
ISBN: 978-1-4822-2944-8

9 781482 229448

90000

w w w . c r c p r e s s . c o m

K22617
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

Chemical Engineering

Solve Developed Models in a Numerical Fashion

Designed as an introduction to numerical methods for students, A Numerical
Primer for the Chemical Engineer explores the role of models in chemical
engineering. Combining mathematical correctness (model verification) with
numerical performance (model validation), this text concentrates on numerical
methods and problem solving, rather than focusing on in-depth numerical analysis.
It applies actual numerical solution strategies to formulated process models to help
identify and solve chemical engineering problems.

Describe Motions with Accuracy

The book starts with a recap on linear algebra, and uses algorithms to solve
linear equations, nonlinear equations, ordinary differential equations, and partial
differential equations (PDEs). It includes an introductory chapter on MATLAB®

basics, contains a chapter on the implementation of numerical methods in Excel,
and even adopts MATLAB® and Excel as the programming environments
throughout the text.

The material addresses implicit and explicit schemes, and explores finite difference
and finite volume methods for solving transport PDEs. It covers the methods for
error and computational stability, as well as curve fitting and optimization. It
also contains a case study chapter with worked out examples to demonstrate the
numerical techniques, and exercises at the end of each chapter that students can
use to familiarize themselves with the numerical methods.

A Numerical Primer for the Chemical Engineer lays down a foundation for
numerical problem solving and sets up a basis for more in-depth modeling theory
and applications. This text addresses the needs of senior undergraduates in
chemical engineering, and students in applied chemistry and biochemical process
engineering/food process engineering.

A NUMERICAL PRIMER
for the

CHEMICAL ENGINEER

EDWIN ZONDERVAN
A NUM

ERICAL PRIM
ER for the CHEM

ICAL ENGINEER
ZO

N
D

ERVA
N

K22617 cvr mech.indd 1 7/1/14 3:39 PM

A NUMERICAL PRIMER
for the

CHEMICAL ENGINEER

This page intentionally left blankThis page intentionally left blank

A NUMERICAL PRIMER
for the

CHEMICAL ENGINEER

EDWIN ZONDERVAN

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140527

International Standard Book Number-13: 978-1-4822-2948-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

In memory of my dear father,

Ekke Zondervan.

This page intentionally left blankThis page intentionally left blank

Contents

List of Figures xiii

List of Tables xvii

Introduction xix

Preface xxi

1 The role of models in chemical engineering 1

1.1 Introduction . 1

1.2 The idea of a model . 2

1.3 Model building . 3

1.4 Model analysis . 4

1.5 Model solution strategies 5

1.6 Summary . 6

1.7 Exercises . 6

2 Errors in computer simulations 7

2.1 Introduction . 7

2.2 Significant digits . 7

2.3 Round-off and truncation errors 8

2.4 Break errors . 10

2.5 Loss of digits . 10

2.6 Ill-conditioned problems . 11

2.7 (Un-)stable methods . 13

2.8 Summary . 14

2.9 Exercises . 14

vii

viii Contents

3 Linear equations 15

3.1 Introduction . 15

3.2 MATLAB . 15

3.3 Linear systems . 15

3.4 The inverse of a matrix . 16

3.5 The determinant of a matrix 17

3.6 Useful properties . 18

3.7 Matrix ranking . 19

3.8 Eigenvalues and eigenvectors 20

3.9 Spectral decomposition . 21

3.10 Summary . 23

3.11 Exercises . 23

4 Elimination methods 25

4.1 Introduction . 25

4.2 MATLAB . 25

4.3 Gaussian elimination . 25

4.4 LU factorization . 30

4.5 Summary . 33

4.6 Exercises . 33

5 Iterative methods 35

5.1 Introduction . 35

5.2 Laplace’s equation . 35

5.3 LU factorization . 38

5.4 Iterative methods . 39

5.5 The Jacobi method . 40

5.6 Example for the Jacobi method 43

5.7 Summary . 45

5.8 Exercises . 45

6 Nonlinear equations 47

6.1 Introduction . 47

6.2 Newton method 1D . 47

Contents ix

6.3 Newton method 2D . 49

6.4 Reduced Newton step method 50

6.5 Quasi-Newton method . 53

6.6 Summary . 54

6.7 Exercises . 54

7 Ordinary differential equations 57

7.1 Introduction . 57

7.2 Euler’s method . 57

7.3 Accuracy and stability of Euler’s method 59

7.4 The implicit Euler method 61

7.5 Stability of the implicit Euler method 61

7.6 Systems of ODEs . 62

7.7 Stability of ODE systems 63

7.8 Stiffness of ODE systems 65

7.9 Higher-order methods . 65

7.10 Summary . 68

7.11 Exercises . 68

8 Partial differential equations 1 71

8.1 Introduction . 71

8.2 Types of PDEs . 71

8.3 The method of lines . 72

8.4 Stability . 76

8.5 Summary . 77

8.6 Exercises . 77

9 Partial differential equations 2 79

9.1 Introduction . 79

9.2 Transport PDEs . 79

9.3 Finite volumes . 80

9.4 Discretizing the control volumes 81

9.5 Transfer of heat to fluid in a pipe 82

9.6 Simulation of the heat PDE 85

x Contents

9.7 Summary . 87

9.8 Exercises . 87

10 Data regression and curve fitting 89

10.1 Introduction . 89

10.2 The least squares method 89

10.3 Residual analysis . 92

10.4 ANOVA analysis . 94

10.5 Confidence limits . 94

10.6 Summary . 94

10.7 Exercises . 95

11 Optimization 97

11.1 Introduction . 97

11.2 Linear programming . 98

11.3 Nonlinear programming . 100

11.4 Integer programming . 102

11.5 Summary . 104

11.6 Exercises . 105

12 Basics of MATLAB 109

12.1 Introduction . 109

12.2 The MATLAB user interface 109

12.3 The array structure . 110

12.4 Basic calculations . 111

12.5 Plotting . 113

12.6 Reading and writing data 114

12.7 Functions and m-files . 114

12.8 Repetitive operations . 115

13 Numerical methods in Excel 117

13.1 Introduction . 117

13.2 Basic functions in Excel . 117

13.3 The Excel solver . 117

Contents xi

13.4 Solving nonlinear equations in Excel 119

13.5 Differentiation in Excel . 121

13.6 Curve fitting in Excel . 121

14 Case studies 125

14.1 Introduction . 125

14.2 Modeling a separation system 125

14.3 Modeling a chemical reactor system 126

14.4 PVT behavior of pure substances 128

14.5 Dynamic modeling of a distillation column 131

14.6 Dynamic modeling of an extraction cascade (ODEs) 133

14.7 Distributed parameter models for a tubular reactor 139

14.8 Modeling of an extraction column 141

14.9 Fitting of kinetic data . 145

14.10 Fitting of NRTL model parameters 147

14.11 Optimizing a crude oil refinery 151

14.12 Planning in a manufacturing line 153

Bibliography 157

Index 161

This page intentionally left blankThis page intentionally left blank

List of Figures

1.1 (Left) An image of Ptolemy; (Right) Ptolemy’s model of our
solar system . 1

1.2 “The Treachery of Images” by Rene Magritte 2

2.1 Input–output representation without and with errors 12

4.1 MATLAB screenshot . 26

5.1 Domain definition with 4 boundaries 36

5.2 Domain definition with 4 boundaries with discretized grid . 37

5.3 Matrix sparsity . 38

5.4 Contour plot of temperature profile 39

5.5 With LU decomposition, we produce matrices that are less
sparse than the original matrix 40

5.6 Jacobi scheme where only two vectors need to be stored in
this iterative procedure Told and Tnew 41

6.1 Graphical Newton method 48

6.2 Two-norm of the 2D example 51

6.3 Contour plot of the two-norm of the 2D example, with the
trajectory that Newton’s method follows to find the solution 51

6.4 Scheme for the reduced Newton step method 52

7.1 With Euler’s method we can step forward in time 58

7.2 For 100 steps, the numerical solution gives a good match! . 59

7.3 Numerical solutions for 25, 6, 5 and 3 steps. 60

7.4 Only 5 steps with the implicit Euler scheme 62

7.5 Numerical solution with Euler’s method for the coupled ODE
system . 64

xiii

xiv A Numerical Primer for the Chemical Engineer

7.6 Some results for the explicit and implicit Euler’s schemes for
different numbers of steps 66

7.7 Euler versus Runge-Kutta for 15 time steps 68

8.1 Spatial domain of the steel slab 73

8.2 The grid space with elimination of the boundary nodes from
the equation . 74

8.3 The time constant τ = L2/α gives you an idea how long the
simulation should be run; L is the characteristic length, de-
fined as L = (Nx+ 1)∆x/2 75

8.4 The Argand diagram; solving PDEs with explicit schemes
means that we have a maximum step size we can take in order
to obtain a stable solution 76

9.1 Control volume for our balance 80

9.2 Discretization of the control volumes 81

9.3 Heat conduction in a tube 83

9.4 Tube divided into finite volumes 84

9.5 Numerical solution to the PDE where k = 0.01 86

9.6 Numerical solution to the PDE where k = 1.00 86

10.1 Experimental data . 90

10.2 Experimental data and regressed polynomial 92

10.3 Residual plot . 93

11.1 Geometrical representation of the LP problem 98

11.2 Branching the relaxed problem 103

11.3 Second branch of the relaxed problem 104

11.4 Third branch of the relaxed problem 105

12.1 MATLAB screenshot . 110

13.1 Excel screenshot for the solver add-in 119

13.2 Excel screenshot for Newton’s method 120

13.3 Excel screenshot for Euler’s method 122

13.4 Excel screenshot for curve fitting 123

List of Figures xv

14.1 Process diagram for the separation system 126

14.2 Series of CSTRs . 127

14.3 Convergence of the solution with the Jacobi method 129

14.4 Critical volume as a function of pressure and temperature . 131

14.5 Concentration profiles for the distillation column 133

14.6 Schematic representation of an extraction stage cascade . . 134

14.7 Raffinate concentration with time 136

14.8 Extract concentration with time 137

14.9 Raffinate concentration with Murphree efficiency 138

14.10 Extract concentration with Murphree efficiency 138

14.11 Concentration profiles with time and distance 141

14.12 Steady-state profiles . 142

14.13 Graphical representation of the extraction column 142

14.14 Concentration profile over the column length 144

14.15 Graphical representation of the reactor 145

14.16 Model and data from regression 147

14.17 Experimental and predicted compositions 151

14.18 GAMS listing of the Mixed Integer Program 155

This page intentionally left blankThis page intentionally left blank

List of Tables

1.1 Model types and their classifications 3

1.2 Model types and solution strategies 5

12.1 Basic MATLAB functions 112

12.2 Basic MATLAB constants 112

12.3 Basic MATLAB operations 113

13.1 Basic Excel functions . 118

13.2 Basic Excel array formulae 118

14.1 Extraction column data . 143

14.2 Vapor–liquid equilibrium data for the binary system ethanol
(1) + water(2) . 148

14.3 Antoine parameters . 148

14.4 Production data . 153

14.5 Demand data . 153

xvii

This page intentionally left blankThis page intentionally left blank

Introduction

Since 2008, I have been lecturing for an elective course on numerical methods
at Eindhoven University (6KM06), especially for chemical engineers. There are
good references for this subject, and everyone who has a heart for numerical
methods probably possesses the book, Numerical Recipes, by William Press
and co-authors.

When I started collecting material for the course, it began with the online
material of John Hult, who allowed me to use his materials with the proper
acknowledgments. I also discovered some materials concerning computer errors
from Roel Verstappen, which I thought could be important to incorporate in
this course.

After the development of MATLAB code, exercises, assignments, and lecture
slides, I thought it could be handy to put everything into a syllabus, as a
useful guide for the students attending the class.

Ultimately, it turned into a real book! And here it is, entitled, A Numerical
Primer for the Chemical Engineer, to give you a taste of this exciting field.
We will solve common chemical engineering problems with numerical tools
and prove that this discipline is alive and vivid. I have added a reference
list with useful books and recent papers. Online you can also find MAT-
LAB code, references, and other downloads at http://www.crcpress.com/

product/ISBN/9781482229448.

I hope it will be a useful companion. Enjoy it.

xix

This page intentionally left blankThis page intentionally left blank

Preface

This book emphasizes the derivation and use of a variety of numerical methods
for solving chemical engineering problems. The algorithms are used to solve
linear equations, nonlinear equations, ordinary differential equations, and par-
tial differential equations. It also includes chapters on linear and nonlinear re-
gression, and on optimization. MATLAB R©∗ is adopted as the programming
environment throughout the book. MATLAB is a high-performance comput-
ing program. An introductory chapter on MATLAB basics has been added
and Excel users can find a chapter on the implementation of numerical meth-
ods in Excel. Worked-out examples are given in the case study chapter to
demonstrate the numerical techniques. Most of the examples were written in
MATLAB and are compatible with the latest versions of MATLAB.

It is important to mention that the main purpose of this book is to give
students a flavor of numerical methods and problem solving, rather than to be
an in-depth guide to numerical analysis. The chapters end with small exercises
that students can use to familiarize themselves with the numerical methods.

The material in this book has been used in undergraduate and graduate
courses in the chemical engineering department of Eindhoven University of
Technology. To aid lecturers and students, course materials have also been
made available on the Web at http://www.crcpress.com/product/ISBN/

9781482229448.

The author would, finally, thank everybody who has been helpful and sup-
portive in the creation of this book, especially some of the Ph.D. students
at Eindhoven University that have assisted during lectures and directly in-
fluenced the content of this book: Juan Pablo Gutierrez, Esayas Barega, and
Arend Dubbelboer.

Edwin Zondervan
January 2014

∗MATLAB is a registered trademark of The MathWorks, Inc. For product informa-

tion, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA

Tel: 508 647 7000

Fax: 508-647-7001

E-mail: info@mathworks.com

Web: www.mathworks.com

xxi

This page intentionally left blankThis page intentionally left blank

1

The role of models in chemical engineering

1.1 Introduction

The concept of a model has been around since ancient times. Models appear in
all branches of science and engineering. However, it is often said that modeling
is more art than science or engineering. In this chapter we will discuss general
aspects of models, and more specifically the models that describe (chemical)
process systems. It is not intended as an in-depth discussion.

Ultimately, this book is about solving the developed models in a numerical
fashion. We could consider Ptolemy’s Amalgest (150 BC) as one of the first
recorded studies on modeling and numerical analysis in which numerical ap-
proximations to describe the motions of the heavenly bodies with accuracy
matching reality sufficiently were developed (Figure 1.1). This is basically the

FIGURE 1.1
(Left) An image of Ptolemy; (Right) Ptolemy’s model of our solar system

1

2 A Numerical Primer for the Chemical Engineer

essence of numerical analysis. Numerical analysis is concerned with obtaining
approximate solutions to problems while maintaining reasonable bounds of er-
ror, because it is often impossible to obtain exact answers. Numerical analysis
makes use of algorithms to approximate solutions. Model development and
solving the models is important to the world, for example in astronomy, con-
struction, agriculture, architecture, and, of course, in engineering! In chemical
engineering we use models and their (numerical) solutions to describe reactors
and separators (dynamic and steady state), to perform computational fluid
dynamics, to solve thermodynamic equations of state, to optimize process
performance, to design and synthesize processes, and to regress experimental
data, e.g., isotherms, kinetics, and so forth.

1.2 The idea of a model

In Figure 1.2 we can see an image by the Belgian surrealist Rene Magritte. It
is a pipe, and below this pipe is a sentence in French that says, “Ceci n’est
pas une pipe” (“this is not a pipe”). Actually, it is, indeed, not a pipe; it is an

FIGURE 1.2
“The Treachery of Images” by Rene Magritte

The role of models in chemical engineering 3

Type of model Criterion or classification
Mechanistic Based on mechanisms/underlying phenomena

(first principles)
Empirical Based on input-output data, trials or experiments
Stochastic Contains elements that are probabilistic in nature
Deterministic Based on cause–effect analysis
Lumped parameter Dependent variables not a function of spatial position
Distributed Dependent variables as a function of spatial position
parameter

Linear Superposition applies
Nonlinear Superposition does not apply
Continuous Dependent variables defined over continuous space
Discrete Only define for discrete values of time and/or space
Hybrid Containing continuous and discrete behavior

TABLE 1.1
Model types and their classifications

image of a pipe. Models are similar. Models are not the reality, they are an
approximate description of reality. Eykhoff [20] defines an engineering model
as a representation of the essential aspects of an existing system (or a system
to be constructed) which presents knowledge of that system in a usable form.
This implies basically that a model is (always) a simplification of reality. A
model as such can give insight into the behavior of the system under study, but
it does not always mean that this insight is phenomenological. For example,
if an engineer develops a controller for a distillation tower, he would like to
know how the distillation tower behaves dynamically. Whether this knowledge
is based on first principles or not is not really relevant for his purposes. In
Table 1.1 the different model types are listed.

The mathematical forms of the different model types can involve linear alge-
braic equations, nonlinear algebraic equations, ordinary differential equations,
differential algebraic equations and partial differential equations. Each of the
equation forms requires special techniques for solution.

1.3 Model building

Although there have been many attempts to structure the process of setting up
process models to describe phenomena or systems, the general notion is that
each modeling problem requires a custom-made approach. The applications
and requirements are so different that general model development strategies
would be extremely difficult and decisions regarding the modeling of a system

4 A Numerical Primer for the Chemical Engineer

can often best be made by an expert. However there is some kind of agreement
on the four elementary steps in the modeling process: problem definition,
design, evaluation and application.

In the problem definition phase, the modeling problem and the goal of the
model are properly formulated. This formulation is based on performance and
structure requirements with respect to the application and on the modeling
expertise of the modeler. In the design phase, the structure and key variables
of the model are identified.

For mechanistic models, the structure of the model reflects the physical struc-
ture of the system. This often means that additional steps have to be taken
such as the formulation of physical and chemical laws and a proper translation
of the major assumptions made in the design stage.

Key in the process is the application of conservation principles for conserved
extensive quantities. Another important component is the development of con-
stitutive relations, which are normally used to complete the model.

The conservation principle holds for mass, energy and momentum, and states
that these quantities are neither destroyed or created but simply change form.
Conservation principles lead to typical gas-liquid-solid systems involving the
mass, component and energy balances. In particulate systems, particle number
balances for the generation of population balance equations are also consid-
ered.

Constitutive relations are normally algebraic equations. Constitutive equa-
tions describe five classes of relations in a model, the mass, energy/heat trans-
fer, the reaction rate expressions, the so-called property relations (thermody-
namic constants and relations), the balance volume relations which define the
connections between mass and energy, and the equipment and control con-
straints. For a detailed description of conservation and constitutive equations
the reader is referred to Hangos and Cameron [25].

In the evaluation phase the model is verified with respect to its structure and
the results of the model are validated with the real world situation. In this
phase also the requirements with respect to model structure as formulated
in the problem definition phase are evaluated. If all criteria are satisfied, the
model can be applied.

1.4 Model analysis

The analysis or evaluation of models concerns two parts: numerical perfor-
mance validation and model structure verification. Validation and verification
are two strictly different criteria for model analysis.

The role of models in chemical engineering 5

Verification is related to the mathematical correctness of the model structure.
Using commonsense is of importance, but there are also instruments available
which aid the verification process. For example, one could study the range in
which the parameters of the model are valid, or one could study the sensitivity
of the parameters in relation to the outputs of the model. Models should be
kept as simple as possible. If one model contains more parameters than another
its performance can be better but it is also more complex. There are structure
tests available that quantify the model structure on the basis of modeling error
and model complexity. One of these tests is, for example, Akaike’s information
criterion.

In model validation the outputs of the model are compared with actual mea-
surements from the system to determine whether the model describes the
real system adequately. Cross-parameter validation, residual tests, and the
root mean squared error are a few examples of model validation instruments.
Chapter 11 on data regression will discuss model validation in more detail.

1.5 Model solution strategies

The main objective of this book is to prime the reader with the actual numeri-
cal solution strategies to the formulated process models. In Table 1.2 common
solution approaches are listed for different equation systems.

Equation system Solution strategy
Linear Matrix inversion
Ch. 2,3,4 Gaussian elimination

Jacobi method
Nonlinear Newton’s method
Ch. 5 Secant method

Broyden’s method
ODEs Euler’s method (implicit/explicit)
Ch. 6 Runge Kutta method
PDEs Method of lines
Ch. 7,8 Finite Volume Method

TABLE 1.2
Model types and solution strategies

6 A Numerical Primer for the Chemical Engineer

1.6 Summary

In this chapter the role of models in chemical engineering was briefly dis-
cussed. First, the basic definition of a model was introduced. Subsequently a
common way of model building was discussed, starting with a problem defi-
nition phase, followed by design, evaluation, and application. After the model
building phase, model analysis is done in two ways: the mathematical cor-
rectness of the model (model verification) and the numerical performance of
the model (model validation). In the final section, a short overview of model
solution strategies was given.

1.7 Exercises

Exercise 1

Describe the major steps to be taken when building a model of a process
system, and explain the reason for each step.

Exercise 2

Explain the differences between stochastic, empirical, and mechanistic models.
Describe which factors make it difficult or easy to develop these models?

Exercise 3

Review what kinds of models are used in a particular industry sector (select,
for example, the food, petrochemical, or pharmaceutical industries) and why
they are used. Discuss how the modeling efforts relate to the potential benefits
derived from their use?

2

Errors in computer simulations

2.1 Introduction

Just like real experiments, computer simulations may contain errors. The big
question is: How good are the results of computer simulations? It is imperative
to understand the idea that errors occur in computer simulations and that the
outcomes of simulation studies should always be checked.

To create awareness of how errors influence the outcomes of computer simula-
tions, this chapter is used to introduce the types of errors that generally may
be encountered and how these errors may influence simulation results.

In principle, errors in simulations can be categorized into five classes: 1) errors
in the mathematical model, 2) errors in the input data, 3) errors in computer
programs, 4) round-off and truncation errors, and 5) break errors.

Errors in the formulation of the mathematical model are not discussed in
this chapter, but it should be realized that, in principle, each model is a
simplification of reality; leaving physical or chemical effects out of the model
will increase robustness, but will probably decrease accuracy. The other types
of errors will be discussed in the following sections.

2.2 Significant digits

It may be clear that the result x is not calculated by the computer, but is just
an approximation x̃. This approximation only has value if we have an idea of
how big the difference is, or the absolute error, δ, given as:

δ = x̃− x, x 6= 0. (2.1)

For all x, except x = 0, we may also speak of the relative error :

x̃− x

x̃
. (2.2)

7

8 A Numerical Primer for the Chemical Engineer

Of course, the exact value of δ is unknown, and, generally, estimations of the
error are used, which are formulated as a relative or absolute error margin. If
δ is an absolute error, we express the error margins as:

x̃− δ ≤ x ≤ x̃+ δ, (2.3)

or simply as
x = x̃± δ. (2.4)

Instead of relative error, we often use the number of significant digits. x̃ has m
significant digits when the absolute value of the error in x̃ is smaller or equal
to 5 on the (m+ 1)th position:

10q−1 ≤ |x̃| ≤ 10q (2.5)

|x− x̃| ≤ 0.5× 10q−m. (2.6)

For example, consider x = 1
3 and the approximation x̃ = 0.333. The absolute

error margin in x̃ equals 1
3 − 0.333 = 0.000333 · · · This is smaller than 0.0005,

so m+ 1 = 4, meaning m = 3. In other words, x̃ has three significant digits.

2.3 Round-off and truncation errors

If you perform calculations with a computer or a calculator, you will have to
deal with the representation of numbers. Computers can represent numbers
with a large, but finite number of digits. Each number is approximated by
round-off and/or truncations.

As we are mostly using the decimal system, this means that for a digit c that
has position n, the value is represented to c10n−1.

For example, the number 4521. The number 5 is in the third position and
adds 5× 103−1 to the total.

It is very well possible to use a different basis than the decimal one, for example
— very commonly used in computers — the binary basis; 0 and 1: electrical
current flows or it does not flow. Current corresponds to digits!

If you write the number 4521 as a binary number, you would end up with
1∗212+0∗211+0∗210+0∗29+1∗28+1∗27+0∗26+1∗25+0∗24+1∗23+
0∗22+0∗21+1∗20, or shortly 1000110101001. To prevent misunderstandings,
you could explicitly mention the basis, like (4521)10 = (1000110101001)2, or
in a more general way:

(cm · · · c1c0)q = c0q
0 + c1q

1 + · · ·+ cmqm, c ∈ 0, 1, 2, · · · , q − 1. (2.7)

Numbers are stored as segments in the computer memory, usually called words.

Errors in computer simulations 9

We distinguish two types of numbers, namely the integers and the floating
point numbers.

Natural numbers are represented by computers as integers, so the integer
representation for binary numbers can be given as:

z = σ(c02
0 + c12

1 + · · ·+ cλ−12
λ−1), (2.8)

where σ is the sign of x; for example, when negative, σ = 0 and when positive
σ = 1. The digit ci can take the values of 0 and 1 for every i = 1, 2, · · · , λ− 1,
where λ is the length of the word.

As an example, in Fortran, integers are represented by 32-bit words, so λ = 31.
The whole set of integers available for z is:

−231 + 1 ≤ z ≤ 231 ≈ 2 ∗ 109. (2.9)

If during calculations the number becomes bigger than 2λ − 1, the computer
reports an overflow ; of course, the same message appears if it becomes smaller
than −2λ + 1.

Real numbers are represented by the computer as floating point numbers. On
a binary basis a real number x can be represented as

x = σ(2−1 + c22
−2 + · · ·+ cm2−m)2e, (2.10)

where σ is the sign of x (positive or negative) and ci(i = 1, 2, 3, · · · ,m) can
have the value 0 or 1. The exponent e is always an integer.

The part between brackets is called the mantissa. Notice that c1 is always 1.
We have to choose the exponent e in such a way that the first nonzero digit
corresponds to 2e−1.

The total number of available positions, λ + 1, has to be divided: the sign
requires one position, the mantissa requires m− 1 positions, so the exponent
has only λ−m+1 positions. Ergo, the maximum value for the exponent equals
2λ−m − 1; the minimum value equals −2λ−m + 1.

Just as with the integer representation, there is an upper and lower margin,
and values outside these margins cannot be represented.

Let us have a look at an example: take λ = 3, m = 2, and x = 2
3 . All

representable numbers are of the form ±(2−1 + c22
−2)2e, where c2 can only

be 0 or 1 and e = ±a02
0. a0 can only be 0 or 1.

There are two options to represent x = 2
3 , namely by truncation: 2−1, or by

round-off : 2−1 +2−2. Such inaccuracies are often not acceptable, and for this
reason most computers offer the possibility to represent numbers with double
precision, where the length of the mantissa is doubled.

10 A Numerical Primer for the Chemical Engineer

2.4 Break errors

Computer calculations cannot, of course, take infinite time. At some point,
calculations need to be interrupted. This interruption inevitably leads to error,
often called break error.

To illustrate the phenomenon of break error, we can consider the calculation
of ex by a Taylor series:

ex =

∞
∑

n=0

xn

n!
=

x0

0!
+

x1

1!
+

x2

2!
+ · · · (2.11)

By using a computer, we can summate a large, but finite number of Taylor
series terms, for example N + 1 terms:

ex ≈
N
∑

n=0

xn

n!
=

x0

0!
+

x1

1!
+

x2

2!
+ · · ·+ xN

N !
. (2.12)

The difference between the left- and right-hand terms of the ≈ sign is called
the break error.

2.5 Loss of digits

In principle, all numerical algorithms can be composed of four basic opera-
tions: adding, subtracting, multiplication, and division. However, computers
cannot perform these operations without any error.

For example, the division x/y will not be exact, even not when the operands
x and y are without error.

If we assume that x̃ and ỹ contain errors δ and ǫ, we may write the absolute
error margins as

x̃− δ ≤ x ≤ x̃+ δ, ỹ − ǫ ≤ y ≤ ỹ + ǫ. (2.13)

The sum x+ y equals, of course,

(x̃+ ỹ)− (δ + ǫ) ≤ x+ y ≤ (x̃+ ỹ) + (δ + ǫ), (2.14)

So the absolute error of x + y equals δ + ǫ. Also, the absolute error for sub-
traction equals δ + ǫ. The same counts for multiplication and division.

Errors in computer simulations 11

Let us evaluate an example, to see what will happen to the error if two numbers
are subtracted that have more or less the same values: x = π and x̃ = 3.1416,
y = 22

7 and ỹ = 3.1429. The absolute error margins are δ = 7.35 ∗ 10−6

and ǫ = 4.29 ∗ 10−5. The relative errors of x̃ and ỹ are 2.34 ∗ 10−6 and
1.36 ∗ 10−5, respectively. But the relative error of x̃− ỹ is much larger: 0.028.
The relative error increases strongly! x̃ and ỹ both have 5 significant digits, but
the difference x̃−ỹ only has 2 significant digits: by performing the subtraction,
significant digits are lost!

Another example can be encountered if e−5 is calculated, using Equation 2.14.
If you calculate e−5 without error, you will find a value of 0.006738. But, if
you only use numbers fixed on 4 digits for your calculation, you can observe
the results in the following table:

n 1 + (−5)0/1! + ...+ (−5)n/n!

0 1.000
1 -4.000
2 8.500
3 -12.33
4 13.71
5 -12.33
6 9.38
· · · · · ·
23 0.009989
24 0.009989
25 0.009989

For higher values of n you find 0.009989, something remarkably different as
the real value. The continuously changing positive and negative sign is the
cause of the loss of digits in this problem.

You could prevent loss of digits, by first calculating e1 and subsequently cal-
culating 1/(e ∗ e ∗ e ∗ e ∗ e). The Taylor series of e1 does not alternate, so loss
of digits is prevented!

2.6 Ill-conditioned problems

The introduction already mentioned is that errors in simulations can be traced
back to 5 sources. One of these sources is the error in output as a result of
errors in the input information; see Figure 2.1. This type of error is called the
propagated error. If the input x has a small error δx, then the output will be
f(x+δx) instead of f(x). The propagated error is in this case f(x+δx)−f(x).
Often we cannot obtain a good estimation of f(x + δx). For this reason, the
best way to describe the propagated error is by means of a Taylor series

12 A Numerical Primer for the Chemical Engineer

F(x,y) = 0

F(x+dx,y+dy) = 0

x y

x+dx y+dy

Without
errors

With a
propagated

error

FIGURE 2.1
Input–output representation without and with errors

expansion of f around x:

f(x+ δx)− f(x) ≈ δxf ′(x). (2.15)

Another way of quantifying a propagated error is by means of the so-called
condition criterion C, defined as the ratio of relative error in the output and
relative error in the input:

C = max
δx

(

δy/y

δx/x

)

. (2.16)

If C ≤ 10, the propagation of an error will be small.

We can illustrate error propagation with an example. We would like to solve
the linear system Ay = x, with

A =

[

1.2969 0.8648
0.2161 0.1441

]

,

and x = [0.8642, 0.1440].

The solution of this problem is y = [2,−2]. However, by fixing the input data x
on 11 decimals and subsequently performing Gaussian elimination, we obtain
as a solution y = [0.662,−0.0002].

Apparently this system is ill conditioned ; a small error in the inputs result in
a big error in the outputs. If you calculate the condition criterion, you would
find C ≈ 2 ∗ 108.
Also, for bigger systems, small errors in the inputs can produce tremendous
errors in the solution vectors. Such badly conditioned systems are not easy
to solve accurately. Sometimes it is possible to reformulate the problem in
order to improve the conditioning. Sometimes the solution method can be
improved.

Errors in computer simulations 13

2.7 (Un-)stable methods

The condition criterion tells something about the sensitivity of the solution,
but is does not tell you anything about the quality of the solution method
you are using. If a solution method propagates the error, we call the method
unstable.

This is best illustrated with an example. Consider the following recurrent
relationship:

yn+1 = yn−1 − yn (2.17)

with y0 = 1, y1 = 2/(1 +
√
5). You can prove by substitution that:

yn = x−n, (2.18)

with n = 1, 2, · · · and x = (1 +
√
5)/2. If we use Equations 2.17 and 2.18 to

calculate numbers starting with n = 1 and ending with n = 30, we will obtain
the following numbers

n yn x−n

1 1.000 1.000
2 0.6180 0.6180
3 0.3819 0.3819
4 0.2361 0.2361
· · · · · · · · ·
25 0.1237 ∗ 10−2 0.5960 ∗ 10−5

26 −0.1989 ∗ 10−2 0.3684 ∗ 10−5

27 0.3226 ∗ 10−2 0.2276 ∗ 10−5

28 −0.5215 ∗ 10−2 0.1407 ∗ 10−5

29 0.8442 ∗ 10−2 0.8689 ∗ 10−6

30 −0.1365 ∗ 10−1 0.5374 ∗ 10−6

The differences are striking. The results obtained with Equation 2.17 are not
correct for larger values of n. And it seems that the results also alternate from
positive to negative. This oscillating behavior is a strong indicator for the fact
that the calculation method of Equation 2.17 is unstable.

If you take a closer look at the error propagation you can deduce the following
relationship:

ỹn = yn −

(

1 +
√
5

2

)−n

−
(

1−
√
5

2

)−n

6δ√
5
, (2.19)

where δ is the computation error. The second part of the equation especially,
will lead to error; as n increases, the second term will also grow, no matter
how small your δ is.

14 A Numerical Primer for the Chemical Engineer

In conclusion, the method (or problem formulation) that is chosen for calcu-
lation may strongly influence the end result.

2.8 Summary

In this chapter, we found that the number of significant digits determines the
accuracy of a number. Computers are limited in the expression of numbers,
and can principally represent numbers in two ways: as integers and as floating
point numbers. On the basis of word length, computers round off or truncate
numbers, which may lead to error. Numerical operations may lead to loss of
significant digits, resulting in computational error. Also, errors in input data
may propagate the error in the output data, and repeated operations may
increase the error. The formulation of the problem and the method that is
used to solve the problem determine if the problem is conditioned properly
and/or if the method is stable or not.

2.9 Exercises

Exercise 1

The numbers x1 = 514.01, x2 = −0.04518, x3 = 23.4604 are approximated
by x̂1 = 514.023, x̂2 = −0.045113, x̂3 = 23.4213. Calculate the number of
significant digits in x̂1, x̂2 and x̂3.

Exercise 2

Determine the binary representation of the following for numbers, given the
decimal system: 129, 0.1, 0.2 and 0.8125.

Change the following binary numbers into their decimal equivalents:
(1111111111)2, (10101.101)2 and (.101010101...)2.

Exercise 3

We would like to calculate the value of the function

f(x) = 1− x2 (2.20)

for a given value of x ∈ (0, 1). Calculate the condition criterion C of this
problem.

For which values of x ∈ (0, 1) does it hold that C > 10? What does that mean
for the propagated error?

3

Linear equations

3.1 Introduction

In Chapter 3 we are going to write our first MATLAB program to solve systems
of linear equations. The aim of this chapter is to familiarize you with some
basic theory from linear algebra. We will see that systems of linear equations
can be looked at in different ways. We will also list some basic ideas from
matrix theory—the inverse, the determinant, and the rank. We will also look
at eigenvalues and eigenvectors. But first something about MATLAB as a
programming language.

3.2 MATLAB

MATLAB is a high-level computer programming language, so you don’t need
to worry about memory management/allocation issues. However, it is still
close enough to “proper” programming languages. It has a command line
interface and is quite user friendly. It is also important that vector and matrix
computations are an intrinsic part of MATLAB. Because MATLAB is an
interpreted language (in comparison to a compiler-based language like C++)
it is slow for certain operations.

3.3 Linear systems

Linear equations can be written in several forms. For each case the solution
to the equations has a different interpretation. We could, for example, write

15

16 A Numerical Primer for the Chemical Engineer

a linear system as separate equations :

x+ y + z = 4 (3.1)

2x+ y + 3z = 7 (3.2)

3x+ y + 6z = 5, (3.3)

or we could represent the system as a matrix mapping:

1 1 1
2 1 3
3 1 6

x
y
z

 =

4
7
5

 , (3.4)

or briefly as:
Mx = b, (3.5)

where M is the matrix and x and b are vectors. Sometimes a linear system is
represented as linear combinations of basis vectors:

x

1
2
3

+ y

1
1
1

+ z

1
3
7

 =

4
7
5

 . (3.6)

3.4 The inverse of a matrix

If we want to solve a linear system Mx = b, we need, in fact, the inverse of
the matrix M , provided that the matrix is square. The inverse of a matrix is
defined as

MM−1 = I ↔ M−1M = I, (3.7)

where I is the identity matrix. If we multiply both sides of Equation 3.5 with
M−1 we get:

M−1Mx = M−1b. (3.8)

If we now merge Equation 3.7 into 3.8 we obtain

Ix = M−1b = x (3.9)

or
x = M−1b. (3.10)

The question now is, of course, how to determine the inverse. The inverse can
be found by

M−1 =
1

det(M)

C11 C12 C13

C21 C22 C33

C31 C32 C33

T

, (3.11)

Linear equations 17

where Cij are the co-factors of the matrix M . Calculation of co-factors is best
illustrated by an example. Consider our matrix M

M =

1 1 1
2 1 3
3 1 6

 . (3.12)

3.5 The determinant of a matrix

If we want to calculate the co-factor of element M11, we have to first calculate
the determinant of the stuff that is left over when you cover up the row and
column of the element in question, and thus, for element M11 we consider

1 ⋆ ⋆
⋆ 1 3
⋆ 1 6

 (3.13)

and calculate

C11 = +det

[

1 3
1 6

]

= 6× 1− 3× 1 = 3. (3.14)

The plus sign comes from the following matrix:

+ − +
− + −
+ − +

 .

After calculating the co-factors for each element in the matrix, the result is:

1 1 1
2 1 3
3 1 6

−1

=
1

det(M)

3 −5 2
−3 3 −1
−1 −2 −1

 . (3.15)

If the inverse of a matrix does not exist, there are either no solutions or
infinitely many solutions. The determinant determines the existence of an
inverse. If the determinant is zero, an inverse does not exist, and the matrix
is called singular. We can calculate det(M) by multiplying each element on a
row by its co-factor and adding the result:

det

1 1 1
2 1 3
3 1 6

 = +det

[

1 3
1 6

]

− det

[

2 3
3 6

]

+ det

[

2 1
3 1

]

= −1.

(3.16)

18 A Numerical Primer for the Chemical Engineer

Or you can do the same thing for columns:

det

1 1 1
2 1 3
3 1 6

 = +det

[

2 1
3 1

]

− det

[

1 1
3 1

]

+ det

[

1 1
2 1

]

= −1.

(3.17)
Now, we have everything to solve our problem:

x
y
z

 =
1

−1

3 −5 2
−3 3 −1
−1 −2 −1

4
7
5

 =
1

−1

[

−13
4 5

]

=

13
−4
−5

 . (3.18)

For large matrices, computation of determinants and inverses in this way is
too difficult (slow), so we need other methods to calculate the inverse of a
large matrix.

3.6 Useful properties

A triangular matrix holds that:

det(M) =

n
∏

i=1

aii. (3.19)

If we want to calculate the determinant of:

M =

5 3 2
0 9 1
0 0 1

 , (3.20)

we can easily do that with Equation 3.19

det(M) = 5× 9× 1 = 45. (3.21)

Another useful property is that the determinant of a matrix multiplication is
equal to the product of the determinants of the individual matrices:

det(AM) = det(A) ∗ det(M). (3.22)

We may use this rule to quickly calculate the determinant of the following
matrix:

A =

a 0 0
0 1 0
0 0 1

 . (3.23)

We can write out this matrix as a scalar a and an identity matrix M , and
subsequently use the rule of Equation 3.22 to find:

det(AM) = det(A) ∗ det(M) = a ∗ det(M). (3.24)

Linear equations 19

3.7 Matrix ranking

The rank of a matrix is defined as the number of linearly independent columns,
i.e., columns that cannot be expressed as a linear combination of the other
columns of the matrix. By reducing a matrix to its upper triangular form we
can easily identify how many linearly independent basis vectors there are.

Consider, for example,

M =

5 3 2
0 9 1
0 0 1

 . (3.25)

This matrix has 3 independent columns, rank(M) = 3. One other example is
as follows:

M =

1 2 1 0
0 0 1 1
0 0 0 0

 . (3.26)

This matrix has 2 independent columns and 2 dependent columns, as column
2 can be expressed as 2 times column 1, and column 4 equals column 3 minus
column 1. In this case rank(M) = 2.

A solution to a system of linear equations may or may not exist, and it may or
may not be unique. The existence of solutions can be determined by comparing
the rank of a matrix M to the rank of an augmented matrix Ma. If we have
a linear system Mx = b, where

M =

a11 a21 a31
a12 a22 a32
a13 a23 a33

and

b =

b1
b2
b3

 ,

then the augmented matrix is

Ma =

a11 a21 a31 b1
a12 a22 a32 b2
a13 a23 a33 b3

 .

When rank(M) = n, where n is the size of the matrix, there exists a unique
solution. When rank(M) < n and rank(M) = rank(Ma), there is an infinite
number of solutions and when rank(M) < n and rank(M) < rank(Ma) there
is no solution.

20 A Numerical Primer for the Chemical Engineer

For example, the linear system Mx = b with

M =

1 1 2
0 3 1
0 0 2

 , b =

17
11
4

has rank(M) = 3 and n = 3, so, there is a unique solution to this problem.
Consider the following system:

M =

1 1 2
0 3 1
0 0 0

 , b =

17
11
0

 .

Here, rank(M) = rank(Ma) = 2, which is smaller than n, so there is an
infinite number of solutions.

3.8 Eigenvalues and eigenvectors

Matrices have characteristic directions, called eigenvectors. An eigenvector e
is defined by:

Me = λe. (3.27)

When an eigenvector is multiplied by the matrix M , the result is the eigen-
vector itself. The scale constant λ is called the eigenvalue. Any multiple of an
eigenvector is also an eigenvector.

We can derive from Equation 3.27 that Me− Iλe = 0, or (M − Iλ)e = 0. In
order to find values for λ, the determinant det(M − Iλ) should be zero. We
may write for a matrix M with n = 3:

det(M − Iλ) = det

1− λ 0 0
0 1− λ 0
0 0 1− λ

 = 0, (3.28)

or

det(M − Iλ) = (1− λ) + 1 det

[

1− λ 0
0 1− λ

]

− 0 det

[

0 0
1 1− λ

]

+ 1det

[

0 1− λ
1 0

]

= 0. (3.29)

Writing Equation 3.29 out will yield

(1− λ)
[

(1− λ)2 − 0
]

+ [0− 1(1− λ)] = 0. (3.30)

Linear equations 21

This is a third-order polynomial, so λ has three roots, λ1 = 0, λ2 = 1, and
λ3 = 2.

If a matrix is square, you could decompose it into a diagonal matrix of eigen-
values, multiplied by matrices that have columns made up of the eigenvectors.
For

Me1 = λ1e1 (3.31)

Me2 = λ2e2 (3.32)

Me3 = λ3e3 (3.33)

this would result in

M

...
...

...
e1 e2 e3
...

...
...

=

...
...

...
e1 e2 e3
...

...
...

λ1 0 0
0 λ2 0
0 0 λ3

 , (3.34)

or more compactly written as

MU = UΛ ↔ M = UΛU−1. (3.35)

We will use this spectral decomposition later on.

3.9 Spectral decomposition

Theorem 1 If A is a normal matrix, it is possible to find a complete or-
thonormal set of eigenvectors even if the matrix has eigenvalues of multiplicity
greater than 1; i.e., det(A− λI) = 0 has repeated roots. The matrix W whose
columns are these eigenvectors is unitary, and we can write A as:

A = WΛWH , (3.36)

where Λ = diag(λ1, λ2, · · · , λN).

Proof : We first write A as a Schur decomposition:

A = URUH . (3.37)

Now, taking the Hermitian conjugate,

AH = (URUH)H = URHUH , (3.38)

we then form the two matrix products:

AAH = URUH(URHUH) = URRHUH (3.39)

AHA = URHUH(URUH) = URHRUH . (3.40)

22 A Numerical Primer for the Chemical Engineer

For A to be normal, AAH must be normal as well, RRH = RHR. For

R =

R11 R12 R13 · · · R1N

R22 R23 · · · R2N

R33 · · · R3N

. . .
...

RNN

(3.41)

and

RH =

R̄11

R̄12 R̄22

R̄13 R̄23 R̄33

...
...

...
. . .

R̄1N R̄2N R̄3N · · · R̄NN

, (3.42)

RRH = RHR only if R is diagonal. As R is similar to A,

R = Λ =

λ1

λ2

. . .

λN

. (3.43)

The Schur decomposition for a normal matrix is, therefore,

A = UΛUH . (3.44)

Postmultiplication by U yields

AU = UΛ. (3.45)

The general form of the eigenvector decomposition is (AW = WΛ), where W
is a matrix whose column vectors are eigenvectors of A. Therefore, for any
normal matrix A, we can form a unitary matrix whose column vectors are
eigenvectors to write A in Jordan normal form,

A = WΛWH . (3.46)

For a matrix to be unitary, its column vectors must be orthogonal, as

WHW =

− w(1)H −
...

− w(N)H −

| |
w(1) · · · w(N)

| |

=

w(1) ·w(1) · · · w(1) ·w(N)

...
...

w(N) ·w(1) · · · w(N) ·w(N)

. (3.47)

Linear equations 23

Therefore, it is always possible, for any normal matrix A, to find a complete,
orthonormal basis for CN whose members are eigenvectors of A. One can write
any vector ν ∈ CN as the spectral decomposition

ν = c1w
(1) + c2w

(2) + · · ·+ cNw(N) (3.48)

Awj = λjw
(j)w(j) ·w(k) = δjk, (3.49)

where w(j) ∈ CN and cj = w(j) · ν.

3.10 Summary

In this chapter we found that linear equations can be written as matrices.
Whether or not a solution exists, depends on the rank of a matrix. We also
showed briefly what eigenvectors and eigenvalues are. Such matrix properties
are useful in determining whether a system can be solved, or if a system is
stable or not.

3.11 Exercises

Exercise 1.a

The following linear system is given:

2x1 + x2 + x3 = 4

x1 + 2x2 + 2x3 = 3

x1 − x2 + 6x3 = 1.

Rewrite this system in terms of Ax = b and then determine A−1 with use of
cofactors. Subsequently, solve the system with A−1b.

Exercise 1.b

Given is the system Ax = b, with

A =

1 1 0
2 1 1
1 0 1

 .

Prove that A is singular. Find a b for which this system does not have a
solution, and find a b for which b has an infinite number of solutions.

24 A Numerical Primer for the Chemical Engineer

Exercise 2

Calculate the eigenvalues of the following matrices:

A =

1 1 0
0 −1 0
0 0 2

 ;B =

1 2 3
2 3 1
3 2 1

 .

Exercise 3

Given this matrix:

A =

−2 2 −1
7 3 −1
−4 −4 −2

 ,

prove that the characteristic equation is given by: −λ3 − λ2 + 30λ+ 72 = 0.
Subsequently, determine λ and give the eigenvectors of A with the computer.

4

Elimination methods

4.1 Introduction

In this chapter, we are going to write our first MATLAB program. This pro-
gram can solve a set of linear equations. The method that we are going to use
to perform the required row operations is called Gaussian elimination. But we
will encounter some problems with Gaussian elimination, and for that reason
we will resort to a decomposition technique called LU factorization.

4.2 MATLAB

We already introduced MATLAB in the previous chapter as a user-friendly
programming language. When you open the MATLAB user interface you will
see a division of three screens: a work space, a command prompt, and a com-
mand history. You can type commands in the command prompt, but you can
also collect commands in a program. In MATLAB, a program or subprogram
is called a function.

Today we are going to write a function that will take a matrix A and a right-
hand side b as inputs and will give back a vector with the solution Ax = b:

function [x] = GaussianEliminate(A,b)

4.3 Gaussian elimination

You have probably seen Gaussian elimination before, so the following may be
just a review for you.

25

26 A Numerical Primer for the Chemical Engineer

FIGURE 4.1
MATLAB screenshot

We are going to take a look at the following linear system:

Ax = b, (4.1)

or

A11 A12 A31

A21 A22 A23

A31 A32 A33

x1

x2

x3

 =

b1
b2
b3

 , (4.2)

or as an augmented matrix:

A11 A21 A31 | b1
A21 A22 A32 | b2
A31 A23 A33 | b3

 . (4.3)

In MATLAB you can easily define the matrix A and vector b by typing:

>>A = [1 1 1; 2 1 1; 1 2 0]

>>b = [1 1 1];

Elimination methods 27

In order to simplify our system, we can perform row operations, that is, adding
multiples of equations together in order to eliminate variables.

For example, we could eliminate element A21 by subtracting A21/A11 = d21
times row 1 from row 2.

In this case, row 1 is called a pivot row and A11 is called the pivot element.

So by subtracting d21 times row 1 from row 2, we end up with four new
elements in the second row of our augmented matrix and we have eliminated
element A21 (turned into zero):

A11 A21 A31 | b1
0 A′

22 A′
32 | b′2

A31 A23 A33 | b3

 . (4.4)

In MATLAB we could perform these operations by typing in the workspace:

>>d21 = A(2,1) / A(1,1)

>>A(2,1) = A(2,1) - A(1,1) * d21

>>A(2,2) = A(2,2) - A(1,2) * d21

>>A(2,3) = A(2,3) - A(1,3) * d21

>>b(2) = b(2) - b(1)*d21

We perform similar actions in order to eliminate element A31, where we sub-
tract row 1, d31 = A31/A11 times from row 3:

A11 A21 A31 | b1
0 A′

22 A′
32 | b′2

0 A′
23 A′

33 | b′3

 . (4.5)

In MATLAB we could do that by typing:

>>d31 = A(3,1) / A(1,1)

>>A(3,1) = A(3,1) - A(1,1) * d31

>>A(3,2) = A(3,2) - A(1,2) * d31

>>A(3,3) = A(3,3) - A(1,3) * d31

>>b(3) = b(2) - b(1)*d21

After having made all elements below the pivot element in the first column
zero, we move to the next column. We can now use A22 as a pivot element
and eliminate A33: subtracting d31 = A32/A22 times row 2 from row 3:

A11 A21 A31 | b1
0 A′

22 A′
32 | b′2

0 0 A′′
33 | b′′3

 . (4.6)

In MATLAB you would type:

>>d32 = A(3,2) / A(2,2)

>>A(3,2) = A(3,2) - A(2,2) * d32

>>A(3,3) = A(3,3) - A(2,3) * d32

>>b(3) = b(3) - b(1)*d32

28 A Numerical Primer for the Chemical Engineer

Now with Equation 4.6 we have obtained a matrix of a triangular form, which
we can easily solve with back substitution, because:

x3 = b′′3/A
′′
33 (4.7)

x2 = (b′2 −A′
23x3)/A

′
22 (4.8)

x1 = (b1 −A12x2 −A13x3)/A11. (4.9)

Or, written in the MATLAB command prompt,

>>x(3) = b(3) /A(3,3)

>>x(2) = (b(2) - A(2,3)*x(3))/A(2,2)

>>x(1) = (b(1)-A(1,2)*x(2) - A(1,3)*x(3))/A(1,1)

Rather than typing each command into MATLAB, we could write for loops
to automate these operations. Some tricks might come in handy, for example,
we can access an entire row of a matrix by typing

>>A(1,:)

to access the first row of matrix A, or

>>A(:,2)

to access the second column of matrix A. And with

A(1,2:end)

we can access elements 2 to the last element of row 1. A row operation could
look like

>>A(i,:) = A(i,:) - 2*A(1,:)

where the i-th row equals the i-th row minus two times the first row of matrix
A.

Now we have enough information to write our program. Choose from the
MATLAB menu: file/new/m-file. We need to make two loops, one loop that
will move through the columns of the matrix and find the diagonal element
on each column and eliminate each element below it, and we have to write
an inner loop that will go through each row under the pivot element. Our
program would look like:

function [x] = GaussianEliminate(A,b)
N = length(b);
for column = 1: (N-1)
for row = (column+1):N
d = A(row,column)/A(column,column);
A(row,:) = A(row,:) - d(A(column,:);
b(row) = b(row) - d*b(column);
end

end

Elimination methods 29

With this program we would obtain a triangular matrix that can be solved
with back substitution. For each x we can find its value from

xi =
1

Ai,i

bi −
N
∑

i=j+1

Ai,jxj

 . (4.10)

To include the back substitution in the program, you need to add:

for row=N-1:1
x(row = b(row);
for i = (row+1):N
x(row)=x(row)-A(row,i)*x(i);
end
x(row) = x(row)/A(row,row);
end
x=x’;
return

You can run the algorithm by typing the following at the command prompt:

GaussianEliminate(A,b)

Make sure that the current directory (the bar on the top) is set to the directory
where you saved your file.

Now try to run the program with the following matrix:

A =

0 2 1
3 2 1
1 1 1

 (4.11)

It does not work because there is a division by zero! We can easily solve the
problem by swapping row 1 and row 2. This row swapping is called partial
pivoting. When swapping, don’t forget to also swap the right-hand side (rhs)
of the equation (the b vector). So, add the following code to the beginning of
your program:

[dummy,index] = max(abs(A(column:end,column)));

index = index + column-’;

temp = A(column,:);

A(column,:)=A(index,:);

A(index,:) = temp;

temp = b(column);

b(column) = b(index);

b(index) = temp;

Now you have written your first MATLAB program that can solve linear
systems of equations. However, there are some good reasons why not to use
this program. The first one is that MATLAB, itself, has a good solver to

30 A Numerical Primer for the Chemical Engineer

compute the solution for Ax = b. Our program contains many loops and it
will make MATLAB slow. If you add a counter to the algorithm to monitor
how many subtraction and multiplication operations are performed for a given
size of matrix A, you will find that the number of operations for Gaussian
elimination (row operations) is equal to the number of equations to the third
power. For back substitution, the program requires a number of operations
proportional to the square of the number of equations. Back substitution is
more efficient than row operations, so maybe there are more efficient ways to
end up with triangular matrices.

4.4 LU factorization

Suppose that we would like to solve the previous system, but with three dif-
ferent right-hand sides:

Ax1 = b1, Ax2 = b2, Ax3 = b3. (4.12)

We do not really want to perform Gaussian elimination for each of the three
systems, so we could write Equation 4.12 as one system:

A

...
...

...
x1 x2 x3

...
...

...

=

...
...

...
b1 b2 b3
...

...
...

. (4.13)

By Gaussian elimination we could factor the matrix A into two matrices, L
and U , so that

A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

1 0 0
⋆ 1 0
⋆ ⋆ 1

⋆ ⋆ ⋆
0 ⋆ ⋆
0 0 ⋆

 . (4.14)

Then we could solve each right-hand side using only forward and back substi-
tution. So as the system is now given:

Ax = b, (4.15)

we could rewrite A in terms of L and U :

LUx = b. (4.16)

Now, if we assume y = Ux, we can rewrite Equation 4.16 and solve by forward
substitution as:

Ly = b. (4.17)

Elimination methods 31

And subsequently we solve by back substitution:

Ux = y. (4.18)

So, how do we decompose A as given before? When we eliminate A21 we
can keep multiplying by a matrix that undoes this operation, such that the
product remains equal to A:

A11 A12 A13

A21 A22 A23

A31 A32 A33

=

1 0 0
d21 1 0
0 0 1

A11 A12 A13

0 A22 − d21A12 A23 − d21A12

A31 A32 A33

 .

(4.19)
The same thing, while eliminating A31:

A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

1 0 0
d21 1 0
d31 0 1

A11 A12 A13

0 A′
22 A′

23

0 A′
32 A′

33

 (4.20)

with A′
22 = A22 − d21A12, A

′
23 = A23 − d21A12, A

′
32 = A32 − d31A12 and

A′
33 = A33 − d31A12. Now eliminating A32:

A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

1 0 0
d21 1 0
d31 d32 1

A11 A12 A13

0 A′
22 A′

23

0 0 A′′
33

 (4.21)

with A′′
33 = A′

33 − d32A
′
23. Now we have completed an LU factorization, and

we can solve the L and U matrices with forward and back substitution.

But what if we, for example, obtain a matrix like this:

A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

1 0 0
d21 1 0
d31 0 1

A11 A12 A13

0 A′
22 A′

23

0 A′
32 A′

33

 . (4.22)

We would like to exchange rows 2 and 3. That can be done by multiplication
with a permutation matrix, resulting in

1 0 0
0 0 1
0 1 0

A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

1 0 0
d31 0 1
d21 1 0

A11 A12 A13

0 A′
32 A′

33

0 A′
22 A′

23

 .

(4.23)
A permutation matrix is just an identity matrix whose rows have been inter-
changed. After the row swapping you can proceed as normal.

The general recipe for LU factorization is as follows:

1. Write down a permutation matrix.

2. Write down the matrix to decompose.

32 A Numerical Primer for the Chemical Engineer

3. Promote the largest value in the column diagonal.

4. Eliminate all elements below the diagonal.

5. Move on to the next column and move the largest elements to the
diagonal.

6. Eliminate the elements below the diagonal.

7. Repeat steps 5 and 6.

8. Write down L, U , and P .

Let’s do an example: 1. Write down a permutation matrix (initially the identity
matrix:

P =

1 0 0
0 1 0
0 0 1

 . (4.24)

2. Write down the matrix you would like to decompose, for example:

M =

0 1 1
2 1 1
1 2 0

 . (4.25)

3. Promote the largest value in the diagonal, so, starting with column 1, row
swap to promote the largest value in the column to the diagonal. Do exactly
the same row swap with your identity matrix P :

M =

2 1 1
0 1 1
1 2 0

 , P =

0 1 0
1 0 0
0 0 1

 . (4.26)

4. Eliminate all elements below the diagonal, and record the multiplier d that
you use for elimination, so, for example, subtract 0.5 times row 1 from row 3:

M =

2 1 1
0 1 1
1 1.5 −0.5

 ,

2 1 1
0 1 1
0.5 1.5 −0.5

 . (4.27)

5. Move to the next column. Swap rows to move the largest element to the
diagonal, also for P :

2 1 1
0.5 1.5 −0.5
0 1 1

 , P =

0 1 0
0 0 1
1 0 0

 . (4.28)

6. Eliminate elements below the diagonal, so subtract 2/3 times row 2 from
row 3:

2 1 1
0.5 1.5 −0.5
0 2/3 4/3

 . (4.29)

Elimination methods 33

7. Repeat steps 5 and 6 for all columns.

8. Write down L, U , and P :

U =

2 1 1
0 1.5 −0.5
0 0 4/3

 , L =

1 0 0
0.5 1 0
0 2/3 1

 , P = U =

1 0 0
0 0 1
1 0 0

 .

(4.30)
In MATLAB, LU factorization can be easily done by typing:

>>[L,U,P] = lu(A)

4.5 Summary

In this chapter we wrote a program that can solve a system of linear equations
using Gaussian elimination and back substitution. This method is rather slow
for large systems. MATLAB has a good solver of A\b itself. We found that back
substitution is relatively fast and that repeatedly performing row operations
slows down the solution process a lot. Decomposing a matrix into an L and
a U matrix can be used to perform row operations systematically and much
faster. The L and U matrices can directly be solved using forward and back
substitution. MATLAB also has a tool for LU factorizion, namely lu.

4.6 Exercises

Exercise 1.a

Use Gaussian elimination to solve the following system:

2x1 + 3x2 − x3 = 5

4x1 + 4x2 − 3x3 = 3

2x1 − 3x2 + x3 = −1.

Exercise 1.b

Use Gaussian elimination to solve the following system:

x1 + 2x2 + x3 = 3

3x1 + 5x2 + 2x3 = 1

2x1 + 3x2 + x3 = 5.

34 A Numerical Primer for the Chemical Engineer

By writing the system as Ax = b, you can solve it using MATLAB as follows:
>> x = A\b.

Exercise 2.a

Solve the linear system Ax = b by performing LU factorization. A and b are
given as:

A =

1 1 1
2 1 −1
4 1 5

 ; b =

1
2
10

 .

Show at every step the matrix by which you multiply the system.

Exercise 2.b

Define the permutation matrix in terms of L and U . You can also solve the
system with MATLAB, using the following code:

>> A =[1, 1, 1 ; 2, 1, -1; 4, 1, 5]

>> b = [1; 2; 10];

>> [L,U,P] = lu(A)

Give the entries of the permutation matrix.

Exercise 3

Assume we are solving three different linear systems with the same matrix A:

Ax1 = b1, Ax2 = b2, Ax3 = b3.

Run the following MATLAB code, which defines matrix A and vectors bi
with random entries, computes solution vectors xi, and reports the CPU time
needed to compute xi.

>> n = 300;

>> A = rand(n,n); b1 = rand(n,1); b2 = rand(n,3); b3 = rand(n,3);

>> tic; x1=A\b1; x2 = A\b2; x3 = A\b3; toc

Write down the reported CPU time. Now compute xi also as

>>tic, Ainv=inv(A); x1 = Ainv*b1; x2 = Ainv*b2; x3=Ainv*b3; toc

Which method is the fastest? Try to change the value of n (not too small, say,
larger than 100). Explain the differences in CPU time.

5

Iterative methods

5.1 Introduction

We are going to take a look at iterative methods that can be used to solve
large systems of (linear) equations.

We will solve Laplace’s equation, which describes heat conduction in a rect-
angular geometry.

5.2 Laplace’s equation

The equation that governs temperature in a slab of material is given by:

∂T

∂t
= α∇2T, (5.1)

where α is the thermal diffusivity. ∇ is the partial derivative operator. We
will consider this equation as a steady-state problem, with no dependence on
time:

α∇2T = 0. (5.2)

If we write out Equation 5.1 in two dimensions, for Cartesian coordinates we
will have:

∂2T

∂x2
+

∂2T

∂y2
= 0. (5.3)

Figure 5.1 shows you how the domain is defined, with four boundaries. We
now place a grid over the domain and we want to track the temperature at
each point on the grid, as in Figure 5.2. For simplicity we will use an equally
divided grid interval, so ∆x = ∆y.

We can index a node with k = i+Nx(j− 1) such that Ti,j = Tk. Now we can
use finite differences to approximate our two-dimensional Laplace equation.
Thus, we need some kind of estimate of the second derivative at node k.

35

36 A Numerical Primer for the Chemical Engineer

x

y

T=T
b1

T=T
b2

T=T
b3

T=T
b4

FIGURE 5.1
Domain definition with 4 boundaries

We could assume a piece-wise linear profile, where we approximate at each
grid interval, a temperature difference by a linear function. We can estimate
the second derivative by:

∂2T

∂x2
≈=

∂T
∂x

∣

∣

i+1/2
− ∂T

∂x

∣

∣

i−1/2

∆x
, (5.4)

which can be written as

∂2T

∂x2
≈

Ti+1,j−Ti,j

∆x − Ti,j−Ti−1,j

∆x

∆x
=

Ti+1,j + 2Ti,j − Ti−1,j

∆x2
. (5.5)

Doing the same for the y-direction, we end up with

Ti+1,j − 2Ti,j + Ti−1,j

∆x2
+

Ti+1,j − 2Ti,j + Ti−1,j

∆y2
= 0, (5.6)

or, in terms of node indices, as

Tk+1 − 2Tk + Tk−1

∆x2
+

Tk+Nx − 2Tk + Tk−Nx

∆y2
= 0. (5.7)

If we take an equally spaced grid of ∆x = ∆y = 1, we can rewrite Equation
5.7 as:

Tk−Nx + Tk−1 − 4Tk + Tk+1 + Tk+Nx = 0. (5.8)

Iterative methods 37

i=1 i=2 i=Nx

j=1

j=2

j=Ny

T
1

T
2

T
Nx+1

T
Nx+2

...

...

FIGURE 5.2
Domain definition with 4 boundaries with discretized grid

This equation tells you that the temperature at a grid point is equal to the
average of the surrounding temperatures.

For the nodes on the boundaries, we have a simple equation:

Tk,boundary = some fixed temperature. (5.9)

With our previous equation, and with our boundaries, we end up with a matrix
equation:

AT = b, (5.10)

which is a linear system. If you take Nx = Ny = 5, your A matrix will be a
25 x 25 matrix and your T and b will be vectors with 25 elements.

If you want to create this system in MATLAB, you could type the code below.

>>Nx=5;

>>Ny=5;

>>d = 1/Nx;

>>e = ones(Nx*Ny,1);

>>A =spdiags([e,e,-4*e,e,e],[-Nx,-1,0,1,Nx],Nx*Ny,Nx*Ny);

>>A = A*alpha / d^2;

38 A Numerical Primer for the Chemical Engineer

0 5 10 15 20 25

0

5

10

15

20

25

nz = 113

FIGURE 5.3
Matrix sparsity

If you “spy” (type >>spy(A)) the A matrix, you will see that the matrix has a
sparse structure, that all elements with values appear in diagonals, and that
the upper and lower parts of the matrix are zeros, as shown in Figure 5.3. It
is also not triagonal, as there are offset bands. Such offset bands can cause
you a lot of problems! You could now solve the linear system with T = A \b,
for the boundaries Tb1 = 10 and Tb2 = Tb3 = Tb4 = 0, and you could obtain
a profile as given in Figure 5.4.

5.3 LU factorization

What will happen if we do Gaussian elimination by LU factorization? You
could use the command lu. When we factorize matrix A into L, U , and P ,
we produce matrices that are less sparse than the original matrix. We have
filled the elements between the offset and central band diagonals. Type the
following command to do an LU factorization of A:

>>[L,U,P] = lu(A)

>>subplot(1,2,1)

>>spy(L)

Iterative methods 39

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

FIGURE 5.4
Contour plot of temperature profile

>>subplot(1,2,2)

>>spy(U)

Doing Gaussian elimination on a matrix like A requires storage of more el-
ements as the algorithm proceeds. If we had taken a 3D problem, we would
have had another offset diagonal band, even farther from the central band. The
matrix produced by elimination takes up a lot of memory. But for MATLAB,
this is not a problem (it allocates extra memory). MATLAB also reorders the
equations so that elements are moved closer to the diagonal.

5.4 Iterative methods

In conclusion, Gaussian elimination is not ideal for solving sparse systems. If
we are dealing with large sparse systems of equations, we can resort to iterative

40 A Numerical Primer for the Chemical Engineer

0 10 20

0

5

10

15

20

25

nz = 129
0 10 20

0

5

10

15

20

25

nz = 129

FIGURE 5.5
With LU decomposition, we produce matrices that are less sparse than the
original matrix

methods. In the early days of computing, iterative methods were important
because memory was limited.

There are several iterative methods available. For example, the Jacobi method,
the Gauss-Seidel method, and successive over relaxation. MATLAB has some
functions for iterative methods, and it wouldn’t hurt to take a look at them
(e.g., MathWorks, by typing help bicg or going to the MathWorks Web site).
In this chapter we will look at one method, the Jacobi method.

5.5 The Jacobi method

As you remember, we derived an equation for steady-state heat conduction
earlier:

Tk−Nx + Tk−1 − 4Tk + Tk+1 + Tk+Nx = 0. (5.11)

We could rearrange that equation into:

Tk =
Tk−Nx + Tk−1 + Tk+1 + Tk+Nx

4
. (5.12)

In the Jacobi scheme, the iteration continues with an initial guess for the
values of T at each node, and we make a new updated value using Equation
5.12 and obtaining Equation 5.15:

Tk,new =
Tk−Nx,old + Tk−1,old + Tk+1,old + Tk+Nx,old

4
. (5.13)

Iterative methods 41

Set Told = a guess

Calculate the new
node temperature

from the guessed

values

Have all nodes

been updated?

Is
max(Tnew-Told)

<tolerance?

Report the answer

as Tnew

Set Told=TnewMove to next node

NO

YES

NO

YES

FIGURE 5.6
Jacobi scheme where only two vectors need to be stored in this iterative pro-
cedure Told and Tnew

We do this for all other nodes. Once we have gone through all nodes, we use
the new guess values as a guess and repeat. We could use the approach, using
matrices, where we start with a matrix A, generally of the following form:

A =

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

. (5.14)

We split this matrix into a diagonal matrix D:

D =

∗
∗

∗
∗

∗
∗

, (5.15)

and another matrix S:

S =

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗

, (5.16)

42 A Numerical Primer for the Chemical Engineer

so
A = D + S (5.17)

We can solve AT = b by the following steps:

(D + S)T = b, (5.18)

rewriting:
DT = b− ST. (5.19)

Suppose we want to calculate a new value. We could state:

DTnew = b − STold, (5.20)

or, in other words:
Tnew = D−1(b− STold). (5.21)

If we define an error at the k-th iteration:

εk = Tk − Tk−1 (5.22)

and substitute this into the previous equation, we obtain a formulation of the
error at the next iteration:

Tk+1 = D−1(b− STk). (5.23)

So:
εk+1T = D−1(b − Sεk − ST). (5.24)

In other words:
Dεk+1 = −Sεk, (5.25)

which can be rewritten as:

εk+1 = −D−1Sεk. (5.26)

The eigenvalues ofD−1S must always have a modulus less than unity to ensure
that the error of the new iteration is smaller than the previous one (otherwise
the error propagates!).

We could express the error vector in terms of eigenvectors of D−1S as

ε = a1u1 + a2u2 + a3u3 + a4u4 + · · · , (5.27)

so the error at the k + 1-th position would be like

εk+1 = D−1S(a1u1 + a2u2 + a3u3 + a4u4 + · · ·), (5.28)

which is

εk+1 = a1D
−1Su1 + a2D

−1Su2 + a3D
−1Su3 + a4D

−1Su4 + · · · , (5.29)

Iterative methods 43

which is
εk+1 = a1λ1u1 + a2λ2u2 + a3λ3u3 + a4λ4u4 + · · · (5.30)

The magnitude of the error will grow on each iteration if any of the eigenvalues
(λ) have a complex modulus greater than unity! We should find the largest
magnitude of eigenvalue for the matrix D−1S.

The eigenvalues must be within this circle for the method to converge. To
estimate the eigenvalues, we can use Gershgorin’s theorem, which states:

For a square matrix M and row k, an eigenvalue is located on the complex
plane within a radius equal to or less than the sum of the moduli of the off-
diagonal elements of that row.

This can be formulated in an equation:

|λ−mk,k| ≤
N
∑

j=1,j 6=k

|mk,j | . (5.31)

That means, for the Jacobi iteration, the off-diagonal elements of row k of
D−1S are 1/ak,k times the off-diagonal elements of the original matrixA, while
the diagonal element is zero. Combining Gershgorin’s theorem with λ ≤ 1 and
the structure of the matrix D−1S, we can derive

|ak,k| ≥
N
∑

j=1,j 6=k

|ak,j | . (5.32)

In other words, for the Jacobi method to be stable, the size of the diagonal
element must be larger than the sum of the moduli of the other elements in
the row. Such a matrix is called diagonally dominant. It turns out that for
the sorts of banded matrices you find when solving PDEs, this condition is
required for stability.

5.6 Example for the Jacobi method

Let us work out an example to get some feel for the Jacobi method. Suppose
we want to find a solution to the following linear system:

2 0 1
0 2 −1
−1 −1 4

x1

x2

x3

 =

1
2
−1

 . (5.33)

44 A Numerical Primer for the Chemical Engineer

We are going to write our M matrix as the sum of the diagonal matrix D and
another matrix S. That’s easy:

D =

2 0 0
0 2 0
0 0 4

 . (5.34)

And

S =

0 0 1
0 0 −1
1 −1 0

 . (5.35)

For our calculations we also need the inverse of D. For diagonal matrices, the
inverse can be calculated easily:

D−1 =

1/d1,1 0 0
0 1/d2,2 0
0 0 1/d3,3

 . (5.36)

So, for our example, the inverse of D is

D−1 =

0.5 0 0
0 0.5 0
0 0 0.25

 . (5.37)

We have to start with an initial guess for our x values, e.g., x0 = [0, 0, 0], and
we have to define a solution tolerance ε ≤ 0.1.

Recall that the Jacobi scheme was given as

xnew = D−1(b− Sxold). (5.38)

For our example we will find:

x1 =

0.5 0 0
0 0.5 0
0 0 0.25

1
2
−1

−

0 0 1
0 0 −1
1 −1 0

0
0
0

 =

0.5
1

−0.25

 .

(5.39)
If we use the two-norm as tolerance criterion, we will find for ε after the first
iteration:

||x1 − x0||2 = 1.1456. (5.40)

We now use x1 as the values to calculate a new approximation of the solution
x2 exactly the same way:

x2 =

0.5 0 0
0 0.5 0
0 0 0.25

1
2
−1

−

0 0 1
0 0 −1
1 −1 0

0.5
1

−0.25

=

0.625
0.875
−0.125

.

(5.41)

Iterative methods 45

And the two-norm is:
||x2 − x1||2 = 0.2165. (5.42)

At the third iteration you will find x3 = [0.5625, 0.9375,−0.1875] with
||x3 − x2||2 = 0.10825. And at the fourth iteration you have already con-
verged: x4 = [0.59375, 0.90625,−0.15625] with ||x4 − x3||2 = 0.0541.

5.7 Summary

The main message of this chapter was that PDEs can be written as sparse
systems of linear equations. You could use a direct method, like Gaussian
elimination to solve such system, but if you have systems in more than one
dimension, there are more efficient alternatives such as iterative methods. You
saw, briefly, how the Jacobi method works, and you found that eigenvalues
of composite matrices, representing error in the iteration, determine whether
the method is stable or not (that means the error converges).

5.8 Exercises

Exercise 1

Given is the Laplace equation

∂2T

∂x2
+

∂2T

∂y2
= 0, (5.43)

where the domain is bounded on a rectangular grid by four constant temper-
ature boundaries: Tb1 = 10 and Tb2 = Tb3 = Tb4 = 0. The initial condition
that holds is T0 = 0.

Make a discrete approximation of Equation 14.8 using finite differences.

Exercise 2

We can write the discretized equations formulated in Example 1 as a matrix
equation system:

AT = b. (5.44)

If we take 5 points along the x axis and 5 points along the y axis, how would
matrix A and vector b look?

46 A Numerical Primer for the Chemical Engineer

Type the following code to obtain A:

>> Ny = 5; Nx = 5; d = 1/Nx; alpha = 1;

>> e = ones(Nx*Ny,1);

>> A = spdiags([e,e,-4*e,e,e],[-Nx,-1,0,1,Nx],Nx*Ny,Nx*Ny);

>> A = A*alpha/d^2;

and b:

b = linspace(0,0,Nx*Ny)’;
for i = 1:Nx
j = 1;
k = i + (Nx)*(j-1);
b(k) = b(k) + Tb1*alpha / d^2;
j = Ny;
k = i + (Nx)*(j-1);
b(k) = b(k) + Tb2*alpha / d^2;

end
for j = 1:Ny
i = 1;
k = i + (Nx)*(j-1);
b(k) = b(k) + Tb3*alpha / d^2;
if (k-1>0)
A(k,k-1) = 0;
end
i = Nx;
k = i + (Nx)*(j-1);
b(k) = b(k) + Tb4*alpha/ d^2;
if (k+1<Nx*Ny)
A(k,k+1) = 0;
end

end

You can check the sparsity of matrix A with the command spy(A).

Exercise 3

Perform LU decomposition on A and again check the sparsity of the L and U
matrices. What do you see?

Here is how you decompose A into L and U :

>>[L,U,P] = lu(A)

6

Nonlinear equations

6.1 Introduction

In this chapter we will develop a program to solve nonlinear equations using
Newton’s method. Before we can start with that, we need to get familiar with
something from programming called a “function handle.”

MATLAB can pass function names as arguments to functions. This mechanism
is called a function handle. For example, if we want to solve the function
x2 − 2x = 0, we need to write a function that returns the value of x2 − 2x.
We could do that by typing the following code in the script editor:

Function [residual] = myfunc(x)

residual = x^2 -2*x

Return

Now we could, for example, use the routine fzero to solve the function and
find the roots by >>fzero(@myfunc,2). @myfunc is called a handle to the
function myfun. In this case the number 2 is our initial guess.

6.2 Newton method 1D

Now, if we want to solve x2 − 2x = 0, we could use Newton’s method. This is
something you probably did in high school. We start with an initial guess x0

and calculate fnew:

fnew = f0 +

(

∂f

∂x

)

x0

(xnew − x0), (6.1)

then we extrapolate (assuming f(x) is linear) to a new value of x which will
make f(x) = 0

(xnew − x0) = ∆x =
−f

(

∂f
∂x

)

x0

. (6.2)

47

48 A Numerical Primer for the Chemical Engineer

−1 0 1 2 3 4 5
−2

0

2

4

6

8

10

12

14

16

x

y

x
0

x
1x

3

FIGURE 6.1
Graphical Newton method

This procedure is repeated until the solution is reached. See Figure 6.1 on
how Newton’s method looks graphically. The program is very simple in MAT-
LAB. You have to define a function handle for the function you want to solve
(myfunc). You have to supply a function for the gradient (gradient), and an
initial guess and a tolerance.

function [solution] = Newton1D(myfunc,gradient,guess,tol)
x = guess;
error = 2*tol
while error > tol
F = feval(myfunc,x);
G = feval(gradient,x);
dx = (-F / G);
x = x + dx;
F = feval(myfunc,x);
error = (abs(F));

end
solution = x;
return

Nonlinear equations 49

6.3 Newton method 2D

We could also use Newton’s method for two or even more equations. Consider
the system:

f1 = x3
1 + x2

2 = 0 (6.3)

f2 = x2
1 + x3

2 = 0, (6.4)

or in vector notation,

F

(

x1

x2

)

=

[

f1
f2

]

=

[

x3
1 + x2

2

x2
1 + x3

2

]

. (6.5)

We can start with a guessed value, xi, and find a better guess by extrapolation.
Thus, near the guessed value, the function can be expanded as

f1(xi + dx)
f2(xi + dx)

...

=

f1(xi)
f2(xi)

...

+

∂f1
∂x1

dx1
∂f1
∂x2

dx2
∂f1
∂x3

dx3 · · ·
∂f2
∂x1

dx1
∂f2
∂x2

dx2
∂f2
∂x3

dx3 · · ·
...

...
...

. . .

(6.6)

or, if we take out the dxs, we obtain

f1(xi + dx)
f2(xi + dx)

...

=

f1(xi)
f2(xi)

...

+

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

· · ·
∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

· · ·
...

...
...

. . .

dx1

dx2

...

(6.7)

or in short form:
F (xi + dx) = F (xi) + Jdx. (6.8)

The matrix with the derivatives is called the Jacobian. Do you see the simi-
larities with the 1D Newton method?

The multi-dimensional Newton method can be applied in a procedure of five
steps:

• Compute the function values at the guessed value of xi = [x1, x2, x3]
T .

• Calculate the Jacobian matrix using the current guess.

• Solve the linear system −F (xi) = Jdx for the values of dx.

• Update the guessed value xi+1 = xi + dx.

• Repeat until the updated value of xi gives an F (x) sufficiently close to zero.

50 A Numerical Primer for the Chemical Engineer

You could define the error criterion as the maximum value in the residual
vector:

max (f1(x), f2(x), · · ·) ≤ ε (6.9)

or, you could use the two-norm, which is fancier:

||F (x)||2 =

(

∑

i

f2
i

)1/2

. (6.10)

The MATLAB code for the multi-dimensional Newton method is as follows:

function [solution] = Newton1D(myfunc,jacobian,guess,tol)
x = guess;
error = 2*tol
while error > tol
F = feval(myfunc,x);
J = feval(jacobian,x);
dx = -J \(-F);
x = x + dx;
F = feval(myfunc,x);
error = max(abs(F));

end
solution = x;
return

The differences with the 1D method are very small.

As an illustration for our two-dimensional example, Figure 6.2 shows the two-
norm of the system. In Figure 6.3 a contour plot is given of the same problem.
We could run our Newton routine and plot the calculated coordinate pair at
each iteration, which gives a plot like the one in Figure 6.3. If your start guess
is far away from the solution, the trajectory that the Newton method follows
to find the solution can be very erratic.

6.4 Reduced Newton step method

One possible method to deal with potential erratic behavior and increase the
efficiency is by the reduced Newton step method; see Figure 6.4. We search
along the direction of the Newton step for a point where the error is less than
the error at the starting point. This method is much more robust. Figure 6.4
shows the scheme for the reduced step method. There are some problems with
Newton’s method. When the Jacobian is singular, we cannot find a solution
to F (xi) = J(xi + 1xi), so the vector dx cannot be updated. The same thing
happens for the 1D method, when a maximum or minimum in the function is
encountered (zero gradient).

Nonlinear equations 51

−1.5
−1

−0.5
0

0.5
1

−1

0

1

2
0

1

2

3

4

5

x
1

x
2

||
[f

1
,
f 2

]|
|T

FIGURE 6.2
Two-norm of the 2D example

x
1

x
2

−1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

FIGURE 6.3
Contour plot of the two-norm of the 2D example, with the trajectory that
Newton’s method follows to find the solution

52 A Numerical Primer for the Chemical Engineer

Calculate Newton step dx

i = 0

Work out

||F(x + 0.5dx||

is ||F(x + 0.5dx|| <||F(x)||?
New

x =x+0.5dx
i = i+1

NO YES

FIGURE 6.4
Scheme for the reduced Newton step method

The error for a given iteration can be given as the difference between the value
at the iteration and the true solution:

εi = xi − x∗. (6.11)

Assuming that we are close to the solution, we could expand the function F
around the solution

F (x) = F ∗ + J∗(x− x∗) +O[(x − x∗)]2 (6.12)

from which follows

F (x) = J∗(x − x∗) +O[(x − x∗)]2 (6.13)

F (x) = J∗ε+O(ε2). (6.14)

Now we substitute Equations 6.11, 6.12, and 6.4 into −F (xi) = J(xi+1 − xi)
and obtain:

−J∗(εi)−O[(ε2)] = J(xi+1 − xi) (6.15)

−J∗(εi)−O[(ε2)] = J(εi+1 − εi), (6.16)

from which it can be concluded that the convergence of the method is
quadratic (that is not very good).

We assumed that we can have an analytical form of the Jacobian, but often,
when we have large systems, the functions are too expensive to evaluate.

Nonlinear equations 53

Another way of approximating the Jacobian is by means of finite differences,
where a derivative is given as

∂fi
∂xi

=
fi(x) + fi(x+ δ)

δ
. (6.17)

However, δ cannot be made too small, because computers are only able to
store numbers at finite precision. A common value for δ is the square root of
eps (eps = 2.2204 ∗ 10−16). However, calculating the Jacobian is less efficient
than the analytical form.

6.5 Quasi-Newton method

You do not need to calculate the exact value of the Jacobian at each itera-
tion. You could use a Quasi-Newton method. A famous example is Broyden’s
method.

Broyden’s method can be used to estimate the Jacobian. The residual is given
as

Fi+1(x) ≈ Fi(x) + Ji(xi+1 − xi). (6.18)

If we replace the Jacobian by an estimate we will obtain

Fi(x) ≈ Fi+1(x) +Bi+1(xi − xi+1). (6.19)

If we use Bi (the estimate of the Jacobian at iteration i), we get

Fi(x) = Bi(xi+1 − xi) = Bi(∆xi). (6.20)

If we now combine Equation 6.19 and Equation 6.20 we will get

−Bi(xi+1 − xi) ≈ Fi+1(x) +Bi+1(xi − xi+1) (6.21)

−Bi∆xi ≈ Fi+1 −Bi+1∆xi. (6.22)

Multiplying both sides by (∆xi)
T will give

Bi+1 = Bi +
Fi+1(x)(∆xi)

T

||∆xi||2
. (6.23)

On the i-th iteration we calculate an updated estimate of the Jacobian from
information calculated in the previous iteration. This kind of updating results
in a linear converge, often called a quasi-Newton scheme.

Frequently a set of equations that we want to solve will be sparse (the Jacobian
will contain mainly zeros). We do not need to calculate these entries. We can
make use of the MATLAB operators \ and fsolve to deal in a handy way
with sparsity!

54 A Numerical Primer for the Chemical Engineer

6.6 Summary

To solve nonlinear equations we need an iterative procedure, for example,
Newton’s method. We found out how we can solve a 1D problem, and a multi-
dimensional problem, using Newton’s method. If the initial guess is far from
the solution, Newton’s method can be erratic. For this reason, you could em-
ploy a reduced gradient step, the steps become smaller, and the trajectory
to the solution becomes straighter. We also found out that Newton’s method
does not work when the Jacobian is singular and that the error has a quadratic
convergence with the Jacobian. Often we cannot have analytical representa-
tions of the Jacobian, and we can use finite differences to approximate the
Jacobian. This is, however, inefficient. On the basis of a calculation of the Ja-
cobian at a certain iteration, we can estimate a new value for the Jacobian at
the new iteration. The method in which we update estimates for the Jacobian
is called Broyden’s method. Using Broyden’s method, the convergence of error
becomes linear or quasi-Newtonian.

6.7 Exercises

Exercise 1

In this exercise we are going to write the code to solve the two-dimensional
problem:

f1 = x3
1 + x2

2 = 0 (6.24)

f2 = x2
1 − x3

2 = 0. (6.25)

Write the function Newton.m, that solves the problem as:

function [solution] = Newton(MyFunc,Jacobian,Guess,tol)
x = Guess;
error = 2*tol
while error> tol
F = feval(Myfunc,x);
J = feval(Jacobian,x);
dx = J\(-F);
x = x+dx;
F = feval(MyFunc,x);
error = max(abs(F));

end
solution = x;
return

Nonlinear equations 55

Exercise 2

Now we need to write a function that contains the nonlinear system, and a
function that determines the Jacobian:

function y = Func(x)

y(1) = x(1).^3 + x(2).^2; y(2) = x(1).^2 - x(2).^3;

y = y’;

return

and

function J = Jac(x)

J(1,1) = 3*x(1) ^2;

J(1,2) = 2*x(2);

J(2,1) = 2*x(1);

J(2,2) = -4*x(2) ^2;

return

Save the functions, and solve the system with the following:

solution = Newton(@Func,@Jac,[1;1],1e-6);

Exercise 3

A good measure for the residual error is the two-norm given as

||F (x)|| =
(

∑

i

f2
i

)1/2

. (6.26)

Try to write a routine in MATLAB that calculates the two-norm based on the
nonlinear system of Exercise 1. Then make a surface plot (using surf(x,y,z).
Subsequently, make a contour plot using contour(x,y,z,N) (N is the number
of contour lines that you want). Hint: you can use two for-loops to calculate
the two-norm for all combinations of x1 and x2.

In order to see the trajectory that the Newton routine followed to find the
solution, you could plot, within the contour plot, the path that the Newton
routine used.

Exercise 4

The Underwood equation for multicomponent distillation is given as

n
∑

j=1

αjzjFF

αj − φ

− F (1− q) = 0, (6.27)

56 A Numerical Primer for the Chemical Engineer

where F is the molar feed flow rate, n is the number of components in the
feed, zjF is the mole fraction of each component in the feed, q is the quality
of the feed, αj is the relative volatility of each component at average column
conditions, and φ is the root of the equation.

It has been shown by Underwood that (n− 1) of the roots of this equation lie
between the values of the relative volatilities as shown below:

αn < φn−1 < αn−1 < φn−2 < ... < α3 < φ2 < α2 < φ1 < α1. (6.28)

Evaluate the (n − 1) roots of this equations for the case shown in the table
below

Component in feed Mole fraction, zjF Relative volatility, αj

1 0.05 10.00
2 0.05 5.00
3 0.10 2.05
4 0.30 2.00
5 0.05 1.50
6 0.30 1.00
7 0.10 0.90
8 0.05 0.10

where F = 100mol.h−1 and q = 1.0 (saturated liquid).

7

Ordinary differential equations

7.1 Introduction

In this chapter we are going to solve a common engineering problem: the
initial value problem. Besides the formulation of a solution methodology, we
will evaluate stability of the solution method.

7.2 Euler’s method

The Euler method is a simple way of solving a differential equation. If the
following ODE (ordinary differential equation) is given:

dx

dt
= f(x, t) (7.1)

with the initial condition x(t = 0) = x0, we could generate an estimate of x
at t+ δt as

x(t+ δt) = x(t) +
dx

dt
δt = x(t) + f(x, t)δt, (7.2)

so we can step forward in time, by evaluating the gradient, from the current
step to the next step. Figure 7.1 shows how this looks graphically.

If you wrote Euler’s method in a MATLAB script, it would look like the
example below, a function that has as input a function handle, an initial
value, the time domain, and the number of steps you want to take.

57

58 A Numerical Primer for the Chemical Engineer

t t+dt

x(t+dt)

x(t

the true

solution!

Estimation

FIGURE 7.1
With Euler’s method we can step forward in time

function[x,t] = Euler(MyFunc,InitialValue,Start,Finish,Nsteps)
x(1) = InitialValue;
t(1) = Start;
dt = (Finish-Start)/Nsteps;
for i =1:Nsteps
F = feval(MyFunc,x(i),t(i));
t(i+1) = dt +t(i);
x(i+1) = F*dt + x(i);

end
t = t; x = x;
return

We can test the routine on a simple problem, say a batch reactor, in which
the reactant is consumed by a first-order reaction:

dx

dt
= −kx, (7.3)

given the initial concentration x(t = 0) = 1. The analytical solution will give
you an exponential decay with a time constant τ = 1/k.

You need to supply a function handle with the equation:

function [f] = TestFunction(x,t)

f = -1*x;

return

And now, using the Euler method, you will find the graphical result in Figure
7.2. Of course, this equation is so simple that you can also calculate it by hand

Ordinary differential equations 59

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x
(t

)

Numerical

Exact

FIGURE 7.2
For 100 steps, the numerical solution gives a good match!

and plot the real solution. As you can see, the numerical solution gives a good
match to the exact solution. Now, if you only take 25 steps, you see that the
numerical solution is still OK, but it starts deviating a little from the exact
solution; see Figure 7.3.

For 6 steps, the numerical solution follows the trend, but it already starts
oscillating, while for 5 steps the numerical solution becomes unstable. If you
further decrease the number of steps to, for example, only 3 steps, the numer-
ical solution moves away from the actual solution.

7.3 Accuracy and stability of Euler’s method

The error for a single step of the Euler method can be found from a Taylor
series expansion:

x(t+ δt) = x(t) +
dx

dt
δt = x(t) + f(x, t)δt, (7.4)

in which the terms O(δt2) are neglected. We may assume that the error for
one step will be equal to the additional terms O(δt2). Now we can formulate

60 A Numerical Primer for the Chemical Engineer

0 5 10 15
0

0.2

0.4

0.6

0.8

1

t

x
(t

)

Numerical

Exact

0 2 4 6 8 10
−1

−0.5

0

0.5

1

t

x
(t
)

Numerical

Exact

0 2 4 6 8 10
−1

−0.5

0

0.5

1

t

x
(t
)

Numerical

Exact

0 2 4 6 8 10
−15

−10

−5

0

5

10

t

x
(t
)

Numerical

Exact

25 Steps

6 Steps

5 Steps

3 Steps

FIGURE 7.3
Numerical solutions for 25, 6, 5 and 3 steps.

an estimate of the accumulated error for all steps, as:

NO(δt2) =
∆t

δt
O(δt2). (7.5)

The Euler method is only accurate to O(δt), which is not very impressive.

If we take a look at the simple first-order ODE

dx

dt
= λx, (7.6)

with x(t = 0) = 1 we can find an exact solution:

x = exp(λt). (7.7)

For λ < 0, the solution decays to zero, so a numerical solution should do the
same.

If we write out the Euler scheme:

xi+1(t+ δt) = xi(t) + f(xi)δt (7.8)

= xi + λxiδt (7.9)

= xi(1 + λδt) (7.10)

Ordinary differential equations 61

we find that λδt < 2, in order to decay to zero, ergo, the Euler method is said
to be conditionally stable; the quality of the numerical solution depends on
the step size δt.

7.4 The implicit Euler method

The Euler method we just discussed is called explicit, which means that we
used a gradient at the current time step.

An implicit method uses a gradient at a future point. This seems a bit strange,
because now we need to get a new value for x with

xi+1 = xi + f(xi+1, t+ δt)δt. (7.11)

In the code we only need to make a small change:

function[x,t] = Euler(MyFunc,InitialValue,Start,Finish,Nsteps)
x(1) = InitialValue;
t(1) = Start;
dt = (Finish-Start)/Nsteps;
for i =1:Nsteps
F = feval(MyFunc,x(i),t(i));
t(i+1) = dt +t(i);
x(i+1) = fsolve(@FunToSolve,x(i),[],x(i),t(i+1),MyFunc,dt);

end
t = t; x = x;
return function residual = FunToSolve(x,xo,t,MyFunc,dt)
residual = xo + feval(MyFunc,x,t)*dt-x;

return

If we now run the code with our test problem, for only 5 steps, we can see that
the numerical solution is stable and more accurate than the explicit scheme
(Figure 7.4).

7.5 Stability of the implicit Euler method

If we use an implicit method, we can make the same evaluation of stability as
we did before:

xi+1 = xi + f(xi+1, t+ δt)δt (7.12)

= xi + λxi+1δt, (7.13)

62 A Numerical Primer for the Chemical Engineer

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x
(t

)

Numerical

Exact

FIGURE 7.4
Only 5 steps with the implicit Euler scheme

which becomes after rewriting:

xi+1(1− λδt) = xi → xi+1 =
xi

(1− λδt)
. (7.14)

The scheme becomes unconditionally stable when λ < 0 and conditionally
stable if λ > 0.

7.6 Systems of ODEs

We often want to solve systems of coupled ODEs, like:

dx1

dt
= f1(x1, x2, x3, · · · , t) (7.15)

dx2

dt
= f1(x1, x2, x3, · · · , t) (7.16)

dx3

dt
= f1(x1, x2, x3, · · · , t) (7.17)

· · · (7.18)

We can easily adjust the program (the explicit version) for systems of ODEs.

Ordinary differential equations 63

function[x,t] = EulerCoupled(MyFunc,InitialValue,Start,Finish,
Nsteps)
x(:,1) = InitialValue;
t(1) = Start; dt = (Finish-Start)/Nsteps;
for i =1:Nsteps
F = feval(MyFunc,x(:,i),t(i));
t(i+1) = dt +t(i);
x(:,i+1) = F*dt + x(:,i);

end
t = t; x = x;
return

Similarly, you can adjust the implicit Euler code to deal with ODE systems.
We can solve a linear ODE system, given as:

dx1

dt
= −x1 − x2 (7.19)

dx2

dt
= x1 − 2x2, (7.20)

with x1(0) = x2(0) = 1. First we write a function handle for this model as
follows:

function [dxdt] = TestFunction2(x,t)

dxdt(1) = -1*x(1) 1*x(2)

dxdt(2) = 1*x(1) - 2*x(2);

dxdt = dxdt

return

And now you can solve the system by:

>>[x,t] = EulerCoupled(@TestFunction2,[1;1],0,10,100);

The results are plotted in the Figure 7.5. It should be noted that you need to
supply a vector of initial values now.

7.7 Stability of ODE systems

Let us evaluate our example, written in matrix notation

d

dt

[

x1

x2

]

= M

[

x1

x2

]

(7.21)

with:

M =

[

−1 −1
1 −2

]

. (7.22)

64 A Numerical Primer for the Chemical Engineer

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x
(t
)

x
1
(t)

x
2
(t)

FIGURE 7.5
Numerical solution with Euler’s method for the coupled ODE system

For linear ODE systems we can obtain an analytical solution by factorizing
the M matrix, as we discussed in Chapter 2:

M = U−1ΛU. (7.23)

We could rewrite the system as

d

dt

[

x1

x2

]

= U−1ΛU

[

x1

x2

]

, (7.24)

from which follows

U
d

dt

[

x1

x2

]

= UU−1ΛU

[

x1

x2

]

, (7.25)

which equals:
d

dt

(

U

[

x1

x2

])

= Λ

(

U

[

x1

x2

])

. (7.26)

We can define a new set of variables y:
[

y1
y2

]

= U

[

x1

x2

]

(7.27)

and substitute Equation 7.27 into Equation 7.26:

d

dt

([

y1
y2

])

= Λ

([

y1
y2

])

, (7.28)

Ordinary differential equations 65

where Λ was, of course, a diagonal matrix:

d

dt

[

y1
y2

]

=

[

λ1 0
0 λ2

] [

y1
y2

]

. (7.29)

This means the equations are no longer coupled, so we can find a solution:
[

y1
y2

]

=

[

α exp(λ1t)
β exp(λ2t)

]

, (7.30)

from which follows, according to 7.27,
[

x1

x2

]

= U

[

α exp(λ1t)
β exp(λ2t)

]

, (7.31)

where U contains eigenvectors and the λs are eigenvalues. An eigenvalue can
be a complex number. If the eigenvalues have an imaginary part, we can be
sure that the system will oscillate. The real part of the eigenvalues determines
whether a solution will go to a steady value or explode to infinity.

If we come back to our example, we will find for the M matrix that the system
has the following eigenvalues λ1 = −3/2+i

√

3/2 and λ2 = −3/2−i
√

3/2. The
eigenvalues have an imaginary part, indicating that we may observe oscillation.
Both real parts are negative, showing that the system will decay to a steady
state.

We saw earlier that for the explicit Euler scheme |1 + λδt| < 1 in order to be
stable, but we can extend this to complex numbers, in which case the value
for |1 + λδt| should be within a unit circle.

7.8 Stiffness of ODE systems

For nonlinear ODE systems, we have to look at the eigenvalues of the Jacobian
in order to find out whether the system is stable. Here we also introduce
stiffness as the ratio of the largest and smallest eigenvalue of the Jacobian. A
system is called stiff if this ratio is much greater than unity. For stiff problems,
you need an implicit solver!

7.9 Higher-order methods

Euler works reasonably well, but we could do better. There are more advanced
methods that are based on the Euler method, but give better results. The main

66 A Numerical Primer for the Chemical Engineer

0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x
(t
)

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x
(t
)

0 5 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x
(t
)

0 5 10
−100

−50

0

50

100

150

t

x
(t
)

0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

100 steps

100 steps

25 steps

25 steps

10 steps

10 steps

5 steps

5 steps

IMPLICIT EULER SCHEME

EXPLICIT EULER SCHEME

FIGURE 7.6
Some results for the explicit and implicit Euler’s schemes for different numbers
of steps

idea is that such methods use multiple points in their evaluation. One specific
method that we are going to discuss shortly is the Runge-Kutta method.

A Runge-Kutta scheme uses weighted trajectories. First, we define a ki:

ki = f(xestimated
i , t+ cδt)δt, (7.32)

where 0 < c < 1. We can now update our solution by:

xδt − x0 + w1k1 + w2k2 + · · · (7.33)

The estimated values for x at the i-th trajectory are then calculated from:

xestimated
i = x0 + ai,1ki · · · (7.34)

Thus, for example, for a second-order Runge-Kutta scheme, we need to eval-
uate two trajectories:

xδt − x0 + w1k1 + w2k2 + · · · (7.35)

Ordinary differential equations 67

where
k1 = f(x0, t)δt (7.36)

and
k2 = f(x0 + a2,1k1, t+ c2δt)δt. (7.37)

Now we must choose the weight (w1,w2, a2,1) and the position c2 such that
we get an error of O(δt3) over a single time step.

If we expand x over a Taylor series, we may find that

x = x0 + f(w1 + w2) + wwa2,1f
xfδt2 + w2c2f

iδt2 +Ø(δt3) (7.38)

or

x = x0 + f(x0, t)δt+ (fxf(x0, t) + f i)
δt2

2!
+ Ø(δt3). (7.39)

We can use Equation 7.39 to obtain expressions for the weights. There are
several options because we end up with 3 equations and 4 unknowns:

(w1 + w2) = 1 (7.40)

w2a2,1 = 1/2 (7.41)

w2c2 = 1/2. (7.42)

One option is, for example, the Crank-Nicholson scheme; by setting c2 = 1,
you can solve Equation 7.40 to w1 = w2 = 1/2 and a2,1 = 1.

Another option is called the Euler mid-point scheme, where with c2 = 1/2 you
will find w1 = 0, w2 = 1 and a2,1 = 1/2.

You could also derive a 4th-order RK scheme using the same approach. In
MATLAB, the code for the RK4 scheme looks like this:

function [x,t] = RK4(MyFunc,InitialValues,Start,Finish,Nsteps)
x(:,1) = InitialValues’
t(1) = Start; dt = (Finish - Start)/Nsteps;

for i = 1:Nsteps
k1 = feval(MyFunc,x(:,i),t(i))*dt;
k2 = feval(MyFunc,x(:,i) + k1/2,t(i) + dt/2)*dt;
k3 = feval(MyFunc,x(:,i) + k2/2,t(i) + dt/2)*dt;
k4 = feval(MyFunc,x(:,i)+k3,t(i) + dt)*dt;
t(i+1) = dt + t(i);
x(:,i+1) = (k1+2*k2+2*k3+k4)/6 + x(:,i);

end
t = t’; x = x’;
return

In the 4th-order scheme you need to evaluate 4 trajectories. This type of
integration scheme is accurate to O(δt4), so we would increase accuracy by a
factor 10,000 if we reduce the time step with a factor 10. Figure 7.7 shows the
comparison between Euler and Runge-Kutta. A Runge-Kutta scheme of 100
time steps would require a Euler scheme of 10,000,000 steps to get the same
quality of the numerical solution.

68 A Numerical Primer for the Chemical Engineer

0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x
(t
)

Explicit Euler

0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

x
(t
)

4th Order Runge−Kutta

FIGURE 7.7
Euler versus Runge-Kutta for 15 time steps

7.10 Summary

In this chapter you learned about the Euler method and what implicit and
explicit schemes actually mean (current time, future time). We found out that
methods can be (un)conditionally stable, and that we can use eigenvalues to
tell us something about stability. Also, the term stiffness was introduced.
Stiffness of a system tells you if you should use an explicit or implicit method
to solve it (small or large time steps). We also looked at a higher-order method,
the Runge-Kutta method. RK methods evaluate the solution over more than
one trajectory point, and this means that approximations are more accurate,
while requiring fewer time steps. We did not discuss it, but we will practice
the MATLAB solvers for ODEs. Generally, ODE45 is used (on the basis of an
RK scheme) and for stiff systems ODE15s is a good alternative.

7.11 Exercises

Exercise 1

In the following ODE system:

Ordinary differential equations 69

dx1

dt
= −1x1 − 1x2 (7.43)

dx2

dt
= 1x1 − 2x2, (7.44)

with the initial conditions x1(0) = 1 and x2(0) = 1. Solve this system analyt-
ically, and factorize into U and Λ, calculating the eigenvector matrix and the
eigenvalues of this system.

Is the solution stable? Explain.

Is the ODE system stiff or nonstiff? Explain.

Exercise 2

We are going to write a MATLAB code to solve the ODE system of the
previous equation with OD45. The first step is to write the ODE function:

function dxdt = odefun(t,x)

dxdt = zeros(2,1)

dxdt(1) = -1*x(1) - 1*x(2);

dxdt(2) = 1*x(1) - 2*x(2);

Now we can solve this system using ODE45 as follows:

options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4]);

Timespan = [0 10];

X0 = [0 1];

[T,X] = ode45(@odefun,Timespan,X0,options);

You can evaluate the solution graphically by:

plot(T,X(:,1),’-’,T,X(:,2),’-.’)

Exercise 3

Let’s evaluate a stiff problem:

dx1

dt
= −1x1 − 1x2 (7.45)

dx2

dt
= 1x1 − 5000x2. (7.46)

Use the routines from the previous exercise to solve the system. Add to the
options:

options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4], ’Stats’,’on’);

70 A Numerical Primer for the Chemical Engineer

Write down the statistics. Replace the solver line with the following:

[T,X] = ode15(@odefun,Timespan,X0,options);

What are the differences between ODE45 and ODE15?

Exercise 4

Integrate the following differential equations

dCA

dt
= −4CA + CB (7.47)

dCB

dt
= 4CA − 4B (7.48)

with CA(0) = 100 and CB(0) = 0. Integrate over the time period from t =
1...5. Use Euler’s method and a fourth-order Runge-Kutta method.

Which method would give a solution closer to the analytical solution? And
why do the different methods give different results?

8

Partial differential equations 1

8.1 Introduction

In this chapter you will learn to compute numerical solutions to partial dif-
ferential equations. There are several classes of differential equations: the
parabolic, elliptic, and hyperbolic equations. We already saw the approach
shown in this chapter in Chapter 5 on iterative methods. Now we are going to
extend the method by transforming the PDE system into a system of ODEs.

8.2 Types of PDEs

The general structure of a second-order PDE can be given as

a
∂2u

∂t2
= 2b

∂2u

∂t∂x
+ c

∂2u

∂x2
= f(

∂u

∂t
,
∂u

∂x
, u). (8.1)

We can define a determinant as

D = b2 − 4ac. (8.2)

In principle we can distinguish three classes of differential equations; if the
determinant is smaller than zero, we call the equation parabolic, if it is equal
to zero it is called elliptic, and if it is larger than zero it is called hyperbolic.

Often it is handy to identify whether a PDE has one- or two-way coordinates.
Below are some examples of PDEs.

∂T

∂t
+

k

ρCP

∂2T

∂x2
(8.3)

Equation 8.3 is a parabolic equation. We see that time is a one-way coordinate
and space is a two-way coordinate. That time is a one-way coordinate means
that we can march a solution forward in time.

∂2T

∂x2
+

∂2T

∂x2
= 0 (8.4)

71

72 A Numerical Primer for the Chemical Engineer

We got acquainted with the elliptic PDE of Equation 8.4 in the chapter on
iterative methods. We saw that we have to solve for all values simultaneously.

We will not discuss hyperbolic equations, for example, the wave equation:

∂2u

∂t2
− c

∂2u

∂x2
= 0. (8.5)

If we want to solve a PDE, we need to convert it to a system of algebraic equa-
tions, or ODEs. The first thing we need to do is discretize the spatial domain.
There are several ways to discretize space, by means of finite differences, finite
volumes, and finite elements.

8.3 The method of lines

In this chapter we will have a look at the method of lines. We will look at the
unsteady-state Laplace equation for heat conduction in a slab.

In the method of lines, we discretize that spatial domain of the PDE to produce
a set of ODEs, which govern the temperature at each point in the solution.
We will use finite differences to accomplish this.

The unsteady-state heat conduction equation is given by

∂T

∂t
= α∇2T (8.6)

In two dimensions this equation can be written as

∂T

∂t
= α

(

∂2T

∂x2
+

∂2T

∂y2

)

. (8.7)

We want to solve this equation over the domain shown in Figure 8.1 The first
thing we do is to place a grid over the solution domain and track temperature
at each POINT of the grid. We will use an equal grid space. The index k can
be obtained from i and j:

k = i+Nx(j − 1), (8.8)

such that each temperature at grid point (i, j) can be subsequently represented
by Ti,j :

Ti,j = Tk=i+Nx(j−1). (8.9)

We can discretize the heat equation to find an ODE that governs the temper-
ature at node k, so we discretize:

∂Ti,j

∂t
= α

(

∂2

∂x2

∣

∣

∣

∣

i,j

+
∂2T

∂y2

∣

∣

∣

∣

i,j

)

. (8.10)

Partial differential equations 1 73

x

y

T=T
b1

T=T
b2

T=T
b3

T=T
b4

FIGURE 8.1
Spatial domain of the steel slab

As you saw in Chapter 5 on iterative methods, we can obtain a discretization
using finite differences by assuming a piecewise linear relation:

∂2T

∂x2
≈

∂T
∂x

∣

∣

i+1/2
− ∂T

∂x

∣

∣

i−1/2

∆x
(8.11)

≈
Ti+1,j−Ti,j

∆x − Ti,j−Ti−1,j

∆x

∆x
(8.12)

=
Ti+1,j − 2Ti,j + Ti=1,j

∆x2
. (8.13)

We do the same thing for the y-direction and we find after rewriting and
replacing the i and j with k:

dTk

dt
= α

(

Tk+1 − 2Tk + Tk−1

∆x2
+

Tk+Nx − 2Tk + Tk−Nx

∆y2

)

. (8.14)

The boundaries have a fixed temperature; they do not obey our discretized
equations. We can incorporate the boundaries by eliminating the tempera-
tures at the boundary nodes from the set of equations, or we could write
dTboundary/dt = 0, or we could include boundary node equations as a set of
algebraic equations.

We are going to use the first option, and we will eliminate the temperatures
at the boundary nodes from the equations. We know that for a node on a

74 A Numerical Primer for the Chemical Engineer

i=1 i=2 i=Nx

j=1

j=2

j=Ny

T
1

T
Nx+1

T
Nx+2 T

Nx

T
2Nx

T
2Nx

T
Nx(Ny-1)+2

T
Nx(Ny-1)+1

FIGURE 8.2
The grid space with elimination of the boundary nodes from the equation

border we can write (when ∆x = ∆y):

dTk

dt
=

α

∆x2
(Tk+1 − 2Tk + Tk+Nx − 2Tk + Tk−Nx) . (8.15)

You could check the grid space and set the nodes on the borders as written
above. This is how we eliminate the boundary conditions; the node on border
1: Tk−Nx = Tb1, on border 2: Tk+Nx = Tb2, on border 3: Tk−1 = Tb3 and on
border 4: Tk+1 = Tb4.

After elimination of the boundaries, we end up with the complete model as
given in

dT

dt
= AT + b, (8.16)

Partial differential equations 1 75

or

d
dt

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

= α
∆x2

−4 1 0 1 0 0 0 0 0 0 0 0
1 −4 1 0 1 0 0 0 0 0 0 0
0 1 −4 0 0 1 0 0 0 0 0 0
1 0 0 −4 1 0 1 0 0 0 0 0
0 1 0 1 −4 1 0 1 0 0 0 0
0 0 1 0 1 −4 0 0 1 0 0 0
0 0 0 1 0 0 −4 1 0 1 0 0
0 0 0 0 1 0 1 −4 1 0 1 0
0 0 0 1 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 1 0 0 −4 1 0
0 0 0 1 0 0 0 1 0 1 −4 1
0 0 0 1 0 0 0 0 1 0 1 −4
0

×

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

+ α
∆x2

Tb1 + Tb3

Tb1

Tb1 + Tb4

Tb3

0
Tb4

Tb3

0
Tb4

Tb2 + Tb3

Tb2

Tb2 + Tb4

(8.17)

We can now solve this system of ODEs with, for example, the ODE45 solver
of MATLAB, which is straightforward. In Figure 8.3 the outcome is shown.
You see profiles for x and y at different times. We may define a time constant

t= 1.4709 tau

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

1

2

3

4

5

6

7

8

9

10

FIGURE 8.3
The time constant τ = L2/α gives you an idea how long the simulation should
be run; L is the characteristic length, defined as L = (Nx+ 1)∆x/2

76 A Numerical Primer for the Chemical Engineer

as the ratio of the characteristic length of the slab squared and the thermal
diffusivity. Using half this length will give you a good idea of how long you
should run the simulation.

8.4 Stability

You could check the stability of a system by evaluating the Jacobian. The
eigenvalue of the Jacobian with the largest magnitude determines which time
step you can take. For our system, the Jacobian equals the A matrix.

As we discussed before, we can use Gershgorin’s theorem to estimate eigen-
values as

|λ−mk,k| ≤ |mk,1|+ |mk,2|+ · · ·+ |mk,N−2|+ |mk,N−1|+ |mk,N | . (8.18)

We find that all eigenvalues have to be within the circle for the solution to be
stable. If we zoom in a little in the Argand plot, as shown in Figure 8.4, we
actually find that the eigenvalues should be within a radius of 4α/∆x2, from
the point (−4α/∆x2, 0). The worst possible case would be to have eigenval-
ues of −4α/∆x2. If you interrupt the simulation half way and calculate the
eigenvalues of A (>>eig(A)), you will come close to this value.

r=4 / x2

Im()

Re()

FIGURE 8.4
The Argand diagram; solving PDEs with explicit schemes means that we have
a maximum step size we can take in order to obtain a stable solution

Partial differential equations 1 77

If we had used the explicit Euler method to step forward in time, we would
have found that the method is only stable when

−λδt < 2 → δt < 2∆x2/8α. (8.19)

This outcome highlights a problem we encounter in solving a PDE: If we use
an explicit time stepping scheme, we will find a maximum step size we can
take in order to create a stable solution.

8.5 Summary

In this chapter we saw that we can convert PDEs to a system of ODEs.
Although not explicitly mentioned this time, we see that we are confronted
with sparse A and J matrices. We can use the eigenvalues of the Jacobian to
investigate stability of the method, and we see that when we are using implicit
methods to solve the ODE system we are limited by a maximum step size we
can take to keep the solution stable.

8.6 Exercises

Exercise 1

Open the function HeatConduction.m and see if you can make it work for
Tb1 = 5, Tb2 = 10, Tb3 = 10, Tb4 = 10, T0 = 0 and α = 1.

Exercise 2

MATLAB has a solver for initial-boundary value problems for parabolic-
elliptic PDEs in one dimension. In this exercise we are going to get acquainted
with the specific solver pdepe.

We are going to compute and plot the solution of the following PDE:

π2 ∂u

∂t
=

∂

∂x

(

∂u

∂x

)

. (8.20)

This equation holds onto the interval 0 ≤ x ≤ 1 for times 0 ≤ t. The PDE
satisfies the initial condition u(x, 0) = sinπx and the boundary conditions
u(0, t) = 0 and πe−t + ∂u

∂x (1, t) = 0.

78 A Numerical Primer for the Chemical Engineer

The PDE solver has a convention for the formulation of the PDE, the initial
conditions, and the boundaries. Generally, the PDE should be formulated in
terms of c, f, s, and m:

c

(

x, t, u,
∂u

∂x

)

∂u

∂t
= x−m ∂

∂x

(

xmf

(

x, t, u,
∂u

∂x

))

+ s

(

x, t, u,
∂u

∂x

)

. (8.21)

where a ≤ x ≤ b, t0 ≤ t ≤ tf , and m = 0, 1, 2. The initial conditions should
be written as u(x, t0) = u0(x) and for the boundary condition the following
form is required:

p(x, t, u) + q(x, t)f

(

x, t, u,
∂u

∂x

)

= 0. (8.22)

Now we have to write functions for the PDE pdex1pde, the initial condition
pdex1ic, and the boundaries pdex1bc:

function [c,f,s] = pdex1pde(x,t,u,DuDx)

c = ...;

f = ...;

s = ...;

Fill in the dots, and formulate the functions for the initial conditions and the
boundaries yourself.

What is the value for m?

We will solve the PDE using the following code:

sol = pdepe(m,@pdex1pde,@pdex1ic,@pde1bc,x,t);

where x=linspace(0,1,20) and t=linspace(0,2,5)

Make a surface plot of the solution and give a profile of u as a function of x
at t = tf .

Exercise 3

Express the two-dimensional parabolic partial differential equation

∂u

∂t
= α

(

∂2u

∂x2
+

∂2u

∂y2

)

(8.23)

in an explicit finite difference formulation. Determine the limits of conditional
stability for this method.

9

Partial differential equations 2

9.1 Introduction

In this chapter we are going to look at finite volumes to solve transport PDEs.
After the formulation of a general transport PDE and introduction of finite
volumes, we will try to solve such equations and we will find out that convec-
tion and diffusion play a significant role in the solution of the PDE.

9.2 Transport PDEs

For any property φ per mass unit, the following transport equation holds:

∂ρφ

∂t
+∇ · J = b, (9.1)

where ρ is the density and b is the production rate of φ. J is the total flux
and can be expressed as:

J = ρuφ−D∇φ, (9.2)

where u is the velocity and D the diffusivity. We can combine Equations 9.1
and 9.2 to get

∂ρφ

∂t
+∇ · (ρuφ−D∇φ) = b. (9.3)

Equation 9.3 is parabolic; we can derive it from a balance: ACCUMULATION
= IN − OUT + PRODUCTION. If we evaluate a control volume, with a
volume dV = dxdydx, as shown in Figure 9.1, our balance would look like
this:

∂ρφ

∂t
dV = (Jx − Jx+dx) dzdy + (Jy − Jy+dy) dxdz + (Jz − Jz+dz) dxdy + bdV.

(9.4)
If we take the difference in flux as infinitesimally small, we can rewrite as:

∂ρφ

∂t
dV = −∂Jx

∂x
dxdydz − ∂Jy

∂y
dxdydz − ∂Jz

∂z
dxdydz + bdV. (9.5)

79

80 A Numerical Primer for the Chemical Engineer

dx

dy

dz
J

x
J

x+dx

FIGURE 9.1
Control volume for our balance

Now we can divide by dV and obtain

∂ρφ

∂t
= −∂Jx

∂x
− ∂Jy

∂y
− ∂Jz

∂z
+ b = ∇ · J + b. (9.6)

9.3 Finite volumes

We could consider a volume, not necessarily a cube, and integrate the trans-
port equation over this volume V , which would give us

∫

V

(

∂ρφ

∂t
+∇ · J

)

dV =

∫

ν

bdV. (9.7)

For a fixed volume, the following holds:

∂

∂t

∫

V

ρφdV +

∫

V

∇ · JdV =

∫

ν

bdV. (9.8)

We can use Gauss’s theorem to convert this volume integral into a surface
integral

∫

V

∇ · JdV =

∫

S

n · JdS, (9.9)

where n is the unit normal vector at each point. If we combine Equations 9.8
and 9.9, we get the following result:

∂

∂t

∫

V

ρφdV =

∫

ν

bdV −
∫

S

n · JdS, (9.10)

in which the left-hand side is the rate of φ accumulating in the control volume
and the right-hand side is the production rate minus the rate at which φ flows
across the boundaries. In other words, material leaving the volume will flow
into another, i.e., material is not lost, ergo, φ is conserved.

Partial differential equations 2 81

9.4 Discretizing the control volumes

We can discretize the control volumes and index the cells with i, j, and k.
Figure 9.2 shows how volumes can be discretized in space. If we now write out
a discretized balance for control cell i, j, k we would obtain:

∂ρφ(i,j,k)

∂t
= Jx(i−1,j,k)∆y∆z + Jy(i,j−1,k)∆x∆z

· · ·+ J(z(i,j,k−1)∆x∆y − Jx(i,j,k)∆y∆z

· · · − Jy(i,j,k)∆x∆z − Jz(i,j,k)∆x∆y

· · ·+ b∆x∆y∆z.

We now need an expression for the fluxes across the faces of the control volume:

Jx(i,j,k) = ρuφi+1/2 −D
∂φ

∂x

∣

∣

∣

∣

i+1/2

. (9.11)

The first part of the RHS is the convective term, and the second part is the
diffusive term.

x

y

z

x

z

y

cell(i,j,k)

FIGURE 9.2
Discretization of the control volumes

82 A Numerical Primer for the Chemical Engineer

Actually, we would like to have the difference in flux between the i+1/2 and
i− 1/2 interface

(

Jx(i−1,j,k) − Jx(i,j,k)
)

= (ρux)i−1/2φi−1/2 − (ρux)i+1/2φi+1/2

−D
∂φ

∂x

∣

∣

∣

∣

i−1/2

+D
∂φ

∂x

∣

∣

∣

∣

i+1/2

. (9.12)

We can use linear approximations for the diffusive and convective terms of the
transport equation, using so-called central differences. For the diffusive terms,

∂φ

∂x

∣

∣

∣

∣

i+1/2

=
φi+1 − φi

∆x

∂φ

∂x

∣

∣

∣

∣

i−1/2

=
φi − φi−1

∆x
,

from which follows:

−D
∂φ

∂x

∣

∣

∣

∣

i−1/2

+D
∂φ

∂x

∣

∣

∣

∣

i+1/2

= D
φi+1 − 2φi + φi−1

∆x
. (9.13)

For the convective terms we can write

(ρux)i−1/2φi−1/2 − (ρux)i+1/2φi+1/2, (9.14)

or, when using central differences,

(ρux)i−1/2
φi − φi−1

2
− (ρux)i+1/2

φi+1 − φi

2
. (9.15)

Now we have formulated the overall system in discretized equations. Let us
have a look at an example.

9.5 Transfer of heat to fluid in a pipe

Let us consider heat transfer to a fluid flowing in a tube with a small diameter,
as shown in Figure 9.3. For the first Lh meters, the tube is heated by raising
the outside temperature to Tw, which gives a flux q into the fluid (h is the
heat transfer coefficient). The last part of the tube is insulated. The PDE that
describes this system is given as

ρCp
∂T

∂t
= −uρCp

∂T

∂z
+ k

∂2T

∂z2
+ h(Tw − T)

p

A
(9.16)

with the following boundary conditions:

∂T

∂t

∣

∣

∣

∣

z=L

= 0 (9.17)

T |z=0 = T0. (9.18)

Partial differential equations 2 83

T=T
0

q=h(T
w
-T)

dT/dz=0

At exit

u (m/s)

z

L

L
h

FIGURE 9.3
Heat conduction in a tube

We can divide the domain into small volumes as shown in Figure 9.4. For a
control volume i, the flux across the interface is given as:

Ji = ρuCpTi+1/2 − k
∂T

∂t

∣

∣

∣

∣

zi+1/2

. (9.19)

Now we can draw the heat balance for the control volume as:

AδzρCp
dTi

dt
= AJi−1 −AJi + δzhp(Tw − T) (9.20)

with

Ji = ρuCpTi+1/2 − k
∂T

∂t

∣

∣

∣

∣

zi+1/2

,

which can be reformulated for the diffusive term

dT

dz

∣

∣

∣

∣

zi+1/2

=
Ti+1 − Ti

δz
(9.21)

and the use of central differences in the convective term

Ti+1/2 =
Ti+1 + Ti

2
. (9.22)

Combining Equations 9.20, 9.21, and 9.22 leads to

ρCp
dTi

dt
= ρuCp

Ti−1 + Ti+1

2δz
+ k

Ti+1 − 2Ti + Ti−1

δz2
+

hp

A
(Tw − Ti). (9.23)

You should note that for the control volumes that are insulated h = 0. Of
course, the boundary conditions should also be discretized. At the inlet the
discretized boundary condition is

T1 = T0 → dT1

dt
= 0 (9.24)

84 A Numerical Primer for the Chemical Engineer

T=T
0

q=h(T
w
-T)

dT/dz=0

At exit

u (m/s)

z

L

L
h

J
i-1

J
i

T
i-1

T
i+1

q=h(T
w
-T)

i-1 i i+1

FIGURE 9.4
Tube divided into finite volumes

and at the outlet we will have the following discretization:

AδzρCp
dTN

dt
= AρuCpTN +AρuCp

TN + TN−1

2
+ kA

TN − TN−1

δz
+ δzhp(Tw − TN). (9.25)

This boundary condition is a so-called upwind approximation. The third term
of the right-hand side differs from our original Equation 9.23, as Equation
9.23 always depends on a discretization at the i + 1 cell. With the upwind
approximation we enforce an end to our equation system.

We can now write all discretized equations as the following ODE system:

dT

dt
= MT +B, (9.26)

where M is a sparse banded matrix:

M =

0 0 0 0 · · · 0
b a c 0 · · · 0
0 b a c · · · 0
0 0 b a c 0
...

...
...

...
. . . 0

0 0 0 0 b d

(9.27)

Partial differential equations 2 85

in which

a =
1

ρCp

(

−2
2k

δz2
− hp

A

)

(9.28)

b =
1

ρCp

(

k

δz2
+

ρuCp

2δz

)

, (9.29)

and where c = d = b.

B =
phTw

AρCp
(0, 1, · · · , 1)T (9.30)

It could be convenient to render our parabolic PDE as dimensionless. We
could, for example, use a dimensionless, time, distance, and time coordinate,
respectively:

ϑ =
T − Tw

T0 − Tw
(9.31)

η =
z

L
(9.32)

t′ =
t

τ
, (9.33)

where τ is the time constant given as

τ =
ρCpL

2

k
. (9.34)

We now can rewrite our transport equation as

∂ϑ

∂t′
= Pe

∂ϑ

∂η
− ∂2ϑ

η2
= −Biϑ, (9.35)

where Pe is the Peclet number, which defines the rate of convection versus
the rate of conduction as

Pe =
uLρCp

k
, (9.36)

and Bi is the Biot number, which gives the ratio of internal heat transfer and
external heat transfer according to

Bi =
L2hp

kA
. (9.37)

9.6 Simulation of the heat PDE

If we solve the system using MATLAB you may obtain a result as shown
in Figures 9.5 and 9.6, in which temperature is given as a function of the

86 A Numerical Primer for the Chemical Engineer

0 0.2 0.4 0.6 0.8 1
20

21

22

23

24

25

26

27

28

29

30
 Pe =5.04 PeLoc =0.10182 Bi =100

z/L

T
 (

°C
)

FIGURE 9.5
Numerical solution to the PDE where k = 0.01

0 0.2 0.4 0.6 0.8 1
19.9

20

20.1

20.2

20.3

20.4

20.5

20.6
 Pe =5.04 PeLoc =0.10182 Bi =1

z/L

T
 (

°C
)

FIGURE 9.6
Numerical solution to the PDE where k = 1.00

Partial differential equations 2 87

distance for different times. The Peclet number for both cases differs. As
the Peclet number increases, difficulties with the simulations arise, i.e., for
processes where convection is a dominant factor, the system is increasingly
difficult to solve accurately.

9.7 Summary

All transport equations have the same parabolic form, which means that the
solution can be marched forward in time. With the finite volume method
we conserve φ. We evaluated the finite volume method with a practical case
(heat transfer in a tube) and saw that the Peclet number influences the result.
For higher Peclet numbers, the system is increasingly difficult to solve. If the
process is governed by convection, you may expect problems and the only way
to deal with that is by decreasing the size of the control volumes and time
steps.

9.8 Exercises

Exercise 1

Open the function Tube PDE.m and see if you can run it. Try it for different
settings of the grid and spacing and play a little with the physical parameters.

What do you observe, especially in relation to the Peclet number?

Exercise 2

We are going to practice a bit more with the function pdepe to test what you
remember from previous chapters. It’s going to be a bit more difficult as we’re
now going to solve a system of PDEs:

∂u1

∂t
= 0.024

∂2u1

∂x2
− F (u1 − u2)

∂u2

∂t
= 0.17

∂2u2

∂x2
+ F (u1 − u2),

where F (y) = exp(5.73y)− exp(−11.46y) and y = u1 − u2.

88 A Numerical Primer for the Chemical Engineer

Initial conditions are

u1(x, 0) = 1

u2(x, 0) = 0,

and the boundary conditions are:

∂u1

∂x
(0, t) = 0

u2(0, t) = 0

u1(1, t) = 1

∂u2

∂x
(1, t) = 0.

Write functions for the PDE system pdex2pde.m, the initial conditions
pdex2ic.m, and the boundaries pdex2bc.m.

Solve the system with pdepe over the interval x = 0 · · · 1 and t = 0 · · · 2.
Evaluate the profiles for u1 and u2 in a surface plot.

10

Data regression and curve fitting

10.1 Introduction

In this chapter we are going to learn how to fit measurement data to a model
using the least squares method. We will also discuss something about error
and accuracy in data fitting.

10.2 The least squares method

Figure 10.1 shows a plot of some experimental data, where we measured y as
a function of x. We would like to fit a third-order polynomial of the following
form to this data:

ŷ = a1 + a2x+ a3x
2 + a4x

3. (10.1)

We could write the model as a product of a matrix and a vector:

ŷ = Xa. (10.2)

The X matrix is often called the design matrix and the vector a contains the
fit parameters. Equation 10.2 is actually given as

ŷ1
ŷ2
ŷ3
...
ŷN

=

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3
...

...
...

...
1 xN x2

N x3
N

a1
a2
a3
a4

. (10.3)

N is the total number of points. We now define an absolute error, sometimes
called the residual as

di = (yi − ŷi) , (10.4)

which is the difference of the measured data and the predicted model.

89

90 A Numerical Primer for the Chemical Engineer

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

x

y

FIGURE 10.1
Experimental data

We could now define the sum of squared errors as

∑

i

(di)
2 =

∑

i

(yi − ŷi)
2
, (10.5)

or in vector notation:
∑

i

(di)
2 = d · d = dT × d = (yi − ŷi)

T (yi − ŷi) . (10.6)

Now we need to determine values for the fit parameters that minimize the
sum of the squared errors. That means that we will take the partial derivative
with respect to each fit parameter and set these gradients to zero, according
to

∂

∂aj

[

(yT − (Xa)T)(y −Xa)
]

= 0, (10.7)

which can be rewritten as

∂

∂aj

[

(yT −XTaT))(y −Xa)
]

= 0. (10.8)

After application of the product rule we obtain

(yT −XTaT)X
∂

∂aj
[(a)] +

∂

∂aj

[

(a)T
]

XT (y −Xa) = 0. (10.9)

Data regression and curve fitting 91

The partial derivatives with respect to a are actually the unit vector

(yT −XTaT)Xej + eTj X
T (y −Xa) = 0, (10.10)

which can be rewritten as

(y −Xa)TXej + eTj X
T (y −Xa) = 0, (10.11)

following
(Xej)

T (y −Xa) + eTj X
T (y −Xa) = 0. (10.12)

After rearrangement we get

2XT (y −Xa) = 0, (10.13)

from which follows
XT y = XTXa, (10.14)

from which we can take an expression for a:

a = (XTX)−1XT y. (10.15)

Equation 10.15 is the outcome of the linear least squares method. It shows you
how to obtain the model parameters on the basis of your x and y data.

If we have the same number of data points as fit parameters, we have a linear
system

ŷ1
ŷ2
ŷ3
ŷ4

=

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

1 x4 x2
4 x3

4

a1
a2
a3
a4

, (10.16)

which could be solved in MATLAB with a=X\y. If there are more data points
(N > 4), we can write an analogue, but maybe a consistent solution does
not exist (the system is overspecified). However, the backslash operator in
MATLAB will always find values for the vector a that minimize the sum of
squares.

For our data shown in Figure 10.1, we could type this at the command prompt:

>> N = length(x)

>>X(:,1) = ones(N,1)

>>X(:,2) = x;

>>X(:,3) = x.^2

>>X(:,4) = x.^3

>>a = X\y

Figure 10.2 shows the regressed third-order polynomial and the data.

92 A Numerical Primer for the Chemical Engineer

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

x

y

measurements

fitted: y = 0.93326+0.33134x+1.3718x
2
+3.3567x

3

FIGURE 10.2
Experimental data and regressed polynomial

10.3 Residual analysis

After fitting the unknown parameters, we must ask how good the model ac-
tually is. We defined the absolute error, d, earlier. If the same experiment had
been repeated many times, a random error would occur, which means a (nor-
mal) distribution of y values would be produced together with a distribution
of errors.

For a model to make sense, the data points should be scattered randomly
around the model predictions: the mean of the error should be zero. You
should check how the error evolves and if there is or is not a correlation
with the measured value. If the former is the case, it probably indicates that
something is wrong with your model structure. Figure 10.3 shows the residual
plot for our example. You could have an indication of how well your model
performs on the basis of variance determination. We recognize three types of
variances: variance in the data, in the residuals, and in the model itself. For
the data (sometimes called regression sum of squares or SSR):

σ2
y =

1

N

∑

(yi − ȳ)2, (10.17)

Data regression and curve fitting 93

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

re
s
id
u
a
l

FIGURE 10.3
Residual plot

for the residual (sometimes called sum of squared errors or SSE):

σ2
error =

1

N

∑

(di)
2, (10.18)

and for the model (sometimes called sum of squares total or SST):

σ2
model =

1

N

∑

(ŷi − ¯̂y)2. (10.19)

Given that the error is uncorrelated (random), we can state that

σ2
y = σ2

error + σ2
model. (10.20)

The correlation coefficient R2 is the ratio of the variance of the model and the
variance of the data:

R2 =
σ2
model

σ2
y

= 1− σ2
error

σ2
y

. (10.21)

The closer its absolute value comes to unity, the better your model is.

An uncorrelated error (mean will be zero) means that SSE, SST, and SSR will
have χ2-distributions and the ratios will have an F-distribution. If SSR/SSE
is large, the model is good. There is a chance that the model is rubbish, but
that SSR/SSE will yield a good value. Analysis of variance (ANOVA) will be
a good tool to calculate the probability of such a thing happening.

94 A Numerical Primer for the Chemical Engineer

10.4 ANOVA analysis

The ANOVA will calculate F-values on the basis of the degrees of freedom
and the sum of squared errors to see whether certain factors are significant or
not. Large values for F indicate that the probability that your prediction is
good on the basis of a bad model is very small. In fact, this ANOVA may be
identified as hypothesis testing, where we accept or reject the null hypothesis
of there being no correlation between x and y.

The following ANOVA table is obtained for our example:

Source Deg. Freedom Sum of squares F-value
Regression K = 4 SSR = 224.44 F= (SSR/4)/(SSE/95)
Residual N −K − 1 = 95 SSE = 8.103 = 657.84
Total N − 1 = 99 SST = 232.55

10.5 Confidence limits

The confidence limits for the model parameters give us an indication of the
reliability of the estimated model parameters. We can calculate the confidence
limits for the model parameters from the t-distribution, according to

aj − t
σ2
error

ν

[

(XTX)−1
]

j,j
≤ aj ≤ aj + t

σ2
error

ν

[

(XTX)−1
]

j,j
, (10.22)

where ν are the degrees of freedom. The values for t need to be looked up from
tables. For example, for a 95% confidence interval with 96 degrees of freedom,
the value for t = 1.98.

Similarly, we can calculate confidence limits for each of the points that we
have predicted:

ŷi−t
σ2
error

ν

[

√

X(XTX)−1XT

]

j,j

≤ ŷi ≤ ŷj+t
σ2
error

ν

[

√

X(XTX)−1XT

]

j,j

.

(10.23)
See also Constantinides and Mostoufi (1999) for a fuller discussion.

10.6 Summary

In this chapter we have seen how fit parameters of a model can be fitted
to a data set using the linear least squares method. We found out how to

Data regression and curve fitting 95

calculate the regression coefficients and how to perform a statistical analysis
of the model using ANOVA. We also postulated expressions for the confidence
limits for the fit parameters and the predicted points.

10.7 Exercises

Exercise 1

In this exercise we are going to use the fit routine to fit data to the following
function:

y(x) =
ax

ax+ b
. (10.24)

We want to determine the unknown fit parameters a and b. Data was stored
in the file xydataset1.mat. In MATLAB you can load data simply by typing
load xydataset1; similarly, you can save data by typing save xydataset1.

After you load the data set, you have to define what kind of fit options you
want to use and how your fit model should look:

s = fitoptions(’Method’,’NonlinearLeastSquares’,...

’Lower’,[0,0],...

’Upper’,[Inf,Inf],...

’Startpoint’,[1 1]);.

You can define the fit model with:

f = fittype(’a*x/(a*x+b)’,’options’,s);

To actually calculate the fit parameters, the only command you need to type
is

[model,stats] = fit(x,y,f)

Plot the data and evaluate the statistical data supplied. What is SSE, RMSE,
etc.?

Exercise 2

In this exercise we wish to determine the fit parameters k1 and k2 of the
following simple ODE model:

du

dt
= −k1u+ k2, (10.25)

with the initial condition u(0) = 1.

To find the values for k1 and k2, we are going to use lsqnonlin. The first
thing you have to do, of course, is to load the data load tudataset1.

96 A Numerical Primer for the Chemical Engineer

lsqnonlin normally has the following structure:

k = lsqnonlin(fun,k0,lb,ub,options)

Thus, you need to supply initial guesses for your fit parameters (k0), lower
and upper search bounds (lb and ub), and an option set, normally something
like:

options = optimset(’TolX’,1.0E-6,’MaxFunEvals’,1000);

where you specify the tolerance and the maximum number of function evalu-
ations.

lsqnonlin also requires you to define a minimization criterion (fun), some-
thing like,

f = (ŷ − y)2, (10.26)

so there is a quadratic difference between model and experimental data.

Another nasty thing here is that you are not dealing with an algebraic equa-
tion, but with a differential equation. Somehow you need to incorporate a
function that describes the ODE function and solves it with an ODE solver.

Thus, the question is how to determine the fit parameters and the confidence
limits? Show your fitted model and the data in a plot.

Exercise 3

See if you can find a way to solve the isotherm of Equation 10.24 with two
alternative MATLAB tools: cftool and nlinfit.

11

Optimization

11.1 Introduction

In this chapter we are going to look at several techniques to solve optimization
problems. Optimization problems occur anywhere in chemical engineering, all
to improve operation or design of process systems.

Generally an optimization problem has the following structure:

min f(x)

s.t.

g(x) = 0

h(x) ≥ 0

in which f(x) is the goal function, or objective function, that should be min-
imized (it should be noted that min f(x) = max−f(x)) and where g(x) form
the equality constraints and h(x) the inequality constraints that should be
satisfied. f , g, and h can be linear or nonlinear and the variable x could be
discrete or continuous. Depending on the structure, there are several tech-
niques available to solve the resulting problem.

Two properties of the functions f, g, h are very important and will tell you if
the problem can be solved easily or not. First, there is continuity. Optimiza-
tion models that have functions with discontinuities are harder to solve. Often,
optimization is concerned with studying the derivatives of the functions and
the derivative at a discontinuity does not exist. Also, discrete functions are
discontinuous, e.g., pipe diameters that can be employed in the construction
of a plant.

Convexity of the functions that you are evaluating will also tell you how easily
an optimization problem can be solved. A function is called convex if at any
two points on the function, a straight line can be drawn that does not cross
the function. Non-convex problems are hard to solve.

In the following sections, we will discuss several methods for solving optimiza-
tion problems.

97

98 A Numerical Primer for the Chemical Engineer

11.2 Linear programming

In linear programming (LP), the objective function and the constraints are
linear functions, for example:

max z = f(x1, x2) = 40x1 + 88x2

s.t.

2x1 + 8x2 ≤ 60

5x1 + 2x2 ≤ 60

x1, x2 ≥ 0.

If the constraints are satisfied, but the objective function is not maximized
or minimized, we speak of a feasible solution. If the objective function is also
maximized or minimized, we speak of an optimal solution. You can plot the
constraints in an x1-x2 diagram, as shown in Figure 11.1 The shaded area is
the feasible area. Now we move the objective function through the diagram
until we have maximized its value. The optimal solution for LP problems is
always located at the cross points of the constraints (such cross point is called
a vertex). In our example we only look at two variables; you can imagine
that for problems with substantially more variables a geometrical evaluation
is impossible and that trying all possible vertex solutions is not very efficient.

A systematic method for finding the solution to an LP problem is the simplex
method, which can be employed in an 8-step plan. (Step 1) First we have to

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

x
1

x
2

f=840

f=0

FIGURE 11.1
Geometrical representation of the LP problem

Optimization 99

rewrite the model in its normal form:

max z = f(x1, x2) = 40x1 + 88x2

s.t.

2x1 + 8x2 + x3 = 60

5x1 + 2x2 + x4 = 60

x1, x2, x3, x4 ≥ 0.

x3 and x4 are called slack variables. They are the nonauxiliary variables intro-
duced for the purpose of converting inequalities into equalities. (Step 2) We
can write the problem in the normal form as the following augmented matrix:

T0 =

∣

∣

∣

∣

∣

∣

∣

∣

z x1 x2 x3 x4 b
1 −40 −88 0 0 0
0 2 8 1 0 60
0 5 2 0 1 60

∣

∣

∣

∣

∣

∣

∣

∣

. (11.1)

This matrix is called the (initial) simplex table. (Step 3) Each simplex table
has two kinds of variables: the basic variables (columns having only one non-
zero entry) and the non-basic variables. Every simplex table has a feasible
solution. (Step 4) This solution can be obtained by setting the non-basic
variables to zero, so for our example: x1 = 0 and x2 = 0. (Step 5) We can find
values for x3 and x4 by using row 2 and row 3 of the simplex table:

2x1 + 8x2 + 1x3 + 0x4 = 60 (11.2)

5x1 + 2x2 + 0x3 + 1x4 = 60. (11.3)

From these two equations you can obtain: x3 = 60 and x4 = 60. These values
for x give us our first feasible solution with z = 0. Now we can calculate the
optimal solution stepwise by pivoting in such a way that z reaches a maxi-
mum. The big question now is how to choose your pivot equation. (Step 6)
Select first the column with a negative entry; in our case this is column 2
(−40). This will be our pivot column. (Step 7) Now we divide the right-hand
side b by the pivot column and take the pivot that gives the smallest element.
The first row does not count. So for row 2 we will have 60/2 = 30 and for row
3 we will have 60/5 = 12. (Step 8) Now we are going to eliminate all elements
above row 3 with row operations. We can add to row 1 8 times row 3, and we
can subtract from row 2 0.4 times row 3, resulting in the following table:

T1 =

∣

∣

∣

∣

∣

∣

∣

∣

z x1 x2 x3 x4 b
1 0 −72 0 8 480
0 0 7.2 1 −0.4 36
0 5 2 0 1 60

∣

∣

∣

∣

∣

∣

∣

∣

. (11.4)

With the new table we repeat Steps 3–8. First select the basic and non-basic
variables. Set the non-basic variables to zero: x2 = 0 and x4 = 0, and calculate
the values for the basic variables, which gives x1 = 15 and x3 = 36. These

100 A Numerical Primer for the Chemical Engineer

values will give us our second feasible solution with z = 480. Now select column
3 as the pivot column and identify which element has the largest quotient
36/7.2 = 5 and 60/2 = 30, ergo 7.2 will be the pivot element. Now we eliminate
all elements above and below. We could add 10 times row 2 to row 1, and we
could subtract (2/7.2) times row 2 from row 3, resulting in the following table:

T2 =

∣

∣

∣

∣

∣

∣

∣

∣

z x1 x2 x3 x4 b
1 0 0 10 4 840
0 0 7.2 1 −0.4 36
0 5 0 −1/36 1/0.9 50

∣

∣

∣

∣

∣

∣

∣

∣

. (11.5)

There are no more negative entries, so this table contains the optimal solution,
which is x1 = 50/5, x2 = 36/7.2, x3 = 0, and x4 = 0 with z = 840.

z will increase as a result of the elimination of negative elements. It is noted
that for a minimization problem all positive elements should be eliminated.

In MATLAB we can use the routing linprog to solve LP problems. For ex-
ample, if we wish to solve the following problem:

min f(x) = −5x1 − 4x2 − 6x3

s.t.

x1 − x2 + x3 ≤ 20

3x1 + 2x2 + 4x3 ≤ 42

3x1 + 2x2 ≤ 30

x1, x2, x3 ≥ 0,

we can define in MATLAB:

>>f = [-5; -4; -6];

>>A = [1 -1 1; 2 2 4; 3 2 0];

>>b = [20; 42; 30];

>>lb = zeros(3,1);

>>[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);

which will give you

x = 0.00 15.00 3.00.

11.3 Nonlinear programming

In nonlinear programming (NLP), the objective function f(x) and/or the
constraints g(x) and h(x) can be nonlinear functions, for example:

max f(x)

s.t.

Optimization 101

g(x) ≤ 0

h(x) ≤ 0

x ≥ 0.

NLP problems can have a “free optimum” (or unconstrained optimum), in
contrast to LP problems. There are several ways to solve NLPs, but in this
chapter we will only demonstrate the Lagrange multiplier method. The La-
grange multiplier method is founded on the Karush–Kuhn–Tucker conditions
for optimality. The derivation and proof are extensive, but the basic idea is as
follows. Given the NLP problem above, we can define a so-called Lagrangian
function

L = f(x) + λg(x) + uh(x), (11.6)

or for systems:

L = f(x) +
∑

i

λigi(x) +
∑

j

ujhj(x), (11.7)

where λi and uj are called the Lagrange multipliers. The optimality conditions
state that for an optimal solution the following should hold:

∇L = 0. (11.8)

For example, we would like to solve

max f(x1, x2) = 5x2
1 + 3x2

2

s.t.

2x1 + x2 − 5 ≤ 0

x ≥ 0.

We first define the Lagrangian function:

L = (5x2
1 + 3x2

2) + λ(2x1 + x2 − 5). (11.9)

To find an optimal solution we now have to set the partial derivatives of the
Lagrangian function to zero:

∂L

∂x1
= 10x1 + 2λ = 0 (11.10)

∂L

∂x2
= 6x2 + λ = 0 (11.11)

∂L

∂λ
= 2x1 + x2 − 5 = 0. (11.12)

These are actually three equations with three unknowns, which can be found
easily: λ = 150/17, x1 = 30/16, and x2 = 25/17.

To solve NLP problems in MATLAB, we can use the function fmincon (for
problems with constraints) and fminsearch (for unconstrained problems).

102 A Numerical Primer for the Chemical Engineer

Suppose we want to solve the following problem:

min f(x1, x2, x3) = −x1x2x3

s.t.

0 ≤ x1 + 2x2 + 2x3 ≤ 72.

We should first write a function containing the objective:

function f = myfun(x)

f = - x(1) * x(2) * x(3);

We also should define the constraints as

>>A = [-1 -2 -2; 1 2 2];

>>b = [0 72];

and we should supply a guess value:

>>x0 = [10; 10; 10];

Now we may find the optimum by:

>>[x,fval] = fmincon(@myfun,x0,A,b);

which will yield:

x = 24.00 12.00 12.00

There are some tips for solving NLP problems. Try to avoid nonlinearity as
much as possible. It is better to have nonlinearities in the objective function
than in the constraints. It is also better to have inequality constraints than
equality constraints. A good starting guess is very important. And, do not
blame the solver if you do not find a solution; take a critical look at the
problem formulation.

11.4 Integer programming

Integer problems occur a lot in chemical engineering, especially in design,
scheduling, and planning of process systems. Often, so-called mixed integer
problems (MIPs) have to be solved, where we have a combination of discrete
and continuous variables. Such problems may be nonlinear, e.g., the MINLP
(mixed integer nonlinear program) or in a specific case quadratic (MIQP).
However, in integer programming (IP) all optimization variables are discrete,
and the problem would look like this:

max f(x)

s.t.

g(x) ≤ 0

Optimization 103

h(x) ≤ 0

x ∈ N.

There exist several algorithms to solve this type of problem but many of them
are based on the branch and bound algorithm. The algorithm is best explained
with an example.

Suppose we want to solve the following problem:

max z = 8x1 + 11x2 + 6x3 + 4x4

s.t.

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

x ∈ {0, 1}.

It is noted that x is a special type of integer variable. Because it can only
assume 0 or 1, it is called a binary variable, a yes or no decision.

The first step in the branch and bound algorithm is to solve the relaxed prob-
lem, that is, we remove the integrality constraint x ∈ {0, 1} from the problem
and solve it as a continuous problem. We could solve the relaxed problem
with, for example, the simplex method, and find x1 = 1, x2 = 1, x3 = 1/2,
and x4 = 0, with the objective value being z = 22. This value for z actually
forms an upper bound to the problem. The problem occurs with x3, which
should, of course, have been an integer. We can now solve two new problems:
in one version we will add a constraint to the problem with x3 = 0 and in the
second one we add a constraint x3 = 1. So we actually branch on the original
problem, as is shown in Figure 11.2. Now we can select an active subproblem
from the branches. Say we continue with the right branch of the tree. We have

z = 22
x1 = 1

x2 = 1

x3 = 1/2
x4=0

z = 21.65
x1 = 1

x2 = 1

x3 = 0
x4=2/3

z = 21.85
x1 = 1

x2 = 0.714

x3 = 1
x4=0

FIGURE 11.2
Branching the relaxed problem

104 A Numerical Primer for the Chemical Engineer

z = 22
x1 = 1

x2 = 1

x3 = 1/2
x4=0

z = 21.65

x1 = 1

x2 = 1
x3 = 0

x4=2/3

z = 21.85

x1 = 1

x2 = 0.714
x3 = 1

x4=0

z = 18

x1 = 1
x2 = 0

x3 = 0

x4=1

z = 21.8

x1 = 0.6
x2 = 1

x3 = 0

x4=0

INTEGER

FIGURE 11.3
Second branch of the relaxed problem

added a constraint to the problem x3 = 1 and now find an optimal solution
x1 = 1, x2 = 0.714, and x4 = 0 with an objective value of z = 21.85. We
should now branch on x2 as it is not an integer. So we add two subproblems:
one in which we solve for x2 = 0 and one in which we solve for x2 = 1, as
shown in Figure 11.3. In the left branch we have already found an integer so-
lution, but it might not be the optimal one. So we continue branching on the
right part of the tree, where we have found that x1 is not an integer. So we add
two more subproblems, as shown in Figure 11.4. The right branch cannot be
solved, as it has become an infeasible problem. The left branch again results
in an integer solution, but with a higher objective value than the previously
calculated one z = 21. This value for z is actually the maximum value that can
be obtained, ergo we have found the optimum. For this reason it is of no use to
look in the other branch of the tree, and we can fathom that line of our search.

It should be noted that the branch and bound algorithm only works if the
objective function is convex.

11.5 Summary

Optimization is concerned with finding the extremum (minimum or maxi-
mum) of an objective function. The optimization variables can be constrained

Optimization 105

z = 22
x1 = 1

x2 = 1

x3 = 1/2
x4=0

z = 21.65

x1 = 1

x2 = 1

x3 = 0
x4=2/3

z = 21.85

x1 = 1

x2 = 0.714

x3 = 1
x4=0

z = 18

x1 = 1

x2 = 0
x3 = 0

x4=1

z = 21.8

x1 = 0.6

x2 = 1
x3 = 1

x4=0

INTEGER

z = 21

x1 = 0

x2 = 1
x3 = 1

x4=1

z = 18

x1 = 1

x2 = 1
x3 = 1

x4=1

INFEASIBLEOPTIMAL

FATHOMED

FIGURE 11.4
Third branch of the relaxed problem

by equability or inequality constraints. We approached LP problems with the
simplex algorithm, NLP problems with the Lagrange multiplier method, and
IP with the branch and bound algorithm.

11.6 Exercises

Exercise 1

In this exercise we are going to solve a large-scale LP problem of the following
form:

min fTx

s.t.

Aeqx = beq

xlb ≤ x ≤ xub.

106 A Numerical Primer for the Chemical Engineer

You can load the matrices and vectors Aeq, beq, f , xlb, and xub into the
MATLAB workspace with load densecolumns.

The problem is densecolumns.mat has 1677 variables and 627 equalities with
lower bounds on all the variables, and upper bounds on 399 of the variables.
The equality matrix Aeq has dense columns among its first 25 columns, which
is easy to see with a spy plot. Type spy(Aeq).

We are going to use linprog to solve the system. Type the following code:

[x,fval,exitflag,output] = ...

linprog(f,[],[],Aeq,beq,lb,ub,[],optimset(’Display’,’iter’));

Exercise 2

In this exercise we are going to use fmincon to solve the following optimization
problem:

min f(x1, x2) = exp(x1)(4x
2
1 + 2x2

2 + 4x1x2 + 2x2 + 1)

s.t.

x2
1 + x2 = 1

−10 ≤ x1x2.

The first step is to write a function for the objective function, such as:

function f = objfunex1(x)

f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

The second step is to write a function for the (in)equality constraints; pay
attention to the formulation of the constraints!

function [c, ceq] = confuneqex1(x)

c = -x(1)*x(2) - 10;

ceq = x(1) ^2 + x(2) - 1;

The third step is to apply the solver. First define the optimization options:

options=optimset(’Display’,’iter’,’Jacobian’,’on’);

and give a set of starting guesses for optimization:

x0 = [-1,1];

[x,fval] = fmincon(@objfunex1,x0,[],[],[],[],[],[],...

@confuneqex1,options)

Interpret the data. Are the constraints satisfied with the optimal values for
x1 and x2?

Exercise 3

We have two plants and three markets to which we would like to ship products.
There are several ways to do this, but we want to do it the most efficient way.

Optimization 107

The problem in the chapter was given as:

min
∑

i

∑

j

cijxij

s.t.
∑

i

xij ≤ ai

∑

j

xij ≤ bj .

You can open the files TRANSP1.MOD and TRANP1.DAT in a text editor to see
how the problem can be formulated in AMPL. AMPL always requires a model
file and a data file.

After you download AMPL from the web and extract the program, you execute
sw.exe. Then type ampl.

First open the model file by:

model c:\examples \transp1.mod;

Don’t forget the semicolon (;).

Next, open the data file with:

data c:\examples \transp1.dat;

We will solve the model with a solver called MINOS:

option solver minos;

solve;

The data is recorded under NoUnits, NoUnits.rc, and total cost. You can
display the optimized values by typing:

display NoUnits, NoUnits.rc;

display total cost;

This page intentionally left blankThis page intentionally left blank

12

Basics of MATLAB

12.1 Introduction

This instruction chapter is intended to familiarize the beginning user of MAT-
LAB with its basic features. MATLAB release 2010a was used in this book.

The official MATLAB website is also very useful in exploring the capabilities
of MATLAB. The reader can access http://www.mathworks.com. In addition,
it should be mentioned that by typing help or doc followed by the keyword
of interest, a clear explanation is given of MATLAB’s functionality, including
many worked-out examples. For a complete MATLAB instruction, the reader
is referred to the textbook by Hahn and Valentine [24].

12.2 The MATLAB user interface

When you open MATLAB, the screen depicted in Figure 12.1 appears. The
screen exists of three basic subscreens. On the left you will find the “work
space” and the “command history.” On the right side you find the “command
window.” In the work space all variables and objects that you construct are
stored and in the command history, you will find an overview of the commands
that you executed (with arrows up and down you can scroll and execute pre-
vious commands very rapidly). If you want to save or open a file, it is always
useful to change the “current directory” to the correct path.

You can save variables, data, and objects in the work space by typing in
the command prompt >>save filename and you can open files with >>open

filename.

You communicate with MATLAB via the command prompt. It is noted how-
ever that you do not really have to type each command separately in the
command window; you can also automate the commands by saving them in
a file, a so-called “m-file” or “script.” You can make an m-file by choosing in
the file menu (left) the option new/m-file. A text editor opens and you can

109

110 A Numerical Primer for the Chemical Engineer

FIGURE 12.1
MATLAB screenshot

type the MATLAB commands in the text editor, save the script, and then
you can execute it by choosing the option debug/run or by pressing the F5
button. It is also possible to call the script via the command prompt. Just
type the filename and it will execute. You should be aware that commands
and files in MATLAB are case sensitive. MATLAB can accept filenames of
255 characters, but the first character of a filename cannot be a number or a
symbol. Use commonsense when giving names to files!

12.3 The array structure

MATLAB stands for Matrix Laboratory. Matrix and vector calculations are
an intrinsic part of MATLAB. Defining variables in MATLAB is based on the

Basics of MATLAB 111

“array structure.” You could, for example, define a vector b and store it in the
work space by typing:

>> b = [1 2 3 4 5];

Or, if you would like to define a matrix A:

>> A = [1 2 3; 2 3 4; 3 4 5]

If you would like to use a specific element of this matrix for further calcula-
tions, for example, the third element in the second column, you could access
it by typing:

>> A(2,3)

If you would like to access the entire third column, you could use the colon:

>> A(:,3)

Or if you would like to access the entire second row:

>> A(2,:)

You could also use the end command, for example, if you wanted to access
the second-to-the-last element of the first column:

>> A(2:end,1)

Now if you want to define a vector x of 100 elements over the domain 0 to
10 you do not need to type out each of the elements individually. You could
create the vector x in MATLAB by typing:

>> x = 0:0.1:10

In other words: x = startvalue : stepsize : finalvalue. Here it is also
noted that you could transpose matrices and vectors with the quote (’), for
example:

>> x’

MATLAB has really powerful tools for matrix calculations. You could invert
a matrix by typing:

>> \A

but inv(A) or A^-1 would also work. Just for your information, you could
also calculate, for example, the eigenvalues and eigenvectors (eig(A)), the
determinant (det(A)), and the rank (rank(A)) of matrices very easily.

12.4 Basic calculations

After defining a vector x, from 0 to 10 in steps of 0.1, perhaps you would like
to calculate y-values that are linked to x according to

y(x) = 2 sin(5x). (12.1)

112 A Numerical Primer for the Chemical Engineer

Standard MATLAB Standard MATLAB

sin(x) sin(x)
√

(x) sqrt(x)
cos(x) cos(x) ex exp(x)
tan(x) tan(x) ln(x) log(x)

sin−1(x) asin(x) 10 log(x) log10(x)
cos−1(x) acos(x) ‖x‖ abs(x)

tan−1(x) atan(x) sign(x) sign(x)

TABLE 12.1
Basic MATLAB functions

Standard MATLAB
e exp(1)
π pi
j i or j
∞ inf or Inf

TABLE 12.2
Basic MATLAB constants

In MATLAB you could easily calculate the values for y on the basis of x:

>> y = 2*sin(5*x)

Similarly, you could compute:

y(x) = 2x2 + 4x− 5 (12.2)

by feeding to the command window:

>> y = 2*x ^2 + 4*x - 5

But, MATLAB responds with an error:

??? Error using ==> mpower Matrix must be square

Because MATLAB is a vector- and matrix-based computation tool, it intends
to do matrix multiplications and divisions, which are basically dot products,
inner products, or matrix inversions, etc. So scalar types of calculations can-
not be performed so easily. To make sure that MATLAB will perform the
computation, you have to add a dot to the operation (sometimes referred to
as the dot operator), like this:

>> y = x. ^2 + 4.*x -5

In Tables 12.1, 12.2, and 12.3 you will find a list with commonly performed
mathematical operations and the MATLAB expressions that go with them.

Basics of MATLAB 113

Standard MATLAB
a+ b a + b
a− b a - b
ab a * b
a
b a ^b

ab a \b

TABLE 12.3
Basic MATLAB operations

12.5 Plotting

We can make a plot of x and y easily in MATLAB by typing:

>> plot(x,y)

Or if you like dots more than lines, type the following:

>> plot(x,y,’.’)

You could also manipulate the color of the graph, for example, using green
dots:

>> plot(x,y,’g.’)

There are many other possibilities for color (k,b,r,...), symbols (., +,*,

^, o, ...), and lines (-, --, -.,...).

You could give a title to your plot by:

>> title(’y as function of x’)

and you could add titles to the axis with:

>> xlabel(’x-values’)

>> ylabel(’y-values’)

You could change the scaling of the axis by, for example:

>> axis([0 10 0 100])

where the syntax is [minimal-x, maximal-x, minimal-y, maximal-y].
Suppose that now you have y1(x) and y2(x):

y1 = 15*sin(5*x); y2 = 2.^2 + 4.*x - 5

and you want to plot both function in one graph:

plot(x,y1,’ro’,x,y2,’g*’)

When you want to have two independent graphs, you could use subplot:

114 A Numerical Primer for the Chemical Engineer

>> subplot(1,2,1); plot(x,y1,’ro’)

>> subplot(1,2,2); plot(x,y2,’g*’)

You can save figures, copy them, and then use them, for example, in MS Word.

12.6 Reading and writing data

As discussed earlier, basic reading and writing of data can be done with the
MATLAB load and save functions. But data from text files or Excel files
can also be pasted to the work space directly from the menu bar: edit/paste
to workspace. In addition, there are builds in MATLAB functions that you
can use to import data from, for example, Excel sheets. With the command
xlsread you can import data, and with xlswrite you can write MATLAB
data to Excel sheets. These commands are very useful when many data files
are to be examined.

12.7 Functions and m-files

We mentioned earlier that MATLAB commands can be automated. For exam-
ple, you could make a script or m-file where you define the vector x, calculate
y, and then plot x versus y:

x=0:0.1:10

y=15*sin(2*x)

plot(x,y,’ro’)

You can open the script editor in MATLAB and write the above commands
in a script. Next you can save this file as “makeplot.m.” Now you can execute
the file by pressing F5 or by typing makeplot in the command window. In
this way you do not need to retype all three commands, every time in the
command window, in case you want to make small changes.

Alternatively, you could write a MATLAB function. A function performs tasks
on the basis of input information that you can supply to the script in an
interactive way.

We could, for instance, make a function that uses a given domain and a number
of points that we want for x, then compute y values and ultimately plot the
result:

function makeplot(minx,maxx,numberofpoints)

Basics of MATLAB 115

Deltax = maxx-minx)/numberofpoints;

x=minx:Deltax:maxx;

y=15*sin(2*x);

plot(x,y,’ro’);

The semicolon behind each command ensures that the result of each command
is computed, but not written or displayed, in the command window (this is
very handy in case you perform repetitive operations, which would slow down
your calculations if the result is written on your screen each time).

Earlier we defined a vector x and calculated y by typing the equations in the
command window. However, you could also define a “function handle”:

function y = myfun(x)

y = 15*sin(2*x);

Save this function as myfun. Now, when you type the following in the command
window:

>> y = myfun(10)

the command window will give you the calculated y value for x = 10. Similarly,
if you type

>> y = myfun(1:10)

MATLAB will not return an array with values of y because x is 1 to 10. Storing
mathematical expressions in function handles is very useful, for example, in
solving linear, nonlinear, and differential equations.

Try always to keep your scripts organized. With the percent sign, you can also
add comment lines to your program. Such comment lines are not part of the
code, but they make sure that you remember, or your fellow team members
remember, what you actually meant or were doing when writing the program:

plot(x,y,’ro’) % plotting x versus y with red circles

12.8 Repetitive operations

Sometimes you need to repeat calculation steps frequently with different in-
put data, or you would like to use results of previous calculations for new
calculations. Such calculations are called repetitive operations or iterations. In
MATLAB you can do iterations in two ways, with the so-called “for-loop” and
the “while-loop.”

Here is a small example. Suppose you want to compute a series of Fibonacci
numbers. Fibonacci was an Italian scientist from the Renaissance. He de-
veloped iterative schemes to calculate the golden mean number, but he also

116 A Numerical Primer for the Chemical Engineer

studied natural phenomena, such as the reproduction rates of bunnies. He
found that a certain series of numbers could be found in nature quite often: 1,
1, 2, 3, 5, 8, 13, 21,... This series can actually be calculated from a recurrent
relationship:

yk = yk−1 + yk−2. (12.3)

A new Fibonacci number is the sum of the two previous numbers, where
y1 = 1 and y2 = 1. If you divide two sequel Fibonacci numbers, you will get
an approximation of the golden mean, φ.

In a for-loop we can calculate a series of Fibonacci numbers. Open the script
editor, and save the following commands in a file:

y(1) = 1

y(2) = 1

for i = 3:10

y(i) = y(i-1) + y(i-2);

phi = y(i)/y(i-1);

end

You can also add so-called “conditional statements” to a loop. In the example
below, we will construct a step function, where a function f will have a value
of −1 for the time domain t = −10...0, and where f will have a value of 0 for
t = 0...10:

t = -10:0.1:10;

n=max(size(t));

f = zeros(1,n);

for i=1:n

if t(i) < 0;

f(i) = -1;

elseif t(i) == 0;

f(i) = 0;

elseif t(i) > 0;

f(i) = 1;

end

end

plot(t,f)

MATLAB also uses the while-loop. In a while-loop, an operation is repeated
until a certain end criterion is reached. In Chapter 6 there is a demonstration
of the while-loop in Newton’s method for solving nonlinear equations.

13

Numerical methods in Excel

13.1 Introduction

This instruction chapter is intended to familiarize the user of Excel with basic
numerical methods in Excel. Excel 2007 was used in this book.

Microsoft Excel is a commonly used spreadsheet program and has developed
into a powerful software that can be used to solve many science and engi-
neering problems. In contrast to MATLAB, Excel is most probably available
in almost all PCs and it appears that its usage is increasing. It is also noted
that the OpenOffice suite is a shareware version of Microsoft Office which also
contains a spreadsheet similar to Excel, called calc. Excel is also used in edu-
cation and it seems obvious that we also devote some attention to the basics
of Excel and how it can be used to solve numerical method problems.

13.2 Basic functions in Excel

The reader is probably familiar with MS Excel. For that reason this section is
only used to tabulate the most useful Excel functions. You will find the basic
Excel functions in Table 13.1 and the array formulae in Table 13.2. Excel can
compute matrix inverses, which opens the door to solving systems of linear
equations. Note, however, that Excel’s array tools are not suitable for very
large systems.

13.3 The Excel solver

The Excel solver function is a nice and very useful tool within Excel. If you
have not installed the solver add-in, you can consult Excel Help to make sure

117

118 A Numerical Primer for the Chemical Engineer

Standard Excel Standard Excel

sin(x) =SIN(x)
√

(x) =SQRT(x)
cos(x) =COS(x) ex =EXP(x)
tan(x) =TAN(x) ln(x) =LN(x)

sin−1(x) =ATAN(x) 10 log(x) =LOG(x)
cos−1(x) =ACOS(x) ‖x‖ =ABS(x)

tan−1(x) =ATAN(x)

TABLE 13.1
Basic Excel functions

Standard Excel
summation =SUM(x)
average =AVERAGE(x)
standard deviation =STDEV(x)
matrix inverse =MINVERSE(x)
matrix multiplication =MMULT(x)
matrix transpose =TRANSPOSE(x)
random number 0...1 =RAND()

TABLE 13.2
Basic Excel array formulae

the solver is available. The solver add-in allows you to solve optimization
problems, i.e., to find minima or maxima for mathematical expressions. We
will illustrate how the Excel solver works with a very simple example.

Suppose you would like to find the maximum of a parabola

f(x) = −2x2 + 5x− 3. (13.1)

You could enter a value in cell A2, say =3. In cell B2 you can now enter the
formula to calculate f(x). Enter: =-2*A2^2 + 5*A2-3. Of course we now want
to find the value for x that is at the maximum of f . Under the “data” tab, in
the right upper corner of the Excel menu you should be able to find the Solver
add-in. If you click this option, a small window will open, as shown in Figure
13.1. We now set the “target cell” to B2 and fill in under “By changing” cell,
A2. In this case we want to maximize B2, so we select under “Equal to” the
max option. Now we click “Solve” and Excel will compute for which value of
x, f(x) reaches the maximum, in this case x = 1.25 and f = 0.125.

You can understand that this solver option opens the possibility for solving
many engineering problems, including curve-fitting exercises.

Numerical methods in Excel 119

FIGURE 13.1
Excel screenshot for the solver add-in

13.4 Solving nonlinear equations in Excel

In this section we are going to implement Newton’s method in Excel. With
Newton’s method we can find the roots of nonlinear equations. You may recall
that the basic equation of Newton’s method is

∆x =
−f(x)

f ′(x)
, (13.2)

where ∆x is the Newton step that we take from a starting point xn to find
the root of a function f(x). We further recall that Newton’s method is an

120 A Numerical Primer for the Chemical Engineer

FIGURE 13.2
Excel screenshot for Newton’s method

iterative procedure and that a new estimate should be obtained from

xn+1 = xn +∆x. (13.3)

This iteration should proceed until we are sufficiently close to f(x) = 0, in
other words, ∆x = 0.

Let us use Excel to find the root of a simple parabolic equation:

f(x) = 2x2 − 2x. (13.4)

In Figure 13.2 a screen shot of the Excel sheet is given. In cell E4 an initial
guess for x is provided. In cell F4 you can enter the formula =2*E4^2-2*E4.

Numerical methods in Excel 121

This calculates what f(x) should be for x = 2. In cell G6 we will evaluate the
derivative of f(x)4 at x = 2. You can type =4*E4-2. Subsequently we can use
Newton’s equation to calculate the step we shall take until the next iteration.
Type in cell H4 =-F4/G4. Now we can obtain a new estimate for x. Enter
in cell E5 =E4+H4, which is the previous value of x plus ∆x. With this new
estimate of x we can compute new values for f(x), f ′(x), and ∆x, as shown
in the screen shot.

After 5 iterations it is noted that convergence has been reached, ∆x = 0 and
x = 1 does not change anymore. This is the root of Equation 13.3. If a different
start value would have been provided, for example, x = −1, we would have
found the other root at x = 0.

13.5 Differentiation in Excel

In a similar fashion, we can also solve differential equations with Excel. We
will have a look at the implicit Euler method, which was discussed in previous
chapters. Suppose we have an initial value problem

dx

dt
= f(x, t) = kx, (13.5)

where k = −0.5 and we further know that x(0) = 1. Using Euler’s methods
we can march a numerical solution forward in time with a Taylor series:

x(t+ δt) = x(t) + f(x, t)δt. (13.6)

Let us now use Excel to solve our ODE numerically with Euler’s method. We
will use a δt = 0.1. In Figure 13.3 a screen shot is given. In the first column
we have defined values for the time. In the second column we will calculate
values for x. We start off with the initial value for x at t = 0. Enter in cell B3
=1.

Now we can continue with the implementation of Euler’s method. In cell B4
we now enter =(1-0.5*0.1)*B3. We can then copy cell B4 to cells B5 and
further. You can test for yourself how close this numerical solution is to the
analytical expression x(t) = x0e

kt.

13.6 Curve fitting in Excel

In Figure 13.4 a screen shot is given for a curve-fitting example in Excel.
Curve fitting is fairly easy and user friendly in Excel. As can be seen from

122 A Numerical Primer for the Chemical Engineer

FIGURE 13.3
Excel screenshot for Euler’s method

the data in Figure 13.4 we are dealing with some kind of polynomial data.
If you right-click the data, a pop-up opens with the possibility to “add a
trend line.” If you select this option, a window opens with several options for
fitting, linear, polynomial, exponential, etc. It is also possible to display the
fitted parameters and the regression coefficient in the figure.

Now that you know how to use the solver option in Excel, you can also develop
your own fitting tool.

Numerical methods in Excel 123

FIGURE 13.4
Excel screenshot for curve fitting

This page intentionally left blankThis page intentionally left blank

14

Case studies

14.1 Introduction

In this chapter several examples are given for problems that the chemical
engineer needs to solve using numerical methods.

14.2 Modeling a separation system

For the separation system of Figure 14.1, we know the inlet mass flow rate (in
kilograms per hour) and the mass fractions of each species in the inlet (stream
1) and each outlet (streams 2, 4, and 5). Compute the mass flow rates of each
of the outlet streams.

We will use the notation where Fi is the mass flow rate of stream i and wi,j

is the mass fraction of species j in stream i. The unknowns are defined as

x1 = F2, x2 = F4, x3 = F5.

Set up the balance for the total mass flow rate, the mass flow rate of species 1,
and the mass flow rate of species 2 of the separation system and compute the
mass flow rates of each of the outlet streams using (a) Gaussian elimination
(by hand), (b) Gaussian elimination (with MATLAB) and (c) two alternatives
in MATLAB. Compare the different methods.

The total mass flow rate is

F2 + F4 + F5 = F1. (14.1)

We can set up the mass flow rate of species 1 with

w1,2F2 + w1,4F4 + w1,5F5 = w1,1F1 (14.2)

and the mass flow rate of species 2 is

w2,2F2 + w2,4F4 + w2,5F5 = w2,1F1, (14.3)

125

126 A Numerical Primer for the Chemical Engineer

F
1
 = 10

F
2
 = x

1

F
4
 = x

2

F
5
 = x

3

w
1,1

 = 0.2

w
1,2

 = 0.6

w
1,3

 = 0.2

w
2,1

 = 0.04

w
2,2

 = 0.93

w
2,3

 = 0.03

w
4,1

 = 0.54

w
4,2

 = 0.24

w
4,3

 = 0.22

w
5,1

 = 0.26

w
5,2

 = 0.00

w
5,3

 = 0.74

FIGURE 14.1
Process diagram for the separation system

which yield, after rewriting, a set of three linear equations:

1.00 1.00 1.00
0.04 0.54 0.26
0.93 0.24 0.00

F2

F4

F5

 =

10
2
6

 . (14.4)

With Gaussian elimination in MATLAB, this simple system of three equations
with three unknowns can be solved easily:

>>A = [1.00 1.00 1.00; 0.04 0.54 0.26; 0.93 0.24 0.00];

>>b = [10 2 6];

>>x = A \b;

which will give as a result F2 = 5.82, F4 = 2.43, and F5 = 1.74.

14.3 Modeling a chemical reactor system

A chemical reaction takes place in a series of four continuous stirred tank
reactors arranged as shown in the figure. The chemical reaction is a first-order

Case studies 127

V
1

C
A1

k
1

V
2

C
A2

k
2

V
3

C
A3

k
3

V
4

C
A4

k
4

C
A1

C
A2

C
A3

C
A4

C
A0

=1 mol/l

1000 L/h

1000 L/h

100 L/h

100 L/h

FIGURE 14.2
Series of CSTRs

irreversible reaction of the type

A → B. (14.5)

The conditions of temperature in each reactor are such that the value of
the rate constant k1 is different in each reactor. Also, the volume of each
reactor Vi is different. The values of the rate constants and reactor volumes
are given in the table below. The following assumptions can be made regarding
this system: the system operates at steady state, there are only reactions in
the liquid phase, there is no change in volume or density, and the rate of
disappearance of component A in each reactor is given by

Ri = VikiCA,i. (14.6)

Formulate the material balances and solve the resulting system using Gaussian
elimination and the Jacobi method. Compare the two methods.

Reactor Vi (L) ki (h
−1) Reactor Vi (L) ki (h

−1)
1 1000 0.1 3 100 0.4
2 1500 0.2 4 500 0.3

When we set up the material balances for the above described reactor system
we will basically end with a system of 4 coupled linear equations:

1100 0 0 0
1000 −1400 100 0
0 1100 −1240 100
0 0 1100 −1250

cA
cB
cC
cD

=

1000
0
0
0

. (14.7)

This system appears to be diagonally dominant and an iterative method such
as the Jacobi method could work out here. The following MATLAB code could
be used to solve the linear system iteratively:

128 A Numerical Primer for the Chemical Engineer

First we will define the left-hand matrix and the right-hand side:

A= [1100 0 0 0; 1000 -1400 100 0; 0 1100 -1240 100; 0 0 1100 -1250];

b= [1000 0 0 0]’

Then we will define a diagonal matrix D

D = diag(diag(A));

and a rest matrix S:

S = A-D;

Then we will define a guess solution:

xo=[0 0 0 0]’;

We will initialize the error:

error = 1;

and now we can iterate x with a while-loop until the error decreases below a
target value of 0.0001:

while error >0.0001

xn = D ^-1*(b-S*xo);

error = norm(xn-xo,2);

xo=xn;

end

After 14 iterations the error criterion is met, and the numerical solution to
the problem is cA = 0.9091, cB = 0.6969, cC = 0.6654, and cD = 0.5855.
In Figure 14.3 the convergence of the solution is plotted with the number of
iterations.

14.4 PVT behavior of pure substances

PV T behavior of a pure substance is complex and many difficulties arise to
describe such behavior by an equation. However, for the gas region, often
simple expressions suffice. We could, for example, express PV behavior along
an isotherm by means of a power series expansion in V . Let’s evaluate the
following thermodynamic cubic equation of state:

PV 3 − (bP +RT)V 2 + aV − ab = 0. (14.8)

a and b are constants for a given chemical species. It is important in thermom-
etry to know for which value of V Equation 14.8 goes to zero, for a specified
pressure and temperature.

Case studies 129

0 2 4 6 8 10 12 14
0

0.5

1

c
A

0 2 4 6 8 10 12 14
0

0.5

1

c
B

0 2 4 6 8 10 12 14
0

0.5

1

c
C

0 2 4 6 8 10 12 14
0

0.5

1

c
D

Iteration count

FIGURE 14.3
Convergence of the solution with the Jacobi method

We have the following information available:

a = 0.0346

b = 0.0238

R = 0.08134.

Use Newton’s method to determine the V ’s for which Equation 14.8 goes
to zero for the pressure range P = 1, 2, · · ·15 (bar) and temperature range
T = 298, 303, and 333 (K).

For this assignment we can use the code that was supplied earlier for solving
nonlinear equations with Newton’s method:

130 A Numerical Primer for the Chemical Engineer

function [solution] = Newton(MyFunc,Jacobian,Guess,tol,P,T)

x = Guess;

k =1;

error = 2*tol

while error > tol

F = feval(MyFunc,x,P,T);

J = feval(Jacobian,x,P,T);

dx = J \(-F);

x= x + dx;

F = feval(MyFunc,x,P,T);

error = max(abs(F));

end

solution = x;

return

There are slight modifications in the code, as we would like to be able to
supply different values for the pressures and temperatures. We now write a
MATLAB function that contains the equation of state that we would like to
solve:

function f = MyFunc(x,P,T)

a = 0.0446;

b = 0.0238;

R = 8.314;

f = P*x. ^3 - (b*P+R*T)*x.^2+ a*x - a*b;

Of course we also have to provide an expression for the derivative, which is

(

3PV 2 − 2(bP +RT)V + a
)

. (14.9)

We will enter this into a MATLAB function as follows:

function df = Jacobian(x,P,T)

a = 0.0446;

b = 0.0238;

R = 8.314;

df = 3*P*x.^2 - 2*(b*P+R*T)*x+a;

We can now call Newton’s method, the equation of state and the derivative
of this equation from a main MATLAB script that solves the equation for a
series of pressures and temperatures:

P = linspace(1e5,15e5,10);

T = linspace(298,333,10);

for i = 1:length(P)

for j = 1:length(T)

x(i,j) = Newton(@MyFunc,@Jacobian,0.01,1e-5,P(i),T(j));

end

end

Case studies 131

0

5

10

15

x 10
5

290
300

310
320

330
340

0.025

0.03

0.035

0.04

0.045

0.05

0.055

T
P

V

FIGURE 14.4
Critical volume as a function of pressure and temperature

The computed volumes can be plotted as a function of pressure and temper-
ature by typing

surf(P,T,x);

which will give a surface plot as shown in Figure 14.4.

14.5 Dynamic modeling of a distillation column

In this assignment we are going to simulate a simple distillation column con-
taining only three stages.

You may assume a binary separation at constant pressure and negligible va-
por holdup, the liquid holdup at each stage is 1.0 (kmol), perfect control of
levels using D and B (LV configuration), constant molar flows (which re-
place the energy balance), vapor-liquid equilibrium on all stages, constant
relative volatility for the VLE, and constant liquid holdup (i.e., neglect flow

132 A Numerical Primer for the Chemical Engineer

dynamics). With these assumptions, the only variables are the mole fraction
of xi of the light component on each stage where i is the stage number.

The column separates a binary mixture with a relative volatility of α = 10
and has two theoretical stages (N = 2), plus a total condenser. Stage 3 is the
total condenser (D = 0.5kmol/min), the liquid feed (F = 1kmol/min) enters
on stage 2 with a composition of zf = 0.5, and stage 1 is the reboiler. The
reflux ratio is 6.1.

Formulate the material balances and the volatility relations. Given the initial
conditions xi(0) = 0, ∀i, use the resulting ODE system to simulate and create
composition profiles.

We can start by setting up the component balances, first for the condenser:

d(M3x3)

dt
= V2y2 − L3x3 −Dx3, (14.10)

then for the feed stage:

d(M2x2)

dt
= xFF + L3x3 + V1y1 − L2x2 − V2y2, (14.11)

and, of course, for the reboiler:

d(M1x1)

dt
= L2x2 − V1y1 −Bx1. (14.12)

We now define V = V1, L = L3, R = L/D. We have D = V − L = L/R,
V1 = V2 = V = (1 + 1/R)L, L2 = L + F , B = L + F − V = F − 1/R. We
may assume a constant liquid holdup and a negligible vapor holdup. Of course
there is a relationship between the vapor and liquid composition by relative
volatilities:

yi =
αxi

1 + (α− 1)xi
. (14.13)

In MATLAB we may write a function that contains the above formulated
model:

function dxdt = distcol(t,x)

R = 6.1

M = 1.0;

D = 0.5;

L = R*D;

F = 1;

xF = 0.5;

alpha = 10;

dxdt = zeros(3,1);

y(1) = (alpha*x(1))/(1+(alpha-1)*x(1));

y(2) = (alpha*x(2))/(1+(alpha-1)*x(2));

y(3) = (alpha*x(3))/(1+(alpha-1)*x(3));

Case studies 133

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time

c
o

n
c
e

n
tr

a
ti
o

n
 l
iq

u
id

reboiler

feed

distillate

FIGURE 14.5
Concentration profiles for the distillation column

dxdt(1) = (x(2) + x(1)/R - (1+1/R)*y(1))*L /M + (x(2)-x(1))*F/M;

dxdt(2) = ((x(3)-x(2))+(1+1/R)*(y(1)-y(2)))*L/M+(xF-x(2))*F/M;

dxdt(3) = (1+1^R)*(y(2)-x(3))*L^M;

We can now call the ODE solver and solve the system numerically for initial
conditions xi = 0, by typing:

>>[t,x] = ode45(@distcol,[0 30],[0 0 0])

>>plot(t,x)

The resulting concentration profile is given in Figure 14.5.

14.6 Dynamic modeling of an extraction cascade (ODEs)

In liquid–liquid extraction contactors, mathematical models must be devel-
oped that simulate the dynamic behavior of the equipment [16]. Such a model
is important to determine the time required to reach a steady state once a
process upset occurs. Consider a three-stage countercurrent contactor (shown

134 A Numerical Primer for the Chemical Engineer

STAGE 1 STAGE 2 STAGE 3

W, Y
1

W, Y
4

F, X
0

F, X
3

FIGURE 14.6
Schematic representation of an extraction stage cascade

in Figure 14.6), where 0.0774 kg/min of kerosene that contains 0.1 kg
propanoic acid/kg kerosene is flowing counter-currently to 0.0993 kg/hr water
with 0.001 kg propanoic acid/kg water.

At any time, the transfer of solute from the kerosene to the water is described
by Yn = mX∗

n, where Yn is the propanoic acid concentration in the water
extract phase (kg propanoic acid/kg water), X∗

n is the equilibrium propanoic
acid concentration in the kerosene (kg propanoic acid/kg kerosene), and m is
the propanoic acid distribution coefficient =13.4 in this case.

Whether concentration reaches the equilibrium value at each stage is deter-
mined by the Murphree efficiency, which is defined as follows:

E0 =
Xn−1 −Xn

Xn−1 −X∗
n

. (14.14)

Before the start of the process, the contactors (mixer) contained 0.5 kg of the
kerosene phase and 0.3 kg of the water phase. Two kinds of models could be
used to model the mass transfer process, which basically involves mass balance
on the solute. In an equilibrium-based model, only one equation is sufficient
to describe both phases:

Hx
dXn

dt
+Hy

dYn

dt
= F (xn−1 −Xn) +W (Yn+1 − Yn). (14.15)

Hx is the holdup in the kerosene phase, Yn is the holdup in the water phase,
F is the flow rate of the kerosene raffinate phase, W is the flowrate of the
water solvent phase.

In the rate-based model two equations are used to describe the mass balance
of the propanoic acid in each phase. For the Raffinate phase

Hx
dXn

dt
= F (Xn−1 −Xn)−HxKxa

(

Xn − Yn

m

)

(14.16)

and for the extract phase:

Hy
dYn

dt
= W (Yn+1 − Yn) +HxKxa

(

Xn
Yn

m

)

. (14.17)

(a) Consider a rate-based model and derive a mass balance equation of the so-
lute for each stage and each phase. Plot the concentration profile of the solute

Case studies 135

in each phase and determine how long it will take before the concentration
reaches steady state. Initially the kerosene and the water phase at each stage
contains the same concentration of solute as the entering respective phases.
Assume an overall mass transfer coefficient of 0.46465 min−1.

(b) Consider an equilibrium-based model and assume a steady-state condition.
How does the concentration profile in each stage vary when the Murphree stage
efficiency changes from low values close to 0 to high values close to 1? Hint:
Derive the steady-state algebraic equations for each stage.

This assignment can be solved in a manner that similar to the distillation
example. We start by writing a MATLAB function that contains the balance
equations, which are actually given in this assignment:

function dcdt=extract(t,c)

Hx = 0.5;

Hy = 0.3;

cxfeed = 0.1;

cyfeed = 0.001;

F = 0.0074;

W = 0.0993;

m = 13.4;

kxa =0.46465;

dcdt=zeros(length(c),1);

k=0.5*length(c)+1;

for i=1:k-1

if i==1

dcdt(i,1)=(F/Hx)*(cxfeed-c(i,1))-kxa*(c(i,1)-(c(i+k-1,1)/m));

else

dcdt(i,1)=(F/Hx)*(c(i-1,1)-c(i,1))-kxa*(c(i,1)-(c(i+k-1,1)/m));

end

end

for i=k:length(c)

if i==length(c)

dcdt(i,1)=(W/Hy)*(cyfeed-c(i,1))+(Hx/ Hy)*kxa*(c(i-k+1,1)-

(c(i,1)/m));

else

dcdt(i,1)=(W/Hy)*(c(i+1,1)-c(i,1))+(Hx/ Hy)*kxa*(c(i-k+1,1)-

(c(i,1)/m));

end

end

We can now solve the model with the MATLAB ODE solver for given initial
conditions and time span:

co=[0.1,0.1,0.1,0.001,0.001,0.001];

tspan=[0:0.05:100];

[t,c]=ode15s(@extract,tspan,co’);

136 A Numerical Primer for the Chemical Engineer

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

time[min]

R
a
ff
in

a
te

 c
o
n
c
e
n
tr

a
ti
o
n
[k

g
/k

g
]

stage1

stage2

stage3

FIGURE 14.7
Raffinate concentration with time

In Figures 14.7 and 14.8 the Raffinate concentration and extract concentration
as functions of time for different stages are plotted. Now we will solve the
equilibrium model (the derivatives are set to zero, resulting in a linear system).
In the code below, we first set the values of the model parameters, then create
the matrix of the equilibrium model and solve it with the backslash operator.

Set the feed flow rate kg/min

F=0.0774;

the solvent flow rate kg/min

W=0.0993;

the concentration solute feed stream

Xin=0.1;

the concentration solute solvent stream

Yin=0.01;

the Murphree efficiency

E=0.1:0.1:1;

the distribution coefficient

m=13.5;

Now we will initialize the variables

Case studies 137

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

time[min]

E
x
tr

a
c
t
c
o
n
c
e
n
tr

a
ti
o
n
[k

g
/k

g
]

stage1

stage2

stage3

FIGURE 14.8
Extract concentration with time

x=zeros(3,length(E));

y=zeros(3,length(E));

A1=zeros(3,3);

We will now define the matrix of the equilibrium model and find the solution
with the backslash operation:

for i=1:length(E)

A=F-W*m*(1-(1/E(i)));

B=W*m*(1-(1/E(i)))-F-(W*m/E(i));

C=W*m/E(i);

A1=[B C 0; A B C; 0 A (B-(W*m*(1-(1/E(i)))))];

B1=[-A*Xin;0;-W*Yin];

x(:,i)=A1^B1;

for j=1:3

if j==1

y(j,i)=m.*Xin*(1-(1/E(i)))+(m/E(i))*x(j,i);

else

y(j,i)=m.*x(j-1,i)*(1-(1/E(i)))+(m/E(i))*x(j,i);

end

end

end

The equilibrium concentrations of the Raffinate and extract are shown in
Figures 14.9 and 14.10.

138 A Numerical Primer for the Chemical Engineer

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Murphree efficiency[−]

R
a
ff
in

a
te

 c
o
n
c
e
n
tr

a
ti
o
n
[k

g
/k

g
]

x[1]

x[2]

x[3]

FIGURE 14.9
Raffinate concentration with Murphree efficiency

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Murphree efficiency[−]

E
x
tr

a
c
t
c
o
n
c
e
n
tr

a
ti
o
n
[k

g
/k

g
]

y[1]

y[2]

y[3]

FIGURE 14.10
Extract concentration with Murphree efficiency

Case studies 139

14.7 Distributed parameter models for a tubular reactor

Consider a tubular chemical reactor of length L with two reactions occurring:
A + B → C and C + B → D. A fluid with components A and B flows
through the reactor with an axial velocity of vz. Besides convection, there is
also dispersion taking place in the reactor. The concentration of A, B, C, and
D are governed by the coupled set of PDEs

∂cA
∂t

= −vz
∂cA
∂z

+D
∂2cA
∂z2

− k1cAcB

∂cB
∂t

= −vz
∂cB
∂z

+D
∂2cB
∂z2

− k1cAcB − k2cBcC

∂cC
∂t

= −vz
∂cC
∂z

+D
∂2cC
∂z2

+ k1cAcB − k2cBcC

∂cD
∂t

= −vz
∂cD
∂z

+D
∂2cD
∂z2

+ k2cBcC .

At the reactor inlet and outlet the Danckwerts boundary conditions apply,
where the inlet boundary conditions are

vz [cj(0)− cj0]−D
dcj
dz

∣

∣

∣

∣

z=0

= 0,

with j = A,B,C,D. The outlet boundary conditions are given as:

dcj
dz

∣

∣

∣

∣

z=L

= 0.

Solve this system in MATLAB, using the following data; the length of the
tubular reactor L = 10, the rate constants, k1 = k2 = 1.0, the inlet concen-
trations, cA0 = 1, cB0 = 1, cC0 = 0, cD0 = 0, the axial velocity, vz = 1.0,
the dispersion coefficient D = 1.10−4 and the initial conditions cA(0) = 2 and
cB(0) = cC(0) = cD(0) = 0.

We can solve the tubular reactor PDEs with MATLAB’s PDE solver, which is
called pdepe. It enables the user to solve parabolic-elliptic partial derivatives.
In the chapter on PDEs, the use of the pdepe solver was explained. MAT-
LAB needs to receive the model, the boundary conditions, and the initial
conditions in a predefined format. For example, the PDE should be defined
as:

c
∂u

∂t
= xm ∂

∂x

(

x−mf
)

+ s. (14.18)

140 A Numerical Primer for the Chemical Engineer

We should choose c, f , and s in such a way that it corresponds with the
equation you want to solve. In MATLAB we can write a function that contains
the tubular reactor model as follows:

function [c,f,s] = pdex2pde(z,t,C,dCdz)

k1 = 1.00;

k2 = 1.00;

vz = 1.00;

Dz = 1e-4;

c = [1;1;1;1];

f = [Dz*dCdz(1);

Dz*dCdz(2);

Dz*dCdz(3);

Dz*dCdz(4)];

s = [-vz*dCdz(1)-k1*C(1)*C(2);

-vz*dCdz(2)-k1*C(1)*C(2)-k2*C(2)*C(3);

-vz*dCdz(3)+k1*C(1)*C(2)-k2*C(2)*C(3);

-vz*dCdz(4)+ k2*C(2)*C(3)];

In the same fashion, the boundary conditions have to follow a certain formula:

p+ qf = 0. (14.19)

We can now write a MATLAB function that contains the boundary conditions:

function [pl,ql,pr,qr] = pdex2bc(zl,Cl,zr,Cr,t)

Cin =[1 1 0 0];

Dz =1e-4;

pl = [Cl(1)-Cin(1);Cl(2)-Cin(2);Cl(3)-Cin(3);Cl(4)-Cin(4)];

ql = [-1;-1;-1;-1];

pr = [0;0;0;0];

qr = [1/Dz;1/Dz;1/Dz;1/Dz];

Lastly, we will write a function with the initial conditions:

function C0 = pdex2ic(z);

C0=[1 ;1 ;0 ;0];

Now we can call the pdepe solver to solve the model, after setting the domain
for space and time:

>>z = linspace(0,10,30);

>>t = linspace(0,20,30); >>sol = pdepe(0,@pdex2pde,@pdex2ic,@pdex2bc,z,t);

In Figure 14.11 the concentration profiles over time and distance are shown
and Figure 14.12 shows the steady-state profile.

Case studies 141

0

5

10

0

10

20
0

0.5

1

1.5

Distance z

C
A
(z,t)

Time t 0

5

10

0

10

20
0

0.5

1

1.5

Distance z

C
B
(z,t)

Time t

0

5

10

0

10

20
−0.2

0

0.2

0.4

0.6

Distance z

C
C

(z,t)

Time t 0

5

10

0

10

20
−0.2

0

0.2

0.4

0.6

Distance z

C
D

(z,t)

Time t

FIGURE 14.11
Concentration profiles with time and distance

14.8 Modeling of an extraction column

In Figure 14.13, the material balances over a differential length of an L-L
extraction contactor are shown, for one-dimensional counter current flow [26].
After derivation of the balances, a set of coupled partial differential equations
is obtained, where the component cx in the light phase may be expressed over
the column length z as

Ex
∂2cx
∂z2

− Ux
∂cx
∂z

− koxa(cx − c∗x) = 0 (14.20)

and where the component cy in the heavy phase can be similarly written as

Ey
∂2cy
∂z2

+ Uy
∂cy
∂z

+ koxa(cx − c∗x) = 0. (14.21)

The equilibrium relation is given as

c∗x = mcy. (14.22)

142 A Numerical Primer for the Chemical Engineer

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Steady state profiles for A+B −−> C, C + B −−> D

z

C

C
A

C
B

C
C

C
D

FIGURE 14.12
Steady-state profiles

dz

Uy cy + δz
dcy

dz

Ux cx + δz
dcx

dz

koxa(cx – c*x) dz

–Ey

dcy

dz–Ex

dcx

dz

Uxcx

z = L

Uycy

Ux c
0
x Uy c

0
y

Uxc
I
x

X phase
Y

phase

Raffinate Solvent

Unit total

cross section

Uyc
I
y

Feed Extract

Interface
z = 0

d 2cy

dz2
–Ey + δz

dcy

dz

d 2cx

dz2
–Ex + δz

dcx

dz

FIGURE 14.13
Graphical representation of the extraction column

Case studies 143

Hold-up x Ux 10−3 (m3/m2/s)
Hold-up y Uy 10−3 (m3/m2/s)
Axial dispersion x Ex 1.8×10−4 (m2/s)
Axial dispersion y Ey 1.4×10−4 (m2/s)
Overall mass transfer kox 5.0×10−4 (m/s)
Interfacial area a 150 (m2/m3)
Slope equilibrium line m 3.5 (-)

TABLE 14.1
Extraction column data

For a system in which we are going to extract acrylic acid from water into
ethyl acetate by means of a pulsed disk contactor [1], we have the following
data available (Table 14.1):

In our model the z coordinate is normalized (z = l/L), given the top
composition (cx(z = 0) = 0.05 kg/m3 and cy(z = 0) = 0.05 kg/m3)
and the bottom composition (cx(z = 1) = 0.2 kg/m3 and cy(z =
1) = 1.0 kg/m3). The objective of this assignment is to solve the result-
ing PDE system as a boundary value problem with the bvp4c solver of
MATLAB (the bvp solver requires you to rewrite the system as a set of
ODEs).

We can convert the PDE system to a set of coupled ODEs. First, let us fill in
all known data. The PDE system then turns into

C′′
x = 5.56C′

x + 416.67Cx − 119.05Cy (14.23)

C′′
y = −7.14C′

y + 535.71Cx + 153.06Cy. (14.24)

For reasons of simplicity, let

y = [y1, y2, y3, y4]
T = [Cx, C

′
x, Cy, C

′
y]

T . (14.25)

Now, if we take the derivative of y we get

y′ = [[y′1, y
′
2, y

′
3, y

′
4]

T = [C′
x, C

′′
x , C

′
y, C

′′
y]

T . (14.26)

In other words,

y′1 = y2 (14.27)

y′2 = 5.56y2 + 416.67y1 − 119.05y3 (14.28)

y′3 = y4 (14.29)

y′4 = −7.14y4 − 535.71y1 + 153.06y3. (14.30)

144 A Numerical Primer for the Chemical Engineer

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Solute concentration C
x
 and C

y
 with the dimensionless height

C
x
,
C

y
 [
k
g
/m

3
]

z

FIGURE 14.14
Concentration profile over the column length

We have obtained a system of ODEs with the following boundary conditions
ya(z = 0) = 0.2, ya(z = L) = 0.05, and yb(z = 0) = 0.05, and yb(z = L) = 1.
We can solve this problem now with the Boundary Value Problem solver of
MATLAB, bvp4c.

Similar as with the pdepe solver, we have to write a function with the model
and the boundary conditions, which can be done as follows for the model:

function F = dEqs(x,y)

F = zeros(1,4);

F(1) = y(2);

F(2) = 5.56*y(2) + 416.67*y(1) - 119.05*y(3);

F(3) = y(4);

F(4) = -7.14*y(4) - 535.71*y(1) + 153.06*y(3);

and for the boundary conditions:

function r = bvp4bc(ya,yb)

r = [ya(1) - 0.2 ; ya(2) - 0.05; yb(1) - 0.05; yb(2) - 1];

The model can now be solved with the boundary value problem solver of
MATLAB:

>>solinit = bvpinit(linspace(0,1,100),[0.2 0.05 0.05 1]);

>>sol = bvp4c(@dEqs,@bvp4bc,solinit);

In Figure 14.14 the concentration profiles over the column length are shown.

Case studies 145

C
A,in

, Q
i

C
A
,C

C
,Q

o

A C

r
A
 = kC

A

FIGURE 14.15
Graphical representation of the reactor

14.9 Fitting of kinetic data

In a reactor a reaction takes place, where reactant A is converted into product
C, according to

A → C.

The reaction rate can be described as

rA = kCA.

Figure 14.15 shows how reactant A enters the reactor with a flow Qi. At the
outlet of the reactor, the unreacted A and the formed C leave the reactor
with a flow Qo = Qi. We are able to monitor A and C at the outlet. If we
write out the component balances for A and C we obtain the following ODE
system:

dCA

dt
=

Qo

Vr
(cA,in − cA)− rA

dCC

dt
= rA − Qo

Vr
cC .

Experimental data was collected with cA and cC versus time. Further is the
following information known cA,in = 1mol/m3 and Qo = 1mol/h.

Determine the kinetic model parameter k and the reactor volume Vr using
lsqnonlin.

The data is stored in dataset.zip.

In Chapter 10 the reader is introduced to lsqnonlin. We will first write a
MATLAB function that contains the reactor model, which is given above:

146 A Numerical Primer for the Chemical Engineer

function dcdt = simpleode(t,c,k);

Q0 = 1;

cAin = 1;

dcdt = zeros(2,1);

dcdt(1) = (Q0/k(1))*(cAin - c(1)) - k(2)*c(1);

dcdt(2) = -(Q0/k(1))*c(2) + k(2)*c(1);

We will also have to supply to lsqnonlin a fitting criterion function, which
we code as the difference between predicted points and experimental data:

function error = fitcrit(ke,T,C,Tfinal,C0)

[t,ce] = ode45(@simpleode,T,C0,[],ke);

error = (ce-C).^2;

First we will load the data:

>>load dataset;

We initialize our data:

>>C = [cA cC];

>>T = tout;

>>[nrows,ncols] = size(C);

>>Tfinal = T(nrows);

We supply the initial values for the concentrations:

>>C0 = [0.00 0.00];

We also have to come up with initial guesses for the fit parameters:

>>k0 = [1.00 1.00];

And we can, optionally, also set the lower and upper bounds for model pa-
rameters:

>>LB = [0.00 0.00];

>>UB = [Inf Inf];

Now we perform nonlinear least squares fit with the lsqnonlin routine:

>>options = optimset(’TolX’,1.0E-6,’MaxFunEvals’,1000);

>>[ke,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA,JACOBIAN] = ...

lsqnonlin(@fitcrit,k0,LB,UB,options,T,C,Tfinal,C0);

The optimized fit parameters are stored in ke, which can now be used to
simulate the reactor model:

>>[te,Ce] = ode45(@simpleode,T,C0,[], ke);

The model and the experimental data can now be compared:

>>plot(T,C(:,1),’ro’,te,Ce(:,1),’r-’,T,C(:,2),’b+’,te,Ce(:,2),’b-’);

xlabel(’t’);ylabel(’c’); legend(’data cA’,’model cA’,’data cB’, ’model cB’);

Case studies 147

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

c

data c
A

model c
A

data c
B

model c
B

FIGURE 14.16
Model and data from regression

Figure 14.16 shows the model and the experimental data. We can also compute
the confidence limits of the fitted parameters with nlparci:

>>cflim=nlparci(ke,RESIDUAL,JACOBIAN);

14.10 Fitting of NRTL model parameters

Vapor liquid equilibrium data for ethanol (1) + water (2) at 101.3 kPa using a
liquid-vapor ebullition-type equilibrium still is reported in Table 14.2. See also
[28]. The vapor-liquid equilibrium for every component can be represented by
the well-known Raoult’s law (Equations 14.31 and 14.32).

y1P = x1γ1P
sat
1 (14.31)

y2P = x2γ2P
sat
2 (14.32)

Where yi and xi are the molar composition in the vapor and liquid phase for
the component i, respectively, P represents the total pressure and P sat

i is the
vapor pressure. The vapor pressure can be obtained with the Antoine equa-
tion (Equation 14.40) with the parameters reported in Table 14.3. Equations
14.31 and 14.32 make use of the activity coefficients (γ1 and γ2) to describe the

148 A Numerical Primer for the Chemical Engineer

x1 y1 T/K
0.056 0.366 362.19
0.091 0.448 359.26
0.189 0.539 356.33
0.286 0.582 354.89
0.323 0.600 354.46
0.331 0.605 354.41
0.419 0.627 353.59
0.512 0.666 352.85
0.620 0.712 352.16
0.704 0.759 351.74
0.715 0.764 351.70
0.798 0.818 351.41
0.843 0.851 351.37
0.847 0.854 351.37
0.849 0.856 351.36
0.884 0.886 351.34
0.908 0.907 351.33
0.922 0.920 351.33

TABLE 14.2
Vapor–liquid equilibrium data for the binary system ethanol (1) + water(2)

Compound A B C
Ethanol 7.28781 1623.22 −44.170
Water 7.19621 1730.63 −39.724

TABLE 14.3
Antoine parameters

non-ideal behavior and interactions occurring in the liquid phase. Several ther-
modynamic models have been proposed to correlate and predict the behavior
in the liquid phase making use of those activity coefficients. The Non-Random
Two Liquid (NRTL) model has been used to predict these properties. This
model is shown in Equations 14.33–14.39.

ln(γ1) = x2
2

[

τ21

(

G21

x1 + x2G21

)2

+
τ12G12

(x2 + x1G12)2

]

(14.33)

ln(γ2) = x2
1

[

τ12

(

G12

x2 + x1G12

)2

+
τ21G21

(x1 + x2G21)2

]

(14.34)

G12 = exp(−α12τ12) (14.35)

G21 = exp(−α12τ21) (14.36)

Case studies 149

τ12 = a12 +
b12
T/K

(14.37)

τ21 = a21 +
b21
T/K

(14.38)

τ11 = τ22 = 0 (14.39)

As can be seen from the previous equations, the NRTL model applied to binary
systems depends on 5 parameters (a12, b12, a21, b21, α12). The non-randomness
parameter, α12, is commonly fixed to:

• α12 = 0.20, when there is formation of two liquid phases (liquid–liquid equi-
librium),

• α12 = 0.30, for most of the vapor liquid equilibria commonly found in the
industry, and

• α12 = 0.48, for aqueous systems forming vapor liquid equilibrium.

For the system ethanol (1) + water (2), the parameters of the NRTL model
that correlate the experimental data reported in Table 14.2 should be regressed
in this assignment. First calculate the experimental activity coefficients for
each temperature. Then use one of the MATLAB curve-fitting tools to fit the
experimental data to the NRTL model. Compare and evaluate the results with

log(P/kPa) = A− B

T/K + C
. (14.40)

First, we will write a MATLAB function with the NRTL equations for a binary
system:

function gammai = NRTL(a12,a21,b12,b21,c12,x1,T)

x2 = 1-x1;

t12 = a12 + b12./T;

t21 = a21 + b21./T;

G12 = exp(-c12*t12);

G21 = exp(-c12*t21);

lngamma1 = x2.^2.*(t21.*(G21./(x1+x2.*G21)). ^2...

+t12.*G12./((x2+x1.*G12).^2));

lngamma2 = x1.^2.*(t12.*(G12./(x2+x1.*G12)). ^2...

+t21.*G21./((x1+x2.*G21).^2));

gammai = exp([lngamma1 lngamma2]);

Next we want to write a MATLAB function to compute the vapor pressure
for ethanol and water:

function Pisat = VapPressure(T)

A = [7.28781 7.19621];

B = [1623.22 1730.63];

150 A Numerical Primer for the Chemical Engineer

C = [-44.170 -39.724];

for i = 1:length(T)

Pisat(i,:) = 10.^(A-B./(T(i)+C));

end

Now we can define a function that contains the fitting criterion, similar to
what we did in the previous example:

function F = Objective(Param)

global P xi yi T

x1 = xi(:,1);

N = length(T);

a12 = Param(1);

a21 = Param(2);

b12 = Param(3);

b21 = Param(4);

c12 = Param(5);

gammaipred = NRTL(a12,a21,b12,b21,c12,x1,T);

Pisat = VapPressure(T);

yipred = xi.*gammaipred.*Pisat/P;

Fi = (yi-yipred).^2/N;

F = sum(Fi,2);

To ensure that we can access all variables, we make them global:

>>global P xi yi T

We can load our data set:

>>load DataVLE.mat

The pressure is >>P = 101.3;

The ethanol liquid and vapor molar compositions are >>x1 = Data(:,1);

>>y1 = Data(:,2);

The temperature data is

>>T = Data(:,3);

and the nonrandomness parameter is

>>c12 = 0.48;

First we calculate the compositions of component 2:

>>x2 = 1-x1; y2 = 1-y1;

and the formation of the matrices of compositions in liquid and vapor:

>>xi = [x1 x2]; yi = [y1 y2];

We supply initial guesses for the fit parameters:

>>Param0 = [0 0 -2 -2 0.1];

We have the possibility to predefine solver settings:

Case studies 151

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Ethanol liquid composition

E
th

a
n
o
l
v
a
p
o
r

c
o
m

p
o
s
it
io

n

Experimental

Predicted

FIGURE 14.17
Experimental and predicted compositions

>>options = optimset(’TolX’,1e-8,’MaxIter’,1000,’...

MaxFunEvals’,2000,’Display’,’iter’,’TolFun’,1e-8);

and now we calculate the fit parameter values with lsqnonlin:

[Param,feval] = lsqnonlin(@Objective,Param0,[],[],options)

We can use the fitted parameters to calculate the predicted activity coeffi-
cients:

>>gammaipred = NRTL(a12,a21,b12,b21,c12,x1,T);

and the vapor pressures:

>>Pisat = VapPressure(T);

>>yipred = xi.*gammaipred.*Pisat/P;

In Figure 14.16 the predicted and estimated compositions are plotted.

14.11 Optimizing a crude oil refinery

A refinery has three crude oils available that have the yields shown in the
following table. Because of equipment and storage limitations, production of

152 A Numerical Primer for the Chemical Engineer

gasoline (two qualities), kerosene, and fuel oil must be limited as also shown
in this table.

There are no plant limitations on the production of other products such as gas
oils. The profit on processing crude 1 is $1.00/bbl, on crude 2 it is $3.50/bbl,
and on crude 3 it is $3.0/bbl.

Find the approximate optimum daily feed rates of the three crudes to this
plant with the simplex method, and compare your outcomes with one of the
LP routines available in MATLAB.

Vol. percentage yield
Crude 1 Crude 2 Crude 3 max allow.

prod. rate
Gasoline 1 0.30 0.31 0.20 6000
Gasoline 2 0.55 0.24 0.18 5500
Kerosene 0.06 0.09 0.12 2400
Fuel oil 0.09 0.36 0.50 1200

This problem can be formulated as a linear programming problem, which can
be solved with the MATLAB linprog function. Using the supplied data, the
LP is as follows:

min f(x) = 1.00x1 + 3.50x2 + 3.00x3

s.t.

0.30x1 + 0.31x2 + 0.20x3 = 6000

0.55x1 + 0.24x2 + 0.18x3 = 5500

0.06x1 + 0.09x2 + 0.12x3 = 2400

0.09x1 + 0.36x2 + 0.50x3 = 1200.

The objective represents the profit and the constraints refer to the gasoline
types 1 and 2 and the kerosene and fuel oil. This problem can be implemented
in MATLAB very easily.

First we define the objective function:

>>f = [-1; -3.50; -3];

Subsequently we define the constraints: >>A = [0.3 0.31 0.20;0.55 0.24

0.18;0.06 0.09 0.12;0.09 0.36 0.5];

>>b = [6000; 5500; 2400; 1200];

We define the lower bounds:

lb = zeros(3,1);

and ultimately we call linprog:

>>[x,fval,exitflag,output,lambda]=linprog(f,A,b,[],[],lb)

Case studies 153

From this we find that the profit is 12866 USD where x1 = 9591.8, x2 = 935.4,
and x3 = 0.00.

14.12 Planning in a manufacturing line

From [18] the following problem was taken: A manufacturing line makes two
products. Production and demand data are shown in Table 14.4. Total time
available (for production and setup) in each week is 80 h. Starting inventory is
zero, and inventory at the end of week 4 must be zero. Only one product can
be produced in any week, and the line must be shut down and cleaned at the
end of each week. Hence the setup time and costs are incurred for a product in
any week in which that product is made. No production can take place while
the line is being set up. Formulate and solve this problem as maximizing total
net profit over all products and periods.

Although MATLAB has a tool for solving integer optimization problems
(bintprog), this solver is not very powerful. For this reason, we are going
to use another software to formulate and solve the above introduced mixed
integer program. First we will formulate the objective:

maxZ =
∑

k

∑

t

(SPkxsk,t − SCkuk,t − PCkxpk,t − ICkxik,t − FCkxfk,t) .

(14.41)

Product 1 Product 2
Set-up time (h) 6.00 11.00
Set-up costs ($) 250.00 400.00
Production time/unit (h) 0.50 0.75
Production cost/unit ($) 9.00 14.00
Inventory holding cost/unit 3.00 3.00
Penalty cost for unsatisfied demand/unit ($) 15.00 20.00
Selling price ($/unit) 25.00 35.00

TABLE 14.4
Production data

Product Week 1 Week 2 Week 3 Week 4
1 75 95 60 90
2 20 30 45 30

TABLE 14.5
Demand data

154 A Numerical Primer for the Chemical Engineer

This is a profit function in which SPk is the sales price of product k, xsk,t is
the number of sold units of k in week t, SCk are the setup costs, PCk are the
production costs, ICk are the inventory holding costs, and FCk is a penalty
fee for unsatisfied demand. The variable uk,t is the selector for a product k at
time t, which is binary. Then there is a variable xpk,t, which is the number of
produced units, and xik,t, which is the number of units in inventory and xfk,t
is the number of units for the unsatisfied demand.

We now introduce a constraint that ensures that there can only be one product
produced at any time:

∑

k

uk,t = 1. (14.42)

We have a production time constraint:

PTkxpk,t ≤ (80− STk)uk,t, (14.43)

where PTk is the production time and STk is the setup time. Then we keep
an inventory balance of

xik,t = xpk,t − xsk,t + xik,t−1. (14.44)

We further know that the inventory has to be zero at the end of week 4:

xik,t=wk4 = 0. (14.45)

We keep a penalty balance of

xfk,t = Dk,t − xsk,t, (14.46)

where Dk,t is the demand, which should match the number of sold units:

xsk,t ≤ Dk,t. (14.47)

A typical listing of a GAMS code is shown in Figure 14.18. From GAMS
follows a production plan as follows:

WK1 WK2 WK3 WK4
P1 100 100 — 90
P2 — — 75 —

This production plan leads to a profit of $3360 USD.

Case studies 155

FIGURE 14.18
GAMS listing of the Mixed Integer Program

This page intentionally left blankThis page intentionally left blank

Bibliography

[1] Asbjornsen, O. A. and T. Hertzberg (1974). “Constrained regression in
chemical engineering practice.” Chemical Engineering Science 29(3): 679.

[2] Ataie-Ashtiani, B. and S. A. Hosseini (2005). “Error analysis of finite
difference methods for two-dimensional advection-dispersion-reaction equa-
tion.” Advances in Water Resources 28(8): 793.

[3] Baleo, J. N. and P. Le Cloirec (2000). “Validating a prediction method of
mean residence time spatial distributions.” AIChE Journal 46(4): 675.

[4] Balendra, S. and I. D. L. Bogle (2009). “Modular global optimisation in
chemical engineering.” Journal of Global Optimization 45(1): 169.

[5] Biegler, L. T. and I. E. Grossmann (2004). “Retrospective on optimiza-
tion.” Computers and Chemical Engineering 28(8): 1169.

[6] Biegler, L. T., I. E. Grossmann, et al. (1997). Systematic Methods of Chem-
ical Process Design, Prentice Hall.

[7] Botte, G. G., J. A. Ritter, et al. (2000). “Comparison of finite difference
and control volume methods for solving differential equations.” Computers
and Chemical Engineering 24(12): 2633.

[8] Burghoff, B., E. Zondervan, et al. (2009). “Phenol extraction with Cyanex
923: Kinetics of the solvent impregnated resin application.” Reactive and
Functional Polymers 69(4): 264.

[9] Carmo Coimbra, M. D., C. Sereno, et al. (2000). “Modelling multicom-
ponent adsorption process by a moving finite element method.” Journal of
Computational and Applied Mathematics 115(1–2): 169.

[10] Caussignac, P. and R. Touzan (1990). “Solution of three-dimensional
boundary layer equations by a discontinuous finite element method, part
I: Numerical analysis of a linear model problem.” Computer Methods in
Applied Mechanics and Engineering 78(3): 249.

[11] Chen, H. S. and M. A. Stadtherr (1984). “On solving large sparse non-
linear equation systems.” Computers and Chemical Engineering 8(1): 1.

157

158 A Numerical Primer for the Chemical Engineer

[12] Chen, W. S., B. R. Bakshi, et al. (2004). “Bayesian estimation via sequen-
tial Monte Carlo sampling: Unconstrained nonlinear dynamic systems.” In-
dustrial and Engineering Chemistry Research 43(14): 4012.

[13] Coimbra, M. D. C., C. Sereno, et al. (2004). “Moving finite element
method: Applications to science and engineering problems.” Computers and
Chemical Engineering 28(5): 597.

[14] Cruz, P., J. C. Santos, et al. (2005). “Simulation of separation processes
using finite volume method.” Computers and Chemical Engineering 30(1):
83.

[15] de Jong, M. C., R. Feijt, et al. (2009). “Reaction kinetics of the ester-
ification of myristic acid with isopropanol and n-propanol using p-toluene
sulphonic acid as catalyst.” Applied Catalysis A: General 365(1): 141.

[16] Des Costello (1992). Dynamic Modelling of a Small Scale Liquid-Liquid
Extraction Rig, Ph.D. thesis, Edinburgh University.

[17] Dormand, J. R. and P. J. Prince (1980). “A family of embedded Runge-
Kutta formulae.” Journal of Computational and Applied Mathematics
6(1): 19–26.

[18] Edgar, T. F., D. M. Himmelblau, et al. (2001). Optimization of Chemical
Processes, McGraw-Hill.

[19] Evangelista, F. (2005). “Dynamics of shell and tube heat exchangers: New
insights and time-domain solutions.” 7th World Congress of Chemical En-
gineering, GLASGOW2005, incorporating the 5th European Congress of
Chemical Engineering.

[20] Eykhoff, P. (1974). System Identification: Parameter and State Estima-
tion, Wiley & Sons.

[21] Floudas, C. A. and X. Lin (2004). “Continuous-time versus discrete-time
approaches for scheduling of chemical processes: A review.” Computers and
Chemical Engineering 28(11): 2109.

[22] Golub, G. H. and C. F. v. Loan (1996). Matrix Computations, The John
Hopkins University Press.

[23] Gritton, K. S., J. D. Seader, et al. (2001). “Global homotopy continuation
procedures for seeking all roots of a nonlinear equation.” Computers and
Chemical Engineering 25(7–8): 1003.

[24] Hahn, B.H. and Valentine, D.T. (2010). Essential MATLAB for Engi-
neers and Scientists, Academic Press.

[25] Hangos, K. and Cameron, I. (2001). Process Modeling and Model Analy-
sis, Academic Press.

Bibliography 159

[26] Hartland, S. and A. Kumar (1997). Design of Liquid-Liquid Extractors,
Mineral Processing and Extractive Metallurgy Review, 17(1), 43–79

[27] Ierapetritou, M. G. and C. A. Floudas (1998). “Effective continuous-time
formulation for short-term scheduling. 1. Multipurpose batch processes.” In-
dustrial and Engineering Chemistry Research 37(11): 4341.

[28] Kiyofumi Kurihara, Mikiyoshi Nakamichi, and Kazuo Kojima (1993). Iso-
baric Vapor-Liquid Equilibria for Methanol + Ethanol + Water and the
Three Constituent Binary Systems, J. Chem. Eng. Data 38, 446–449.

[29] Koster, L. G., E. Gazi, et al. (1992). “Finite elements for near-singular
systems - an overview.” Computers & Chemical Engineering 16(Supple-
ment 1): S43.

[30] Kruger, U., Y. Zhou, et al. (2008). “Robust partial least squares regression:
Part I, algorithmic developments.” Journal of Chemometrics 22(1): 1.

[31] Kumar, J., G. Warnecke, et al. (2009). “Comparison of numerical meth-
ods for solving population balance equations incorporating aggregation and
breakage.” Powder Technology 189(2): 218.

[32] Kuno, M. and J. D. Seader (1988). “Computing all real solutions to sys-
tems of nonlinear equations with a global fixed-point homotopy.” Industrial
and Engineering Chemistry Research 27(7): 1320.

[33] Liu, F. and S. K. Bhatia (2001). “Solution techniques for transport prob-
lems involving steep concentration gradients: Application to noncatalytic
fluid solid reactions.” Computers and Chemical Engineering 25(9–10):
1159.

[34] Lohmann, T., H. G. Bock, et al. (1992). “Numerical methods for parame-
ter estimation and optimal experiment design in chemical reaction systems.”
Industrial & Engineering Chemistry Research 31(1): 54.

[35] Martinez, E. C., M. D. Cristaldi, et al. (2009). “Design of dynamic ex-
periments in modeling for optimization of batch processes.” Industrial and
Engineering Chemistry Research 48(7): 3453.

[36] Marwuardt, D. W. (1963). “An algorithm for least-squares estimation of
nonlinear parameters.” J. Soc. Indust. Appl. Math. 11(2): 431-441.

[37] McCann, N. and M. Maeder (2009). “Tutorial: The modelling of chemical
processes.” Analytica Chimica Acta 647(1): 31.

[38] Mosbach, S. and A. G. Turner (2009). “A quantitative probabilistic in-
vestigation into the accumulation of rounding errors in numerical ODE
solution.” Computers & Mathematics with Applications 57(7): 1157.

160 A Numerical Primer for the Chemical Engineer

[39] Motz, S., A. Mitrovic, et al. (2002). “Comparison of numerical meth-
ods for the simulation of dispersed phase systems.” Chemical Engineering
Science 57(20): 4329.

[40] Murthi, M., L. D. Shea, et al. (2009). “Numerical problems and agent-
based models: For a mass transfer course.” Chemical Engineering Education
43(2): 153.

[41] Oberkampf, W. L., S. M. DeLand, et al. (2002). “Error and uncertainty in
modeling and simulation.” Reliability Engineering & System Safety 75(3):
333.

[42] Patankar, S. V. and D. B. Spalding (1972). “A calculation procedure for
heat, mass and momentum transfer in three-dimensional parabolic flows.”
International Journal of Heat and Mass Transfer 15(10): 1787.

[43] Pistikopoulos, E. N. and M. G. Ierapetritou (1995). “Novel approach for
optimal process design under uncertainty.” Computers and Chemical Engi-
neering 19(10): 1089.

[44] Sahinidis, N. V. (2004). “Optimization under uncertainty: State-of-the-art
and opportunities.” Computers and Chemical Engineering 28(6–7): 971.

[45] Schittkowski, K. (2004). “Data fitting in partial differential algebraic
equations: Some academic and industrial applications.” Journal of Com-
putational and Applied Mathematics 163(1): 29.

[46] Schuermans, M., I. Markovsky, et al. (2007). “An adapted version of the
element-wise weighted total least squares method for applications in chemo-
metrics.” Chemometrics and Intelligent Laboratory Systems 85(1): 40.

[47] Seth, D., A. Sarkar, et al. (2005). “Uncertainties in the simulation of
catalytic distillation process: A systematic grid refinement study.” Chemical
Engineering Science 60(20): 5445.

[48] Skogestad, S. (2004). “Dynamics and control of distillation columns: A
tutorial introduction.” Trans. IChemE 75(PART A): 539.

[49] Sousa Jr., R., D. M. dos Anjos, et al. (2008). “Modeling and simulation of
the anode in direct ethanol fuels cells.” Journal of Power Sources 180(1):
283.

[50] Zitney, S. E. and M. A. Stadtherr (1993). “Frontal algorithms for
equation-based chemical process flowsheeting on vector and parallel com-
puters.” Computers and Chemical Engineering 17(4): 319.

[51] Zondervan, E., B. H. L. Betlem, et al. (2007). “Development of a dynamic
model for cleaning ultra filtration membranes fouled by surface water.” Jour-
nal of Membrane Science 289(1–2): 26.

ISBN: 978-1-4822-2944-8

9 781482 229448

90000

w w w . c r c p r e s s . c o m

K22617
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

Chemical Engineering

Solve Developed Models in a Numerical Fashion

Designed as an introduction to numerical methods for students, A Numerical
Primer for the Chemical Engineer explores the role of models in chemical
engineering. Combining mathematical correctness (model verification) with
numerical performance (model validation), this text concentrates on numerical
methods and problem solving, rather than focusing on in-depth numerical analysis.
It applies actual numerical solution strategies to formulated process models to help
identify and solve chemical engineering problems.

Describe Motions with Accuracy

The book starts with a recap on linear algebra, and uses algorithms to solve
linear equations, nonlinear equations, ordinary differential equations, and partial
differential equations (PDEs). It includes an introductory chapter on MATLAB®

basics, contains a chapter on the implementation of numerical methods in Excel,
and even adopts MATLAB® and Excel as the programming environments
throughout the text.

The material addresses implicit and explicit schemes, and explores finite difference
and finite volume methods for solving transport PDEs. It covers the methods for
error and computational stability, as well as curve fitting and optimization. It
also contains a case study chapter with worked out examples to demonstrate the
numerical techniques, and exercises at the end of each chapter that students can
use to familiarize themselves with the numerical methods.

A Numerical Primer for the Chemical Engineer lays down a foundation for
numerical problem solving and sets up a basis for more in-depth modeling theory
and applications. This text addresses the needs of senior undergraduates in
chemical engineering, and students in applied chemistry and biochemical process
engineering/food process engineering.

A NUMERICAL PRIMER
for the

CHEMICAL ENGINEER

EDWIN ZONDERVAN

A NUM
ERICAL PRIM

ER for the CHEM
ICAL ENGINEER

ZO
N

D
ERVA

N

K22617 cvr mech.indd 1 7/1/14 3:39 PM

	Front Cover
	Dedication
	Contents
	List of Figures
	List of Tables
	Introduction
	Preface
	1. The role of models in chemical engineering
	2. Errors in computer simulations
	3. Linear equations
	4. Elimination methods
	5. Iterative methods
	6. Nonlinear equations
	7. Ordinary differential equations
	8. Partial differential equations 1
	9. Partial differential equations 2
	10. Data regression and curve fitting
	11. Optimization
	12. Basics of MATLAB
	13. Numerical methods in Excel
	14. Case studies
	Bibliography

