

 }
 while (choice != 4);
 }

f oat areaShapes(int radius) // area of a circle
 {
 f oat Area;
 Area = 3.1415 * radius * radius;
 return Area;
 }
f oat areaShapes(int base, int height) // area of a triangle
 {
 f oat Area;
 Area = 0.5 * base * height;
 return Area;
 }
f oat areaShapes(f oat length, f oat width) // area of a rectangle
 {
 f oat Area;
 Area = length * width;
 return Area;
 }

A sample output of the program is given below:

Menu- Compute area

Circle 1

Triangle 2

rectangle 3

Quit 4

Enter your choice2
Enter the base and height: 4 5

 The area of Triangle is = 10_

Example 2. Write a program in C++ that uses function overloading to do the following tasks:

 ■ Find the maximum of two numbers (integers).

 ■ Find the maximum of three numbers (integers).

Solution: We will use two functions having the name max(). One of the functions will have two
arguments of integer type and the other will have three arguments of integer type as shown below:

int max(int num1, int num2);
int max(int num1, int num2, int num3);

140 Object-oriented Programming with C++

The required program is given below:

 // This program uses function overloading to f nd out
 // the maximum of two or three numbers
 int max (int, int); // overloaded functions
 int max (int, int, int);

 #include <iostream.h>
 void main()
 {
 int num1,num2,num3;
 int choice;
 cout << “\n Menu - Options”;
 cout << “\n Max of two numbers\t 1”;
 cout << “\n”;
 cout << “\n Max of three numbers\t 2”;
 cout << “\n”;
 cout << “\n Enter your choice”;
 cin >> choice;
 if (choice == 1)
 {
 cout << “\n Enter two integers”;
 cin >> num1 >> num2;
 cout << “\n The Max is = :” << max (num1,num2);
 }
 else
 {
 cout << “\n Enter three integers :”;
 cin >> num1 >> num2 >> num3;
 cout << “\n The Max is = :” << max (num1, num2, num3);
 }
 }
 int max (int x, int y)
 {
 if (x > y)
 return x;
 else
 return y;
 }
 int max (int x, int y, int z)
 {
 int lar;
 if (x > y)
 lar = x;
 else
 lar = y;
 if (lar < z)
 lar = z;
 return lar;
 }

More on Functions: Advanced Concepts 141

Example 3. Write a program that uses function overloading to perform the following:

 1. Increment the value of a variable of type f oat.

 2. Increment the value of a variable of type char.

Solution: Let us give a common name inc () to both the functions and declare them as follows:

f oat inc (f oat);
char inc (char);

Notice that both the functions carry the same name and same number of arguments but are of
different types. During the function call, the C++ compiler would check the arguments and
select the corresponding correct function. The required program is given below:

/* In this program function overloading with different argument types
is illustrated. We will use two functions with same name: inc with
different arguments */

#include<iostream.h>
#include<conio.h>

f oat inc(f oat); // function prototypes
char inc(char);
void main()
 {
 f oat val;
 char ch;
 clrscr();
 cout << “\n This program increments a f oat or a character value”;
 cout << “\n Enter ‘f’ for f oat and ‘c’ for character : “;
 cin >> ch;
 if ((ch==’f’)||(ch==’F’))
 {
 cout << “\n Enter the numerical value : “;
 cin >> val;
 cout << “\n The incremented value is : “ << inc(val);
 }
 else
 if ((ch == ‘c’)||(ch == ‘C’))
 {
 cout << “\n Enter the character : “;
 cin >> ch;
 cout << “\n The next character is : “ << inc(ch);
 }
 }
 // overloaded functions
 f oat inc(f oat x)
 {
 return(++x);
 }

142 Object-oriented Programming with C++

The rules for function overloading can be summarized as:
Each overloaded function must differ either by number of its formal parameters or their data types.

 1. The return type of overloaded functions may or may not be same.

 2. The default arguments of overloaded functions are not considered by the C++ compiler
as part of the parameter list.

 3. Do not use the same function name for two unrelated functions. This is against the basic
philosophy of OOP and will be rated as a poor design.

The advantages of overloaded functions are:

 1. The programs become easier to read.

 2. The programmer need not waste time in searching for a new name for similar functions.

 3. The programmer can devote more time on logic development and need not remember
different function names.

 4. The program’s maintainability increases.

 Note:

 1. The overloaded functions must be declared in the same scope. For instance, two functions
with same name, declared in two different classes cannot be accepted for overloading as
they are appearing in different scopes.

 2. The pointer variable and array type are identical and cannot be considered as part of
separate signatures. For instance, the following overloading is invalid

void testFunc(char *);
void testFunc(char []);

 char inc(char y)
 {
 return(++y);
 }

Sample outputs for both cases are given below:

This program increment,a,float or a character value
Enter ‘f’ for float and ‘c’ for character : f

Enter the numerical value : 3.12

The incremented value is : 4.12_

This program increment,a,float or a character value
Enter ‘f’ for float and ‘c’ for character : c

Enter the Charecter : G

The next charecter is : H

More on Functions: Advanced Concepts 143

5.3 INLINE FUNCTIONS
From our previous discussions on functions, we know that a function is a set of instructions
that can be called by another function by its name. After the task is over, the control is trans-
ferred back to the calling function and the normal program fl ow continues. In fact the code
of a function is stored at one place and not duplicated anywhere. It can be called as many
times as needed in a program.

In the parlance of structured programming, there were always two schools of programmers:
one which would create a function for every need and occasion, and the other which would re-
strain from creating functions especially the smaller ones. The difference of opinion was about
choosing between program understandability and the program eff ciency.

The advantages of creating a function are given below:

 1. The problem is divided into sub-programs called functions. Each function handles a
smaller portion of the problem.

 2. A function can be easily modifi ed as compared to a whole program.

 3. If the size of the function is large and it is frequently needed in the calling program then
the overall size of the program reduces.

 4. Debugging becomes easier.

 5. The program becomes more understandable and manageable.

However, a function call is a costly exercise as far as program execution time is concerned. For
instance, a function call involves the following activities to be carried out at lower level:

 a. Save the return address on the stack.

 b. Save the status of the various registers.

 c. Transfer the control to the called function.

 d. Pass the arguments to the called function.

 e. Execute the code of the function body.

 f. After the job is over, return the status of the registers.

 g. Take care of the value returned from the called function.

 h. Pick up the return address from the stack.

 i. Transfer control to the return address.

Thus a normal program will become slower in case a function is abstracted out of a program
without any reason. In fact, for very small functions, the function call overhead becomes signifi -
cant and cannot be ignored because it would adversely affect the performance of the program
execution.

Hence the controversy: whether to abstract a function from a program or not?
C++ takes care of this tussle by providing inline functions. The compiler substitutes the

entire text of the inline function body into the calling program for all instances of an inline
function call as shown in Fig. 5.1.

144 Object-oriented Programming with C++

It may be noted that the size of the program has become larger after the compilation. How-
ever, the overheads of function calls have been removed and therefore the program has become
much faster than before.

Now, this solution satisfi es both the parties because at editing and source code level the
inline function is available to the programmer as a normal function. At run time, the body of
the inline function has been substituted into the body of the calling function resulting in faster
execution of the code.

Function main() Function main()Inline function xyz()

Before compilation After compilation

Compiler substitutes the
text of the inline function
xyz() into the function main

xyz()

xyz()

xyz()

xyz()

Figure 5.1 Treatment of an inline function by a compiler

A keyword inline is used to declare an inline function. Let us write an inline function called
mult that returns multiplication of two variables.

// This program illustrates the use of an inline function

#include <iostream.h>
inline int mult(int a,int b) // Inline function declaration.
 {
 return a*b;
 }

 void main()
 {
 int x = 10, y = 8, z;
 z = mult(x+2, y);
 cout << “\n The result is :” << z;
 }

After, the above program is executed, the following output is produced:
The result is: 96

More on Functions: Advanced Concepts 145

 Note:

 1. The size of an inline function should be kept as very small.

 2. The inline function should be defi ned before it is called in the program. This care should
be taken to avoid compilation errors.

 3. However, it should be defi ned in a header fi le if it is being called within a program made
up of several source fi les.

 4. The inline functions can also be overloaded.

The benef ts of inline functions are:

 1. Eliminates function call overheads.

 2. Improves program readability.

 3. Programs run more effi ciently.

Example 5. Use the inline function of Example 4 to write a program that reads the height of a
person in inches and prints its equivalent height in feet and inches.

Solution: The required program is given below:

// This program converts height given in inches to feet & inches

include <iostream.h>
inline int convert (int & inches)
 {
 int feet;
 feet = inches/12;

Example 4. Write a function which takes the height of the person in inches and returns the
height in feet and inches in two separate variables.

Solution: Since the task to be performed by the function is simple and its size is likely to be
small, we will write an inline function. Let us name the function as convert ().

 inline int convert (int & inches)
 {
 int feet;
 feet = inches/12;
 inches = inches%12;
 return feet;
 }

The function convert () receives the height in inches by reference through the argument
called inches. It returns the equivalent height in feet through the return statement and the
inches part through the variable called inches.

146 Object-oriented Programming with C++

 inches = inches % 12;
 return feet;
 }
void main()
 {
 int feet, inches;
 cout << “\n Enter the height in inches”;
 cin >> inches;
 feet = convert (inches);
 cout << “\n The height in feet = ” << feet;
 cout << “\n Inches = ” << inches;
 }

The only drawback of inline functions is that they increase the size of the program. It may be
noted here that the C++ compiler handles the inline functions as true functions and, therefore,
there is no room for macro side effects.

Let us consider the following macro named mult.

def ne mult (a, b) (a*b);

If this macro is called as given below:

z = mult (10 + 2, 8);

the results are unexpected because the macroprocessor will do the text substitution as shown
below:

z = (10 + 2 * 8);

This will evaluate 26 instead of desired 96. However an inline function is free from such side effects.
It may be noted that a function declared and def ned inside a class is by default considered

as inline by the compiler of C++.

5.4 FRIEND FUNCTIONS
In Chapter 2, we defi ned a class called student. It is reproduced below:

class student {

private:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();

public:
 void read_data();

More on Functions: Advanced Concepts 147

 void display_grade();
 };

Let us try to use this class in creating a merit list of a batch of (say) 30 students. The student
objects can be easily stored in an array of 30 locations of type student as shown below:

student studObList [30];

Now to create the desired merit list, the student objects will have to be sorted in decreasing
order of their marks. Let us defi ne a function called sortList() which takes an array of student
type to do the required task. The declaration of the prototype is given below:

void sortList ();

However, the variable ‘marks’ is not accessible to function sortList(). The reason being that
‘marks’ has been defi ned as a private member in the class and the function sortList() is a stand
alone function, i.e. it is not part of the class student. In fact either of the following measures
could have solved the problem:

 1. Had the programmer of the class included the function sortList() as part of the class stu-
dent then the function would have automatically got the access to all internal members
including the variable ‘marks’.

 2. The other solution could be that the programmer should have provided a get function
(say getMarks()) as a public member to supply the contents of marks to function sortList().

The fact is that none of the arrangement has been made to make the contents of ‘marks’ avail-
able to outsiders like sortList(). Therefore, it is a design error as far as the current requirement
is concerned.

In the event of a design error, an impurity can be brought to the design of a class by introduc-
ing a stand alone outside function as a friend of the class. Once a function is declared friend of
a class then it gets access to all the members of the class.

A function can be specifi ed as a friend of a class by including its prototype in the class preceded
by the keyword friend. For example, a function sortList() can be made friend to a class student as
shown below:

class student {

private:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();
 friend void sortList (); // The friend function

public:
 void read_data();
 void display_grade();
 };

148 Object-oriented Programming with C++

Example 6. Write a program that uses the above def ned student class and the friend function
sortList() to display the merit list of N number of students.

Solution: The required program is given below:

// This program illustrates the usage of a friend function

#include <iostream.h>
#include <conio.h>

class student {
 private:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();
 // The friend function
 friend void sortList(int N);
 public:
 void read_data();

 void display_grade();
 };

 // Function to read data of a student
 void student :: read_data()
 {
 cout << “\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;
 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;

 compute_grade(); // compute the grade
 }
 void student :: display_grade()
 {
 cout << “\n” << name;
 cout << “\t” << roll;
 cout << “\t” << marks;
 cout << “\t”<<grade;

Since a friend function violates the encapsulation property of its friend class, the large-scale
usage of friend functions will degrade the overall OOP system. In fact, the usage of friend
 functions in a program indicates a defi nite design error. Therefore, “a friend function is not a
friend but a foe”.

More on Functions: Advanced Concepts 149

 }
 void student :: compute_grade()
 {
 if (marks >= 80) grade = ‘A’;
 else
 if (marks >= 70) grade = ‘B’;
 else
 if (marks >= 60) grade = ‘C’;
 else
 if (marks >=50) grade = ‘D’;
 else
 grade = ‘E’;
 }
 student studOb[30]; // Global list of student objects
 void sortList (int N);
void main()
 {
 int i;

 int N;
 cout << “\n Enter the number of students :”;
 cin >> N;
 cout << “\n Enter the data of students one by one”;
 for (i = 0; i< N; i++)
 {
 studOb[i].read_data();
 }
 sortList (N);
 cout <<”\n\t\t The merit List ...”;
 cout<< “\n Name\t roll\tmarks\tgrade”;
 for (i =0; i< N; i++)
 {
 studOb[i].display_grade();
 }

 }
 void sortList (int N) // The friend function
 {
 int i,j, largest, pos;
 student tempOb;
 for (i = 0; i < N - 1; i++)
 {
 largest = studOb[i].marks;
 pos = i;
 for (j= i + 1; j < N; j++)
 {
 if (largest < studOb[j].marks)
 {

150 Object-oriented Programming with C++

Example 7. Write a program that uses the above-def ned student class containing a get
 function called ‘getMarks()’ and a stand alone function sortList() to display the merit list of
N number of students.

Solution: The required program is given below:

// This program illustrates the usage of a get function as an alterna-
tive to a friend function

It may be noted that the friend function defi ned in the above program has violated the OOP
ideology in the sense that it is an outsider but has the access to all the members of the class
called student. Moreover, the student object list has also been declared as global – another
drawback of the above program.

However, by introducing a suitable get function in the student class at design level, we could
have avoided the use of the unwanted friend function. The modifi ed student class that uses a
function called getMarks() to provide the contents of the ‘marks’ variable is given below:

class student {

private:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();

public:
 void read_data();
 void display_grade();
 int getMarks(); // The get function
 };

 Note: The above class is a correctly designed class without any unwanted friend
function.

 largest = studOb[j].marks;
 pos = j;
 }
 }
 tempOb = studOb[i];
 studOb[i] = studOb[pos];
 studOb[pos] = tempOb;
 }
 }

More on Functions: Advanced Concepts 151

#include <iostream.h>
#include <conio.h>
class student {
 private:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();

 public:
 void read_data();
 void display_grade();
 int getMarks(); // The get Function
 };
 // Function to read data of a student
 void student :: read_data()
 {
 cout <<”\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;
 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;

 compute_grade(); // compute the grade
 }
 void student :: display_grade()
 {
 cout<< “\n” << name;
 cout << “\t” << roll;
 cout << “\t” << marks;
 cout << “\t”<<grade;
 }
 int student :: getMarks()
 {
 return marks;
 }
 void student :: compute_grade()
 {
 if (marks >= 80) grade = ‘A’;
 else
 if (marks >=70) grade =’B’;
 else
 if (marks >=60) grade =’C’;
 else
 if (marks >=50) grade =’D’;
 else

152 Object-oriented Programming with C++

 grade =’E’;
 }

 void sortList (student ob[], int N); // stand alone function

 void main()
 {
 int i;
 int N;
 student studOb[30];
 cout << “\n Enter the number of students :”;
 cin >> N;
 cout << “\n Enter the data of students one by one”;
 for (i = 0; i< N; i++)
 {
 studOb[i].read_data();
 }
 sortList (studOb,N);
 cout <<”\n\t\t The merit List ...”;
 cout<< “\n Name\t roll\tmarks\tgrade”;
 for (i =0; i< N; i++)
 {
 studOb[i].display_grade();
 }

 }
 void sortList (student studOb[], int N) // stand alone function
 {
 int i,j, largest, pos;
 student tempOb;
 for (i = 0; i < N - 1; i++)
 {

 largest = studOb[i].getMarks();
 pos = i;
 for (j = i + 1; j < N; j++)
 {
 if (largest < studOb[j].getMarks())
 {
 largest = studOb[j].getMarks();
 pos = j;
 }
 }
 tempOb = studOb[i];
 studOb[i] = studOb[pos];
 studOb[pos] = tempOb;
 }
 }

More on Functions: Advanced Concepts 153

It may be noted that the get function is part of the class. It gives only the current contents of the
variable called ‘marks’. Moreover, no global variable has been used. In fact the student object
list is local to the function main() that sends it to function sortList() as an argument. On the con-
trary, the friend function gets access to all the members of the class and hence a programming
disaster. Therefore, the motto is as given below:

“If you are requested to let a function be friend of your class, this indicates that the object’s
interface is poor. Try to change the interface instead of allowing the friendship”.

5.4.1 Member Functions of a Class as Friends of Another Class
A member function of a class can also act as a friend of another class. However, in this case the
name of the friend function has to be qualifi ed by the name of its corresponding class.

Let us consider the following classes:

class xyz class ABC
{ {
 friend void ABC :: myfun() void myfun();
} }

It may noted that the function myfun() is a member of a class called ABC. In class xyz this
function has been declared as a friend but its name has been qualifi ed by ABC, i.e. its corre-
sponding class name.

5.4.2 Friend Function as a Bridge Between Two Classes
There is a saying “Use a member function when you can and a friend function when you have
to”. Let us consider a situation where two classes called person and student were created with
members as shown in Fig. 5.2.

Person

name
age
height

read _ data()
display _ data()

read _ data()
display _ data()

roll
marks

Student

Figure 5.2 Two independent classes

The basic idea behind the creation of these classes was that a student, who is basically a person,
would be selected for a job depending upon the following criteria:

if (marks < 60%) and (height >= 1.7 m)
then select for “Supervision”

if (marks >= 60% and marks < 70) and (height < 1.7 m)
then select for “Desk job”

154 Object-oriented Programming with C++

if (marks >= 60% and marks < 70) and (height >= 1.7 m)
then select for “Marketing”

if (marks >= 70% and marks < 80) and height >= 1.6 m)
then select for “Planning”

if (marks >= 80%) then select for “Design”.

However, there is a design error in the sense that there is no provision of interaction between
the two classes: Person and Student. Moreover there is no method or function that can take
height from person and marks from student to make the necessary decision for the selection of
a student for the job.

In this situation, a friend function (say select()) can be used that acts as a bridge between the
two classes as shown in Fig. 5.3.

Person

name
age
height

void select ();

read _ data()
display _ data()
friend select()

read _ data()
display _ data()
friend select()

roll
marks

Student

Figure 5.3 Friend function action like a bridge between two classes

It may be noted that the function select() has been declared as friend to both the classes person
and student and due to this friendship it has access to the members of both the classes. However,
in this arrangement one of the classes has to be declared as prototype before the other class as
shown below:

 class student; // prototype of the class
 class person
 { __
 __

 friend void select (person Pob, student Sob);

 __
 __
 };
 class student // forward class declaration

More on Functions: Advanced Concepts 155

Example 8. Write a program that implements the concept of a bridge function select() which is
common friend to two classes person and student. A student or a person is selected for a job
depending upon the following criteria:

if (marks < 60%) and (height >= 1.7 m) then select for “Supervision”
if (marks >= 60% and marks < 70) and (height < 1.7 m) then select for
“Desk job”
if (marks >= 60% and marks < 70) and (height >= 1.7 m) then select
for “Marketing”
if (marks >= 70% and marks < 80) and height >= 1.6 m) then select for
“Planning”
if (marks >= 80%) then select for “Design”.

Solution: A complete program that implements the above concept of a friend function getting
as a bridge between two classes is given below:

/* This program illustrates the friend function acting as a bridge
between two different classes */

 #include <iostream.h>
 # include <stdio.h>

 class student; // forward class declaration
 class person
 {
 private:
 char name [20];
 int age;
 f oat height;
 public:
 void read_data();
 void display_data();
 friend void select(person pob, student sob);
 };
 void person::read_data()
 {cout << “\n Enter name of the Person”;
 gets(name);
 ff ush(stdin);

 { __
 __

 friend void select (person Pob, student Sob);

 __
 __
 };

This type of class declaration is also known as forward class declaration.

156 Object-oriented Programming with C++

 cout << “\n Enter Age”;
 cin >> age;
 cout << “\n Enter height”;
 cin >> height;
 }
 void person :: display_data()
 { cout << “\n Name of the Person” << name;
 cout << “\n Age”<< age;
 cout << “\n Enter height” << height;
 }
 class student
 {
 private:
 int roll;
 f oat marks;
 public :
 void get_data();
 void show_data();
 friend void select(person pob, student sob);
 };
 void student :: get_data()
 {cout << “\n Enter roll”;
 cin >> roll;
 cout << “\n Enter marks;”;
 cin >> marks;
 }
 void student :: show_data()
 {
 cout << “\n Roll” << roll;
 cout << “\n Marks” << marks;
 }
 void select(person pob, student sob)
 {
 if ((sob.marks < 60) && (pob.height >= 1.7))
 cout << “\n” << pob.name << “ is selected Supervisor”;
 else
if (((sob.marks >= 60) && (sob.marks < 70)) && (pob.height < 1.7))
cout << “\n” << pob.name << “ is selected for Desk Job”;
else
if (((sob.marks >= 60) && (sob.marks < 70)) && (pob.height >= 1.7))
cout << “\n” << pob.name << “ is selected for “Marketing”;
 else
 if (((sob.marks >= 70) && (sob.marks < 80)) && (pob.height >= 1.6))
 cout << “\n” << pob.name << “ is selected for Planning”;
 else
 if (sob.marks >= 80)
 cout << “\n” << pob.name << “ is selected as Designer”;

More on Functions: Advanced Concepts 157

 A programmer should follow the following guidelines for the usage of friend function:

 1. Do not allow friend functions so easily. Use such a function in extreme conditions.

 2. A friend function may be allowed for operations related to public interface of the class.

 3. The friend function should not be allowed outside the team working on the project.

5.5 FRIEND CLASSES
Sometimes we are not only interested to hide the implementation but also want to hide the
implementation technique. This can be achieved by putting all implementations in a class and
the abstraction in another class. Consider the classes shown in Fig. 5.4. The interface class has
been made friend of apply class as shown in Fig. 5.4.

interfaceapply

friend interface;

Figure 5.4 A class declared as friend of another class

It may be noted that interface has access to all the members of apply. Now the apply class can
be designed to contain all the implementations needed by the interface class. The interface class
will only contain interfaces through which the user can obtain services offered by this system
of classes.

 else
 cout << “\n NOT Selected”;
 }

 void main()
 {
 student sob;
 person pob;
 pob.read_data();
 sob.get_data();
 select (pob,sob);
 }

158 Object-oriented Programming with C++

Example 9. Write a program that uses the above designed classes called ‘secret’ and ‘student’
to manipulate the data of a student. Let the password for the user of readData() be “YMCA” or
‘ymca”.

Solution: The required program is given below:

// This program illustrates the use of friend class

include <iostream.h>
include <conio.h>
include <string.h>
include <process.h>

class secret {
 void compGrade(int marks, char & grade);
 int chekPass(char pass[10]);
 friend student;
 };
void secret::compGrade(int marks, char &grade)
 {
 if (marks >= 80) grade = ‘A’;

For example, we can modify the student class to contain only the interfaces and move the
implementation functions to another class called secret as shown in Fig. 5.5. It may be noted
that the secret class contains two implementation functions: compGrade() and chekPass(). The
compGrade() computes the grade of a student and the chekPass() verifi es the password entered
by the user who wants to input data for a student.

studentsecret

name
roll
marks
grade
passWord

readData()
dispGrade()

compGrade()
chekPass()
friend student;

Figure 5.5 Student class acting as friend of secret class

It may be noted that we have made the system of classes more secured by pushing the imple-
mentation function compGrade() into the secret class. A new function called chekpass() has
also been included in the secret class. This will verify the password supplied by the user to the
readData() function of the student class.

More on Functions: Advanced Concepts 159

 else
 if (marks >= 70) grade =’B’;
 else
 if (marks >=60) grade = ‘C’;
 else
 if (marks >= 50) grade = ‘D’;
 else
 grade = ‘E’;
 }
int secret :: chekPass(char pass[10])
 {
 if (! (strcmp (“YMCA”, pass) || strcmp (“ymca”, pass)))
 {
 return 1;
 }
 else
 return 0;
 }
class student {
 private:
 char name[20];
 int roll;
 int marks;
 char grade;
 char passWord[10];
 secret secOb;
 public:
 void readData();
 void dispGrade();
 };

 // Function to read data of a student
 void student :: readData()
 {
 cout << “\n Enter Password”;
 cin >> passWord;
 if (secOb.chekPass(password))
 {
 cout <<”\n Error”;
 exit(0);
 }
 cout <<”\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;
 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;
 secOb.compGrade(marks, grade); // compute the grade

160 Object-oriented Programming with C++

 Note: The friend class helps the programmer in hiding the implementation and the data
as well. Therefore, a friend class is closer to OOP ideology. In fact a friend class is a friend
indeed. On the contrary, a friend function is a foe.

5.6 RECURSION
We have already discussed iteration through various loop structures discussed in Chapter
1. Iteration can be defi ned as the computations that are performed each time by the same

 }
 void student :: dispGrade()
 {
 cout << “\n Name:” << name;
 cout << “\n Roll:” << roll;
 cout << “\n Grade:” <<grade;
 }

 void main()
 {
 int choice;
 student studOb;

 do
 {
 clrscr();
 cout << “\n Menu”;
 cout <<”\n”;
 cout <<”\n Read data\t 1”;
 cout <<”\n”;
 cout <<”\n Display grade \t 2”;
 cout <<”\n”;
 cout <<”\n Quit\t\t 3”;
 cout <<”\n”;
 cout <<”\n Enter your choice:”;
 cin >> choice;

 switch (choice)
 {
 case 1 : studOb.readData();
 break;
 case 2 : studOb.dispGrade();
 }
 getch();
 }
 while (choice != 3);
 }

More on Functions: Advanced Concepts 161

method and the result of computation is utilized as the source of data in the next repetition
of the loop. For example the factorial of an integer N can be computed by the following iterative
loop:

 :
 fact = 1;
 for (i = 1; i <= N; i++)
 fact = fact * i;

 cout << “The factorial of ” << N << “= ” << fact;

We can also use an alternative approach wherein we reduce the problem into a smaller instance
of the same problem. For instance, factorial of N can be reduced to a product of N and the facto-
rial of N − 1 as given below:

Fact (N)= N * Fact (N − 1)

In the above statement, a function Fact(N) has been defi ned in terms of Fact(N − 1), where
Fact(N − 1) is a smaller problem as compared to Fact(N). This type of defi nition is known as
recursive defi nition. Recursion can be defi ned as the ability of a concept being def ned within
the def nition itself. In programming terms recursion is defi ned as the ability of a function being
called from within the function itself.

Now, by the same defi nition, the factorial of (N − 1) can be defi ned as given below:

Fact(N − 1) = (N − 1) * Fact(N − 2)

We can continue this process till we end up with Fact(0) which is equal to 1, which is also the
 terminating condition for this reduction process. The terminating condition for a recursive func-
tion is also called the basic solution. For instance, the basic solution for a list of elements is
that if the list contains only one element then this element is the largest as well as the smallest
element. Similarly, if a list contains only one element then it is already sorted.

The process described above can be implemented by using a recursive function fact() which
is defi ned in terms of itself as shown below:

Fact()
1 if 0 or 1

* Fact (1) otherwise
N

N N

N N
=

=
−

=⎧
⎨
⎩

In C++ such recursive functions can be implemented by making the function call itself. For
example, the recursive function Fact(N) can be defi ned as given below:

int fact (int N)
 {
 if (N = = 0)
 return (1);
 else
 return (N * fact (N-1);
 }

It may be further noted that the function fact is being called by itself but with parameter N being
replaced by N − 1. A trace of Fact (N) for N = 4 is given in Fig. 5.6.

162 Object-oriented Programming with C++

Example 10. Write a program that uses recursive function Fact(N) to compute the factorial of
a given number N.

Solution: A complete program to compute factorial of a number using recursion is given below.

// A program to compute factorial of a number using recursion

 #include<iostream.h>
 #include<conio.h>
 long int fact(int);
 void main()
 {
 int num, factorial;
 clrscr();
 cout <<”\n This program computes the factorial of a number”;
 cout<< “\n Enter the number :”;
 cin >> num;
 factorial = fact(num);
 cout << “\n The factorial of “ << num << “ is = “ << factorial;

 }

 long int fact(int n)
 {
 if (n == 0)
 return(1);
 else
 return(n*fact(n - 1));
 }

Calling Function

Fact (4) = 4 * Fact (3)

1

1

2

6

24

Fact (3) = 3 * Fact (2)

Fact (2) = 2 * Fact (1)

Fact (1) = 1 * Fact (0)

Fact (0) = 1

Figure 5.6 Trace of Fact(4)

More on Functions: Advanced Concepts 163

Example 11. Write a function that computes xy by using recursion.

Solution: We can use the property that xy is simply a product of x and xy−1. For example,
64 = 6 * 63. The recursive defi nition of xy is given below:

power(x,y)
1 if y 0

x*power(x,y 1)otherwise
=

=
−

⎧
⎨
⎩

// Function to compute x^y
int power(int x, int y)
 {
 if (y == 0)
 return (1);
 else
 return (x * power(x, y − 1));
 }

The required function is given below:

Example 12. Write a program that uses recursive power() function to compute xy for following
types of data:

 1. x of type int and y of type int

 2. x of type f oat and y of type int.

Solution: We would use overloaded power() functions to do the required task. The complete
program is given below:

// This program uses function overloading to compute
// power of arguments of different types

 int power (int x, int y); // overloaded functions
 f oat power (f oat x, int y);

 #include <iostream.h>
 void main()
 {

Recursion can be used to write simple, short and elegant programs. However, a recursive algo-
rithm requires a basic condition that must end the recursive calls. The absence of this condi-
tion would result in an infi nite loop. For example, in function fact the condition “N = = 0” is
the required terminating condition. Since recursion involves overheads such as CPU time and
memory storage, it is suggested that recursion should be used with care.

 Note: Inline functions cannot use recursion.

164 Object-oriented Programming with C++

Example 13. Write a program that computes GCD (greatest common divisor) of given two
numbers.

Solution: The greatest common divisor of two numbers can be computed by the algorithm
given below:

Algorithm gcd()

 int a, b;
 f oat A;
 int choice;
 cout << “\n OPTIONS”;
 cout << “\n X ^ Y (X & Y both are integers) .. 1”;
 cout << “\n”;
 cout << “\n X ^ Y (X is f oat & Y is integer) .. 2”;
 cout << “\n”;
 cout << “\n Enter your choice :”;
 cin >> choice;
 if (choice == 1)
 {
 cout << “\n Enter two integers :”;
 cin >> a >> b;
 cout << “\n” << a <<”^”<< b <<” = :”<< power (a, b);
 }
 else
 {
 cout << “\n Enter a f oat and an integer :”;
 cin >> A >> b;
 cout << “\n” << A << “^” << b << “ = :” << power (a, b);
 }
 }

 int power (int x, int y)
 {

 if (y == 0)
 return (1);
 else
 return (x * power (x, y − 1));

 }
 f oat power (f oat x, int y)
 {
 if (y == 0)
 return (1);
 else
 return (x * power (x, y − 1));
 }

More on Functions: Advanced Concepts 165

Steps:

 1. Find the larger of the two numbers and store larger in x and smaller in y.

 2. Divide the x by y and store the remainder in rem.

 3. If rem is equal to 0 then the smaller number (y) is the required GCD and stop. Else store
y in x and rem in y and repeat Steps 2 and 3.

The above given algorithm can be used to develop a recursive function called GCD which
takes two arguments x and y and integer type and returns the required GCD.

// This function computes GCD
int gcd(int x, int y)
{
int rem;
rem = x%y;
if(rem == 0)
return y;
else
 gcd(y, rem);
 }

The required program that uses the function gcd(y) is given below:

// This program computes GCD of two numbers with the help of a func-
tion gcd().

#include<iostream.h>
 int gcd(int,int);
 void main()
 {
 int x,y,ans;
 cout << “\n Enter the integers whose gcd is to be found :”;
 cin >> x >> y;
 if (x > y)
 ans = gcd(x, y);
 else
 ans = gcd(y, x);
 cout << “\n The GCD is :” << ans;
 }

 // This function computes the GCD
 int gcd(int x, int y)
 {
 int rem;
 rem = x%y;
 if(rem == 0)
 return y;
 else
 gcd(y, rem);
 }

166 Object-oriented Programming with C++

Example 14. Write a program that generates the f rst n terms of Fibonacci sequence by recur-
sion. The sequence is given below:

0, 1, 1, 2, 3, 5, 8, …

Solution: In a Fibonacci series each term (except the fi rst two) can be obtained by the sum
of its two immediate predecessors. The recursive defi nition of this sequence is given below:

Fib

if

if

Fib Fib if

()

() ()

n

n

n

n n n

=
=
=

− + − >=

⎧
⎨
⎪

⎩⎪

0 1

1 2

1 2 2

Let us now write a program that uses a function Fib() to compute the fi rst n terms of the series.

// This program generates Fibonacci series

 #include<iostream.h>
 int f b(int);
 void main()
 {
 int n;
 int i,term;
 cout << “\n Enter the terms to be generated: “ ;
 cin >> n;
 for(i = 1;i <= n;i++)
 {
 term = f b(i);
 cout << term << “ “;
 }
 }

 // Function to return a Fibonacci term

 int f b(int n)
 {
 if (n == 1)
 return 0;
 else
 if (n == 2)
 return 1;
 else
 return(f b(n − 1)+f b(n − 2));
 }

From above, we can summarize the characteristics of recursion as given below:

 1. There must exist at least a basic solution called terminating condition. This statement is
processed without recursion.

More on Functions: Advanced Concepts 167

 2. There must exist a method of reducing a problem into a simpler version of the problem.

 3. Throw back the simpler problem back to the recursive function.

5.6.1 Types of Recursion
Depending upon the way the recursive function is called, the recursion process can be divided
into two categories: direct recursion and mutual recursion. In direct recursion the recursive
function is called from within itself. In mutual recursion, two recursive functions are involved
and they mutually call each other as shown in Fig. 5.7.

(b) Mutual Recursion

myFunc()

myFunc()yourFunc()

{ {

}}

yourFunc()myFunc()

(a) Direct Recursion

myFunc()

{

}

Figure 5.7 Types of recursion

The mutual recursion is also called as indirect recursion. It may be noted that in direct recur-
sion, the recursive function myFunc() is calling itself whereas in mutual recursion, the two
recursive functions myFunc() and yourFunc() are mutually calling each other.

The direct recursion can be further divided into three categories: linear, binary and tail
 recursions. Though there are many more terms in vogue such as tree recursion, etc., but we will
discuss the popular forms of recursion in the following sections.

5.6.1.1 Linear Recursion

When a recursive function has a simple repetitive structure and calls itself once from inside the
function then it is called as linear recursion. For example, the recursive function called power(),
given below, is a linear recursive function.

 int power (int x, int y)
 {
 if (y == 0)
 return (1);
 else
 return (x * power (x, y − 1)); //single recursive call
 }

168 Object-oriented Programming with C++

It may be noted that it checks the terminating condition and thereafter performs the single
recursive call to itself.

5.6.1.2 Binary Recursion

When a recursive function calls itself twice then it is called as binary recursion. For example,
the function fi b(), given below, calls itself twice, i.e. for fi b(n − 1) and fi b(n − 2).

// Function to return a Fibonacci term

 int f b(int n)
 {
 if (n == 1)
 return 0;
 else
 if (n == 2)
 return 1;
 else
 return(f b(n − 1)+f b(n − 2));
 }

Another example of binary recursion is binary tree recursive operations, which are done for
both left child and right child subtrees.

5.6.1.3 Tail Recursion

When a recursive call in a recursive function is the last call without any pending operation then
the recursion is called tail recursion. Thus, the last result of the recursive call is the fi nal result
of the function.

Consider the function fact(), given below:

long int fact(int n)
 {
 if (n == 0)
 return(1);
 else
 return(n*fact(n − 1));
 }

This function is not tail recursive because the last statement is not recursive call but the multi-
plication operation:

n * fact (n − 1).

However, the following modifi ed function fact() is tail recursive.

long fact(int N, int result)
 {
 if (N == 1)
 return result;
 else

More on Functions: Advanced Concepts 169

Example 15. Write a program that computes the factorial of a given number by using the
above given tail recursive function fact().

Solution: The required program is given below:

include <iostream.h>

long fact(int N,int result)
 {
 if (N == 1)
 return result;
 else
 return fact(N − 1, N * result);
 }

 void main()
 {
 long factorial;
 int num;
 cout << “\n Enter the number”;
 cin >> num;
 factorial = fact(num, 1);
 cout << “\n factorial =” << factorial;
 }

Sample outputs for the program are given below:

Enter the number 5

factorial =120

Enter the number 8

factorial =-25216

 return fact(N − 1, N * result); // Tail recursion
 }

It may be noted that the last statement in the above function is a recursive call without any
pending operation. Hence the function is tail recursive. Since the argument ‘result’ is acting as
an accumulator, its initial value must be set to 1. Therefore, for computing factorial of a given
number (say 5), the above function must be called with the following statement:

Factorial = fact (5,1);

Example 16. Write a tail recursive function for computing xy.

Solution: The required function power(x, y) is given below:

170 Object-oriented Programming with C++

Example 17. Write a program that tests the tail recursive function of Example 16 for given
values of x and y.

Solution: The required program is given below:

include <iostream.h>

long power(int x, int y, long result)
 {
 if (y == 0)
 return result;
 else
 return power(x, y − 1, x * result); // Tail recursion
 }

void main()
 {
 long pow;
 int x, y;
 cout << “\n Enter the x,y”;
 cin >> x >> y;
 pow = power(x, y, 1);
 cout <<”\n x ^ y =” << pow;
 }

Sample output of the above program are given below:

Enter the x,y 4 3

x ^ y =64
Enter the x,y 5 3

x ^ y =125
Enter the x,y 27

x ^ y =128

Example 18. Write both normal and tail recursive versions of a function sum(N) that adds the
f rst N integers. For example, sum(6) is computed as following:

long power(int x, int y, long result)
 {
 if (y == 0)
 return result;
 else
 return power(x, y − 1, x * result); // Tail recursion
 }

More on Functions: Advanced Concepts 171

Example 19. Write a complete program that takes the tail recursive version of the function
sum() to compute the f rst N integers.

Solution: The required program is given below:

include <iostream.h>
long sum (int N, int result)
 {
 if (N == 1)
 return result;
 else
 return(sum (N − 1, N + result));
 }

 void main()
 {
 int N;
 long total;
 cout << “\n Enter N”;
 cin >> N;
 total = sum(N,1);
 cout <<”\n sum =” << total;
 }

Sum(6) = 1 + 2 + 3 + 4 + 5 + 6

Solution: The normal recursive function is given below:

long sum (int N)
 {
 if (N == 1)
 return 1;
 else
 return N + sum (N − 1);
 }

The tail recursive version of function sum() is given below:

long sum (int N, int result)
 {
 if (N == 1)
 return result;
 else
 return(sum (N − 1, N + result)); // Tail recursion
 }

172 Object-oriented Programming with C++

 Note: Recursion is a costly option in terms of usage of both memory and CPU time. There-
fore, it should be used with care. For instance, the following example is totally unnecessary rather
an abuse of this elegant tool.

Example 20. Write a C++ program that uses a recursive function to compute sum of two non-
negative integers X and Y.

Solution: The required program is given below:

include <iostream.h>
int sum (int X, int Y)
 {
 if (X == 0)
 return Y;
 else
 return(sum(−−X, ++Y));
 }

 void main()
 {
 int Val1, Val2, total;
 cout << “\n Enter two values :”;
 cin >> Val1 >> Val2;
 total = sum(Val1,Val2);
 cout <<”\n sum =” << total;
 }

A sample output is given below:

Enter two values :12 8

sum =20

Sample output of the program is given below:

Enter N 5

sum =15

Enter N 10

sum =55

This problem could have been very easily solved in one statement as given below:

Sum = X + Y;

More on Functions: Advanced Concepts 173

5.7 SUMMARY
Polymorphism means many forms. Overloaded functions are polymorphic in nature. This prop-
erty helps a programmer to declare a set of different versions of a given function such that all
versions carry the same name but different parameters.

When the size of the code of a function is so small that the overhead of the function call
becomes prominent then the function should be declared as inline. If the size of the code of a
function is very small then an inline function, in fact, reduces the overall size of the program.
However, an inline function with larger code explodes a program to a substantial length of code.

During iterations, computations are performed each time by the same method and the result
of computation is utilized as a source of data in the next repetition of the iteration process. On
the other hand, a recursive function calls itself with a smaller version of the original problem.
By every call it comes nearer to a basic solution.

 MULTIPLE CHOICE QUESTIONS

 1. The overloaded functions must have a unique:
 (a) names (b) argument list
 (c) return type (d) loop

 2. A function call is an overhead on program’s:
 (a) computation time (b) size
 (c) logic (d) none

 3. Function overloading is a way of implementing:
 (a) recursion (b) iteration
 (c) polymorphism (d) none

 4. __________ functions cannot use recursion.
 (a) inline (b) polymorphic
 (c) user defi ned (d) friend

 5. After the compilation of a multiple call inline function, the size of a program becomes/
remains:

 (a) small (b) large
 (c) same

 6. The ability of a function to call itself is called:
 (a) repetition (b) recursion
 (c) iteration

 7. The size of an inline function should be:
 (a) large (b) very large
 (c) small (d) very small

 8. A friend function indicates:
 (a) a good design (b) a bad design
 (c) a design error (d) a friendly program

174 Object-oriented Programming with C++

 9. In extreme conditions, a friend function can act as a ________ between two classes
 (a) bridge (b) hill
 (c) bond (d) road

10. The terminating condition of a recursive function is called its:
 (a) only solution (b) basic solution
 (c) necessary solution (d) alternate solution

ANSWERS
1. b 2. a 3. c 4. a 5. b 6. b 7. d 8. b 9. a 10. b

 EXERCISES
 1. What is meant by polymorphism?

 2. What is meant by function overloading? Use this concept to create three functions with
name ‘abs’ each of which returns the absolute value of its arguments. The arguments can
have any of the three types: int, double, and long.

 3. What is the need for overloading functions?

 4. What is an inline function?

 5. Defi ne recursion. Write a program that reads a line of text and prints it out backward.

 6. What are the activities carried out at the system level during a function call?

 7. What are the benefi ts of an inline function?

 8. Differentiate between iteration and recursion.

 9. Suppose you have two function defi nitions with the following prototypes.

 double xyz (double temp, double length);
 int xyz (double set);

 which function defi nition would be used in the following function call and why?

result = xyz (s);

(assume s is of type double).

10. Write a program that uses a recursive function to compute an integer power of a fl oating
point number.

11. Use the concept of function overloading to compute area of rectangle (given length of two
sides, area of a triangle (given length of the three sides – use Hero’s formula) and area of a
circle (given length of a radius).

 Given three sides of a triangle: a, b, c. Its area can be computed by Hero’s formula as given
below:

S a b c

S S a S b S c

= + +

= − − −

())

*() *() *()

/

Area

2

More on Functions: Advanced Concepts 175

12. Give the output of the following program

 #include <iostream.h>
 int area (int s)
 {
 return (s * s);
 }
 f oat area (int b, int h)
 {
 return(0.5*b*h);
 }
 void main()
 {
 cout << area(5) << “\n”;
 cout << area(4,3) << “\n”;
 cout << area(6,(area(3)));
 }

13. Write an inline function that converts a temperature given in centigrades to degree Fahrenheit.

14. Indicate the error(s) in the following function.

 void show_data (f oat x = 5.27, int y, int z)
 {
 cout << “x = ” << x;
 cout << “y = ” << y;
 if (x != 5.27) z = z + x;
 cout << “z = ” << z;
 }

15. Write an interactive C++ program to accept two positive integer numbers n and r and com-
putes nC

r
 and nP

r
 where:

nC
n

r n r

nP
n

n r

r

r

=
−

=
−

!
!()!

!
()!

16. Write a program that uses function overloading to add the elements of a matrix of type int
or fl oat.

17. Write a program that fi nds the sum of the following series for a given N terms.

Sum = + + + − − −1
1
2

1
3

1
! ! !N

18. Defi ne the term mutual recursion. How it is different from linear recursion?

19. Defi ne the term tail recursion. Explain it with the help of an example.

20. What is a friend class? Give an example where use of a friend class becomes necessary.

21. Give your view on the comment: “Friend class is a friend indeed – Friend function is a foe”.

176 Object-oriented Programming with C++

ANSWERS
12. 25
 6
 27

14. The function show_data() is employing a default value for the dummy or formal parameter
x; since x is not the last parameter of the parameter list, it is an error. The second error is
that the expression z = z+ x has a type confl ict, i.e. z is of type int and x is of type fl oat.

6.1 CONSTRUCTORS
We know that a class is more important than the objects it represents. The reason being that once
a class is defi ned, any number of objects of the class type can be churned out at the run time of
the program. We also know that the class is a set of specifi cations that are used by the compiler
for the purpose of construction of objects.

In fact for the creation of an object, the compiler creates a function having the same name
as the class itself as shown in Fig. 6.1. It may be noted that the name of the class is myClass
and the name of the function created by the compiler is also myClass. This function is called as
a constructor function. As the name suggests, the constructor function creates an object of its
corresponding class type on demand in a program.

class myclass () { }

{

}} :

Compilation Executes

Constructor function

(Compile time Entity) (Run time entity)

Object

class myclass { myclass ()

Figure 6.1 The constructor function and its operation

Thus, the constructor function ‘myClass()’ would create an object ‘myOb’ of myClass type as
and when the following object creation statement is executed:

myClass myOb;

It may be further noted that the class is a compile time entity whereas the object is a run time
entity. Therefore, the object will get the memory and the resources and not the class.

CONSTRUCTORS AND
DESTRUCTORS

6

178 Object-oriented Programming with C++

For that reason, the constructor function allocates the memory space for the data items or
state variables of each object. However, the member functions are allocated space only once for
all instances of objects. But the inline functions are duplicated for every created object.

Now the most important question is that, who calls the constructor function especially when
it is a run time entity? The answer is that the compiler inserts the following line in the class (say
myClass) at compile time and binds it with its constructor function (see Fig. 6.1).

myClass () { };

It is important to know that the syntax of the constructor is special in the sense that not only its
name is same as the name of the class but also it has no return type (not even void).

Since the constructor is the fi rst function to be called before the construction of an object, the
programmer can use constructors for variety of purposes as discussed in the following sections.

6.2 TYPES OF CONSTRUCTORS
In C++, there are four types of constructors:

 1. The default constructor.

 2. User defi ned constructor.

 3. Parameterized constructors.

 4. The copy constructor.

6.2.1 Default Constructor and User Defined Constructor
Consider Fig. 6.1. It may be further noted that the compiler has on its own included the follow-
ing statement in the class defi nition:

myClass() { }

This is called as a default constructor. It can be precisely defi ned as the constructor which is
def ned and called by the compiler. It does no processing but reserves memory for the object. It
takes no parameters.

Thus, a default constructor with empty body does not do anything worthwhile but it is legal.
At the time of creation of an object, it is executed and memory is allocated for the object.

However, the programmer can also explicitly defi ne a user def ned constructor for his/her
own advantage in situations similar to as given below.

Many programming situations demand initialization of data members of an object before it
is used in a program. For example, in a stack object, the top of the stack must be initialized to
−1 to indicate that the stack is initially empty. Let us initialize the top to −1 in the class called
stack, given below, and see what happens.

 class stack {

 int stak [20]; // the stack of 20 locations

 int top = −1; // initialize the top to a location out side stack, i.e. −1

Constructors and Destructors 179

 public:
 void push (int item);
 int pop ();
 };

When the class is compiled, the compiler gives an error on the following statement because we
know very well that the class is a compile time entity and will not get the memory and therefore
no variables can be initialized within the class.

int top = −1;

In fact, in almost every useful program, some data elements are needed to be initialized before
they are used. We can use a default constructor in these situations by putting the initialization
statements inside the body of the constructor as shown below:

stack () {int top = −1;}

Now the above arrangement is valid and at the time of creation of object it will work as follows:

 1. The constructor function called stack() would be called.

 2. The constructor will provide the memory to the various elements of the class, i.e. the
array called stak[] and the top.

 3. At the time of providing space to the variable top, it will load the desired value −1
into it.

The modifi ed class called stack is given below:

class stack {

 int stak [20]; // the stack of 20 locations
 int top;

 public:
 stack ()// the user def ned constructor
 {top = −1; }// initialize the top

 void push (int item);
 int pop ();
};

Example 1. Write a program that demonstrates the working of a constructor by using the class
called stack to simulate its operations: push and pop, for integer values. Modify the push and
pop functions so that the following messages are displayed in the calling function main().

“Stack is full”, “Stack is empty”

Solution: We would modify the push() and pop() functions to return following values as per
the remarks given against them and accordingly the messages would be displayed in function
main().

180 Object-oriented Programming with C++

int push (int item); // returns 0 when stack – full and 1 otherwise

int pop () // returns −9999 when stack – empty and a valid item otherwise

The complete menu driven program is given below:

// This program demonstrates the working of a default constructor
// by simulating the stack operations

include <iostream.h>

class stack {

 int stak [20]; // the stack of 20 locations
 int top;

public:
 stack ()// the user def ned constructor
 {top = −1;}// initialize the top
 int push (int item);
 int pop ();
};

int stack :: push (int item)
 {
 if (top < 19)
 {
 top++;
 stak [top] = item;
 return 1; // operation successful
 }
 else
 return 0;
 }

 int stack :: pop ()
 {
 int val;
 if (top < 0)
 return −9999; // stack is empty
 else
 {
 val = stak[top];
 top--;
 return val; // valid item
 }
 }
void main()
 {
 int item;
 int choice, result;

Constructors and Destructors 181

 stack sOb;

 do
 {
 cout << “\n Menu”;
 cout << “\n”;
 cout << “\ Push 1”;
 cout << “\n”;
 cout << “\ Pop 2”;
 cout << “\n”;
 cout << “\ Quit 3”;
 cout << “\n”;
 cout << “\n Enter your choice :”;
 cin >> choice;

 switch (choice)
 {
 case 1: cout <<”\n Enter the number to be pushed”;
 cin >> item;
 result = sOb.push(item);
 if (result == 0)
 cout << “\n Stak full”;
 break;
 case 2: result = sOb.pop();
 if (result == −9999)
 cout <<”\n Stack empty”;
 else
 cout <<”\n The popped item =” << result;
 break;
 }
 }
 while (choice != 3);
 }

It may be noted that the stack class is infl exible in terms of size of the stack, i.e. it will always
create a stack of 20 locations. This problem can be solved by parameterized constructors.

6.2.2 Parameterized Constructors
We can also include arguments in the constructor function defi nition. The constructors with
arguments are also known as parameterized constructors. This is helpful in a situation where
the programmer wants to provide explicit initial values at the time of creation of an object.

Consider the stack class defi ned in above sections. As explained above that it will always
create a stack of 20 locations. If the user desires to create a stack of a particular size then he
can do so by sending the size (say Sz) as an argument at the time of creation of the object. The
parameterized stack constructor is given below:

182 Object-oriented Programming with C++

stack (int Sz) // parameterized constructor
{top = −1;
size = Sz;
}

The modifi ed class is given below:

class stack {
int stak [20]; // the stack of 20 locations
 int top;
 int size;

public:
 stack (int Sz)// the parameterized constructor
 {top = −1;
 size = Sz;// size of stack specif ed
 }

 void push (int item);
 int pop ();
};

int stack :: push (int item)
 {
 if (top < size − 1) // stack size as per the user specif cation
 {
 top++;
 stak [top] = item;
 return 1; // operation successful
 }
 else
 return 0;
 }

 int stack :: pop ()
 {
 int val;
 if (top < 0)
 return −9999; // stack is empty
 else
 {
 val = stak[top];
 top−−;
 return val; // valid item
 }
 }

The programmer would now create the stack object by the following statements:

stack sOb (Sz);

where Sz is the size of the stack as specifi ed by the user.

Constructors and Destructors 183

Example 2. Design a class called Queue that simulates the queue data structure for N loca-
tions, where N is user def ned. The class must initialize the Front and Rear location indicators
to suitable values through a constructor function. The elements are added and removed from
the locations pointed by Rear and Front respectively.

Solution: We would use a parameterized constructor that takes the user specifi ed number of
locations (say N) for the proposed Queue class and will also initialize Front and Rear to loca-
tion 0 to mark that the queue is empty.

The required class is given below:

class Queue {
 int Q[20]; // the Queue of 20 locations
 int Front, Rear;
 int size;

public:
 Queue (int N) // the parameterized constructor
 {Front = Rear = 0;
 size = N;
 }

 int add (int item);
 int remove ();
};

int Queue :: add (int item)
 {
 if (Rear < size)
 {
 Rear++;
 Q [Rear] = item;
 return 1; // operation successful
 }
 else
 return 0;
 }

 int Queue :: remove ()
 {
 int val;
 if (Front == Rear)
 return −9999; // Queue empty
 else
 {
 Front++;
 val = Q[Front];
 return val; // valid item
 }
 }

184 Object-oriented Programming with C++

Example 3. Write a program that tests the Queue class for a given size of a queue.

Solution: The required program is given below

void main()
 {
 int item;
 int choice, result;
 int Sz;
 cout << “\n Enter the size of the queue”;
 cin >> Sz;
 Queue qOb (Sz);

 do
 {
 cout << “\n Menu”;
 cout << “\n”;
 cout << “\Add 1”;
 cout << “\n”;
 cout << “\Remove 2”;
 cout << “\n”;
 cout << “\ Quit 3”;
 cout << “\n”;
 cout << “\n Enter your choice :”;
 cin >> choice;

 switch (choice)
 {
 case 1: cout << “\n Enter the number to be added”;
 cin >> item;
 result = qOb.add(item);
 if (result == 0)
 cout << “\n Queue full”;
 break;
 case 2: result = qOb.remove();
 if (result == −9999)
 cout << “\n Queue empty”;
 else
 cout << “\n The removed item =” << result;
 break;
 }
 }
 while (choice != 3);
 }

It may be noted in the above program that the argument for the constructor has been provided
during the creation of the object by the following statement:

Constructors and Destructors 185

Queue qOb (Sz);

The format of passing arguments to constructor function is:

<class name> <object name> (argument-list);

This method of passing argument to constructor function is called as implicit call. It is a widely
used way of providing arguments for the constructor function. However, there is also another
way of providing arguments to constructors as shown below:

Queue qOb = Queue (Sz);

This method of passing argument to constructor function is called as explicit call. Since implicit
call method of providing arguments is shorter, most of the programmers prefer this method
more often.

6.2.3 Copy Constructor
An object can be copied to another with the help of an assignment statement. Consider a simple
class called ‘test’ given below:

class test {
 int val;
 public :
 test () { }; // default constructor
 test (int item) {val = item; } // parameterized constructor
 void showData() {
 cout << “\n\t Val =” << val; }
};

Kindly note that the class ‘test’ has two constructors: default constructor and a parameterized
constructor, i.e. the constructors have been overloaded. Let us construct two objects Ob1 and
Ob2 of class test type in such a way that Ob1 is constructed by the default constructor and Ob2
by the parameterized constructor initializing variable val to 50 through the argument item. The
main() function, given below, does this task and prints the contents of val of both the objects.
Thereafter, it copies the contents of Ob2 to Ob1 by an assignment statement and again prints
the contents of val of both the objects.

void main()
 {
 test Ob1;
 test Ob2 (35);
 cout << “\n Object Data”;
 Ob1.showData();
 Ob2.showData();
 // copy object Ob2 to Ob1
 Ob1 = Ob2;

 cout << “\n Object data after copy operation”;

186 Object-oriented Programming with C++

 Ob1.showData();
 Ob2.showData();
 }

The output of the above code is given below:

object Data
 Val =4129
 Val =35
object Data after copy operation
 Val =35
 Val =35

As predicted, the contents of un-initialized val of object Ob1 are random and garbage whereas
the val of object Ob2 has been properly initialized to 50. The point worth noting is that after the
assignment of Ob2 to Ob1, the val of both the objects have the same contents.

In fact the following statement has copied the object Ob2 to Ob1 bit by bit.

Ob1 = Ob2;

The above method of copying one object to another of same class type is perfectly alright.
However, this method fails in certain situations. For instance, consider an object (say Obptr2)
having a pointer (p), pointing to a location containing some information (say ‘My Data’). When
this object is copied to another object (say Obptr1) by assignment operator then the pointers of
both the objects would point to the same location as shown in Fig. 6.2. The reason being that the
assignment operator copies the contents of one object to another bit by bit and therefore both
the pointers get the same address.

(a) Before copy operation (b) After copy operation

ObPtr2

ObPtr2

P My Data

P

P My Data

ObPtr2

ObPtr2

P

ObPtr 1 = ObPtr2

Figure 6.2 Object copy operation through assignment operator

Now, this abnormal situation would cause many types of problems such as both the objects
work on the same location, the changes done by one object to the common location may not be
acceptable to another object, etc.

Thus, for copying objects with pointers, we need a mechanism that allows member-wise
copy of the objects so that separate space may be allocated to the pointer of the target object.

C++ provides a special constructor called copy constructor that allows the programmer to
member-wise copy of one object to another. However, the programmer must write the code for
member-wise copy of various members of the source object to the corresponding members
of the target object. The copy constructor is, however, defi ned in the class as a parameterized

Constructors and Destructors 187

constructor receiving an object of its own type as argument passed by reference. Consider the
class given below:

class myClass {

 public:

 myClass (myClass & ob) { // The copy constructor

 }
 };

It may be noted that the above class ‘myClass’ has a special parameterized constructor that
receives an object by reference of its own class type. Now, if we have an obj1 of myClass type
and we desire to create a new object obj2 of myClass type, initialized with the contents of obj1
then the following declaration can be used:

 myClass Obj1; (i)
 :
 :
 myClass Obj2 (Obj1); (ii)

The declaration (i) declares an object obj1 of class myClass type whereas (ii) it declares another
object obj2 of class myClass as well as passes the object Obj1 to the copy constructor for
member-wise copy as per the programmer’s desire.

Example 4. Modify the class test, def ned above, such that it has a copy constructor that cop-
ies an object of test type to another object of test type but while copying the member val of
source object, it multiplies it with a number (say 5) and then stores it into the member val of
target object.

Solution: The required modifi ed class ‘test’ is given below:

// This class demonstrates the working of a copy constructor

class test {
 int val;
 public :
 test () { }; // default constructor
 test (int item) {val = item;} // parameterized constructor
 test (test & ob) // Copy constructor

 {

 val = ob.val * 5; // multiply the val of source object by 5

 }

 void showData() {
 cout << “\t Val =” << val;
 }
};

188 Object-oriented Programming with C++

It may be noted that the copy constructor has not only copied the object but as desired, it has
also multiplied the contents of the source object’s member val (i.e. 15) by 5 before copying it
into the corresponding member of the target code. It may be further noted that this would not
have been possible by an ordinary assignment operation that uses a default copy constructor.

Let us now take an example of the following class called ‘studData’ that uses a pointer to
store personal data of a student who studies in a University.

struct personal{
 char name[20];
 int idNum;
 char pass[10];
 };

class studData
 {
 char nameUniv[20];
 char secId[5];

 personal * ptr; // pointer to student data
 public:
 void setPass(); // to change the personal data
 void readData(); // to read both common and personal data
 void showData(); // to show complete data
 };

Example 5. Write a function main() that creates an object Ob1 of test type with initial value
(say 15) and then copies it to an object Ob2 of test type with the help of the copy constructor.
Thereafter, it prints the contents of both the objects.

Solution: The required function main() is given below:

void main()
 {
 test Ob1(15);

 cout << “\n The contents of Val of source object Ob1: “;
 Ob1.showData();

 test Ob2(Ob1); // Copy the object

 cout << “\n The contents of Val of Target object Ob2: “;
 Ob2.showData();
 }

The output of the above is given below:

The contents of Val of source object ob1: Val =15
The contents of Val of Target object ob2: Val =75

Constructors and Destructors 189

It may be noted that the above class has two types of information: common data to all the
students such as name of the University and name of the section. For each student there is a
personal data accessible through a pointer.

Let us now write a complete program that creates an object ob1 of studData type, reads its
data, copies the object to another object Ob2 and prints the data of both the objects. Thereafter,
it modifi es the personal data of Ob2 and prints the data of both the objects.

include <iostream.h>
#include <conio.h>
#include <stdio.h>

struct personal{
 char name[20];
 int idNum;
 char pass[10];
 };
class studData
 {
 char nameUniv[20];
 char secId[5];

 personal *ptr;
 public:
 void setPass();
 void readData();
 void showData();
 };
 void studData :: readData()
 {
 cout <<”\n Enter Name of the University”;
 gets(nameUniv); ff ush(stdin);
 cout <<”\n Enter Id of the Section”;
 gets(secId); ff ush(stdin);
 ptr = new personal;
 cout << “\n EnterName:”;
 gets(ptr->name); ff ush(stdin);
 cout << “\n Id:”;
 cin >> ptr->idNum;
 cout << “\n password”;
 gets(ptr->pass); ff ush(stdin);
 }
 void studData :: showData()
 {
 cout <<”\n University Name :” << nameUniv <<”\t Section: “<<secId;
 cout <<”\n Name: “<< ptr->name;
 cout << “\t Id:”<< ptr->idNum<< “\t password: “ << ptr->pass;
 }
 void studData :: setPass()
 {

190 Object-oriented Programming with C++

 cout << “\n Enter new Name:”;
 gets(ptr->name); ff ush(stdin);
 cout << “\n new Id:”;
 cin >> ptr->idNum;
 cout << “\n entr new password”;
 gets(ptr->pass); ff ush(stdin);
 }
 void main()
 {
 studData Ob1, Ob2;
 Ob1.readData();
 clrscr();
 cout << “\n Object 1”; Ob1.showData();
 Ob2 = Ob1; // Copy the ob ject
 cout << “\n Object 2 after copy “;Ob2.showData();

 Ob2.setPass();
 cout << “\n After Changing the password of Object2”;
 cout << “\n Object 1”;Ob1.showData();
 cout << “\n Object 2”;Ob2.showData();
 }

A sample output is given below:

 Enter University Name : YMCA University
Section Id : CE302

 EnterName : Ram
Id : 12101
PassWord : ram1234

Object 1
University Name : YMCA University Section : CE302
Name : Ram Id : 12101 Password : ram1234
Object 2 after copy
University Name : YMCA University Section : CE302
Name : Ram Id : 12101 Password : ram1234
Enter new name : Sham
new Id : 12102
new Password : sha2314

After Changing the password of object 2

Object 1

University Name : YMCA University Section : CE302

Name : Sham Id : 12102 Password : sha2314

Object 2

University Name : YMCA University Section : CE302

Name : Sham Id : 12102 PassWord : sha2314

Constructors and Destructors 191

It may be noted that as predicted, both the objects contain same data after the following copy
operation.

Ob2 = Ob1; // Copy the object

However, the strange part is that even after giving new personal data to object Ob2, both the
objects show the same data. The only difference is that now the personal data pertains to a stu-
dent called ‘Sham’ whereas prior to changes, both the objects had the personal data of a student
called ‘Ram’. However, the intention was to assign Ob1 to Ram and Ob2 to Sham. The anomaly
has occurred because the pointers (ptr) of both the objects are pointing to the same location as
was earlier shown in Fig. 6.2.

The solution to above problem is to use a copy constructor to copy the objects member wise
as per our requirement. The modifi ed class studData is given below:

struct personal{
 char name[20];
 int idNum;
 char pass[10];
 };

class studData
 {
 char nameUniv[20];
 char secId[5];

 personal * ptr;
 public:
 studData(){} // default constructor
 studData(studData &Ob){// copy constructor
 strcpy (nameUniv, Ob.nameUniv);
 strcpy (secId, Ob.secId);
 ptr = new personal;
 cout << “\n EnterName:”;
 gets(ptr->name); ff ush(stdin);
 cout << “Id:”;
 cin >> ptr->idNum;
 cout << “password:”;
 gets(ptr->pass); ff ush(stdin);
 }
 void readData();
 void showData();
 };

It may be noted that we have not only included the copy constructor but have also removed the
setPass() function because it had become unnecessary. Let us now write a main() function to
test it. We will not repeat the code for readData() and showData() as it remains the same. The
required main() function is given below:

void main()
 {

192 Object-oriented Programming with C++

 studData Ob1;

 clrscr();
 Ob1.readData();

 cout << “\n Object 1”; Ob1.showData();
 studData Ob2(Ob1);
 cout << “\n Object 2 after copy “;Ob2.showData();

 }

The sample output is given below:

 Enter University Name : YMCA University

Section Id : CE302

EnterName : Ram

Id : 12101

PassWord : ram1234

Object 1

University Name : YMCA University Section : CE302

Name : Ram Id : 12101 Password : ram1234

Enter name : Sham

new Id : 12102

new Password : sha2314

Object 2 after copy

University Name : YMCA University Section : CE302

Name : Sham Id : 12102 Password : sh2314

Kindly note that the copy constructor has done the required task, i.e. the pointers (ptr) of both
the objects are pointing to two different locations (see Fig. 6.3). Therefore, each object is having
its own separate personal data.

(a) Before copy operation

Ob2

ObPtr 1

ptr Ram, . . .

ptr

(b) After copy operation

ptr Ram . . .

ObPtr 2

ObPtr 1

ptr Sham . . .

ObPtr 2 (ObPtr1)

Figure 6.3 The copy operation through copy constructor

Constructors and Destructors 193

6.2.4 Constructors with Default Arguments
Similar to a normal function, a constructor can also have default values. For example, we can
rewrite the class called stack as shown below:

class stack {

 int stak [20]; // the stack of 20 locations
 int top;
 int size;
public:
 stack (int Sz =20) // the parameterized constructor
 {top = −1;
 size = Sz; // size of stack specif ed
 }

void push (int item);
 int pop ();
};

 Note: A default argument “int Sz = 20” has been specifi ed in the constructor defi ned
in the above given class. Now, an object of class address can be created without specifying the
argument. The compiler will always take the default argument “Sz = 20” for the initialization
purpose whenever the argument state is missing. However, care must be taken that the default
arguments must be the trailing arguments.

6.2.5 Rules for Constructor Definition and Usage
The rules for constructor defi nition in C++ and its usages are:

 1. The name of the constructor must be same as that of the class.

 2. A constructor can have a parameter list.

 3. The constructor functions can be overloaded.

 4. A constructor with no arguments is the default constructor.

 6. If there is no constructor in a class, a default constructor is generated by the compiler.

 7. The constructor is executed automatically.

 8. The popular abbreviation for constructor is ctor.

It may be noted here that an object can be defi ned at a local level inside a function (say myFun())
or at a global level. When the object is local then it is created as many times as the myFun()
is called. Therefore, its constructor is also called every time myFun() is called. When the object
is global in nature then its constructor is called at the start of the program.

6.3 DESTRUCTORS
A destructor is an inverse of a constructor in the sense that it removes the memory of an object
which was allocated by the constructor during the creation of the object. It carries the same
name as the class, but with a tilde (~) as prefi x as shown below:

194 Object-oriented Programming with C++

 class xyz
 {

 :
 public :
 xyz(); // Constructor
 ~xyz(); // Destructor

 };

The rules for destructor defi nition and usage are

 1. The destructor has the same name as that of the class prefi xed by the tilde character ‘~’.

 2. The destructor cannot have arguments.

 3. It has no return type, not even void type.

 4. Destructors cannot be overloaded, i.e. there can be only one destructor in a class.

 5. If there is no destructor in a class, a default destructor is generated by the compiler.

 6. The destructor is executed automatically when the control reaches at the end of class
scope.

 7. The popular abbreviation for destructor is dtor.

Now the most important question is as to of what use is the destructor function to a program-
mer? Since the destructor function is the last function to be executed, no fruitful use of this
function can be made by the programmer. However, if we have to f nd its use then it can be best
used for debugging purpose. In fact, some appropriate message can be included in the destruc-
tor function to inform that the object in question is being destroyed. If the message is not dis-
played by an object then the programmer may infer that the object in question is misbehaving
and the program control is struck somewhere within the object itself.

Example 6. Write a class called testDest that illustrates the working of a destructor. It displays
the following message as soon as its object is destroyed.

“I am being destroyed”

Write a smallest possible main() function for testing the working of the destructor.

Solution: The required class with destructor and the minimal main() function is given below:

//This program demonstrates the working of a destructor

 # include <iostream.h>
 class testDest {
 public:

 testDest () { cout << “\n I am being created”;} // constructor
 ~testDest() { cout << “\n I am being destroyed”;} // destructor
 };

Constructors and Destructors 195

It may be noted that the constructor and the destructor are called automatically by the system as
and when the object is created or destroyed – as the case may be.

6.4 SUMMARY
Constructor is a function that creates an object. It is a special function that returns no value
not even the void. It helps the programmer to automatically initialize certain data members of
an object at the time of its creation. The name of the constructor is same as the class. A copy
constructor initializes one object with values from another object of the same class type. The
destructor function destroys the object. It removes the memory held by an object. It is the last
member function to be called. It also carries the same name of the class with a tilde (~) as prefi x.
The destructor function can be used for debugging purposes.

 MULTIPLE CHOICE QUESTIONS
 1. A constructor function returns:
 (a) an integer (b) a fl oat
 (c) no value (d) void

 2. A constructor function automatically initializes the data members of an object at the time
of its:

 (a) declaration (b) creation
 (c) destruction (d) compilation

 3. The name of the constructor function is:
 (a) same as class name (b) same as program name
 (c) user defi ned name (d) none of these

 4. Is constructor function a friend of the class?
 (a) yes (b) no

 5. What happens if an object is passed by value to a copy constructor?
 (a) the size of the object increases (b) the size of the object decreases
 (c) system may run out of memory (d) compiler runs out of memory

 void main()
 {
 testDest ob; // object is created
 } // object is destroyed

The output of above program is given below:

I am being created
I am being destroyed

196 Object-oriented Programming with C++

 6. A constructor with no arguments is called:
 (a) copy constructor (b) default constructor
 (c) parameterized constructor (d) none of these

 7. When an object consists of pointer variables, it must be copied through:
 (a) assignment operator (b) a user defi ned function
 (c) copy constructor

 8. What is the popular abbreviation for constructor?
 (a) conc (b) tor
 (c) cons (d) ctor

 9. What is the popular abbreviation for destructor?
 (a) dtor (b) tor
 (c) dest (d) ~des

10. What happens if there is no constructor defi ned in a class?
 (a) the object is not created (b) the program terminates
 (c) the objects gets created (d) none of these

ANSWERS
1. c 2. b 3. a 4. b 5. c 6. b 7. c 8. d 9. a 10. c

 EXERCISES

 1. What is a constructor? Explain its utility.

 2. Defi ne the terms: default constructor and parameterized constructor.

 3. Modify Example 1 of Chapter 4 such that the class contains a constructor function.

 4. Design a constructor with default values for Example 4 of Chapter 4.

 5. Design a suitable constructor function for Example 9 of Chapter 4.

 6. Explain copy constructor in detail.

 7. Defi ne the term destructor.

 8. Describe the importance of destructor function.

 9. Write a program that illustrates the working of a destructor function.

10. Given the following C++ code, answer the questions (a) and (b).

 # include <<iostream.h>>
 class Readbook
 {
 public:
 Readbook() // Function1
 {
 cout << “Open the book” << endl;}

Constructors and Destructors 197

 void Readchapter() // Function2
 {
 cout << “Read Chapter 1” << endl;}
 ~Readbook()
 {
 cout << “Close the Book” << endl;}
 };

 a. In object-oriented programming, what is Function1 referred to as and when does it get
invoked/called?

 b. In object-oriented programming, what is Function2 referred to as and when does it get
involved/called?

11. Write a program in C++ that creates a class called ‘time’ with data members: hour, min-
utes, and seconds of type integer, integer, and fl oat, respectively. The class uses two con-
structors. One constructor is used to initialize the time data elements to zero. The second
constructor is used to set the time components to a predetermined time, passed by the user
as arguments. The class also has two member functions: dispTime() and addTime(). The
dispTime() displays the time in: hh:mm::ss.ss format. The other function addTime() adds
two objects T1 and T2 of time type such that T3 = T1 & T2, where T3 is also of type ‘time’.

7.1 INTRODUCTION TO CODE REUSE
Almost all programming languages support functions that allow a piece of code to be reused
again and again in a calling program. However, functions provide rather limited support for code
reuse. In object-oriented programming (OOP), code reuse is a central feature. In fact, we can
reuse the code written in a class in another class by either of the two mechanisms given below:

 1. Containership

 2. Inheritance

 7.2 CONTAINERSHIP
In day-to-day life, we come across objects which are composed of other objects. For instance,
a computer is composed of objects like motherboard, hard disk, CD-ROM drive, monitor, etc.
The motherboard contains a CPU and other components. The CPU contains ALU, CU and reg-
isters. Similarly, a car is composed of an engine, a steering wheel, a radiator, fan, and so many
other objects.

In other words we can say that the CPU object uses the services of its contained objects. It
acts as a container for other objects as shown in Fig. 7.1.

CPU

ALU

CU

Register
Array

Figure 7.1 CPU, a container of objects

INHERITANCE:
EXTENDING CLASSES

7

Inheritance: Extending Classes 199

It may be noted that the CPU is a more powerful and useful device as compared to its contained
objects: ALU, CU and register array. Moreover, we see only the container and the contained
objects remain hidden and secured inside the container. The relationship between container
and contained objects is called as a ‘has-a’ relationship. The CPU ‘has-a’ CU, ‘has-a’ ALU and,
‘has-a’ register array. Taking the cue from this, we can also create powerful objects by contain-
ing object components in a container object.

C++ allows a class to contain the objects of some other class. This activity establishes ‘has-a’
relationship among objects. The ‘has-a’ relationship is also known as containership and comes
into picture when an object of a class is contained in another class. Consider the following
declaration:

 class address {
 int houseno;
 char colony[15];
 char distt[15];
 char state[20];
 int pincode;
 public:
 void get_data();
 void show_data();
 };
 class person { // container
 char name [20];
 int age;
 address resAdd; // contained object

 public:
 void read_data();
 void display_data();
 };

The above declaration establishes the relationship: a person has an address. Now, an object of
class person will always contain an object of class address type. Thus, the person object would
become more powerful by using (or reusing) the services offered by the address object. This
composition feature of OOP is also known as aggregation.

The containership can be precisely defi ned as a composition of objects in which a contained
object is hidden. The access to the contained object is only through the container object.

Example 1. Write a program that reads the data of a person and prints it. Use the classes
person and address to illustrate the concept of containership.

Solution: We will use the class declaration of has a relationship between the class person and
class address as described above. The required program is given below:

// Example Containership

 # include <iostream.h >

200 Object-oriented Programming with C++

 # include <stdio.h >
 # include <conio.h >

 class address {
 int houseno;
 char colony[15];
 char distt[15];
 char state[20];
 long pincode;
 public:
 void get_data();
 void show_data();
 };

 class person {
 char name [20];
 int age;
 address resAdd; // containership :resAdd is an object
 // of class address
 public:
 void read_data();
 void display_data();

 };
 void address :: get_data()
 {
 cout << “\nHouse No:”;
 cin >> houseno;
 cout << “\n Colony:”;
 gets(colony); ff ush(stdin);
 cout << “\n Distt:” ;
 gets(distt); ff ush(stdin);
 cout << “\n state:” ;
 gets(state); ff ush(stdin);
 cout << “\n PinCode:”;
 cin >> pincode;
 }

 void address :: show_data()

 {
 cout << “\n Address : ”;
 cout << houseno << “ ,” << colony;
 cout << “\n ” << distt << “ ,” << state;
 cout << “,” << pincode;
 }
 void person :: read_data()
 {
 cout << “\nEnter the data ..”;
 cout << “\n”;
 cout << “Name:”;

Inheritance: Extending Classes 201

 gets(name); ff ush(stdin);
 cout << “\nAge:”;
 cin >> age;
 resAdd.get_data(); // Invoke the function of contained object
 }
 void person :: display_data()
 {
 cout << “\n The person data is.. \n” ;
 cout << “\n Name:” << name;
 cout << “\n Age:” << age;
 resAdd.show_data(); // Invoke the function of contained object
 }
 main()
 {
 clrscr();
 person obj; // Create an Object of class person type
 obj.read_data(); // Read the data of a person
 obj.display_data();
 return 0;
 }

A sample output is given below:

Enter the data..
Name:Ram

Age:17

House No:108

 Colony :saket

 Distt:South Dist.

 State:Delhi

 Pincode:110017

The person data is ..

Name:Ram

Age:17

Address : 108 ,saket

South Dist. ,Delhi,110017

It may be appreciated that most of the programming situations can be easily handled by
 containership. Let us consider the following situation:

Assume that an object called ‘point’ is available that can display a point (say ‘*’) at coordinates
(x, y). We can defi ne a class called line that displays a line on the screen by using the services of

202 Object-oriented Programming with C++

the point object. Similarly we may defi ne class called rectangle that displays a rectangle on the
screen by using the services of the line object.

Thus, the rectangle class contains a line object which in turn contains an object of point type
and the arrangement is given in Fig. 7.2.

Class point

} ;

} ;

} ;

Class line {

Point Pob ; // Point object

Class rectangle {

line Lob; // line object

rect Ob
Lob

Pob

Figure 7.2 Container and the contained objects

Example 2. Write a program that uses the above given container class ‘rectangle’ to display a
user specif ed rectangle on the screen.

Solution: We would use the gotoxy() function of Turbo C++ to display a point (‘*’) on
the screen in text mode. The line class would print contiguous points to display a line. The
 rectangle class would appropriately draw the lines of the rectangle.

A point worth noting is that Turbo C++ takes top left corner as (0,0) coordinates of the
screen.

The required classes and the complete program is given below:

// This program displays a rectangle on the screen

include <iostream.h>
include <conio.h>

class point {
 int x, y;
 void disp()
 {
 gotoxy(x,y);
 cout << ‘*’;
 }
 public:
 void dispPoint(int Xcord, int Ycord)
 {

Inheritance: Extending Classes 203

 x = Xcord; y = Ycord;
 disp ();
 }
 };
 class line {
 int x1,y1,x2,y2;
 int x,y;
 point Pob; // Object of point type
 void disp();
 public:
 void dispLine(int X1, int Y1, int X2, int Y2)
 {
 x1 = X1; y1 = Y1; x2 = X2; y2 = Y2;
 disp();
 }
 };
 void line :: disp()
 { if (y1 == y2) // draw horizontal line
 {if (x1 < x2)
 for (x = x1; x <= x2; x++)
 Pob.dispPoint (x, y1);
 else
 for (x = x2; x <= x1; x++)
 Pob.dispPoint (x, y1);
 }
 else
 if (x1 == x2) // draw vertical line
 {if (y1 < y2)
 for (y = y1; y <= y2; y++)
 Pob.dispPoint(x1,y);
 else
 for (y = y2; y <= y1; y++)
 Pob.dispPoint(x1,y);
 }
 }
 class rectangle {
 int x1,y1, x2,y2;
 line lob; // object of line type
 void disp ()
 {
 lob.dispLine (x1,y1, x2,y1);
 lob.dispLine (x1,y1, x1,y2);
 lob.dispLine(x2,y1, x2,y2);
 lob.dispLine(x1,y2, x2,y2);
 }
 public:
 void dispRect(int CorX1,int CorY1,int CorX2,int CorY2)

204 Object-oriented Programming with C++

 Note: The main advantage of the containership is that it excellently implements the
encapsulation feature of OOP. The reason being, that the contained objects are only accessible
through their container object and that too only through their interfaces. Therefore, it achieves
complete implementation hiding. This arrangement of containership can be pictorially repre-
sented in Fig. 7.3.

rectangle

Private

Public

has a private has a private

point

public

line

public

Containership (aggregation)

Figure 7.3 Representation for aggregation

The diamond indicates the ‘has-a’ relationship.

7.3 INHERITANCE
The containership works well when a class has two clearly defi ned sections: private and public.
This indicates that the designer of the class is offering public interfaces for interaction and hid-
ing the important information and implementation components of the object inside the private
section as shown in Fig. 7.4. However, the usage of such object is rather limited because the user
can only use the public services offered by the object.

 {
 x1 = CorX1; y1 = CorY1; x2 = CorX2; y2 = CorY2;
 disp();
 }
 };
 void main()
 {rectangle RecOb;
 clrscr();
 RecOb.dispRect(12,5,40,10);
 }

The output of the program is given below:

Inheritance: Extending Classes 205

Public
interfaces

implementation

Data

Private

Figure 7.4 An object suitable for containership

Consider a situation, where some important implementation of the object (Fig. 7.4) is needed
to a programmer who is a member of the same project, i.e. the programmer wants to reuse the
implementation in his/her class. The other requirement could be that the programmer may like
to add some more features to the implementation to create a more powerful class. With the
existing design, it is not possible because the desired implementation is inaccessible, as it has
been placed in the private section of the object by its designer. Thus, the class is closed for
modif cation of any kind. It can only be used.

The above anomalous situation can be solved by inheritance. It is the most central feature of
the object oriented design. A class provides a special visibility mode called ‘protected’ in addi-
tion to the private and public visibility modes.

The protected mode is as good as private as far as its usage by outsiders is concerned. Now
the designer of a class can, without fear, place an implementation into the protected section
instead of the private. The programmer, who is part of the project and requires the implementa-
tion, can use the implementation with the help of inheritance. The inheritance makes the imple-
mentation available to the programmer, which was otherwise inaccessible. The arrangement is
shown in Fig. 7.5.

Open or
available for
extension

Closed for
outsiders

base

Public

Protected

private

XYZ

derived

Public

Protected

Private

PQR

inheritance

Figure 7.5 Protected member available through inheritance

206 Object-oriented Programming with C++

It may be noted from Fig. 7.5 that it is a hierarchical structure of classes XYZ and PQR. The
class XYZ which has offered an implementation through protected mode is called a base class.
The benefi ciary class PQR which is allowed to use the implementation through inheritance is
called the derived class. The main advantage of this arrangement is that not only the derived
class is able to access a private implementation of the base class but it can also add its own
strength to it to create a more powerful system of classes.

 Note: The base class is closed for outsiders and open for extension to the derived class
or classes through inheritance. This principle is called ‘open close principle’

 1. The relationship between the base and derived class is called ‘ a kind of’ (AKO)
 relationship. For instance PQR is a kind of XYZ. We also describe that PQR is derived
from XYZ. In real world, a mango is a kind of fruit and a mammal is a kind of animal.

 2. The derived class cannot access the private members of base class.

It may be observed from Fig. 7.5 that inheritance is represented by connecting a base class to its
derived classes with the help of a triangle. The apex of the triangle is connected to the base class
and its derived classes are connected to the base of the triangle. The derived class inherits the
members of its base class without the need to redefi ne them. The format for defi ning a derived
class is given below:

class <derived class> : <visibility mode> <base class> {
:
 };

where class is the reserved word; “:” is the colon operator indicating inheritance; <derived class>
is the name of the subclass or new class being derived; <visibility mode> is the mode of access to
items from the base class. The access mode can be either of the following type: private, public, or
protected.

Consider the hierarchy of classes given in Fig. 7.5. The equivalent skeleton code for this
inheritance is given below:

class XYZ {
 private
 :
 protected:
 :
 public:

};

class PQR : public XYZ {
 :

 :
};

It is reiterated here that most of the code reuse situations can be easily handled by containership.
There are fewer situations where inheritance can be used. One of the examples is given below:

Inheritance: Extending Classes 207

Consider a class called University having the following members

class University {
 private: //private members closed for modif cation
 int rollNo [100], i, f ag;

 int interMarks [100]; // internal marks of students
 // number of students
 int theoryMarks [100]; // theory marks of students
 void setTheorMarks (); // sets theory marks protected:
 int numStud; // protected members open for extension
 void setInterMarks();
 void issueRollNo();
 public:
 void prepResults();
 void showResults(char ColgName[]);
};

Kindly note that the designer of the class has included some very important members in the
protected section. Now, consider a class called College having the following members. It inher-
its the University class for using the protected members of the University class. Now this is
a situation suitable for inheritance because containership would have defi nitely failed in this
situation.

class College : public University {

 private:
 char collegName [50];
 public:
 College (int N) {
 numStud = N;
 issueRollNo();}
 void inputInterMarks(); // teacher inputs students’ internal marks
 void dispResult ();
 };

Example 3. Write a complete program that uses the classes University and College to input
and display data of N number of students.

Solution: The complete program is given below:

// This program illustrates inheritance

include <iostream.h>
include <conio.h>
include <stdio.h>

class University {
 private:

208 Object-oriented Programming with C++

 int rollNo [100], i, f ag;

 int interMarks [100]; // internal marks of students
 // number of students
 int theoryMarks [100]; // theory marks of students
 void setTheorMarks (); // sets the theory marks of students pro-
tected:
 int numStud;
 void setInterMarks();
 void issueRollNo();
 public:
 void prepResults();
 void showResults(char ColgName[]);
};
class College : public University {

 private:
 char collegName [50];
 public:
 College (int N) { // Constructor to set No. of students and
 // issue Roll No.
 numStud = N; // number of students
 issueRollNo();
 }
 void inputInterMarks(); // teacher inputs students’ internal marks
 void dispResult ();
 };
void University :: issueRollNo()
 { for (i = 0; i < numStud; i++)
 {
 rollNo[i] = 100 + i; // issue roll nos. starting from 100 onwards
 }
 }
void University :: setTheorMarks ()
 {
 cout << “\n Enter theory marks for the roll number mentioned”;
 for (i = 0; i < numStud; i++)
 {cout << “\n Roll” << rollNo[i] << “ : ”;
 cin >> theoryMarks[i];
 }
 }
void University :: setInterMarks()
 {
 cout << “\n Enter internal marks for the roll number mentioned”;
 for (i = 0; i < numStud; i++)
 {cout <<”\n Roll” << rollNo[i] << “ : ”;
 cin >> interMarks[i];
 }

Inheritance: Extending Classes 209

 f ag = 1;
 }
 void University :: prepResults()
 {if (f ag == 1)
 setTheorMarks();
 else
 cout << “\n input internal marks”;
 }
void University :: showResults(char colgName[])
 {
 clrscr();
 cout << “\n College :” << colgName;
 cout << “\n The result...”;
 cout << “\nRoll\tinternal\tTheory”;
 for (i =0; i < numStud; i++)
 {cout <<”\n” <<rollNo[i] << “\t” << interMarks[i] <<”\t \t” <<

theoryMarks[i];
 }
 }
void College :: inputInterMarks()
 {
 cout << “\n Enter the college name”;
 gets(collegName);
 setInterMarks();
 prepResults();
 }

void College :: dispResult ()
 {
 showResults (collegName);
 }

void main()
 {int N;
 cout << “\n Enter the number of students”;
 cin >> N;
 College Cob (N);
 Cob.inputInterMarks();
 Cob.dispResult();
 }

A sample output is given below:

 Enter the number of students3
 Enter the college nameYMCA University of Sc. & Tech.

 Enter internal marks for the roll number menioned
 Roll-100 : 65
 Roll-101 : 76

210 Object-oriented Programming with C++

It may be noted that the College class is able to use the protected members of University class
after inheritance. It may be further noted that the members are being used as if they are part of
the derived class, i.e. the College class. This is perhaps the one of the most brilliant way of ‘code
reuse’ of the implementation which otherwise was worthy of being placed in private section.

7.3.1 Visibility Modes
In the examples given above, we have used the access specifi er ‘public’ while specifying inheri-
tance. This means that all the public and protected members of the base class will also be
accessible as public and protected members to the derived class. For example, in the following
declaration, all the public and protected members of class XYZ will be accessible as public and
protected members to class PQR.

 class PQR : public XYZ {
 :
 };

Precisely, we can say that in public inheritance:

 1. The public members of base class remain public in the derived class.

 2. The protected members of base class remain protected in the derived class.

One can also use the keyword private in place of keyword public as shown below:

 class PQR: private XYZ{
 :
 };

In this type of situation, all public and protected members of the base class XYZ will become
private members of the derived class PQR.

Precisely, we can say that in private inheritance:

 Roll-102 : 71

 Enter theory markes for the roll number mentioned
 Roll100 : 87

 Roll101 : 78

 Roll102 : 79

 College : YMCA University of Sc. & Tech.
 The result...

 Roll internal Theory
 100 65 87
 101 76 78
 102 71 79

Inheritance: Extending Classes 211

 1. The public members of base class become private in the derived class.

 2. The protected members of base class also become private in the derived class.

Similarly, we can use the keyword protected while specifying inheritance as shown below:

 class PQR : protected XYZ {
 :
 } ;

In this type of situation, the protected members of the base class XYZ become the protected
members of the derived class PQR.

Precisely, we can say that in protected inheritance:

 1. The public members of base class become protected members in the derived class.

 2. The protected members of base class also remain protected members in the derived class.

The access control to various members of a derived class can be summarized in the form of a
diagram as shown in Fig. 7.6.

base base base
Private Private Private

Public Public Public
Protected Protected Protected

PublicPublicPublic
Protected Protected Protected

Private Private Private
derived derived derived

Inheritance
(Public)

Inheritance
(Protected)

Inheritance
(Private)

Figure 7.6 Access control mechanism in class inheritance

Having tasted the benefi ts of inheritance, let us now precisely defi ne it. The defi nition is
given below:

Inheritance: it is a mechanism of providing code reuse in a hierarchy of classes. A class
called derived is able to inherit (i.e. reuse) the protected code of another class called base with-
out having to redefi ne the code.

In the following section a discussion on types of inheritance is given.

7.4 TYPES OF INHERITANCE
There are three types of inheritance as given below:

■ Multilevel inheritance

■ Multiple inheritance

■ Graph inheritance

212 Object-oriented Programming with C++

Example 4. Consider the following C++ declarations and answer the questions given below:

class grandFather
 {
 void secVal();
 protected:
 int x,y;
 void protVal();
 public:
 void getvalGf();
 void putvalGf();
 };
class father: protected grandFather
 {
 int a, b;
 protected:
 int c,d;
 void getvalF();

 public:
 void putvalF();
 };
 class son:private father
 {
 int p;
 protected :

7.4.1 Multilevel Inheritance
We know that a derived class with a single base class is said to form single inheritance. The
derived class can also become a base class for some other derived class (see Fig. 7.7). This type
of chain of deriving classes can go on to as many levels as needed. The inheritance of this type
is known as multilevel inheritance. For example, the class son inherits from class father. The
class father in turn inherits from class grandfather.

grandFather

father

Son

Figure 7.7 Multilevel inheritance

Inheritance: Extending Classes 213

 int q;
 void getvalS();
 public:
 void showvalS();
 };

Questions:

 1. Name all the member functions which are accessible to the user of the objects of class son.

 2. Name all the accessible protected members of class father.

 3. Name the base and derived classes of class father.

 4. Name the data members, which are accessible from the member functions of class son.

Solution:

 1. The only member function accessible to the users of objects of class ‘son’ is showvalS().
The reason being showvalS() is the only public function of the class ‘son’ and the other
function getvalS() is a protected member and therefore not available to the object.

 2. The protected members of class ‘father’ are:

 data items: c, d, x, y

 member functions: getvalF(), getvalGf(), putvalGf().

 3. The base class of ‘father’ is class ‘grandFather’ and derived class of ‘father’ is class ‘son’.

 4. The data members available to member function of ‘son’ are:
 p, q: internal members of class son
 c, d: by virtue of inheritance

 x, y: by virtue of inheritance

7.4.2 Multiple Inheritance
A class can inherit properties from more than one base class as shown in Fig. 7.8. This type of
inheritance is called as multiple inheritance. Please note that this inheritance is different from
multilevel inheritance wherein a subclass is derived from a class which itself is derived from
another class and so on.

Mother father

Son

Figure 7.8 Multiple inheritance

214 Object-oriented Programming with C++

It can be observed from Fig. 7.8 that the class ‘son’ inherits properties from both the base
classes ‘mother’ and ‘father’.

The format of multiple inheritance is given below:

class mother {

};

class father {

};

// multiple inheritance from two classes ‘mother’ and ‘father’
class son : public mother, public father {

};

Discussion on Graph inheritance is given in section 7.4.

7.5 FUNCTION OVERRIDING
One of the major advantages of abstraction and encapsulation is that a class separates “what
from how”. In simple words, we can say that the interface is separated from implementation as
shown in Fig. 7.9.

implementation

Separation

interface

Figure 7.9 The concept of separation

The separation enables the interface to become plug compatible, i.e. the interface can be plugged
with any of the available implementations as shown in Fig. 7.10. It may be noted that there are
two implementations A and B. The interface can be plugged with any of them.

interface

Implementation A Implementation B

Figure 7.10 Plug compatibility

Inheritance: Extending Classes 215

Consider a situation where A and B are versions 1 and 2, respectively, of a software implemen-
tation. Now, we can easily unplug implementation A and plug the implementation B without
having to change the interface. This will not only save lot of coding effort but also offer the
same interface to the user who is already trained to use it. In fact, the user-retraining cost is
also saved.

The above polymorphic behaviour can be easily achieved through function overriding
 wherein a function of a derived class can run in place of a function of its base class. Let us
reconsider the following class called ‘student’ of Chapter 4:

class student {

private:

 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();

public:

 void read_data();
 void display_grade();
 };

The implementation function ‘compute_grade()’ computes the grade of a student as per the
following rules:

Marks Grade

>= 50 < 60 D

>= 60 < 70 C

>= 70 < 80 B

>= 80 A

If it is predicted that in future the above mentioned rules may change then either of the follow-
ing steps would be needed to handle the situation:

 a. Change the class as per new rules. It is a diffi cult and cumbersome option because an
attempt to change the class may lead to a chain of modifi cations in classes which depend
upon the ‘student’ class. Moreover, where is the guarantee that still further changes to the
rules will not take place?

 b. The programmer should make a provision in the class such that the changes may be
incorporated without changing the existing (i.e. student) class. This can be achieved by
declaring the required function as virtual.

 A brief discussion on virtual functions is given in the next section.

216 Object-oriented Programming with C++

7.5.1 Virtual Functions
Consider the function declaration given below:

void read_data();

The above function ‘read_data()’ is compiled by the compiler such that at run time whenever a
call to read_data(); is made, a correct correspondence is established between the function call
and the function. This kind of binding of function call to the corresponding function is said to
be static binding. In fact, the address of the function is permanently bound at the compile time.

However, a programmer would not like to statically bind a function def ned in base class
 especially when he/she predicts the function to be redef ned in derived class. Rather he/she
would like to defer the binding to run time so that the correct function out of the two may be
called. This type of run time binding is supported by C++ through virtual keyword.

In a class, a programmer can declare a function as virtual. It is a keyword of C++ that
 precedes a function declaration as shown below:

virtual void read_data();

The keyword virtual is a directive to the compiler indicating to defer the binding of the function
‘read_data()’ till run time. If this function, defi ned in base class, is redefi ned in derived class
then at run time the address of whichever function through its object is made available that func-
tion would be bound and executed.

Consider the following arrangement of classes:

class student {
 protected:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();
public:
 virtual void read_data();
 void display_grade();
};

class changes : public student {

 private:
 void compute_grade();
 public:
 void read_data();
 };

It may be noted that the function read_data() of class student has been declared as virtual. A
function with same name has been defi ned in class changes that inherit from class student. The
read_data() of class changes calls its own implementation function compute_grade() that uses
the following rules to compute grades:

Inheritance: Extending Classes 217

Example 5. Write a program that uses the above given ‘student–changes’ class inheritance
and tests the working of virtual functions.

Solution: We would use a pointer to base class. The pointer would be assigned the address
of an object of type changes. The program would be tested for input (marks = 56) to display
grade.

The complete program is given below:

include <iostream.h>
class student {

protected:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();

public:
 virtual void read_data(); // dynamic binding
 void display_grade(); // static binding
 };

class changes : public student {

 private:
 void compute_grade();
 public:
 void read_data(); // overriding function
 };
// Function to read data of a student
 void student :: read_data()
 {
 cout << “\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;

Marks Grade

>= 45 < 55 D

>= 55 < 65 C

>= 65 < 75 B

>= 75 A

The above rules are different than what are being used by the base class, i.e. the student class. For
instance, a student who secures 56 marks will get ‘D’ grade by old rules and ‘C’ by new rules.

218 Object-oriented Programming with C++

 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;

 compute_grade(); // compute the grade
 }
 void student :: display_grade()
 {
 cout << “\n The data:” << name;
 cout << “\t” << roll;
 cout << “\t” <<grade;
 }
 void student :: compute_grade()
 {
 if (marks >= 80) grade = ‘A’;
 else
 if (marks >= 70) grade = ‘B’;
 else
 if (marks >= 60) grade = ‘C’;
 else
 if (marks >= 50) grade =’D’;
 else
 grade = ‘E’;
 }
void changes :: read_data()
 {
 cout << “\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;
 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;

 compute_grade(); // compute the grade
 }
void changes :: compute_grade()
 {
 if (marks >= 75) grade = ‘A’;
 else
 if (marks >= 65) grade = ‘B’;
 else
 if (marks >= 55) grade = ‘C’;
 else
 if (marks >= 45) grade = ‘D’;
 else
 grade = ‘E’;
 }

Inheritance: Extending Classes 219

void main()
 {
 student *ptr;

 changes dob; // create an object of changes type
 ptr = &dob; // assign its address to ptr of type student
 ptr->read_data();
 ptr->display_grade();
 }

A sample (for marks = 56) output is given below:

Enter Name :Ashok

Enter Roll:101

Enter Marks:56

The data:Ashok 101 C_

 Note:

 1. As per new rules the student gets ‘C’ grade. Thus, the function ‘read_data() of class
‘changes’ has overridden the function read_data() of class ‘student’.

 2. The most important point to be noted is that the address of an object of class ‘changes’
(derived class) has been assigned to a pointer of type class ‘student’ (base class). The
surprise is that the compiler accepted it and has not complained it to be a mismatch. This
has become possible because of the ‘virtual’ keyword.

 3. The non-virtual function ‘display_grade()’ of class ‘student’ has been statically bound.

From above we can conclude that a function declared as virtual is bound at run time. The object
of a derived class can substitute for object of a base class. This principle is called as “Liskov’s
Substitution Principle (LSP)”.

The type of inheritance that allows a derived class function to override a base class function
is also called as proper inheritance. However, the condition is that both the functions carry the
same name and the base class function is declared as virtual. The proper inheritance allows both
substitutability and extensibility.

Example 6. Write a program that illustrates the working of ‘Liskov’s Substitution Principle’.

Solution: We create two classes called ‘parent’ and ‘child’ wherein child inherits from par-
ent. Both contain a function named display() that displays a message. The function of base
class would be declared as virtual. Objects of both parent and child classes would be sent to

220 Object-oriented Programming with C++

a stand alone function called test() which calls the display function of the object to display
the message.

The complete program is given below:

#include <iostream.h>
#include <string.h>

class parent {
 char Id[10];
 public:
 parent () { strcpy(Id, “parent”);}
 virtual void show () {
 cout <<”\n I am ” << Id;
 }
 };

class child : public parent
 {
 char Id[10];
 public:
 child () { strcpy(Id, “child”);}
 void show () {
 cout <<”\n I am ” << Id;
 }
 };
void test (parent & ob) // stand alone function designed
 {// to get object of type parent
 ob.show();
 }
void main()
 {
 parent Pob;
 test (Pob); // call test() with an object of type parent
 child Cob;
 test (Cob); // call test() with an object of type child
 }

The output of the program is given below:

 I am parent
 I am child

It may be noted that the function test() has been defi ned to receive an object of type parent but
it also accepts an object of type child, i.e. the derived class. This is possible because the func-
tion show() in class ‘parent’ has been declared as virtual. The ‘child’ class is a derived class of
parent. Thus, the working of LSP has been established because the object of derived class has
been able to substitute the object of base class.

Inheritance: Extending Classes 221

7.5.1.1 Pure Virtual Functions

We know that the main purpose of an object is to provide services to other objects or users. For
instance, the student object computes grade and displays it. Similarly, a stack object offers two
services: push and pop. We also know that for each service offered by the interface of an object,
there has to be an implementation that provides the service.

Sometimes a situation arises when, out of many implementations, the designer of a class does
not have an implementation for a service committed by the interface. If he/she predicts that in
future the implementation would become available then he/she can remind the programmer of
a derived class to write the implementation. He/she does so by including a pure virtual function
for the non-available implementation. A simple format for a pure virtual function is given below:

virtual <returnType> <funcName> () = 0;

where virtual is a keyword; <returnType> is a type of value supposed to be returned by the func-
tion; <funcName> is the user defi ned name of the function.

Consider the following declaration of a function whose body has been set equal to 0:

virtual void compute_grade() = 0;

The above statement says that implementation for the function compute_grade() is not available.
Now if the above statement is included in a class then its object cannot be created because this
 function of the class has no body, i.e. no implementation. Such a class is called as an abstract
class. The abstract class can be precisely defi ned as a class which has at least one pure virtual
function. A normal class that does not have a pure virtual function is called as a concrete class.
An abstract class has the following characteristics:

 1. Its object cannot be created.

 2. It cannot be inherited by a derived class unless the programmer of the derived class pro-
vides an implementation for each pure virtual function declared in the abstract class.

Thus, the programmer of abstract class forces the derived class programmer to provide imple-
mentations for all the unimplemented functions (i.e. pure virtual) present in the base class.

Consider the class hierarchy given in Fig. 7.11.

permanent

employee

compute Sal() implementation

dailyWages

compute Sal() implementation

compute Sal() = 0 Pure virtual Function

Figure 7.11 Class hierarchy

222 Object-oriented Programming with C++

Example 7. Give the class def nitions for the class hierarchy given in Fig. 7.11.

Solution: The classes: employee, permanent, and dailyWages are given below:

class employee {
 char name[20];
 char desig [15];

 protected:
 int empType; // 1 for permanent and 0 for daily wages
 void getData();
 virtual void computeSal() = 0; // pure virtual function
 public:
 void showData();
 };

It may be noted that the employee class records only the general data of an employee.

class permanent :public employee{
 private:
 f oat basicPay;
 f oat DA; // dearness allowance
 f oat HR; // house rent
 int med; // medical allownace
 f oat salary;
 void computeSal();
 public:
 permanent () {med =500; // consolidated amount
 empType = 1;}
 void readData();
 void dispData();
 };

It may be noted that the base class (employee) has a pure virtual function named computeSal().
Since its implementation has not been provided by the base class, the derived classes (permanent
and dailyWages) have been forced to provide their version of implementation. Thus, ‘employee’
is an abstract class and the ‘permanent’ and ‘dailyWages’ classes are concrete classes.

 Note: The permanent employee gets many types of allowances.

class dailyWages : public employee {
 private:
 f oat dailyWage;
 int numDays;
 f oat salary;
 void computeSal();

Inheritance: Extending Classes 223

Example 8. Give the def nitions of various functions of the classes def ned in Example 7. Write
a main() function that test the classes for permanent as well as daily wages employee.

Solution: The defi nitions of functions of various classes are given below:

// Functions of employee class
void employee :: getData()
 {
 cout << “\n Enter name :”;
 gets (name); ff ush(stdin);
 cout << “\n Enter designation :”;
 gets(desig);
 };
void employee :: showData()
 {
 cout << “\n Name:” << name << “\t Desig :” << desig;
 if (empType == 1)
 cout << “\n Permanent”;
 else
 cout << “\n Temporary”;
 }

// Functions of permanent class
void permanent :: readData()
 { getData();
 cout << “\n Enter Basic Pay :”;
 cin >> basicPay;
 computeSal();
 }
 void permanent :: computeSal()
 {
 DA = basicPay * 0.76;
 HR = basicPay * 0.2;
 salary = basicPay + DA + HR + med;
 }
 void permanent :: dispData()
 {
 showData();

 public:
 dailyWages() { empType =0;}
 void readData();
 void dispData();
 };

 Note: The temporary employee gets only limited salary based on the number of working
days.

224 Object-oriented Programming with C++

 cout << “\n BP =” << basicPay << “ DA = ” << DA << “ HR = ” << HR;
 cout << “ med =” << med;
 cout << “\n Salary =” << salary;
 }

// Functions of dailyWages class

void dailyWages:: readData()
 {
 getData();
 cout << “\n Enter Daily wage :”;
 cin >> dailyWage;
 cout <<”\n Enter number of days :”;
 cin >> numDays;
 computeSal();
 }
 void dailyWages :: dispData ()
 {
 showData();
 cout << “\n Daily Wage = ” << dailyWage;
 cout << “\n Number of days = ” << numDays;
 cout << “\n Salary = Rs. ” << salary;
 }
 void dailyWages :: computeSal()
 {
 salary = dailyWage * numDays;
 }
// The main() function
 void main()
 {
 permanent Pob;
 Pob.readData();
 Pob.dispData(); // Test the object of permanent type
 dailyWages Dob;
 Dob.readData();
 Dob.dispData(); // Test the object of daily wages type
}

A sample output for the above program is given below:

Enter name : A. K. Sharma

Enter designation : Manager

Enter Basic pay :30000

Name: A. K. Sharma Desig : manager
Permanent
BP =30000 DA = 22800 HR = 6000 med =500
Salary =59300

Inheritance: Extending Classes 225

Enter name : S. K. Verma

Enter designation : Prob. officer

Enter Daily wage :2000

Enter number of days :25

Name: S. K. Verma Desig : Prob.officer

Temporary
Dialy Wage =2000
Number of days =25
Salary = Rs.50000

It may be noted that the base class has provided the basic data and some services and not the
implementation. The derived classes have provided individual implementations but have used
the basic data and services of the base class. Without inheritance and the virtual keyword, this
kind of arrangement would not have been possible.

Another point to be noted is that from ‘employee’ class we have carved out two roles in the
form of ‘permanent’ and ‘daily wages’ employees. In fact, inheritance can be very usefully
employed to carve out roles from an existing class as shown in Fig. 7.12. The base class is a
general computer mouse. By adding specifi c individual features, we can carve out many types
of mouse, i.e. mechanical, optical, optomechanical and wireless mouse. Similarly a person can
play the roles of Peon, Professor, Vice-Chancellor, Registrar, Clerk, etc.

optical

mouse

radio frequency

wireless mechanical Opto-mechanical

infrared

Figure 7.12 Roles of computer mouse

It may be further noted that Inheritance can also be used to represent knowledge. For example,
Fig. 7.12 reveals the knowledge that ‘infrared mouse’ is a kind of wireless mouse. When we
go from top to bottom, the classes become specialized. For instance, infrared is a special

226 Object-oriented Programming with C++

wireless mouse. Therefore, the top down approach provides the extensibility wherein an
 existing class can be extended to create a more powerful class.

However, when we go from bottom-up, the classes become generalized. The bottom-up
 design allows combination of existing components. If the components are reusable, then this
technique provides the much-required reusability of the objects.

Function overriding is an entirely different concept than function overloading though both
of them depict polymorphic behavior. Overloaded functions have the same scope, i.e. they ap-
pear in same class or fi le. Whereas overriding functions have different scope, i.e. they appear in
 different classes. A feature-wise difference between the two is given in Table 7.1.

Table 7.1 Difference Between Function Overloading and Overriding

Concept\Feature Scope Name Signature Virtual Keyword

Functoin overloding same same different Not required

Function overriding different same same Required

7.6 ROLE OF CONSTRUCTORS AND DESTRUCTORS
IN INHERITANCE

When a class is derived from a base class, there are two types of constructors: constructors of
the derived class and the constructors of the base class. At the time of creation of an object of
derived type, the execution of constructors starts from top to down in the sense that the con-
structor of base class is executed before the constructor of its derived class.

At the time of destruction of a derived class object, the destructors are executed in reverse
order, i.e. the destructor of derived class is executed before the destructor of its base class.

Example 9. Write a program in C++ that illustrates the execution process of constructors of
base and derived classes.

Solution: The program given below shows the execution sequence of constructors in the
hierarchy of classes by displaying appropriate messages.

// This program illustrates the execution of constructors
// of base and derived classes

 #include <iostream.h>
 class xyz { // Base class
 public :
 xyz () // Constructor of Base class
 {
 cout << “\n Constructor of Base class executes”;
 }

Inheritance: Extending Classes 227

 };
 class ABC : public xyz { // Derived class
 public :
 ABC () // Constructor of derived class
 {
 cout << “\n Constructor Of Derived class executes”;
 }
 };
 void main()
 {
 ABC obj; // object of derived class is created
 }

Example 10. Write a program in C++ that illustrates the execution process of constructors of
base and derived classes.

Solution: The program given below shows the execution sequence of constructors in the
hierarchy of classes by displaying appropriate messages.

// This program illustrates the execution of constructors
// of base and derived classes

 #include <iostream.h>
 class xyz { // Base class
 public :
 xyz () // Constructor of Base class
 {
 cout << “\n Constructor of Base class executes”;
 }
 };

 class ABC : public xyz { // Derived class
 public :
 ABC () // Constructor of derived class
 {
 cout << “\n Constructor Of Derived class executes” ;
 }

The output of the above program is given below:

Constructor of Base class executes
Constructor of Derived class executes_

The sequence of messages shows that whenever an object is created, the constructor of base
class is executed before the constructor of the derived class.

228 Object-oriented Programming with C++

Example 11. Write a program in C++ that illustrates the execution process of destructors of
base and derived classes.

Solution: The program given below shows the execution sequence of destructors in the
 hierarchy of classes by displaying appropriate messages.

// This program illustrates the execution of destructors
// of Base and derived classes

 #include <iostream.h>
 class xyz { // Base class
 public :
 ~xyz () // Destructor of Base class
 {
 cout << “\n Destructor of Base class executes” ;
 }
 };
 class ABC : public xyz { // Derived class
 public :
 ~ABC () // Destructor of derived class
 {
 cout << “\n Destructor Of Derived class executes” ;
 }
 };
 void main()
 {
 ABC obj;
 } // The object of derived class going out of scope

 };
 void main()
 {
 ABC obj; // object of derived class is created
 }

The output of the above program is given below:

Constructor of Base class executes
Constructor of Derived class executes_

The sequence of messages shows that whenever an object is created, the constructor of base
class is executed before the constructor of the derived class.

Inheritance: Extending Classes 229

Example 12. Consider the following and answer the questions given below:

include <iostream.h >
class University
 {
 int NOC; // Number of Colleges
 protected:
 char Uname[25]; // University Name
 public:
 University(){} ;
 char State [25];
 void EnterData();
 void DisplayData();
 };

 class college: public University
 {
 int NOD; // Number of Departments
 char Cname [25]; // College name
 protected:
 void Aff iation();
 public:
 college(){};
 void Enrol (int,int);
 void Show();
 };
 class Department: public college
 {
 char Dname[25]; // Department
 int Nof; // No. of faculty members
 public:
 Department(){};
 void Display();
 void Input();
 };

The output of the above program is given below:

Destructor of Deriveed class executes

Destructor of Base class executes

The sequence of messages shows that whenever an object goes out of scope, the destructor of
the derived class is automatically executed before the destructor of the base class is executed
by the system.

230 Object-oriented Programming with C++

Questions:

 1. The constructor of which class will be called fi rst at the time of creation of an object of
class Department?

 2. How many bytes does an object belonging to class Department require?

 3. Name member functions which are accessed from the object(s) of class Department.

 4. Name the data member() which are accessible from the object(s) of class College.

Solution:

 1. The constructor of class University will be called fi rst.

 2. 106 Bytes, the reason being that the objects of college and University will also be created
along with the object of Department. Therefore, the total size of memory occupied would
be:

 Object of University = 52 bytes
 College = 27 bytes
 Department = 27 bytes
 Total = 106 bytes

 3. (a) All the public functions of classes – Department, College, and University: Enter-
Data() DisplayData(), Enroll() Show(), Department(), Display(), Input().

 (b) The protected function of class College, i.e. Affi liation().

 4. (a) The protected data member of University, i.e. UName
 (b) The private members of self, i.e. DName and NOf.

7.7 VIRTUAL BASE CLASS
Multiple inheritance has its own disadvantages. When a class inherits from two different classes
and if both the base classes have a same named member then the problem of name clashing
comes as shown in Fig. 7.13.

game

dispData ()

person

player

Name clashing
dispData ()

Figure 7.13 Problem of name clashing in multiple inheritance

In this situation, the programmer of the derived class player has to necessarily use a scope
resolution operator to resolve the problem of name clashing as shown in the following program:

Inheritance: Extending Classes 231

// multiple inheritance

include <iostream.h>
class person {

 protected:
 void dispData() { cout << “\n I am person”; }
 };
class game {

 protected :
 void dispData() { cout << “\n I play a game”; }
 };

class player : public person, public game {
 public:
 void test() {
 person::dispData(); // use of scope resolution operator
 // to resolve name clashing
 game :: dispData();
 }
 };

void main()
 {
 player pOb;
 pOb.test();
}

The output is given below:

I am person

I play a game

It may be noted that each instance of dispData() has been called in the ‘player’ class by qualify-
ing it by the name of the class through scope resolution operator.

However, multiple inheritance can also lead to a graph inheritance as shown in Fig. 7.14.

mammal
Warm blooded

animal

bat

self
Locomotion

bird
Have wings

Figure 7.14 Graph inheritance

232 Object-oriented Programming with C++

It may be noted that the capability of self locomotion is being inherited by the class ‘bat’
through two paths: animal–mammal–bat and animal–bird–bat. Thus ‘locomotion’ property is
being inherited twice by the class ‘bat’. Moreover, execution of constructor functions can also
cause problem. Since, there are two paths, at the time of creation of ‘bat’ object the ‘animal’
object would be created twice. This above anomalous situation can be handled by declaring the
‘animal’ class as virtual by the derived classes as shown below:

class animal {

};

class mammal : public virtual animal {

};

class bird : public virtual animal {

};

class bat : public mammal, pubic bird {

};

Kindly note that the ‘animal’ class has been declared as a virtual base class, during inheritance
declaration. This kind of inheritance makes available only one copy of the inheritable members
of the ‘animal’ class to the derived class ‘bat’.

7.8 SUMMARY
In a programming language, a function is a basic construct that is used for ‘code reuse’. In OOP,
‘code reuse’ is accomplished by two methods: containership and inheritance. The containership
represents ‘has-a’ relationship whereas the inheritance represents ‘a kind of’ (ako) relationship.
Containership excellently implements encapsulation. In inheritance, the base class is closed
for modifi cation and open for extension. This principle is called ‘Open Close Principle’. The
separation of an interface from its implementation makes it ‘plug compatible’. ‘Liskov’s Substi-
tution Principle’ allows a derived class object to be substituted in place of an object of its base
class. A pure virtual function has no implementation. Inheritance can also be used to represent
knowledge and carve out different roles that the base class can play. Multiple inheritances can
lead to creation of graph inheritance.

Inheritance: Extending Classes 233

 MULTIPLE CHOICE QUESTIONS
 1. The ‘has-a’ relationship is depicted by:
 (a) inheritance (b) function
 (c) containership (d) encapsulation

 2. A class is called ______ when it has an object of another class.
 (a) base class (b) container class
 (c) derived class (d) virtual class

 3. In a composition, the contained object remains:
 (a) hidden (b) visible

 4. A containership implements:
 (a) abstraction (b) aggregation
 (c) inheritance (d) polymorphism

 5. A protected mode is as good as:
 (a) public (b) private
 (c) global

 6. A protected mode allows the base class to be:
 (a) virtual (b) instantiated
 (c) extended

 7. In private inheritance, the public members of base class become _______ in the derived
class:

 (a) private (b) public
 (c) protected (d) free

 8. When a class inherits its properties from more than one base class, it is called as:
 (a) multilevel (b) graph inheritance
 (c) multiple inheritance (d) single inheritance

 9. The binding of a virtual function is done at:
 (a) compile time (b) run time
 (c) preprocessing time

10. A class having a pure virtual function is called as:
 (a) concrete class (b) friend class
 (c) base class (d) abstract class

ANSWERS
1. c 2. b 3. a 4. b 5. b 6. c 7. a 8. c 9. b 10. d

 EXERCISES
 1. What is containership? What is its advantage?

 2. In the context of containership, a class is closed for modifi cation. Give your comments.

234 Object-oriented Programming with C++

 3. What is inheritance? Explain the different kinds of inheritances with examples.

 4. Discuss the use of inheritance in the development of object-oriented programs.

 5. In inheritance, discuss the order of invocation of constructors and destructors.

 6. Explain virtual function and differentiate it from a pure virtual function.

 7. What is the difference between function overloading and overriding.

 8. Differentiate between early binding and late binding.

 9. What is an abstract class? Differentiate between multiple and multilevel inheritance.

10. What happens when a derived class inherits from a base class using public, private and
protected keywords.

11. In this chapter, two classes: university and college have been used. Create a base class,
 using generalization, so that both these classes inherit from this common base class.

12. From the student class, using specialization, create a ‘player’ class that has additional
 members: game, level, giveExtraMarks().

13. Write a main() function that tests the player class developed in Question 12.

14. In the college, it was decided to modify the rules of computation of grades for players.
Accordingly modify the classes student and player such that the player class also has a
function ‘compute_grade’. Use the concept of function overriding such that at run time,
for player object, the computation of grade is done using the compute_grade() function of
player class. Choose appropriate rules for the computation of grades for the player object.

15. Use a constructor function to instantiate the player object with following default values:

 Game: cricket

 Level: novice

16. Write short notes on the following:

 a. Open close principle
 b. Liskov’s substitution principle

17. What is meant by proper inheritance?

18. Defi ne the terms extensibility and reusability.

19. What is a virtual base class? Why it is needed?

20. Explain in brief graph inheritance.

TEMPLATES: CODE
SHARING (GENERICITY)

8.1 INTRODUCTION TO CODE SHARING
There are many programming situations where same set of operations is applied on different
data types. For example, the following function exchanges the contents of two variables of
type int.

void exchange (int & oldVal, int & newVal)
 {
 int temp;

 temp = oldVal;
 oldVal = newVal;
 newVal = temp;
 }

Now, consider a situation where we also need to exchange the contents of variables of type: fl oat
and char. Accordingly, we will have to defi ne the following two functions:

Function for fl oat type variables:

void exchange (f oat & oldVal, f oat & newVal)
 {
 f oat temp;

 temp = oldVal;
 oldVal = newVal;
 newVal = temp;
 }

Function for char type variables:

void exchange (char & oldVal, char & newVal)
 {
 char temp;

 temp = oldVal;
 oldVal = newVal;
 newVal = temp;
 }

8

236 Object-oriented Programming with C++

It may be noted that 99% of the code in the above three functions is same except the type
 declaration: int, fl oat and char. Now the pertinent question arises that “Can’t we write a generic
function that can accept all types of parameters?”. If yes, then a tremendous amount of typing
effort can be saved. This will not only increase the productivity of the programmer but also
reduce the size of the program. However, the programmer must demarcate the program code
into two categories: type dependent and type independent codes.

In fact, there are plenty of applications of such generalized (generic) codes. For instance, a
compiler needs to maintain variety of tables: symbol table, literal table, opcode table, compiler
directive table, function name table, etc. All tables are operated in search–insert fashion and the
code for these operations is almost same. Similarly the compiler maintains as many stacks as
types of data it works upon.

Code sharing is implemented in C++ through templates. A detailed discussion on this
 feature is given in the following sections.

8.2 TEMPLATES
A template in C++ is used to create generic functions and classes. The format of template
 declaration is given below:

template <class ugType>

where template is a keyword; “<” is the standard left angled bracket or sign for less than opera-
tor; class is a keyword; ugType, user defi ned generic type; “>” is the standard right angled
bracket or sign for greater than operator.

The user-defi ned type (ugType) becomes the generic type. Let us now rewrite the function
exchange() of Section 8.1 as a generic function.

template <class myType> // declare a function template

void exchange (myType & oldVal, myType & newVal)
 {
 myType temp;

 temp = oldVal;
 oldVal = newVal;
 newVal = temp;
 }

It may be noted that we have used a generic type called ‘myType’ to declare the variables in the
generic function ‘exchange’. This generic type (myType) would get substituted at run time by
whichever type of data is sent by the programmer. Thus, templates use run time polymorphism
to bind the data with their types.

Example 1. Write a program that uses the generic function exchange() and tests it for variety
of types of data.

Solution: The required program is given below:

Templates: Code Sharing (Genericity) 237

// This program creates a function template

include <iostream.h>

template <class myType> // declare a function template

void exchange (myType & oldVal, myType & newVal)
 {
 myType temp;

 temp = oldVal;
 oldVal = newVal;
 newVal = temp;
 }
void main()
 {
 int val1 = 20, val2 = 30;
 exchange (val1, val2);
 cout << “\n The exchanged integer values are:” << val1 << “ and

” << val2;

 f oat fval1 = 15.5, fval2 = 11.7;
 exchange (fval1, fval2);
 cout << “\n The exchanged f oat values are:” << fval1 << “ and ”

<< fval2;

 char cval1 = ‘A’, cval2 = ‘C’;
 exchange (cval1, cval2);
 cout << “\n The exchanged character values are:” << cval1 << “

and ” << cval2;

 }

Example 2. Write a function template called search() that searches an element (generic type)
from a given list of N elements. It returns 1 when the element is found 0 otherwise. Also write
a generic function called readList() that reads a list of N elements.

Solution: We will use an array of N locations of generic type. However, the size of array N
and the index i will be declared as integers because these variables are type dependent.

The output of the program is given below:

The exchanged integer values are: 30 and 20
The exchanged float values are: 11.7 and 15.5
The exchanged character values are: C and A

It may be noted that the generic function exchange() has been able to work with various types
of data.

238 Object-oriented Programming with C++

The required functions are given below:

// This generic function searches an element in a list of elements of
generic type.

template <class myType>
 int search (myType list[], myType element, int N)
 {
 int i, f ag;
 f ag =0;
 for (i =0; i < N; i++)
 {
 if (element == list[i])
 {
 f ag = 1;
 break;
 }
 }
 return f ag;
 }

// This generic function reads a list of N elements
 template <class myType>
 void readList(myType list[], int N)
 {
 int i;
 cout << “\n Enter the elements of the list one by one”;
 for (i = 0; i < N; i++)
 {
 cin >> list[i];
 }
 }

Example 3. Write a menu driven function main() that tests the working of the generic func-
tions developed in Example 2 for integer and f oat values.

Solution: The required function main() is given below:

void main()
 {
 int intList[20], intVal;
 f oat realList[20], realVal;
 int size, choice, result;
 cout << “\n Menu”;
 cout << “\n”;
 cout << “\n Integer list 1”;

Templates: Code Sharing (Genericity) 239

 cout << “\n f oat list 2”;
 cout << “\n Quit 3”;
 cout << “\n”;
 cout << “\n Enter your choice :”;
 cin >> choice;
 switch (choice)
 {
 case 1: cout << “\n Enter the size of the integer list”;
 cin >> size;
 readList(intList, size);
 cout << “\n Enter the element to be searched”;
 cin >> intVal;
 result = search (intList, intVal, size);
 if (result == 1)
 cout << “\n Element found”;
 else
 cout << “\n Not Found”;
 break;

 case 2: cout << “\n Enter the size of the f oat list”;
 cin >> size;
 readList(realList, size);
 cout << “\n Enter the element to be searched”;
 cin >> realVal;
 result = search (realList, realVal, size);

 if (result == 1)
 cout << “\n Element found”;

 else
 cout << “\n Not Found”;
 break;
 case 3: break;
 }
 }

A sample output is given below:

Menu

Integer list 1
float list 2
Quit 3

Enter your choice :1

Enter the size of the integer list5

Enter the elements of the list one by one23 45 56 67 78

Enter the element to be searched 67

Element found

240 Object-oriented Programming with C++

Enter your choice :2

Enter the size of the float list 5

Enter the size of the list one by one 4.2 65.4 7.23 5.1 9.2

Enter the element to be searched65.4

Element found_

8.3 GENERIC CLASSES
Similar to functions, we can also create generic classes in the form of class templates. The
 format of a class template is given below:

⎫
⎪
⎪⎪
⎬
⎪
⎪
⎪⎭

template<class ugType>

class< name>
classtemplate{

};

where template is a keyword; “< ” is the standard left angled bracket or sign for less than
operator; class is a keyword; ugType, user defi ned generic type; “>” is the standard right angled
bracket or sign for greater than operator.

 Note: The template declaration followed by class declaration is jointly called as a class
template.

Example 4. Write a class template called stack that offers the following services for generic type
of data.

 1. Push an element on a stack.

 2. Pop an element from a stack.

Solution: The required class is given below:

// A class template

include <iostream.h>
template <class myType>
 class stack {
 myType stak[20];
 int top,N;
 public:
 stack(int size = 20) {top = –1; N = size;};
 int push (myType item); // return 1 if operation successful
 // 0 otherwise

Templates: Code Sharing (Genericity) 241

 int pop (myType &item);
 };

 template <class myType>
 int stack <myType> :: push (myType item)
 {
 if (top < N)
 {
 top++;
 stak[top] = item;
 return 1;
 }
 else
 return 0;
 }
 template <class myType>
 int stack <myType> :: pop (myType &item)
 {
 if (top > –1)
 {
 item = stak[top];
 top--;
 return 1;
 }
 else
 return 0;
 }

It may be noted that when a member function of a generic class is declared outside the class
then it has to be separately defi ned as a template. The format of defi ning a member function is
given below:

template <class ugType>
<return type> <class name> <<ugType>> :: <function name> (arguments)

 Note: <ugType> has to be written within a pair of angled brackets (< and >).

For example, the push() function of generic class called ‘stack’ has been declared as given
below:

 template <class myType>
int stack <myType> : :

<return type> <class name>

push (myType item)

<<ugType>> : : <function name> (arguments)

242 Object-oriented Programming with C++

Example 5. Write the function main to test both the stacks for values 70 and 23.54 to be
pushed and popped from the integer and f oat stacks, respectively.

Solution: The required function main() is given below:

void main()
 {int size = 5;
 int intVal;
 f oat realVal;
 int result;
 stack <int> intOb(size); // create a stack of int type

 result = intOb.push(70); // push 70 on the integer stack
 if (result == 1)
 cout << “\n item pushed successfully”;
 else
 cout << “\n stack full”;
 result =intOb.pop (intVal);
 if (result == 1)
 cout << “\n The item popped = ” << intVal;
 else
 cout << “\n stack empty”;

 stack <f oat> realOb(5); // create a stack of f oat type

 result = realOb.push(23.54); // push 23.54 on the f oat stack

 if (result == 1)

 Note: An object of generic type class can be created by qualifying (or type casting) the
statement by the type for which the object is desired. The format of object creation for a generic
class is given below:

<class name> <<typeOb>> <object name>

where class name is the name of the class; “<” is the standard left angled bracket or sign for less
than operator; typeOb is the type of data for which the object is required; “>” is the standard right
angled bracket or sign for greater than operator; object name, name of the object to be created.

For example, an object named ‘chOb’ of type stack that works on char type of data can be
created by the following statement:

Stack <Char> chob;

template class

Kindly note that angled brackets are necessary for type casting the required object. The name of
the class juxt aposed with the type in angled brackets (i.e. stack <char>) is called a template class.

Templates: Code Sharing (Genericity) 243

The output of the above program is given below:

item pushed successfully

The item popped = 70

item pushed successfully

The item popped = 23.540001

It may be noted that same class has been used to instantiate two different objects capable of
 working on integer and fl oat type data, respectively. Therefore, a generic class is also known as a
parameterized class.

There is only one piece of generic code which is being shared by different objects working
on different types of data. Thus, we can say that templates help us in sharing the code among
structurally similar family of objects or functions.

8.4 TEMPLATES WITH MORE THAN ONE
GENERIC PARAMETER

A template can have more than one generic parameter as shown by the following declaration:

template <class genType1, class genType2>

The above template declaration is using two generic types: genType1 and genType2. The advan-
tage of this feature of C++ is that a function template or class template can be called for more
number of generic parameters.

Consider the following function template:

template <class T, class U>

void test (T x, U y)

 {
 U result;
 result = x + y;
 cout << “\n result = ”<< result;
 }

 cout << “\n item pushed successfully”;
 else
 cout << “\n stack full”;

 result = realOb.pop (realVal);
 if (result == 1)
 cout << “\n The item popped = ” << realVal;
 else
 cout << “\n stack empty”;
 }

244 Object-oriented Programming with C++

It may be noted that it is using two generic types: T and U. It adds two formal parameters x and y
of type T and U, respectively. The sum is stored in a variable called ‘result’ of type U. Thereafter
the contents of ‘results’ are printed.

Example 6. Write a complete program that uses the generic function test(), developed above
and tests it for various combination of parameters of different types.

Solution: We would test the generic function for various combinations of values of types int,
fl oat and char. The complete program is given below:

include <iostream.h>

template <class T, class U>

void test (T x, U y)

 {
 U result;
 result = x + y;
 cout << “\n result = ”<< result;
 }

 void main()
 {
 cout << “\n sending int, f oat, the result would be of f oat type”;
 test (25, 65.34);
 cout << “\n sending char, int, the result would be of int type”;
 test (‘A’, 10);
 cout << “\n sending int, char, the result would be of char type”;
 test (5, ‘B’);
 cout << “\n sending f oat, int, the result would be of int type”;
 test (10.23, 10);
 }

The output of this program is given below:

sending int, float, the result would be of float type
result = 90.34
sending char, int, the result would be of int type
result = 75
sending int, char, the result would be of char type
result = G
sending float, int, the result would be of int type
result = 20_

It may be noted that the generic function is able to work with two generic parameters. It is
 giving correct results for various combinations of different types of data.

Templates: Code Sharing (Genericity) 245

8.5 SUMMARY
A generic function and class can accept parameters of different types. It allows code sharing
with a view to reduce typing effort, increase productivity and reduce the size of the program.
The code of a program can be comfortably divided into two parts: type dependent and type
independent. The ‘generic type’ gets substituted at runtime by the type of data supplied to the
generic function or class. A template declaration followed by a class declaration is jointly called
a ‘class template’. The name of class juxt aposed with a type in angled brackets is called a
‘template class’. A template can have more than one generic parameter.

 MULTIPLE CHOICE QUESTIONS
 1. A generic function increases:
 (a) productivity (b) program length
 (c) typing effort

 2. A template in C++ is used to create _______ functions
 (a) virtual (b) generic
 (c) recursive (d) friend

 3. The templates use_____ polymorphism to bind the data with their types
 (a) compile time (b) runtime

 4. A generic class is called as:
 (a) base class (b) derived class
 (c) parameterized class (d) friend class

 5. Templates help us in sharing the code among structurally ______ family of objects or functions
 (a) dissimilar (b) superior
 (c) confl icting (d) similar

ANSWERS
 1. a 2. b 3. b 4. c 5. d

 EXERCISES

 1. What is a generic function?

 2. How ‘code sharing’ is implemented in C++?

 3. What is a template and how it is defi ned?

 4. Write a template called areaSq() that computes and returns the area of a square. It takes an argu-
ment called ‘side’ of generic type. Test this function for a given side of type: int, fl oat, double.

 5. Write a generic function called ‘sort()’ that sorts a list of given N data items of generic type
into ascending order.

246 Object-oriented Programming with C++

 6. Write a function main() that tests the above function ‘sort()’ through a menu driven
 interface.

 7. Differentiate between ‘class template’ and ‘template class’.

 8. Write a ‘class template’ called ‘queue’ that offers the following services for generic type of
data.

 a. add an element on a queue
 b. remove an element from a queue

 9. Write a template function called ‘searchTab()’. It maintains a symbol table having following
format:

Symbol Value

 The symbol is an array of character types whereas the value can be of any one of the
 available type for a particular table, i.e. int, fl oat, char, etc.

10. Write a function main() that tests the above function ‘searchTab()’ for a symbol of type int.

11. Write a function main() that tests the above function ‘searchTab()’ for a symbol of type
fl oat.

9.1 INTRODUCTION
Let us consider a situation where we have a class called ‘length’ which represents the length of
an item (say cloth) in feet and inches. Its class diagram is shown in Fig. 9.1.

length

feet
inches

readData()
ShowData()

Figure 9.1 A class called ‘length’

Now if we desire to add two objects of this class type, one of the options is to use a friend func-
tion (say add()) as shown below:

class length {
private:
 int feet;
 int inches;
public:
 void readData();
 void showData();
friend length add(length Ob1, length Ob2); // friend function
};

void length :: readData()
 {
 cout << “\n Enter the length”;
 cout << “\n Feet :”;
 cin >> feet;
 cout << “\n inches:”;
 cin >> inches;
 }

OPERATOR
OVERLOADING

9

248 Object-oriented Programming with C++

void length :: showData()
 {
 cout << “\n Feet :” << feet;
 cout << “\n inches:” << inches;
 }

length add(length Ob1, length Ob2) // stand alone friend function
 {
 length tempOb; // create a temporary object
 tempOb.feet = Ob1.feet + Ob2.feet;
 tempOb.inches = Ob1.inches +Ob2.inches;
 if (tempOb.inches > 12)
 {
 tempOb.inches = tempOb.inches – 12;
 tempOb.feet++;
 }
 return tempOb;
 }

The following main() function tests the above given class.

 void main()
 {
 length Ob1,Ob2,Ob3;
 cout << “\n The f rst object”;
 Ob1.readData();
 cout << “\n The second object”;
 Ob2.readData();

 Ob3 = add (Ob1,Ob2);
 cout << “\n The third object”;
 Ob3.showData();
 }

A sample output is given below:

The first object
Enter the length
Feet :5

inches:10

The second object
Enter the length
Feet :7

inches:8

The third object
Feet :13
inches:6

Operator Overloading 249

The results are correct. However, there are following drawbacks in this program.

 1. We have used a friend function which has violated the very basic principles of object-
oriented programming (OOP), i.e. data and information hiding. The remedy for this
drawback is to make the function add() as member of the class and not a friend.

 2. We have used the following functional notation to add the two objects Ob1 and Ob2:

Ob3 = add (Ob1 + Ob2);

 However, it would have been better if we could write and use the following natural look-
ing expression:

Ob3 = Ob1 + Ob2;

This can be achieved by overloading the ‘+’ operator.

A detailed discussion on operator overloading is given in the following section.

9.2 OPERATOR OVERLOADING
The term ‘operator overloading’ seems to be new but the concept is quite old or perhaps as old
as programming languages. In fact in almost every programming language, the operators are
already overloaded to work on various data types. For example, the ‘+’ operator is used to add
two integers, fl oats, and characters as shown below:

intVal = 20 + 30;
realVal = 23.54 + 67.31;
alphaVal = ‘A’ + ‘S’;

where intVal, realVal, and alphaVal are of int, fl oat and char type, respectively.
It may be noted that the compiler automatically recognizes the data types of the participating

variables in arithmetic expressions given above. Similarly, the operators: ‘–’, ‘*’, ‘/’, etc are
also overloaded to work on different types of data. In C++, the capacity of these operators can
be further enhanced to work on objects of user defi ned classes. The precise defi nition of this
concept is given below:

Operator overloading: the enhanced capacity of C++ operators to work on objects of user
defi ned classes is called as operator overloading. An overloaded operator is a user def ned func-
tion that implements the desired operation on the objects.

Operator overloading is yet another form of polymorphism supported by C++. Similar to
functions, the C++ operators can also be overloaded to perform operations on user defi ned
objects. For example the normal ‘+’ operator can be taught to add two objects (say cup objects)
as shown in Fig. 9.2.

+ =

Figure 9.2 Addition of objects

250 Object-oriented Programming with C++

Let us now understand as to how to overload various types of operators supported by C++. A
category wise discussion on overloading of operators is given in the following sections.

9.3 BINARY OPERATORS
The syntax of overloading of an operator in C++ is given below:

<return type> operator <op> (argument list)

where return type is the type of object or value to be returned by the overloaded operator; opera-
tor is a keyword of C++; <op>, the operator which is to be overloaded; <argument list>, the list
of formal parameters.

Let us now modify the class ‘length’ to include an overloaded operator function for operator
‘+’. The modifi ed class is given below:

class length {
 private:
 int feet;
 int inches;
 public:
 length operator + (length Ob); // overloaded operator function.
 void readData();
 void showData();
};
void length :: readData()
 {
 cout << “\n Enter the length”;
 cout << “\n Feet :”;
 cin >> feet;
 cout << “\n inches:”;
 cin >> inches;
 }
void length :: showData()
 {
 cout << “\n Feet :” << feet;
 cout << “\n inches:” << inches;
 }
length length :: operator + (length Ob) // overloaded operator function
 {
 length tempOb; // create a temporary object
 tempOb.feet = feet + Ob.feet;
 tempOb.inches = inches +Ob.inches;
 if (tempOb.inches > 12)
 {
 tempOb.inches = tempOb.inches -12;
 tempOb.feet++;
 }
 return tempOb;
 }

Operator Overloading 251

It may be noted that the overloaded operator function is part of an object (say Ob1). The function
is designed to receive an object as argument (say Ob2). It returns an object (say Ob3) to the
calling function or object. Thus, there are following three objects involved in the above given
overloaded operator function for the arithmetic operator ‘+’.

 a. The function itself belongs to an object of type length (say Ob1).

 b. The function is receiving a second object of type length (say Ob2).

 c. The function is returning back the third object tempOb to a calling object (say Ob3).

The main function that tests the length class is given below:

void main()
 {
 length Ob1,Ob2,Ob3;
 cout << “\n The f rst object”;
 Ob1.readData();
 cout << “\n The second object”;
 Ob2.readData();
 Ob3 = Ob1 + Ob2; // call the overloaded operator function for ‘+’
 cout << “\n The third object”;
 Ob3.showData();
 }

A sample output of the above program is given below:

The first object
Enter the length
Feet :5

inches:10

The second object
Enter the length
Feet :7

inches:8

The third object
Feet :13
inches:6

It may noted that for same input both the versions of the functions (normal and overloaded)
have given the same result. However, the overloaded operator function has allowed us to use the
arithmetic operator ‘+’ as an infi x binary operator with objects as shown below:

Ob3 = Ob1 + Ob2; // Ob1, Ob2, Ob3 are instances of class ‘length’

From above, it can be summarized that:

 1. An overloaded operator ‘+’ is a function which is written little differently than the normal
add() function. There is only a notational difference as explained in next two points. It
 provides a cleaner code that is easier to read.

252 Object-oriented Programming with C++

 2. The normal function add() takes two arguments: Ob1 and Ob2. It is called by the following
conventional statement for addition of objects:

Ob3 = add (Ob1 + Ob2); // conventional function notation

 3. The overloaded operator ‘+’ function takes only one argument. It is called by the following
elegant statement as if the participating objects are as good as data types such as ‘int’ and
‘fl oat’ are.

Ob3 = Ob1 + Ob2; // The elegant inf x notation of adding the objects.

 4. The logic for the operation has to be provided by the programmer.

Example 1. Write an overloaded operator function for operator ‘<’ (less than) that compares
two ‘length’ objects and returns 1 if the answer is yes and 0 otherwise.

Solution: The required overloaded operator ‘<’ is given below:

int length :: operator < (length Ob) // overloaded operator function
 {if (feet < Ob.feet)
 return 1;
 else
 if (feet == Ob.feet)
 {
 if (inches < Ob.inches)
 return 1;
 else return 0;
 }
 return 0;
 }

Example 2. Test the overloaded operator ‘<’ of Example 1 to compare two objects Ob1 and
Ob2 of class ‘length’ type.

Solution: The required main() function that tests the overloaded operator is given below:

void main()
 {
 length Ob1,Ob2;
 int result;
 cout << “\n The f rst object”;
 Ob1.readData();
 cout << “\n The second object”;
 Ob2.readData();
 result = Ob1 < Ob2; // call to overloaded operator
 if (result == 1) cout << “\n The object 1 is less than object 2”;

Operator Overloading 253

 else
 cout << “\n The object 2 is less than object 1”;
 }

Example 3. Write a complete program that uses an operator overloaded function for the
equality operator ‘= =’ for comparing the operators of class ‘length’.

Solution: The required complete program is given below:

include <iostream.h>

class length {
private:
int feet;
int inches;
public:
int operator = = (length Ob);
void readData();
void showData();
};
void length :: readData()
 {
 cout << “\n Enter the length”;
 cout << “\n Feet :”;
 cin >> feet;
 cout << “\n inches:”;
 cin >> inches;
 }

A sample output is given below:

The first object
Enter the length
Feet :7

inches:10

The second object
Enter the length
Feet :5

inches:11

The object 2 is less than object 1

Similar to the ‘+’ and ‘<’ operators, most of the binary operators can be overloaded as illustrated
in example 3.

254 Object-oriented Programming with C++

void length :: showData()
 {
 cout << “\n Feet :” << feet;
 cout << “\n inches:” << inches;
 }
int length :: operator == (length Ob) // overloaded operator
 function
 {if ((feet == Ob.feet) && (inches == Ob.inches))
 return 1;
 else
 return 0;
 }

 void main()
 {
 length Ob1,Ob2;
 int result;
 cout << “\n The f rst object”;
 Ob1.readData();
 cout << “\n The second object”;
 Ob2.readData();
 if (Ob1 == Ob2)
 cout << “\n The objects are equal”;
 else
 cout << “\n The objects are not equal”;
 }

A sample output is given below:

The first object
Enter the length
Feet :5

inches:7

The second object
Enter the length
Feet :6

inches:2

The object are not equal

It may be noted that, in the above examples, we have overloaded the ‘+’, ‘<’, and ‘= =’ binary
operators to work upon objects of ‘length’ type. Similarly other binary operators can be over-
loaded to work upon objects of user class type. The only important point to note is that the
programmer has to provide the logic for the operations corresponding to the operator being
overloaded.

Operator Overloading 255

Example 4. Write a complete program that uses an overloaded operator function for the
 arithmetic assignment operator ‘*=’ to multiply a length object with a given integer number.

Solution: We would convert the length comprising of feet and inches to inches. The length
in inches would be multiplied by the given number (say Num). The resultant length would
again be converted back to the format: feet and inches. The required program is given below:

include <iostream.h>

class length {
private:
int feet;
int inches;
public:
void operator *= (int Num);
void readData();
void showData();
};
void length :: readData()
 {
 cout << “\n Enter the length”;
 cout << “\n Feet :”;
 cin >> feet;
 cout << “\n inches:”;
 cin >> inches;
 }

void length :: showData()
 {
 cout << “\n Feet :” << feet;
 cout << “\n inches:” << inches;
 }

void length :: operator *= (int Num) // overloaded operator function
 {
 int temp;
 temp = feet * 12 + inches; // convert the length into inches
 temp = temp * Num; // multiply by Num

9.3.1 Arithmetic Assignment Operators
C++ supports arithmetic assignment operators such as +=, – =, *= etc. These operators combine
two operations: an arithmetic operation and an assignment operation. For example the ‘*=’
operator combines the multiplication (‘*’) and the assignment (‘=’) operations as shown below:

term *= 5; is equivalent to : term = term * 5;

Arithmatic assignment operators can also be overloaded as illustrated by example 4.

256 Object-oriented Programming with C++

 inches = temp % 12; // convert back the length to feet and inches
 feet = temp/12;
 }
 void main()
 {int Num;
 length Ob;
 cout << “\n The Object”;
 Ob.readData();
 cout << “\n Enter the number which is to be multiplied with
object”;
 cin >> Num;
 Ob *= Num; // call the overloaded operator function
 cout << “\n The multiplied object :”;
 Ob.showData();
 }

A sample output of the program is given below:

The object
Enter the length
Feet :5

inches:10

Enter the number which is to be multiplied with object: 2

The multiplied object
Feet :11
inches:8

9.4 UNARY OPERATORS
A unary operator can also be overloaded. Since a unary operator acts upon only one operand, an
overloaded unary operator would obviously take one argument less than the overloaded binary
operator. Thus, an overloaded unary operator would take zero arguments, i.e. no formal arguments.

For instance, the following overloaded unary operator ‘++’ increments the contents of the
‘inches’ component of the length object by one inch.

void length :: operator ++ () // overloaded operator function
 {
 inches = inches + 1;
 if (inches >= 12)
 {
 inches = inches – 12;
 feet = feet + 1;
 }
 }

Operator Overloading 257

Example 5. Write a program that uses the overloaded operator ‘++’ to increment an object of
type ‘length’ class.

Solution: The required program is given below:

include <iostream.h>

class length {
private:
int feet;
int inches;
public:
void operator ++ ();
void readData();
void showData();
};void length :: readData()
 {
 cout << “\n Enter the length”;
 cout << “\n Feet :”;
 cin >> feet;
 cout << “\n inches:”;
 cin >> inches;
 }

void length :: showData()
 {
 cout << “\n Feet :” << feet;
 cout << “\n inches:” << inches;
 }

void length :: operator ++ () // overloaded operator function
 {
 inches = inches + 1;
 if (inches >= 12)
 {
 inches = inches – 12;
 feet = feet + 1;
 }
 }
 void main()
 {
 length Ob;
 Ob.readData();
 ++Ob;
 cout << “\n after ++Ob”;
 Ob.showData();
 Ob++;
 cout << “\n after Ob++”;
 Ob.showData();
 }

258 Object-oriented Programming with C++

A sample output is given below:

Enter the length
Feet :5

inches:11

after ++0b
Feet :6

inches:0

after 0b++
Feet :6

inches:1

It may be noted that the overloaded operator ‘++’ is working with both the forms, i.e. prefi x and
postfi x forms. However, both the forms increment the object of class ‘length’ in the prefi x mode
of the increment operator ‘++’.

It may be further noted that the overloaded ‘++’ operator does not work in an arithmetic/assign-
ment expression such as given below:

Ob2 = ++ Ob1;

The compiler gives the error “Not an allowed type”.

Similarly, the decrement operator ‘– –’ can also be overloaded.

9.5 INPUT/OUTPUT OPERATORS
The insertion operator ‘>>’ and the extraction operator ‘<<’ can be overloaded to work with
user defi ned types. The main advantage of these overloaded operators is that the input and
output operations related to objects become quite elegant and easy to read. Since the input and
output operations on objects need to access its private data members, the overloaded operator
functions are declared as friends of the class.

The operators ‘>>’ and ‘<<’ use istream and ostream classes, respectively. Therefore, the
overloaded operator functions have two operands: f rst operand of type stream and the second
operand is an object. Both operands are passed by reference. The return type of these functions
is the corresponding stream type.

For instance, the prototype of overloaded operator function for ‘>>’ intended for the class
length is given below:

istream &operator >> (istream &stream, length &lenOb);

Similarly, the prototype of overloaded operator function for ‘<<’ intended for the class length
is given below:

ostream &operator << (ostream &str, length &lenOb);

Operator Overloading 259

Example 6. Modify the class called ‘length’ such that it has the overloaded operator functions
for ‘<<’ and ‘>>’, capable of input and output of data for an object of type ‘length’.

Solution: The required class is given below:

class length {
private:
int feet;
int inches;
public:
friend ostream &operator << (ostream&, length &); // overloaded
operator ‘<<’
friend istream &operator >> (istream&,length &); // overloaded operator
‘>>’

};

istream &operator >> (istream &stream, length &lenOb)
 {
 cout << “\n Enter Feet :”;
 stream >> lenOb.feet;
 cout << “\n Enter inches: “;
 stream >> lenOb.inches;
 return stream;
 }
 ostream &operator << (ostream &str, length &lenOb)
 {
 str << “\n Feet = “<< lenOb.feet << “\n Inches =” << lenOb.inches;
 return str;
 }

Example 7. Write a function main() that tests the class ‘length’ for input and output through
‘cout’ and ‘cin’ statement, respectively.

Solution: The required function main() is given below:

void main()
 {int Num;
 length Ob;
 cout << “\n Read the Object”;
 cin >> Ob;
 cout << “\n Show the Object”;
 cout << Ob;
 }

260 Object-oriented Programming with C++

A sample output of this function main() is given below:

Read the object
Enter Feet :9

Read the object
Enter Feet :9

Enter inches: 11

Show the object
Feet = 9
Inches = 11

9.6 RULES FOR OPERATOR OVERLOADING
The rules for operator overloading are given below:

 1. No new operators can be invented. For instance, we cannot create a power operator such
as ‘**’ or ‘^’.

 2. The overloaded operator functions cannot have default arguments.

 3. The following operators cannot be overloaded
a. The dot: ‘.’
b. The arithmetic if: ‘? :’
c. Size: ‘sizeof()’
d. Scope resolution: ‘::’
e. Preprocessing symbol: ‘#’

 4. The assignment operator has a default behaviour for user defi ned types, i.e. objects. This
operator may only be overloaded when the object contains pointers.

 5. Operators are inherited by the derived classes except the overloaded assignment operators.

9.7 SUMMARY
Operator overloading is an old concept of exhibiting polymorphism for operators. It is not
akin to OOP. In OOP, this concept has been only extended to apply on objects. An overloaded
operator is a user defi ned function that cannot take any default arguments. It is written little
differently than a normal function. It provides an elegant infi x notation of binary operations on
objects. No new operator can be created. An overloaded I/O operator has two arguments: stream
and object and both are passed by reference. All operators cannot be overloaded. For instance,
the operators like: ‘::’, ‘#’, sizeof(), etc. cannot be overloaded.

Operator Overloading 261

 MULTIPLE CHOICE QUESTIONS
 1. An overloaded operator is a user defi ned function that operates on:
 (a) data (b) operators
 (c) objects (d) classes

 2. Operator overloading is a form of:
 (a) polymorphism (b) inheritance
 (c) containership (d) generosity

 3. An overloaded unary operator takes ________ arguments.
 (a) one (b) two
 (c) three (d) zero

 4. We cannot create any ________ operator by using operator overloading
 (a) new (b) unary (c) binary

 5. An overloaded operator cannot have _______ arguments
 (a) multiple (b) default (c) pointer

ANSWERS
1. (c) 2. (a) 3. (d) 4. (a) 5. (b)

 EXERCISES
 1. What is meant by overloading an operator? What is the purpose behind it?

 2. Modify Example 1 such that it overloads the ‘–’ operator for subtraction of one length
 object from another.

 3. Write a complete program that uses overloaded operator ‘>’ to compare the marks of two
student objects (Chapter 4).

 4. Modify Question 3 (the above question) so as to obtain a merit list of N students of a class
on the basis of marks secured by the students.

 5. Write a complete program that uses an overloaded operator function for arithmetic
 assignment operator ‘*=’ to add two length objects.

 6. Write a program that uses the overloaded operator ‘– –’ to decrement an object of length
type.

 7. What are the operators that cannot be overloaded?

 8. List the rules for operator overloading.

10.1 FILE CONCEPTS
We know that every program or sub-program consists of two major components: algorithm and
data structures. The algorithm takes care of the rules and procedures required for solving the
problem and the data structures contain the data. The data is manipulated by the procedures for
achieving the goals of the program as shown in Fig. 10.1.

Program

Algorithm

Data
Structures

Figure 10.1 The structure of a program or sub-program

In object-oriented programming (OOP), an object is central to the ideology. The object has two
components: states and behaviours. The states and behaviours model the data and procedures,
respectively. Each behaviour is implemented as a subprogram having arrangement similar to
that in Fig. 10.1.

A data structure is volatile by nature in the sense that its contents are lost as soon as the
 execution of the program is over. Similarly, an object also loses its states after the program
is over. If we want to permanently store our data or want to create persistent objects then
it becomes necessary to store the same in a special data structure called fi le. The fi le can
be stored on a second storage media such as hard disk. In fact, vary large data is always stored
in a fi le.

FILE HANDLING

IN C++
10

File Handling in C++ 263

Now, any thing stored on a permanent storage such as hard disk is called a fi le. For example,
MBR (master boot record), FAT (fi le allocation table), partition table, programs, data fi les, etc.
are examples of fi les.

Let us consider the information recorded in Fig. 10.2.

001

002

003

004

Ajay

Ram

John

Hasan

50

67

70

69

Figure 10.2 Information about students

Each entry into the table shown in Fig. 10.2 is a set of three data items: Roll number, Name
and Marks. The fi rst entry states that the Roll number and total marks of a student named as
Ajay are 001 and 50, respectively. Similarly the second entry relates to a student named as Ram
whose Roll number is 002 and total marks equal to 70. Each entry of the table is also known as a
record of a student. The term record can be defi ned as a set of related data items of a particular
entity such as a person, machine, place, or operation. An individual data item within a record is
known as a fi eld. When a fi eld assumes unique values then it is called a key-f eld. For example,
‘Roll’ is the key-fi eld in the record of the student as shown in Fig. 10.3.

Key-field

student

fields

Roll Name Marks record

Figure 10.3 Structure of a record

Thus, the record of a student is made up of following three fi elds:

 1. Roll number

 2. Name

 3. Marks

264 Object-oriented Programming with C++

Let us assume that a particular class has 30 students. Now, the entire information of the class consist-
ing of 30 records is referred to as a fi le. The arrangement of records in the fi le is shown in Fig. 10.4.

001

002

003

004

Ajay

File

Ram

John

Hasan

50

67

70

69

030 Sanya 69

Figure 10.4 File: collection of records

A f le can be precisely defi ned as a logical collection of records where each record consists of a
number of items known as f elds. The records in a fi le can be arranged in the following three ways:

 1. Ascending/descending order: the records in the fi le can be arranged according to ascend-
ing or descending order of a key fi eld. For example, the records in the fi le of Fig. 10.4 are
in ascending order of its Roll fi eld.

 2. Alphabetical order: if the key fi eld is of alphabetic type then the records are arranged in
alphabetical order.

 3. Chronological order: in this type of order, the records are stored in the order of their
occurrence, i.e. arranged according to dates or events. If the key-fi eld is a date, i.e. date
of birth, date of joining, etc. then this type of arrangement is used.

When the data of a fi le is stored in the form of readable and printable characters then the fi le
is known as a text f le. It is a special type of fi le that does not contain records but only charac-
ters. On the other hand, if a fi le contains non-readable characters in binary code then the fi le is
called as a binary f le. For instance, the program fi les created by an editor are stored as text fi les
whereas the executable fi les generated by a compiler are stored as binary fi les.

In the following sections, an introduction to fi les supported by C++ is given.

10.2 FILES AND STREAMS
In C++, a stream is a data fl ow from a source to a sink. The sources and sinks can be any of
the input/output (I/O) devices or fi les. For input and output, there are two different streams

File Handling in C++ 265

called input stream and output stream as shown in Fig. 1.2. We have already used the following
 unformatted I/O streams in our previous programs:

Stream Description

cin Standard input stream

cout Standard output stream

cerr Standard error stream

The standard source and sink are keyboard and monitor screen, respectively. These unformat-
ted streams are initialized whenever the header fi le <iostream.h> is included in a program.
 However, we need to use the operators ‘<<’ and ‘>>’ to implement these streams.

The important stream classes required for fi le I/O are ifstream, ofstream and fstream. A brief
discussion on these streams is given below:
ifstream: It is the input fi le stream class. Its member function open() associates the stream with
a specifi ed fi le in an input mode. For example, if it is desired to open a fi le called “xyz. dat” for
input then the following statements can be used.

ifstream myf le;
myf le.open (“xyz.dat”);

The above declaration means creating an input stream called myfi le and associating it with the
fi le called “xyz.dat”. In addition to open(), ifstream class inherits the following functions from
istream class.

(i) get(); (ii) getline(); (iii) read(); (iv) seekg(); (iv) tellg()

ofstream: It is the output fi le stream class. Its member function open() associates the stream
with a specifi ed fi le in an output mode. For example, if it is desired to open a fi le called “abc.
dat” for output then the following statement can be used:

ofstream yourf le;
yourf le.open (“abc.dat”);

The above declaration means creating an output stream called yourfi le and associating it with
the fi le called “abc.dat”. In addition to open(), ofstream inherits the following functions from
ostream class

(i) put(); (ii) write(); (iii) seekp();, (iv) tellp()

fstream: It supports fi les for simultaneous input and output. It is derived from ifstream, ofstream
and iostream classes. The functions associated with this stream are:

 1. open: This associates the stream with a specifi ed fi le.

 2. close: It closes the stream.

 3. close all: It closes all the opened streams.

 4. seekg: Sets current ‘get’ position in a stream.

 5. seekp : Sets current ‘put’ position in a stream.

266 Object-oriented Programming with C++

 6. tellg: Returns the current ‘get’ position in a stream.

 7. tellp: Returns the current ‘put’ position in a stream.

The header fi le ‘fstream.h’ contains all the class declarations required for fi le I/O. Even
‘iostream.h’ is included in ‘fstream.h’ and therefore, ‘fstream.h’ should be included in a program
that manipulates fi les.

10.3 OPENING AND CLOSING A FILE (TEXT FILES)
A fi le can be opened in C++ by two methods:

 1. By using the constructor of the stream class to be used.

 2. By using the open() function of the stream class to be used.

The fi rst method is simple to start with. Let us consider a situation wherein we desire to open a
fi le called “message.dat” containing the following text:

“When you feel angry, keep your mouth shut.
Don’t talk and your anger will be f fty percent gone.

Drink some cold water and it will be seventy f ve
percent gone. Get out of the house and take a walk,

 and it will be one hundred percent gone.”

We will open this fi le by using the default constructor of the ofstream class by the following
statement:

ofstream myf le (“message.dat”);

The above declaration means open an output stream called myfi le and initialize it with the name
“message.dat”. The “message.dat” is the name of the fi le lying on the hard disk. However, in the
program it will be known as myfi le. Thus, whatever is written in myfi le stream in the program,
will actually be written into the fi le “message.dat”. Since a simple text is to be written into the
fi le, we can use the operator << to write the data. The following program creates the required fi le:

//This program creates a f le called “Message.dat”

#include <fstream.h> // Required for f le I/O
 main()
 {
 ofstream myf le (“message.dat”);
 if (!myf le)
 { // check if the f le is opened or not
 cout << “\n Cannot open this f le ..” ;
 return 1;
 }

 myf le << “\n When you feel angry, keep your mouth shut.\n”;
 myf le << “Don’t talk and your anger will be f fty percent gone.\n”;
 myf le << “Drink some cold water and it will be seventy f ve\n”;
 myf le << “percent gone. Get out of the house and take a walk\n”;

File Handling in C++ 267

 myf le << “and it will be one hundred percent gone.”;
 myf le.close(); //close the f le
 return 0;
 }

It may be noted from the above program that the stream myfi le has been used inside the
program instead of ‘cout’ stream to write the text in the fi le with the help of the operator ‘<<’.
Moreover, a function close() has been used to close the fi le at the end of the program.

The desired fi le called “message.dat” has been created by the above program in the
current directory. Let us open the fi le in a text editor (say notepad) to verify the contents. The
snapshot of notepad is given in Fig. 10.5:

Figure 10.5 The contents of ‘message.dat’

It may be observed that not only the above program has created the desired fi le: ‘message.dat’
but also it contains the correct contents.

We can open the created fi le for input by using the default constructor of the ifstream class
by the following statement:

ifstream yourf le (“message.dat”);

The above declaration means: open an input stream called yourfi le and initialize it with the
name “message.dat”. Thus, the fi le “message.dat” will be known as yourfi le in the program.
Since it is a simple text fi le, we can use the operator ‘>>’ to read the data from the fi le. However,
there is a limitation of the operator ‘>>’ in reading a string containing blanks or white space
characters. The operator ‘>>’ stops the input at the occurrence of fi rst white space in the input
string. Thus, we can read a word at time from the text fi le by the ‘>>’ operator.

However, for reading entire lines of text, C++ provides get() and getline() functions as input
member functions of the ifstream class. It also provides a put() function as output member
function of the ofstream class. These functions are discussed in the following sections.

10.3.1 Function get()
This function is similar to operator ‘>>’ except that it includes white space characters or blanks
in the input string. However, it stops at ‘\n’, the new line character. This function can be used in
one of the following variations:

 1. get (ch) (i)

 2. get (ch, n) (ii)

268 Object-oriented Programming with C++

The fi rst variation of get() reads a character at a time from the stream whereas the second
 variation reads a string of characters of length n – 1. In fact, it reads n – 1 number of characters
for a specifi ed size n.

Let us now write a program that reads the fi le “message.dat” for us. We will use function
get() to read a line at a time from the fi le in a variable called row and repeat this task as many
times as there are text lines in the fi le. The program is given below:

// This program reads a f le called Message.dat

#include <fstream.h>
#include <conio.h>

main()
{
 ifstream yourf le (“message.dat”); // Open f le for input
 char row[80],ch;
 int i;
 clrscr();
 if (!yourf le)
 {
 cout << “Cannot open f le .. ”;
 return 1;
 }
 for (i = 1;i <= 6;i++)
 {
 yourf le.get(row,80); // Read a line from the f le
 yourf le.get(ch); // Read ‘\n’
 cout << row << “\n”; // Display the line on the screen
 }
 yourf le.close();
 return 0;
}

 Note: While reading a line the get() function stops at ‘\n’. Therefore, in the above
program an extra get() has been used in the form of yourfi le.get(ch) to read the end of line,
i.e. ‘\n’.

The output of the above program is given below:

When you feel angry,keep your mouth shut.
Don’t talk and your anger will be fifty percent gone.
Drink some cold water and it will be seventy five
percent gone.Get out of the house and take a walk
and it will be one hundred percent gone.

It may be noted that the above program has not only opened the fi le “message.dat” but also read
the text of the fi le and displayed on the computer screen.

File Handling in C++ 269

10.3.2 Function getline()
The format of the function getline() is shown below:

getline (ch, N)

This function reads a line of characters that terminates with ‘\n’, i.e. a new line character. It
reads the characters from a line till it encounters a ‘\n’ or N – 1 characters are read, where N is
the specifi ed length of the character to be read from the fi le.

A modifi ed program that uses getline() function to read the fi le “Message.dat” is given below:

// This program reads a f le called Message.dat from the current directory
// It illustrates the usage of getline() function

 #include <fstream.h>
 #include <conio.h>
 main()
 {
 ifstream yourf le(“message.dat”); // open the f le in input mode char
row[80];
 int i;
 clrscr();
 if (!yourf le)
 {
 cout << “Cannot open f le .. ”;
 return 1;
 }
 for (i = 1;i <= 6;i++)
 {
 yourf le.getline(row,80); // Read a line from the f le
 cout << row << “\n”; // Display it
 }
 yourf le.close();
 return 0;
}

The getline() and get() functions have another variation, wherein their argument list can
 contain a third argument as shown in the following format:

 1. getline(ch, n, c)

 2. get(ch, n, c)

The third argument ‘c’ is known as the terminating character. The default terminating character
is ‘\n’, i.e. the new line character.

Example 1. Modify the above program to read a line from the f le “message.dat”, terminated
by the alphabet ‘k’.

270 Object-oriented Programming with C++

Solution: The required program is given below:

 // This program illustrates the usage of terminating character
 // in the argument of getline function()

 #include <fstream.h>
 #include <conio.h>
 main()
 {
 ifstream yourf le (“message.dat”); // Open a f le for input
 char row[80];
 int i;
 clrscr();
 if (!yourf le)
 {
 cout << “Cannot open f le .. ”;
 return 1;
 }
 yourf le.getline(row,80,‘k’); // Read a line from f le terminated by
‘k’ // terminated by ‘l’
 cout << row; // display the line
 yourf le.close();
 return 0;
 }

The output of this modifi ed program is given below:

When you feel angry,

Kindly note that the stream yourfi le has read the characters from beginning of the line till it
encountered the character “k”.

However, it is worth noting that the above programs work only with a particular fi le called
“message.dat”. It is quite an infl exible arrangement whereas in a real life situation, we would
like these programs to work with any user specifi ed text fi le.

The desired fl exibility can be brought by the following two simple steps:

 1. Read the name of fi le to be opened at run time in a variable of type char.

 2. Open the stream in a desired mode and associate the stream with the variable that contains
the name of the fi le to be opened.

The following example opens a fi le for which the user supplies the name at run time.

Example 2. Write a program that prompts the user to enter the name of the f le to be opened
(say “message.dat”). It associates the f le name with the output stream (say yourf le) and
displays its contents.

File Handling in C++ 271

Solution: The required program that reads the name of the fi le, to be opened, at run time is
given below:

// This program reads a f le
// It illustrates the usage of variable f le name

#include <fstream.h>
#include <conio.h>
 main()
 {
 char fname[15]; // variable to store f lename
 char row[80];
 int i;
 clrscr();
 cout <<“\nEnter the name of the f le to be opened :”;
 cin >> fname;
 ifstream yourf le(fname);
 if (!yourf le)
 {
 cout << “\n Cannot open f le .. ”;
 return 1;
 }
 cout << “\nThe contents of ‘message.dat’ are...\n\n”;
 for (i = 1;i <= 6;i++)
 {
 yourf le.getline(row,80);
 cout << row << “\n”;
 }
 yourf le.close();
 return 0;
 }

The output of the program is given below:

Enter the name of the file to be opened :message. dat

The contents of ‘message.dat’ are...

When you feel angry ,keep your mouth shut.
Don’t talk and your anger will be fifty percent gone.
Drink some cold water and it will be seventy five
percent gone.Get out of the house and take a walk
and it will be one hundred percent gone.

It may be noted that the program has now prompted the user to enter the name of the fi le to be
read. The advantage is that the program has become fl exible, i.e. the user can give name of any
of the existing fi les at run time.

272 Object-oriented Programming with C++

Example 3. Write a program that writes the following piece of text in a user def ned f le (say
“thought.dat”.). Verify the creation of the f le by opening the same in output mode and print-
ing its contents on the screen.

“True education is that destroys narrow-mindedness”

Solution: We would use the function ‘put()’ to write the above given text of 47 characters into
a user specifi ed fi le. The required program is given below:

//This program illustrates the usage of Put() function
//In this program we will write a line of text in a f le
//character by character

#include <fstream.h>
#include <conio.h>
void main()
 {
 char fname[15];
 char text[] = “True education is that destroys narrow-mindedness”;
 char line[80];
 int i;
 clrscr();
 cout << “Enter the name of the f le to be opened : ”;
 cin >> fname;
 ofstream af le(fname);
 for (i = 0;i < 48;i++)
 af le.put(text[i]); // Write a character into the f le
 af le.put(‘\n’); // write end-of-line character
 af le.close();
 // Open the f le in Input Mode
 ifstream xf le(fname);
 cout << “\nThe line read from the f le is : ”;

Though opening of a fi le through a constructor is an easy method but the following points
should be kept in mind while opening the fi les:

 1. Only one fi le can be connected to a stream.

 2. A fi le opened in any mode (input or output) must be closed by the function close().

 3. If a fi le is opened for output then a new fi le would be created if no fi le with the same name
already exists otherwise the contents of the existing fi le will be deleted.

10.3.3 Function put()
This function writes a single character at a time to the output stream. For example, the following
statement will write the character content of character variable ‘ch’ into the stream called testfi le.

testf le.put (ch);

File Handling in C++ 273

Example 4. Write a program that creates a text f le called ‘copy.dat’ which is an exact copy of
a given textf le called ‘thought.dat’.

Solution: We will open two streams orgFile and copyFile in input and output streams,
 respectively. The physical fi les ‘thought.dat’ and ‘copy.dat’ would be assigned to orgFile and
copyFile, respectively. The get() and put() functions would be used to copy the contents of
orgFile to copyFile. The required program is given below:

//This program creates an exact copy of a text f le

#include <fstream.h>
#include <conio.h>
 main()
 {
 char orgFile[15],copyFile[15];
 char ch;

 xf le.getline(line,80); // Read a line from the f le
 cout << “\n” << line; // Display it
 xf le.close();
 }

The above program writes the text “True education is that destroys narrow-mindedness” char-
acter by character into a fi le whose name is provided by the user at run time. The program reads
the line from the fi le and displays it on the screen. The output of the program is given below:

Enter the name of the file to be opened : throught.dat

The line read from the file is :
True education is that destroys narrow-mindedness

10.4 OPENING THE FILES BY USING FUNCTION OPEN()
A fi le can also be opened in a program by a function called open(). However, we must specify
the stream to be associated with the fi le. For example a fi le called “test.dat” can be opened for
output by the following set of statements:

 ofstream newf le; (i)
 newf le.open (“test.dat”); (ii)

The statement (i) declares the stream newfi le to be of type ofstream, i.e. output stream. The
statement (ii) assigns the fi le stream to the fi le called “test.dat”. Thus, in the program the fi le
“test.dat” would be known as newfi le. The major advantage of this method is that more than one
fi les can be opened at a time in a program.

274 Object-oriented Programming with C++

 clrscr();
 cout << “\n Enter the input f le name : ”;
 cin >> orgFile;
 ifstream orgf le;
 orgf le.open(orgFile);
 if (!orgf le)
 {
 cout << “\nCannot Open Input f le .”;
 return 1;
 }
 cout << “\n Enter the output f le name : ”;
 cin >> copyFile;
 ofstream docf le;
 docf le.open(copyFile);
 if (!docf le)
 {
 cout << “\n Cannot Open Input f le .”;
 return 1;
 }
 while (orgf le)
 {
 orgf le.get(ch);
 docf le.put(ch);
 }
 orgf le.close();
 docf le.close();
 return 0;
 }

In order to verify the effectiveness of the above program, let us open the ‘copy.dat’ in notepad.
The snapshot of the notepad is given below:

It may noted that the above program has created an exact copy of the ‘thought.dat’ into a new
fi le called as ‘copy.dat’.

10.5 READING AND WRITING BLOCKS
AND OBJECTS (BINARY FILES)

In the previous sections, we have used text fi les. Let us now write binary fi les which are more
versatile and popular among programmers. The major advantage of such fi les is that they

File Handling in C++ 275

require less memory space for storage of data. Moreover, these fi les can be used to read or write
structured data such as structures, class objects, etc.

For binary fi les, the functions read() and write() are used to read and write objects, respectively.
Blocks of data can also be read or written by these functions. The general form of read() function
is given below:

<name> . read ((char *) & <block>, size);

where <name> is the name of the input stream; <block> is the name of the block to be read from
the stream; size is the size of the block which can be obtained by a function called size of().

The general form of write() function is given below:

<name> . write ((char *) & <block>, size);

where <name> is the name of the output stream; <block> is the name of the block to be written
into the stream; size is the size of the block.

 Note: The type cast (i.e. (char *)) is necessary in the read() and write() functions.

Let us write the record given below in a fi le called “Test.dat”.

Name

OfficerData

Age

Rank

Place

The steps required to do this task are:

 1. Create a structure called offi cer-data.

 2. Initialize a structure variable with the given data or read it from the keyboard.

 3. Open an output stream (say ofi le).

 4. Associate the stream ofi le with the fi le “Test.dat”.

 5. Obtain the size of the structure by the function size of ().

 6. Write the structure into the fi le by write() function.

The above given steps are implemented in the program given below:

// This program writes a block of data into a f le

#include <fstream.h>
#include <conio.h>
#include <stdio.h>
void main()

276 Object-oriented Programming with C++

{
 struct off cerData // Declare structure
 {
 char name[15];
 int age;
 char rank[5];
 char place[10];
 };
 int size;
 char f leName[15]; // Initialize the structure variable orec
 off cerData offRec;
 cout <<“\n Enter the record of an off cer”;
 cout <<“\n Name:”; gets(offRec.name); ff ush (stdin);
 cout <<“\n Age:”; cin >> offRec.age;
 cout <<“\n Rank:”; gets(offRec.rank);ff ush (stdin);
 cout <<“\n Place:”; gets(offRec.place);ff ush (stdin);
 cout <<“\n Enter the name of the File to be opened: ”;
 gets(f leName);
 ofstream of le;
 of le.open(f leName); // open the f le for output
 size=sizeof(off cer_data); // Compute the size of structure
 of le.write((char *) &offRec, size); // Write into the f le
 of le.close();

 }

The following data was submitted during the run of the above program

Enter the record of an officer
Name:Dr. J.P. Gupta

Age:58

Rank:VC

place:Noida

 Enter the name of the File to be opened: test.dat

A program that reads the block of data from the fi le called “Test.dat” and displays it as given
below:

// This program reads a block of data from a f le

#include <fstream.h>
#include <conio.h>
#include <stdio.h>
void main()
 {
 struct off cer_data // Declare structure
 {
 char name[15];
 int age;

File Handling in C++ 277

Example 5. Write a program which creates a f le containing the records of off cers working in
a University. The name of the f le is provided by the user.

Solution: The required program is given below:

// This program writes a block of data into a f le

#include <fstream.h>
#include <conio.h>
#include <stdio.h>
void main()

{
 struct off cerData // Declare structure

 char rank[5];
 char place[10];
 };
 int size;
 char f leName[15];
 off cer_data offRec; // Declare structure variable orec
 clrscr();
 cout << “\nEnter the name of the f le to be opened :”;
 gets(f leName); ff ush(stdin);
 ifstream inf le;
 inf le.open(f leName); // Open the File for input
 size=sizeof(off cer_data); // Compute size of the structure

 inf le.read((char *) &offRec, size); // Read the structure
 cout << “The off cer data is :”;
 cout << “\n Name = ” << offRec.name;
 cout << “\n Age = ” << offRec.age;
 cout << “\n Rank = ” << offRec.rank;
 cout << “\n Place = ” << offRec.place;
 inf le.close();
 }

The output of above program is given below:

Enter the name of the file to be opened :test.dat
The officer data is :
Name = Dr. J.P Gupta:

Age = 58

Rank = VC

place = Noida

It may be noted that the record of the offi cer was correctly written and read by the above two
programs.

278 Object-oriented Programming with C++

 {

 char name[20];
 int age;
 char rank[5];
 char place[10];
 };

 int size, N;
 char f leName[15]; // Initialize the structure variable orec
 off cerData offRec;
 cout << “\n Enter the name of the File to be opened: ”;
 gets(f leName);
 cout << “\n Enter the number of off cers :”;
 cin >> N;
 ofstream of le;

 of le.open(f leName); // open the f le for output
 size = sizeof(off cerData); // Compute the size of structure
 cout << “\n Enter the record of off cers one by one”;
 for (int i = 1; i <= N; i++)
 {

 cout << “\n Name:”; gets(offRec.name); ff ush (stdin);
 cout <<“\n Age:”; cin >> offRec.age;
 cout <<“\n Rank:”; gets(offRec.rank);ff ush (stdin);
 cout <<“\n Place:”; gets(offRec.place);ff ush (stdin);
 of le.write((char *) &offRec, size); // Write record into the f le
 }
 of le.close();

 }

Example 6. Write a program which reads a f le containing the records of off cers working
in a University. The name of the f le is provided by the user. The records of the off cers are
 displayed in the following format:

S. NO. Name Age Rank Place

Solution: The required program is given below:

// This program reads block of data into from a f le

#include <fstream.h>
#include <conio.h>
#include <stdio.h>

File Handling in C++ 279

void main()
{
 struct off cerData // Declare structure
 {
 char name[20];
 int age;
 char rank[5];
 char place[10];
 };
 int size, N;
 char f leName[15]; // Initialize the structure variable orec
 off cerData offRec;
 cout << “\n Enter the name of the File to be opened: ”;
 gets(f leName);
 cout << “\n Enter the number of off cers :”;
 cin >> N;
 ifstream of le;

 of le.open(f leName); // open the f le for output
 size = sizeof(off cerData); // Compute the size of structure
 cout << “\n\t\t Off cer Data”;
 cout << “\nS.No.\tName\t\tAge\tRank\tPlace”;
 cout << “\n___”;

 for (int i = 1; i <= N; i++)
 {
 of le.read((char *) &offRec, size); // Read a record into the f le
 cout << “\n” << i << “ ” << offRec.name << “\t” << offRec.age <<
“\t”;
 cout << offRec.rank << “\t” << offRec.place;
 }
 of le.close();
}

A sample output of the program is given below:

Enter the name of the File to be opend: officer.dat

Enter the number of officers :3

 Officer Data
S.No. Name Age Rank Place

1 Dr. J.P. Gupta 58 VC Noida

2 Dr. Qasim Rafiq 54 Prof Aligarh

3 Dr. Rajendra Sahu 50 Prof Hyderabad

280 Object-oriented Programming with C++

10.5.1 Storing Objects in Files
Normally the contents of an object are lost as soon as the object goes out of scope or the
 program execution is over. If the information contained in the object is very important then we
must try to save it on auxiliary storage such as hard disk so that it can be reused as and when
required. In fact, similar to records, objects can also be written into and instantiated from a fi le.
The objects which remember their data and information are called as persistent objects.

Thus, a persistent object exists in two forms: in the primary memory, i.e. RAM and the
secondary memory such as hard-disk. The RAM-copy of the object represents the current state
of the object for that moment, the disk copy of the object represents the old state of the object.

The program can make changes to the object in the primary memory and before going out
of scope, the object is written onto the disk in a fi le. The following example is using the student
object for the purpose of illustrating the above discussed concept.

Example 7. Consider the class called student of Example 1 of Chapter 4 which models the
following states and behaviours of a student:

States
Name
Roll
Marks
Grade

Behaviours
Read_data()
Display_grade()
Compute_grade()

Perform the following operations

 1. Create an object of student type and reads its data.

 2. Write the object onto a f le (say “student.dat”).

 3. Read the object from the f le.

 4. Display the data onto the screen.

Solution: The required program is given below:

// This program illustrates the creation of persistent objects

include <fstream.h>
include <stdio.h>

class student {
private:
 char name[20];
 int roll;

File Handling in C++ 281

 int marks;
 char grade;
 void compute_grade();
public:
 void read_data();
 void display_grade();
 };

 // Function to read data of a student
 void student :: read_data()
 {
 cout << “\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;
 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;

 compute_grade(); // compute the grade
 }
 // Function to display grade
 void student:: display_grade()
 {
 cout << “\n Name:” << name;
 cout << “\n Roll:” << roll;
 cout << “\n Grade:” <<grade;
 }

 // Function to compute grade
 void student :: compute_grade()
 {
 if (marks >= 80) grade = ‘A’;
 else
 if (marks >= 70) grade =‘B’;
 else
 if (marks >= 60) grade = ‘C’;
 else
 if (marks >= 50) grade = ‘D’;
 else
 grade = ‘E’;
 }

 void main()
 {
 int size = sizeof (student);
 student sOb1,sOb2;
 sOb1.read_data();
 char fname[15];
 cout << “\n Enter the name of the f le for output:”;

282 Object-oriented Programming with C++

 gets(fname);
 ofstream outf le;
 outf le.open(fname);
 outf le.write((char *) & sOb1, size); // Write Object1 onto f le
 outf le.close();
 cout << “\n Enter the name of the f le input:”;
 gets(fname);
 ifstream inf le;
 inf le.open(fname);
 inf le.read((char *) & sOb2, size); // Read Object2 from the f le
 inf le.close();
 sOb2.display_grade();
}

Example 8. Write a program which opens a f le whose name is provided by the user (say
“studFile.dat”). The program writes N (say 5) number of objects of student types into the f le.

Solution: The required program is given below:

// This program writes N number of student objects into a f le

include <fstream.h>
include <stdio.h>

class student {

A sample output of the program is given below:

Enter Name:Akshay

Enter Roll:101

Enter Marks:98

Enter the name of the file for output:student.dat

Enter the name of the file input:student.dat

Name:Akshay
Roll:101
Grade:A

It may be noted that the student data was supplied for the object ‘sOb1’. Its grade was computed
and it was stored into a fi le called “student.dat”. The stored object was read in another object
called ‘sOb2’ from the fi le. From the output, it is verifi ed that the contents have remained intact.

From above, it may be appreciated that this arrangement can be used to store objects on fi les
for their usage at later stage.

File Handling in C++ 283

private:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();
public:
 void read_data();
 void display_grade();
 };

 // Function to read data of a student
 void student :: read_data()
 {
 cout << “\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;
 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;

 compute_grade(); // compute the grade
 }
 // Function to display grade
 void student :: display_grade()
 {
 cout << “\n Name:” << name;
 cout << “\n Roll:” << roll;
 cout << “\n Grade:” <<grade;
 }

 // Function to compute grade
 void student :: compute_grade()
 {
 if (marks >= 80) grade = ‘A’;
 else
 if (marks >= 70) grade =‘B’;
 else
 if (marks >= 60) grade = ‘C’;
 else
 if (marks >= 50) grade = ‘D’;
 else
 grade = ‘E’;
 }

 void main()
 {
 int i, N;
 int size = sizeof (student);

284 Object-oriented Programming with C++

 student sOb1;

 char fname[15];
 cout << “\n Enter the name of the f le for output:”;
 gets(fname);
 ofstream outf le;
 outf le.open(fname);
 cout << “\n Enter the number of objects to be written into the f le:”;
 cin >> N;
 for (i = 1; i <= N; i++)
 {
 sOb1.read_data();
 outf le.write((char *) & sOb1, size); // Write Object onto f le
 }
 outf le.close();
 }

 Note: In this section, only an introduction to persistent objects is being given. A little more
effort is required to make those objects persistent which are objects of derived classes and are
 having pointers.

10.6 DETECTING END OF FILE
As far as fi les are concerned, till now we have been reading or writing a certain number of char-
acters or objects. While reading a fi le, a situation can arise when we do not know the number
of objects to be read from the fi le, i.e. we do not know where the fi le is going to end? A simple
method of detecting end of f le (eof) is by testing the stream in a while loop as shown below:

while (<stream>)
 {
 :
 }

The condition <stream> will evaluate to 1 as long as the end of fi le is not reached and it will
return 0 as soon as end of fi le is detected. In simple words, we can say that the while loop will
terminate as soon as the eof of <stream> is reached. Consider the following program segment

 :
ifstream xf le;
 xf le.open (fname)
 :
while (xf le)
{
 :
}

File Handling in C++ 285

Example 9. Write a program which opens a f le created in Example 8 (“studFile.dat”). The
program reads the objects from the f le till the end of the f le.

Solution: The required program is given below:

// This program writes N number of student objects into a f le

include <fstream.h>
include <stdio.h>

class student {
private:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();
public:
 void read_data();
 void display_grade();
 };

 // Function to read data of a student
 void student :: read_data()
 {
 cout << “\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;
 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;

 compute_grade(); // compute the grade
 }
 // Function to display grade
 void student :: display_grade()
 {
 cout << “\n”<< roll << “\t”;
 cout << name << “\t” << marks << “\t”;
 cout << grade;
 }

 // Function to compute grade
 void student :: compute_grade()
 {

The while loop in this program executes till eof of xfi le is reached. The following example
illustrates the usage of detection of eof.

286 Object-oriented Programming with C++

 if (marks >= 80) grade = ‘A’;
 else
 if (marks >= 70) grade =‘B’;
 else
 if (marks >= 60) grade = ‘C’;
 else
 if (marks >= 50) grade = ‘D’;
 else
 grade = ‘E’;
 }

 void main()
 {
 int size = sizeof (student);
 student sOb;

 char fname[15];
 cout << “\n Enter the name of the f le for input:”;
 gets(fname);
 ifstream inf le;
 inf le.open(fname);
 cout << “\n The Student data”;
 cout << “\nRoll\tName\tMarks\tGrade”;
 cout << “\n_____________________________”;

 while (inf le) // till the end of the f le
 {
 inf le.read((char *) & sOb, size); // Read an Object from f le
 sOb.display_grade();
 }
 inf le.close();

 }

The output is given below:

Enter the name of the file for input:studfile.dat
The student data

Roll Name Marks Grade

101 Ram 98 A

102 Sham 86 A

103 John 89 A

104 Hasan 90 A

105 Issac 88 A

105 Issac 88 A

File Handling in C++ 287

Example 10. Modify the function main() of Example 9 such that it uses the function ‘eof()’ for
detecting the end of the f le.

Solution: The required modifi ed function main() is given below:

void main()
 {
 int size = sizeof (student);
 student sOb;

 char fname[15];
 cout << “\n Enter the name of the f le for input:”;
 gets(fname);
 ifstream inf le;
 inf le.open(fname);
 cout << “\n The Student data”;
 cout << “\n Roll\tName\tMarks\tGrade”;
 cout << “\n_____________________________”;

 while (!inf le.eof())
 {
 inf le.read((char *) & sOb, size); // Read an Object from f le
 sOb.display_grade();
 }
 inf le.close();
}

Example 11. Write an interactive menu driven program that creates a text f le (say “input.dat”)
and then displays its contents. The program also creates another text f le (say “output.dat”) as
copy of the former. However, while copying it converts all the characters into their equivalent
uppercase characters.

Solution: We will use toupper() function to convert the characters read from the original fi le.
The required program is given below:

#include <fstream.h>

The end of fi le can also be detected by a function called ‘eof()’. This function returns a non-zero
value when it detects the end of fi le else it returns a zero. An example of usage is given in the
following program segment:

while (!xf le.eof())
{
 :
}

288 Object-oriented Programming with C++

#include <stdio.h>
#include <conio.h>
#include <ctype.h>
 void main()
 {
 char fname[15];
 char row [80];
 cout << “\n Enter the name of the f le to be created : ”;
 gets(fname);
 ofstream myf le (fname);
 char ch;
 while (1)
 {
 cout << “\n Enter a line of text :”;
 gets (row);
 myf le << row << “\n”;
 cout << “\n want to continue ? Y/N”;
 cin >> ch;
 if ((ch == ‘N’) || (ch == ‘n’))
 break;
 }
 myf le.close();
 // convert each line to upper case
 clrscr(); // and copy into new f le
 ofstream tempf le (“output.dat”);
 cout <<“\n The input f le is...\n”;
 ifstream newf le (fname);
 while (newf le)
 {
 newf le.get(ch);
 cout << ch; // write on the display screen
 if (ch !=‘\n’)
 ch = toupper (ch);
 tempf le.put(ch); // write in the target f le
 }
 newf le.close();
 tempf le.close();

 // Display the new f le
 cout << “\n The output f le is\n”;
 ifstream yourf le (“output.dat”);
 while (!yourf le.eof())
 {
 yourf le.getline (row,80);
 cout << row << “\n”;
 }
 yourf le.close();
 }

File Handling in C++ 289

The output is given below:

 The input file is...
Who is a friend? who is an enemy?
There is no permanent friend but when
You say “no sorry”, fifty percent of this friendship
is gone! so who is friend and who is an enemy

 The output file is....
WHO IS A FRIEND? WHO IS AN ENEMY?
THERE IS NO PERMANENT FRIEND BUT WHEN
YOU SAY “NO SORRY”, FIFTY PERCENT OF THIS FRIENDSHIP
IS GONE! SO WHO IS FRIEND AND WHO IS AN ENEMY

10.7 SUMMARY
Any thing stored on a permanent storage is called a fi le. A set of related data items is known as
a record. The smallest unit of a record is called a f eld. A key f eld is used to uniquely identify
a record. A fi le is a logical collection of records. In a serial fi le, the records are stored in the
order of their arrival without considering the key fi eld. On the other hand, in a sequential fi le,
the records are written in a particular order of the key fi eld. The key fi eld is also known as a
 primary key. ‘ifstream’ and ‘ofstream’ are input and output streams, respectively. The objects
that remember their data and information are called persistent objects. The function eof() returns
0 when it detects the end of fi le. An opened fi le must be closed after its usage.

 MULTIPLE CHOICE QUESTIONS
 1. A program consists of two major components: algorithm and
 (a) logic (b) code
 (c) data structures (d) output

 2. An object has two components: states and
 (a) abstraction (b) behaviours
 (c) encapsulation (d) variables

 3. Any thing stored on a permanent storage is called a:
 (a) fi le (b) data
 (c) information (d) object

 4. A set of related data items of a particular entity is called a:
 (a) record (b) fi le
 (c) data (d) fi eld

 5. A fi eld having a unique value is called:
 (a) main fi eld (b) local fi eld
 (c) global fi eld (d) key fi eld

290 Object-oriented Programming with C++

 6. A logical collection of records is called a:
 (a) pile (b) group
 (c) fi le (d) class

 7. The stream that supports both input output is called:
 (a) ifstream (b) fstream
 (c) ofstream (d) iostream

 8. A fi le can be opened by a ______ constructor
 (a) copy (b) default

 9. The functions read() and write() are used to read() and write()
 (a) data (b) fi le
 (c) objects (d) information

10. The RAM copy of the object represents its:
 (a) current sate (b) old state

ANSWERS
1. c 2. b 3. a 4. a 5. d 6. c 7. b 8. b 9. c 10. a

 EXERCISES

 1. Defi ne the terms: fi eld, record and fi le.

 2. In how many ways the records can be arranged in a fi le?

 3. Write an explanatory note on the relationship between fi les and streams.

 4. What are the different methods of opening a fi le? Explain in brief.

 5. Differentiate between get() and getline() functions of ifstream class.

 6. How the end of fi le can be detected? Explain in brief.

 7. Write a program which counts the number of records in a given fi le.

 8. Give suitable declarations for the fi le containing components where each component con-
sists of the following information.

 name: 20 characters

 empId: integer type

 netSal: fl oat type

 9. Write a program which creates an exact copy of a given fi le called Ofi le in the form of a
new fi le called Nfi le. Choose appropriate component type for this problem.

10. Write a program which counts the number of times a given alphabet appears in a text fi le.

11. Write a program which searches a given fi le for a record equal to an input value of empId.
The component record structure of the fi le is as given in Question 8.

12. Write a program which reads a text fi le called document and generates a table of frequency
count of alphabets appearing in the text. The output should be displayed in the following form

File Handling in C++ 291

Document

Alphabet Count

13. A product record is given below.

Product

itemID

Cost

Date

 Choose appropriate data types for the fi elds. Write a program which reads a fi le of such
records and prints them in the following format.

Product

itemID Cost Date

14. Assuming that a text fi le named ‘book’, already contains some text written into it, write
a function named noVowel (), that reads the fi le ‘book’ and creates a new fi le named
 newBook, which shall contain only those words from the fi le ‘book’ which don’t start with
an upper case vowel, i.e. with ‘A’, ‘E’, ‘I’, ‘O’, ‘U’. For example if the fi le ‘Book’ contains:
“One and Only One”. Then the fi le ‘newBook’ shall contain: “and”.

15. What is eof? Explain its utility.

16. Write an interactive menu driven C++ program that creates a text fi le (say myDoc) and
then display the fi le. Create another text fi le (say lowDoc) by converting each line of the
‘myDoc’ fi le into a lowercase string. Display the contents of ‘lowDoc’ fi le.

17. Write an interactive menu driven C++ program that creates a text fi le (say myDoc) and then
displays the fi le. Create another text fi le (say revDoc) by reversing each line of the ‘myDoc’
fi le. Display the contents of ‘revDoc’ fi le.

11.1 INTRODUCTION
When a teacher is in a class, his/her lecture can be disrupted by either of the following two
events:

 1. Somebody from outside the class interrupts the lecture by knocking on the door. This
event is an asynchronous event because the teacher has nothing to do with this disruption.
At his/her convenience, the teacher suspends his/her lecture and listens to what the visitor
has to say.

 This is a situation similar to a device interrupting the CPU for seeking a particular
service. The CPU suspends the execution of the current program, saves its context, and
jumps to an interrupt service routine.

 There is no specifi c time for the interrupt to occur. The CPU need not handle the inter-
rupt immediately but only when it is ready to handle it.

 2. On the other hand, a student may ask a question from the teacher for clarifi cation on the
topic being discussed in the class. Now this type of disruption is called an exception. It is
a synchronous event because the question is in response to the discussions being done by
the teacher. The teacher also expects the question from the students.

 This is a similar situation wherein a program generates a run time error leading to
abnormal program termination. A careful programmer can avoid this eventuality by pre-
dicting such exceptions and taking suitable measures within the program to handle them.

 On every run of the program, the exception will occur at precisely the same instruction
of the code. The program cannot run further until the exception is handled.

11.2 TRADITIONAL ERROR HANDLING
In non-object oriented programming, many traditional error handling techniques are used by the
programmers to catch and handle errors generated by programs. A broad level error- handling
pseudo code is given below:

while (not end of program)
 {
 perform a task
 if (error)
 then handle the error
 else
 perform the rest of the work
 }

EXCEPTION HANDLING 11

Exception Handling 293

Example 1. Write a program that reads a list of N non-negative integer values and f nds
the largest number from the list. If an input number is a negative value then it displays the
 following message and exits the program.

Solution: The required program is given below:

// This program illustrates a traditional error handling technique
// It reads a list of non-negative integers and f nds the largest
// among them. It exits the program on encounter of a negative integer

include <iostream.h>
include <process.h>

 void main()
 {
 int num, N, large, i;
 cout <<”\n Enter the size of the list : ”;
 cin >> N;
 large = –1; // initialize large to an out of range value
 cout << “\n Enter the list one by one\n”;
 for (i = 1; i <= N; i++)
 {
 cin >> num;
 if (num < 0)
 {
 cout << “\n Wrong input”; // error has occurred
 exit (0); // exit the program
 }
 else
 if (num > large)
 large = num;
 }
 cout << “\n The largest = ” << large;
 }

Sample outputs are given below:
Run 1

 Enter the size of the list : 5
 Enter the list one by one
11
6
-7
 Wrong input

Run 2

 Enter the size of the list : 5
 Enter the list one by one

294 Object-oriented Programming with C++

11
6
7
76
51

 The largest = 76

It may be noted that an extra piece of code has been written to handle the error in the input of the
program. In fact, we will have to write such error handling codes as many times as the demand
of the program. The situation becomes even more severe when an error occurs in a function
which has been called by another function. The error necessarily propagates back to the calling
function as shown in Fig. 11.1.

Function z ()

Function y ()

{

{

{
}

}

Error propagates
back to caling
function

Error propagates
back to caling
function

error location

Function x ()

}

Figure 11.1 The propagation of error

In some programs, especially the large one, it may so happen that we may write more lines of
code to handle the errors than the actual code of the program.

A better way of traditional error handling is possible with a special function called ‘atexit()’
included in ‘stdlib.h’. It works as follows:

 1. Write the error handling code as a separate function (say errorHandler()).

 2. Pass the name of the error handling function (i.e. errorHandler) as an argument to the
special function ‘atexit()’ as shown below:

atexit (errorhandler);

Now the name of the error handling function has been registered with ‘atexit()’. So as soon as
an exit() function is called in the program, the control is passed to ‘atexit()’ function which in
its turn passes the control to its registered function (i.e. ‘errorhandler()’ in this case).

A modifi ed program of Example 1 is given below. It uses very simple, rather a trivial, error
handling function called ‘dispMessage()’ which is registered with function ‘atexit()’. At the exit
of the program, the function dsipMessage() is automatically called. A variable ‘fl ag’ has been

Exception Handling 295

used to fi nd whether it is a normal exit or abnormal exit. In case of abnormal exit, the message
“wrong input” is displayed.

// This program illustrates a better traditional error handling technique
// It reads a list of non-negative integers and f nds the largest
// among them. It exits the program on encounter of a negative integer
// The exit() function called atexit() function

include <iostream.h>
include <process.h>
include <stdlib.h>

 int f ag;
 void main()
 {
 int num, N, large, i;

 int readNum();
 void dispMessage();

 atexit (dispMessage); // call the error handling function

 cout << “\n Enter the size of the list : ”;
 cin >> N;
 large = –1; // initialize large to an out of range value
 cout << “\n Enter the list one by one \n”;
 for (i = 1; i <= N; i++)
 {
 num = readNum();

 if (num > large)
 large = num;
 }
 f ag = 1; // normal exit
 cout << “\n The largest = ” << large;
 }
int readNum()
 {
 int num;
 cin >> num;
 if (num < 0)
 {f ag = 0; // abnormal exit
 exit (1);
 }
 return num;
 }
void dispMessage() // error handling function
 {
 if (f ag == 0)
 cout << “\n Wrong input \n”;
 }

296 Object-oriented Programming with C++

It may be noted that the program has become more elegant in the sense that the error handling code
has been separated from the logic of the program. However, the programmer has to write every bit
of the code.
Sample outputs of the program are given below:

Run 1

 Enter the size of the list : 5

 Enter the list one by one
4
5
-2

 Wrong input

Run 2

 Enter the size of the list : 5

 Enter the list one by one
34
2
67
8
1

 The largest = 67

Nevertheless, the drawbacks of traditional error handling techniques are:

 1. The program and error-handling code are intermixed.

 2. The program becomes less readable and therefore diffi cult to maintain

 3. Most of the large programs contain more than 50–60% of the error handling code.

 4. The ‘atexit()’ function helps to some extent but the error handling code runs for both
normal and abnormal exits which the programmer has to properly keep track of.

C++ provides a built-in support for handling exceptions which is discussed in detail in the
 following sections.

11.3 EXCEPTION HANDLING IN C++
C++ exception handling mechanism uses three components: try, throw, and catch. It works as
follows:

 1. The exception is monitored in a try block.

 2. When an exception occurs, the try block throws the exception.

 3. The thrown exception is caught by the catch block.

 4. Once the exception has been thrown, the remaining code after throw statement is not
executed, i.e. the control does not go back to try block.

Exception Handling 297

The general arrangement of try–throw–catch is given in Fig. 11.2.

{

{

}

}

throw exception

catch (exception)

try

Figure 11.2 Try–throw–catch arrangement

Let us now rewrite the program of Example 1 to demonstrate the working of try–throw–catch
arrangement. The try block throws a ‘message’ which is caught by the catch block. The modifi ed
program is given below:

// This program illustrates the usage of try–throw–catch arrangement

include <iostream.h>
include <string.h>
 void main()
 {
 char message[] = “Wrong input”;
 int num, N, large, i;
 cout <<”\n Enter the size of the list : ”;
 cin >> N;
 large = –1; // initialize large to an out of range value
 cout << “\n Enter the list one by one \n”;
 for (i = 1; i <=N; i++)
 {
 cin >> num;
 try
 {
 if (num < 0) // The exception
 {
 cout << “\n Wrong input \n”;
 throw message // Throw the exception
 }
 else
 if (num > large)

298 Object-oriented Programming with C++

 large = num;
 }
 catch (char message[]) // Catch the exception
 {
 cout << “\n” << message;
 }
 }
 cout << “\n The largest = ” << large;
 }

The sample output is given below:

Run 1

 Enter the size of the list : 5
 Enter the list one by one
5
4
-7

 Wrong input_

Run 2

 Enter the size of the list : 5

 Enter the list one by one
12
3
45
6
8

 The largest = 45

It may be noted that the arrangement is working very well.

 Note: The exception handling is not supported by some compilers. This program has
been tested on ‘Borland C++ 4.5 version’.

Example 2. Write a program that reads two numbers X and Y. It uses a function divide() to
compute X/Y. This function checks for Y and if it is equal to 0 then the function throws an
exception otherwise returns X/Y.

Solution: The required program is given below:

// This program throws an exception for divide by zero exception

include <iostream.h>
include <string.h>

Exception Handling 299

f oat divide (f oat X, f oat Y)
 {
 if (Y == 0) // The exception detected
 throw “divide by zero”; // Throw the exception
 else
 return (X/Y);
 }
 void main ()

 {
 f oat val1, val2, result;
 cout << “\n Enter two values”;
 cin >> val1 >> val2;
 try {result = divide (val1, val2); // Try block
 cout << “\n The result = ” << result;
 }
 catch (char message[])
 {
 cout << “\n” << message; // display message

 }

 }

Sample outputs are given below:

 Enter two values 34.2 16.4
 The result = 2.08537

 Enter two values 45.2 0
divided by zero

It may be noted that:

 1. The statements that cause exceptions must be included in the try block or inside a func-
tion called from within the try block.

 2. The try block should also contain the statements that must be skipped in case of anexception.

 3. The catch handler must be written immediately after a try block.

 4. The parameter type of catch handler must match the exception thrown by the try block.

 5. The program continues to execute after dealing with the exception. This is in contrast to
the traditional error handling techniques wherein the program terminates.

11.3.1 Multiple Throw Statements and Multiple Catch Blocks
A try block can have as many throw statements as the number of exceptions handled in that
block. If the messages thrown by the various throw statements are of the same type then only

300 Object-oriented Programming with C++

Example 3. Write a program that throws exceptions for out of range input values of various
components of a valid date of 21st century having the following structure:

Date

DD MM YYYY

Solution: We will use multiple throw statements in a try block. The required program is given
below:

// This program illustrates the usage of multiple throw statements

include <iostream.h>

struct date {
 int dd;
 int mm;
 int yyyy;
 };

date readDate()
{
 date dateVar;
 cout << “\n Enter month”;
 cin >> dateVar.mm;
 if (dateVar.mm < 1 || dateVar.mm > 12)
 throw ‘1’;
 cout << “\n Enter Day”;
 cin >> dateVar.dd;

 if (dateVar.mm == 2 && (dateVar.dd < 1 || dateVar.dd > 28))
 throw 1;

 if (dateVar.mm == 4 || dateVar.mm == 6 || dateVar.mm == 9 ||
dateVar.mm == 11)
 { if (dateVar.dd < 1 || dateVar.dd > 30)
 throw 1;
 }
 else
 if (dateVar.dd < 1 || dateVar.dd > 31)
 throw 1;
 cout << “\n Enter year (yyyy)” ;
 cin >> dateVar.yyyy;

 if (dateVar.yyyy < 2000 || dateVar.yyyy > 2999)
 throw “1.0”;

one catch block is required to handle them otherwise we may require as many catch blocks as
required to catch the different types of exceptions thrown by the try block.

Exception Handling 301

 return dateVar;
 }

 void main()
 {
 date myDate;

 try
 {
 myDate = readDate();
 cout << “\n The valid date is :” << myDate.dd <<“ / ” << myDate.mm ;
 cout << “ / ” << myDate.yyyy;
 }
 catch (char ch)
 {
 cout << “\n wrong month”;
 }
 catch (int i)
 {
 cout << “\n wrong day”;
 }
 catch (char text[])
 {
 cout << “\n wrong year”;
 }
}

Sample output is given below:

Run 1
 Enter month13
 wrong month
Run 2
 Enter month2
 Enter Day31
 wrong Day
Run 3
 Enter month5
 Enter Day15
 Enter year (yyyy)1990
 wrong year
Run 4
 Enter month5
 Enter Day15
 Enter year (yyyy)2013
 The valid date is :15/5/2013

302 Object-oriented Programming with C++

Example 4. Write a program that reads a list of numbers in an array called List[] of N integers.
It asks from the user for the size of the list. If the size entered by the user is found to be more
than N then the program throws the following exception:

“The size of the list is out of bound”

However, the program recovers from the exception and sets the size of the list equal to the
maximum size of the array, i.e. N and proceeds to f nd the smallest of the list.

Solution: The required program is given below:

// This program illustrates as to how to recover from an
exception

include <iostream.h>

void main()
 {
 int const N =5;
 int List[N], i;
 int size, smallest;

 try
 {
 cout << “\n Enter the size of the list to be read :” ;
 cin >> size;
 if (size > N)
 throw “The size of the list is out of bound”;
 }

 catch (char message[])
 {
 cout << “\n” << message;
 size = N; // recover from error
 cout << “ - The size is set to ” << N;
 }

 cout << “\n Enter the elements one by one \n”;

 for (i = 0; i < N; i++)
 {
 cin >> List[i];

It may noted that we have used three catch blocks to catch the various throw statements used in
the program.

It may be further noted that in all the above programs, we have displayed simple messages
to inform about the happening of an error or exception, which is probably not the aim. In fact
we should provide a remedial action in terms of either asking the user to enter fresh data or by
loading appropriate values into the variables.

Exception Handling 303

 }
 smallest = List[0];

 for (i = 1; i < N; i++)
 {
 if (smallest > List[i])
 smallest = List[i];
 }
 cout << “\n The smallest = ” << smallest;
 }

A sample output is given below:

 Enter the size of the list to be read : 12
The size of the list is out of bound - The sizeis set to 5
Enter the elements one by one
12
3
45
6
7

 The smallest = 3

It may be noted that the above program has not only caught the error but also recovered from it.
This is a major step towards creating robust programs.

11.3.2 Throwing Objects
A structure or an object can also be thrown by a ‘throw’ statement. This may be required in a
situation where the object or the structure has errors.

Consider Example 3 wherein many throw statements have been used to ‘throw’ many excep-
tions all relating to the structure called ‘date’. While on the contrary, it was possible to send
whole of the structure by a single throw statement. A modifi ed program that throws the entire
structure is given below. It uses a variable called ‘fl ag’ to monitor the input given by the user. If
any of the component of ‘dateVar’ is provided wrong input, the ‘fl ag’ is set to 1.

Similarly, a variable called ‘setVar’ is being used to monitor the occurring of an exception.

// This program uses a single throw statement to throw a structure

include <iostream.h>

struct date {
 int dd;
 int mm;
 int yyyy;
 };

304 Object-oriented Programming with C++

date readDate()
{
 int f ag = 0;
 date dateVar;
 cout << “\n Enter month : ”;
 cin >> dateVar.mm;
 if (dateVar.mm < 1 || dateVar.mm > 12)

 f ag =1;
 cout << “\n Enter Day : ”;
 cin >> dateVar.dd;

 if (dateVar.mm == 2 && (dateVar.dd < 1 || dateVar.dd > 28))
 f ag = 1;
 if (dateVar.mm == 4 || dateVar.mm == 6 || dateVar.mm == 9 || dateVar.
mm == 11)

 {if (dateVar.dd < 1 || dateVar.dd > 30)
 f ag = 1;
 }
 else
 if (dateVar.dd < 1 || dateVar.dd > 31)
 f ag = 1;
 cout << “\n Enter year (yyyy): “ ;
 cin >> dateVar.yyyy;

 if (dateVar.yyyy < 2000 || dateVar.yyyy > 2999)
 f ag = 1;
 if (f ag ==1) throw dateVar; // Throw the structure

 return dateVar; // valid date
 }

 void main()
 {
 int setDate = 0;
 date myDate;

 try
 {
 myDate = readDate();

 }
catch (date dateVar)
 {
 cout << “\n the date is wrong, it is being set to 1.1.2013”;
 dateVar.dd = 1;
 dateVar.mm = 1;
 dateVar.yyyy = 2013;
 myDate = dateVar;
 setDate =1;
 }
if (setDate == 0)

Exception Handling 305

 cout << “\n The date is valid:”;
else
 cout << “\n The modif ed date is :”;
 cout << myDate.dd <<“ / ” << myDate.mm << “ / ” << myDate.yyyy;
}

A sample output of this program is given below:

Run 1

 Enter month 13

 Enter Day : 2

 Enter year (yyyy): 1998

 The data is wrong, it is being set to 1.1.2013

 The modified data is :1/1/2013
Run 2
 Enter month : 12
 Enter Day : 31
 Enter year (yyyy): 2012
 The data is valid:31/12/2012

Similar to the structures, objects also can be thrown from a try block as illustrated by the
 following example wherein the data about a student object is read. If the data provided by the
user is not within the range then the object is thrown for a catch block to handle. The ‘this’
pointer can be used to throw the object.

Example 5. Write a program that reads the data of an object of student class (Chapter 4) with
following members:

States
Name
Roll
Marks
Grade

Behaviours
Read_data()
Display_grade()
Compute_grade()

The data is validated for following range of values:
100 < Roll <= 200
0 < Marks < = 100

If the data is found out of range then the object is thrown. The catch block sends back the
control to the while loop of try block with the help of a continue statement. The user is made
to enter fresh data. After the correct data is received, the grade is computed. Thereafter, the
data of the student is displayed.

306 Object-oriented Programming with C++

Solution: The required program is given below:

// This program illustrates the method of throwing an object from a
try block

include <iostream.h>
include <conio.h>

class student {
private:
 char name[20];
 int roll;
 int marks;
 char grade;
 void compute_grade();
public:
 void read_data();
 void display_grade();
 };

 // Function to read data of a student
 void student :: read_data()
 {
 cout <<”\n Enter Name:”;
 cin >> name;
 cout << “\n Enter Roll:”;
 cin >> roll;
 cout << “\n Enter Marks:”;
 cin >> marks;
 if (roll <=100 || roll > 200 || marks <= 0 || marks > 100)
 throw this; // Throw object
 compute_grade(); // compute the grade
 }
 void student :: display_grade()
 {
 cout << “\n Name:” << name;
 cout << “\n Roll:” << roll;
 cout << “\n Grade:” <<grade;
 }
 void student :: compute_grade()
 {
 if (marks >= 80) grade = ‘A’;
 else
 if (marks >= 70) grade = ‘B’;
 else
 if (marks >= 60) grade = ‘C’;
 else
 if (marks >= 50) grade = ‘D’;

Exception Handling 307

 else
 grade = ‘E’;
 }

 void main()
 {
 int choice;
 student studOb;

 do
 {
 int f ag = 0;
 //clrscr();
 cout << “\n Menu”;
 cout << “\n”;
 cout << “\n Read data\t 1”;
 cout << “\n”;
 cout << “\n Display grade \t 2”;
 cout << “\n”;
 cout << “\n Quit \t \t 3”;
 cout <<”\n”;
 cout <<”\n Enter your choice:”;
 cin >> choice;

 switch (choice)
 {
 case 1 : while (! f ag)
 {
 try
 {
 studOb.read_data();
 f ag = 1;
 }
 catch (student *Ob) // Receive a pointer to the object
 {
 cout << “\n In catch”;
 cout << “\n Enter Data again”;
 continue; // Continue the while loop
 }
 }
 break;
 case 2 : studOb.display_grade();
 }
 getch();
 }
 while (choice != 3);
 }

308 Object-oriented Programming with C++

A sample output is given below:

In catch

 Menu
Read data 1
Display grade 2
Quit 3
Enter your choice : 2
 Name : Ram
 Roll : 108
 Grade : A

 Menu
Read data 1
Display grade 2
Quit 3
Enter your choice : 1
 Name : Ram
 Enter Roll : 45
 Enter Marks : 98

Display Menu

Continue - Read data

Throw Object

Enter Name : Ram
Enter Roll : 108
Enter Marks : 98

When multiple throw statements in a try block throw same type of data then it maps to a single
catch block. Therefore, it becomes diffi cult to resolve them in the sense that from the received data,
it becomes diffi cult to identify its originating exception or error. In such a situation, the programmer
can create a separate exception class and place all the bad data and the related messages into an ob-
ject of this class. Thereafter, a single throw statement is used to throw the object. Within the receiv-
ing catch block, the various data items are extracted from the object and accordingly acted upon.

This try–throw–arrangement must be used very carefully. For instance, if no catch block
were provided for an exception thrown by a try block then the program would abnormally
 terminate giving the following message:

Abnormal Program Termination

A resource taken from the system has to be returned back to the system after its usage. But
while using the resource if an exception is thrown before the statement that returns the resource
back to the system then the resource becomes unavailable.

From above, it can be concluded that “An exception indicates an exceptional situation or behav-
iour in a function or program.” The situations of usage of ‘Exception Handling’ are listed below:

 1. Identify the exception and repair the same. If necessary recall the code or function in
which the exception occurred.

 2. If the problem cannot be handled then terminate the program

 3. If the problem has been fi xed in the catch block and no more action is required then pro-
ceed with rest of the work.

 4. If the problem could not be fi xed or was fi xed partially then you may re-throw exception
the same or a different exception to correct the error.

Nevertheless, it is necessary that the exception handling code must be separated from the
 normal code of the program.

Exception Handling 309

11.4 SUMMARY
An interrupt is an asynchronous event. The exception is a synchronous event. The exceptions
can be predicted. In normal programming, extra piece of code is written to handle the occur-
rence of a possible error. The program and error handling code are intermixed. ‘atexit()’ is a
special function for traditional error handling. Exception handling mechanism in C++ has three
 components: try, throw, and catch. The exception is monitored in ‘try’ block, thrown by ‘throw’
block and caught by the ‘catch’ block. The program does not terminate after the exception is
handled. A try block can have multiple throw statements. Good exception handling renders a
robust program. In special circumstances, a programmer can use an exception class.

 MULTIPLE CHOICE QUESTIONS
 1. An exception is a _________ event
 (a) normal (b) asynchronous
 (c) serial (d) synchronous

 2. An exception occur at the _______ instruction of the code.
 (a) same (b) different

 3. Exception handling mechanism uses three components: try, throw, and:
 (a) get (b) catch
 (c) slip (d) drag

 4. When an exception occurs, the try block throws the:
 (a) code (b) message
 (c) exception (d) error

 5. The exception is monitored in a:
 (a) try block (b) catch block
 (c) main function

 6. The catch handler must be written immediately after a
 (a) main() (b) try block

 7. A program terminates abnormally if there is no ___ block for a thrown exception
 (a) try (b) main()
 (c) catch

ANSWERS
 1. d 2. a 3. b 4. c 5. a 6. b 7. c

 EXERCISES

 1. Differentiate between an interrupt and an exception.

 2. Write a short note on traditional error handling.

310 Object-oriented Programming with C++

 3. Explain the working of ‘atexit()’ function with the help of an example.

 4. What is an exception handler and what are its components?

 5. Discuss try, throw and catch with the help of examples.

 6. How do you catch the exception? Give example.

 7. Why an exception is re-thrown?

 8. Create a class called ‘employee’ with following fi elds:

name

empld

basicPay

salary

employee

 The data fi elds name, empId, basicPay and salary are of type string, string, fl oat and fl oat
respectively. Include a readData() function that displays appropriate messages and accepts
the data items of the employee object. It throws an exception if the basicPay is less than
Rs. 5000 and greater than Rs. 80,000. Include another function compSal() that computes
the salary of the employee on the basis of a formula chosen by your self. A third function
dispData() may also be included that displays the data of an employee object.

12.1 INTRODUCTION TO UML
In order to understand a complex problem or system, we need to represent it in a simple way
called ‘model’. For example, when a large apartment building in a housing society is built, fi rst
its plan is drawn by the architect on a paper and then a small prototype is prepared. When all the
stake holders (builder, clients, etc.) agree on the plan and the looks of the prototype, the project
gets approved for construction. The prototype is nothing but the model of the proposed build-
ing. Similarly, when software is to be constructed, its model needs to be prepared.

A model can be precisely defi ned as a hypothetical description of a complex entity or process,
constructed to understand a problem or system.

Once the model is in place, it can be modifi ed for improvement or approved for fi nal
 construction. However, we need to have necessary tools for the construction of a model. For
software modeling, a language is required that can express the various components and the rela-
tionship among them. For instance, in object oriented software construction, we need to specify
and depict pictorially the components like classes, objects, relationships, hierarchies, etc.

A number of object oriented languages have been proposed by proponents like Rumbaugh,
Booch, Jacobson, Coad-Yourdon, etc. Each had its own symbols and specifi cations for express-
ing object-oriented programming (OOP) components. In 1994, an effort was started to unify
all the methodologies to form a Unifi ed Modeling Language (UML). In 1997, UML 1.0 was
offered to the user as a standard OOP modeling language.

UML can be precisely defi ned as “a language that models the structural, architectural, and
behavioral features of a system”.

Some important UML diagrams are given below:

 1. Class diagram

 2. Use-case diagram

 3. Behavioral diagrams

 a. Interaction diagrams

 i. Sequence diagram

 ii. Collaboration diagram

 b. State chart diagram

INTRODUCTION

TO UML

12

312 Object-oriented Programming with C++

 c. Activity diagram

 4. Implementation diagrams

 a. Component diagram

 b. Deplayment diagram

A model can be of following two types:

Static model: A representation of a system at a specifi c time at rest. It shows the states and
parameters of a system at that particular instance in time, e.g. class diagrams.

Dynamic model: This model depicts the dynamism of the system in terms of its behaviors over
a period of time. In fact it is the collection of procedures that govern the overall behaviour of
the system, e.g. UML interaction diagrams.

12.2 CLASS DIAGRAMS (STATIC)
A class symbolizes a specifi c feature of the system. It can be represented by a rectangle having
three sections: name, states (attributes) and behaviours (operations) as shown in Fig. 12.1.
Where an attribute defi nes the range of values a state can take, an operation represents the
implementation of a service or behaviour of the object that the class represents. The access
specifi ers can be assigned to various members of the class by prefi xing the symbols: – (private),
+ (public), and # (protected).

Class name
attributes

Operations

Figure 12.1 A class diagram

Depending upon requirement, the class diagram can be as short as shown in Fig. 12.2(a) or as
detailed as shown in Fig. 12.2(b).

(a) (b)

Student

Student

- Name
- Roll
- Marks

+ readData()
- computeGrade()
+ dispData()

Figure 12.2 (a, b) Class diagrams

Introduction to Uml 313

An object is represented by a similar diagram but its name is qualifi ed by its corresponding
class name. An object called ‘studOb’ of type ‘student’ class is shown in Fig. 12.3.

studOb : Student

Aviral Gupta

101

98

Figure 12.3 An object

It may noted that the object contains the actual data in contrast to a class which has only attri-
butes names. The reason is simple that class is a compile time entity and the objects are instances
of the class created at run time. Therefore, the objects get the memory for storing the data for
its states. An object diagram is an instance of the class diagram.

12.2.1 Relationships Among Classes
The various relationships that exist between classes are composition, generalizations and
dependencies. A brief discussion on each of them is given below:

Composition: An object can be composed of components bound by two types of relationships:
association and aggregation. Both represent a ‘has-a’ relationship.

Association: A loose relationship between two objects in which both the objects are visible.
For instance, a computer has a mouse. Similarly, a teacher has students to teach. Or other way
round, a student has a teacher to be taught by. This type of association is shown by a simple line
or link between the participating classes as shown in Fig. 12.4.

Teacher

teaches

taught by

Student

Figure 12.4 An association

This type of relationship is fl exible in the sense that different teachers can be associated with
different students or vice-versa. As discussed earlier in the book, an association is implemented
in C++ as a pointer of one class embedded in other class. For example, the class teacher would
contain a pointer of student’s type.

Aggregation: A tight relationship between two objects wherein only one object is visible. In fact
one object acts as a container of other object and therefore only the container remains visible.

314 Object-oriented Programming with C++

For example, a car has an engine. Now we see only the car object and not the engine object.
Similarly, CPU is an aggregation of three objects: ALU, CU and registers.

The aggregation is represented by a link with an open diamond at the container class end.
 Consider the aggregation shown in Fig. 12.5 wherein it is shown that a University has department.

DepartmentUniversity

Figure 12.5 The aggregation

The aggregation is modeled as containership in C++. For the aggregation shown in Fig. 12.5,
the University class would contain an object of department type.

It may be noted that both association and aggregation are ‘has-a’ relationships. Both have
their own advantages. The association provides fl exibility in relationship. For example, an opti-
cal mouse can be very easily replaced by a wireless mouse in a computer system. On the other
hand, the aggregation is an infl exible but more secured relationship. For instance, engine object
is very much secured within the car object.

Multiplicity of association can be shown by appropriately annotating the association links
as shown in Fig. 12.6.

Class1

Class*

Class0-1

Class

One or more

Optional (Zero or one)

Zero or more

Exactly one

1. . . *

Figure 12.6 Multiplicity of associations

Thus the relationship that the University has many departments can be represented by the
 diagram shown in Fig. 12.7.

University Department
1 . . . *

Figure 12.7 One to many relationship

Introduction to Uml 315

Generalization: In this OOP strategy, common elements are identifi ed among the different classes.
It follows two approaches: ‘top down’ and ‘bottom up’. In top down approach, we create specialized
classes from existing classes. On the other hand, in bottom up approach, from different classes, a
super class is created. In both the cases a hierarchy of classes is created with the help of inheritance
leading to ‘a kind of’ (ako) relationship. Inheritance is represented by a solid line starting from the
derived class with an arrow like triangle pointing to the base class, i.e. the apex of the triangle point
to the base class a shown in Fig. 12.8.

Base

derived

Figure 12.8 Inheritance (generalization)

Consider the hierarchy given in Fig. 12.9. From top to down, it can be said that an ‘infrared
mouse’ is a kind of ‘wireless mouse’ which itself is a kind of ‘mouse’. In bottom up approach, we
can say that wireless mouse is a generalization of ‘infrared mouse’ and ‘radio frequency mouse’.

infrared

optical wireless mechanical Opto-mechanical

mouse

radio frequency

Figure 12.9 Hierarchy of classes

Dependency: It is a special relationship between two classes where one class depends upon
other class. This relationship is shown as a dashed directed line from dependent class to the
class on which it depends. Consider the relationship shown in Fig. 12.10.

316 Object-oriented Programming with C++

sale Taxincome Tax

Tax taxRules

Figure 12.10 Dependency relationship

In fact dependency is a relationship of usage of one class by another. For instance, the ‘Tax’
class is using the ‘taxRules’ class. Therefore, it is dependent upon ‘taxRules’ class. On the
other hand, two classes are called ‘orthogonal’ if they do not depend on each other. If a class is
 modifi ed then it has no effect on the functioning of the other class.

12.3 USE CASE DIAGRAMS (STATIC)
A system has a boundary surrounded by an environment. The system has some objectives which
are achieved through functions or classes called use cases. Some entities of the environment
called as ‘actors’ interact with the system as shown in Fig. 12.11.

System

Actor

Use case (function or a class)
Interaction

Figure 12.11 A use case diagram

A use case diagram is a graph that represents interactions between actors and use cases. where:

 1. An ‘actor’ is an entity or a class that can initiate an action. It is generally not a part of
the system or sub-system under consideration. An actor must be appropriately named.
For example, in a classroom, the teacher and student are actors. Similarly in a library, the
library member, clerk, librarian, etc. are all actors.

 2. A use case is a class or a function that provides a service to the system. It describes the
interaction between an actor and the system. Each use case realizes the aim of an actor.
The name of the use case should be so chosen that it properly represents the functionality
of the system.

 3. An edge is a path of communication from an actor to a use case or vice-versa.

Introduction to Uml 317

Therefore, the following need to be identifi ed before a use case is drawn:

 1. Actors.

 2. Use cases defi ning what is to be done, i.e. functionality.

 3. Relationships between actors and use cases.

For example, consider the use case diagram of the book issue scenario of a library given in
Fig. 12.12. It consists of two actors: member and library clerk. The use cases are ‘request a
book’, ‘search book’, and ‘issue book’.

It may be noted that the name of a use case indicates about the service it provides and
 collectively all the use cases realize the objectives of the system.

Library

member

clerk

request a
book

search book

lssue book

Figure 12.12 Use case diagram of book issue scenario

Similarly, a classroom scenario consists of two actors: ‘teacher’ and ‘student’ and the possible
use cases are: ‘write on black board’, ‘deliver lecture’, ‘ask question’, ‘answer question’ and ‘jot
down’. The use case diagram for this scenario is given in Fig. 12.13.

teacher

Class Room

student

write on
black board

deliver lecture

ask question

answer
question

Jot down

Figure 12.13 Use case diagram of a classroom scenario

In fact, we can say that a use case diagram represents the context of a system. It helps us in
understanding the overall behaviour of the system in context of the goals of the actors associ-
ated with the system. The usage of a use case diagram can be summarized as given below:

318 Object-oriented Programming with C++

 1. Gather system requirements.

 2. Identify factors that infl uence the system. The factors can be either internal or external.

 3. Draft a broader view of the system.

 4. Represent the interaction among the actors and the use cases.

12.4 BEHAVIORAL DIAGRAMS (DYNAMIC)
The world around us is dynamic in the sense that it is continuously evolving. After nightlong
sleep, whether we wake up or not, the sun rises, the birds chirp, people go to their offi ces and
so on. While driving, the vehicles around us move with different speeds. In a classroom, lots of
interactions take place between the teacher and the students. All these examples show that the
world is characterized by action and interaction between the world actors. This behavior of the
world or a part of the world can be represented by behavioral diagrams.

Interactions between various actors of a system are represented using interaction diagrams.
The following steps are carried out before drawing the interaction diagrams:

 1. Identify participating objects.

 2. Find out the object organization.

 3. Identify messages that take place between the objects.

 4. Determine the sequence of messages.

A brief discussion on interaction diagrams is given in the following section.

12.4.1 Interaction Diagrams
An interaction diagram helps us in capturing the behavior of a ‘use case’ scenario. There are two
types of interaction diagrams: sequence diagrams and collaborations diagram.

Sequence diagram: this diagram shows the interaction between various objects in terms of a
time sequence. Each object has a lifeline and the messages it exchanges with other objects are
arranged in the order of their occurrence.

In a sequence diagram, objects are placed in horizontal dimension. The lifeline of each object
is depicted by a vertical line. Messages or interactions are represented as horizontal arrows as
shown in Fig. 12.14.

Consider the classroom scenario wherein we have four major objects: teacher, black board,
student and notebook. The possible interactions among these objects are shown in the sequence
diagram given in Fig. 12.15.

It may be noted that the vertical line is called the object lifeline. It represents the object’s
existence during the interaction. However, this diagram does not represent associations among
the participating objects.

Collaboration diagram: this diagram shows as to how various objects work together in a
particular context to achieve desired outcome. It is a collection of vertices and arcs representing
objects and messages respectively. The objects are laid out in an organized manner and the arcs
are labeled with the messages they send to each other.

Introduction to Uml 319

messages

Lifeline

Object 1 Object 2 Object 3 Object n

time sequence

Figure 12.14 A sequence diagram

Write on the board

Speak on the topic

Answer question

Ask question

Teacher Black Board Student Notebook

Jot down

Figure 12.15 Sequence diagram of a classroom scenario

The collaboration diagram for classroom scenario is shown in Fig. 12.16.

Speak on
the topic 2:

Answer
question 4:Ask

question 3:

Write on the
board 1:

Jot down 5:

Black Board

Student Notebook

Teacher

Figure 12.16 A classroom scenario

320 Object-oriented Programming with C++

It may be noted that the arrows indicate the message sent within the given use case. This
 diagram does not primarily indicate the sequence of messages or events. However, sequence
can be depicted by appropriately numbering the messages as shown in Fig. 12.16. For instance,
‘Ask question’ is the third message in sequence from a student to a teacher.

Similarly, a collaboration diagram of a sub-section of examination system is given in Fig. 12.17.

Evaluate answer
sheet 4:

Give question
paper 1:

Write the exam
2:

3:
Submit answer
sheetDisplay

marks 5:

StudentTeacher

Marks list

Figure 12.17 Collaboration diagram of a sub-section of examination system

The usage of interaction diagrams can be summarized as given below:

 1. Model the dynamic behaviour of the system.

 2. Represent the message fl ow of the system.

 3. Represent the interactions among the objects.

 4. Show the object organization of the system.

 5. Show the control fl ow by structural organization (collaboration diagram).

 6. Show the control fl ow by time sequence (sequence diagram).

12.4.2 State Chart Diagrams
In a dynamic environment, an object moves from one state to another after the occurrence of an
event. The event could be a message, timeout or a signal sent by another object. For example,
when the object on the front of a queue gets served and leaves the serving window, the server
gives a signal to the object next in the queue to come to the front. This type of dynamic behavior
of objects is represented by a state chart diagram. It depicts the sequence of states that an object
passes through during its lifetime in response to messages it receives from other objects. A state
chart diagram is a directed graph of nodes and edges. The nodes represent states of the objects
and the arrows depict transitions among states as shown in Fig. 12.18.

State 1
event

State 2

Figure 12.18 State chart diagram

Introduction to Uml 321

Therefore, the f ollowing needs to be identifi ed before drawing the state chart diagram:

 1. Identify the objects.

 2. Identify the states.

 3. Identify the transitions and the related events.

Consider the state chart diagram shown in Fig. 12.19. It illustrates that initially the teacher
object is in ‘wait’ state. It polls the status of the students. If the students are present then the
teacher goes to ‘teach’ state else the teacher goes back to the ‘wait’ state. The teacher goes to
‘stop’ state from ‘teach’ state as soon as the bell rings.

[students present]

start stop

[students
not present]

Teacher
(Teach)

Teacher
(Wait)

bell rings

Figure 12.19 State chart showing states and transitions

It may be noted that the conditions that govern the transitions have been placed between the
square brackets. The start state is represented by a solid ball whereas the stop state is shown by
a solid ball within a circle. It may further be noted that a state chart represents a reactive system
wherein the participating objects react to external or internal events. Therefore the objects are
also called as reactive objects.

If it is needed to branch to many states depending upon different values of conditions then
we can use a choice point (a circle) as a junction from where the bifurcation begins. A condition
is also called a guard.

Let us now modify the state chart of Fig. 12.19 to include the guard that the teacher goes to
the stop state after waiting for 10 minutes for the students. The modifi ed state chart is given in
Fig. 12.20.

students
present

start

bell rings [yes]

wait

[Wait < 10 minutes]

Teacher
(Teach)

Teacher
(Wait)

bell rings

stop

Figure 12.20 Modifi ed state chart diagram

The usage of state chart diagrams can be summarized as given below:

 1. To represent the states of objects.

 2. To represent a reactive system.

 3. To represent the events responsible for transitions of objects from one state to another.

322 Object-oriented Programming with C++

12.4.3 Activity Diagrams
An internal action of an object at a particular state is called an activity. Therefore, the activ-
ity diagram represents a fl ow of work inside a use case, an algorithm, a protocol or between
objects. The workfl ow itself is represented as a series of actions. The workfl ow can be sequen-
tial, branched or parallel.

The following needs are to be identifi ed before drawing the activity diagram:

 1. Activities

 2. Association

 3. Conditions

 4. Constraints

An activity diagram is an extension of a fl ow chart. It is a graph consisting of activities and transi-
tions. An activity is represented as rectangle with round corners and is labeled with the action it
performs. As soon as the action is complete, the work fl ows to the next activity along the transition
as shown in Fig. 12.21. For instance, as soon as a student is admitted, he/she is assigned a course.

Admit a
student

Assign a
course

Figure 12.21 An activity diagram

An activity can have more than one out going transition. When the workfl ow follows a transition
the internal action of the activity is stopped. The outgoing transitions are resolved through suit-
able conditions. Let us extend the activity diagram of 12.21 so that the course is only assigned
after the fee is deposited by the student. The modifi ed activity diagram is shown in Fig. 12.22.

[fee deposited]

[fee not deposited]

Assign a
course

Admit a
student

Call next
candidate

Figure 12.22 Modifi ed activity diagram

Introduction to Uml 323

Let us carry on further to extend the activity diagram by including the activity of calling candi-
dates from the list of candidates till the number of admitted students is equal to 30. The further
modifi ed activity diagram is given in Fig. 12.23.

[fee deposited]

[fee not deposited]

[number of students > = 30]

[number of students < 30]

Add to list of
students

Assign course

Call a candidate
from the list

Admit as
student

Figure 12.23 Activity diagram of admitting 30 students for a course

Concurrent activities can also be depicted by using fork–join construct of UML as shown in
Fig. 12.24. At ‘Fork’ the workfl ow splits into more than one workfl ow and at ‘Join’ all the
threads of workfl ows join to form a single workfl ow.

Join

Fork

Activity 1 Activity 2

Figure 12.24 Fork- and join-construct for concurrent activities

For example, after a student has been admitted, the course and hostel can be assigned concur-
rently as shown in Fig. 12.25.

324 Object-oriented Programming with C++

[fee deposited]

[number of students > = 30]

[number of students < 30]

[fee not deposited]

Add to list of
students

Assign course Assign Hostel

Call a candidate
from the list

Admit as
student

Figure 12.25 Activity diagram depicting concurrent activities

The usage of activity diagrams can be summarized as given below:

 1. Represent the workfl ow of the system.

 2. Represent the sequence of the workfl ow from one activity to another.

 3. Show the type of workfl ow: sequential, branched and concurrent.

12.5 IMPLEMENTATION DIAGRAMS
From the name itself, it is obvious that the implementation diagrams represent the implementa-
tion aspects of a system. These are of two types: component diagrams and deployment diagrams.

12.5.1 Component Diagram
We know that a system is composed of reusable sub-systems called components. Each component
implements a particular service offered by an interface. In the component diagram, the components
are connected with each other either by the dependency relationship or the composition relationship.

For instance, a student gets registered with a university through an interface. The interface
communicates with the registration module. The registration module stores the registration
 information in a student database as shown in Fig. 12.26.

Introduction to Uml 325

validate

DBC

DBC : Database connectivity

Registration

Interface

Database

Figure 12.26 Component diagram

Thus, it can be said that “a component diagram represents the components of a system and
the relationship among them at an instance of time”. In fact the main purposes of drawing a
 component diagram are:

 1. Plan and name the components that are going to be the executable parts of the system.

 2. Represent the organization of components in the system visually.

12.5.2 Deployment Diagram
As the name suggests, a deployment diagram represents the topology of components in terms of
their deployment on different nodes. The nodes in general are computational hardware components
like client and server machines, modems, monitors, etc. Therefore, in addition to software compo-
nents, we need to identify nodes and their relationships. A software component runs on a particular
node. Therefore, a node necessarily contains the instance of that component as shown in Fig. 12.27.

It may be noted that the node is named as a ‘client m/c’, i.e. client machine. An instance of
‘interface’ component is deployed on this node for execution.

Interface

Client m/c

node

Figure 12.27 A node containing the instance of ‘interface’ component

326 Object-oriented Programming with C++

Let us now deploy the various components of Fig. 12.26 as per the following choice:

Component Node

Interface client m/c

Registration web server

Database Database server

The corresponding deployment diagram is given in Fig. 12.28.

database

Database sever

registration

Web server

interface

Client m/c

Figure 12.28 A deployment diagram

The usage of deployment diagrams can be summarized as given below:

 1. To illustrate the distribution of hardware components called nodes.

 2. To specify the topology of the nodes.

 3. To identify the software components that will reside on the these nodes.

12.6 SUMMARY
A model is a simplifi ed representation of a system, created for the purpose of understanding
the system. For software modeling, UML (unifi ed modeling language) is used. A model can
be static or dynamic. A class represents a specifi c feature of a system. An object is also repre-
sented by a rectangle but its name is qualifi ed by its class name. A composition represents a

Introduction to Uml 327

‘has-a’ relationship. Association is modeled as a pointer from one class to another. Aggregation
is modeled as containership. Top down approach identifi es specialization in classes. Bottom up
approach creates super classes. Inheritance models ‘ako’ relationship. Dependency is the rela-
tionship of usage of one class by another. An actor is a class that initiates some action. A use case
diagram represents the context of a system. An object moves from one state to another after the
occurrence of an event. A state chart represents a reactive system. An activity can have more than
one outgoing transition. Implementation diagrams are of two types: component and deployment.

 MULTIPLE CHOICE QUESTIONS
 1. A static model represents a system at:
 (a) motion (b) rest

 2. A class is represented as a ________ in UML.
 (a) circle (b) ellipse
 (c) rectangle (d) triangle

 3. An attribute defi nes a range of values for a:
 (a) state (b) object
 (c) class (d) function

 4. An object diagram is ______ of a class diagram.
 (a) a copy (b) opposite
 (c) instance

 5. An association is _________ relationship.
 (a) loose (b) tight
 (c) secured

 6. In containership only the _______ is visible.
 (a) relationship (b) link
 (c) contained object (d) container

 7. The aggregation is represented by a link with an open ______ at the container class end.
 (a) circle (b) ellipse
 (c) arrow (d) diamond

 8. Orthogonal classes do not ________ each other.
 (a) depend on (b) touch
 (c) inherit (d) associate with

 9. A use case is a class or a function that provides a ______ to the system.
 (a) link (b) state
 (c) service (d) name

10. Messages in a sequence diagram are arranged in the order of their:
 (a) placement (b) occurrence

11. Interaction diagrams model the ______ behaviour of the system.
 (a) primary (b) static
 (c) dynamic (d) optimal

328 Object-oriented Programming with C++

12. In a state chart diagram, an arrow represents a:
 (a) transition (b) state
 (c) event (d) object

13. An internal action of an object at a particular state is called:
 (a) impulse (b) provocation
 (c) activity (d) reaction

14. An activity diagram is an extension of a:
 (a) class diagram (b) object diagram
 (c) sequence diagram (d) fl owchart

15. A deployment diagram represents the __________ of components.
 (a) interaction (b) ordering
 (c) topology (d) relationship

ANSWERS
 1. b 2. c 3. a 4. c 5. a 6. d 7. d 8. a 9. c
10. b 11. c 12. a 13. c 14. d 15. c

 EXERCISES
 1. What is a model? Differentiate between static and dynamic models.

 2. What is UML? Explain in brief.

 3. How a class is represented in UML?

 4. How member access specifi ers are represented in a UML class diagram?

 5. What is an object diagram?

 6. How aggregation, association and inheritance are represented in a UML class diagram?

 7. Draw the use case diagram of a Super Bazaar billing window scenario wherein the custom-
ers get the bill for the items purchased by them and making the payment in cash.

 8. Draw the use case diagram of an examination room scenario?

 9. Give the equivalent sequence diagram of the use case developed for examination room
scenario.

10. Draw the use case for an ATM machine wherein a customer withdraws cash by presenting
the ATM card to the machine.

11. Give the state chart diagram for the use case diagram developed for ATM machine.

12. Differentiate between a sequence and collaboration diagrams.

13. Give the activity diagram for use case developed for Super Bazaar billing window in
 Question 7.

14. Explain component diagrams with the help of examples.

15. Explain deployment diagrams with the help of examples.

13.1 POLYMORPHISM
We have already introduced ourselves with ‘polymorphism’ in Section 5.1 wherein it was defi ned
as an entity or object having two or more forms. In object-oriented programming (OOP), func-
tions and operators can be overloaded to achieve polymorphic behaviour.

Polymorphic functions have one name with different implementations. If the functions
 belong to different classes then a message (say ‘close’) can be interpreted differently by different
objects resulting in different responses as shown in Fig. 13.1.

close_account()

Close

message Object Response

Interface
Agent

close_interface()

Account
Agent

Transaction
Agent

close_transaction()

Figure 13.1 Polymorphic behaviour of objects

POLYMORPHISM:
A REVIEW

13

330 Object-oriented Programming with C++

13.2 TAXONOMY OF POLYMORPHISM
Cardelli and Wegner gave the taxonomy of the polymorphism wherein it was primarily divided
into two categories called Universal and Ad Hoc polymorphism as shown in Fig. 13.2.

Parametric Sub_type
(Inclusion)

Polymorphism

Universal

Overloading Coercion

Ad Hoc

Figure 13.2 Taxonomy of polymorphism

The Universal polymorphism is further divided into two categories: parametric and sub_type
polymorphism. Similarly the Ad Hoc polymorphism is divided into two categories: overloading
and coercion polymorphism.

13.2.1 Universal Polymorphism
In this polymorphism, a message is sent to dissimilar objects. Each object responds differently
to the message. It is divided into following two types.

Parametric polymorphism: In this type of polymorphism, a piece of code is shared for
 variety of data types and objects. The code is also known as generic code. In our book, we
have implemented parametric polymorphism as generic classes and functions using C++
templates in Chapter 8.

Sub_type polymorphism: In this type of polymorphism, we redefi ne a function of a base class
in derived class and with the help of late binding, a message is sent to a designated object. In
our book, we have used inheritance and function overriding for implementing sub_type
 polymorphism.

Liskov’s substitution principle states that in any situation if a function expects an object of
type T, it can also receive an object of type S, as long as S is a subtype of T, i.e. an object of
derived type can substitute the object of base class.

13.2.2 Ad Hoc Polymorphism
In this polymorphism, same name refers to a fi nite number of objects or programming entities.
It is divided into following two types.

Overloading: The capacity to use same name to denote a group of functions or operations is
called overloading. In our book, we have implemented overloading in the form of function
overloading and operator overloading.

Polymorphism: A Review 331

Coercion: In this polymorphism, same syntax is used to combine operands of different types. It
is a semantic operation that helps avoiding a type error. Consider the statements given below:

int val = 50;
f oat rate = 100;
double total = val * rate;

It may be noted that in the last statement, C++ compiler automatically converts ‘val’ into fl oat
and the result of expression ‘val * rate’ into double before loading its outcome to the variable
‘total’. These implicit type conversions are termed as coercion.

However, we can also explicitly convert a data type into another by prefi xing the data with
the desired type as shown below:

double val, rate;
rate = (double) 100; (explicit type conversion from int to double)

It may be noted that the value ‘100’ has been prefi xed by ‘double’ to force the compiler to
 convert the value into double type. This activity of explicitly converting one data type into
another is called as type casting.

Thus, we can say that coercion is carried out by default by the compiler and the typecasting
is forced by the programmer.

This page is intentionally left blank

The turbo C++ keywords are listed below:

APPENDIX
TURBO C++ KEYWORDS

asm
auto
break
case
catch
_cdecl
cdecl
char
class
const
continue

_cs
default
do
double
_ds
else
enum
_es
_export
extern
_far

far
fl oat
for
friend
goto
huge
if
inline
int
interrupt
_loadds

long
_near
near
new
opeator
_pascal
pascal
private
protected
public

register
return
_saveregs
_seg
short
signed
sizeof
_ss
static
struct

switch
template
this
typedef
union
unsigned
virtual
void
volatile
while

This page is intentionally left blank

& Operator, 59
* Operator, 60
‘\a’ (Alert), 11
‘\b’ (Backspace), 11
‘\n’ (new line), 11
‘\t’ (Tab), 10

A
Abstract class, 221
Abstraction, 112
Activity diagrams, 322
Actor, 316
Ad Hocpolymorphism, 330
a kind of (AKO) relationship, 206
Arithmetic assignment

operators, 255
Arithmetic operators, 12
Arrays, 31

initialization, 35, 38
One-dimensional, 31–32
Multi-dimensional, 33
parameters, 45

Arrays of structures, 38
Array of objects, 119
arrow operator, 74
Assignment operator, 18
atexit(), 294

B
Backslash character constants, 9
base class, 206
Basic data types, 2
Behavioral diagrams, 318
Binary fi le, 264
Binary operators, 250
break, 23
break’ and ‘continue’ statements, 29

C
Call by Reference, 44
Call by Value, 42–44
catch block, 296
Character (char), 2
Classes and objects, 106–132

properties of, 131
Class diagrams, 312
class variable, 131
Code sharing, 235
Coercion, 331
Collaboration diagram, 318
Comma operator, 17
Comments, 9
Component diagram, 324
Compound statement, 19
Concepts, 262
Concrete class, 221
Conditional operator, 15
Conditional statements, 20–24
Constants, 4
Constructors, 177–193

Copy, 185
Default, 178
Parameterized, 181
Rules for, 193
Types of, 178
with Default Arguments, 193

Containership, 198–204

D
Data types modifi ers, 3
Declaration of classes in C++, 110
Deployment diagram, 325
derived class, 206
Destructors, 193–195
Detecting end of fi le, 284

INDEX

336 Index

Do–while loop, 26
Drawbacks of structured programming, 99
Dynamic allocation, 76
Dynamic model, 312

E
Encapsulation, 103, 111–112
end of fi le (eof), 284
Escape sequence, 9
Exception handling, 292–309
exit() function, 30
Expression, 12

F
fall-through, 23
Field, 263–264
Files and streams, 264
File handling in C++, 262–289
Floating point (fl oat), 2
for loop, 28
FORTRAN, 94
Forward class declaration, 156
Friend classes, 157
friend function, 146, 153
fstream, 265
Function overloading, 136, 214

rules, 143
advantages, 143

Function Overriding, 215
Function polymorphism, 136
Function(s), 40

prototypes, 41
Calling, 41
Parameter Passing in, 42
Returning values from, 46

G
get(), 267
getc(), 50
getchar(), 48
getline(), 269
gets(), 50
guard, 321

I
I/O Functions, 48
Identifi ers, 3

if Statement, 20
ifstream, 265
if–else Statement, 20
if–else–if ladder, 22
Implementation diagrams, 324
implementation hiding, 111
Inheritance, 103, 204, 211

types of, 211
Inline functions, 143
Input/output operators, 258
Input–Output Statements, 6
instance variable, 131
Integer (int), 2
Interaction Diagrams, 318
Iterative statements, 25

K
Key fi eld, 263
Keywords, 4

L
Liskov’s Substitution Principle

(LSP), 219
Logical operators, 14
lvalue, 18

M
Member Function, 112
Member Functions of a Class, 153
Memory bleeding, 78
Modular Programming, 98
Multilevel Inheritance, 212–213
Multiple Inheritance, 213–214

N
Nested if Statements, 22
Nested Loops, 30
Nested Structures, 39

O
Object diagram, 313
Object oriented paradigm

of programming, 1
Object Oriented Programming

(OOP), 101–103, 108
Objects, 106

Index 337

Objects as function arguments, 121
ofstream, 265
open(), 273
Opening and closing a fi le, 266
Operator, 12

Arithmetic, 12
Conditional, 15
Relational, 12
Logical, 12
precedence, 16
Special, 16

Open close principle, 206
Operator overloading, 247–260

rules for, 260
Overloading, 330

P
Parametric, 330
Pass by reference, 122
Pass by value, 121
Persistent objects, 280
Pointers, 59–88

Dangling, 66
Array of, 73

Pointers and arrays, 67
Pointers and structures, 74
pointer constant, 69
pointer-to-member, 74
Pointer variables, 61
Polymorphism, 103, 136, 329–331
Primary key, 289
private, 110
Procedural programming, 97
Programming techniques, 94–103
Proper inheritance, 219
 protected inheritance, 211
public, 110
Pure virtual functions, 221
put(), 272
putc(), 50
putchar(), 48
puts(), 50

R
Reactive objects, 321
Reading and writing blocks

and objects, 274
Record, 263

Recursion, 160
Types of, 167
Linear, 167
Binary, 168
Tail, 168

Relational operator, 13
Repetitive execution, 25
Rules for operator overloading, 260
rvalue, 18

S
Scope resolution operator, 113, 124
Selective execution, 20
Self referential structures, 82
Separateness, 103
Sequence diagram, 318
Simple statement, 18
sizeof() Operator, 16
State chart diagrams, 320
Static data members, 129
Static mode, 312
Storing objects in fi les, 280
strcat(), 52
strcmp(string1, string2), 53
strcpy(), 51
Streams, 264
string, 51
strlen(), 53
Structure member operator, 38
Structure of a C++ program, 8
Structured Programming, 96
Structures, 36

Arrays of, 38
Assignment of, 39
Defi ning, 36

Sub_type, 330
Subscripted variables, 31
Switch Statement, 23

T
Taxonomy of polymorphism, 330
Templates, 235–245
Text fi le, 264
throwblock, 296
Throwing objects, 303
Tokens, 3
tryblock, 296
Type casting, 331

338 Index

U
UML diagrams, 311
Unary Arithmetic Operators, 13
Unary operators, 256
Unifi ed Modeling Language (UML), 311
Universal polymorphism, 330
Unstructured Programming, 95
Use case, 316

diagrams, 316
User defi ned constructor, 178

V
Variables, 5
Virtual base class, 230
Virtual functions, 216
Visibility Modes, 210
void, 3

W
while loop, 25

	Cover
	Contents
	Preface
	About the author
	1. INTRODUCTION TO C++
	1.1 Introduction
	1.2 Characters Used in C++
	1.3 Basic Data Types
	1.3.1 Data Types Modifi ers

	1.4 C++ Tokens
	1.4.1 Identifi ers
	1.4.2 Keywords
	1.4.3 Constants
	1.4.4 Variables

	1.5 Input–Output Statements
	1.6 Structure of a C++ Program
	1.6.1 Comments

	1.7 Escape Sequence (Backslash Character Constants)
	1.8 Operators and Expressions
	1.8.1 Arithmetic Operators
	1.8.2 Relational and Logical Operators
	1.8.3 Conditional Operator
	1.8.4 Order of Evaluation of Expressions
	1.8.5 Some Special Operators

	1.9 Flow of Control
	1.9.1 The Compound Statement
	1.9.2 Selective Execution (Conditional Statements)
	1.9.3 Repetitive Execution (Iterative Statements)
	1.9.4 Nested Loops

	1.10 Arrays
	1.10.1 One-dimensional Arrays
	1.10.2 Multi-dimensional Arrays
	1.10.3 Array Initialization

	1.11 Structures
	1.11.1 Defi ning a Structure in ‘C++’
	1.11.2 Arrays of Structures
	1.11.3 Initializing Structures
	1.11.4 Assignment of Complete Structures
	1.11.5 Nested Structures

	1.12 Functions
	1.12.1 Function Prototypes
	1.12.2 Calling a Function
	1.12.3 Parameter Passing in Functions
	1.12.4 Returning Values from Functions

	1.13 I/O Functions
	1.13.1 getchar() and putchar() Functions
	1.13.2 getc() and putc() Functions
	1.13.3 gets() and puts() Functions

	1.14 Strings
	1.15 Summary
	Multiple Choice Questions
	Answers
	Exercises
	Answers

	2. POINTERS
	2.1 Introduction
	2.1.1 The & Operator
	2.1.2 The * Operator

	2.2 Pointer Variables
	2.2.1 Dangling Pointers

	2.3 Pointers and Arrays
	2.4 Array of Pointers
	2.5 Pointers and Structures
	2.6 Dynamic Allocation
	2.6.1 Self Referential Structures

	2.7 Summary
	Multiple Choice Questions
	Answers
	Exercises
	Answers

	3. PROGRAMMING TECHNIQUES: A SURVEY
	3.1 Introduction
	3.2 Unstructured Programming
	3.3 Structured Programming
	3.3.1 Procedural Programming
	3.3.2 Modular Programming

	3.4 Drawbacks of Structured Programming
	3.5 Object-Oriented Programming
	3.6 Summary
	Multiple Choice Questions
	Answers
	Exercises

	4. CLASSES AND OBJECTS
	4.1 Introduction to Objects
	4.2 Classes
	4.3 Declaration of Classes in C++
	4.3.1 Abstraction and Encapsulation
	4.3.2 Member Function Defi nition

	4.4 Creating Objects
	4.4.1 Calling Member Functions

	4.5 Array of Objects
	4.6 Objects as Function Arguments
	4.7 Scope Resolution Operator
	4.8 Static Data Members
	4.9 Properties of Classes and Objects
	4.10 Summary
	Multiple Choice Questions
	Answers
	Exercises

	5. MORE ON FUNCTIONS: ADVANCED CONCEPTS
	5.1 Polymorphism
	5.2 Function Overloading
	5.3 Inline Functions
	5.4 Friend Functions
	5.4.1 Member Functions of a Class as Friends of Another Class
	5.4.2 Friend Function as a Bridge Between Two Classes

	5.5 Friend Classes
	5.6 Recursion
	5.6.1 Types of Recursion

	5.7 Summary
	Multiple Choice Questions
	Answers
	Exercises
	Answers

	6. CONSTRUCTORS AND DESTRUCTORS
	6.1 Constructors
	6.2 Types of Constructors
	6.2.1 Default Constructor and User Defi ned Constructor
	6.2.2 Parameterized Constructors
	6.2.3 Copy Constructor
	6.2.4 Constructors with Default Arguments
	6.2.5 Rules for Constructor Defi nition and Usage

	6.3 Destructors
	6.4 Summary
	Multiple Choice Questions
	Answers
	Exercises

	7. INHERITANCE: EXTENDING CLASSES
	7.1 Introduction to Code Reuse
	7.2 Containership
	7.3 Inheritance
	7.3.1 Visibility Modes

	7.4 Types of Inheritance
	7.4.1 Multilevel Inheritance
	7.4.2 Multiple Inheritance

	7.5 Function Overriding
	7.5.1 Virtual Functions

	7.6 Role of Constructors and Destructors in Inheritance
	7.7 Virtual Base Class
	7.8 Summary
	Multiple Choice Questions
	Answers
	Exercises

	8. TEMPLATES: CODE SHARING (GENERICITY)
	8.1 Introduction to Code Sharing
	8.2 Templates
	8.3 Generic Classes
	8.4 Templates with More than One Generic Parameter
	8.5 Summary
	Multiple Choice Questions
	Answers
	Exercises

	9. OPERATOR OVERLOADING
	9.1 Introduction
	9.2 Operator Overloading
	9.3 Binary Operators
	9.3.1 Arithmetic Assignment Operators

	9.4 Unary Operators
	9.5 Input/Output Operators
	9.6 Rules for Operator Overloading
	9.7 Summary
	Multiple Choice Questions
	Answers
	Exercises

	10. FILE HANDLING IN C++
	10.1 File Concepts
	10.2 Files and Streams
	10.3 Opening and Closing a File (Text Files)
	10.3.1 Function get()
	10.3.2 Function getline()
	10.3.3 Function put()

	10.4 Opening the Files by Using Function Open()
	10.5 Reading and Writing Blocks and Objects (Binary Files)
	10.5.1 Storing Objects in Files

	10.6 Detecting End of File
	10.7 Summary
	Multiple Choice Questions
	Answers
	Exercises

	11. EXCEPTION HANDLING
	11.1 Introduction
	11.2 Traditional Error Handling
	11.3 Exception Handling in C++
	11.3.1 Multiple Throw Statements and Multiple Catch Blocks
	11.3.2 Throwing Objects

	11.4 Summary
	Multiple Choice Questions
	Answers
	Exercises

	12. INTRODUCTION TO UML
	12.1 Introduction to Uml
	12.2 Class Diagrams (Static)
	12.2.1 Relationships Among Classes

	12.3 Use Case Diagrams (Static)
	12.4 Behavioral Diagrams (Dynamic)
	12.4.1 Interaction Diagrams
	12.4.2 State Chart Diagrams
	12.4.3 Activity Diagrams

	12.5 Implementation Diagrams
	12.5.1 Component Diagram
	12.5.2 Deployment Diagram

	12.6 Summary
	Multiple Choice Questions
	Answers
	Exercises

	13. POLYMORPHISM: A REVIEW
	13.1 Polymorphism
	13.2 Taxonomy of Polymorphism
	13.2.1 Universal Polymorphism
	13.2.2 Ad Hoc Polymorphism

	Appendix
	Index

