

Introduction to Autonomous Mobile Robots

Intelligent Robotics and Autonomous Agents
Edited by Ronald C. Arkin

A list of the books published in the Intelligent Robotics and Autonomous Agents series can
be found at the back of the book.

Introduction to Autonomous Mobile Robots

second edition

Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza

The MIT Press
Cambridge, Massachusetts
London, England

© 2011 Massachusetts Institute of Technology
Original edition © 2004

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechan-
ical means (including photocopying, recording, or information storage and retrieval) without permis-
sion in writing from the publisher.

For information about special quantity discount, please email special_sales@mitpress.mit.edu

This book was set in Times Roman by the authors using Adobe FrameMaker 9.0.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Siegwart, Roland.
Introduction to autonomous mobile robots. - 2nd ed. / Roland Siegwart, Illah R. Nourbakhsh, and Da-
vide Scaramuzza.
 p. cm. - (Intelligent robotics and autonomous agents series)
Includes bibliographical references and index.
ISBN 978-0-262-01535-6 (hardcover : alk. paper) 1. Mobile robots. 2. Autonomous robots. I. Nour-
bakhsh, Illah Reza, 1970- II. Scaramuzza, Davide. III. Title.
TJ211.415.S54 2011
629.8'932-dc22
2010028053

10 9 8 7 6 5 4 3 2 1

To Luzia and my children, Janina, Malin, and Yanik, who give me their support and free-
dom to grow every day — RS
To my parents, Susi and Yvo, who opened my eyes — RS
To Marti, Mitra, and Nikou, who are my love and my inspiration — IRN
To my parents, Fatemeh and Mahmoud, who let me disassemble and investigate everything
in our home — IRN
To my parents, Paola and Ermanno, who encouraged and supported my choices every day
and introduced me to robotics at the age of three — DS
To my sisters, Lisa and Silvia, for their love — DS

Slides and exercises that go with this book are available at:

http://www.mobilerobots.org

Contents

Acknowledgments xiii

Preface xv

 1 Introduction 1
1.1 Introduction 1
1.2 An Overview of the Book 11

 2 Locomotion 13
2.1 Introduction 13

2.1.1 Key issues for locomotion 16
2.2 Legged Mobile Robots 17

2.2.1 Leg configurations and stability 18
2.2.2 Consideration of dynamics 21
2.2.3 Examples of legged robot locomotion 25

2.3 Wheeled Mobile Robots 35
2.3.1 Wheeled locomotion: The design space 35
2.3.2 Wheeled locomotion: Case studies 43

2.4 Aerial Mobile Robots 50
2.4.1 Introduction 50
2.4.2 Aircraft configurations 52
2.4.3 State of the art in autonomous VTOL 52

2.5 Problems 56

 3 Mobile Robot Kinematics 57
3.1 Introduction 57
3.2 Kinematic Models and Constraints 58

viii Contents
3.2.1 Representing robot position 58
3.2.2 Forward kinematic models 61
3.2.3 Wheel kinematic constraints 63
3.2.4 Robot kinematic constraints 71
3.2.5 Examples: Robot kinematic models and constraints 73

3.3 Mobile Robot Maneuverability 77
3.3.1 Degree of mobility 77
3.3.2 Degree of steerability 81
3.3.3 Robot maneuverability 82

3.4 Mobile Robot Workspace 84
3.4.1 Degrees of freedom 84
3.4.2 Holonomic robots 85
3.4.3 Path and trajectory considerations 87

3.5 Beyond Basic Kinematics 90
3.6 Motion Control (Kinematic Control) 91

3.6.1 Open loop control (trajectory-following) 91
3.6.2 Feedback control 92

3.7 Problems 99

 4 Perception 101
4.1 Sensors for Mobile Robots 101

4.1.1 Sensor classification 101
4.1.2 Characterizing sensor performance 103
4.1.3 Representing uncertainty 109
4.1.4 Wheel/motor sensors 115
4.1.5 Heading sensors 116
4.1.6 Accelerometers 119
4.1.7 Inertial measurement unit (IMU) 121
4.1.8 Ground beacons 122
4.1.9 Active ranging 125
4.1.10 Motion/speed sensors 140
4.1.11 Vision sensors 142

4.2 Fundamentals of Computer Vision 142
4.2.1 Introduction 142
4.2.2 The digital camera 142
4.2.3 Image formation 148
4.2.4 Omnidirectional cameras 159
4.2.5 Structure from stereo 169
4.2.6 Structure from motion 180

Contents ix
4.2.7 Motion and optical flow 189
4.2.8 Color tracking 192

4.3 Fundamentals of Image Processing 195
4.3.1 Image filtering 196
4.3.2 Edge detection 199
4.3.3 Computing image similarity 207

4.4 Feature Extraction 208
4.5 Image Feature Extraction: Interest Point Detectors 212

4.5.1 Introduction 212
4.5.2 Properties of the ideal feature detector 213
4.5.3 Corner detectors 215
4.5.4 Invariance to photometric and geometric changes 220
4.5.5 Blob detectors 227

4.6 Place Recognition 234
4.6.1 Introduction 234
4.6.2 From bag of features to visual words 235
4.6.3 Efficient location recognition by using an inverted file 236
4.6.4 Geometric verification for robust place recognition 237
4.6.5 Applications 237
4.6.6 Other image representations for place recognition 238

4.7 Feature Extraction Based on Range Data (Laser, Ultrasonic) 242
4.7.1 Line fitting 243
4.7.2 Six line-extraction algorithms 248
4.7.3 Range histogram features 259
4.7.4 Extracting other geometric features 260

4.8 Problems 262

 5 Mobile Robot Localization 265
5.1 Introduction 265
5.2 The Challenge of Localization: Noise and Aliasing 266

5.2.1 Sensor noise 267
5.2.2 Sensor aliasing 268
5.2.3 Effector noise 269
5.2.4 An error model for odometric position estimation 270

5.3 To Localize or Not to Localize: Localization-Based Navigation Versus
Programmed Solutions 275

5.4 Belief Representation 278
5.4.1 Single-hypothesis belief 278
5.4.2 Multiple-hypothesis belief 280

x Contents
5.5 Map Representation 284
5.5.1 Continuous representations 284
5.5.2 Decomposition strategies 287
5.5.3 State of the art: Current challenges in map representation 294

5.6 Probabilistic Map-Based Localization 296
5.6.1 Introduction 296
5.6.2 The robot localization problem 297
5.6.3 Basic concepts of probability theory 299
5.6.4 Terminology 302
5.6.5 The ingredients of probabilistic map-based localization 304
5.6.6 Classification of localization problems 306
5.6.7 Markov localization 307
5.6.8 Kalman filter localization 322

5.7 Other Examples of Localization Systems 342
5.7.1 Landmark-based navigation 344
5.7.2 Globally unique localization 345
5.7.3 Positioning beacon systems 346
5.7.4 Route-based localization 347

5.8 Autonomous Map Building 348
5.8.1 Introduction 348
5.8.2 SLAM: The simultaneous localization and mapping problem 349
5.8.3 Mathematical definition of SLAM 351
5.8.4 Extended Kalman Filter (EKF) SLAM 353
5.8.5 Visual SLAM with a single camera 356
5.8.6 Discussion on EKF SLAM 359
5.8.7 Graph-based SLAM 361
5.8.8 Particle filter SLAM 363
5.8.9 Open challenges in SLAM 364
5.8.10 Open source SLAM software and other resources 365

5.9 Problems 366

 6 Planning and Navigation 369
6.1 Introduction 369
6.2 Competences for Navigation: Planning and Reacting 370
6.3 Path Planning 371

6.3.1 Graph search 373
6.3.2 Potential field path planning 386

6.4 Obstacle avoidance 393
6.4.1 Bug algorithm 393

Contents xi
6.4.2 Vector field histogram 397
6.4.3 The bubble band technique 399
6.4.4 Curvature velocity techniques 401
6.4.5 Dynamic window approaches 402
6.4.6 The Schlegel approach to obstacle avoidance 404
6.4.7 Nearness diagram 405
6.4.8 Gradient method 405
6.4.9 Adding dynamic constraints 406
6.4.10 Other approaches 406
6.4.11 Overview 406

6.5 Navigation Architectures 409
6.5.1 Modularity for code reuse and sharing 410
6.5.2 Control localization 410
6.5.3 Techniques for decomposition 411
6.5.4 Case studies: tiered robot architectures 416

6.6 Problems 423

Bibliography 425
Books 425
Papers 427
Referenced Webpages 444

Index 447

Acknowledgments

This book is the result of inspirations and contributions from many researchers and students
at the Swiss Federal Institutes of Technology Zurich (ETH) and Lausanne (EPFL), Carne-
gie Mellon University’s Robotics Institute, Pittsburgh (CMU), and many others around the
globe.

We would like to thank all the researchers in mobile robotics who make this field so rich
and stimulating by sharing their goals and visions with the community. It is their work that
enabled us to collect the material for this book.

The most valuable and direct support and contribution for this second edition came from
our current collaborators at ETH. We would like to thank Friedrich Fraundorfer for his con-
tribution to the section on location recognition; Samir Bouabdallah for his contribution to
the section on flying robots; Christian David Remy for his contribution to the section on
considerations of dynamics; Martin Rufli for his contribution to path planning; Agostino
Martinelli for his careful checking of some of the equations; Deon Sabatta and Jonathan
Claassens for their careful review of some sections and their fruitful discussions; and Sarah
Bulliard for her useful suggestions. Furthermore, we would like to renew our acknowledg-
ments to the people who contributed to the first edition. In particular Kai Arras for his con-
tribution to uncertainty representation and Kalman filter localization; Matt Mason for his
contribution to kinematics; Al Rizzi for his guidance on feedback control; Roland
Philippsen and Jan Persson for their contribution to obstacle avoidance; Gilles Caprari and
Yves Piguet for their input and suggestions on motion control; Marco Lauria for offering
his talent for some of the figures; Marti Louw for her efforts on the cover design; and Nicola
Tomatis, Remy Blank, and Marie-Jo Pellaud.

This book was also inspired by other courses, especially by the lecture notes on mobile
robotics at the Swiss Federal Institutes of Technology, both in Lausanne (EPFL) and Zurich
(ETH). The material for this book has been used for lectures at EPFL, ETH, and CMU since
1997. We thank the hundreds of students who followed the lecture and contributed through
their corrections and comments.

It has been a pleasure to work with MIT Press, the publisher of this book. Thanks to
Gregory McNamee for his careful and valuable copy-editing, and to Ada Brunstein, Kath-
erine Almeida, Abby Streeter Roake, Marc Lowenthal, and Susan Clark from MIT Press
for their help in editing and finalizing the book.

Preface

Mobile robotics is a young field. Its roots include many engineering and science disci-
plines, from mechanical, electrical, and electronics engineering to computer, cognitive, and
social sciences. Each of these parent fields has its share of introductory textbooks that
excite and inform prospective students, preparing them for future advanced coursework
and research. Our objective in writing this textbook is to provide mobile robotics with such
a preparatory guide.

This book presents an introduction to the fundamentals of mobile robotics, spanning the
mechanical, motor, sensory, perceptual, and cognitive layers that comprise our field of
study. A collection of workshop proceedings and journal publications could present the
new student with a snapshot of the state of the art in all aspects of mobile robotics. But here
we aim to present a foundation—a formal introduction to the field. The formalism and anal-
ysis herein will prove useful even as the frontier of the state-of-the-art advances due to the
rapid progress in all of the subdisciplines of mobile robotics.

This second edition largely extends the content of the first edition. In particular, chapters
2, 4, 5, and 6 have been notably expanded and updated to the most recent, state-of-the-art
acquisitions in both computer vision and robotics. In particular, we have added in chapter
2 the most recent and popular examples of mobile, legged, and micro aerial robots. In chap-
ter 4, we have added the description of new sensors—such as 3D laser rangefinders, time-
of-flight cameras, IMUs, and omnidirectional cameras—and tools—such as image filter-
ing, camera calibration, structure-from-stereo, structure-from-motion, visual odometry, the
most popular feature detectors for camera (Harris, FAST, SURF, SIFT) and laser images,
and finally bag-of-feature approaches for place recognition and image retrieval. In chapter
5, we have added an introduction to probability theory, and improved and expanded the
description of Markov and Kalman filter localization using a better formalism and more
examples. Furthermore, we have also added the description of the Simultaneous Localiza-
tion and Mapping (SLAM) problem along with a description of the most popular
approaches to solve it such as extended-Kalman-filter SLAM, graph-based SLAM, particle
filter SLAM, and the most recent monocular visual SLAM. Finally, in chapter 6 we have
added the description of graph-search algorithms for path planning such as breadth-first,
depth first, Dijkstra, A*, D*, and rapidly exploring random trees. Besides these many new
additions, we have also provided state-of-the-art references and links to online resources

xvi Preface
and downloadable software.
We hope that this book will empower both undergraduate and graduate robotics students

with the background knowledge and analytical tools they will need to evaluate and even
criticize mobile robot proposals and artifacts throughout their careers. This textbook is suit-
able as a whole for introductory mobile robotics coursework at both the undergraduate and
graduate level. Individual chapters such as those on perception or kinematics can be useful
as overviews in more focused courses on specific subfields of robotics.

The origins of this book bridge the Atlantic Ocean. The authors have taught courses on
mobile robotics at the undergraduate and graduate level at Stanford University, ETH Zur-
ich, Carnegie Mellon University and EPFL. Their combined set of curriculum details and
lecture notes formed the earliest versions of this text. We have combined our individual
notes, provided overall structure and then test-taught using this textbook for two additional
years before settling on the first edition in 2004, and another six years for the current, pub-
lished text.

For an overview of the organization of the book and summaries of individual chapters,
refer to section 1.2.

Finally, for the teacher and the student: we hope that this textbook will prove to be a
fruitful launching point for many careers in mobile robotics. That would be the ultimate
reward.

1 Introduction

1.1 Introduction

Robotics has achieved its greatest success to date in the world of industrial manufacturing.
Robot arms, or manipulators, comprise a $ 2 billion industry. Bolted at its shoulder to a spe-
cific position in the assembly line, the robot arm can move with great speed and accuracy
to perform repetitive tasks such as spot welding and painting (figure 1.1). In the electronics
industry, manipulators place surface-mounted components with superhuman precision,
making the portable telephone and laptop computer possible.

Yet, for all of their successes, these commercial robots suffer from a fundamental dis-
advantage: lack of mobility. A fixed manipulator has a limited range of motion that depends

Figure 1.1
Picture of auto assembly plant-spot welding robot of KUKA and a parallel robot Delta of SIG Dem-
aurex SA (invented at EPFL [305]) during packaging of chocolates.

© KUKA Inc. © SIG Demaurex SA

2 Chapter 1
on where it is bolted down. In contrast, a mobile robot would be able to travel throughout
the manufacturing plant, flexibly applying its talents wherever it is most effective.

This book focuses on the technology of mobility: how can a mobile robot move unsu-
pervised through real-world environments to fulfill its tasks? The first challenge is locomo-
tion itself. How should a mobile robot move, and what is it about a particular locomotion
mechanism that makes it superior to alternative locomotion mechanisms?

Hostile environments such as Mars trigger even more unusual locomotion mechanisms
(figure 1.2). In dangerous and inhospitable environments, even on Earth, such teleoperated
systems have gained popularity (figures 1.3-1.6). In these cases, the low-level complexities
of the robot often make it impossible for a human operator to control its motions directly.
The human performs localization and cognition activities but relies on the robot’s control
scheme to provide motion control.

For example, Plustech’s walking robot provides automatic leg coordination while the
human operator chooses an overall direction of travel (figure 1.3). Figure 1.6 depicts an
underwater vehicle that controls three propellers to stabilize the robot submarine autono-
mously in spite of underwater turbulence and water currents while the operator chooses
position goals for the submarine to achieve.

Other commercial robots operate not where humans cannot go, but rather share space
with humans in human environments (figure 1.7). These robots are compelling not for rea-
sons of mobility but because of their autonomy, and so their ability to maintain a sense of
position and to navigate without human intervention is paramount.

Figure 1.2
The mobile robot Sojourner was used during the Pathfinder mission to explore Mars in summer 1997.
It was almost completely teleoperated from Earth. However, some on-board sensors allowed for
obstacle detection (http://ranier.oact.hq.nasa.gov/telerobotics_page/telerobotics.shtm).
© NASA/JPL.

Introduction 3
Figure 1.3
Plustech developed the first application-driven walking robot. It is designed to move wood out of the
forest. The leg coordination is automated, but navigation is still done by the human operator on the
robot. (http://www.plustech.fi). © Plustech.

Figure 1.4
The MagneBike robot developed by ASL (ETH Zurich) and ALSTOM. MagneBike is a magnetic
wheeled robot with high mobility for inspecting complex shaped structures such as ferromagnetic
pipes and turbines (http://www.asl.ethz.ch/). © ALSTOM / ETH Zurich.

4 Chapter 1
Figure 1.5
Picture of Pioneer, a robot designed to explore the Sarcophagus at Chernobyl. © Wide World Photos.

Figure 1.6
The autonomous underwater vehicle (AUV) Sirius being retrieved after a mission aboard the RV
Southern Surveyor © Robin Beaman—James Cook University.

Introduction 5
For example, AGV (autonomous guided vehicle) robots (figure 1.8) autonomously
deliver parts between various assembly stations by following special electrical guidewires
installed in the floor (figure 1.8a) or, differently, by using onboard lasers to localize within
a user-specified map (figure 1.8b). The Helpmate service robot transports food and medi-
cation throughout hospitals by tracking the position of ceiling lights, which are manually
specified to the robot beforehand (figure 1.9). Several companies have developed autono-
mous cleaning robots, mainly for large buildings (figure 1.10). One such cleaning robot is
in use at the Paris Metro. Other specialized cleaning robots take advantage of the regular
geometric pattern of aisles in supermarkets to facilitate the localization and navigation
tasks.

Research into high-level questions of cognition, localization, and navigation can be per-
formed using standard research robot platforms that are tuned to the laboratory environ-
ment. This is one of the largest current markets for mobile robots. Various mobile robot
platforms are available for programming, ranging in terms of size and terrain capability.
Very popular research robots are the Pioneer, BIBA, and the e-puck (figures 1.11-1.13) and
also very small robots like the Alice from EPFL (Swiss Federal Institute of Technology at
Lausanne) (figure 1.14).

Figure 1.7
Tour-guide robots are able to interact and present exhibitions in an educational way [85, 251, 288,
310,]. Ten Roboxes have operated during five months at the Swiss exhibition EXPO.02, meeting hun-
dreds of thousands of visitors. They were developed by EPFL [288] (http://robotics.epfl.ch) and com-
mercialized by BlueBotics (http://www.bluebotics.com).

6 Chapter 1
Figure 1.8
(a) Autonomous guided vehicle (AGV) by SWISSLOG used to transport motor blocks from one
assembly station to another. It is guided by an electrical wire installed in the floor. © Swisslog.
(b) Equipped with the Autonomous Navigation Technology (ANT) from BlueBotics, Paquito, the
autonomous forklift by Esatroll, does not rely on electrical wires, magnetic plots, or reflectors, but
rather uses the onboard safety lasers to localize itself with respect to the shape of the environment.
Image courtesy of BlueBotics (http://www.bluebotics.com).

a) b)

Figure 1.9
HELPMATE is a mobile robot used in hospitals for transportation tasks. It has various on-board sen-
sors for autonomous navigation in the corridors. The main sensor for localization is a camera looking
to the ceiling. It can detect the lamps on the ceiling as references, or landmarks (http://
www.pyxis.com). © Pyxis Corp.

front back

Introduction 7
Figure 1.10
(a) The Robot40 is a consumer robot developed and sold by Cleanfix for cleaning large gymnasiums.
The navigation system of Robo40 is based on a sophisticated sonar and infrared system (http://
www.cleanfix.com). © Cleanfix. (b) The RoboCleaner RC 3000 covers badly soiled areas with a spe-
cial driving strategy until it is really clean. Optical sensors measure the degree of pollution of the aspi-
rated air (http://www.karcher.de). © Alfred Kärcher GmbH & Co.

a) b)

Figure 1.11
PIONEER is a modular mobile robot offering various options like a gripper or an on-board camera.
It is equipped with a sophisticated navigation library developed at SRI, Stanford, CA. Reprinted with
permission from ActivMedia Robotics, http://www.MobileRobots.com.

8 Chapter 1
Figure 1.12
BIBA is a very sophisticated mobile robot developed for research purposes and built by BlueBotics
(http://www.bluebotics.com/). It has a large variety of sensors for high-performance navigation tasks.

Figure 1.13
The e-puck is an educational desktop mobile robot developed at the EPFL [226]. It is only about 70
mm in diameter. As extensions to the basic capabilities, various modules such as additional sensors,
actuators, or computational power have been developed. In this picture, two example extensions are
shown: (center) an omnidirectional camera and (right) an infrared distance scanner (http://www.e-
puck.org/). © Ecole Polytechnique Fédérale de Lausanne (EPFL).

Introduction 9
Although mobile robots have a broad set of applications and markets as summarized
above, there is one fact that is true of virtually every successful mobile robot: its design
involves the integration of many different bodies of knowledge. No mean feat, this makes
mobile robotics as interdisciplinary a field as there can be. To solve locomotion problems,
the mobile roboticist must understand mechanism and kinematics, dynamics and control
theory. To create robust perceptual systems, the mobile roboticist must leverage the fields
of signal analysis and specialized bodies of knowledge such as computer vision to properly
employ a multitude of sensor technologies. Localization and navigation demand knowl-
edge of computer algorithms, information theory, artificial intelligence, and probability
theory.

Figure 1.15 depicts an abstract control scheme for mobile robot systems that we will use
throughout this text. This figure identifies many of the main bodies of knowledge associ-
ated with mobile robotics.

This book provides an introduction to all aspects of mobile robotics, including software
and hardware design considerations, related technologies, and algorithmic techniques. The
intended audience is broad, including both undergraduate and graduate students in intro-
ductory mobile robotics courses, as well as individuals fascinated by the field. Although it
is not absolutely required, a familiarity with matrix algebra, calculus, probability theory,
and computer programming will significantly enhance the reader’s experience.

Figure 1.14
Alice is one of the smallest fully autonomous robots. It is approximately cm, it has an
autonomy of about 8 hours and uses infrared distance sensors, tactile whiskers, or even a small camera
for navigation [93].

2 2 2

10 Chapter 1
Mobile robotics is a large field, and this book focuses not on robotics in general, or on
mobile robot applications, but rather on mobility itself. From mechanism and perception to
localization and navigation, this book focuses on the techniques and technologies that
enable robust mobility.

Clearly, a useful, commercially viable mobile robot does more than just move. It pol-
ishes the supermarket floor, keeps guard in a factory, mows the golf course, provides tours
in a museum, or provides guidance in a supermarket. The aspiring mobile roboticist will
start with this book but will quickly graduate to coursework and research specific to the
desired application, integrating techniques from fields as disparate as human-robot interac-
tion, computer vision, and speech understanding.

Figure 1.15
Reference control scheme for mobile robot systems used throughout this book.

Raw data

Environment Model
Local Map

“Position”
Global Map

Actuator Commands

Sensing Acting

Information
Extraction and
Interpretation

Path
Execution

Cognition
Path Planning

Knowledge,
Data Base

Mission
Commands

Path

Real World
Environment

Localization
Map Building

M
ot

io
n

 C
on

tr
ol

P
er

ce
p

ti
on

Introduction 11
1.2 An Overview of the Book

This book introduces the different aspects of a robot in modules, much like the modules
shown in figure 1.15. Chapters 2 and 3 focus on the robot’s low-level locomotive ability.
Chapter 4 presents an in-depth view of perception. Chapters 5 and 6 take us to the higher-
level challenges of localization and mapping and even higher-level cognition, specifically
the ability to navigate robustly. Each chapter builds upon previous chapters, and so the
reader is encouraged to start at the beginning, even if his or her interest is primarily at the
high level. Robotics is peculiar in that solutions to high-level challenges are most meaning-
ful only in the context of a solid understanding of the low-level details of the system.

Chapter 2, “Locomotion,” begins with a survey of the most important mechanisms that
enable locomotion: wheels, legs, and flight. Numerous robotic examples demonstrate the
particular talents of each form of locomotion. But designing a robot’s locomotive system
properly requires the ability to evaluate its overall motion capabilities quantitatively. Chap-
ter 3, “Mobile Robot Kinematics,” applies principles of kinematics to the whole robot,
beginning with the kinematic contribution of each wheel and graduating to an analysis of
robot maneuverability enabled by each mobility mechanism configuration.

The greatest single shortcoming in conventional mobile robotics is, without doubt, per-
ception: mobile robots can travel across much of earth’s man-made surfaces, but they
cannot perceive the world nearly as well as humans and other animals. Chapter 4, “Percep-
tion,” begins a discussion of this challenge by presenting a clear language for describing
the performance envelope of mobile robot sensors. With this language in hand, chapter 4
goes on to present many of the off-the-shelf sensors available to the mobile roboticist,
describing their basic principles of operation as well as their performance limitations. The
most promising sensor for the future of mobile robotics is vision, and chapter 4 includes an
overview of the theory of camera image formation, omnidirectional vision, camera calibra-
tion, structure from stereovision, structure from motion, and visual odometry. But percep-
tion is more than sensing. Perception is also the interpretation of sensed data in meaningful
ways. The second half of chapter 4 describes strategies for feature extraction that have been
most useful in both computer vision and mobile robotics applications, including extraction
of geometric shapes from range sensing data, as well as point features (such as Harris,
SIFT, SURF, FAST, and so on) from camera images. Furthermore, a section is dedicated
to the description of the most recent bag-of-feature approach that became popular for place
recognition and image retrieval.

Armed with locomotion mechanisms and outfitted with hardware and software for per-
ception, the mobile robot can move and perceive the world. The first point at which mobil-
ity and sensing must meet is localization: mobile robots often need to maintain a sense of
position. Chapter 5, “Mobile Robot Localization,” describes approaches that obviate the
need for direct localization, then delves into fundamental ingredients of successful local-

12 Chapter 1
ization strategies: belief representation and map representation. Case studies demonstrate
various localization schemes, including both Markov localization and Kalman filter local-
ization. The final part of chapter 5 is devoted to a description of the Simultaneous Local-
ization and Mapping (SLAM) problem along with a description of the most popular
approaches to solve it such as extended-Kalman-filter SLAM, graph-based SLAM, particle
filter SLAM, and the most recent monocular visual SLAM.

Mobile robotics is so young a discipline that it lacks a standardized architecture. There
is as yet no established robot operating system. But the question of architecture is of para-
mount importance when one chooses to address the higher-level competences of a mobile
robot: how does a mobile robot navigate robustly from place to place, interpreting data, and
localizing and controlling its motion all the while? For this highest level of robot compe-
tence, which we term navigation competence, there are numerous mobile robots that show-
case particular architectural strategies. Chapter 6, “Planning and Navigation,” surveys the
state of the art of robot navigation, showing that today’s various techniques are quite sim-
ilar, differing primarily in the manner in which they decompose the problem of robot con-
trol. But first, chapter 6 addresses two skills that a competent, navigating robot usually must
demonstrate: obstacle avoidance and path planning.

There is far more to know about the cross-disciplinary field of mobile robotics than can
be contained in a single book. We hope, though, that this broad introduction will place the
reader in the context of the collective wisdom of mobile robotics. This is only the begin-
ning. With luck, the first robot you program or build will have only good things to say about
you.

2 Locomotion

2.1 Introduction

A mobile robot needs locomotion mechanisms that enable it to move unbounded through-
out its environment. But there are a large variety of possible ways to move, and so the selec-
tion of a robot’s approach to locomotion is an important aspect of mobile robot design. In
the laboratory, there are research robots that can walk, jump, run, slide, skate, swim, fly,
and, of course, roll. Most of these locomotion mechanisms have been inspired by their bio-
logical counterparts (see figure 2.1).

There is, however, one exception: the actively powered wheel is a human invention that
achieves extremely high efficiency on flat ground. This mechanism is not completely for-
eign to biological systems. Our bipedal walking system can be approximated by a rolling
polygon, with sides equal in length to the span of the step (figure 2.2). As the step size
decreases, the polygon approaches a circle or wheel. But nature did not develop a fully
rotating, actively powered joint, which is the technology necessary for wheeled locomo-
tion.

Biological systems succeed in moving through a wide variety of harsh environments.
Therefore, it can be desirable to copy their selection of locomotion mechanisms. However,
replicating nature in this regard is extremely difficult for several reasons. To begin with,
mechanical complexity is easily achieved in biological systems through structural replica-
tion. Cell division, in combination with specialization, can readily produce a millipede with
several hundred legs and several tens of thousands of individually sensed cilia. In man-
made structures, each part must be fabricated individually, and so no such economies of
scale exist. Additionally, the cell is a microscopic building block that enables extreme min-
iaturization. With very small size and weight, insects achieve a level of robustness that we
have not been able to match with human fabrication techniques. Finally, the biological
energy storage system and the muscular and hydraulic activation systems used by large ani-
mals and insects achieve torque, response time, and conversion efficiencies that far exceed
similarly scaled man-made systems.

d

14 Chapter 2
Owing to these limitations, mobile robots generally locomote either using wheeled
mechanisms, a well-known human technology for vehicles, or using a small number of
articulated legs, the simplest of the biological approaches to locomotion (see figure 2.2).

In general, legged locomotion requires higher degrees of freedom and therefore greater
mechanical complexity than wheeled locomotion. Wheels, in addition to being simple, are
extremely well suited to flat ground. As figure 2.3 depicts, on flat surfaces wheeled loco-
motion is one to two orders of magnitude more efficient than legged locomotion. The rail-
way is ideally engineered for wheeled locomotion because rolling friction is minimized on
a hard and flat steel surface. But as the surface becomes soft, wheeled locomotion accumu-
lates inefficiencies due to rolling friction, whereas legged locomotion suffers much less
because it consists only of point contacts with the ground. This is demonstrated in figure
2.3 by the dramatic loss of efficiency in the case of a tire on soft ground.

In effect, the efficiency of wheeled locomotion depends greatly on environmental qual-
ities, particularly the flatness and hardness of the ground, while the efficiency of legged

Figure 2.1
Locomotion mechanisms used in biological systems.

Flow in

Crawl

Sliding

Running

Walking

Type of motion Resistance to motion Basic kinematics of motion

Hydrodynamic forces

Friction forces

Friction forces

Loss of kinetic energy

Loss of kinetic energy
polygon

Transverse vibration

Longitudinal vibration

Eddiesa Channel

Rolling of a

(see figure 2.2)

bouncing
Periodic

on a spring

(

Locomotion 15
Figure 2.2
A biped walking system can be approximated by a rolling polygon, with sides equal in length d to the
span of the step. As the step size decreases, the polygon approaches a circle or wheel with the radius l.

h

l

O

d

Figure 2.3
Specific power versus attainable speed of various locomotion mechanisms [52].

1 10 100

100

10

1

0.1

un
it

 p
ow

er
 (

hp
/t

on
)

speed (miles/hour)

cra
wlin

g/s
lid

ing

ru
nn

ing

tir
e o

n s
of

t

gr
ou

nd

walk
ing

rai
lw

ay
 w

he
el

fl
ow

16 Chapter 2
locomotion depends on the leg mass and body mass, both of which the robot must support
at various points in a legged gait.

It is understandable, therefore, that nature favors legged locomotion, since locomotion
systems in nature must operate on rough and unstructured terrain. For example, in the case
of insects in a forest, the vertical variation in ground height is often an order of magnitude
greater than the total height of the insect. By the same token, the human environment fre-
quently consists of engineered, smooth surfaces, both indoors and outdoors. Therefore, it
is also understandable that virtually all industrial applications of mobile robotics utilize
some form of wheeled locomotion. Recently, for more natural outdoor environments, there
has been some progress toward hybrid and legged industrial robots such as the forestry
robot shown in figure 2.4.

In section 2.1.1, we present general considerations that concern all forms of mobile
robot locomotion. Following this, in sections 2.2. 2.3, and 2.4 we present overviews of
legged locomotion, wheeled locomotion, and aerial locomotion techniques for mobile
robots.

2.1.1 Key issues for locomotion
Locomotion is the complement of manipulation. In manipulation, the robot arm is fixed but
moves objects in the workspace by imparting force to them. In locomotion, the environ-
ment is fixed and the robot moves by imparting force to the environment. In both cases, the
scientific basis is the study of actuators that generate interaction forces and mechanisms

Figure 2.4
RoboTrac, a hybrid wheel-leg vehicle for rough terrain [282].

Locomotion 17
that implement desired kinematic and dynamic properties. Locomotion and manipulation
thus share the same core issues of stability, contact characteristics, and environmental type:

• stability
- number and geometry of contact points
- center of gravity
- static/dynamic stability
- inclination of terrain

• characteristics of contact
- contact point/path size and shape
- angle of contact
- friction

• type of environment
- structure
- medium (e.g., water, air, soft or hard ground)

A theoretical analysis of locomotion begins with mechanics and physics. From this start-
ing point, we can formally define and analyze all manner of mobile robot locomotion sys-
tems. However, this book focuses on the mobile robot navigation problem, particularly
stressing perception, localization, and cognition. Thus, we will not delve deeply into the
physical basis of locomotion. Nevertheless, the three remaining sections in this chapter
present overviews of issues in legged locomotion [52], wheeled locomotion, and aerial
locomotion. Chapter 3 presents a more detailed analysis of the kinematics and control of
wheeled mobile robots.

2.2 Legged Mobile Robots

Legged locomotion is characterized by a series of point contacts between the robot and the
ground. The key advantages include adaptability and maneuverability in rough terrain (fig-
ure 2.5). Because only a set of point contacts is required, the quality of the ground between
those points does not matter as long as the robot can maintain adequate ground clearance.
In addition, a walking robot is capable of crossing a hole or chasm so long as its reach
exceeds the width of the hole. A final advantage of legged locomotion is the potential to
manipulate objects in the environment with great skill. An excellent insect example, the
dung beetle, is capable of rolling a ball while locomoting by way of its dexterous front legs.

The main disadvantages of legged locomotion include power and mechanical complex-
ity. The leg, which may include several degrees of freedom, must be capable of sustaining
part of the robot’s total weight, and in many robots it must be capable of lifting and lower-
ing the robot. Additionally, high maneuverability will only be achieved if the legs have a

18 Chapter 2
sufficient number of degrees of freedom to impart forces in a number of different direc-
tions.

2.2.1 Leg configurations and stability
Because legged robots are biologically inspired, it is instructive to examine biologically
successful legged systems. A number of different leg configurations have been successful
in a variety of organisms (figure 2.6). Large animals, such as mammals and reptiles, have
four legs, whereas insects have six or more legs. In some mammals, the ability to walk on
only two legs has been perfected. Especially in the case of humans, balance has progressed
to the point that we can even jump with one leg.1 This exceptional maneuverability comes
at a price: much more complex active control to maintain balance.

1. In child development, one of the tests used to determine if the child is acquiring advanced loco-
motion skills is the ability to jump on one leg.

Figure 2.5 Legged robots are particularly suited for rough terrain, where they are able to traverse
obstacles such as steps (a), gaps (b), or sandy patches (c) that are impassable for wheeled systems.
Additionally, the high number of degrees of freedom allows the robot to stand up when fallen (d)
and keep its payload leveled (e). Because legged systems do not require a continuous path for sup-
port, they can rely on a few selected footholds, which also reduces the environmental impact (f).
Image courtesy of D. Remy.

Locomotion 19
In contrast, a creature with three legs can exhibit a static, stable pose provided that it can
ensure that its center of gravity is within the tripod of ground contact. Static stability, dem-
onstrated by a three-legged stool, means that balance is maintained with no need for
motion. A small deviation from stability (e.g., gently pushing the stool) is passively cor-
rected toward the stable pose when the upsetting force stops.

But a robot must be able to lift its legs in order to walk. In order to achieve static walk-
ing, a robot must have at least four legs, moving one of it at a time. For six legs, it is possible
to design a gait in which a statically stable tripod of legs is in contact with the ground at all
times (figure 2.9).

Insects and spiders are immediately able to walk when born. For them, the problem of
balance during walking is relatively simple. Mammals, with four legs, can achieve static
walking, which, however, is less stable due to the high center of gravity than, for example,
reptile walking. Fawns, for example, spend several minutes attempting to stand before they
are able to do so, then spend several more minutes learning to walk without falling.
Humans, with two legs, can also stand statically stable due to their large feet. Infants require
months to stand and walk, and even longer to learn to jump, run, and stand on one leg.

There is also the potential for great variety in the complexity of each individual leg.
Once again, the biological world provides ample examples at both extremes. For instance,
in the case of the caterpillar, each leg is extended using hydraulic pressure by constricting
the body cavity and forcing an increase in pressure, and each leg is retracted longitudinally
by relaxing the hydraulic pressure, then activating a single tensile muscle that pulls the leg
in toward the body. Each leg has only a single degree of freedom, which is oriented longi-
tudinally along the leg. Forward locomotion depends on the hydraulic pressure in the body,
which extends the distance between pairs of legs. The caterpillar leg is therefore mechani-
cally very simple, using a minimal number of extrinsic muscles to achieve complex overall
locomotion.

Figure 2.6
Arrangement of the legs of various animals.

mammals reptiles insects
 two or four legs four legs six legs

20 Chapter 2
At the other extreme, the human leg has more than seven major degrees of freedom,
combined with further actuation at the toes. More than fifteen muscle groups actuate eight
complex joints.

In the case of legged mobile robots, a minimum of two degrees of freedom is generally
required to move a leg forward by lifting the leg and swinging it forward. More common is
the addition of a third degree of freedom for more complex maneuvers, resulting in legs
such as those shown in figure 2.7. Recent successes in the creation of bipedal walking
robots have added a fourth degree of freedom at the ankle joint. The ankle enables the robot
to shift the resulting force vector of the ground contact by actuating the pose of the sole of
the foot.

In general, adding degrees of freedom to a robot leg increases the maneuverability of the
robot, both augmenting the range of terrains on which it can travel and the ability of the
robot to travel with a variety of gaits. The primary disadvantages of additional joints and
actuators are, of course, energy, control, and mass. Additional actuators require energy and
control, and they also add to leg mass, further increasing power and load requirements on
existing actuators.

In the case of a multilegged mobile robot, there is the issue of leg coordination for loco-
motion, or gait control. The number of possible gaits depends on the number of legs [52].
The gait is a sequence of lift and release events for the individual legs. For a mobile robot
with legs, the total number of distinct event sequences for a walking machine is:

 (2.1)

For a biped walker legs, the number of distinct event sequences is:

Figure 2.7
Two examples of legs with three degrees of freedom.

hip flexion angle ()

hip abduction angle ()

knee flexion angle ()

abduction-adduction

upper thigh link

lower thigh link

main drive

lift

shank link

k N

N 2k 1– !=

k 2= N

Locomotion 21
 (2.2)

The six distinct event sequences that can be combined for more complex sequences are:

1. both legs down – right down / left up – both legs down;

2. both legs down – right leg up / left leg down – both legs down;

3. both legs down – both legs up – both legs down;

4. right leg down / left leg up – right leg up / left leg down – right leg down / left leg up;

5. right leg down / left leg up – both legs up – right leg down / left leg up;

6. right leg up / left leg down – both legs up – right leg up / left leg down.

Of course, this quickly grows quite large. For example, a robot with six legs has far more
events:

, (2.3)

with an even higher number of theoretically possible gaits.
Figures 2.8 and 2.9 depict several four-legged gaits and the static six-legged tripod gait.

2.2.2 Consideration of dynamics
The cost of transportation expresses how much energy a robot uses to travel a certain dis-
tance. To better compare differently sized systems, this value is usually normalized by the
robot’s weight and expressed in / —a dimensionless quantity—where J stands for
joule, N for newton, and m for meter. When a robot moves with constant speed on a level
surface, its potential and kinetic energy remain constant. In theory, no physical work is nec-
essary to keep it moving, which makes it possible to get from one place to another with zero
cost of transportation. In reality, however, some energy is always dissipated, and robots
have to be equipped with actuators and batteries to compensate for the losses. For a wheeled
robot, the main causes for such losses are the friction in the drive train and the rolling resis-
tance of the wheels on the ground. Similarly, friction is present in the joints of legged sys-
tems and energy is dissipated by the foot-ground interaction. However, these effects cannot
explain why legged systems usually consume considerably more energy than their wheeled
counterparts. The bulk part of energy loss actually originates in the fact that legs—in con-
trast to wheels or tracks—are not performing a continuous motion, but are periodically
moving back and forth. Joints have to undergo alternating phases of acceleration and decel-
eration, and, as we have only a very limited ability to recuperate the negative work of decel-
eration, energy is irrecoverably lost in the process. Because of the segmented structure of

N 2k 1– ! 3! 3 2 1 6= = = =

N 11! 39916800= =

J N m

22 Chapter 2
the legs, it can even happen that energy that is fed into one joint (e.g., the knee) is simulta-
neously dissipated in another joint (e.g., the hip) without creating any net work at the feet.
Therefore, actuators are working against each other [180].

A solution to this problem is a better exploitation of the dynamics of the mechanical
structure. The natural oscillations of pendula and springs, can—if they are well designed—
automatically create the required periodic motions. For example, the motion of a swinging
leg can be grasped by the dynamics of a simple double pendulum. If the lengths and the
inertial properties of the leg segments are correctly selected, such a pendulum will automat-
ically swing forward, clear the ground, and extend the leg to touch the ground in front of
the main body. If, on the other side, a foot is on the ground and the leg is kept stiff, an
inverted pendulum motion will efficiently propel the main body forward. During running,
these inverted pendulum dynamics are additionally enhanced by springs, which store

Figure 2.8
Two gaits with four legs.

 trot bound

flight

Locomotion 23
energy during the ground phase and allow the main body to take off for the subsequent
flight phase (figure 2.10).

With this approach it is, in fact, possible to build legged robots that do not have actuation
of any kind. Such passive dynamic walkers [211,344] walk down a shallow incline (which
compensates for frictional losses), but, because no actuators are present, no negative work
is performed and energetic losses due to braking are eliminated. In addition to creating a
periodic motion, the dynamics of such walkers must be designed to ensure dynamic stabil-
ity. The mechanical structure must passively reject small disturbances which would other-
wise accumulate over time and eventually cause the robot to fall. Actuated robots built
according to these principles can walk with a remarkable efficiency [104] and one of them,
the Cornell Ranger, currently holds the distance record for autonomous legged robots [345]
(figure 2.11).

Passive dynamic walkers also have a striking similarity to the physique and motion pat-
ters of human gait. During the evolution, humans and animals have become quite efficient
walkers, and a look at electromyography recordings shows that during walking our muscles

Figure 2.9
Static walking with six legs. A tripod formed by three legs always exists.

24 Chapter 2
are far less active than one would expect for a task in which most of our limbs are in con-
stant motion. To some degree, humans are passive dynamic walkers.

It is obvious that such an exploitation of the mechanical dynamics can only work at spe-
cific velocities. When the locomotion speed changes, characteristic properties such as
stride length or stride frequency change as well, and—because these have to be matched
with the spring and pendulum oscillations of the mechanical structure—more and more
actuator effort is needed to force the joints to follow their required trajectories. For human
walking, the optimal walking speed is approximately 1 m/s, which is also the range that
subjectively feels most comfortable. For both higher and lower speeds, the cost of transpor-
tation will increase, and more energy is needed to travel the same distance. For this reason,
humans change their gait from walking to running when they want to travel at higher
speeds, which is more efficient than just performing the same motion faster and faster.

Figure 2.10 Dynamic elements that are exploited in energy efficient walking include the double-pen-
dulum for leg swing, the inverted pendulum for the stance phase of walking, and springy legs for run-
ning gaits. Image courtesy of D. Remy.

Figure 2.11 The Cornell powered two-legged and four-legged biped robots. In April 2008, the four-
legged bipedal robot Ranger walked a distance of 9.07 km without being touched by a person. Image
courtesy of the Biorobotics and Locomotion Lab—Cornell University.

Locomotion 25
Changing the gait allows us to use a different set of natural dynamics, which better matches
the stride frequency and step length that are needed for higher velocities. Likewise, the
wide variety of gaits found in animals can be explained by the use of different sets of
dynamic elements, which minimize the energy necessary for transportation (figure 2.12).

2.2.3 Examples of legged robot locomotion
Although there are no high-volume industrial applications to date, legged locomotion is an
important area of long-term research. Several interesting designs are presented here, begin-
ning with the one-legged robot and finishing with six-legged robots.

2.2.3.1 One leg
The minimum number of legs a legged robot can have is, of course, one. Minimizing the
number of legs is beneficial for several reasons. Body mass is particularly important to
walking machines, and the single leg minimizes cumulative leg mass. Leg coordination is
required when a robot has several legs, but with one leg no such coordination is needed.
Perhaps most important, the one-legged robot maximizes the basic advantage of legged
locomotion: legs have single points of contact with the ground in lieu of an entire track, as

Figure 2.12 Metabolic cost of transportation (here normalized by body mass) for different gaits of
horses: walking (W), running (R), and galloping (G). Each gait has a specific velocity that minimizes
energy expenditure. This explains why animals and humans change their gait when traveling at dif-
ferent speeds. Image courtesy of A. E. Minetti [221].

26 Chapter 2
with wheels. A single-legged robot requires only a sequence of single contacts, making it
amenable to the roughest terrain. Furthermore, a hopping robot can dynamically cross a gap
that is larger than its stride by taking a running start, whereas a multilegged walking robot
that cannot run is limited to crossing gaps that are as large as its reach.

The major challenge in creating a single-legged robot is balance. For a robot with one
leg, static walking is not only impossible, but static stability when stationary is also impos-
sible. The robot must actively balance itself by either changing its center of gravity or by
imparting corrective forces. Thus, the successful single-legged robot must be dynamically
stable.

Figure 2.13 shows the Raibert hopper [42, 264], one of the best-known single-legged
hopping robots created. This robot makes continuous corrections to body attitude and to
robot velocity by adjusting the leg angle with respect to the body. The actuation is hydrau-
lic, including high-power longitudinal extension of the leg during stance to hop back into
the air. Although powerful, these actuators require a large, off-board hydraulic pump to be
connected to the robot at all times.

Figure 2.14 shows a more energy-efficient design that takes advantage of well-designed
mechanical dynamics [83]. Instead of supplying power by means of an off-board hydraulic
pump, the bow leg hopper is designed to capture the kinetic energy of the robot as it lands,

Figure 2.13
The Raibert hopper [42, 264]. Image courtesy of the LegLab and Marc Raibert. © 1983.

Locomotion 27
using an efficient bow spring leg. This spring returns approximately 85% of the energy,
meaning that stable hopping requires only the addition of 15% of the required energy on
each hop. This robot, which is constrained along one axis by a boom, has demonstrated con-
tinuous hopping for 20 minutes using a single set of batteries carried on board the robot. As
with the Raibert hopper, the bow leg hopper controls velocity by changing the angle of the
leg to the body at the hip joint.

Ringrose [266] demonstrates the very important duality of mechanics and controls as
applied to a single-legged hopping machine. Often clever mechanical design can perform
the same operations as complex active control circuitry. In this robot, the physical shape of
the foot is exactly the right curve so that when the robot lands without being perfectly ver-
tical, the proper corrective force is provided from the impact, making the robot vertical by
the next landing. This robot is dynamically stable, and is furthermore passive. The correc-
tion is provided by physical interactions between the robot and its environment, with no
computer or any active control in the loop.

2.2.3.2 Two legs (biped)
A variety of successful bipedal robots have been demonstrated over the past ten years. Two
legged robots have been shown to run, jump, travel up and down stairways, and even do
aerial tricks such as somersaults. In the commercial sector, both Honda and Sony have
made significant advances over the past decade that have enabled highly capable bipedal
robots. Both companies designed small, powered joints that achieve power-to-weight per-

Figure 2.14
The 2D single bow leg hopper [83]. Image courtesy of H. Benjamin Brown and Garth Zeglin, CMU.

28 Chapter 2
formance unheard of in commercially available servomotors. These new “intelligent”
servos provide not only strong actuation but also compliant actuation by means of torque
sensing and closed-loop control.

The Sony Dream Robot, model SDR-4X II, is shown in figure 2.15. This current model
is the result of research begun in 1997 with the basic objective of motion entertainment and
communication entertainment (i.e., dancing and singing). This robot with thirty-eight
degrees of freedom has seven microphones for fine localization of sound, image person rec-
ognition, on-board miniature stereo depth-map reconstruction, and limited speech recogni-
tion. Given the goal of fluid and entertaining motion, Sony spent considerable effort
designing a motion prototyping application system to enable their engineers to script
dances in a straightforward manner. Note that the SDR-4X II is relatively small, standing
at 58 cm and weighing only 7 kg.

The Honda humanoid project has a significant history, but, again, it has tackled the very
important engineering challenge of actuation. Figure 2.16 shows model P2, which is an
immediate predecessor to the most recent Asimo (advanced step in innovative mobility)
model. Note that the latest Honda Asimo model is still much larger than the SDR-4X at 120
cm tall and 52 kg. This enables practical mobility in the human world of stairs and ledges
while maintaining a nonthreatening size and posture. Perhaps the first robot to demonstrate

Figure 2.15
The Sony SDR-4X II. © 2003 Sony Corporation.

Specifications:

Weight: 7 kg
Height: 58 cm
Neck DOF: 4
Body DOF: 2
Arm DOF: 2 5
Legs DOF: 2 6
Five-finger Hands

Locomotion 29
biomimetic bipedal stair climbing and descending, these Honda humanoid series robots are
being designed not for entertainment purposes but as human aids throughout society.
Honda refers, for instance, to the height of Asimo as the minimum height that enables it to
manage nonetheless operation of the human world, for instance, control of light switches.

An important feature of bipedal robots is their anthropomorphic shape. They can be built
to have the same approximate dimensions as humans, and this makes them excellent vehi-
cles for research in human-robot interaction. WABIAN-2R is a robot built at Waseda Uni-
versity, Japan (figure 2.17) for just such research [255]. WABIAN-2R is designed to
emulate human motion, and it is even designed to dance like a human.

Bipedal robots can only be statically stable within some limits, and so robots such as P2
and WABIAN-2R generally must perform continuous balance-correcting servoing even
when standing still. Furthermore, each leg must have sufficient capacity to support the full
weight of the robot. In the case of four-legged robots, the balance problem is facilitated
along with the load requirements of each leg. An elegant design of a biped robot is the
Spring Flamingo of MIT (figure 2.18). This robot inserts springs in series with the leg actu-
ators to achieve a more elastic gait. Combined with “kneecaps” that limit knee joint angles,
the Flamingo achieves surprisingly biomimetic motion.

Figure 2.16
The humanoid robot P2 from Honda, Japan. © Honda Motor Cooperation.

Specifications:

Maximum speed: 2 km/h
Autonomy: 15 min
Weight: 210 kg
Height: 1.82 m
Leg DOF: 2 6
Arm DOF: 2 7

30 Chapter 2
Figure 2.17
The humanoid robot WABIAN-2R developed at Waseda University in Japan [255] (http://
www.takanishi.mech.waseda.ac.jp/). © Atsuo Takanishi Lab, Waseda University.

Specifications:

Weight: 64 [kg] (with batteries)
Height: 1.55 [m]

DOF:
Leg: 6 2
Foot: 1 2 (passive)
Waist: 2
Trunk: 2
Arm: 7 2
Hand: 3 2
Neck: 3

Figure 2.18
The Spring Flamingo developed at MIT [262]. Image courtesy of Jerry Pratt, MIT Leg Laboratory.

Locomotion 31
2.2.3.3 Four legs (quadruped)
Although standing still on four legs is passively stable, walking remains challenging
because to remain stable, the robot’s center of gravity must be actively shifted during the
gait. Sony invested several million dollars to develop a four-legged robot called AIBO (fig-
ure 2.19). To create this robot, Sony produced both a new robot operating system that is
near real-time and new geared servomotors that are of sufficiently high torque to support
the robot, yet are back-drivable for safety. In addition to developing custom motors and
software, Sony incorporated a color vision system that enables AIBO to chase a brightly
colored ball. The robot is able to function for at most one hour before requiring recharging.
Early sales of the robot have been very strong, with more than 60,000 units sold in the first
year. Nevertheless, the number of motors and the technology investment behind this robot
dog resulted in a very high price of approximately $1,500.

Figure 2.19
AIBO, the artificial dog from Sony, Japan.

1 Stereo microphone: Allows AIBO to pick
up surrounding sounds.

2 Head sensor: Senses when a person taps or
pets AIBO on the head.

3 Mode indicator: Shows AIBO’s operation
mode.

4 Eye lights: These light up in blue-green or
red to indicate AIBO’s emotional state.

5 Color camera: Allows AIBO to search for
objects and recognize them by color and
movement.

6 Speaker: Emits various musical tones and
sound effects.

7 Chin sensor: Senses when a person touches
AIBO on the chin.

8 Pause button: Press to activate AIBO or to
pause AIBO.

9 Chest light: Gives information about the
status of the robot.

10 Paw sensors: Located on the bottom of each
paw.

11 Tail light: Lights up blue or orange to show
AIBO’s emotional state.

12 Back sensor: Senses when a person touches
AIBO on the back.E

R
S-

21
0

©
 2

00
0

So
ny

 C
or

po
ra

ti
on

E
R

S-
11

0
©

 1
99

9
So

ny
 C

or
po

ra
ti

on

32 Chapter 2
Four-legged robots have the potential to serve as effective artifacts for research in
human-robot interaction (figure 2.20). Humans can treat the Sony robot, for example, as a
pet and might develop an emotional relationship similar to that between man and dog. Fur-
thermore, Sony has designed AIBO’s walking style and general behavior to emulate learn-
ing and maturation, resulting in dynamic behavior over time that is more interesting for the
owner who can track the changing behavior. As the challenges of high energy storage and
motor technology are solved, it is likely that quadruped robots much more capable than
AIBO will become common throughout the human environment.

BigDog and LittleDog (figure 2.21) are two recent examples of quadruped robots devel-
oped by Boston Dynamics and commissioned by the American Defense Advanced
Research Projects Agency (DARPA). BigDog is a rough-terrain robot that walks, runs,
climbs, and carries heavy loads. It is powered by an engine that drives a hydraulic actuation
system. Its legs are articulated like an animal’s, with compliant elements to absorb shock
and recycle energy between two steps. The goal of this project is to make it able go any-
where people and animals can go. The program is funded by the Tactical Technology
Office at DARPA. Conversely, LittleDog is a small-size robot designed for research on
learning locomotion. Each leg has a large range of motion and is powered by three electric
motors. Therefore, the robot is strong enough for climbing and dynamic locomotion gaits.

Another example four-legged robot is ALoF, the quadruped developed at the ASL (ETH
Zurich) (figure 2.22).This robot serves as a platform to study energy-efficient locomotion.
This is done by exploiting passive dynamic in ways that have shown to be effective in
bipedal robots, as has been explained in section 2.2.2.

Figure 2.20
Titan VIII, a quadruped robot developed at Tokyo Institute of Technology
(http://www-robot.mes.titech.ac.jp). © Tokyo Institute of Technology.

Specifications:

Weight: 19 kg
Height: 0.25 m
DOF: 4 3

Locomotion 33
2.2.3.4 Six legs (hexapod)
Six-legged configurations have been extremely popular in mobile robotics because of their
static stability during walking, thus reducing the control complexity (figures 2.23 and 1.3).
In most cases, each leg has three degrees of freedom, including hip flexion, knee flexion,

Figure 2.21 LittleDog and BigDog quadruped robots developed by Boston Dynamics. Image cour-
tesy of Boston Dynamics (http://www.bostondynamics.com).

Figure 2.22 ALoF, the quadruped robot developed at the ASL (ETH Zurich), has been built to inves-
tigate energy efficient locomotion. This is done by exploiting passive dynamics (http://
www.asl.ethz.ch/). © ASL-ETH Zurich.

34 Chapter 2
and hip abduction (see figure 2.7). Genghis is a commercially available hobby robot that
has six legs, each of which has two degrees of freedom provided by hobby servos (figure
2.24). Such a robot, which consists only of hip flexion and hip abduction, has less maneu-
verability in rough terrain but performs quite well on flat ground. Because it consists of a
straightforward arrangement of servomotors and straight legs, such robots can be readily
built by a robot hobbyist.

Insects, which are arguably the most successful locomoting creatures on earth, excel at
traversing all forms of terrain with six legs, even upside down. Currently, the gap between

Figure 2.23
Lauron II, a hexapod platform developed at the University of Karlsruhe, Germany.
© University of Karlsruhe.

Specifications:

Maximum speed: 0.5 m/s
Weight: 16 kg
Height: 0.3 m
Length: 0.7 m
No. of legs: 6
DOF in total: 6 3
Power consumption:10 W

Figure 2.24
Genghis, one of the most famous walking robots from MIT, uses hobby servomotors as its actuators
(http://www.ai.mit.edu/projects/genghis). © MIT AI Lab.

Locomotion 35
the capabilities of six-legged insects and artificial six-legged robots is still quite large.
Interestingly, this is not due to a lack of sufficient numbers of degrees of freedom on the
robots. Rather, insects combine a small number of active degrees of freedom with passive
structures, such as microscopic barbs and textured pads, that increase the gripping strength
of each leg significantly. Robotic research into such passive tip structures has only recently
begun. For example, a research group is attempting to re-create the complete mechanical
function of the cockroach leg [124].

It is clear from these examples that legged robots have much progress to make before
they are competitive with their biological equivalents. Nevertheless, significant gains have
been realized recently, primarily due to advances in motor design. Creating actuation sys-
tems that approach the efficiency of animal muscles remains far from the reach of robotics,
as does energy storage with the energy densities found in organic life forms.

2.3 Wheeled Mobile Robots

The wheel has been by far the most popular locomotion mechanism in mobile robotics and
in man-made vehicles in general. It can achieve very good efficiencies, as demonstrated in
figure 2.3, and it does so with a relatively simple mechanical implementation.

In addition, balance is not usually a research problem in wheeled robot designs, because
wheeled robots are almost always designed so that all wheels are in ground contact at all
times. Thus, three wheels are sufficient to guarantee stable balance, although, as we shall
see below, two-wheeled robots can also be stable. When more than three wheels are used,
a suspension system is required to allow all wheels to maintain ground contact when the
robot encounters uneven terrain.

Instead of worrying about balance, wheeled robot research tends to focus on the prob-
lems of traction and stability, maneuverability, and control: can the robot wheels provide
sufficient traction and stability for the robot to cover all of the desired terrain, and does the
robot’s wheeled configuration enable sufficient control over the velocity of the robot?

2.3.1 Wheeled locomotion: The design space
As we shall see, there is a very large space of possible wheel configurations when one con-
siders possible techniques for mobile robot locomotion. We begin by discussing the wheel
in detail, since there are a number of different wheel types with specific strengths and weak-
nesses. We then examine complete wheel configurations that deliver particular forms of
locomotion for a mobile robot.

2.3.1.1 Wheel design
There are four major wheel classes, as shown in figure 2.25. They differ widely in their
kinematics, and therefore the choice of wheel type has a large effect on the overall kinemat-

36 Chapter 2
ics of the mobile robot. The standard wheel and the castor wheel have a primary axis of
rotation and are thus highly directional. To move in a different direction, the wheel must be
steered first along a vertical axis. The key difference between these two wheels is that the
standard wheel can accomplish this steering motion with no side effects, since the center of
rotation passes through the contact patch with the ground, whereas the castor wheel rotates
around an offset axis, causing a force to be imparted to the robot chassis during steering.

The Swedish wheel and the spherical wheel are both designs that are less constrained by
directionality than the conventional standard wheel. The Swedish wheel functions as a
normal wheel but provides low resistance in another direction as well, sometimes perpen-
dicular to the conventional direction, as in the Swedish 90, and sometimes at an intermedi-
ate angle, as in the Swedish 45. The small rollers attached around the circumference of the
wheel are passive and the wheel’s primary axis serves as the only actively powered joint.
The key advantage of this design is that, although the wheel rotation is powered only along
the one principal axis (through the axle), the wheel can kinematically move with very little
friction along many possible trajectories, not just forward and backward.

The spherical wheel is a truly omnidirectional wheel, often designed so that it may be
actively powered to spin along any direction. One mechanism for implementing this spher-
ical design imitates the computer mouse, providing actively powered rollers that rest
against the top surface of the sphere and impart rotational force.

Figure 2.25
The four basic wheel types. (a) Standard wheel: two degrees of freedom; rotation around the (motor-
ized) wheel axle and the contact point.(b) castor wheel: two degrees of freedom; rotation around an
offset steering joint. (c) Swedish wheel: three degrees of freedom; rotation around the (motorized)
wheel axle, around the rollers, and around the contact point. (d) Ball or spherical wheel: realization
technically difficult.

a)

Swedish 90° Swedish 45°

Swedish 45°

b) c) d)

Locomotion 37
Regardless of what wheel is used, in robots designed for all-terrain environments and in
robots with more than three wheels, a suspension system is normally required to maintain
wheel contact with the ground. One of the simplest approaches to suspension is to design
flexibility into the wheel itself. For instance, in the case of some four-wheeled indoor robots
that use castor wheels, manufacturers have applied a deformable tire of soft rubber to the
wheel to create a primitive suspension. Of course, this limited solution cannot compete with
a sophisticated suspension system in applications where the robot needs a more dynamic
suspension for significantly nonflat terrain.

2.3.1.2 Wheel geometry
The choice of wheel types for a mobile robot is strongly linked to the choice of wheel
arrangement, or wheel geometry. The mobile robot designer must consider these two issues
simultaneously when designing the locomoting mechanism of a wheeled robot. Why do
wheel type and wheel geometry matter? Three fundamental characteristics of a robot are
governed by these choices: maneuverability, controllability, and stability.

Unlike automobiles, which are largely designed for a highly standardized environment
(the road network), mobile robots are designed for applications in a wide variety of situa-
tions. Automobiles all share similar wheel configurations because there is one region in the
design space that maximizes maneuverability, controllability, and stability for their stan-
dard environment: the paved roadway. However, there is no single wheel configuration that
maximizes these qualities for the variety of environments faced by different mobile robots.
So you will see great variety in the wheel configurations of mobile robots. In fact, few
robots use the Ackerman wheel configuration of the automobile because of its poor maneu-
verability, with the exception of mobile robots designed for the road system (figure 2.26).

Figure 2.26
The Tartan Racing self-driving vehicle developed at CMU, which won the 2007 DARPA Urban Chal-
lenge. Image courtesy of the Tartan Racing Team—http://www.tartanracing.org.

38 Chapter 2
Table 2.1 gives an overview of wheel configurations ordered by the number of wheels.
This table shows both the selection of particular wheel types and their geometric configu-
ration on the robot chassis. Note that some of the configurations shown are of little use in
mobile robot applications. For instance, the two-wheeled bicycle arrangement has moder-
ate maneuverability and poor controllability. Like a single-legged hopping machine, it can
never stand still. Nevertheless, this table provides an indication of the large variety of wheel
configurations that are possible in mobile robot design.

The number of variations in table 2.1 is quite large. However, there are important trends
and groupings that can aid in comprehending the advantages and disadvantages of each
configuration. We next identify some of the key trade-offs in terms of the three issues we
identified earlier: stability, maneuverability, and controllability.

2.3.1.3 Stability
Surprisingly, the minimum number of wheels required for static stability is two. As shown
above, a two-wheel differential-drive robot can achieve static stability if the center of mass
is below the wheel axle. Cye is a commercial mobile robot that uses this wheel configura-
tion (figure 2.27).

However, under ordinary circumstances such a solution requires wheel diameters that
are impractically large. Dynamics can also cause a two-wheeled robot to strike the floor
with a third point of contact, for instance, with sufficiently high motor torques from stand-
still. Conventionally, static stability requires a minimum of three wheels, with the addi-
tional caveat that the center of gravity must be contained within the triangle formed by the
ground contact points of the wheels. Stability can be further improved by adding more
wheels, although once the number of contact points exceeds three, the hyperstatic nature of
the geometry will require some form of flexible suspension on uneven terrain.

2.3.1.4 Maneuverability
Some robots are omnidirectional, meaning that they can move at any time in any direction
along the ground plane regardless of the orientation of the robot around its vertical
axis. This level of maneuverability requires wheels that can move in more than just one
direction, and so omnidirectional robots usually employ Swedish or spherical wheels that
are powered. A good example is Uranus (figure 2.30), a robot that uses four Swedish
wheels to rotate and translate independently and without constraints.

In general, the ground clearance of robots with Swedish and spherical wheels is some-
what limited due to the mechanical constraints of constructing omnidirectional wheels. An
interesting recent solution to the problem of omnidirectional navigation while solving this
ground-clearance problem is the four-castor wheel configuration in which each castor
wheel is actively steered and actively translated. In this configuration, the robot is truly
omnidirectional because, even if the castor wheels are facing a direction perpendicular to

x y

Locomotion 39
Table 2.1
Wheel configurations for rolling vehicles

of
wheels Arrangement Description Typical examples

2 One steering wheel in the front,
one traction wheel in the rear

Bicycle, motorcycle

Two-wheel differential drive
with the center of mass (COM)
below the axle

Cye personal robot

3 Two-wheel centered differen-
tial drive with a third point of
contact

Nomad Scout, smartRob
EPFL

Two independently driven
wheels in the rear/front, one
unpowered omnidirectional
wheel in the front/rear

Many indoor robots,
including the EPFL robots
Pygmalion and Alice

Two connected traction wheels
(differential) in rear, one
steered free wheel in front

Piaggio minitrucks

Two free wheels in rear, one
steered traction wheel in front

Neptune (Carnegie Mellon
University), Hero-1

Three motorized Swedish or
spherical wheels arranged in a
triangle; omnidirectional move-
ment is possible

Stanford wheel
Tribolo EPFL,
Palm Pilot Robot Kit
(CMU)

Three synchronously motorized
and steered wheels; the orienta-
tion is not controllable

“Synchro drive”
Denning MRV-2, Georgia
Institute of Technology, I-
Robot B24, Nomad 200

40 Chapter 2
4 Two motorized wheels in the
rear, two steered wheels in the
front; steering has to be differ-
ent for the two wheels to avoid
slipping/skidding.

Car with rear-wheel drive

Two motorized and steered
wheels in the front, two free
wheels in the rear; steering has
to be different for the two
wheels to avoid slipping/skid-
ding.

Car with front-wheel drive

Four steered and motorized
wheels

Four-wheel drive, four-
wheel steering Hyperion
(CMU)

Two traction wheels (differen-
tial) in rear/front, two omnidi-
rectional wheels in the front/
rear

Charlie (DMT-EPFL)

Four omnidirectional wheels Carnegie Mellon Uranus

Two-wheel differential drive
with two additional points of
contact

EPFL Khepera, Hyperbot
Chip

Four motorized and steered
castor wheels

Nomad XR4000

Table 2.1
Wheel configurations for rolling vehicles

of
wheels Arrangement Description Typical examples

Locomotion 41
the desired direction of travel, the robot can still move in the desired direction by steering
these wheels. Because the vertical axis is offset from the ground-contact path, the result of
this steering motion is robot motion.

In the research community, other classes of mobile robots are popular that achieve high
maneuverability, only slightly inferior to that of the omnidirectional configurations. In such
robots, motion in a particular direction may initially require a rotational motion. With a cir-
cular chassis and an axis of rotation at the center of the robot, such a robot can spin without

6 Two motorized and steered
wheels aligned in center, one
omnidirectional wheel at each
corner

First

Two traction wheels (differen-
tial) in center, one omnidirec-
tional wheel at each corner

Terregator (Carnegie Mel-
lon University)

Icons for the each wheel type are as follows:

unpowered omnidirectional wheel (spherical, castor, Swedish)

motorized Swedish wheel (Stanford wheel)

unpowered standard wheel

motorized standard wheel

motorized and steered castor wheel

steered standard wheel

connected wheels

Table 2.1
Wheel configurations for rolling vehicles

of
wheels Arrangement Description Typical examples

42 Chapter 2
changing its ground footprint. The most popular such robot is the two-wheel differential-
drive robot where the two wheels rotate around the center point of the robot. One or two
additional ground contact points may be used for stability, based on the application specif-
ics.

In contrast to these configurations, consider the Ackerman steering configuration
common in automobiles. Such a vehicle typically has a turning diameter that is larger than
the car. Furthermore, for such a vehicle to move sideways requires a parking maneuver con-
sisting of repeated changes in direction forward and backward. Nevertheless, Ackerman
steering geometries have been especially popular in the hobby robotics market, where a
robot can be built by starting with a remote control racecar kit and adding sensing and
autonomy to the existing mechanism. In addition, the limited maneuverability of Ackerman
steering has an important advantage: its directionality and steering geometry provide it with
very good lateral stability in high-speed turns.

2.3.1.5 Controllability
There is generally an inverse correlation between controllability and maneuverability. For
example, the omnidirectional designs such as the four-castor wheel configuration require
significant processing to convert desired rotational and translational velocities to individual
wheel commands. Furthermore, such omnidirectional designs often have greater degrees of
freedom at the wheel. For instance, the Swedish wheel has a set of free rollers along the
wheel perimeter. These degrees of freedom cause an accumulation of slippage, tend to
reduce dead-reckoning accuracy, and increase the design complexity.

Controlling an omnidirectional robot for a specific direction of travel is also more diffi-
cult and often less accurate when compared to less maneuverable designs. For example, an
Ackerman steering vehicle can go straight simply by locking the steerable wheels and driv-
ing the drive wheels. In a differential-drive vehicle, the two motors attached to the two

Figure 2.27
Cye, a domestic robot, was designed to vacuum floors and make domestic deliveries.

Locomotion 43
wheels must be driven along exactly the same velocity profile, which can be challenging
considering variations between wheels, motors, and environmental differences. With four-
wheel omnidrive, such as the Uranus robot, which has four Swedish wheels, the problem is
even harder because all four wheels must be driven at exactly the same speed for the robot
to travel in a perfectly straight line.

In summary, there is no “ideal” drive configuration that simultaneously maximizes sta-
bility, maneuverability, and controllability. Each mobile robot application places unique
constraints on the robot design problem, and the designer’s task is to choose the most
appropriate drive configuration possible from among this space of compromises.

2.3.2 Wheeled locomotion: Case studies
We next describe four specific wheel configurations, in order to demonstrate concrete
applications of the concepts discussed above to mobile robots built for real-world activities.

2.3.2.1 Synchro drive
The synchro drive configuration (figure 2.28) is a popular arrangement of wheels in indoor
mobile robot applications. It is an interesting configuration because, although there are
three driven and steered wheels, only two motors are used in total. The one translation
motor sets the speed of all three wheels together, and the one steering motor spins all the
wheels together about each of their individual vertical steering axes. But note that the
wheels are being steered with respect to the robot chassis, and therefore there is no direct

Figure 2.28
Synchro drive: The robot can move in any direction; however, the orientation of the chassis is not
controllable.

wheel

steering belt

dr
iv

e
be

lt

drive motor

steering

steering pulley driving pulley

wheel steering axis

motor

rolling axis

44 Chapter 2
way of reorienting the robot chassis. In fact, the chassis orientation does drift over time due
to uneven tire slippage, causing rotational dead-reckoning error.

Synchro drive is particularly advantageous in cases where omnidirectionality is sought.
So long as each vertical steering axis is aligned with the contact path of each tire, the robot
can always reorient its wheels and move along a new trajectory without changing its foot-
print. Of course, if the robot chassis has directionality and the designers intend to reorient
the chassis purposefully, then synchro drive is appropriate only when combined with an
independently rotating turret that attaches to the wheel chassis. Commercial research robots
such as the Nomadics 150 or the RWI B21r have been sold with this configuration
(figure 1.12).

In terms of dead reckoning, synchro drive systems are generally superior to true omni-
directional configurations but inferior to differential-drive and Ackerman steering systems.
There are two main reasons for this. First and foremost, the translation motor generally
drives the three wheels using a single belt. Because of slop and backlash in the drive train,
whenever the drive motor engages, the closest wheel begins spinning before the furthest
wheel, causing a small change in the orientation of the chassis. With additional changes in
motor speed, these small angular shifts accumulate to create a large error in orientation
during dead reckoning. Second, the mobile robot has no direct control over the orientation
of the chassis. Depending on the orientation of the chassis, the wheel thrust can be highly
asymmetric, with two wheels on one side and the third wheel alone, or symmetric, with one
wheel on each side and one wheel straight ahead or behind, as shown in figure 2.22. The
asymmetric cases result in a variety of errors when tire-ground slippage can occur, again
causing errors in dead reckoning of robot orientation.

2.3.2.2 Omnidirectional drive
As we will see later in section 3.4.2, omnidirectional movement is of great interest for com-
plete maneuverability. Omnidirectional robots that are able to move in any direction
() at any time are also holonomic (see section 3.4.2). They can be realized by using
spherical, castor, or Swedish wheels. Three examples of such holonomic robots are pre-
sented here.

Omnidirectional locomotion with three spherical wheels. The omnidirectional robot
depicted in figure 2.29 is based on three spherical wheels, each actuated by one motor. In
this design, the spherical wheels are suspended by three contact points, two given by spher-
ical bearings and one by a wheel connected to the motor axle. This concept provides excel-
lent maneuverability and is simple in design. However, it is limited to flat surfaces and
small loads, and it is quite difficult to find round wheels with high friction coefficients.

x y

Locomotion 45
Omnidirectional locomotion with four Swedish wheels. The omnidirectional arrange-
ment depicted in figure 2.30 has been used successfully on several research robots, includ-
ing the Carnegie Mellon Uranus. This configuration consists of four Swedish 45-degree
wheels, each driven by a separate motor. By varying the direction of rotation and relative
speeds of the four wheels, the robot can be moved along any trajectory in the plane and,
even more impressively, can simultaneously spin around its vertical axis.

For example, when all four wheels spin “forward” or “backward,” the robot as a whole
moves in a straight line forward or backward, respectively. However, when one diagonal
pair of wheels is spun in the same direction and the other diagonal pair is spun in the oppo-
site direction, the robot moves laterally.

This four-wheel arrangement of Swedish wheels is not minimal in terms of control
motors. Because there are only three degrees of freedom in the plane, one can build a three-
wheel omnidirectional robot chassis using three Swedish 90-degree wheels as shown in
table 2.1. However, existing examples such as Uranus have been designed with four wheels
owing to capacity and stability considerations.

One application for which such omnidirectional designs are particularly amenable is
mobile manipulation. In this case, it is desirable to reduce the degrees of freedom of the
manipulator arm to save arm mass by using the mobile robot chassis motion for gross
motion. As with humans, it would be ideal if the base could move omnidirectionally with-

Figure 2.29
The Tribolo designed at EPFL (Swiss Federal Institute of Technology, Lausanne, Switzerland). Left:
arrangement of spheric bearings and motors (bottom view). Right: Picture of the robot without the
spherical wheels (bottom view).

spheric bearing motor

46 Chapter 2
out greatly impacting the position of the manipulator tip, and a base such as Uranus can
afford precisely such capabilities.

Omnidirectional locomotion with four castor wheels and eight motors. Another solu-
tion for omnidirectionality is to use castor wheels. This is done for the Nomad XR4000
from Nomadic Technologies (figure 2.31), giving it excellent maneuverability. Unfortu-
nately, Nomadic has ceased production of mobile robots.

Figure 2.30
The Carnegie Mellon Uranus robot, an omnidirectional robot with four powered Swedish 45-wheels.

Figure 2.31
The Nomad XR4000 from Nomadic Technologies had an arrangement of four castor wheels for holo-
nomic motion. All the castor wheels are driven and steered, thus requiring a precise synchronization
and coordination to obtain a precise movement in , and . x y

Locomotion 47
The preceding three examples are drawn from table 2.1, but this is not an exhaustive list
of all wheeled locomotion techniques. Hybrid approaches that combine legged and
wheeled locomotion, or tracked and wheeled locomotion, can also offer particular advan-
tages. Following are two unique designs created for specialized applications.

2.3.2.3 Tracked slip/skid locomotion
In the wheel configurations discussed earlier, we have made the assumption that wheels are
not allowed to skid against the surface. An alternative form of steering, termed slip/skid,
may be used to reorient the robot by spinning wheels that are facing the same direction at
different speeds or in opposite directions. The army tank operates this way, and the Nanok-
hod (figure 2.32) is an example of a mobile robot based on the same concept.

Robots that make use of tread have much larger ground contact patches, and this can sig-
nificantly improve their maneuverability in loose terrain compared to conventional
wheeled designs. However, due to this large ground contact patch, changing the orientation
of the robot usually requires a skidding turn, wherein a large portion of the track must slide
against the terrain.

The disadvantage of such configurations is coupled to the slip/skid steering. Because of
the large amount of skidding during a turn, the exact center of rotation of the robot is hard
to predict and the exact change in position and orientation is also subject to variations
depending on the ground friction. Therefore, dead reckoning on such robots is highly inac-

Figure 2.32
The microrover Nanokhod, developed by von Hoerner & Sulger GmbH and the Max Planck Institute,
Mainz, for the European Space Agency (ESA), will probably go to Mars [302, 327].

48 Chapter 2
curate. This is the trade-off that is made in return for extremely good maneuverability and
traction over rough and loose terrain. Furthermore, a slip/skid approach on a high-friction
surface can quickly overcome the torque capabilities of the motors being used. In terms of
power efficiency, this approach is reasonably efficient on loose terrain but extremely inef-
ficient otherwise.

2.3.2.4 Walking wheels
Walking robots might offer the best maneuverability in rough terrain. However, they are
inefficient on flat ground and need sophisticated control. Hybrid solutions, combining the
adaptability of legs with the efficiency of wheels, offer an interesting compromise. Solu-
tions that passively adapt to the terrain are of particular interest for field and space robotics.
The Sojourner robot of NASA/JPL (see figure 1.2) represents such a hybrid solution, able
to overcome objects up to the size of the wheels. A more recent mobile robot design for
similar applications has been produced by EPFL (figure 2.33). This robot, called Shrimp,
has six motorized wheels and is capable of climbing objects up to two times its wheel diam-
eter [184, 289]. This enables it to climb regular stairs even though the robot is even smaller
than the Sojourner. Using a rhombus configuration, the Shrimp has a steering wheel in the
front and the rear and two wheels arranged on a bogie on each side. The front wheel has a
spring suspension to guarantee optimal ground contact of all wheels at any time. The steer-

Figure 2.33
Shrimp, an all-terrain robot with outstanding passive climbing abilities (EPFL [184, 289]).

Locomotion 49
ing of the rover is realized by synchronizing the steering of the front and rear wheels and
the speed difference of the bogie wheels. This allows for high-precision maneuvers and
turning on the spot with minimum slip/skid of the four center wheels. The use of parallel
articulations for the front wheel and the bogies creates a virtual center of rotation at the
level of the wheel axis. This ensures maximum stability and climbing abilities even for very
low friction coefficients between the wheel and the ground.

The climbing ability of the Shrimp is extraordinary in comparison to most robots of sim-
ilar mechanical complexity, owing much to the specific geometry and thereby the manner
in which the center of mass (COM) of the robot shifts with respect to the wheels over time.
In contrast, the Personal Rover demonstrates active COM shifting to climb ledges that are
also several times the diameter of its wheels, as demonstrated in figure 2.34. A majority of
the weight of the Personal Rover is borne at the upper end of its swinging boom. A dedi-
cated motor drives the boom to change the front/rear weight distribution in order to facili-
tate step-climbing. Because this COM-shifting scheme is active, a control loop must
explicitly decide how to move the boom during a climbing scenario. In this case, the Per-
sonal Rover accomplished this closed-loop control by inferring terrain based on measure-
ments of current flowing to each independently driven wheel [125].

As mobile robotics research matures, we find ourselves able to design more intricate
mechanical systems. At the same time, the control problems of inverse kinematics and
dynamics are now so readily conquered that these complex mechanics can in general be
controlled. So, in the near future, we can expect to see a great number of unique, hybrid
mobile robots that draw together advantages from several of the underlying locomotion

Figure 2.34
The Personal Rover, demonstrating ledge climbing using active center-of-mass shifting.

50 Chapter 2
mechanisms that we have discussed in this chapter. They will be technologically impres-
sive, and each will be designed as the expert robot for its particular environmental niche.

2.4 Aerial Mobile Robots

2.4.1 Introduction
Flying objects have always exerted a great fascination on humans, encouraging all kinds of
research and development. This introduction is written in a time at which the robotics com-
munity is showing a growing interest in micro aerial vehicle (MAV) development. The sci-
entific challenge in MAV design, control, and navigation in cluttered environments and the
lack of existing solutions is the main leitmotiv. On the other hand, the broad field of appli-
cations in both military and civilian markets is encouraging the funding of MAV-related
projects. However, the task is not trivial due to several open challenges.

In the field of sensing technologies, industry can currently provide a new generation of
integrated micro inertial measurement units (IMU, section 4.1.7) composed generally of
micro electro-mechanical systems (MEMS) technology, inertial and magneto-resistive sen-
sors. The latest technology in high density power storage offers about 230Wh/kg (Li-Ion
technology in 2009), which is a real jump ahead, especially for micro aerial robotics. This
technology was originally developed for handheld applications and is now widely used in
aerial robotics. The cost and size reduction of such systems makes it very interesting for the
civilian market. Simultaneously, this reduction of cost and size implies performance limi-
tations and thus a more challenging control problem. Moreover, the miniaturization of iner-
tial sensors imposes the use of MEMS technology, which is still much less accurate than
the conventional sensors because of noise and drift. The use of low-cost IMUs demands
less effective data processing and thus a bad orientation data prediction in addition to a
weak drift rejection. On the other hand, and in spite of the latest progress in miniature actu-
ators, the scaling laws are still unfavorable and one has to face the problem of actuator sat-
uration. That is to say, even though the design of micro aerial robots is possible, the control
is still a challenging goal.

Investigating relations between size and weight of flying objects yields some interesting
findings. Tennekes’s Great Flight Diagram [50] (figure 2.35) plots weight versus wing
loading for all sizes comprising insects, birds, and sailplanes all the way up to the Boeing
747. It illustrates the fundamental simplified assumption that the weight W scales with the
wingspan b to the power of three (), while the wing surface S may be seen as scaling with

. Figure 2.35 shows Tennekes's Great Flight Diagram augmented with some unmanned
solar airplanes and radio controlled airplanes [248] that are comparable to small robotic
unmanned aerial systems. The curve W/S represents an average of the shown data points.
Notice that different constructions still yield different results: the extremely lightweight
solar airplane Helios by NASA, for example, with its 75 meters of wingspan and a surface

b
3

b
2

Locomotion 51
Figure 2.35 Tennekes’s Great Flight Diagram [50] augmented with RC sailplanes and unmanned
solar airplanes. Image courtesy of A. Noth [248].

52 Chapter 2
area of 184 , has approximately the same wing loading as a pelican but it is heavier by a
factor of 1,000 and of course is much larger.

2.4.2 Aircraft configurations
In general, aerial vehicles can be divided into two categories: Lighter Than Air (LTA) and
Heavier Than Air (HTA). Figure 2.36 presents a general classification of aircraft depending
on the flying principle and the propulsion mode. Table 2.2 gives a nonexhaustive compar-
ison between different flying principles from the miniaturization point of view. From this
table, one can easily conclude that Vertical Take-Off and Landing (VTOL) systems such
as helicopters or blimps have an unquestionable advantage compared with the other con-
cepts. This superiority is owed to their unique ability for vertical, stationary, and low-speed
flight. The key advantage of blimps is the autolift and simplicity of control, which can be
essential for critical applications, such as aerial surveillance and space exploration. How-
ever, VTOL vehicles in different configurations represent today one of the most promising
flying concepts seen in terms of miniaturization. Figure 2.37 lists different configurations
commonly used in MAV research and industry.

2.4.3 State of the art in autonomous VTOL
The state of the art in MAV research has dramatically changed in the last few years. The
number of projects tackling this problem has considerably and suddenly increased. Until
2006, the main research problem was MAV stabilization, especially for mini quadrotors.
Since 2007, the research community shifted its interest toward autonomous navigation, first
outdoor and more recently even indoor.

m
2

Figure 2.36 General classification of aircrafts.

Locomotion 53
The CSAIL laboratory at MIT is presently one of the leaders in terms of MAV naviga-
tion in GPS-denied environments. The quadrotor that it used in the 2009 edition of the
AUVSI competition uses laser scanners to localize and navigate autonomously inside
buildings. The quadrotor from ALU Freiburg [142] is also equipped with a laser scanner;
it achieves global localization using a particle filter and a graph-based SLAM algorithm
(both these algorithms will be treated in section 5.8.2). It is thus able to navigate autono-
mously indoors while avoiding obstacles. STARMAC, from Stanford University, targets
the demonstration of multiagent control of quadrotors of about 1 kg, outdoors, using GPS.
ETH Zurich is also participating in this endeavor with different projects. The European
project sFly (www.sfly.org) targets outdoor autonomous navigation of a swarm of small
quadrotors using monocular vision as the main sensor (no laser, no GPS). To the best of our
knowledge, the smallest existing autonomous helicopter is the muFly helicopter, developed
at ETH Zurich within the European project muFly (www.mufly.org): it weighs 80 g and
has an overall span of 17.5 cm. In addition to an IMU, muFly is equipped with a 360-degree
laser scanner, a down-looking micro camera, and a miniature omnidirectional camera that
weighs less than 5 g. These projects are listed in figure 2.38. .

Table 2.2 Flying principle comparison (1 = Bad, 3 = Good)

Airplane Helicopter Bird Autogiro Blimp

Power cost 2 1 2 2 3

Control cost 2 1 1 2 3

Payload/volume 3 2 2 2 1

Maneuverability 2 3 3 2 1

Stationary flight 1 3 2 1 3

Low speed fly 1 3 2 2 3

Vulnerability 2 2 3 2 2

VTOL 1 3 2 1 3

Endurance 2 1 2 1 3

Miniaturization 2 3 3 2 1

Indoor usage 1 3 2 1 2

Total 19 25 24 18 25

54 Chapter 2
Figure 2.37 Common MAV configurations.

Locomotion 55
Figure 2.38 Progress in autonomous VTOL systems.

56 Chapter 2
2.5 Problems

1. Consider an eight-legged walking robot. Consider gaits in terms of lift/release events as
in this chapter. (a) How many possible events exist for this eight-legged machine? (b)
Specify two different statically stable walking gaits using the notation of figure 2.8.

2. Describe two wheel configurations that enable omnidirectional motion that are not iden-
tified in section 2.3.2.2. Note that you may use any type of wheel in these two designs.
Draw the configurations using the notation of table 2.1.

3. You wish to build a dynamically stable robot with a single wheel only. For each of the
four basic wheel types, explain whether or not it may be used for such a robot.

4. Challenge Question.
Four-legged machines are normally not statically stable. Design a four-legged locomo-
tion machine that is statically stable. Draw it and describe the gait used.

3 Mobile Robot Kinematics

3.1 Introduction

Kinematics is the most basic study of how mechanical systems behave. In mobile robotics,
we need to understand the mechanical behavior of the robot both to design appropriate
mobile robots for tasks and to understand how to create control software for an instance of
mobile robot hardware.

Of course, mobile robots are not the first complex mechanical systems to require such
analysis. Robot manipulators have been the subject of intensive study for more than thirty
years. In some ways, manipulator robots are much more complex than early mobile robots:
a standard welding robot may have five or more joints, whereas early mobile robots were
simple differential-drive machines. In recent years, the robotics community has achieved a
fairly complete understanding of the kinematics and even the dynamics (that is, relating to
force and mass) of robot manipulators [13, 46].

The mobile robotics community poses many of the same kinematic questions as the
robot manipulator community. A manipulator robot’s workspace is crucial because it
defines the range of possible positions that can be achieved by its end effector relative to
its fixture to the environment. A mobile robot’s workspace is equally important because it
defines the range of possible poses that the mobile robot can achieve in its environment.
The robot arm’s controllability defines the manner in which active engagement of motors
can be used to move from pose to pose in the workspace. Similarly, a mobile robot’s con-
trollability defines possible paths and trajectories in its workspace. Robot dynamics places
additional constraints on workspace and trajectory due to mass and force considerations.
The mobile robot is also limited by dynamics; for instance, a high center of gravity limits
the practical turning radius of a fast, carlike robot because of the danger of rolling.

But the chief difference between a mobile robot and a manipulator arm also introduces
a significant challenge for position estimation. A manipulator has one end fixed to the envi-
ronment. Measuring the position of an arm’s end effector is simply a matter of understand-
ing the kinematics of the robot and measuring the position of all intermediate joints. The
manipulator’s position is thus always computable by looking at current sensor data. But a

58 Chapter 3
mobile robot is a self-contained automaton that can wholly move with respect to its envi-
ronment. There is no direct way to measure a mobile robot’s position instantaneously.
Instead, one must integrate the motion of the robot over time. Add to this the inaccuracies
of motion estimation due to slippage and it is clear that measuring a mobile robot’s position
precisely is an extremely challenging task.

The process of understanding the motions of a robot begins with the process of describ-
ing the contribution each wheel provides for motion. Each wheel has a role in enabling the
whole robot to move. By the same token, each wheel also imposes constraints on the
robot’s motion; for example, refusing to skid laterally. In the following section, we intro-
duce notation that allows expression of robot motion in a global reference frame as well as
the robot’s local reference frame. Then, using this notation, we demonstrate the construc-
tion of simple forward kinematic models of motion, describing how the robot as a whole
moves as a function of its geometry and individual wheel behavior. Next, we formally
describe the kinematic constraints of individual wheels, and then combine these kinematic
constraints to express the whole robot’s kinematic constraints. With these tools, one can
evaluate the paths and trajectories that define the robot’s maneuverability.

3.2 Kinematic Models and Constraints

Deriving a model for the whole robot’s motion is a bottom-up process. Each individual
wheel contributes to the robot’s motion and, at the same time, imposes constraints on robot
motion. Wheels are tied together based on robot chassis geometry, and therefore their con-
straints combine to form constraints on the overall motion of the robot chassis. But the
forces and constraints of each wheel must be expressed with respect to a clear and consis-
tent reference frame. This is particularly important in mobile robotics because of its self-
contained and mobile nature; a clear mapping between global and local frames of reference
is required. We begin by defining these reference frames formally, then using the resulting
formalism to annotate the kinematics of individual wheels and whole robots. Throughout
this process we draw extensively on the notation and terminology presented in [90].

3.2.1 Representing robot position
Throughout this analysis we model the robot as a rigid body on wheels, operating on a hor-
izontal plane. The total dimensionality of this robot chassis on the plane is three, two for
position in the plane and one for orientation along the vertical axis, which is orthogonal to
the plane. Of course, there are additional degrees of freedom and flexibility due to the
wheel axles, wheel steering joints, and wheel castor joints. However, by robot chassis we
refer only to the rigid body of the robot, ignoring the joints and degrees of freedom internal
to the robot and its wheels.

Mobile Robot Kinematics 59
In order to specify the position of the robot on the plane, we establish a relationship
between the global reference frame of the plane and the local reference frame of the robot,
as in figure 3.1. The axes and define an arbitrary inertial basis on the plane as the
global reference frame from some origin O: . To specify the position of the robot,
choose a point P on the robot chassis as its position reference point. The basis
defines two axes relative to P on the robot chassis and is thus the robot’s local reference
frame. The position of P in the global reference frame is specified by coordinates x and y,
and the angular difference between the global and local reference frames is given by . We
can describe the pose of the robot as a vector with these three elements. Note the use of the
subscript I to clarify the basis of this pose as the global reference frame:

 (3.1)

To describe robot motion in terms of component motions, it will be necessary to map
motion along the axes of the global reference frame to motion along the axes of the robot’s
local reference frame. Of course, the mapping is a function of the current pose of the robot.
This mapping is accomplished using the orthogonal rotation matrix:

Figure 3.1
The global reference frame and the robot local reference frame.

P

YR

XR

YI

XI

XI YI

XI YI
XR YR

I

x

y

=

60 Chapter 3
. (3.2)

This matrix can be used to map motion in the global reference frame to motion
in terms of the local reference frame . This operation is denoted by
because the computation of this operation depends on the value of :

. (3.3)

For example, consider the robot in figure 3.2. For this robot, because we can
easily compute the instantaneous rotation matrix R:

. (3.4)

R ()

cos sin 0

sin– cos 0

0 0 1
=

XI YI
XR YR R ()· I

R
·

R
2
---()I

·
=

Figure 3.2
The mobile robot aligned with a global axis.

YR

XR

YI

XI

2
---=

R
2
---()

0 1 0

1– 0 0

0 0 1
=

Mobile Robot Kinematics 61
 Given some velocity () in the global reference frame we can compute the com-
ponents of motion along this robot’s local axes and . In this case, due to the specific
angle of the robot, motion along is equal to , and motion along is :

. (3.5)

3.2.2 Forward kinematic models
In the simplest cases, the mapping described by equation (3.3) is sufficient to generate a
formula that captures the forward kinematics of the mobile robot: how does the robot move,
given its geometry and the speeds of its wheels? More formally, consider the example
shown in figure 3.3.

This differential drive robot has two wheels, each with diameter . Given a point cen-
tered between the two drive wheels, each wheel is a distance from . Given , , , and
the spinning speed of each wheel, and , a forward kinematic model would predict
the robot’s overall speed in the global reference frame:

. (3.6)

From equation (3.3) we know that we can compute the robot’s motion in the global ref-
erence frame from motion in its local reference frame: . Therefore, the strat-

x· y· ·
XR YR

XR y· YR x·–

R
·

R
2
---()I

·
0 1 0

1– 0 0

0 0 1

x·

y·

·

y·

x·–

·
= = =

Figure 3.3
A differential-drive robot in its global reference frame.

v(t)

(t)

YI

XI

castor wheel

r P
l P r l

· 1 · 2

I
·

x·

y·

·
f l r · 1 · 2 = =

I
·

R () 1– R
·

=

62 Chapter 3
egy will be to first compute the contribution of each of the two wheels in the local reference
frame, . For this example of a differential-drive chassis, this problem is particularly
straightforward.

Suppose that the robot’s local reference frame is aligned such that the robot moves for-
ward along , as shown in figure 3.1. First, consider the contribution of each wheel’s
spinning speed to the translation speed at P in the direction of . If one wheel spins
while the other wheel contributes nothing and is stationary, since P is halfway between the
two wheels, it will move instantaneously with half the speed: and

. In a differential-drive robot, these two contributions can simply be
added to calculate the component of . Consider, for example, a differential robot in
which each wheel spins with equal speed but in opposite directions. The result is a station-
ary, spinning robot. As expected, will be zero in this case. The value of is even sim-
pler to calculate. Neither wheel can contribute to sideways motion in the robot’s reference
frame, and so is always zero. Finally, we must compute the rotational component of

. Once again, the contributions of each wheel can be computed independently and just
added. Consider the right wheel (we will call this wheel 1). Forward spin of this wheel
results in counterclockwise rotation at point . Recall that if wheel 1 spins alone, the robot
pivots around wheel 2. The rotation velocity at can be computed because the wheel
is instantaneously moving along the arc of a circle of radius :

. (3.7)

The same calculation applies to the left wheel, with the exception that forward spin
results in clockwise rotation at point :

. (3.8)

Combining these individual formulas yields a kinematic model for the differential-drive
example robot:

. (3.9)

· R

+XR

+XR

xr1
·

1 2 r· 1=
xr2
·

1 2 r· 2=
xR
· · R

xR
·

yR
·

yR
· R

·

· R

P
1 P

2l

1
r· 1

2l
--------=

P

2
r– · 2

2l
-----------=

I
·

R () 1–

r· 1

2

r· 2

2
--------+

0

r· 1

2l

r– · 2

2l
-----------+

=

Mobile Robot Kinematics 63
We can now use this kinematic model in an example. However, we must first compute
. In general, calculating the inverse of a matrix may be challenging. In this case,

however, it is easy because it is simply a transform from to rather than vice versa:

. (3.10)

Suppose that the robot is positioned such that , , and . If the robot
engages its wheels unevenly, with speeds and , we can compute its veloc-
ity in the global reference frame:

. (3.11)

So this robot will move instantaneously along the y-axis of the global reference frame
with speed 3 while rotating with speed 1. This approach to kinematic modeling can provide
information about the motion of a robot given its component wheel speeds in straightfor-
ward cases. However, we wish to determine the space of possible motions for each robot
chassis design. To do this, we must go further, describing formally the constraints on robot
motion imposed by each wheel. Section 3.2.3 begins this process by describing constraints
for various wheel types; the rest of this chapter provides tools for analyzing the character-
istics and workspace of a robot given these constraints.

3.2.3 Wheel kinematic constraints
The first step to a kinematic model of the robot is to express constraints on the motions of
individual wheels. Just as shown in section 3.2.2, the motions of individual wheels can later
be combined to compute the motion of the robot as a whole. As discussed in chapter 2, there
are four basic wheel types with widely varying kinematic properties. Therefore, we begin
by presenting sets of constraints specific to each wheel type.

However, several important assumptions will simplify this presentation. We assume that
the plane of the wheel always remains vertical and that there is in all cases one single point
of contact between the wheel and the ground plane. Furthermore, we assume that there is
no sliding at this single point of contact. That is, the wheel undergoes motion only under
conditions of pure rolling and rotation about the vertical axis through the contact point. For
a more thorough treatment of kinematics, including sliding contact, refer to [38].

R () 1–

· R · I

R () 1–
cos sin– 0

sin cos 0

0 0 1
=

 2= r 1= l 1=
· 1 4= · 2 2=

I
·

x·

y·

·

0 1– 0

1 0 0

0 0 1

3

0

1

0

3

1

== =

64 Chapter 3
Under these assumptions, we present two constraints for every wheel type. The first con-
straint enforces the concept of rolling contact—that the wheel must roll when motion takes
place in the appropriate direction. The second constraint enforces the concept of no lateral
slippage—that the wheel must not slide orthogonal to the wheel plane.

3.2.3.1 Fixed standard wheel
The fixed standard wheel has no vertical axis of rotation for steering. Its angle to the chassis
is thus fixed, and it is limited to motion back and forth along the wheel plane and rotation
around its contact point with the ground plane. Figure 3.4 depicts a fixed standard wheel
and indicates its position pose relative to the robot’s local reference frame . The
position of is expressed in polar coordinates by distance and angle . The angle of the
wheel plane relative to the chassis is denoted by , which is fixed since the fixed standard
wheel is not steerable. The wheel, which has radius , can spin over time, and so its rota-
tional position around its horizontal axle is a function of time : .

The rolling constraint for this wheel enforces that all motion along the direction of the
wheel plane must be accompanied by the appropriate amount of wheel spin so that there is
pure rolling at the contact point:

. (3.12)

Figure 3.4
A fixed standard wheel and its parameters.

YR

XR

A

l

P

v

r
Robot chassis

A
XR YR

A l

r
t t()

 + sin + cos– l– cos R ()I
·

r·– 0=

Mobile Robot Kinematics 65
The first term of the sum denotes the total motion along the wheel plane. The three ele-
ments of the vector on the left represent mappings from each of to their contribu-
tions for motion along the wheel plane. Note that the term is used to transform the
motion parameters that are in the global reference frame into motion param-
eters in the local reference frame as shown in example equation (3.5). This is
necessary because all other parameters in the equation, , are in terms of the robot’s
local reference frame. This motion along the wheel plane must be equal, according to this
constraint, to the motion accomplished by spinning the wheel, .

The sliding constraint for this wheel enforces that the component of the wheel’s motion
orthogonal to the wheel plane must be zero:

. (3.13)

For example, suppose that wheel is in a position such that . This
would place the contact point of the wheel on with the plane of the wheel oriented par-
allel to . If , then the sliding constraint [equation (3.13)] reduces to

. (3.14)

This constrains the component of motion along to be zero, and since and are
parallel in this example, the wheel is constrained from sliding sideways, as expected.

3.2.3.2 Steered standard wheel
The steered standard wheel differs from the fixed standard wheel only in that there is an
additional degree of freedom: the wheel may rotate around a vertical axis passing through
the center of the wheel and the ground contact point. The equations of position for the
steered standard wheel (figure 3.5) are identical to that of the fixed standard wheel shown
in figure 3.4 with one exception. The orientation of the wheel to the robot chassis is no
longer a single fixed value, , but instead varies as a function of time: . The rolling
and sliding constraints are

. (3.15)

. (3.16)

x· y· ·
R ()I

·

I
·

XI YI
XR YR

 l

r·

 + cos + sin l sin R ()I
·

0=

A 0= 0=
XI

YI 0=

1 0 0

1 0 0

0 1 0

0 0 1

x·

y·

·
1 0 0

x·

y·

·
0= =

XI XI XR

 t

 + sin + cos– l– cos R ()I
·

r·– 0=

 + cos + sin l sin R ()· I 0=

66 Chapter 3
These constraints are identical to those of the fixed standard wheel because, unlike ,
 does not have a direct impact on the instantaneous motion constraints of a robot. It is

only by integrating over time that changes in steering angle can affect the mobility of a
vehicle. This may seem subtle, but is a very important distinction between change in steer-
ing position, , and change in wheel spin, .

3.2.3.3 Castor wheel
Castor wheels are able to steer around a vertical axis. However, unlike the steered standard
wheel, the vertical axis of rotation in a castor wheel does not pass through the ground con-
tact point. Figure 3.6 depicts a castor wheel, demonstrating that formal specification of the
castor wheel’s position requires an additional parameter.

The wheel contact point is now at position , which is connected by a rigid rod of
fixed length to point , fixes the location of the vertical axis about which steers, and
this point has a position specified in the robot’s reference frame, as in figure 3.6. We
assume that the plane of the wheel is aligned with at all times. Similar to the steered
standard wheel, the castor wheel has two parameters that vary as a function of time.
represents the wheel spin over time as before. denotes the steering angle and orienta-
tion of over time.

For the castor wheel, the rolling constraint is identical to equation (3.15) because the
offset axis plays no role during motion that is aligned with the wheel plane:

Figure 3.5
A steered standard wheel and its parameters.

YR

XR

A

(t)

l

P

v
r

Robot chassis

·

·

· ·

B AB
d A B

A
AB

 t()
 t

AB

Mobile Robot Kinematics 67
. (3.17)

The castor geometry does, however, have significant impact on the sliding constraint.
The critical issue is that the lateral force on the wheel occurs at point because this is the
attachment point of the wheel to the chassis. Because of the offset ground contact point rel-
ative to , the constraint that there be zero lateral movement would be wrong. Instead, the
constraint is much like a rolling constraint, in that appropriate rotation of the vertical axis
must take place:

. (3.18)

In equation (3.18), any motion orthogonal to the wheel plane must be balanced by an
equivalent and opposite amount of castor steering motion. This result is critical to the suc-
cess of castor wheels because by setting the value of any arbitrary lateral motion can be
acceptable. In a steered standard wheel, the steering action does not by itself cause a move-
ment of the robot chassis. But in a castor wheel, the steering action itself moves the robot
chassis because of the offset between the ground contact point and the vertical axis of rota-
tion.

Figure 3.6
A castor wheel and its parameters.

YR

XR

A

(t)

l

P

v

r

d

d

B

Robot chassis

 + sin + cos– l– cos R ()I
·

r·– 0=

A

A

 + cos + sin d l sin+ R ()I
·

d·+ 0=

·

68 Chapter 3
More concisely, it can be surmised from equations (3.17) and (3.18) that, given any
robot chassis motion , there exists some value for spin speed and steering speed
such that the constraints are met. Therefore, a robot with only castor wheels can move with
any velocity in the space of possible robot motions. We term such systems omnidirectional.

A real-world example of such a system is the five-castor wheel office chair shown in
figure 3.7. Assuming that all joints are able to move freely, you may select any motion
vector on the plane for the chair and push it by hand. Its castor wheels will spin and steer
as needed to achieve that motion without contact point sliding. By the same token, if each
of the chair’s castor wheels housed two motors, one for spinning and one for steering, then
a control system would be able to move the chair along any trajectory in the plane. Thus,
although the kinematics of castor wheels is somewhat complex, such wheels do not impose
any real constraints on the kinematics of a robot chassis.

3.2.3.4 Swedish wheel
Swedish wheels have no vertical axis of rotation, yet are able to move omnidirectionally
like the castor wheel. This is possible by adding a degree of freedom to the fixed standard
wheel. Swedish wheels consist of a fixed standard wheel with rollers attached to the wheel
perimeter with axes that are antiparallel to the main axis of the fixed wheel component. The
exact angle between the roller axes and the wheel plane can vary, as shown in figure 3.8.

For example, given a Swedish 45-degree wheel, the motion vectors of the principal axis
and the roller axes can be drawn as in figure 3.8. Since each axis can spin clockwise or
counterclockwise, one can combine any vector along one axis with any vector along the
other axis. These two axes are not necessarily independent (except in the case of the Swed-
ish 90-degree wheel); however, it is visually clear that any desired direction of motion is
achievable by choosing the appropriate two vectors.

· I · ·

Figure 3.7
Office chair with five castor wheels.

Mobile Robot Kinematics 69
The pose of a Swedish wheel is expressed exactly as in a fixed standard wheel, with the
addition of a term, , representing the angle between the main wheel plane and the axis of
rotation of the small circumferential rollers. This is depicted in figure 3.8 within the robot’s
reference frame.

Formulating the constraint for a Swedish wheel requires some subtlety. The instanta-
neous constraint is due to the specific orientation of the small rollers. The axis around
which these rollers spin is a zero component of velocity at the contact point. That is, moving
in that direction without spinning the main axis is not possible without sliding. The motion
constraint that is derived looks identical to the rolling constraint for the fixed standard
wheel in equation (3.12), except that the formula is modified by adding such that the
effective direction along which the rolling constraint holds is along this zero component
rather than along the wheel plane:

. (3.19)

Orthogonal to this direction the motion is not constrained because of the free rotation
of the small rollers.

. (3.20)

Figure 3.8
A Swedish wheel and its parameters.

YR

XR

A

l

P

r

Robot chassis

 + + sin + + cos– l– + cos R ()I
·

r· cos– 0=

· sw

 + + cos + + sin l + sin R ()I
·

r· sin rsw
·

sw–– 0=

70 Chapter 3
The behavior of this constraint and thereby the Swedish wheel changes dramatically as
the value varies. Consider . This represents the Swedish 90-degree wheel. In this
case, the zero component of velocity is in line with the wheel plane, and so equation (3.19)
reduces exactly to equation (3.12), the fixed standard wheel rolling constraint. But because
of the rollers, there is no sliding constraint orthogonal to the wheel plane (see equation
[3.20]). By varying the value of , any desired motion vector can be made to satisfy equa-
tion (3.19), and therefore the wheel is omnidirectional. In fact, this special case of the
Swedish design results in fully decoupled motion, in that the rollers and the main wheel
provide orthogonal directions of motion.

At the other extreme, consider . In this case, the rollers have axes of rotation
that are parallel to the main wheel axis of rotation. Interestingly, if this value is substituted
for in equation (3.19) the result is the fixed standard wheel sliding constraint, equation
(3.13). In other words, the rollers provide no benefit in terms of lateral freedom of motion
since they are simply aligned with the main wheel. However, in this case the main wheel
never needs to spin, and therefore the rolling constraint disappears. This is a degenerate
form of the Swedish wheel, and therefore we assume in the remainder of this chapter that

.

3.2.3.5 Spherical wheel
The final wheel type, a ball or spherical wheel, places no direct constraints on motion (fig-
ure 3.9). Such a mechanism has no principal axis of rotation, and therefore no appropriate
rolling or sliding constraints exist. As with castor wheels and Swedish wheels, the spherical

 0=

·

 2=

 2

Figure 3.9
A spherical wheel and its parameters.

YR

XR

A

l

P

r

vA

Robot chassis

Mobile Robot Kinematics 71
wheel is clearly omnidirectional and places no constraints on the robot chassis kinematics.
Therefore, equation (3.21) simply describes the roll rate of the ball in the direction of
motion of point of the robot.

. (3.21)

By definition, the wheel rotation orthogonal to this direction is zero.

. (3.22)

As can be seen, the equations for the spherical wheel are exactly the same as for the fixed
standard wheel. However, the interpretation of equation (3.22) is different. The omnidirec-
tional spherical wheel can have any arbitrary direction of movement, where the motion
direction given by is a free variable deduced from equation (3.22). Consider the case that
the robot is in pure translation in the direction of . Then equation (3.22) reduces to

, thus , which makes sense for this special case.

3.2.4 Robot kinematic constraints
Given a mobile robot with wheels we can now compute the kinematic constraints of the
robot chassis. The key idea is that each wheel imposes zero or more constraints on robot
motion, and so the process is simply one of appropriately combining all of the kinematic
constraints arising from all of the wheels based on the placement of those wheels on the
robot chassis.

We have categorized all wheels into five categories: (1) fixed and (2) steerable standard
wheels, (3) castor wheels, (4) Swedish wheels, and (5) spherical wheels. But note from the
wheel kinematic constraints in equations (3.17), (3.18), and (3.19) that the castor wheel,
Swedish wheel, and spherical wheel impose no kinematic constraints on the robot chassis,
since can range freely in all of these cases owing to the internal wheel degrees of free-
dom.

Therefore, only fixed standard wheels and steerable standard wheels have impact on
robot chassis kinematics and therefore require consideration when computing the robot’s
kinematic constraints. Suppose that the robot has a total of standard wheels, comprising

 fixed standard wheels and steerable standard wheels. We use to denote the
variable steering angles of the steerable standard wheels. In contrast, refers to the
orientation of the fixed standard wheels as depicted in figure 3.4. In the case of wheel
spin, both the fixed and steerable wheels have rotational positions around the horizontal
axle that vary as a function of time. We denote the fixed and steerable cases separately as

 and and use as an aggregate matrix that combines both values:

vA A

 + sin + cos– l– cos R ()I
·

r·– 0=

 + cos + sin l sin R ()· I 0=

YR

 + sin 0= –=

M

I
·

N
Nf Ns s t()

Ns f

Nf

f t() s t() t()

72 Chapter 3
. (3.23)

The rolling constraints of all wheels can now be collected in a single expression:

. (3.24)

This expression bears a strong resemblance to the rolling constraint of a single wheel,
but substitutes matrices in lieu of single values, thus taking into account all wheels. is a
constant diagonal matrix whose entries are radii of all standard wheels.
denotes a matrix with projections for all wheels to their motions along their individual
wheel planes:

. (3.25)

Note that is only a function of and not . This is because the orientations of
steerable standard wheels vary as a function of time, whereas the orientations of fixed stan-
dard wheels are constant. is therefore a constant matrix of projections for all fixed stan-
dard wheels. It has size (), with each row consisting of the three terms in the three-
matrix from equation (3.12) for each fixed standard wheel. is a matrix of size
(), with each row consisting of the three terms in the three-matrix from equation
(3.15) for each steerable standard wheel.

In summary, equation (3.24) represents the constraint that all standard wheels must spin
around their horizontal axis an appropriate amount based on their motions along the wheel
plane so that rolling occurs at the ground contact point.

We use the same technique to collect the sliding constraints of all standard wheels into
a single expression with the same structure as equations (3.13) and (3.16):

. (3.26)

. (3.27)

 and are () and () matrices whose rows are the three terms in the
three-matrix of equations (3.13) and (3.16) for all fixed and steerable standard wheels. Thus

 t()
f t()

s t()
=

J1 s()R ()I
·

J2
·– 0=

J2

N N r J1 s()

J1 s()
J1f

J1s s()
=

J1 s() s f

J1f

Nf 3
J1s s()

Ns 3

C1 s()R ()I
·

0=

C1 s()
C1f

C1s s()
=

C1f C1s Nf 3 Ns 3

Mobile Robot Kinematics 73
equation (3.26) is a constraint over all standard wheels that their components of motion
orthogonal to their wheel planes must be zero. This sliding constraint over all standard
wheels has the most significant impact on defining the overall maneuverability of the robot
chassis, as explained in the next section.

3.2.5 Examples: Robot kinematic models and constraints
In section 3.2.2 we presented a forward kinematic solution for in the case of a simple
differential-drive robot by combining each wheel’s contribution to robot motion. We can
now use the tools presented above to construct the same kinematic expression by direct
application of the rolling constraints for every wheel type. We proceed with this technique
applied again to the differential drive robot, enabling verification of the method as com-
pared to the results of section 3.2.2. Then we proceed to the case of the three-wheeled omni-
directional robot.

3.2.5.1 A differential-drive robot example
First, refer to equations (3.24) and (3.26). These equations relate robot motion to the rolling
and sliding constraints and , and the wheel spin speed of the robot’s wheels,

. Fusing these two equations yields the following expression:

. (3.28)

Once again, consider the differential drive robot in figure 3.3. We will construct
and directly from the rolling constraints of each wheel. The castor is unpowered and
is free to move in any direction, so we ignore this third point of contact altogether. The two
remaining drive wheels are not steerable, and therefore and simplify to
and respectively. To employ the fixed standard wheel’s rolling constraint formula,
equation (3.12), we must first identify each wheel’s values for and . Suppose that the
robot’s local reference frame is aligned such that the robot moves forward along , as
shown in figure 3.1. In this case, for the right wheel , , and for the left
wheel, , . Note the value of for the right wheel is necessary to ensure
that positive spin causes motion in the direction (figure 3.4). Now we can compute
the and matrix using the matrix terms from equations (3.12) and (3.13). Because
the two fixed standard wheels are parallel, equation (3.13) results in only one independent
equation, and equation (3.28) gives:

I
·

J1 s() C1 s()
·

J1 s

C1 s
R I

· J2

0
=

J1 s()
C1 s()

J1 s() C1 s() J1f

C1f

+XR

 2–= =
 2= 0=

+XR

J1f C1f

74 Chapter 3
. (3.29)

Inverting equation (3.29) yields the kinematic equation specific to our differential drive
robot:

. (3.30)

This demonstrates that, for the simple differential-drive case, the combination of wheel
rolling and sliding constraints describes the kinematic behavior, based on our manual cal-
culation in section 3.2.2.

3.2.5.2 An omnidirectional robot example
Consider the omniwheel robot shown in figure 3.10. This robot has three Swedish 90-
degree wheels, arranged radially symmetrically, with the rollers perpendicular to each main
wheel.

First we must impose a specific local reference frame upon the robot. We do so by
choosing point at the center of the robot, then aligning the robot with the local reference

1 0 l

1 0 l–

0 1 0

R I
· J2

0
=

I
·

R ()
1–

1 0 l

1 0 l–

0 1 0

1–

J2

0
R ()

1–

1
2
--- 1

2
--- 0

0 0 1

1
2l
----- 1

2l
-----– 0

J2

0
= =

Figure 3.10
A three-wheel omnidrive robot developed by Carnegie Mellon University (www.cs.cmu.edu/~pprk).

v(t)

(t)

YI

XI

P

Mobile Robot Kinematics 75
frame such that is colinear with the axis of wheel 2. Figure 3.11 shows the robot and its
local reference frame arranged in this manner.

We assume that the distance between each wheel and is , and that all three wheels
have the same radius, . Once again, the value of can be computed as a combination of
the rolling constraints of the robot’s three omnidirectional wheels, as in equation (3.28). As
with the differential-drive robot, since this robot has no steerable wheels, simplifies
to :

. (3.31)

We calculate using the matrix elements of the rolling constraints for the Swedish
wheel, given by equation (3.19). But to use these values, we must establish the values

 for each wheel. Referring to figure (3.8), we can see that for the Swedish 90-
degree wheel. Note that this immediately simplifies equation (3.19) to equation (3.12), the
rolling constraints of a fixed standard wheel. Given our particular placement of the local
reference frame, the value of for each wheel is easily computed: ,

. Furthermore, for all wheels because the wheels are tan-
gent to the robot’s circular body. Constructing and simplifying using equation (3.12)
yields:

Figure 3.11
The local reference frame plus detailed parameters for wheel 1.

YR

XR

1

2
r 1

1

3

vy1

ICR

vx1

XR

P l
r I

·

J1 s()
J1f

I
·

R () 1– J1f
1– J2

·=

J1 f

 0=

 1 3=
2 = 3 3–= 0=

J1f

76 Chapter 3
. (3.32)

Once again, computing the value of requires calculating the inverse, , as needed
in equation (3.31). One approach would be to apply rote methods for calculating the inverse
of a square matrix. A second approach would be to compute the contribution of each
Swedish wheel to chassis motion, as shown in section 3.2.2. We leave this process as an
exercise for the enthusiast. Once the inverse is obtained, can be isolated:

. (3.33)

Consider a specific omnidrive chassis with and for all wheels. The robot’s
local reference frame and global reference frame are aligned, so that . If wheels 1,
2, and 3 spin at speeds , what is the resulting motion of the
whole robot? Using the equation above, the answer can be calculated readily:

. (3.34)

So this robot will move instantaneously along the -axis with positive speed and along
the axis with negative speed while rotating clockwise. We can see from the preceding
examples that robot motion can be predicted by combining the rolling constraints of indi-
vidual wheels.

J1f

3
---sin

3
---cos– l–

0 cos– l–

3
---–sin

3
---–cos– l–

3
2

------- 1
2
---– l–

0 1 l–

3
2

-------–
1
2
---– l–

= =

I
·

J1f
1–

3 3

I
·

I
·

R () 1–

1

3
------- 0

1

3
-------–

1
3
---–

2
3
--- 1

3
---–

1
3l
-----–

1
3l
-----–

1
3l
-----–

J2
·=

l 1= r 1=
 0=

1 4= 2 1= 3 2=

I
·

x·

y·

·

1 0 0

0 1 0

0 0 1

1

3
------- 0

1

3
-------–

1
3
---–

2
3
--- 1

3
---–

1
3
---–

1
3
---–

1
3
---–

1 0 0

0 1 0

0 0 1

4

1

2

2

3

4
3
---–

7
3
---–

== =

x
y

Mobile Robot Kinematics 77
The sliding constraints comprising can be used to go even further, enabling us
to evaluate the maneuverability and workspace of the robot rather than just its predicted
motion. Next, we examine methods for using the sliding constraints, sometimes in conjunc-
tion with rolling constraints, to generate powerful analyses of the maneuverability of a
robot chassis.

3.3 Mobile Robot Maneuverability

The kinematic mobility of a robot chassis is its ability to directly move in the environment.
The basic constraint limiting mobility is the rule that every wheel must satisfy its sliding
constraint. Therefore, we can formally derive robot mobility by starting from equation
(3.26).

In addition to instantaneous kinematic motion, a mobile robot is able to further manip-
ulate its position, over time, by steering steerable wheels. As we will see in section 3.3.3,
the overall maneuverability of a robot is thus a combination of the mobility available based
on the kinematic sliding constraints of the standard wheels, plus the additional freedom
contributed by steering and spinning the steerable standard wheels.

3.3.1 Degree of mobility
Equation (3.26) imposes the constraint that every wheel must avoid any lateral slip. Of
course, this holds separately for each and every wheel, and so it is possible to specify this
constraint separately for fixed and for steerable standard wheels:

. (3.35)

. (3.36)

For both of these constraints to be satisfied, the motion vector must belong to
the null space of the projection matrix , which is simply a combination of and

. Mathematically, the null space of is the space N such that for any vector n in
N, . If the kinematic constraints are to be honored, then the motion of the
robot must always be within this space . The kinematic constraints [equations (3.35) and
(3.36)] can also be demonstrated geometrically using the concept of a robot’s instantaneous
center of rotation ().

Consider a single standard wheel. It is forced by the sliding constraint to have zero lat-
eral motion. This can be shown geometrically by drawing a zero motion line through its
horizontal axis, perpendicular to the wheel plane (figure 3.12). At any given instant, wheel
motion along the zero motion line must be zero. In other words, the wheel must be moving

C1 s()

C1fR ()I
·

0=

C1s s()R ()I
·

0=

R ()I
·

C1 s() C1f

C1s C1 s()
C1 s()n 0=

N

ICR

78 Chapter 3
instantaneously along some circle of radius such that the center of that circle is located
on the zero motion line. This center point, called the instantaneous center of rotation, may
lie anywhere along the zero motion line. When R is at infinity, the wheel moves in a straight
line.

A robot such as the Ackerman vehicle in figure 3.12a can have several wheels, but it
must always have a single . Because all of its zero motion lines meet at a single point,
there is a single solution for robot motion, placing the at this meet point.

This geometric construction demonstrates how robot mobility is a function of the
number of constraints on the robot’s motion, not the number of wheels. In figure 3.12b, the
bicycle shown has two wheels, and . Each wheel contributes a constraint, or a zero
motion line. Taken together, the two constraints result in a single point as the only remain-
ing solution for the . This is because the two constraints are independent, and thus each
further constrains overall robot motion.

But in the case of the differential drive robot in figure 3.13a, the two wheels are aligned
along the same horizontal axis. Therefore, the is constrained to lie along a line, not at
a specific point. In fact, the second wheel imposes no additional kinematic constraints on
robot motion since its zero motion line is identical to that of the first wheel. Thus, although
the bicycle and differential-drive chassis have the same number of nonomnidirectional
wheels, the former has two independent kinematic constraints while the latter has only one.

Figure 3.12
(a) Four-wheel with carlike Ackerman steering. (b) Bicycle.

ICR ICR

w1

a) b)

w2

R

ICR
ICR

ICR

w1 w2

ICR

ICR

Mobile Robot Kinematics 79
The Ackerman vehicle of figure 3.12a demonstrates another way in which a wheel may
be unable to contribute an independent constraint to the robot kinematics. This vehicle has
two steerable standard wheels. Given the instantaneous position of just one of these steer-
able wheels and the position of the fixed rear wheels, there is only a single solution for the

. The position of the second steerable wheel is absolutely constrained by the .
Therefore, it offers no independent constraints to robot motion.

Robot chassis kinematics is therefore a function of the set of independent constraints
arising from all standard wheels. The mathematical interpretation of independence is
related to the rank of a matrix. Recall that the rank of a matrix is the largest number of lin-
early independent rows or columns. Equation (3.26) represents all sliding constraints
imposed by the wheels of the mobile robot. Therefore, is the number of inde-
pendent constraints.

The greater the number of independent constraints, and therefore the greater the rank of
, the more constrained is the mobility of the robot. For example, consider a robot

with a single fixed standard wheel. Remember that we consider only standard wheels. This
robot may be a unicycle or it may have several Swedish wheels; however, it has exactly one
fixed standard wheel. The wheel is at a position specified by parameters relative
to the robot’s local reference frame. comprises and . However, since there
are no steerable standard wheels, is empty, and therefore contains only .
Because there is one fixed standard wheel, this matrix has a rank of one, and therefore this
robot has a single independent constrain on mobility:

. (3.37)

Figure 3.13
(a) Differential-drive robot with two individually motorized wheels and a castor wheel, e.g., the Pyg-
malion robot at EPFL. (b) Tricycle with two fixed standard wheels and one steered standard wheel,
e.g., Piaggio minitransporter.

s t

a) b)

ICR ICR

rank C1 s()

C1 s()

 l
C1 s() C1 f C1s

C1s C1 s() C1f

C1 s() C1f + cos + sin l sin= =

80 Chapter 3
Now let us add an additional fixed standard wheel to create a differential-drive robot by
constraining the second wheel to be aligned with the same horizontal axis as the original
wheel. Without loss of generality, we can place point at the midpoint between the centers
of the two wheels. Given for wheel and for wheel , it holds geo-
metrically that . Therefore, in this case, the
matrix has two constraints but a rank of one:

. (3.38)

Alternatively, consider the case when is placed in the wheel plane of but with
the same orientation, as in a bicycle with the steering locked in the forward position. We
again place point between the two wheel centers and orient the wheels such that they lie
on axis . This geometry implies that
and, therefore, the matrix retains two independent constraints and has a rank of two:

. (3.39)

In general, if then the vehicle can, at best, only travel along a circle or
along a straight line. This configuration means that the robot has two or more independent
constraints due to fixed standard wheels that do not share the same horizontal axis of rota-
tion. Because such configurations have only a degenerate form of mobility in the plane, we
do not consider them in the remainder of this chapter. Note, however, that some degenerate
configurations such as the four-wheeled slip/skid steering system are useful in certain envi-
ronments, such as on loose soil and sand, even though they fail to satisfy sliding constraints.
Not surprisingly, the price that must be paid for such violations of the sliding constraints is
that dead reckoning based on odometry becomes less accurate and power efficiency is
reduced dramatically.

In general, a robot will have zero or more fixed standard wheels and zero or more steer-
able standard wheels. We can therefore identify the possible range of rank values for any
robot: . Consider the case . This is possible only
if there are zero independent kinematic constraints in . In this case there are neither
fixed nor steerable standard wheels attached to the robot frame: .

Consider the other extreme, . This is the maximum possible rank
since the kinematic constraints are specified along three degrees of freedom (i.e., the con-
straint matrix is three columns wide). Therefore, there cannot be more than three indepen-

P
1 1 l1 w1 2 2 l2 w2

l1 l2= 1 2 0= = 1 + 2=
C1 s()

C1 s() C1f
1 cos 1 sin 0

1 + cos 1 + sin 0
= =

w2 w1

P
x1 l1 l2= 1 2 2= = 1 0= 2 =

C1 s()

C1 s() C1f

 2 cos 2 sin l1 2 sin

3 2 cos 3 2 sin l1 2 sin

0 1 l1

0 1– l1

= = =

rank C1f 1

0 r ank C1 s() 3 rank C1 s() 0=
C1 s()

Nf Ns 0= =
rank C1 s() 3=

Mobile Robot Kinematics 81
dent constraints. In fact, when , then the robot is completely constrained
in all directions and is therefore degenerate, since motion in the plane is totally impossible.

Now we are ready to formally define a robot’s degree of mobility :

. (3.40)

The dimensionality of the null space () of matrix is a measure of the
number of degrees of freedom of the robot chassis that can be immediately manipulated
through changes in wheel velocity. It is logical, therefore, that must range between 0
and 3.

Consider an ordinary differential-drive chassis. On such a robot there are two fixed stan-
dard wheels sharing a common horizontal axis. As discussed earlier, the second wheel adds
no independent kinematic constraints to the system. Therefore, and

. This fits with intuition: a differential drive robot can control both the rate of its
change in orientation and its forward/reverse speed, simply by manipulating wheel veloci-
ties. In other words, its is constrained to lie on the infinite line extending from its
wheels’ horizontal axles.

In contrast, consider a bicycle chassis. This configuration consists of one fixed standard
wheel and one steerable standard wheel. In this case, each wheel contributes an indepen-
dent sliding constraint to . Therefore, . Note that the bicycle has the same
total number of nonomnidirectional wheels as the differential-drive chassis, and indeed one
of its wheels is steerable. Yet it has one less degree of mobility. Upon reflection, this is
appropriate. A bicycle only has control over its forward/reverse speed by direct manipula-
tion of wheel velocities. Only by steering can the bicycle change its .

As expected, based on equation (3.40), any robot consisting only of omnidirectional
wheels such as Swedish or spherical wheels will have the maximum mobility, .
Such a robot can directly manipulate all three degrees of freedom.

3.3.2 Degree of steerability
The degree of mobility defined above quantifies the degrees of controllable freedom based
on changes to wheel velocity. Steering can also have an eventual impact on a robot chassis
pose , although the impact is indirect because after changing the angle of a steerable stan-
dard wheel, the robot must move for the change in steering angle to have impact on pose.

As with mobility, we care about the number of independently controllable steering
parameters when defining the degree of steerability :

. (3.41)

rank C1 s() 3=

m

m dimN C1 s() 3 rank C1 s()–= =

dimN C1 s()

m

rank C1 s() 1=
m 2=

ICR

C1 s() m 1=

ICR

m 3=

s

s rank C1s s()=

82 Chapter 3
Recall that in the case of mobility, an increase in the rank of implied more kine-
matic constraints and thus a less mobile system. In the case of steerability, an increase in
the rank of implies more degrees of steering freedom and thus greater eventual
maneuverability. Since includes , this means that a steered standard wheel
can both decrease mobility and increase steerability: its particular orientation at any instant
imposes a kinematic constraint, but its ability to change that orientation can lead to addi-
tional trajectories.

The range of can be specified: . The case implies that the robot
has no steerable standard wheels, . The case is most common when a robot
configuration includes one or more steerable standard wheels.

For example, consider an ordinary automobile. In this case and . But
the fixed wheels share a common axle and so . The fixed wheels and any
one of the steerable wheels constrain the to be a point along the line extending from
the rear axle. Therefore, the second steerable wheel cannot impose any independent kine-
matic constraint and so . In this case and .

The case is possible only in robots with no fixed standard wheels: .
Under these circumstances, it is possible to create a chassis with two separate steerable
standard wheels, like a pseudobicycle (or the two-steer) in which both wheels are steerable.
Then, orienting one wheel constrains the to a line, while the second wheel can con-
strain the to any point along that line. Interestingly, this means that the
implies that the robot can place its anywhere on the ground plane.

3.3.3 Robot maneuverability
The overall degrees of freedom that a robot can manipulate, called the degree of maneuver-
ability , can be readily defined in terms of mobility and steerability:

. (3.42)

Therefore, maneuverability includes both the degrees of freedom that the robot manip-
ulates directly through wheel velocity and the degrees of freedom that it indirectly manip-
ulates by changing the steering configuration and moving. Based on the investigations of
the previous sections, one can draw the basic types of wheel configurations. They are
depicted in figure 3.14.

Note that two robots with the same are not necessarily equivalent. For example, dif-
ferential drive and tricycle geometries (figure 3.13) have equal maneuverability .
In differential drive all maneuverability is the result of direct mobility because and

. In the case of a tricycle the maneuverability results from steering also:
and . Neither of these configurations allows the to range anywhere on the
plane. In both cases, the must lie on a predefined line with respect to the robot refer-

C1 s()

C1s s()
C1 s() C1s s()

s 0 s 2 s 0=
Ns 0= s 1=

Nf 2= Ns 2=
rank C1f

1=
ICR

rank C1s s() 1= m 1= s 1=
s 2= Nf 0=

ICR
ICR s 2=

ICR

M

M m s+=

M

M 2=
m 2=

s 0= m 1=
s 1= ICR

ICR

Mobile Robot Kinematics 83
ence frame. In the case of differential drive, this line extends from the common axle of the
two fixed standard wheels, with the differential wheel velocities setting the point on
this line. In a tricycle, this line extends from the shared common axle of the fixed wheels,
with the steerable wheel setting the point along this line.

More generally, for any robot with the is always constrained to lie on a
line and for any robot with the can be set to any point on the plane.

One final example will demonstrate the use of the tools we have developed here. One
common robot configuration for indoor mobile robotics research is the synchro drive con-
figuration (figure 2.28). Such a robot has two motors and three wheels that are locked
together. One motor provides power for spinning all three wheels, while the second motor
provides power for steering all three wheels. In a three-wheeled synchro drive robot

 and . Therefore, can be used to determine both and
. The three wheels do not share a common axle; therefore, two of the three contribute

independent sliding constraints. The third must be dependent on these two constraints for
motion to be possible. Therefore, and . This is intuitively cor-
rect. A synchro drive robot with the steering frozen manipulates only one degree of free-
dom, consisting of traveling back and forth on a straight line.

However, an interesting complication occurs when considering . Based on equation
(3.41) the robot should have . Indeed, for a three-wheel-steering robot with the geo-
metric configuration of a synchro drive robot this would be correct. However, we have
additional information: in a synchro drive configuration a single motor steers all three
wheels using a belt drive. Therefore, although ideally, if the wheels were independently
steerable, then the system would achieve ; in the case of synchro drive the drive

Figure 3.14
The five basic types of three-wheel configurations. The spherical wheels can be replaced by castor or
Swedish wheels without influencing maneuverability. More configurations with various numbers of
wheels are found in chapter 2.

Omnidirectional
M =3
m =3
s =0

Differential
M =2
m =2
s =0

Omni-Steer
M =3
m =2
s =1

Tricycle
M =2
m =1
s =1

Two-Steer
M =3
m =1
s =2

ICR

ICR
M 2= ICR

M 3= ICR

Nf 0= Ns 3= rank C1s s() m

s

rank C1s s() 2= m 1=

s

s 2=

s 2=

84 Chapter 3
system further constrains the kinematics such that in reality . Finally, we can com-
pute maneuverability based on these values: for a synchro drive robot.

This result implies that a synchro drive robot can only manipulate, in total, two degrees
of freedom. In fact, if the reader reflects on the wheel configuration of a synchro drive
robot, it will become apparent that there is no way for the chassis orientation to change.
Only the position of the chassis can be manipulated, and so, indeed, a synchro drive
robot has only two degrees of freedom, in agreement with our mathematical conclusion.

3.4 Mobile Robot Workspace

For a robot, maneuverability is equivalent to its control degrees of freedom. But the robot
is situated in some environment, and the next question is to situate our analysis in the envi-
ronment. We care about the ways in which the robot can use its control degrees of freedom
to position itself in the environment. For instance, consider the Ackerman vehicle, or auto-
mobile. The total number of control degrees of freedom for such a vehicle is , one
for steering and the second for actuation of the drive wheels. But what are the total degrees
of freedom of the vehicle in its environment? In fact, it is three: the car can position itself
on the plane at any point and with any angle .

Thus, identifying a robot’s space of possible configurations is important because, sur-
prisingly, it can exceed . In addition to workspace, we care about how the robot is able
to move between various configurations: What are the types of paths that it can follow and,
furthermore, what are its possible trajectories through this configuration space? In the
remainder of this discussion, we move away from inner kinematic details such as wheels
and focus instead on the robot chassis pose and the chassis degrees of freedom. With this
in mind, let us place the robot in the context of its workspace now.

3.4.1 Degrees of freedom
In defining the workspace of a robot, it is useful to first examine its admissible velocity
space. Given the kinematic constraints of the robot, its velocity space describes the inde-
pendent components of robot motion that the robot can control. For example, the velocity
space of a unicycle can be represented with two axes, one representing the instantaneous
forward speed of the unicycle and the second representing the instantaneous change in ori-
entation, , of the unicycle.

The number of dimensions in the velocity space of a robot is the number of indepen-
dently achievable velocities. This is also called the differential degrees of freedom
(). A robot’s is always equal to its degree of mobility . For example,
a bicycle has the following degree of maneuverability: . The

 of a bicycle is indeed 1.

s 1=
M 2=

x y–

M 2=

x y

M

·

DDOF DDOF m

M m= s+ 1 1+ 2= =
DDOF

Mobile Robot Kinematics 85
In contrast to a bicycle, consider an omnibot, a robot with three Swedish wheels. We
know that in this case there are zero standard wheels, and therefore

. So, the omnibot has three differential degrees of freedom.
This is appropriate, given that because such a robot has no kinematic motion constraints, it
is able to independently set all three pose variables: .

Given the difference in DDOF between a bicycle and an omnibot, consider the overall
degrees of freedom in the workspace of each configuration. The omnibot can achieve any
pose in its environment and can do so by directly achieving the goal positions of
all three axes simultaneously because . Clearly, it has a workspace with

.
Can a bicycle achieve any pose in its environment? It can do so, but achieving

some goal points may require more time and energy than an equivalent omnibot. For exam-
ple, if a bicycle configuration must move laterally 1 m, the simplest successful maneuver
would involve either a spiral or a back-and-forth motion similar to parallel parking of auto-
mobiles. Nevertheless, a bicycle can achieve any , and therefore the workspace of
a bicycle has as well.

Clearly, there is an inequality relation at work: . Although the
dimensionality of a robot’s workspace is an important attribute, it is clear from the preced-
ing example that the particular paths available to a robot matter as well. Just as workspace
DOF governs the robot’s ability to achieve various poses, so the robot’s governs
its ability to achieve various paths.

3.4.2 Holonomic robots
In the robotics community, when describing the path space of a mobile robot, often the con-
cept of holonomy is used. The term holonomic has broad applicability to several mathemat-
ical areas, including differential equations, functions, and constraint expressions. In mobile
robotics, the term refers specifically to the kinematic constraints of the robot chassis. A
holonomic robot is a robot that has zero nonholonomic kinematic constraints. Conversely,
a nonholonomic robot is a robot with one or more nonholonomic kinematic constraints.

A holonomic kinematic constraint can be expressed as an explicit function of position
variables only. For example, in the case of a mobile robot with a single fixed standard
wheel, a holonomic kinematic constraint would be expressible using

 only. Such a constraint may not use derivatives of these values, such as or . A
nonholonomic kinematic constraint requires a differential relationship, such as the deriva-
tive of a position variable. Furthermore, it cannot be integrated to provide a constraint in
terms of the position variables only. Because of this latter point of view, nonholonomic sys-
tems are often called nonintegrable systems.

M m= s+ 3 0+ 3= =

x· y· ·

x y
DDOF 3=

DOF 3=
x y

x y
DOF 3=

DDOF M D OF

DDOF

1 1 l1 r1 1,
x y · ·

86 Chapter 3
Consider the fixed standard wheel sliding constraint:

. (3.43)

This constraint must use robot motion rather than pose because the point is to con-
strain robot motion perpendicular to the wheel plane to be zero. The constraint is noninte-
grable, depending explicitly on robot motion. Therefore, the sliding constraint is a
nonholonomic constraint. Consider a bicycle configuration, with one fixed standard wheel
and one steerable standard wheel. Because the fixed wheel sliding constraint will be in
force for such a robot, we can conclude that the bicycle is a nonholonomic robot.

But suppose that one locks the bicycle steering system, so that it becomes two fixed stan-
dard wheels with separate but parallel axes. We know that for such a configura-
tion. Is it nonholonomic? Although it may not appear so because of the sliding and rolling
constraints, the locked bicycle is actually holonomic. Consider the workspace of this
locked bicycle. It consists of a single infinite line along which the bicycle can move (assum-
ing the steering was frozen straight ahead). For formulaic simplicity, assume that this infi-
nite line is aligned with in the global reference frame and that

. In this case the sliding constraints of both wheels can be
replaced with an equally complete set of constraints on the robot pose: .
This eliminates two nonholonomic constraints, corresponding to the sliding constraints of
the two wheels.

The only remaining nonholonomic kinematic constraints are the rolling constraints for
each wheel:

. (3.44)

This constraint is required for each wheel to relate the speed of wheel spin to the speed
of motion projected along the wheel plane. But in the case of our locked bicycle, given the
initial rotational position of a wheel at the origin, , we can replace this constraint with
one that directly relates position on the line, x, with wheel rotation angle, :

.
The locked bicycle is an example of the first type of holonomic robot—where con-

straints do exist but are all holonomic kinematic constraints. This is the case for all holo-
nomic robots with . The second type of holonomic robot exists when there are no
kinematic constraints, that is, and . Since there are no kinematic con-
straints, there are also no nonholonomic kinematic constraints, and so such a robot is
always holonomic. This is the case for all holonomic robots with .

 + cos + sin l sin R ()I
·

0=

·

M 1=

XI

1 2 2 1 0 2 = = =
y 0 0==

 + sin– + cos l cos R ()I
·

r·+ 0=

o

 x r o+=

M 3
Nf 0= Ns 0=

M 3=

Mobile Robot Kinematics 87
An alternative way to describe a holonomic robot is based on the relationship between
the differential degrees of freedom of a robot and the degrees of freedom of its workspace:
a robot is holonomic if and only if = . Intuitively, this is because it is only
through nonholonomic constraints (imposed by steerable or fixed standard wheels) that a
robot can achieve a workspace with degrees of freedom exceeding its differential degrees
of freedom, > . Examples include differential drive and bicycle/tricycle con-
figurations.

In mobile robotics, useful chassis generally must achieve poses in a workspace with
dimensionality 3, so in general we require for the chassis. But the “holonomic”
abilities to maneuver around obstacles without affecting orientation and to track at a target
while following an arbitrary path are important additional considerations. For these rea-
sons, the particular form of holonomy most relevant to mobile robotics is that of

. We define this class of robot configurations as omnidirectional: an
omnidirectional robot is a holonomic robot with .

3.4.3 Path and trajectory considerations
In mobile robotics, we care not only about the robot’s ability to reach the required final con-
figurations but also about how it gets there. Consider the issue of a robot’s ability to follow
paths: in the best case, a robot should be able to trace any path through its workspace of
poses. Clearly, any omnidirectional robot can do this because it is holonomic in a three-
dimensional workspace. Unfortunately, omnidirectional robots must use unconstrained
wheels, limiting the choice of wheels to Swedish wheels, castor wheels, and spherical
wheels. These wheels have not yet been incorporated into designs that allow far larger
amounts of ground clearance and suspensions. Although powerful from a path space point
of view, they are thus much less common than fixed and steerable standard wheels, mainly
because their design and fabrication are somewhat complex and expensive.

Additionally, nonholonomic constraints might drastically improve stability of move-
ments. Consider an omnidirectional vehicle driving at high speed on a curve with constant
diameter. During such a movement the vehicle will be exposed to a non-negligible centrip-
etal force. This lateral force pushing the vehicle out of the curve has to be counteracted by
the motor torque of the omnidirectional wheels. In case of motor or control failure, the vehi-
cle will be thrown out of the curve. However, for a carlike robot with kinematic constraints,
the lateral forces are passively counteracted through the sliding constraints, mitigating the
demands on motor torque.

But recall an earlier example of high maneuverability using standard wheels: the bicycle
on which both wheels are steerable, often called the two-steer. This vehicle achieves a
degree of steerability of 2, resulting in a high degree of maneuverability:

. Interestingly, this configuration is not holonomic, yet it has a
high degree of maneuverability in a workspace with .

DDOF DOF

DOF DDOF

DOF 3=

DDOF DOF 3= =
DDOF 3=

M m= s+ 1 2+ 3= =
DOF 3=

88 Chapter 3
The maneuverability result, , means that the two-steer can select any by
appropriately steering its two wheels. So, how does this compare to an omnidirectional
robot? The ability to manipulate its in the plane means that the two-steer can follow
any path in its workspace. More generally, any robot with can follow any path in
its workspace from its initial pose to its final pose. An omnidirectional robot can also follow
any path in its workspace and, not surprisingly, since in an omnidirectional robot,
then it must follow that .

But there is still a difference between a degree of freedom granted by steering versus by
direct control of wheel velocity. This difference is clear in the context of trajectories rather
than paths. A trajectory is like a path, except that it occupies an additional dimension: time.
Therefore, for an omnidirectional robot on the ground plane, a path generally denotes a
trace through a 3D space of pose; for the same robot, a trajectory denotes a trace through
the 4D space of pose plus time.

For example, consider a goal trajectory in which the robot moves along axis at a con-
stant speed of 1 m/s for 1 second, then changes orientation counterclockwise 90 degrees
also in 1 second, then moves parallel to axis for 1 final second. The desired 3-second
trajectory is shown in figure 3.15, using plots of and in relation to time.

M 3= ICR

ICR
M 3=

m 3=
M 3=

Figure 3.15
Example of robot trajectory with omnidirectional robot: move for 1 second with constant speed of
1 m/s along axis ; change orientation counterclockwise 90 degree, in 1 second; move for 1 second
with constant speed of 1 m/s along axis .

XI
YI

YI

XI

x, y,

t / [s]

y(t)

x(t)

(t)

1 2 3

XI

YI

x y

Mobile Robot Kinematics 89
Figure 3.16
Example of robot trajectory similar to figure 3.15 with two steered wheels: move for 1 second with
constant speed of 1 m/s along axis ; rotate steered wheels -50 / 50 degree respectively; change ori-
entation counterclockwise 90 degree in 1 second; rotate steered wheels 50 / -50 degree respectively;
move for 1 second with constant speed of 1 m/s along axis .

XI

YI

YI

XI

x, y,

t / [s]

y(t)
x(t)

(t)

1 2 3 4 5

s1, s2

60°

-60°

s1

s2

90 Chapter 3
Can the omnidirectional robot accomplish this trajectory? We assume that the robot can
achieve some arbitrary, finite velocity at each wheel. For simplicity, we further assume that
acceleration is infinite; that is, it takes zero time to reach any desired velocity. Under these
assumptions, the omnidirectional robot can indeed follow the trajectory of figure 3.15. The
transition between the motion of second 1 and second 2, for example, involves only
changes to the wheel velocities.

Because the two-steer has , it must be able to follow the path that would result
from projecting this trajectory into timeless workspace. However, it cannot follow this 4D
trajectory. Even if steering velocity is finite and arbitrary, although the two-steer would be
able to change steering speed instantly, it would have to wait for the angle of the steerable
wheels to change to the desired position before initiating a change in the robot chassis ori-
entation. In short, the two-steer requires changes to internal degrees of freedom and
because these changes take time, arbitrary trajectories are not attainable. Figure 3.16
depicts the most similar trajectory that a two-steer can achieve. In contrast to the desired
three phases of motion, this trajectory has five phases.

3.5 Beyond Basic Kinematics

This discussion of mobile robot kinematics is only an introduction to a far richer topic.
When speed and force are also considered, as is particularly necessary in the case of high-
speed mobile robots, dynamic constraints must be expressed in addition to kinematic con-
straints. Furthermore, many mobile robots such as tank-type chassis and four-wheel slip/
skid systems violate the preceding kinematic models. When analyzing such systems, it is
often necessary to explicitly model the dynamics of viscous friction between the robot and
the ground plane.

More significantly, the kinematic analysis of a mobile robot system provides results
concerning the theoretical workspace of that mobile robot. However, to move effectively
in this workspace a mobile robot must have appropriate actuation of its degrees of freedom.
This problem, called motorization, requires further analysis of the forces that must be
actively supplied to realize the kinematic range of motion available to the robot.

In addition to motorization, there is the question of controllability: under what condi-
tions can a mobile robot travel from the initial pose to the goal pose in bounded time?
Answering this question requires knowledge, both knowledge of the robot kinematics and
knowledge of the control systems that can be used to actuate the mobile robot. Mobile robot
control is therefore a return to the practical question of designing a real-world control algo-
rithm that can drive the robot from pose to pose using the trajectories demanded for the
application.

M 3=

Mobile Robot Kinematics 91
3.6 Motion Control (Kinematic Control)

As we have seen, motion control might not be an easy task for nonholonomic systems.
However, it has been studied by various research groups, for example, [10, 61, 90, 92, 300],
and some adequate solutions for motion control of a mobile robot system are available.

3.6.1 Open loop control (trajectory-following)
The objective of a kinematic controller is to follow a trajectory described by its position or
velocity profile as a function of time. This is often done by dividing the trajectory (path) in
motion segments of clearly defined shape, for example, straight lines and segments of a cir-
cle. The control problem is thus to precompute a smooth trajectory based on line and circle
segments that drives the robot from the initial position to the final position (figure 3.17).
This approach can be regarded as open-loop motion control, because the measured robot
position is not fed back for velocity or position control. It has several disadvantages:

• It is not at all an easy task to precompute a feasible trajectory if all limitations and con-
straints of the robot’s velocities and accelerations have to be considered.

Figure 3.17
Open-loop control of a mobile robot based on straight lines and circular trajectory segments.

YI

XI

goal

92 Chapter 3
• The robot will not automatically adapt or correct the trajectory if dynamic changes of
the environment occur.

• The resulting trajectories are usually not smooth, because the transitions from one tra-
jectory segment to another are, for most of the commonly used segments (e.g., lines and
part of circles), not smooth. This means there is a discontinuity in the robot’s accelera-
tion.

3.6.2 Feedback control
A more appropriate approach in motion control of a mobile robot is to use a real-state feed-
back controller. With such a controller the robot’s path-planning task is reduced to setting
intermediate positions (subgoals) lying on the requested path. One useful solution for a sta-
bilizing feedback control of differential-drive mobile robots is presented in section 3.6.2.1.
It is very similar to the controllers presented in [61, 189]. Others can be found in [10, 90,
92, 300].

3.6.2.1 Problem statement
Consider the situation shown in figure 3.18,with an arbitrary position and orientation of the
robot and a predefined goal position and orientation. The actual pose error vector given in

Figure 3.18
Typical situation for feedback control of a mobile robot

YR

XR

goal

v(t)

(t)

start

Mobile Robot Kinematics 93
the robot reference frame is with , and being the goal
coordinates of the robot.

The task of the controller layout is to find a control matrix , if it exists

 with , (3.45)

such that the control of and

 (3.46)

drives the error toward zero.2

2. Remember that v(t) is always heading in the XR direction of the robot’s reference frame due to the
nonholonomic constraint.

XR YR e x y R T
= x y

K

Figure 3.19
Robot kinematics and its frames of interest.

YR

XR

goal

v

x̂

x

YG=YI

XG=XI

y

K
k11 k12 k13

k21 k22 k23

= kij k t e =

v t t

v t
 t

K e K

x

y

R

= =

e

94 Chapter 3
. (3.47)

3.6.2.2 Kinematic model
We assume, without loss of generality, that the goal is at the origin of the inertial frame (fig-
ure 3.19). In the following the position vector is always represented in the inertial
frame.

The kinematics of a differential-drive mobile robot described in the inertial frame
 is given by

. (3.48)

where and are the linear velocities in the direction of the and of the inertial
frame.

Let denote the angle between the xR axis of the robot’s reference frame and the vector
 connecting the center of the axle of the wheels with the final position. If , where

, (3.49)

then consider the coordinate transformation into polar coordinates with its origin at the goal
position.

. (3.50)

. (3.51)

. (3.52)

This yields a system description, in the new polar coordinates, using a matrix equation

e t
t
lim 0=

x y T

XI YI

x·

y·

·

I
cos 0

sin 0

0 1

v

=

x· y· XI YI

x̂ I1

I1

2
---–

2

=

 x2 y2+=

 – 2 y x atan+=

 – –=

Mobile Robot Kinematics 95
, (3.53)

where is the distance between the center of the robot’s wheel axle and the goal position,
 denotes the angle between the axis of the robot reference frame and the axis asso-

ciated with the final position, and v and are the tangent and the angular velocity respec-
tively.

On the other hand, if , where

, (3.54)

redefining the forward direction of the robot by setting , we obtain a system
described by a matrix equation of the form

. (3.55)

3.6.2.3 Remarks on the kinematic model in polar coordinates [eq. (3.53) and (3.55)]

• The coordinate transformation is not defined at ; in such a point the deter-
minant of the Jacobian matrix of the transformation is not defined, that is unbounded.

• For the forward direction of the robot points toward the goal; for it is the
reverse direction.

• By properly defining the forward direction of the robot at its initial configuration, it is
always possible to have at . However, this does not mean that remains
in for all time . Hence, to avoid that the robot changes direction during approaching
the goal, it is necessary to determine, if possible, the controller in such a way that
for all , whenever . The same applies for the reverse direction (see the fol-
lowing stability issues).

·

·

·

cos– 0

sin

----------- 1–

sin

-----------– 0

v

=

 XR XI

 I2

I2 – 2– 2 =

v v–=

·

·

·

cos 0

sin

-----------– 1

sin

----------- 0

v

=

x y 0= =

 I1 I2

 I1 t 0=
II t

 I1
t 0 I1

96 Chapter 3
3.6.2.4 The control law
The control signals and must now be designed to drive the robot from its actual con-
figuration, say , to the goal position. It is obvious that equation (3.53) presents
a discontinuity at ; thus, the theorem of Brockett does not obstruct smooth stabiliz-
ability.

If we consider now the linear control law

, (3.56)

, (3.57)

we get with equation (3.53) a closed-loop system described by

. (3.58)

The system does not have any singularity at and has a unique equilibrium point
at . Thus, it will drive the robot to this point, which is the goal posi-
tion.

• In the Cartesian coordinate system the control law (equation [3.57]) leads to equations
that are not defined at .

• Be aware of the fact that the angles and have always to be expressed in the range
.

• Observe that the control signal always has a constant sign—that is, it is positive when-
ever and it is always negative otherwise. This implies that the robot performs
its parking maneuver always in a single direction and without reversing its motion.

In figure 3.20 you find the resulting paths when the robot is initially on a circle in the
plane. All movements have smooth trajectories toward the goal in the center. The con-

trol parameters for this simulation were set to

. (3.59)

v
0 0 0
 0=

v k=

 k k+=

·

·

·

k– cos

k sin k k––

k– sin

=

 0=
 0 0 0 =

x y 0= =

–

v
 0 I1

xy

k k k k 3 8 1.5– = =

Mobile Robot Kinematics 97
Figure 3.20
Resulting paths when the robot is initially on the unit circle in the x,y plane.

98 Chapter 3
3.6.2.5 Local stability issue
It can further be shown that the closed-loop control system (equation [3.58]) is locally
exponentially stable if

 ; ; . (3.60)

Proof:
Linearized around the equilibrium (,) position, equation (3.58) can

be written as

, (3.61)

hence it is locally exponentially stable if the eigenvalues of the matrix

 (3.62)

all have a negative real part. The characteristic polynomial of the matrix is

 (3.63)

and all roots have negative real part if

 ; ; , (3.64)

which proves the claim.
For robust position control, it might be advisable to apply the strong stability condition,

which ensures that the robot does not change direction during its approach to the goal:

 ; ; . (3.65)

k 0 k 0 k k– 0

xcos 1= xsin x=

·

·

·

k– 0 0

0 k k– – k–

0 k– 0

=

A

k– 0 0

0 k k– – k–

0 k– 0

=

A

 k+ 2 k k– kk–+

k 0 k– 0 k k– 0

k 0 k 0 k
5
3
---k

2

---k

–+ 0

Mobile Robot Kinematics 99
This implies that for all t, whenever and for all , whenever
 respectively. This strong stability condition has also been verified in applica-

tions.

3.7 Problems

1. Suppose a differential drive robot has wheels of differing diameters. The left wheel has
diameter 2 and the right wheel has diameter 3. l = 5 for both wheels. The robot is posi-
tioned at . The robot spins both wheels at a speed of 6. Compute the robot's
instantaneous velocity in the global reference frame. Specify , , and .

2. Consider a robot with two powered spherical wheels and a passive castor wheel (no
power). Derive the kinematics equations of the form of 3.30 and 3.33 for this robot.

3. Determine the degrees of mobility, steerability, and maneuverability for each of the fol-
lowing: (a) bicycle; (b) dynamically balanced robot with a single spherical wheel; (c)
automobile.

4. Challenge Question
Consider the robot of figure 3.10 with dimensions l = 10 and r = 1. Suppose you wish to
command this robot in its local reference frame with speed , , and . Write a formula
translating the desired , , into speeds for all three wheels. Specifically, identify ,

, and such that:

 I1 0 I1 I2 t
 0 I2

 4=

x· y· ·

x· y· ·

x· y· · f1

f2 f3

1 f1 x· y· · =

2 f2 x· y· · =

3 f3 x· y· · =

4 Perception

One of the most important tasks of an autonomous system of any kind is to acquire knowl-
edge about its environment. This is done by taking measurements using various sensors and
then extracting meaningful information from those measurements.

In this chapter we present the most common sensors used in mobile robots and then dis-
cuss strategies for extracting information from the sensors. For more detailed information
about many of the sensors used on mobile robots, refer to H.R. Everett’s comprehensive
book Sensors for Mobile Robots [20].

4.1 Sensors for Mobile Robots

A wide variety of sensors is used in mobile robots (figure 4.1). Some sensors are used to
measure simple values such as the internal temperature of a robot’s electronics or the rota-
tional speed of the motors. Other more sophisticated sensors can be used to acquire infor-
mation about the robot’s environment or even to measure directly a robot’s global position.
In this chapter we focus primarily on sensors used to extract information about the robot’s
environment. Because a mobile robot moves around, it will frequently encounter unfore-
seen environmental characteristics, and therefore such sensing is particularly critical. We
begin with a functional classification of sensors. Then, after presenting basic tools for
describing a sensor’s performance, we proceed to describe selected sensors in detail.

4.1.1 Sensor classification
We classify sensors using two important functional axes: proprioceptive/exteroceptive and
passive/active.

Proprioceptive sensors measure values internal to the system (robot), for example,
motor speed, wheel load, robot arm joint angles, and battery voltage.

Exteroceptive sensors acquire information from the robot’s environment, for example,
distance measurements, light intensity, and sound amplitude. Hence exteroceptive sensor
measurements are interpreted by the robot in order to extract meaningful environmental
features.

102 Chapter 4
Passive sensors measure ambient environmental energy entering the sensor. Examples
of passive sensors include temperature probes, microphones, and CCD or CMOS cameras.

Active sensors emit energy into the environment, then measure the environmental reac-
tion. Because active sensors can manage more controlled interactions with the environ-
ment, they often achieve superior performance. However, active sensing introduces several
risks: the outbound energy may affect the very characteristics that the sensor is attempting
to measure. Furthermore, an active sensor may suffer from interference between its signal

Figure 4.1
Examples of robots with multisensor systems: (a) HelpMate from Transition Research Corporation;
(b) B21 from Real World Interface; (c) BIBA Robot, BlueBotics SA.

b)

c)

Sonar Sensors

Pan-Tilt
Stereo Camera

IR Sensors

Pan-Tilt
Camera

Omnidirectional
Camera

IMU
Inertial

Measurement
Unit

Sonar
Sensors

Laser
Range
Scanner

Bumper

Emergency
Stop

Button

Wheel
Encoders

a)

Perception 103
and those beyond its control. For example, signals emitted by other nearby robots, or sim-
ilar sensors on the same robot, may influence the resulting measurements. Examples of
active sensors include wheel quadrature encoders, ultrasonic sensors, and laser rangefind-
ers.

Table 4.1 provides a classification of the most useful sensors for mobile robot applica-
tions. The most interesting sensors are discussed in this chapter. The sensor classes in table
4.1 are arranged in ascending order of complexity and descending order of technological
maturity. Tactile sensors and proprioceptive sensors are critical to virtually all mobile
robots and are well understood and easily implemented. Commercial quadrature encoders,
for example, may be purchased as part of a gear-motor assembly used in a mobile robot. At
the other extreme, visual interpretation by means of one or more CCD/CMOS cameras pro-
vides a broad array of potential functionalities, from obstacle avoidance and localization to
human face recognition. However, commercially available sensor units that provide visual
functionalities are only now beginning to emerge [172, 346].

4.1.2 Characterizing sensor performance
The sensors we describe in this chapter vary greatly in their performance characteristics.
Some sensors provide extreme accuracy in well-controlled laboratory settings but are over-
come with error when subjected to real-world environmental variations. Other sensors pro-
vide narrow, high-precision data in a wide variety of settings. In order to quantify such
performance characteristics, first we formally define the sensor performance terminology
that will be valuable throughout the rest of this chapter.

4.1.2.1 Basic sensor response ratings
A number of sensor characteristics can be rated quantitatively in a laboratory setting. Such
performance ratings will necessarily be best-case scenarios when the sensor is placed on a
real-world robot, but are nevertheless useful.

Dynamic range is used to measure the spread between the lower and upper limits of
input values to the sensor while maintaining normal sensor operation. Formally, the
dynamic range is the ratio of the maximum input value to the minimum measurable input
value. Because this raw ratio can be unwieldy, it is usually measured in decibels, which are
computed as ten times the common logarithm of the dynamic range. However, there is
potential confusion in the calculation of decibels, which are meant to measure the ratio
between powers, such as watts or horsepower. Suppose your sensor measures motor current
and can register values from a minimum of 1 mA to 20 mA. The dynamic range of this cur-
rent sensor is defined as

104 Chapter 4
Table 4.1
Classification of sensors used in mobile robotics applications

General classification
(typical use)

Sensor
Sensor System

PC or
EC A or P

Tactile sensors
(detection of physical contact or
closeness; security switches)

Contact switches, bumpers
Optical barriers
Noncontact proximity sensors

EC
EC
EC

P
A
A

Wheel/motor sensors
(wheel/motor speed and position)

Brush encoders
Potentiometers
Synchros, resolvers
Optical encoders
Magnetic encoders
Inductive encoders
Capacitive encoders

PC
PC
PC
PC
PC
PC
PC

P
P
A
A
A
A
A

Heading sensors
(orientation of the robot in relation to
a fixed reference frame)

Compass
Gyroscopes
Inclinometers

EC
PC
EC

P
P
A/P

Acceleration sensor Accelerometer PC P

Ground beacons
(localization in a fixed reference
frame)

GPS
Active optical or RF beacons
Active ultrasonic beacons
Reflective beacons

EC
EC
EC
EC

A
A
A
A

Active ranging
(reflectivity, time-of-flight, and geo-
metric triangulation)

Reflectivity sensors
Ultrasonic sensor
Laser rangefinder
Optical triangulation (1D)
Structured light (2D)

EC
EC
EC
EC
EC

A
A
A
A
A

Motion/speed sensors
(speed relative to fixed or moving
objects)

Doppler radar
Doppler sound

EC
EC

A
A

Vision sensors
(visual ranging, whole-image analy-
sis, segmentation, object recognition)

CCD/CMOS camera(s)
Visual ranging packages
Object tracking packages

EC P

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive.

Perception 105
. (4.1)

Now suppose you have a voltage sensor that measures the voltage of your robot’s bat-
tery, measuring any value from 1 mV to 20 V. Voltage is not a unit of power, but the square
of voltage is proportional to power. Therefore, we use 20 instead of 10:

. (4.2)

Range is also an important rating in mobile robot applications because often robot sen-
sors operate in environments where they are frequently exposed to input values beyond
their working range. In such cases, it is critical to understand how the sensor will respond.
For example, an optical rangefinder will have a minimum operating range and can thus pro-
vide spurious data when measurements are taken with the object closer than that minimum.

Resolution is the minimum difference between two values that can be detected by a sen-
sor. Usually, the lower limit of the dynamic range of a sensor is equal to its resolution.
However, in the case of digital sensors, this is not necessarily so. For example, suppose that
you have a sensor that measures voltage, performs an analog-to-digital (A/D) conversion,
and outputs the converted value as an 8-bit number linearly corresponding to between 0 and
5 V. If this sensor is truly linear, then it has total output values, or a resolution of

.
Linearity is an important measure governing the behavior of the sensor’s output signal

as the input signal varies. A linear response indicates that if two inputs x and y result in the
two outputs and , then for any values and , . This
means that a plot of the sensor’s input/output response is simply a straight line.

Bandwidth or frequency is used to measure the speed with which a sensor can provide a
stream of readings. Formally, the number of measurements per second is defined as the sen-
sor’s frequency in hertz. Because of the dynamics of moving through their environment,
mobile robots often are limited in maximum speed by the bandwidth of their obstacle detec-
tion sensors. Thus, increasing the bandwidth of ranging and vision sensors has been a high-
priority goal in the robotics community.

4.1.2.2 In situ sensor performance
These sensor characteristics can be reasonably measured in a laboratory environment with
confident extrapolation to performance in real-world deployment. However, a number of
important measures cannot be reliably acquired without deep understanding of the complex
interaction between all environmental characteristics and the sensors in question. This is

10
20

0.001
------------- 43 dB=log

20
20

0.001
------------- 86 dB=log

2
8

1–
5 V 255 20 mV=

f x f y a b f ax by+ af x bf y +=

106 Chapter 4
most relevant to the most sophisticated sensors, including active ranging sensors and visual
interpretation sensors.

Sensitivity itself is a desirable trait. This is a measure of the degree to which an incre-
mental change in the target input signal changes the output signal. Formally, sensitivity is
the ratio of output change to input change. Unfortunately, however, the sensitivity of
exteroceptive sensors is often confounded by undesirable sensitivity and performance cou-
pling to other environmental parameters.

Cross-sensitivity is the technical term for sensitivity to environmental parameters that
are orthogonal to the target parameters for the sensor. For example, a flux-gate compass can
demonstrate high sensitivity to magnetic north and is therefore of use for mobile robot nav-
igation. However, the compass will also demonstrate high sensitivity to ferrous building
materials, so much so that its cross-sensitivity often makes the sensor useless in some
indoor environments. High cross-sensitivity of a sensor is generally undesirable, especially
when it cannot be modeled.

Error of a sensor is defined as the difference between the sensor’s output measurements
and the true values being measured, within some specific operating context. Given a true
value v and a measured value m, we can define error as .

Accuracy is defined as the degree of conformity between the sensor’s measurement and
the true value, and is often expressed as a proportion of the true value (e.g., 97.5% accu-
racy). Thus small error corresponds to high accuracy and vice versa:

. (4.3)

Of course, obtaining the ground truth, , can be difficult or impossible, and so establish-
ing a confident characterization of sensor accuracy can be problematic. Furthermore, it is
important to distinguish between two different sources of error:

Systematic errors are caused by factors or processes that can in theory be modeled.
These errors are, therefore, deterministic (i.e., predictable). Poor calibration of a laser
rangefinder, an unmodeled slope of a hallway floor, and a bent stereo camera head due to
an earlier collision are all possible causes of systematic sensor errors.

Random errors cannot be predicted using a sophisticated model; neither can they be mit-
igated by more precise sensor machinery. These errors can only be described in probabilis-
tic terms (i.e., stochastically). Hue instability in a color camera, spurious rangefinding
errors, and black level noise in a camera are all examples of random errors.

Precision is often confused with accuracy, and now we have the tools to clearly distin-
guish these two terms. Intuitively, high precision relates to reproducibility of the sensor
results. For example, one sensor taking multiple readings of the same environmental state
has high precision if it produces the same output. In another example, multiple copies of

error m v–=

accuracy 1
error

v
-----------------–=

v

Perception 107
this sensor taking readings of the same environmental state have high precision if their out-
puts agree. Precision does not, however, have any bearing on the accuracy of the sensor’s
output with respect to the true value being measured. Suppose that the random error of a
sensor is characterized by some mean value and a standard deviation . The formal def-
inition of precision is the ratio of the sensor’s output range to the standard deviation:

. (4.4)

Note that only and not has impact on precision. In contrast, mean error is
directly proportional to overall sensor error and inversely proportional to sensor accuracy.

4.1.2.3 Characterizing error: The challenges in mobile robotics
Mobile robots depend heavily on exteroceptive sensors. Many of these sensors concentrate
on a central task for the robot: acquiring information on objects in the robot’s immediate
vicinity so that it may interpret the state of its surroundings. Of course, these “objects” sur-
rounding the robot are all detected from the viewpoint of its local reference frame. Since
the systems we study are mobile, their ever-changing position and their motion have a sig-
nificant impact on overall sensor behavior. In this section, empowered with the terminol-
ogy of the earlier discussions, we describe how dramatically the sensor error of a mobile
robot disagrees with the ideal picture drawn in the previous section.

Blurring of systematic and random errors. Active ranging sensors tend to have failure
modes that are triggered largely by specific relative positions of the sensor and environment
targets. For example, a sonar sensor will produce specular reflections, producing grossly
inaccurate measurements of range, at specific angles to a smooth sheetrock wall. During
motion of the robot, such relative angles occur at stochastic intervals. This is especially true
in a mobile robot outfitted with a ring of multiple sonars. The chances of one sonar entering
this error mode during robot motion is high. From the perspective of the moving robot, the
sonar measurement error is a random error in this case. Yet, if the robot were to stop,
becoming motionless, then a very different error modality is possible. If the robot’s static
position causes a particular sonar to fail in this manner, the sonar will fail consistently and
will tend to return precisely the same (and incorrect!) reading time after time. Once the
robot is motionless, the error appears to be systematic and of high precision.

The fundamental mechanism at work here is the cross-sensitivity of mobile robot sen-
sors to robot pose and robot-environment dynamics. The models for such cross-sensitivity
are not, in an underlying sense, truly random. However, these physical interrelationships
are rarely modeled, and therefore, from the point of view of an incomplete model, the errors
appear random during motion and systematic when the robot is at rest.

Sonar is not the only sensor subject to this blurring of systematic and random error
modality. Visual interpretation through the use of a CCD camera is also highly susceptible

precision
range

---------------=

108 Chapter 4
to robot motion and position because of camera dependence on lighting changes, lighting
specularity (e.g., glare), and reflections. The important point is to realize that, while sys-
tematic error and random error are well defined in a controlled setting, the mobile robot can
exhibit error characteristics that bridge the gap between deterministic and stochastic error
mechanisms.

Multimodal error distributions. It is common to characterize the behavior of a sensor’s
random error in terms of a probability distribution over various output values. In general,
one knows very little about the causes of random error, and therefore several simplifying
assumptions are commonly used. For example, we can assume that the error is zero-mean
in that it symmetrically generates both positive and negative measurement error. We can
go even further and assume that the probability density curve is Gaussian. Although we dis-
cuss the mathematics of this in detail in section 4.1.3, it is important for now to recognize
the fact that one frequently assumes symmetry as well as unimodal distribution. This means
that measuring the correct value is most probable, and any measurement that is farther away
from the correct value is less likely than any measurement that is closer to the correct value.
These are strong assumptions that enable powerful mathematical principles to be applied
to mobile robot problems, but it is important to realize how wrong these assumptions usu-
ally are.

Consider, for example, the sonar sensor once again. When ranging an object that reflects
the sound signal well, the sonar will exhibit high accuracy and will induce random error
based on noise, for example, in the timing circuitry. This portion of its sensor behavior will
exhibit error characteristics that are fairly symmetric and unimodal. However, when the
sonar sensor is moving through an environment and is sometimes faced with materials that
cause coherent reflection rather than return the sound signal to the sonar sensor, then the
sonar will grossly overestimate the distance to the object. In such cases, the error will be
biased toward positive measurement error and will be far from the correct value. The error
is not strictly systematic, and so we are left modeling it as a probability distribution of
random error. So the sonar sensor has two separate types of operational modes, one in
which the signal does return and some random error is possible, and the second in which
the signal returns after a multipath reflection and gross overestimation error occurs. The
probability distribution could easily be at least bimodal in this case, and since overestima-
tion is more common than underestimation, it will also be asymmetric.

As a second example, consider ranging via stereo vision. Once again, we can identify
two modes of operation. If the stereo vision system correctly correlates two images, then
the resulting random error will be caused by camera noise and will limit the measurement
accuracy. But the stereo vision system can also correlate two images incorrectly, matching
two fenceposts, for example, that are not the same post in the real world. In such a case
stereo vision will exhibit gross measurement error, and one can easily imagine such behav-
ior violating both the unimodal and the symmetric assumptions.

Perception 109
The thesis of this section is that sensors in a mobile robot may be subject to multiple
modes of operation and, when the sensor error is characterized, unimodality and symmetry
may be grossly violated. Nonetheless, as we shall see, many successful mobile robot sys-
tems make use of these simplifying assumptions and the resulting mathematical techniques
with great empirical success.

4.1.3 Representing uncertainty
In section 4.1.2 we presented a terminology for describing the performance characteristics
of a sensor. As mentioned there, sensors are imperfect devices with errors of both system-
atic and random nature. Random errors, in particular, cannot be corrected, and so they rep-
resent atomic levels of sensor uncertainty.

But when you build a mobile robot, you combine information from many sensors, even
using the same sensors repeatedly, over time, to build, possibly, a model of the environ-
ment. How can we scale up, from characterizing the uncertainty of a single sensor to the
uncertainty of the resulting robot system?

We begin by presenting a statistical representation for the random error associated with
an individual sensor [14]. With a quantitative tool in hand, the standard Gaussian uncer-
tainty model can be presented and evaluated. Finally, we present a framework for comput-
ing the uncertainty of conclusions drawn from a set of quantifiably uncertain
measurements, known as the error propagation law.

4.1.3.1 Statistical representation
We have already defined error as the difference between a sensor measurement and the true
value. From a statistical point of view, we wish to characterize the error of a sensor, not for
one specific measurement but for any measurement. Let us formulate the problem of sens-
ing as an estimation problem. The sensor has taken a set of measurements with values

. The goal is to characterize the estimate of the true value given these measure-
ments:

. (4.5)

From this perspective, the true value is represented by a random (and therefore
unknown) variable . We use a probability density function to characterize the statistical
properties of the value of .

In figure 4.2, the density function identifies for each possible value of a probability
density along the -axis. The area under the curve is 1, indicating the complete chance
of having some value:

n
i E X

E X g 1 2 n =

X
X

x X
f x y

X

110 Chapter 4
. (4.6)

The probability of the value of falling between two limits and is computed as
the bounded integral:

 (4.7)

The probability density function is a useful way to characterize the possible values of
because it captures not only the range of but also the comparative probability of different
values for . Using we can quantitatively define the mean, variance, and standard
deviation as follows.

The mean value is equivalent to the expected value if we were to measure
an infinite number of times and average all of the resulting values. We can easily define

:

. (4.8)

Note in this equation that calculation of is identical to the weighted average of all
possible values of . In contrast, the mean square value is simply the weighted average of
the squares of all values of :

Figure 4.2
A sample probability density function, showing a single probability peak (i.e., unimodal) with asymp-
totic drops in both directions.

Probability Density f(x)

Mean

Area = 1

x
0

f x xd
–

 1=

X a b

p a X b f x xd
a

b

=

X
X

X f x

 E X X

E X

 E X xf x xd
–

= =

E X
x

x

Perception 111
. (4.9)

Characterization of the “width” of the possible values of is a key statistical measure,
and this requires first defining the variance :

. (4.10)

Finally, the standard deviation is simply the square root of variance , and will
play important roles in our characterization of the error of a single sensor as well as the error
of a model generated by combining multiple sensor readings.

Independence of random variables. With the tools presented here, we often evaluate
systems with multiple random variables. For instance, a mobile robot’s laser rangefinder
may be used to measure the position of a feature on the robot’s right and, later, another fea-
ture on the robot’s left. The position of each feature in the real world may be treated as
random variables, and .

Two random variables and are independent if the particular value of one has no
bearing on the particular value of the other. In this case we can draw several important con-
clusions about the statistical behavior of and . First, the expected value (or mean
value) of the product of random variables is equal to the product of their mean values:

. (4.11)

Second, the variance of their sums is equal to the sum of their variances:

. (4.12)

In mobile robotics, we often assume the independence of random variables even when
this assumption is not strictly true. The simplification that results makes a number of the
existing mobile robot-mapping and navigation algorithms tenable, as described in
chapter 5. A further simplification, described in the following section, revolves around one
specific probability density function used more often than any other when modeling error:
the Gaussian distribution.

E X
2 x

2
f x xd

–

=

X
2

Var X 2
x – 2

f x xd
–

= =

 2 2

X1 X2

X1 X2

X1 X2

E X1X2 E X1 E X2 =

Var X1 X2+ Var X1 Var X2 +=

112 Chapter 4
Gaussian distribution. The Gaussian distribution, also called the normal distribution, is
used across engineering disciplines when a well-behaved error model is required for a
random variable for which no error model of greater felicity has been discovered. The
Gaussian has many characteristics that make it mathematically advantageous to other ad
hoc probability density functions. It is symmetric around the mean . There is no particular
bias for being larger than or smaller than , and this makes sense when there is no infor-
mation to the contrary. The Gaussian distribution is also unimodal, with a single peak that
reaches a maximum at (necessary for any symmetric, unimodal distribution). This dis-
tribution also has tails (the value of as approaches and) that approach zero
only asymptotically. This means that all amounts of error are possible, although very large
errors may be highly improbable. In this sense, the Gaussian is conservative. Finally, as
seen in the formula for the Gaussian probability density function, the distribution depends
on only two parameters:

. (4.13)

The Gaussian’s basic shape is determined by the structure of this formula, and so the
only two parameters required to fully specify a particular Gaussian are its mean, , and its
standard deviation, . Figure 4.3 shows the Gaussian function with and .

Figure 4.3
The Gaussian function with and . We shall refer to this as the reference Gaussian. The
value is often refereed to as the signal quality; 95.44% of the values fall within .

 0= 1=
2 2

f x 1

 2
-------------- x – 2

22
-------------------–

exp=

--2 2 3-3

68.26%

95.44%

99.72%

f x x –

f x 1

 2
-------------- x – 2

22
-------------------–

exp=

 0= 1=

Perception 113
Suppose that a random variable is modeled as a Gaussian. How does one identify the
chance that the value of is within one standard deviation of ? In practice, this requires
integration of , the Gaussian function to compute the area under a portion of the curve:

. (4.14)

Unfortunately, there is no closed-form solution for the integral in equation (4.14), and
so the common technique is to use a Gaussian cumulative probability table. Using such a
table, one can compute the probability for various value ranges of :

;

;

.

For example, 95% of the values for fall within two standard deviations of its mean.
This applies to any Gaussian distribution. As is clear from the above progression, under the
Gaussian assumption, once bounds are relaxed to , the overwhelming proportion of
values (and, therefore, probability) is subsumed.

4.1.3.2 Error propagation: Combining uncertain measurements
These probability mechanisms may be used to describe the errors associated with a single
sensor’s attempts to measure a real-world value. But in mobile robotics, one often uses a
series of measurements, all of them uncertain, to extract a single environmental measure.
For example, a series of uncertain measurements of single points can be fused to extract the
position of a line (e.g., a hallway wall) in the environment (figure 4.88).

Consider the system in figure 4.4, where are input signals with a known probabil-
ity distribution and are m outputs. The question of interest is this: What can we say about
the probability distribution of the output signals if they depend with known functions

X
X

f x

Area f x xd
–

=

X

p – X + 0.68=

p 2– X 2+ 0.95=

p 3– X 3+ 0.997=

X

3

Figure 4.4
Error propagation in a multiple-input multi-output system with n inputs and m outputs.

X1

Xi

Xn

System

…
…

Y1

Yi

Ym

…
…

Xi n
Yi

Yi

114 Chapter 4
 upon the input signals? Figure 4.5 depicts the 1D version of this error propagation prob-
lem as an example.

The general solution can be generated using the first-order Taylor expansion of . The
output covariance matrix is given by the error propagation law:

, (4.15)

where

 = covariance matrix representing the input uncertainties;

 = covariance matrix representing the propagated uncertainties for the outputs;

 is the Jacobian matrix defined as

. (4.16)

This is also the transpose of the gradient of .

fi

Figure 4.5
One-dimensional case of a nonlinear error propagation problem.

x x+x x– x

y y+

y y–

y

X

Y

f x

fi

CY

CY FXCXFX
T=

CX

CY

Fx

FX f

f1
X1

f1
Xn

: :

fm
X1

fm
Xn

= =

f X

Perception 115
We will not present a detailed derivation here but will use equation (4.15) to solve an
example problem in section 4.7.1.

The preceding sections have presented a terminology with which we can characterize
the advantages and disadvantages of various mobile robot sensors. In the following sec-
tions, we do the same for a sampling of the most commonly used mobile robot sensors
today.

4.1.4 Wheel/motor sensors
Wheel/motor sensors are devices used to measure the internal state and dynamics of a
mobile robot. These sensors have vast applications outside of mobile robotics and, as a
result, mobile robotics has enjoyed the benefits of high-quality, low-cost wheel and motor
sensors that offer excellent resolution. In the next section, we sample just one such sensor,
the optical incremental encoder.

4.1.4.1 Optical encoders
Optical incremental encoders have become the most popular device for measuring angular
speed and position within a motor drive or at the shaft of a wheel or steering mechanism.
In mobile robotics, encoders are used to control the position or speed of wheels and other
motor-driven joints. Because these sensors are proprioceptive, their estimate of position is
best in the reference frame of the robot and, when applied to the problem of robot localiza-
tion, significant corrections are required, as discussed in chapter 5.

An optical encoder is basically a mechanical light chopper that produces a certain
number of sine or square wave pulses for each shaft revolution. It consists of an illumina-
tion source, a fixed grating that masks the light, a rotor disc with a fine optical grid that
rotates with the shaft, and fixed optical detectors. As the rotor moves, the amount of light
striking the optical detectors varies based on the alignment of the fixed and moving grat-
ings. In robotics, the resulting sine wave is transformed into a discrete square wave using a
threshold to choose between light and dark states. Resolution is measured in cycles per rev-
olution (CPR). The minimum angular resolution can be readily computed from an
encoder’s CPR rating. A typical encoder in mobile robotics may have 2000 CPR, while the
optical encoder industry can readily manufacture encoders with 10,000 CPR. In terms of
required bandwidth, it is of course critical that the encoder be sufficiently fast to count at
the shaft spin speeds that are expected. Industrial optical encoders present no bandwidth
limitation to mobile robot applications.

Usually in mobile robotics the quadrature encoder is used. In this case, a second illumi-
nation and detector pair is placed 90 degrees shifted with respect to the original in terms of
the rotor disc. The resulting twin square waves, shown in figure 4.6, provide significantly
more information. The ordering of which square wave produces a rising edge first identifies
the direction of rotation. Furthermore, the four detectably different states improve the res-

116 Chapter 4
olution by a factor of four with no change to the rotor disc. Thus, a 2000 CPR encoder in
quadrature yields 8000 counts. Further improvement is possible by retaining the sinusoidal
wave measured by the optical detectors and performing sophisticated interpolation. Such
methods, although rare in mobile robotics, can yield 1000-fold improvements in resolution.

As with most proprioceptive sensors, encoders are generally in the controlled environ-
ment of a mobile robot’s internal structure, and so systematic error and cross-sensitivity can
be engineered away. The accuracy of optical encoders is often assumed to be 100% and,
although this may not be entirely correct, any errors at the level of an optical encoder are
dwarfed by errors downstream of the motor shaft.

4.1.5 Heading sensors
Heading sensors can be proprioceptive (gyroscope, inclinometer) or exteroceptive (com-
pass). They are used to determine the robot’s orientation and inclination. They allow us,
together with appropriate velocity information, to integrate the movement to a position esti-
mate. This procedure, which has its roots in vessel and ship navigation, is called dead reck-
oning.

4.1.5.1 Compasses
The two most common modern sensors for measuring the direction of a magnetic field are
the Hall effect and flux gate compasses. Each has advantages and disadvantages, as
described below.

The Hall effect describes the behavior of electric potential in a semiconductor when in
the presence of a magnetic field. When a constant current is applied across the length of a
semiconductor, there will be a voltage difference in the perpendicular direction, across the
semiconductor’s width, based on the relative orientation of the semiconductor to magnetic
flux lines. In addition, the sign of the voltage potential identifies the direction of the mag-

Figure 4.6
Quadrature optical wheel encoder: The observed phase relationship between channel A and B pulse
trains are used to determine the direction of the rotation. A single slot in the outer track generates a
reference (index) pulse per revolution.

s1

s2

s3

s4

high

high

high

high

low

low low

low

State Ch A Ch B

Perception 117
netic field. Thus, a single semiconductor provides a measurement of flux and direction
along one dimension. Hall effect digital compasses are popular in mobile robotics, and they
contain two such semiconductors at right angles, providing two axes of magnetic field
(thresholded) direction, thereby yielding one of eight possible compass directions. The
instruments are inexpensive but also suffer from a range of disadvantages. Resolution of a
digital Hall effect compass is poor. Internal sources of error include the nonlinearity of the
basic sensor and systematic bias errors at the semiconductor level. The resulting circuitry
must perform significant filtering, and this lowers the bandwidth of Hall effect compasses
to values that are slow in mobile robot terms. For example, the Hall effect compass pictured
in figure 4.7 needs 2.5 seconds to settle after a 90-degree spin.

The flux gate compass operates on a different principle. Two small coils are wound on
ferrite cores and are fixed perpendicular to one another. When alternating current is acti-
vated in both coils, the magnetic field causes shifts in the phase depending on its relative
alignment with each coil. By measuring both phase shifts, the direction of the magnetic
field in two dimensions can be computed. The flux gate compass can accurately measure
the strength of a magnetic field and has improved resolution and accuracy; however, it is
both larger and more expensive than a Hall effect compass.

Regardless of the type of compass used, a major drawback concerning the use of Earth’s
magnetic field for mobile robot applications involves disturbance of that magnetic field by
other magnetic objects and man-made structures, as well as the bandwidth limitations of
electronic compasses and their susceptibility to vibration. Particularly in indoor environ-
ments, mobile robotics applications have often avoided the use of compasses, although a
compass can conceivably provide useful local orientation information indoors, even in the
presence of steel structures.

Figure 4.7
Digital compass: Sensors such as the digital/analog Hall effect sensor shown, available from Dins-
more, enable inexpensive (< $ 15) sensing of magnetic fields.

118 Chapter 4
4.1.5.2 Gyroscopes
Gyroscopes are heading sensors that preserve their orientation in relation to a fixed refer-
ence frame. Thus, they provide an absolute measure for the heading of a mobile system.
Gyroscopes can be classified in two categories, mechanical gyroscopes and optical gyro-
scopes.

Mechanical gyroscopes. The concept of a mechanical gyroscope relies on the inertial
properties of a fast-spinning rotor. The property of interest is known as the gyroscopic pre-
cession. If you try to rotate a fast-spinning wheel around its vertical axis, you will feel a
harsh reaction in the horizontal axis. This is due to the angular momentum associated with
a spinning wheel and will keep the axis of the gyroscope inertially stable. The reactive
torque and thus the tracking stability with the inertial frame are proportional to the spin-
ning speed , the precession speed , and the wheel’s inertia .

. (4.17)

By arranging a spinning wheel, as seen in figure 4.8, no torque can be transmitted from
the outer pivot to the wheel axis. The spinning axis will therefore be space-stable (i.e., fixed
in an inertial reference frame). Nevertheless, the remaining friction in the bearings of the
gyro axis introduce small torques, thus limiting the long-term space stability and introduc-

 I

 I=

Figure 4.8
Two-axis mechanical gyroscope.

Perception 119
ing small errors over time. A high quality mechanical gyroscope can cost up to $100,000
and has an angular drift of about 0.1 degrees in 6 hours.

For navigation, the spinning axis has to be initially selected. If the spinning axis is
aligned with the north-south meridian, the earth’s rotation has no effect on the gyro’s hor-
izontal axis. If it points east-west, the horizontal axis reads the earth rotation.

Rate gyros have the same basic arrangement as shown in figure 4.8, but with a slight
modification. The gimbals are restrained by a torsional spring with additional viscous
damping. This enables the sensor to measure angular speeds instead of absolute orientation.

Optical gyroscopes. Optical gyroscopes are a relatively new innovation. Commercial use
began in the early 1980s when they were first installed in aircraft. Optical gyroscopes are
angular speed sensors that use two monochromatic light beams, or lasers, emitted from the
same source, instead of moving, mechanical parts. They work on the principle that the
speed of light remains unchanged and, therefore, geometric change can cause light to take
a varying amount of time to reach its destination. One laser beam is sent traveling clockwise
through an optical fiber while the other travels counterclockwise. Because the laser travel-
ing in the direction of rotation has a slightly shorter path, it will have a higher frequency.
This principle is known as the Sagnac effect. The difference in frequency of the two
beams is proportional to the angular velocity of the cylinder. To make the difference
measurable, the sensor is a coil consisting of as much as 5 km of optical fiber. New solid-
state optical gyroscopes based on the same principle are build using microfabrication tech-
nology, thereby providing heading information with resolution and bandwidth far beyond
the needs of mobile robotic applications. Bandwidth, for instance, can easily exceed
100 kHz, while resolution can be smaller than 0.0001 degrees/hr.

4.1.6 Accelerometers
An accelerometers is a device used to measure all external forces acting upon it, including
gravity. Accelerometers belong to the proprioceptive sensors class.

Conceptually, an accelerometer is a spring–mass–damper system (figure 4.9a) in which
the three-dimensional position of the proof mass relative to the accelerometer casing can
be measured with some mechanism. Assume that an external force is applied on the sensor
casing (e.g., gravity) and that we have an ideal spring with a force proportional to its dis-
placement. Then, we can write [118]

, (4.18)

where is the proof mass, is the damping coefficient, is the spring constant, and is
the equilibrium case relative position. By choosing appropriately the damping material and
the mass, the system can be made to converge very quickly to a stable value under the effect

f

Fapplied Finertial Fdamping Fspring+ + mx·· cx· kx+ += =

m c k x

120 Chapter 4
of a static force. When the stable value is reached, then and the applied acceleration
can be obtained as

. (4.19)

This is the working principle of a mechanical accelerometer. Modern accelerometers are
often small Micro Electro-Mechanical Systems (MEMS) consisting of a springlike struc-
ture (cantilevered beam) with a proof mass (also known as seismic mass). Damping results
from the residual gas sealed in the device. When an external force is applied, the proof mass
deflects from its neutral position. Depending on the physical principle used to measure this
deflection, we can have different types of accelerometers. Capacitive accelerometers mea-
sure the deflection by measuring the capacitance between a fixed structure and the proof
mass. These accelerometers are reliable and inexpensive (figure 4.9b–c). Another alterna-
tive are the piezoelectric accelerometers. They are based on the property exhibited by cer-
tain crystals to generate a voltage when a mechanical stress is applied to them. A small
mass is positioned on the crystal, and, when an external force is applied, the mass moves,
and this induces a voltage that can be measured.

Notice that each accelerometer measures acceleration along a single axis. By mounting
three accelerometers orthogonally to one another, an omnidirectional (i.e., three-axis)
accelerometer can be obtained.

Also observe that an accelerometer at rest on the Earth's surface will always indicate 1
g along the vertical axis. To obtain the inertial acceleration (due to motion alone), the grav-
ity vector must be subtracted. Conversely, the accelerometer’s output will be zero during
free fall.

x·· 0=

aapplied
kx
m
-----=

a) b) c)

Figure 4.9 Accelerometers: (a) Working principle of the mechanical accelerometer; (b) An example
MEMS accelerometer produced by Sandia National Laboratories; (c) An example commercial
MEMS accelerometer.

Perception 121
Finally, accelerometers are classified into two categories according to their passband
bandwidth: accelerometers for static and dynamic measurements. In the first category are
low-pass accelerometers which can measure accelerations from 0 Hz up to usually 500 Hz.
This is typical for mechanical and capacitive accelerometers. Typical uses are measure-
ments of the gravitational acceleration or that of a moving vehicle. The second category of
accelerometers is used for measuring accelerations of vibrating objects or accelerations
during crashes. In this case, the bandwidth ranges between a few Hz up to 50 KHz. Typical
accelerometers in this category are those realized with piezoelectric technology.

4.1.7 Inertial measurement unit (IMU)
An inertial measurement unit (IMU) is a device that uses gyroscopes and accelerometers to
estimate the relative position, velocity, and acceleration of a moving vehicle. An IMU is
also known as an Inertial Navigation System (INS), and it has become a common naviga-
tional component of aircraft and ships. An IMU estimates the six-degree-of-freedom
(DOF) pose of the vehicle: position (x, y, z) and orientation (roll, pitch, yaw). Nevertheless,
heading sensors like compasses and gyroscopes, which conversely only estimate orienta-
tion, are often improperly called IMUs.

Besides the 6-DOF pose of the vehicle, commercial IMUs also usually estimate velocity
and acceleration. To estimate the velocity, the initial speed of the vehicle needs to be
known. The working principle of an IMU is shown in figure 4.10. Let us suppose that our

Figure 4.10 (a) IMU block diagram (redrawn from [118]). (b) A commercial IMU produced by
Xsens. Image courtesy of Xsens—http://www.xsens.com.

a)

b)

122 Chapter 4
IMU has three orthogonal accelerometers and three orthogonal gyroscopes. The gyroscope
data is integrated to estimate the vehicle orientation while the three accelerometers are used
to estimate the instantaneous acceleration of the vehicle. The acceleration is then trans-
formed to the local navigation frame by means of the current estimate of the vehicle orien-
tation relative to gravity. At this point the gravity vector can be subtracted from the
measurement. The resulting acceleration is then integrated to obtain the velocity and then
integrated again to obtain the position, provided that both the initial velocity and position
are a priori known. To overcome the need of knowing of the initial velocity, the integration
is typically started at rest (i.e., velocity equal to zero).

Observe that IMUs are extremely sensitive to measurement errors in both gyroscopes
and accelerometers. For example, drift in the gyroscope unavoidably undermines the esti-
mation of the vehicle orientation relative to gravity, which results in incorrect cancellation
of the gravity vector. Additionally observe that, because the accelerometer data is inte-
grated twice to obtain the position, any residual gravity vector results in a quadratic error
in position. Because of this and the fact that any other error is integrated over time, drift is
a fundamental problem in IMUs. After long period of operation, all IMUs drift. To cancel
this drift, some reference to some external measurement is required. In many robot appli-
cations, this has been done using cameras or GPS. In particular, cameras allow the user to
annihilate the drift every time a given feature of the environment—whose 3D position in
the camera reference frame is known—is reobserved (see sections 4.2.6 or 5.8.5). Simi-
larly, as described in the next section, GPS allows the user to correct the pose estimate
every time the GPS signal is received.

4.1.8 Ground beacons
One elegant approach to solving the localization problem in mobile robotics is to use active
or passive beacons. Using the interaction of on-board sensors and the environmental bea-
cons, the robot can identify its position precisely. Although the general intuition is identical
to that of early human navigation beacons, such as stars, mountains, and lighthouses,
modern technology has enabled sensors to localize an outdoor robot with accuracies of
better than 5 cm within areas that are kilometers in size.

In the following section, we describe one such beacon system, the global positioning
system (GPS), which is extremely effective for outdoor ground and flying robots. Indoor
beacon systems have been generally less successful for a number of reasons. The expense
of environmental modification in an indoor setting is not amortized over an extremely large
useful area, as it is, for example, in the case of the GPS. Furthermore, indoor environments
offer significant challenges not seen outdoors, including multipath and environmental
dynamics. A laser indoor beacon system, for example, must disambiguate the one true laser
signal from possibly tens of other powerful signals reflected off walls, smooth floors, and
doors. Confounding this, humans and other obstacles may be constantly changing the envi-

Perception 123
ronment, for example, occluding the one true path from the beacon to the robot. In com-
mercial applications, such as manufacturing plants, the environment can be carefully
controlled to ensure success. In less structured indoor settings, beacons have nonetheless
been used, and the problems are mitigated by careful beacon placement and the use of pas-
sive sensing modalities.

4.1.8.1 The global positioning system
The global positioning system (GPS) was initially developed for military use but is now
freely available for civilian navigation. There are at least twenty-four operational GPS sat-
ellites at all times. The satellites orbit every twelve hours at a height of 20.190 km. Four
satellites are located in each of six planes inclined 55 degrees with respect to the plane of
the earth’s equator (figure 4.11).

Each satellite continuously transmits data that indicate its location and the current time.
Therefore, GPS receivers are completely passive but exteroceptive sensors. The GPS sat-
ellites synchronize their transmissions so that their signals are sent at the same time. When
a GPS receiver reads the transmission of two or more satellites, the arrival time differences
inform the receiver as to its relative distance to each satellite. By combining information
regarding the arrival time and instantaneous location of four satellites, the receiver can infer
its own position. In theory, such triangulation requires only three data points. However,

Figure 4.11
Calculation of position and heading based on GPS.

monitor
stations

master
stations

GPS
satellites

uploading
station

users

124 Chapter 4
timing is extremely critical in the GPS application because the time intervals being mea-
sured are in nanoseconds. It is, of course, mandatory that the satellites be well synchro-
nized. To this end, they are updated by ground stations regularly and each satellite carries
on-board atomic clocks for timing.

The GPS receiver clock is also important so that the travel time of each satellite’s trans-
mission can be accurately measured. But GPS receivers have a simple quartz clock. So,
although three satellites would ideally provide position in three axes, the GPS receiver
requires four satellites, using the additional information to solve for four variables: three
position axes plus a time correction.

The fact that the GPS receiver must read the transmission of four satellites simultane-
ously is a significant limitation. GPS satellite transmissions are extremely low-power, and
reading them successfully requires direct line-of-sight communication with the satellite.
Thus, in confined spaces such as city blocks with tall buildings or in dense forests, one is
unlikely to receive four satellites reliably. Of course, most indoor spaces will also fail to
provide sufficient visibility of the sky for a GPS receiver to function. For these reasons, the
GPS has been a popular sensor in mobile robotics, but it has been relegated to projects
involving mobile robot traversal of wide-open spaces and autonomous flying machines.

A number of factors affect the performance of a localization sensor that makes use of
the GPS. First, it is important to understand that, because of the specific orbital paths of the
GPS satellites, coverage is not geometrically identical in different portions of Earth and
therefore resolution is not uniform. Specifically, at the North and South Poles, the satellites
are very close to the horizon, and thus, while resolution in the latitude and longitude direc-
tions is good, resolution of altitude is relatively poor as compared to more equatorial loca-
tions.

The second point is that GPS satellites are merely an information source. They can be
employed with various strategies in order to achieve dramatically different levels of local-
ization resolution. The basic strategy for GPS use, called pseudorange and described ear-
lier, generally performs at a resolution of 15 m. An extension of this method is differential
GPS (DGPS), which makes use of a second receiver that is static and at a known exact posi-
tion. A number of errors can be corrected using this reference, and so resolution improves
to the order of 1 m or less. A disadvantage of this technique is that the stationary receiver
must be installed, its location must be measured very carefully, and of course the moving
robot must be within kilometers of this static unit in order to benefit from the DGPS tech-
nique.

A further improved strategy is to take into account the phase of the carrier signals of
each received satellite transmission. There are two carriers, at 19 cm and 24 cm, and there-
fore significant improvements in precision are possible when the phase difference between
multiple satellites is measured successfully. Such receivers can achieve 1 cm resolution for
point positions and, with the use of multiple receivers, as in DGPS, sub-1 cm resolution.

Perception 125
A final consideration for mobile robot applications is bandwidth.The GPS will generally
offer no better than 200 to 300 ms latency, and so one can expect no better than 5 Hz GPS
updates. On a fast-moving mobile robot or flying robot, this can mean that local motion
integration will be required for proper control due to GPS latency limitations.

4.1.9 Active ranging
Active ranging sensors continue to be the most popular sensors in mobile robotics. Many
ranging sensors have a low price point, and, most important, all ranging sensors provide
easily interpreted outputs: direct measurements of distance from the robot to objects in its
vicinity. For obstacle detection and avoidance, most mobile robots rely heavily on active
ranging sensors. But the local free space information provided by ranging sensors can also
be accumulated into representations beyond the robot’s current local reference frame. Thus
active ranging sensors are also commonly found as part of the localization and environmen-
tal modeling processes of mobile robots. It is only with the slow advent of successful visual
interpretation competence that we can expect the class of active ranging sensors to gradu-
ally lose their primacy as the sensor class of choice among mobile roboticists.

We next present three time-of-flight active ranging sensors: the ultrasonic sensor, the
laser rangefinder, and the time-of-flight camera. Then, we present two geometric active
ranging sensors: the optical triangulation sensor and the structured light sensor.

4.1.9.1 Time-of-flight active ranging
Time-of-flight ranging makes use of the propagation speed of sound or an electromagnetic
wave. In general, the travel distance of a sound of electromagnetic wave is given by

, (4.20)

where

 = distance traveled (usually round-trip);

 = speed of wave propagation;

 = time of flight.

It is important to point out that the propagation speed of sound is approximately
0.3 m/ms whereas the speed of electromagnetic signals is 0.3 m/ns, which is 1 million
times faster. The time of flight for a typical distance, say 3 m, is 10 ms for an ultrasonic
system but only 10 ns for a laser rangefinder. It is thus evident that measuring the time of
flight with electromagnetic signals is more technologically challenging. This explains
why laser range sensors have only recently become affordable and robust for use on mobile
robots.

The quality of time-of-flight range sensors depends mainly on

d c t=

d

c

t

v

t

126 Chapter 4
• uncertainties in determining the exact time of arrival of the reflected signal;

• inaccuracies in the time-of-flight measurement (particularly with laser range sensors);

• the dispersal cone of the transmitted beam (mainly with ultrasonic range sensors);

• interaction with the target (e.g., surface absorption, specular reflections);

• variation of propagation speed;

• the speed of the mobile robot and target (in the case of a dynamic target);

As discussed in the following, each type of time-of-flight sensor is sensitive to a partic-
ular subset of this list of factors.

The ultrasonic sensor (time-of-flight, sound). The basic principle of an ultrasonic
sensor is to transmit a packet of (ultrasonic) pressure waves and to measure the time it takes
for this wave packet to reflect and return to the receiver. The distance of the object caus-
ing the reflection can be calculated based on the propagation speed of sound and the time
of flight .

. (4.21)

The speed of sound c in air is given by

, (4.22)

where

= ratio of specific heats;

R = gas constant;

T = temperature in degrees Kelvin.

In air at standard pressure and 20° C the speed of sound is approximately = 343 m/s.
Figure 4.12 shows the different signal output and input of an ultrasonic sensor. First, a

series of sound pulses are emitted, comprising the wave packet. An integrator also begins
to linearly climb in value, measuring the time from the transmission of these sound waves
to detection of an echo. A threshold value is set for triggering an incoming sound wave as
a valid echo. This threshold is often decreasing in time, because the amplitude of the
expected echo decreases over time based on dispersal as it travels longer. But during trans-
mission of the initial sound pulses and just afterward, the threshold is set very high to sup-
press triggering the echo detector with the outgoing sound pulses. A transducer will

d
c

t

d
c t
2

--------=

c RT=

c

Perception 127
continue to ring for up to several milliseconds after the initial transmission, and this gov-
erns the blanking time of the sensor. Note that if, during the blanking time, the transmitted
sound were to reflect off of an extremely close object and return to the ultrasonic sensor, it
may fail to be detected.

However, once the blanking interval has passed, the system will detect any above-
threshold reflected sound, triggering a digital signal and producing the distance measure-
ment using the integrator value.

The ultrasonic wave typically has a frequency between 40 and 180 kHz and is usually
generated by a piezo or electrostatic transducer. Often the same unit is used to measure the
reflected signal, although the required blanking interval can be reduced through the use of
separate output and input devices. Frequency can be used to select a useful range when
choosing the appropriate ultrasonic sensor for a mobile robot. Lower frequencies corre-
spond to a longer range, but with the disadvantage of longer post-transmission ringing and,
therefore, the need for longer blanking intervals. Most ultrasonic sensors used by mobile
robots have an effective range of roughly 12 cm to 5 m. The published accuracy of com-
mercial ultrasonic sensors varies between 98% and 99.1%. In mobile robot applications,
specific implementations generally achieve a resolution of approximately 2 cm.

In most cases one may want a narrow opening angle for the sound beam in order to also
obtain precise directional information about objects that are encountered. This is a major
limitation, since sound propagates in a conelike manner (figure 4.13) with opening angles
around 20 to 40 degrees. Consequently, when using ultrasonic ranging one does not acquire
depth data points but, rather, entire regions of constant depth. This means that the sensor
tells us only that there is an object at a certain distance within the area of the measurement
cone. The sensor readings must be plotted as segments of an arc (sphere for 3D) and not as

Figure 4.12
Signals of an ultrasonic sensor.

integrator

wave packet

threshold

time of flight (sensor output)

analog echo signal

digital echo signal

integrated time
output signal

transmitted sound

threshold

128 Chapter 4
point measurements (figure 4.14). However, recent research developments show signifi-
cant improvement of the measurement quality in using sophisticated echo processing [149].

Ultrasonic sensors suffer from several additional drawbacks, namely in the areas of
error, bandwidth, and cross-sensitivity. The published accuracy values for ultrasonics are
nominal values based on successful, perpendicular reflections of the sound wave off an
acoustically reflective material. This does not capture the effective error modality seen on
a mobile robot moving through its environment. As the ultrasonic transducer’s angle to the
object being ranged varies away from perpendicular, the chances become good that the
sound waves will coherently reflect away from the sensor, just as light at a shallow angle
reflects off of a smooth surface. Therefore, the true error behavior of ultrasonic sensors is
compound, with a well-understood error distribution near the true value in the case of a suc-
cessful retroreflection, and a more poorly understood set of range values that are grossly
larger than the true value in the case of coherent reflection. Of course, the acoustic proper-
ties of the material being ranged have direct impact on the sensor’s performance. Again,
the impact is discrete, with one material possibly failing to produce a reflection that is suf-
ficiently strong to be sensed by the unit. For example, foam, fur, and cloth can, in various
circumstances, acoustically absorb the sound waves.

A final limitation of ultrasonic ranging relates to bandwidth. Particularly in moderately
open spaces, a single ultrasonic sensor has a relatively slow cycle time. For example, mea-
suring the distance to an object that is 3 m away will take such a sensor 20 ms, limiting its
operating speed to 50 Hz. But if the robot has a ring of twenty ultrasonic sensors, each
firing sequentially and measuring to minimize interference between the sensors, then the
ring’s cycle time becomes 0.4 seconds and the overall update frequency of any one sensor
is just 2.5 Hz. For a robot conducting moderate speed motion while avoiding obstacles

Figure 4.13
Typical intensity distribution of an ultrasonic sensor.

-30°

-60°

0°

30°

60°

Amplitude [dB]

measurement cone

Perception 129
using ultrasonics, this update rate can have a measurable impact on the maximum speed
possible while still sensing and avoiding obstacles safely.

Laser rangefinder (time-of-flight, electromagnetic). The laser rangefinder is a time-of-
flight sensor that achieves significant improvements over the ultrasonic range sensor owing
to the use of laser light instead of sound. This type of sensor consists of a transmitter that
illuminates a target with a collimated beam (e.g., laser), and a receiver capable of detecting
the component of light, which is essentially coaxial with the transmitted beam. Often
referred to as optical radar or lidar (light detection and ranging), these devices produce a
range estimate based on the time needed for the light to reach the target and return. A
mechanical mechanism with a mirror sweeps the light beam to cover the required scene in
a plane or even in three dimensions, using a rotating, nodding mirror.

One way to measure the time of flight for the light beam is to use a pulsed laser and then
measure the elapsed time directly, just as in the ultrasonic solution described earlier. Elec-
tronics capable of resolving picoseconds are required in such devices and they are therefore

Figure 4.14
Typical readings of an ultrasonic system: (a) 360 degree scan; (b) results from different geometric
primitives [35]. Courtesy of John Leonard, MIT.

a) b)

130 Chapter 4
very expensive. A second method is to measure the beat frequency between a frequency-
modulated continuous wave (FMCW) and its received reflection. Another, even easier
method is to measure the phase shift of the reflected light. We describe this third approach
in detail.

Phase-shift measurement. Near-infrared light (from a light-emitting diode [LED] or
laser) is collimated and transmitted from the transmitter in figure 4.15 and hits a point P in
the environment. For surfaces having a roughness greater than the wavelength of the inci-
dent light, diffuse reflection will occur, meaning that the light is reflected almost isotropi-
cally. The wavelength of the infrared light emitted is 824 nm, and so most surfaces, with
the exception of only highly polished reflecting objects, will be diffuse reflectors. The com-
ponent of the infrared light that falls within the receiving aperture of the sensor will return
almost parallel to the transmitted beam for distant objects.

The sensor transmits 100% amplitude-modulated light at a known frequency and mea-
sures the phase shift between the transmitted and reflected signals. Figure 4.16 shows how
this technique can be used to measure range. The wavelength of the modulating signal
obeys the equation where is the speed of light and f the modulating frequency.

Figure 4.15
Schematic of laser rangefinding by phase-shift measurement.

Phase
Measurement

Target

D

L

Transmitter

Transmitted Beam
Reflected Beam

P

Figure 4.16
Range estimation by measuring the phase shift between transmitted and received signals.

Transmitted beam
Reflected beam

0

Phase [m]

Amplitude [V]

c f = c

Perception 131
For = 5 MHz (as in the AT&T sensor), = 60 m. The total distance covered by the
emitted light is

, (4.23)

where and are the distances defined in figure 4.15. The required distance between
the beam splitter and the target is therefore given by

, (4.24)

where is the electronically measured phase difference between the transmitted and
reflected light beams, and the known modulating wavelength. It can be seen that the
transmission of a single frequency-modulated wave can theoretically result in ambiguous
range estimates since, for example, if = 60 m, a target at a range of 5 m would give an
indistinguishable phase measurement from a target at 35 m, since each phase angle would
be 360 degrees apart. We therefore define an “ambiguity interval” of , but in practice we
note that the range of the sensor is much lower than due to the attenuation of the signal
in air.

It can be shown that the confidence in the range (phase estimate) is inversely propor-
tional to the square of the received signal amplitude, directly affecting the sensor’s accu-
racy. Hence dark, distant objects will not produce as good range estimates as close, bright
objects.

f D '

D ' L 2D+ L

2
------+= =

D L D

D

4
------=

Figure 4.17
(a) Schematic drawing of laser range sensor with rotating mirror; (b) 240-degree laser rangefinder
from Hokuyo Ltd.; (c) Industrial 180 degree laser range sensor from Sick Inc., Germany.

a) c)

Detector

LED/Laser

Rot
ati

ng

M
irr

or Transmitted light

Reflected light

Reflected light

b)

132 Chapter 4
In figure 4.17, the schematic of a typical 360-degree laser range sensor and two exam-
ples are shown. Figure 4.18a shows a typical range image of a 360-degree scan taken with
a laser range sensor.

Figure 4.18
(a) Typical range image of a 2D laser range sensor with a rotating mirror. The length of the lines
through the measurement points indicate the uncertainties. (b) Stanley, the autonomous car from
Stanford winning the 2005 Darpa Grand Challenge. (c) The Smarter, the autonomous car developed
at the ASL (ETH Zurich). (d) A close view at the Sicks used on the Smarter. (e) A 3D laser-point-
cloud built from the rotating Sicks.

(a)

(c)

(e)

(b)

(d)

Perception 133
As expected, the angular resolution of laser rangefinders far exceeds that of ultrasonic
sensors. The Sick LMS 200 laser scanner shown in figure 4.17c achieves an angular reso-
lution of 0.25 degree. Depth resolution ranges between 10 and 15 mm and the typical accu-
racy is 35 mm, over a range from 5 cm up to 20 m or more (up to 80 m), depending on the
reflectivity of the object being ranged. This device performs seventy five 180-degrees scans
per second but has no mirror nodding capability for the vertical dimension.

As an example of use in mobile robotics, five Sick lasers were used for short range
detection on Stanley (figure 4.18b), the autonomous car that won the 2005 DARPA Grand
Challenge. In a different configuration, five Sick lasers were also used on the Smarter (fig-
ure 4.18c), the autonomous car developed at the ASL (ETH Zurich), which participated in
ELROB 2006, the European Land Robot Trial. On the Smarter, one Sick laser at the lower
front was used for close obstacle avoidance, while two lasers on the roof (figure 4.18d),
slightly canted to the sides, were used for local navigation. Finally, another two lasers,
mounted vertically on a turntable (figure 4.18d), were used as a 3D range scanner for 3D
mapping.

As with ultrasonic ranging sensors, an important error mode involves coherent reflection
of the energy. With light, this will occur only when striking a highly polished surface. Prac-
tically, a mobile robot may encounter such surfaces in the form of a polished desktop, file
cabinet or, of course, a mirror. Unlike ultrasonic sensors, laser rangefinders cannot detect
the presence of optically transparent materials such as glass, and this can be a significant
obstacle in environments like, for example, museums, where glass is commonly used

3D laser rangefinders. A 3D laser rangefinder is a laser scanner that acquires scan data in
more than a single plane. Custom-made 3D scanners are typically built by nodding or rotat-
ing a 2D scanner in a stepwise or continuous manner around an axis parallel to the scanning
plane. An example custom-built 3D scanner was developed at the ASL for the Smarter (fig-
ure 4.18d). In this case, two Sick lasers were positioned to look into opposite directions.
This way, after half rotation of the turntable, a full 3D scan of the environment around the
vehicle could be acquired. This data was mainly used to compute a consistent 3D digital
terrain model of the environment (figure 4.18e). By lowering the rotational speed of the
turntable, the angular resolution in the horizontal direction can be made as small as desired.
The advantage of this setting is that the full spherical field of view can be covered (360° in
azimuth and 90° in elevation). The drawback is that the acquisition time for a full 3D scan
can take up to several seconds depending on the desired resolution. For instance, consider
that our Sick scanner acquires 75 vertical plane scans per second and that we need an azi-
muthal angular resolution of 0.25 degrees. The period for a half-rotation of the turntable
necessary to capture a spherical 3D scan with two Sicks is then 360 / 0.25 / 75 / 2 = 9.6
seconds. If one is satisfied with an azimuthal angular resolution of 1 degree, then the acqui-
sition time drops down to 2.4 seconds. This, of course, limits the use of this configuration

134 Chapter 4
to static environments. As a matter of fact, the rotating Sicks developed at the ASL (ETH
Zurich) were used on an autonomous car running at 10 km/h. In this case, very accurate (up
to centimeter) vehicle motion estimation was necessary to correct the errors in the 3D data
caused by the movement of the car.

The Velodyne HDL-64E (figure 4.19a) overcomes the drawbacks of custom-made 3D
laser range finders. This sensor is a 3D lidar that uses 64 laser emitters instead of the single
one used in the Sick. This device spins at rates of 5–15 Hz and delivers more than 1.3 mil-
lion data points per second. The field of view is 360° in azimuth and 26.8° in elevation and
the angular resolution is 0.09° and 0.4° respectively. The distance accuracy is better than 2
cm and can measure depth up to 50 m, with 10% reflectivity, or up to 120 m, with 80%
reflectivity. This sensor was the primary means of terrain map construction and obstacle
detection for all the top DARPA 2007 Urban Challenge teams. However, the Velodyne is
currently still much more expensive than Sick laser rangefinders.

The laser scanner Alasca XT, produced by Ibeo (figure 4.19c–d), on the other hand,
splits the laser beam into four vertical layers. Distance measurements are taken indepen-
dently for each of these layers with an aperture angle of 3.2°. This sensor is typically used
for obstacle and pedestrian detection on cars. Because of its multilayer scanning principle,
it allows us any pitching of the vehicle (caused by an uneven surface or driving manoeuvres

Figure 4.19 (a) The Velodyne HDL-64E unit features 64 laser beams and spins up to 15 Hz to gather
data (image courtesy of Velodyne—http://www.velodyne.com/lidar). It delivers over 1.3 million data
points per second. (d) The working principle of the Ibeo Alasca XT (c), which uses a four-layer laser
beam. The Alasca and Velodyne were used by the CMU Tartan Racing team (b) (image courtesy of
the Tartan Racing team).

a)
b)

d)c)

Perception 135
such as braking and accelerating) to be fully compensated. This sensor was used by the
Tartan Racing team in the autonomous car from CMU that won the 2007 Urban Grand
Challenge. Additionally, it also used the Velodyne sensor (figure 4.19b).

Time-of-flight camera. A Time-of-Flight camera (TOF camera, figure 4.20) works simi-
larly to a lidar with the advantage that the whole 3D scene is captured at the same time and
that there are no moving parts. This device uses a modulated infrared lighting source to
determine the distance for each pixel of a Photonic Mixer Device (PMD) sensor. As the
illumination source is placed just next to the lens (figure 4.20), the whole system is very
compact compared to lidars, stereo vision, or triangulation sensors (see below). In the pres-
ence of background light, the image sensor receives an additional illumination signal which
disturbs the distance measurement. To eliminate the background part of the signal, the
acquisition is done a second time with the illumination switched off. As the scene is cap-
tured in one shot, the camera reaches up to 100 frames per second and is therefore ideally
suited for real-time applications.

The PMD sensor appeared the first time in 1997, but TOF cameras became popular only
a few years later, when the semiconductor processes became fast enough for such devices.
This sensor typically covers ranges from 0.5 m up to 8 m, but even larger ranges are possi-
ble. The distance resolution is about 1 cm. Typical images sizes are quite small: in the two
examples shown in figure 4.20, the Swiss Ranger SR3000 by MESA has pixels,
while the ZCAM by 3DV Systems has pixels with 256 depth levels per pixel. The
Swiss Ranger has found many robotic applications including map building, obstacle avoid-
ance, and recognition [134, 330]; the ZCAM has been used in video game consoles for
player motion detection and activity recognition.

Because it is very easy to extract distance information from the TOF sensor, TOF cam-
eras use less processing power than stereo vision, where complex correlation algorithms are

(a) (b) (c)

Figure 4.20 (a) The ZCAM produced by the Israeli developer 3DV Systems; (b) the Swiss Ranger
SR3000 produced by the Swiss company MESA; (c) Range image of a chair captured with a time-of-
flight camera (image courtesy of S. Gächter).

174 144
320 240

136 Chapter 4
used. Additionally, the extracted range information is not disturbed by the patterns on the
object as it happens in stereovision.

4.1.9.2 Triangulation active ranging
Triangulation ranging sensors use geometric properties manifest in their measuring strat-
egy to establish distance readings to objects. The simplest class of triangulation rangers are
active because they project a known light pattern (e.g., a point, a line, or a texture) onto the
environment. The reflection of the known pattern is captured by a receiver and, together
with known geometric values, the system can use simple triangulation to establish range
measurements. If the receiver measures the position of the reflection along a single axis, we
call the sensor an optical triangulation sensor in 1D. If the receiver measures the position
of the reflection along two orthogonal axes, we call the sensor a structured light sensor.
These two sensor types are described in the two sections below.

Optical triangulation (1D sensor). The principle of optical triangulation in 1D is
straightforward, as depicted in figure 4.21. A collimated beam (e.g., focused infrared LED,
laser beam) is transmitted toward the target. The reflected light is collected by a lens and
projected onto a position-sensitive device (PSD) or linear camera. Given the geometry of
figure 4.21, the distance is given by

. (4.25)

Figure 4.21
Principle of 1D laser triangulation.

Target

D

L

Laser / Collimated beam

Transmitted Beam
Reflected Beam

P

Position-Sensitive Device (PSD)
or Linear Camera

x

Lens

D f
L
x
---=

D

D f
L
x
---=

Perception 137
The distance is proportional to ; therefore the sensor resolution is best for close
objects and becomes poor at a distance. Sensors based on this principle are used in range
sensing up to 1 or 2 m, but also in high-precision industrial measurements with resolutions
far below 1 µm.

Optical triangulation devices can provide relatively high accuracy with very good reso-
lution (for close objects). However, the operating range of such a device is normally fairly
limited by geometry. For example, the optical triangulation sensor pictured in figure 4.22
operates over a distance range of between 8 and 80 cm. It is inexpensive compared to ultra-
sonic and laser rangefinder sensors. Although more limited in range than sonar, the optical
triangulation sensor has high bandwidth and does not suffer from cross-sensitivities that are
more common in the sound domain.

Structured light (2D sensor). If one replaces the linear camera or PSD of an optical tri-
angulation sensor with a 2D receiver such as a CCD or CMOS camera, then one can recover
distance to a large set of points instead of to only one point. The emitter must project a
known pattern, or structured light, onto the environment. Many systems exist which either
project light textures (figure 4.23b) or emit collimated light (possibly laser) by means of a
rotating mirror. Yet another popular alternative is to project a laser stripe (figure 4.23a) by
turning a laser beam into a plane using a prism. Regardless of how it is created, the pro-
jected light has a known structure, and therefore the image taken by the CCD or CMOS
receiver can be filtered to identify the pattern’s reflection.

Note that the problem of recovering depth is in this case far simpler than the problem of
passive image analysis. In passive image analysis, as we discuss later, existing features in
the environment must be used to perform correlation, while the present method projects a

1 x

Figure 4.22
A commercially available, low-cost optical triangulation sensor: the Sharp GP series infrared range-
finders provide either analog or digital distance measures and cost only about $15.

138 Chapter 4
known pattern upon the environment and thereby avoids the standard correlation problem
altogether. Furthermore, the structured light sensor is an active device so it will continue to
work in dark environments as well as environments in which the objects are featureless
(e.g., uniformly colored and edgeless). In contrast, stereo vision would fail in such texture-
free circumstances.

Figure 4.23c shows a 1D active triangulation geometry. We can examine the trade-off
in the design of triangulation systems by examining the geometry in figure 4.23c. The mea-
sured values in the system are and u, the distance of the illuminated point from the origin
in the imaging sensor. Note the imaging sensor here can be a camera or an array of photo
diodes of a position-sensitive device (e.g., a PSD).

Figure 4.23
(a) Principle of active two dimensional triangulation. (b) Other possible light structures. (c) 1D sche-
matic of the principle. Images (a) and (b) courtesy of Albert-Jan Baerveldt, Halmstad University.

H=D·tan

(a)

(b)

b

u

Target

b

Laser / Collimated beam

Transmitted Beam
Reflected Beam

(x, z)

u

Lens

Camera

x

z

fcot+u

f

(c)

Perception 139
From figure 4.23c, simple geometry shows that

 ; , (4.26)

where is the distance of the lens to the imaging plane. In the limit, the ratio of image res-
olution to range resolution is defined as the triangulation gain and from equation (4.26)
is given by

. (4.27)

This shows that the ranging accuracy, for a given image resolution, is proportional to
source/detector separation and focal length , and decreases with the square of the range

. In a scanning ranging system, there is an additional effect on the ranging accuracy,
caused by the measurement of the projection angle From equation 4.26 we see that

. (4.28)

We can summarize the effects of the parameters on the sensor accuracy as follows:

• Baseline length (): the smaller is, the more compact the sensor can be. The larger
is, the better the range resolution will be. Note also that although these sensors do not
suffer from the correspondence problem, the disparity problem still occurs. As the base-
line length is increased, one introduces the chance that, for close objects, the illumi-
nated point(s) may not be in the receiver’s field of view.

• Detector length and focal length (): A larger detector length can provide either a larger
field of view or an improved range resolution or partial benefits for both. Increasing the
detector length, however, means a larger sensor head and worse electrical characteristics
(increase in random error and reduction of bandwidth). Also, a short focal length gives
a large field of view at the expense of accuracy, and vice versa.

At one time, laser stripe structured light sensors were common on several mobile robot
bases as an inexpensive alternative to laser rangefinding devices. However, with the
increasing quality of laser rangefinding sensors in the 1990s, the structured light system has
become relegated largely to vision research rather than applied mobile robotics. However,
new possibilities of applications for robotics have recently been opened by Kinect, the
sensor released in 2010 within the Microsoft Xbox 360 videogame console, and produced

x
b u

f u+cot
-----------------------= z

b f
f u+cot
-----------------------=

f
Gp

u
z

----- Gp
b f

z2
---------= =

b f
z

z

------ G
b sin 2

z
2

-----------------= =

b b b

b

f

140 Chapter 4
by the Israeli company PrimeSense. Kinect is a very cheap range camera that uses the struc-
tured-light principle explained before. An infrared laser emitter is used to make the pro-
jected pattern invisible to the human eye [132].

4.1.10 Motion/speed sensors
Some sensors measure directly the relative motion between the robot and its environment.
Since such motion sensors detect relative motion, so long as an object is moving relative to
the robot’s reference frame, it will be detected and its speed can be estimated. There are a
number of sensors that inherently measure some aspect of motion or change. For example,
a pyroelectric sensor detects change in heat. When a human walks across the sensor’s field
of view, his or her motion triggers a change in heat in the sensor’s reference frame. In the
next section, we describe an important type of motion detector based on the Doppler effect.
These sensors represent a well-known technology with decades of general applications
behind them. For fast-moving mobile robots such as autonomous highway vehicles and
unmanned flying vehicles, Doppler motion detectors are the obstacle detection sensor of
choice.

4.1.10.1 Doppler effect sensing (radar or sound)
Anyone who has noticed the change in siren pitch that occurs when an approaching fire
engine passes by and recedes is familiar with the Doppler effect.

A transmitter emits an electromagnetic or sound wave with a frequency . It is either
received by a receiver (figure 4.24a) or reflected from an object (figure 4.24b). The mea-
sured frequency at the receiver is a function of the relative speed between transmitter
and receiver according to

, (4.29)

ft

Figure 4.24
Doppler effect between two moving objects (a) or a moving and a stationary object (b).

Transmitter/

vReceiverTransmitter
v Object

Receiver

(a) (b)

fr v

fr ft
1

1 v c+
------------------=

Perception 141
if the transmitter is moving and

, (4.30)

if the receiver is moving.
In the case of a reflected wave (figure 4.24b) there is a factor of 2 introduced, since any

change x in relative separation affects the round-trip path length by . Furthermore, in
such situations it is generally more convenient to consider the change in frequency ,
known as the Doppler shift, as opposed to the Doppler frequency notation above.

, (4.31)

, (4.32)

where

 = Doppler frequency shift;

 = relative angle between direction of motion and beam axis.

The Doppler effect applies to sound and electromagnetic waves. It has a wide spectrum
of applications:

• Sound waves: for example, industrial process control, security, fish finding, measure of
ground speed.

• Electromagnetic waves: for example, vibration measurement, radar systems, object
tracking.

A current application area is both autonomous and manned highway vehicles. Both
microwave and laser radar systems have been designed for this environment. Both systems
have equivalent range, but laser can suffer when visual signals are deteriorated by environ-
mental conditions such as rain, fog, and so on. Commercial microwave radar systems are
already available for installation on highway trucks. These systems are called VORAD
(vehicle on-board radar) and have a total range of approximately 150 m. With an accuracy
of approximately 97%, these systems report range rates from 0 to 160 km/hr with a resolu-
tion of 1 km/hr. The beam is approximately 4 degrees wide and 5 degrees in elevation. One
of the key limitations of radar technology is its bandwidth. Existing systems can provide
information on multiple targets at approximately 2 Hz.

fr ft 1 v c+ =

2x
f

f ft fr–
2ftv cos

c
---------------------= =

v
f c

2ft cos
------------------=

f

142 Chapter 4
4.1.11 Vision sensors
Vision is our most powerful sense. It provides us with an enormous amount of information
about the environment and enables rich, intelligent interaction in dynamic environments. It
is therefore not surprising that a great deal of effort has been devoted to providing machines
with sensors that mimic the capabilities of the human vision system. The first step in this
process is the creation of sensing devices that capture the light and convert it into a digital
image. The second step is the processing of the digital image in order to get salient infor-
mation like depth computation, motion detection, color tracking, feature detection, scene
recognition, and so on. Because vision sensors have become very popular in robotic appli-
cations, the remaining sections of this chapter will be dedicated to the fundamentals of
computer vision and image processing and their use in robotics.

4.2 Fundamentals of Computer Vision

4.2.1 Introduction
The analysis of images and their processing are two major fields that are known as com-
puter vision and image processing. The years between 1980 and 2010 have seen significant
advances and new theoretical findings in these fields and some of the most sophisticated
computer vision and image processing techniques have found many industrial applications
in consumer cameras, photography, defect inspection, monitoring and surveillance, video
games, movies, and the like. For more information on the computer vision industry, see
[346].

The remaining parts of this chapter are dedicated to these two fields. First, we will intro-
duce the working principle of the digital camera, the imaging sensors, the optics, and the
image formation; then, we will present two ways of estimating the depth, which are depth
from focus and stereo vision. Next, we will detail some of the most important tools used in
image processing. Finally, we will close this chapter by presenting state-of-the-art algo-
rithms for feature extraction and place recognition from digital images.

For an in-depth study of computer vision, we refer the reader to the following books:
[21, 29, 36, 49, 53].

4.2.2 The digital camera
After starting from one or more light sources, reflecting off of one or more surfaces in the
world, and passing through the camera’s optics (lenses), light finally reaches the imaging
sensor. How are the photons arriving at this sensor converted into the digital (R,G,B) values
that we observe when we look at a digital image?

Light falling on an imaging sensor is usually picked up by an active sensing area, inte-
grated for the duration of the exposure (usually expressed as the shutter speed, e.g., 1/125,
1/60, 1/30 of a second), and then passed to a set of sense amplifiers. The two main kinds of

Perception 143
sensors used in digital still and video cameras today are CCD (charge coupled device) and
CMOS (complementary metal oxide on silicon). Below, we review the advantages and
drawbacks of these two technologies.

CCD cameras. The CCD chip (see figure 4.25) is an array of light-sensitive picture ele-
ments, or pixels, usually with between 20,000 and several million pixels total. Each pixel
can be thought of as a light-sensitive, discharging capacitor that is 5 to 25 m in size. First,
the capacitors of all pixels are charged fully, then the integration period begins. As photons
of light strike each pixel, they liberate electrons, which are captured by electric fields and
retained at the pixel. Over time, each pixel accumulates a varying level of charge based on
the total number of photons that have struck it. After the integration period is complete, the
relative charges of all pixels need to be frozen and read. In a CCD, the reading process is
performed at one corner of the CCD chip. The bottom row of pixel charges is transported
to this corner and read, then the rows above shift down and the process is repeated. This
means that each charge must be transported across the chip, and it is critical that the value
be preserved. This requires specialized control circuitry and custom fabrication techniques
to ensure the stability of transported charges.

The photodiodes used in CCD chips (and CMOS chips as well) are not equally sensitive
to all frequencies of light. They are sensitive to light between 400 and 1000 nm wavelength.
It is important to remember that photodiodes are less sensitive to the ultraviolet end of the
spectrum (e.g., blue) and are overly sensitive to the infrared portion (e.g., heat).

The CCD camera has several camera parameters that affect its behavior. In some cam-
eras, these values are fixed. In others, the values are constantly changing based on built-in

Figure 4.25
Commercially available CCD chips and CCD cameras. Because this technology is relatively mature,
cameras are available in widely varying forms and costs.

2048 x 2048 CCD array

Canon IXUS 300

Sony DFW-X700

Orangemicro iBOT Firewire

144 Chapter 4
feedback loops. In higher-end cameras, the user can modify the values of these parameters
via software. The iris position and shutter speed regulate the amount of light being mea-
sured by the camera. The iris is simply a mechanical aperture that constricts incoming light,
just as in standard 35 mm cameras. Shutter speed regulates the integration period of the
chip. In higher-end cameras, the effective shutter speed can be as brief at 1/30,000 seconds
and as long as 2 seconds. Camera gain controls the overall amplification of the analog sig-
nal, prior to A/D conversion. However, it is very important to understand that even though
the image may appear brighter after setting high gain, the shutter speed and iris may not
have changed at all. Thus gain merely amplifies the signal, and it amplifies along with the
signal all of the associated noise and error.

The key disadvantages of CCD cameras are primarily in the areas of inconstancy and
dynamic range. As mentioned earlier, a number of parameters can change the brightness
and colors with which a camera creates its image. Manipulating these parameters in a way
to provide consistency over time and over environments, for example, ensuring that a green
shirt always looks green, and something dark gray is always dark gray, remains an open
problem in the vision community. For more details on the fields of color constancy and
luminosity constancy, consult [65].

The second class of disadvantages relates to the behavior of a CCD chip in environments
with extreme illumination. In cases of very low illumination, each pixel will receive only a
small number of photons. The longest possible integration period (i.e., shutter speed) and
camera optics (i.e., pixel size, chip size, lens focal length and diameter) will determine the
minimum level of light for which the signal is stronger than random error noise. In cases of
very high illumination, a pixel fills its well with free electrons. As the well reaches its limit,
the probability of trapping additional electrons falls, and therefore the linearity between
incoming light and electrons in the well degrades. Termed saturation, this can indicate the
existence of a further problem related to cross-sensitivity. When a well has reached its limit,
then additional light within the remainder of the integration period may cause further
charge to leak into neighboring pixels, causing them to report incorrect values or even reach
secondary saturation. This effect, called blooming, means that individual pixel values are
not truly independent.

The camera parameters may be adjusted for an environment with a particular light level,
but the problem remains that the dynamic range of a camera is limited by the well capacity
(also called well depth) of the individual pixels. The well depth typically ranges between
20,000 and 350,000 electrons. For example, a high-quality CCD may have pixels that can
hold 40,000 electrons. The noise level for reading the well may be 11 electrons, and there-
fore the dynamic range will be 40,000:11, or 3600:1, which is 35 dB.

CMOS cameras. The complementary metal oxide semiconductor chip is a significant
departure from the CCD. It, too, has an array of pixels, but located along the side of each

Perception 145
pixel are several transistors specific to that pixel. As in CCD chips, all of the pixels accu-
mulate charge during the integration period. During the data collection step, the CMOS
takes a new approach: the pixel-specific circuitry next to every pixel measures and ampli-
fies the pixel’s signal, all in parallel for every pixel in the array. Using more traditional
traces from general semiconductor chips, the resulting pixel values are all carried to their
destinations.

CMOS has a number of advantages over CCD technologies. First and foremost, there is
no need for the specialized clock drivers and circuitry required in the CCD to transfer each
pixel’s charge down all of the array columns and across all of its rows. This also means that
specialized semiconductor manufacturing processes are not required to create CMOS
chips. Therefore, the same production lines that create microchips can create inexpensive
CMOS chips as well (see figure 4.26). The CMOS chip is so much simpler that it consumes
significantly less power; incredibly, it operates with a power consumption that is one-hun-
dredth the power consumption of a CCD chip. In a mobile robot, especially flying, power
is a scarce resource and therefore this is an important advantage.

Traditionally, CCD sensors outperformed CMOS in quality sensitive applications such
as digital single-lens-reflex cameras, while CMOS was better for low-power applications,
but today, CMOS is used in most digital cameras.

Given this summary of the mechanism behind CCD and CMOS chips, one can appreci-
ate the sensitivity of any vision robot sensor to its environment. As compared to the human
eye, these chips all have far poorer adaptation, cross-sensitivity, and dynamic range. As a
result, vision sensors today continue to be fragile. Only over time, as the underlying perfor-
mance of imaging chips improves, will significantly more robust vision sensors for mobile
robots be available.

Figure 4.26
A commercially available, low-cost CMOS camera with lens attached.

146 Chapter 4
Camera output considerations. Although digital cameras have inherently digital output,
throughout the 1980s and early 1990s, most affordable vision modules provided analog
output signals, such as NTSC (National Television Standards Committee) and PAL (Phase
Alternating Line). These camera systems included a D/A converter which, ironically,
would be counteracted on the computer using a frame grabber, effectively an A/D con-
verter board situated, for example, on a computer’s bus. The D/A and A/D steps are far
from noise free, and furthermore the color depth of the analog signal in such cameras was
optimized for human vision, not computer vision.

More recently, both CCD and CMOS technology vision systems provide digital signals
that can be directly utilized by the roboticist. At the most basic level, an imaging chip pro-
vides parallel digital I/O (input/output) pins that communicate discrete pixel level values.
Some vision modules make use of these direct digital signals, which must be handled sub-
ject to hard-time constraints governed by the imaging chip. To relieve the real-time
demands, researchers often place an image buffer chip between the imager’s digital output
and the computer’s digital inputs. Such chips, commonly used in webcams, capture a com-
plete image snapshot and enable non-real-time access to the pixels, usually in a single,
ordered pass.

At the highest level, a roboticist may choose instead to utilize a higher-level digital
transport protocol to communicate with an imager. Most common are the IEEE 1394
(Firewire) standard and the USB (and USB 2.0) standards, although some older imaging
modules also support serial (RS-232). To use any such high-level protocol, one must locate
or create driver code both for that communication layer and for the particular implementa-
tion details of the imaging chip. Take note, however, of the distinction between lossless
digital video and the standard digital video stream designed for human visual consumption.
Most digital video cameras provide digital output, but often only in compressed form. For
vision researchers, such compression must be avoided as it not only discards information
but even introduces image detail that does not actually exist, such as MPEG (Moving Pic-
ture Experts Group) discretization boundaries.

Color camera. The basic light-measuring process described before is colorless: it is just
measuring the total number of photons that strike each pixel in the integration period. There
are two common approaches for creating color images, which use a single chip or three sep-
arate chips.

The single chip technology uses the so-called Bayer filter. The pixels on the chip are
grouped into sets of four, then red, green, and blue color filters are applied so that
each individual pixel receives only light of one color. Normally, two pixels of each
block measure green while the remaining two pixels measure red and blue light intensity
(figure 4.27). The reason there are twice as many green filters as red and blue is that the

2 2
2 2

Perception 147
luminance signal is mostly determined by green values, and the visual system is much more
sensitive to high frequency detail in luminance than in chrominance. The process of inter-
polating the missing color values so that we have valid RGB values as all the pixels is
known as demosaicing. Of course, this one-chip technology has a geometric resolution dis-
advantage. The number of pixels in the system has been effectively cut by a factor of four,
and therefore the image resolution output by the camera will be sacrificed.

The three-chip color camera avoids these problems by splitting the incoming light into
three complete (lower intensity) copies. Three separate chips receive the light, with one red,
green, or blue filter over each entire chip. Thus, in parallel, each chip measures light inten-
sity for one color, and the camera must combine the chips’ outputs to create a joint color
image. Resolution is preserved in this solution, although the three-chip color cameras are,
as one would expect, significantly more expensive and therefore more rarely used in mobile
robotics.

Both three-chip and single-chip color cameras suffer from the fact that photodiodes are
much more sensitive to the near-infrared end of the spectrum. This means that the overall
system detects blue light much more poorly than red and green. To compensate, the gain
must be increased on the blue channel, and this introduces greater absolute noise on blue
than on red and green. It is not uncommon to assume at least one to two bits of additional
noise on the blue channel. Although there is no satisfactory solution to this problem today,
over time the processes for blue detection have been improved, and we expect this positive
trend to continue.

In color cameras, an additional control exists for white balance. Depending on the
source of illumination in a scene (e.g., fluorescent lamps, incandescent lamps, sunlight,
underwater filtered light, etc.), the relative measurements of red, green, and blue light that
define pure white light will change dramatically. The human eye compensates for all such
effects in ways that are not fully understood, but, the camera can demonstrate glaring incon-
sistencies in which the same table looks blue in one image, taken during the night, and
yellow in another image, taken during the day. White balance controls enable the user to
change the relative gains for red, green, and blue in order to maintain more consistent color
definitions in varying contexts.

Figure 4.27 Bayer color filter array.

148 Chapter 4
4.2.3 Image formation
Before we can intelligently analyze and manipulate images, we need to understand the
image formation process that produced a particular image.

4.2.3.1 Optics
Once the light from the scene reaches the camera, it must still pass through the lens before
reaching the sensor. Figure 4.28 shows a diagram of the most basic lens model, which is
the thin lens. This lens is composed of a single piece of glass with very low, equal curvature
on both sides. According to the lens law (which can be derived using simple geometric
arguments on light ray refraction), the relationship between the distance to an object and
the distance behind the lens at which a focused image is formed can be expressed as

, (4.33)

where is the focal length. As you can perceive, this formula can also be used to esti-
mate the distance to an object by knowing the focal length and the current distance of the
image plane to the lens. This technique is called depth from focus.

If the image plane is located at distance from the lens, then for the specific object
voxel depicted, all light will be focused at a single point on the image plane and the object
voxel will be focused. However, when the image plane is not at , as is depicted in figure
4.28, then the light from the object voxel will be cast on the image plane as a blur circle (or
circle of confusion). To a first approximation, the light is homogeneously distributed

Figure 4.28
Depiction of the camera optics and its impact on the image. In order to get a sharp image, the image
plane must coincide with the focal plane. Otherwise the image of the point (x,y,z) will be blurred in
the image, as can be seen in the drawing above.

fo
ca

l p
la

ne

f
(xl, yl)

(x, y, z)

im
ag

e
pl

an
e

ez

z

e

1
f
--- 1

z
--- 1

e
---+=

f

e

e

Perception 149
throughout this blur circle, and the radius of the circle can be characterized according to
the equation

. (4.34)

 is the diameter of the lens or aperture, and is the displacement of the image plane
from the focal point.

Given these formulas, several basic optical effects are clear. For example, if the aperture
or lens is reduced to a point, as in a pinhole camera, then the radius of the blur circle
approaches zero. This is consistent with the fact that decreasing the iris aperture opening
causes the depth of field to increase until all objects are in focus. Of course, the disadvan-
tage of doing so is that we are allowing less light to form the image on the image plane, and
so this is practical only in bright circumstances.

The second property that can be deduced from these optics equations relates to the sen-
sitivity of blurring as a function of the distance from the lens to the object. Suppose the
image plane is at a fixed distance 1.2 from a lens with diameter and focal length

. We can see from equation (4.34) that the size of the blur circle changes pro-
portionally with the image plane displacement . If the object is at distance , then
from equation (4.33) we can compute , and therefore = 0.2. Increase the object
distance to and as a result = 0.533. Using equation (4.34) in each case, we can
compute and respectively. This demonstrates high sensitivity for
defocusing when the object is close to the lens.

In contrast, suppose the object is at . In this case we compute . But
if the object is again moved one unit, to , then we compute . The result-
ing blur circles are and , far less than the quadrupling in when
the obstacle is one-tenth the distance from the lens. This analysis demonstrates the funda-
mental limitation of depth from focus techniques: they lose sensitivity as objects move far-
ther away (given a fixed focal length). Interestingly, this limitation will turn out to apply to
virtually all visual ranging techniques, including depth from stereo (section 4.2.5) and
depth from motion (section 4.2.6).

Nevertheless, camera optics can be customized for the depth range of the intended appli-
cation. For example, a zoom lens with a very large focal length will enable range resolu-
tion at significant distances, of course at the expense of field of view. Similarly, a large lens
diameter, coupled with a very fast shutter speed, will lead to larger, more detectable blur
circles.

Given the physical effects summarized by the above equations, one can imagine a visual
ranging sensor that makes use of multiple images in which camera optics are varied (e.g.,
image plane displacement) and the same scene is captured (see figure 4.29). In fact, this

R

R L
2e
------=

L

L 0.2=
f 0.5= R

 z 1=
e 1=

z 2=
R 0.02= R 0.08=

z 10= e 0.526=
z 11= e 0.524=

R 0.117= R 0.129= R

f

150 Chapter 4
approach is not a new invention. The human visual system uses an abundance of cues and
techniques, and one system demonstrated in humans is depth from focus. Humans vary the
focal length of their lens continuously at a rate of about 2 Hz. Such approaches, in which
the lens optics are actively searched in order to maximize focus, are technically called depth
from focus [241]. In contrast, depth from defocus means that depth is recovered using a
series of images that have been taken with different camera geometries, and hence different
focusing positions.

The depth from focus method is one of the simplest visual ranging techniques. To deter-
mine the range to an object, the sensor simply moves the image plane (via focusing) until
maximizing the sharpness of the object. When the sharpness is maximized, the correspond-
ing position of the image plane directly reports range. Some autofocus cameras and virtu-
ally all autofocus video cameras use this technique. Of course, a method is required for
measuring the sharpness of an image or an object within the image.

An example application of depth-from-focus to robotics has been shown in [250], where
the authors demonstrated obstacle avoidance in a variety of environments, as well as avoid-
ance of concave obstacles such as steps and ledges.

4.2.3.2 Pinhole camera model
The pinhole camera, or camera obscura, has been the first example of camera in the history,
which led to the invention of photography [27]. A pinhole camera has no lens, but a single
very small aperture. In short, it is a lightproof box with a small hole in one side. Light from
the scene passes through this single point and projects an inverted image on the opposite
side of the box (figure 4.30). The working principle of this camera was already known as
far back as the 4th century BC by the Greek Aristotle and Euclid and the Chinese Mozi.

Figure 4.29
Two images of the same scene taken with a camera at two different focusing positions. Note the sig-
nificant change in texture sharpness between the near surface and far surface. The scene is an outdoor
concrete step.

Perception 151
The pinhole projection model was also used as drawing aid by artists such as Leonardo da
Vinci (1452–1519).

The importance of the pinhole camera is that its principle has also been adopted as a
standard model for perspective cameras. This model can be derived directly from equation
(4.33). In fact, notice that if we let , i.e. we adjust the lens (move the image plane) so
that objects at infinity are in focus (i.e. and), we get , which is why we can
think of a lens of focal length as being equivalent (to a first approximation) to a pinhole
a distance from the focal plane (figure 4.31a).

When using the pinhole camera model, it is very important to remember that the pinhole
corresponds to the center of the lens. This point is also commonly called center of projec-
tion of optical center (indicated with in figure 4.31). The axis perpendicular to the image
plane , which passes through the center of projection is called optical axis.

For convenience, the pinhole camera is commonly represented with the image plane
between the center of projection and the scene (figure 4.31(b)). This is done for the image
to preserve the same orientation as the object, that is, the image is not flipped. The intersec-
tion between the optical axis and the image plane is called principal point.

As shown in figure 4.31b, observe that a camera does not measure distances but angles
and therefore it can be thought as a bearing sensor.

Figure 4.30 (a) When and the camera can be modeled as a pinhole camera. (b) The
camera obscura in a drawing from mathematician Reinerus Gemma-Frisius (1508–1555), who used
this illustration in his book De Radio Astronomica et Geometrica (1545) to describe an eclipse of the
sun at Louvain on January 24, 1544. It is thought to be the first published illustration of a camera
obscura [27].

d f» d L»

(a) (b)

z
z f» z L» e f=

f

f

C

O

152 Chapter 4
4.2.3.3 Perspective projection
To describe analytically the perspective projection operated by the camera, we have to

introduce some opportune reference system wherein we can express the 3D coordinates of
the scene point and the coordinates of its projection on the image plane. We will first
consider a simplified model and finally the general model.

Simplified model. Let be the camera reference frame with origin in and -axis
coincident with the optical axis. Assume also that the camera reference frame coincides
with the world reference frame. This implies that the coordinates of the scene point are
already expressed in the camera frame.

Let us also introduce a two-dimensional reference frame for the image plane
with origin in and the and axes aligned as and respectively as shown in figure
4.31b.

Finally, let and . By means of simple considerations on the sim-
ilarity of triangles, we can write

, (4.35)

and therefore

a) b)

Figure 4.31 (a) Pinhole camera model used for representing standard perspective cameras. (b) The
pinhole model is more commonly described with the image plane between the center of projection
and the scene for the image to preserve the same orientation as the object.

P p

x y z C z

P

u v
O u v x y

P x y z = p u v =

f
z
-- u

x
--- v

y
--= =

Perception 153
 , (4.36)

 . (4.37)

This is the perspective projection. The mapping from 3D coordinates to 2D coordinates is
clearly nonlinear. However, using homogeneous coordinates instead allows us to obtain
linear equations. Let

 and , (4.38)

be the homogeneous coordinates of and respectively. We will henceforth use the
superscript ˜ to denote homogeneous coordinates3. The projection equation, in this simpli-
fied case, can be written as:

. (4.39)

Note that is equal to the third coordinate of , which—in this special reference frame—
coincides with the distance of the point to the plane . Note that this equation also shows
that every image point is the projection of all infinite 3D points lying on the ray passing
through the same image point and the center of projection (figure 4.31b). Therefore, using
a single pinhole camera it is not possible to estimate the distance to a point, but we need
two cameras (i.e., stereo camera, section 4.2.5.2).

General model. A realistic camera model that describes the transformation from 3D coor-
dinates to pixel coordinates must also take into account

3. In homogeneous coordinates we denote 2D points in the image plane as with
 being the corresponding Cartesian coordinates. Therefore, there is a one to many cor-

respondence between Cartesian and homogeneous coordinates. Homogeneous coordinates can repre-
sent the usual Euclidean points plus the points at infinity, which are points with the last component
equal to zero that do not have a Cartesian counterpart.

u
f
z
-- x=

v
f
z
-- y=

p̃
u

v

1

= P̃

x

y

z

1

=

p P

x1 x2 x3
x1 x3 x2 x3

u

v

fx

fy

z

f 0 0 0

0 f 0 0

0 0 1 0

x

y

z

1

= =

 P

xy

154 Chapter 4
• the pixelization, that is, shape (size) of the CCD and its position with respect to the opti-
cal center,

• the rigid body transformation between the camera and the scene (i.e., world).

The pixelization takes into account the fact that:

1. The camera optical center has pixel coordinates with respect to the upper left
corner of the image, which is commonly assumed as origin of the image coordinate sys-
tem. Note, the optical center in general does not correspond to the center of the CCD.

2. The coordinates of a point on the image plane are measured in pixels. Therefore, we must
introduce a scale factor.

3. The shape of the pixel is in general assumed not perfectly squared and therefore we must
use two different scale factors and along the horizontal and vertical directions
respectively.

4. The and axes might not be orthogonal but misaligned of an angle . This models,
for instance, the fact that the lens may not be parallel to the CCD.

The first three points are addressed by means of the translation of the optical center and the
individual rescaling of the and axes:

 (4.40)

 , (4.41)

where are the coordinates of the principal point, () is the inverse of the effec-
tive pixel size along the () direction and is measured in .

After this update the perspective projection equations become:

. (4.42)

Observe that we can pose and which describe the focal lengths
expressed in horizontal and vertical pixels respectively.

To take into account the fact that in general the world reference system does
not coincide with the camera reference system , we have to introduce the rigid body

u0 v0

ku kv

u v

u v

u ku
f
z
-- x u0+=

v kv
f
z
-- y v0+=

u0 v0 ku kv

u v pixel m 1–

u

v

fku 0 u0 0

0 fkv v0 0

0 0 1 0

x

y

z

1

=

u fku= v fkv=

xw ywzw
x y z

Perception 155
transformation between the two reference frames (figure 4.32). Let us therefore introduce
a coordinate change composed of a rotation followed by a translation , therefore

. (4.43)

Using this transformation, equation (4.42) can be rewritten as

, (4.44)

or, using the homogeneous coordinates (4.38),

, (4.45)

where

 (4.46)

is the intrinsic parameter matrix.

Figure 4.32 Coordinate change between camera and world reference frame.

R t

x

y

z

R

xw

yw

zw

t+=

u

v

u 0 u0

0 v v0

0 0 1

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

xw

yw

zw

1

=

p̃ A R t P̃w=

A

u 0 u0

0 v v0

0 0 1

=

156 Chapter 4
As anticipated, the most general model also takes into consideration the possibility that
the and axes are not orthogonal but are inclined of an angle . Therefore, the most
general form for is

 , (4.47)

where can be absorbed into a single parameter .
, , , , are called camera intrinsic parameters. The rotation and translation

parameters and are called camera extrinsic parameters. The intrinsic and extrinsic
parameters can be estimated using a procedure called camera calibration that we will
shortly describe in section 4.2.3.4.

Radial distortion. The aforementioned image projection model assumes that the camera
obeys a linear projection model where straight lines in the world result in straight lines in
the image. Unfortunately, many wide-angle lenses have noticeable radial distortion, which
manifests itself as a visible curvature in the projection of straight lines. An accurate model
of the camera should therefore also take into account the radial distortion of the lens, espe-
cially for lenses with short focal length (i.e., large field of view) (figure 4.33).

The standard model of radial distortion is a transformation from the ideal coordinates
(i.e., undistorted) to the real observable coordinates (distorted) . Depending
on the type of radial distortion, the coordinates in the observed images are displaced away
(barrel distortion) or toward (pincushion distortion) the image center. The amount of dis-
tortion of the coordinates of the observed image is a nonlinear function of their radial dis-
tance . For most lenses, a simple quadratic model of distortion produces good results:

, (4.48)

where

. (4.49)

and is the radial distortion parameter, which can be estimated by camera calibration. The
radial distortion parameter is also an intrinsic parameter of the camera.

u v
A

A

u u cot u0

0 v v0

0 0 1

=

u cot c

c u uv u0 v0

R t

u v ud vd

r

ud

vd

1 k1r
2

+
u u0–

v v0–

u0

v0

+=

r
2

u u0– 2 v v0– 2+=

k1

Perception 157
Sometimes the above simplified model does not model the true distortions produced by
complex lenses accurately enough (especially at very wide angles). A more complete ana-
lytic model also includes tangential distortions and decentering distortions [48], but these
will not be covered in this book. Fisheye lenses require a different model than traditional
polynomial models of radial distortion and will be introduced in section 4.2.4.2.

4.2.3.4 Camera calibration
Calibration consists in measuring accurately the intrinsic and extrinsic parameters of the
camera model. As these parameters govern the way the scene points are mapped to their
corresponding image points, the idea is that by knowing the pixel coordinates of the image
points and the 3D coordinates of the corresponding scene points , it is possible to com-
pute the unknown parameters , , and by solving the perspective projection equation
(4.45).

One of the first and most used camera calibration techniques was proposed in 1987 by
Tsai [319]. Its implementation needs corresponding 3D point coordinates and 2D pixels
coordinates in the image. It uses a two-stage technique to compute, first, the position and
orientation and, second, the internal parameters of the camera.

Figure 4.33 Example of radial lens distortion: (a) no distortion, (b) barrel distortion, (c) pincushion.

(a) (b) (c)

p̃ P̃

A R t

158 Chapter 4
However, in the last decade an alternative camera calibration technique has been pro-
posed by Zhang [337] that, instead of a three-dimensional calibration object, uses a planar
grid. The most common planar grid is a chessboard-like pattern due to the ease of extracting
its corners, which are then used for calibration (figure 4.34). This method is known as cal-
ibration from planar grid and is very simple and practical to execute for both expert and
non-expert users. The method requires the user to take several pictures of the pattern shown
at different positions and orientations4. By knowing the 2D position of the corners on the
real pattern and the pixel coordinates of their corresponding corners on each image, the
intrinsic and extrinsic parameters (including radial and tangential distortion) are deter-
mined simultaneously by solving a least-square linear minimization followed by a nonlin-

4. Note that in this case the number of extrinsic parameters is different for each position of the grid
while the intrinsic parameter are obviously the same.

Figure 4.34 Pictures of the Camera Calibration Toolbox for Matlab developed by J. Y. Bouguet. (a)
An example checkerboard-like pattern used in camera calibration with extracted corners. (b) Several
pictures of the pattern with different positions and orientations. (c) The reconstructed position and ori-
entations of the pattern after calibration.

(a) (b)

(c)

Perception 159
ear refinement (i.e., Gauss-Newton). As pointed out by Zhang, the accuracy of the
calibration results increases with the number of images used. It is also important that the
images cover as much of the field of view of the camera as possible and that the range of
orientations is wide.

This calibration method has been implemented in a very successful open source toolbox
for Matlab (which can be downloaded for free [347]) that is also available in C in the open
source Computer Vision Library (OpenCV) [343]. This toolbox has been used by thou-
sands of users all around the world and is considered one of the most practical and easy-to-
use camera calibration softwares for standard perspective cameras. In this section, we used
the same model as the Matlab toolbox. This should facilitate the understanding and imple-
mentation of the interested reader. Alternatively, a complete list of all available camera cal-
ibration softwares can be found in [348].

4.2.4 Omnidirectional cameras

4.2.4.1 Introduction
In the previous section, we described the image formation of the pinhole camera, which is
modeled as a perspective projection. However, there are projection systems whose geome-
try cannot be described using the conventional pinhole model because of the very high dis-
tortion introduced by the imaging device. Some of these systems are omnidirectional
cameras.

An omnidirectional camera is a camera that provides wide field of view, at least more
than 180 degrees. There are several ways to build an omnidirectional camera. Dioptric cam-
eras use a combination of shaped lenses (e.g., fisheye lenses; see figure 4.35a) and typically
can reach a field of view slightly larger than 180 degrees. Catadioptric cameras combine a
standard camera with a shaped mirror, like a parabolic, hyperbolic, or elliptical mirror and
are able to provide much more than 180 degrees field-of-view in elevation and 360 in the
azimuthal direction. In figure 4.35b you can see an example catadioptric camera using a
hyperbolic mirror. Finally, polydioptric cameras use multiple cameras with overlapping
field of view (figure 4.35c) and so far are the only cameras able to provide a real omnidi-
rectional (spherical) view (i.e., 4 radians).

Catadioptric cameras were first introduced in robotics in 1990 by Yagi and Kawato
[333], who utilized them for localizing robots. Fisheye cameras started to spread over only
in 2000 thanks to new manufacturing techniques and precision tools that led to an increase
of their field of view up to 180 degrees. However, it is only since 2005 that these cameras
have been miniaturized to the size of 1–2 centimeters, and their field of view has been
increased up to 190 degrees (see, for instance, figure 4.36a).

 Thanks to the camera miniaturization, to the recent developments in optics manufac-
turing, and to the decreasing prices in the cameras’ market, catadioptric and dioptric omni-

160 Chapter 4
directional cameras are being more and more used in different research fields. Miniature
dioptric and catadioptric cameras are now used by the automobile industry in addition to
sonars for improving safety, by providing to the driver an omnidirectional view of the sur-
rounding environment. Miniature fisheye cameras are used in endoscopes for surgical oper-
ations or on board microaerial vehicles for pipeline inspection as well as rescue operations.
Other examples involve meteorology for sky observation.

Roboticists have also been using omnidirectional vision with very successful results on
robot localization, mapping, and aerial and ground robot navigation [76, 80, 107, 278, 279,
307]. Omnidirectional vision allows the robot to recognize places more easily than with
standard perspective cameras [276]. Furthermore, landmarks can be tracked in all direc-
tions and over longer periods of time, making it possible to estimate motion and build maps
of the environment with better accuracy than with standard cameras, see figure 4.36 for
some of examples of miniature omnidirectional cameras used on state-of-the-art micro
aerial vehicles. Several companies, like Google, are using omnidirectional cameras to build
photorealistic street views and three-dimensional reconstructions of cities along with tex-
ture. Two example omnidirectional images are shown in figure 4.37.

Figure 4.35 (a) Dioptric camera (e.g. fisheye); (b) catadioptric camera; (c) an example polydioptric
camera produced by Immersive Media.

(a) (b) (c)

Perception 161
In the next sections we will give an overview of omnidirectional camera models and cal-
ibration. For an in-depth study on omnidirectional vision, we refer the reader to [4, 15, 273].

4.2.4.2 Central omnidirectional cameras
A vision system is said to be central when the optical rays to the viewed objects intersect
in a single point in 3D called projection center or single effective viewpoint (figure 4.38).
This property is called single effective viewpoint property. The perspective camera is an
example of a central projection system because all optical rays intersect in one point, that
is, the camera optical center.

All modern fisheye cameras are central, and hence, they satisfy the single effective
viewpoint property. Central catadioptric cameras conversely can be built only by oppor-
tunely choosing the mirror shape and the distance between the camera and the mirror. As
proven by Baker and Nayar [64], the family of mirrors that satisfy the single viewpoint
property is the class of rotated (swept) conic sections, that is, hyperbolic, parabolic, and
elliptical mirrors. In the case of hyperbolic and elliptical mirrors, the single view point

Figure 4.36 (a) The fisheye lens from Omnitech Robotics (www.omnitech.com) provides a field of
view of 190 deg. This lens has a diameter of 1.7 cm. This camera has been used on the sFly autono-
mous helicopter at the ETH Zurich, (section 2.4.3) [76]. (b) A miniature catadioptric camera built at
the ETH Zurich, which is also used for autonomous flight. It uses a spherical mirror and a transparent
plastic support. The camera measures 2 cm in diameter and 8 cm in height. (c) The muFly camera
built by CSEM, which is used on the muFly helicopter at the ETH Zurich (section 2.4.3). This is one
of the smallest catadioptric cameras ever built. Additionally, it uses a polar CCD (d) where pixels are
arranged radially.

(a)

(b)(d)(c)

162 Chapter 4
Figure 4.37 (a) A catadioptric omnidirectional camera using a hyperbolic mirror. The image is typi-
cally unwrapped into a cylindrical panorama. The field of view is typically 100 degrees in elevation
and 360 degrees in azimuth. (b) Nikon fisheye lens FC-E8. This lens provides a hemispherical (180
deg) field of view.

(a)

(b)

Perception 163
property is achieved by ensuring that the camera center (i.e., the pinhole or the center of the
lens) coincides with one of the foci of the hyperbola (ellipse) (figure 4.39). In the case of
parabolic mirrors, an orthographic lens must be interposed between the camera and the mir-
ror, this makes it possible that parallel rays reflected by the parabolic mirror converge to
the camera center (figure 4.39).

The reason a single effective viewpoint is so desirable is that it allows us to generate
geometrically correct perspective images from the pictures captured by the omnidirectional
camera (figure 4.40). This is possible because, under the single view point constraint, every
pixel in the sensed image measures the irradiance of the light passing through the viewpoint
in one particular direction. When the geometry of the omnidirectional camera is known,
that is, when the camera is calibrated, one can precompute this direction for each pixel.
Therefore, the irradiance value measured by each pixel can be mapped onto a plane at any
distance from the viewpoint to form a planar perspective image. Additionally, the image
can be mapped on to a sphere centered on the single viewpoint, that is, spherical projection
(figure 4.40, bottom).

Figure 4.38 (a–b) Example of central cameras: perspective projection and catadioptric projection
through a hyperbolic mirror. (c–d) Example of noncentral cameras: the envelope of the optical rays
forms a caustic.

(a) (b)

(c) (d)

164 Chapter 4
Another reason why the single view point property is so important is that it allows us to
apply the well known theory of epipolar geometry (see section 4.2.6.1), which easily allows
us to perform structure from stereo (section 4.2.5) and structure from motion (section
4.2.6). As we will see, epipolar geometry holds for any central camera, both perspective
and omnidirectional. Therefore, in those sections we will not make any distinction about
the camera.

4.2.4.3 Omnidirectional camera model and calibration
Intuitively, the model of an omnidirectional camera is a little more complicated than a

standard perspective camera. The model should indeed take into account the reflection
operated by the mirror in the case of a catadioptric camera or the refraction caused by the
lens in the case of a fisheye camera. Because the literature in this field is quite large, here
we review two different projection models that have become standards in omnidirectional
vision and robotics. Additionally, Matlab toolboxes have been developed for these two
models, which are used worldwide by both specialists and non-experts.

The first model is known as the unified projection model for central catadioptric cam-
eras. It was developed in 2000 by Geyer and Daniilidis [137] (later refined by Barreto and
Araujo [66]), who have the merit of having proposed a model that encompasses all three
types of central catadioptric cameras, that is, cameras using hyperbolic, parabolic, or ellip-
tical mirror. This model was developed specifically for central catadioptric cameras and is

Figure 4.39 Central catadioptric cameras can be built by using hyperbolic and parabolic mirrors.
The parabolic mirror requires the use of an orthographic lens.

Perception 165
not valid for fisheye cameras. The approximation of a fisheye lens model by a catadioptric
one is usually possible, however, with limited accuracy only [335].

Conversely, the second model unifies both central catadioptric cameras and fisheye
cameras under a general model also known as Taylor model. It was developed in 2006 by
Scaramuzza et al. [274, 275] and has the advantage that both catadioptric and dioptric cam-
eras can be described through the same model, namely a Taylor polynomial.

Unified model for central catadioptric cameras. With their landmark paper from 2000,
Geyer and Daniilidis showed that every catadioptric (parabolic, hyperbolic, elliptical) and
standard perspective projection is equivalent to a projective mapping from a sphere, cen-
tered in the single viewpoint, to a plane with the projection center on the perpendicular to
the plane and distant from the center of the sphere. This is summarized in figure 4.41.

As we did for the perspective camera, the goal is again to find the relation between the
viewing direction to the scene point and the pixel coordinates of the corresponding image
point. The projection model of Geyer and Daniilidis follows a four-step process. Let again

 be a scene point in the mirror reference frame5 centered in (figure 4.41).

1. The first step consists in projecting the scene point onto the unit sphere; therefore:

Figure 4.40 Central cameras allows us to remap regions of the omnidirectional image into a perspec-
tive image. This can be done straightforwardly by intersecting the optical rays with a plane specified
arbitrarily by the user (a). Of course we cannot project the whole image onto a plane but only subre-
gions of it (b). Another possible projection is that onto a sphere (c).

(a)

(b)

(c)

P x y z = C

166 Chapter 4
. (4.50)

2. The point coordinates are then changed to a new reference frame centered in
; therefore:

. (4.51)

Observe that ranges between 0 (planar mirror) and 1 (parabolic mirror). The correct
value of can be obtained knowing the distance d between the foci of the conic and the
latus rectum6 l as summarized in the table of figure 4.41.

3. is then projected onto the normalized image plane distant 1 from ; therefore,

. (4.52)

4. Finally, the point is mapped to the camera image point through the intrin-
sic parameter matrix ; therefore,

5. For convenience we assume that the mirror axis of symmetry is perfectly aligned with the camera
optical axis. We also assume that the x-y axes of the camera and mirror are aligned. Therefore, the
camera and mirror reference frames differ only by a translation along z.
6. The latus rectum of a conic section is the chord through a focus parallel to the conic section direc-
trix.

Figure 4.41 Unified projection model for central catadioptric cameras of Geyer and Daniilidis.

Ps
P
P

-------- xs ys zs = =

C 0 0 – =

P xs ys zs + =

P C

m̃ xm ym 1
xs

zs +

ys

zs +
------------- 1

 g
1–

Ps = = =

m̃ p̃ u v 1 =

A

Mirror type

Parabola 1

Hyperbola

Ellipse

Perspective 0

d

d
2

4l
2

+

d

d
2

4l
2

+

Perception 167
, (4.53)

where is given by (4.47), that is,

. (4.54)

It is easy to show that function is bijective and that its inverse is given by7:

, (4.55)

where ~ indicates that is proportional to the quantity on the right-hand side. To obtain
the scale factor, it is sufficient to normalize onto the unit sphere.

Observe that equation (4.55) is the core of the projection model of central catadioptric
cameras. It expresses the relation between the point on the normalized image plane and
the unit vector in the mirror reference frame. Note that in the case of planar mirror, we
have and (4.55) becomes the projection equation of perspective cameras

.
This model has proved to be able to describe accurately all central catadioptric cameras

(parabolic, hyperbolic, and elliptical mirror) and standard perspective cameras. An exten-
sion of this model for fisheye lenses was proposed in 2004 by Ying and Hu [335]. However,
the approximation of a fisheye camera through a catadioptric one works only with limited
accuracy. This is mainly due because, while the three types of central catadioptric cameras
can be represented through an exact parametric function (parabola, hyperbola, ellipse), the
projective models of fisheye vary from camera to camera and depend on the lens field-of-
view. To overcome this problem, a new unified model has been proposed, which will be
described in the next section.

7. Equation (4.55) can be obtained by inverting (4.52) and imposing the constraint that must lie
on the unit sphere and, thus, . From this constraint you will then get an expression
of as a function of , , and . More details can be found in [66].

p̃ A m̃=

A

A

u u cot u0

0 v v0

0 0 1

=

g
1–

g

Ps
xs

2
ys

2
zs

2
+ + 1=

zs xm ym

Ps g m

xm

ym

1
xm

2
ym

2
1+ +

 1 1 2
– xm

2
ym

2
+ ++

---–

=

g

g m

m

Ps

 0=

Ps xm ym 1

168 Chapter 4
Unified model for catadioptric and fisheye cameras. This unified model was proposed
by Scaramuzza et al. in 2006 [274, 275]. The main difference with the previous model lies
in the choice of the function . To overcome the lack of knowledge of a parametric model
for fisheye cameras, the authors proposed the use of a Taylor polynomial, whose coeffi-
cients and degree are found through the calibration process. Accordingly, the relation
between the normalized image point and the unit vector in the fisheye
(mirror) reference frame can be written as:

, (4.56)

where . As you have probably noticed, the first-order term (i.e.,) of the
polynomial is missing. This follows from the observation that the first derivative of the
polynomial calculated at must be null for both catadioptric and fisheye cameras (this
is straightforward to verify for catadioptric cameras by differentiating [4.55]). Also observe
that because of its polynomial nature, this expression can encompass catadioptric, fisheye,
and perspective cameras. This can be done by opportunely choosing the degree of the poly-
nomial. As highlighted by the authors, polynomials of order three or four are able to model
very accurately all catadioptric cameras and many types of fisheye cameras available on the
market. The applicability of this model to a wide range of commercial cameras is at the
origin of its success.

Omnidirectional camera calibration. The calibration of omnidirectional cameras is sim-
ilar to that for calibrating standard perspective cameras, which we have seen in section
4.2.3.4. Again, the most popular methods take advantage of planar grids that are shown by
the user at different positions and orientations. For omnidirectional cameras, it is very
important that the calibration images are taken all around the camera and not on a single
side only. This in order to compensate for possible misalignments between the camera and
mirror.

It is worth to mention three open-source calibration toolboxes currently available for
Matlab, which differ mainly for the projection model adopted and the type of calibration
pattern.

• The toolbox of Mei uses checkerboard-like images and takes advantage of the projection
model of Geyer and Daniilidis discussed earlier. It is particularly suitable for catadiop-
tric cameras using hyperbolic, parabolic, folded mirrors, and spherical mirrors. Mei’s
toolbox can be downloaded from [349], while the theoretical details can be found in
[212].

g

m̃ xm ym 1 = Ps

Ps g m

xm

ym

a0 a2
2 aN

N
+ + +

=

 xm
2

ym
2

+= a1

 0=

Perception 169
• The toolbox of Barreto uses line images instead of checkerboards. Like the previous
toolbox, it also uses the projection model of Geyer and Daniilidis. It is particularly suit-
able for parabolic mirrors. The toolbox can be downloaded from [350], while the theo-
retical details can be found in [67] and [68].

• Finally, the toolbox of Scaramuzza uses checkerboard-like images. Contrary to the pre-
vious two, it takes advantage of the unified Taylor model for catadioptric and fisheye
cameras developed by the same author. It works with catadioptric cameras using hyper-
bolic, parabolic, folded mirrors, spherical, and elliptical mirrors. Additionally, it works
with a wide range of fisheye lenses available on the market—like Nikon, Sigma, Omni-
tech-Robotics, and many others—with field of view up to 195 degrees. The toolbox can
be downloaded from [351], while the theoretical details can be found in [274] and [275].
Contrary to the other two, this toolbox features an automatic calibration process. In fact,
both the center of distortion and the calibration points are detected automatically without
any user intervention.

4.2.5 Structure from stereo

4.2.5.1 Introduction
Range sensing is extremely important in mobile robotics, since it is a basic input for suc-
cessful obstacle avoidance. As we have seen earlier in this chapter, a number of sensors are
popular in robotics explicitly for their ability to recover depth estimates: ultrasonic, laser
rangefinder, time-of-flight cameras. It is natural to attempt to implement ranging function-
ality using vision chips as well.

However, a fundamental problem with visual images makes rangefinding relatively dif-
ficult. Any vision chip collapses the 3D world into a 2D image plane, thereby losing depth
information. If one can make strong assumptions regarding the size of objects in the world,
or their particular color and reflectance, then one can directly interpret the appearance of
the 2D image to recover depth. But such assumptions are rarely possible in real-world
mobile robot applications. Without such assumptions, a single picture does not provide
enough information to recover spatial information.

The general solution is to recover depth by looking at several images of the scene to gain
more information, hopefully enough to at least partially recover depth. The images used
must be different, so that taken together they provide additional information. They could
differ in camera geometry—such as the focus position or lens iris—yielding depth from
focus (or defocus) techniques that we have described in section 4.2.3.1. An alternative is to
create different images, not by changing the camera geometry, but by changing the camera
viewpoint to a different camera position. This is the fundamental idea behind structure from
stereo (i.e., stereo vision) and structure from motion that we will present in the next sec-
tions. As we will see, stereo vision processes two distinct images taken at the same time

170 Chapter 4
and assumes that the relative pose between the two cameras is known. Structure-from-
motion conversely processes two images taken with the same or a different camera at dif-
ferent times and from different unknown positions; the problem consists in recovering both
the relative motion between the views and the depth. The 3D scene that we want to recon-
struct is usually called structure.

4.2.5.2 Stereo vision
Stereopsis (from stereo meaning solidity, and opsis meaning vision or sight) is the process
in visual perception leading to the sensation of depth from the two slightly different projec-
tions of the world onto the retinas of the two eyes. The difference in the two retinal images
is called horizontal disparity, retinal disparity, or binocular disparity. The differences arise
from the eyes' different positions in the head. It is the disparity that makes our brain fuse
(perceive as a single image) the two retinal images making us perceive the object as a one
and solid. To have a clearer understanding of what disparity is, as a simple test, hold your
finger vertically in front of you and close each eye alternately. You will see that the finger
jumps from left to right. The distance between the left and right appearance of the finger is
the disparity. The same phenomenon is visible in the image pair shown in figure 4.48, in
which the foreground objects shift left and right relative to the background.

Computational stereopsis, or stereo vision, is the process of obtaining depth information
from a pair of images coming from two cameras which look at the same scene from differ-
ent positions. In stereo vision we can identify two major problems:

1. the correspondence problem
2. 3D reconstruction
The first consists in matching (pairing) points of the two images which are the projection

of the same point in the scene. These matching points are called corresponding points or
correspondences (figure 4.45a). This will be clarified later on. Determining the corre-
sponding points is made possible based on the assumption that the two images differ only
slightly and therefore a feature in the scene appears similar in both images. Based only of
this assumption, however, there might be many possible false matches. As we will see, this
problem can be overcome by introducing an additional constraint which makes the corre-
spondence matching feasible. This constraint is called epipolar constraint (section 4.2.6.1)
and states that the correspondent of a point in an image lies on a line (called epipolar line)
in the other image (figure 4.45b). Because of this constraint, we will see that the correspon-
dence search becomes one-dimensional instead of two-dimensional.

Knowing the correspondences between the two images, knowing the relative orientation
and position of the two cameras, and knowing the intrinsic parameters of the two cameras,
it is possible to reconstruct the scene points (i.e., the structure). This process of reconstruc-
tion requires the prior calibration of the stereo camera; that is, we need to calibrate the two
cameras separately for estimating their extrinsic parameters, but we also need to determine
their extrinsic parameters, i.e. the camera relative position.

Perception 171
The theory of stereo vision has been well understood for years, while the engineering
challenge of creating a practical stereo-vision sensor has been formidable [21, 43, 44].
Example of commercially available stereo cameras are shown in figure 4.42.

Basic case. First, we consider a simplified case in which two cameras have the same ori-
entation and are placed with their optical axes parallel, at a separation of b (called baseline),
shown in figure 4.43.

In this figure, a point on the object is described as being at coordinate with
respect to the origin located in the left camera lens. The image coordinate in the left and
right image are () and () respectively. From figure 4.43a and using equations
(4.36) and (4.37), we can write

 , (4.57)

, (4.58)

from which we obtain

 , (4.59)

where the difference in the image coordinates, is called disparity. This is an impor-
tant term in stereo vision, because it is only by measuring disparity that we can recover
depth information. Observations from this equation are as follows:

Figure 4.42 (Left) The STH-MDCS3 form Videre Design uses CMOS sensors, a baseline of 9 cm,
an image resolution of at 7.5 frames per second (fps), or at 30 fps. (Right)
The Bumblebee2 from Point Grey uses CCD sensors, a baseline of 12 cm, an image resolution of

 at 20 frames per second (fps), or at 48 fps.

1280 960 640 480

1024 768 640 480

x y z

ul vl, ur vr,

f
z
--

ul

x
----=

f
z
--

u– r

b x–
-----------=

z b
f

ul ur–
---------------=

ul ur–

172 Chapter 4
• Distance is inversely proportional to disparity. The distance to near objects can therefore
be measured more accurately than that to distant objects, just as with depth from focus
techniques. In general, this is acceptable for mobile robotics, because for navigation and
obstacle avoidance closer objects are of greater importance.

• Disparity is proportional to . For a given disparity error, the accuracy of the depth esti-
mate increases with increasing baseline .

• As b is increased, because the physical separation between the cameras is increased,
some objects may appear in one camera but not in the other. This is due to the field of
view of the cameras. Such objects by definition will not have a disparity and therefore
will not be ranged.

• If the baseline b is unknown, it is possible to reconstruct the scene point only up to a
scale. This is the case in structure-from-motion (section 4.2.6).

• A point in the scene visible to both cameras produces a pair of image points known as a
conjugate pair, or correspondence pair (figure 4.44a). Given one member of the conju-
gate pair, we know that the other member of the pair lies somewhere along a line known

Figure 4.43
Idealized camera geometry for stereo vision. The cameras are assumed be identical (i.e., identical
focal lengths and image resolution); furthermore, they are assumed to be perfectly aligned on the hor-
izontal axis.

f

Cl

b

z

x

ul ur

x y z

Cr

b
b

Perception 173
as epipolar line. In the case depicted in figure 4.43a, because the cameras are perfectly
aligned with one another, the epipolar lines are horizontal lines (i.e., along the direc-
tion). The concept of epipolar line will be explained later on in this section.

General case. The assumption of perfectly aligned cameras is normally violated in prac-
tice. In fact, even the most expensive stereo cameras available in the market do not assume
this model. Indeed, two exactly identical cameras do not exist. There will be always differ-
ences in the focal length due to manufacturing but, especially, even if such identical cam-
eras could exist, we would never be sure that they are perfectly aligned. The situation is
even more complicated by the fact that the internal orientation of the CCD in the camera
package is unknown. Ideally it is aligned, but in practice the CCD cannot be considered per-
fectly aligned. Therefore, the general stereo vision model assumes that the two cameras are
different and not aligned (figure 4.44) but requires that the relative position and orientation
of the two cameras is known. If the relative position is not known, the stereo camera must
be calibrated using the checkerboard-based calibration treated in section 4.2.3.4. Fortu-
nately, the previously mentioned toolbox for calibrating the camera intrinsic parameters
[347] allows the user to calibrate stereo cameras as well.

So, let us assume that the two cameras have been previously calibrated. Therefore, the
intrinsic parameter matrices and (see equation 4.47) for the left and right camera are
known, and the camera extrinsic parameters—i.e. the rotations , and translations ,

 of the two cameras with the respect to the world coordinate system—are also known. In
stereo vision, it is a common practice to assume the origin of the world coordinate system
in the left camera. Thus, we can write and . This allows us to write the equa-
tions of perspective projection for the two cameras as:

 (for the left camera), (4.60)

x

Cl

Cr

pr

Pw

R t

pl

Figure 4.44 Stereo vision: general case.

Al Ar

Rl Rr tl

tr

Rl I= Rr R=

lp̃l Al I 0 P̃w=

174 Chapter 4
 (for the right camera), (4.61)

where and are the image points (in homogeneous coordi-
nates) corresponding to the world point (in homogeneous coordinates) in
the left and right camera respectively. and are the depth factors. Observe that (4.60)
and (4.61) actually contribute three equations each. Therefore, we have a system of six
equations in five unknowns, three for the world point and two for depth fac-
tors, i.e. and . The system is overdetermined and can be solved either linearly, using
least-squares, or nonlinearly by computing the 3D point that minimizes distances between
the two light rays passing through and . The solution of these two equations is left as
an exercise to the reader in section 4.8.

Correspondence problem. Using the preceding equations requires us to have identified
the conjugate pair and in the left and right camera images, which originates from the
same scene point (figure 4.45a). This fundamental challenge is called the correspon-

rp̃r Ar R t P̃w=

p̃l ul vl 1 =
T

p̃r ur vr 1 =
T

P̃w x y z 1 T=

l r

Pw x y z =

l r

p̃l p̃r

pl pr

P̃w

Figure 4.45 A stereo pair. Corresponding points are projections of the same scene point. Because of
the epipolar constraint, conjugate points can be searched along the epipolar lines. This heavily
reduces the computational cost of the correspondence search: from a two-dimensional search it
becomes a one-dimensional search problem.

(a)

(b)

Perception 175
dence problem. Intuitively, the problem is: given two images of the same scene from dif-
ferent perspectives, how can we identify the same object points in both images? For every
such identified object point, we will then be able to recover its 3D position in the scene.

The correspondence search is based on the assumption that the two images of the same
scene do not differ too much, that is, a feature in the scene is supposed to appear very sim-
ilar in both images. Using an opportune image similarity metric (see section 4.3.3), a given
point in the first image can be paired with one point in the second image. The problem of
false correspondences makes the correspondence search challenging. False correspon-
dences occur when a point is paired to another that is not its real conjugate. This is because
the assumption of image similarity does not hold very well, for instance if the part of the
scene to be paired appears under different illumination or geometric conditions. Other
problems that make the correspondence search difficult are:

• Occlusions: the scene is seen by two cameras at different viewpoints and therefore there
are parts of the scene that appear only in one of the images. This means, there exist
points in one image which do not have a correspondent in the other image.

• Photometric distortion: there are surfaces in the scene which are nonperfectly lamber-
tian, that is, surfaces whose behavior is partly specular. Therefore, the intensity
observed by the two cameras is different for the same point in the scene as more as the
cameras are farther apart.

• Projective distortion: because of the perspective distortion, an object in the scene is pro-
jected differently on the two images, as more as the cameras are farther apart.

Some constraints can, however, be exploited for improving the correspondence search,
which are:

• Similarity constraint: a feature in the image appears similar in the other image.

• Continuity constraint: far from the image borders, the depth of the scene points along a
continuous surface varies continuously. This constraint clearly limits the gradient of dis-
parity.

• Unicity: a point of the first image can be paired only with a single point in the other
image, and vice versa (it fails in presence of occlusions, specularities, and transparency).

• Monotonic order: if point in the left image is the correspondent of in the right
image, then the correspondent of a point on the right (left) of can only be found on
the right (left) of . This is valid only for points that lie on an opaque object.

• Epipolar constraint: the correspondent of a point in the left image can only be found
along a line in the right image, which is called epipolar line (figure 4.45b). As a matter
of fact, this is the most important constraint and will be explained later on.

pl pr

pl

pr

176 Chapter 4
The methods for searching correspondences can be distinguished into two categories:

• Area-based: these algorithms consider a small patch (window) in one image and look
for the most similar patch in the second image by means of an appropriate correlation
measure. This search is done for every pixel and allows us to obtain a dense reconstruc-
tion. However, in uniform regions—that is, poor texture—these methods fail. There
exist different techniques to measure the similarity between image patches for stereo
matching. The most used are the Sum of Absolute Differences (SAD), the Sum of
Squared Differences (SSD), the Normalized Cross Correlation (NCC), and the Census
Transform. An overview of some of these algorithms is given in section 4.3.3. Finally,
observe that the search for correspondences is a two-dimensional search: the most sim-
ilar of a patch in the left image must be searched across all rows and columns of the right
image. As we will see in the next section, the search can be reduced to only one line, the
epipolar line, thus reducing the dimensionality of the search from two to one (figure
4.45b).

• Feature-based: these algorithms extract salient features from the images, which are pos-
sibly stable with respect to change of view point. The matching process is applied to the
attributes associated to the features. Edges, corners, line segments, and blobs are some
of the features that can be used. They do not have to correspond necessarily to a well
defined geometric entity. An exhaustive overview on feature extraction is given is sec-
tion 4.5. Feature-based stereo matching algorithms are faster and more robust than area-
based methods but provide only sparse depth maps, which then need to be interpolated.

Epipolar geometry. Given a pixel in one image (say the left image), how can we compute
its correspondence with the correct pixel in the other image? As we anticipated in the pre-
vious section, one way would be to search the correspondences across all pixels of the
second image. In the case of stereo matching, however, we have some information avail-
able, namely the relative position and the calibration parameters of the two cameras. This
information allows us to reduce the search from two dimensions to an only one dimension.
Figure 4.46a shows how a pixel point in one image projects to an epipolar line segment
in the other image. The segment is bounded at one end by the projection of (the original
viewing ray at infinity) and at the other end by the projection of into the second camera,
which is known as the epipole . By projecting the epipolar line in the second image back
into the first image, we get another line which is bounded by the other corresponding epi-
pole . Notice that two corresponding epipolar lines (figure 4.46b) originate from the
intersection of the two image planes with the epipolar plane that passes through the camera
centers and and the scene point .

To compute the equation of the epipolar line, we must project the optical ray passing
through and to the second image. This is straightforward. The equation of the optical

pl

P
Cl

er

el

Cl Cr Pw

pl Cl

Perception 177
ray passing through and can be obtained from the perspective projection equation
(4.60), which we rewrite here as:

, (4.62)

and therefore the line passing through and has equation:

 , (4.63)

Cl

Cr

pl pr

Pw

P

el
er

Cl

Cr

pl
pr

Pw

el
er

R t

R t

(a)

(b)

Figure 4.46 Epipolar geometry: (a) epipolar line segment corresponding to one ray; (b) correspond-
ing set of epipolar lines and their epipolar plane.

pl Cl

lp̃l l

ul

vl

1

Al I 0 P̃w AlPw Al

x

y

z

= = = =

pl Cl

x

y

z

lAl
1–

ul

vl

1

=

178 Chapter 4
which we can rewrite in a more compact form as:

. (4.64)

Finally, to find the equation of the epipolar line, we just project this line onto the second
image using the perspective projection equation (4.61):

, (4.65)

and therefore, using (4.64), we obtain the epipolar line

, (4.66)

where is actually the epipole in the second image, that is, the projection of the opti-
cal center of the left camera into the right image.

By applying equation (4.66) to every image point in the left image, we can compute all
the epipolar lines in the right image. The correspondence of one point in the left image will
then need to be searched only along its corresponding epipolar line. Note that the epipolar
lines pass all through the same epipole. However, observe that in computing equation
(4.66) we did not take into account the radial distortion introduced by the lens. Although
for some narrow-field-of-view cameras the radial distortion is rather small, it is always
opportune to take the radial distortion into account when computing the equation of the epi-
polar line. The reason is that if the epipolar line is not determined precisely, the correspon-
dence search along a non accurate epipolar line can lead to a larger uncertainty in the
computation of the disparity as well as in the reconstruction of the scene point .

Instead of taking into account the radial distortion, a common consolidated procedure in
stereo vision is that of undistorting first the two images, that is, remapping the left and right
image into new images without distortion. Furthermore, the two images can be remapped
in such a way that all epipolar lines in the left and right image are collinear and horizontal
(figure 4.47d). The process of transforming a pair of stereo images into a new pair without
radial distortion and with horizontal epipolar lines is called stereo rectification or epipolar
rectification. We will briefly explain it in the next section.

Epipolar rectification. Given a pair of stereo images, epipolar rectification is a transfor-
mation of each image plane such that all corresponding epipolar lines become collinear and
parallel to one of the image axes, for convenience usually the horizontal axis. The resulting
rectified images can be thought of as acquired by a new stereo camera obtained by rotating
the original cameras about their optical centers. The great advantage of the epipolar recti-

Pw lAl
1–
p̃l=

rp̃r Ar R t P̃w ArRPw Art+= =

rp̃r lAr
RAl

1–
p̃l Art+=

Art er

Cl

Pw

Perception 179
fication is the correspondence search becomes simpler and computationally less expensive
because the search is done along the horizontal lines of the rectified images. The steps of
the epipolar rectification algorithm are illustrated in figure 4.47. Observe that after the rec-
tification, all the epipolar lines in the left and right image are collinear and horizontal (fig-
ure 4.47d). The equations for the epipolar rectification algorithm go beyond the scope of
this book, but the interested reader can find an easy-to-implement algorithm in [133].

Disparity map. After the calibration of the stereo-rig, the epipolar rectification, and the
correspondence search, we can finally reconstruct the scene points in 3D by solving the
system of equations (4.60)–(4.61) (see also the problem in section 4.8). Another popular
output of stereo vision is the disparity map. A disparity map appear as a grayscale image
where the intensity of every pixel point is proportional to the disparity of that pixel in the
left and right image: objects that are closer to the camera appear lighter, while farther
objects appear darker. An example disparity map is shown in figure 4.48. Disparity maps
are very useful for obstacle avoidance (figure 4.49). Modern stereo cameras—like those
from Videre Design and Point-Grey (figure 4.42)—are able to compute disparity maps
directly in hardware.

(a) (b)

(c) (d)

Figure 4.47 Rectification of a stereo pair: (a) original images, (b) compensation of the lens distortion,
(c) compensation of rotation and translation, (d) After the epipolar rectification, the epipolar lines
appear collinear and horizontal.

180 Chapter 4
4.2.6 Structure from motion
In the previous section, we described how to recover the structure of the environment from
two images of the scene taken from two distinct cameras whose relative position and ori-
entation is known. In this section, we discuss the problem of recovering the structure when
the camera relative pose is unknown. This is the case, for instance, when the two images
are taken from the same camera but at different positions and at different times,8 or, alter-
natively, from different cameras. This implies that both structure and motion must be esti-
mated simultaneously. This problem is known as Structure from Motion (SfM). This
problem has been studied for long time in the computer vision community, and in this sec-

8. For the sake of simplicity, here we assume that the scene is time invariant (i.e., static). One way
to deal with dynamic scenes consists in treating moving objects as outliers.

Figure 4.48 An example disparity map computed from the two top images. Every pixel point is pro-
portional to the disparity of that pixel in the left and right image. Objects that are closer to the camera
appear lighter, while farther objects appear darker. Image courtesy of Martin Humenberger, AIT Aus-
trian Institute of Technology — http://www.ait.ac.at.

Left image Right image

Disparity map

Perception 181
tion we provide only the solution to the two-frame structure from motion problem. For an
in-depth study of structure from motion, we refer the reader to [21, 22, 29, 36, 53].

Observe that in structure-from-motion, the images do not need to be precalibrated. This
allows SfM to work in challenging situations, where, for instance, images are taken by dif-
ferent users using different cameras (for example, images from the Web). The intrinsic
parameters can in fact be estimated automatically from SfM itself. A suggestive result of
SfM is illustrated in figure 4.50. Here, the scene was reconstructed using dozens of images.
Using thousands of images from different viewpoints, SfM can sometimes achieve 3D
reconstruction results that are almost comparable in accuracy and density of points to 3D
laser rangefinders (page 133). However, this precision is often at the expense of the com-
putation power.

4.2.6.1 Two-view structure-from-motion
Let us start again from the two perspective projection equations (4.60) and (4.61) derived
for the stereo vision case, but now remember that R and t denote the relative motion
between the first and the second camera position; therefore, we can write:

Figure 4.49
A stereo camera from Videre Design on the Shrimp robot developed at the ASL.

182 Chapter 4
 (for the first camera position), (4.67)

 (for the second camera position). (4.68)

In order to simplify our problem, let us make some assumptions. Let us assume that we use
the same camera for the first and the second position and that the intrinsic parameters do
not change in between; therefore, . Let us also assume that the camera is cal-
ibrated, and that therefore A is known. In this case, it is more convenient to work with nor-
malized image coordinates. Let and be the normalized coordinates of and
respectively, where

 and , (4.69)

Figure 4.50 An example of structure-from-motion: salient image points (image features, see sec-
tion 4.5) are extracted and matched across multiple frames. Wrong data associations (outliers) are
removed and the relative motion among the views is determined. Finally, the points are recon-
structed by triangulation. The reconstruction of the building was obtained using dozens of images.
The camera poses are also displayed. Image courtesy of Friedrich Fraundorfer. Structure from
motion also allows dense reconstruction of entire cities and monuments using just images.

1p̃1 A1 I 0 P̃w A1Pw= =

2p̃2 A2 R t P̃w=

A1 A2 A= =

x̃1 x̃2 p̃1 p̃2

x̃1 A
1–
p̃1= x̃2 A

1–
p̃2=

Perception 183
and , . Then, we can rewrite (4.67) and (4.68) as:

 (for the first camera position), (4.70)

 (for the second camera position). (4.71)

As we did before for computing the epipolar lines (page 176), let us map the optical ray
corresponding to into the second image. Thus, by substituting (4.70) into (4.71), we
obtain:

. (4.72)

Let us now take the cross product of both sides with t. This in order to cancel t on the
right-hand side. Then, we obtain:

, (4.73)

where is an antisymmetric matrix defined as

. (4.74)

Now, taking the dot product of both sides (4.73) with yields:

. (4.75)

Observe that , and therefore from (4.75) we obtain:

, (4.76)

which is called epipolar constraint. Observe that the epipolar constraint is valid for every
pair of conjugate points.

Let us define the essential matrix , the epipolar constraint reads as;

 (4.77)

x̃1 x1 y1 1 = x̃2 x2 y2 1 =

1 x̃1 Pw=

2 x̃2 R t P̃w RPw t+= =

x1

2 x̃2 1Rx̃1 t+=

2 t x̃2 1 t R x̃1=

t

t

0 tz– ty

tz 0 tx–

ty– tx 0

=

x2

2 x̃2
T

t x̃2 1x̃2
T

t R x̃1 =

x̃2
T

t x̃2 0=

x̃2
T

t R x̃1 0=

E t R =

x̃2
T

E x̃1 0=

184 Chapter 4
It can be shown that the essential matrix has two singular values which are equal and
another which is zero [29].

Computing the essential matrix. Given this fundamental relationship (4.77), how can
we use it to recover the camera motion encoded in the essential matrix E? If we have N cor-
responding measurements , we can form N homogeneous equations in the nine
elements of , of the type

. (4.78)

This can be rewritten in a more compact way as:

. (4.79)

Given such equations, we can compute an estimate (up to a scale) for the entries in
E using the Singular Values Decomposition (SVD). The solution of (4.79) will therefore be
the eigenvector of D corresponding to the smallest eigenvalue. Because at least eight point
correspondences are needed, this algorithm is known as the eight-point algorithm [194].
This algorithm is one of the milestones of computer vision. The main advantages of the
eight-point algorithm are that it is very easy to implement and that it works also for an
uncalibrated camera, that is, when the camera intrinsic parameters are unknown. The draw-
back is that it does not work for degenerate point configurations such as planar scenes, that
is, when all the scene points are coplanar.

In the case of a calibrated camera, at least five point correspondences are required [178].
An efficient algorithm for computing the essential matrix from at least five point correspon-
dences was proposed by Nister [246]. The five-point algorithm works only for calibrated
cameras but is more complicated to implement. However, in contrast to the eight-point
algorithm, it also works for planar scenes.

Decomposing E into R and t. Let us now assume that the essential matrix E has been
determined from known point correspondences. How do we determine R and t? Because a
complete derivation of the proof is beyond the scope of this book, we will give directly the
final expression. The interested reader can find the proof of these equations in [29].

Before decomposing E, we need to enforce the constraint that two of its singular values
are equal and the third one is zero. In fact, in presence of image noise this constraint will
never be verified in practice. To do this, we compute the closest9 essential matrix which

9. Closest in terms of the Frobenius norm.

x1
i

x2
i

E e11 e12 e13 e21 e22 e23 e31 e32 e33 T=

x̃1
i
x̃2

i
e11 ỹ1

i
x̃2

i
e12 x̃2

i
e13 x̃1

i
ỹ2

i
e21 ỹ1

i
ỹ2

i
e22 ỹ2

i
e23 x̃1

i
e31 ỹ1

i
e32 e33+ + + + + + + + 0=

D E 0=

N 8

Ê

Perception 185
satifies this constraint. One popular technique is to use SVD and force the two larger sin-
gular values to be equal and the smallest one to be zero. Therefore:

, (4.80)

where with . Then, the closest essential matrix eo E
in the Frobenius norm is given by

 (4.81)

Then, we replace E with . At this point, we can decompose E into R and t.
The decomposition of E returns four solutions for (R,t), two for R and two for t. Let us

define

 and , (4.82)

where U, S, and V are such that . It can be shown (see [29]) that the two solu-
tions for R are:

, (4.83)

. (4.84)

Now, let us define

 and . (4.85)

The two solutions for t are:

, (4.86)

U S V SVD E =

S diag S11 Sss S33 = S11 S22 S33

Ê U diag
S11 S22+

2

S11 S22+

2
---------------------- 0

 V
T=

Ê

B
0 1 0

1– 0 0

0 0 1

= U S V SVD E =

U S V
T E=

R1 det U V
T U B V

T =

R2 det U V
T U B

T V
T =

L U
0 1– 0

1 0 0

0 0 0

U
T = M U–

0 1– 0

1 0 0

0 0 0

U
T =

t1

L32 L13 L21

T

L32 L13 L21

---------------------------------------=

186 Chapter 4
. (4.87)

These four solutions can be disambiguated using the so-called cheirality constraint, which
requires that reconstructed point correspondences lie in front of the cameras. In fact, if you
analyse the four solutions of the SfM problem, you will always find that three solutions are
such that the reconstructed point correspondences appear behind at least one of the two
cameras, while only one solution guarantees that they lie in front of both cameras. Thus,
testing with a single point correspondence to determine if it is reconstructed in front of both
cameras is sufficient to identify the right solution out of the four possible choices. Also,
observe that the solution for t is known up to a scale. In fact, with a single camera it is not
possible to recover the absolute scale. For the same reason, the recovered structure will also
be known up to a scale.

The last step in two-view structure-from-motion is the reconstruction of the scene. Once
R and t have been found, the 3D structure can be computed via triangulation of the feature
points as done for the stereo camera (page 173).

Free software for multi-view structure from motion. To conclude this section, we
would like to point the reader to some interesting, free software to performe structure-from
motion from unordered image collections. The most popular is Microsoft Photosynth
(http://photosynth.net)—inspired by the research work on Photo Tourism [355]—which is
based on the very popular open-source software Bundler (available at http://photo-
tour.cs.washington.edu/bundler) and described in [297] and [298].

Very useful and fully open-source tools for on-line processing are: the Parallel Tracking
and Mapping (PTAM) tool [358], the Vodoo camera tracker [356], and the ARToolkit
[357].

Useful Matlab toolboxes for structure from motion are:

• FIT3D: http://www.fit3d.info

• Structure from Motion toolbox by V. Rabaud: http://code.google.com/p/vincents-struc-
ture-from-motion-matlab-toolbox

• Matlab Functions for Multiple View Geometry by A. Zissermann:
http://www.robots.ox.ac.uk/~vgg/hzbook/code

• Structure and Motion Toolkit by P. Torr:
http://cms.brookes.ac.uk/staff/PhilipTorr/Code/code_page_4.htm

• Matlab Code for Non-Rigid Structure from Motion using Factorisation by L. Torresani
http://movement.stanford.edu/learning-nr-shape

t2

M32 M13 M21

M32 M13 M21

T
--=

Perception 187
Finally, see also the companies 2d3 (http://www.2d3.com) and Vicon (http://
www.vicon.com).

4.2.6.2 Visual odometry
Directly linked to structure from motion is visual odometry. Visual odometry consists in
estimating the motion of a robot or that of a vehicle by using visual input alone. The term
“visual odometry” was coined in 2004 by Nister with his homonym landmark paper [245],
where he showed successful results on different vehicles (on-road and off-road) using
either a single camera or a stereo camera. The basic principle behind visual odometry is a
simple iteration of two-view structure from motion that we have seen in the previous sec-
tion.

Most of the work done about visual odometry has been produced using stereo cameras
and can be traced back to 1980 with Moravec’s work [236]. Similar work has also been
reported elsewhere also (see [160, 174, 181, 244]). Furthermore, stereo visual odometry has
also been successfully used on Mars by the NASA rovers since early 2004 [203]. Never-
theless, visual odometry methods for outdoor applications have also been produced, which
use a single camera alone (see [107, 244, 278, 279, 307]).

The advantage of using a stereo camera compared to a single camera is that the measure-
ments are directly provided in the absolute scale. Conversely, when using a single camera
the absolute scale must be estimated in other ways (e.g., from knowledge of an element in
the scene, or the distance between the camera and the ground plane) or using other sensors
such as GPS, IMU, wheel odometry, or lasers.

Visual odometry aims at recovering only the trajectory of the vehicle. Nevertheless, it is
not uncommon to see results showing also the 3D map of the environment which is usually
a simple triangulation of the feature points from the estimated camera poses. An example
visual odometry result using a single omnidirectional camera is shown in figure 4.51. Here
the scale was obtained by exploiting the nonholonomic constraints of the vehicle as
described in [277]. In this figure, visual odometry is performed over a 3 km trajectory.
Notice the visible drift toward the end of the trajectory.

All visual odometry algorithms suffer from motion drift due to the integration of the rel-
ative displacements between consecutive poses which unavoidably accumulates errors over
time. This drift becomes evident usually after a few hundred meters. But the results may
vary depending on the abundance of features in the environment, the resolution of the cam-
eras, the presence of moving objects like people or other passing vehicles, and the illumi-
nation conditions. Remember that motion drift is also present in wheel odometry, as will be
described in section 5.2.4. However, the reason visual odometry is becoming more and
more popular in both robotics and automotive is that drift can be canceled if the vehicle
revisits a place that has already been observed previously. The possibility of performing
location recognition (or place recognition) is one of the main advantages of vision com-

188 Chapter 4
pared to other sensor modalities. The most popular computer vision approaches for location
recognition will be described in section 4.6. Once a place previously observed is visited a
second time by the robot, the accumulated error can be reduced by adding the constraint
that the positions of the vehicle at these two places (the previously visited and the revisited
one) should actually coincide. This obviously requires an algorithm that modifies
(“relaxes”) all the previous robot poses until the error between the current and previously
visited location is minimized.

The problem of location recognition is also called loop-detection, because a loop is a
closed trajectory of a vehicle that returns to a previously-visited point. The problem of min-
imizing the error at the loop closure is instead called loop-closing. There are several algo-
rithms in the literature to perform loop-closing. Some of them come from the computer
vision community and rely on the so called bundle adjustment,10 while others have been

Figure 4.51 (upper left) An example visual odometry result with related map (bottom) obtained using
a single omnidirectional camera mounted on the roof of the vehicle (right). The absolute scale was
computed automatically by taking advantage of the fact that a wheeled vehicle is constrained to
follow a circular coarse, locally, about the instantaneous center of rotation (see Ackerman steering
principle in section 3.3.1). This visual odometry result was obtained using the 1-point RANSAC
method described in [278]. The advantage of this algorithm compared to the state of the art is that
visual odometry runs at 400 frames per second, while standard method work at 20–40 Hz.

Perception 189
developed within the robotics community to solve the Simultaneous Localization and Map-
ping (SLAM) problem (see section 5.8.2). Some of the most popular algorithms can be
found in [318] and [352].

4.2.7 Motion and optical flow
A great deal of information can be recovered by recording time-varying images from a
fixed (or moving) camera. First, we distinguish between the motion field and optical flow:

• Motion field: this assigns a velocity vector to every point in an image. If a point in the
environment moves with velocity , then this induces a velocity in the image plane.
It is possible to determine mathematically the relationship between and .

• Optical flow: it can also be true that brightness patterns in the image move as the object
that causes them moves (light source). Optical flow is the apparent motion of these
brightness patterns.

In our analysis here we assume that the optical flow pattern will correspond to the
motion field, although this is not always true in practice. This is illustrated in figure 4.52a,
where a sphere exhibits spatial variation of brightness, or shading, in the image of the
sphere since its surface is curved. If the surface moves, however, this shading pattern will
not move hence the optical flow is zero everywhere even though the motion field is not
zero. In figure 4.52b, the opposite occurs. Here we have a fixed sphere with a moving light
source. The shading in the image will change as the source moves. In this case the optical

10.Given a set of images observing a certain number of 3D points from different viewpoints, bundle
adjustment is the problem of simultaneously refining the 3D coordinates of the scene geometry as
well as the relative motion and the camera intrinsic parameters. This is done according to an optimal-
ity criterion involving the corresponding image projections of all points.

v0 vi

vi v0

Figure 4.52
Motion of the sphere or the light source here demonstrates that optical flow is not always the same as
the motion field.

(b)(a)

190 Chapter 4
flow is nonzero but the motion field is zero. If the only information accessible to us is the
optical flow and we depend on this, we will obtain incorrect results in both cases.

4.2.7.1 Optical flow
There are a number of techniques for attempting to measure optical flow and thereby obtain
the scene’s motion field. Most algorithms use local information, attempting to find the
motion of a local patch in two consecutive images. In some cases, global information
regarding smoothness and consistency can help to disambiguate further such matching pro-
cesses. Below we present details for the optical flow constraint equation method. For more
details on this and other methods, refer to [69, 151, 316].

Suppose first that the time interval between successive snapshots is so fast that we can
assume that the measured intensity of a portion of the same object is effectively constant.
Mathematically, let be the image irradiance at time t at the image point . If

 and are the and components of the optical flow vector at that point,
we need to search a new image for a point where the irradiance will be the same at time

, that is, at point , where and . That is,

 (4.88)

for a small time interval, . This will capture the motion of a constant-intensity patch
through time. If we further assume that the brightness of the image varies smoothly, then
we can expand the left-hand side of equation (4.88) as a Taylor series to obtain

, (4.89)

where e contains second- and higher-order terms in , and so on. In the limit as tends
to zero we obtain

, (4.90)

from which we can abbreviate

 ; (4.91)

and

I x y t x y
u x y v x y x y

t t+ x t+ y t+ x u t= y v t=

I x u t+ y v t+ t t+(,) I x y t =

t

I x y t x
I
x

----- y
I
y

----- t
I
t

---- e++++ I x y t =

x t

I
x

----- xd
td

----- I
y

----- yd
td

----- I
t

----+ + 0=

u
xd
td

-----= v
yd
td

-----=

Perception 191
 ; ; , (4.92)

so that we obtain

. (4.93)

The derivative represents how quickly the intensity changes with time while the
derivatives and represent the spatial rates of intensity change (how quickly intensity
changes across the image). Altogether, equation (4.93) is known as the optical flow con-
straint equation, and the three derivatives can be estimated for each pixel given successive
images.

We need to calculate both u and v for each pixel, but the optical flow constraint equation
only provides one equation per pixel, and so this is insufficient. The ambiguity is intuitively
clear when one considers that a number of equal-intensity pixels can be inherently ambig-
uous—it may be unclear which pixel is the resulting location for an equal-intensity origi-
nating pixel in the prior image.

The solution to this ambiguity requires an additional constraint. We assume that in gen-
eral the motion of adjacent pixels will be similar, and that therefore the overall optical flow
of all pixels will be smooth. This constraint is interesting in that we know it will be violated
to some degree, but we enforce the constraint nonetheless in order to make the optical flow
computationally tractable. Specifically, this constraint will be violated precisely when dif-
ferent objects in the scene are moving in different directions with respect to the vision sys-
tem. Of course, such situations will tend to include edges, and so this may introduce a
useful visual cue.

Because we know that this smoothness constraint will be somewhat incorrect, we can
mathematically define the degree to which we violate this constraint by evaluating the for-
mula

, (4.94)

which is the integral of the square of the magnitude of the gradient of the optical flow. We
also determine the error in the optical flow constraint equation (which in practice will not
quite be zero).

. (4.95)

Ix
I
x

-----= Iy
I
y

-----= It
I
t

---- 0= =

Ixu Iyv It+ + 0=

It

Ix Iy

es u2 v2+ xd yd=

ec Ixu Iyv It+ + 2 xd yd=

192 Chapter 4
Both of these equations should be as small as possible, so we want to minimize ,
where is a parameter that weights the error in the image motion equation relative to the
departure from smoothness. A large parameter should be used if the brightness measure-
ments are accurate and small if they are noisy. In practice, the parameter is adjusted man-
ually and interactively to achieve the best performance.

The resulting problem then amounts to the calculus of variations, and the Euler equa-
tions yield

, (4.96)

, (4.97)

where

, (4.98)

which is the Laplacian operator.
Equations (4.96) and (4.97) form a pair of elliptical second-order partial differential

equations that can be solved iteratively.
Where occlusions (one object occluding another) occur, discontinuities in the optical

flow will occur. This, of course, violates the smoothness constraint. One possibility is to try
to find edges that are indicative of such occlusions, excluding the pixels near such edges
from the optical flow computation so that smoothness is a more realistic assumption.
Another possibility is to make use of these distinctive edges opportunistically. In fact, cor-
ners can be especially easy to pattern-match across subsequent images and thus can serve
as fiducial markers for optical flow computation in their own right.

Optical flow is an important ingredient in vision algorithms that combine cues across
multiple algorithms. Obstacle avoidance and navigation control systems for mobile robots
(especially flying robots) using optical flow have proved to be broadly effective as long as
texture is present [23, 54].

4.2.8 Color tracking
An important aspect of vision sensing is that the vision chip can provide sensing modalities
and cues that no other mobile robot sensor provides. One such novel sensing modality is
detecting and tracking color in the environment.

Color is an environmental characteristic and represents both a natural cue and an artifi-
cial cue that can provide new information to a mobile robot. For example, the annual robot

es ec+

2u Ixu Iyv It+ + Ix=

2
v Ixu Iyv It+ + Iy=

2 2

x
2

------- 2

y
2

-------+=

Perception 193
soccer events (RoboCup) make extensive use of color both for environmental marking and
for robot localization (see figure 4.53).

Color sensing has two important advantages. First, detection of color is a straightfor-
ward function of a single image, therefore no correspondence problem needs be solved in
such algorithms. Second, because color sensing provides a new, independent environmen-
tal cue, if it is combined (i.e., sensor fusion) with existing cues, such as data from stereo
vision or laser rangefinding, we can expect significant information gains.

Efficient color-tracking sensors are also available commercially—such as the CMUcam
from Carnegie Mellon University—but they can also be implemented straightforwardly
using a standard camera. The simplest way of doing this is using constant thresholding: a
given pixel point is selected if and only if its values fall simultaneously in
the chosen , , and ranges, which are defined by six thresholds ,

, . Therefore

 and and . (4.99)

If we represent the color space as a three-dimensional Euclidean space, the afore-
mentioned method selects those pixels whose color components belong to the cube speci-
fied by the given thresholds. Alternatively, a sphere could be used. In this case, a pixel
would be selected only if its components are within a certain distance from a given
point in the space.

Alternatively to , the color space can be used. While , , and values
encode the intensity of each color, separates the color (or chrominance) measure

Figure 4.53
Color markers on the top of EPFL’s STeam Engine soccer robots enable a color-tracking sensor to
locate the robots and the ball in the soccer field.

RGB r g b
R G B Rmin Rmax

Gmin Gmax Bmin Bmax

Rmin r Rmax Gmin g Gmax Bmin b Bmax

RGB

RGB
RGB

RGB YUV R G B
YUV

194 Chapter 4
from the brightness (or luminosity) measure. represents the image’s luminosity while
and together capture its chrominance. Thus, a bounding box expressed in space
can achieve greater stability with respect to changes in illumination than is possible in

 space.
A popular application of color segmentation in robotics is floor plane extraction (figure

4.54). In this case, color segmentation techniques more complex than color thresholding are
used, like adaptive thresholding, or k-means clustering11 [18]. Floor plane extraction is a
vision approach for identifying the traversable portions of the ground. Because it makes use
of edges (section 4.3.2) and color in a variety of implementations, such obstacle detection
systems can easily detect obstacles in cases that are difficult for traditional ranging devices.
As is the case with all vision algorithms, floor plane extraction succeeds only in environ-
ments that satisfy several important assumptions:

• Obstacles differ in appearance from the ground.

• The ground is flat, and its angle to the camera is known.

11.In statistics and machine learning, k-means clustering is a method of cluster analysis that aims to
partition n observations into k clusters in which each observation belongs to the cluster with the near-
est mean. The k-means clustering algorithm is commonly used in computer vision as a form of image
segmentation.

Y U
V YUV

RGB

Figure 4.54
Examples of adaptive floor plane extraction. The trapezoidal polygon identifies the floor sampling
region.

Perception 195
• There are no overhanging obstacles.

The first assumption is a requirement in order to discriminate the ground from obstacles
using its appearance. A stronger version of this assumption, sometimes invoked, states that
the ground is uniform in appearance and different from all obstacles. The second and third
assumptions allow floor-plane-extraction algorithms to estimate the robot’s distance to
obstacles detected.

4.3 Fundamentals of Image Processing

Image processing is a form of signal processing where the input signal is an image (such as
a photo or a video) and the output is either an image or a set of parameters associated with
the image. Most image-processing techniques treat the image as a two-dimensional signal

 where x and y are the spatial image coordinates and the amplitude of I at any pair of
coordinates (x, y) is called intensity or gray level of the image at that point.

Image processing is a huge field and typical operations, among many others, are:

• Filtering, image enhancing, edge detection

• Image restoration and reconstruction

• Wavelets and multiresolution processing

• Image compression (e.g., JPEG)

• Euclidean geometry transformations such as enlargement, reduction, and rotation

• Color corrections such as brightness and contrast adjustments, quantization, or color
translation to a different color space

• Image registration (the alignment of two or more images)

• Image recognition (for example, extracting a face from the image by using some face
recognition algorithm)

• Image segmentation (partitioning the image in characteristic regions according to color,
edges, or other features)

Because a review of all these techniques goes beyond the scope of this book, here we
focus only on the most important image processing operations that are relevant for robotics.
In particular, we describe image filtering operations such as smoothing and edge detection.
We will then describe some image similarity measures for finding point correspondences
between images, which are helpful in structure from stereo and structure from motion. For
an in-depth study of image processing in general, we refer the reader to [26].

I x y

196 Chapter 4
4.3.1 Image filtering
Image filtering is one of the principal tools in image processing. The word filter comes from
frequency domain processing, where “filtering” refers to the process of accepting or reject-
ing certain frequency components. For example, a filter that passes low frequencies is
called a lowpass filter. The effect produced by a lowpass filter is to blur (smooth) an image,
which has the main effect of reducing image noise. Conversely, a filter that passes high fre-
quencies is called highpass filter and is typically used for edge detection. Image filters can
be implemented both in the frequency domain and in the spatial domain. In the latter case,
the filter is called mask or kernel. In this section, we will review the fundamentals of spatial
filtering.

In figure 4.55, the basic principle of spatial filtering is explained. A spatial filter consists
of (1) a neighborhood of the pixel under examination, (typically a small rectangle), and (2)
a predefined operation T that is performed on the image pixels encompassed by the neigh-
borhood. Let denote the set of coordinates of a neighborhood centered on an arbitrary
point (x,y) in an image I. Spatial filtering generates a corresponding pixel at the same coor-
dinates in an output image where the value of that pixel is determined by a specified oper-
ation on the pixels in . For example, suppose that the specified operation is to compute
the average value of the pixels in a rectangular window of size centered on (x,y). The
locations of pixels in this region constitute the set . Figure 4.55a–b illustrates the pro-
cess. We can express this operation in equation form as

 (4.100)

where r and c are the row and column coordinates of the pixels in the set . The new
image is created by varying the coordinates (x, y) so that the center of the window moves
from pixel to pixel in image I. For instance the image in figure 4.55d was created in this
manner using a window of size applied on the image in figure 4.55c.

The filter used to illustrate the example above is called averaging filter. More generally,
the operation performed on the image pixels can be linear or nonlinear. In these cases, the
filter is called either a linear or nonlinear filter. Here, we concentrate on linear filters. In
general, linear spatial filtering of an image with a filter w of size is given by the
expression

, (4.101)

Sxy

I'

Sxy

m n
Sxy

I' x y 1
mn
------- I r c

r c Sxy
=

Sxy

I'

21 21

m n

I' x y w s t I x s y t++

t b–=

b

s a–=

a

=

Perception 197
where and are usually assumed odd integers. The filter w is also
called kernel, mask, or window. As observed in (4.101), linear filtering is the process of
moving a filter mask over the entire image and computing the sum of products at each loca-
tion. In signal processing, this particular operation is also called correlation with the kernel
w. It is, however, opportune to specify that an equivalent linear filtering operation is the
convolution

 (4.102)

Figure 4.55 Illustration of the concept of spatial filtering. (c) Input image. (d) Output image after
application of average filter.

Image I Image I'

(x,y) (x,y)

The value of this pixel is the re-
sult of the specified operation
applied to all pixels in Sxy

(c) (d)

(a) (b)

m 2a 1+= n 2b 1+=

I' x y w s t I x s y t––

t b–=

b

s a–=

a

=

198 Chapter 4
where the only difference with the correlation is the presence of the minus sign, meaning
that the image must be flipped. Observe that for symmetric filters convolution and correla-
tion return the same result and the two terms can therefore be used interchangeably. The
operation of convolution with the kernel w can be written in a more compact way as

, (4.103)

where denotes the convolution operator.
Generating linear spatial filters requires that we specify the mn coefficients of the kernel.

These coefficients are chosen based on what the filter is supposed to do. In the next section,
we will see how to select these coefficients.

4.3.1.1 Smoothing filters
Smoothing filters are used for blurring and for noise reduction. Blurring is used in tasks
such as removal of small details or filling of small gaps in lines or curves. Both blurring
and noise reduction can be accomplished via linear or nonlinear filters. Here, we review
some linear filters.

The output of a smoothing filter is simply the weighted average of the pixels contained
in the filter mask. These filters are sometimes called averaging filters or lowpass filters. As
we explained before, every pixel in an image is replaced by the average of the intensity of
the pixels in the neighborhood defined by the filter mask. This process results in a new
image with reduced sharp transitions. Accordingly, image noise gets reduced. As a side
effect, however, edges—which are usually a desirable feature of an image—also get
blurred. This side effect can be limited by choosing the filter coefficients appropriately.
Finally observe that a nonlinear averaging filter can also be easily implemented by taking
the median of the pixels contained in the mask. Median filters are particularly useful to
remove salt and pepper noise.12

In the previous section, we already saw an example of constant averaging filter (figure
4.55) that simply yields the standard average of the pixels in the mask. Assuming a
mask, the filter can be written as

 , (4.104)

12.Salt and pepper noise represents itself as randomly occurring white and black pixels and is a typ-
ical form of noise in images.

I' x y w x y I x y =

3 3

w
1
9

1 1 1

1 1 1

1 1 1

=

Perception 199
where all the coefficients sum to 1. This normalization is important to keep the same value
as the original image if the region by which the filter is multiplied is uniform. Also note
that, instead of being 1/9, the coefficients of the filter are all 1s. The idea is that the pixels
are first summed up and the result is then divided by 9. Indeed, this is computationally more
efficient than multiplying each element by 1/9.

Many image-processing algorithms make use of the second derivative of the image
intensity. Because of the susceptibility of such high-order derivative algorithms to changes
in illumination in the basic signal, it is important to smooth the signal so that changes in
intensity are due to real changes in the luminosity of objects in the scene rather than random
variations due to imaging noise. A standard approach is the use of a Gaussian averaging
filter whose coefficients are given by

. (4.105)

To generate, say, a filter mask from this function, we sample it about its center. For
example, with , we get

, (4.106)

where, again, the coefficients were rescaled so that they sum to 1. Also notice that the coef-
ficients are all powers of 2, which makes it extremely efficient to compute. This filter is
actually very popular. Such a lowpass filter effectively removes high-frequency noise, and
this in turn causes the first derivative and especially the second derivative of intensity to be
far more stable. Because of the importance of gradients and derivatives to image process-
ing, such Gaussian smoothing preprocessing is a popular first step of virtually all computer
vision algorithms.

4.3.2 Edge detection
Figure 4.56 shows an image of a scene containing a part of a ceiling lamp as well as the
edges extracted from this image. Edges define regions in the image plane where a signifi-
cant change in the image brightness takes place. As shown in this example, edge detection
significantly reduces the amount of information in an image, and is therefore a useful
potential feature during image interpretation. The hypothesis is that edge contours in an
image correspond to important scene contours. As figure 4.56b shows, this is not entirely
true. There is a difference between the output of an edge detector and an ideal line drawing.

G x y e

x
2

y
2

+

22
----------------–

=

3 3
 0.85=

G
1
16

1 2 1

2 4 2

1 2 1

=

200 Chapter 4
Typically, there are missing contours, as well as noise contours, that do not correspond to
anything of significance in the scene.

The basic challenge of edge detection is visualized in figure 4.57. The top left portion
shows the 1D section of an ideal edge. But the signal produced by a camera will look more
like figure 4.57 (top right) because of noise. The location of the edge is still at the same x
value, but a significant level of high-frequency noise affects the signal quality.

A naive edge detector would simply differentiate, since an edge by definition is located
where there are large transitions in intensity. As shown in figure 4.57 (bottom right), dif-
ferentiation of the noisy camera signal results in subsidiary peaks that can make edge detec-
tion very challenging. A far more stable derivative signal can be generated simply by
preprocessing the camera signal using the Gaussian smoothing function described above.
Below, we present several popular edge detection algorithms, all of which operate on this
same basic principle, that the derivative(s) of intensity, following some form of smoothing,
comprises the basic signal from which to extract edge features.

Optimal edge detection: the Canny edge detector. The current reference edge detector
throughout the vision community was invented by John Canny in 1983 [91]. This edge
detector was born out of a formal approach in which Canny treated edge detection as a
signal-processing problem in which there are three explicit goals:

• Maximizing the signal-to-noise ratio;

• Achieving the highest precision possible on the location of edges;

• Minimizing the number of edge responses associated with each edge.

Figure 4.56
(a) Photo of a ceiling lamp. (b) Edges computed from (a).

(a) (b)

Perception 201
The Canny edge extractor smooths the image I via Gaussian convolution and then looks
for maxima in the (rectified) derivative. In practice, the smoothing and differentiation are
combined into one operation because

.13 (4.107)

Thus, smoothing the image by convolving with a Gaussian and then differentiating
is equivalent to convolving the image with , which is the first derivative of (figure
4.58b).

We wish to detect edges in any direction. Since is directional, this requires applica-
tion of two perpendicular filters (figure 4.59). We define the two filters as

 and . The result is a basic algorithm for
detecting edges at arbitrary orientations:

The algorithm for detecting edge pixels at an arbitrary orientation is as follows:

1. Convolve the image with and to obtain the gradient compo-
nents and , respectively.

2. Define the square of the gradient magnitude .

3. Mark those peaks in that are above some predefined threshold .

13. This is a known property of convolution.

Figure 4.57
Step function example of second derivative shape and the impact of noise.

GI ' G 'I=

G
G ' G

G '

fV x y G ' x G y = fH x y G ' y G x =

I x y fV x y fH x y
RV x y RH x y

R x y RV
2 x y RH

2 x y +=

R x y T

202 Chapter 4
Once edge pixels are extracted, the next step is to construct complete edges. A popular
next step in this process is nonmaxima suppression. Using edge direction information, the
process involves revisiting the gradient value and determining whether or not it is at a local
maximum. If not, then the value is set to zero. This causes only the maxima to be preserved,
and thus reduces the thickness of all edges to a single pixel (figure 4.60).

Figure 4.58
(a) A Gaussian function. (b) The first derivative of a Gaussian function.

G x 1

 2
--------------e

x
2

22
---------–

=

(a) (b)

G' x x–

3 2
-----------------e

x
2

22
---------–

=

Figure 4.59
(a) Two-dimensional Gaussian function. (b) Vertical filter. (c) Horizontal filter.

(a) (b) (c)

G x y G x G y = fV x y G' x G y = fH x y G' y G x =

Perception 203
Finally, we are ready to go from edge pixels to complete edges. First, find adjacent (or
connected) sets of edges and group them into ordered lists. Second, use thresholding to
eliminate the weakest edges.

Gradient edge detectors. On a mobile robot, computation time must be minimized to
retain the real-time behavior of the robot. Therefore simpler, discrete kernel operators are
commonly used to approximate the behavior of the Canny edge detector. One such early
operator was developed by Roberts in 1965 [43]. He used two masks to calculate the
gradient across the edge in two diagonal directions. Let be the value calculated from the
first mask and that from the second mask. Roberts obtained the gradient magnitude
with the equation

 ; ; (4.108)

Prewitt (1970) [43] used two masks oriented in the row and column directions. Let
 be the value calculated from the first mask and the value calculated from the second

mask. Prewitt obtained the gradient magnitude and the gradient direction taken in a
clockwise angle with respect to the column axis shown in the following equation.

 ;

Figure 4.60
(a) Example of an edge image; (b) Nonmaxima suppression of (a).

a b

2 2
r1

r2 G

G r1
2 r2

2+ r1
1– 0

0 1
= r2

0 1–

1 0
=

3 3
p1 p2

G

G p1
2

p2
2

+

204 Chapter 4
 ; ; (4.109)

In the same year, Sobel [43] used, like Prewitt, two masks oriented in the row and
column direction. Let be the value calculated from the first mask and the value cal-
culated from the second mask. Sobel obtained the same results as Prewitt for the gradient
magnitude and the gradient direction taken in a clockwise angle with respect to the
column axis. Figure 4.61 shows application of the Sobel filter to a visual scene.

p1

p2

 atan p1

1– 1– 1–

0 0 0

1 1 1

= p2

1– 0 1

1– 0 1

1– 0 1

=

3 3
s1 s2

G

Figure 4.61
Example of visual feature extraction with the different processing steps: (a) raw image data; (b) fil-
tered image using a Sobel filter; (c) thresholding, selection of edge pixels (d) nonmaxima suppres-
sion.

(a) (b)

(c) (d)

Perception 205
 ;

 ; ; . (4.110)

Dynamic thresholding. Many image-processing algorithms have generally been tested in
laboratory conditions or by using static image databases. Mobile robots, however, operate
in dynamic real-world settings where there is no guarantee regarding optimal or even stable
illumination. A vision system for mobile robots has to adapt to the changing illumination.
Therefore a constant threshold level for edge detection is not suitable. The same scene with
different illumination results in edge images with considerable differences. To adapt the
edge detector dynamically to the ambient light, a more adaptive threshold is required, and
one approach involves calculating that threshold based on a statistical analysis of the image
about to be processed.

To do this, a histogram of the gradient magnitudes of the processed image is calculated
(figure 4.62). With this simple histogram it is easy to consider only the pixels with the
highest gradient magnitude for further calculation steps. The pixels are counted backward,
starting at the highest magnitude. The gradient magnitude of the point where is reached
will be used as the temporary threshold value.

The motivation for this technique is that the pixels with the highest gradient are
expected to be the most relevant ones for the processed image. Furthermore, for each
image, the same number of relevant edge pixels is considered, independent of illumination.
It is important to pay attention to the fact that the number of pixels in the edge image deliv-
ered by the edge detector is not . Because most detectors use nonmaxima suppression, the
number of edge pixels will be further reduced.

Straight edge extraction: Hough transform. In mobile robotics, the straight edge is
often extracted as a specific feature. Straight vertical edges, for example, can be used as
clues to the location of doorways and hallway intersections. The Hough transform is a
simple tool for extracting edges of a particular shape [21, 28]. Here we explain its applica-
tion to the problem of extracting straight edges.

Suppose a pixel in the image is part of an edge. Any straight-line edge includ-
ing point must satisfy the equation: . This equation can only be
satisfied with a constrained set of possible values for and . In other words, this equa-
tion is satisfied only by lines through I that pass through .

G s1
2 s2

2+

s1

s2

 atan s1

1– 2– 1–

0 0 0

1 2 1

= s2

1– 0 1

2– 0 2

1– 0 1

=

n

n

n

n

xp yp I
xp yp yp m1xp b1+=

m1 b1

xp yp

206 Chapter 4
Now consider a second pixel, in . Any line passing through this second pixel
must satisfy the equation: . What if and ? Then the line
defined by both equations is one and the same: it is the line that passes through both

 and .
More generally, for all pixels that are part of a single straight line through , they must

all lie on a line defined by the same values for and . The general definition of this line
is, of course, . The Hough transform uses this basic property, creating a mech-
anism so that each edge pixel can “vote” for various values of the parameters. The
lines with the most votes at the end are straight edge features:

• Create a 2D array A with axes that tessellate the values of m and b.

• Initialize the array to zero: for all values of .

• For each edge pixel in , loop over all values of and :
if then .

• Search the cells in A to identify those with the largest value. Each such cell’s indices
 correspond to an extracted straight-line edge in .

Figure 4.62
(a) Number of pixels with a specific gradient magnitude in the image of figure 4.61b. (b) Same as (a),
but with logarithmic scale

a

b

xq yq I
yq m2xq b2+= m1 m2= b1 b2=

xp yp xq yq
I

m b
y mx b+=

m b

A m b 0= m b

xp yp I m b
yp mxp b+= A m b +=1

m b I

Perception 207
4.3.3 Computing image similarity
In this section, we review the three most popular image similarity measures used for solv-
ing the correspondence problem in structure from stereo (section 4.2.5) and structure from
motion (section 4.2.6). The methods we are about to describe are all area-based (page 174).
Suppose that we want to compare a patch in image centered on (u,v) with another
patch of the same size centered on () in image . We assume that these are odd inte-
gers, therefore and .The similarity is then computed between the
gray intensity levels of the two patches. Some of the most popular criteria are:

Sum of Absolute Differences (SAD)

. (4.111)

Sum of Squared Differences (SSD)

. (4.112)

Normalized Cross Correlation (NCC)

, (4.113)

where

 (4.114)

 (4.115)

m n I1

u' v' I2

m 2a 1+= n 2b 1+=

SAD I1 u k v l++ I2 u' k v' l++ –

l b–=

b

k a–=

a

=

SSD I1 u k v l++ I2 u' k v' l++ – 2

l b–=

b

k a–=

a

=

NCC

 I1 u k v l++ 1– I2 u' k v' l++ 2–

l b–=

b

k a–=

a

 I1 u k v l++ 1– 2 I2 u' k v' l++ 2– 2

l b–=

b

k a–=

a

l b–=

b

k a–=

a

2

--=

1
1

mn
------- I1 u k v l++

l b–=

b

k a–=

a

=

2
1

mn
------- I2 u' k v' l++

l b–=

b

k a–=

a

=

208 Chapter 4
are the mean values of the two image patches.
The SAD is the simplest among these similarity measures. It is calculated by subtracting

pixels between the reference image and the target image followed by the aggregation
of absolute differences within the patch. The SSD has a higher computational complexity
compared to the SAD, since it involves numerous multiplication operations (i.e., squared).
Notice that if the left and right images match perfectly, the resultant of SAD and SSD will
be zero.

The NCC is even more complex than both SAD and SSD algorithms, since it involves
numerous multiplication, division, and square root operations; however, it but provides
more distinctiveness than SSD and SAD and also invariance to affine intensity changes (see
also figure 4.69). Finally, note that the value of NCC ranges between −1 and 1 where 1 cor-
responds to maximum similarity between the two image patches.

4.4 Feature Extraction

An autonomous mobile robot must be able to determine its relationship to the environment
by making measurements with its sensors and then using those measured signals. A wide
variety of sensing technologies are available, as shown in section 4.1. But every sensor we
have presented is imperfect: measurements always have error and, therefore, uncertainty
associated with them. Therefore, sensor inputs must be used in a way that enables the robot
to interact with its environment successfully in spite of measurement uncertainty.

There are two strategies for using uncertain sensor input to guide the robot’s behavior.
One strategy is to use each sensor measurement as a raw and individual value. Such raw
sensor values could, for example, be tied directly to robot behavior, whereby the robot’s
actions are a function of its sensor inputs. Alternatively, the raw sensor values could be
used to update an intermediate model, with the robot’s actions being triggered as a function
of this model rather than of the individual sensor measurements.

The second strategy is to extract information from one or more sensor readings first,
generating a higher-level percept that can then be used to inform the robot’s model and per-
haps the robot’s actions directly. We call this process feature extraction, and it is this next,
optional step in the perceptual interpretation pipeline (figure 4.63) that we will now discuss.

In practical terms, mobile robots do not necessarily use feature extraction and scene
interpretation for every activity. Instead, robots will interpret sensors to varying degrees
depending on each specific functionality. For example, in order to guarantee emergency
stops in the face of immediate obstacles, the robot may make direct use of raw forward-
facing range readings to stop its drive motors. For local obstacle avoidance, raw ranging
sensor strikes may be combined in an occupancy grid model, enabling smooth avoidance
of obstacles meters away. For map-building and precise navigation, the range sensor values
and even vision-sensor measurements may pass through the complete perceptual pipeline,

I1 I2

Perception 209
being subjected to feature extraction followed by scene interpretation to minimize the
impact of individual sensor uncertainty on the robustness of the robot’s mapmaking and
navigation skills. The pattern that thus emerges is that, as one moves into more sophisti-
cated, long-term perceptual tasks, the feature-extraction and scene-interpretation aspects of
the perceptual pipeline become essential.

Feature definition. Features are recognizable structures of elements in the environment.
They can usually be extracted from measurements and mathematically described. Good
features are always perceivable and easily detectable from the environment. We distinguish
between low-level features (geometric primitives) such as lines, points, corners, blobs, cir-
cles, or polygons and high-level features (objects) such as doors, tables, or trash cans. At
one extreme, raw sensor data provide a large volume of data, but with low distinctiveness
of each individual quantum of data. Making use of raw data has the potential advantage that
every bit of information is fully used, and thus there is a high conservation of information.
Low-level features are abstractions of raw data, and as such they provide a lower volume
of data while increasing the distinctiveness of each feature. The hope, when one incorpo-
rates low-level features, is that the features are filtering out poor or useless data, but of
course it is also likely that some valid information will be lost as a result of the feature-
extraction process. High-level features provide maximum abstraction from the raw data,
thereby reducing the volume of data as much as possible while providing highly distinctive
resulting features. Once again, the abstraction process has the risk of filtering away impor-
tant information, potentially lowering data utilization.

Although features must have some spatial locality, their geometric extent can range
widely. For example, a corner feature inhabits a specific coordinate location in the geomet-
ric world. In contrast, a visual “fingerprint” identifying a specific room in an office building
applies to the entire room, but it has a location that is spatially limited to the one particular
room.

In mobile robotics, features play an especially important role in the creation of environ-
mental models. They enable more compact and robust descriptions of the environment,

Figure 4.63
The perceptual pipeline: from sensor readings to knowledge models.

sensing
signal

treatment
feature

extraction

scene

pretation
inter-

E
n

vi
ro

n
m

e
n

t

210 Chapter 4
helping a mobile robot during both map-building and localization. When designing a
mobile robot, a critical decision revolves around choosing the appropriate features for the
robot to use. A number of factors are essential to this decision.

Target environment. For geometric features to be useful, the target geometries must be
readily detected in the actual environment. For example, line features are extremely useful
in office building environments due to the abundance of straight wall segments, while the
same features are virtually useless when navigating on Mars. Conversely, point features
(such as corners and blobs) are more likely to be found in any textured environment. As an
example, consider that the two NASA Mars explorations rovers, Spirit and Opportunity,
used corner features (section 4.5) for visual odometry [203].

Available sensors. Obviously, the specific sensors and sensor uncertainty of the robot
impacts the appropriateness of various features. Armed with a laser rangefinder, a robot is
well qualified to use geometrically detailed features such as corner features owing to the
high-quality angular and depth resolution of the laser scanner. In contrast, a sonar-equipped
robot may not have the appropriate tools for corner feature extraction.

Computational power. Visual feature extraction can effect a significant computational
cost, particularly in robots where the vision sensor processing is performed by one of the
robot’s main processors.

Environment representation. Feature extraction is an important step toward scene inter-
pretation, and by this token the features extracted must provide information that is conso-
nant with the representation used for the environmental model. For example, nongeometric
visual features are of little value in purely geometric environmental models but can be of
great value in topological models of the environment. Figure 4.64 shows the application of
two different representations to the task of modeling an office building hallway. Each
approach has advantages and disadvantages, but extraction of line and corner features has
much more relevance to the representation on the left. Refer to chapter 5, section 5.5 for a
close look at map representations and their relative trade-offs.

In sections 4.5−4.7, we present specific feature extraction techniques based on the two
most popular sensing modalities of mobile robotics: vision and range sensing.

Visual interpretation is, as we have mentioned before, an extremely challenging prob-
lem to fully solve. Significant research effort has been dedicated over the past several
decades to inventing algorithms for understanding a scene based on 2D images, and the
research efforts have slowly produced fruitful results.

In section 4.2 we saw vision ranging and color-tracking sensors that are commercially
available for mobile robots. These specific vision applications have witnessed commercial

Perception 211
solutions primarily because the challenges are in both cases relatively well focused and the
resulting, problem-specific algorithms are straightforward. But images contain much more
than implicit depth information and color blobs. We would like to solve the more general
problem of extracting a large number of feature types from images.

The next section presents some point feature extraction techniques that are relevant to
mobile robotics along these lines. Two key requirements must be met for a visual feature
extraction technique to have mobile robotic relevance. First, the method must operate in
real time. Mobile robots move through their environment, and so the processing simply
cannot be an offline operation. Second, the method must be robust to the real-world condi-
tions outside of a laboratory. This means that carefully controlled illumination assumptions
and carefully painted objects are unacceptable requirements.

Throughout the following descriptions, keep in mind that vision interpretation is primar-
ily about the challenge of reducing information. A sonar unit produces perhaps fifty bits of
information per second. By contrast, a CCD camera can output 240 million bits per second!
The sonar produces a tiny amount of information from which we hope to draw broader con-
clusions. But the CCD chip produces too much information, and this overabundance of
information mixes together relevant and irrelevant information haphazardly. For example,
we may intend to measure the color of a landmark. The CCD camera does not simply report
its color, but also measures the general illumination of the environment, the direction of
illumination, the defocusing caused by optics, the side effects imposed by nearby objects
with different colors, and so on. Therefore, the problem of visual feature extraction is

Figure 4.64
Environment representation and modeling: (a) feature-based (continuous metric); (b) occupancy grid
(discrete metric). Courtesy of Sjur Vestli.

a) b)

212 Chapter 4
largely one of removing the majority of irrelevant information in an image so that the
remaining information unambiguously describes specific features in the environment.

4.5 Image Feature Extraction: Interest Point Detectors

In this section, we define the concept of the local feature and review some of the most con-
solidated feature extractors. As the computer vision literature in this field is very large, we
will only describe in detail the two most popular feature detectors, namely Harris and SIFT,
and will briefly introduce the others by explaining the main advantages and disadvantages
and domain of application. For the interested reader, a comprehensive survey on local fea-
ture detectors can be found in [320].

4.5.1 Introduction
A local feature is an image pattern that differs from its immediate neighborhood in terms
of intensity, color, and texture. Local features can be small image patches (such as regions
of uniform color), edges, or points (such as corners originated from line intersections). In
the modern terminology, local features are also called interest points, interest regions, or
keypoints.

Depending on their semantic content, local features can be divided into three different
categories. In the first category are features that have a semantic interpretation such as, for
instance, edges corresponding to lanes of the road or blobs corresponding to blood cells in
medical images. This is the case in most automotive applications, airborne images, and
medical image processing. Furthermore, these were also the first applications for which
local feature detectors have been proposed. In the second category are features that do not
have a semantic interpretation. Here, what the features actually represent is not relevant.
What matters is that their location can be determined accurately and robustly over time.
Typical applications are feature tracking, camera calibration, 3D reconstruction, image
mosaicing, and panorama stitching. Finally, in the third category are features that still do
not have a semantic interpretation if taken individually, but that can be used to recognize a
scene or an object if taken all together. For instance, a scene could be recognized counting
the number of feature matches between the observed scene and the query image. In this
case, the location of the feature is not important; only the number of matches is relevant.
Application domains include texture analysis, scene classification, video mining, and
image retrieval (see, for instance, Google Images, Microsoft Bing Images, Youtube, or Tin-
eye.com). This principle is the basis of the visual-word-based place recognition that will be
described in section 4.6.

Perception 213
4.5.2 Properties of the ideal feature detector
In this section we summarize the properties that an ideal feature detector should have. Let
us start with a concrete example from digital image photography. Most of today's digital
consumer cameras come with software for automatic stitching of panoramas from multiple
photos. An example is shown in figure 4.65. The user simply takes several shots of the
scene with little overlap between adjacent pictures and the software automatically aligns
and fuses them all together into a cylindrical panorama (figure 4.65a). The key challenge
is to identify corresponding regions between overlapping images. As the reader may per-
ceive, one way to solve this problem is to extract feature points from adjacent pictures, find
corresponding pairs according to some similarity measure (figure 4.65b), and compute the
transformation (e.g., homography) to align them (figure 4.65c). The first problem is how to
detect the same points independently in both images. In figure 4.65d, for instance, the fea-
tures from the left image are not redetected in the right image. Because of this, we need a
“repeatable” feature detector. The second problem is: for each point in the first image we
need to correctly recognize the corresponding one in the second image. Thus, the detected
features should be very distinctive (i.e., highly distinguishable).

“Repeatability” is probably the most important property of a good feature detector.
Given two images of the same scene taken under different viewing and illumination condi-
tions, it is desirable that a high percentage of the features of the first image can be rede-
tected in the second image. This requires the feature be invariant to view point changes,
such as camera rotation or zoom (i.e., scale), and illumination changes.

The second important property is “distinctiveness,” that is, the information carried by
the patch surrounding the feature point should be as distinctive as possible so that the fea-
tures can be distinguished and matched. For instance, the corners of a chessboard are not
distinctive because they cannot be distinguished from each other. As we will see later, dis-
tinctiveness is also the main difference between Harris and SIFT features. Harris privileges
corners (such as edge intersections), while SIFT privileges image patches with highly infor-
mative content (i.e., not corners).

Other important properties of a good feature detector are:

• Localization accuracy: the detected features should be accurately localized, both in
image position and scale. Accuracy is especially important in camera calibration, 3D
reconstruction from images (“structure from motion”), and panorama stitching.

• Quantity of features: the ideal number of detected features depends on the application.
For most of the tasks like object or scene recognition, image retrieval, and 3D recon-
struction it is important to have a sufficiently large number of features, this in order to
increase the recognition rate or the accuracy of the reconstruction. However, if the fea-
ture had a semantic interpretation, then a small number of features would be enough to

214 Chapter 4
Figure 4.65 (a) Panorama built from multiple overlapping images using Autostitch software. (b) First
step: select salient features in both images and match corresponding ones. (c) Second step: compute
the transformation between the two corresponding sets and align the images. (d) Two example images
where features were not redetected and therefore there is no chance to match them.

(a)

(b)

(c)

(d) No chance to match!

Perception 215
recognize a scene (as an example, some semantic “high level” features could be individ-
ual objects or objects parts such as table, chair, table leg, door, and so on).

• Invariance: good features should be invariant to changes of camera viewpoint, environ-
ment illumination, and scale (like zoom or camera translation). Invariance can be
achieved within a certain range when these changes can be modeled as mathematical
transformations (see section 4.5.4). A successful result in this direction has been suc-
cessfully demonstrated by some of the recent detectors like SIFT (section 4.5.5.1).

• Computational efficiency: it is also desirable that features can be detected and matched
very efficiently. In the framework of the project undertaken by Google Images of orga-
nizing all the images on the web, computation efficiency is a critical component as its
database—nowadays composed of billions of images—grows more and more every
year. This is even important in robotics, where most of the applications need to work in
real-time. However, the time of detection and matching of a feature is strictly related to
the degree of invariance desired: the higher the level of invariance, the more image
transformations to check, and, thus, the longer the computation time.

• Robustness: the detected features should be robust to image noise, discretization effects,
compression artifacts, blur, deviations from the mathematical model used to obtain
invariance, and so on.

4.5.3 Corner detectors
A corner in an image can be defined as the intersection of two or more edges. Corners are
features with high repeatability.

The basic concept of corner detection. One of the earliest corner detectors was invented
by Moravec [234, 235]. He defined a corner as a point where there is a large intensity vari-
ation in every direction. An intuitive explanation of his corner detection algorithm is given
in figure 4.66. Intuitively, one could recognize a corner by looking through a small window

Figure 4.66 (a) “Flat” region: no change in all directions. (b) “Edge”: no change along the edge direc-
tion. (c) “Corner”: significant change in all directions.

(a) Flat region (b) Edge (c) Corner

216 Chapter 4
centered on the pixel. If the pixel lies in a “flat” region (i.e., a region of uniform intensity),
then the adjacent windows will look similar. If the pixel is along an edge, then adjacent win-
dows in the direction perpendicular to the edge will look different, but adjacent windows
in a direction parallel to the edge will result only in a small change. Finally, if the pixel lies
on a corner, then none of the adjacent windows will look similar. Moravec used the Sum of
Squared Differences (SSD, section 4.3.3) as a measure of the similarity between two
patches. A low SSD indicates more similarity. If this number is locally maximal, then a
corner is present.

4.5.3.1 The Harris corner detector
Harris and Stephens [146] improved Moravec's corner detector by considering the par-

tial derivatives of the SSD instead of using shifted windows.
Let be a grayscale image. Consider taking an image patch centered on and shift-

ing it by . The Sum of Squared Differences between these two patches is given
by:

. (4.116)

 can be approximated by a first-order Taylor expansion. Let and be
the partial derivatives of , such that

. (4.117)

This produces the approximation

, (4.118)

which can be written in matrix form:

, (4.119)

where M is the second moment matrix

I u v
x y SSD

SSD x y I u v I u x v y++ – 2

v

u
=

I u x v y++ Ix Iy

I

I u x v y++ I u v Ix u v x Iy u v y+ +

SSD x y Ix u v x Iy u v y+ 2

v

u

SSD x y x y M x

y

Perception 217
. (4.120)

And since M is symmetric, we can rewrite M as

, (4.121)

where and are the eigenvalues of .
As mentioned before, a corner is characterized by a large variation of in all direc-

tions of the vector . The Harris detector analyses the eigenvalues of to decide if we
are in presence of a corner or not. Let us first give an intuitive explanation before showing
the mathematical expression.

Using equation (4.119) we can visualize as an ellipse (figure 4.67a) of equation:

M
Ix

2 IxI
y

IxI
y

Iy
2

v

u

Ix
2 IxI

y
IxI

y Iy
2

= =

M R 1– 1 0

0 2

R=

1 2 M

SSD

x y M

M

Figure 4.67 (a) This ellipse is built from the second moment matrix and visualizes the directions of
fastest and lowest intensity change. (b) The classification of corner and edges according to Harris and
Stephens.

(a) (b)

1

max

1

min

218 Chapter 4
. (4.122)

The axis lengths of this ellipse are determined by the eigenvalues of and the orientation
is determined by .

Based on the magnitudes of the eigenvalues, the following inferences can be made based
on this argument:

• If both and are small, is almost constant in all directions (i.e., we are in pres-
ence of a flat region).

• If either or , we are in presence of an edge: has a large variation
only in one direction, which is the one perpendicular to the edge.

• If both and are large, has large variations in all directions and then we are
in presence of a corner.

The three situations mentioned above are pictorially summarized in figure 4.67b.
Because the calculation of the eigenvalues is computationally expensive, Harris and Ste-

phens suggested the use of the following “cornerness function” instead:

, (4.123)

where is a tunable sensitivity parameter. This way, instead of computing the eigenvalues
of , we just need to evaluate the determinant and trace of . The value of has to be
determined empirically. In the literature, values are often reported in the range 0.04–0.15.

The last step of the Harris corner detector consists in extracting the local maxima of the
cornerness function, using nonmaxima suppression14. Finally only the local maxima which
are above a given threshold are retained. The processing steps are illustrated in figure 4.68.

Figure 4.68c shows the corners detected for the two example images. Notice that the
images are related by a rotation and a slight change of illumination. As can be seen, many
of the features detected in the left image have also been redetected in the right image. This
means that the repeatability of the Harris detector under rotations and small changes of illu-
mination is high. In the next section, we will point out the properties of the Harris detector
as well as its drawbacks.

14.Nonmaxima suppression involves revisiting every pixel of the cornerness function and determin-
ing whether or not it is at a local maximum. If not, then the value is set to zero. This causes only the
maxima to be preserved.

x y M x

y
const=

M

R

1 2 SSD

1 2» 2 1» SSD

1 2 SSD

C 12 1 2+ 2– det M trace2 M –= =

M M

Perception 219
(b)

(c)

Figure 4.68 Extraction of the Harris corners. (a) Original image. (b) Cornerness function. (c) Harris
corners are identified as local maxima of the cornerness function (only local maxima larger than a
given threshold are retained). Two images of the same object are shown, which differ by illumination
and orientation.

(a)

220 Chapter 4
4.5.4 Invariance to photometric and geometric changes
As observed in section 4.5.2, in general we want features to be detected despite geometric
and photometric changes in the image: if we have two transformed versions of the same
image, features should be detected in corresponding locations. Image transformations can
affect the geometric or the photometric properties of an image. Consolidated models of
image transformations are the following (see also figure 4.69):

• Geometric changes:

- 2D Rotation

- Scale (uniform rescaling)

- Affine

• Photometric changes

- Affine intensity

Observe that we did not mention changes of camera viewpoint (i.e., perspective distor-
tions). In this case the transformation valid only for planar objects would be a homography.
However, when the viewpoint changes are small and the object is locally planar, the affine
transformation is a good approximation of the homography. Observe also that 2D rotation
occurs only if the camera rotates purely about its optical axis. Uniform rescaling, instead,
appears when the camera zooms (in or out) or translates along the direction of its optical
axis, but the latter is valid only for locally planar objects.

As an example, let us now examine the invariance of the Harris detector to the above
mentioned transformations. We can observe that the Harris detector is invariant to 2D
image rotations. This can be explained by observing that the eigenvalues of the second
moment matrix do not change under pure rotation. Indeed, the ellipse rotates, but its shape

Figure 4.69 Models of image changes.

I' aI b+=

Perception 221
(i.e., the eigenvalues) remains the same (see figure 4.70a). As a matter of fact, observe that
to make the Harris detector isotropic (i.e., uniform for all rotations), the second moment
matrix should be computed in a circular region rather in a squared window. This is usually
done by averaging equation (4.120) with a circular symmetric Gaussian function.

The Harris detector is also invariant to affine intensity changes. In this case, the eigen-
values, and so the cornerness function, are rescaled by a constant factor, but the position of
the local maxima of the cornerness function remains the same. Conversely, the Harris
detector is not invariant to geometric affine transformations or scale changes. Intuitively,
an affine transformation distorts the neighborhood of the feature along the x and y direc-
tions and, accordingly, a corner can get reduced or increased its curvature. Regarding scale
changes, this is immediately clarified as observed in figure 4.70b. In this figure, the corner
would be classified as an edge at a high scale and as a corner at a smaller scale.

The performance of the Harris detector against scale changes is shown in figure 4.71
according to a comparative study made in [216]. In this figure, the repeatability rate is plot-
ted versus the scale factor. The repeatability rate between two images is computed as the
ratio between the number of found correspondences and the number of all possible corre-
spondences. As observed, after rescaling the image by a factor 2, only 20% of the possible
correspondences are redetected.

Although it is not invariant to scale changes, the Harris detector, as in its original imple-
mentation by Harris and Stephens, is still widely used and can be found in the well-known
Intel open-source computer vision library (OpenCV [343]). Furthermore, in a comparative
study of different interest point detectors, Schmid et al. [285] showed that the Harris cor-
ners are among the most repeatable and most informative features. As we will see in the
next sections, some modifications to the original implementation have made the Harris
detector also invariant to scale and affine changes. Additionally, the location accuracy of

(a) (b)

Figure 4.70 (a) Harris detector is invariant to image rotations: the ellipse rotates but its shape (i.e.
eigenvalues) remains the same. (b) Conversely, it is not invariant to image scale: at a large scale (left)
all points along the corner would be classified as edges, while at a smaller scale case (right) the point
would be classified as corner.

222 Chapter 4
the Harris corners can be improved up to subpixel precision. This can be achieved by
approximating the cornerness function in the neighborhood of a local maximum through a
quadratic function.

4.5.4.1 Scale-invariant detection
In this section, we will describe the modifications that have been devised to make the Harris
detector invariant to scale changes. If we look at figure 4.72, we will notice that one way
to detect the corner at higher scale is to use a multiscale Harris detector. This means that

Figure 4.71 Repeatability rate of Harris detector. Comparison with Harris-Laplacian. This plot is the
result of a comparative study presented in [216].

Figure 4.72 To achieve scale-invariant detection, the image is analyzed at different scales. This
means, the Harris detector is applied several times on the image, each time with a different window
size.

(a) (b)

Perception 223
the same detector is applied several times on the image, each time with a different window
(circle) size. Note, an efficient implementation of multiscale detection uses the so called
scale-space pyramid: instead of varying the window size of the feature detector, the idea is
to generate upsampled or downsampled versions of the original image (i.e., pyramid).
Using multiscale Harris detector, we can be sure that at some point the corner of image
4.72a will get detected. Once the point has been detected in both images a question arises
as: how do we select the corresponding scale? In other words, how do we choose corre-
sponding circles independently in each image?

In computer vision, the correct-scale selection is usually done by following the approach
proposed in 1998 by Lindeberg [193]: the appropriate scale of a local feature can be chosen
as the one for which a given function reaches a maximum or minimum over scales. Let us
give an intuitive explanation. For every circle in the two images in figure 4.72, let us plot
the average intensity of the pixels within the circle as a function of the circle size. For these
images, we will get the two plots shown in figure 4.73. As expected, these two functions
look the same up to a rescaling in the x-axis. The solution to our problem is therefore to
take as corresponding scales the circle sizes for which these functions reach their maxi-
mum. Depending of the chosen function, we might take the minimum instead of the maxi-
mum.

The problem is how to design a good function. The first observation we can make is that
a “good” function for scale detection should have one stable sharp peak like that in figure
4.74. Despite the one used in our example, the average intensity is not good because it can

Figure 4.73 Average intensity as a function of the region size. (a) Original image. (b) Resized image.

(a) (b)

(a) (b) (c)

Figure 4.74 (a)-(b) are bad scale invariant functions. (c) is a good.

224 Chapter 4
return multiple peaks or even no peaks at all. As a matter of fact, it turns out that for usual
images a good function is one that corresponds to contrast, that is, sharp local intensity
changes. The Laplacian of Gaussian (LoG) (figure 4.75) is a good operator for identifying
sharp intensity changes and is currently the one used for scale selection by the Harris corner
detector. In a comparative study presented in [216, 101], the LoG operator has been shown
to give the best results with respect to other functions. The response of the LoG over two
image features is shown in figure 4.76.

The multiscale Harris detector is known as Harris-Laplacian and was implemented by
Mikolajczyk and Schmid [217]. The comparison between the standard Harris and the
Harris-Laplacian over scale is shown in figure 4.71.

4.5.4.2 Affine invariant detection
As mentioned in section 4.5.4, affine transformation is a good approximation of perspective
distortion of locally planar patches under small viewpoint changes. In the previous section,
we considered the problem of detection under uniform rescaling. The problem now is how

Figure 4.75 Comparison between Laplacian of Gaussian and Difference of Gaussian

Figure 4.76 Response of the LOG operator over two corresponding points from two images taken at
different scales.

Perception 225
to detect the same features under affine transformation, which can be seen as a nonuniform
rescaling. The procedure consists in the following steps:

• First, the features are identified using the scale invariant Harris-Laplacian detector.

• Then, the second moment matrix (4.120) is used to identify the two directions of slowest
and fastest change of intensity around the feature.

• Out of these two directions, an ellipse is computed to the same size as the scale com-
puted with the LoG operator.

• The region inside the ellipse is normalized to a circular one.

• The initial detected ellipse and the resulting normalized circular shape are shown in
figure 4.77.

The affine invariant Harris detector is known as Harris-Affine and was devised by Miko-
lajczyk and Schmid [218].

4.5.4.3 Other corner detectors

The Shi-Tomasi corner detector. This is also sometimes referred to as the Kanade-
Tomasi corner detector [284]. This detector is strongly based on the Harris corner detector.
The authors show that for image patches undergoing affine transformations, is
a better measure than the cornerness function (4.123).

The SUSAN corner detector. SUSAN stands for Smallest Univalue Segment Assimilat-
ing Nucleus and, besides being used for corner detection, it is also used for edge detection
and noise suppression. The SUSAN corner detector has been introduced by Smith and
Brady [296]. Its working principle is different from the Harris detector. As we have seen,
Harris is based on local image gradients, which are computationally expensive to compute.
Conversely, SUSAN is based on a morphological approach, which is computationally
much more efficient than Harris.

Figure 4.77 Computation of the affine invariant ellipse in two images related by an affine transfor-
mation.

min 1 2
C

226 Chapter 4
The working principle of SUSAN is very simple (see also figure 4.78a). For each pixel
in the image, SUSAN considers a circular window of fixed radius centered on it. Then, all
the pixels within this window are divided into two categories, depending on whether they
have “similar” or “different” intensity values as the center pixel. Accordingly, on uniform
intensity regions of the image, most pixels within the window will have a similar brightness
as the center pixel. Near edges, the fraction of pixels with similar intensity will drop to
50%, while near corners it will decrease further to about 25%. Thus, SUSAN corners are
identified as image locations where the number of pixels with similar brightness in a local
neighborhood attains a local minimum and is below a specified threshold. As a final step,
nonmaxima suppression (page 218) is used to identify local minima.

The SUSAN corners show a high repeatability, however they are heavily sensitive to
noise. Indeed, many of the features are often located on edges than on real corners.

The FAST corner detector. The FAST (Features from Accelerated Segment Test) detec-
tor, was introduced by Rosten and Drummond [267, 268]. This detector builds upon the
SUSAN detector. As we have seen, SUSAN computes the fraction of pixels within a circu-
lar window, which have similar intensity as the center pixel. Conversely, FAST compares
pixels only on a circle of 16 pixels around the candidate corner (see figure 4.78b). This
results in a very efficient detector that is up to thirty times faster than Harris: FAST takes
only 1–2 milliseconds on a 2GHz Dual Core laptop and is currently the most computation-
ally efficient feature detector available. However, like the SUSAN, it is not robust at high
levels of noise.

4.5.4.4 Discussion about corner detectors
The Harris detector, with its scale and affine invariant extensions, is a convenient tool for
extracting a large number of corners. Additionally, it has been identified as the most stable
corner detector, as reported in several evaluations [28, 219, 285]. Alternatively, the

Figure 4.78 (a) SUSAN detector compares pixels within a circular region, while FAST (b) compares
them only on a circle.

(b) FAST corners(a) SUSANT corners

Perception 227
SUSAN or the FAST detectors can be used. They are much more efficient but also more
sensitive to noise.

Shi-Tomasi, SUSAN, and FAST can also be made scale invariant like the Harris-Lapla-
cian by analyzing the image at multiple scales, as seen in section 4.5.4.1. However, the
scale estimation of corners is less accurate than blobs (e.g., SIFT, MSER, or SURF) due to
the multiscale nature of corners: by definition, a corner is found at the intersection of edges,
therefore its appearance changes very little at adjacent scales.

Finally, it is important to remind that the affine transformation model holds only for
small viewpoint changes and in case of locally planar regions, that is, assuming the camera
is relatively far from the object.

In the next section, we will describe the SIFT detector. Despite being a blob detector,
the SIFT features incorporate all the properties of the scale-affine-invariant Harris but they
are much more distinctive and robust to image noise, small illumination changes, and large
changes of camera viewpoint.

4.5.5 Blob detectors
A blob is an image pattern that differs from its immediate neighborhood in terms of

intensity, color, and texture. It is not an edge, nor a corner. The location accuracy of a blob
is typically smaller than that of a corner, but its scale and shape are better defined. To be
clearer, a corner can be localized by a single point (e.g., the intersection of two edges),
while a blob can only be localized by its boundary. On the other hand, a corner is less accu-
rately localized over the scale because, as we pointed out before, a corner is found at the
intersection of edges and therefore its appearance changes very little at adjacent scales.
Conversely, a blob is more accurately localized over the scale because the boundary of a
blob defines immediately its size and so its scale.

Using the new terminology, blob detectors can also be referred to as interest point oper-
ators, or alternatively interest region operators. Some examples of bloblike features are
shown in figure 4.79. In this figure you can see two feature types that will be described in
this section, namely SIFT and MSER. As observed, MSER privileges regions with uniform
intensity, while SIFT does not.

4.5.5.1 SIFT features
SIFT stands for Scale Invariant Feature Transform and is a method to detect and match

robust keypoints, which was invented in 1999 by Lowe [196, 197]. The uniqueness of SIFT
is that these features are extremely distinctive and can be successfully matched between
images with very different illumination, rotation, viewpoint, and scale changes. Its high
repeatability and high matching rate in very challenging conditions have made SIFT the
best feature detector so far. It has found many applications in object recognition, robotic

228 Chapter 4
mapping and navigation, image stitching (e.g. panoramas, mosaics), 3D modeling, gesture
recognition, video tracking, and face recognition.

The main advantage of the SIFT features in comparison to all previously explained
methods is that a “descriptor” is computed from the region around the interest point, which
distinctively describes the information carried by the feature. As we will see, this descriptor
is a vector that represents the local distribution of the image gradients around the interest
point. As proven by its inventor, it is actually this descriptor that makes SIFT robust to rota-
tion and small changes of illumination, scale, and viewpoint.

(b) MSER features

(a) SIFT features

Figure 4.79 Extraction of SIFT and MSER features from the same sample image used for the Harris
detector in figure 4.68. Observe that both SIFT and MSER avoid corners. Furthemore, MSER privi-
leges regions with uniform intensity. Both these feature detectors are robust to large changes of inten-
sity, scale, and viewpoint.

Perception 229
In the following, we will analyze the main steps of the SIFT algorithm, which are:

• Identification of keypoint location and scale

• Orientation assignment

• Generation of keypoint descriptor

Identification of keypoint location and scale. The first step toward the identification of
SIFT keypoints is the generation of the so-called Difference of Gaussian (DoG) images.
This is done by first blurring the original image with Gaussian filters at different scales (i.e.,
different sigma) and then by taking the difference of successive Gaussian-blurred images.
This process is shown in figure 4.80a: the original image (top left) is blurred with four
Gaussian filters with different sigma, and this is repeated after downsampling the image of
a factor 2. Finally, DoG images are computed by simply taking the difference between suc-
cessive blurred images 4.80b.

The second step is the selection of the keypoints. SIFT keypoints are identified as local
maxima or minima of the DoG images across scales. In particular, each pixel in the DoG
images is compared to its eight neighbors at the same scale, plus the nine neighbors at adja-
cent scales (figure 4.80c). If the pixel is a local maximum or minimum, it is selected as a
candidate keypoint.

(b)

(a)

(c)

Figure 4.80 (a) Gaussian blurred images at different scales. (b) Difference of Gaussian images. (c)
Keypoint selection as local maxima or minima of the DoG images across adjacent scales.

230 Chapter 4
The third step consists in refining the location, in both space and scale, of the keypoints
by interpolation of nearby data. Finally, keypoints with low contrast or along edges are
removed because of their low distinctiveness and due to their instability to image noise.

Note that another way of generating DoG images consists in convolving the image with
a DoG operator, which is nothing but the difference between to Gaussian filters (figure
4.75). As shown in figure 4.75, the DoG function is actually a very good approximation of
the Laplacian of Gaussian (LoG). However, DoG images are more efficient to compute,
and therefore they have been used in SIFT in lieu of LoG. At this point the attentive reader
will recognize that the scale extrema selection of the SIFT is very similar to the scale
extrema selection of the Harris-Laplacian. Indeed, the main difference with the Harris-
Laplacian is the identification of the keypoint location. While in Harris the keypoint is iden-
tified in the image plane as local maximum of the cornerness function, in SIFT the keypoint
is a local minimum or maximum of the DoG image in both position and scale. To recap, in
SIFT the DoG operator is used to identify both position and scale of the keypoints.

Orientation assignment. This step consists in assigning each keypoint a specific orienta-
tion in order to make it invariant to image rotation.

To determine the keypoint orientation, a gradient orientation histogram is computed in
the neighborhood of the keypoint. In other words, for every pixel in the neighborhood of
the keypoints, the intensity gradient (magnitude and orientation) is computed. Then a his-
togram of orientations is built such that the contribution of each pixel is weighted by the
gradient magnitude.

Peaks in the histogram correspond to dominant orientations (figure 4.81a). Once the his-
togram is filled, the orientation corresponding to the highest peak is assigned to the key-
point. In the case of multiple peaks that are within 80% of the highest peak, an additional
keypoint is created for each additional orientation, having the same location and scale as
the original keypoint. All the properties of the keypoint will be measured relative to the
keypoint orientation. This provides invariance to rotation.

Final keypoints with selected orientation and scale are shown in figure 4.81b.

Generation of keypoint descriptor. In the previous steps, we have described how to
detect SIFT keypoints in both location and scale spaces and how to assign orientations to
them. The last step of the SIFT algorithm is to compute descriptor vectors for these key-
points such that the descriptors are highly distinctive and partially invariant to illumination
and viewpoint.

The descriptor is based on gradient orientation histograms. In order to achieve orienta-
tion invariance, the gradient orientations are rotated relative to the keypoint orientation.
The neighboring region of the keypoint is then divided into smaller regions, and a
gradient histogram with eight orientation bins is computed within each of these regions.

4 4

Perception 231
Finally, the descriptor is built by stacking all the orientation histogram entries. Therefore,
the final length of the descriptor vector is elements. To achieve partial illu-
mination invariance, the descriptor vector is finally normalized to have unit norm.

Observe, lower dimension descriptors could be built by using smaller region partitions
or less histogram bins. However according to the literature, the 128 element vector is the
one for which the best results in terms of robustness to image variations were reported.

In [197], it was also shown that feature matching accuracy is above 50% for viewpoint
changes of up to 50 degrees (see figure 4.82). Therefore SIFT descriptors are invariant to
minor viewpoint changes. To evaluate the distinctiveness of the SIFT descriptor, many
tests were performed by counting the number of correct matches in a database with a vary-
ing number of keypoints. These tests revealed that matching accuracy of SIFT descriptor
decreases only very little for very large database sizes. This implies that SIFT features are
highly distinctive.

Because of its high repeatability and distinctiveness, SIFT has demonstrated in the last
ten years to be the best feature detectors in a wide range of applications, although it is out-
performed in efficiency by SURF (section 4.5.5.2). Excellent results have been achieved in
robot navigation, 3D object recognition, place recognition, SLAM, panorama stitching,
image retrieval, and many others.

(a) (b)

Figure 4.81 (a) Orientation assignment. (b) Some SIFT features with detected orientation and scale.

4 4 8 128=

232 Chapter 4
4.5.5.2 Other blob detectors

The MSER detector. Maximally Stable Extremal Regions (MSER) have been proposed
by Matas et al. [210] for matching features that are robust under large viewpoint changes.
A maximally stable extremal region is a connected component of pixels that have either
higher or lower intensity than all the pixels on its outer boundary (figure 4.79b). These
extremal regions are selected using an appropriate intensity thresholding and have a
number of desirable properties. First, they are completely invariant to monotonic changes
of intensity. Second, they are invariant to affine image transformations.

The SURF detector. SURF stands for Speeded Up Robust Features and have been pro-
posed by Bay et al. [71]. This scale-invariant feature detector is strongly inspired by SIFT
but is several times faster. Basically, it uses Haar wavelets15 to approximate DoG filters
and integral images16 for convolution, which make the filtering process much more effi-
cient at the expense of a minor robustness with respect to SIFT.

4.5.5.3 Summary on features detectors
Table 4.2 gives an overview of the most important properties for the feature detectors
described in the previous sections. The highest repeatability and localization accuracy is

15. A Haar wavelet is a piecewise constant function.
16. Integral image is an algorithm for quickly and efficiently generating the sum of values in a rect-
angular subset of a grid.

Figure 4.82 Fraction of SIFT keypoints correctly matched as a function of the viewpoint angle.

Perception 233
obtained by the Harris detector and its scale and affine invariant versions. The SUSAN and
FAST detectors avoid computation of image derivatives and are therefore more efficient
than Harris but the absence of smoothing makes them more sensitive to noise. The original
Harris, Shi-Tomasi, SUSAN, and FAST are not scale-invariant, however some literature
exists on how achieving scale invariance using the approach described in section 4.5.4.1.

In contrast to the original Harris, Harris-Laplace attains scale invariance; however, its
scale estimation is less accurate than SIFT, MSER, or SURF due to the multiscale nature
of corners. Finally, the SURF detector shows high repeatability, scale, and viewpoint
invariance. However, it was devised for efficiency, and therefore it does not perform as
well as SIFT.

GPU and FPGA implementations. Some of these feature detectors have been imple-
mented to take advantage of the parallelism offered by modern Graphics Processing Units
(GPUs) and Field Programmable Gate Arrays (FPGA). GPU implementations of SIFT are
described in [150, 292]. An FPGA implementation of the Harris-Affine feature detector is
discussed in [89] and of the SIFT detector in [286]. The availability of these algorithms for
GPUs and FPGA make computer vision algorithm able to work at high frame rates.

Table 4.2
Comparison of feature detectors: properties and performance.

C
or

ne
r

de
te

ct
or

B
lo

b
de

te
ct

or

R
ot

at
io

n
in

va
ri

an
t

S
ca

le
in

va
ri

an
t

A
ff

in
e

in
va

ri
an

t

R
ep

ea
ta

bi
li

ty

L
oc

al
iz

at
io

n
ac

cu
ra

cy

R
ob

us
tn

es
s

E
ff

ic
ie

nc
y

Harris x x +++ +++ ++ ++

Shi-Tomasi x x +++ +++ ++ ++

Harris-Laplacian x x x x +++ +++ ++ +

Harris-Affine x x x x x +++ +++ ++ ++

SUSAN x x ++ ++ ++ +++

FAST x x ++ ++ ++ ++++

SIFT x x x x +++ ++ +++ +

MSER x x x x +++ + +++ +++

SURF x x x x ++ ++ ++ ++

234 Chapter 4
Open source software: Web resources.

• Most of the feature detectors described in this section (Harris, MSER, FAST, SURF, and
several others) are available as ready-to-use code in the Intel open-source computer
vision library (OpenCV): http://opencv.willowgarage.com/wiki

• SUSAN, original source code: http://users.fmrib.ox.ac.uk/~steve/susan

• FAST, original source code: http://mi.eng.cam.ac.uk/~er258/work/fast.html

• SIFT, the original executable from David Lowe: http://people.cs.ubc.ca/~lowe/key-
points

• A reimplementation of SIFT, MSER and other featured detectors by Andrea Vedaldi.
Source code in C and Matlab: http://www.vlfeat.org

• 3D object recognition toolkit, based on SIFT. Developed at the Autonomous Systems
Lab at the ETH Zurich: http://robotics.ethz.ch/~ortk

• ERSP Vision Tool. An exiting demo for live object recognition by Evolution Robotics:
http://www.evolution.com/product/oem/download/?ch=Vision (it becomes download-
able after user registration)

• SURF, precompiled software (GPU implementation also available):
http://www.vision.ee.ethz.ch/~surf

4.6 Place Recognition

4.6.1 Introduction
Location recognition (or place recognition) describes the capability of naming discrete
places in the world. A requirement is that it is possible to obtain a discrete partitioning of
the environment into places and a representation of the place and that the places with the
corresponding representations are stored in a database. The location recognition process
then works by computing a representation from the current sensor measurements of the
robot and searching the database for the most similar representation stored. The retrieved
representation then tells us the location of the robot.

Location recognition is the natural form of robot localization in a topological environ-
ment map as described by many authors [108, 131, 138, 208, 214, 325]. Visual sensors (i.e.,
cameras) are perfectly suited to create a rich representation that is both descriptive and dis-
criminative. Most visual representations proposed so far can be divided into global repre-
sentations and local representations. Global representations use the whole camera image as
a representation of the place, most in a domain-transformed way, for instance, as PCA
transformed image [159], Fourier-transformed image [213], image histograms, image fin-
gerprints [182], GIST descriptors [253, 254], and so on. Local representations instead iden-

Perception 235
tify salient regions of the image first and create the representation out of this only. This
approach largely depends on the detection of salient regions using interest point or interest
region detectors, which we have seen in section 4.5. With the development of many effec-
tive interest point detectors, local methods have proven to be practical and are nowadays
applied in many systems. We will therefore present this method first as the preferred way
to location recognition. However, in the last two sections, we will also review some of the
earliest approaches to place recognition using image histograms and fingerprints. In fact,
although largely outperformed by the local visual-word-based approaches, these methods
are still used in some robot applications.

4.6.2 From bag of features to visual words
A representation of an image by a set of interest points only is usually called a bag of fea-
tures. For each interest, point a descriptor is usually computed in a manner that is invariant
to rotation, scale, intensity, and viewpoint change (section 4.5.4). A popular way is to use
gradient histograms, e.g. SIFT (section 4.5.5.1) or SURF (section 4.5.5.2). This set of
descriptors is the new representation of the image. It is called a bag of features because the
original spatial relation between the interest points is removed and only the descriptors are
remembered. The similarity between two sets of descriptors can be computed by counting
the number of common feature descriptors. For this, a matching function needs to be
defined, which allows us to determine whether two feature descriptors are the same. This
matching function usually depends on the type of feature descriptor. But in general a fea-
ture descriptor is a high-dimensional vector, and matching features can be found by com-
puting the distance using the norm. Visual words are a 1-dimensional representation of
the high-dimensional feature descriptor. This means that the visual word for a 128-dimen-
sional SIFT descriptor is just a single integer number. The conversion to visual words cre-
ates a bag of visual words instead of a bag of features. For this conversion, the high-
dimensional descriptor space is divided into nonoverlapping cells. This division is com-
puted by k-means clustering [18]. For the clustering, a large number of feature descriptors
is necessary. The computed cluster borders form the cell divisions of the feature space.
Each of the cells is now assigned a number that will be assigned to any feature descriptor
within the cell. This number is referred to as visual word. Similar feature descriptors will
be then sorted into the same cell and therefore get the same visual word assigned. This is
illustrated in figure 4.83, which is a very efficient method of finding matching-feature
descriptors. The visual words created by the partitioning is called visual vocabulary.

For quantization, a prototype vector for each cell is stored, which is the mean descriptor
vector of all training descriptors from the cell. To assign a feature descriptor to its cell it
needs to be compared to all prototype vectors. For a large number of cells this can be a very
expensive operation. It can be sped up by creating a hierarchical splitting of the feature
space called vocabulary tree [243].

L2

236 Chapter 4
4.6.3 Efficient location recognition by using an inverted file
Feature quantization into visual words is one key ingredient for efficient location recogni-
tion. Another one is the use of an inverted file for the database and a voting scheme for sim-
ilarity computations. The database organized as an inverted file consists of a list of all
possible visual words. Each element of this list points to another list that holds all the image
identifiers in which this particular visual word appeared. This is illustrated in figure 4.84.

The voting scheme to find the most similar set of visual words in the database to a given
query set works as follows. A voting array is initialized, which has as many cells as images
in the database. A visual word from the query image is taken, and the list of image identi-
fiers attached to this visual word is processed. For all the image identifiers in the list, a vote
is cast by increasing the value at the corresponding position in the voting array. The most
similar image to the query image is then the one with the highest vote. This voting scheme
can exactly compute the norm if the descriptor vectors are correctly normalized [243].

This algorithm not only gives the most similar image in the database but also creates a
ranking of all images in the database by similarity without any additional computational
cost. This can be used to robustify place recognition.

Figure 4.83 Partition of the descriptor feature space. Each cell stands for a visual word. Similar fea-
ture descriptors will be sorted into the same cell and therefore get the same visual word assigned.

L2

Perception 237
4.6.4 Geometric verification for robust place recognition
The set of visual words does not contain the spatial relations anymore, thus an image that
has the same visual words but in a different spatial arrangement would also have high sim-
ilarity. The spatial relations however can be enforced again by a final geometric verifica-
tion. For this, the k most similar images in a query are tested for geometric consistency. The
geometric consistency test computes geometric transformations using the x and y image
coordinates of matching visual words. Transformations used are affine transformations,
homographies, or the essential matrix between images (section 4.2.6, page 184). The com-
putation is performed in a robust way using RANSAC [128] (section 4.7.2.4), and the
number of inliers to the transformation is counted. The image that achieves the largest
number of inliers with the query image is then reported as the final match. This returns the
desired location in place recognition.

4.6.5 Applications
This method for place recognition has already been used successfully in several applica-
tions. It was used for topological localization and mapping in [131]. It is also the core algo-

Figure 4.84 Visual word based location recognition using an inverted file system. An image in the
database gets a vote if the same visual word is present in the query image.

238 Chapter 4
rithm of FABMAP [108], for which it was extended by a probabilistic formulation. Other
methods that use this scheme are described in [56, 276].

Available source code on the Web:

• Vocabulary-tree-based image search by F. Fraundorfer et al. [131]. It is a framework for
fast image retrieval and place recognition very popular in robotics (useful for loop detec-
tion in visual SLAM):
http://www1.ethz.ch/cvg/people/postgraduates/fraundof/vocsearch

• FABMAB, by M. Cummins et al. [108], is another framework for fast image retrieval
and place recognition also very popular in robotics: http://www.robots.ox.ac.uk/
~mobile/wikisite/pmwiki/pmwiki.php?n=Software.FABMAP

• Bag of features: another powerful tool for image retrieval and visual recognition using
vocabulary trees: http://www.vlfeat.org/~vedaldi/code/bag/bag.html

These algorithms are all very useful for loop detection in the problem of simultaneous
localization and mapping, which we will see in section 5.8.

4.6.6 Other image representations for place recognition
In this section, we review two of the early and most successful approaches to place recog-
nition before the advent of the visual words based methods described above. The first
method uses image histograms, while the second one uses image fingerprints.

4.6.6.1 Image histograms
A single visual image provides so much information regarding a robot’s immediate sur-
roundings that an alternative to searching the image for spatially localized features is to
make use of the information captured by the entire image (i.e., all the image pixels) to
extract a whole-image feature or global image feature. Whole-image features are not
designed to identify specific spatial structures such as obstacles or the position of specific
landmarks. Rather, they serve as compact representations of the entire local region. From
the perspective of robot localization, the goal is to extract one or more features from the
image that are correlated well with the robot’s position. In other words, small changes in
robot position should cause only small changes to whole-image features, while large
changes in robot position should cause correspondingly large changes to whole-image fea-
tures.

A logical first step in designing a vision sensor for this purpose is to maximize the field
of view of the camera. As the field of view increases, a small-scale structure in the robot’s
environment occupies a smaller proportion of the image, thereby mitigating the impact of
individual scene objects on image characteristics. A catadioptric camera system, nowadays
very popular in mobile robotics, offers an extremely wide field of view (section 4.2.4).

Perception 239
A catadioptric image is a 360-degree image warped onto a 2D image surface. Because
of this, it offers another critical advantage in terms of sensitivity to small-scale robot
motion. If the camera is mounted vertically on the robot so that the image represents the
environment surrounding the robot (i.e., its horizon; figure 4.37a), then rotation of the
camera and robot simply results in image rotation. In short, the catadioptric camera can be
invariant to rotation of the field of view.

Of course, mobile robot rotation will still change the image; that is, pixel positions will
change, although the new image will simply be a rotation of the original image. But we
intend to extract image features via histogramming. Because histogramming is a function
of the set of pixel values and not of the position of each pixel, the process is pixel position-
invariant. When combined with the catadioptric camera’s field of view invariance, we can
create a system that is invariant to robot rotation and insensitive to small-scale robot trans-
lation.

A color camera’s output image generally contains useful information along multiple
bands: , , and values as well as hue, saturation, and luminance values. The simplest
histogram extraction strategy is to build separate 1D histograms characterizing each band.
Given a color camera image, , the first step is to create mappings from to each of the

 available bands. We use to refer to an array storing the values in band for all pixels
in . Each band-specific histogram is calculated as before:

• As preprocessing, smooth using a Gaussian smoothing operator.

• Initialize with n levels: for .

• For every pixel (x,y) in , increment the histogram: .

Given the image shown in figure 4.37a, the image histogram technique extracts six his-
tograms (for each of , , , hue, saturation, and luminance) as shown in figure 4.85. In
order to make use of such histograms as whole-image features, we need ways to compare
to histograms to quantify the likelihood that the histograms map to nearby robot positions.
The problem of defining useful histogram distance metrics is itself an important subfield
within the image retrieval field. For an overview refer to [270]. One of the most successful
distance metrics encountered in mobile robot localization is the Jeffrey divergence. Given
two histograms and , with and denoting the histogram entries, the Jeffrey diver-
gence is defined as

. (4.124)

Using measures such as the Jeffrey divergence, mobile robots have used whole-image
histogram features to identify their position in real time against a database of previously

r g b

G G
n Gi i

G Hi

Gi

Hi H j 0= j 1 n =

Gi Hi Gi x y +=1

r g b

H K hi ki

d H K

d H K hi
2hi

hi ki+
--------------log ki

2ki

hi ki+
--------------log+

i

=

240 Chapter 4
recorded images of locations in their environment. Using this whole-image extraction
approach, a robot can readily recover the particular hallway or particular room in which it
is located [325].

Finally, note that in the last decade another global image descriptor—known as GIST—
has been devised. The image is represented by a 320 dimensional vector per color band.
The feature vector corresponds to the mean response to steerable filters at different scales
and orientations computed over sub-windows. Because a complete explanation of the
GIST descriptor goes beyond the scope of this book, for an in-depth study we refer the
reader to [253, 254] and [238].

4.6.6.2 Image fingerprints
This method is similar to the visual word approach with the difference that here the features
are not interest points but rather morphological features, lines and colored blobs. Although
outperformed by the new visual word based place recognition methods, this approach is
still quite used in many applications of mobile robotics in both indoor and outdoor.

Figure 4.85
Six 1D histograms of the image above. A smoothing filter was convolved with each band
before histogramming.

5 5

4 4

Perception 241
We describe one particular implementation of this approach called the image finger-
print, which was developed first in [182]. Such as the previous method, the system makes
use of a 360-degree panoramic image. The first extraction tier searches the panoramic
image for spatially localized features: vertical edges and sixteen discrete hues of color. The
vertical edge detector is a straightforward gradient approach implementing a horizontal dif-
ference operator. Vertical edges are “voted upon” by each edge pixel just as in a vertical
edge Hough transform. An adaptive threshold is used to reduce the number of edges. Sup-
pose the Hough table’s tallies for each candidate vertical line have a mean and a standard
deviation . The chosen threshold is simply .

Vertical color bands are identified in largely the same way, identifying statistics over the
occurrence of each color, then filtering out all candidate color patches except those with
tallies greater than . Figure 4.86 shows two sample panoramic images and their asso-
ciated fingerprints. Note that each fingerprint is converted to an ASCII string representa-
tion.

Just as with histogram distance metrics in the case of image histogramming, we need a
quantifiable measure of the distance between two fingerprint strings. String-matching algo-
rithms are yet another large field of study, with particularly interesting applications today
in the areas of genetics [55]. Note that we may have strings that differ not just in a single
element value, but even in their overall length. For example, figure 4.87 depicts three actual
sequences generated using the preceding algorithm. The top string should match Place 1,
but note that there are deletions and insertions between the two strings.

The technique used in the fingerprinting approach for string differencing is known as a
minimum energy algorithm. Taken from the stereo vision community, this optimization
algorithm will find the minimum energy required to “transform” one sequence into another
sequence. The result is a distance metric that is relatively insensitive to the addition or sub-

 +

 +

Figure 4.86
Two panoramic images and their associated fingerprint sequences [182].

242 Chapter 4
traction of individual local features while still able to identify robustly the correct matching
string in a variety of circumstances.

It should be clear to the reader that the image histogram and image fingerprint place rep-
resentations are straightforward to implement. For this reason these methods became very
popular, although recently the visual-word-based approaches for a greater variety of appli-
cations have outperformed them.

4.7 Feature Extraction Based on Range Data (Laser, Ultrasonic)

Most of today’s features extracted from ranging sensors are geometric primitives such as
line segments or circles. The main reason for this is that for most other geometric primitives
the parametric description of the features becomes too complex and no closed-form solu-
tion exists. In this section, we will focus on line extraction, since line segments are the sim-
plest features to extract. As we will see in chapter 5, lines are used to match laser scans for
performing tasks like robot localization or automatic map building.

There are three main problems in line extraction in unknown environments:

• How many lines are there?

• Which points belong to which line?

• Given the points that belong to a line, how to estimate the line model parameters?

For answering these questions, we will present the description of the six most popular
line extraction algorithms for 2D range scans. Our selection is based on their performance
and popularity in both mobile robotics, especially feature extraction, and computer vision.
Only basic versions of the algorithms are given, even though their details may vary in dif-
ferent applications and implementations. The interested reader should refer to the indicated

Figure 4.87
Three actual string sequences. The top two are strings extracted by the robot at the same position
[182].

Perception 243
references for more details. Our implementation follows closely the pseudocode described
below in most cases, otherwise it will be stated.

Before describing the six algorithms, we will first explain the line fitting problem, which
answers the third question: “Given the points that belong to a line, how to estimate the line
model parameters?” In describing line fitting, we will demonstrate how the uncertainty
models presented in section 4.1.3 can be applied to the problem of combining multiple
sensor measurements. Then, we will answer the first two questions by describing six line-
extraction algorithms from noisy range measurements. Finally, we will briefly present
other very successful features of indoor mobile robots using range data, the corner and the
plane features, and demonstrate how these features can be combined into a single represen-
tation.

4.7.1 Line fitting
Geometric feature fitting is usually the process of comparing and matching measured
sensor data against a predefined description, or template, of the expected feature. Usually,
the system is overdetermined in that the number of sensor measurements exceeds the
number of feature parameters to be estimated. Since the sensor measurements all have some
error, there is no perfectly consistent solution and, instead, the problem is one of optimiza-
tion. One can, for example, fit the feature that minimizes the discrepancy with all sensor
measurements used (e.g,. least-squares estimation).

In this section we present an optimization solution to the problem of extracting a line
feature from a set of uncertain sensor measurements. For greater detail than what is pre-
sented below, refer to [17, pages 15 and 221].

4.7.1.1 Probabilistic line fitting from uncertain range sensor data
Our goal is to fit a line to a set of sensor measurements as shown in figure 4.88. There is
uncertainty associated with each of the noisy range sensor measurements, and so there is
no single line that passes through the set. Instead, we wish to select the best possible match,
given some optimization criterion.

More formally, suppose ranging measurement points in polar coordinates
 are produced by the robot’s sensors. We know that there is uncertainty asso-

ciated with each measurement, and so we can model each measurement using two random
variables . In this analysis we assume that the uncertainty with respect to the
actual value of and is independent. Based on equation (4.11), we can state this for-
mally:

 = . (4.125)

 = . (4.126)

n
xi i i =

Xi Pi Qi =
P Q

E Pi Pj E Pi E Pj i j 1 n i j =

E Qi Qj E Qi E Qj i j 1 n i j =

244 Chapter 4
 = . (4.127)

Furthermore, we assume that each random variable is subject to a Gaussian probability
density curve, with a mean at the true value and with some specified variance:

 ~ . (4.128)

 ~ . (4.129)

Given some measurement point , we can calculate the corresponding Euclidean
coordinates as and . If there were no error, we would want to find
a line for which all measurements lie on that line:

. (4.130)

Of course, there is measurement error, and so this quantity will not be zero. When it is
nonzero, this is a measure of the error between the measurement point and the line,
specifically in terms of the minimum orthogonal distance between the point and the line. It
is always important to understand how the error that shall be minimized is being measured.
For example, a number of line-extraction techniques do not minimize this orthogonal point-
line distance, but instead the distance parallel to the y-axis between the point and the line.
A good illustration of the variety of optimization criteria is available in [25], where several

r

Figure 4.88
Estimating a line in the least-squares sense. The model parameters r (length of the perpendicular) and
 (its angle to the abscissa) uniquely describe a line.

di

xi = (i, i)

E Pi Qj E Pi E Qj i j 1 n =

Pi N i i

2

Qi N i i

2

x cos= y sin=

 cos cos sin sin r–+ – cos r– 0= =

Perception 245
algorithms for fitting circles and ellipses are presented that minimize algebraic and geomet-
ric distances.

For each specific , we can write the orthogonal distance between and
the line as

. (4.131)

If we consider each measurement to be equally uncertain, we can sum the square of all
errors together, for all measurement points, to quantify an overall fit between the line and
all of the measurements:

. (4.132)

Our goal is to minimize when selecting the line parameters . We can do so by
solving the nonlinear equation system

. (4.133)

This formalism is considered an unweighted least-squares solution because no distinc-
tion is made from among the measurements. In reality, each sensor measurement may have
its own, unique uncertainty based on the geometry of the robot and environment when the
measurement was recorded. For example, we know with regard to vision stereo ranging that
uncertainty and, therefore, variance increase as a square of the distance between the robot
and the object. To make use of the variance that models the uncertainty regarding dis-
tance of a particular sensor measurement, we compute an individual weight for each
measurement using the formula17

. (4.134)

Then, equation (4.132) becomes

. (4.135)

17.The issue of determining an adequate weight when is given (and perhaps some additional
information) is complex in general and beyond the scope of this text. See [11] for a careful treatment.

i i di i i

i i – cos r– di=

S di
2

i

 i i – cos r– 2

i

= =

S r

S

0=
r

S
0=

i
2

i wi

i

wi 1 i
2=

S widi
2 wi i i – cos r– 2= =

246 Chapter 4
It can be shown that the solution to equation (4.133) in the weighted least-squares
sense18 is

. (4.136)

. (4.137)

In practice, equation (4.136) uses the four-quadrant arc tangent (atan2).19

Let us demonstrate equations (4.136) and (4.137) with a concrete example. The seven-
teen measurements in table 4.3 have been taken with a laser range sensor installed
on a mobile robot. The measurements are shown in figure 4.89. The measurement uncer-
tainty is usually considered proportional to the measured distance, but, to simplify the cal-
culation, in this case we assume that the uncertainties of all measurements are equal. We
also assume that the measurements are uncorrelated, and that the robot was static during the
measurement process. Direct application of this solution equations yields the line defined
by and . This line represents the best fit in a least-squares sense and is
shown visually in figure 4.89.

4.7.1.2 Propagation of uncertainty during line fitting
Returning to the subject of section 4.1.3, we would like to understand how the uncertainties
of specific range sensor measurements propagate to govern the uncertainty of the extracted
line. In other words, how does uncertainty in and propagate in equations (4.136) and
(4.137) to affect the uncertainty of and ?

This requires direct application of equation (4.15) with and representing the
random output variables of and respectively. The goal is to derive the output
covariance matrix

18.We follow here the notation of [17] and distinguish a weighted least-squares problem if is
diagonal (input errors are mutually independent) and a generalized least-squares problem if is
non-diagonal.
19.Atan2 computes but uses the signs of both x and y to determine the quadrant in which
the resulting angles lies. For example , whereas , a dis-
tinction which would be lost with a single-argument arc tangent function.

CX
CX

 1
2
---atan

wii
2 2isin

2
wi

-------- wiwjij icos jsin–

wii
2 2icos

1
wi

-------- wiwjij i j+ cos–
--

=

r
wii i – cos

wi
--=

x y tan
1–

2 2– 2– atan 135–= 2 2 2 atan 45=

i i

 37.36= r 0.4=

i i

 r
A R

 r 2 2

Perception 247
Table 4.3 Measured values

pointing angle of sensor i
[deg]

range i
[m]

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

 0.5197
 0.4404
 0.4850
 0.4222
 0.4132
 0.4371
 0.3912
 0.3949
 0.3919
 0.4276
 0.4075
 0.3956
 0.4053
 0.4752
 0.5032
 0.5273
 0.4879

Figure 4.89
Extracted line from laser range measurements (+). The small lines at each measurement point repre-
sent the measurement uncertainty that is proportional to the measured distance.

x

y

248 Chapter 4
, (4.138)

given the input covariance matrix

 (4.139)

and the system relationships [equations (4.136) and (4.137)]. Then by calculating the Jaco-
bian,

, (4.140)

we can instantiate the uncertainty propagation equation (4.15) to yield :

 (4.141)

Thus we have calculated the probability of the extracted line based on the
probabilities of the measurement points. For more details about this method, refer to [8, 59].

4.7.2 Six line-extraction algorithms
The previous section described how to fit a line feature given a set of range measurements.
Unfortunately, the feature extraction process is significantly more complex than that. A
mobile robot does indeed acquire a set of range measurements, but in general the range
measurements are not all part of one line. Rather, only some of the range measurements
should play a role in line extraction and, further, there may be more than one line feature
represented in the measurement set. This more realistic scenario is shown in figure 4.90.

The process of dividing up a set of measurements into subsets that can be interpreted one
by one is termed segmentation and is the most important step of line extraction. In the fol-

CAR

A
2 AR

AR R
2

=

2n 2n

CX

CP 0

0 CQ

diag i

2 0

0 diag i

2
= =

FPQ

P1

P2

Pn

Q1

Q2

Qn

P1
r

P2
r

Pn
r

Q1
r

Q2
r

Qn
r

=

CAR

CAR FPQCXFPQ
T

=

CAR r

Perception 249
lowing, we describe six popular line-extraction (segmentation) algorithms. For both an
overview and a comparison among these algorithms, we refer the reader to [247].

4.7.2.1 Algorithm 1: Split-and-merge
Split-and-Merge is the most popular line extraction algorithm. This algorithm has origi-
nated from computer vision [257] and has been studied and used in many works [96, 121,
287, 78, 336]. The algorithm is outlined in algorithm 1.

Notice that this algorithm can be slightly modified on line 3 to make it more robust to
noise. Indeed, sometimes the splitting position can be the result of a point which still
belongs to the same line but which, because of noise, appears too far away from this line.

Figure 4.90
Clustering: finding neighboring segments of a common line [59].

1=r[m]

A set of nf neighboring points
of the image space

Evidence accumulation in the model space
 Clusters of normally distributed vectors

(a) Image Space (b) Model Space

0=[rad]

Algorithm 1: Split-and-Merge

1. Initial: set consists of N points. Put in a list L

2. Fit a line to the next set in L

3. Detect point P with maximum distance to the line

4. If is less than a threshold, continue (go to step 2)

5. Otherwise, split at P into and , replace in L by and , continue (go to 2)

6. When all sets (segments) in L have been checked, merge collinear segments.

s1 s1

si

dP

dP

si si1 si2 si si1 si2

250 Chapter 4
In this case, we scan for a splitting position where two adjacent points and are on
the same side of the line and both have distances to the line greater than the threshold. If
we find only one such point, then we automatically discard it as a noisy point.

Observe that in line 2 one can use for line fitting the least-squares method described in
section 4.7.1. Alternatively, one can construct the line by simply connecting the first and
the last points. In this case, the algorithm is named Iterative-End-Point-Fit [19, 287, 78,
336] and is a well consolidated approach to implement split-and-merge. This procedure is
illustrated in figure 4.91.

Finally, an application of split-and-merge to a 2D laser scan is shown in figure 4.92.

4.7.2.2 Algorithm 2: Line regression
This algorithm was proposed in [59]. It uses a sliding window of size . At every step, a
line is fitted to the points within the window. The window is then shifted one point for-
ward (this is why it is called sliding window), and the line-fitting operation is repeated
again. The goal is to find adjacent line segments and merge them together. To do this, at
every step the Mahalanobis20 distance between the last two windows is computed and is
stored in a fidelity array. When all the points have been analyzed, the fidelity array is
scanned for consecutive similar elements. This is done by using an appropriate clustering

20.The Mahalanobis distance is defined in section “Matching” on page 334.

P1 P2

Figure 4.91 Split-and-merge implemented in the Iterative-End-Point-Fit fashion. In this case, the line
is not fitted to the points but is constructed by connecting the first and last points.

Nf

Nf

Perception 251
algorithm. At the end, the clustered consecutive line segments are merged together using
again line regression. This algorithm is outlined in algorithm 2, while the main steps are
depicted in figure 4.93.

Notice that the sliding window size is very dependent on the environment and has a
strong influence on the algorithm performance. In typical applications, = 7 is used.

4.7.2.3 Algorithm 3: Incremental
This algorithm is straightforward to implement and has been used in many applications [24,
328, 308]. The algorithm is outlined in algorithm 3. At the beginning, the set consists of

Figure 4.92 Split-and-merge applied to a 2D laser scan (courtesy of B. Jensen).

Nf

Nf

Algorithm 2: Line-Regression

1. Initialize sliding window size

2. Fit a line to every consecutive points

3. Compute a line fidelity array. Each element of the array contains the sum of Mahalanobis
distances between every three adjacent windows

4. Construct line segments by scanning the fidelity array for consecutive elements having val-
ues less than a threshold

5. Merge overlapped line segments and recompute line parameters for each segment

Nf

Nf

252 Chapter 4
two points. Next, an extra point is added to this set and a line is constructed. If the line sat-
isfies a predefined line condition, then a new point is added to the set and the procedure is
repeated. If the line does not verify the line condition, the new point is put back and the line
is computed from all previous visited points. At this point, the procedure starts again with
the two new following points.

Observe that to speed up the incremental process, one can also add multiple points at
each step instead of just one point. In [247], five points were added at each step. When the
line does not satisfy the predefined line condition, the last five points are put back, and the
algorithm switches back to adding individual points at a time.

4.7.2.4 Algorithm 4: RANSAC
RANSAC (Random Sample Consensus [128]) is an algorithm to estimate robustly the
parameters of a model from a given data in the presence of outliers. Outliers are data that
do not fit the model. Such outliers can be due to high noise in the data, wrong measure-
ments, or they can more simply be points which come from other objects for which our
mathematical model does not apply. For example, a typical laser scan in indoor environ-

(a) (b)

(c)

Figure 4.93 A sliding window with size is used in this example. (a) A line is fitted to every
set of consecutive three points. (b) Consecutive similar segments are then merged together. (c) The
set of all segments is then checked again, and the remaining consecutive similar segments are merged
with those generated from the previous step.

Nf 3=

Nf 3=

Perception 253
ments may contain distinct lines from the surrounding walls but also points from other
static and dynamic objects (like chairs or humans). In this case, an outlier is any entity
which does not belong to a line (i.e., chair, human, and so on).

RANSAC is an iterative method and is nondeterministic in that the probability to find a
line free of outliers increases as more iterations are used. RANSAC is not restricted to line
extraction from laser data but it can be generally applied to any problem where the goal is
to identify the inliers which satisfy a predefined mathematical model. Typical applications
in robotics are: line extraction from 2D range data (sonar or laser); plane extraction from
3D laser point clouds; and structure-from-motion (section 4.2.6), where the goal is to iden-
tify the image correspondences which satisfy a rigid body transformation.

Let us see how RANSAC works for the simple case of line extraction from 2D laser scan
points. The algorithm starts by randomly selecting a sample of two points from the dataset.
Then a line is constructed from these two points and the distance of all other points to this
line is computed. The inliers set comprises all the points whose distance to the line is within
a predefined threshold d. The algorithm then stores the inliers set and starts again by select-
ing another minimal set of two points at random. The procedure is iterated until a set with
a maximum number of inliers is found, which is chosen as a solution to the problem. The
algorithm is outlined in algorithm 4, while figure 4.94 illustrates its working principle.

Because we cannot know in advance if the observed set contains the maximum number
of inliers, the ideal would be to check all possible combinations of 2 points in a dataset of
N points. The number of combinations is given by , which makes it computa-
tionally unfeasible if N is too large. For example, in a laser scan of 360 points we would
need to check all = 64,620 possibilities!

At this point, a question arises: Do we really need to check all possibilities, or can we
stop RANSAC after iterations? The answer is that indeed we do not need to check all
combinations but just a subset of them if we have a rough estimate of the percentage of inli-
ers in our dataset. This can be done by thinking in a probabilistic way.

Algorithm 3: Incremental

1. Start by the first 2 points, construct a line

2. Add the next point to the current line model

3. Recompute the line parameters by line fitting

4. If it satisfies the line condition, continue (go to step 2)

5. Otherwise, put back the last point, recompute the line parameters, return the line

6. Continue with the next two points, go to step 2

N N 1– 2

360 359 2

k

254 Chapter 4
Let be the probability of finding a set of points free of outliers. Let w be the probability
of selecting an inlier from our dataset of N points. Hence, w expresses the fraction of inliers
in the data, that is, = number of inliers/N. If we assume that the two points needed for
estimating a line are selected independently, is the probability that both points are inli-
ers and is the probability that at least one of these two points is an outlier. Now, let

 be the number of RANSAC iterations executed so far, then will be the proba-
bility that RANSAC never selects two points that are both inliers. This probability must be
equal to . Accordingly,

, (4.142)

and therefore

. (4.143)

This expression tells us that knowing the fraction of inliers, after RANSAC iterations
we will have a probability of finding a set of points free of outliers. For example, if we
want a probability of success equal to 99% and we know that the percentage of inliers in
the dataset is 50%, then according to (4.143) we could stop RANSAC after 16 iterations,
which is much less than the number of all possible combinations that we had to check in
the previous example! Also observe that in practice we do not need a precise knowledge of

Algorithm 4: RANSAC

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 2 points from A

4. Fit a line through the 2 points

5. Compute the distances of all other points to this line

6. Construct the inlier set (i.e. count the number of points with distance to the line < d)

7. Store these inliers

8. until Maximum number of iterations reached

9. The set with the maximum number of inliers is chosen as a solution to the problem

k

p

w

w
2

1 w–
2

k 1 w
2

–
k

1 p–

1 p– 1 w
2

–
k

=

k
1 p– log

1 w
2

– log
----------------------------=

w k

p

Perception 255
the fraction of inliers but just a rough estimate. More advanced implementations of
RANSAC estimate the fraction of inliers by changing it adaptively iteration after iteration.

The main advantage of RANSAC is that it is a generic extraction method and can be
used with many types of features once we have the feature model. Because of this, it is very
popular in computer vision [29]. It is also simple to implement. Another advantage is its
ability to cope with large amount of outliers, even more than 50%. Clearly, if we want to
extract multiple lines, we need to run RANSAC several time and remove sequentially all

(a) (b)

(c) (d)

Figure 4.94 Working principle of RANSAC. (a) Dataset of N points. (b) Two points are randomly
selected, a line is fitted through them, and the points within a predefined distance to it are identified.
(c) The procedure is repeated (iterated) several times. (d) The set with the maximum number of inli-
ers is chosen as a solution to the problem.

256 Chapter 4
the lines extracted so far. A disadvantage of RANSAC is that when the maximum number
of iterations is reached, the solution obtained may not be the optimal one (i.e., the one
with the maximum number of inliers). Furthermore, this solution may not even be the one
that fits the data in the best way.

4.7.2.5 Algorithm 5: Hough Transform (HT)
This algorithm was already described for straight edge detection in intensity images (page
205) but it can be applied without any modification to 2D range images. The algorithm is
outlined in algorithm 5. Although it has been developed within the computer vision com-
munity, it has been brought into robotics for extracting lines from scan images [158] and
[261]. In fact, 2D scan images are nothing but binary images.

Typical drawbacks with the Hough transform are that it is usually difficult to choose an
appropriate grid size and the fact that this transform does not take noise and uncertainty into
account when estimating the line parameters. To overcome the second problem, in line 7
one can use the line fitting method described in section 4.7.1, which takes into account fea-
ture uncertainty.

4.7.2.6 Algorithm 6: Expectation maximization (EM)
Expectation Maximization (EM), is a probabilistic method commonly used in missing vari-
able problems. EM has been used as a line extraction tool in computer vision [24] and
robotics [261]. There are some drawbacks with the EM algorithm. First, it can fall into local
minima. Second, it is difficult to choose a good initial value. The algorithm is outlined in
algorithm 6. For a detailed implementation of this algorithm for extracting lines, we refer
the reader to [24].

k

Algorithm 5: Hough Transform

1. Initial: let A be a set of N points

2. Initialize the accumulator array by setting all elements to 0

3. Construct values for the array

4. Choose the element with max. votes

5. If is less than a threshold, terminate

6. Otherwise, determine the inliers

7. Fit a line through the inliers and store the line

8. Remove the inliers from the set, go to step 2

Vmax

Vmax

Perception 257
4.7.2.7 Implementation details

Clustering. In most cases, 2D laser scans present some agglomerations of a few sparse
points (figure 4.92). These points can be caused for instance by small objects or moving
people. In this case, a simple clustering algorithm is usually used for preprocessing: it
divides the raw points into groups of close points and discards groups consisting of too few
points. Basically, this algorithm scans for big jumps in radial differences of consecutive
points and puts breakpoints in those positions. As a result, the scan is segmented into con-
tiguous clusters of points. Clusters having too few number of points are removed.

Merging. Due to occlusions, a line may be observed and extracted as several segments.
When this happens, it is likely good to merge collinear line segments into a single line seg-
ment. This merging routine should be applied at the output end of each previously seen
algorithm, after segments have been extracted. To decide if two consecutive line segments
have to be merged, the Mahalanobis distance21 between each pair of line segments is typi-
cally used. If the two line segments have Mahalanobis distance less than a predefined

21.The Mahalanobis distance depends on the covariance matrix of the parameters of each line seg-
ment as explained on page 334.

Algorithm 6: Expectation Maximization

1. Initial: let A be a set of N points

2. repeat

3. Randomly generate parameters for a line

4. Initialize weights for remaining points

5. repeat

6. E-Step: Compute the weights of the points from the line model

7. M-Step: Recompute the line model parameters

8. until Maximum number of steps reached or convergence

9. until Maximum number of trials reached or found a line

10. If found, store the line, remove the inliers, go to step 2

11 Otherwise, terminate

258 Chapter 4
threshold, then they are merged. Using line fitting, the new line parameters are finally
recomputed from the raw scan points that constitute the two segments.

4.7.2.8 A comparison of line extraction algorithms
These six algorithms can be divided into two categories: deterministic and nondeterministic
methods:

1. Deterministic: Split-and-Merge, Incremental, Regression, Hough transform.

2. Nondeterministic: RANSAC, EM.

RANSAC and EM are nondeterministic because their results can be different at every
run. This is because these two algorithms generate random hypotheses.

A comparison between all six algorithms has been done by Nguyen et al. [247]. They
evaluated four quality measures: complexity, speed, correctness (false positives), and pre-
cision. The results of that study are shown in table 4.4. The terminology used is explained
as follows:

• N: Number of points in the input scan (e.g., 722)

• S: Number of line segments extracted (e.g., 7 in average depending on the algorithm)

• : Sliding window size for Line-Regression (e.g., 9)

• : Number of trials for RANSAC (e.g., 1000)

• , : Number of columns, rows respectively for the Hough accumulator array (
= 401, = 671 for resolutions of 1 cm and 0.9 degrees)

• , : Number of trials and convergence iterations, respectively, for EM (e.g. =
50, = 200).

Observe that the values shown in parentheses are typical numbers used in practical imple-
mentations.

As shown in the third column (Speed) of table 4.4, Split-and-Merge, Incremental, and
Line-Regression perform much faster than the others. The Split-and-Merge algorithm takes
the lead. The reason why these three algorithms are much faster is mainly because they are
deterministic and, especially, because they take advantage of the sequential ordering of the
raw scan points (the points are not captured randomly but according to the rotation direction
of the laser beam). If these three algorithms were applied on randomly distributed points
(e.g., general binary images), they would not be able to segment all lines, while RANSAC,
EM, and Hough would. Indeed, these last three algorithms are popular for their ability to
extract lines in binary images which obviously present a large number of outliers.

The Incremental algorithm seems to perform the best in terms of correctness. In fact, it
has a very low number of false positives, which is very important for localization, mapping,

Nf

NTrials

NC NR NC

NR

N1 N2 N1

N2

Perception 259
and SLAM (section 5.8). Conversely, RANSAC, HT, and EM seem to produce many more
false positives. This is due to the fact that they do not take advantage of the sequential
ordering of the scan points and therefore they often try to fit lines falsely across the scan
map. Their behavior could be improved by increasing the minimum number of points per
line segment, but the drawback of this would then be that short segments might be left out.

Despite their bad correctness, as observed in the fourth column of table 4.4, RANSAC,
HT, and EM produce more precise lines than the other algorithms. This is due to their abil-
ity to get rid of outliers or largely noisy inliers. For instance, with RANSAC the probability
of extracting a stable line increases with the number of iterations, while with HT the outlier
(or a largely noise inlier) would vote another grid cell than that representing the line.

In conclusion, Split-and-Merge and Incremental are the best choice in terms of correct-
ness and efficiency and are therefore the best candidates for 2D laser-based robot localiza-
tion and mapping. However, the right choice depends highly on the type of application and
the desired precision.

4.7.3 Range histogram features
A histogram is a simple way to combine characteristic elements of an image. An angle his-
togram, as presented in figure 4.95, plots the statistics of lines extracted by two adjacent
range measurements. First, a 360-degree scan of the room is taken with the range scanner,
and the resulting “hits” are recorded in a map. Then the algorithm measures the relative
angle between any two adjacent hits (see figure 4.95b). After compensating for noise in the
readings (caused by the inaccuracies in position between adjacent hits), the angle histogram

Table 4.4 Comparison of algorithms for line extraction from 2D laser data.

Complexity Speed
[Hz]

False
positives

Precision

Split-and-Merge 1500 10% +++

Incremental 600 6% +++

Line-Regression 400 10% +++

RANSAC 30 30% ++++

Hough-Transform 10 30% ++++

Expectation
Maximization

1 50% ++++

N Nlog

S N
2

N Nf

S N NTrials

S N NC S NR NC +

S N1 N2 N

260 Chapter 4
shown in figure 4.95c can be built. The uniform direction of the main walls are clearly vis-
ible as peaks in the angle histogram. Detection of peaks yields only two main peaks: one
for each pair of parallel walls. This algorithm is very robust with regard to openings in the
walls, such as doors and windows, or even cabinets lining the walls.

4.7.4 Extracting other geometric features
Line features are of particular value for mobile robots operating in man-made environ-
ments, where, for example, building walls and hallway walls are usually straight. In gen-
eral, a mobile robot makes use of multiple features simultaneously, comprising a feature
set that is most appropriate for its operating environment. For indoor mobile robots, the line
feature is certainly a member of the optimal feature set.

In addition, other geometric kernels consistently appear throughout the indoor man-
made environment. Corner features are defined as a point feature with an orientation. Step
discontinuities, defined as a step change perpendicular to the direction of hallway travel,

Figure 4.95
Angle histogram [329].

Perception 261
are characterized by their form (convex or concave) and step size. Doorways, defined as
openings of the appropriate dimensions in walls, are characterized by their width.

Thus, the standard segmentation problem is not so simple as deciding on a mapping from
sensor readings to line segments, but rather it is a process in which features of different
types are extracted based on the available sensor measurements. Figure 4.96 shows a model
of an indoor hallway environment along with both indentation features (i.e., step disconti-
nuities) and doorways.

Note that different feature types can provide quantitatively different information for
mobile robot localization. The line feature, for example, provides two degrees of informa-
tion, angle and distance. But the step feature provides 2D relative position information as
well as angle.

The set of useful geometric features is essentially unbounded, and as sensor perfor-
mance improves we can only expect greater success at the feature extraction level. For
example, an interesting improvement upon the line feature described above relates to the
advent of successful vision ranging systems (e.g., stereo cameras and time-of-flight cam-
eras) and 3D laser rangefinder. Because these sensor modalities provide a full 3D set of
range measurements, one can extract plane features in addition to line features from the
resulting data set. Plane features are valuable in man-made environments due to the flat
walls, floors, and ceilings of our indoor environments. Thus they are promising as another
highly informative feature for mobile robots to use for mapping and localization. Some

Figure 4.96
Multiple geometric features in a single hallway, including doorways and discontinuities in the width
of the hallway.

262 Chapter 4
experiments using plane features have been done at the ASL (ETH Zurich) [331], the plane
feature extraction process is illustrated in figure 4.97.

4.8 Problems

1. Consider an omnidirectional robot with a ring of eight 70 KHz sonar sensors that are
fired sequentially. Your robot is capable of accelerating and decelerating at 50 cm/ . It
is moving in a world filled with sonar-detectable fixed (nonmoving) obstacles that can
only be detected at 5 meters and closer. Given the bandwidth of your sonar sensors, com-
pute your robot's appropriate maximum speed to ensure no collisions.

2. Design an optical triangulation system with the best possible resolution for the following
conditions: specify b (as in figure 4.15):
(a) the system must have sensitivity of 1 cm at a range of 2 meters.
(b) The PSD has a sensitivity of 0.1 mm.
(c) f = 10 cm.

Figure 4.97 Extraction process of plane features: (Upper left) Photograph of the original environ-
ment. (Upper right) Raw 3D scan. (Bottom right) Plane feature segmentation and fitting. (Bottom
left) final plane segmentation result. Image courtesy of J. Weingarten [331].

s
2

Perception 263
3. Identify a specific digital CMOS-based camera on the market. Using product specifica-
tions for this camera, collect and compute the following values. Show your derivations:
- Dynamic range
- Resolution (of a single pixel)
- Bandwidth

4. Stereo vision. Solve the system given by equations (4.60) and (4.61) and find the optimal
point that minimizes the distance between the optical rays passing through
and . For doing this, observe that these two equations define two distinct lines in the
3D space. The problems consists in rewriting these two equations as the difference
between 3D points along these two lines. Then, impose that the partial derivatives of this
distance with respect to and equal zero. From this, you will obtain the two points
along the two lines at minimum distance between each other. The optimal point
can then be found as the middle point between those points.

5. Challenge Question.
Implement a basic two-view structure-from-motion algorithm from scratch:
(a) Implement the basic Harris corner detector in Matlab.
(b) Take two images of the same scene from different view points.
(c) Extract and match Harris features using SSD.
(d) Implement the 8-point algorithm to compute the essential matrix.
(e) Compute rotation and translation up to a scale from the essential matrix. Disambig-
uate the four solutions using the cheirality constraint.

x y z p̃l

p̃r

l r

x y z

Mobile Robot Localization 265
5 Mobile Robot Localization

5.1 Introduction

Navigation is one of the most challenging competences required of a mobile robot. Success
in navigation requires success at the four building blocks of navigation: perception (the
robot must interpret its sensors to extract meaningful data); localization (the robot must
determine its position in the environment, figure 5.1); cognition (the robot must decide how
to act to achieve its goals); and motion control (the robot must modulate its motor outputs
to achieve the desired trajectory).

Of these four components (figure 5.2), localization has received the greatest research
attention in the past decade, and as a result, significant advances have been made on this
front. In this chapter, we explore the successful localization methodologies of recent years.
First, section 5.2 describes how sensor and effector uncertainty is responsible for the diffi-
culties of localization. Section 5.3 describes two extreme approaches to dealing with the
challenge of robot localization: avoiding localization altogether, and performing explicit
map-based localization. The remainder of the chapter discusses the question of representa-

Figure 5.1
Where am I?

?

266 Chapter 5
tion, then presents case studies of successful localization systems using a variety of repre-
sentations and techniques to achieve mobile robot localization competence.

5.2 The Challenge of Localization: Noise and Aliasing

If one could attach an accurate GPS (global positioning system) sensor to a mobile robot,
much of the localization problem would be obviated. The GPS would inform the robot of
its exact position, indoors and outdoors, so that the answer to the question, “Where am I?”
would always be immediately available. Unfortunately, such a sensor is not currently prac-
tical. The existing GPS network provides accuracy to within several meters, which is unac-
ceptable for localizing human-scale mobile robots as well as miniature mobile robots such
as desk robots and the body-navigating nanorobots of the future. Furthermore, GPS tech-
nologies cannot function indoors or in obstructed areas and are thus limited in their work-
space.

But, looking beyond the limitations of GPS, localization implies more than knowing
one’s absolute position in the Earth’s reference frame. Consider a robot that is interacting
with humans. This robot may need to identify its absolute position, but its relative position

Observation

Map data base

Prediction of
Position

(e.g. odometry)

Figure 5.2
General schematic for mobile robot localization.

P
er

ce
pt

io
n

Matching

Position Update
(Estimation?)

raw sensor data or
extracted features

predicted position

position

matched
observations

YES

Encoder

Mobile Robot Localization 267
with respect to target humans is equally important. Its localization task can include identi-
fying humans using its sensor array, then computing its relative position to the humans.
Furthermore, during the cognition step a robot will select a strategy for achieving its goals.
If it intends to reach a particular location, then localization may not be enough. The robot
may need to acquire or build an environmental model, a map, that aids it in planning a path
to the goal. Once again, localization means more than simply determining an absolute pose
in space; it means building a map, then identifying the robot’s position relative to that map.

Clearly, the robot’s sensors and effectors play an integral role in all the these forms of
localization. It is because of the inaccuracy and incompleteness of these sensors and effec-
tors that localization poses difficult challenges. This section identifies important aspects of
this sensor and effector suboptimality.

5.2.1 Sensor noise
Sensors are the fundamental robot input for the process of perception, and therefore the
degree to which sensors can discriminate the world state is critical. Sensor noise induces a
limitation on the consistency of sensor readings in the same environmental state and, there-
fore, on the number of useful bits available from each sensor reading. Often, the source of
sensor noise problems is that some environmental features are not captured by the robot’s
representation and are thus overlooked.

For example, a vision system used for indoor navigation in an office building may use
the color values detected by its color CCD camera. When the sun is hidden by clouds, the
illumination of the building’s interior changes because of the windows throughout the
building. As a result, hue values are not constant. The color CCD appears noisy from the
robot’s perspective as if subject to random error, and the hue values obtained from the CCD
camera will be unusable, unless the robot is able to note the position of the sun and clouds
in its representation.

Illumination dependence is only one example of the apparent noise in a vision-based
sensor system. Picture jitter, signal gain, blooming, and blurring are all additional sources
of noise, potentially reducing the useful content of a color video image.

Consider the noise level (i.e., apparent random error) of ultrasonic range-measuring sen-
sors (e.g., sonars) as discussed in section 4.1.2.3. When a sonar transducer emits sound
toward a relatively smooth and angled surface, much of the signal will coherently reflect
away, failing to generate a return echo. Depending on the material characteristics, a small
amount of energy may return nonetheless. When this level is close to the gain threshold of
the sonar sensor, then the sonar will, at times, succeed and, at other times, fail to detect the
object. From the robot’s perspective, a virtually unchanged environmental state will result
in two different possible sonar readings: one short and one long.

The poor signal-to-noise ratio of a sonar sensor is further confounded by interference
between multiple sonar emitters. Often, research robots have between twelve and forty-

268 Chapter 5
eight sonars on a single platform. In acoustically reflective environments, multipath inter-
ference is possible between the sonar emissions of one transducer and the echo detection
circuitry of another transducer. The result can be dramatically large errors (i.e., underesti-
mation) in ranging values due to a set of coincidental angles. Such errors occur rarely, less
than 1% of the time, and are virtually random from the robot’s perspective.

In conclusion, sensor noise reduces the useful information content of sensor readings.
Clearly, the solution is to take multiple readings into account, employing temporal fusion
or multisensor fusion to increase the overall information content of the robot’s inputs.

5.2.2 Sensor aliasing
A second shortcoming of mobile robot sensors causes them to yield little information con-
tent, further exacerbating the problem of perception and, thus, localization. The problem,
known as sensor aliasing, is a phenomenon that humans rarely encounter. The human sen-
sory system, particularly the visual system, tends to receive unique inputs in each unique
local state. In other words, every different place looks different. The power of this unique
mapping is only apparent when one considers situations where this fails to hold. Consider
moving through an unfamiliar building that is completely dark. When the visual system
sees only black, one’s localization system quickly degrades. Another useful example is that
of a human-sized maze made from tall hedges. Such mazes have been created for centuries,
and humans find them extremely difficult to solve without landmarks or clues because,
without visual uniqueness, human localization competence degrades rapidly.

In robots, the nonuniqueness of sensor readings, or sensor aliasing, is the norm and not
the exception. Consider a narrow-beam rangefinder such as an ultrasonic or infrared range-
finder. This sensor provides range information in a single direction without any additional
data regarding material composition such as color, texture, and hardness. Even for a robot
with several such sensors in an array, there are a variety of environmental states that would
trigger the same sensor values across the array. Formally, there is a many-to-one mapping
from environmental states to the robot’s perceptual inputs. Thus, the robot’s percepts
cannot distinguish from among these many states. A classic problem with sonar-based
robots involves distinguishing between humans and inanimate objects in an indoor setting.
When facing an apparent obstacle in front of itself, should the robot say “Excuse me”
because the obstacle may be a moving human, or should the robot plan a path around the
object because it may be a cardboard box? With sonar alone, these states are aliased, and
differentiation is impossible.

The problem posed to navigation because of sensor aliasing is that, even with noise-free
sensors, the amount of information is generally insufficient to identify the robot’s position
from a single-percept reading. Thus, techniques must be employed by the robot program-
mer that base the robot’s localization on a series of readings and, thus, sufficient informa-
tion to recover the robot’s position over time.

Mobile Robot Localization 269
5.2.3 Effector noise
The challenges of localization do not lie with sensor technologies alone. Just as robot sen-
sors are noisy, limiting the information content of the signal, so robot effectors are also
noisy. In particular, a single action taken by a mobile robot may have several different pos-
sible results, even though from the robot’s point of view the initial state before the action
was taken is well known.

In short, mobile robot effectors introduce uncertainty about future state. Therefore, the
simple act of moving tends to increase the uncertainty of a mobile robot. There are, of
course, exceptions. Using cognition, the motion can be carefully planned so as to minimize
this effect, and indeed sometimes to actually result in more certainty. Furthermore, when
the robot’s actions are taken in concert with careful interpretation of sensory feedback, it
can compensate for the uncertainty introduced by noisy actions using the information pro-
vided by the sensors.

First, however, it is important to understand the precise nature of the effector noise that
impacts mobile robots. It is important to note that, from the robot’s point of view, this error
in motion is viewed as an error in odometry, or the robot’s inability to estimate its own posi-
tion over time using knowledge of its kinematics and dynamics. The true source of error
generally lies in an incomplete model of the environment. For instance, the robot does not
model the fact that the floor may be sloped, the wheels may slip, and a human may push
the robot. All of these unmodeled sources of error result in inaccuracy between the physical
motion of the robot, the intended motion of the robot, and the proprioceptive sensor esti-
mates of motion.

In odometry (wheel sensors only) and dead reckoning (also heading sensors) the posi-
tion update is based on proprioceptive sensors. The movement of the robot, sensed with
wheel encoders or heading sensors or both, is integrated to compute position. Because the
sensor measurement errors are integrated, the position error accumulates over time. Thus,
the position has to be updated from time to time by other localization mechanisms. Other-
wise the robot is not able to maintain a meaningful position estimate in the long run.

In the following we concentrate on odometry based on the wheel sensor readings of a
differential-drive robot only (see also [5, 99, 102]). Using additional heading sensors (e.g.,
gyroscope) can help to reduce the cumulative errors, but the main problems remain the
same.

There are many sources of odometric error, from environmental factors to resolution:

• Limited resolution during integration (time increments, measurement resolution, etc.);

• Misalignment of the wheels (deterministic);

• Uncertainty in the wheel diameter and in particular unequal wheel diameter (determin-
istic);

• Variation in the contact point of the wheel;

270 Chapter 5
• Unequal floor contact (slipping, nonplanar surface, etc.).

Some of the errors might be deterministic (systematic); thus, they can be eliminated by
proper calibration of the system. However, there are still a number of nondeterministic
(random) errors that remain, leading to uncertainties in position estimation over time. From
a geometric point of view, one can classify the errors into three types:

1. Range error: integrated path length (distance) of the robot’s movement
 sum of the wheel movements

2. Turn error: similar to range error, but for turns
 difference of the wheel motions

3. Drift error: difference in the error of the wheels leads to an error in the robot’s angular
orientation

Over long periods of time, turn and drift errors far outweigh range errors, since their con-
tribution to the overall position error is nonlinear. Consider a robot whose position is ini-
tially perfectly wellknown, moving forward in a straight line along the -axis. The error in
the -position introduced by a move of meters will have a component of , which
can be quite large as the angular error grows. Over time, as a mobile robot moves about
the environment, the rotational error between its internal reference frame and its original
reference frame grows quickly. As the robot moves away from the origin of these reference
frames, the resulting linear error in position grows quite large. It is instructive to establish
an error model for odometric accuracy and see how the errors propagate over time.

5.2.4 An error model for odometric position estimation
Generally the pose (position) of a robot is represented by the vector

. (5.1)

For a differential-drive robot (figure 5.3) the position can be estimated starting from a
known position by integrating the movement (summing the incremental travel distances).
For a discrete system with a fixed sampling interval , the incremental travel distances

 are

, (5.2)

, (5.3)

x
y d d sin

p

x

y

=

t
x y ;;

x s 2+ cos=

y s 2+ sin=

Mobile Robot Localization 271
 , (5.4)

, (5.5)

where

= path traveled in the last sampling interval;

= traveled distances for the right and left wheel respectively;

= distance between the two wheels of differential-drive robot.

Thus we get the updated position :

. (5.6)

By using the relation for of equations (5.4) and (5.5) we further obtain the
basic equation for odometric position update (for differential drive robots):

sr – sl

b
-------------------=

s
sr sl+

2
----------------------=

x y ;;

sr sl;

b

Figure 5.3
Movement of a differential-drive robot.

v(t)

(t)

XI

XI

p'

p'

x'

y'

'

p

s 2+ cos

s 2+ sin

+

x

y

s 2+ cos

s 2+ sin

+= = =

s ;

272 Chapter 5
. (5.7)

As we discussed earlier, odometric position updates can give only a very rough estimate
of the actual position. Owing to integration errors of the uncertainties of and the motion
errors during the incremental motion , the position error based on odometry inte-
gration grows with time.

In the next step we will establish an error model for the integrated position to obtain
the covariance matrix of the odometric position estimate. To do so, we assume that at
the starting point the initial covariance matrix is known. For the motion increment

 we assume the following covariance matrix :

, (5.8)

where and are the distances traveled by each wheel, and , are error con-
stants representing the nondeterministic parameters of the motor drive and the wheel-floor
interaction. As you can see, in equation (5.8) we made the following assumptions:

• The two errors of the individually driven wheels are independent,22

• The variance of the errors (left and right wheels) are proportional to the absolute value
of the traveled distances .

These assumptions, while not perfect, are suitable and will thus be used for the further
development of the error model. The motion errors are due to imprecise movement because
of deformation of wheel, slippage, unequal floor, errors in encoders, and so on. The values
for the error constants and depend on the robot and the environment and should be
experimentally established by performing and analyzing representative movements.

If we assume that and are uncorrelated and the derivation of f
(equation [5.7]) is reasonably approximated by the first-order Taylor expansion (lineariza-
tion), we conclude, using the error propagation law (see section 4.1.3.2),

22.If there is more knowledge regarding the actual robot kinematics, the correlation terms of the
covariance matrix could also be used.

p' f x y sr sl
x

y

sr sl+

2

sr – sl

2b
-------------------+

 cos

sr sl+

2

sr – sl

2b
-------------------+

 sin

sr – sl

b

+= =

p
sr sl;

p'
p'

p

sr sl;

 covar sr sl
kr sr 0

0 kl sl

= =

sr sl kr kl

sr sl;

kr kl

p rl sr sl T
=

Mobile Robot Localization 273
. (5.9)

The covariance matrix is, of course, always given by the of the previous step,
and can thus be calculated after specifying an initial value (e.g., 0).

Using equation (5.7) we can develop the two Jacobians, and :

, (5.10)

 (5.11)

The details for arriving at equation (5.11) are

 (5.12)

 (5.13)

and with

p' p f p p f T rl
f rl

f T+=

p p'

Fp p f= Frl
rl

f=

Fp p f p fT f
x

----- f
y

----- f

1 0 s 2+ sin–

0 1 s 2+ cos

0 0 1

= = = =

Frl

1
2

2
-------+

 s
2b

2
-------+

 sin–cos
1
2

2
-------+

 s
2b

2
-------+

 sin+cos

1
2

2
-------+

 s
2b

2
-------+

 cos+sin
1
2

2
-------+

 s
2b
------–

2
-------+

 cossin

1
b
--- 1

b
---–

=

Frl
rl

f f
sr

----------- f
sl

---------- = = =

s
sr

2

------+
 s

2

2
------+

 sin–

sr

-------------+cos
s
sl

2

------+
 s

2

2
------+

 sin–

sl

------------+cos

s
sr

2

------+
 s

2

2
------+

 cos

sr

-------------+sin
s
sl

2

------+
 s

2

2
------+

 cos

sl

------------+sin

sr

sl

274 Chapter 5
 ; (5.14)

 ; ; ; , (5.15)

we obtain equation (5.11).
Figures 5.4 and 5.5 show typical examples of how the position errors grow with time.

The results have been computed using the error model presented earlier.
Once the error model has been established, the error parameters must be specified. One

can compensate for deterministic errors properly calibrating the robot. However the error
parameters specifying the nondeterministic errors can only be quantified by statistical
(repetitive) measurements. A detailed discussion of odometric errors and a method for cal-
ibration and quantification of deterministic and nondeterministic errors can be found in [6].
A method for on-the-fly odometry error estimation is presented in [205].

s
sr sl+

2
----------------------=

sr – sl

b
-------------------=

s
sr

----------- 1
2
---=

s
sl

---------- 1
2
---=

sr

----------- 1
b
---=

sl

---------- 1
b
---–=

Figure 5.4
Growth of the pose uncertainty for straight-line movement: Note that the uncertainty in y grows much
faster than in the direction of movement. This results from the integration of the uncertainty about the
robot’s orientation. The ellipses drawn around the robot positions represent the uncertainties in the
x,y direction (e.g.). The uncertainty of the orientation is not represented in the picture, although
its effect can be indirectly observed.

3

Mobile Robot Localization 275
5.3 To Localize or Not to Localize: Localization-Based Navigation Versus
Programmed Solutions

Figure 5.6 depicts a standard indoor environment that a mobile robot navigates. Suppose
that the mobile robot in question must deliver messages between two specific rooms in this
environment: rooms A and B. In creating a navigation system, it is clear that the mobile
robot will need sensors and a motion control system. Sensors are absolutely required to
avoid hitting moving obstacles such as humans, and some motion control system is required
so that the robot can deliberately move.

It is less evident, however, whether or not this mobile robot will require a localization
system. Localization may seem mandatory in order to navigate successfully between the
two rooms. It is through localizing on a map, after all, that the robot can hope to recover its
position and detect when it has arrived at the goal location. It is true that, at the least, the
robot must have a way of detecting the goal location. However, explicit localization with
reference to a map is not the only strategy that qualifies as a goal detector.

An alternative, espoused by the behavior-based community, suggests that, since sensors
and effectors are noisy and information-limited, one should avoid creating a geometric map
for localization. Instead, this community suggests designing sets of behaviors that together
result in the desired robot motion. Fundamentally, this approach avoids explicit reasoning
about localization and position, and thus generally avoids explicit path planning as well.

Figure 5.5
Growth of the pose uncertainty for circular movement (r = const): Again, the uncertainty perpendic-
ular to the movement grows much faster than that in the direction of movement. Note that the main
axis of the uncertainty ellipse does not remain perpendicular to the direction of movement.

276 Chapter 5
This technique is based on a belief that there exists a procedural solution to the particular
navigation problem at hand. For example, in figure 5.6, the behavioralist approach to nav-
igating from room A to room B might be to design a left-wall following behavior and a
detector for room B that is triggered by some unique queue in room B, such as the color of
the carpet. Then the robot can reach room B by engaging the left-wall follower with the
room B detector as the termination condition for the program.

The architecture of this solution to a specific navigation problem is shown in figure 5.7.
The key advantage of this method is that, when possible, it may be implemented very
quickly for a single environment with a small number of goal positions. It suffers from
some disadvantages, however. First, the method does not directly scale to other environ-
ments or to larger environments. Often, the navigation code is location-specific, and the
same degree of coding and debugging is required to move the robot to a new environment.

Second, the underlying procedures, such as left-wall-follow, must be carefully designed
to produce the desired behavior. This task may be time-consuming and is heavily dependent
on the specific robot hardware and environmental characteristics.

Third, a behavior-based system may have multiple active behaviors at any one time.
Even when individual behaviors are tuned to optimize performance, this fusion and rapid
switching between multiple behaviors can negate that fine-tuning. Often, the addition of
each new incremental behavior forces the robot designer to retune all of the existing behav-
iors again to ensure that the new interactions with the freshly introduced behavior are all
stable.

Figure 5.6
A sample environment.

A

B

Mobile Robot Localization 277
In contrast to the behavior-based approach, the map-based approach includes both local-
ization and cognition modules (see figure 5.8). In map-based navigation, the robot explic-
itly attempts to localize by collecting sensor data, then updating some belief about its
position with respect to a map of the environment. The key advantages of the map-based
approach for navigation are as follows:

• The explicit, map-based concept of position makes the system’s belief about position
transparently available to the human operators.

• The existence of the map itself represents a medium for communication between human
and robot: the human can simply give the robot a new map if the robot goes to a new
environment.

Figure 5.7
An architecture for behavior-based navigation.

sensors detect goal position

discover new area

avoid obstacles

follow right / left wall

communicate data

actuators

coordination / fusion
e.g. fusion via vector summation

Figure 5.8
An architecture for map-based (or model-based) navigation.

sensors

cognition / planning

localization / map-building

motion control

perception

actuators

278 Chapter 5
• The map, if created by the robot, can be used by humans as well, achieving two uses.

The map-based approach will require more up-front development effort to create a nav-
igating mobile robot. The hope is that the development effort results in an architecture that
can successfully map and navigate a variety of environments, thereby amortizing the up-
front design cost over time.

Of course the key risk of the map-based approach is that an internal representation,
rather than the real world itself, is being constructed and trusted by the robot. If that model
diverges from reality (i.e., if the map is wrong), then the robot’s behavior may be undesir-
able, even if the raw sensor values of the robot are only transiently incorrect.

In the remainder of this chapter, we focus on a discussion of map-based approaches and,
specifically, the localization component of these techniques. These approaches are partic-
ularly appropriate for study given their significant recent successes in enabling mobile
robots to navigate a variety of environments, from academic research buildings, to factory
floors, and to museums around the world.

5.4 Belief Representation

The fundamental issue that differentiates various map-based localization systems is the
issue of representation. There are two specific concepts that the robot must represent, and
each has its own unique possible solutions. The robot must have a representation (a model)
of the environment, or a map. What aspects of the environment are contained in this map?
At what level of fidelity does the map represent the environment? These are the design
questions for map representation.

The robot must also have a representation of its belief regarding its position on the map.
Does the robot identify a single unique position as its current position, or does it describe
its position in terms of a set of possible positions? If multiple possible positions are
expressed in a single belief, how are those multiple positions ranked, if at all? These are the
design questions for belief representation.

Decisions along these two design axes can result in varying levels of architectural com-
plexity, computational complexity, and overall localization accuracy. We begin by discuss-
ing belief representation. The first major branch in a taxonomy of belief representation
systems differentiates between single-hypothesis and multiple-hypothesis belief systems.
The former covers solutions in which the robot postulates its unique position, whereas the
latter enables a mobile robot to describe the degree to which it is uncertain about its posi-
tion. A sampling of different belief and map representations is shown in figure 5.9.

5.4.1 Single-hypothesis belief
The single-hypothesis belief representation is the most direct possible postulation of mobile
robot position. Given some environmental map, the robot’s belief about position is

Mobile Robot Localization 279
Figure 5.9
Belief representation regarding the robot position (1D) in continuous and discretized (tessellated)
maps. (a) Continuous map with single-hypothesis belief, e.g., single Gaussian centered at a single
continuous value. (b) Continuous map with multiple-hypothesis belief, e.g;. multiple Gaussians cen-
tered at multiple continuous values. (c) Discretized (decomposed) grid map with probability values
for all possible robot positions, e.g., Markov approach. (d) Discretized topological map with proba-
bility value for all possible nodes (topological robot positions), e.g., Markov approach.

position x

p
ro

b
a

b
ili

ty
 P

position x

pr
ob

ab
ili

ty
 P

position x

pr
ob

ab
ili

ty
 P

a)

b)

c)

node

pr
ob

ab
ili

ty
 P

d)

A B C D E F G

of topological map

280 Chapter 5
expressed as a single unique point on the map. In figure 5.10, three examples of a single-
hypothesis belief are shown using three different map representations of the same actual
environment (figure 5.10a). In figure 5.10b, a single point is geometrically annotated as the
robot’s position in a continuous 2D geometric map. In figure 5.10c, the map is a discrete,
tessellated one, and the position is noted at the same level of fidelity as the map cell size.
In figure 5.10d, the map is not geometric at all but abstract and topological. In this case, the
single hypothesis of position involves identifying a single node i in the topological graph
as the robot’s position.

The principal advantage of the single-hypothesis representation of position stems from
the fact that, given a unique belief, there is no position ambiguity. The unambiguous nature
of this representation facilitates decision-making at the robot’s cognitive level (e.g., path
planning). The robot can simply assume that its belief is correct, and can then select its
future actions based on its unique position.

Just as decision making is facilitated by a single-position hypothesis, so updating the
robot’s belief regarding position is also facilitated, since the single position must be
updated by definition to a new, single position. The challenge with this position update
approach, which ultimately is the principal disadvantage of single-hypothesis representa-
tion, is that robot motion often induces uncertainty due to effector and sensor noise. There-
fore, forcing the position update process always to generate a single hypothesis of position
is challenging and, often, impossible.

5.4.2 Multiple-hypothesis belief
In the case of multiple-hypothesis beliefs regarding position, the robot tracks not just a
single possible position but also a possibly infinite set of positions.

In one simple example originating in the work of Jean-Claude Latombe [32, 188], the
robot’s position is described in terms of a convex polygon positioned in a 2D map of the
environment. This multiple-hypothesis representation communicates the set of possible
robot positions geometrically, with no preference ordering over the positions. Each point
in the map is simply either contained by the polygon and, therefore, in the robot’s belief set,
or outside the polygon and thereby excluded. Mathematically, the position polygon serves
to partition the space of possible robot positions. Such a polygonal representation of the
multiple-hypothesis belief can apply to a continuous, geometric map of the environment
[57] or, alternatively, to a tessellated, discrete approximation to the continuous environ-
ment.

It may be useful, however, to incorporate some ordering on the possible robot positions,
capturing the fact that some robot positions are likelier than others. A strategy for repre-
senting a continuous multiple-hypothesis belief state along with a preference ordering over
possible positions is to model the belief as a mathematical distribution. For example, [87]
and [309] notate the robot’s position belief using an point in the 2D environmentX Y

Mobile Robot Localization 281
Figure 5.10
Three examples of single hypotheses of position using different map representations: (a) real map
with walls, doors and furniture; (b) line-based map around 100 lines with two parameters; (c)
occupancy grid-based map around 3000 grid cells size cm; (d) topological map using
line features (Z/S lines) and doors around 50 features and 18 nodes.

50 50

no
de

 i

(a)

(c)

(b)

(d)

(x,y,robot position

282 Chapter 5
as the mean plus a standard deviation parameter , thereby defining a Gaussian distri-
bution. The intended interpretation is that the distribution at each position represents the
probability assigned to the robot being at that location. This representation is particularly
amenable to mathematically defined tracking functions, such as the Kalman filter, that are
designed to operate efficiently on Gaussian distributions.

An alternative is to represent the set of possible robot positions, not using a single
Gaussian probability density function, but using discrete markers for each possible posi-
tion. In this case, each possible robot position is individually noted along with a confidence
or probability parameter (see figure 5.11). In the case of a highly tessellated map this can
result in thousands or even tens of thousands of possible robot positions in a single-belief
state.

The key advantage of the multiple-hypothesis representation is that the robot can explic-
itly maintain uncertainty regarding its position. If the robot only acquires partial informa-
tion regarding position from its sensors and effectors, that information can conceptually be
incorporated in an updated belief.

A more subtle advantage of this approach revolves around the robot’s ability explicitly
to measure its own degree of uncertainty regarding position. This advantage is the key to a
class of localization and navigation solutions in which the robot not only reasons about
reaching a particular goal but reasons about the future trajectory of its own belief state. For
instance, a robot may choose paths that minimize its future position uncertainty. An exam-
ple of this approach is [306], in which the robot plans a path from point to point that
takes it near a series of landmarks in order to mitigate localization difficulties. This type of

Figure 5.11
Example of multiple-hypothesis tracking (courtesy of W. Burgard [86]). The belief state that is
largely distributed becomes very certain after moving to position 4. Note that darker coloring repre-
sents higher probability.

Belief states at positions 2, 3, and 4Path of the robot

A B

Mobile Robot Localization 283
explicit reasoning about the effect that trajectories will have on the quality of localization
requires a multiple-hypothesis representation.

One of the fundamental disadvantages of multiple-hypothesis approaches involves deci-
sion making. If the robot represents its position as a region or set of possible positions, then
how shall it decide what to do next? Figure 5.11 provides an example. At position 3, the
robot’s belief state is distributed among five hallways separately. If the goal of the robot is
to travel down one particular hallway, then given this belief state, what action should the
robot choose?

The challenge occurs because some of the robot’s possible positions imply a motion tra-
jectory that is inconsistent with some of its other possible positions. One approach that we
will see in the case studies that follow is to assume, for decision-making purposes, that the
robot is physically at the most probable location in its belief state, then to choose a path
based on that current position. But this approach demands that each possible position have
an associated probability.

In general, the right approach to such decision-making problems would be to decide on
trajectories that eliminate the ambiguity explicitly. But this leads us to the second major
disadvantage of multiple-hypothesis approaches. In the most general case, they can be
computationally very expensive. When one reasons in a 3D space of discrete possible posi-
tions, the number of possible belief states in the single-hypothesis case is limited to the
number of possible positions in the 3D world. Consider this number to be . When one
moves to an arbitrary multiple-hypothesis representation, then the number of possible
belief states is the power set of , which is far larger: . Thus, explicit reasoning about
the possible trajectory of the belief state over time quickly becomes computationally unten-
able as the size of the environment grows.

There are, however, specific forms of multiple-hypothesis representations that are some-
what more constrained, thereby avoiding the computational explosion while allowing a
limited type of multiple-hypothesis belief. For example, if one assumes a Gaussian distri-
bution of probability centered at a single position, then the problem of representation and
tracking of belief becomes equivalent to Kalman filtering, a straightforward mathematical
process described below. Alternatively, a highly tessellated map representation combined
with a limit of ten possible positions in the belief state results in a discrete update cycle that
is, at worst, only ten times more computationally expensive than a single-hypothesis belief
update. And other ways to cope with the complexity problem, still being precise and com-
putationally cheap, are hybrid metric-topological approaches [314, 317] or multi-Gaussian
position estimation [57, 103, 157].

In conclusion, the most critical benefit of the multiple-hypothesis belief state is the abil-
ity to maintain a sense of position while explicitly annotating the robot’s uncertainty about
its own position. This powerful representation has enabled robots with limited sensory

N

N 2N

284 Chapter 5
information to navigate robustly in an array of environments, as we shall see in the case
studies that follow.

5.5 Map Representation

The problem of representing the environment in which the robot moves is a dual of the
problem of representing the robot’s possible position or positions. Decisions made regard-
ing the environmental representation can have impact on the choices available for robot
position representation. Often the fidelity of the position representation is bounded by the
fidelity of the map.

Three fundamental relationships must be understood when choosing a particular map
representation:

1. The precision of the map must appropriately match the precision with which the robot
needs to achieve its goals.

2. The precision of the map and the type of features represented must match the precision
and data types returned by the robot’s sensors.

3. The complexity of the map representation has direct impact on the computational com-
plexity of reasoning about mapping, localization, and navigation.

In the following sections, we identify and discuss critical design choices in creating a
map representation. Each such choice has great impact on the relationships listed earlier
and on the resulting robot localization architecture. As we shall see, the choice of possible
map representations is broad. Selecting an appropriate representation requires understand-
ing all of the trade-offs inherent in that choice as well as understanding the specific context
in which a particular mobile robot implementation must perform localization. In general,
the environmental representation and model can be roughly classified as presented in chap-
ter 4, section 4.4.

5.5.1 Continuous representations
A continuous-valued map is one method for exact decomposition of the environment. The
position of environmental features can be annotated precisely in continuous space. Mobile
robot implementations to date use continuous maps only in 2D representations, as further
dimensionality can result in computational explosion.

A common approach is to combine the exactness of a continuous representation with the
compactness of the closed-world assumption. This means that one assumes that the repre-
sentation will specify all environmental objects in the map, and that any area in the map
that is devoid of objects has no objects in the corresponding portion of the environment.
Thus, the total storage needed in the map is proportional to the density of objects in the
environment, and a sparse environment can be represented by a low-memory map.

Mobile Robot Localization 285
One example of such a representation, shown in figure 5.12, is a 2D representation in
which polygons represent all obstacles in a continuous-valued coordinate space. This is
similar to the method used by Latombe [32, 187] and others to represent environments for
mobile robot path-planning techniques.

In the case of [32, 187], most of the experiments are in fact simulations run exclusively
within the computer’s memory. Therefore, no real effort would have been expended to
attempt to use sets of polygons to describe a real-world environment, such as a park or
office building.

In other work in which real environments must be captured by the maps, one sees a trend
toward selectivity and abstraction. The human mapmaker tends to capture on the map, for
localization purposes, only objects that can be detected by the robot’s sensors and, further-
more, only a subset of the features of real-world objects.

It should be immediately apparent that geometric maps can capably represent the phys-
ical locations of objects without referring to their texture, color, elasticity, or any other such
secondary features that do not relate directly to position and space. In addition to this level
of simplification, a mobile robot map can further reduce memory usage by capturing only
aspects of object geometry that are immediately relevant to localization. For example, all
objects may be approximated using very simple convex polygons, sacrificing map felicity
for the sake of computational speed.

Figure 5.12
A continuous representation using polygons as environmental obstacles.

286 Chapter 5
One excellent example involves line extraction. Many indoor mobile robots rely upon
laser rangefinding devices to recover distance readings to nearby objects. Such robots can
automatically extract best-fit lines from the dense range data provided by thousands of
points of laser strikes. Given such a line extraction sensor, an appropriate continuous map-
ping approach is to populate the map with a set of infinite lines. The continuous nature of
the map guarantees that lines can be positioned at arbitrary positions in the plane and at
arbitrary angles. The abstraction of real environmental objects such as walls and intersec-
tions captures only the information in the map representation that matches the type of infor-
mation recovered by the mobile robot’s rangefinding sensor.

Figure 5.13 shows a map of an indoor environment at EPFL using a continuous line rep-
resentation. Note that the only environmental features captured by the map are straight
lines, such as those found at corners and along walls. This represents not only a sampling
of the real world of richer features but also a simplification, for an actual wall may have
texture and relief that is not captured by the mapped line.

The impact of continuous map representations on position representation is primarily
positive. In the case of single-hypothesis position representation, that position may be spec-
ified as any continuous-valued point in the coordinate space, and therefore extremely high
accuracy is possible. In the case of multiple-hypothesis position representation, the contin-
uous map enables two types of multiple position representation.

In one case, the possible robot position may be depicted as a geometric shape in the
hyperplane, such that the robot is known to be within the bounds of that shape. This is
shown in figure 5.33, in which the position of the robot is depicted by an oval bounding
area.

Figure 5.13
Example of a continuous-valued line representation of EPFL. (a) Real map. (b) Representation with
a set of infinite lines.

Mobile Robot Localization 287
Yet, the continuous representation does not disallow representation of position in the
form of a discrete set of possible positions. For instance, in [119] the robot position belief
state is captured by sampling nine continuous-valued positions from within a region near
the robot’s best-known position. This algorithm captures, within a continuous space, a dis-
crete sampling of possible robot positions.

In summary, the key advantage of a continuous map representation is the potential for
high accuracy and expressiveness with respect to the environmental configuration as well
as the robot position within that environment. The danger of a continuous representation is
that the map may be computationally costly. But this danger can be tempered by employing
abstraction and capturing only the most relevant environmental features. Together with the
use of the closed-world assumption, these techniques can enable a continuous-valued map
to be no more costly, and sometimes even less costly, than a standard discrete representa-
tion.

5.5.2 Decomposition strategies
In the previous section, we discussed one method of simplification, in which the continuous
map representation contains a set of infinite lines that approximate real-world environmen-
tal lines based on a 2D slice of the world. Basically this transformation from the real world
to the map representation is a filter that removes all nonstraight data and furthermore
extends line segment data into infinite lines that require fewer parameters.

A more dramatic form of simplification is abstraction: a general decomposition and
selection of environmental features. In this section, we explore decomposition as applied
in its more extreme forms to the question of map representation.

Why would one radically decompose the real environment during the design of a map
representation? The immediate disadvantage of decomposition and abstraction is the loss
of fidelity between the map and the real world. Both qualitatively, in terms of overall struc-
ture, and quantitatively, in terms of geometric precision, a highly abstract map does not
compare favorably to a high-fidelity map.

Despite this disadvantage, decomposition and abstraction may be useful if the abstrac-
tion can be planned carefully so as to capture the relevant, useful features of the world while
discarding all other features. The advantage of this approach is that the map representation
can potentially be minimized. Furthermore, if the decomposition is hierarchical, such as in
a pyramid of recursive abstraction, then reasoning and planning with respect to the map
representation may be computationally far superior to planning in a fully detailed world
model.

A standard, lossless form of opportunistic decomposition is termed exact cell decompo-
sition. This method, introduced by Latombe [32], achieves decomposition by selecting
boundaries between discrete cells based on geometric criticality.

288 Chapter 5
Figure 5.14 depicts an exact decomposition of a planar workspace populated by polyg-
onal obstacles. The map representation tessellates the space into areas of free space. The
representation can be extremely compact because each such area is actually stored as a
single node, resulting in a total of only eighteen nodes in this example.

The underlying assumption behind this decomposition is that the particular position of
a robot within each area of free space does not matter. What matters is the robot’s ability
to traverse from each area of free space to the adjacent areas. Therefore, as with other rep-
resentations we will see, the resulting graph captures the adjacency of map locales. If
indeed the assumptions are valid and the robot does not care about its precise position
within a single area, then this can be an effective representation that nonetheless captures
the connectivity of the environment.

Such an exact decomposition is not always appropriate. Exact decomposition is a func-
tion of the particular environment obstacles and free space. If this information is expensive
to collect or even unknown, then such an approach is not feasible.

An alternative is fixed decomposition, in which the world is tessellated, transforming the
continuous real environment into a discrete approximation for the map. Such a transforma-
tion is demonstrated in figure 5.15, which depicts what happens to obstacle-filled and free
areas during this transformation. The key disadvantage of this approach stems from its inex-
act nature. It is possible for narrow passageways to be lost during such a transformation, as
shown in figure 5.15. Formally, this means that fixed decomposition is sound but not com-
plete. Yet another approach is adaptive cell decomposition, as presented in figure 5.16.

Figure 5.14
Example of exact cell decomposition.

goal

start

1

7

2
3

4

5
6

8

9 10

11 12 13

14

15

17

16

18

Mobile Robot Localization 289
The concept of fixed decomposition is extremely popular in mobile robotics; it is per-
haps the single most common map representation technique currently utilized. One very
popular version of fixed decomposition is known as the occupancy grid representation
[233]. In an occupancy grid, the environment is represented by a discrete grid, where each
cell is either filled (part of an obstacle) or empty (part of free space). This method is of par-
ticular value when a robot is equipped with range-based sensors because the range values

Figure 5.15
Fixed decomposition of the same space (narrow passage disappears).

goal

start

goal

start

goal

start

290 Chapter 5
of each sensor, combined with the absolute position of the robot, can be used directly to
update the filled or empty value of each cell.

In the occupancy grid, each cell may have a counter, whereby the value 0 indicates that
the cell has not been “hit” by any ranging measurements and, therefore, it is likely free
space. As the number of ranging strikes increases, the cell’s value is incremented and,
above a certain threshold, the cell is deemed to be an obstacle. The values of cells are com-
monly discounted when a ranging strike travels through the cell, striking a further cell. By
also discounting the values of cells over time, both hysteresis and the possibility of transient
obstacles can be represented using this occupancy grid approach. Figure 5.17 depicts an
occupancy grid representation in which the darkness of each cell is proportional to the value
of its counter. One commercial robot that uses a standard occupancy grid for mapping and
navigation is the Cye robot [342].

There remain two main disadvantages of the occupancy grid approach. First, the size of
the map in robot memory grows with the size of the environment, and if a small cell size is
used, this size can quickly become untenable. This occupancy grid approach is not compat-
ible with the closed-world assumption, which enabled continuous representations to have
potentially very small memory requirements in large, sparse environments. In contrast, the

Figure 5.16
Example of adaptive (approximate variable-cell) decomposition of an environment [32]. The rectan-
gle, bounding the free space, is decomposed into four identical rectangles. If the interior of a rectangle
lies completely in free space or in the configuration space obstacle, it is not decomposed further. Oth-
erwise, it is recursively decomposed into four rectangles until some predefined resolution is attained.
The white cells lie outside the obstacles, the black are inside, and the gray are part of both regions.

goal

start

Mobile Robot Localization 291
occupancy grid must have memory set aside for every cell in the matrix. Furthermore, any
fixed decomposition method such as this imposes a geometric grid on the world a priori,
regardless of the environmental details. This can be inappropriate in cases where geometry
is not the most salient feature of the environment.

For these reasons, an alternative, called topological decomposition, has been the subject
of some exploration in mobile robotics. Topological approaches avoid direct measurement
of geometric environmental qualities, instead concentrating on characteristics of the envi-
ronment that are most relevant to the robot for localization.

Formally, a topological representation is a graph that specifies two things: nodes and the
connectivity between those nodes. Insofar as a topological representation is intended for the
use of a mobile robot, nodes are used to denote areas in the world and arcs are used to
denote adjacency of pairs of nodes. When an arc connects two nodes, then the robot can
traverse from one node to the other without requiring traversal of any other intermediary
node.

Adjacency is clearly at the heart of the topological approach, just as adjacency in a cell
decomposition representation maps to geometric adjacency in the real world. However, the
topological approach diverges in that the nodes are not of fixed size or even specifications
of free space. Instead, nodes document an area based on any sensor discriminant such that
the robot can recognize entry and exit of the node.

Figure 5.18 depicts a topological representation of a set of hallways and offices in an
indoor environment. In this case, the robot is assumed to have an intersection detector, per-
haps using sonar and vision to find intersections between halls and between halls and

Figure 5.17
Example of an occupancy grid map representation. Courtesy of S. Thrun [314].

292 Chapter 5
rooms. Note that nodes capture geometric space, and arcs in this representation simply rep-
resent connectivity.

Another example of topological representation is the work of Simhon and Dudek [290],
in which the goal is to create a mobile robot that can capture the most interesting aspects of
an area for human consumption. The nodes in their representation are visually striking
locales rather than route intersections.

In order to navigate using a topological map robustly, a robot must satisfy two con-
straints. First, it must have a means for detecting its current position in terms of the nodes
of the topological graph. Second, it must have a means for traveling between nodes using
robot motion. The node sizes and particular dimensions must be optimized to match the
sensory discrimination of the mobile robot hardware. This ability to “tune” the representa-
tion to the robot’s particular sensors can be an important advantage of the topological
approach. However, as the map representation drifts further away from true geometry, the
expressiveness of the representation for accurately and precisely describing a robot position
is lost. Therein lies the compromise between the discrete cell-based map representations
and the topological representations. Interestingly, the continuous map representation has

Figure 5.18
A topological representation of an indoor office area.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18 17

Mobile Robot Localization 293
the potential to be both compact, like a topological representation, and precise, as with all
direct geometric representations.

Yet, a chief motivation of the topological approach is that the environment may contain
important nongeometric features—features that have no ranging relevance but are useful
for localization. In chapter 4 we described such whole-image vision-based features.

In contrast to these whole-image feature extractors, often spatially localized landmarks
are artificially placed in an environment to impose a particular visual-topological connec-
tivity upon the environment. In effect, the artificial landmark can impose artificial struc-
ture. Examples of working systems operating with this landmark-based strategy have also
demonstrated success. Latombe’s landmark-based navigation research [188] has been
implemented on real-world indoor mobile robots that employ paper landmarks attached to
the ceiling as the locally observable features. Chips, the museum robot, is another robot that
uses man-made landmarks to obviate the localization problem. In this case, a bright pink
square serves as a landmark with dimensions and color signature that would be hard to acci-
dentally reproduce in a museum environment [251]. One such museum landmark is shown
in figure 5.19.

In summary, range is clearly not the only measurable and useful environmental value for
a mobile robot. This is particularly true with the advent of color vision, as well as laser

Figure 5.19
An artificial landmark used by Chips during autonomous docking.

294 Chapter 5
rangefinding, which provides reflectance information in addition to range information.
Choosing a map representation for a particular mobile robot requires, first, understanding
the sensors available on the mobile robot, and, second, understanding the mobile robot’s
functional requirements (e.g., required goal precision and accuracy).

5.5.3 State of the art: Current challenges in map representation
The previous sections describe major design decisions in regard to map representation
choices. There are, however, fundamental real-world features that mobile robot map repre-
sentations do not yet represent well. These continue to be the subject of open research, and
several such challenges are described here.

The real world is dynamic. As mobile robots come to inhabit the same spaces as humans,
they will encounter moving people, cars, strollers, and the transient obstacles placed and
moved by humans as they go about their activities. This is particularly true when one con-
siders the home environment with which domestic robots will someday need to contend.

The map representations described earlier do not, in general, have explicit facilities for
identifying and distinguishing between permanent obstacles (e.g., walls, doorways, etc.)
and transient obstacles (e.g., humans, shipping packages, etc.). The current state of the art
in terms of mobile robot sensors is partly to blame for this shortcoming. Although vision
research is rapidly advancing, robust sensors that discriminate between moving animals
and static structures from a moving reference frame are not yet available. Furthermore, esti-
mating the motion vector of transient objects remains a research problem.

Usually, the assumption behind the preceding map representations is that all objects on
the map are effectively static. Partial success can be achieved by discounting mapped
objects over time. For example, occupancy grid techniques can be more robust to dynamic
settings by introducing temporal discounting, effectively treating transient obstacles as
noise. The more challenging process of map creation is particularly fragile to environmen-
tal dynamics; most mapping techniques generally require that the environment be free of
moving objects during the mapping process. One exception to this limitation involves topo-
logical representations. Because precise geometry is not important, transient objects have
little effect on the mapping or localization process, subject to the critical constraint that the
transient objects must not change the topological connectivity of the environment. Still,
neither the occupancy grid representation nor a topological approach is actively recogniz-
ing and representing transient objects as distinct from both sensor error and permanent map
features.

As vision sensing provides more robust and more informative content regarding the
transience and motion details of objects in the world, mobile roboticists will in time pro-
pose representations that make use of that information. A classic example involves occlu-
sion by human crowds. Museum tour guide robots generally suffer from an extreme amount
of occlusion. If the robot’s sensing suite is located along the robot’s body, then the robot is

Mobile Robot Localization 295
effectively blind when a group of human visitors completely surround the robot. This is
because its map contains only environmental features that are, at that point, fully hidden
from the robot’s sensors by the wall of people. In the best case, the robot should recognize
its occlusion and make no effort to localize using these invalid sensor readings. In the worst
case, the robot will localize with the fully occluded data, and will update its location incor-
rectly. A vision sensor that can discriminate the local conditions of the robot (e.g,. we are
surrounded by people) can help eliminate this error mode.

A second open challenge in mobile robot localization involves the traversal of open
spaces. Existing localization techniques generally depend on local measures such as range,
thereby demanding environments that are somewhat densely filled with objects that the
sensors can detect and measure. Wide-open spaces such as parking lots, fields of grass, and
indoor atriums such as those found in convention centers pose a difficulty for such systems
because of their relative sparseness. Indeed, when populated with humans, the challenge is
exacerbated because any mapped objects are almost certain to be occluded from view by
the people.

Once again, more recent technologies provide some hope of overcoming these limita-
tions. Both vision and state-of-the-art laser rangefinding devices offer outdoor performance
with ranges of up to a hundred meters and more. Of course, GPS performs even better. Such
long-range sensing may be required for robots to localize using distant features.

This trend teases out a hidden assumption underlying most topological map representa-
tions. Usually, topological representations make assumptions regarding spatial locality: a
node contains objects and features that are themselves within that node. The process of map
creation thus involves making nodes that are, in their own self-contained way, recognizable
by virtue of the objects contained within the node. Therefore, in an indoor environment,
each room can be a separate node, and this is reasonable because each room will have a
layout and a set of belongings that are unique to that room.

However, consider the outdoor world of a wide-open park. Where should a single node
end and the next node begin? The answer is unclear because objects that are far away from
the current node, or position, can yield information for the localization process. For exam-
ple, the hump of a hill at the horizon, the position of a river in the valley, and the trajectory
of the sun all are nonlocal features that have great bearing on one’s ability to infer current
position. The spatial locality assumption is violated and, instead, replaced by a visibility
criterion: the node or cell may need a mechanism for representing objects that are measur-
able and visible from that cell. Once again, as sensors improve and, in this case, as outdoor
locomotion mechanisms improve, there will be greater urgency to solve problems associ-
ated with localization in wide-open settings, with and without GPS-type global localization
sensors.

We end this section with one final open challenge that represents one of the fundamental
academic research questions of robotics: sensor fusion. A variety of measurement types are

296 Chapter 5
possible using off-the-shelf robot sensors, including heat, range, acoustic and light-based
reflectivity, color, texture, friction, and so on. Sensor fusion is a research topic closely
related to map representation. Just as a map must embody an environment in sufficient
detail for a robot to perform localization and reasoning, sensor fusion demands a represen-
tation of the world that is sufficiently general and expressive that a variety of sensor types
can have their data correlated appropriately, strengthening the resulting percepts well
beyond that of any individual sensor’s readings.

Perhaps the only general implementation of sensor fusion to date is that of neural net-
work classifier. Using this technique, any number and any type of sensor values may be
jointly combined in a network that will use whatever means necessary to optimize its clas-
sification accuracy. For the mobile robot that must use a human-readable internal map rep-
resentation, no equally general sensor fusion scheme has yet been born. It is reasonable to
expect that, when the sensor fusion problem is solved, integration of a large number of dis-
parate sensor types may easily result in sufficient discriminatory power for robots to
achieve real-world navigation, even in wide-open and dynamic circumstances such as a
public square filled with people.

5.6 Probabilistic Map-Based Localization

5.6.1 Introduction
As stated earlier, multiple-hypothesis position representation is advantageous because the
robot can explicitly track its own beliefs regarding its possible positions in the environment.
Ideally, the robot’s belief state will change, over time, as is consistent with its motor outputs
and perceptual inputs. One geometric approach to multiple-hypothesis representation, men-
tioned earlier, involves identifying the possible positions of the robot by specifying a poly-
gon in the environmental representation [187]. This method does not provide any indication
of the relative chances between various possible robot positions.

Probabilistic map-based localization techniques differ from this because they explicitly
identify probabilities with the possible robot positions, and for this reason these methods
have been the focus of recent research. The reason probabilistic approaches to mobile robot
localization have been developed is that the data coming from the robot sensors are affected
by measurement errors, and therefore we can only compute the probability that the robot is
in a given configuration. This new area of research is called probabilistic robotics [51]. The
key idea in probabilistic robotics is to represent uncertainty using probability theory. Stat-
ing this in different words, instead of giving a single best estimate of the current robot con-
figuration, probabilistic robotics represents the robot configuration as a probability
distribution over the all possible robot poses. By doing so, ambiguity and degree of belief
are represented using calculus of probability theory. The success of this theory applied to

Mobile Robot Localization 297
the mobile robot localization problem comes from the fact that probabilistic algorithms out-
perform alternative techniques in many real world applications.

In the following sections, we present two classes of probabilistic map-based localiza-
tion. The first class, Markov localization, uses an explicitly specified probability distribu-
tion across all possible robot positions. The second method, Kalman filter localization, uses
a Gaussian probability density representation of robot position. Unlike Markov localiza-
tion, Kalman filter localization does not independently consider each possible pose in the
robot’s configuration space. Interestingly, the Kalman filter localization process results
from the Markov localization axioms if the robot’s position uncertainty is assumed to have
a Gaussian form.

5.6.2 The robot localization problem
Before discussing each method in detail, we present the general robot localization problem
and solution strategy. Consider a mobile robot moving in a known environment. As it starts
to move, say from a precisely known location, it can keep track of its motion using odom-
etry. Due to odometry uncertainty, after some movement the robot will become very uncer-
tain about its position (see section 5.2.4). To keep position uncertainty from growing
unbounded, the robot must localize itself in relation to its environment map. To localize,
the robot might use its on-board exteroceptive sensors (e.g., ultrasonic, laser, vision sen-
sors) to make observations of its environment. The information provided by the robot’s
odometry, plus the information provided by such exteroceptive observations, can be com-
bined to enable the robot to localize as well as possible with respect to its map. The pro-
cesses of updating based on proprioceptive sensor values and exteroceptive sensor values
are often separated logically, leading to a general process for the robot position update that
comprises two steps, which are called prediction (or action) update and perception (or mea-
surement, or correction) update.

• During the prediction (or action) update the robot uses its proprioceptive sensors to esti-
mate its configuration; for example, the robot estimates its motion using the encoders.
In this phase, the uncertainty about the robot configuration increases due to the integra-
tion of the odometric error over time. In figure 5.20a, we illustrate this process for a
robot moving in a one-dimensional environment.

• During the perception (or measurement, or correction) update the robot uses the infor-
mation from its exteroceptive sensors to correct the position estimated during the pre-
diction phase; for example, the robot uses a rangefinder to measure its current distance
from a wall and corrects accordingly the position estimated during the prediction phase.
During the perception phase, the uncertainty of the robot configuration shrinks (figure
5.20b).

298 Chapter 5
In general, the prediction update contributes to increase the uncertainty to the robot’s
belief about position: encoders have error, and therefore motion is somewhat nondetermin-
istic. By contrast, perception update generally refines the belief state (i.e., the uncertainty
shrinks). Sensor measurements, when compared to the robot’s environmental model, tend
to provide clues regarding the robot’s possible position.

In the next sections, we will describe two different methods of probabilistic map-based
localization, which are the Markov localization and Kalman filter localization. In the case
of Markov localization, the robot’s belief state can be represented with any arbitrary prob-
ability density function. The prediction and perception phases update the probability of
every possible robot pose.

In the case of Kalman filter localization, the robot’s belief state is conversely repre-
sented using a single Gaussian probability density function (page 112), and thus it retains
just a and parameterization of the robot’s belief about position with respect to the

Figure 5.20 In probabilistic robotics, the beliefs about the robot configuration are represented as
probability density functions. Note, in general the distributions can be any function. Not necessarily
Gaussian. Only the Kalman filter assumes Gaussian distributions. (a) Prediction phase: the start posi-
tion is assumed to be known, and therefore the probability density function is a Dirac delta func-
tion. As the robot starts moving, its uncertainty grows due to the odometric error, which accumulates
over time. (b) Perception phase: the robot uses its exteroceptive sensor (e.g., a rangefinder) to mea-
sure the distance d from the right wall, and computes the position , which is in conflict with the
current position estimated in the action phase. The perception update corrects the new position to

 and as consequence its uncertainty shrinks (solid line).

x0

x2
x2

x2

x1 x2x0

x2x2 x2

(a)

(b)

d

Mobile Robot Localization 299
map. Updating the parameters of the Gaussian distribution is all that is required. This fun-
damental difference in the representation of belief state leads to the following advantages
and disadvantages of the two methods, as presented in [143]:

• Markov localization allows for localization starting from any unknown position and can
thus recover from ambiguous situations because the robot can track multiple, completely
disparate possible positions. However, to update the probability of all positions within
the whole state space at any time requires a discrete representation of the space, such as
a geometric grid or a topological graph (see section 5.5.2). The required memory and
computational power can thus limit precision and map size.

• Kalman filter localization tracks the robot from an initially known position and is inher-
ently both precise and efficient. In particular, Kalman filter localization can be used in
continuous world representations. However, if the uncertainty of the robot becomes too
large (e.g., due to a robot collision with an object) and thus not truly unimodal, the
Kalman filter can fail to capture the multitude of possible robot positions and can
become irrevocably lost.

In recent research projects, improvements are achieved or proposed by either only
updating the state space of interest within the Markov approach [86] or by tracking multiple
hypotheses with Kalman filters [57, 231], or by combining both methods to create a hybrid
localization system [143, 317]. In the next sections we will review each approach in detail
but first we will recall some concept of probability theory. For an in-depth study of proba-
bility theory, we refer the reader to [41].

5.6.3 Basic concepts of probability theory
Let denote a random variable and a specific value that might assume. A typical
example is dice rolling, where can take on any value between 1 and 6. We denote with

 (5.16)

the probability that the random variable has value . For example, the result of a die roll
is characterized by

 . (5.17)

From now on, to simplify the notation we will omit explicit mention of the random vari-
able, and will instead use the simple abbreviation .

In continuous spaces, random variables can take on a continuum of values and in this
case we will talk about probability density functions (PDFs).

X x X

X

p X x=

X x

p X 1= p X 2= p X 3= p X 4= p X 5= p X 6= 1
6
---= = = = = =

p x

300 Chapter 5
Both discrete and continuous probabilities integrate to one, therefore:

 (for discrete probabilities), (5.18)

 (for continuous probabilities). (5.19)

Furthermore, probabilities are always non-negative, that is, .

Gaussian distribution. As we have seen (page 112), a common probability density func-
tion is the Gaussian distribution

 , (5.20)

also called normal distribution, which is commonly abbreviated with

 (5.21)

where and specify the mean and the variance of the random variable . Note that in
this case the random variable is a scalar. However, when is a -dimensional vector,
we will have a multivariate normal distribution characterized by a density function of the
following form:

, (5.22)

where is the mean vector and is a positive semidefinite and symmetric matrix called
covariance matrix.

Joint distribution. The joint distribution of two random variables and is given by
, which describes the probability that the random variable takes on the value

and that takes on the value . If and are independent, we have

 (5.23)

p x
x
 1=

p x xd

x
 1=

p x 0

p x 1

 2
-------------- x – 2

22
-------------------–

exp=

p x N x 2 =

 2
x

x x k

p x 1

2 k 2 det 1 2
-- 1

2
--- x – T 1– x – –

 exp=

X Y

p x y X x

Y y X Y

p x y p x p y =

Mobile Robot Localization 301
Conditional probability. The conditional probability describes the probability that the
random variable takes on the value conditioned on the knowledge that for sure takes
on the value . As an example, to compute the probability that the result of a die roll is 2
conditioned on the fact that we know with a probability of 100% that the result will be an
even number (for example, we have a special die). Conditional probability is denoted with

 and, if , is defined as

. (5.24)

If and are independent, we have

. (5.25)

In other words, if and are independent, the knowledge of does not provide any
useful information about the value of .

Theorem of total probability. The theorem of total probability originates from the
axioms of probability theory and is written as:

 (for discrete probabilities), (5.26)

 (for continuous probabilities). (5.27)

As we will see in the next section, the theorem of total probability is used by both Markov
and Kalman-filter localization algorithms during the prediction update.

Bayes rule. The Bayes rule relates the conditional probability to its inverse .
Under the condition that , the Bayes rule is written as:

. (5.28)

As we will see in the next section, the Bayes rule is used by both Markov and Kalman-filter
localization algorithms during the measurement update.

X x Y

y

p x y p y 0

p x y p x y
p y

----------------=

X Y

p x y p x p y
p y

---------------------- p x = =

X Y Y

X

p x p x y p y
y
=

p x p x y p y yd

y
=

p x y p y x
p y 0

p x y
p y x p x

p y
---------------------------=

302 Chapter 5
Prior and posterior probability. A prior probability distribution of a random variable
is the probability distribution that we have before incorporating the data . For exam-
ple, in mobile robotics the prior could be the probability distribution of the robot location
over the whole space prior taking into account any sensor measurement. The probability

, which is computed after incorporating the data is referred to as posterior probabil-
ity distribution. As shown by equation (5.28), the Bayes rule provides a convenient way to
compute the posterior probability using the “inverse” conditional probability
and the prior probability . Using the preceding example from mobile robotics, if we
want to know the probability of the robot of occupying a specific position after
reading the sensor data , we just need to multiply the conditional probability of
observing those measurements if the robot was at that position by the probability of
the robot to be there before reading the sensor. The result will then have to be divided by a
certain normalization factor . The concept of prior and posterior probability and the
benefit of the Bayes rule will be anyway clarified later on.

It is important to notice that the denominator of the Bayes rule, , does not depend
on . For this reason, in the Bayes rule the factor is usually written as a normaliza-
tion factor, generically denoted , which can be determined straightforwardly by remem-
bering that the integral of a probability distribution is always 1. This way, the Bayes rule
can be written as:

. (5.29)

5.6.4 Terminology

Path, input, and observations. Here we introduce the terminology that will be used
throughout the next sections. The terminology and the notation are the same as introduced
in [51]. Let denote the time and denote the robot location. For planar motion,

 is a three-dimensional vector consisting of the robot position and orientation.
The robot path is given as

, (5.30)

where could also be infinite.
Let denote the proprioceptive sensor readings at time . This can be, for instance, the

reading of the robot’s wheel encoders or IMU, or the control input given to the motors (e.g.

x

p x y

p x y

p x y p y x
p x

p x y x

y p y x
p x

p y

p y
x p y 1–

p x y p y x p x =

t xt

xt x y T=

XT x0 x1 x2 xT =

T

ut t

Mobile Robot Localization 303
the speed).23 If we assume that the robot receives exactly one data at each point in time, the
sequence of proprioceptive data can be written as:

 (5.31)

In the absence of noise, we could obviously recover all the past robot locations by inte-
grating over provided that the robot initial location is known. However, because of
noise, the integrated path unavoidably drifts from the ground truth and therefore additional
means are needed to reduce this drift. As we will see in the next sections, the exteroceptive
sensor readings allow us to cancel the drift by keeping it bounded.

Exteroceptive sensors such as cameras, lasers, or ultrasonic rangefinders allow the robot
to perceive the environment. The output of these sensors could be directly the 3D coordi-
nates (in meters) of points, lines, or planes in the sensor reference frame. But they could
also be simply the coordinates (in pixels) of point features (like corners) or lines (like
doors). Whatever are the outputs returned by the sensor, they are typically referred to as
observations, measurement data, or exteroceptive sensor readings. If we assume that the
robot takes exactly one measurement at each point in time, the sequence of measurements
is given as

, (5.32)

where it is important to remark that the coordinates of each observation are expressed in the
sensor reference frame attached to the robot.

Finally, let denote the true map of the environment and let us assume that the envi-
ronment consists of two-dimensional point landmarks (or 2D infinite lines). In this case, the
map is a vector of size 2n, where n is the number of features in the world; therefore,

, (5.33)

where , , are vectors representing the 2D coordinates of the landmarks in
the world reference frame (e.g., the 2D position of the point or the position and orientation
of the line). The same discussion can be extended to the 3D case by incorporating the posi-
tion of points, or location and orientation of lines and planes. Finally, we assume that the
world is static, and therefore the environment map is time-invariant.

23.To facilitate the language, in the remainder we will always refer to as the control input but keep
in mind that in general it can also represent the proprioceptive sensor readings.

ut

UT u0 u1 u2 uT =

XT

UT x0

ZT z0 z1 z2 zT =

M

M m0 m1 m2 mn 1– =

mi i 0n 1–=

M

304 Chapter 5
Belief distributions. In section 5.4, we already introduced the concept of belief represen-
tation. Here we review this concept in terms of probability. In general, a robot cannot mea-
sure its true state (pose) directly, not even with GPS. What it can know is only the best
estimate of its pose (for example) based on its sensors’ data. There-
fore, the knowledge the robot has about its state can only be inferred by the data. The best
guess about the robot state is called belief. In probabilistic robotics, beliefs are represented
through conditional probability distributions, and therefore they are posterior probabilities
of the state variables conditioned on the available data. If we denote the belief over a state
variable by , we can write

, (5.34)

where the posterior represents the probability of the robot of being at
given all its past observations and all its past control inputs .

In Markov and Kalman localization, we will also often refer to the belief calculated
before incorporating the new observation just after the control input . Such a posterior
will be denoted as:

. (5.35)

This probability distribution , which is computed just before including the new
observation , is often called prediction (or action) update, meaning that the current robot
pose (belief) is only predicted on the basis of the motion control and the previous observa-
tions. It is also called action because during this phase the robot physically moves. Con-
versely, the calculation of from is often called correction (or perception, or
measurement) update because the robot pose is corrected after the observation.

5.6.5 The ingredients of probabilistic map-based localization
In order to solve the robot localization problem, the following information is required.

1. The initial probability distribution . In the case the initial robot location is
unknown, the initial belief is a uniform distribution over all poses. Conversely, if
the location is perfectly known the initial belief is a Dirac delta function. As we will see,
the Markov approach allows us to select any arbitrary initial distribution, while in the
Kalman filter approach only a Gaussian distribution is allowed.

2. Map of the environment. The environment map must be
known. If the map is not known a priori, then the robot needs to build a map of the envi-
ronment. Automatic map building will be covered in section 5.8.

xt 3.0 5.1 180 T=

xt bel xt

bel xt p xt z1 t u1 t =

p xt z1 t u1 t xt

z1 t u1 t

zt ut

bel xt p xt z1 t 1– u1 t =

bel xt
zt

bel xt bel xt

bel x0
bel x0

M m0 m1 m2 mn =

Mobile Robot Localization 305
3. Data. For localizing, the robot obviously needs to use data from its proprioceptive and
exteroceptive sensors. We denote with the current reading from the exteroceptive sensor.

 is also called the observation. With , we denote instead the reading from the proprio-
ceptive sensor or the control input. For a differential drive robot, could, for example, rep-
resent the encoder readings of the right and left wheel, and, therefore, we would write

.

4. The probabilistic motion model. The probabilistic motion model is derived from the
kinematics of the robot. In the noise-free case, the robot current location can be com-
puted as a function of the previous location and the encoder readings , that is:

. (5.36)

For example, for a differential drive robot is simply the odometric-position-update for-
mula (5.7).

To derive the probabilistic motion model, we need to model the error distributions over
 and and then use to compute the error distribution over . As we have seen in

section 5.2.4, if we assume that both and are normally distributed, uncorrelated,
and that can be approximated by its first-order Taylor expansion, then the error distribu-
tion over can be modeled as a multivariate Gaussian with mean value and
covariance matrix specified by the error propagation law (5.9).

5. The probabilistic measurement model. This is derived directly from the exterocep-
tive sensor model, e.g., the error model of the laser, the sonar, or the camera. As we have
seen in chapter 4, laser and sonars provide range measurements, while a single camera pro-
vides bearing measurements. Because these measurements are always noisy, in order to
characterize the sensor model we have to define the exact, noise-free measurement func-
tion. The measurement function clearly depends on the environment map and on the
robot location , therefore we can write:

 . (5.37)

The measurement function is typically a change of coordinates from the world frame
to the sensor reference frame attached to the robot. For instance, in the example shown in
figure 5.20 the robot uses a rangefinder to measure its distance from the right wall. Here,

 is the observation, and therefore . The map is represented by a single feature
 (i.e., the wall), which we assume is at coordinate (we assume one coordinate

because we suppose that the robot moves in a one-dimensional environment). The measure-
ment function in this simple example is therefore:

zt

zt ut

ut

ut Sr Sl T=

xt

f xt 1– ut

xt f xt 1– ut =

f

xt 1– ut f xt

xt 1– ut

f

xt f xt 1– ut

h M

xt

zt h xt M =

h

d

d zt d= M

m m 10=

306 Chapter 5
. (5.38)

In the more general case, is a change of coordinates from the world frame to the sensor
reference frame attached to the robot.

To derive the probabilistic measurement model, we just need to add a noise term to the
measurement function such that the probability distribution peaks at the noise-
free value . For example, if we assume Gaussian noise we can write

, (5.39)

where, more generally, N denotes a multivariate normal distribution with mean value
 and noise covariance matrix .

5.6.6 Classification of localization problems
Before proceeding with Markov and Kalman filter localization, we have to understand the
difference among three types of localization problems, which are: position tracking, global
localization, and the kidnapped robot problem.

Position tracking. In position tracking, the robot current location is updated based on the
knowledge of its previous position (tracking). This implies that the robot initial location is
supposed to be known. Additionally, the uncertainty on the robot pose has to be small. If
the uncertainty is too large, position tracking might fail to localize the robot. This concept
will be investigated more in detail in Kalman filter localization, as in position tracking the
robot belief is usually modeled with a unimodal distribution, such as the normal distribu-
tion.

Global localization. Global localization, conversely, assumes that the robot initial loca-
tion is unknown. This means that the robot can be placed anywhere in the environment—
without knowledge about it—and is able to localize globally within it. In global localiza-
tion, the robot initial belief is usually a uniform distribution.

Kidnapped robot problem. The kidnapped robot problem tackles the case the robot gets
kidnapped and moved to another location. The kidnapped robot problem is similar to the
global localization problem only if the robot realizes having been kidnapped. The difficulty
arises when the robot does not know that it has been moved to another location and it
believes it knows where it is but in fact does not. The ability to recover from kidnapping is
a necessary condition for the operation of any autonomous robot and even more for com-
mercial robots.

h xt M 10 xt–=

h

p zt xt M
h xt M

p zt xt M N h xt M Rt =

h xt M Rt

Mobile Robot Localization 307
5.6.7 Markov localization
Markov localization tracks the robot’s belief state using an arbitrary probability density
function to represent the robot’s position (see also [87, 169, 249, 252]). In practice, all
known Markov localization systems implement this generic belief representation by first
tessellating the robot configuration space into a finite, discrete number of possible
robot poses in the map. In actual applications, the number of possible poses can range from
several hundred to millions of positions and orientations.

Markov localization addresses the global localization problem, the position tracking
problem, and the kidnapped robot problem.

As we mentioned in section 5.6.2, the probabilistic robot localization process consists in
the iteration of prediction and measurement updates. They compute the belief state that
results when new information (e.g., encoder values and measurement data) is incorporated
into a prior belief state with arbitrary probability density. As we will see, in both Markov
and Kalman-filter localization the prediction update is based on the theorem of total prob-
ability (page 301), while the perception update is based on the Bayes rule (page 301).

In the next sections, we will explain separately these two steps for the case of Markov
localization. We will first illustrate Markov localization in the continuous case and then in
the discrete case (geometric grid-based). Finally, we will show an example of Markov
localization using a topological map.

5.6.7.1 Prediction and measurement updates

Prediction (action) update. Let us recall that in this phase the robot estimates its current
position (i.e. belief) based on the knowledge of the previous position (i.e., belief) and the
odometric input. The theorem of total probability (page 301) is used to compute the robot’s
current belief as a function of the previous belief and the proprioceptive
data (e.g., the encoder measurement or the control input) :

 (continuous case), (5.40)

 (discrete case). (5.41)

As observed, the belief that the robot assigns to the state is obtained by the inte-
gral (or sum) of the product of two distributions: the prior assigned to , and the prob-
ability that the control induces a transition from to .

Let us try to clarify the reason of this integral (sum). In order to compute the probability
of position in the new belief state, one must integrate over all the possible ways in which
the robot may have reached according to the potential positions expressed in the former

x y

bel xt bel xt 1–
ut

bel xt p xt ut xt 1– bel xt 1– xt 1–d=

bel xt p xt ut xt 1– bel xt 1–
xt 1–

=

bel xt xt

xt 1–

ut xt 1– xt

xt

xt

308 Chapter 5
belief state. This is subtle but fundamentally important. The same location can be
reached from multiple source locations with the same encoder measurement because the
encoder measurement is uncertain.

Also observe that the integral (sum) in (5.40) and (5.41) must be computed over all pos-
sible robot positions . This means that in real situations, where the number of cells used
to represent the robot poses is several million, the computation (5.40) and (5.41) can
become impractical and, hence, impede the real-time operation.

Finally, observe that (5.40) and (5.41) can be seen as a convolution (page 197, equation
[4.102]) between the previous belief and the probabilistic motion model

.24 By thinking in terms of convolution, the reader should now have clear the
reason why the prediction update causes the uncertainty of the robot location to grow (fig-
ure 5.20).

Perception (measurement) update. Let us recall that in this phase the robot corrects its
previous position (i.e. its former belief) by opportunely combining it with the information
from its exteroceptive sensors (figure 5.20). The Bayes rule (page 301) is used to compute
the robot’s new belief state as a function of its measurement data and its former
belief state :

, (5.42)

where is the probabilistic measurement model (page 305), that is, the probabil-
ity of observing the measurement data given the knowledge of the map and the robot
pose . Therefore, the new belief state is simply the product between the probabilistic
measurement model and the previous belief state. Observe that (5.42) does not update only
one pose but all possible robot poses .

The Markov localization algorithm. Figure 5.21 depicts the Markov localization algo-
rithm in pseudo-algorithmic form.25

The critical challenge in Markov localization is the calculation of . The sensor
model must calculate the probability of a specific perceptual measurement given the loca-
tion of the robot and the map of the environment. Three key assumptions are used to con-
struct this sensor model:

24.Note that (5.40) is not a real convolution because here the sign of none of the two functions is
inverted.
25.Note that, since both Markov and Kalman localization make use of the Bayes rule, they are also
called Bayes filters.

xt

ut

xt

bel xt 1–
p xt ut xt 1–

bel xt zt

bel xt

bel xt p zt xt M bel xt =

p zt xt M
zt M

xt

xt

p zt xt M

Mobile Robot Localization 309
1. If an object in the map is detected by, for instance, a range sensor, the measurement error
can be described with a distribution that has a mean at the correct reading. The adopted
distribution is usually a Gaussian.

2. There should always be a nonzero chance that a range sensor will read any measurement
value, even if this measurement disagrees sharply with the environmental geometry.
This means that the adopted distribution should always be nonzero in the range of all
possible values returnable by the sensors. The peak should be centered at the correct
sensor reading and the probability should be set to small values elsewhere. Again, a
Gaussian distribution implicitly solves this problem.

3. In contrast to the generic error described in at the previous point, there is a specific fail-
ure mode in ranging sensors whereby the signal is absorbed or coherently reflected,
causing the sensor’s range measurement to be maximal. Therefore, there is a local peak
in the probability density distribution at the maximal reading of a range sensor.

5.6.7.2 The Markov assumption
Equations (5.40) and (5.42) form the basis of Markov localization and incorporate the
Markov assumption. Formally, this means that their output is a function only of the
robot’s previous state and its most recent actions (odometry) and perception . In
a general, non-Markovian situation, the state of a system depends upon all of its history.
After all, the values of a robot’s sensors at time t do not really depend only on its position
at time . They depend to some degree on the trajectory of the robot over time, indeed, on
the entire history of the robot. For example, the robot could have experienced a serious col-
lision recently that has biased the sensor’s behavior. Similarly, the position of the robot at
time does not really depend only on its position at time and its odometric measure-
ments. Due to its history of motion, one wheel may have worn more than the other, causing
a left-turning bias over time that affects its current position. Additionally, there might also
be unmodeled dynamics of the environment such as moving people (which have effect on
sensor measurements), inaccuracies in the probabilistic motion and measurement models,

for all do

 (prediction update)

 (measurement update)

endfor
return

xt

bel xt p xt ut xt 1– bel xt 1– xt 1–d=

bel xt p zt xt M bel xt =

bel xt

Figure 5.21 The general algorithm for Markov localization.

xt

xt 1– ut zt

t

t t 1–

310 Chapter 5
errors in the map used for a localizing robot, and software variables that influence multiple
controls.

So the Markov assumption is, of course, not a valid assumption. However, the Markov
assumption greatly simplifies tracking, reasoning, and planning, and so it is an approxima-
tion that continues to be extremely popular in mobile robotics. Indeed, Markov localization
has been found to be surprisingly robust to such violations.

5.6.7.3 Illustration of Markov localization
In figure 5.22, we illustrate the working principle of the Markov localization in the contin-
uous case. For simplicity, our environment is a one-dimensional hallway with three identi-
cal pillars.

In this example, we assume that at the beginning the robot does not know its initial loca-
tion and has therefore to localize from scratch. Clearly, this is a global localization problem.
According to the probabilistic framework described before, the robot initial belief
is a uniform distribution over all locations as illustrated in figure 5.22a.

Now suppose that the robot uses its exteroceptive sensors and senses that it is next to a
pillar. This is clearly the perception update of Markov localization. Then, according to the
Bayes rule its belief has to be multiplied by as stated in equation (5.42).
How do we characterize ? Because the three pillars are exactly identical, the
robot does not know which one of the pillars is facing. Therefore, the probability

 of observing a pillar is characterized by three peaks, each corresponding to one
of the indistinguishable pillars in the environment. The upper plot in (b) visualizes

. After this perception update the robot still does not know where it is. Indeed, it
now has three, distinct hypotheses which are all equally plausible. Also notice that the prob-
ability in the regions not next to a pillar is nonzero. In probabilistic robot localization we
can never be 100% sure that the robot is not somewhere. Therefore, it is important to main-
tain low-probability hypotheses. This is essential for achieving robustness, for example, if
the robot gets lost or kidnapped. The lower plot in (b) visualizes the result of the multipli-
cation. Because it results from a multiplication with a constant function, the result is still
characterized by the three exactly identical peaks.

Now suppose that the robot moves to the right. We are now in the action update of
Markov localization. Figure 5.22c shows the effect on the robot’s belief. As a result of the
convolution of the robot’s previous belief with the motion model , the new
belief has been shifted in the direction of motion and also flattened out. The three peaks are
now larger, which reflects the uncertainty that is introduced by the robot motion.

Figure 5.22d depicts the belief after observing another pillar. We are again in the per-
ception update. Here, Markov localization algorithm multiples again the current belief with
the perceptual probability . As observed, this time the result of the multiplication

bel x0

bel x0 p zt xt M
p zt xt M

p zt xt M

p zt xt M

p xt ut xt 1–

p zt xt M

Mobile Robot Localization 311
Figure 5.22 Illustration of the Markov localization algorithm.

(a)

(b)

(c)

(d)

bel x

p z x M

bel x

bel x

p z x M

bel x

312 Chapter 5
is a single distinguishable peak near one of the pillars, and the robot is now quite confident
of where it is.

5.6.7.4 Case study 1: Markov localization using a grid map
Markov localization is implemented in practice using a grid-space representation of the
environment. Usually, a fixed decomposition is used, which consists in tessellating the
state-space into fine-grained cells of uniform size (section 5.5.2).

For planar motion, the robot configuration is expressed by three parameters .
This means that also the space of all possible robot orientations must be discretized. The
final state-space is therefore stored in the memory of the robot as a three-dimensional array
(figure 5.24).

In this section, we illustrate the working principle of Markov localization using a grid
map. For simplicity, we will assume again that the environment is one-dimensional. Con-
siderations for the more general case of 2D environments will be done at the end of this
section.

Let us tessellate our environment into ten equally spaced cells (figure 5.23). Suppose
that the robot’s initial belief is a uniform distribution from 0 to 3 as shown in figure
5.23a. Observe that all the elements were normalized so that their sum is 1.

Prediction update. Let us recall that in this phase, the robot moves and updates its belief
using the motion model of the control input. Therefore, we need the probabilistic motion
model (i.e. the odometric error model). Let us assume that the probabilistic motion model
of the odometry is the one represented in figure 5.23b. This model must be
interpreted in this way: between time and time , the robot may have moved
either two or three units to the right. In this example, both movements have the same prob-
ability to occur. What will the robot belief be after this movement? The answer is again in
the prediction-phase equation (5.41), that is, the final belief is given by the theorem
of total probability, which convolves the initial belief with the motion model

. Using (5.41), we obtain:

. (5.43)

Here, we would like to explain where this formula actually comes from. In order to com-
pute the probability of position in the new belief state, one must sum over all the possible
ways in which the robot may reach according to the potential positions expressed in the
former belief state and the potential input expressed by . Observe that because is
limited between 0 and 3, the robot can only reach the states between 2 to 6, therefore:

x y

bel x0

p x1 u1 x0
t 0= t 1=

bel x1
bel x0

p x1 u1 x0

bel x1 p x1 u1 x0 bel x0

x0 0=

3

=

x1

x1

x0 u1 x0

Mobile Robot Localization 313
, (5.44)

 (5.45)

 (5.46)

 (5.47)

 (5.48)

Figure 5.23 Markov localization using a grid-map.

(a)

(b)

(c)

(d)

bel x0

bel x1
(e)

p x1 u1 x0

bel x1

p z1 x1 M

p x1 2= p x0 0= p u1 2= 0.125= =

p x1 3= p x0 0= p u1 3= p x0 1= p u1 2= + 0.25= =

p x1 4= p x0 1= p u1 3= p x0 2= p u1 2= + 0.25= =

p x1 5= p x0 2= p u1 3= p x0 3= p u1 2= + 0.25= =

p x1 6= p x0 3= p u1 3= 0.125= =

314 Chapter 5
Expression (5.44) results from the fact that the state can only be reached with the
combination . Expression (5.45) comes from the fact that the state
can only be reached with the combinations or . The other
expressions follow in a similar way. The reader can now verify that equations (5.44)–(5.48)
are implementing nothing but the theorem of total probability (or convolution)26 enunci-
ated in (5.43). The result of the application of this theorem is shown in figure 5.23c.

Measurement update. Let us now assume that the robot uses its onboard rangefinder and
measures the distance from the origin. Assume that the statistical error model of the range
sensor is the one shown in figure 5.23d. This plot tells us that the distance of the robot from
the origin can be equally 5 or 6 units. What will the final robot belief be after this measure-
ment? The answer is again in the measurement-update equation (5.42). The final belief

is computed accordingly to the Bayes rule. It is the product between the robot cur-
rent belief and the measurement error model , where, in this case, the
map is simply the origin of the axes. Therefore:

. (5.49)

The reader can verify that we need to make the final result
normalized to one. The final belief is shown in figure 5.23e.

3D grid maps. As we said at the beginning of the section, in the more general planar
motion case the grid-map is a three-dimensional array where each cell contains the proba-
bility of the robot to be in that cell (figure 5.24). In this case, the cell size must be chosen
carefully. During each prediction and measurement steps, all the cells are updated. If the
number of cells in the map is too large, the computation can become too heavy for real-time
operations. The convolution in a 3D space is clearly the computationally most expensive
step. As an example, consider a environment and a cell size of

. In this case, the number of cells that need to be updated at each step
would be million cells!

One possible solution would then be to increase the cell size at the expense of localiza-
tion accuracy. Another solution is to use an adaptive cell decomposition instead of a fixed
cell decomposition as proposed by Burgard et al. [86, 87]. In this work, they overcame the
problem of the huge state space by dynamically adapting the size of the cells according to
the robot’s certainty in its position, that is, smaller cells where the robot is more certain to

26.As mentioned earlier, notice that we are using improperly the term convolution. The only differ-
ence with convolution is that the theorem of total probability does not invert the sign of neither of the
two argument functions.

x1 2=

x0 0 u1 2== x1 3=

x0 0 u1 3== x0 1 u1 2==

z

bel x1
bel x1 p z1 x1 M

M

bel x1 p z1 x1 M bel x1 =

 1 0.1875 5.33= bel x1

30 m 30 m
0.1 m 0.1 m 1

30 30 100 360 32.4=

Mobile Robot Localization 315
be and bigger cells elsewhere. This way, they were able to localize a robot in a
 with an error smaller than 4 cm using a number of cells varying only between

400 and 3600.
The resulting robot localization system of Burgard and his colleagues has been part of a

navigation system that has demonstrated great success both at the University of Bonn (Ger-
many) and at a public museum in Bonn. This is a challenging application because of the
dynamic nature of the environment, as the robot’s sensors are frequently subject to occlu-
sion due to humans gathering around the robot. The robot ability to function well in this
setting is a demonstration of the power of the Markov localization approach.

Reducing computational complexity: Randomized sampling. One class of techniques
deserves mention because it can significantly reduce the computational overhead of tech-
niques that employ fixed-cell decomposition representations. The basic idea, which we call
randomized sampling, is known alternatively as particle filter algorithms, condensation
algorithms, and Monte Carlo algorithms [129, 311].

Irrespective of the specific technique, the basic algorithm is the same in all these cases.
Instead of representing every possible robot position by representing the complete and cor-
rect belief state, an approximate belief state is constructed by representing only a subset of
the complete set of possible locations that should be considered.

For example, consider a robot with a complete belief state of 10,000 possible locations
at time t. Instead of tracking and updating all 10,000 possible locations based on a new

Figure 5.24
The belief state representation 3D array used in Markov localization (courtesy of W. Burgard and S.
Thrun).

30 m 30 m

316 Chapter 5
sensor measurement, the robot can select only 10% of the stored locations and update only
those locations. By weighting this sampling process with the probability values of the loca-
tions, one can bias the system to generate more samples at local peaks in the probability
density function. So the resulting 1000 locations will be concentrated primarily at the high-
est probability locations. This biasing is desirable, but only to a point.

We also wish to ensure that some less likely locations are tracked, as otherwise, if the
robot does indeed receive unlikely sensor measurements, it will fail to localize. This ran-
domization of the sampling process can be performed by adding additional samples from a
flat distribution, for example. Further enhancements of these randomized methods enable
the number of statistical samples to be varied on the fly, based, for instance, on the ongoing
localization confidence of the system. This further reduces the number of samples required
on average while guaranteeing that a large number of samples will be used when necessary
[129].

These sampling techniques have resulted in robots that function indistinguishably as
compared to their full belief state set ancestors, yet use computationally a fraction of the
resources. Of course, such sampling has a penalty: completeness. The probabilistically
complete nature of Markov localization is violated by these sampling approaches because
the robot is failing to update all the nonzero probability locations, and thus there is a danger
that the robot, due to an unlikely but correct sensor reading, could become truly lost. Of
course, recovery from a lost state is feasible just as with all Markov localization techniques.

5.6.7.5 Case study 2: Markov localization using a topological map
A straightforward application of Markov localization is possible when the robot’s environ-
ment representation already provides an appropriate decomposition. This is the case when
the environmental representation is purely topological.

Consider a contest in which each robot is to receive a topological description of the envi-
ronment. The description would include only the connectivity of hallways and rooms, with
no mention of geometric distance. In addition, this supplied map would be imperfect, con-
taining several false arcs (e.g., a closed door). Such was the case for the 1994 American
Association for Artificial Intelligence (AAAI) National Robot Contest, at which each
robot’s mission was to use the supplied map and its own sensors to navigate from a chosen
starting position to a target room.

Dervish, the winner of this contest, employed probabilistic Markov localization and
used a multiple-hypothesis belief state over a topological environmental representation. We
now describe Dervish as an example of a robot with a discrete, topological representation
and a probabilistic localization algorithm.

Dervish, shown in figure 5.25, includes a sonar arrangement custom-designed for the
1994 AAAI National Robot Contest. The environment in this contest consisted of a recti-
linear indoor office space filled with real office furniture as obstacles. Traditional sonars

Mobile Robot Localization 317
were arranged radially around the robot in a ring. Robots with such sensor configurations
are subject to both tripping over short objects below the ring and to decapitation by tall
objects (such as ledges, shelves, and tables) that are above the ring.

Dervish’s answer to this challenge was to arrange one pair of sonars diagonally upward
to detect ledges and other overhangs. In addition, the diagonal sonar pair also proved to
ably detect tables, enabling the robot to avoid wandering underneath tall tables. The
remaining sonars were clustered in sets of sonars, such that each individual transducer in
the set would be at a slightly varied angle to minimize specularity. Finally, two sonars near
the robot’s base were positioned to detect low obstacles, such as paper cups, on the floor.

We have already noted that the representation provided by the contest organizers was
purely topological, noting the connectivity of hallways and rooms in the office environ-
ment. Thus, it would be appropriate to design Dervish’s perceptual system to detect match-
ing perceptual events: the detection and passage of connections between hallways and
offices.

This abstract perceptual system was implemented by viewing the trajectory of sonar
strikes to the left and right sides of Dervish over time. Interestingly, this perceptual system
would use time alone and no concept of encoder value to trigger perceptual events. Thus,
for instance, when the robot detects a 7–17 cm indentation in the width of the hallway for

Figure 5.25
Dervish exploring its environment.

318 Chapter 5
more than 1 second continuously, a closed door sensory event is triggered. If the sonar
strikes jump well beyond 17 cm for more than 1 second, an open door sensory event trig-
gers.

To reduce coherent reflection sensor noise (see section 4.1.9) associated with Dervish’s
sonars, the robot would track its angle relative to the hallway center line and completely
suppress sensor events when its angle to the hallway exceeded 9 degrees. Interestingly, this
would result in a conservative perceptual system that frequently misses features, particu-
larly when the hallway is crowded with obstacles that Dervish must negotiate. Once again,
the conservative nature of the perceptual system, and in particular its tendency to issue false
negatives, would point to a probabilistic solution to the localization problem so that a com-
plete trajectory of perceptual inputs could be considered.

Dervish’s environmental representation was a discrete topological map, identical in
abstraction and information to the map provided by the contest organizers. Figure 5.26
depicts a geometric representation of a typical office environment overlaid with the topo-
logical map for the same office environment. Recall that for a topological representation
the key decision involves assignment of nodes and connectivity between nodes (see section
5.5.2). As shown on the left in figure 5.26, Dervish uses a topology in which node bound-
aries are marked primarily by doorways (and hallways and foyers). The topological graph
shown on the right depicts the information captured in the example shown.

Note that in this particular topological model arcs are zero-length while nodes have spa-
tial expansiveness and together cover the entire space. This particular topological represen-
tation is particularly apt for Dervish, given its task of navigating through hallways into a
specific room and its perceptual capability of recognizing discontinuities in hallway walls.

In order to represent a specific belief state, Dervish associated with each topological
node n a probability that the robot is at a physical position within the boundaries of :

. As will become clear, the probabilistic update used by Dervish was approxi-

Figure 5.26
A geometric office environment (left) and its topological analog (right).

R1

H1
H1 H1-2 H2 H2-3 H3

R1 R2

H1-2 H2 H2-3

R2

H3

n
p xt n=

Mobile Robot Localization 319
mate, therefore technically one should refer to the resulting values as likelihoods rather than
probabilities.

The perception update process for Dervish functions precisely as in equation (5.42). Per-
ceptual events are generated asynchronously, each time the feature extractor is able to rec-
ognize a large scale feature (e.g., doorway, intersection) based on recent ultrasonic values.
Each perceptual event consists of a percept-pair (a feature on one side of the robot or two
features on both sides).

Given a specific percept-pair , equation (5.42) enables the likelihood of each possible
position to be updated using the formula:

. (5.50)

The value of is already available from the current belief state of Dervish, and so
the challenge lies in computing . The key simplification for Dervish is based upon
the realization that, because the feature extraction system only extracts four total features
and because a node contains (on a single side) one of five total features, every possible com-
bination of node type and extracted feature can be represented in a table.

Dervish’s certainty matrix (shown in table 5.1) is just this lookup table. Dervish makes
the simplifying assumption that the performance of the feature detector (i.e., the probability
that it is correct) is only a function of the feature extracted and the actual feature in the node.
With this assumption in hand, we can populate the certainty matrix with confidence esti-
mates for each possible pairing of perception and node type. For each of the five world fea-
tures that the robot can encounter (wall, closed door, open door, open hallway, and foyer)
this matrix assigns a likelihood for each of the three one-sided percepts that the sensory
system can issue. In addition, this matrix assigns a likelihood that the sensory system will
fail to issue a perceptual event altogether (nothing detected).

Table 5.1
Dervish’s certainty matrix.

Wall Closed
door

Open
door

Open
hallway

Foyer

Nothing detected 0.70 0.40 0.05 0.001 0.30

Closed door detected 0.30 0.60 0 0 0.05

Open door detected 0 0 0.90 0.10 0.15

Open hallway detected 0 0 0.001 0.90 0.50

z
n

p n z p z n p n =

p n
p z n

4 5

320 Chapter 5
For example, using the specific values in table 5.1, if Dervish is next to an open hallway,
the likelihood of mistakenly recognizing it as an open door is 0.10. This means that for any
node n that is of type open hallway and for the sensor value = open door, .
Together with a specific topological map, the certainty matrix enables straightforward
computation of during the perception update process.

For Dervish’s particular sensory suite and for any specific environment it intends to nav-
igate, humans generate a specific certainty matrix that loosely represents its perceptual con-
fidence, along with a global measure for the probability that any given door will be closed
versus opened in the real world.

Recall that Dervish has no encoders and that perceptual events are triggered asynchro-
nously by the feature extraction processes. Therefore, Dervish has no prediction update step
as depicted by equation (5.41). When the robot does detect a perceptual event, multiple per-
ception update steps will need to be performed to update the likelihood of every possible
robot position given Dervish’s former belief state. This is because there is a chance that the
robot has traveled multiple topological nodes since its previous perceptual event (i.e., false-
negative errors). Formally, the perception update formula for Dervish is in reality a combi-
nation of the general form of prediction update and measurement update. The likelihood of
position given perceptual event i is calculated as in equation (5.41):

. (5.51)

The value of denotes the likelihood of Dervish being at position as repre-
sented by Dervish’s former belief state. The temporal subscript is used in lieu of
because for each possible position the discrete topological distance from to can
vary depending on the specific topological map. The calculation of is per-
formed by multiplying the probability of generating perceptual event at position by the
probability of having failed to generate perceptual events at all nodes between and :

. (5.52)

For example (figure 5.27), suppose that the robot has only two nonzero nodes in its
belief state, {1-2, 2-3}, with likelihoods associated with each possible position:

 and . For simplicity assume the robot is facing east with
certainty. Note that the likelihoods for nodes 1–2 and 2–3 do not sum to 1.0. These values
are not formal probabilities, and so computational effort is minimized in Dervish by avoid-
ing normalization altogether. Now suppose that a perceptual event is generated: the robot
detects an open hallway on its left and an open door on its right simultaneously.

z p z n 0.10=

p z n

n

p nt zt p nt n't i– zt p n't i– =

p n't i– n'
t i– t 1–

n' n' n
p nt n't i– zt
z n

n' n

p nt n't i– zt p zt nt p nt 1– p nt 2– p nt i– 1+ =

p 1 2– 1.0= p 2 3– 0.2=

Mobile Robot Localization 321
State 2–3 will progress potentially to states 3, 3–4, and 4. But states 3 and 3–4 can be
eliminated because the likelihood of detecting an open door when there is only wall is zero.
The likelihood of reaching state 4 is the product of the initial likelihood for state 2–3, 0.2,
the likelihood of not detecting anything at node 3, (a), and the likelihood of detecting a hall-
way on the left and a door on the right at node 4, (b). Note that we assume the likelihood of
detecting nothing at node 3–4 is 1.0 (a simplifying approximation).

(a) occurs only if Dervish fails to detect the door on its left at node 3 (either closed or
open), , and correctly detects nothing on its right, 0.7.

(b) occurs if Dervish correctly identifies the open hallway on its left at node 4, 0.90, and
mistakes the right hallway for an open door, 0.10.

The final formula, , yields a likelihood of
0.003 for state 4. This is a partial result for following from the prior belief state node
2-3.

Turning to the other node in Dervish’s prior belief state, 1–2 will potentially progress to
states 2, 2–3, 3, 3–4, and 4. Again, states 2–3, 3, and 3–4 can all be eliminated since the
likelihood of detecting an open door when a wall is present is zero. The likelihood of state
2 is the product of the prior likelihood for state 1–2, (1.0), the likelihood of detecting the
door on the right as an open door, , and the likelihood of correctly
detecting an open hallway to the left, 0.9. The likelihood for being at state 2 is then

. In addition, 1–2 progresses to state 4 with a certainty factor of
, which is added to the certainty factor above to bring the total for state 4 to

0.00328. Dervish would therefore track the new belief state to be {2, 4}, assigning a very
high likelihood to position 2 and a low likelihood to position 4.

Empirically, Dervish’s map representation and localization system have proved to be
sufficient for navigation of four indoor office environments: the artificial office environ-
ment created explicitly for the 1994 National Conference on Artificial Intelligence; and the
psychology, history, and computer science departments at Stanford University. All of these

Figure 5.27
A realistic indoor topological environment.

1 1-2 2 2-3 3 3-4 4

N

0.6 0.4 1 0.6– 0.05+

0.2 0.6 0.4 0.4 0.05+ 0.7 0.9 0.1
p 4

0.6 0 0.4 0.9+

1.0 0.4 0.9 0.9 0.3=
4.3 10

6–

322 Chapter 5
experiments were run while providing Dervish with no notion of the distance between adja-
cent nodes in its topological map. It is a demonstration of the power of probabilistic local-
ization that, in spite of the tremendous lack of action and encoder information, the robot is
able to navigate several real-world office buildings successfully.

One open question remains with respect to Dervish’s localization system. Dervish was
not just a localizer but also a navigator. As with all multiple hypothesis systems, one must
ask the question, how does the robot decide how to move, given that it has multiple possible
robot positions in its representation? The technique employed by Dervish is a common
technique in the mobile robotics field: plan the robot’s actions by assuming that the robot’s
actual position is its most likely node in the belief state. Generally, the most likely position
is a good measure of the robot’s actual world position. However, this technique has short-
comings when the highest and second highest most likely positions have similar values. In
the case of Dervish, it nonetheless goes with the highest-likelihood position at all times,
save at one critical juncture. The robot’s goal is to enter a target room and remain there.
Therefore, from the point of view of its goal, it is critical that Dervish finish navigating only
when the robot has strong confidence in being at the correct final location. In this particular
case, Dervish’s execution module refuses to enter a room if the gap between the most likely
position and the second likeliest position is below a preset threshold. In such a case, Der-
vish will actively plan a path that causes it to move farther down the hallway in an attempt
to collect more sensor data and thereby increase the relative likelihood of one position in
the multiple-hypothesis belief state.

Although computationally unattractive, one can go farther, imagining a planning system
for robots such as Dervish for which one specifies a goal belief state rather than a goal posi-
tion. The robot can then reason and plan in order to achieve a goal confidence level, thus
explicitly taking into account not only robot position but also the measured likelihood of
each position. An example of just such a procedure is the sensory uncertainty field of
Latombe [306], in which the robot must find a trajectory that reaches its goal while maxi-
mizing its localization confidence on-line.

The major weakness of a purely topological decomposition of the environment is the
resolution limitation imposed by such a granular representation. The position of the robot
is usually limited to the resolution of a single node in such cases, and this may be undesir-
able for certain applications.

5.6.8 Kalman filter localization

5.6.8.1 Introduction
The Markov localization model can represent any arbitrary probability density function
over the robot position. This approach is very general but, due to its generality, inefficient.
Consider instead the key demands on a robot localization system. One can argue that it is
not the exact replication of a probability density curve but the sensor fusion problem that is

Mobile Robot Localization 323
key to robust localization. Robots usually include a large number of heterogeneous sensors,
each providing clues as to robot position and, critically, each suffering from its own failure
modes. Optimal localization should take into account the information provided by all of
these sensors. In this section we describe a powerful technique for achieving this sensor
fusion, called the Kalman filter. This mechanism is in fact more efficient than Markov
localization because of key simplifications when representing the probability density func-
tion of the robot’s belief state and even its individual sensor readings, as described below.
But the benefit of this simplification is a resulting optimal recursive data-processing algo-
rithm. It incorporates all information, regardless of precision, to estimate the current value
of the variable of interest (i.e., the robot’s position). A general introduction to Kalman fil-
ters can be found in [209], and a more detailed treatment is presented in [3].

Figure 5.28 depicts the general scheme of Kalman filter estimation, where a system has
a control signal and system error sources as inputs. A measuring device enables measuring
some system states with errors. The Kalman filter is a mathematical mechanism for produc-
ing an optimal estimate of the system state based on the knowledge of the system and the
measuring device, the description of the system noise and measurement errors and the
uncertainty in the dynamics models. Thus the Kalman filter fuses sensor signals and system

System

Figure 5.28
Typical Kalman filter application [209].

System state
(desired but
not known)

Measuring
devices

System error
source

Measurement
error sources

Observed
measurement

Optimal estimate
of system stateKalman

filter

Control

324 Chapter 5
knowledge in an optimal way. Optimality depends on the criteria chosen to evaluate the
performance and on the assumptions. Within the Kalman filter theory the system is
assumed to be linear and with white Gaussian noise. For most mobile robot applications,
the system is nonlinear. In this cases, the Kalman filter is usually applied after linearizing
the system. The extension of Kalman filter to nonlinear systems is known as the Extended
Kalman Filter (EKF), but its optimality cannot be guaranteed. As we have discussed ear-
lier, the assumption of Gaussian error is invalid for our mobile robot applications, but nev-
ertheless the results are extremely useful. In other engineering disciplines, the Gaussian
error assumption has in some cases been shown to be quite accurate [209].

We begin with a section that illustrates the Kalman filter localization (section 5.6.8.2).
Then, we introduce the Kalman filter theory (section 5.6.8.3), and present an application of
that theory to the problem of mobile robot localization (5.6.8.4). Finally, section 5.6.8.5
presents a case study of a mobile robot that navigates indoor spaces by virtue of Kalman
filter localization.

5.6.8.2 Illustration of Kalman filter localization
The Kalman filter localization algorithm, or KF localization, is a special case of Markov
localization. Instead of using an arbitrary density function, the Kalman filter uses Gauss-
ians to represent the robot belief , the motion model, and the measurement model.
Because a Gaussian is simply defined by its mean and covariance , only these two
parameters are updated during the prediction and measurement phase, resulting in a very
efficient algorithm in comparison to Markov localization algorithm. However, the assump-
tions made by the Kalman filter limit the choice of the initial belief also to a Gauss-
ian, which means that the robot initial location must be known with a certain
approximation. Hence, the robot cannot recover its position if it gets lost. This is in contrast
with the Markov localization. The Kalman filter therefore addresses the position-tracking
problem but not the global localization or the kidnapped robot problem.

Figure 5.29 illustrates the Kalman filter localization algorithm using again our example
of a mobile robot in a one-dimensional environment. As mentioned, the robot initial belief

 is represented by a Gaussian distribution. As shown in figure 5.29a, we assume that
at the beginning the robot is near the first pillar. As the robot moves to the right (we are in
the action phase), its uncertainty increases as a result of the convolution with the motion
model (i.e., application of the theorem of total probability). The resulting belief is therefore
a shifted Gaussian of increased width, figure 5.29b. Now, suppose that the robot uses its
exteroceptive sensors (we are in the perception phase) and senses that it is near the second
pillar. The posterior probability of the observation is shown in figure 5.29c. This
probability density is again a Gaussian. In order to compute the robot current belief, we
must fuse this measurement probability with the robot’s belief before the observation using
the Bayes rule. The result of this fusion is again a Gaussian shown at the bottom of figure

bel xt
t t

bel x0

bel x0

p zt xt M

Mobile Robot Localization 325
5.29c. Note that the variance of the resulting belief is smaller than the variances of both the
measurement probability and the robot’s previous belief. This result is obvious, since the
fusion of two independent estimates should make the robot more certain than each individ-
ual estimate.

5.6.8.3 Introduction to Kalman filter theory
As said in the previous section, the Kalman filter theory is based on the assumptions that
the system is linear and that overall the robot configuration, the odometric error model, and
the measurement error model are affected by white Gaussian noise.

A Gaussian distribution is represented only by its first and second moments, which are
the mean and the variance (see equation 5.20). When the robot configuration is a
vector (which is the case in practical applications) the distribution is a multivariate Gauss-
ian represented by a mean vector and a covariance matrix (see equation 5.22).

Figure 5.29 Application of the Kalman filter algorithm to mobile robot localization.

(a)

(b)

(c)

bel x

p z x M

bel x

bel x

t t
2

t t

326 Chapter 5
During the prediction and measurement updates only mean and covariance are
updated. Therefore, the Kalman filter is based on four equations: two for updating and

 in the prediction update, and another two in the measurement update. In Kalman filter-
ing the measurement update is also commonly called correction update.

As for Markov localization, the prediction and measurement update equations of
Kalman filter are also based respectively on the theorem of total probability and on the
Bayes rule. In this section, we will review these properties applied to special case of Gauss-
ian distributions. For an in-depth study of these properties, we refer the reader to [41].

Applying the theorem of total probability. Let , be two random variables that are
independent and normally distributed:

 (5.53)

. (5.54)

Let also be a function of and , that is,

. (5.55)

What will the distribution of be? The answer is much simpler when is a linear function
of the inputs, that is, when

. (5.56)

In this case, if the inputs are independent, it can be shown that is also normally distributed
with mean and variance given by the following expressions:

 (5.57)

 (5.58)

If and are vectors with covariances and respectively, then

. (5.59)

. (5.60)

t t

t

t

x1 x2

x1 N 1 1
2 =

x2 N 2 2
2 =

y x1 x2

y f x1 x2 =

y f

y Ax1 Bx2+=

y

y A1 B2+=

y
2

A
21

2
B

22
2

+=

x1 x2 1 2

y A1 B2+=

y A1A
T

B2B
T

+=

Mobile Robot Localization 327
This result follows directly from the application of the total probability theorem. We can
also look at this problem in terms of convolution, by reminding that the probability density
function of the sum of two independent random variables is the convolution of each of their
density functions [41]. It can also be shown that the convolution of two Gaussian random
variables is another Gaussian [41].

In the case is nonlinear, is not normally distributed. However, it is a common prac-
tice to consider a first-order approximation by linearizing about :

. (5.61)

where and are the jacobians of . This way, we obtain:

. (5.62)

. (5.63)

Equations (5.62) and (5.63) will be used in section 5.6.8.4 to implement the prediction
update of Extended Kalman Filter (EKF)27 localization. As we will show, in Kalman local-
ization is used to represent the odometric position update and its inputs are the robot pre-

Figure 5.30
Propagation of probability density of a moving robot [209].

xt 1–

t 1–

u

p x

x

x̂t

̂t

f y

f 1 2

y f 1 2 Fx1
x1 1– Fx2

x2 2– + +

Fx1
Fx2

f

y f 1 2 =

y Fx1
1Fx1

T
Fx2

2Fx2

T
+=

f

328 Chapter 5
vious position and the control input u. In the simple case of a one-dimensional
environment, the odometric position update is described by a simple sum, therefore,

 and the update of the uncertainty over the time expressed in (5.63) is
illustrated in figure 5.30. Observe that the uncertainty of the robot position after the appli-
cation of (5.63) is larger.

Applying the Bayes rule. Let denote the robot position, the robot’s belief result-
ing from the prediction update, and the robot’s belief resulting from some exterocep-
tive sensor measurement (for example, a rangefinder that returns the position of the robot
directly in the global reference frame). The Bayes rule tells us how to compute the final dis-
tribution of the robot’s belief after the measurement has been taken. As usual, proba-
bility densities in Kalman filtering are assumed to be normally distributed; therefore

, (5.64)

. (5.65)

According to the Bayes rule, the final distribution , after the measurement, is propor-
tional to the product (figure 5.31). From the product of the two density func-
tions (5.64) and (5.65), we obtain:

 .

 (5.66)

As we can see, the argument of this exponential is quadratic in , hence is a Gaussian.
We now need to determine its mean value and variance that allow us to rewrite (5.66)
in the form

. (5.67)

27. The extended Kalman filter is the extension of the standard Kalman filter to nonlinear systems,
by considering the first order approximation of the state transition function and the observation
model .

f
h

xt 1–

f xt 1– u xt 1– u+=

q p1 q
p2 q

p q

p1 q N q̂1 1
2 =

p2 q N q̂2 1
2 =

p q
p1 q p2 q

1

1 2

q q̂1– 2

21
2

---------------------–

exp
1

2 2

q q̂2– 2

22
2

---------------------–

exp 1
122

q q̂1– 2

21
2

---------------------–
q q̂2– 2

22
2

---------------------–

exp=

q p q
q̂

 q q̂– 2

22
-------------------–

exp

Mobile Robot Localization 329
By rearranging the exponential in (5.66), we get

 .

 (5.68)

Figure 5.31
Fusing the probability density of two estimates [209]: the result of the product of two Gaussian func-
tion is another Gaussian. The result is then rescaled to make its area equal to 1.

p1 q

q
q̂1q̂q̂2

p2 q

p q 1

 2
-------------- q q̂–

2

2
2

--------------------–

exp=

q q̂1– 2

21
2

---------------------–
q q̂2– 2

22
2

---------------------–

exp =

 = exp
1
2

q
2 1

2 2
2

+ 2q q̂12
2

q̂21
2

+ – q̂1
22

2
q̂2

21
2

+ +

1
22

2

–

 =

 =
1
2

q
2 2q q̂12

2
q̂21

2
+

1
2 2

2
+

--–
q̂1

22
2

q̂2
21

2
+

1
2 2

2
+

------------------------------+

1
22

2

1
2 2

2
+

–

exp =

 = exp
1
2

q
q̂12

2
q̂21

2
+

1
2 2

2
+

------------------------------–

2

1
22

2

1
2 2

2
+

---–

1
2

q̂1
22

2
q̂2

21
2

+

1
2 2

2
+

q̂12

2
q̂21

2
+

1
2 2

2
+

2

–

1
22

2

1
2 2

2
+

---–

exp

330 Chapter 5
We can notice that the second term of this product depends only on and and, there-
fore, is constant. Hence, we can rewrite (5.68) as

 (5.69)

where

, or alternatively , (5.70)

and

, or alternatively . (5.71)

Notice that (5.70) and (5.71) can also be written as

, (5.72)

. (5.73)

These last two expressions will be valuable in the Kalman filter implementation. In Kalman
filtering the factor is commonly called Kalman gain.

From equation (5.73) we can clearly see that the resulting variance is smaller than
both and . Thus, the uncertainty of the position estimate has been decreased by com-
bining the two measurements, that is, the previous robot’s belief and the measurement from
the exteroceptive sensor. Thus, even poor measurements will only increase the precision of
an estimate. This is a result that we expect based on information theory. The solid proba-

q̂1 q̂2

 1
2

q
q̂12

2
q̂21

2
+

1
2 2

2
+

------------------------------–

2

1
22

2

1
2 2

2
+

---–

exp q q̂– 2

22
-------------------–

 ,exp=

q̂
q̂12

2
q̂21

2
+

1
2 2

2
+

------------------------------= q̂

1

1
2

------ q̂1
1

2
2

------ q̂2+

1

1
2

------ 1

2
2

------+
-------------------------------=

2 1
22

2

1
2 2

2
+

------------------=
1

2
------ 1

1
2

------ 1

2
2

------+
1

2 2
2

+

1
22

2
------------------= =

q̂ q̂1

1
2

1
2 2

2
+

------------------ q̂2 q̂1– +=

2 1
2 1

4

1
2 2

2
+

------------------–=

1
2

1
2

2
2

+

2

1
2 2

2

Mobile Robot Localization 331
bility density curve in figure 5.31 represents the result of the fusion operated by the Kalman
filter.

Note that equations (5.72) and (5.73) are only valid for the one-dimensional case. For n-
dimensional vectors, the final mean and covariance after fusion can be written respec-
tively as:

 (5.74)

, (5.75)

where and are the covariances of and respectively.
Equations (5.74) and (5.75) will be used in section 5.6.8.4 to implement the measure-

ment update of EKF localization. In Kalman filtering these equations are usually written as

, (5.76)

, (5.77)

where is the Kalman gain, is the innovation, and
is the innovation covariance.

5.6.8.4 Application to mobile robots: Kalman filter localization
The Kalman filter is an optimal and efficient sensor fusion technique. Application of the
Kalman filter to localization requires posing the robot localization problem as a sensor
fusion problem. Recall that the basic probabilistic update of robot belief state can be seg-
mented into two phases, prediction update and measurement update.

The key difference between the Kalman filter approach and our earlier Markov localiza-
tion approach lies in the measurement update process. In Markov localization, the entire
perception, that is, the robot’s set of instantaneous sensor measurements, is used to update
each possible robot position in the belief state individually. By contrast, the measurement
update using a Kalman filter is a multistep process. The robot’s total sensory input is treated
not as a monolithic whole but as a set of extracted features that each relate to objects in the
environment. Given a set of possible features, the Kalman filter is used to fuse the distance
estimate from each feature to a matching object in the map. Instead of carrying out this
matching process for many possible robot locations individually as in the Markov
approach, the Kalman filter accomplishes the same probabilistic update by treating the
whole, unimodal, and Gaussian belief state at once.

q̂ P̂

q̂ q1 P P R+ 1–
q2 q– 1 +=

P̂ P P P R+ 1– P–=

P R q1 q2

q̂ q1 K q2 q– 1 +=

P̂ P K IN K
T –=

K P P R+ 1–
= q2 q1– IN P R+ =

332 Chapter 5
Figure 5.32 depicts the particular schematic for Kalman filter localization. The first step
is the prediction update, the straightforward application of a Gaussian error motion model
to the robot’s measured encoder travel. The measurement update, as just mentioned, is
composed of multiple steps that are here summarized:

1. In the observation step, the robot collects actual sensor data and extracts appropriate
features (e.g., lines, doors, or even the value of a specific sensor).

2. At the same time, based on its predicted position in the map, the robot generates a
measurement prediction that consists in the features that the robot expects to observe
from the position where it thinks it is (e.g. the position estimated in the prediction step).

3. In the matching step the robot computes the best matching between the features
extracted during observation and the expected features selected during the measurement
prediction.

4. Finally, the Kalman filter fuses the information provided by all of these matches to
update the robot belief state in the estimation step.

position
estimate

Actual Observations
(on-board sensors)

Position Prediction
Observation Prediction

Figure 5.32
Schematic for Kalman filter mobile robot localization (see [35]).

P
er

ce
pt

io
n

Matching

Estimation
(fusion)

raw sensor data or
extracted features

pr
ed

ic
te

d
ob

se
rv

at
io

ns matched
predictions
and actual

observations
YES

(data base)

Encoder

Mobile Robot Localization 333
In the following sections these steps are described in greater detail. The presentation is
based on the work of Leonard and Durrant-Whyte [35, pages 61–65] and on that of Thrun,
Burgard, and Fox [51].

Prediction update: Applying the theorem of total probability. The robot’s position
at timestep is predicted based on its old location at timestep and its movement due
to the control input :

. (5.78)

For a differential-drive robot, is given by (5.7), which describes the odomet-
ric position estimation.

Knowing the plant and the error model, we can also compute the variance associ-
ated with this prediction using the equation derived from the total probability theorem
applied to Gaussian distributions (see equation [5.63]):

, (5.79)

where is the covariance of the previous robot state and is the covariance of
the noise associated to the motion model. This equation should not surprise the reader. This
is in fact nothing but the application of the error propagation law (section 4.1.3.2).

Equations (5.78) and (5.79) are the two key equations of the prediction update in EKF
localization. They allow us to predict the robot’s position and its uncertainty after a move-
ment specified by the control input .

Again, note that because the belief state is assumed to be Gaussian, we are just updating
two values: the mean value and the covariance of the distribution. Conversely, notice that
in Markov localization all the robot’s possible states (i.e., all the cells) are updated!

Measurement update. As we said before, this phase consists of four steps:

1. Observation. The first step is to obtain sensor measurements from the robot at time
. In general, the observation consists of a set of n single observations (i=0...n)

extracted from the sensor. Formally, each single observation can represent an extracted fea-
ture like a point landmark, a line, or even a single, raw sensor value.

The parameters of the features are usually specified in the sensor frame and therefore in
a local reference frame of the robot. However, for matching we need to represent the obser-
vations and measurement predictions in the same frame . In our presentation we will
transform the measurement predictions from the global world coordinate frame to the

x̂t

t t 1–
ut

x̂t f xt 1– ut =

f xt 1– ut

Pt 1–

P̂t Fx Pt 1– Fx
T Fu Qt Fu

T+=

Pt 1– xt 1– Qt

ut

zt

t zt zt
i

S
W

334 Chapter 5
sensor frame . This transformation is specified by the function , as discussed in sec-
tion 5.6.5 when we talked about the probabilistic measurement model.

2. Measurement prediction. We use the robot predicted position and the map to
generate multiple predicted feature observations .28 The predicted observations are what
the robot expects to see if it was at that particular position. Assume, for example, that, based
only on the motion estimated by the odometry, the robot expects to be in front of a door.
Assume now that the robot checks this hypothesis using its sensors and detects that it is
actually facing a wall. Then, in this case the door is the predicted observation , while the
wall is the actual observation .

In order to compute the predicted observation, the robot must transform all the features
 in the map into the local sensor coordinate frame. If we define the transformation

for the feature j through the function , then we can write:

, (5.80)

which obviously depends on the position of each feature in the map (represented by)
and the current robot position .

3. Matching. At this point we have a set of actual observations, positioned in the sensor
space, and we also have a set of predicted features, also positioned in the sensor space. The
matching step has the purpose of identifying all of the single observations that match spe-
cific predicted features well enough to be used during the estimation process. In other
words, we will, for a subset of the observations and a subset of the predicted features, find
pairings that intuitively say “this observation is the robot’s measurement of this predicted
feature based on the map.”

Formally, the goal of the matching procedure is to produce an assignment from the
observation to the predicted observations . For each measurement prediction for which
a corresponding observation is found, we calculate the innovation . The innovation is a
measure of the difference between the predicted and observed measurements:

. (5.81)

The innovation covariance can be found by applying the error propagation law
(section 4.1.3.2, equation [4.15]):

28.Note that we use index j because observed and predicted features are not yet matched, that is, the
observed feature i might not correspond with the feature j in the map.

S h

x̂t M
ẑt

j

ẑt

zt

mj M
hj

ẑt
j hj x̂t mj =

mj

x̂t

zt
i ẑt

j

vt
ij

vt
ij zt

i ẑt
j– zt

i hj x̂t mj – = =

INt

ij

Mobile Robot Localization 335
, (5.82)

where is the jacobian of and represents the covariance (noise) of the actual obser-
vation .

To determine the validity of the correspondence between measurement prediction and
observation, a validation gate g has to be specified. A possible choice for the validation
gate is the Mahalanobis distance:

. (5.83)

However, depending on the application, the sensors, and the environment models, more
sophisticated validation gates might be employed.

The validation equation is used to test the observation for membership in the valida-
tion gate for each predicted measurement. When a single observation falls in the validation
gate, we get a successful match. If one observation falls in multiple validation gates, the
best matching candidate is selected or multiple hypotheses are tracked. Observations that
do not fall in the validation gate are simply ignored for localization. Such observations
could have resulted from objects not in the map, such as new objects (e.g., someone places
a large box in the hallway) or transient objects (e.g., humans standing next to the robot may
form a line feature). One approach is to take advantage of such unmatched observations to
populate the robot’s map.

4. Estimation: Applying the Bayes rule. In this step, we compute the best estimate of
the robot’s position based on the position prediction and all the observations at time

. To do this position update, we first stack the validated observations into a single
vector to form and designate the composite innovation . Then, we stack the measure-
ment Jacobians for each validated measurement together to form the composite Jaco-
bian and the measurement error (noise) vector . From these, we can then
compute the composite innovation covariance using equation (5.82). Finally, by using
the results from the application of the Bayes rule to Gaussian distributions, equations (5.74)
and (5.75), we can update the robot’s position estimate and its associated covariance
as

, (5.84)

, (5.85)

INt

ij Hj P̂t HjT Rt
i+=

H
j h

j
Rt

i

zt
i

vt
ijT INt

ij
1–

vt
ij g2

zt
i

xt

x̂t zt
i

t zt
i

zt vt

Hj

H Rt diag Rt
i =

INt

xt Pt

xt x̂t Ktvt+=

Pt P̂t Kt– INt
Kt

T=

336 Chapter 5
where

 (5.86)

is the Kalman gain.
As an exercise, the reader can verify that when the is an identity (5.84) and (5.85)

reduce exactly to equations (5.74) and (5.75). Indeed, by imposing equal to the identity
matrix, equation (5.84) simplifies to

 (5.87)

, (5.88)

which correspond respectively to (5.74) and (5.75).
Equation (5.84) says that the best estimate of the robot state at time is equal to the

best prediction of the value before the new measurement is taken, plus a correction
term of an optimal weighting value times the difference between and the best predic-
tion at time .

The new, fused estimate of the robot position is again subject to a Gaussian probability
density curve. Its mean and covariance are simply functions of two inputs, mean and cova-
riance. Thus the Kalman filter provides both a compact, simplified representation of uncer-
tainty and an extremely efficient technique for combining heterogeneous estimates to yield
a new estimate for our robot’s position.

In the next section, we will implement a Kalman filter localization algorithm for a dif-
ferential drive robot.

5.6.8.5 Case study: Kalman filter localization with line feature extraction
The Pygmalion robot at the EPFL is a differential-drive robot that uses a laser rangefinder
as its primary sensor [59, 60]. In contrast to Dervish, the environmental representation of
Pygmalion is continuous and abstract: the map consists of a set of infinite lines describing
the environment. Pygmalion’s belief state is, of course, represented as a Gaussian distribu-
tion since this robot uses the Kalman filter localization algorithm. The value of its mean
position is represented to a high level of precision, enabling Pygmalion to localize with
very high precision when desired. We next present details for Pygmalion’s implementation
of the Kalman filter localization steps. For simplicity we assume that the sensor frame
is equal to the robot frame . If not specified, all the vectors are represented in the world
coordinate system .

Kt P̂t Ht
T INt

 1–=

h

H

xt x̂t P̂t P̂t Rt+
1–

zt x̂t– +=

Pt Pt
ˆ Pt

ˆ Pt
ˆ Rt+

1–
Pt
ˆ–=

xt t
x̂t zt

Kt zt

ẑt t

xt

S
R

W

Mobile Robot Localization 337
1. Robot position prediction. Suppose that at time the robot best position estimate
is . The control input drives the robot to the position (fig-
ure 5.33).

The robot position prediction at time can be computed from the previous estimate
 and the odometric integration of the movement. For the differential drive that Pygma-

lion has, we can use the odometry model developed in section 5.2.4:

, (5.89)

where , characterize the displacement of the left and right wheel. Therefore, the
control input is exactly .

The updated covariance matrix is

t 1–
xt 1– xt 1– yt 1– t 1– T= ut x̂t

x

y

Figure 5.33
Prediction of the robot’s position (thick) based on its former position (thin) and the executed move-
ment. The ellipses drawn around the robot positions represent the uncertainties in the x,y direction
(e.g.,). The uncertainty of the orientation is not represented in the picture. 3

Time t

xt 1–

xt 1–

yt 1–

t 1–

=

x̂t

W
Time t-1

x̂t t
xt 1–

x̂t f xt 1– ut
xt 1–

yt 1–

t 1–

sr sl+

2
---------------------- t 1–

sr – sl

2b
-------------------+

 cos

sr sl+

2
---------------------- t 1–

sr – sl

2b
-------------------+

 sin

sr – sl

b

+= =

sl sr

ut sl sr T=

338 Chapter 5
, (5.90)

where is the covariance of the previous robot state and is the covariance of
the noise associated to the motion model (see equation [5.8]), that is,

. (5.91)

2. Observation. For line-based localization, each single observation (i.e., a line feature) is
extracted from the raw laser rangefinder data and consists of the two line parameters ,

 (figure 4.88), because for a rotating laser rangefinder a representation in the polar coor-
dinate frame is more appropriate:

. (5.92)

After acquiring the raw data at time t, lines and their uncertainties are extracted (figure
5.34a–b. This leads to observed lines with line parameters (figure 5.34c) and a cova-
riance matrix for each line that can be calculated from the uncertainties of all the mea-
surement points contributing to each line as developed for line extraction in section 4.7.1:

. (5.93)

3. Measurement prediction. Based on the stored map and the predicted robot position ,
the measurement predictions of the expected features are generated (figure 5.35).29

These features are stored in the map M and specified in the world coordinate system .
In order to compute the predicted observation, the robot must transform all the line features

 in the map into its local robot coordinate frame . According to figure 5.35, the
transformation is given by

29.To reduce the required calculation power, there is often an additional step that first selects the pos-
sible features, in this case lines, from the whole set of features in the map.

P̂t Fx Pt 1– Fx
T Fu Qt Fu

T+=

Pt 1– xt 1– Qt

Qt
kr sr 0

0 kl sl

=

t
i

rt
i

zt
i t

i

rt
i

=

n 2n
Rt

i

Rt
i r

r rr t

i

=

x̂t

ẑt
j

W

mj M R

Mobile Robot Localization 339
, (5.94)

and its Jacobian by

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

x [m]
y

[m
]

i

ri

line i

Figure 5.34
Observation: From the raw data (a) acquired by the laser scanner at time t, lines are extracted (b). The
line parameters and and its uncertainties can be represented in the model space (c).i ri

(b)

r

-

line i

0

(c)

−5 −4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

x [m]

y
[m

]
(a)

r
i

i

zt
ˆ j ̂t

j

r̂t
j

h
j

x̂t m
j

t
jW

̂t–

rt
jW

x̂t t
jW

 cos ŷt t
jW

 sin+ –

= = =

Hj

340 Chapter 5
, (5.95)

where we used

. (5.96)

The measurement prediction results in predicted lines represented in the robot coordi-
nate frame (figure 5.36). They are uncertain, because the prediction of robot position is
uncertain.

4. Matching. For matching, we must find correspondence (or a pairing) between predicted
and observed features (figure 5.37). In our case we take the Mahalanobis distance

x

y

Figure 5.35
Representation of the target position in the world coordinate frame and robot coordinate frame

.
W

R

R

x̂t

x̂t

ŷt

̂t

=R j

r
R j

t

r
W j

W

W j

Hj

t
j

x̂

t
j

ŷ

t
j

̂

rt
j

x̂

rt
j

ŷ

rt
j

̂

0 0 1–

t
jW

 cos– t
jW

 sin– 0
= =

m
j t

j

rt
j

W

=

Mobile Robot Localization 341
 (5.97)

with

, (5.98)

 (5.99)

Figure 5.36
Measurement predictions: Based on the and the estimated robot position the targets (visible lines) are
predicted. They are represented in the model space similar to the observations.

r

-

line j

0

r̂
j

̂
j

vt
ijT INt

ij
1–

vt
ij g2

vt
ij zt

i ẑt
j– zt

i hj x̂t mj – = = =

t

i

rt
i

t
jW

̂t–

rt
jW

x̂t t
jW

 cos ŷt t
jW

 sin+ –

–=

INt

ij Hj Pt
ˆ HjT Rt

i+=

342 Chapter 5
to enable finding the best matches while eliminating all other remaining observed and pre-
dicted unmatched features.

5. Estimation. Applying the Kalman filter results in a final pose estimate corresponding
to the weighted sum of (figure 5.38);

• the pose estimates of each matched pairing of observed and predicted features;

• the robot position estimation based on odometry and observation positions.

5.7 Other Examples of Localization Systems

Markov localization and Kalman filter localization have been two extremely popular strat-
egies for research mobile robot systems navigating indoor environments. They have strong
formal bases and therefore well-defined behavior. But there are other probabilistic localiza-

Figure 5.37
Matching: The observations (thick) and the predicted observation (thin) are matched and the innova-
tion and its uncertainties are calculated.

r

-

match i,j

0

No match!!
Wall was not ob-

served.

image space

model space

r̂
j

̂
j

r
i

i

Mobile Robot Localization 343
tion techniques that have been used with varying degrees of success on commercial and
research mobile robot platforms. Some techniques that deserve mention are Unscented
Kalman Filter (UKF) localization, grid localization, and Monte Carlo localization. UKF is
similar to EKF in that it also assumes Gaussian distributions but relies on a different way
to linearize the motion and measurements models, which is called the unscented transform.
Conversely, grid localization and Monte Carlo localization are not limited to unimodal dis-
tributions. While grid localization uses the so-called histogram filter to represent the robot
belief, Monte Carlo localization uses particle filters. The latter is probably the most popular
localization algorithm (this was already introduced on page 315). Because a description of
these techniques goes beyond the scope of this book, we refer the reader to [51] for such
information.

There are, however, several categories of localization techniques that deserve mention.
Not surprisingly, many implementations of these techniques in commercial robotics
employ modifications of the robot’s environment, something that the Markov localization
and Kalman filter localization communities eschew. In the following sections, we briefly
identify the general strategy incorporated by each category and reference example systems,
including, as appropriate, those that modify the environment and those that function with-
out environmental modification.

Figure 5.38
Kalman filter estimation of the new robot position: By fusing the prediction of robot position (thin)
with the innovation gained by the measurements (thick) we get the updated estimate of the robot
position (very thick).

xt

xt

xt

yt

t

=

344 Chapter 5
5.7.1 Landmark-based navigation
Landmarks are generally defined as passive objects in the environment that provide a high
degree of localization accuracy when they are within the robot’s field of view. Mobile
robots that make use of landmarks for localization generally use artificial markers that have
been placed by the robot’s designers to make localization easy.

The control system for a landmark-based navigator consists of two discrete phases.
When a landmark is in view, the robot localizes frequently and accurately, using action
update and perception update to track its position without cumulative error. But when the
robot is in a no-landmark “zone,” then only action update occurs, and the robot accumulates
position uncertainty until the next landmark enters the robot’s field of view.

The robot is thus effectively dead-reckoning from landmark zone to landmark zone.
This in turn means the robot must consult its map carefully, ensuring that each motion
between landmarks is sufficiently short, given its motion model, that it will be able to local-
ize successfully upon reaching the next landmark.

Figure 5.39 shows one instantiation of landmark-based localization. The particular
shape of the landmarks enables reliable and accurate pose estimation by the robot, which
must travel using dead reckoning between the landmarks.

One key advantage of the landmark-based navigation approach is that a strong formal
theory has been developed for this general system architecture [187]. In this work, the
authors have shown precise assumptions and conditions which, when satisfied, guarantee
that the robot will always be able to localize successfully. This work also led to a real-world
demonstration of landmark-based localization. Standard sheets of paper were placed on the
ceiling of the Robotics Laboratory at Stanford University, each with a unique checkerboard
pattern. A Nomadics 200 mobile robot was fitted with a monochrome CCD camera aimed
vertically up at the ceiling. By recognizing the paper landmarks, which were placed approx-

Figure 5.39
Z-shaped landmarks on the ground. Komatsu Ltd., Japan [6, pages 179-180].

L1

P1

P2

P3

L2

x2Z-shaped landmark

50 m

50 m

50 m

Mobile Robot Localization 345
imately 2 m apart, the robot was able to localize to within several centimeters, then move,
using dead reckoning, to another landmark zone.

The primary disadvantage of landmark-based navigation is that in general it requires sig-
nificant environmental modification. Landmarks are local, and therefore a large number are
usually required to cover a large factory area or research laboratory. For example, the
Robotics Laboratory at Stanford made use of approximately thirty discrete landmarks, all
affixed individually to the ceiling.

5.7.2 Globally unique localization
The landmark-based navigation approach makes a strong general assumption: when the
landmark is in the robot’s field of view, localization is essentially perfect. One way to reach
the Holy Grail of mobile robotic localization is effectively to enable such an assumption to
be valid no matter where the robot is located. It would be revolutionary if a look at the
robot’s sensors immediately identified its particular location, uniquely and repeatedly.

Such a strategy for localization is surely aggressive, but the question of whether it can
be done is primarily a question of sensor technology and sensing software. Clearly, such a
localization system would need to use a sensor that collects a very large amount of infor-
mation. Since vision does indeed collect far more information than previous sensors, it has
been used as the sensor of choice in research toward globally unique localization. If humans
were able to look at an individual picture and identify the robot’s location in a well-known
environment, then one could argue that the information for globally unique localization
does exist within the picture; it must simply be teased out. As described in section 4.6, an
important milestone toward this direction has been achieved with “bag of features”
approaches, where the current image is first converted into a “bag” of distinctive local fea-
tures (section 4.5) which are then used to find the most similar images in a dataset of million
of pictures in less than one second. This approach successfully demonstrated robust local-
ization on a more than 1,000 km trajectory using purely images collected from vehicle-
mounted camera [108,109].

If one would like to use laser scans instead of camera images, then the angular histogram
depicted in figure 4.95 of the previous chapter is another example in which the robot’s laser
sensor values are transformed into an identifier of location. In this case, the identifier is a
histogram instead of a bag of features. However, due to the limited information content of
laser scans, it is likely that two places in the robot’s environment may have angular histo-
grams that are too similar to be differentiated successfully. Therefore, image-based local-
ization should be preferred for large-scale environments, since images provide better
globally unique localization than laser-based strategies.

The key advantage of globally unique localization is that, when these systems function
correctly, they greatly simplify robot navigation. The robot can move to any point and will
always be assured of localizing by collecting a sensor scan.

346 Chapter 5
But the main disadvantage of globally unique localization is that it is likely that this
method will never offer a complete solution to the localization problem. There will always
be cases where local sensory information is truly ambiguous, and globally unique localiza-
tion using only current sensor information is therefore unlikely to succeed (e.g., in a for-
est!). Humans often have excellent local positioning systems, particularly in nonrepeating
and well-known environments such as their homes. However, there are a number of envi-
ronments in which such immediate localization is challenging even for humans: consider
hedge mazes and large new office buildings with repeating halls that are identical.

5.7.3 Positioning beacon systems
One of the most reliable solutions to the localization problem is to design and deploy an
active beacon system specifically for the target environment. This is the preferred tech-
nique used by both industry and military applications as a way of ensuring the highest pos-
sible reliability of localization. The GPS system can be considered as just such a system
(see section 4.1.8.1).

Figure 5.40 depicts one such beacon arrangement for a collection of robots. Just as with
GPS, by designing a system whereby the robots localize passively while the beacons are
active, any number of robots can simultaneously take advantage of a single beacon system.
As with most beacon systems, the design depicted depends foremost upon geometric prin-
ciples to effect localization. In this case the robots must know the positions of the two active
ultrasonic beacons in the global coordinate frame in order to localize themselves to the
global coordinate frame.

Figure 5.40
Active ultrasonic beacons.

base station

ultrasonic
beacons

collection of robots
with ultrasonic receivers

Mobile Robot Localization 347
A popular type of beacon system in industrial robotic applications is depicted in figure
5.41. In this case, beacons are retroreflective markers that can be easily detected by a
mobile robot based on their reflection of energy back to the robot. Given known positions
for the optical retroreflectors, a mobile robot can identify its position whenever it has three
such beacons in sight simultaneously. Of course, a robot with encoders can localize over
time as well, and it does not need to measure its angle to all three beacons at the same
instant.

The advantage of such beacon-based systems is usually extremely high engineered reli-
ability. By the same token, significant engineering usually surrounds the installation of
such a system in a specific commercial setting. Therefore, moving the robot to a different
factory floor will be both time-consuming and expensive. Usually, even changing the
routes used by the robot will require serious reengineering.

5.7.4 Route-based localization
Even more reliable than beacon-based systems are route-based localization strategies. In
this case, the route of the robot is explicitly marked so that it can determine its position, not
relative to some global coordinate frame but relative to the specific path it is allowed to
travel. There are many techniques for marking such a route and the subsequent intersec-
tions. In all cases, one is effectively creating a railway system, except that the railway
system is somewhat more flexible and certainly more human-friendly than a physical rail.
For example, high ultraviolet-reflective, optically transparent paint can mark the route such
that only the robot, using a specialized sensor, easily detects it. Alternatively, a guidewire
buried underneath the hall can be detected using inductive coils located on the robot chas-
sis.

In all such cases, the robot localization problem is effectively trivialized by forcing the
robot to always follow a prescribed path. To be fair, there are new industrial unmanned

Figure 5.41
Passive optical beacons.

348 Chapter 5
guided vehicles that do deviate briefly from their route in order to avoid obstacles. Never-
theless, the cost of this extreme reliability is obvious: the robot is much more inflexible
given such localization means, and therefore any change to the robot’s behavior requires
significant engineering and time.

5.8 Autonomous Map Building

5.8.1 Introduction
All the localization strategies that we have discussed so far require the existence of a map
of the environment. The map is normally built by hand. This means that, for accurate local-
ization, the position of the landmarks (e.g., walls, artificial beacons, etc.) that the robot uses
for self-localizing must be accurately measured and included in the map. Unfortunately,
this approach can be hard, costly, and very time-consuming when the size of the environ-
ment is large or when the environment changes due to artificial modifications or dynamic
objects. Assume, for instance, a domestic robot that is supposed to work in home environ-
ments. In this case the robot should be able to detect changes in the map due to the re-
arrangement of the furniture (figure 5.42). Another drawback of handmade maps is that the
look of the map can be different depending on the different perception of who makes the
map.

The alternative to handmade map building is therefore “automatic map building.”
Indeed, a robot that localizes successfully has the right sensors for detecting the environ-
ment, and so the robot ought to build its own map. This ambition goes to the heart of auton-
omous mobile robotics. In prose, we can express our eventual goal as follows: starting from

Figure 5.42 An autonomous robot should be able to track changes in the environments for localizing.

Mobile Robot Localization 349
an arbitrary initial point, a mobile robot should be able to explore autonomously the envi-
ronment with its on-board sensors, gain knowledge about it, interpret the scene, build an
appropriate map, and localize itself relative to this map.

The recent advances in both robotics and computer vision have made this goal some-
what achieved. An important subgoal has been the invention of techniques for place recog-
nition and for autonomous creation and modification of an environmental map. Of course
a mobile robot’s sensors have only a limited range, and so the robot must physically explore
its environment to build such a map. So, the robot must not only create a map, but it must
also do this while moving and localizing to explore the environment. In the robotics com-
munity, this is often called the Simultaneous Localization and Mapping (SLAM) problem.
The relevance of the SLAM problem for the robotics community owes to the fact that the
solution to this problem would make a robot truly autonomous.

After a short introduction to the simultaneous localization and mapping problem (sec-
tion 5.8.2), we will review three major algorithms from which a large number of published
methods have been derived. First, we will review the traditional approach, which is based
on the extended Kalman filter (section 5.8.4). As an application of one of these methods,
we will present the Visual-SLAM algorithm (section 5.8.5), which uses a single camera as
only sensor. Second, we will review the Graph-SLAM algorithm (section 5.8.7), which is
born from the intuition that the SLAM problem can be interpreted as a sparse graph of con-
straints. Third, we will review the particle-filter SLAM (section 5.8.8). Finally, we will dis-
cuss open problems in SLAM (section 5.8.9).

It is important to point out that none of these method is the favorite solution to the SLAM
problem. The choice of the right method will depend on the number and type of features in
the environments, the resolution of the desired map, the computational time, and so on.

For an in-depth study of SLAM algorithms, we refer the reader to [51]. Up-to-date ref-
erences and on-line software can instead be found in these tutorials [62, 120, 313]. In the
following sections, we will keep the same notation as in the section on localization, which
is also the same as in [51].

5.8.2 SLAM: The simultaneous localization and mapping problem
As we have seen in section 5.6.2, localization is the problem of estimating the robot posi-
tion (and therefore its path) given a known map of the environment. Conversely, mapping
is the construction of the map of the environment knowing the true path of the robot. The
aim of SLAM is to recover both the robot path and the environment map using only the data
gathered by its proprioceptive and exteroceptive sensors. These data are typically the robot
displacement estimated from the odometry and features (e.g., corners, lines, planes)
extracted from laser, ultrasonic, or camera images.

SLAM is difficult because both the estimated path and the extracted features are cor-
rupted by noise. The problem is illustrated in figure 5.43. Let us assume that the robot

350 Chapter 5
Figure 5.43 Illustration of the SLAM problem.

(a) (b)

(c) (d)

(e)

Mobile Robot Localization 351
uncertainty at its initial location is zero. From this position, the robot observes a feature
which is mapped with an uncertainty related to the exteroceptive sensor error model (a). As
the robot moves, its pose uncertainty increases under the effect of the errors introduced by
the odometry (b). At this point, the robot observes two features and maps them with an
uncertainty that results from the combination of the measurement error with the robot pose
uncertainty (c). From this, we can notice that the map becomes correlated with the robot
position estimate. Similarly, if the robot updates its position based on an observation of an
imprecisely known feature in the map, the resulting position estimate becomes correlated
with the feature location estimate. In order to reduce its uncertainty, the robot must observe
features whose location is relatively well known. These features can, for instance, be land-
marks that the robot has already observed before. In this case, the observation is called loop
closure detection. When a loop closure is detected, the robot pose uncertainty shrinks. At
the same time, the map is updated and the uncertainty of other observed features and all
previous robot poses also reduce (figure 5.43e).

The general problem of map-building is thus an example of the chicken-and-egg prob-
lem. For localization the robot needs to know where the features are, whereas for map-
building the robot needs to know where it is on the map.

5.8.3 Mathematical definition of SLAM
As we already did for map-based localization, we also describe SLAM in probabilistic ter-
minology. The terminology used in the section is the same introduced in sections 5.6.4 and
5.6.5 for probabilistic map-based localization. The reader may take a moment to review
those sections before proceeding.

Let us recall that we define the robot pose at time by . The robot path is given as

, (5.100)

where might also be infinite. In SLAM, the robot initial location is assumed to be
known, while the others locations are not.

Let denote the robot motion between time and time . Let us recall that these
data can be the proprioceptive sensor readings (e.g., from the robot’s wheel encoders) or
the control inputs given to the motors. The sequence of the robot relative motions can then
be written as:

. (5.101)

Let denote the true map of the environment

, (5.102)

t xt

XT x0 x1 x2 xT =

T x0

ut t 1– t

UT u0 u1 u2 uT =

M

M m0 m1 m2 mn 1– =

352 Chapter 5
then , , are vectors representing the positions of the landmarks that, again,
might be points, lines, planes, or any sort of high-level feature (e.g., doors). Observe that,
for simplicity, we assume that the map is static.

Finally, if we assume that the robot takes one measurement at each time, we can denote
by

 (5.103)

the sequence of landmark observations in the sensor reference frame attached to the robot.
For example, if the robot is equipped with an on-board camera, the observation can be a
vector representing the coordinates of a corner or those of a line in the image. If, instead,
the robot is equipped with a laser rangefinder, such a vector can represent the position of a
corner or a line in the laser sensor frame.

According to this terminology, we can now define SLAM as the problem of recovering
a model of the map and the robot path from the odometry and observations .
In the literature, we distinguish between the full SLAM problem and the online SLAM
problem. The full SLAM problem consists in estimating the joint posterior probability over

 and from the data, that is

. (5.104)

The online SLAM problem, conversely, consists in estimating the joint posterior over
and from the data, that is

. (5.105)

Therefore, the full SLAM problem tries to recover the entire robot path , while the
online SLAM problem tries to estimates only the current robot pose .

In order to solve the SLAM problem, we need to know the probabilistic motion model
and probabilistic measurement model. These models have been introduced in section 5.6.5.
In particular, let us recall that

 (5.106)

represents the probability that the robot pose is given the robot previous pose and
proprioceptive data (or control input) . Similarly, let us recall that

 (5.107)

mi i 0n 1–=

ZT z0 z1 z2 zT =

zi

M XT UT ZT

XT M

p XT M ZT UT

xt

M

p xt M ZT UT

XT

xt

p xt xt 1– ut

xt xt 1–

ut

p zt xt M

Mobile Robot Localization 353
is the probability of measuring given the known map and assuming that the robot
takes the observation at location .

We encourage the reader to take a moment to review these concepts in section 5.6.5.
In the next sections, we will describe the three main paradigms developed over the last

two decades to solve the SLAM problem, which are EKF SLAM, graph-based SLAM, and
particle filter SLAM. From these paradigms, many other algorithms have been derived. For
an in-depth study of these algorithms, we refer the reader to [51].

5.8.4 Extended Kalman Filter (EKF) SLAM
In this section, we will see the application of the EKF to the online SLAM problem. EKF-
based SLAM is historically the first formulation proposed and was introduced in several
papers [100, 294, 295, 228, 229].

The EKF SLAM proceeds exactly like the standard EKF that we have seen for robot
localization (section 5.6.8), with the only difference that it uses an extended state vector
which comprises both the robot pose and the position of all the features in the map,
that is:

. (5.108)

In our localization example based on line features (section 5.6.8.5), the dimension of
would be 3+2n, since we need three variables to represent the robot pose and 2n
variables for the n line-landmarks having vector components . Therefore, the state
vector would be written as

. (5.109)

As the robot moves and takes measurements, the state vector and covariance matrix are
updated using the standard equations of the extended Kalman filter. Clearly, the state vector
in EKF SLAM is much larger that the state vector in EKF localization where only the robot
pose was being updated. This makes EKF SLAM computationally much more expensive.

Notice that, because of its formulation, maps in EKF SLAM are supposed to be feature-
based (i.e., points, lines, planes). As new features are observed, they are added to the state
vector. Thus, the noise covariance matrix grows quadratically, with size

. For computational reasons, the size of the map is therefore usually lim-
ited to less than a thousand features. However, numerous approaches have been developed
to cope with a larger number of features, which decompose the map into smaller submaps,
for which covariances are updated separately [63].

 As we mentioned, the implementation of the EKF SLAM is nothing but the straightfor-
ward application of the EKF equations to the online SLAM problem, that is, equations

zt M

xt

yt

xt mi

yt xt m0 mn 1– T=

yt

x y
i

r
i

yt xt yt t 0 r0 1 r1 n 1– rn 1– T=

3 2n+ 3 2n+

354 Chapter 5
(5.78)–(5.79) and (5.84)–(5.85). In order to do this, we need to specify the functions that
characterize the prediction and measurement model. If we use again our line-based local-
ization example of section 5.6.8.5, the measurement model is then the same as in equation
(5.94). The prediction model, conversely, has to take into account that the motion will only
update the robot pose according to (5.89), while the features will remain unchanged. There-
fore, we can write the prediction model of the EKF SLAM as

. (5.110)

At the start, when the robot takes the first measurements, the covariance matrix is pop-
ulated by assuming that these (initial) features are uncorrelated, which implies that the off
diagonal elements are set to zero. However, when the robot starts moving and takes new
measurements, both the robot pose and features start becoming correlated. Accordingly, the
covariance matrix becomes nonsparse.30 The existence of this correlation can be explained
by recalling that the uncertainty of the features in the map depends on the uncertainty asso-
ciated to the robot pose. But it also depends on the uncertainty of other features that have
been used to update the robot pose. This means that when a new feature is observed, this
contributes to correct not only the estimate of the robot pose but also that of the other fea-
tures as well. The more observations are made, the more the correlations between the fea-
tures will grow. Therefore, the correlations between the features—and so the fact that the
covariance matrix is nonsparse—are of significant important in SLAM [105]: the bigger
these correlations, the better the solution of the SLAM.

Figure 5.43 illustrates the working principle of EKF SLAM in a simple environment
with three features. The robot initial location is assumed as the origin of the system refer-
ence frame and therefore the initial uncertainty of the robot pose is zero. From this position,
the robot observes a feature and maps it with an uncertainty related to the sensor error

30.In numerical analysis, a sparse matrix is a matrix populated primarily with zeros.

ŷt yt

sr sl+

2
---------------------- t 1–

sr – sl

2b
-------------------+

 cos

sr sl+

2
---------------------- t 1–

sr – sl

2b
-------------------+

 sin

sr – sl

b

0

0

0

0

+=

Mobile Robot Localization 355
model (a). As the robot moves, its pose uncertainty increases under the effect of the errors
introduced by the odometry (b). At some point, the robot observes two features and maps
them with an uncertainty which results from the combination of the measurement error with
the robot pose uncertainty (c). From this, we can notice that the map becomes correlated
with the robot position estimate. Now, the robot drives back toward its starting position and
its pose uncertainty increases again (d). At this point, it reobserves the first feature, whose
location is relatively well known compared to the other features. This makes the robot more
sure about its current location and therefore its pose uncertainty shrinks (e). Notice that so
far we only considered the online SLAM problem. Therefore, only the robot current posi-
tion was being updated. The full SLAM problem, conversely, updates the entire robot path
and thus all its previous poses. In this case, after reobserving the first feature, also the robot
previous pose uncertainty will shrink and so will also the uncertainties associated to the
other features. The position of these features is in fact correlated with the robot previous
poses.

EKF SLAM has been successfully applied in many different domains, including air-
borne, underwater, outdoor, and indoor environments. Figure 5.44 shows results of a 6DoF
SLAM using a 3D laser rangefinder. The robot starts at the center and makes three rounds.
Figure 5.44a shows the resulting map using only odometry. As you can see, the map is
inconsistent (the scans are not aligned) due to the accumulated odometry drift. In (b), the
accumulated odometry error is drastically reduced by using scan matching and alignment
techniques.31 Finally, in (c), the accumulated drift and the offset error are no longer present
after application of EKF SLAM. Notice that in this particular application, horizontal and
vertical planes have been used as features.

The basic formulation of EKF SLAM assumes that the position of the features is fully
measurable from a single robot location. This is because most SLAM applications have
been realized using rangefinders (i.e., lasers, sonars, or stereo cameras) that provide both
range and bearing information about the features. However, there are situations where
either the range [190] or the bearing information (the angle) is available. The latter occurs,
for example, when using a single camera. As seen in section 4.2.3, a calibrated camera is a
bearing sensor (figure 4.31). In this case, the SLAM problem is usually called monocular
Visual SLAM or bearing-only SLAM [110, 227]. In this case, the standard EKF can still be
applied, as we will see in the next section.

31.One of the most popular techniques for aligning two different laser scans is the Iterative Closest
Point (ICP) algorithm [72]. This, however, works well only if the relative motion between the two
scans is known with good approximation (for instance from the odometry) otherwise other global
optimization techniques are required [97,204].

356 Chapter 5
5.8.5 Visual SLAM with a single camera
The term Visual SLAM (V-SLAM) was coined in 2003 by Davison [110, 112], who pre-
sented the first real-time EKF SLAM system with a single hand-held camera. No odometry,
range finder, or GPS was used but just a single perspective camera. V-SLAM can be seen
as a multiview Structure-from-Motion (SfM) (which we introduced in section 4.2.6).
Indeed, both attempt to recover simultaneously both the camera motion and the structure
(feature positions) of the environment from a single camera by tracking interest points in

Figure 5.44 EKF SLAM using 3D laser scanner. (a) The robot starts at the center and makes three
rounds. (a) Aligned 3D scans using odometry only leading to an inconsistent map. (b) Aligned 3D
scans after using scan matching. The accumulated odometry error can be drastically reduced, but a
small residual error remains (see offset).(c) The result of the EKF SLAM. The map built has been
superimposed on a building plan for visual comparison. Notice that the offset is no longer present.
Image courtesy of J. Weingarten [331].

(a) (b)

(c)

Mobile Robot Localization 357
the images. The main difference between V-SLAM and SfM is in that V-SLAM takes into
account the feature uncertainty using a probabilistic framework. Another difference is that
V-SLAM needs to process the images chronologically while SfM works also for unordered
datasets. The original V-SLAM implementation by Davison used an extended Kalman fil-
ter. As we mentioned at the end of section 5.8.4, V-SLAM is also called bearing-only
SLAM, to emphasize the fact that it uses only angle observations. This, again, is in contrast
to laser-based or ultrasound-based SLAM, which need instead both angle and range infor-
mation. Because of this, bearing-only SLAM is more challenging than range-bearing
SLAM. In laser-based SLAM, the position of the features in the robot frame can be esti-
mated from a single robot position. In V-SLAM, conversely, we need to move the camera
to recover the position of the features, as we know from structure-from-motion.

The first problem in monocular V-SLAM is the estimation of the position of the features
at the time the system starts. Using a rangefinder, this is obviously not a problem, but for
V-SLAM this is not possible. To overcome this problem, in his original implementation
Davison used a planar pattern of known geometry where the relative position of at least
four boundary corners is known. From four corners of known position, the 6DoF camera
pose with respect to these points can be determined uniquely.32 As long as the camera is
moved in front of the pattern, the camera pose can be estimated from single images. As the
camera starts moving away from the pattern, new features must be triangulated and added
to the map. At this point, the EKF V-SLAM process starts.

The implementation of the EKF V-SLAM is again the vanilla EKF applied to the SLAM
problem. To implement it, we need to know the motion and measurement update functions.

As we did for the standard EKF SLAM, the state vector contains both the camera pose
and the feature position but this time also the camera velocity. Also, observe that Davison
chose to parametrize the camera orientation with quaternions in order to avoid singulari-
ties, and thus the camera orientation is represented with four variables. The dimension of
the state vector in the EKF V-SLAM is therefore 13 + 3n; in fact, we need three parameters
for the position r, four for the orientation-quaternion q, three for the translational velocity
v, another three for the angular velocity , and 3n for the feature positions . Also
observe that in his implementation, the observed features are not lines but image points and
therefore the feature position is represented by three cartesian coordinates. The vector state
at time can therefore be written as

, (5.111)

where

32.The problem of determining the camera position and orientation from a set of 2D-3D point corre-
spondences is known as camera pose estimation [29].

y

 mi

t

yt xt m0 m1 mn 1– T=

358 Chapter 5
. (5.112)

Prediction step. Notice that in V-SLAM we do not use odometry to predict the next
camera position. To overcome this problem, Davison proposed the use of a constant veloc-
ity model. This means that between consecutive frames the velocity is assumed to be con-
stant, and therefore the position of the camera at time t is computed by integrating the
motion starting at time t-1, assuming that the initial velocity is the one estimated at time t-
1. By keeping this in mind, we can actually write the motion prediction function f as:

, (5.113)

where the unknown intentions (in terms of velocity and acceleration) of the carrier of the
camera are taken into account in the constant velocity model by and , which are com-
puted as:

 and , (5.114)

where and are the unknown translational and angular accelerations that are modeled
as zero mean Gaussian distributions. The prediction update equation of the EKF can there-
fore be written as

, (5.115)

where and denote the positions of the i-th feature at times t and t-1
respectively.

Measurement update. In the measurement update, the camera pose is corrected based on
the reobservation of features. In addition, new features are initialized and added to the map.

xt rt qt vt t T=

x̂t f xt 1– ut

r v V+ t+

q q + t
v V+

 +

= =

V

V at= t=

a

x̂t

̂t
0

r̂t
0

̂t
n 1–

r̂t
n 1–

f xt 1– ut

t 1–
0

rt 1–
0

t 1–
n 1–

rt 1–
n 1–

=

̂t
i

r̂t
i t 1–

i
rt 1–

i

Mobile Robot Localization 359
In V-SLAM, the features are interest points (figure 5.45) extracted using one of the interest
point detectors described in section 4.5. Therefore, the features are expressed in image pixel
coordinates.

In this phase, we also have to define the measurement function h. This function is used
to compute the predicted observations, that is, to predict where the features are going to
appear after the motion update. To determine h, we need to take into account the transfor-
mation from the world coordinate frame to the local camera frame and, in addition, the per-
spective transformation from the camera frame onto the image plane (figure 4.32, equation
[4.44]). Therefore, function h is given exactly by equation (4.44). Finally, after computing
the uncertainty of each predicted observations (which is drawn as an ellipse in figure 5.45),
we can update the state vector and its covariance using the standard EKF measurement
update equations. The main steps of Davison’s V-SLAM are illustrated in figure 5.46.

5.8.6 Discussion on EKF SLAM
As we mentioned earlier, EKF SLAM is nothing but the application of the vanilla extended
Kalman filter with a joint state composed of the robot pose and the feature locations. At
every iteration both the state and the joint covariance matrix are updated, which means that
the computation grows quadratically with the number of features. In order to overcome
these limitations, efficient real-time implementations of EKF SLAM have been proposed
in the last years, which can cope with thousand of features. The main idea is to decompose
the map into smaller submaps for which covariances are updated separately.

Another problem of EKF SLAM is in the linearization made by the extended Kalman
filter, which is reflected by the use of the Jacobians in the motion and measurement
updates. Unfortunately, both the motion and the measurement model are typically nonlin-

Figure 5.45 (Left) Feature image patches. (Right) Search regions predicted from the previous frame
using a constant velocity motion model. Image courtesy of Andrew Davison [110].

360 Chapter 5
Figure 5.46 (a) The camera starts moving with six known features on a pattern. (b) Nearby unknown
features are initialized and added to the map. (c) As the camera moves, the uncertainty of the esti-
mated features in the map increases. (d) As the camera revisits some of the features seen at the begin-
ning, its uncertainty shrinks. Image courtesy of Andrew Davison [110,112].

(a)

(b)

(c)

(d)

Mobile Robot Localization 361
ear, therefore their linearization can sometimes lead to inconsistency or divergence of the
solution.

Another issue in EKF SLAM is its sensitiveness to incorrect data associations of the fea-
tures, which happens when the robot incorrectly matches feature with features . This
problem becomes even more important at the loop closure, that is, when the robot returns
to reobserve features after a long traverse. Incorrect data association can occur frequently
with 2D laser rangefinders due to the difficulty of identifying distinctive features in their
point clouds. This task is, however, facilitated with cameras thanks to the huge availability
of feature detectors (section 4.5). Some of these detectors, like SIFT (section 4.5.5.1), have
recently demonstrated very successful results in loop closure detection over very long tra-
verses (1000 km) [109] by employing the “bag of features” approach (see section 4.6 on
location recognition).

We have also seen that the correlations between features is of significant importance in
SLAM. The more observations are made, the more the correlations between features grow,
the better the solution of the SLAM. Eliminating or ignoring the correlations between fea-
tures (like it was done at the beginning of the research in EKF SLAM) is exactly contrary
to the nature of the SLAM problem. As the robot moves and observes some features, these
become more and more correlated. In the limit, they become fully correlated, that is, given
the exact position of any feature, the location of any other feature can be determined with
absolute precision.33

Regarding the convergence of the map, as the robot moves making observations, the
determinant of the map covariance matrix and of all covariance submatrices converges
monotonically toward zero. This means that the error in the relative position between the
features decreases to the point where the map is known with absolute certainty or, alterna-
tively, it reaches a lower bound that depends on the error introduced when the first obser-
vation was taken.

5.8.7 Graph-based SLAM
Graph-based SLAM was introduced for the first time in [200], which influenced many
other implementations. Most of the graph-based SLAM techniques attempt to solve the full
SLAM problem, but several approaches can also be found in the literature to solve the
online SLAM problem.

Graph-based SLAM is born from the intuition that the SLAM problem can be inter-
preted as a sparse graph of nodes and constraints between nodes. The nodes of the graph
are the robot locations and the features in the map . The
constraints are the relative position between consecutive robot poses , (given by the

33.Note, this is only possible in principle. In real scenarios, there is always some uncertainty left (e.g.,
measurement uncertainty).

mi mj

x0 x1 xT n m0 m1 mn 1–
xt 1– xt

362 Chapter 5
odometry input) and the relative position between the robot locations and the features
observed from those locations.

The key property to remember about graph-based SLAM is that the constraints are not
to be thought as rigid constraints but as soft constraints (figure 5.47). It is by relaxing these
constraints that we can compute the solution to the full SLAM problem, that is, the best esti-
mate of the robot path and the environment map. In other words, graph-based SLAM rep-
resents robot locations and features as the nodes of an elastic net. The SLAM solution can
then be found by computing the state of minimal energy of this net [139]. Common opti-
mization techniques to find the solution are based on gradient descent, and similar ones. A
very efficient minimization procedure, along with open source code, was proposed in
[141].

There is a significant advantage of graph-based SLAM techniques over EKF SLAM. As
we have seen, in EKF SLAM the amount of computation and memory requirement to
update and store the covariance matrix grows quadratically in the number of features. Con-
versely, in graph-based SLAM the update time of the graph is constant and the required
memory is linear in the number of features. However, the final graph optimization can
become computationally costly if the robot path is long. Nevertheless, graph-based SLAM
algorithms have shown impressing and very successful results with even hundred million
features [79, 116, 117, 173, 315]. However, these algorithms attempt to optimize over the
entire robot path and were therefore implemented to work offline. Some of the online
implementations used submap approaches.

ut

Figure 5.47 Evocative illustration of the graph construction. Constraints between nodes in the graph
are represented as “soft” constraints (like springs). The solution of the SLAM problem can then be
computed as the configuration with minimal energy.

Mobile Robot Localization 363
5.8.8 Particle filter SLAM
This particular solution to the SLAM problem is based on the randomized sampling of the
belief distribution that we introduced already on page 315. The term particle filter is born
from the fact that it represents the robot belief distribution not in a parametric form (like a
Gaussian) but rather as a set of samples (i.e., particles) drawn randomly from this distribu-
tion. This concept is pictorially illustrated in figure 5.48. The power of this representation
is in its ability to model any sort of distribution (e.g., non-Gaussian) and also nonlinear
transformations.

Particle filters find their origin in Monte Carlo methods [215], but a step that makes
them practically applicable to the SLAM problem is based on the work of Rao and Black-
well [75, 263], from which these filters inherited the name of Rao-Blackwellized particle
filters. Finally, the Rao-Blackwellized particle filter was applied for the first time to the
SLAM problem by Murphy and Russel [239] and found a very efficient implementation in
the work of Montemerlo et al. [231], who also coined the name of FastSLAM.

Now we will give a general overview of the particle filter SLAM. For a detailed expla-
nation of the solution to this problem, we refer the reader to the original paper on Fast-
SLAM [231].

At every time step, the particle filter maintains always the same number K of particles
(e.g.,). Each particle contains an estimate of the robot path and estimates of
the position of each feature in the map, which are represented as two-dimensional Gauss-
ians with mean values and covariance matrices . Therefore, a particle is character-
ized by

 (5.116)

Figure 5.48 The standard EKF SLAM represent the probability distribution of the robot location is
a parametric form, which is a two-dimensional Gaussian (a). Conversely, particle filter SLAM rep-
resent this the probability distribution as a set of particles drawn randomly from the parametric dis-
tribution (b). For the specific example of a Gaussian distribution, (b) the density of particles is higher
toward the center of the Gaussian and decreases with the distance.

(a) (b)

K 1000= Xt
k

t i
k t i

k

Xt
k

 t 0
k

, t 0
k ; t 1

k
, t 1

k ; ; t 1n 1–
k

, t n 1–
k ;

364 Chapter 5
where k denotes the index of the particle and n the number of features in the map. Note that
in particle filter SLAM, the mean and covariance of each feature are updated using distinct
Kalman filters, one for each feature in the map.

When the robot moves, the motion model specified by the odometry reading is
applied to each particle to generate the new location .

When the robot makes an observation , we compute for each particle the so-called
importance factor , which is determined as the probability of observing given the
particle and all previous observations , that is,

. (5.117)

Notice that computing the importance factor for each particle is like sampling the probabil-
ity distribution .

The final step in particle filter SLAM is called resampling. This step replaces the current
set of particles with another set according to the importance factor determined above.
Finally, the mean and covariance of each feature are updated according to the standard EKF
update rule.

Although this description of the algorithm may appear rather complex, the FastSLAM
algorithm can be readily implemented and is one of the easiest-to-implement SLAM algo-
rithms. Furthermore, FastSLAM has the big advantage over EKF SLAM that its complex-
ity grows logarithmically in the number of features (and thus not quadratically as in EKF
SLAM). This is mainly because instead of using a single covariance matrix for both the
robot pose and the map (as in EKF SLAM), it uses separate Kalman filters, one for each
feature. A very efficient implementation of FastSLAM is FastSLAM 2.0, which was pro-
posed by the same authors in [232].

Finally, another great advantage over EKF SLAM is that due to the use of randomized
sampling it does not require the linearization of the motion model and can also represent
non-Gaussian distributions.

5.8.9 Open challenges in SLAM
One of the first assumptions we made is that the map is time-invariant, that is, static. How-
ever, real-world environments present moving objects such as vehicles, animals, and
humans. A good SLAM algorithm should then be robust against dynamic objects. One way
to tackle this problem is by treating them as outliers. However, the ability to recognize these
objects, or even to predict where they are moving to, would improve the efficiency and the
quality of the final map.

Another current topic of research is multiple robot mapping [312], that is, how to com-
bine the individual readings of a team of multiple robots exploring the environment.

ut

xt 1–
k

xt
k

zt

wt
k

zt

xt
k

z0 t 1–

wt
k

p zt xt
k

z0 t 1– =

p zt xt z0 t 1–

Mobile Robot Localization 365
Another issue in SLAM is its sensitiveness to incorrect data associations. This problem
is particularly important at the loop closure, that is, when the robot returns to previously
visited locations after a long traverse. 2D laser rangefinders are more prone than cameras
to incorrect data associations due to the difficulty of identifying unique and distinctive fea-
tures in laser point clouds. The task of recognizing loop closures is, however, facilitated
with cameras. Cameras provide much richer information than lasers. Furthermore, the
development of distinctive feature detectors such as SIFT and SURF (section 4.5.5), which
are also robust under large changes in the camera viewpoint and scale, has allowed
researchers to cope with very challenging and large-scale environments (even 1000 km
[109] without GPS). This is made possible by the use of the “bag of features” approach,
which we described in section 4.6.

As we have seen in section 5.8.5, visual SLAM is a very recent active field of research
that is fascinating more and more researchers around the world. Although laser scanners
are still the most used sensors for SLAM, cameras are more appealing because they are
cheaper and provide much richer information. Furthermore, they are lighter than laser,
which enables the use on-board micro lightweight helicopters [76]. However, monocular
cameras have the disadvantage that they provide only bearing information rather than
depth; therefore, the solution to the SLAM will always be up to a scale. The absolute scale
can, however, be recovered using some prior information such as the knowledge of the size
of one element in the scene (a window, a table, etc.) or using other sensors such as GPS,
odometry, or IMU. A recent solution even demonstrated the ability to recover the absolute
scale by exploiting nonholonomic constraints of wheeled vehicles [277]. Stereo cameras
conversely provide measurements directly in the absolute scale, but their resolution
degrades with the measured distance.

5.8.10 Open source SLAM software and other resources
Here is a list of some of open source SLAM software and datasets available online.

1. http://www.openslam.org contains one of the most comprehensive lists of SLAM soft-
ware currently available. There you can find up-to-date resources for both C/C++ and
Matlab. Furthermore, here you also can to upload your own SLAM algorithm.

2. http://www.doc.ic.ac.uk/~ajd/software.html contains both C/C++ and Matlab implemen-
tations of Davison’s real-time monocular visual SLAM.

3. http://www.robots.ox.ac.uk/~gk/PTAM/ is an alternative real-time monocular visual
SLAM algorithm known as PTAM and implemented by Klein and Murray [167].

4. http://webdiis.unizar.es/~neira/software/slam/slamsim.htm is a Matlab EKF SLAM sim-
ulator

366 Chapter 5
5. http://www.rawseeds.org/home provides a large collection of benchmarked datasets for
SLAM. Several sensors were used to acquire the data, among them laser rangefinder,
multiple cameras, IMUs, and GPS. Furthermore, these datasets come with a ground truth
that can be used to evaluate the performance of your SLAM algorithm.

6. Additional software, datasets, and lectures about SLAM can be found on the websites of
the past SLAM summer schools: google SLAM summer school.

5.9 Problems

1. Consider a differential-drive robot that uses wheel encoders only. The wheels are a dis-
tance d apart, and each wheel has radius r. Suppose this robot uses only its encoders to
attempt to describe a square, with sides of length 1000r, returning to the origin. For each
of range error, turn error, and drift error, supposing an error rate of 10%, compute the
worst-case effect of each type of error on the different between the final actual robot
position and the original position in both position and orientation.

2. Consider the environment of figure 5.6. Your robot begins in the top left room and has
the goal of stopping in the large room at position B. Design a sequence for a behavior-
based robot to navigate successfully to B. Behaviors available are:
 LWF: left wall follow
 RWF: right wall follow
 HF: go down centerline of a hallway
 Turn X: turn X degrees left/right
 Move X: move X centimeters forward/backward
 EnterD: center and enter through a doorway
Termination conditions available are:
 DoorL: doorway on left
 DoorR: doorway on right
 HallwayI: hallway intersection

3. Consider exact cell decomposition. What is the worst-case and best-case number of
nodes that may be created when using this method as a function of the number of convex
polygons and the number of sides of each polygon?

4. Consider the case of figure 5.27 and the method of 5.6.7.5. Suppose an initial belief state:
{1,1–2,2–3}, with the robot facing east with certainty and with uncertainty {0.4, 0.4,
0.2} respectively. Two perceptual events occur. First: {door on left; door on right}. Sec-
ond: {nothing on left; hall on right}. Complete the resulting belief update and describe
the belief state. There is no need to normalize the results.

Mobile Robot Localization 367
5. Challenge Question.
Implement a simple EKF Visual SLAM for the case of a omnidirectional-drive robot
moving in a two-dimensional environment. Assume a constant velocity model. For sim-
plicity, you may also assume that the robot is constrained to move along a line, which
means Visual SLAM in a one-dimensional environment.

6 Planning and Navigation

6.1 Introduction

This book has focused on the elements of a mobile robot that are critical to robust mobility:
the kinematics of locomotion, sensors for determining the robot’s environmental context,
and techniques for localizing with respect to its map. We now turn our attention to the
robot’s cognitive level. Cognition generally represents the purposeful decision making and
execution that a system utilizes to achieve its highest-order goals.

In the case of a mobile robot, the specific aspect of cognition directly linked to robust
mobility is navigation competence. Given partial knowledge about its environment and a
goal position or series of positions, navigation encompasses the ability of the robot to act
based on its knowledge and sensor values so as to reach its goal positions as efficiently and
as reliably as possible. The focus of this chapter is how the tools of the previous chapters
can be combined to solve this navigation problem.

Within the mobile robotics research community, a great many approaches have been
proposed for solving the navigation problem. As we sample from this research background,
it will become clear that in fact there are strong similarities between all of these approaches,
even though they appear, on the surface, quite disparate. The key difference between vari-
ous navigation architectures is the manner in which they decompose the problem into
smaller subunits. In sections 6.3, 6.4, and 6.5, we describe the most popular of these archi-
tectures, contrasting their relative strengths and weaknesses.

First, however, in section 6.2 we discuss two additional key competences required for
mobile robot navigation. Given a map and a goal location, path planning involves identi-
fying a trajectory that will cause the robot to reach the goal location when executed. Path
planning is a strategic problem-solving competence, since the robot must decide what to do
over the long term to achieve its goals.

The second competence is equally important but occupies the opposite, tactical extreme.
Given real-time sensor readings, obstacle avoidance means modulating the trajectory of the
robot in order to avoid collisions. A great variety of approaches have demonstrated compe-
tent obstacle avoidance, and we survey a number of these approaches as well.

370 Chapter 6
6.2 Competences for Navigation: Planning and Reacting

In the artificial intelligence community, planning and reacting are often viewed as contrary
approaches or even opposites. When applied to physical systems such as mobile robots,
however, planning and reacting have a strong complementarity, each being critical to the
other’s success. The navigation challenge for a robot involves executing a course of action
(or plan) to reach its goal position. During execution, the robot must react to unforeseen
events (e.g., obstacles) in such a way as to still reach the goal. Without reacting, the plan-
ning effort will not pay off because the robot will never physically reach its goal. Without
planning, the reacting effort cannot guide the overall robot behavior to reach a distant
goal—again, the robot will never reach its goal.

An information-theoretic formulation of the navigation problem will make this comple-
mentarity clear. Suppose that a robot at time has a map and an initial belief state

. The robot’s goal is to reach a position while satisfying some temporal constraints:
. Thus, the robot must be at location at or before timestep n.

Although the goal of the robot is distinctly physical, the robot can only really sense its
belief state, not its physical location, and therefore we map the goal of reaching location
to reaching a belief state , corresponding to the belief that . With this for-
mulation, a plan is nothing more than one or more trajectories from to . In other
words, plan will cause the robot’s belief state to transition from to if the plan is
executed from a world state consistent with both and .

Of course, the problem is that the latter condition may not be met. It is entirely possible
that the robot’s position is not quite consistent with , and it is even likelier that is
either incomplete or incorrect. Furthermore, the real-world environment is dynamic. Even
if is correct as a single snapshot in time, the planner’s model regarding how changes
over time is usually imperfect.

In order to reach its goal nonetheless, the robot must incorporate new information gained
during plan execution. As time marches forward, the environment changes and the robot’s
sensors gather new information. This is precisely where reacting becomes relevant. In the
best of cases, reacting will modulate robot behavior locally in order to correct the planned-
upon trajectory so that the robot still reaches the goal. At times, unanticipated new infor-
mation will require changes to the robot’s strategic plans, and so ideally the planner also
incorporates new information as that new information is received.

Taken to the limit, the planner would incorporate every new piece of information in real
time, instantly producing a new plan that in fact reacts to the new information appropri-
ately. This extreme, at which point the concept of planning and the concept of reacting
merge, is called integrated planning and execution and is discussed in section 6.5.4.3.

R i Mi

bi p
locg R p g n ;= p

p
bg locg R p=

q bi bg

q bi bg

bi Mi

bi Mi

Mi M

Planning and Navigation 371
Completeness. A useful concept throughout this discussion of robot architecture involves
whether particular design decisions sacrifice the system’s ability to achieve a desired goal
whenever a solution exists. This concept is termed completeness. More formally, the robot
system is complete if and only if, for all possible problems (i.e., initial belief states, maps,
and goals), when there exists a trajectory to the goal belief state, the system will achieve
the goal belief state (see [40] for further details). Thus when a system is incomplete, then
there is at least one example problem for which, although there is a solution, the system
fails to generate a solution. As you may expect, achieving completeness is an ambitious
goal. Often, completeness is sacrificed for computational complexity at the level of repre-
sentation or reasoning. Analytically, it is important to understand how completeness is
compromised by each particular system.

In the following sections, we describe key aspects of planning and reacting as they apply
to mobile robot path planning and obstacle avoidance and describe how representational
decisions impact the potential completeness of the overall system. For greater detail, refer
to [32, 44, chapter 25].

6.3 Path Planning

Even before the advent of affordable mobile robots, the field of path planning was heavily
studied because of its applications in the area of industrial manipulator robotics. Interest-
ingly, the path-planning problem for a manipulator with, for instance, six degrees of free-
dom is far more complex than that of a differential-drive robot operating in a flat
environment. Therefore, although we can take inspiration from the techniques invented for
manipulation, the path-planning algorithms used by mobile robots tend to be simpler
approximations owing to the greatly reduced degrees of freedom. Furthermore, industrial
robots often operate at the fastest possible speed because of the economic impact of high
throughput on a factory line. So, the dynamics and not just the kinematics of their motions
are significant, further complicating path planning and execution. In contrast, a number of
mobile robots operate at such low speeds that dynamics are rarely considered during path
planning, further simplifying the mobile robot instantiation of the problem.

Configuration space. Path planning for manipulator robots and, indeed, even for most
mobile robots, is formally done in a representation called configuration space. Suppose that
a robot arm (e.g., SCARA robot) has degrees of freedom. Every state or configuration of
the robot can be described with real values: , …, . The k-values can be regarded as
a point in a -dimensional space called the configuration space of the robot. This
description is convenient because it allows us to describe the complex 3D shape of the robot
with a single -dimensional point.

k
k q1 qk

p k C

k

372 Chapter 6
Now consider the robot arm moving in an environment where the workspace (i.e., its
physical space) contains known obstacles. The goal of path planning is to find a path in the
physical space from the initial position of the arm to the goal position, avoiding all colli-
sions with the obstacles. This is a difficult problem to visualize and solve in the physical
space, particularly as grows large. But in configuration space the problem is straightfor-
ward. If we define the configuration space obstacle as the subspace of where the
robot arm bumps into something, we can compute the free space in which the
robot can move safely.

Figure 6.1 shows a picture of the physical space and configuration space for a planar
robot arm with two links. The robot’s goal is to move its end effector from position start to
end. The configuration space depicted is 2D because each of two joints can have any posi-
tion from 0 to . It is easy to see that the solution in C-space is a line from start to end
that remains always within the free space of the robot arm.

For mobile robots operating on flat ground, we generally represent robot position with
three variables , as in chapter 3. But, as we have seen, most robots are nonholo-
nomic, using differential-drive systems or Ackerman steered systems. For such robots, the
nonholonomic constraints limit the robot’s velocity in each configuration

. For details regarding the construction of the appropriate free space to solve such
path-planning problems, see [32, p. 405].

In mobile robotics, the most common approach is to assume for path-planning purposes
that the robot is in fact holonomic, simplifying the process tremendously. This is especially

Figure 6.1
Physical space (a) and configuration space (b): (a) A two-link planar robot arm has to move from the
configuration start to end. The motion is thereby constraint by the obstacles 1 to 4. (b) The corre-
sponding configuration space shows the free space in joint coordinates (angle 1 and 2) and a path
that achieves the goal.

x

y

1
2

3

4

(a) (b)

k
O C

F C O–=

2

x y

x· y· ·
x y

Planning and Navigation 373
common for differential-drive robots because they can rotate in place, and so a holonomic
path can be easily mimicked if the rotational position of the robot is not critical.

Furthermore, mobile roboticists will often plan under the further assumption that the
robot is simply a point. Thus we can further reduce the configuration space for mobile robot
path planning to a 2D representation with just - and -axes. The result of all this simpli-
fication is that the configuration space looks essentially identical to a 2D (i.e., flat) version
of the physical space, with one important difference. Because we have reduced the robot to
a point, we must inflate each obstacle by the size of the robot’s radius to compensate. With
this new, simplified configuration space in mind, we can now introduce common tech-
niques for mobile robot path planning.

Path-planning overview. The robot’s environment representation can range from a con-
tinuous geometric description to a decomposition-based geometric map or even a topolog-
ical map, as described in section 5.5. The first step of any path-planning system is thus to
transform this possibly continuous environmental model into a discrete map suitable for the
chosen path-planning algorithm. Path planners differ in how they use this discrete decom-
position. In this book, we describe two general strategies:

1. Graph search: a connectivity graph in free space is first constructed and then searched.
The graph construction process is often performed offline.

2. Potential field planning: a mathematical function is imposed directly on the free space.
The gradient of this function can then be followed to the goal.

6.3.1 Graph search
Graph search techniques have traditionally been strongly rooted in the field of mathemat-
ics. Nonetheless, in recent years much of the innovation has been devised in the robotics
community. This may be largely attributed to the need for real-time capable algorithms,
which can accommodate evolving maps and thus changing graphs. For most of these meth-
ods we distinguish two main steps: graph construction, where nodes are placed and con-
nected via edges, and graph search, where the computation of an (optimal) solution is
performed.

6.3.1.1 Graph construction
Starting from a representation of free and occupied space, several methods are known to
decompose this representation into a graph that can then be searched using any of the algo-
rithms described in section 6.3.1.2 and 6.3.1.3. The challenge lies in constructing a set of
nodes and edges that enable the robot to go anywhere in its free space while limiting the
total size of the graph.

First, we describe two road map approaches that achieve this result with dramatically
different types of roads. In the case of the visibility graph, roads come as close as possible

x y

374 Chapter 6
to obstacles and resulting optimal paths are minimum-length solutions. In the case of the
Voronoi diagram, roads stay as far away as possible from obstacles. We then detail cell
decomposition methods where the idea is to discriminate between free and occupied geo-
metric areas. Exact cell decomposition is a lossless decomposition, whereas approximate
cell decomposition represents an approximation of the original map. A graph is then formed
through a specified connectivity relation between cells. Finally, we describe the construc-
tion of lattice graphs, which are formed by shifting an underlying base set of edges over the
free space. Lattice graphs are typically constructed by employing a mathematical model of
the robot so that their edges become directly executable.

Visibility graph. The visibility graph for a polygonal configuration space consists of
edges joining all pairs of vertices that can see each other (including both the initial and goal
positions as vertices as well). The unobstructed straight lines (roads) joining those vertices
are obviously the shortest distances between them. The task of the path planner is then to
find a (shortest) path from the initial position to the goal position along the roads defined
by the visibility graph (figure 6.2).

Visibility graphs are moderately popular in mobile robotics, partly because their imple-
mentation is quite simple. Particularly when the environmental representation describes

C

Figure 6.2
Visibility graph [32]. The nodes of the graph are the initial and goal points and the vertices of the con-
figuration space obstacles (polygons). All nodes which are visible from each other are connected by
straight-line segments, defining the road map. This means there are also edges along each polygon’s
sides.

goal

start

Planning and Navigation 375
objects in the environment as polygons in either continuous or discrete space, the visibility
graph can employ the obstacle polygon descriptions readily.

There are, however, two important caveats when employing visibility graph search.
First, the size of the representation and the number of edges and nodes increase with the
number of obstacle polygons. Therefore, the method is extremely fast and efficient in
sparse environments, but it can be slow and inefficient compared to other techniques when
used in densely populated environments.

The second caveat is a much more serious potential flaw: solution paths found by graph
search tend to take the robot as close as possible to obstacles on the way to the goal. More
formally, we can prove that shortest solutions on the visibility graph are optimal in terms
of path length. This powerful result also means that all sense of safety, with respect to stay-
ing a reasonable distance from obstacles, is sacrificed for this optimality. The common
solution is to grow obstacles by significantly more than the robot’s radius, or, alternatively,
to modify the solution path after path planning to distance the path from obstacles where
possible. Of course such actions sacrifice the optimal-length results of visibility graph path
planning.

Voronoi diagram. Contrasting with the visibility graph approach, a Voronoi diagram is a
complete road map method that tends to maximize the distance between the robot and obsta-
cles in the map. For each point in free space, its distance to the nearest obstacle is computed.
If you plot that distance as the height coming out of the page, it increases as you move away
from an obstacle (see figure 6.3). At points that are equidistant from two or more obstacles,
such a distance plot has sharp ridges. The Voronoi diagram consists of the edges formed by
these sharp ridge points. When the configuration space obstacles are polygons, the Voronoi
diagram consists of straight line and parabolic segments only. Algorithms that find paths
on the Voronoi road map are complete, just as are visibility graph methods, because the
existence of a path in the free space implies the existence of one on the Voronoi diagram
as well (i.e., both methods guarantee completeness). However, the solution paths on the
Voronoi diagram are usually far from optimal in the sense of total path length.

The Voronoi diagram has an important weakness in the case of limited range localiza-
tion sensors. Since its edges maximize the distance to obstacles, any short-range sensor on
the robot will be in danger of failing to sense its surroundings. If such short-range sensors
are used for localization, then the chosen path will be quite poor from a localization point
of view. On the other hand, the visibility graph method can be designed to keep the robot
as close as desired to objects in the map.

There is, however, an important subtle advantage that the Voronoi diagram method has
over most other graphs: executability. Given a particular planned path via Voronoi diagram
planning, a robot with range sensors, such as a laser rangefinder or ultrasonics, can follow
a Voronoi edge in the physical world using simple control rules that match those used to

376 Chapter 6
create the Voronoi diagram: the robot maximizes the readings of local minima in its sensor
values. This control system will naturally keep the robot on Voronoi edges, so that Voronoi
motion can mitigate encoder inaccuracy. This interesting physical property of the Voronoi
diagram has been used to conduct automatic mapping of an environment by finding and
moving on unknown Voronoi edges, then constructing a consistent Voronoi map of the
environment [103].

Exact cell decomposition. Figure 6.4 depicts exact cell decomposition, whereby the
boundary of cells is based on geometric criticality. The resulting cells are each either com-
pletely free or completely occupied, and therefore path planning in the network is complete,
like the road-map–based methods seen earlier. The basic abstraction behind such a decom-
position is that the particular position of the robot within each cell of free space does not
matter; what matters is rather the robot’s ability to traverse from each free cell to adjacent
free cells.

The key disadvantage of exact cell decomposition is that the number of cells and, there-
fore, the overall computational planning efficiency depends on the density and complexity
of objects in the environment, just as with road-map–based systems. The key advantage is

goal

start

Figure 6.3
Voronoi diagram [32]. The Voronoi diagram consists of the lines constructed from all points that are
equidistant from two or more obstacles. The initial and goal configurations are mapped
into the Voronoi diagram to and , each by drawing the line along which its distance to
the boundary of the obstacles increases the fastest. The points on the Voronoi diagram represent tran-
sitions from straight line segments (minimum distance between two lines) to parabolic segments
(minimum distance between a line and a point).

qinit qgoal
q'init q'goal

Planning and Navigation 377
a result of this same correlation. In environments that are extremely sparse, the number of
cells will be small, even if the geometric size of the environment is very large. Thus the
representation will be efficient in the case of large, sparse environments. Practically speak-
ing, due to complexities in implementation, the exact cell decomposition technique is used
relatively rarely in mobile robot applications, although it remains a solid choice when a
lossless representation is highly desirable—for instance, to preserve completeness fully.

Approximate cell decomposition. By contrast, approximate cell decomposition is one of
the most popular graph construction techniques in mobile robotics. This is partly due to the
popularity of grid environmental representations. These grid representations are them-
selves fixed grid-size decompositions and so they are identical to an approximate cell
decomposition of the environment.

The most popular form of this, shown in figure 5.15, is the fixed-size cell decomposi-
tion. The cell size is not dependent on the particular objects in an environment, and so
narrow passage ways can be lost due to the inexact nature of the tessellation. Practically

Figure 6.4
Example of exact cell decomposition. Cells are for example divided according to the horizontal coor-
dinate of extremal obstacle points.

goal

start

1

7

2
3

4

5
6

8

9 10

11 12 13

14

15

17

16

18

181

2 3 4

5 6

7 8 9 10

11 12 13

14

17

15 16

378 Chapter 6
speaking, this is rarely a problem owing to the very small cell size used (e.g., 5 cm on each
side).

Figure 5.16 illustrates a variable-size approximate cell decomposition method. The free
space is externally bounded by a rectangle and internally bounded by three polygons. The
rectangle is recursively decomposed into smaller rectangles. Each decomposition generates
four identical new rectangles. At each level of resolution only the cells whose interiors lie
entirely in the free space are used to construct the connectivity graph. Path planning in such
adaptive representations can proceed in a hierarchical fashion. Starting with a coarse reso-
lution, the resolution is reduced until either the path planner identifies a solution or a limit
resolution is attained (e.g, • size of robot).

The great benefit of approximate cell decomposition is the low computational complex-
ity induced to path planning.

Lattice graph. Lattice structures have only recently been adapted to graph search. They
are formed by first constructing a base set of edges (such as the one depicted in figure 6.5)
and then repeating it over the whole configuration space to form a graph. As such, the
approximate cell decomposition technique could be interpreted as a simple lattice: the
neighborhood structure of each cell forms a cross, which is then repeated by 2D shifts of

k

Figure 6.5 16-directional state lattice constructed for a planetary exploration rover. The state
includes 2D position, heading, and curvature (). Note that straight segments are part of the
lattice set but occluded by longer curved segments. The lattice is 2D-shift invariant and partially
invariant to rotation. All successor edges of state () are depicted in black. Image courtesy of
M. Pivtoraiko [260].

x y k

0 0 0 0

Planning and Navigation 379
multiples of a single cell increment. The main benefit with respect to other graph construc-
tion methods lies in the design freedom in creating feasible edges, that is, edges that can be
inherently executed by a robotic platform, however. To this end, Bicchi et al. [73] suc-
ceeded in applying an input discretization to a mathematical model of their robotic platform
resulting in a configuration space lattice for certain simple kinematic vehicle models. Later,
more broadly applicable methods have been devised in the configuration space directly:
Pivtoraiko et al. [260] a priori fixed a problem specific configuration space discretization
and dimensionality (e.g., in 2D position, orientation, curvature; figure 6.5). They then com-
puted solutions to two point boundary problems between any two discrete states in the con-
figuration space by also using a robot model. In a final step, the resulting large number of
edges was pruned to a more manageable subset (the base lattice) by discarding edges which
are similar to or can be decomposed into other edges already part of the subset.

Lattice graphs are typically precomputed for a given robotic platform and stored in
memory. They thus belong to the class of approximate decomposition methods. Due to
their inherent executability, edges along the solution path may be directly used as feed-for-
ward commands to the controller.

Discussion. The fundamental cost of any fixed decomposition approach is memory. For a
large environment, even when sparse, the grid must be represented in its entirety. Practi-
cally, because of the falling cost of RAM computer memory, this disadvantage has been
mitigated in recent years.

In contrast to the exact decomposition methods, approximate approaches can sacrifice
completeness but are mathematically less involved and thus easier to implement. In con-
trast to the fixed-size decompositions, variable-size decompositions will adapt to the com-
plexity of the environment. Sparse environments will therefore contain appropriately fewer
nodes and edges and consume dramatically less memory.

6.3.1.2 Deterministic graph search
Suppose now that our environment map has been converted into a connectivity graph using
one of the graph generation methods presented earlier. Whatever map representation is cho-
sen, the goal of path planning is to find the best path in the map’s connectivity graph
between the start and the goal, where best refers to the selected optimization criteria (e.g.,
the shortest path). In this section, we present several search algorithms that have become
quite popular in mobile robotics. For an in-depth study on graph-search techniques we refer
the reader to [44].

Discriminators. Due to the similarity between many graph search algorithms, we begin
this section with an elaboration on their respective differences. To this end, it is beneficent
to introduce the concepts of expected total cost , path cost , edge traversal cost

, and heuristic cost , which are all functions of the node n (and an adjacent node
f n g n

c n n h n

380 Chapter 6
). In particular, we denote the accumulated cost from the start node to any given node n
with . The cost from a node n to an adjacent node becomes , and the
expected cost (heuristic cost) from a node n to the goal node is described with . The
total expected cost from start to goal via state n can then be written as

, (6.1)

where is a parameter that assumes algorithm-dependent values.
In the special case that every individual edge in the graph assumes the same traversal

cost (such as in an occupancy grid, introduced in section 5.5.2), optimal implementations
may be developed in a simpler form and obtain faster execution speeds compared to the
general instance. Examples of such algorithms include depth-first and breadth-first
searches. On the other hand, Dijkstra’s algorithm and variants allow for the computation of
optimal paths in nonuniform cost maps as well. This comes at the cost of higher algorithmic
complexity, however. In all of these implementations, .

In the case of , a heuristic function is employed, which essentially incorpo-
rates additional information about the problem set and thus often allows for faster conver-
gence of the search query. In this book, we restrict our attention to heuristics that are both
consistent and underestimate the true cost. Most practical heuristics fulfill these require-
ments. For , the optimal A* algorithm results, whereas for suboptimal or
greedy A* variants are obtained.

Now that we have a general idea on the relation between some of the most popular graph
search algorithms, we can proceed to introduce them in more detail.

Breadth-first search. This graph-search algorithm begins with the start node (denoted by
A in figure 6.6) and explores all of its neighboring nodes. Then, for each of these nodes, it
explores all their unexplored neighbors and so on. This process (that is, marking a node
“active”, exploring each of its neighbors and marking them “open”, and finally marking the
parent node “visited”) is called node expansion. In breadth-first search, nodes are expanded
in order of proximity to the start node with proximity defined as the shortest number of edge
transitions. The algorithm proceeds until it reaches the goal node where it terminates. The
computation of a solution is fast, since a reordering of nodes waiting for expansion is not
necessary. They are already sorted in increasing order of proximity to the start node. Figure
6.6 illustrates the working principle of the breadth-first algorithm for a given graph.

It can be seen that the search always returns the path with the fewest number of edges
between the start and goal node. If we assume that the cost of all individual edges in the
graph is constant, then breadth-first search is also optimal in that it always returns the min-
imum-cost path. In this case, a node's reexpansion (as in the case of node G) can be easily
circumvented by assigning a flag to a visited node. This addition does not affect solution

n'

g n n c n n
h n

f n g n h n +=

 0=

 0 h n

 1= 1

Planning and Navigation 381
optimality, since nodes are expanded in order of proximity to the start. However, if the
graph has nonuniform costs associated with each edge, then breadth-first search is not guar-
anteed to be cost-optimal. Indeed, the path with the minimum number of edges does not
necessarily coincide with the cheapest path, since there might be another path with more
edges but lower total cost.

An example of breadth-first search algorithm in the context of robotics is the wavefront
expansion algorithm, which is also known as NF1 or grassfire [183]. This algorithm is an
efficient and simple-to-implement technique for finding routes in fixed-size cell arrays.
The algorithm employs wavefront expansion from the goal position outward, marking for
each cell its (Manhattan) distance to the goal cell [154] (see figure 6.7). This process
continues until the cell corresponding to the initial robot position is reached. At this point,
the path planner can estimate the robot’s distance to the goal position as well as recover a
specific solution trajectory by simply linking together cells that are adjacent and always
closer to the goal.

Given that the entire array can be in memory, each cell is only visited once when looking
for the shortest discrete path from the initial position to the goal position. So, the search is
linear in the number of cells only. Thus, complexity does not depend on the sparseness and

Figure 6.6 Working principle of breadth-first search.

L
1

382 Chapter 6
density of the environment, nor on the complexity of the objects’ shapes in the environ-
ment.

Depth-first search. The working principle of depth-first search algorithm is shown in
figure 6.8. In contrast to breadth-first search, depth-first search expands each node up to the
deepest level of the graph (until the node has no more successors). As those nodes are
expanded, their branch is removed from the graph and the search backtracks by expanding
the next neighboring node of the start node until its deepest level and so on. An inconve-
nience of this algorithm is that it may revisit previously visited nodes or enter redundant
paths. However, these situations may be easily avoided through an efficient implementa-
tion. A significant advantage of depth-first over breadth-first is space complexity. In fact,
depth-first needs to store only a single path from the start node to the goal node along with
all the remaining unexpanded neighboring nodes for each node on the path. Once each node
has been expanded and all its children nodes have been explored, it can be removed from
memory.

Dijkstra’s algorithm. Named after its inventor, E.W. Dijkstra, this algorithm is similar to
breadth-first search, except that edge costs may assume any positive value and the search
still guarantees solution optimality [114]. This introduces some additional complexity into
the algorithm for which we need to introduce the concept of the heap, a specialized tree-
based data structure. Its elements (which are comprise to-be-expanded graph nodes) are
ordered according to a key, which in our case amounts to the expected total path cost
at that given node n. Dijkstra’s algorithm then expands nodes starting from the start similar

Figure 6.7
An example of the distance transform and the resulting path as it is generated by the NF1 function. S
denotes the start, G the goal. The neighbors of each cell i are defined as the four adjacent cells that
share an edge with i (4-neighborhood).

obstacle cell

cell with
distance value

12

1

1

2

2 3

4

4

5

5

6

6

7

7

889

1011

0

10
S

G

f n

Planning and Navigation 383
to breadth-first search, except that the neighbors of the expanded node are placed in the
heap and reordered according to their value, which corresponds to since no heu-
ristic is used. Subsequently, the cheapest state on the heap (the top element after reordering)
is extracted and expanded. This process continues until the goal node is expanded, or no
more nodes remain on the heap. A solution can then be backtracked from the goal to the
start. Due to reorder operations on the heap, the time complexity rises from in
breadth-first search to , with n the number of nodes, and m the number of
edges.

In robotic applications, Dijkstra’s search is typically computed from the robot's goal
position. Consequently, not only the best path from the start node to the goal is computed,
but also all lowest cost paths from any starting position in the graph to the goal node. The
robot may thus localize and determine the best route toward the goal based on its current
position. After moving some distance along this path, the process is repeated until the goal
is reached, or the environment changes (which would require a recomputation of the solu-
tion). This technique allows the robot to reach the goal without replanning even in presence
of localization and actuation noise.

A* algorithm. For consistent heuristics, the A* algorithm (pronounced “a star”) [147] is
similar to Dijkstra’s algorithm. However, the inclusion of a heuristic function , which

Figure 6.8 Working principle of depth-first search.

f n g n

O n m+
O n n m+log

h n

384 Chapter 6
encodes additional knowledge about the graph, makes this algorithm especially efficient
for single node to single node queries. In order to guarantee solution optimality, the heuris-
tic is required to be an underestimating function of the cost to go. In robotics, A* is mainly
employed on a grid, and the heuristic is then often chosen as the distance between any cell
and the goal cell in absence of any obstacles. If such knowledge is available, it can be used
to guide the search toward the goal node. Generally, this dramatically reduces the number
of node expansions required to arrive at a solution compared to Dijkstra’s algorithm.

A* search begins by expanding the start node and placing all of its neighbors on a heap.
In contrast to Dijkstra’s algorithm, the heap is ordered according to the smallest value
that includes the heuristic function . The lowest cost state is then extracted and
expanded. This continues until the goal node is explored. The lowest cost solution can again
be backtracked from the goal. For an example, see figure 6.9. The time complexity of A*
largely depends on the chosen heuristic . On average, much better performance than
with Dijkstra’s algorithm can be expected, however.

Often it is not necessary to obtain an optimal solution, as long as there are guarantees on
its suboptimality level. In such cases, a solution that costs at most times the (unknown)
optimal solution may be obtained by setting . The solution may then be improved as

f n
h n

Figure 6.9 Working principle of the A* algorithm. Nodes are expanded in order of lowest
 cost. is indicated at the top left corner, at the bottom right corner of

each cell. The neighborhood of each cell is selected as the 8-neighborhood (all eight adjacent cells).
Diagonal moves cost times as much as horizontal and vertical moves. Obstacle cells are colored
in black, expanded cells in dark gray, and cells put on the heap during this expansion step in light
gray. Image courtesy of M. Rufli.

f n g n h n += g n h n

2

h n

 1

Planning and Navigation 385
search time allows, by reusing parts of the previous queries. This procedure results in the
Anytime Replanning A* algorithm [191]. If the heuristic is accurate, far fewer states can
be expected to be expanded than for optimal A*.

D* algorithm. The D* algorithm [304, 170] represents an incremental replanning version
of A*, where the term incremental refers to the algorithm's reuse of previous search effort
in subsequent search iterations. Let us illustrate this with an example (see figure 6.10): our
robot is initially provided with a crude map of the environment (i.e., obtained from an aerial
image). In this map, the navigation module plans an initial path by employing A*. After
executing this path for a while, the robot observes some changes in the environment with
its onboard sensors. Subsequent to updating the map, a new solution path needs to be com-
puted. This is where D* comes into play. Instead of generating a new solution from scratch
(as A* would do), only states affected by the added (or removed) obstacle cells are recom-
puted. Because changes to the map are most often observed locally (due to proprioceptive
sensors), the planning problem is usually reversed; node expansion begins from the robot
goal state. In this way, large parts of the previous solution remain valid for the new com-
putation. Compared to A*, search time may decrease by a factor of one to two orders of
magnitude. For more detail and a description on computing affected states, consult [170].

Analogous to A*, the D* algorithm has also been extended to an anytime version, called
Anytime D* [192].

Figure 6.10 comparison of the number of expanded cells for D* (top) and Anytime D* (bottom,
starting with a sub-optimality value of 2.5) in a planning and re-planning scenario. Note that an open-
ing in the top wall is detected in the third frame, after the robot has moved upward twice. Obstacle
cells are colored in black, cells expanded during a given time-step in gray. Image courtesy of M.
Rufli.

386 Chapter 6
6.3.1.3 Randomized graph search
When encountering complex high-dimensional path planning problems (such as in manip-
ulation tasks on robotic arms, or molecule folding and docking queries for drug placement,
and so on) it becomes infeasible to solve them exhaustively within reasonable time limits.
Reverting to heuristic search methods is often not possible due to the lack of an appropriate
heuristic function and a reduction of the problem dimensionality frequently fails due to
velocity and acceleration constraints imposed on the model, which should not be violated
for security reasons. In such situations, randomized search becomes useful, since it forgoes
solution optimality for faster solution computation.

Rapidly Exploring Random Trees (RRTs). RRTs typically grow a graph online during
the search process and thus a priori only require an obstacle map but no graph decomposi-
tion. The algorithm begins with an initial tree (which might be empty) and then succes-
sively adds nodes, connected via edges, until a termination condition is triggered.
Specifically, during each step a random configuration in the free space is selected.
The tree node that is closest to , denoted as , is then computed. Starting from

, an edge (with fixed length) is grown toward using an appropriate robot motion
model. The configuration at the end of this edge is then added to the tree, if the con-
necting edge is collision-free [185]

Typical extensions to the algorithm aim at speeding-up solution computation: bidirec-
tional versions grow partial trees from both the start and goal configuration. Besides paral-
lelization capability, faster convergence in nonconvex environments can be expected [186].
Another often employed modification biases the process of selecting a random free space
configuration . The goal node is then selected instead of with a fixed nonzero
probability, thus guiding tree growth toward the goal state. This process is especially effi-
cient in sparse environments, but it may lead to a slowdown in presence of concave obsta-
cles [33].

Even though the RRT algorithm and its extensions lack solution optimality guarantees
and deterministic completeness, it can be proven that they are probabilistically complete.
This signifies that if a solution exists, the algorithm will eventually find it as the number of
nodes added to the tree grows toward infinity (see figure 6.11).

6.3.2 Potential field path planning
Potential field path planning creates a field, or gradient, across the robot’s map that directs
the robot to the goal position from multiple prior positions (see [32]). This approach was
originally invented for robot manipulator path planning and is used often and under many
variants in the mobile robotics community. The potential field method treats the robot as a
point under the influence of an artificial potential field . The robot moves by follow-

qrand

qrand qnear

qnear qrand

qnew

qrand qrand

U q

Planning and Navigation 387
ing the field, just as a ball would roll downhill. The goal (a minimum in this space) acts as
an attractive force on the robot, and the obstacles act as peaks, or repulsive forces. The
superposition of all forces is applied to the robot, which, in most cases, is assumed to be a
point in the configuration space (see figure 6.12). Such an artificial potential field smoothly
guides the robot toward the goal while simultaneously avoiding known obstacles.

It is important to note, though, that this is more than just path planning. The resulting
field is also a control law for the robot. Assuming the robot can localize its position with
respect to the map and the potential field, it can always determine its next required action
based on the field.

The basic idea behind all potential field approaches is that the robot is attracted toward
the goal, while being repulsed by the obstacles that are known in advance. If new obstacles
appear during robot motion, one could update the potential field in order to integrate this
new information. In the simplest case, we assume that the robot is a point; thus the robot’s
orientation is neglected, and the resulting potential field is only 2D . If we assume
a differentiable potential field function , we can find the related artificial force
acting at the position .

, (6.2)

where denotes the gradient vector of at position .

Figure 6.11 The evolution of a RRT. Image courtesy of S.M. LaValle [33].

 x y
U q F q

q x y =

F q U q –=

U q U q

388 Chapter 6
Figure 6.12
Typical potential field generated by the attracting goal and two obstacles (see [32]). (a) Configuration
of the obstacles, start (top left) and goal (bottom right). (b) Equipotential plot and path generated by
the field. (c) Resulting potential field generated by the goal attractor and obstacles.

(b)

(c)

(a)

Planning and Navigation 389
. (6.3)

The potential field acting on the robot is then computed as the sum of the attractive field
of the goal and the repulsive fields of the obstacles:

. (6.4)

Similarly, the forces can also be separated in a attracting and repulsing part:

. (6.5)

Attractive potential. An attractive potential can, for example, be defined as a parabolic
function.

, (6.6)

where is a positive scaling factor and denotes the Euclidean distance
. This attractive potential is differentiable, leading to the attractive force

 (6.7)

 (6.8)

 (6.9)

that converges linearly toward 0 as the robot reaches the goal.

Repulsive potential. The idea behind the repulsive potential is to generate a force away
from all known obstacles. This repulsive potential should be very strong when the robot is
close to the object, but it should not influence its movement when the robot is far from the
object. One example of such a repulsive field is

U

U
x

U
y

=

U q Uatt q Urep q +=

F q Fatt q Frep q –=

F q Uatt q Urep q ––=

Uatt q 1
2
---katt goal

2 q =

katt goal q
q qgoal– Fatt

Fatt q Uatt q –=

Fatt q katt goal q goal q –=

Fatt q katt q qgoal– –=

390 Chapter 6
 (6.10)

where is again a scaling factor, is the minimal distance from to the object and
 the distance of influence of the object. The repulsive potential function is positive

or zero and tends to infinity as gets closer to the object.
If the object boundary is convex and piecewise differentiable, is differentiable

everywhere in the free configuration space. This leads to the repulsive force :

 (6.11)

The resulting force acting on a point robot exposed to the
attractive and repulsive forces moves the robot away from the obstacles and toward the goal
(see figure 6.12). Under ideal conditions, by setting the robot’s velocity vector proportional
to the field force vector, the robot can be smoothly guided toward the goal, similar to a ball
rolling around obstacles and down a hill.

However, there are some limitations with this approach. One is local minima that appear
dependent on the obstacle shape and size. Another problem might appear if the objects are
concave. This might lead to a situation for which several minimal distances exist,
resulting in oscillation between the two closest points to the object, which could obviously
sacrifice completeness. For more detailed analyses of potential field characteristics, refer
to [32].

The extended potential field method. Khatib and Chatila proposed the extended poten-
tial field approach [164]. Like all potential field methods, this approach makes use of attrac-
tive and repulsive forces that originate from an artificial potential field. However, two
additions to the basic potential field are made: the rotation potential field and the task
potential field.

The rotation potential field assumes that the repulsive force is a function of the distance
from the obstacle and the orientation of the robot relative to the obstacle. This is done using

Urep q
1
2
---krep

1
 q
----------- 1

0

-----–
 2

 if q 0

0 if q 0 ,

=

krep q q
0 Urep

q
 q

Frep

Frep q Urep q

Frep q

–

krep
1

 q
----------- 1

0

-----–
 1

2 q

q qobstacle–

 q
---------------------------- if q 0

0 if q 0 .

=

=

F q Fatt q Frep q +=

 q

Planning and Navigation 391
a gain factor that reduces the repulsive force when an obstacle is parallel to the robot’s
direction of travel, since such an object does not pose an immediate threat to the robot’s
trajectory. The result is enhanced wall following, which was problematic for earlier imple-
mentations of potential fields methods.

The task potential field considers the present robot velocity, and from that it filters out
those obstacles that should not affect the near-term potential based on robot velocity. Again
a scaling is made, this time of all obstacle potentials when there are no obstacles in a sector
named in front of the robot. The sector is defined as the space that the robot will sweep
during its next movement. The result can be smoother trajectories through space. An exam-
ple comparing a classical potential field and an extended potential field is depicted in figure
6.13.

Other extensions. A great variety of improvements to the artificial potential field method
have been proposed and implemented since the development of Khatib's original approach
in 1986 [163]. The most promising of these methods seems to be related to the harmonic
potential field which is a solution to the Laplace equation [126, 230]

, , (6.12)

Z Z

Figure 6.13
Comparison between a classical potential field and an extended potential field. Image courtesy of
Raja Chatila [164].

a) Classical Potential

b) Rotation Potential
 with parameter

Goal

Goal

2
U q 0 q

392 Chapter 6
where again denotes the potential field as a function of the robot configuration and
represents the workspace the robot operates in.

The main benefit of the harmonic potential field method with respect to earlier imple-
mentations is the complete absence of local minima inside the workspace. A unique solu-
tion may be generated through equation (6.12) and the specification of boundary conditions
at start and goal locations and along the obstacle and workspace borders. In particular, the
start location is pulled up to a high potential, whereas the goal position is pulled down to
ground. For obstacle and workspace borders, we distinguish between two types of bound-
ary conditions each resulting in a characteristic potential field. The Dirichlet condition
requires that the potential is a known function along object boundaries (denoted with)

, . (6.13)

For , obstacle boundaries become equipotential lines. The robot then follows
a path perpendicular to objects in their close vicinity. Excessively long but safe paths tend
to emerge.

On the other hand, the von Neumann boundary condition requires

, . (6.14)

where is the normal vector to the obstacle boundary . For , robot motion par-
allel to object boundaries emerges. For all but the most elementary of obstacle geometries
the Laplace equation needs to be solved numerically through a discretization of the work-
space into cells. An iterative update rule (e.g the Gauss-Seidel method [155]) can then be
applied until convergence. In several extensions, regional and directional constraints have
been added to the harmonic potential field method to account for uneven terrain, nonholo-
nomic and kinematic vehicle constraints [195], one-way roads [206], and external forces
acting on the robot [207].

Potential fields are extremely easy to implement, much like the breadth-first search
described on page 380. Thus, it has become a common tool in mobile robot applications in
spite of its theoretical limitations.

This completes our brief summary of the path-planning techniques that are most popular
in mobile robotics. Of course, as the complexity of a robot increases (e.g., large degree of
freedom nonholonomics) and, particularly, as environment dynamics becomes more signif-
icant, then the path-planning techniques described earlier become inadequate for grappling
with the full scope of the problem. However, for robots moving in largely flat terrain, the
mobility decision-making techniques roboticists use often fall under one of the preceding
categories.

U q

U q f q = q

f q const=

U q
q

--------------- g q = q

n g q 0=

Planning and Navigation 393
But a path planner can take into consideration only the environmental obstacles that are
known to the robot in advance. During path execution the robot’s actual sensor values may
disagree with expected values due to map inaccuracy or a dynamic environment. Therefore,
it is critical that the robot modify its path in real time based on actual sensor values. This is
the competence of obstacle avoidance, which we discuss next.

6.4 Obstacle avoidance

Local obstacle avoidance focuses on changing the robot’s trajectory as informed by its sen-
sors during robot motion. The resulting robot motion is both a function of the robot’s cur-
rent or recent sensor readings and its goal position and relative location to the goal position.
The obstacle avoidance algorithms presented here depend to varying degrees on the exis-
tence of a global map and on the robot’s precise knowledge of its location relative to the
map. Despite their differences, all of the algorithms can be termed obstacle avoidance algo-
rithms because the robot’s local sensor readings play an important role in the robot’s future
trajectory. We first present the simplest obstacle avoidance systems that are used success-
fully in mobile robotics. The Bug algorithm represents such a technique in that only the
most recent robot sensor values are used, and the robot needs, in addition to current sensor
values, only approximate information regarding the direction of the goal. More sophisti-
cated algorithms are presented afterward, taking into account recent sensor history, robot
kinematics, and even dynamics.

6.4.1 Bug algorithm
The Bug algorithm [198, 199] is perhaps the simplest obstacle-avoidance algorithm one
could imagine. The basic idea is to follow the contour of each obstacle in the robot’s way
and thus circumnavigate it.

With Bug1, the robot fully circles the object first, then departs from the point with the
shortest distance toward the goal (figure 6.14). This approach is, of course, very inefficient
but it guarantees that the robot will reach any reachable goal.

With Bug2 the robot begins to follow the object’s contour, but departs immediately
when it is able to move directly toward the goal. In general this improved Bug algorithm
will have significantly shorter total robot travel, as shown in figure 6.15. However, one can
still construct situations in which Bug2 is arbitrarily inefficient (i.e., nonoptimal).

A number of variations and extensions of the Bug algorithm exist. We mention one
more, the Tangent Bug [161], which adds range sensing and a local environmental repre-
sentation termed the local tangent graph (LTG). Not only can the robot move more effi-
ciently toward the goal using the LTG, but it can also go along shortcuts when contouring
obstacles and switch back to goal seeking earlier. In many simple environments,
Tangent Bug approaches globally optimal paths.

394 Chapter 6
Practical application: example of Bug2. Because of the popularity and simplicity of
Bug2, we present a specific example of obstacle avoidance using a variation of this tech-
nique. Consider the path taken by the robot in figure 6.15. One can characterize the robot’s
motion in terms of two states, one that involves moving toward the goal and a second that
involves moving around the contour of an obstacle. We will call the former state GOAL-

Figure 6.14
Bug1 algorithm with H1, H2, hit points, and L1, L2, leave points [199].

H1 H2L1

L2

goal

start

Figure 6.15
Bug2 algorithm with H1, H2, hit points, and L1, L2, leave points [199].

H1

H2

L1

L2

goal

start

Planning and Navigation 395
SEEK and the latter WALLFOLLOW. If we can describe the motion of the robot as a function
of its sensor values and the relative direction to the goal for each of these two states, and if
we can describe when the robot should switch between them, then we will have a practical
implementation of Bug2. The following pseudocode provides the highest-level control
code for such a decomposition:

public void bug2(position goalPos){
 boolean atGoal = false;

 while(! atGoal){
 position robotPos = robot.GetPos(&sonars);
 distance goalDist = getDistance(robotPos, goalPos);
 angle goalAngle = Math.atan2(goalPos, robotPos)-robot.GetAngle();
 velocity forwardVel, rotationVel;

 if(goalDist < atGoalThreshold){
 System.out.println("At Goal!");
 forwardVel = 0;
 rotationVel = 0;
 robot.SetState(DONE);
 atGoal = true;
 }
 else{
 forwardVel = ComputeTranslation(&sonars);
 if(robot.GetState() == GOALSEEK){
 rotationVel = ComputeGoalSeekRot(goalAngle);
 if(ObstaclesInWay(goalAngle, &sonars))
 robot.SetState(WALLFOLLOW);
 }
 if(robot.GetState() == WALLFOLLOW){
 rotationVel = ComputeRWFRot(&sonars);
 if(! ObstaclesInWay(goalAngle, &sonars))
 robot.SetState(GOALSEEK);
 }
 }
 robot.SetVelocity(forwardVel, rotationVel);
 }
}

In the ideal case, when encountering an obstacle one would choose between left wall fol-
lowing and right wall following depending on which direction is more promising. In this
simple example we have only right wall following, a simplification for didactic purposes
that ought not find its way into a real mobile robot program.

396 Chapter 6
Now we consider specifying each remaining function in detail. Consider for our pur-
poses a robot with a ring of sonars placed radially around the robot. This imagined robot
will be differential-drive, so that the sonar ring has a clear “front” (aligned with the forward
direction of the robot). Furthermore, the robot accepts motion commands of the form
shown above, with a rotational velocity parameter and a translational velocity parameter.
Mapping these two parameters to individual wheel speeds for each of the two differential-
drive chassis’ drive wheels is a simple matter.

There is one condition we must define in terms of the robot’s sonar readings, Obsta-
clesInWay(). We define this function to be true whenever any sonar range reading in
the direction of the goal (within 45 degrees of the goal direction) is short:

private boolean ObstaclesInWay(angle goalAngle, sensorvals sonars) {
int minSonarValue;
minSonarValue=MinRange(sonars, goalAngle

 -(pi/4),goalAngle+(pi/4));
return (minSonarValue < 200);

} // end ObstaclesInWay() //

Note that the function ComputeTranslation() computes translational speed
whether the robot is wall-following or heading toward the goal. In this simplified example,
we define translation speed as being proportional to the largest range readings in the robot’s
approximate forward direction:

private int ComputeTranslation(sensorvals sonars) {
int minSonarFront;
minSonarFront = MinRange(sonars, -pi/4.0, pi/4.0);
if (minSonarFront < 200) return 0;
else return (Math.min(500, minSonarFront - 200));

} // end ComputeTranslation() //

There is a marked similarity between this approach and the potential field approach
described in section 6.3.2. Indeed, some mobile robots implement obstacle avoidance by
treating the current range readings of the robot as force vectors, simply carrying out vector
addition to determine the direction of travel and speed. Alternatively, many will consider
short-range readings to be repulsive forces, again engaging in vector addition to determine
an overall motion command for the robot.

When faced with range sensor data, a popular way of determining rotation direction and
speed is to simply subtract left and right range readings of the robot. The larger the differ-
ence, the faster the robot will turn in the direction of the longer range readings. The follow-
ing two rotation functions could be used for our Bug2 implementation:

Planning and Navigation 397
private int ComputeGoalSeekRot(angle goalAngle) {
if (Math.abs(goalAngle) < pi/10) return 0;
else return (goalAngle * 100);

} // end ComputeGoalSeekRot() //

private int ComputeRWFRot(sensorvals sonars) {
int minLeft, minRight, desiredTurn;
minRight = MinRange(sonars, -pi/2, 0);
minLeft = MinRange(sonars, 0, pi/2);
if (Math.max(minRight,minLeft) < 200) return (400);

 // hard left turn
else {

desiredTurn = (400 - minRight) * 2;
desiredTurn = Math.inttorange(-400, desiredTurn, 400);
return desiredTurn;

} // end else
} // end ComputeRWFRot() //

Note that the rotation function for the case of right wall following combines a general
avoidance of obstacles with a bias to turn right when there is open space on the right,
thereby staying close to the obstacle’s contour. This solution is certainly not the best solu-
tion for implementation of Bug2. For example, the wall follower could do a far better job
by mapping the contour locally and using a PID control loop to achieve and maintain a spe-
cific distance from the contour during the right wall following action.

Although such simple obstacle avoidance algorithms are often used in simple mobile
robots, they have numerous shortcomings. For example, the Bug2 approach does not take
into account robot kinematics, which can be especially important with nonholonomic
robots. Furthermore, since only the most recent sensor values are used, sensor noise can
have a serious impact on real-world performance. The following obstacle avoidance tech-
niques are designed to overcome one or more of these limitations.

6.4.2 Vector field histogram
Borenstein, together with Koren, developed the vector field histogram (VFH) [77]. Their
previous work, which was concentrated on potential fields [176], was abandoned due to the
method’s instability and inability to pass through narrow passages. Later, Borenstein,
together with Ulrich, extended the VFH algorithm to yield VFH+ [323] and VFH*[322].

One of the central criticisms of Bug-type algorithms is that the robot’s behavior at each
instant is generally a function of only its most recent sensor readings. This can lead to unde-
sirable and yet preventable problems in cases where the robot’s instantaneous sensor read-
ings do not provide enough information for robust obstacle avoidance. The VFH techniques
overcome this limitation by creating a local map of the environment around the robot. This
local map is a small occupancy grid, as described in section 5.7 populated only by relatively

398 Chapter 6
recent sensor range readings. For obstacle avoidance, VFH generates a polar histogram as
shown in figure 6.16. The x-axis represents the angle at which the obstacle was found,
and the y-axis represents the probability that there really is an obstacle in that direction
based on the occupancy grid’s cell values.

From this histogram a steering direction is calculated. First, all openings large enough
for the vehicle to pass through are identified. Then a cost function is applied to every such
candidate opening. The passage with the lowest cost is chosen. The cost function has
three terms:

 (6.15)

target_direction = alignment of the robot path with the goal;

wheel_orientation = difference between the new direction and the current wheel orien-
tation;

previous_direction = difference between the previously selected direction and the new
direction.

The terms are calculated such that a large deviation from the goal direction leads to a big
cost in the term “target direction.” The parameters , , in the cost function tune the
behavior of the robot. For instance, a strong goal bias would be expressed with a large value
for . For a complete definition of the cost function, refer to [176].

In the VFH+ improvement, one of the reduction stages takes into account a simplified
model of the moving robot’s possible trajectories based on its kinematic limitations (e.g.,
turning radius for an Ackerman vehicle). The robot is modeled to move in arcs or straight
lines. An obstacle thus blocks all of the robot’s allowable trajectories that pass through the
obstacle (figure 6.17a). This results in a masked polar histogram where obstacles are

-180° 180°

Figure 6.16
Polar histogram [177].

0

threshold

P

P

G

G a target_direction+b wheel_orientation+c previous_direction=

a b c G

a

Planning and Navigation 399
enlarged so that all kinematically blocked trajectories are properly taken into account (fig-
ure 6.17c).

6.4.3 The bubble band technique
This idea is an extension for nonholonomic vehicles of the elastic band concept suggested
by Khatib and Quinlan [166]. The original elastic band concept applied only to holonomic
vehicles and so we focus only on the bubble band extension made by Khatib, Jaouni, Cha-
tila, and Laumod [165].

A bubble is defined as the maximum local subset of the free space around a given con-
figuration of the robot that which can be traveled in any direction without collision. The
bubble is generated using a simplified model of the robot in conjunction with range infor-
mation available in the robot’s map. Even with a simplified model of the robot’s geometry,
it is possible to take into account the actual shape of the robot when calculating the bubble’s

Figure 6.17
Example of blocked directions and resulting polar histograms [54]. (a) Robot and blocking obstacles.
(b) Polar histogram. (b) Masked polar histogram.

Obstacle

0 90° 180°-180° -90°

0 90° 180°-180° -90°

a)

b)

c)

Obstacle

400 Chapter 6
size (figure 6.18). Given such bubbles, a band or string of bubbles can be used along the
trajectory from the robot’s initial position to its goal position to show the robot’s expected
free space throughout its path (see figure 6.19).

Clearly, computing the bubble band requires a global map and a global path planner.
Once the path planner’s initial trajectory has been computed and the bubble band is calcu-
lated, then modification of the planned trajectory ensues. The bubble band takes into
account forces from modeled objects and internal forces. These internal forces try to mini-
mize the “slack” (energy) between adjacent bubbles. This process, plus a final smoothing

Figure 6.18
Shape of the bubbles around the vehicle. Courtesy of Raja Chatila [165].

Figure 6.19
A typical bubble band. Courtesy of Raja Chatila [165].

Planning and Navigation 401
operation, makes the trajectory smooth in the sense that the robot’s free space will change
as smoothly as possible during path execution.

Of course, so far this is more akin to path optimization than obstacle avoidance. The
obstacle avoidance aspect of the bubble band strategy comes into play during robot motion.
As the robot encounters unforeseen sensor values, the bubble band model is used to deflect
the robot from its originally intended path in a way that minimizes bubble band tension.

An advantage of the bubble band technique is that one can account for the actual dimen-
sions of the robot. However, the method is most applicable only when the environment con-
figuration is well known ahead of time, just as with offline path-planning techniques.

6.4.4 Curvature velocity techniques

The basic curvature velocity approach. The curvature velocity approach (CVM) from
Simmons [291] enables the actual kinematic constraints and even some dynamic con-
straints of the robot to be taken into account during obstacle avoidance, which is an advan-
tage over more primitive techniques. CVM begins by adding physical constraints from the
robot and the environment to a velocity space. The velocity space consists of rotational
velocity and translational velocity , thus assuming that the robot travels only along arcs
of circles with curvature .

Two types of constraints are identified: those derived from the robot’s limitations in
acceleration and speed, typically , ; and, second, the
constraints from obstacles blocking certain and values due to their positions. The
obstacles begin as objects in a Cartesian grid but are then transformed to the velocity space
by calculating the distance from the robot position to the obstacle following some constant
curvature robot trajectory, as shown in figure 6.20. Only the curvatures that lie within
and are considered, since that curvature space will contain all legal trajectories.

To achieve real-time performance, the obstacles are approximated by circular objects,
and the contours of the objects are divided into few intervals. The distance from an endpoint
of an interval to the robot is calculated and in between the endpoints the distance function
is assumed to be constant.

The final decision of a new velocity (and) is made by an objective function. This
function is only evaluated on that part of the velocity space that fulfills the kinematic and
dynamic constraints as well as the constraints due to obstacles. The use of a Cartesian grid
for initial obstacle representation enables straightforward sensor fusion if, for instance, a
robot is equipped with multiple types of ranging sensors.

CVM takes into consideration the dynamics of the vehicle in useful manner. However a
limitation of the method is the circular simplification of obstacle shape. In some environ-
ments this is acceptable, while in other environments such a simplification can cause seri-

 v
c v=

vmax v vmax – max max –
v

cmin

cmax

v

402 Chapter 6
ous problems. The CVM method can also suffer from local minima, since no a priori
knowledge is used by the system.

The lane curvature method. Ko and Simmons presented an improvement of the CVM
that they named the lane curvature method (LCM) [168], based on their experiences with
the shortcomings of CVM, which had difficulty guiding the robot through intersections of
corridors. The problems stemmed from the approximation that the robot moves only along
fixed arcs, whereas in practice the robot can change direction many times before reaching
an obstacle.

LCM calculates a set of desired lanes, trading off lane length and lane width to the clos-
est obstacle. The lane with the best properties is chosen using an objective function. The
local heading is chosen in such way that the robot will transition to the best lane if it is not
in that lane already.

Experimental results have demonstrated better performance as compared to CVM. One
caveat is that the parameters in the objective function must be chosen carefully to optimize
system behavior.

6.4.5 Dynamic window approaches
Another technique for taking into account robot kinematics constraints is the dynamic
window obstacle avoidance method. A simple but very effective dynamic model gives this
approach its name. Two such approaches are represented in the literature. The dynamic
window approach [130] of Fox, Burgard, and Thrun, and the global dynamic window
approach [81] of Brock and Khatib.

Figure 6.20
Tangent curvatures for an obstacle (from [291]).

Obstacle

x

y

cmin

cmax

(xmin , ymin)

(xmax , ymax)

(xobs , yobs)

Planning and Navigation 403
The local dynamic window approach. In the local dynamic window approach, the kine-
matics of the robot is taken into account by searching a well-chosen velocity space. The
velocity space is all possible sets of tuples (,) where is the velocity and is the
angular velocity. The approach assumes that robots move only in circular arcs representing
each such tuple, at least during one timestamp.

Given the current robot speed, the algorithm first selects a dynamic window of all tuples
(,) that can be reached within the next sample period, taking into account the acceler-
ation capabilities of the robot and the cycle time. The next step is to reduce the dynamic
window by keeping only those tuples that ensure that the vehicle can come to a stop before
hitting an obstacle. The remaining velocities are called admissible velocities. In figure 6.21,
a typical dynamic window is represented. Note that the shape of the dynamic window is
rectangular, which follows from the approximation that the dynamic capabilities for trans-
lation and rotation are independent.

A new motion direction is chosen by applying an objective function to all the admissible
velocity tuples in the dynamic window. The objective function prefers fast forward motion,
maintenance of large distances to obstacles and alignment to the goal heading. The objec-
tive function O has the form

 (6.16)

heading = Measure of progress toward the goal location;

velocity = Forward velocity of the robot encouraging fast movements;

v v

v

Figure 6.21
The dynamic window approach (courtesy of Dieter Fox [130]). The rectangular window shows the
possible speeds and the overlap with obstacles in configuration space.v

O a heading v b velocity v c dist v ++=

404 Chapter 6
dist = Distance to the closest obstacle in the trajectory.

The global dynamic window approach. The global dynamic window approach adds, as
the name suggests, global thinking to the algorithm presented above. This is done by adding
NF1, or grassfire, to the objective function O presented above (see section and figure 6.7).
Recall that NF1 labels the cells in the occupancy grid with the total distance L to the goal.
To make this faster, the global dynamic window approach calculates the NF1 only on a
selected rectangular region that is directed from the robot toward the goal. The width of the
region is enlarged and recalculated if the goal cannot be reached within the constraints of
this chosen region.

This allows the global dynamic window approach to achieve some of the advantages of
global path planning without complete a priori knowledge. The occupancy grid is updated
from range measurements as the robot moves in the environment. The NF1 is calculated for
every new updated version. If the NF1 cannot be calculated because the robot is surrounded
by obstacles, the method degrades to the dynamic window approach. This keeps the robot
moving so that a possible way out may be found and NF1 can resume.

The global dynamic window approach promises real-time, dynamic constraints, global
thinking, and minimal free obstacle avoidance at high speed. An implementation has been
demonstrated with an omnidirectional robot using a 450 MHz on-board PC. This system
produced a cycle frequency of about 15 Hz when the occupancy grid was m with
a 5 cm resolution. Average robot speed in the tests was greater than 1 m/s.

6.4.6 The Schlegel approach to obstacle avoidance
Schlegel [280] presents an approach that considers the dynamics as well as the actual shape
of the robot. The approach is adopted for raw laser data measurements and sensor fusion
using a Cartesian grid to represent the obstacles in the environment. Real-time performance
is achieved by use of precalculated lookup tables.

As with previous methods we have described, the basic assumption is that a robot moves
in trajectories built up by circular arcs, defined as curvatures . Given a certain curvature

 Schlegel calculates the distance to collision between a single obstacle point in
the Cartesian grid and the robot, depicted in figure 6.22. Since the robot is allowed to be
any shape, this calculation is time-consuming, and the result is therefore precalculated and
stored in a lookup table.

For example, the search space window is defined for a differential-drive robot to be
all the possible speeds of the left and right wheels, . The dynamic constraints of the
robot are taken into account by refining to only those values that are reachable within
the next timestep, given the present robot motion. Finally, an objective function chooses
the best speed and direction by trading off goal direction, speed, and distance until colli-
sion.

30 30

ic

ic li x y

Vs

vr vl
Vs

Planning and Navigation 405
During testing Schlegel used a wavefront path planner. Two robot chassis were used,
one with synchro-drive kinematics and one with tricycle kinematics. The tricycle-drive
robot is of particular interest because it was a forklift with a complex shape that had a sig-
nificant impact on obstacle avoidance. Thus the demonstration of reliable obstacle avoid-
ance with the forklift is an impressive result. Of course, a disadvantage of this approach is
the potential memory requirements for the lookup table. In their experiments, the authors
used lookup tables of up to 2.5 Mb using a m Cartesian grid with a resolution of
10 cm and 323 different curvatures.

6.4.7 Nearness diagram
Attempting to close a model fidelity gap in obstacle avoidance methods, the nearness dia-
gram (ND) [222] can be considered to have some similarity to a VFH but solves several of
its shortcomings, especially in very cluttered spaces. It was also used in [223] to take into
account more precise geometric, kinematic, and dynamic constraints. This was achieved by
breaking the problem down into generating the most promising direction of travel with the
sole constraint a circular robot, then adapting this to the kinematic and dynamic constraints
of the robot, followed by a correction for robot shape if is noncircular (only rectangular
shapes were supported in the original publication). Global reasoning was added to the
approach and termed the global nearness diagram (GND) in [225], somewhat similar to the
GDWA extension to the DWA, but based on a workspace representation (instead of con-
figuration space) and updating free space in addition to obstacle information.

6.4.8 Gradient method
Realizing that current computer technology allows fast recalculation of wavefront propa-
gation techniques, the gradient method [171] formulates a grid global path planning that
takes into account closeness to obstacles and allows generating continuous interpolations

Figure 6.22
Distances resulting from the curvature , when the robot rotates around (from [280]).li ic M

obstacle pointso3

o1
o2

o4

l3

l1

l2

l4

forklift

M

6 6

406 Chapter 6
of the gradient direction at any given point in the grid. The NF1 is a special case of the pro-
posed algorithm, which calculates a navigation function at each timestep and uses the
resulting gradient information to drive the robot toward the goal on a smooth path and not
grazing obstacles unless necessary.

6.4.9 Adding dynamic constraints
Attempting to address the lack of dynamic models in most of the obstacle avoidance
approaches discussed above, a new kind of space representation was proposed by Minguez,
Montano, and Khatib in [224]. The ego-dynamic space is equally applicable to workspace
and configuration space methods. It transforms obstacles into distances that depend on the
braking constraints and sampling time of the underlying obstacle avoidance method. In
combination with the proposed spatial window (PF) to represent acceleration capabilities,
the approach was tested in conjunction with the ND and PF methods and gives satisfactory
results for circular holonomic robots, with plans to extend it to nonholonomic, noncircular
architectures.

6.4.10 Other approaches
The approaches described above are some of the most popularly referenced obstacle avoid-
ance systems. There are, however, a great many additional obstacle avoidance techniques
in the mobile robotics community. For example Tzafestas and Tzafestas [321] provide an
overview of fuzzy and neurofuzzy approaches to obstacle avoidance. Inspired by nature,
Chen and Quinn [98] present a biological approach in which they replicate the neural net-
work of a cockroach. The network is then applied to a model of a four-wheeled vehicle.

The Liapunov functions form a well known theory that can be used to prove stability for
nonlinear systems. In Vanualailai, Nakagiri, and Ha [326], the Liapunov functions are used
to implement a control strategy for two-point masses moving in a known environment. All
obstacles are defined as antitargets with an exact position and a circular shape. The antitar-
gets are then used to build the control laws for the system.

6.4.11 Overview
Table 6.1 gives an overview on the presented obstacle-avoidance approaches.

Planning and Navigation 407

Table 6.1
Overview of the most popular obstacle-avoidance algorithms

method

model fidelity

vi
ew

other requisites

se
ns

or
s

te
st

ed
ro

bo
ts

performance

sh
ap

e

ki
ne

m
at

ic
s

dy
na

m
ic

s

lo
ca

l
m

ap

gl
ob

al
m

ap

pa
th

pl
an

ne
r

cy
cl

e
tim

e

ar
ch

ite
ct

ur
e

re
m

ar
ks

Bu
g

Bu
g1

[1
98

, 1
99

]

po
in

t

lo
ca

l

ta
ct

ile

ve
ry

 in
ef

fic
ie

nt
,

ro
bu

st

Bu
g2

[1
98

, 1
99

]

po
in

t

lo
ca

l

ta
ct

ile

in
ef

fic
ie

nt
,

ro
bu

st

Ta
ng

en
t B

ug
[1

61
]

po
in

t

lo
ca

l

lo
ca

l t
an

ge
nt

gr
ap

h

ra
ng

e

ef
fic

ie
nt

 in
 m

an
y

ca
se

s,
 ro

bu
st

Ve
ct

or
 F

ie
ld

 H
is

to
gr

am
 (V

FH
)

VF
H

[7
7]

si
m

pl
is

tic

lo
ca

l

hi
st

og
ra

m
 g

rid

ra
ng

e

sy
nc

hr
o-

dr
iv

e
(h

ex
ag

on
al

)

27
m

s

20
 M

H
z,

 3
86

 A
T

lo
ca

l m
in

im
a,

os
ci

lla
tin

g
tra

je
ct

or
ie

s

VF
H

+
[1

76
, 3

23
]

ci
rc

le

ba
si

c

si
m

pl
is

tic

lo
ca

l

hi
st

og
ra

m
 g

rid

so
na

rs

no
nh

ol
on

om
ic

(G
ui

de
C

an
e)

6
m

s

66
 M

H
z,

 4
86

 P
C

lo
ca

l m
in

im
a

VF
H

*
[3

22
]

ci
rc

le

ba
si

c

si
m

pl
is

tic

es
se

nt
ia

lly
 lo

ca
l

hi
st

og
ra

m
 g

rid

so
na

rs

no
nh

ol
on

om
ic

(G
ui

de
C

an
e)

6
…

 2
42

 m
s

66
 M

H
z,

 4
86

 P
C

fe
w

er
 lo

ca
l

m
in

im
a

408 Chapter 6
Bu
bb

le
 b

an
d

El
as

tic
 b

an
d

[1
66

]

C
-s

pa
ce

gl
ob

al

po
ly

go
na

l

re
qu

ire
d

va
rio

us

Bu
bb

le
 b

an
d

[1
65

]

C
-s

pa
ce

ex
ac

t

lo
ca

l

po
ly

go
na

l

re
qu

ire
d

va
rio

us

C
ur

va
tu

re
 v

el
oc

ity

C
ur

va
tu

re
 v

el
oc

ity
m

et
ho

d
[2

91
]

ci
rc

le

ex
ac

t

ba
si

c

lo
ca

l

hi
st

og
ra

m
 g

rid

24
 s

on
ar

s
rin

g,
30

°
FO

V
la

se
r

sy
nc

hr
o-

dr
iv

e
(c

irc
ul

ar
)

12
5

m
s

66
 M

H
z,

 4
86

 P
C

lo
ca

l m
in

im
a,

 tu
rn

in
g

in
to

 c
or

rid
or

s

La
ne

 c
ur

va
tu

re
m

et
ho

d
[1

68
]

ci
rc

le

ex
ac

t

ba
si

c

lo
ca

l

hi
st

og
ra

m
 g

rid

24
 s

on
ar

s
rin

g,
30

°
FO

V
la

se
r

sy
nc

hr
o-

dr
iv

e
(c

irc
ul

ar
)

12
5

m
s

20
0

M
H

z,
 P

en
tiu

m

lo
ca

l m
in

im
a

D
yn

am
ic

 w
in

do
w

D
yn

am
ic

 w
in

do
w

ap
pr

oa
ch

 [1
30

]

ci
rc

le

ex
ac

t

ba
si

c

lo
ca

l

ob
st

ac
le

 li
ne

 fi
el

d

24
 s

on
ar

s
rin

g,
 5

6
in

fra
re

d
rin

g,
 s

te
re

o
ca

m
er

a

sy
nc

hr
o-

dr
iv

e
(c

irc
ul

ar
)

25
0

m
s

48
6

PC

lo
ca

l m
in

im
a

G
lo

ba
l d

yn
am

ic
w

in
do

w
 [8

1]

ci
rc

le

(h
ol

on
om

ic
)

ba
si

c

gl
ob

al

C
-s

pa
ce

 g
rid

N
F1

18
0°

 F
O

V
SC

K
la

se
r s

ca
nn

er

ho
lo

no
m

ic
 (c

irc
ul

ar
)

6.
7

m
s

45
0

M
H

z,
 P

C

tu
rn

in
g

in
to

 c
or

rid
or

s

Table 6.1
Overview of the most popular obstacle-avoidance algorithms

method

model fidelity

vi
ew

other requisites

se
ns

or
s

te
st

ed
ro

bo
ts

performance

sh
ap

e

ki
ne

m
at

ic
s

dy
na

m
ic

s

lo
ca

l
m

ap

gl
ob

al
m

ap

pa
th

pl
an

ne
r

cy
cl

e
tim

e

ar
ch

ite
ct

ur
e

re
m

ar
ks

Planning and Navigation 409
6.5 Navigation Architectures

Given techniques for path planning, obstacle avoidance, localization, and perceptual inter-
pretation, how do we combine all of these into one complete robot system for a real-world
application? One way to proceed would be to custom-design an application-specific, mono-
lithic software system that implements everything for a specific purpose. This may be effi-
cient in the case of a trivial mobile robot application with few features and even fewer
planned demonstrations. But for any sophisticated and long-term mobile robot system, the

O
th

er

Sc
hl

eg
el

[2
80

]

po
ly

go
n

ex
ac

t

ba
si

c

gl
ob

al

gr
id

w
av

ef
ro

nt

36
0°

 F
O

V
la

se
r s

ca
nn

er

sy
nc

hr
od

riv
e

(c
irc

ul
ar

),
tri

cy
cl

e
(fo

rk
lif

t)

al
lo

w
s

sh
ap

e
ch

an
ge

N
ea

rn
es

s
di

ag
ra

m
[2

22
, 2

23
]

ci
rc

le
 (b

ut
 g

en
er

al
fo

rm
ul

at
io

n)

(h
ol

on
om

ic
)

lo
ca

l

18
0°

 F
O

V
SC

K
la

se
r s

ca
nn

er

ho
lo

no
m

ic
 (c

irc
ul

ar
)

lo
ca

l m
in

im
a

G
lo

ba
l n

ea
rn

es
s

di
ag

ra
m

 [2
25

]

ci
rc

le
 (b

ut
 g

en
er

al
fo

rm
ul

at
io

n)

(h
ol

on
om

ic
)

gl
ob

al

gr
id

N
F1

18
0°

 F
O

V
SC

K
la

se
r s

ca
nn

er

ho
lo

no
m

ic
(c

irc
ul

ar
)

G
ra

di
en

t m
et

ho
d

[1
71

]

ci
rc

le

ex
ac

t

ba
si

c

gl
ob

al

lo
ca

l p
er

ce
pt

ua
l

sp
ac

e

fu
se

d

18
0°

 F
O

V
di

st
an

ce
 s

en
so

r

no
nh

ol
on

om
ic

(a
pp

ro
x.

 c
irc

le
)

10
0

m
s

(c
or

e
al

go
rit

hm
: 1

0
m

s)

26
6

M
H

z,
 P

en
tiu

m

Table 6.1
Overview of the most popular obstacle-avoidance algorithms

method

model fidelity

vi
ew

other requisites

se
ns

or
s

te
st

ed
ro

bo
ts

performance

sh
ap

e

ki
ne

m
at

ic
s

dy
na

m
ic

s

lo
ca

l
m

ap

gl
ob

al
m

ap

pa
th

pl
an

ne
r

cy
cl

e
tim

e

ar
ch

ite
ct

ur
e

re
m

ar
ks

410 Chapter 6
issue of mobility architecture should be addressed in a principled manner. The study of nav-
igation architectures is the study of principled designs for the software modules that con-
stitute a mobile robot navigation system. Using a well-designed navigation architecture has
a number of concrete advantages:

6.5.1 Modularity for code reuse and sharing
Basic software engineering principles embrace software modularity, and the same general
motivations apply equally to mobile robot applications. But modularity is of even greater
importance in mobile robotics because in the course of a single project the mobile robot
hardware or its physical environmental characteristics can change dramatically, a challenge
most traditional computers do not face. For example, one may introduce a Sick laser range-
finder to a robot that previously used only ultrasonic rangefinders. Or one may test an exist-
ing navigator robot in a new environment where there are obstacles that its sensors cannot
detect, thereby demanding a new path-planning representation.

We would like to change part of the robot’s competence without causing a string of side
effects that force us to revisit the functioning of other robot competences. For instance we
would like to retain the obstacle avoidance module intact, even as the particular ranging
sensor suite changes. In a more extreme example, it would be ideal if the nonholonomic
obstacle avoidance module could remain untouched even when the robot’s kinematic struc-
ture changes from a tricycle chassis to a differential-drive chassis.

6.5.2 Control localization
Localization of robot control is an even more critical issue in mobile robot navigation. The
basic reason is that a robot architecture includes multiple types of control functionality
(e.g., obstacle avoidance, path planning, path execution, etc.). By localizing each function-
ality to a specific unit in the architecture, we enable individual testing as well as a princi-
pled strategy for control composition. For example, consider collision avoidance. For
stability in the face of changing robot software, as well as for focused verification that the
obstacle avoidance system is correctly implemented, it is valuable to localize all software
related to the robot’s obstacle avoidance process. At the other extreme, high-level planning
and task decision making are required for robots to perform useful roles in their environ-
ment. It is also valuable to localize such high-level decision-making software, enabling it
to be tested exhaustively in simulation and thus verified even without a direct connection
to the physical robot. A final advantage of localization is associated with learning. Local-
ization of control can enable a specific learning algorithm to be applied to just one aspect
of a mobile robot’s overall control system. Such targeted learning is likely to be the first
strategy that yields successful integration of learning and traditional mobile robotics.

The advantages of localization and modularity provide a compelling case for the use of
principled navigation architectures.

Planning and Navigation 411
One way to characterize a particular architecture is by its decomposition of the robot’s
software. There are many favorite robot architectures, especially when one considers the
relationship between artificial intelligence level decision making and lower-level robot
control. For descriptions of such high-level architectures, refer to [2] and [39]. Here we
concentrate on navigation competence. For this purpose, two decompositions are particu-
larly relevant: temporal decomposition and control decomposition. In section 6.5.3 we
define these two types of decomposition, then present an introduction to behaviors, which
are a general tool for implementing control decomposition. Then, in section 6.5.4 we pres-
ent three types of navigation architectures, describing for each architecture an implemented
mobile robot case study.

6.5.3 Techniques for decomposition
Decompositions identify axes along which we can justify discrimination of robot software
into distinct modules. Decompositions also serve as a way to classify various mobile robots
into a more quantitative taxonomy. Temporal decomposition distinguishes between real-
time and non real-time demands on mobile robot operation. Control decomposition identi-
fies the way in which various control outputs within the mobile robot architecture combine
to yield the mobile robot’s physical actions. We will describe each type of decomposition
in greater detail.

6.5.3.1 Temporal decomposition
A temporal decomposition of robot software distinguishes between processes that have
varying real-time and non-real-time demands. Figure 6.23 depicts a generic temporal
decomposition for navigation. In this figure, the most real-time processes are shown at the

Figure 6.23
Generic temporal decomposition of a navigation architecture.

quasi real-time

tactical decisions

hard real-time

strategic decisions

offline planning

412 Chapter 6
bottom of the stack, with the highest category being occupied by processes with no real-
time demands.

The lowest level in this example captures functionality that must proceed with a guar-
anteed fast cycle time, such as a 40 Hz bandwidth. In contrast, a quasi real-time layer may
capture processes that require, for example, 0.1 second response time, with large allowable
worst-case individual cycle times. A tactical layer can represent decision making that
affects the robot’s immediate actions and is therefore subject to some temporal constraints,
while a strategic or offline layer represents decisions that affect the robot’s behavior over
the long term, with few temporal constraints on the module’s response time.

Four important, interrelated trends correlate with temporal decomposition. These are not
set in stone; there are exceptions. Nevertheless, these general properties of temporal
decompositions are enlightening.

Sensor response time. A particular module’s sensor response time can be defined as the
amount of time between acquisition of a sensor event and a corresponding change in the
output of the module. As one moves up the stack in figure 6.23, the sensor response time
tends to increase. For the lowest-level modules, the sensor response time is often limited
only by the raw processor and sensor speeds. At the highest-level modules, sensor response
can be limited by slow and deliberate decision-making processes.

Temporal depth. Temporal depth is a useful concept applying to the temporal window
that affects the module’s output, both backward and forward in time. Temporal horizon
describes the amount of look ahead used by the module during the process of choosing an
output. Temporal memory describes the historical time span of sensor input that is used by
the module to determine the next output. Lowest-level modules tend to have very little tem-
poral depth in both directions, whereas the deliberative processes of highest-level modules
make use of a large temporal memory and consider actions based on their long-term con-
sequences, making note of large temporal horizons.

Spatial locality. Hand in hand with temporal span, the spatial impact of layers increases
dramatically as one moves from low-level modules to high-level modules. Real-time mod-
ules tend to control wheel speed and orientation, controlling spatially localized behavior.
High-level strategic decision making has little or no bearing on local position, but it informs
global position far into the future.

Context specificity. A module makes decisions as a function not only of its immediate
inputs but also as a function of the robot’s context as captured by other variables, such as
the robot’s representation of the environment. Lowest-level modules tend to produce out-
puts directly as a result of immediate sensor inputs, using little context and therefore being

Planning and Navigation 413
relatively context insensitive. Highest-level modules tend to exhibit very high context spec-
ificity. For strategic decision making, given the same sensor values, dramatically different
outputs are nevertheless conceivable depending on other contextual parameters.

An example demonstrating these trends is depicted in figure 6.24, which shows a tem-
poral decomposition of a simplistic navigation architecture into four modules. At the lowest
level, the PID control loop provides feedback to control motor speeds. An emergency stop
module uses short-range optical sensors and bumpers to cut current to the motors when it
predicts an imminent collision. Knowledge of robot dynamics means that this module by
nature has a greater temporal horizon than the PID module. The next module uses longer-
range laser rangefinding sensor returns to identify obstacles well ahead of the robot and
make minor course deviations. Finally, the path planner module takes the robot’s initial and
goal positions and produces an initial trajectory for execution, subject to change based on
actual obstacles that the robot collects along the way.

Note that the cycle time, or bandwidth, of the modules changes by orders of magnitude
between adjacent modules. Such dramatic differences are common in real navigation archi-
tectures, and so temporal decomposition tends to capture a significant axis of variation in a
mobile robot’s navigation architecture.

6.5.3.2 Control decomposition
Whereas temporal decomposition discriminates based on the time behavior of software
modules, control decomposition identifies the way in which each module’s output contrib-
utes to the overall robot control outputs. Presentation of control decomposition requires the
evaluator to understand the basic principles of discrete systems representation and analysis.
For a lucid introduction to the theory and formalism of discrete systems, see [25, 136].

Consider the robot algorithm and the physical robot instantiation (i.e., the robot form
and its environment) to be members of an overall system whose connectivity we wish to

Figure 6.24
Sample four-level temporal decomposition of a simple navigating mobile robot. The column on the
right indicates realistic bandwidth values for each module.

PID speed control

Emergency stop

Range obstacle avoidance

Path planning

150 Hz

10 Hz

1 Hz

0.001 Hz

414 Chapter 6
examine. This overall system comprises a set of modules, each module connected
to other modules via inputs and outputs. The system is closed, meaning that the input of
every module is the output of one or more modules in . Each module has precisely
one output and one or more inputs. The one output can be connected to any number of other
modules inputs.

We further name a special module in to represent the physical robot and environ-
ment. Usually by we represent the physical object on which the robot algorithm is
intended to have impact, and from which the robot algorithm derives perceptual inputs. The
module contains one input and one output line. The input of represents the complete
action specification for the physical robot. The output of represents the complete percep-
tual output to the robot. Of course the physical robot may have many possible degrees of
freedom and, equivalently, many discrete sensors. But for this analysis we simply imagine
the entire input/output vector, thus simplifying r to just one input and one output. For sim-
plicity, we will refer to the input of as and to the robot’s sensor readings . From the
point of view of the rest of the control system, the robot’s sensor values are inputs, and
the robot’s actions are the outputs, explaining our choice of and .

Control decomposition discriminates between different types of control pathways
through the portion of this system comprising the robot algorithm. At one extreme, depicted
in figure 6.25 we can consider a perfectly linear, or sequential control pathway.

Such a serial system uses the internal state of all associated modules and the value of the
robot’s percept in a sequential manner to compute the next robot action . A pure serial
architecture has advantages relating to predictability and verifiability. Since the state and
outputs of each module depend entirely on the inputs it receives from the module upstream,
the entire system, including the robot, is a single well-formed loop. Therefore, the overall
behavior of the system can be evaluated using well-known discrete forward simulation
methods.

Figure 6.26 depicts the extreme opposite of pure serial control, a fully parallel control
architecture. Because we choose to define r as a module with precisely one input, this par-
allel system includes a special module that provides a single output for the consumption
of . Intuitively, the fully parallel system distributes responsibility for the system’s control
output across multiple modules, possibly simultaneously. In a pure sequential system,
the control flow is a linear sequence through a string of modules. Here, the control flow

S M m

m M

r M
r

r r
r

r O I
I

O I O

Figure 6.25
Example of a pure serial decomposition.

r
action

specification

perceptual

output

I O

n
r

O

Planning and Navigation 415
contains a combination step at which point the result of multiple modules may impact
in arbitrary ways.

Thus parallelization of control leads to an important question: how will the output of
each component module inform the overall decision concerning the value of ? One
simple combination technique is temporal switching. In this case, called switched parallel,
the system has a parallel decomposition but at any particular instant in time the output
can be attributed to one specific module. The value of can of course depend on a differ-
ent module at each successive time instant, but the instantaneous value of can always be
determined based on the functions of a single module. For instance, suppose that a robot
has an obstacle avoidance module and a path-following module. One switched control
implementation may involve execution of the path-following recommendation whenever
the robot is more than 50 cm from all sensed obstacles and execution of the obstacle-avoid-
ance recommendation when any sensor reports a range closer than 50 cm.

The advantage of such switched control is particularly clear if switching is relatively
rare. If the behavior of each module is well understood, then it is easy to characterize the
behavior of the switched control robot: it will obstacle avoid at times, and it will path-
follow other times. If each module has been tested independently, there is a good chance
the switched control system will also perform well. Two important disadvantages must be
noted. First, the overall behavior of the robot can become quite poor if the switching is itself
a high-frequency event. The robot may be unstable in such cases, switching motion modes
so rapidly as to dramatically devolve into behavior that is neither path-following nor obsta-
cle-avoiding. Another disadvantage of switched control is that the robot has no path-fol-
lowing bias when it is obstacle avoiding (and vice versa). Thus in cases where control ought
to mix recommendations from among multiple modules, the switched control methodology
fails.

In contrast, the much more complex mixed parallel model allows control at any given
time to be shared between multiple modules. For example, the same robot could take the
obstacle avoidance module’s output at all times, convert it to a velocity vector, and combine

Figure 6.26
Example of a pure parallel decomposition.

r
action

specification

perceptual

output
n

O

O

O
O

O

416 Chapter 6
it with the path-following module’s output using vector addition. Then the output of the
robot would never be due to a single module, but would result from the mathematical com-
bination of both modules outputs. Mixed parallel control is more general than switched
control, but by that token it is also a more challenging technique to use well. Whereas with
switched control most poor behavior arises out of inopportune switching behavior, in
mixed control the robot’s behavior can be quite poor even more readily. Combining multi-
ple recommendations mathematically does not guarantee an outcome that is globally supe-
rior, just as combining multiple vectors when deciding on a swerve direction to avoid an
obstacle can result in the very poor decision of going straight ahead. Thus, great care must
be taken in mixed parallel control implementations to fashion mixture formulas and indi-
vidual module specifications that lead to effective mixed results.

Both the switched and mixed parallel architectures are popular in the behavior robotics
community. Arkin [2] proposes the motor-schema architecture in which behaviors (i.e.,
modules in the earlier discussion) map sensor value vectors to motor value vectors. The
output of the robot algorithm is generated, as in mixed parallel systems, using a linear com-
bination of the individual behavior outputs. In contrast, Maes [201, 202] produces a
switched parallel architecture by creating a behavior network in which a behavior is chosen
discretely by comparing and updating activation levels for each behavior. The subsumption
architecture of Brooks [82] is another example of a switched parallel architecture, although
the active model is chosen via a suppression mechanism rather than activation level. For
further discussion, see [2].

One overall disadvantage of parallel control is that verification of robot performance can
be extremely difficult. Because such systems often include truly parallel, multithreaded
implementations, the intricacies of robot-environment interaction and sensor timing
required to represent properly all conceivable module-module interactions can be difficult
or impossible to simulate. So, much testing in the parallel control community is performed
empirically using physical robots.

An important advantage of parallel control is its biomimetic aspect. Complex organic
organisms benefit from large degrees of true parallelism (e.g., the human eye), and one goal
of the parallel control community is to understand this biologically common strategy and
leverage it to advantage in robotics.

6.5.4 Case studies: tiered robot architectures
We have described temporal and control decompositions of robot architecture, with the
common theme that the roboticist is always composing multiple modules together to make
up that architecture. Let us turn again toward the overall mobile robot navigation task with
this understanding in mind. Clearly, robot behaviors play an important role at the real-time
levels of robot control, for example, path-following and obstacle avoidance. At higher tem-
poral levels, more tactical tasks need to modulate the activation of behaviors, or modules,

Planning and Navigation 417
in order to achieve robot motion along the intended path. Higher still, a global planner
could generate paths to provide tactical tasks with global foresight.

In chapter 1, we introduced a functional decomposition showing such modules of a
mobile robot navigator from the perspective of information flow. The relevant figure is
shown here again as figure 6.27.

In such a representation, the arcs represent aspects of real-time and non-real-time com-
petence. For instance, obstacle avoidance requires little input from the localization module
and consists of fast decisions at the cognition level followed by execution in motion con-
trol. In contrast, PID position feedback loops bypass all high-level processing, tying the
perception of encoder values directly to lowest-level PID control loops in motion control.
The trajectory of arcs through the four software modules provides temporal information in
such a representation.

Using the tools of this chapter, we can now present this same architecture from the per-
spective of a temporal decomposition of functionality. This is particularly useful because
we wish to discuss the interaction of strategic, tactical, and real-time processes in a naviga-
tion system.

Figure 6.28 depicts a generic tiered architecture based on the approach of Pell and col-
leagues [256] used in designing an autonomous spacecraft, Deep Space One. This figure is
similar to figure 6.24 in presenting a temporal decomposition of robot competence. How-
ever, the boundaries separating each module from adjacent modules are specific to robot
navigation.

Path planning embodies strategic-level decision making for the mobile robot. Path plan-
ning uses all available global information in non-real-time to identify the right sequence of
local actions for the robot. At the other extreme, real-time control represents competences
requiring high bandwidth and tight sensor-effector control loops. At its lowest level, this

Figure 6.27
The basic architectural example used throughout this text.

Perception

CognitionLocalization

Motion Control

Position
Position

Local Map
Local Map

Environment Model
Local Map

P
at

h

P
er

ce
pt

io
n

to
 A

ct
io

n

O
bs

ta
cl

e
A

vo
id

an
ce

P
os

it
io

n
F

ee
db

ac
k

M
ix

ed
 A

pp
ro

ac
h

Real World
Environment

418 Chapter 6
includes motor velocity PID loops. Above those, real-time control also includes low-level
behaviors that may form a switch or mixed parallel architecture.

In between the path planner and real-time control tiers sits the executive, which is
responsible for mediating the interface between planning and execution. The executive is
responsible for managing the activation of behaviors based on information it receives from
the planner. The executive is also responsible for recognizing failure, saving (placing the
robot in a stable state), and even reinitiating the planner as necessary. It is the executive in
this architecture that contains all tactical decision making as well as frequent updates of the
robot’s short-term memory, as is the case for localization and mapping.

It is interesting to note the similarity between this general architecture, used in many
specialized forms in mobile robotics today, and the architecture implemented by Shakey,
one of the very first mobile robots, in 1969 [242]. Shakey had LLA (low-level actions) that
formed the lowest architectural tier. The implementation of each LLA included the use of
sensor values in a tight loop just as in today’s behaviors. Above that, the middle architec-
tural tier included the ILA (intermediate-level actions), which would activate and deactivate
LLA as required based on perceptual feedback during execution. Finally, the topmost tier
for Shakey was STRIPS (Stanford Research Institute Planning System), which provided
global look ahead and planning, delivering a series of tasks to the intermediate executive
layer for execution.

Although the general architecture shown in figure 6.28 is useful as a model for robot
navigation, variant implementations in the robotics community can be quite different. Next,
we present three particular versions of the general tiered architecture, describing for each

Figure 6.28
A general tiered mobile robot navigation architecture based on a temporal decomposition.

PID motion control

Real-time controller

Executive

Path planning

behavior 1 behavior 2 behavior 3

Robot Hardware

Planning and Navigation 419
version at least one real-world mobile robot implementation. For broader discussions of
various robot architectures, see [39].

6.5.4.1 Offline planning
Certainly the simplest possible integration of planning and execution is no integration at
all. Consider figure 6.29, in which there are only two software tiers. In such navigation
architectures, the executive does not have a planner at its disposal but must contain a priori
all relevant schemes for traveling to desired destinations.

The strategy of leaving out a planner altogether is of course extremely limiting. Moving
such a robot to a new environment demands a new instantiation of the navigation system,
and so this method is not useful as a general solution to the navigation problem. However
such robotic systems do exist, and this method can be useful in two cases.

Static route applications. In mobile robot applications where the robot operates in a
completely static environment using a route navigation system, it is conceivable that the
number of discrete goal positions is so small that the environmental representation can
directly contain paths to all desired goal points. For example, in factory or warehouse set-
tings, a robot may travel a single looping route by following a buried guidewire. In such
industrial applications, path-planning systems are sometimes altogether unnecessary when
a precompiled set of route solutions can be easily generated by the robot programmers. The
Chips mobile robot is an example of a museum robot that also uses this architecture [251].
Chips operates in a unidirectional looping track defined by its colored landmarks. Further-
more, it has only twelve discrete locations at which it is allowed to stop. Due to the sim-
plicity of this environmental model, Chips contains an executive layer that directly caches

Figure 6.29
A two-tiered architecture for offline planning.

PID motion control

Real-time controller

Executive

behavior 1 behavior 2 behavior 3

Robot Hardware

420 Chapter 6
the path required to reach each goal location rather than a generic map with which a path
planner could search for solution paths.

Extreme reliability demands. Not surprisingly, another reason to avoid online planning
is to maximize system reliability. Since planning software can be the most sophisticated
portion of a mobile robot’s software system, and since in theory at least planning can take
time exponential to the complexity of the problem, imposing hard temporal constraints on
successful planning is difficult if not impossible. By computing all possible solutions
offline, the industrial mobile robot can trade versatility for effective constant-time planning
(while sacrificing significant memory of course). A real-world example of offline planning
for this reason can be seen in the contingency plans designed for space shuttle flights.
Instead of requiring astronauts to solve problems online, thousands of conceivable issues
are postulated on Earth, and complete conditional plans are designed and published in
advance of the shuttle flights. The fundamental goal is to provide an absolute upper limit
on the amount of time that passes before the astronauts begin resolving the problem, sacri-
ficing a great deal of ground time and paperwork to achieve this performance guarantee.

6.5.4.2 Episodic planning
The fundamental information-theoretic disadvantage of planning offline is that, during run-
time, the robot is sure to encounter perceptual inputs that provide information, and it would
be rational to take this additional information into account during subsequent execution.
Episodic planning is the most popular method in mobile robot navigation today because it
solves this problem in a computationally tractable manner.

As shown in figure 6.30, the structure is three-tiered, as is the general architecture of
figure 6.28. The intuition behind the role of the planner is as follows. Planning is compu-
tationally intensive, and therefore planning too frequently would have serious disadvan-
tages. But the executive is in an excellent position to identify when it has encountered
enough information (e.g., through feature extraction) to warrant a significant change in
strategic direction. At such points, the executive will invoke the planner to generate, for
example, a new path to the goal.

Perhaps the most obvious condition that triggers replanning is detection of a blockage
on the intended travel path. For example, in [281] the path-following behavior returns fail-
ure if it fails to make progress for a number of seconds. The executive receives this failure
notification, modifies the short-term occupancy grid representation of the robot’s surround-
ings, and launches the path planner in view of this change to the local environment map.

A common technique to delay planning until more information has been acquired is
called deferred planning. This technique is particularly useful in mobile robots with
dynamic maps that become more accurate as the robot moves. For example, the commer-
cially available Cye robot can be given a set of goal locations. Using its grassfire breadth-

Planning and Navigation 421
first planning algorithm, this robot will plot a detailed path to the closest goal location only
and will execute this plan. Upon reaching this goal location, its map will have changed
based on the perceptual information extracted during motion. Only then will Cye’s execu-
tive trigger the path planner to generate a path from its new location to the next goal loca-
tion.

The robot Pygmalion implements an episodic planning architecture along with a more
sophisticated strategy when encountering unforeseen obstacles in its way [58, 259]. When
the lowest-level behavior fails to make progress, the executive attempts to find a way past
the obstacle by turning the robot 90 degrees and trying again. This is valuable because the
robot is not kinematically symmetric, and so servoing through a particular obstacle course
may be easier in one direction than the other.

Pygmalion’s environment representation consists of a continuous geometric model as
well as an abstract topological network for route planning. Thus, if repeated attempts to
clear the obstacle fail, then the robot’s executive will temporarily cut the topological con-
nection between the two appropriate nodes and will launch the planner again, generating a
new set of waypoints to the goal. Next, using recent laser rangefinding data as a type of
local map (see figure 6.30), a geometric path planner will generate a path from the robot’s
current position to the next waypoint.

In summary, episodic planning architectures are extremely popular in the mobile robot
research community. They combine the versatility of responding to environmental changes
and new goals with the fast response of a tactical executive tier and behaviors that control
real-time robot motion. As shown in figure 6.30, it is common in such systems to have both
a short-term local map and a more strategic global map. Part of the executive’s job in such

Figure 6.30
A three-tiered episodic planning architecture.

PID motion control

Real-time controller

Executive

Path planning

behavior 1 behavior 2 behavior 3

Robot Hardware

Local
knowledge

Global
knowledge, map

422 Chapter 6
dual representations is to decide when and if new information integrated into the local map
is sufficiently nontransient to be copied into the global knowledge base.

6.5.4.3 Integrated planning and execution
Of course, the architecture of a commercial mobile robot must include more functionality
than just navigation. But limiting this discussion to the question of navigation architectures
leads to what may at first seem a degenerate solution.

The architecture shown in figure 6.31 may look similar to the offline planning architec-
ture of figure 6.29, but in fact it is significantly more advanced. In this case, the planner tier
has disappeared because there is no longer a temporal decomposition between the executive
and the planner. Planning is simply one small part of the executive’s nominal cycle of activ-
ities, where the local and global representations are the same. The advantage of this
approach is that the robot’s actions at every cycle are guided by a global path planner, and
they are therefore optimal in view of all of the information the robot has gathered.

Integrated planning and execution has largely been made feasible due to innovations in
graph search algorithms (e.g. the D* algorithm described on page page 385) and graph rep-
resentation (e.g., state lattice graphs, whose edges can be inherently executed by the robotic
platform). As a result, formidable real-time implementations devoid of obstacle avoidance
modules have emerged: Pivtoraiko et al. [260] showed that graph search on a 3D state lat-
tice (including 2D position and heading) can be as efficient as 2D grid search. In the work
of Ferguson et al. [127], an extension to this strategy was successfully employed to navigate
an autonomous car in large scale parking lots. Rufli et al. [271, 272] added velocity dimen-
sions to the aforementioned state lattice representation which allowed them to take into
account position and velocity information of nearby dynamic obstacles during the planning
step. The result is a feasible, globally optimal, time-parametrized path that inherently

Figure 6.31
An integrated planning and execution architecture in which planning is nothing more than a real-time
execution step (behavior).

PID motion control

Real-time controller

Global Executive

behavior 1 behavior 2 behavior 3

Robot Hardware

Global
knowledge, map

Planning and Navigation 423
avoids dynamic obstacles, a task that has traditionally been carried out by local collision
avoidance modules.

The described methods naturally face limits of applicability as the size of the environ-
ment increases. This issue can be accounted for by applying multiresolution graph
approaches, however. Close to the robot, a high-fidelity lattice may be employed, farther
away a lower-resolution one. Hundreds of meters distant, the lattice may transition into a
road network such as the ones often used in commercial GPS-based navigation systems.

Still, the recent success of integrated planning and execution methods underlines the fact
that the designer of a robot navigation architecture must consider not only all aspects of the
robot and its environmental task but also the state of processor, GPU, and memory technol-
ogy. We expect that mobile robot architecture design is sure to remain an active area of
innovation for years to come. All forms of technological progress, from robot sensor inven-
tions to processor speed increases, and further parallelization are likely to catalyze new
innovations in mobile robot architecture as previously unimaginable tactics become realiz-
able.

6.6 Problems

1. Consider completeness and optimality properties for each of:
 Visibility graph
 Voronoi diagram
 Exact cell decomposition
 Approximate cell decomposition
In the framework of path planning, categorize for each whether it is complete/incom-
plete, and optimal/ not guaranteed-optimal for path planning.

2. Consider an Ackerman steering 4-wheel high speed Martian rover. Consider all the
obstacle avoidance techniques described in 6.2. Explain for every option its advantage
or disadvantage, in one sentence each, for this specific application. Specifically do so
for: Schlegel, local dynamic window, LCM, CVM, VFH, Bubble band, Bug.

3. Consider an autonomous driving robot for highway driving. Propose a temporal decom-
position, as in figure 6.24, with at least five levels, describing control frequency at each
level and the specific driving skills/behaviors incorporated at that level.

4. Challenge Question.
Consider a robot that navigates with range sensors that have a limited useful range r.
Propose a path-planning method based on the ones in 6.3 that is complete and maintains
a safe distance from objects while also staying within distance r from objects whenever
possible.

Bibliography

Books

[1] Adams, M.D., Sensor Modelling: Design and Data Processing for Autonomous
Navigation. World Scientific Series in Robotics and Intelligent Systems. Singapore,
World Scientific Publishing, 1999.

[2] Arkin, R.C., Behavioral Robotics. Cambridge MA, MIT Press, 1998.
[3] Bar-Shalom, Y., Li, X.-R., Estimation and Tracking: Principles, Techniques, and

Software. Norwood, MA, Artech House, 1993.
[4] Benosman, R., Kang, S. B., Panoramic Vision: Sensors, Theory, and Applications,

New York, Springer-Verlag, 2001.
[5] Borenstein, J., Everett, H.R., Feng, L., Navigating Mobile Robots: Systems and

Techniques. Natick, MA, A.K. Peters, Ltd., 1996.
[6] Borenstein, J., Everett, H.R., Feng, L., Where Am I? Sensors and Methods for

Mobile Robot Positioning. Technical report, Ann Arbor, University of Michigan,
1996. Available at http://www-personal.engin.umich.edu/~johannb/position.htm.

[7] Bradski, G., Kaehler, A., Learning OpenCV: Computer Vision with the OpenCV
Library, Sebastopol, CA, O’Reilly Media, Inc., 1st edition, 2008.

[8] Breipohl, A.M., Probabilistic Systems Analysis: An Introduction to Probabilistic
Models, Decisions, and Applications of Random Processes. New York, John Wiley
& Sons, 1970.

[9] Bundy, A. (editor), Artificial Intelligence Techniques: A Comprehensive Catalogue.
New York, Springer-Verlag, 1997.

[10] Canudas de Wit, C., Siciliano, B., and Bastin G. (editors), Theory of Robot Control.
New York, Spinger, 1996.

[11] Carroll, R.J., Ruppert, D., Transformation and Weighting in Regression. New York,
Chapman and Hall, 1988.

[12] Cox, I.J., Wilfong, G.T. (editors), Autonomous Robot Vehicles. New York,
Springer-Verlag, 1990.

[13] Craig, J.J., Introduction to Robotics: Mechanics and Control. 2nd edition. Boston,
Addison-Wesley, 1989.

[14] De Silva, C.W., Control Sensors and Actuators. Upper Saddle River, NJ, Prentice-
Hall, 1989.

[15] Daniillidis, K., Klette, R., Imaging Beyond the Pinhole Camera. New York,
Springer, 2006.

426 Bibliography
[16] Dietrich, C.F., Uncertainty, Calibration and Probability. Bristol, UK, Adam Hilger,
1991.

[17] Draper, N.R., Smith, H., Applied Regression Analysis. 3rd edition. New York, John
Wiley & Sons, 1988.

[18] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification. New York, Wiley, 2001.
[19] Duda, R. O., Hart, P.E. Pattern Classification and Scene Analysis. New York, John

Wiley & Sons, 1973.
[20] Everett, H.R., Sensors for Mobile Robots: Theory and Applications. New York,

Natick, MA, A.K. Peters, Ltd., 1995.
[21] Faugeras, O., Three-Dimensional Computer Vision: A Geometric Viewpoint. Cam-

bridge, MA, MIT Press, 1993.
[22] Faugeras, O., Luong, Q.T., The Geometry of Multiple Images. Cambridge, MA, MIT

Press, 2001.
[23] Floreano, D., Zufferey, J.C., Srinivasan, M.V., Ellington, C., Flying Insects and

Robots, Springer, 2009.
[24] Forsyth, D. A., Ponce, J., Computer Vision: A Modern Approach. Upper Saddle

River, NJ, Prentice Hall, 2003.
[25] Genesereth, M.R., Nilsson, N.J., Logical Foundations of Artificial Intelligence. Palo

Alto, CA, Morgan Kaufmann, 1987.
[26] Gonzalez, R., Woods, R., Digital Image Processing. 3rd edition. New York, Pearson

Prentice Hall, 2008.
[27] Hammond, J. H., The Camera Obscura: A Chronicle. Bristol, UK, Adam Hilger,

1981.
[28] Haralick, R.M., Shapiro, L.G., Computer and Robot Vision, 1+2. Boston, Addison-

Wesley, 1993.
[29] Hartley, R.I., Zisserman, A. Multiple View Geometry. Cambridge, UK, Cambridge

University Press, 2004.
[30] Jones, J., Flynn, A., Mobile Robots, Inspiration to Implementation. Natick, MA,

A.K. Peters, Ltd., 1993.
[31] Kortenkamp, D., Bonasso, R.P., Murphy, R.R. (editors), Artificial Intelligence and

Mobile Robots; Case Studies of Successful Robot Systems. Cambridge, MA, AAAI
Press / MIT Press, 1998.

[32] Latombe, J.C., Robot Motion Planning. Norwood, MA, Kluwer Academic, 1991.
[33] LaValle, S.M. Planning Algorithms, Cambridge, UK, Cambridge University Press,

2006.
[34] Lee, D., The Map-Building and Exploration Strategies of a Simple Sonar-Equipped

Mobile Robot. Cambridge, UK, Cambridge University Press, 1996.
[35] Leonard, J.E., Durrant-Whyte, H.F., Directed Sonar Sensing for Mobile Robot Nav-

igation. Norwood, MA, Kluwer Academic, 1992.
[36] Ma, Y., S. Soatto, S., Kosecka, J., Sastry, S., An Invitation to 3-D Vision: From

Images to Geometric Models. New York, Springer-Verlag, 2003.
[37] Manyika, J., Durrant-Whyte, H.F., Data Fusion and Sensor Management: A Decen-

tralized Information-Theoretic Approach. Palo Alto, CA, Ellis Horwood, 1994.
[38] Mason, M., Mechanics of Robotics Manipulation. Cambridge, MA, MIT Press,

2001.

Bibliography 427
[39] Murphy, R.R., Introduction to AI Robotics. Cambridge, MA, MIT Press, 2000.
[40] Nourbakhsh, I., Interleaving Planning and Execution for Autonomous Robots. Nor-

wood, MA, Kluwer Academic, 1997.
[41] Papoulis, A. Probability, Random Variables, and Stochastic Processes, 4th edition.

New York, McGraw-Hill, 2001.
[42] Raibert, M.H., Legged Robots That Balance. Cambridge, MA, MIT Press, 1986.
[43] Ritter, G.X., Wilson, J.N., Handbook of Computer Vision Algorithms in Image Alge-

bra. Boca Raton, FL, CRC Press, 1996.
[44] Russell, S., Norvig, P., Artificial Intelligence: A Modern Approach. 3rd edition.

New York, Prentice Hall International, 2010.
[45] Schraft, R.D., Schmierer, G., Service Roboter. Natick, MA, A.K. Peters, Ltd, 2000.
[46] Sciavicco, L., Siciliano, B., Modeling and Control of Robot Manipulators. New

York, McGraw-Hill, 1996.
[47] Siciliano, B., Khatib, O., Springer Handbook of Robotics, Springer, 2008.
[48] Slama, C.C., Manual of Photogrammetry. 4th edition. Falls Church VA, American

Society of Photogrammetry,1980.
[49] Szeliski, R., Computer Vision: Algorithms and Applications, New York, Springer,

2010.
[50] Tennekes, H., The Simple Science of Flight: From Insects to Jumbo Jets. Cam-

bridge, MA, MIT Press, 1996.
[51] Thrun, S., Burgard, W., Fox, D., Probabilistic Robotics. Cambridge, MA, MIT

Press, 2005.
[52] Todd, D.J, Walking Machines: An Introduction to Legged Robots. London, Kogan

Page Ltd, 1985.
[53] Trucco, E., Verri, A., Introductory Techniques for 3-D Computer Vision. New York,

Prentice Hall, 1998.
[54] Zufferey, J.C., Bio-inspired Flying Robots: Experimental Synthesis of Autonomous

Indoor Flyers, EPFL Press, 2008.

Papers

[55] Aho, A.V., “Algorithms for finding patterns in strings,” in J. van Leeuwen (editor),
Handbook of Theoretical Computer Science, Cambridge, MA, MIT Press, 1990,
Volume A, chapter 5, 255–300.

[56] Angeli, A., Filliat, D., Doncieux, S., Meyer, J.A., “Fast and incremental method for
loop-closure detection using bags of visual words,” IEEE Transactions on Robotics,
24(5): 1027–1037, October, 2008.

[57] Arras, K.O., Castellanos, J.A., Siegwart, R., “Feature multi-hypothesis localization
and tracking for mobile robots using geometric constraints,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA’2002), Wash-
ington, DC, May , 2002.

[58] Arras, K.O., Persson, J., Tomatis, N., Siegwart, R., “Real-time obstacle avoidance
for polygonal robots with a reduced dynamic window,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA 2002), Washington,
DC, May, 2002.

428 Bibliography
[59] Arras, K.O., Siegwart, R.Y., “Feature extraction and scene interpretation for map
navigation and map building,” in Proceedings of SPIE, Mobile Robotics XII, 1997.

[60] Arras, K.O., Tomatis, N., “Improving robustness and precision in mobile robot
localization by using laser range finding and monocular vision,” in Proceedings of
the Third European Workshop on Advanced Mobile Robots (Eurobot 99), Zurich,
September, 1999.

[61] Astolfi, A., “Exponential stabilization of a mobile robot,” in Proceedings of 3rd
European Control Conference, Rome, September, 1995.

[62] Bailey, T., Durrant-Whyte, H., “Simultaneous localization and mapping: Part II,”
IEEE Robotics and Automation Magazine, 108–117, 2006.

[63] Bailey, T., “Mobile robot localisation and mapping in extensive outdoor environ-
ments,” Ph.D. thesis, University of Sydney, 2002.

[64] Baker, S., Nayar, S., “A theory of single-viewpoint catadioptric image formation,”
International Journal of Computer Vision 35, no. 2: 175–196, 1999.

[65] Barnard, K., Cardei V., Funt, B., “A comparison of computational color constancy
algorithms,” IEEE Transactions on Image Processing 11: 972–984, 2002.

[66] Barreto, J. P., Araujo, H., “Issues on the geometry of central catadioptric image for-
mation. International Conference on Computer Vision and Pattern Recognition
(CVPR), 2001.

[67] Barreto, J. P., Araujo, H., “Fitting conics to paracatadioptric projection of lines,”
Computer Vision and Image Understanding 101(3): 151–165. March, 2006.

[68] Barreto, J. P., Araujo, H., “Geometric properties of central catadioptric line images
and their application in calibration,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(8): 1237–1333, August 2005.

[69] Barron, J.L., Fleet, D.J., Beauchemin, S.S., “Performance of optical flow tech-
niques,” International Journal of Computer Vision, 12: 43–77, 1994.

[70] Batavia, P., Nourbakhsh, I., “Path planning for the cye robot,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’00),
Takamatsu, Japan, November 2000.

[71] Bay, H., Ess, A., Tuytelaars, T., Van Gool, L., “Speeded-up robust features
(SURF),” International Journal on Computer Vision and Image Understanding 110,
no. 3: 346–359, 2008.

[72] Besl, P., McKay, N., “A method for registration of 3-D shapes,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI) 14, no. 2: 239–256, February
1992.

[73] Bicchi, A., Marigo, A., Piccoli, B., “On the reachability of quantized control sys-
tems,” IEEE Transactions on Automatic Control,. 4, no. 47: 546–563, 2002.

[74] Biederman, I., “Recognition-by-components: A theory of human image understand-
ing,” Psychological Review, 2, no. 94: 115–147, 1987.

[75] Blackwell, D., “Conditional expectation and unbiased sequential estimation,”
Annals of Mathematical Statistics 18: 105–110, 1947.

[76] Blösch, M., Weiss, S., Scaramuzza, D., Siegwart, R., “Vision based MAV naviga-
tion in unknown and unstructured environments,” IEEE International Conference
on Robotics and Automation (ICRA 2010), Anchorage, Alaska, May 2010.

[77] Borenstein, J., Koren, Y., “The vector field histogram – fast obstacle avoidance for
mobile robots.” IEEE Journal of Robotics and Automation 7: 278–288, 1991.

Bibliography 429
[78] Borges, G. A., Aldon, M.-J., “Line Extraction in 2D Range Images for Mobile
Robotics,” Journal of Intelligent and Robotic Systems 40: 267–297, 2004.

[79] Bosse, M., Newman, P., Leonard, J., Teller, S., “Simultaneous localization and map
building in large-scale cyclic environments using the Atlas framework,” Interna-
tional Journal of Robotics Research 23, no. 12: 1113–1139, 2004.

[80] Bosse, M., Rikoski, R., Leonard, J., Teller, S., “Vanishing points and 3d lines from
omnidirectional video,” International Conference on Image Processing, 2002.

[81] Brock, O., Khatib, O., “High-speed navigation using the global dynamic window
approach,” in Proceeding of the IEEE International Conference on Robotics and
Automation, Detroit, May 1999.

[82] Brooks, R., “A robust layered control system for a mobile robot,” IEEE Transac-
tions of Robotics and Automation, RA-2:14–23, March 1986.

[83] Brown, H.B., Zeglin, G.Z., “The bow leg hopping robot'', in Proceedings of the
IEEE International Conference on Robotics and Automation, Leuwen, Belgium,
May 1998.

[84] Bruce, J., Balch,T., and Veloso, M., “Fast and inexpensive color image segmenta-
tion for interactive robots,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS’00), Takamatsu, Japan, 2000.

[85] Burgard,W., Cremers, A., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D., Steiner,
W., Thrun, S., “Experiences with an interactive museum tour-guide robot,” Artifi-
cial Intelligence 114: 1–53, 2000.

[86] Burgard, W., Derr, A., Fox, D., Cremers, A., “Integrating Global Position Estima-
tion and Position Tracking for Mobile Robots: The Dynamic Markov Localization
Approach,” in Proceedings of the 1998 IEEE/RSJ International Conference of Intel-
ligent Robots and Systems (IROS’98), Victoria, Canada, October 1998.

[87] Burgard, W., Fox, D., Henning, D., “Fast grid-based position tracking for mobile
robots,” in Proceedings of the 21th German Conference on Artificial Intelligence
(KI97), Freiburg, Germany, Springer-Verlag, 1997.

[88] Burgard, W., Fox, D., Jans, H., Matenar, C., Thrun, S., “sonar mapping of large-
scale mobile robot environments using EM,” in Proceedings of the International
Conference on Machine Learning, Bled, Slovenia, 1999.

[89] Cabani, C., Mac Lean, W. J., “Implementation of an affine-covariant feature detec-
tor in field-programmable gate arrays,” in Proceedings of the International Confer-
ence on Computer Vision Systems, 2007.

[90] Campion, G., Bastin, G., D’Andréa-Novel, B., “Structural properties and classifica-
tion of kinematic and dynamic models of wheeled mobile robots.” IEEE Transac-
tions on Robotics and Automation 12, no. 1: 47–62, 1996.

[91] Canny, J. F., “A computational approach to edge detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 679–698, 1986.

[92] Canudas de Wit, C., Sordalen, O.J., “Exponential stabilization of mobile robots with
nonholonomic constraints.” IEEE Transactions on Robotics and Automation 37:
1791–1797, 1993.

[93] Caprari, G., Estier, T., Siegwart, R., “Fascination of down scaling–alice the sugar
cube robot.” Journal of Micro-Mechatronics 1: 177–189, 2002.

[94] Caprile, B., Torre, V., “Using vanishing points for camera calibration.” Interna-
tional Journal of Computer Vision. 4: 127–140, 1990.

430 Bibliography
[95] Castellanos, J.A., Tardos, J.D., Schmidt, G., “Building a global map of the environ-
ment of a mobile robot: The importance of correlations,” in Proceedings of the 1997
IEEE Conference on Robotics and Automation, Albuquerque, NM, April 1997.

[96] Castellanos, J.A., Tardos, J.D., “Laser-based segmentation and localization for a
mobile robot,” in Robotics and Manufacturing: Recent Trends in Research and
Applications, volume 6. ASME Press, 1996.

[97] Censi, A., Carpin, S., “HSM3D: Feature-less global 6DOF scan-matching in the
hough/radon domain,” IEEE International Conference on Robotics and Automation
(ICRA), 2009.

[98] Chen, C.T., Quinn, R.D., “A crash avoidance system based upon the cockroach
escape response circuit,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Albuquerque, NM, April 1997.

[99] Chenavier, F., Crowley, J.L., “Position estimation for a mobile robot using vision
and odometry,” in Proceedings of the IEEE International Conference on Robotics
and Automation, Nice, France, May 1992.

[100] Cheeseman, P., Smith, P. “On the representation and estimation of spatial uncer-
tainty,” International Journal of Robotics 5: 56–68, 1986.

[101] Chomat, O., Colin deVerdiere, V., Hall, D., Crowley, J., “Local scale selection for
gaussian based description techniques,” in Proceedings of the European Conference
on Computer Vision, Dublin, Ireland, 117–133, 2000.

[102] Chong, K.S., Kleeman, L., “Accurate odometry and error modelling for a mobile
robot,” in Proceedings of the IEEE International Conference on Robotics and Auto-
mation, Albuquerque, NM, April 1997.

[103] Choset, H., Walker, S., Eiamsa-Ard, K., Burdick, J., “Sensor exploration: Incremen-
tal construction of the hierarchical generalized voronoi graph.” The International
Journal of Robotics Research 19: 126–148, 2000.

[104] Collins, A. Ruina, R. Tedrake, M. Wisse, “Efficient bipedal robots based on passive-
dynamic walkers,” Science 307, no. 5712: 1082 - 1085, 2005.

[105] Csorba, M. “Simultaneous localisation and map building,” Ph.D. thesis, University
of Oxford, Oxford, 1997.

[106] Cox, I.J., Leonard, J.J., “Modeling a dynamic environment using a bayesian multi-
ple hypothesis approach,” Artificial Intelligence 66: 311–44, 1994.

[107] Corke, P.I., Strelow, D., Singh, S., “Omnidirectional visual odometry for a planetary
rover,” IEEE/RSJ International Conference on Intelligent Robots and Systems,
2004.

[108] Cummins, M., Newman, P., “FAB-MAP: Probabilistic localization and mapping in
the space of appearance,” The International Journal of Robotics Research 27(6):
647–665, 2008.

[109] Cummins, M., Newman, P., “Highly scalable appearance-only SLAM – FAB-MAP
2.0,” In Robotics Science and Systems (RSS), Seattle, USA, June 2009.

[110] Davison, A.J., “Real-time simultaneous localisation and mapping with a single cam-
era,” International Conference on Computer Vision, 2003.

[111] Davison, A.J. “Active search for real-time vision,” In International Conference on
Computer Vision, 2005.

Bibliography 431
[112] Davison, A. J., Reid, I., Molton, N., Stasse, O., “MonoSLAM: Real-time single
camera SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelligence
29, no. 6, June, 2007.

[113] Dellaert, F. “Square root SAM,” Proceedings of the Robotics Science and Systems
Conference, 2005.

[114] Dijkstra, E.W. “A note on two problems in connexion with graphs,” Numerische
Mathematik 1: 269–271, 1959.

[115] Dowlingn, K., Guzikowski, R., Ladd, J., Pangels, H., Singh, S., Whittaker, W.L.,
“NAVLAB: An autonomous navigation testbed,” Technical report CMU-RI-TR-87-
24, Robotics Institute, Pittsburgh, Carnegie Mellon University, November 1987.

[116] Duckett, T., Marsland, S.,Shapiro, J. “Learning globally consistent maps by relax-
ation,” IEEE International Conference on Robotics and Automation, 2000.

[117] Duckett, T., Marsland, S.,Shapiro, J. “Fast, on-line learning of globally consistent
maps,” Autonomous Robots 12, no. 3: 287–300, 2002.

[118] Dudek, G., Jenkin, M., “Inertial sensors, GPS, and odometry,” Springer Handbook
of Robotics, Springer, 2008.

[119] Dugan, B., “Vagabond: A demonstration of autonomous, robust outdoor naviga-
tion,” in Video Proceedings of the IEEE International Conference on Robotics and
Automation, Atlanta, GA, May 1993.

[120] Durrant-Whyte, H., Bailey, T., “Simultaneous localization and mapping: Part I,”
IEEE Robotics and Automation Magazine, 99–108, 2006.

[121] Einsele, T., “Real-time self-localization in unknown indoor environments using a
panorama laser range finder,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 697–702, 1997.

[122] Elfes, A., “Sonar real world mapping and navigation,” in [12].
[123] Ens, J., Lawrence, P., “An investigation of methods for determining depth from

focus.” IEEE Transactions on Pattern Analysis and Machine Intelligence 15: 97–
108, 1993.

[124] Espenschied, K.S., Quinn, R.D., “Biologically-inspired hexapod robot design and
simulation,” in AIAA Conference on Intelligent Robots in Field, Factory, Service
and Space, Houston, Texas, March, 1994.

[125] Falcone, E., Gockley, R., Porter, E., Nourbakhsh, I., “The personal rover project: the
comprehensive design of a domestic personal robot,” Robotics and Autonomous
Systems, Special Issue on Socially Interactive Robots 42: 245–258, 2003.

[126] Feder, H.J.S., Slotine, J-J.E., “Real-time path planning using harmonic potentials in
dynamic environments,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Albuquerque, NM, April 1997.

[127] Ferguson, D., Howard, T., Likhachev, M., “Motion planning in urban environments:
Part II,” Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2008.

[128] Fischler, M. A., Bolles, R. C. “RANSAC random sampling concensus: A paradigm
for model fitting with applications to Image analysis and automated cartography,”.
Communications of ACM 26: 381–395, 1981.

[129] Fox, D., “KLD-sampling: Adaptive particle filters and mobile robot localization,”
Advances in Neural Information Processing Systems 14. MIT Press, 2001.

432 Bibliography
[130] Fox, D., Burgard,W., Thrun, S., “The dynamic window approach to collision avoid-
ance,” IEEE Robotics and Automation Magazine 4: 23–33, 1997.

[131] Fraundorfer, F., Engels, C., Nister, D., “Topological mapping, localization and nav-
igation using image collections,” IEEE/RSJ Conference on Intelligent Robots and
Systems 1, 2007.

[132] Freedman, B., Shpunt, A., Machline, M., Arieli, Y., “Depth mapping using pro-
jected patterns,” US Patent no. US20100118123A1, May 13, 2010.
http://www.freepatentsonline.com/20100118123.pdf

[133] Fusiello, A., Trucco, E., Verri, A., “A compact algorithm for rectification of stereo
pairs,” Machine Vision and Applications, 12(1): 16–22, 2000.

[134] Gächter, S., Harati, A., Siegwart, R., “Incremental object part detection toward
object classification in a sequence of noisy range images,” Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA 2008), Pasadena,
USA, May 2008.

[135] Gander,W., Golub, G.H., Strebel, R., “Least-squares fitting of circles and ellipses,”
BIT Numerical Mathematics 34, no. 4: 558–578, December 1994.

[136] Genesereth, M.R. “Deliberate agents,” Technical Report Logic-87-2. Stanford, CA,
Stanford University, Logic Group, 1987.

[137] Geyer, C., Daniilidis, K., “A unifying theory for central panoramic systems and
practical applications,” European Conference on Computer Vision (ECCV), 2000.

[138] Goedeme, T., Nuttin, M., Tuytelaars, T., Van Gool, L., “Markerless computer vision
based localization using automatically generated topological maps,” European Nav-
igation Conference GNSS, Rotterdam, 2004.

[139] Golfarelli, M., Maio, D., Rizzi, S. “Elastic correction of dead-reckoning errors in
map building,” IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 1998.

[140] Golub, G., Kahan,W., “Calculating the singular values and pseudo-inverse of a
matrix.” Journal SIAM Numerical Analysis 2: 205–223, 1965.

[141] Grisetti, G., Stachniss, C., Grzonka, S., Burgard, W., “A tree parameterization for
efficiently computing maximum likelihood maps using gradient descent,” Robotics
Science and Systems (RSS), 2007.

[142] Grzonka, S., Grisetti, G., Burgard, W. “Towards a navigation system for autono-
mous indoor flying,” IEEE International Conference on Robotics and Automation,
2009.

[143] Gutmann, J.S., Burgard, W., Fox, D., Konolige, K., “An experimental comparison
of localization methods,” in Proceedings of the 1998 IEEE/RSJ International. Con-
ference of Intelligent Robots and Systems (IROS’98), Victoria, Canada, October
1998.

[144] Guttman, J.S., Konolige, K., “Incremental mapping of large cyclic environments,”
in Proceedings of the IEEE International Symposium on Computational Intelligence
in Robotics and Automation (CIRA), Monterey, November 1999.

[145] Hähnel, D., Fox, D., Burgard, W., Thrun, S. “A highly efficient FastSLAM algo-
rithm for generating cyclic maps of large-scale environments from raw laser range
measurements,” Proceedings of the Conference on Intelligent Robots and Systems,
2003.

Bibliography 433
[146] Harris, C., Stephens, M., “A combined corner and edge detector,” Proceedings of
the 4th Alvey Vision Conference, 1988.

[147] Hart, P. E., Nilsson, N. J., Raphael, B. “A formal basis for the heuristic determina-
tion of minimum cost paths,” IEEE Transactions on Systems Science and Cybernet-
ics 4, no. 2: 100–107, 1968.

[148] Hashimoto, S., “Humanoid robots in Waseda University—Hadaly-2 and
WABIAN,” in IARP First International Workshop on Humanoid and Human
Friendly Robotics, Tsukuba, Japan, October 1998.

[149] Heale, A., Kleeman, L.: “A real time DSP sonar echo processor,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’00), Takamatsu, Japan, 2000.

[150] Heymann, S., Maller, K., Smolic, A., Froehlich, B., Wiegand, T., “SIFT implemen-
tation and optimization for general-purpose GPU,” in Proceedings of the Interna-
tional Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision, 2007.

[151] Horn, B.K.P., Schunck, B.G., “Determining optical flow,” Artificial Intelligence,
17: 185–203, 1981.

[152] Horswill, I., “Visual collision avoidance by segmentation,” in Proceedings of IEEE
International Conference on Robotics and Automation, 902–909, 1995, IEEE Press,
Munich, November 1994.

[153] Hoyt, D.F., Taylor, C.R, “Gait and the energetics of locomotion in horses,” Nature
292: 239–240, 1981.

[154] Jacobs, R. and Canny, J., “Planning smooth paths for mobile robots,” in Proceeding.
of the IEEE Conference on Robotics and Automation, IEEE Press, 2–7, 1989.

[155] Jeffreys, H. and Jeffreys, B. S. “Methods of mathematical physics,” Cambridge,
Cambridge University Press, 305-306, 1988.

[156] Jennings, J., Kirkwood-Watts, C., Tanis, C., “Distributed map-making and naviga-
tion in dynamic environments,” in Proceedings of the 1998 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’98), Victoria, Canada, Octo-
ber 1998.

[157] Jensfelt, P., Austin, D., Wijk, O., Andersson, M., “Feature based condensation for
mobile robot localization,” in Proceedings of the IEEE International Conference on
Robotics and Automation, San Francisco, May 24–28, 2000.

[158] Jensfelt, P., Christensen, H., “Laser based position acquisition and tracking in an
indoor environment,” in Proceedings of the IEEE International Symposium on
Robotics and Automation 1, 1998.

[159] Jogan, M., Leonardis, A. “Robust localization using panoramic viewbased recogni-
tion,” in Proceedings of ICPR00 4: 136–139, 2000.

[160] Jung, I., Lacroix, S., “Simultaneous localization and mapping with stereovision,” in
Proceedings of the 11th International Symposium Robotics Research, Siena, Italy,
2005.

[161] Kamon, I., Rivlin, E., Rimon, E., “A new range-sensor based globally convergent
navigation algorithm for mobile robots,” in Proceedings of the IEEE International
Conference on Robotics and Automation, Minneapolis, April 1996.

434 Bibliography
[162] Kelly, A., “Pose determination and tracking in image mosaic based vehicle position
estimation,” in Proceeding of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’00), Takamatsu, Japan, 2000.

[163] Khatib, O., Real-time obstacle avoidance for manipulators and mobile robots, Inter-
national Journal of Robotics Research 5, no. 1, 1986.

[164] Khatib, M., Chatila, R., “An extended potential field approach for mobile robot
sensor motions,” in Proceedings of the Intelligent Autonomous Systems IAS-4, IOS
Press, Karlsruhe, Germany, March 1995, 490–496.

[165] Khatib, M., Jaouni, H., Chatila, R., Laumod, J.P., “Dynamic path modification for
car-like nonholonomic mobile robots,” in Proceedings of IEEE International Con-
ference on Robotics and Automation, Albuquerque, NM, April 1997.

[166] Khatib, O., Quinlan, S., “Elastic bands: connecting, path planning and control,” in
Proceedings of IEEE International Conference on Robotics and Automation,
Atlanta, GA, May 1993.

[167] Klein, G., Murray, D., “Parallel Tracking and Mapping for Small AR Workspaces,”
Proceedings of the International Symposium on Mixed and Augmented Reality
(ISMAR'07), Nara, Japan, 2007.

[168] Ko, N.Y., Simmons, R., “The lane-curvature method for local obstacle avoidance,”
in Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’98), Victoria, Canada, October 1998.

[169] Koenig, S., Simmons, R., “Xavier: A robot navigation architecture based on par-
tially observable markov decision process models,” in [31].

[170] Koenig, S., Likhachev, M., “Fast replanning for navigation in unknown terrain,”
IEEE Transactions on Robotics 21(3): 354–363, 2005.

[171] Konolige, K.,. “A gradient method for realtime robot control,” in Proceedings of the
IEEE/RSJ Conference on Intelligent Robots and Systems, Takamatsu, Japan, 2000.

[172] Konolige, K., “Small vision systems: Hardware and implementation,” in Proceed-
ings of Eighth International Symposium on Robotics Research, Hayama, Japan,
October 1997.

[173] Konolige, K., “Large-scale map-making,” AAAI National Conference on Artificial
Intelligence, 2004.

[174] Konolige, K., Agrawal, M., Solà, J., “Large scale visual odometry for rough terrain,”
International Symposium on Research in Robotics (ISRR), November, 2007.

[175] Koperski, K., Adhikary, J., Han, J., “Spatial data mining: Progress and challenges
survey paper,” in Proceedings of the ACM SIGMOD Workshop on Research Issues
on Data Mining and Knowledge Discovery, Montreal, June 1996.

[176] Koren, Y., Borenstein, J., “High-speed obstacle avoidance for mobile robotics,” in
Proceedings of the IEEE Symposium on Intelligent Control 382–384, Arlington,
VA, August 1988.

[177] Koren, Y., Borenstein, J., “Real-time obstacle avoidance for fast mobile robots in
cluttered environments,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Los Alamitos, CA, May 1990.

[178] Kruppa, E., “Zur ermittlung eines objektes aus zwei perspektiven mit innerer orien-
tierung,” Sitzungsberichte Österreichische Akademie der Wissenschaften, Mathe-
matisch-naturwissenschaftliche Klasse, Abteilung II a, volume 122: 1939-1948,
1913.

Bibliography 435
[179] Kuipers, B., Byun, Y.T., “A robot exploration and mapping strategy based on a
semantic hierarchy of spatial representations,” Journal of Robotics and Autonomous
Systems, 8: 47–63, 1991.

[180] Kuo, A., “Choosing your steps carfully,” Robotics & Automation Magazine, 2007.
[181] Lacroix, S., Mallet, A., Chatila, R., Gallo, L., “Rover self localization in planetary-

like environments,” in Proc. Int. Symp. Artic. Intell., Robot., Autom. Space (i-
SAIRAS), Noordwijk, The Netherlands, 1999.

[182] Lamon, P., Nourbakhsh, I., Jensen, B., Siegwar,t R., “Deriving and matching image
fingerprint sequences for mobile robot localization,” in Proceedings of the 2001
IEEE International Conference on Robotics and Automation, Seoul, Korea, May
2001.

[183] Latombe, J.C., Barraquand, J., “Robot motion planning: A distributed presentation
approach.” International Journal of Robotics Research, 10: 628–649, 1991.

[184] Lauria, M., Estier, T., Siegwart, R.: “An innovative space rover with extended
climbing abilities,” in Video Proceedings of the 2000 IEEE International Confer-
ence on Robotics and Automation, San Francisco, May 2000.

[185] LaValle, S. M., “Rapidly-exploring random trees: A new tool for path planning,”
Technical Report, Computer Science Dept., Iowa State University, October 1998.

[186] Lavalle, S. M.: “Rapidly-exploring random trees: Progress and prospects,” In Algo-
rithmic and Computational Robotics: New Directions, pp. 293-308, 2000.

[187] Lazanas, A., Latombe, J.C., “Landmark robot navigation,” in Proceedings of the
Tenth National Conference on AI. San Jose, CA, July 1992.

[188] Lazanas, A. Latombe, J.C., “Motion planning with uncertainty: A landmark
approach.” Artificial Intelligence, 76: 285–317, 1995.

[189] Lee, S.-O., Cho, Y.-J., Hwang-Bo, M., You, B.-J., Oh, S.-R.: “A stabile target-track-
ing control for unicycle mobile robots,” in Proceedings of the 2000 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Takamatsu, Japan, 2000.

[190] Leonard, J.J., Rikoski, R.J., Newman, P.M., Bosse, M., “Mapping partially observ-
able features from multiple uncertain vantage points,” International Journal of
Robotics Research 21, no. 10: 943–975, 2002.

[191] Likhachev, M., Gordon, G., Thrun, S. “ARA*: Anytime A* with provable bounds
on sub-optimality,” Advances in Neural Information Processing Systems (NIPS),
2003.

[192] Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S., “Anytime dynamic
A*: An anytime, replanning algorithm,” Proceedings of the International Confer-
ence on Automated Planning and Scheduling (ICAPS), 2005.

[193] Lindeberg, T., “Feature detection with automatic scale selection,” International
Journal of Computer Vision 30, no. 2: 79-116, 1998.

[194] Longuet-Higgins, H.C., “A computer algorithm for reconstructing a scene from two
projections,” Nature 293: 133–135, September, 1981.

[195] Louste, C. and Liegois, A., Path planning for non-holonomic vehicles: a potential
viscous fluid method, Robotica 20: 291–298, 2002.

[196] Lowe, David G., “Object recognition from local scale-invariant features,” Proceed-
ings of the International Conference on Computer Vision, 1999.

[197] Lowe, D. G., “Distinctive image features from scale-invariant keypoints,” Interna-
tional Journal of Computer Vision 60 (2): 91-110, 2004.

436 Bibliography
[198] Lumelsky, V., Skewis, T., “Incorporating range sensing in the robot navigation
function,” IEEE Transactions on Systems, Man, and Cybernetics 20: 1058–1068,
1990.

[199] Lumelsky, V., Stepanov, A., “Path-planning strategies for a point mobile automaton
moving amidst unknown obstacles of arbitrary shape,” in [12].

[200] Lu, F., Milios, E. “Globally consistent range scan alignment for environment map-
ping,” Autonomous Robots 4: 333–349,1997.

[201] Maes, P., “The dynamics of action selection,” in Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence, Detroit, 1989.

[202] Maes, P., “Situated Agents Can Have Goals,” Robotics and Autonomous Systems, 6:
49–70. 1990.

[203] Maimone, M., Cheng, Y., Matthies, L., “Two years of visual odometry on the mars
exploration rovers,” Journal on Field Robotics 24, no. 3: 169–186, 2007.

[204] Makadia, A., Patterson, A., Daniilidis, K., “Fully automatic registration of 3D point
clouds,” IEEE Conference on Computer Vision and Pattern Recognition, New
York, June 2006.

[205] Martinelli, A., Siegwart, R., “Estimating the odometry error of a mobile robot during
navigation,” in Proceedings of the European Conference on Mobile Robots (ECMR
2003), Warsaw, September 4–6, 2003.

[206] Masoud, S.A., Masoud, A.A., “Motion planning in the presence of directional and
regional avoidance constraints unsing nonlinear, anisotropic, harmonic potential
fields: a physical metaphor,” IEEE Transactions on Systems, Man and Cybernetics
32, no. 6: 705–723, 2002.

[207] Masoud, S.A., Masoud, A.A., “Kinodynamic motion planning: a novel type of non-
linear, passive damping forces and advantages,” IEEE Robotics Automation Maga-
zine 17, no. 1: 85–99, 2010.

[208] Matsumoto, Y., Inaba, M., Inoue, H., “Visual navigation using viewsequenced route
representation,” IEEE International Conference on Robotics and Automation, 1996.

[209] Maybeck,P.S., “The Kalman filter: An introduction to concepts,” in [12].
[210] Matas, J., Chum, O., Urban, M., Pajdla, T., “Robust wide-baseline stereo from max-

imally stable extremal regions,” in Proceedings of the British Machine Vision Con-
ference, 384–393, 2002.

[211] McGeer, T., “Passive dynamic walking,” International Journal of Robotics
Research 9, no. 2: 62–82, 1990.

[212] Mei, C., Rives, P., “Single view point omnidirectional camera calibration from
planar grids,” IEEE International Conference on Robotics and Automation (ICRA),
2007.

[213] Menegatti, E., Maedab, T., Ishiguro, H., “Image-based memory for robot navigation
using properties of omnidirectional images,” Robotics and Autonomous System 47,
no. 4: 251–267, July, 2004.

[214] Meng, M., Kak, A.C.. “Mobile robot navigation using neural networks and nonmet-
rical environmental models,” IEEE Control Systems Magazine, 13(5): 30–39, Octo-
ber 1993.

[215] Metropolis, N., Ulam, S. “The Monte Carlo method,” Journal of the American Stat-
tistical Association 44, no. 247: 335–341, 1949.

Bibliography 437
[216] Mikolajczyk, K., C. Schmid, “Indexing based on scale-invariant interest points,” in
Proceedings of the International Conference on Computer Vision, 525–531, Van-
couver, Canada, 2001.

[217] Mikolajczyk, K., Schmid, C., “Scale and affine invariant interest point detectors,”
International Journal of Computer Vision 1, no. 60: 63–86, 2004.

[218] Mikolajcyk, K. and Schmid, C., “An affine invariant interest point detector,” in Pro-
ceedings of the 7th European Conference on Computer Vision, Denmark, 2002.

[219] Mikolajczyk, K., “Scale and Affine Invariant Interest Point Detectors,” PhD thesis,
INRIA Grenoble, 2002.

[220] Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaf-
falitzky, F., Kadir, T.,Van Gool, L. “A comparison of affine region detectors,” Inter-
national Journal of Computer Vision, 65(1-2): 43–72, 2005.

[221] Minetti, A.E. ,Ardigò, L.P., Reinach, E., Saibene, F., “The relationship between
mechanical work and energy expenditure of locomotion in horses,” Journal of
Experimental Biology 202, no. 17, 1999.

[222] Minguez, J., Montano, L., “Nearness diagram navigation (ND): A new real time col-
lision avoidance approach,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Takamatsu, Japan, October 2000.

[223] Minguez, J., Montano, L., “Robot navigation in very complex, dense, and cluttered
indoor / outdoor environments,” in Proceeding of International Federation of Auto-
matic Control (IFAC2002), Barcelona, April 2002.

[224] Minguez, J., Montano, L., Khatib, O., “Reactive collision avoidance for navigation
with dynamic constraints,” in Proceedings of the 2002 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2002.

[225] Minguez, J., Montano, L., Simeon, T., Alami, R., “Global nearness diagram naviga-
tion (GND),” in Proceedings of the 2001 IEEE International Conference on Robot-
ics and Automation, 2001.

[226] Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.-C., Floreano, D. and Martinoli, A. “The e-puck, a robot designed for
education in engineering,” The 9th Conference on Autonomous Robot Systems and
Competitions, 2009.

[227] Montiel, J.M.M. , Civera, J., Davison, A.J., “Unified inverse depth parametrization
for monocular SLAM,” Proc. of the Robotics Science and Systems Conference,
2006.

[228] Moutarlier, P., Chatila, R., “An experimental system for incremental environment
modeling by an autonomous mobile robot,” 1st International Symposium on Exper-
imental Robotics, 1989.

[229] Moutarlier, P., Chatila, R. “Stochastic multisensory data fusion for mobile robot
location and environment modeling,” 5th Int. Symposium on Robotics Research,
1989.

[230] Montano, L., Asensio, J.R., “Real-time robot navigation in unstructured environ-
ments using a 3D laser range finder,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robot and Systems, IROS 97, September 1997.

[231] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B. “FastSLAM: A factored solu-
tion to the simultaneous localization and mapping problem,” Proceedings of the
AAAI National Conference on Artificial Intelligence, 2002.

438 Bibliography
[232] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B. “Fast-SLAM 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that provably
converges,” International Joint Conference on Artificial Intelligence, 2003.

[233] Moravec, H. and Elfes, A.E., “High Resolution Maps from Wide Angle Sonar,” in
Proceedings of the 1985 IEEE International Conference on Robotics and Automa-
tion, March 1985.

[234] Moravec, H. P., “Towards automatic visual obstacle avoidance,” Proceedings of the
5th International Joint Conference on Artificial Intelligence, 1977.

[235] Moravec, H. P., “Visual mapping by a robot rover,” International Joint Conference
on Artificial Intelligence, 1979.

[236] Moravec, H., “Obstacle avoidance and navigation in the real world by a seeing robot
rover,” PhD thesis, Stanford University, 1980.

[237] Moutarlier, P., Chatila, R., “Stochastic multisensory data fusion for mobile robot
location and environment modelling,” in Proceedings of the 5th International Sym-
posium of Robotics Research, Tokyo, 1989.

[238] Murillo, A.C., Kosecka, J., “Experiments in Place Recognition using Gist Panora-
mas,” Proceedings of the International Workshop on Omnidirectional Vision
(OMNIVIS’09), 2009.

[239] Murphy, K., Russell, S. “Rao-Blackwellized particle filtering for dynamic Bayesian
networks,” In Sequential Monte Carlo Methods in Practice, ed. by A. Doucet, N. de
Freitas, N. Gordon, 499–516, Springer, 2001.

[240] Nayar, S.K., “Catadioptric omnidirectional camera.” IEEE CVPR, 482–488, 1997.
[241] Nayar, S., Watanabe, M., and Noguchi, M., “Real-time focus range sensor.” In Fifth

International Conference on Computer Vision, 995–1001, Cambridge, Massachu-
setts, 1995.

[242] Nilsson, N.J., “Shakey the robot.” SRI, International, Technical Note, Menlo Park,
CA, 1984, No. 325.

[243] Nistér, D. Stewénius, H., “Scalable recognition with a vocabulary tree,” IEEE Inter-
national Conference on Computer Vision and Pattern Recognition, 2006.

[244] Nistér, D., Naroditsky, O., Bergen, J., “Visual odometry for ground vehicle applica-
tions,” Journal of Field Robotics 23, no. 1: 3–20, 2006.

[245] Nistér, D., Naroditsky, O., Bergen, J., “Visual odometry,” IEEE International Con-
ference on Computer Vision and Pattern Recognition, 2004.

[246] Nistér, D., “An efficient solution to the five-point relative pose problem,” IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(6): 756-
770, June 2004.

[247] Nguyen, V., Martinelli, A., Tomatis, N., Siegwart, R. “A comparison of line extrac-
tion algorithms using 2D laser rangefinder for indoor mobile robotics,” IEEE/RSJ
Intenational Conference on Intelligent Robots and Systems, IROS, 2005.

[248] Noth, André, “Design of solar powered airplanes for continuous flight,” Ph.D. the-
sis, Autonomous Systems Lab, ETH Zurich, Switzerland, December 2008.

[249] Nourbakhsh, I.R., “Dervish: An office-navigation robot,” in [31].
[250] Nourbakhsh, I.R., Andre. D., Tomasi, C., Genesereth, M.R., “Mobile robot obstacle

avoidance via depth from focus,” Robotics and Autonomous Systems, 22: 151–158,
1997.

Bibliography 439
[251] Nourbakhsh, I.R., Bobenage, J., Grange, S., Lutz, R., Meyer, R, Soto, A., “An affec-
tive mobile educator with a full-time job,” Artificial Intelligence, 114: 95–124,
1999.

[252] Nourbakhsh, I.R., Powers, R., Birchfield, S., “DERVISH, an office-navigation
robot.” AI Magazine, 16: 39–51, summer 1995.

[253] Oliva, A., Torralba, A., “Modeling the shape of the scene: A holistic representation
of the spatial envelope,” International Journal of Computer Vision, 42(3):145–175,
2001.

[254] Oliva, A., Torralba, A., “Building the gist of a scene: The role of global image fea-
tures in recognition,” in Visual Perception, Progress in Brain Research, 155:23–36,
Elsevier, 2006.

[255] Omer, A.M.M., Ghorbani, R., Hun-ok Lim, Takanishi, A., “Semi-passive dynamic
walking for biped walking robot using controllable joint stiffness based on dynamic
simulation,” IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics, Singapore, 2009.

[256] Pell, B., Bernard, D., Chien, S., Gat, E., Muscettola, N., Nayak, P., Wagner, M.,
Williams, B., “An autonomous spacecraft agent prototype,” Autonomous Robots 5:
1–27, 1998.

[257] Pavlidis, T., Horowitz, S. L. “Segmentation of plane curves,” IEEE Transactions on
Computers C-23(8): 860–870, 1974.

[258] Pentland, A.P., “A new sense for depth of field,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 9: 523–531, 1987.

[259] Philippsen, R., Siegwart, R., “Smooth and efficient obstacle avoidance for a tour
guide robot,” in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA 2003), Taipei, Taiwan, 2003.

[260] Pivtoraiko, M., Knepper, R., A., Kelly, A. “Differentially constrained mobile robot
motion planning in state lattices,” Journal of Field Robotics 26, no. 1: 308–333,
2009.

[261] Pfister, S. T., Roumeliotis, S. I., Burdick, J. W. “Weighted line fitting algorithms for
mobile robot map building and efficient data representation,” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2003.

[262] Pratt, J., Pratt, G., “Intuitive control of a planar bipedal walking robot,” in Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA '98),
Leuven, Belgium, May 1998.

[263] Rao, C.R.“Information and accuracy obtainable in estimation of statistical parame-
ters,” Bulletin of the Calcutta Mathematical Society 37: 81–91, 1945.

[264] Raibert, M. H., Brown, H. B., Jr., Chepponis, M., “Experiments in balance with a
3D one-legged hopping machine,” International Journal of Robotics Research, 3:
75–92, 1984.

[265] Remy, C., Buffinton, K., Siegwart, R., “Stability analysis of passive dynamic walk-
ing of quadrupeds,” International Journal of Robotics Research, 2009.

[266] Ringrose, R., “Self-stabilizing running,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA '97), Albuquerque, NM, April 1997.

[267] Rosten, E., Drummond, T., “Fusing points and lines for high performance tracking,”
in Proceedings of the International Conference on Computer Vision, 1508–1511,
2005.

440 Bibliography
[268] Rosten, E., Drummond, T., “Machine learning for high-speed corner detection,” in
Proceedings of the European Conference on Computer Vision, 430-443, 2006.

[269] Rowe, A., Rosenberg, C., Nourbakhsh, I., “A simple low cost color vision system,”
in Proceedings of Tech Sketches for CVPR 2001, Kuaii, Hawaii, December 2001.

[270] Rubner, Y., Tomasi, C., Guibas, L., “The earth mover’s distance as a metric for
image retrieval,” STAN-CS-TN-98-86, Stanford University, 1998.

[271] Rufli, M., Ferguson, D., Siegwart, R., “Smooth path planning in constrained envi-
ronments,” Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2009.

[272] Rufli, M., Siegwart, R., “On the application of the D* search algorithm to time based
planning on lattice graphs,” Proceedings of the European Conference on Mobile
Robots (ECMR), 2009.

[273] Scaramuzza, D., “Omnidirectional vision: from calibration to robot motion estima-
tion,”, PhD thesis n. 17635, ETH Zurich, February 2008.

[274] Scaramuzza, D., Martinelli, A., Siegwart, R., “A flexible technique for accurate
omnidirectional camera calibration and structure from motion,” IEEE International
Conference on Computer Vision Systems (ICVS 2006), New York, January 2006.

[275] Scaramuzza, D., Martinelli, A. Siegwart, R., “A toolbox for easily calibrating omni-
directional cameras,” IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2006), Beijing, China, October 2006.

[276] Scaramuzza, D., Fraundorfer, F., Pollefeys, M., “Closing the loop in appearance-
guided omnidirectional visual odometry by using vocabulary trees,” Robotics and
Autonomous System Journal (Elsevier), 2010.

[277] Scaramuzza, D., Fraundorfer, F., Pollefeys, M., and Siegwart, R., “Absolute scale in
structure from motion from a single vehicle mounted camera by exploiting nonholo-
nomic constraints,” IEEE International Conference on Computer Vision (ICCV
2009), Kyoto, October, 2009.

[278] Scaramuzza, D., Fraundorfer, F., and Siegwart, R., Real-time monocular visual
odometry for on-road vehicles with 1-point RANSAC, IEEE International Confer-
ence on Robotics and Automation (ICRA 2009), Kobe, Japan, May 2009.

[279] Scaramuzza, D., Siegwart, R., “Appearance guided monocular omnidirectional
visual odometry for outdoor ground vehicles,” IEEE Transactions on Robotics 24,
no. 5, October 2008.

[280] Schlegel, C., “Fast local obstacle under kinematic and dynamic constraints,” in Pro-
ceedings of the IEEE International Conference on Intelligent Robot and Systems
(IROS 98), Victoria, Canada 1998.

[281] Schultz, A., Adams, W., “Continuous localization using evidence grids,” in Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA’98), May 1998.

[282] Schweitzer, G., Werder, M., “ROBOTRAC – a mobile manipulator platform for
rough terrain,” in Proceedings of the International Symposium on Advanced Robot
Technology (ISART), Tokyo, Japan, March, 1991.

[283] Shi, J., Malik, J., “Normalized cuts and image segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) 82: 888–905, 2000.

[284] Shi, J., Tomasi, C., “Good features to track,” IEEE Conference on Computer Vision
and Pattern Recognition, 1994.

Bibliography 441
[285] Schmid, C., Mohr, R., Bauckhage, C., “Evaluation of interest point detectors,” Inter-
national Journal of Computer Vision 37, no. 2: 151–172, 2000.

[286] Se, S., Barfoot, T., Jasiobedzki, P., “Visual motion estimation and terrain modeling
for planetary rovers,” Proceedings of the International Symposium on Artificial
Intelligence for Robotics and Automation in Space, 2005.

[287] Siadat, A., Kaske, A., Klausmann, S., Dufaut, M., Husson, R. “An optimized seg-
mentation method for a 2D laser-scanner applied to mobile robot navigation,” Pro-
ceedings of the 3rd IFAC Symposium on Intelligent Components and Instruments for
Control Applications, 1997.

[288] Siegwart R., Arras, K., Bouabdallah, S., Burnier, D., Froidevaux, G., Greppin, X.,
Jensen, B., Lorotte, A., Mayor, L., Meisser, M., Philippsen, R., Piguet, R., Ramel,
G., Terrien, G., Tomatis, N., “Robox at Expo.02: A large scale installation of per-
sonal robots,” Journal of Robotics and Autonomous Systems 42: 203–222, 2003.

[289] Siegwart, R., Lamon, P., Estier, T., Lauria, M, Piguet, R., “Innovative design for
wheeled locomotion in rough terrain,” Journal of Robotics and Autonomous Systems
40: 151–162, 2002.

[290] Simhon, S., Dudek, G., “A global topological map formed by local metric maps,”
Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS’98), Victoria, Canada, October 1998.

[291] Simmons, R., “The curvature velocity method for local obstacle avoidance,” Pro-
ceedings of the IEEE International Conference on Robotics and Automation, Min-
neapolis, April 1996.

[292] Sinha, S. N., Frahm, J. M., Pollefeys, M., Genc, Y., “GPU video feature tracking and
matching,” in EDGE, Workshop on Edge Computing Using New Commodity Archi-
tectures, 2006.

[293] Sivic, J. and Zisserman, A., “Video Google: A text retrieval approach to object
matching in videos,” Proceedings of the International Conference on Computer
Vision, 2003.

[294] Smith, R., Self, M., Cheeseman, P., “Estimating uncertain spatial relationships in
robotics,” Autonomous Robot Vehicles, I. J. Cox and G. T. Wilfong (editors),
Springer-Verlag, 167–193, 1990.

[295] Smith, R.C. , Cheeseman, P., “On the representation and estimation of spatial uncer-
tainty, International Journal of Robotics Research 5, no. 4: 56–68, 1986.

[296] Smith, S. M., Brady, J. M., “SUSAN - A new approach to low level image process-
ing,” International Journal of Computer Vision 23, no. 34: 45–78, 1997.

[297] Snavely, N., Seitz, S.M., Szeliski, R., “Photo Tourism: Exploring photo collections
in 3D,” ACM Transactions on Graphics, 25(3), August 2006.

[298] Snavely, N., Seitz, S.M., Szeliski, R., “Modeling the World from Internet Photo Col-
lections,” International Journal of Computer Vision, 2007

[299] Soatto, S., Brockett, R., “Optimal structure from motion: Local ambiguities and
global estimates,”, International Conference on Computer Vision and Pattern Rec-
ognition, 1998.

[300] Sordalen, O.J., Canudas de Wi,t C., “Exponential control law for a mobile robot:
extension to path following,” IEEE Transactions on Robotics and Automation, 9:
837–842, 1993.

442 Bibliography
[301] Sorg, H.W., “From serson to draper – two centuries of gyroscopic development,”
Navigation 23: 313–324, 1976.

[302] Steinmetz, B.M., Arbter, K., Brunner, B., Landzettel, K., “Autonomous vision nav-
igation of the nanokhod rover,” Proceedings of i-SAIRAS 6th International Sympo-
sium on Artificial Intelligence, Robotics and Automation in Space, 2001.

[303] Stentz, A., “The focussed D* algorithm for real-time replanning,” in Proceedings of
IJCAI-95, August 1995.

[304] Stentz, A., “Optimal and efficient path planning for partially-known environments,”
Proceedings of the International Conference on Robotics and Automation, 1994.

[305] Stevens, B.S., Clavel, R., Rey, L., “The DELTA parallel structured robot, yet more
performant through direct drive,” Proceedings of the 23rd International Symposium
on Industrial Robots, 1992.

[306] Takeda, H., Facchinetti, C., Latombe, J.C., “Planning the motions of a mobile robot
in a sensory uncertainty field,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16: 1002–1017, 1994.

[307] Tardif, J., Pavlidis, Y., Daniilidis, K., “Monocular visual odometry in urban envi-
ronments using an omnidirectional camera,” IEEE/RSJ International Confrence on
Intelligent Robots and Systems, 2008.

[308] Taylor, R., Probert, P., “Range finding and feature extraction by segmentation of
images for mobile robot navigation,” Proceedings of the IEEE International Con-
ference on Robotics and Automation, ICRA, 1996.

[309] Thrun, S., Burgard, W., Fox, D., “A probabilistic approach to concurrent mapping
and localization for mobile robots.” Autonomous Robots 31: 1–25. 1998.

[310] Thrun, S., et al., “Minerva: A second generation museum tour-guide robot,” Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA'99), Detroit, May 1999.

[311] Thrun, S., Fox, D., Burgard, W., Dellaert, F., “Robust Monte Carlo localization for
mobile robots,” Artificial Intelligence, 128: 99–141, 2001.

[312] Thrun, S. “A probabilistic online mapping algorithm for teams of mobile robots,”
International Journal of Robotics Research 20, no. 5: 335–363, 2001.

[313] Thrun, S. “Simultaneous localization and mapping,” Springer Tracts in Advanced
Robotics 38, no. 5: 13–41, 2008.

[314] Thrun, S., Gutmann, J.-S., Fox, D., Burgard, W., Kuipers, B., “Integrating topolog-
ical and metric maps for mobile robot navigation: A statistical approach,” Proceed-
ings of the National Conference on Artificial Intelligence (AAAI),1998.

[315] Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hähnel,
D., Montemerlo, M., Morris, A., Omohundro, Z., Reverte, C., Whittaker, W.
“Autonomous exploration and mapping of abandoned mines,” IEEE Robotics and
Automation Magazine 11, no. 4: 79–91, 2004.

[316] Tomasi, C., Shi, J., “Image deformations are better than optical flow,” Mathematical
and Computer Modelling 24: 165–175, 1996.

[317] Tomatis, N., Nourbakhsh, I., Siegwart, R., “Hybrid simultaneous localization and
map building: A natural integration of topological and metric,” Robotics and Auton-
omous Systems 44, 3–14, 2003.

[318] Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A., “Bundle adjustment — a
modern synthesis,” International Conference on Computer Vision, 1999.

Bibliography 443
[319] Tsai, R. “A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses,” IEEE Journal of
Robotics and Automation 3, no. 4: 323–344, August 1987.

[320] Tuytelaars, T., Mikolajczyk, K., “Local invariant feature detectors: a survey,”
Source, Foundations and Trends in Computer Graphics and Vision 3 , no. 3, 2007.

[321] Tzafestas, C.S., Tzafestas, S.G., “Recent algorithms for fuzzy and neurofuzzy path
planning and navigation of autonomous mobile robots,” Systems-Science 25: 25–39,
1999.

[322] Ulrich, I., Borenstein, J., “VFH*: Local obstacle avoidance with look-ahead verifi-
cation,” Proceedings of the IEEE International Conference on Robotics and Auto-
mation, San Francisco, May 2000.

[323] Ulrich, I., Borenstein, J., “VFH+: Reliable obstacle avoidance for fast mobile
robots,” Proceedings of the International Conference on Robotics and Automation
(ICRA’98), Leuven, Belgium, May 1998.

[324] Ulrich, I., Nourbakhsh, I., “Appearance obstacle detection with monocular color
vision,” the Proceedings of the AAAI National Conference on Artificial Intelligence.
Austin, TX. August 2000.

[325] Ulrich, I., Nourbakhsh, I., “Appearance-based place recognition for topological
localization,” Proceedings of t he IEEE International Conference on Robotics and
Automation, San Francisco, 1023–1029, April 2000.

[326] Vanualailai, J., Nakagiri, S., Ha, J-H., “Collision avoidance in a two-point system
via Liapunov’s second method,” Mathematics and Simulation 39: 125–141, 1995.

[327] Van Winnendael, M., Visenti G., Bertrand, R., Rieder, R., “Nanokhod microrover
heading towards Mars,” Proceedings of the Fifth International Symposium on Arti-
ficial Intelligence, Robotics and Automation in Space (ESA SP-440), Noordwijk,
Netherlands, 1999.

[328] Vandorpe, J., Brussel, H. V., Xu, H. “Exact dynamic map building for a mobile
robot using geometrical primitives produced by a 2D range finder,” Proceedings of
the IEEE International Conference on Robotics and Automation, ICRA, 901–908,
1996.

[329] Weiss, G., Wetzler, C., Puttkamer, E., “Keeping track of position and orientation of
moving indoor systems by correlation of range-finder scans,” Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94),
Munich, September 1994.

[330] Weingarten, J., Gruener, G. and Siegwart, R., “A state-of-the-art 3D sensor for robot
navigation,” Proceedings of IROS, Sendai, September 2004.

[331] Weingarten, J. and Siegwart, R., “3D SLAM using planar segments,” Proceedings
of IROS, Beijing, October 2006.

[332] Wullschleger, F.H., Arra,s K.O., Vestli, S.J., “A flexible exploration framework for
map building,” Proceedings of the Third European Workshop on Advanced Mobile
Robots (Eurobot 99), Zurich, September 1999.

[333] Yagi, Y., Kawato, S.,“Panorama scene analysis with conic projection,” Proceedings
of the IEEE International Conference on Intelligent Robots and Systems (IROS),
Workshop on Towards a New Frontier of Applications, 1990.

[334] Yamauchi, B., Schultz, A., Adams, W., “Mobile robot exploration and map-building
with continuous localization,” Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA’98), Leuven, Belgium, May 1998.

444 Bibliography
[335] Ying, X., Hu, Z., “Can we consider central catadioptric cameras and fisheye cameras
within a unified imaging model?,” European Conference on Computer Vision
(ECCV), Lecture Notes in Computer Science, Springer Verlag, May 2004.

[336] Zhang, L., Ghosh, B. K., “Line segment based map building and localization using
2D laser rangefinder,” Proceedings of the IEEE International Conference on Robot-
ics and Automation, 2000.

[337] Zhang, Z., “A flexible new technique for camera calibration,” Microsoft Research
Technical Report 98-71, December 1998
see also http://research.microsoft.com/~zhang.

Referenced Webpages

[338] Fisher, R.B. (editor), “CVonline: On-line Compendium of Computer Vision,”
Available at www.dai.ed.ac.uk/CVonline.

[339] The Intel Image Processing Library/Integrated Performance Primitives (Intel IPP):
http://software.intel.com/en-us/intel-ipp.

[340] Source code release site: www.cs.cmu.edu/~jbruce/cmvision.
[341] Newton Labs website: www.newtonlabs.com.
[342] For probotics: http://www.personalrobots.com.
[343] OpenCV, the Open Source Computer Vision library: http://opencv.willowga-

rage.com/wiki.
[344] Passive walking: www-personal.umich.edu/~artkuo/Passive_Walk/

passive_walking.html.
[345] Passive walking, the Cornell Ranger: http://ruina.tam.cornell.edu/research/topics/

locomotion_and_robotics/ranger/ranger2008.php.
[346] Computer Vision industry: http://www.cs.ubc.ca/spider/lowe/vision.html.
[347] Camera Calibration Toolbox for Matlab: http://www.vision.caltech.edu/bouguetj/

calib_doc.
[348] List of camera calibration softwares: http://www.vision.caltech.edu/bouguetj/

calib_doc/htmls/links.html.
[349] Omnidirectional camera calibration toolbox from Christopher Mei

http://www.robots.ox.ac.uk/~cmei/Toolbox.html.
[350] Omnidirectional camera calibration toolbox from Joao Barreto

http://www.isr.uc.pt/~jpbar/CatPack/pag1.htm.
[351] Omnidirectional camera calibration toolbox from Davide Scaramuzza:

google “ocamcalib” or go to http://robotics.ethz.ch/~scaramuzza/
Davide_Scaramuzza_files/Research/OcamCalib_Tutorial.htm.

[352] Open source software for SLAM and loop-closing: http://openslam.org.
[353] Open source software for multi-view structure from motion: http://photo-

tour.cs.washington.edu/bundler
[354] Microsoft Photosynth: http://photosynth.net
[355] Photo Tourism: http://phototour.cs.washington.edu/
[356] Voodoo Camera Tracker: A tool for the integration of virtual and real scenes

http://www.digilab.uni-hannover.de/docs/manual.html

Bibliography 445
[357] Augmented-reality toolkit (ARToolkit): http://www.hitl.washington.edu/artoolkit
[358] Parallel Tracking and Mapping (PTAM): http://www.robots.ox.ac.uk/~gk/PTAM

Index

A
A* algorithm 383
accelerometer 119
accuracy 1
action update 297
affine intensity changes 221
Aibo 31
Aircraft 52
aliasing 266, 268
Asimo (Honda) 28
Autonomous Map Building 348
averaging filter 196
averaging filters 198

B
bag of features 235
baseline 171
Bayer filter 146
Bayes rule 301
bearing sensor 151
bearing-only SLAM 355
behavior 32, 57, 58, 70, 74, 105, 107, 108,

111, 116, 128, 143, 144, 203, 208,
275, 276, 277, 278, 309, 342, 348,
370, 397, 398, 402, 411, 412, 413,
414, 415, 416, 418, 420, 421, 422

belief
belief distributions 304
multiple-hypothesis 278, 280, 282, 283,

296, 316, 322
representation 12, 278, 279, 307
single 278, 282
single-hypothesis 278, 279, 280, 283
state 282, 283, 287, 296, 298, 307,

308, 315, 316, 318, 319, 320, 321,
322, 323, 331, 336, 370, 371

unique 280

belief representation 304
biped 13, 15, 20, 27, 29
blanking time 127
blob detectors 227
blooming 144, 267
blur circle 148, 149
bow leg 26, 27
breadth-first search 380
bubble band 399, 400, 401, 408
Bug 393, 394, 396, 397, 407
bundle adjustment 188

C
calibration 106, 270, 274
camera 155

calibration 158
center of projection 151
central camera 161
decentering distortion 157
depth from focus 150
extrinsic parameters 156
geometry 169
image formation 148
image plane 151
intrinsic parameters 156
optical axis 151
optics 144, 148, 149
parameter 143, 144
perspective projection 152
pinhole model 150
pixelization 154
principal point 151
radial distortion 156
tangential distortion 157

camera obscura 150
catadioptric camera 159, 238, 239
caustic 163
CCD camera 102, 103, 104, 137, 143, 144,

145, 146, 211, 267, 344
center of mass (COM) 38, 39, 49
center of projection 151
central cameras 161
chassis 36, 38, 41, 43, 44, 45, 58, 59, 62,

63, 64, 65, 67, 68, 71, 73, 76, 77,
78, 79, 81, 82, 84, 85, 87, 90, 347,
396, 405, 410

cheirality constraint 186
chips 293, 419

448 Index
chrominance 193
circle of confusion 148
closed-world assumption 284, 287, 290
clustering 194, 235
CMOS camera 103, 104, 137, 143, 144,

145, 146
cognition 2, 5, 10, 11, 17, 265, 267, 269,

277, 369, 417
color camera 146
color images 146
color sensing 193
color space 193

RGB 193
YUV 193

color tracking 192
completeness 316, 371, 375, 377, 379, 390
computer vision 142
condensation algorithms 315
conditional probability 301
configuration space 84, 290, 297, 307,

371, 372, 373, 374, 375, 387, 390,
403, 405, 406

conjugate pair 172
constraint

rolling 64, 66, 67, 69, 70, 72, 73
sliding 65, 67, 70, 73, 77, 81, 86

controllability 37, 38, 42, 43
convolution 197, 201, 308
corner detector 215
cornerness function 221
correlation 137, 197, 272
correspondence pair 172
correspondence problem 139, 174, 193
correspondence search

area based 176
feature based 176

corresponding points 170
cross-sensitivity 106, 107, 116, 128, 144,

145
curvature velocity 401, 408
cycle frequency 404
Cye 38, 39, 42, 290, 420

D
DARPA 32
dead reckoning 44, 47, 80, 116, 269, 344,

345

decomposition 287, 288, 316, 373, 376,
395, 411, 416

approximate 290, 377, 378
control 413, 414
exact 284, 287, 376, 377
fixed 288, 289, 291, 379
parallel 415
serial 414
temporal 411, 412, 413, 417, 418, 422
topological 291, 322
variable-size 379

Deep Space One 417
degree 88
degree of freedom (DOF) 19, 20, 65, 68,

83, 88, 392
degree of maneuverability 82, 84, 87
degree of mobility 77, 81
depth from defocus 150
depth from focus 148, 149, 150, 172
depth of field 149
depth-first 382
Dervish 233, 316, 317, 318, 319, 320,

321, 322, 336
descriptor 230
differential degrees of freedom (DDOF) 85,

87
differential drive 39, 40, 61, 62, 73, 74,

78, 79, 81, 82, 83, 87
digital camera 142
Dijkstra’s algorithm 382
dioptric camera 159
Dirac delta 304
disparity 139, 170, 171, 172
doppler 104, 140, 141
dynamic

range 103, 105, 144, 145
thresholding 205

dynamic stability 17
dynamic window 402, 403, 404, 408

E
edge detection 199, 200, 205

Canny 200
Prewitt 203, 204
Roberts 203
Sobel 204

effector noise 269
eight-point algorithm 184

Index 449
elastic band 399, 408
encoder 269, 272, 298, 307, 317, 320,

322, 332, 347, 376, 417
capacitive 104
inductive 104
magnetic 104
optical 104, 115, 116
quadrature 103, 115

epipolar constraint 170, 183
epipolar geometry 164
epipolar line 170, 173
error

deterministic 106, 108, 269, 270, 274
nondeterministic 270, 272, 274, 298
random 106, 107, 108, 109, 111, 139,

144, 267, 268
systematic 106, 107, 108, 109, 116,

117, 270
error propagation law 109, 114, 272, 334
essential matrix 183

eight-point algorithm 184
five-point algorithm 184

executability 375
executive 418, 419, 420, 421, 422
expectation-maximization 256
Extended Kalman filter 324, 327
exteroceptive 101, 104, 106, 107, 116,

123, 297
F

FAST corner 226
feature 101, 111, 137, 199, 205, 206, 209,

210, 212, 213, 238, 239, 242, 243,
248, 260, 261, 267, 284, 285, 286,
287, 291, 293, 294, 295, 318, 319,
331, 332, 335, 338, 340, 351

feature detector 213
feature extraction 11, 208, 210, 211, 242,

248, 260, 319, 320, 332, 336, 420
features 212

affine invariance 224
blob detectors 227
C/C++ and Matlab code 234
corner detectors 215
descriptor 230
distinctiveness 213
FAST corner detector 226
GPU and FPGA implementations 233

Harris corner detector 216
invariance 220
Moravec corner detector 215
MSER detector 232
properties 213
repeatability 213
scale invariance 222
Shi-Tomasi corner detector 225
SIFT detector 227
SURF detector 232
SUSAN corner detector 225

feedback control 92
field 397
fingerprint image 209, 241
fisheye lenses 159
floor plane extraction 194, 195, 212
flux gate 116, 117
forward kinematic 58, 73
forward kinematics 61
framegrabber 146
frequency 105, 119, 127, 128, 130, 140,

141
Frobenius norm 184

G
gait 16, 19, 20, 21, 29, 31
Gaussian 108, 109, 111, 112, 113, 199,

200, 201, 202, 239, 244, 282, 283,
297, 324, 331, 333, 336

Gaussian filter 199
Genghis 34
GIST descriptor 240
global image feature 238
global localization 306
global positioning system (GPS) 122, 123,

124, 266, 295, 346
differential (DGPS) 124
pseudorange 124

GPU 233
gradient

convolution 201
covariance 114
edge detection 203, 204, 205, 241
intensity 199
optical flow 191
potential field 386
wavefront 405

gradient method 405

450 Index
graph-based SLAM 361
grassfire 381, 404, 420
Great Flight Diagram 50
grid localization 343
gyroscope 116, 118, 269

mechanical 118
optical 119

H
Haar wavelets 232
Hall effect compass 117
Harris corner detector 216

cornerness function 218
scale and affine invariance 220

heap 382
hexapod 33
histogram 239

angle 260, 345
color, image 239, 241
polar 398
range 259
vector field 397

holonomic 44, 85, 86, 87, 372, 399, 406,
409

homogeneous coordinates 153
hopping

bow leg 27
Raibert 26
Ringrose 27
single leg 26

Hough transform 205, 206, 241, 256
hypothesis

multiple 278, 280, 282, 283, 286, 296,
316, 322

single 278, 280, 283, 286
I

image buffer chip 146
image filtering 196
image fingerprint 240
Image formation 148
image histogram 241
image histograms 239
image plane 151
image processing 142
incremetal 251
inertial measurement unit (IMU) 121
inertial navigation system (INS) 121

instantaneous center of rotation (ICR) 77,
78

integral images 232
intrinsic parameter matix 155
Invariance 215
inverse kinematics 49
inverted file 236
iris 144, 149, 169
Iterative-End-Point-Fit 250

J
Jacobian 95, 114, 248, 273, 335, 339

K
Kalman filter 12, 282, 283, 297, 298, 299,

322, 323, 324, 331, 332, 336, 342
kernel 197, 203
kidnapped robot problem 306, 307
Kinect camera 139
kinematic 17, 35, 57, 58, 63, 68, 74, 79,

84, 94, 405, 407
analysis 90
constraints 58, 63, 71, 77, 78, 80, 82,

84, 85, 86, 87, 401, 402, 405
control 91
forward 58, 61, 73
inverse 49
limitations 398
motion 77, 371

k-means 194, 235
L

lane curvature 402, 408
Laplacian 192
laser rangefinder 103, 106, 111, 125, 129,

133, 137, 169, 210, 336, 338, 375,
410

least-square 243, 244, 245, 246
lidar (light detection and ranging) 129
line extraction 244, 248, 286, 338
line fitting 243
line regression 250
linear filter 196
linearity 105, 144
localization 2, 5, 11, 115, 122, 265, 267,

268, 275, 277, 278, 282, 285, 291,
293, 294, 295, 297, 299, 344, 345,
409

beacon 346
control 410

Index 451
global 345
Kalman filter 12, 297, 298, 299, 322,

324, 332, 336, 342
landmark-based 344
Markov 12, 297, 298, 299, 307, 309,

316, 318
probabilistic 297
representation 278
route-based 347
sensor 124, 125, 193, 239, 261, 295,

375
localization and mapping (SLAM) 418
location recognition 234
locomotion 13, 14, 16, 17

biological 14
biped 15
legged 17, 19, 25
mechanism 14, 49, 295
specific power 15
wheeled 35, 47

loop detection 351
lowpass filters 198

M
Mahalanobis 335, 340
maneuverability 35, 37, 38, 42, 44, 46, 47,

48, 58, 73, 77, 82, 84, 87
manipulator 1, 57, 371
Markov assumption 309
Markov localization 297, 298, 299, 307,

309, 316, 331
mask 197
matching 170, 176, 190, 207, 215, 227

NCC 207
SAD 207
SSD 207
stereo 176

mean square 110
measurement update 297
MEMS 120
minimum energy algorithm 241
mobility 2
monocular Visual SLAM 355
Monte Carlo 315
Monte Carlo localization 343
motion control 91, 92, 265, 275, 417
motion field 189, 190
motorization 90

MPEG 146
MSER detector 232

N
Nanokhod 47
navigation

behavior-based 275, 276, 277, 416
landmark-based 293, 344, 345
map-based 265, 277, 278

navigation architecture 369, 410, 411, 413,
418, 419, 422, 423

navigation competence 12, 369, 411
NCC 207
nearness diagram (ND) 405
NF1 381, 404, 406, 409
Nomad XR4000 40, 46
nonholonomic 85, 86, 87, 91, 372, 392,

397, 399, 406, 407, 409, 410
nonintegrable 85
nonlinearity 117
non-maxima suppression 202, 218
normal distribution 112
Normalized Cross Correlation 207

O
obstacle avoidance 150, 169, 172, 192,

208, 369, 393, 394, 396, 397, 398,
401, 402, 404, 405, 406, 409, 415,
417

occupancy grid 208, 211, 281, 289, 290,
291, 294, 397, 404, 420

omnidirectional 36, 38, 39, 40, 41, 42, 44,
45, 46, 68, 70, 71, 73, 75, 81, 87,
88, 404

omnidirectional camera
central 161
model 164
single effective viewpoint property 161
unified model for catadioptric and fish-

eye cameras 168
unified model for catadioptric cameras

165
online SLAM 352
OpenCV 234
optical

flow 189, 190, 191, 192
flow constraint 191
gyroscope 119
radar 129

452 Index
triangulation 125, 136, 137
optical axis 151
optical center 151
optics 148
orthogonal rotation matrix 59

P
particle filter 315
path planning 275, 369, 371, 373, 375,

386, 404, 409, 417
perception update 297, 319, 320, 344
Personal Rover 49
Perspective projection 152
pinhole 149, 151
Pioneer 4, 7
Place Recognition 234
planning

deferred 420
episodic 420, 421
integrated 370, 422, 423

Plustech 2, 3
polydioptric camera 159
pose 19, 57, 59, 64, 69, 81, 84, 85, 88,

90, 107, 267, 270, 274, 275, 295,
297, 342, 344

position tracking 306
position-sensitive device (PSD) 136, 138
potential field 386, 388, 389, 390, 396

extended 390, 391
rotation 390
task 390, 391

precision 1, 106, 107, 284, 299, 330
prediction 304
prediction update 297
preprocessing 199, 200, 239
principal point. 151
probability density function 109, 110, 111,

112, 282, 298, 316, 322
probability density functions 299
proprioceptive 101, 103, 104, 115, 116,

269, 297
Pygmalion 79, 336, 421

Q
quaternions 357

R
Radial distortion 156
Raibert 26
Random Sample Consensus 252

random variable 111, 112, 113, 243, 244
randomized sampling 315
range 103, 105, 107, 117, 125, 127, 128,

129, 130, 131, 132, 136, 137, 139,
141, 144, 169, 208, 259

rank 79, 80, 82
RANSAC 252
Rao-Blackwellized particle filters 363
Rapidly Exploring Random Trees 386
reference frame

global 58, 59, 60, 61, 63, 65, 86
inertial 118
local 61, 64, 65, 73, 74, 75, 76, 79,

107, 333
moving 294

resolution 105, 115, 117, 139, 269, 322,
378

RGB 193
road map 375, 376
Robox 5
rolling constraint 64, 66, 69, 70, 72, 73,

75, 76, 77, 86
rotation matrix 59, 60

S
SAD 207
Sagnac effect 119
saturation 144, 239
Scale invariant detection 222
Schlegel 404, 409
segmentation 248, 261
sensitivity 106, 145, 149, 239
sensor aliasing 268
sensor fusion 193, 268, 295, 296, 322,

331, 401, 404
sensor noise 267, 268, 280, 318
Shi-Tomasi corner 225
Shrimp 48, 49, 181
shutter 144, 149
Sick laser scanner 131, 133, 410
SIFT 212, 215, 227, 234
similarity measure 176
single effective viewpoint property 161
Singular Values Decomposition 184
SLAM 348, 349

Extended Kalman Filter SLAM 353
full SLAM problem 352
graph-based SLAM 361

Index 453
Mathematical definition 351
sliding constraint 65, 67, 70, 72, 73, 74,

77, 79, 80, 81, 83, 86, 87
Smoothing filter 198
smoothing filter

filters 198
Gaussian filter 199
median filter 198

Sojourner 48
Sony Aibo 31
Sony Dream Robot (SDR-4X II) 28
Split-and-merge 249
Spring Flamingo 29, 30
SSD 207
stability 17, 35, 37, 38, 42, 43, 49, 87

motion controller 98
static 19, 26, 33, 38

standard deviation 107, 110, 111, 112,
113, 241, 282

steering
Ackermann 42, 44, 78
slip/skid 47, 80

stereo camera 153
stereo vision 108, 138, 169, 170, 171, 172,

193, 241
stereopsis 170
Structure from Motion 180
Sum of Absolute Differences 207
Sum of Squared Differences 207
SURF detector 232
SUSAN corner 225
synchro drive 39, 43, 44

T
teleoperated 2
theorem of total probability 301
tiered architecture 417, 418, 419
time-of-flight 104, 125, 126, 129
time-of-flight camera 135
topological 210, 279, 280, 281, 283, 291,

292, 293, 294, 295, 299, 316, 317,
318, 320, 321, 322, 373, 421

Tribolo 39, 45
two-steer 82, 83, 87, 90

U
ultrasonic beacon 346
ultrasonic sensor 103, 125, 126, 127, 128,

129, 133, 268, 319, 375, 410

Unscented Kalman Filter 343
unscented transform 343
up to a scale reconstruction 172
Uranus 38, 40, 43, 45, 46

V
variance 110, 111, 244, 245, 272, 330,

333, 336
vector field 397, 407
Vector Field Histogram (VFH) 407
vector field histogram (VFH) 397
velocity space 84, 401, 403
visibility graph 373, 374, 375
vision-based sensing 104, 145, 194, 210,

238, 245, 267, 293
visual odometry 187
Visual SLAM 356
visual vocabulary 235
visual words 235
vocabulary tree 235
Voronoi diagram 374, 375, 376
VTOL 52

W
Wabian 29, 30
wavefront 381, 405, 409
wavefront expansion algorithm 381
well depth 144
wheel

castor 36, 37, 38, 41, 42, 46, 66, 67,
68, 71, 79, 87

spherical 36, 38, 39, 41, 44, 45, 70, 71,
81, 83, 87

standard 36, 41, 64, 65, 66, 67, 68, 71,
72, 73, 75, 77, 79, 80, 81, 82, 83,
85, 86, 87

Swedish 36, 38, 39, 41, 42, 44, 45, 68,
69, 70, 71, 74, 75, 76, 79, 81, 83,
85, 87

white balance 147
workspace 16, 57, 63, 77, 84, 85, 86, 87,

88, 90, 266, 288, 372, 405, 406
Y

YUV 193
Z

zero motion line 77

Intelligent Robotics and Autonomous Agents
Edited by Ronald C. Arkin

Dorigo, Marco, and Marco Colombetti, Robot Shaping: An Experiment in Behavior Engi-
neering

Arkin, Ronald C., Behavior-Based Robotics

Stone, Peter, Layered Learning in Multiagent Systems: A Winning Approach to Robotic
Soccer

Wooldridge, Michael, Reasoning about Rational Agents

Murphy, Robin R., An Introduction to AI Robotics

Mason, Matthew T., Mechanics of Robotic Manipulation

Kraus, Sarit, Strategic Negotiation in Multiagent Environments

Nolfi, Stefano, and Dario Floreano, Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines

Siegwart, Roland, and Illah R. Nourbakhsh, Introduction to Autonomous Mobile Robots

Breazeal, Cynthia L., Designing Sociable Robots

Bekey, George A., Autonomous Robots: From Biological Inspiration to Implementation
and Control

Choset, Howie, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard,
Lydia E. Kavraki, and Sebastian Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations

Thrun, Sebastian, Wolfram Burgard, and Dieter Fox, Probabilistic Robotics

Mataric, Maja J., The Robotics Primer

egies and Lessons from Trading Agent Competition

Floreano, Dario, and Claudio Mattiusi, Bio-Inspired Artificial Intelligence: Theories,
Methods, and Technologies

Sterling, Leon S., and Kuldar Taveter, The Art of Agent-Oriented Modeling

Stoy, Kasper, David Brandt, and David J. Christensen, An Introduction to Self-Reconfigu-
rable Robots

Siegwart, Roland, Illah R. Nourbakhsh, and Davide Scaramuzza, Introduction to Autono-
mous Mobile Robots, second edition

Wellman, Michael P., Amy Greenwald, and Peter Stone, Autonomus Bidding Agents: Strat-

	Cover
	Contents
	Acknowledgments
	Preface
	1 Introduction
	2 Locomotion
	3 Mobile Robot Kinematics
	4 Perception
	5 Mobile Robot Localization
	6 Planning and Navigation
	Bibliography
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

