
Dedicated to Giorgia, my friends and my family.

a

Contents

1 Welcome 15
1.1 Introduction . 15

1.1.1 Who is this book for . 16
1.1.2 Author . 16
1.1.3 Acknowledgments . 17
1.1.4 Online resources and the quiz . 17

1.2 Introduction to Dart . 18
1.2.1 Supported platforms . 18
1.2.2 Package system . 22
1.2.3 Hello World . 22

1.3 Intorduction to Flutter . 24
1.3.1 How does it work . 24
1.3.2 Why Flutter uses Dart . 28
1.3.3 Hello world . 29

I The Dart programming language 33

2 Variables and data types 35
2.1 Variables . 35

2.1.1 Initialization . 36
2.1.2 final . 37

2.2 Data types . 38
2.2.1 Numbers . 39

2.2.1.1 Good practices . 40
2.2.2 Strings . 41
2.2.3 Enumerated types . 43

2.2.3.1 Good Practices . 44

Flutter Complete Reference 3

Contents

2.2.4 Booleans . 44
2.2.5 Arrays . 45

2.3 Nullable and Non-nullable types . 46
2.4 Data type operators . 49

2.4.1 Arithmetic operators . 49
2.4.2 Relational operators . 50
2.4.3 Type test operators . 51
2.4.4 Logical operators . 52
2.4.5 Bitwise and shift operators . 52

3 Control flow and functions 54
3.1 If statement . 54

3.1.1 Conditional expressions . 54
3.1.2 Good practices . 55

3.2 switch statement . 56
3.3 for and while loops . 58

3.3.1 for-in loop . 59
3.4 Assertions . 60
3.5 Good practices . 61
3.6 The basics of functions . 61

3.6.1 The Function type . 63
3.7 Anonymous functions . 64
3.8 Optional parameters . 67

3.8.1 Named parameters . 67
3.8.2 Positional parameters . 69

3.9 Nested functions . 70
3.10 Good practices . 71
3.11 Using typedefs . 72

4 Classes 74
4.1 Libraries and visibility . 76

4.1.1 Encapsulation . 78
4.1.2 Good practices . 80

4.2 Constructors . 80
4.2.1 Initializer list . 83
4.2.2 Named constructors . 84
4.2.3 Redirecting constructors . 85
4.2.4 Factory constructors . 85

Flutter Complete Reference 4

Contents

4.2.5 Instance variables initialization . 86
4.2.6 Good practices . 88

4.3 const keyword . 90
4.3.1 const constructors . 92
4.3.2 Good practices and annotations . 93

4.4 Getters and setters . 95
4.4.1 Good practices . 97

4.5 Operators overload . 98
4.5.1 callable classes . 99

4.6 Cloning objects . 101

5 Inheritance and Exceptions 105
5.1 Inheritance . 105

5.1.1 super and constructors . 108
5.1.2 Abstract classes . 109
5.1.3 Interfaces . 111

5.1.3.1 extends vs implements . 113
5.1.4 Mixins . 116
5.1.5 Good practices . 120

5.2 Extension methods . 121
5.2.1 Good practices . 123

5.3 The Object class . 124
5.3.1 Comparable<T> . 127

5.4 Exceptions . 128
5.4.1 on and catch . 129
5.4.2 finally . 131
5.4.3 Good practices . 132

6 Generics and Collections 136
6.1 Generic types . 136

6.1.1 Introduction . 136
6.1.2 Type safety . 137
6.1.3 Usage . 139

6.2 Collections . 141
6.2.1 List . 141

6.2.1.1 Collection statements . 142
6.2.1.2 Implementation . 143

6.2.2 Set . 145

Flutter Complete Reference 5

Contents

6.2.2.1 Implementation . 147
6.2.3 Map . 147

6.2.3.1 Implementation . 149
6.3 Good practices . 150

6.3.1 operator== and hashCode . 150
6.3.2 Transform methods . 153

7 Asynchronous programming 157
7.1 Introduction . 157
7.2 Futures . 158

7.2.1 Comparison . 161
7.2.2 async and await . 163
7.2.3 Good practices . 165

7.3 Streams . 166
7.3.1 Streams and generators . 168
7.3.2 Subscribers . 171
7.3.3 Differences . 174
7.3.4 Using a controller . 175

7.4 Isolates . 179
7.4.1 Multiple isolates and Flutter . 184

8 Coding principles with Dart 186
8.1 SOLID principles . 187

8.1.1 Single Responsibility Principle . 187
8.1.2 Open closed principle . 188
8.1.3 Liskov Substitution Principle . 190
8.1.4 Interface Segregation Principle . 191
8.1.5 Dependency Inversion Principle . 193

8.2 Dependency Injection . 194
8.2.1 Constructor injection . 196
8.2.2 Method injection . 198

II The Flutter framework 201

9 Basics of Flutter 203
9.1 Structure and tools . 203

9.1.1 Folder structure . 205
9.1.2 The pubspec.yaml file . 206

Flutter Complete Reference 6

Contents

9.1.3 Hot Reload . 210
9.1.4 Linter rules . 211
9.1.5 Tree shaking and constants . 213

9.2 Widgets and State . 215
9.2.1 Basic widgets . 218

9.2.1.1 Text . 218
9.2.1.2 Row . 219
9.2.1.3 Column . 220
9.2.1.4 ListView . 222
9.2.1.5 Container . 223
9.2.1.6 Stack and Positioned . 225

9.2.2 Stateless and Stateful widgets . 226
9.2.2.1 Good practices . 231

9.2.3 Keys . 233
9.3 Rebuilds and optimization . 236

9.3.1 const constructor . 237
9.3.2 Prefer widget composition over functions 238

9.4 Architecture . 240
9.4.1 Element and RenderObject . 243
9.4.2 Foreign Function Interface . 249
9.4.3 Method channels . 251

10 Building UIs in Flutter 255
10.1 Material . 255

10.1.1 Scaffold . 257
10.1.2 Material widgets . 260

10.1.2.1 Buttons . 261
10.1.2.2 Dialogs . 262

10.2 Cupertino . 266
10.2.1 CupertinoPageScaffold . 268
10.2.2 Cupertino widgets . 270

10.3 Building layouts . 272
10.3.1 Platform support . 272

10.3.1.1 Single OS . 272
10.3.1.2 Multiple OSes . 274

10.3.2 Responsive UIs . 276
10.3.2.1 LayoutBuilder . 277
10.3.2.2 MediaQuery . 280

Flutter Complete Reference 7

Contents

10.3.2.3 Good practices . 280
10.3.3 Scrolling and constraints . 283
10.3.4 Using themes . 287

11 State management 290
11.1 Updating the UI . 291

11.1.1 Considerations . 293
11.1.2 Good practices . 298

11.2 Passing the state with Provider . 299
11.2.1 Considerations . 303

11.2.1.1 Provider class . 303
11.2.1.2 Consumer class . 304

11.2.2 Good practices . 307
11.3 Alternative to setState: BLoC pattern . 312

11.3.1 Considerations . 318
11.3.1.1 BlocListener class . 321

11.3.2 BlocObserver class . 323
11.3.3 Persisting the state with HydratedBloc . 324
11.3.4 Undo and redo with ReplayBloc . 328
11.3.5 The internals of Bloc: Cubit . 330
11.3.6 Good practices . 333

11.4 Good practices for state management . 336

12 Routes and navigation 339
12.1 Basics of navigation and routing . 339

12.1.1 Creation of routes . 340
12.1.2 The main.dart file . 341
12.1.3 The routes.dart file . 342
12.1.4 Navigating between pages . 345
12.1.5 Good practices . 346
12.1.6 Navigator 2.0 . 348

12.2 Passing data between pages and widgets . 350
12.2.1 The Navigator class . 351
12.2.2 Passing data with Navigator . 352
12.2.3 Passing data with provider . 355

12.3 Other routing techniques . 359

13 Localization and internationalization 363

Flutter Complete Reference 8

Contents

13.1 Introduction . 363
13.2 Manual internationalization . 368

13.2.1 AppLocalization . 368
13.2.2 Localization delegate . 371
13.2.3 Backward compatibility . 373

13.3 Internationalizing using intl . 375
13.3.1 AppLocalization . 375
13.3.2 Localization delegate . 379
13.3.3 Plurals and data interpolations . 380

13.4 Considerations . 382

14 Animations 385
14.1 Implicit animations . 385
14.2 The animation library . 392

14.2.1 AnimatedWidget . 392
14.2.2 AnimationBuilder . 397

14.2.2.1 Curves . 400
14.2.2.2 Tweens . 402

14.3 Custom animations . 405
14.4 Good practices . 410

14.4.1 Hero animations . 411
14.4.2 Custom route transitions . 413

15 Working with JSON and other formats 417
15.1 Parsing JSON . 417

15.1.1 Manual parsing . 418
15.1.1.1 Parsing lists . 421
15.1.1.2 Parsing nested objects . 422

15.1.2 Automatic parsing . 423
15.1.2.1 Parsing lists . 427
15.1.2.2 Parsing nested objects . 427

15.2 Parsing XML . 429
15.2.1 Parsing strings . 431
15.2.2 Building XML strings . 434

16 Testing and profiling apps 437
16.1 Testing Flutter apps . 437

16.1.1 Unit Test . 438

Flutter Complete Reference 9

Contents

16.1.1.1 Testing asynchronous code and streams 442
16.1.1.2 Mocking dependencies . 443
16.1.1.3 Unit testing blocs . 447

16.1.2 Widget Test . 449
16.1.2.1 Testing blocs and providers . 452

16.1.3 Integration testing . 453
16.2 Testing performances . 458

16.2.1 DevTools . 459
16.2.2 Using the Flutter inspector . 459
16.2.3 Using the Timeline view . 461
16.2.4 Using the Memory view . 464
16.2.5 Using the Network view . 466
16.2.6 Using the Logging view . 467
16.2.7 Monitoring widget rebuilds . 468

III Practical Flutter examples 471

17 Networking 473
17.1 Making HTTP requests . 473

17.1.1 GET requests . 473
17.1.2 POST requests and headers . 478
17.1.3 Good practices . 479

17.2 Working with data . 481
17.2.1 Downloading data . 483
17.2.2 Uploading data . 487
17.2.3 Good practices . 490

17.3 Advanced REST API calls . 491
17.3.1 Model classes . 492
17.3.2 Parsing JSON . 494
17.3.3 HTTP Client . 497

18 Assets, images and multimedia 502
18.1 Assets and images . 502
18.2 Working with images . 505

18.2.1 Loading from the network . 506
18.3 Scalable vector graphics . 510

18.3.1 Working with SVG files . 512

Flutter Complete Reference 10

Contents

18.3.2 Loading from the network . 513
18.4 Audio and video with Flutter . 517

18.4.1 Playing a video . 517
18.4.2 Listening to music . 522

19 Forms and gestures 529
19.1 Forms and validation . 529

19.1.1 Keyboard and overflows . 534
19.1.2 Getting the text from a text field . 537
19.1.3 Constraining the input . 539

19.2 Gestures . 543
19.2.1 Swipe to dismiss . 544
19.2.2 Dragging items . 548

20 Interacting with the device 555
20.1 Taking a picture . 555
20.2 Working with sensors . 560
20.3 Working with Geolocation . 563
20.4 Platform-specific packages . 567

20.4.1 Battery level . 568
20.4.2 Device info . 568
20.4.3 Internet connectivity . 569
20.4.4 Shared preferences . 572

21 Widgets showcase 573
21.1 Material . 573

21.1.1 Drawer . 573
21.1.2 BottomNavigationBar . 577
21.1.3 NavigationRail . 579
21.1.4 TabBar . 581
21.1.5 Stepper . 584
21.1.6 DataTable . 586

21.2 Cupertino . 593
21.2.1 CupertinoDatePicker . 593
21.2.2 CupertinoActionSheet . 594
21.2.3 CupertinoSegmentedControl . 595

21.3 Community widgets . 596
21.3.1 Flutter Hooks . 597

Flutter Complete Reference 11

Contents

21.3.2 State notifier . 603

22 Using Firebase with Flutter 606
22.1 Installation . 606
22.2 Using Firestore as backend . 610

22.2.1 Building the backend . 612
22.2.2 Building the frontend . 615
22.2.3 Working with data . 619
22.2.4 Transactions and batches . 622

22.3 Monetizing your apps with AdMob . 623
22.3.1 Ad banners . 625
22.3.2 Rewarded video ads . 632

22.4 Flutter ML Kit . 633
22.4.1 Detecting faces . 634

22.4.1.1 CustomPainter and the canvas 641
22.4.2 Firebase vision kit . 644

22.5 Push notifications with FCM . 645
22.5.1 Handling push notifications . 648
22.5.2 Sending push notifications . 649

22.6 Authenticating with Firebase . 653
22.6.1 Authentication features . 658

23 Publishing packages and apps 661
23.1 Publishing packages on pub.dev . 661

23.1.1 Creating the package . 662
23.1.2 Documenting the code . 664
23.1.3 Reviewing and publishing . 667
23.1.4 Scores and good practices . 668
23.1.5 Verified publishers and Flutter favorite . 670

23.2 Publishing apps on the stores . 672
23.2.1 Releasing Android apps . 673
23.2.2 Releasing iOS apps . 677
23.2.3 Splash screens . 679
23.2.4 Doing CI/CD for Flutter . 681

23.2.4.1 GitHub actions . 682

24 Complete Flutter project example 686
24.1 Preparing the project . 686

Flutter Complete Reference 12

Contents

24.1.1 Folder structures and basic setup . 687
24.2 State management and model classes . 689

24.2.1 Authentication bloc . 693
24.2.2 Credentials bloc . 696
24.2.3 Localization files . 701

24.3 Building the UI . 702
24.3.1 Creating the login form . 707
24.3.2 Creating the welcome page . 711

24.4 Testing the code . 712
24.4.1 Unit tests . 712
24.4.2 Widget tests . 714

A Dart Appendix 717
A.1 The I/O library . 717

A.1.1 Files . 717
A.1.2 Directories . 718
A.1.3 Server side Dart . 719

A.2 Date and time . 721
A.3 Obfuscating Dart code . 724

B Flutter Appendix 727
B.1 Riverpod . 727

B.1.1 Usage . 728
B.1.2 Combining providers . 734
B.1.3 Testing . 736

B.2 Local databases . 738
B.2.1 Hive (NoSQL) . 738
B.2.2 SQLite (SQL) . 741

B.3 Initializing data at startup . 743
B.4 Accessibility . 745
B.5 The Flutter community . 748
B.6 Flutter SDK management . 751

B.6.1 Web and Desktop . 752

Index 755

Flutter Complete Reference 13

Flutter and the related logo are trademarks of Google LLC. We are not endorsed by or affiliated
with Google LLC.

1 | Welcome

1.1 Introduction

Thank you for having put your faith on this book. If you want to learn how to use a powerful
tool that allows developers to quickly create native applications with top performances, you’ve
chosen the right book. Nowadays companies tend to consider cross-platform solutions in their
development stack mainly for three reasons:

1. Faster development: working on a single codebase;

2. Lower costs: maintaining a single project instead of many (N projects for N platforms);

3. Consistency: the same UI and functionalities on any platform.

All those advantages are valid regardless the framework being used. However, for a complete
overview, there’s the need to also consider the other side of the coin because a cross-platform
approach also has some drawbacks:

1. Lower performances: a native app can be slightly faster thanks to the direct contact
with the device. A cross-platform framework might produce a slower application due to a
necessary bridge required to communicate with the underlying OS;

2. Slower releases: when Google or Apple announce a major update for their OS, the main-
tainers of the cross-platform solution could have the need to release an update to enable
the latest features. The developers must wait for an update of the framework, which might
slow down the work.

Every framework adopts different strategies to maximize the benefits and minimize or get rid of
the drawbacks. The perfect product doesn’t exist, and very likely we will never have one, but
there are some high quality frameworks you’ve probably already heard:

• Flutter. Created by Google, it uses Dart;

Flutter Complete Reference 15

Chapter 1. Welcome

• React Native. Created by Facebook, it is based on javascript;

• Xamarin. Created by Microsoft, it uses the C#;

• Firemonkey. Created by Embarcadero, it uses Delphi.

During the reading of the book you will see how Google tries to make the cross-platform devel-
opment production-ready using the Dart programming language and the Flutter UI framework.
You will learn that Flutter renders everything by itself 1 in a very good way and it doesn’t use
any intermediate bridge to communicate with the OS. It compiles directly to ARM (for mobile)
or optimized JavaScript (for web).

1.1.1 Who is this book for

To get the most out of this book, you should already know the basics of object-oriented pro-
gramming and preferably at least an "OOP language" such as Java or C#. Our goal is trying
to make the contents of this book understandable for the widest possible range of developers.
Nevertheless, you should already have a minimum of experience in order to better understand
the concepts.
If you already know what is a class, what is inheritance and what is nullability, part 1 of this
book is going to be a walk in the park. Foreknowledge aside, we will talk about both Dart and
Flutter "from scratch" so that the reader can understand any concept regardless the expertise
level.

1.1.2 Author

Alberto Miola is an Italian software developer that started working with Delphi (Object Pascal)
for desktop development and Java for back-end and Android apps. He currently works in Italy
where he daily uses Flutter for mobile and Java for desktop and back-end. Alberto graduated

1For example, it doesn’t use the system’s OEM widgets

Flutter Complete Reference 16

Chapter 1. Welcome

in computer science at University of Padua with a thesis about cross-platform frameworks and
OOP programming languages.

1.1.3 Acknowledgments

This book owes a lot to some people the author has to mention here because he thinks it’s the
minimum he can do to express his gratitude. They have technically supported the realization
of this book with their fundamental comments and critiques that improved the quality of the
contents.

• Rémi Rousselet. He is the author of the famous "provider" 2 package and a visible
member in the Flutter/Dart community. He actively answers on stackoverflow.com helping
tons of people and constantly works in the creation of open source projects.

• Felix Angelov. Felix is a Senior Software Engineer at Very Good Ventures. He previously
worked at BMW for 3 years and is the main maintainer of the bloc state management
library. He has been building enterprise software with Flutter for almost 2 years and loves
the technology as well as the amazing community.

• Matej Rešetár. He is helping people get prepared for real app development on re-
socoder.com and also on the Reso Coder YouTube channel. Flutter is an amazing framework
but it is easy to write spaghetti code in it. That’s why he’s spreading the message of proper
Flutter app architecture.

Special thanks to my friends Matthew Palomba and Alfred Schilken which carefully read the
book improving the style and the quality of the contents.

1.1.4 Online resources and the quiz

The official website of this book 3 contains the source code of the examples described in Part III.
While reading the chapters you might encounter this box:

B Resources > Chapter 16 > Files download

2https://pub.dev/packages/provider
3https://fluttercompletereference.com

Flutter Complete Reference 17

Chapter 1. Welcome

It indicates that if you navigate to the Resources page of our website, you’ll find the complete
source code of the example being discussed at Chapter 16 > Files download. In addition, you
can play the "Quiz game" which will test the Dart and Flutter skills you’ve acquired reading this
book.

At the end, the result page will tell you the exact page of the book at which you can find an
explanation of the answer.

1.2 Introduction to Dart

Dart is a client-optimized, garbage-collected, OOP language for creating fast apps that run on
any platform. If you are familiar with an object oriented programming language such as Java or
C# you might find many similarities with Dart. The first part of this book aims to show how
the language can help you solving problems and the vastness of its API.

1.2.1 Supported platforms

Dart is a very flexible language thanks to the environment in which it lives. Once the source code
has been written (and tested) it can be deployed in many different ways:

Flutter Complete Reference 18

Chapter 1. Welcome

• Stand-alone. In the same way as a Java program can’t be run without the Java Virtual
Machine (JVM), a stand-alone Dart program can’t be executed without the Dart Virtual
Machine (DVM). There’s the need to download and install the DVM which to execute Dart
in a command-line environment. The SDK, other than the compiler and the libraries, also
offers a series of other tools:

– the pub package manager, which will be explored in detail in chapter 23;

– dart2js, which compiles Dart code to deployable JavaScript;

– dartdoc, the Dart documentation generator;

– dartfmt, a code formatter that follows the official style guidelines.

In other words, with the stand-alone way you’re creating a Dart program that can only
run if the DVM is installed. To develop Flutter apps for any platform (mobile, web and
desktop), instead of installing the "pure" Dart SDK, you need to install Flutter 4 (which is
basically the Dart SDK combined with Flutter tools).

• AOT compiled. The Ahead Of Time compilation is the act of translating a high-level
programming language, like Dart, into native machine code. Basically, starting from the
Dart source code you can obtain a single binary file that can execute natively on a certain
operating system. AOT is really what makes Flutter fast and portable.

With AOT there is NO need to have the DVM installed because at the end you get a single
binary file (an .apk or .aab for Android, an .ipa for iOS, an .exe for Windows...) that can
be executed.

– Thanks to the Flutter SDK you can AOT compile your Dart code into a native binary

4https://flutter.dev/docs/get-started/install

Flutter Complete Reference 19

Chapter 1. Welcome

for mobile, web and desktop.

– As of Flutter 1.21, the Dart SDK is included in the Flutter SDK so you don’t have to
install them separately. They’re all bundled in a single install package.

– Starting from version 2.6, the dart2native command (supported on Windows, macOS
and Linux) makes AOT compiles a Dart program into x64 native machine code. The
output is a standalone executable file.

AOT compilation is very powerful because it natively brings Dart to mobile desktop. You’ll
end up having a single native binary which doesn’t require a DVM to be installed on the
client in order to run the application.

• Web. Thanks to the dart2js tool, your Dart project can be "transpiled" into fast and
compact JavaScript code. By consequence Flutter can be run, for example, on Firefox or
Chrome and the UI will be identical to the other platforms.

AngularDart 5 is a performant web app framework used by Google to build some famous
websites, such as "AdSense" and "AdWords". Of course it’s powered by Dart!

So far we’ve covered what you can do with Dart when it comes to deployment and production-
ready software. When you have to debug and develop, both for desktop/mobile and web, there
are useful some tools coming to the rescue.

5https://angulardart.dev/

Flutter Complete Reference 20

Chapter 1. Welcome

This picture sums up very well how the Dart code can be used in development and deploy-
ment. We’ve just covered the "Deploy" side in the above part, so let’s analyze the "Develop"
column:

• Desktop/mobile. The Just In Time (JIT) technique can be seen as a "real time trans-
lation" because the compilation happens while the program is executing. It’s a sort of
"dynamic compilation" which happens while the program is being used.

JIT compilation, combined with the DVM (JIT + VM in the picture), allows the dispatch
of the code dynamically without considering the user’s machine architecture. In this way
it’s possible to smoothly run and debug the code everywhere without having to mess up
with the underlying architecture.

• Web. The Dart development compiler, abbreviated with dartdevc, allows you to run and
debug Dart web apps on Google Chrome. Note that dartdevc is for development only: for
deployment, you should use dart2js. Using special tools like webdev 6 there’s the possibility
to edit Dart files, refreshing Chrome and visualizing changes almost immediately.

As you’ve just seen, Dart can run literally everywhere: desktop, mobile and web. This book will
give you a wide overview of the language (Dart version 2.10, with null safety support) and all the
required skills to create easily maintainable projects.

6https://dart.dev/tools/webdev#serve

Flutter Complete Reference 21

Chapter 1. Welcome

1.2.2 Package system

Dart’s core API offers different packages, such as dart:io or dart:collection, that expose
classes and methods for many purposes. In addition, there is an official online repository called
pub containing packages created by the Dart team, the Flutter team or community users like
you.

If you head to https://pub.dev you will find an endless number of packages for any purpose: I/O
handling, XML serialization/de-serialization, localization, SQL/NoSQL database utilities and
much more.

1. Go to https://pub.dev, the official repository;

2. Let’s say you’re looking for an equation solving library. Type "equations" in the search bar
and filter the results by platform. Some packages are available only for Dart, others only
for Flutter and a good part works for both;

3. The page of the package contains an installation guide, an overview and a guide so that
you won’t get lost.

You should check the amount of likes received by the community and the overall reputation of
the package because those values indicate how mature and healthy the product is. You will learn
how to properly write a library and how to upload it to the pub.dev repository in order to give
your contribution to the growth of the community.

1.2.3 Hello World

The simplest way you have to run your Dart code is by opening DartPad 7, an open-source
compiler that works in any modern browser. Clicking on "New Pad" you can decide whether
creating a new Dart or Flutter project (with latest stable version of the SDK).

7https://dartpad.dartlang.org/

Flutter Complete Reference 22

https://pub.dev
https://pub.dev

Chapter 1. Welcome

It’s the perfect tool for the beginners that want to play with Dart and try the code. If you’re
new to the language, start using DartPad (which is absolutely not and IDE). It always has the
latest version of the SDK installed and it’s straightforward to use.

void main() {
// Best food worldwide!
print("pasta pizza maccheroni");

}

Like with Java and C++, any Dart program has to define a function called main() which is the
entry point of the application. Very intuitively the print() method outputs to the console, on
the right of the DartPad, a string. Starting from chapter 2, you’ll begin to learn the syntax and
the good practices that a programmer should know about Dart.

When you develop for real world applications, you’re going to download the whole SDK and use
an IDE like IntelliJ IDEA, Android Studio or VS Code. DartPad doesn’t give you the possibility
to setup tests, import external packages, add dependencies and test your code.

Flutter Complete Reference 23

Chapter 1. Welcome

1.3 Intorduction to Flutter

Flutter is an UI toolkit for building natively compiled applications for mobile, desktop and web
with a single codebase. At the time of writing this book, only Flutter for mobile is stable
and ready for production. Web support is currently in beta while desktop (macOS, Linux and
Windows) is in early alpha: they will be covered in a future release of this reference once they
will be officially released as stable builds.

Being familiar with Jetpack compose or React Native is surely an advantage because the concepts
of reactive views and "components tree" are the fundamentals of the Flutter framework.

1.3.1 How does it work

This picture shows how a native app interacts with the OS, whether it’s been written in Kotlin
(or Java) for Android or Swift (or Objective-C) for iOS. We’re going to use these 2 platforms as
examples in this section.

Flutter Complete Reference 24

Chapter 1. Welcome

1. The platform, which can be Android or iOS, exposes a series of OEM widgets used by
the app to build the UI. Those widgets are fundamental because they give our app the
capabilities to paint the UI, use the canvas and respond to events such as finger taps.

2. If you wanted to take a picture from your app or use the bluetooth to send a file, there
would be the need to communicate with the native API exposed by the platform. For
example, using OS-specific APIs, you could ask for the camera service, wait for a response
and then start using it.

The cross-platform approach is different and it has to be like so. If you want your app to run on
both Android and iOS with the same codebase, you can’t directly use OEM widgets and their API
because they come from different architectures. They are NOT compatible. On the hardware
side however, both are based on the ARM architecture (precisely, v7 and v8) and the most re-
cent versions have 64-bit support. Flutter AOT compiles the Dart code into native ARM libraries.

� ARM is a family of RISC microprocessors (32 and 64 bit) widely used in embed-
ded systems. It dominates the mobile world thanks to its qualities: low costs, good
heat dissipation and a longer battery life thanks to a low power consumption.

The picture has rectangles on Android and triangles on iOS to indicate that OEM widgets and

Flutter Complete Reference 25

Chapter 1. Welcome

APIs have differences in how they are structured, in how they interact with the app and in how
you have to use them. For this reason, cross-platform apps cannot directly "talk" to the under-
lying environment: they must speak a language that everyone can understand.

� Try to only think about the runtime environment for a moment. If you wrote a
Java Android app, it would be compiled to work with the ART ecosystem (Android
RunTime): how could the same binary file work with iOS architecture which is com-
pletely different and has no ART?

In the above image, squares represents calls made by Java to interact with the ART
which is available only in Android and not on iOS. This compatibility problem is
solved by cross-platform frameworks.

ReactJS is a Reactive web framework which tries to solve the above problem by adding a bridge
in the middle that takes care of the communication with the platform. With this approach, the
bridge becomes the real starring of the scene it acts like a translator:

1. The bridge always exposes the same interface to the app so that it doesn’t care anymore
about the OS it’s running on;

2. The bridge has an implementation of OEMs and APIs for each platform to allow the app
to correctly work in many environments. In this way, you have a native app in the sense
that it uses the native tools given by the OS, but there’s still an "adapter" in the middle.

Flutter Complete Reference 26

Chapter 1. Welcome

As you can see from the picture, the bridge is an abstraction layer between the app the OS in
which it’s hosted. Of course, there has to be a bridge for each supported platform but that’s
not something you have to deal with because the developers of the framework will take care of
creating all of them.

� If you used a cross-platform framework, you’d just need to care about creating
the app with the code and the API exposed by the framework. The implementation
of the bridge is already in the internals of the SDK and it’s automatically "attached"
to the app in the build phase. You don’t have to create the bridge.

The bridge approach is quite popular, but it could be a potential bottleneck that slows down
the execution and thus the performances might drop. If you think about animations, swipes or
transitions, widgets are accessed very often and many of them running at the same time could
slow down the app. Flutter adopts a completely different strategy:

It uses its own very efficient rendering engine, called Skia, to paint the UI so that OEM widgets
are not needed anymore. In this way, the app doesn’t rely on the instruments the OS exposes to
draw the interface and you can freely control each single pixel of the screen.

• Flutter produces native ARM code for the machine;

Flutter Complete Reference 27

Chapter 1. Welcome

• when launched, the app loads the Flutter library. Any rendering, input or event handling,
and so on, is delegated to the compiled Flutter and app code. This is much faster than
having a bridge.

• A minimal Flutter app is about 4.4 MB on Android and 10.9 MB on iOS (depending on
the architecture, whether it be ARM 32 or 64 bit) 8

The true power of Flutter lies on the fact that apps are built with their own rendering stuff and
they are not constrained to paint the UI following the rules "imposed" by OEM widgets. You’re
free to control the screen and manipulate every single pixel.

1.3.2 Why Flutter uses Dart

There are many reasons behind the decision made by Google to choose Dart as language for the
Flutter framework. At the time of writing this book, the latest stable version of Dart is 2.9.2
(Dart 2.10 is on beta, but downloadable anyway). Here’s a summary 9 of what brought them to
make this choice.

1. OOP style. The vast majority of developers have object-oriented programming skills and
thus Dart would be easy to learn as it adopts most of the common OOP patterns. The
developer doesn’t have to deal with a completely new way of coding; he can reuse what he
already knows and integrate it with the specific details of Dart.

2. Performances. In order to guarantee high performances and avoid frame dropping during
the execution of the app, there’s the need of a high performance and predictable language.
Dart can guarantee to be very efficient and it provides a powerful memory allocator that
handles small, short-lived allocations. This is perfect for Flutter’s functional-style flow.

3. Productivity. Flutter allows developers to write Android, iOS, web and desktop apps
with a single codebase keeping the same performances, aspect and feeling in each plat-
form. A highly productive language like Dart accelerates the coding process and makes the
framework more attractive.

4. Both Flutter and Dart are developed by Google which can freely decide what to do with
them listening to the community as well. If Dart was developed by another company,
Google probably wouldn’t have the same freedom of choice in implementing new features
and and the language couldn’t evolve at the desired pace.

Another important aspect is that Dart is strongly typed, meaning that the compiler is going

8https://flutter.dev/docs/resources/faq#how-big-is-the-flutter-engine
9https://flutter.dev/docs/resources/faq#why-did-flutter-choose-to-use-dart

Flutter Complete Reference 28

Chapter 1. Welcome

to be very strict about types; you’ll have both less runtime surprises and an easier debugging
process. In addition, keep in mind that Dart is a complete swiss-knife because it has built-in
support for:

• tree-shaking optimization;

• hot reload feature;

• a package manager with mandatory documentation and the possibility to play with the
code using DartPad;

• DevTools , a collection of debugging and performance tools;

• code documentation generator tool;

• support for JIT and AOT compilation.

By owning two home-made products, Google can keep the entire projects under control and
decide how to integrate them in the best way possible with quick development cycles. Dart
evolves together with Flutter and as time goes by: they help each other maximizing productivity
and performances.

1.3.3 Hello world

When creating Flutter apps for the production world, you should really consider using Android
Studio or VSCode and install the respective plugins. They offer a debugger, hints, a friendly UI
and powerful optimization tools we will explore in detail.

void main() {
runApp(MyApp());

}

class MyApp extends StatelessWidget {
const MyApp();

Widget build(BuildContext context) {
return MaterialApp(

home: Scaffold(
body: Center(

child: Text("Flutter app!"),
),

),

Flutter Complete Reference 29

Chapter 1. Welcome

);
}

}

This is a very simple example of a minimal Flutter application. You can notice immediately
that there is a void main() { ... } function, required by Dart to define the entry point of the
program. An UI is a composition of widgets that decorate the screen with many objects; you will
learn how to properly use them to create efficient and beautiful designs.

This is an example of how a simple Flutter app looks identical in two different platforms. In this
book we will focus on Android and iOS mobile apps but everything you’re going to learn is also
valid for web and desktop because it’s always Flutter. Once you have the code ready, open the
console...

Flutter Complete Reference 30

Chapter 1. Welcome

$ flutter build appbundle

$ flutter build ios

$ flutter build web

$ flutter build macos

$ flutter build windows

$ flutter build linux

...and it’s just a matter of running different build commands to get different native binaries of
the same app. For more info on Flutter for web and desktop, see the appendix B at the bottom
of the book.

Flutter Complete Reference 31

"I’m not a great programmer; I’m just a good programmer
with great habits."

Martin Fowler

Part I

The Dart programming language

33

2 | Variables and data types

2.1 Variables

As in any programming language, variables are one of the basics and Dart comes with support for
type inference. A typical example of creation and initialization of a variable is the following:

var value = 18;
var myName = "Alberto"

In the example, value is an integer while myName is a string. Like Java and C#, Dart is able to
infer the type of the variable by looking at the value you’ve assigned. In other words, the Dart
compiler is smart enough to figure out by itself which is the correct type of the variable.

int value = 18;
String myName = "Alberto"

This code is identical to the preceding example with the only difference that here the types have
been typed explicitly. There would also be a third valid way to initialize variables, but you should
almost never use it.

dynamic value = 18;
dynamic myName = "Alberto"

dynamic can be used with any type, it’s like a "jolly": any value can be assigned to it and the
compiler won’t complain. The type of a dynamic variable is evaluated at runtime and thus, for a
proper usage, you’d need to work with checks and type casts. According with the Dart guidelines
and our personal experience you should:

1. Prefer initializing variables with var as much as you can;

2. When the type is not so easy to guess, initialize it explicitly to increase the readability of
the code;

Flutter Complete Reference 35

Chapter 2. Variables and data types

3. Use Object or dynamic only if it’s really needed but it’s almost never the case.

Actually, we could say that dynamic is not really a type: it’s more of a way to turn off static
analysis and tell the compiler you know what you’re doing. The only case in which you’ll deal
with it will come in the Flutter part in regard to JSON encoding and decoding.

2.1.1 Initialization

The official Dart guidelines 1 state that you should prefer, in most of the cases, the initialization
with var rather than writing the type explicitly. Other than making the code shorter (program-
mers are lazy!) it can increase the readability in various scenarios, such as:

// BAD: hard to read due to nested generic types
List<List<Toppings>> pizza = List<List<Toppings>>();
for(List<Toppings> topping in pizza) {

doSomething(topping);
}

// GOOD: the reader doesn't have to "parse" the code
// It's clearer what's going on
var pizza = List<List<Toppings>>();
for(var topping in pizza) {

doSomething(topping);
}

Those code snippets use generics, classes and other Dart features we will discuss in depth in the
next chapters. It’s worth pointing out two examples in which you want to explicitly write the
type instead of inferring it:

• When you don’t want to initialize a variable immediately, use the late keyword. It will be
explained in detail later in this chapter.

// Case 1
late List<String> names;

if (iWantFriends())
names = friends.getNames();

else
names = haters.getNames();

1https://dart.dev/guides/language/effective-dart/design#types

Flutter Complete Reference 36

Chapter 2. Variables and data types

If you used var instead of List<String> the inferred type would have been null and that’s
not what we want. You’d also lose the type safety and readability.

• The type of the variable is not so obvious at first glance:

// Is this a list? I guess so, "People" is plural...
// but actually the function returns a String!
var people = getPeople(true, 100);

// Ok, this is better
String people = getPeople(true, 100);

However, there isn’t a golden rule to follow because it’s up to your discretion. In general var
is fine, but if you feel that the type can make the code more readable you can definitely write
it.

2.1.2 final

A variable declared as final can be set only once and if you try to change its content later, you’ll
get an error. For example, you won’t be able to successfully compile this code:

final name = "Alberto";
name = "Albert"; // 'name' is final and cannot be changed

You can also notice that final can automatically infer the type exactly like var does. This
keyword can be seen as a "restrictive var" as it deduces the type automatically but does not
allow changes.

// Very popular - Automatic type deduction
final name = "Alberto";
// Generally unnecessary - With type annotation
final String nickName = "Robert";

If you want you can also specify the type but it’s not required. So far we’ve only shown examples
with strings, but of course both final and var can be used with complex data types (classes,
enums) or methods.

final rand = getRandomInteger();

// rand = 0;
// ^ doesn't work because the variable is final

Flutter Complete Reference 37

Chapter 2. Variables and data types

The type of rand is deduced by the return statement of the method and it cannot be re-assigned
in a second moment. The same advice we’ve given in "2.1.1 Initialization" for var can be applied
here as well.

� Later on in the book we will analyze in detail the const keyword, which is the
"brother" of final, and it has very important performance impacts on Flutter.

While coding you can keep this rule in mind: use final when you know that, once assigned, the
value will never change in the future. If you know that the value might change during the time
use var and think whether it’s the case to annotate the type or not. Here’s an example in which
a final variable fits perfectly:

void main() {
// Assume that the content of the file can't be edited
final jsonFile = File('myfile.json').readAsString();

checkSyntax(jsonFile);
saveToDisk(jsonFile, 'file.json');

}

In this example the variable jsonFile has a content that doesn’t have to be modified, it will
always remain the same and so a final declaration is good:

• it won’t be accidentally edited later;

• the compiler will give an error if you try to modify the value.

If you used var the code would have compiled anyway but it wouldn’t have been the best choice.
If the code was longer and way more complicated, you could accidentally change the content of
jsonFile because there wouldn’t be the "protection" of final.

2.2 Data types

Types in Dart can be initialized with "literals"; for example true is a boolean literal and "test"
is a string literal. In chapter 6 we will analyze generic data types that are very commonly used
for collections such as lists, sets and maps.

Flutter Complete Reference 38

Chapter 2. Variables and data types

2.2.1 Numbers

Dart has two type of numbers:

• int. 64-bit at maximum, depending on the platform, integer values. This type ranges from
-263 to 263-1.

• double. 64-bit double-precision floating point numbers that follow the classic IEEE 754
standard definition.

Both double and int are subclasses of num which provides many useful methods such as:

• parse(string),

• abs(),

• ceil(),

• toString()...

You should always use double or int. We will see, with generic types, a special case in which
num is needed but in general you can avoid it. Some examples are always a good thing:

var a = 1; // int
var b = 1.0; // double

int x = 8;
double y = b + 6;
num z = 10 - y + x;

// 7 is a compile-time constant
const valueA = 7;
// Operations among constant values are constant
const valueB = 2 * valueA;

From Dart 2.1 onwards the assignment double a = 5 is legal. In 2.0 and earlier versions you
were forced to write 5.0, which is a double literal, because 5 is instead an integer literal and the
compiler didn’t automatically convert the values. Some special notations you might find useful
are:

1. The exponential representation of a number, such as var a = 1.35e2 which is the equiva-
lent of 1.35 * 102;

Flutter Complete Reference 39

Chapter 2. Variables and data types

2. The hexadecimal representation of a number, such as var a = 0xF1A where 0xF1A equals
to F1A in base 16 (3866 in base 10).

2.2.1.1 Good practices

Very likely, during your coding journey, you’ll have at some point the need to parse numbers from
strings or similar kinds of manipulations. The language comes to the rescue with some really
useful methods:

String value = "17";

var a = int.parse(value); // String-to-int conversion
var b = double.parse("0.98"); // String-to-double conversion
var c = int.parse("13", radix: 6); // Converts from 13 base 6

You should rely on these methods instead of writing functions on your own. In the opposite
direction, which is the conversion into a string, there is toString() with all its variants:

String v1 = 100.toString(); // v1 = "100";
String v2 = 100.123.toString(); // v2 = "100.123";
String v3 = 100.123.toStringAsFixed(2); // v3 = "100.12";

Since we haven’t covered functions yet you can come back to this point later or, if you’re brave
enough, you can continue the reading. When converting numbers from a string, the method
parse() can fail if the input is malformed such as "12_@4.49". You’d better use one of the
following solutions (we will cover nullable types later):

// 1. If the string is not a number, val is null
double? val = double.tryParse("12@.3x_"); // null
double? val = double.tryParse("120.343"); // 120.343

// 2. The onError callback is called when parsing fails
var a = int.parse("1_6", onError: (value) => 0); // 0
var a = int.parse("16", onError: (value) => 0); // 16

Keep in mind that parse() is deprecated: you should prefer tryParse(). What’s important to
keep in mind is that a plain parse("value") call is risky because it assumes the string is already
well-formed. Handling the potential errors as shown is safer.

Flutter Complete Reference 40

Chapter 2. Variables and data types

2.2.2 Strings

In Dart a string is an ordered sequence of UTF-16 values surrounded by either single or double
quotes. A very nice feature of the language is the possibility of combining expressions into strings
by using ${expr} (a shorthand to call the toString() method).

// No differences between s and t
var s = "Double quoted";
var t = 'Single quoted';

// Interpolate an integer into a string
var age = 25;
var myAge = "I am $age years old";

// Expressions need '{' and '}' preceeded by $
var test = "${25.abs()}"

// This is redundant, don't do it because ${} already calls toString()
var redundant = "${25.toString()}";

A string can be either single or multiline. Single line strings are shown above using single or
double quotes, and multiline strings are written using triple quotes. They might be useful when
you want to nicely format the code to make it more readable.

// Very useful for SQL queries, for example
var query = """

SELECT name, surname, age
FROM people
WHERE age >= 18
ORDER BY name DESC

""";

In Dart there isn’t a char type representing a single character because there are only strings. If
you want to access a particular character of a string you have to use the [] operator:

final name = "Alberto";

print(name[0]); // prints "A"
print(name[2]); // prints "b";

Flutter Complete Reference 41

Chapter 2. Variables and data types

The returned value of name[0] is a String whose length is 1. We encourage you to visit 2 the
online Dart documentation about strings which is super useful and full of examples.

var s = 'I am ' + name + ' and I am ' + (23).toString() + ' y.o.';

You can concatenate strings very easily with the + operator, in the classic way that most pro-
gramming languages support. The official Dart guidelines 3 suggest to prefer using interpolation
to compose strings, which is shorter and cleaner:

var s = 'I am $name. I am ${25} years old';

In case of a string longer than a single line, avoid the + operator and prefer a simple line break.
It’s just something recommended by the Dart for styling reasons, there are no performance
implications at all. Try to be as consistent as possible with the language guidelines!

// Ok
var s = 'I am going to the'

'second line';

// Still ok but '+' can be omitted
var s = 'I am going to the' +

'second line';

Since strings are immutable, making too many concatenations with the + operator might be
inefficient. In such cases it’d be better if you used a StringBuffer which efficiently concatenates
strings. For example:

var value = "";

for(var i = 0; i < 900000; ++i) {
value += "$i ";

}

Each time the + operator is called, value is assigned with a new instance which merges the old
value and the new one. In other words, this code creates for 900000 times a new String object,
one for each iteration, and it’s not optimal at all. Here’s the way to go:

var buffer = StringBuffer();

2https://dart.dev/guides/libraries/library-tour#strings-and-regular-expressions
3https://dart.dev/guides/language/effective-dart/usage#prefer-using-interpolation-to-compose-strings-and-

values

Flutter Complete Reference 42

Chapter 2. Variables and data types

for(var i = 0; i < 900000; ++i)
buffer.write("$i ");

var value = buffer.toString();

This is much better because StringBuffer doesn’t internally create a new string on each iteration;
the string is created only once at the moment in which toString() is called. When you have to
do long loops that manipulate strings, avoid using the + operator and prefer a buffer. The same
class can also be found in Java and C# for example.

2.2.3 Enumerated types

Also known as "enums", enumerated types are containers for constant values that can be declared
with the enum keyword. A very straightforward example is the following:

enum Fruits { Apple, Pear, Grapes, Banana, Orange }

void main() {
Fruits liked = Fruits.Apple;
var disliked = Fruits.Banana;

print(liked.toString()); // prints 'Fruits.Apple'
print(disliked.toString()); // prints 'Fruits.Banana'

}

Each item of the enum has an associated number, called index, which corresponds to the zero-
based position of the value in the declaration. You can access this number by using the index
property.

enum Fruits { Apple, Pear, Grapes, Banana, Orange }

void main() {
var a = Fruits.Apple.index; // 0
var b = Fruits.Pear.index; // 1
var c = Fruits.Grapes.index; // 2

}

Note that when you need to use an enum you always have to fully qualify it. Using the name only
doesn’t work.

Flutter Complete Reference 43

Chapter 2. Variables and data types

2.2.3.1 Good Practices

When you need a predefined list of values which represents some kind of textual or numeric data,
you should prefer an enum over a primitive data type. In this way you can increase the readability
of the code, the consistency and the compile-time checking. Look at these 2 ways of creating a
function (/// is used to document the code):

enum Chess { King, Queen, Rook, Bishop, Knight, Pawn }

/// METHOD 1. Checks if the piece can move in diagonal
bool diagonalMoveC(Chess item) { ... }

/// METHOD 2. Checks if a piece can move in diagonal: [item] can only be:
/// 1. King
/// 2. Queen
/// 3. Rook
/// 4. Bishop
/// 5. Knight
/// 6. Pawn
/// Any other number is not allowed.
bool diagonalMoveS(int item) { ... }

This example should convince you that going for the first method is for sure the right choice.

• diagonalMoveC(Chess item). There’s a big advantage here: we’re guaranteed by the
compiler that item can only be one of the values in Chess. There’s no need for any
particular check and we can understand immediately what the method wants us to pass.

• diagonalMoveS(int item). There’s a big disadvantage here: we can pass any number, not
only the ones from 1 to 6. We’re going to do extra work in the body because we don’t have
the help of the compiler, so we need to manually check if item contains a valid value.

In the second case, we’d have to make a series of if conditions to check whether the value ranges
from 1 to 6. Using an enum, the compiler does the checks for us (by comparing the types) and
we’re guaranteed to work with valid values.

2.2.4 Booleans

You can assign to the bool type only the literals true or false, which are both compile-time
constants. Here there are a few usage examples:

Flutter Complete Reference 44

Chapter 2. Variables and data types

bool test = 5 == 0; // false
bool test2 = !test; // has the opposite value of test

var oops = 0.0 / 0.0; // evaluates to 'Not a Number' (NaN)
bool didIFail = oops.isNaN;

2.2.5 Arrays

Probably you’re used to create arrays like this: int[] array = new int[5]; which is the way
that Java and C# offer. In Dart it doesn’t really work like that because you can only deal with
collections: an "array" in Dart is represented by a List<T>.

� List<T> is a generic container where T can be any type (such as String or a
class). We will cover generics and collections in detail in chapter 6. Basically, Dart
doesn’t have "arrays" but only generic containers.

If this is not clear, you can look at this comparison. In both languages there is a generic container
for the given type but only Java has "primitive" arrays.

• Java

// 1. Array
double[] test = new test[10];
// 2. Generic list
List<double> test = new ArrayList<>();

• Dart

// 1. Array
// (no equivalent)
// 2. Generic list
List<double> test = new List<double>();

In Dart you can work with arrays but they are intended to be instances of List<T>. Lists are
0-indexed collections and items can be randomly accessed using the [] operator, which will throw
an exception if you exceed the bounds.

//use var or final
final myList = [-3.1, 5, 3.0, 4.4];
final value = myList[1];

Flutter Complete Reference 45

Chapter 2. Variables and data types

A consequence of the usage of a List<T> as container is that the instance exposes many useful
methods, typical of collections:

• length,

• add(T value),

• isEmpty,

• contains(T value)

... and much more.

2.3 Nullable and Non-nullable types

Starting from Dart 2.10, variables will be non-nullable by default (nnbd) which means they’re
not allowed to hold the null value. This feature has been officially introduced in June 2020 as
tech preview in the dev channel of the Dart SDK.

// Trying to access a variable before it's been assigned will cause a
// compilation error.
int value;
print("$value"); // Illegal, doesn't compile

If you don’t initialize a variable, it’s automatically set to null but that’s an error because Dart
has non-nullability enabled by default. In order to successfully compile you have to initialize the
variable as soon as it’s declared:

// 1.
int value = 0;
print("$value");

// 2.
int value;
value = 0;
print("$value");

In the first case the variable is assigned immediately and that’s what we recommend to do as much
as possible. The second case is still valid because value is assigned before it’s ever accessed. It
wouldn’t have worked if you had written this:

// OK - assignment made before the usage

Flutter Complete Reference 46

Chapter 2. Variables and data types

int value;
value = 0;
print("$value");

// ERROR - usage made before assignment
int value;
print("$value");
value = 0;

Non-nullability is very powerful because it adds another level of type safety to the language and,
by consequence, lower possibilities for the developer to encounter runtime exceptions related to
null. For example, you won’t have the need to do this:

String name = "Alberto";

void main() {
if (name != null) {

print(name)
}

}

The compiler guarantees that it can’t be null and thus no null-checks are required. To sum up,
what’s important to keep in mind while writing Dart 2.10 code (and above) is:

• By default, variables cannot be null and they must always be initialized before being
used. It would be better if you immediately initialized them, but you could also do it in a
second moment before they ever get utilized.

• Don’t do null-checks on "standard" non-nullable variables because it’s useless.

In Dart you can also declare nullable types which doesn’t require to be initialized before being
accessed and thus they’re allowed to be null. Nullables are the counterpart of non-nullable types
because the usage of null is allowed (but the additional type safety degree is lost).

int? value;
print("$value"); // Legal, it prints 'null'

If you append a question mark at the end of the type, you get a nullable type. For safety, they
would require a manual null checks in order to avoid undesired exceptions but, in most of the
cases, sticking with the default non-nullability is fine.

// Non-nullable version - default behavior

Flutter Complete Reference 47

Chapter 2. Variables and data types

int value = 0;
print("$value"); // prints '0'

// Nullable version - requires the ? at the end of the type
int? value;
print("$value"); // prints 'null'

Nullable types that support the index operator [] need to be called with the ?[] syntax. null
is returned if the variable is also null.

String? name = "Alberto";
String? first = name?[0]; // first = 'A';

String? name;
String? first = name?[0]; // first = 'null';

We recommend to stick with the defaults, which is the usage of non-nullable types, as they’re safer
to use. Nullables should be avoided or used only when working with legacy code that depends
on null. Last but not least, here are the only possible conversions between nullables and non
nullables:

• When you’re sure that a nullable expression isn’t null, you can add a ! at the end to convert
it to the non-nullable version.

int? nullable = 0;
int notNullable = nullable!;

The ! (called "bang operator") converts a nullable value (int?) into a non-nullable value
(int) of the same type. An exception is thrown if the nullable value is actually null.

int? nullable;
// An exception is thrown
int notNullable = nullable!;

• If you need to convert a nullable variable into a non-nullable subtype, use the typecast
operator as (more on it later):

num? value = 5;
int otherValue = value as int;

You wouldn’t be able to do int otherValue = value! because the bang operator works
only when the type is the same. In this example, we have a num and an int so there’s the
need for a cast.

Flutter Complete Reference 48

Chapter 2. Variables and data types

• Even if it isn’t a real conversion, the operator ?? can be used to produce a non-nullable
value from a nullable one.

int? nullable = 10;
int nonNullable = nullable ?? 0;

If the member on the left (nullable) is non-null, return its value; otherwise, evaluate and
return the member of the right (0).

Remember that when you’re working with nullable values, the member access operator (.) is not
available. Instead, you have to use the null-aware member access operator (?.):

double? pi = 3.14;

final round1 = pi.round(); // No
final round2 = pi?.round(); // Ok

2.4 Data type operators

In Dart expressions are built using operators, such as + and - on primitive data types. The
language also supports operator overloading for classes as we will cover in chapter 4.

2.4.1 Arithmetic operators

Arithmetic operators are commonly used on int and double to build expressions. As you already
know, the + operator can also be used to concatenate strings.

Symbol Meaning Example

+ Add two values 2 + 3 //5

- Subtract two values 2 - 3 //-1

* Multiply two values 6 * 3 //18

/ Divide two values 9 / 2 //4.5

∼ / Integer division of two values 9 ~/ 2 //4

Flutter Complete Reference 49

Chapter 2. Variables and data types

% Remainder (modulo) of an int division 5 % 2 //1

Prefix and postfix increment or decrement work as you’re used to see in many languages.

int a = 10;
++a; // a = 11
a++; // a = 12

int b = 5;
--b; // b = 4;
b--; // b = 3;

int c = 6;
c += 6 // c = 12

As a reminder, both postfix and prefix increment/decrement have the same result but they work
in a different way. In particular:

• in the prefix version (++x) the value is first incremented and then "returned";

• in the postfix version (x++) the valie is first "returned" and then incremented

2.4.2 Relational operators

Equality and relational operators are used in boolean expression, generally inside if statements
or as a stop condition of a while loop.

Symbol Meaning Example

== Equality test 2 == 6

!= Inquality test 2 != 6

> Greather than 2 > 6

Flutter Complete Reference 50

Chapter 2. Variables and data types

< Smaller than 2 < 6

>= Greater or equal to 2 >= 6

<= Smaller or equal to 2 <= 6

.

Testing the equality of two objects a and b always happens with the == operator because, unlike
Java or C#, there is no equals() method. In chapter 6 we will analyze in detail how classes
can be properly compared by overriding the equality operator. In general here’s how the ==
works:

1. If a or b is null, return true if both are null or false if only one is null. Otherwise...

2. ... return the result of == according with the logic you’ve defined in the method override.

Of course, == works only with objects of the same type.

2.4.3 Type test operators

They are used to check the type of an object at runtime.

Symbol Meaning Example

as Cast a type to another obj as String

is True if the object has a certain type obj is double

is! False if the object has a certain type obj is! int

.

Let’s say you’ve defined a new type like class Fruit {}. You can cast an object to Fruit using
the as operator like this:

(grapes as Fruit).color = "Green";

Flutter Complete Reference 51

Chapter 2. Variables and data types

The code compiles but it’s unsafe: if grapes was null or if it wasn’t a Fruit, you would get an
exception. It’s always a good practice checking whether the cast is doable before doing it:

if (grapes is Fruit) {
(grapes as Fruit).color = "Green";

}

Now you’re guaranteed the cast will happen only if it’s possible and no runtime exceptions can
happen. Actually, the compiler is smart enough to understand that you’re doing a type check
with is and it can do a smart cast .

if (grapes is Fruit) {
grapes.color = "Green";

}

You can avoid writing the explicit cast (grapes as Fruit) because, inside the scope of the
condition, the variable grapes is automatically casted to the Fruit type.

2.4.4 Logical operators

When you have to create complex conditional expressions you can use the logical operators:

Symbol Meaning

!expr Toggles true to false and vice versa

expr1 && expr2 Logical AND (true if both sides are true)

expr1 || expr2 Logical OR (true if at least one is true)

.

2.4.5 Bitwise and shift operators

You’ll never use these operators unless you’re doing some low level data manipulation but in
Flutter this never happens.

Flutter Complete Reference 52

Chapter 2. Variables and data types

Symbol Meaning

a & b Bitwise AND

a | b Bitwise OR

a ^ b Bitwise XOR

∼ a Bitwise complement

a >> b Right shift

a << b Left shift

Flutter Complete Reference 53

3 | Control flow and functions

3.1 If statement

This is probably the most famous statement of any programming language and in Dart it works
exactly as you would expect. The else is optional and it can be omitted when not needed. You
can avoid using brackets in case of one-liner statements.

void main() {
final random = 13;

if (random % 2 == 0)
print("Got an even number");

else
print("Got an odd number");

}

Conditions must be boolean values. In C++ for example you can write if (0) {...} where zero
is evaluated to false but in Dart it doesn’t compile; you have to write if (false) {...}.

3.1.1 Conditional expressions

In Dart there are two shorthands for conditional expressions that can replace the if-else state-
ment:

• valueA ?? valueB. If valueA is non-null, valueA is returned; otherwise valueB is evalu-
ated and then returned. If the definition is too verbose, you can understand this syntax by
looking at the following example.

String? status; // This is null

Flutter Complete Reference 54

Chapter 3. Control flow and functions

// isAlive is a String declared somewhere before
if (status != null)

isAlive = status;
else

isAlive = "RIP";

Basically we want to know whether status is null or not and then decide the proper value
to assign. The same logic can be expressed in another, more concise way:

String? status; // This is null
String isAlive = status ?? "RIP";

In the example isAlive doesn’t need to be nullable as it’s guaranteed to be initialized with
a string. The ?? operator automatically checks if status is null and decides what to do:

– status is not null: return status;

– status is null: return the provided "default value" at the right of ??

It’s a very helpful syntax because it guarantees that a variable is properly initialized avoiding
unwanted operations with null.

• condition ? A : B;. If condition is true A is returned, otherwise you get B. It’s a pretty
common pattern among modern languages so you might already be familiar with it.

String status;

if (correctAns >= 18)
status = "Test passed!";

else
status = "You didn't study enough..."

If it looks a bit too verbose, you can rewrite the logic in a more concise way:

String status = (correctAns >= 18) ?
"Test passed!" : "You didn't study enough...";

We could call this the "shorter if " syntax in which you replace the if with the question
mark (?) and the else with the colon (:). You can omit parenthesis.

3.1.2 Good practices

Simple boolean expressions are easy to read but complicated ones might require documentation
and might also not fit well inside a single if statement like the following:

Flutter Complete Reference 55

Chapter 3. Control flow and functions

if ((A && B || C && !A) || (!(A && C) || B)) { ... }

You might get a headache while trying to figure out what’s going on and there are also no
comments at all. In such cases, you probably want to make the code more readable by splitting
the conditions:

final usefulTestName1 = A && B || C && !A;
final usefulTestName2 = !(A && C)

if (usefulTestName1 || usefulTestName2 || B) { ... }

For sure it’s more understandable and another programmer, or yourself in the future, will be very
grateful. We also recommend to not underestimate the usefulness of variable names.

� The point is that you have to keep expressions short and easy to read. Break
down long conditions into smaller pieces and give the variables good names to better
understand what you want to check.

We also recommend the usage of the short if syntax only when there’s one condition or at
maximum two short ones. The longer the line is the harder it is to understand.

3.2 switch statement

When you have a series of cases to take into account, instead of using a long chain of if-elses you
should go for the switch statement. It can compare many types:

1. compile-time constants

2. enums

3. integers

4. strings

5. classes

Classes must not override == if they want to be compared with this statement. At the bottom
there’s a default label used as fallback if none of the previous cases matches the item being
compared.

Flutter Complete Reference 56

Chapter 3. Control flow and functions

enum Status { Ready, Paused, Terminated }

void main() {
final status = Status.Paused;

switch (status) {
case Status.Ready:

run();
break;

case Status.Paused
pause();
break;

case Status.Terminated
stop();
break;

default
unknown();

}
}

If the body of the case is NOT empty you must put a break otherwise your code won’t compile.
When you just want a fall-through to avoid code-replication, leave the body empty. Here’s a few
examples:

• This code is not going to compile because the first case has a body, containing start(),
but there isn’t a break.

switch (status) {
case Status.Ready:

start();
//missing "break;" here

case Status.Paused
pause();
break;

}
}

• This code instead is fine because the case doesn’t have a body; the method pause() is
going to be called when status is ready or paused.

Flutter Complete Reference 57

Chapter 3. Control flow and functions

switch (status) {
case Status.Ready:
case Status.Paused

pause();
break;

}
}

The above code is equivalent to...

switch (status) {
case Status.Ready:

pause();
break;

case Status.Paused
pause();
break;

}
}

... but you should avoid code duplication which is always bad in terms of code maintenance.
When you have two or more cases that must execute the same action, use the fall-through
approach.

3.3 for and while loops

The iteration with a for loop is the most traditional one and doesn’t need many explanations.
You can omit brackets in case of one-liner statements. The index cannot be nullable (using
int? i = 0 doesn’t work).

for(var i = 0; i <= 10; ++i)
print("Number $i");

As you’d expect, the output prints a series of "Number (i)" in the console. An equivalent version
can be written with a classic while loop:

var i = 0;

while (i <= 10) {
print("Number $i");

Flutter Complete Reference 58

Chapter 3. Control flow and functions

++i;
}

The language also has the do while loop that always executes at least one iteration because the
condition is evaluated only at the end of the cycle.

var i = 0;

do {
print("Number $i");
++i;

} while (i <= 10)

The difference is that the while evaluates the condition at the beginning so the loop could never
start. The do while instead runs at least once because the condition check is placed at the end.
If you wanted to alter the flow of the loop you could use:

• break. It immediately stops the loop in which it is called. In case of nested loops, only the
one whose scope contains break is stopped. For example:

for (var i = 0; i <= 3; ++i) { // 1.
for(var j = 0; j <= 5; ++j) { // 2.

if (j == 5)
break;

}
}

In this case only loop 2 is terminated when j is 5 but loop 1 executes normally until i
reaches 3. In practical terms, we can say break stops only 1 loop.

• continue. It skips to the next iteration and, like we’ve seen before, in case of nested loops
it does the jump only for the loop containing it, not the others.

3.3.1 for-in loop

There are some cases in which you want to completely traverse a string or a container and you
don’t care about the index. Look at this very easy example:

final List<String> friendsList = ["A", "B", "C", "D", "E"];

for(var i = 0; i < friendsList.length; ++i)
print(friendsList[i]);

Flutter Complete Reference 59

Chapter 3. Control flow and functions

That’s perfectly fine but you’re using i just to retrieve the element at the i -th position and
nothing more. There are no calculations based on the index as it’s just used to traverse the list.
In such cases you should do the following:

List<String> friendsList = ["A", "B", "C", "D", "E"];

for(final friend in friendsList)
print(friend);

This version is less verbose and clearer. You’re still traversing the entire list but now, instead of
the index i, you have declared final friend that represents an item at each iteration.

3.4 Assertions

While writing the code you can use assertions to throw an exception 1 if the given condition
evaluates to false. For example:

// the method returns a json-encoded string
final json = getJSON();

// if length > 0 is false --> runtime exception
assert(json.length > 0, "String cannot be empty");

// other actions
doParse(json);

The first parameter of assert must be an expression returning a boolean value. The second
parameter is an optional string you can use to tell what’s gone wrong; it will appear in the IDE
error message window if the condition evaluates to false.

� In release mode, every assert is ignored by the compiler and you’re guaranteed
that they won’t interfere with the execution flow. Assertions work only in debug mode.

When you hit Run on Android Studio or VS Code your Flutter app is compiled in debug mode
so assertions are enabled.

1Exceptions will be discussed in detail in chapter 5

Flutter Complete Reference 60

Chapter 3. Control flow and functions

3.5 Good practices

Sometimes you have to implement a complicated algorithm and you don’t want to make it even
more complex by writing code hard to understand. Here’s what we recommend.

• Try to always use brackets, even if they can be omitted, so that you can avoid unexpected
behaviors. Imagine you had written this code...

// Version 1
if ("A" == "A")

if ("B" == "B")
print("Oh well!");

else
print("Oops...");

... but in reality you wanted to write this, with a better indentation:

// Version 2
if ("A" == "A")

if ("B" == "B")
print("Oh well!");

else
print("Oops...");

There’s a high possibility that, at first glance, in version 1 you associated the else to the
first if but it’d be wrong! While it may seem obvious, in a complex architecture with
thousands of lines you might misread and get tricked.

• When you have to traverse an entire list and you don’t care about the position in which
you are during the iteration, use a for-in loop. As we’ve already said, it’s less verbose and
so more understandable.

Use assertions, in particular when you create Flutter apps, to control the behavior of your soft-
ware. Don’t remove them when you’re ready to deploy the code to the production world because
they will be automatically discarded.

3.6 The basics of functions

Functions in Dart have the same structure you’re used to see in the most popular programming
languages and so you’ll find this example self-explanatory. You can mark a parameter with final
but in practice it does nothing.

Flutter Complete Reference 61

Chapter 3. Control flow and functions

bool checkEven(int value) {
return value % 2 == 0

}

When the body of the function contains only one line, you can omit the braces and the return
statement in favor of the "arrow syntax". It works with expressions and not with state-
ments.

// Arrow syntax
bool checkEven(int value) => value % 2 == 0;

// Arrow syntax with method calls
bool checkEven(int value) => someOtherFunction(value);

// Does NOT work
bool checkEven(int value) => if (value % 2 == 0) ... ;

The second example is a conditional statement so it doesn’t work with the arrow syntax. The
first example instead is still a condition but it’s written as expression and so it works fine.

// 1. This function does not return a value
void test() {}

// 2. No return type so this function returns dynamic. Don't do this.
test() {}

When you don’t need a function to return a value, simply make it void like you’d do in Java for
example. If you omitted the return type like in (2.), the compiler would automatically append
return dynamic at the end of the body.

void test() => print("Alberto");

Interestingly, if you have a void function with an one-liner body, you can use the arrow syntax.
The function doesn’t return anything because of the void but you’re allowed to do it anyway.

� Try to always specify the return type or use void. Avoid ambiguity; you could
avoid the return type for laziness (you just don’t want to write void) but someone
else could think you’re returning dynamic on purpose.

Flutter Complete Reference 62

Chapter 3. Control flow and functions

3.6.1 The Function type

Dart is truly an OOP language because even functions are objects and the type is called...
Function! A return type is required while the parameters list is optional:

// Declare a function
bool checkEven(int value) => value % 2 == 0;

void main() {
// Assign a function to a variable
bool Function(int) checker = checkEven;

// Use the variable that represents the function
print(checker(8)); // true

}

It’s nothing new: you’re just writing a type (bool Function(int)), its name (checker) and
then you’re assigning it a value (checkEven). You may find this declaration a bit weird because
it’s made up of many keywords but it’s a simple assignment. This is a comparison to clarify the
idea:

• 28: It’s an integer and its type is int.

• "Pizza": It’s a string and its type is String.

• bool checkEven(int value) => ...: It’s a function and its type is bool Function(int).

This particular syntax is very expressive; you have to declare the return type and the exact order
of the type(s) it takes. In other words, signatures must match. If you think it’s too verbose, you
can use the typical automatic type deduction you’re getting used to see:

bool checkEven(int value) => value % 2 == 0;

void main() {
final checker1 = checkEven;
var checker2 = checkEven;

print(checker1(8)); // true
print(checker2(8)); // true

}

Both var and final will be evaluated to bool Function(int). There’s still something to say

Flutter Complete Reference 63

Chapter 3. Control flow and functions

about this type but you’ll have to wait until the next chapter where we’ll talk about classes and
the special call() method.

� When you declare a variable you can only write Function(int) name without the
return type. However, automatic type deduction is generally the best choice because
it reduces a lot the verbosity.

It might not seem very useful and we’d agree with you because there is no usage context, at the
moment. When you’ll arrive at part 2 of the book you’ll see that the Function type is super
handy in Flutter because it’s used to create "function callbacks".

3.7 Anonymous functions

So far you’ve only seen named functions such as bool checkEven(int value) where checkEven
is the name. Dart gives you the possibility to create nameless functions called anonymous func-
tions.

void main() {
bool Function(int) isEven = (int value) => value % 2 == 0;

print(isEven(19)); //false
}

This syntax allows you to create functions "on the fly" that are immediately assigned to a variable.
If you want an anonymous function with no parameters, just leave the parenthesis blank (). Of
course you can use final and var to automatically deduce the type.

• Single line. You can use the arrow syntax when you have one-liner statements. This
example declares a function with no parameters that returns a double.

final anon = () => 5.8 + 12;

• Multiple lines. Use brackets and return when you have to implement a logic that’s longer
than one line.

final anon = (String nickname) {
var myName = "Alberto";
myName += nickname;

Flutter Complete Reference 64

Chapter 3. Control flow and functions

return myName;
};

We recommend to always write down the type of the parameter even if it’s not required by the
compiler. You can decide whether the type has to appear or not. Using final and var is allowed
but it doesn’t make much sense.

String Function(String) printName = (String n) => n.toUpperCase();
String Function(String) printName = (final n) => n.toUpperCase();
String Function(String) printName = (var n) => n.toUpperCase();
String Function(String) printName = (n) => n.toUpperCase();

Any variant compiles with success but none of them is the best option, the decision is up to your
discretion. Before moving on, we’re going to show a simple scenario you’ll encounter many times
in Flutter.

// 1.
void test(void Function(int) action) {

// 2.
final list = [1, 2, 3, 4, 5];

// 3.
for(final item in list)

action(item);
}

void main() {
// 4.
test(

// 5.
(int value) { print("Number $value"); }

);
}

The action parameter commonly known as callback because it executes an action given from the
outside.

1. This function doesn’t return a value because of the void. The parameter, called action,
accepts a void function with a single integer value.

2. It’s a simple list of integer values

Flutter Complete Reference 65

Chapter 3. Control flow and functions

3. We iterate through the entire list and, for each item, we call the function.

4. test(...); is how you normally call a function

5. This is an anonymous function returning nothing (void) and asking for a single integer
parameter.

The flexibility of callbacks lies on the fact that you can reuse the same function test() with
different implementations. The caller doesn’t care about the body of the anonymous function, it
just invokes it as long as the signature matches.

// The same method (test) outputs different values
// because anonymous functions have different bodies
test((int value) => print("$value"));
test((int value) => print("${value + 2}"));

You will often encounter the forEach() method on collections, which accepts a callback to be
executed while elements are traversed. Again, the same function (forEach()) is reused multiple
times regardless the implementation (thanks to callbacks).

void main() {
// Declare the list
final list = [1, 2, 3, 4, 5];
// Iterate
list.forEach((int x) => print("Number $x"));

}

This is an even shorter way that doesn’t use a for-in loop. You pass an anonymous function to
the method and it executes the given action for every item. Pay attention because the documen-
tation suggests to avoid using anonymous functions in forEach() calls.

� A very handy feature you’ll see very often is the possibility to put an underscore
when one or more parameters of a function aren’t needed. For example, in Flutter the
BuildContext object is often given as a callback param but it’s not always essential.

builder: (BuildContext context) {
return Text("Hello");

}

Since the variable context isn’t used, but it must be there anyway to match the
method signature, you can use an underscore to "hide" it:

Flutter Complete Reference 66

Chapter 3. Control flow and functions

builder: (_) {
return Text("Hello");

}

It’s less code for you to write and the reader focuses more on what’s really important.
In case of multiple values that you don’t use, just chain a series of underscores.

builder: (_, value, __) {
return Text("$value");

}

3.8 Optional parameters

In Dart function parameters can be optional in the sense that if you don’t provide them, the
compiler will assign null or a default value you’ve specified.

3.8.1 Named parameters

In the simplest case, a function can have optional parameters whose names must be explicitly
written in order to be assigned. Pay attention to null-safety in case you don’t plan to give the
variables a default value.

Declaration Calling

void test({int? a, int? b}) {
print("$a");
print("$b");

}

void main() {
// Prints '2' and '-6'
test(a: 2, b: -6);

}

When calling a function with optional named parameters, the order doesn’tmatter but the names
of the variables names must be explicit. For example, you could have called test(b: -6, a: 2);
and it would have worked anyway. When a parameter is missing, the default value is given:

Flutter Complete Reference 67

Chapter 3. Control flow and functions

Declaration Calling

void test({int? a, int? b}) {
print("$a");
print("$b");

}

void main() {
// Prins '2' and 'null'
test(a: 2);

}

Calling test(a: 2); initializes only a because b, which is omitted, is set to null by the compiler.
null is the default value of nullable types. You can manually give a default value to an optional
named parameter just with a simple assignment:

Declaration Calling

void test({int? a, int b = 0}) {
print("$a");
print("$b");

}

void main() {
// Prints '2' and '0'
test(a: 2);

}

Note that b doesn’t need to be nullable anymore thanks to the default value. In Dart 2.9 (an
lower) nnbd was not enabled so you were able to successfully compile this code, which initializes
both a and b to null:

Declaration Calling

// Dart 2.9 and lower
void test({int a, int b}) {

print("$a");
print("$b");

}

// Dart 2.9 and lower
void main() {

// Prints 'null' and 'null'
test();

}

The requiredmodifier, introduced in Dart 2.10 with nnbd, forces an optional parameter to be set.
You won’t be able to compile if a required parameter is not used when calling the function.

void test({int a = 0, required int b}) {
print("$a");
print("$b");

Flutter Complete Reference 68

Chapter 3. Control flow and functions

}

void main() {
test(a: 5, b: 3); // Ok
test(a: 5); // Compilation error, 'b' is required

}

Even if you had written required int? b you’d have to assign b anyway because it’s required.
Version 2.9 of Dart and lower didn’t have this keyword: you had to use instead an annotation
which just produced a warning (and not a compilation error) by default.

// Dart 2.9 and lower
void test({int a = 0, @required int b}) {...}

In Flutter, for a better readability, some methods only use named optional params together with
required to force the explicit name in the code.Y ou can mix optional named parameters with
"classic" ones:

Declaration Calling

void test(int a, {int b = 0}) {
print("$a");
print("$b");

}

void main() {
// Prints '2' and '3'
test(2, b: 3);

}

Optional parameters must stay at the end of the list.

// it compiles
void test(int a, {int? b}) { }

// it doesn't compile
void test({int? a}, int b) { }

3.8.2 Positional parameters

You can also use optional parameters without being forced to write down the name. Optional
positional parameters follow the same rules we’ve just seen for named params but instead of using
curly braces ({ }) they’re declared with square brackets ([]).

Flutter Complete Reference 69

Chapter 3. Control flow and functions

Declaration Calling

void test([int? a, int? b]) {
print("$a");
print("$b");

}

void main() {
// Prints '2' and '-6'
test(2, -6);

}

All the examples we’ve made for named parameters also apply here. They really have the same
usage but the practical difference is that, in this case, the name of the parameter(s) doesn’t have
to be written in the function call.

3.9 Nested functions

The language allows you to declare functions inside other functions visible only within the scope
in which they’re declared. In other words, nested functions can be called only inside the function
containing them; if you try from the outside, you’ll get a compilation error.

� From a practical side, the scope is the "area" surrounded by two brackets { }

This example shows how you can nest two functions, where testInner() is called "outer func-
tion" and randomValue() is called "inner function".

void testInner(int value) {
// Nested function
int randomValue() => Random().nextInt(10);

// Using the nested funcion
final number = value + randomValue();
print("$number");

}

As we’ve just seen, functions are types in Dart so a "nested function" is nothing more than
a Function type assignment. Given this declaration, we’re able to successfully compile the
following:

void main() {

Flutter Complete Reference 70

Chapter 3. Control flow and functions

// testInner internally calls randomValue
testInner(20);

}

An error is going to occur if we try to directly call randomValue from a place that’s not inside
the scope of its outer function.

void main() {
// Compilation error
var value = randomValue();

}

3.10 Good practices

Following the official Dart guidelines 2 we strongly encourage you to follow these suggestions in
order to guarantee consistency with what the community recognizes as a good practice.

• Older versions of Dart allow the specification of a default value using a colon (:); don’t do
it, prefer using =. In both cases, the code compiles successfully.

// Good
void test([int a = 0]) {}

// Bad
void test([int a : 0]) {}

The colon-initialization might be removed in the future.

• When no default values are given, the compiler already assigns null to the variable so you
don’t have to explicitly write it.

// Good
void test({int? a}) {}

// Bad
void test({int? a = null}) {}

In general, you should never initialize nullables with null because the compiler already
does that by default.

2https://dart.dev/guides/language/effective-dart/usage#functions

Flutter Complete Reference 71

Chapter 3. Control flow and functions

Dart gives the possibility to write only the name of a function, with no parenthesis, and automat-
ically pass proper parameters to it. It’s a sort of "method reference". We are going to convince
you with this example:

void showNumber(int value) {
print("$value");

}

void main() {
// List of values
final numbers = [2, 4, 6, 8, 10];

// Good
numbers.forEach(showNumber);

// Bad
numbers.forEach((int val) { showNumber(val); });

}

The bad example compiles but you can avoid that syntax in favor of a shorter one.

• The forEach() method asks for a function with a single integer parameter and no return
type (void).

• The showNumber() function accepts an integer as parameter and returns nothing (void).

The signatures match! If you pass the function name directly inside the method, the compiler
automatically initializes the parameters. This tear-off is very useful and you might already have
seen it somewhere else under the name of "method reference" (Java).

3.11 Using typedefs

The typedef keyword simply gives another name to a function type so that it can be easily
reused. Imagine you had to write a callback function for many methods:

void printIntegers(void Function(String msg) logger) {
logger("Done.");

}

void printDoubles(void Function(String msg) logger) {

Flutter Complete Reference 72

Chapter 3. Control flow and functions

logger("Done.");
}

Alternatively, rather than repeating the declaration every time, which leads to code duplication,
you can give it an alias using the typedef keyword.

typedef LoggerFunction = void Function(String msg);

void printIntegers(LoggerFunction logger) {
logger("Done int.");

}

void printDoubles(LoggerFunction logger) {
logger("Done double.");

}

You are going to encounter this technique very often, especially in Flutter, in callbacks for classes
or methods. For instance, VoidCallback 3 is just a function alias for a void function taking no
parameters.

typedef VoidCallback = void Function();

In a future version of Dart, probably later than 2.10, typedef will also be used to define new
type names. At the moment it’s not possible, but in the future there will be the possibility to
compile the following code:

typedef listMap = List<Map<int,double>>;

The reason is that generic types can become very verbose and so an alias could improve the
readability. Currently, typedef only works with functions.

3https://api.flutter.dev/flutter/dart-ui/VoidCallback.html

Flutter Complete Reference 73

4 | Classes

Up to now you’ve seen us saying many times the claim that Dart is an OOP language and now
we’re finally going to prove it. There are a lot of similarities with the most popular programming
language so you probably are already familiar with the concepts.

class Person {
// Instance variables
String name;
String surname;

// Constructor
Person(String name, String surname) {

this.name = name;
this.surname = surname;

}
}

This syntax is almost identical to Java, C# or C++ and that’s very good: if you’re going to
learn the language, there’s nothing you’ve never seen before. Some keywords might be different
but the essence is always the same.

� Every object is an instance of a class. Dart classes, even if it’s not explicitly
written in the declaration, descend from Object and in the next chapter you will see
the benefits. In Delphi and C# as well, any class implicitly derives from Object.

In any class you have methods (it’s the OOP way to call functions) which can be public or
private. The keyword this refers to the current instance of the class. Dart has NO method
overload so you cannot have more than a function with the same name. For this reason, you’ll

Flutter Complete Reference 74

Chapter 4. Classes

see how named constructors come to the help.

class Example {
// Doesn't compile; you have to use different names
void test(int a) {}
void test(double x, double y) {}

}

You might be able to write this in other programming languages because methods have the same
name but different signature. In Dart it’s not possible, every function name (in the same class)
must be unique. Before going into the details of classes, look at the cascade notation.

class Test {
String val1 = "One";
String val2 = "Two";

int randomNumber() {
print("Random!");
return Random().nextInt(10);

}
}

Given this class, you have two ways to give a value to the variables:

// first way, the "classic" one
test.val1 = "one";
test.val2 = "two";

// second way, using the cascade operator
test..val1 = "one"

..val2 = "two";

It’s just a shorthand version you can use when there are multiple values of the same objects that
has to be initialized. You can do the same even with methods but the returned value, if any, will
be ignored. For this reason, the cascade notation is useful when calling a series of void methods
on the same object.

Test()..randomNumber()
..randomNumber()
..randomNumber();

Here the integer returned by randomNumber() is discarded but the body is executed. If you

Flutter Complete Reference 75

Chapter 4. Classes

run the snipped, you’ll get Random! printed three times in the console. In case of nullable
values...

MyClass? test = MyClass();

test?..one()
..two()
..three();

... the cascade notation has to start with ?.. in order to be null-checked before dereferencing.
In Dart there cannot be nested classes.

4.1 Libraries and visibility

In the Dart world, when you talk about a "library" you’re referring to the code inside a file with
the .dart extension. If you want to use that particular library, you have to reference its content
with the import keyword.

� If you aren’t sure you’ve understood the above statement, here’s an example.
Let’s say there’s the need to handle fractions in the form numerator / denominator :
you are going to create a file named fraction.dart.

// === Contents of fraction.dart ===
class MyFraction {

final int numerator;
final int denominator;

//... other code
}

Congratulations, you have just created the fraction library! It can be used by any
other .dart file that references it via import.

import 'package:fraction.dart';

void main() {
// You could have written 'new Fraction(1, 2)' but
// starting from Dart 2.0 'new' is optional
final frac = Fraction(1, 2);

Flutter Complete Reference 76

Chapter 4. Classes

}

You can also use the library keyword to "name" your library as you prefer. This
keyword really just names the library as you like, nothing more, and it’s not required.

library super_duper_fraction;

class MyFraction {
final int numerator;
final int denominator;
const MyFraction(this.numerator, this.denominator);

}

.
The import directive accepts a string which must contain a particular scheme. For built-in
libraries you have to use the dart: prefix followed by the library name:

import 'dart:math';
import 'dart:io';
import 'dart:html';

Everything else that doesn’t belong to the Dart SDK, such as a custom library created by you
or another developer in the community, must be prefixed by package.

import 'package:fraction.dart';
import 'package:path/to/file/library.dart';

It could happen that two different libraries have implemented a class with the same name; the
only possible technique to avoid ambiguity is called "library aliases". It’s a way to reference the
contents of a library under a different name.

// Contains a class called 'MyClass'
import 'package:libraryOne.dart';
// Also contains a class called 'MyClass'
import 'package:libraryTwo.dart' as second;

void main() {
// Uses MyClass from libraryOne
var one = MyClass();

//Uses MyClass from libraryTwo.

Flutter Complete Reference 77

Chapter 4. Classes

var two = second.MyClass();
}

You can selectively import or exclude types using the show and hide keywords:

• import 'package:libraryOne.dart' show MyClass; Imports only MyClass and discards
all the rest.

• import 'package:libraryTwo.dart' hide MyClass; Imports everything except MyClass.

At the moment, you have the basics of libraries (simple creation and usage). In chapter 23
you’ll learn how to create a package (a collection of libraries and tools) and how to publish it at
https://pub.dev.

4.1.1 Encapsulation

You may be used to hide implementation details in your classes using public, protected and private
keywords but there’s no equivalent in Dart. Every member is public by default unless you append
an underscore (_) which makes it private to its library. If you had this file...

// === File: test.dart ===
class Test {

String nickname = "";
String _realName = "";

}

... you could later import the library anywhere:

// === File: main.dart ===
import 'package:test.dart';

void main() {
final obj = Test();

// OK
var name = obj.nickname;
// ERROR, doesn't compile
var real = obj._realName;

}

The variable nickname is public and everyone can see it but _realName can be seen ONLY
inside test.dart. In other words, if you put the underscore in front of the name of a variable, it

Flutter Complete Reference 78

https://pub.dev

Chapter 4. Classes

is visible only within that file.

// === File: main.dart ===
class Test {

String nickname = "";
String _realName = "";

}

void main() {
final obj = Test();

// Ok
var name = obj.name;
// Ok, it works because 'Test' is in the same file
var real = obj._realName;

}

We’ve moved everything in the same file: now both Test and main() belong to the same library
and so _realName is not private anymore.

� The same rules on package private members also apply to classes and functions.
For example, void something() is visible from the outside while void _something()
is private to its library.

// Inside a file called users.dart
class Users { }

class _UsersHelper { }

In this case, Users is visible while _UsersHelper is package-private (exactly as it
happens with variables and methods).

In Dart everything is "public" by default; if you append an underscore at the front, it becomes
"private". There is no way to define "protected" members or variables (where protected is a
typical OOP keyword that makes a member or variable accessible only by subclasses of a certain
type.).

Flutter Complete Reference 79

Chapter 4. Classes

4.1.2 Good practices

We strongly recommend to NOT put everything in a single file (or a few ones) for the following
reasons:

• Dealing with thousands of lines of code containing literally everything is not good at all.
Maintenance is going to be hard and you’re on the good way to become a professional
"spaghetti code" writer!

• If you placed everything in the same file, you’d expose private details of the class. We’ve
seen that private members exist only if classes are put in separated libraries (files).

Try to have one file per class or at maximum a few classes that are closely related (they should
have the same purpose). When you write a Dart program, in general you have this folder
structure:

root
| -- lib
| | -- main.dart
| | -- routes
| | -- other_folders
| -- tests
| -- tools

You’ll learn throughout the chapters how to create a robust folder hierarchy. The minimal
Dart/Flutter project is made up of a lib/ folder and a main.dart entry point file.

4.2 Constructors

The constructor is a special function with the same name of the class and doesn’t carry a return
type. To invoke it, the syntax is the most common one you can imagine:

final myObject = new MyClass();

Starting from Dart 2, the keyword new can be omitted. It’s something you’re always going to do,
especially while writing Flutter apps.

final myObject = MyClass();

As example, in this chapter we are creating a library to work with fractions and rational num-
bers. To get started, there’s the need to create a file called fraction.dart with the following
contents:

Flutter Complete Reference 80

Chapter 4. Classes

class Fraction {
int? _numerator;
int? _denominator;

Fraction(int numerator, int denominator) {
_numerator = numerator;
_denominator = denominator;

}
}

In this case variables must be nullables because they are initialized, by default, to null. The
body of the constructor is called after the variables initialization. If you want to get rid of
nullables there are two options:

1. Declare variables as late final to tell the compiler to not emit an error. They are going
to be initialized later but anyway before being accessed for the first time ever.

class Fraction {
late final int _numerator;
late final int _denominator;

Fraction(int numerator, int denominator) {
_numerator = numerator;
_denominator = denominator;

}
}

Because of the final modifier, variables cannot be changed anymore after their initializa-
tion. You could have only used late but variables would be mutable then:

class Fraction {
late int _numerator;
late int _denominator;

Fraction(int numerator, int denominator) {
_numerator = numerator;
_denominator = denominator;

}
}

In both cases, members are NOT initialized immediately because the body of the construc-

Flutter Complete Reference 81

Chapter 4. Classes

tor is executed after the variable initialization phase.

2. The Dart team recommends going for the "initializing formal" 1 approach as it’s more
readable and it initializes the variables immediately.

class Fraction {
int _numerator;
int _denominator;

Fraction(this._numerator, this._denominator);
}

It’s just syntactic sugar to immediately assign values to members. In this case, variables
initialization is executed first so no need to use nullable types or late. This kind of
initialization happens before the execution of the constructor’s body.

Keep in mind that constructor bodies are executed after the variable initialization phase. The
second approach is very common and you should get used to it, even if your class only declares
final fields.

class Fraction {
final int _numerator;
final int _denominator;

Fraction(this._numerator, this._denominator);
}

If your class doesn’t define a constructor, the compiler automatically adds a default constructor
with no parameters and an empty body. With the "initializing formal" you can still declare a
body to perform additional setup for the class.

class Fraction {
final int _numerator;
final int _denominator;
late final double _rational;

Fraction(this._numerator, this._denominator) {
_rational = _numerator / _denominator;
doSomethingElse();

1https://dart.dev/guides/language/effective-dart/usage#do-use-initializing-formals-when-possible

Flutter Complete Reference 82

Chapter 4. Classes

}
};

You could only write Fraction(this._numerator) to initialize exclusively _numerator but then
_denominator would be set to null by the compiler. Keep in mind that you cannot have named
optional parameters starting with an underscore.

// Doesn't compile
Fraction({this._numerator, this._denominator});

However, you can have positional parameters starting with an underscore:

// Ok but pay attention to non-nullability
Fraction([this._numerator, this._denominator]);

4.2.1 Initializer list

When using the initializing formal approach, the names of the variables must match the ones
declared in the constructor. This could lead to an undesired exposure of some internals of the
class:

class Test {
int _secret;
double _superSecret;

Test(this._secret, this._superSecret);
}

What if you wanted to keep int _secret (private) but with a different name in the constructor?
Use an initializer list! It’s executed before the body and thus variables are immediately initialized.
No need for nullable types or late.

class Test {
int _secret;
double _superSecret;

Test(int age, double wallet)
: _secret = age,

_superSecret = wallet;
}

In this way the constructor is asking you for age and wallet but the user has no idea that

Flutter Complete Reference 83

Chapter 4. Classes

internally they’re treated as _secret and _superSecret. It’s basically a way to "rename" internal
private properties you don’t want to expose.

4.2.2 Named constructors

Named constructors are generally used to implement a default behavior the user expects from
your class. They are the only alternative to have multiple constructors since Dart has no method
overload.

class Fraction {
int _numerator;
int _denominator;

Fraction(this._numerator, this._denominator);

// denominator cannot be 0 because 0/0 is not defined!
Fraction.zero() :

_numerator = 0,
_denominator = 1;

}

At this point you can use the named constructor in your code like if it were a static method
call.

void main() {
// "Traditional" initialization
final fraction1 = Fraction(0, 1);

// Same thing but with a named constructor
final fraction2 = Fraction.zero();

}

In general constructors aren’t inherited by a subclass so, if they are needed across the hierarchy,
every subclass must implement its own named constructor. If we had written a named constructor
with a body...

class Fraction {
int? _numerator;
int? _denominator;

Flutter Complete Reference 84

Chapter 4. Classes

Fraction.zero() {
_numerator = 0;
_denominator = 1

}
}

... we would have had to use nullable instance variables as constructors’ bodies are always
executed after variables’ initialization.

4.2.3 Redirecting constructors

Sometimes you might have a constructor that does almost the same thing already implemented
by another one. It may be the case to use redirecting constructors in order to avoid code dupli-
cation:

Fraction(this._numerator, this._denominator);
// Represents '1/2'
Fraction.oneHalf() : this(1, 2);
// Represents integers, like '3' which is '3/1'
Fraction.whole(int val) : this(val, 1);

Where Fraction.oneHalf() is just another way to call Fraction(1, 2) but you’ve avoided code
repetition. This feature is very powerful when mixed with named constructors.

4.2.4 Factory constructors

The factory keyword returns an instance of the given class that’s not necessarily a new one. It
can be useful when:

• You want to return an instance of a subclass instead of the class itself,

• You want to implement a singleton (the Singleton pattern),

• You want to return an instance from a cache.

Factory constructors are like static methods and so they don’t have access to this. There cannot
be together a factory and a "normal" constructor with the same name.

class Test {
static final _objects = List<BigObject>();

factory Test(BigObject obj) {

Flutter Complete Reference 85

Chapter 4. Classes

if (!objects.contains(obj))
objects.add(obj);

return Test._default();
}

// This is a private named constructor and thus it can't be called
// from the outside
Test._default() {

//do something...
}

}

In the example, since BigObject requires a lot of memory and the list is very very long, we’ve
declared objects as static. This technique is often used to save memory and reuse the same
object across multiple objects of the same type.

� If the list weren’t static (just a normal instance variable), it would be created
every time that a Test object is instantiated. It’d be a waste of memory and a per-
formance problem; in this way we’re guaranteed that there’s an unique list created
only once.

In this case the factory constructor is essential because it takes care of updating the _objects
cache. Factories are called "normally" like if they were a regular constructor:

// Calls the factory constructor
final a = Test();

4.2.5 Instance variables initialization

As we’ve already seen, "normal" non-nullable variables have to be initialized either via initializing
formal or initializer list. In any other case, they’re set to null because constructor bodies run
after the instance initialization phase.

// Initializing formal
class Example {

int _a; // Ok - 'a' initialized by the constructor
Example(this._a);

Flutter Complete Reference 86

Chapter 4. Classes

}

class Example {
int _a; // Error - 'a' not initialized
Example(int a) {

_a = a;
}

}

If variables aren’t initialized immediately and you want them to be non-nullanle, you can use the
late modifier. It works like a "lazy initialization" because with this keyword you allow a non-
nullable to be initialized later (but anyway before it gets accessed for the first time ever).

// For Dart 2.10 and earlier versions, 'late' does not exist so just
// remove it. Not initialized variables will be set to 'null' by default.
class Example {

late int a;

void printExample() {
a = 5;
print("$a");
a = 2;
print("$a");

}
}

If you tried to use the variable before it gets assigned for the first time, you would get a compilation
error. Always be sure to have the initialization done before using it.

class Example {
late int a;

void printExample() {
// Compilation error
print("$a");
a = 5;

}
}

Using a like above causes an error because it’s accessed before being initialized. There’s also the

Flutter Complete Reference 87

Chapter 4. Classes

possibility to declare a late final variable which behaves in the same way but with the only
exception that it can be assigned only once.

class Example {
late final int a;

void printExample() {
a = 5;
print("$a");
//a = 6; <-- This would be an error

}
}

Once a is set with a = 5; you can’t re-assign it anymore because of the final modifier. Instead,
if it were a simple late int a;, you could have re-assigned it multiple times.

late final double a = takesLongTime();

Thanks to the usage of the late final combination you can lazily initialize a variable that is
going to hold a value computed from a function. You can assign it immediately or, as we’ve
just seen, in a second moment. The function takesLongTime() will only be called once a is
accessed.

4.2.6 Good practices

Following what the official documentation 2 suggests, here’s some tips you should consider while
writing constructors for your classes:

1. Prefer using the "initializing formal" approach rather than initializing variables directly in
the body of the constructor. Doing so, you’ll avoid the usage of nullable types or late.

2. When you use the initializing formal, the types of the variables are deduced automatically
to reduce the verbosity. Omit the types because they’re useless.

// Ok but useless
Constructor(String this.a, double this.b) {}
// OK
Constructor(this.a, this.b);

3. When you have an empty constructor with no body, use the semicolon instead of the empty
brackets.

2https://dart.dev/guides/language/effective-dart/usage#constructors

Flutter Complete Reference 88

Chapter 4. Classes

// Bad
Constructor(this.a, this.b) {}
// Good
Constructor(this.a, this.b);

4. Do not use the new keyword when creating new instances of objects. In modern Dart and
Flutter code, new never appears.

5. We recommend using redirecting constructors to avoid code duplication. It makes mainte-
nance easier.

6. Try to not use the late keyword because it could lead to hard maintenance (you’d have
to manually keep an eye on the initialization of variables). Whenever possible, initialize
variables as soon as they are declared.

7. In the second part of the book we’ll show a case where late or late final are required.
They’ll be used to initialize values inside the state of a Widget.

class Example extends State {
late int value;

@override
void initState() {

super.initState();
value = 0;

}
}

In short, subclasses of State cannot define a constructor and you have to perform the
initialization of the variables in the initState() method. In order do to this, late is
essential.

The syntax for private constructors in Dart might seem a bit weird at first. Generally, a private
constructor is used in conjunction with a factory that returns a subtype or an instance of the
actual object with certain criteria.

class Example {
final a;
// Private constructor
Example._(this.a);

factory Example(int value) {

Flutter Complete Reference 89

Chapter 4. Classes

final c = value * 3;
return Example._(c);

}
}

A private constructor is declared using the ._() notation. In the example, the class can still be
instantiated but only because we’ve defined a factory. In this case...

final ex = Example(10);

... we’re not calling the "normal" constructor (because it’s package private) but instead the
factory one.

4.3 const keyword

The const keyword can be used when you have to deal with compile-time constant values such
as strings or numbers. It can automatically deduce the type.

// type of 'number' is int
const number = 5
// explicitly write the type
const String name = 'Alberto';

const sum = 5.6 + 7.34;

It’s true that final and const are very similar at first glance and they also share the same syntax
style. A very intuitive way to determine which one you can choose is ask yourself: is this value
already well defined? is it known at compile time? Let’s find out why.

• final. Use it when the value is not known at compile time because it will be evalu-
ated/obtained at runtime. Common usages are I/O from the disk or HTTP requests. For
example, this is how you read a text file from the disk (more on this in A.1):

final contents = File('myFile.txt').readAsString();

// const contents = File('myFile.txt').readAsString();
// ^ does not compile!

The compiler doesn’t know in advance which is the content of myFile.txt because it will
be read only when the program will be running (so after the compilation). For this reason,
you can only use final.

Flutter Complete Reference 90

Chapter 4. Classes

• const. Use it when the value is computed at compile time, for example with integers,
doubles, Strings or classes with a constant constructor (more on it in the next section).

const a = 1;
// final a = 1 -> it works as well

If it works with const, it works also with final because anything that is const is also
final.

Instance variables can only be declared as final while const can be applied in combination with
the static keyword.

class Example {
// OK
final double a = 0.0;
// NO, instance variables can only be 'final'
const double b = 0.0;

// OK
static const double PI = 3.14;
// OK but without type annotation
static const PI = 3.14;

}

The real power of const comes when combined with constructors and, in Flutter, it can lead to
an important performance boost.

� Variables and methods marked with the static modifier are available on the class
itself and not on instances. In practice it means that you can use them without having
to create an object.

class Example {
static const name = "Flutter";
static String test() => "Hello, I am $name!";

}

void main() {
final name = Example.name;
final text = Example.test();

}

Flutter Complete Reference 91

Chapter 4. Classes

Both variables are strings and they’ve been retrieved without creating an instance of
Example; static members belong to the "class scope" and you cannot use this.

class Example {
int a = 0;
static void test() {

// Doesn't compile
final version = this.a;
print("$version");

};
}

Since you don’t have to create objects to call static methods, this cannot work be-
cause it refers to the current instance that gets never created.

4.3.1 const constructors

In Dart you can append the const keyword in front of a constructor only if you’re going to
initialize a series of final (immutable) variables.

// Compiles
class Compiles {

final int a;
final int b;
const Compiles(this.a, this.b);

}

// Does not compile because a is mutable (not final)
class DoesNot {

int a;
final int b;
const DoesNot(this.a, this.b);

}

If your class only has final variables it’s said to be an "immutable class" and you should really
instantiate it with a const constructor. The compiler can perform some optimizations.

final example1 = const Compiles(); // (1) constant object
final example2 = Compiles(); // (2) not a constant object!

Flutter Complete Reference 92

Chapter 4. Classes

In example (1) we’re calling the constant constructor but in (2) we’re not. Even if your class
only has constant constructors, objects can be instantiated as constants only with the const
keyword. When put in front of a collection, such as a list, everything inside that container will
automatically be const (if it is allowed to be constant).

class Test {
// constant constructor
const Test();

}

const List<Test> listConst = [Test(), Test()]; // (1)
final List<Test> listConst2 = [Test(), Test()]; // (2)

In (1) everything inside the list is automatically "converted" into a const value while in (2) it
doesn’t happen, meaning that the contents of listConst2 aren’t constant. The final keyword
in front of a list just makes it impossible to change the reference assigned to listConst2 but
does NOT call the constant constructor (while example (1) does).

// Bad
const List<Test> list1 = [const Test(), const Test()]; // (1)
// Good
const List<Test> list2 = [Test(), Test()]; // (2)

You should avoid version (1) because calling const Test() is not necessary. Any constant
collection initializes its children calling their const constructor (if any, otherwise a compilation
error occurs).

4.3.2 Good practices and annotations

If you know that variables in your class will never change, you really should make them final
and use a const constructor. As we’ve already said, constant constructors play a very important
role in Flutter because they allow "caching" on instances.

� Don’t get "obsessed" by immutable classes and const constructors because you
simply can’t use them in every situation. If your instance variables cannot be final
that’s perfectly fine; the environment and the compiler are very powerful and your
final product won’t suffer of speed degradations due to the lack of immutability.

Any class with a constant constructor can be used as annotation: they’re are generally put

Flutter Complete Reference 93

Chapter 4. Classes

before the name of a class or method. An annotation is preceded by the "at" sign (@). In the
next section, we will see that overriding methods is usually done in the following way:

class MySubclass extends SuperClass {
@override
void defineMethod() {}

}

The @override annotation does nothing in practice: it just tells the developer that defineMethod
has been overridden. If you looked at how the override annotation is declared in the Dart SDK,
you’ll find simply the following:

// This class has a constant constructor and so it can be used as annotation
class _Override {

const _Override();
}

// the actual "@override" annotation
const Object override = _Override();

The class has been made private (_Override) because its instantiation is useless as it does
nothing. However, thanks to the const Object override variable being public, there’s an
"alias" of the _Override class which can be used as annotation. They’re generally used for:

• reminding the developer about something, such as in the case of @override;

• before Dart 2.10, the @required annotation was used by the IDE to bring the developer’s
attention to the fact that a named optional parameter is required;

• some packages, such as json_serializable we’re going to cover in chapter 15, rely on anno-
tations to add additional information about a class, a method or a member. Annotations
can be used to pass data to code generation tools.

Annotations can also have parameters but in this case you aren’t doing the above "trick" of
declaring a global variable exposing a private class. Just create a normal class, with a const
constructor and use it as follows:

// Use this as annotation but it takes a param
class Something {

final int value;
const Something(this.value);

}

Flutter Complete Reference 94

Chapter 4. Classes

@Something(10)
class Test {}

4.4 Getters and setters

When a public variable is declared, anyone can freely manipulate it but it may not a good idea
because the class partially loses control of its members. If we had written this...

class Fraction {
int numerator;
int denominator;
Fraction(this.numerator, this.denominator);

}

... at a certain point someone could have changed the numerator and the denominator without
any control introducing unexpected behaviors due to a wrong internal state.

void main() {
final frac = Fraction(1, 7);

frac.numerator = 0;
frac.denominator = 0;

}

Having set both numerator and denominator to 0 there will be problems at runtime due to an
invalid division operation. We can fix this problem using a getter , which makes the variables
read-only.

class Fraction {
int _numerator;
int _denominator;
Fraction(this._numerator, this._denominator);

// Getters are read-only
int get numerator => _numerator;
int get denominator {

return _denominator;
}

}

Flutter Complete Reference 95

Chapter 4. Classes

The getter numerator returns an int, _numerator; the getter denominator does the same thing
with an equivalent syntax. Like it happens with methods, when there is an one-liner expression
or value to return, the => (arrow) syntax can be used.

void main() {
final frac = Fraction(1, 7);

// Compilation error, numerator is read-only
frac.numerator = 0;
// No problems here, we can read its value
final num = frac.numerator;

}

The code is now safe because we can expose both numerator and denominator but it’s guaranteed
that they cannot be freely modified. Internally, _numerator and _denominator are "safe" because
they aren’t visible from the outside. Just as example, we’re going to see how to write a setter
for the denominator. So far it’s read-only but with a setter it becomes editable:

class Fraction {
int _numerator;
int _denominator;
Fraction(this._numerator, this._denominator);

// getters
int get numerator => _numerator;
int get denominator => _denominator;

// setter
set denominator(int value) {

if (value == 0) {
// Or better, throw an exception...
_denominator = 1;

} else {
_denominator = value;

}
}

}

There can be the same name for a setter and a getter so that a property can be read/written using
the same identifier. Setters should be used to make "safe edits" on variables; they often contain a

Flutter Complete Reference 96

Chapter 4. Classes

validation logic which makes sure that the internal state of the class doesn’t get corrupted.

void main() {
final frac = Fraction(1, 7);

var den1 = frac.denominator; // den1 = 7
frac.denominator = 0; // the setter changes it to 1
den1 = frac.denominator // den1 = 1

}

To sum it up, getters and setters are used to control the reading/writing on variables. They are
methods under the hood but with a "special" syntax that uses the get and set keywords.

4.4.1 Good practices

Our recommendation is to keep the body of getters and setters as short as possible in benefit of
code readability. You shouldn’t put any loop that might slow down the assignment/retrieval of
a value. The official documentation 3 also has something to say:

• When a variable has to be both public and read-only, just mark it as final without asso-
ciating a getter to it.

// Bad
class Example {

final _address = "https://fluttercompletereference.com";
String get address => _address;

}

// Good
class Example {

final address = "https://fluttercompletereference.com";
}

If it’s final, it’s already a read-only variable because nothing can change its content. In
this case a getter is simply useless.

• Avoid wrapping public variables with getters and setters if there’s no validation logic.

class Example {
var _address = "https://fluttercompletereference.com";

3https://dart.dev/guides/language/language-tour#getters-and-setters

Flutter Complete Reference 97

Chapter 4. Classes

String get address => _address;
set address(String value) => _address = value;

}

It compiles but there’s no point in doing that: both getter and setter don’t perform any
particular logic as they just serve the variable as it is. Prefer doing this:

class Example {
var address = "https://fluttercompletereference.com";

}

In general, use getters when you want to expose a variable but in "read-only mode" and setters
when you want to filter/check the value that is going to be assigned.

4.5 Operators overload

When you deal with primitive types you use operators very often: 5 + 8 is a sum between two
int types happening with the + operator. We are going to do the same with Fraction class.

class Fraction {
Fraction operator+(Fraction other) =>

Fraction(
_numerator * other._denominator +
_denominator * other._numerator,
_denominator * other._denominator

);

Fraction operator-(Fraction other) => ...

Fraction operator*(Fraction other) => ...

Fraction operator/(Fraction other) => ...
}

Operator overloading gives the possibility to customize the usage of operators in your classes.
We have overloaded the + operator so that we can easily sum two fractions instead of having to
create an add(Fraction value) method, like it happens with Java.

void main() {

Flutter Complete Reference 98

Chapter 4. Classes

// 2/5
final frac1 = Fraction(2, 5);
// 1/3
final frac2 = Fraction(1, 3);

// 2/5 + 1/3 = 11/15
final sum = frac1 + frac2

}

They work like normal methods with the only exception that the name must be in the form
operator{sign} where sign is a supported Dart operator:

• Arithmetic operators like +, -, *, or /.

• Relational operators such as >=, <=, > or <.

• Equality operators like != and ==

And many more. There are no restrictions on the types you can handle with the operators,
meaning that we could also sum fractions with integers: operator+(int other). You cannot
overload the same operator more than once in the same class.

4.5.1 callable classes

There is a special call() method which is very closely related to an operator overload because
it allows classes to be called like if they were functions with the () operator.

� You can give call() as many parameters as you want as there are no restrictions
on their types. The function can return something or it can simply be void.

Let’s give a look at this example.

class Example {
double call(double a, double b) => a + b;

}

void main() {
final ex = Example(); // 1.
final value = ex(1.3, -2.2); // 2.

Flutter Complete Reference 99

Chapter 4. Classes

print("$value");
}

1. Classic creation of an instance of the class

2. The object ex can act like if it were a function. The call() method allows an object to be
treated like a function.

Any class that implements call() is said to be a callable class. In Dart, everything is an object
and you’ve seen in 3.6.1 that even functions are objects. You can now understand why with the
following example:

void test(String something) {
print(something);

}

This is a typical void function asking for a single parameter. Actually, the above code can be con-
verted into a callable class that overrides call() returning nothing and asking for a string.

// Create this inside 'my_test.dart' for example
class _Test {

const _Test();

void call(String something) {
print(something);

}
}

const test = _Test();

// Somewhere else, for example in main.dart
import 'package:myapp/my_test.dart';

void main() {
test("Hello");

}

The function is nothing more than a package private class that overrides call() with a certain
signature. Thanks to const test = _Test(); in the last line we’re "hiding" the class and
exposing a callable object to be used as function.

Flutter Complete Reference 100

Chapter 4. Classes

4.6 Cloning objects

Even if it’s not mentioned in the official Dart documentation, there is a standard "pattern" to
follow when it comes to cloning objects. Unlike Java, there is no clone() method to override
but still you might need to create deep copies of objects:

class Person {
final String name;
final int age;
const Person({

required this.name,
required this.age,

});
}

void main() {
const me = const Person(

name: "Alberto",
age: 25

);
const anotherMe = me;

}

As you already know, the variable anotherMe just holds a reference to me and thus they point
to the same object. Changes applied to me will also reflect on anotherMe. If you want to make
deep copies in Dart (cloning objects and making them independent), this is the way:

class Person {
final String name;
final int age;
const Person({

required this.name,
required this.age,

});

Person copyWith({
String? name,
int? age,

}) => Person(

Flutter Complete Reference 101

Chapter 4. Classes

name: name ?? this.name,
age: age ?? this.age

);

@override
String toString() => "$name, $age";

}

This method is called copyWith() by convention and it takes the same number (and name) of
parameters required by the constructor. It creates a new, independent copy of the object (a
clone) with the possibility to change some parameters:

const me = const Person(
name: "Alberto",
age: 25

);

// Create a deep copy of 'me'.
final anotherMe = me.copyWith();

// Create a deep copy of 'me' with a different age.
final futureMe = const.copyWith(age: 35);

print("$me"); // Alberto, 25
print("$anotherMe"); // Alberto, 25
print("$futureMe"); // Alberto, 35

Both anotherMe and futureMe have no side effects on me because the reference is not the same.
In fact, copyWith() returns a fresh new instance by copying internal data. Let’s take a look at
this line:

name: name ?? this.name,

Thanks to the ?? operator, if name is null then initialize the clone with value of this.name taken
from the instance. In other words, if you don’t pass a custom name to copyWith(), by default a
copy of this.name is made. Pay attention to generic containers and objects in general:

class Skills {...}

class Person {
final List<Skills> skills;

Flutter Complete Reference 102

Chapter 4. Classes

const Person({
required this.skills

});

Person copyWith({
List<Skills>? skills,

}) => Person(
skills: skills ?? this.skills

);
}

This code doesn’t do what you’d expect because List<T>, like any other generic container, is an
object and not a primitive type. With the above code you’re just copying references and not
making copies. The correct solution is the following:

Person(
skills: skills ?? this.skills.map((p) => p.copyWith()).toList();

);

In this way you’re making a copy of the entire list rather than passing a reference. The above
code is just an one-liner way to iterate on each element of the source, making deep copies using
copyWith and returning a new list. However, when the list is made up of primitive types, you
could use a shortcut:

class Person {
final List<int> values;
const Person({

required this.values
});

Person copyWith({
List<int>? values,

}) => Person(
values: values ?? []..addAll(this.values)

);
}

Primitive types are automatically copied so instead of using map() (which would be perfectly fine
as well) we can use addAll() for a shorter syntax. There is no difference however because it still
iterates on every element of the source list. The same example also applies to Map<K, V> and

Flutter Complete Reference 103

Chapter 4. Classes

Set<K>. To sum it up, what you have to keep in mind is:

• Deep copies in Dart are made using the copyWith() method. You can give it any other
name but you’d better follow the conventions.

• When making copies, be sure that classes (like generic containers) are deep copied using
the convenient map((x) => x.copyWith()) strategy.

• If you have a list of primitive types (like doubles or int) you can use the []..addAll()
shortcut. Do this only with primitive types.

Flutter Complete Reference 104

5 | Inheritance and Exceptions

5.1 Inheritance

In any OOP language you can create hierarchies of classes and Dart is no exception. Here’s the
most basic example we can imagine.

class A {}
class B extends A {}

As you might expect, A is called superclass while B is the subclass (or "child class"). Methods
can be overridden in subclasses because they all are "virtual" by default.

� The term virtual indicates the possibility to redefine the behavior of a method in
the subclasses. It’s a very common OOP concept.

Actually Dart doesn’t have the virtual keyword but it’s "implicit" because any method can be
overridden along the hierarchy. The annotation @override is optional but you’d better always
use it. Starting from Dart 2.9 onwards, implicit downcasts are not allowed:

class A {
double test(double a) => a * 0.5;

}

class B extends A {
@override
double test(double a) => a * 1.5;

}

Flutter Complete Reference 105

Chapter 5. Inheritance and Exceptions

void main() {
A obj1 = A();
A obj2 = B(); // Upcast
B obj3 = obj1; // Downcast - ERROR from Dart 2.9

print("${obj1.test(1)}"); // Prints 0.5
print("${obj2.test(1)}"); // Prints 1.5

}

This behaves in the classic OOP way; obj1 calls the method in class A while obj2 calls the
overridden version in class B. When overriding, you can reference the original method definition
in the superclass:

class B extends A {
@override
double test(double a) {

final original = super.test(a);
return original * 1.5;

};
}

The special keyword super holds a reference to the super class. The usage of super.test(a)
calls the test()method defined in the superclass. In Java for example, you get the same behavior.

� You cannot block inheritance since every class can have the extends modifier.
In Java for example you can write final class A {} to say "hey, you can’t inherit
from me" but in Dart there is no equivalent.

You’re allowed to also override setters (set) and getters (get) other than regular methods. Dart
doesn’t support multiple inheritance, like C++ does for example, meaning that extends works
only with a single class:

// Ok
class A {}
class B extends A {}

// Doesn't work
class A {}

Flutter Complete Reference 106

Chapter 5. Inheritance and Exceptions

class B {}
class C extends A, B {}

When overriding a parameter’s type with a subtype, the compiler emits an error. Thanks to the
covariant keyword, you can turn off static analysis for this kind of error to tell the compiler you
know you’re doing this intentionally. Here’s an example:

abstract class Fruit {}
class Apple extends Fruit {}
class Grape extends Fruit {}
class Banana extends Fruit {}

abstract class Mammal {
void eat(Fruit f);

}
class Human extends Mammal {

// Ok
void eat(Fruit f) => print("Fruit");

}
class Monkey extends Mammal {

// Error
void eat(Banana f) => print("Banana");

}

Instead of eat(Banana f) we should have written eat(Fruit f) inside Monkey because the
superclass method is asking for Fruit. However, we can allow the definition of a subtype in an
overridden method with covariant:

class Monkey extends Mammal {
void eat(covariant Banana f) => print("Banana");

}

Now the code compiles. Usually the superclass method is the best place where you could use
covariant because it removes the "subtype constrain" along the entire hierarchy.

abstract class Mammal {
void eat(covariant Fruit f);

}
class Human extends Mammal {

// Ok
void eat(Fruit f) => print("Fruit");

Flutter Complete Reference 107

Chapter 5. Inheritance and Exceptions

}
class Monkey extends Mammal {

// Ok
void eat(Banana f) => print("Banana");

}

Thanks to covariant Fruit at the top, any subclass is allowed to override eat() with Fruit or
a subtype. This keyword can also be applied to setters and fields.

5.1.1 super and constructors

Every subclass in Dart automatically tries to call the default constructor of the superclass. If
there isn’t one, you must call the superclass constructor manually in the initializer list.

class Example {
int a;
Example(this.a);

}

class SubExample extends Example {
int b;
// If you don't call 'super(b)' the compilation will fail
// because the father class has NO default constructor
SubExample(this.b) : super(b);

}

The superclass constructor must be called in SubExample because the compiler has to somehow
initialize the variable a of Example. However super is not needed when the class has a default
constructor:

// The compiler automatically generates the default constructor
// which is just 'Example();'
class Example {

int a = 0;
}

class SubExample extends Example {
int b;
// No need to call super
SubExample(this.b);

Flutter Complete Reference 108

Chapter 5. Inheritance and Exceptions

}

Which is equivalent to...

class Example {
int a = 0;
Example();

}

class SubExample extends Example {
int b;
SubExample(this.b) : super();

}

... but you shouldn’t do this because the compiler adds the missing pieces for you. You should
call the superclass constructor only when there are parameters to pass. The call to super(), in
case of an initializer list, always goes last:

// Compiles
MyClass(int a) : _a = a, super(a*a);

// Doesn't compile
MyClass(int a) : super(a*a), _a = a;

5.1.2 Abstract classes

The abstract keyword defines a class that cannot be directly instantiated: only its derived
classes can. An abstract class can define one (or more) constructors as usual.

abstract class Example {
// This is an abstract method
void method();

}

Usually abstract classes contain abstract methods which can be defined putting a semicolon (;)
instead of the body. You cannot define an abstract method in a class that’s not been marked
with the abstract modifier.

// Wrong: doesn't compile
class Example {

// This method is abstract (no body) BUT the

Flutter Complete Reference 109

Chapter 5. Inheritance and Exceptions

// class doesn't have the 'abstract' modifier
void method();

}

// Correct: it compiles
abstract class Example {

// Good job, this abstract method is in an
// abstract class
void method();

}

If your class contains at least one method with no body, then it must be abstract and the
children must provide an implementation. You could also do this:

abstract class Example {
void method();

}

class ExampleTwo extends Example {}

ExampleTwo is an abstract class too because it doesn’t contain an implementation of method();
yet. A class is concrete (and thus not abstract) when every method has a body.

abstract class Example {
void method();

}

class ExampleTwo extends Example {
@override
void method() {

print("I'm not abstract!");
}

}

Now ExampleTwo is a concrete class. As we’ve already said, getters and setters can also be
abstract and they’re declared in the same way as methods (without a body).

abstract class Example {
final int _a;
const Example(this._a);

Flutter Complete Reference 110

Chapter 5. Inheritance and Exceptions

// Abstract getter
int get calculate;

// Abstract method
int doSomething();

}

5.1.3 Interfaces

In contrast to other programming languages, Dart does not have an interface keyword and
you have to use classes to create interfaces. Your class can implement more than a single inter-
face.

abstract class MyInterface {
void methodOne();
void methodTwo();

}

class Example implements MyInterface {
@override
void methodOne() {}

@override
void methodTwo() {}

}

The keyword is implements and, differently from a regular subclass, here you must override ev-
ery method defined by the class/interface. The official documentation states the following:

� Every class implicitly defines an interface containing all the instance members of
the class and of any interfaces it implements. If you want to create a class A that
supports class B’s API without inheriting B’s implementation, class A should imple-
ment the B interface.

In Dart when you use the term interface you are referring to a class that is going to be used
by others along with implements because it only provides method signatures. The concept is
the same you can find in Java, Delphi or C# with the only difference that Dart doesn’t have a

Flutter Complete Reference 111

Chapter 5. Inheritance and Exceptions

dedicated keyword.

// Instead of the 'interface' keyword, 'abstract class' is used
abstract class OneInterface {

void one();
}

abstract class TwoInterface {
void two();

}

class Example implements OneInterface, TwoInterface {
@override
void one() {}

@override
void two() {}

}

While extends can be used with only one class, implements works with one or more classes, which
you should treat as interfaces (methods with no body). You could also do the following:

class OneInterface {
void one() {}

}

class TwoInterface {
void two() {}

}

class Example implements OneInterface, TwoInterface {
@override
void one() {}

@override
void two() {}

}

Classes and abstract classes can both be treated as interfaces with the difference that in concrete
classes there must be at least an empty body. For this reason, in the above example we’ve put

Flutter Complete Reference 112

Chapter 5. Inheritance and Exceptions

an empty body.

� We recommend to use abstract classes as interfaces so that you can write only
the name of the method, like void test();. If you used a regular class you’d have
to write void test() {} which is identical but it has an unnecessary empty body.

5.1.3.1 extends vs implements

You’ve just seen that extends is for subclasses and implements is for classes treated like if they
were interfaces. It would be very fair if you were puzzled about the situation. Let’s start with
the technical difference:

• When you use class B extends A {} you are NOT forced to override every method of
class A. Inheritance takes place and you can override as many methods as you want.

• When you use class B implements A {} you must override every method of class A.
Inheritance does NOT take place because methods just provide an API, a "skeleton" that
the subclass must concretize.

In practical terms instead:

• extends. This is the typical OOP inheritance that can be used when you want to add some
missing features in a subclass. In chapter 8 we will see that it’s a good practice deriving
only abstract classes and not concrete classes.

• implements. Interfaces are useful when you don’t want to provide an implementation of
the functions but just the API. It’s like if the interface was wall socket and the class was
the plug that adapts to the holes.

While multiple inheritance is not allowed, you can extends a class and implements more than
one. This is also how Java and C# behave, for example.

// Error
class A extends B, C, D {}

// Valid
class A extends B implements C, D {}

It might be useful if we made two final examples so that you can visualize the difference.

Flutter Complete Reference 113

Chapter 5. Inheritance and Exceptions

1. When you have a common behavior for every children of your hierarchy, create an abstract
class and use extends. Say that you want to read many popular document files such as
.pdf, .docx and .txt. Inheritance might be a very good idea:1

abstract class Reader {
bool fileExists(String path) {

// code...
}

double size(File file) {
// code...

}

String readContents();
}

Deciding whether a file exists or not and getting its size is something common we always
want to be able to call. Reading contents instead is specific to the implementation, it cannot
be shared along the hierarchy, so it has to be abstract.

class PDFReader extends Reader {
@override
String readContents() {

// code...
}

}

class DocxReader extends Reader {
@override
String readContents() {

// code...
}

}

class TxtReader extends Reader {
@override
String readContents() {

// code...

1See appendix A for more info on the File class

Flutter Complete Reference 114

Chapter 5. Inheritance and Exceptions

}
}

It’s been the right choice because fileExists() and size() have been defined only once,
so no code duplication, and they’re available in every subclass "for free". If we used
implements we’d have had to define all of methods in the subclasses, including the "shared"
ones leading to code duplication.

2. When you don’t have methods implementations to share/reuse in the subclasses and you
just need to give the signature, use implements. Say that you want to create a few sort-
ing algorithms by yourself: using interfaces is the way to go (this is known as "Strategy
pattern").

// This is going to be the "interface"
abstract class Sorter {

void sort();
String averageComplexity();

}

class MergeSort implements Sorter {
@override
void sort() {...}

@override
String averageComplexity() => "n*log(n)";

}

class InsertionSort implements Sorter {
@override
void sort() {...}

@override
String averageComplexity() => "n^2";

}

Any sorting algorithm has its own implementation and a particular name, so there’s no
common behavior. You just know that every concrete implementation needs a sorting
method (void sort()) and the average time complexity (String averageComplexity()).
Thanks to implements subclasses have to override every method and adopt a common API.

Flutter Complete Reference 115

Chapter 5. Inheritance and Exceptions

In summary, if you have common methods along the hierarchy go for subclasses otherwise use
classes as interfaces. The usage of implements forces you to override every method; if this is not
the behavior you’re looking for, use extends.

5.1.4 Mixins

There’s another important concept in Dart, which is the "cousin" of abstract classes and inter-
faces. A mixin is simply a class with no constructor that can be "attached" to other classes to
reuse the code without inheritance.

mixin Swimming {
void swim() => print("Swimming");
bool likesWater() => true;

}

mixin Walking {
void walk() => print("Walking");

}

If you use the special with keyword on a class, it acquires any method defined in the mixin. You
could see mixins like a "copy/paste" tool to reuse methods.

class Human with Walking {
final String _name;
final String _surname;

Human(this._name, this._surname);
void printName() => "$_name $_surname";

}

void main() {
final me = Human("Alberto", "Miola");

// prints "Alberto Miola"; method is defined in the class
me.printName();
// prints "Walking"; method is not defined in the class
// but it's "copied" and "pasted" from the mixin.
me.walk();

}

Flutter Complete Reference 116

Chapter 5. Inheritance and Exceptions

The class Human doesn’t have a walk() method inside but it’s automatically imported from the
Walking mixin. Since mixins are just classes without a constructor, you could also successfully
compile the following code:

// use 'class' instead of 'mixin'
class Walking {

void walk() => print("Walking");
}

class Human with Walking {}

In general it’d better if you used the mixin keyword since it helps both yourself, to remind what
you want to do, and the IDE, which can give you useful hints. Furthermore, using the mixin
keyword is less confusing than class.

� Note that your class must have no constructors declared in order to be used as
mixin.

class Walking {
Walking();
void walk() => print("Walking");

}
// Does not compile
class Human with Walking {}

Even if you’ve declared the empty non-argument constructor (Walking()) this class
is not treated as a mixin. You should prefer mixin over class when you intend to
accomplish this purpose.

Some other important features offered by mixins are:

1. A class can have more than a single mixin associated to it and its subclasses inherit the
imported methods.

mixin Walking {
void walk() {}

}
mixin Breathing {

void breath() {}

Flutter Complete Reference 117

Chapter 5. Inheritance and Exceptions

}
mixin Coding {

void code() {}
}

// Human only has walk()
class Human with Walking {}
// Developer has walk() inherited from Human and also
// breath() and code() from the two mixins
class Developer extends Human with Breathing, Coding {}

2. There’s the possibility to constrain the usage of a mixin to subclasses of a certain type. In
this way you can make a sort of "restrictive reusability":

// Constrain 'Coding' so that it can be attached only to
// subtypes of 'Human'
mixin Coding on Human {

void code() {}
}

// All good
class Human {}
class Developer extends Human with Coding {}

// NO, 'Coding' can be used only on subclasses
class Human with Coding {}

// NO, 'Fish' is not a subclass of 'Human' so
// you cannot attach the 'Coding' mixin
class Fish with Coding {}

Mixins are different from abstract classes and interfaces because they do not involve inheritance
at all: they don’t create hierarchies. They are just a way to reuse code without having to deal
with superclasses, overrides and so on.

� There is no rule of thumb to follow when it comes to the question "when should
I prefer mixins over interfaces/abstract classes?" because the answer would be "It
depends!". However, here’s a general idea that you can follow to take your decision.

Flutter Complete Reference 118

Chapter 5. Inheritance and Exceptions

In general your first choices should be abstract classes or interfaces, with all their implementations
in the various subclasses. Mixins are very handy when different pieces of architecture have the
same identical code which cannot be shared due to a lack of inheritance. Let’s say you have these
classes in a folder:

import 'dart:math';

abstract class FootballTeam {
String name();
void playsWith() => print("Ball");
double ballVolume(double radius) {

const values = 4/3 * 3.14;
return values * pow(radius, 3);

}
}

class RealMadrid extends FootballTeam { ... }
class LiverpoolFC extends FootballTeam { ... }

And then, still in the same project, you have in another folder this hierarchy:

abstract class VolleyballTeam {
String nameAndAbbreviation();
void playsWith() => print("Ball");
double ballVolume(double radius) {

const values = 4/3 * 3.14;
return values * pow(radius, 3);

}
}

class TeamA extends VolleyballTeam { ... }
class TeamB extends VolleyballTeam { ... }

You see two separated hierarchies (which is good) with a few identical methods. You could
create a superclass for VolleyballTeam and FootballTeam but it couldn’t be possible due to the
structure itself of your architecture. A good solution is the usage of a mixin which provides code
sharing with no inheritance.

mixin BallSports {

Flutter Complete Reference 119

Chapter 5. Inheritance and Exceptions

void playsWith() => print("Ball");

double ballVolume(double radius) {
const values = 4/3 * 3.14;
return values * pow(radius, 3);

}
}

At this point you can get rid of the redundant methods and use the mixin to share the imple-
mentation (across the hierarchy as well). In this way you’ve removed code duplication, which is
always a problem in terms of maintenance.

// Somewhere in your project...
abstract class FootballTeam with BallSports {

String name();
}

// Somewhere else in your project...
abstract class VolleyballTeam with BallSports {

String nameAndAbbreviation();
}

No more code duplication because the mixin solved the problem. Both hierarchies are separated
because they are two different things but they have something in common. A mixin makes
methods reusable without having to rely on inheritance.

5.1.5 Good practices

Generally, factory constructors are used to return "default" implementations of a certain class.
For example, if you had a series of encryption algorithms, you could define a default one in this
way:

abstract class EncryptionAlgo {
// 'AESEncryption' is the default encryption algorithm
factory EncryptionAlgo() {

return AESEncryption();
}

void decrypt(String filePath);
}

Flutter Complete Reference 120

Chapter 5. Inheritance and Exceptions

class AESEncryption extends EncryptionAlgo { ... }
class RSAEncryption extends EncryptionAlgo { ... }
class BlowfishEncryption extends EncryptionAlgo { ... }

With this technique, you can use EncryptionAlgo to return an instance of AESEncryption:

// 'encrypt' is actually 'AESEncryption' because you're calling the
// factory constructor
final encrypt = EncryptionAlgo();

You are NOT creating an instance of an abstract class (which is impossible): you’re just calling
the factory constructor of EncryptionAlgo which returns a AESEncryption. This technique
is used to return "default" instances of a certain hierarchy. You could use an even shorter
syntax:

abstract class EncryptionAlgo {
factory EncryptionAlgo() = AESEncryption;

void decrypt(String filePath);
}

This kind of constructor assignment is just a shorter syntax to redirect a constructor to another.
However, they must have the same number and type of arguments otherwise it won’t compile.
Basically you’re telling the compiler to call the constructor of AESEncryption (along with the
params, if any) when the factory is invoked.

5.2 Extension methods

Starting from Dart 2.7 the team has added extension methods , a way to add functionalities to
a library knowing nothing about its internal implementation. Let’s take a look at the String
class, which has a lot of methods:

// A string
var name = "Alberto";

// Some methods of the string class
name.toUpperCase();
name.toLowerCase();
name.trimLeft()

Flutter Complete Reference 121

Chapter 5. Inheritance and Exceptions

Earlier we worked hard to create a Fraction class and it would be really cool if we were able to
integrate it with strings. Something like this:

final Fraction value = "1/3".toFraction();

value.reduce();
value.negate();

Given a string, we could add the toFraction() method that returns a Fraction whenever
possible. We don’t have access to the String class and we can not edit the file in which it’s been
declared, of course. Extension methods come to the rescue:

extension FractionExt on String {
bool isFraction() => ...

// Converts a string into a fraction
Fraction toFraction() => Fraction.fromString(this);

}

The this identifier refers to the object on which you are calling the method. What’s written as
this.contains("/") is evaluated to "2/5".contains("/") is the example:

extension FractionExt on String {
// code...

}

void main() {
var str = "2/5";

if (str.isFraction()) {
final frac = str.toFraction();

}
}

With extension methods we’ve just extended the String class with new functionalities without
changing the definition of the class. Methods have been added "from the outside".

� Abstract classes, interfaces and mixins are for "internal use" in the sense that with
them you touch the class directly from the inside. Extensions are for "external use"
in the sense that you add methods from the outside without changing the internal

Flutter Complete Reference 122

Chapter 5. Inheritance and Exceptions

part of the class.

With extensions you can also define getters, setters, operators, static fields and/or methods. If
you need to use some utility private functions inside the extension, just append an underscore
(_) in front of the name. It’s like with classes, where void _method() {} is private to its library.

� Extension methods also work with generic types. You could for example write
extension Test<T> on List<T> {} where T is statically determined by the com-
piler. Generics and collections will be discussed in the next chapter.

5.2.1 Good practices

Generally extension methods should be put in a dedicated file. For example, the previous exten-
sion of fraction could go on fraction_ext.dart so that it can be imported as a library.

// === file fraction_ext.dart === //
extension FractionExt on String {

// code...
}

// === file main.dart === //
import 'package:fraction_ext.dart';

void main() {
final check = "hello".isFraction();

}

Short and trivial operations should be implemented with extensions in order to improve the
usability, the readability. Don’t you agree that...

final f = "1/2".isFraction();

... looks better than a static method call?

final f = Fraction.isFraction("1/2");

Keep in mind that extension methods cannot be used if you’re treating a variable with dynamic.
They support type inference and then the compiler must always exactly know the types.

// It compiles but gives a runtime exception

Flutter Complete Reference 123

Chapter 5. Inheritance and Exceptions

dynamic f = "1/2";
f.isFraction();

Before moving on, let’s try to make a simple summary of all the features we’ve seen up to now
in this chapter.

• Internal use. These techniques are meant for "internal use" because they can work directly
inside the definition of the class.

– extends. It’s the typical OOP inheritance: you don’t need to override every method,
getter or setter. Use it when there is a "common" behavior to share along the hierarchy.

– implements. The "interface" OOP concept: you need to override every method, getter
or setter. Use it when you want to define an API for many types (they have no common
behaviors to share).

– mixin. A way to "copy/paste" methods into classes: they reduce code duplication
and centralize the code. The imported methods are also shared along the hierarchy.

• External use. These techniques are meant for "external use" because they cannot modify
the class from the inside.

– extension. They add functionalities to a class without changing its internal definition.
They’re generally used to "improve" a class without touching its internals.

5.3 The Object class

Even if it’s not explicitly written in the code, any Dart class descends from class Object {}
which is at the root of any hierarchy. This is the same structure that some popular languages
such as Java, C# and Delphi adopt. Every class can, and should, override the methods declared
in Object.

• String toString(). This method is very important and you should always override it
because a string representation of an object is quite handy, especially while debugging. If
you have it defined you can better handle the string conversion:

final f = Fraction(1, 2);
final s = "My fraction is $f";

String interpolation automatically calls toString() which makes the code shorter and more
readable.

Flutter Complete Reference 124

Chapter 5. Inheritance and Exceptions

• bool operator ==(SomeClass other). When you want to compare two objects you have
to use the == operator. By default it doesn’t really work as you’d expect; it returns true
only if two variables point to the same object.

class Example {
int a;
Example(this.a);

}

void main() {
final ex1 = Example(2);
final ex2 = ex1;
print(ex1 == ex2); //true

}

The console outputs true because ex2 points to the same reference held by ex1; both
variables point to the same object so they’re equal. By default the == operator compares
references and doesn’t look at the object itself; it only cares about what’s being pointed to.

void main() {
final ex1 = Example(2);
final ex2 = Example(2);
print(ex1 == ex2); //false

}

Logically we’d think they were equal but the compiler tells us another story. ex1 and ex2
point to two different objects that are logically equal but practically different because each
variable holds a different reference. You have to override the equality operator to get the
desired behavior:

class Example {
int a;
Example(this.a);

@override
bool operator ==(Object other) {

// 1.
if (identical(this, other))

return true;

Flutter Complete Reference 125

Chapter 5. Inheritance and Exceptions

// 2.
if (other is Example) {

final example = other;

// 3.
return runtimeType == example.runtimeType &&

a == example.a;
} else {

return false;
}

}

// 4.
@override
int get hashCode => a.hashCode;

}

That’s a lot of boilerplate code but you don’t have any other choices. For sure if you come
from the Java world you might have dealt with this exact same thing thousands of times.

1. The function identical() is provided by the Dart code API and checks if two objects
have the same reference.

2. If the type of the compared object is equal to the type of the current object, a smart cast
happens in the body to proceed with the comparison. Otherwise, false is returned.

3. Check if the runtime types are the same and then make a one by one comparison for
every instance variable.

4. See the next point.

Those two overrides allow a proper object comparison as you’d expect. Running this ex-
ample would output true because we’ve taught operator== to look at the object itself and
not only at the references.

void main() {
final ex1 = Example(2);
final ex2 = Example(2);
print(ex1 == ex2); // true -> that's what we wanted!

}

• int get hashCode. When you override the equality operator, you must always remember

Flutter Complete Reference 126

Chapter 5. Inheritance and Exceptions

to also override hashCode. The hash code is useful when you call the identical() method
and also when you use "hash maps" we’re going to analyze in the next chapter.
If you know what hash tables are, you are aware that the keys must not clash in order to
keep good performances. Dart’s implementation of hash tables guarantees O(1) in insertion
if hash codes of different objects return different values (no collisions).

5.3.1 Comparable<T>

Other than overriding operator== and hashCode, if you wanted to do a precise and complete
comparison setup of a class, you should also implement Comparable<T>. This is how a complete
comparison logic for a Fraction class would look like:

class Fraction implements Comparable<Fraction> {
final int num;
final int den;
const Fraction(this.num, this.den):

double toDouble() => num / den;

@override
int compareTo(Fraction other) {

if (toDouble() < other.toDouble()) return -1;
if (toDouble() > other.toDouble()) return 1;
return 0;

}

@override
bool operator==(Object other) { ... };

@override
int get hashCode { ... };

}

Comparable<T> exposes the compareTo() method which can be used for ordering and sorting.
The returned int value must follow this convention:

• if this instance is naturally < than the other, return a negative number;

• if this instance is naturally > than the other, return a positive number;

Flutter Complete Reference 127

Chapter 5. Inheritance and Exceptions

• if the two instances are equal, return 0.

Returning 1 and -1 is just a convention; it can be any positive or negative number. In our case,
we have done the following:

• a fraction is naturally < than another if its double representation is smaller than the other.
For this reason, we return -1 in case the num / den ratio of the current instance were <
than the other.

if (toDouble() < other.toDouble()) return -1;

• a fraction is naturally > than another if its double representation is greater than the other.
For this reason, we return 1 in case the num / den ratio of the current instance were >
than the other.

if (toDouble() > other.toDouble()) return 1;

• two fractions are equal if the rational number they represent is also equal. For this reason,
we return 0 if none of the above statements passed.

return 0;

In general, comparing floating point numbers using <, <=, > and >= is safe. Comparing floating
point values with operator== is very error prone; two values that should be equal may not be
due to arithmetic rounding errors. This is the reason why we use return 0 as "fallback" rather
than checking for equality of double values.

5.4 Exceptions

Dart code can throw exceptions to signal that an unexpected or erroneous behavior has happened
during the execution. When you throw an exception you should really catch it otherwise your
program will forcefully terminate with an error code.

class Fraction {
int _numerator;
int _denominator;

Fraction(this._numerator, this._denominator) {
if (_denominator == 0) {

throw IntegerDivisionByZeroException();
}

}

Flutter Complete Reference 128

Chapter 5. Inheritance and Exceptions

}

The denominator of a fraction cannot be zero and in our example the constructor is the best place
to throw an exception. It signals that something’s gone wrong, in this case an invalid parameter.
You can only throw objects.

� The IntegerDivisionByZeroException() class is provided by Dart and it should
be used when... a division by zero happens! Despite you can throw any object, classes
with meaningful names should be preferred.

class RandomClass() {}

void main() {
// It compiles. It's perfectly fine
throw RandomClass();

}

You could also throw a single string like throw "Whoops"; because String is a Dart
class.

There are a few interchangeable classes that can be thrown in exceptions. For sure, if you have
a format error you’re not going to throw a TimeoutException.

• DeferredLoadException

• FormatException

• IntegerDivisionByZeroException

• IOException

• IsolateSpawnException

• TimeoutException

You can throw everything except for null.

5.4.1 on and catch

If you don’t catch an exception, your program forcefully terminates but you never want to be in
such situation. It’s always a good idea handling exceptions by catching them.

Flutter Complete Reference 129

Chapter 5. Inheritance and Exceptions

void main() {
try {

final f = Fraction(1, 0);
} on IntegerDivisionByZeroException {

print("Ouch! Division by zero!");
}

}

This code is safe because the exception raised by the constructor of Fraction is caught by a try
block. If you want to get an instance of the thrown exception, just add a catch statement:

void main() {
try {

final f = Fraction(1, 0);
} on IntegerDivisionByZeroException catch (exc) {

// use the exc object
doSomething(exc);

print("Ouch! Division by zero!");
}

}

exc is an instance of the thrown object that can only be used within the scope of on. This
approach can be useful when there’s the need to print a stack trace or any useful debugging info
about the exception.

void main() {
try {

final f = Fraction(1, 0);
} on IntegerDivisionByZeroException {

print("Division by zero!");
} on FormatException {

print("Invalid format!");
}

}

You can handle code that could throw more than a single exception by specifying multiple catch
clauses. The first clause that matches the thrown object will be picked to handle the error
propagation. What if the above code threw an IOException or another object you haven’t
handled? The program would crash because there would be a not handled exception.

Flutter Complete Reference 130

Chapter 5. Inheritance and Exceptions

void main() {
try {

final f = Fraction(1, 0);
} on IntegerDivisionByZeroException {

print("Division by zero!");
} on FormatException {

print("Invalid format!");
} catch (e) {

// You arrive here if the thrown exception is neither
// IntegerDivisionByZeroException or FormatException
print("General error: $e");

}
}

The final catch is a fallback that captures everything else that didn’t match the above types.
You’re guaranteed that this code is safe because, worst case, the two on will be skipped and the
execution will fall inside the final catch.

5.4.2 finally

The try - catch block protects your code against runtime exceptions that alter the normal
execution flow. As you know, if no exceptions occur nothing happens because the catch block
doesn’t execute.

void main() {
try {

final f = Fraction(2, 3);
} catch (e) {

print("Error");
}

print("Finish");
}

This simple code only outputs "Finish" because no exceptions have been thrown. However,
there is a way to force the execution of a part of the try statement.

void main() {
try {

final f = Fraction(2, 3);

Flutter Complete Reference 131

Chapter 5. Inheritance and Exceptions

} catch (e) {
print("Error");

} finally {
print("Always here");

}

print("Finish");
}

The body of a finally block is always executed, no matter if an exception occurs or not. The
above code prints "Always here" and then "Finish" on a new line.

• The code inside on or catch is executed only if an exception is thrown and a valid handler
for the object is provided. If no exceptions are thrown, nothing happens.

• The code inside a finally block is always executed regardless the fact that an exception
object is thrown or not.

5.4.3 Good practices

The Dart API provides the Exception interface which is implemented by all core library ex-
ceptions. Production-quality code usually throws subtypes implementing one of the following
classes.

• Exception. Implement this interface to create errors that will be caught when something
goes wrong. For example, doing this is a good idea:

class FractionDivisionByZero implements Exception {
final String message;
const FractionDivisionByZero(this.message);

@override
String toString() => message;

}

We can throw the class FractionDivisionByZero specific object rather than a general
purpose IntegerDivisionByZeroException. When you have to throw an object, imple-
ment Exception and choose a proper name that describes what’s gone wrong.

Flutter Complete Reference 132

Chapter 5. Inheritance and Exceptions

� The official documentation 2 suggests to not use throw Exception("...");.
Yes, you could, but it’s bad because it doesn’t give a precise type that can be
caught with the on keyword.

• Error. You should subclass this type for all those programmer-relates errors such as going
out from the bounds of a list or having an assertion that evaluates to false. Error is thrown
in case of an unexpected program flow and you should NOT catch it.

class Example {
int x;
Example(this.x) : assert(x != 0);

}

In debug mode, if x is 0 an AssertionError is thrown. You shouldn’t catch it and that’s
perfectly fine because you, the developer, must see that kind of error: it signals you’ve
coded something in the wrong way. The IDE will produce an alert when an object of type
Error is being caught.

� In practice you’re allowed to catch Errors but you shouldn’t. This kind of
exceptions signal that you, the programmer, failed something and you must see
it because a fix is required!

Error is an alert for the developer telling him that something really bad happened, such
as an index gone out of the bounds or a critical I/O issue.

The usage difference lies on the logical concept.

• You almost always want to throw an object that implements Exception because you are
the owner of the code and you decide what’s wrong. Anyone else going to use your code
will catch your exception object in order to know that something went wrong.

• You want to extend (and not implement) Error if you’re dealing with particular code that
might cause I/O issues, lists out of bounds or other "particular" error that a programmer
can do.

Put in other terms, exceptions are "logical errors" that can be fixed while errors are "language
specific" mistakes that cause core problems in your code. Other recommendations taken from

2https://api.dart.dev/stable/2.7.0/dart-core/Exception-class.html

Flutter Complete Reference 133

Chapter 5. Inheritance and Exceptions

the official guidelines 3 are:

1. In a try block you should use on to catch specific types and decide what to do according
with the related error.

try {
// code...

} catch (e) {
// handle...

}

This code is really bad because it catches everything, including Error (or its subtypes)
which should not be caught. What you’ve just seen is the "Pokémon exception handling"
and it’s not a joke! Even the official Dart doc mentions it.

� It actually makes sense: the Pokémon motto is "Gotta catch ’em all" because
the goal of the game is capturing any Pokémon encountered during the journey.
You don’t want to be a Pokémon programmer who bravely catches any exception
with no regards, don’t you?

If you really need to "eat" as many exceptions as possible, use this version:

try {
// code...

} on Exception catch (e) {
// handle...

}

It’s still not good but at least way better than before because Error is not captured and
it’s still free to propagate.

2. Use on SomeException catch (e) to implement a logic for any type of thrown object.

3. Don’t "eat" exceptions. If you really need to do nothing when an exception occurs, print a
message to the console or show a popup to notify your users that something’s gone wrong.

try {
// Exception is 'eaten' because when caught, nothing happens

} on Exception catch (e) {}

3https://dart.dev/guides/language/effective-dart/usage#error-handling

Flutter Complete Reference 134

Chapter 5. Inheritance and Exceptions

4. If you implement Exception, append it at the end of your custom class name such as
FractionException or NumeratorNullException. The same concept applies when you
deal with Error.

5. Do not catch exceptions objects whose type is Error.

6. If you want to rethrow an exception, you should use rethrow rather than throwing the
same object again with throw 4.

try {
try {

throw FormatException();
} on Exception catch (e) {

print("$e");
rethrow;

}
} catch (e2) {

print("$e2");
}

try {
try {

throw FormatException();
} on Exception catch (e) {

print("$e");
throw e;

}
} catch (e2) {

print("$e2");
}

.
Both ways of rethrowing an exception are valid but you should prefer the usage of rethrow
(on the left) because is preserves the original stack trace of the exception. throw instead
resets the stack trace to the last thrown position.

4https://dart.dev/guides/language/effective-dart/usage#do-use-rethrow-to-rethrow-a-caught-exception

Flutter Complete Reference 135

6 | Generics and Collections

6.1 Generic types

Nowadays a very common feature of languages is the support for parameterized programming, also
known as generic programming in the Dart, Java, C# and Delphi world. The biggest advantages
brought from this approach are type-safety and code reusability.

6.1.1 Introduction

The best way to show how generics can be incredibly useful is via example. In Flutter you’ll use
very often caches to store data coming from your device or from the internet. Pretend you had
to store a complex object: the first idea popping in your mind could be:

class ComplexObjCache {
final _obj = ComplexObj();
// Constructor, getters, setters, methods...

}

The next day you have the need for another cache, with the same structure, but it has to handle
floating point numbers. Good, you already know what to do: copy-paste the previous class and
change the types from ComplexObj to double using the IDE refactor tool.

class DoubleCache {
final _obj = 0.0;
// Constructor, getters, setters, methods...

}

One week later you need the same cache also for Strings, integers, and other objects but things
start to get complicated. You’ve copy-pasted classes because they have the exact same structure
and methods but the only difference is the data type.

Flutter Complete Reference 136

Chapter 6. Generics and Collections

class ComplexObjCache { }
class ComplexObj2Cache { }
class ComplexObj3Cache { }
class StringCache { }
class IntegerCache { }
class DoubleCache { }

Massive code duplication is guaranteed to be a maintenance nightmare. With generics you can
easily solve the problem using a placeholder type that will be evaluated at compile time. In
general a single letter is enough, such as T or K, but there are no restrictions on the length (PIZZA
would be valid for example).

class Cache<T> {
final T _obj;
// Constructor, getters, setters, methods...

}

Using the <T> notation you’re telling the compiler that, at compile time, the letter T has to be
substituted with the type given by the actual instance. In this way you have a single class allowed
to work with multiple types and thus maintenance gets way easier.

� For example, in final c = Cache<String>(""); the letter T is substituted with
String at compile time. Potential errors, such as bad type casts, produce a compila-
tion error.

6.1.2 Type safety

Generics might remind you of dynamic, as it works with any type, and actually they could do the
same things. For example, rather than Cache<T> you could have created a Cache with dynamic
fields:

class Cache {
dynamic _obj;
dynamic get value => _obj;

// Constructor, getters, setters, methods...
}

The biggest problem is that dynamic has zero type safety as it’s intended to work with runtime
casts. You’d have to deal with long series of if statements for each dynamic variable because

Flutter Complete Reference 137

Chapter 6. Generics and Collections

casts must be safe. The compiler and the IDE won’t be able to help you with static analysis.

� Manually dealing with lots of casts and type checks is one of the worst mainte-
nance nightmares, especially if you’re in a complex architecture with tons of dynamic
types. In addition, potential problems with types are spotted at runtime while with
generics they’re immediately caught by the compiler.

With generics, casts are not needed because the compiler ensures a "protection" against wrong
types usages. The code is said to be safe because type errors are known at compile time and not
at runtime.

class Cache<T> {
final T _obj;
T get value => _obj;
// Constructor, setters, methods...

}

void main() {
final cache = Cache<int>(20);
String value = cache.value; // Error!

}

The compiler generates an error because you’re trying to assign an integer value (cache.value)
to a string type. You’ll also get an alert from the IDE before compiling and the debugger will
find this error immediately. In contrary:

// using 'class Cache {}', the non-generic one
void main() {

final cache = Cache(20);
String value = cache.value; // Compiles, but it's wrong!

}

Here you get no compilation errors because dynamic is evaluated at runtime. The IDE won’t help
you because it cannot predict the future and imagine that at runtime an int will be assigned to
a String. Debugging might not be so easy and you’re going to waste time.

� We’ve said waste because you could have saved that time with generics! The
compiler would have been able to tell you in which line the error was but the usage

Flutter Complete Reference 138

Chapter 6. Generics and Collections

of dynamic defers everything at runtime, so no help at all.

As you may have guessed, using generics in place of dynamic is almost always the best choice
you can make. When you try to write parameterized code, always consider generics first!

6.1.3 Usage

There’s nothing new about hierarchies of one or more generic types; what we’ve already covered
about classes and inheritances also applies here. They work in the same way as "regular" non-
generic classes with the only difference that the type goes inside the diamonds < >.

abstract class Cache<T> {
final T _obj;
Cache(this._obj);

T get value => _obj;
void handle();

}

// 1.
class LocalCache<T> extends Cache<T> {

LocalCache(T obj) : super(obj);
void handle() {}

}

// 2.
class CloudCache<T, K> extends Cache<T> {

CloudCache(T obj, K obj2) : super(obj);
void handle() {}

}

There’s the possibility to define a infinite number of generic types per class, they just need to be
separated by commas in the diamond list (< >) with the letters inside. Generics also work with
extends and implements.

1. A subclass must declare at least the same number of parameterized types defined by its
superclass.

2. You cannot write LocalCache<A> extends Cache<T> {} because the compiler tries to pass

Flutter Complete Reference 139

Chapter 6. Generics and Collections

A to the superclass constructor which expects a T. The letters must match.

3. You can declare how many parameters you want. In the above example T and K are
separately treated even if they will be used to represent the same type. The usage of
CloudCache<int, int> gives no problems because the compiler treats T and K as two
different entities and it doesn’t care about the type they represent.

There’s the possibility to put constraints on the types if you don’t want them be "anything".
For example, if we wanted our caches to be used only with numbers, we could have done the
following:

abstract class Cache<T extends num> { }

abstract class LocalCache<T extends num> extends Cache<T> { }
abstract class CloudCache<T extends num, K> extends Cache<T> { }

Remember that int and double are subclasses of num. With these changes, the generic type is
allowed to be only a subtype of num and nothing else.

void main() {
// OK. 'int' and 'double' are subclasses of
// 'num' so this is allowed
final local1 = LocalCache<int>(1);
final local2 = LocalCache<double>(2.5);

// NO. 'String' is not a subclass of 'num'
// so this is NOT allowed
final local3 = LocalCache<String>(3);

}

You could also use LocalCache<num>(0); but superclasses of num are not allowed. In Dart
methods can return generic types and/or have it as parameter, you just have to put the diamonds
after the name as you’d do with classes.

// T used as return type and parameter
T printValue<T>(T val) {

// ...
return val;

}

// T user as parameter

Flutter Complete Reference 140

Chapter 6. Generics and Collections

void check<T>(T val) {
// ...
return val;

}

void main() {
// Diamond syntax uses the symbols '<' and '>'
final a = printValue<int>(1);
final b = printValue<String>("1");
check<double>(6.45);

}

A non-generic class can have one or more generic methods inside:

class Example {
void doSomething<T>(T value) { ... }

}

6.2 Collections

Dart implements the most common types of containers using generics so that you can take
advantage of type safety without having to deal with specific implementations for each type.
We’ve already seen all the benefits in the previous section so let’s get started.

6.2.1 List

As you already know from chapter 2, the language doesn’t have arrays but only lists. They’re
implemented with the List<T> generic container you’ve already seen many times up to now:

// The type of 'intList' is List<int>
var intList = [2, 5, -8, 0, 1];
// The type of 'stringList' is List<String>
var stringList = ["a", "hello"];

Lists are 0-indexed and have many methods such as add(), length, clear() and so on; check
out your IDE or the documentation 1 for a complete list. Like with any other generic type, you
have the "protection" of the compiler against bad types assignments:

1https://api.dart.dev/stable/2.7.0/dart-core/List-class.html

Flutter Complete Reference 141

Chapter 6. Generics and Collections

final list = List<int>();
list.add("oops");

This is clearly a compilation error because you’re trying to assign a string to a container that
expects only integers. There is a very nice syntax shortcut allowing you to insert a series of values
directly in the array:

// 'list1' contains [1, 2]
var list1 = [1, 2];
// 'list2' contains [-2, -1, 0, 1, 2]
var list2 = [-2, -1, 0, ...list1];

Given a list (list1), you can put every element inside another list using the spread operator
(...). If you aren’t sure about the non-nullability of the source, you can add a safety check with
the null-aware spread operator (...?).

// this is null
List<int>? list1;

var list2 = [-2, -1, 0, ...list1]; // Error
var list3 = [-2, -1, 0, ...?list1]; // All good

There’s the need to use ...? because elements are being added only if the source list is not null;
if we had used ...list1 we would have got an error. A list can also be initialized by specifying
the type in the diamonds:

final list = const <int>[1, 3, 6, 7];

6.2.1.1 Collection statements

Starting from Dart 2.3, there’s the possibility to use a very convenient syntax you might use some
times in Flutter to add elements in a ListView (a scrollable container of UI items). You can put
an if statement inside a list to decide whether it’s the case to add or not an item.

final hasCoffee = true;

final jobs = [
"Welder",
"Race driver",
"Journalist",
if (hasCoffee) "Developer"

];

Flutter Complete Reference 142

Chapter 6. Generics and Collections

This list contains for sure the first 3 elements but "Developer" is going to be added only if
hasCoffee is true. Putting an if statement with no parenthesis in a list decides whether the
element has to be added or not.

const hasCoffee = true;

final jobs = const [
"Welder",
"Race driver",
"Journalist",
if (hasCoffee) "Developer"

];

If we declared const hasCoffee (rather than using final) then we could have also created a
constant list of values. This is even better because the compiler could perform some optimizations
at compile time. In a very similar way, you could also use a for loop:

final numbers = [
0, 1, 2,
for(var i = 3; i < 100; ++i) i

];

Like it happened with the if, the for statement adds a series of items to the list. It has
no parenthesis or return: just write the values as they are. In this case, the list cannot be
const.

6.2.1.2 Implementation

If you were to look at the online source code 2 you’d see that List<E> is defined as abstract class
but objects can still be created in the "normal" way. You might be puzzled at this point: why
can I instantiate an abstract class?

final howIsItPossible = List<int>();

As you know, an abstract class cannot be instantiated and that’s always true but List<E>
defines a series of factory constructors to do the "trick". We have already seen this pattern in
5.1.5. This is the actual implementation of List<E> in the Dart SDK.

abstract class List<E> implements EfficientLengthIterable<E> {
// code...

2https://github.com/dart-lang/sdk/blob/master/sdk/lib/core/list.dart

Flutter Complete Reference 143

Chapter 6. Generics and Collections

external factory List([int? length]);
// other code...

}

Thanks to this, when you write howIsItPossible = List<int>(); you’re actually calling the
factory constructor which returns a concrete implementation of List<E>. You cannot see it
because of the external keyword, which loads the body of the constructor from the Dart VM,
but the factory returns a concrete (non-abstract) class.

� The external keyword is used to interact with the Dart VM as it loads specific
pieces of code. You’ll never use it. It loads the body of a function directly from
the internals of the SDK, which is almost always C++ code. So, instead of having a
factory with a body...

factory List([int? length]) {
// Dart code here...

}

... the definition is placed somewhere else. In other words, external is used to say
"the body of this function is not here, in the Dart file, but it’s located somewhere in
the VM.

// Thanks to 'external,' the body is not directly loaded from here,
// the .dart file, but it's taken from somewhere else
external factory List([int? length]);

Unless you’re a developer from the Dart team, this keyword is not for you.

Because of factory List([int? length]) it seems you’re instantiating an abstract class from
your code but no, in reality you’re calling a factory constructor returning a concrete instance.
With this pattern, List<T> returns a default implementation which is generally good for most of
the use cases. The subclasses returned by the factory can be:

• Growable. You can increase and decrease the length of the list with no restrictions. A
growable list has no length parameter in the constructor.

// No int param in the parenthesis -> no length specified
// so this list is growable
final growable = List<int>();
growable.length = 5;

Flutter Complete Reference 144

Chapter 6. Generics and Collections

• Fixed. You can not increase and decrease the length of the list with no restrictions. A
fixed list has the length parameter in the constructor.

// int param in the parenthesis -> lenght is specified
// so this list is fixed
final growable = List<int>(3);
growable.length = 5; // Error!

In general creating a growable list with List<int>() is good but if you don’t need to change the
size of the container go for List<int>(10). There are other useful factory constructors from this
class:

• filled() It creates a list of the given length and initializes each position with the elements
you want.

final example = List<int>.filled(5, 1, growable: true);
// Now example has this content: [1, 1, 1, 1, 1]

• unmodifiable() It returns a copy of the given list in which you cannot call add, remove
or other methods that would modify its content.

var example = List<int>.unmodifiable([1,2,3]);
example.add(4); // Runtime error

• generate() Creates a list of the given length and fills each position according with the value
returned by the generator. This example fills the array with the power of each number.

var example = List<int>.generate(5, (int i) => i*i);
// Now example has this content: [0, 1, 4, 9, 16]

Note that List.unmodifiable() creates a new copy of the list; if you just want to make an
unmodifiable list without having to copy the contents, use UnmodifiableListView<T>. They
both create two unmodifiable lists but in the second case, no copies are made (it’s just a "wrapper"
around a List<T> object).

6.2.2 Set

A Set<T> is a generic container in which there cannot be duplicate objects. Sets can be directly
initialized using braces without having to create a new instance and then add elements with a
loop.

final keys = {1, 2, 3, 3, 4, 5};

Flutter Complete Reference 145

Chapter 6. Generics and Collections

for(var key in keys)
print(key);

The console will output 1 2 3 4 5 and not 1 2 3 3 4 5 because duplicates are not added (no
exceptions are thrown). Elements can be inserted by using functions like add() or addAll(); for
any possible method on Set<T> you should check the official documentation 3.

� When creating an empty set, there’s the need to use the diamonds to specify the
type. Otherwise, avoid using type inference and annotate the type directly:

// 1. Direct type annotation
Set<int> emptySet = {};
// 2. Type inference with diamonds
final emptySet = <int>{};

// 3. This is a Map, not a set!!
final emptySet = {};

Only in cases 1 and 2 you’re creating an empty set. In 3 the compiler considers the
final emptySet = {} like if it were a map of dynamic key/value pair.

Set<T> supports the ... and ...? operators we’ve seen earlier with lists. You can also use if
and for collection statements.

• Adding items in a Set<T> is pretty easy with add() but if you want to insert a series of
values, you can also pass an array.

final example = <int>{};
example.addAll([5, 3, 7]);

• Use bool contains(T value); to check whether an element is in the set or not.

• Remove elements with remove().

If you use the factory Set<T>.unmodifiable(Set<T>> other) you get an instance of the same
set with no possibility to add/remove values. There’s no UnmodifiableSetView<T>.

3https://api.dart.dev/stable/2.7.0/dart-core/Set-class.html

Flutter Complete Reference 146

Chapter 6. Generics and Collections

6.2.2.1 Implementation

In Dart sets are abstract class Set<E> extends EfficientLengthIterable<E> and, like
we’ve already seen with lists, they use factory constructors to return concrete instances. The
implementation is easier to understand because there is no external keyword.

abstract class Set<E> extends EfficientLengthIterable<E> {
// code...
factory Set() = LinkedHashSet<E>;
// code...

}

When we do something like final s = Set<int>(); we’re not instantiating the abstract class,
which is impossible, but we’re calling factory Set() which returns a concrete class. These lines
are equivalent...

final set1 = Set<int>();
final set2 = LinkedHashSet<int>();

... because in Dart a Set is implemented by default as a LinkedHashSet. This class is a hash-
based implementation of a Set and it keeps track of the order in which elements have been
inserted.

6.2.3 Map

Also known as dictionary, a Map<K,V> is an unordered generic collection that stores key-value
pairs. You can retrieve the object you’re looking for by using the associated key.

final m = <int, String>{
0: "A",
1: "B",
2: "C"

};

Map.unmodifiable() creates an unmodifiable copy of the map while UnmodifiableMapView()
just takes a reference (no copies are made). There are two ways to insert new pairs in the
map:

• Use the putIfAbsent() method to insert a new pair of values only if the key is not already
in the list.

final example = <int, String>{

Flutter Complete Reference 147

Chapter 6. Generics and Collections

0: "A",
1: "B"

};

// The key '0' is already present, "C" not added
example.putIfAbsent(0, () => "C");
// The key '6' is not present, "C" successfully added
example.putIfAbsent(6, () => "C");

The first parameter is the desired key while the second one is a no-param function returning
the value to be inserted.

• Use brackets [] to add an element at the given index without checking if the key is already
in the collection.

final example = <int, String>{
0: "A",
1: "B"

};

// "A" has '0' as key and it's replaced with "C".
// Now the map contains {0: "C", 1: "B"}
example[0] = "C";
// The key '6' is not present, "C" gets added
example[6] = "C";

Maps doesn’t allow duplicate keys. When we do example[0] = "C" there are no errors
because the element with key 0 is updated with the new value.

Retrieving a value from a map is fairly simple: var v = example[0];. If you pass a key that’s
not in the map, a null reference is returned.

final example = <int, String>{
0: "A",
1: "B"

};

final ex1 = example[0]; // ex1 = "A"
final ex1 = example[8]; // ex1 = null

In general it’d be better using bool containsKey(T key); before accessing the item as it tells

Flutter Complete Reference 148

Chapter 6. Generics and Collections

whether the key is present or not in the map. The removal of an element simply happens with
the remove method.

6.2.3.1 Implementation

You’ve already seen how lists and sets work and maps are no different; the core library defines an
abstract class with a factory constructor that returns a concrete instance. It’s the usual pattern
adopted by the Dart API for collections.

abstract class Map<K, V> {
// code...
external factory Map();
// code...

}

The Dart VM loads the body of the constructor from its internals thanks to the external
keyword. If you could read the code, you’d see that the constructor returns a concrete instance
of a class called LinkedHashMap. There are three types of maps you can use.

1. LinkedHashMap<K, V>. It’s the default class returned by the factory constructor of Map
so when you use final map = <int, int>{} you get an instance of LinkedHashMap.
It’s based on a hash-table, the insertion order is remembered and you can iterate over
key/values.

2. HashMap<K, V>. It’s based on a hash table and null can be a valid key. The insertion
order is not remembered so if you iterate over key/value pairs you won’t get them in the
order in which they have been added.

3. SplayTreeMap<K, V>. It’s based on a self-balancing BST and keys are compared with
the comparator function you’re asked to pass in the constructor. If the comparison func-
tion is not passed, the compiler assumes that keys implement the class Comparable<T> 4

interface.

The first implementation, the default one, guarantees the insertion order, the second one doesn’t
care about the order and the last keeps the keys sorted. There is not the best implementation
because you have to choose one of them according with what you have to do; in general the
default is good.

4https://api.dart.dev/stable/2.7.0/dart-core/Comparable-class.html

Flutter Complete Reference 149

Chapter 6. Generics and Collections

6.3 Good practices

You’ve seen that the language offers three important categories of containers and in general you
should use them with their default implementations. A "default" map for example is generally
final myMap = <int, int>{}; but if you need to keep the keys sorted, go for a SplayTreeMap.
From the official documentation 5:

• Use the literal initialization syntax when you’re good with the default implementation given
by the language. Instead, for specific implementations, use regular constructors or factories.

final example = List<int>(); // Bad
final example = <int>[]; // Good

• When you iterate on a container prefer doing for(item in list) {} instead of using the
forEach() method which adds verbosity to the code. The loop is clearer. However, if you
have a function that can be referenced such as print, you can use list.forEach(print);.

• There’s a function called cast() we’ve never discussed because it’s not good to use. Don’t
do casts with cast<T>() because it adds verbosity and it actually doesn’t do a neat work.
Ditch it.

Each container offers a series of factories, such as unmodifiable() to return a collection with
no add/remove operations (it’s a read-only container). Refer to the docs 6 for a complete list of
utilities methods.

6.3.1 operator== and hashCode

You already know from 5.3 "The Object class" how to properly override the equality operator
AND the hashCode property. Sets and maps heavily use comparisons and the hash code of a
given object so you really want to do a good override.

� Very shortly, imagine a hash table as a table with two columns: the key is on
the left and the value is on the right. The key is needed to search values because,
if present, you’ll get access to the associated object: that’s why maps are key/value
pairs.

5https://dart.dev/guides/language/effective-dart/usage#collections
6https://api.dart.dev/stable/2.7.0/dart-core/dart-core-library.html

Flutter Complete Reference 150

Chapter 6. Generics and Collections

Common implementations of maps and sets are based on hash tables and the hash code determines
how an item should be stored in the container. You should always override the equality operator
and hashCode in your classes.

• bool operator==(Object other). We’ve already seen how to override it in 5.3.

• int get hashCode. There are multiple ways to correctly override this getter but what’s
important is that a different integer is returned for every different value.

class Test {
final int a;
final int b;
final String c;
Test(this.a, this.b, this.c);

bool operator==(Object other) {...}

int get hashCode {
const prime = 31;
var result = 1;

result = prime * result + a.hashCode;
result = prime * result + b.hashCode;
return prime * result + c.hashCode;

}
}

In general, it’s a good practice taking every instance variable of the class and perform a
series of multiplications with prime numbers. In this way, every time you create an instance
of the same object, such as Test(0, 1, "a"); you’ll always get the same hash code. Any
other object, will return a different value.

If you had a class with a lot of member variables, there would be for sure a lot of boilerplate
code. The Equatable 7 package by Felix Angelov overrides operator== and hashCode in your
class automatically so that you won’t have to deal with multiplications and comparisons.

class Test extends Equatable {
final int a;
final int b;

7https://pub.dev/packages/equatable

Flutter Complete Reference 151

Chapter 6. Generics and Collections

final String c;
Test(this.a, this.b, this.c);

@override
List<Object> get props => [a, b, c];

}

You just need to subclass Equatable and override the props getter passing it every final
field of your class. The package does nothing special internally: it overrides operator== (with
identical()) and hashCode (with a series of XORs similarly to what we did). It’s much less
code for you to write!

class Test extends SomeClass with EquatableMixin {
final int a;
final int b;
final String c;
Test(this.a, this.b, this.c);

@override
List<Object> get props => [a, b, c];

}

Extending Equatable might not always be possible because, for example, your class might al-
ready have a superclass and Dart doesn’t allow multiple inheritance. In this case, use a mixin
which does the same work.

� If your class is NOT immutable, because not every instance field is final, do
NOT override operator== and hashCode. Overriding hashCode with a mutable ob-
ject could break hash-based collections. This is also written in the official Dart design
guidelines 8.

If your class is mutable, do not define a custom equality logic because it could break hash-based
collections; for the same reasons, do not use Equatable if you class is not immutable.

8https://dart.dev/guides/language/effective-dart/design#avoid-defining-custom-equality-for-mutable-classes

Flutter Complete Reference 152

Chapter 6. Generics and Collections

6.3.2 Transform methods

Collections give you a very nice way to filter data and act on them with a series of methods that
can be chained. There are similarities in Java with streams and in C# with LINQ queries.

void main() {
// Generate a list of 20 items using a factory
final list = List<int>.generate(20, (i) => i);

// Return a new list of even numbers
final List<String> other = list

.where((int value) => value % 2 == 0) // 1.

.map((int value) => value.toString()) // 2.

.toList(); // 3.

}

In this example we’re creating a list containing numbers from 0 to 19 using the generate factory
constructor. The interesting part is how we’ve built other so that it contains only strings
representing even numbers.

1. The where() method iterates across the entire collection and returns a boolean expression.
Here we analyze each element of the list, represented by int value, and we discard it in
case it’s not even. This method is a "filter" that adds values only if the boolean expression
returns true.

2. The map() method transforms a type into another. Since other must be a list of strings,
we transform each filtered element (represented by int value) into a String value.

3. Now that we have a filtered list of transformed values, the terminal function returns an
instance of a list.

Manually doing this kind of operation is actually verbose because you should create a function
with temporary variables, loops and conditional statements. This syntax instead is elegant and
very easy to understand.

� While you traverse a collection with these methods, do NOT alter the content of
the container itself! If you have a list of strings, don’t change each item calling, for
example, toUpper() while you’re in a where condition.

Flutter Complete Reference 153

Chapter 6. Generics and Collections

The example is shown with a list but these methods are also available for sets and maps. There
are two kind of operations: "intermediate" operations to process data and "terminal" operations
to return values. Intermediates are meant to elaborate data and can be chained while terminals
are called at the end to "group" the data.

• Intermediates. This is a category of functions that can be chained like you’ve seen above
to create complex expressions. Most of them accept a function whose parameter is the
element of the collection being accessed.

– where(): goes through the entire list and discards elements that evaluate the condition
to false.

– map(): transforms the element from a type to another.

– skip(): skips the first n elements of the source collection.

– followedBy(): concatenates this container with another one, passed as parameter.

• Terminals. This is a category of function that can only be called at the end of the chain
to return a value or an object.

– toList()/toSet()/toMap(): gathers the elaborated data through the "pipes" and
returns an instance of a list/set/map.

– every(): returns a boolean indicating if every element of the collection satisfies the
given condition.

– contains(): returns true or false whether the collection contains or not the object
you’re looking for.

– reduce(): reduces a collection to a single value which can be the result of operations
in the elements of the container. You cannot use reduce() on empty collections. For
example:

final list = <int>[1, 2, 3, 4, 5];
final sum = list.reduce((int a, int b) => a + b);

print(sum); // 15

The variable sum contains the sum of the elements in the list since reduce((a,b) => c)
takes 2 elements of the source (a, b) and performs the given action on them (in this
case, it sums the values).

Flutter Complete Reference 154

Chapter 6. Generics and Collections

– fold(). It’s very similar to reduce() but it asks for an initial value and the returned
type doesn’t have to be the same of the collection.

final list = <int>[1, 2, 3, 4, 5];
final sum = list.fold(0, (int a, int b) => a + b);

print(sum); // 15

Both reduce() and fold() can do the same things but the latter is more powerful. First of all,
fold() can define a custom initial value for the operations:

final list = <int>[1, 2, 3, 4, 5];

final sum1 = list.fold(0, (int a, int b) => a + b);
final sum2 = list.fold(5, (int a, int b) => a + b);

print(sum1); // 15
print(sum2); // 20

With fold() you can perform operations on different data types while with reduce() you cannot.
In this example, we’re computing the sum of the lengths of strings in a collection.

final list = ['hello', 'Dart', '!'];

final value = list.fold(0, (int count, String item) => count + item.length);
print(value); // 10

count has the same type of the initial value (0 in this case, which is an int) and item represents
an object in the collection. The returned value of the function must match the type of the initial
value. You can’t do the same in the other way:

final list = ['hello', 'Dart', '!'];

// It doesn't compile
list.reduce((String a, String b) => a.length + b.length);
print(value);

This version doesn’t work because reduce() expects the return type of the callback to be a
String, the same type of the container. With fold() you don’t have this constrain: it will
always work. In reality, reduce() can be seen as a shortcut of the following:

final withReduce = list.reduce(someCallback);

Flutter Complete Reference 155

Chapter 6. Generics and Collections

final withFold = list.skip(1).fold(list.first, someCallback);

The two versions are equivalent but withReduce is just shorter. We strongly encourage you to
use this fluent syntax when you have to work on collections rather than using temporary variables
and/or conditional statements.

Flutter Complete Reference 156

7 | Asynchronous programming

7.1 Introduction

Nowadays computers and mobile devices are very fast and users are well aware of this; they hate
when the application "freezes" for a moment or if it doesn’t always react immediately to inputs.
There are however some situations in which the user must wait:

• database operations;

• usage of the internet connection, which might be slow and thus the entire process could
take longer than expected;

• many I/O operations might slow down your app’s performances due to the policies adopted
by the OS.

In Flutter for example you often use an internet connection and, in the worst case, the user
has to wait a few seconds. You must use asynchronous programming to show something like an
animated progress bar while, at the same time, data are processed in the background.

� We’ll talk about this in the Flutter part but the idea is that the app should
never stop at a single long task. Asynchronous programming is made for executing
time-consuming operations in the background so that, in the meanwhile, we can do
something else.

Let’s say you’re working in a team and a colleague of yours sends you this function which is going
to be use very often in your application.

int processData(int param1, double, param2) {
var value = 0;

Flutter Complete Reference 157

Chapter 7. Asynchronous programming

for(var i = 0; i < param1; ++i) {
for (var j = 0; j < param1*param2; j++) {

// a lot of work here...
}

}

return httpGetRequest(value);
}

Suppose that the two nested loops may take up to 2 seconds to complete and the network request
at the end adds other hundreds of milliseconds. For sure this function is slow as it returns the
int after quite a lot of time (in the order of seconds).

void main() {
final data = processData(1, 2.5);
print(data);

print("Welcome to... Dart!");
}

The main() function is going to be "blocked" for some seconds due to the long execution time of
processData. The entire flow is stuck due to a bottleneck produced by a function call and the
app itself looks like it’s frozen.

7.2 Futures

A Future<T> represents a value or an error that will be available in the future. This generic class
should be used whenever you’re working with time-consuming functions returning a result after
a notable amount of time. Here’s what you can do to easily slim your execution flow:

Future<int> processData(int param1, double, param2) {
var value = 0;

for(var i = 0; i < param1; ++i) {
for (var j = 0; j < param1*param2; j++) {

// a lot of work here...
}

}

Flutter Complete Reference 158

Chapter 7. Asynchronous programming

final res = httpGetRequest(value);
return Future<int>.value(res);

}

It’s almost identical the original code: we’ve just changed the type from int to Future<int>
and the final statement, which uses a named constructor of Future to return a new instance. Of
course you must be sure that the Future<T>.value() object is built with the proper type.

� The code didn’t change so much but there’s a huge difference in how the function
is going to be called. In addition, every time you see Future<T> as return value, you
immediately figure out the usage and thus you write your code consequently.

Since the function now returns a Future<T> we have to treat it differently:

// Types are explicit for sake of simplicity
void main() {

Future<int> val = processData(1, 2.5);
val.then((result) => print(result));

}

The then() callback gets called once the execution has finished, when the value is ready to be
used. Thanks to a Future<T> you’re able to execute the time-consuming task in the background
and be notified of the completion via then().

// Types are explicit for sake of simplicity
void main() {

Future<int> val = processData(1, 2.5);
val.then((result) => print(result))

.catchError((e) => print(e.message));
}

Methods can be chained; catching potential exceptions thrown during the background execution
happens via catchError(), which is the equivalent of a try catch block. Of course you can
create more complex chains such as:

val.then((result) => anotherFunction1(result))
.then((another) => anotherFunction2(another))
.then((ending) => anotherFunction3(ending))

Flutter Complete Reference 159

Chapter 7. Asynchronous programming

.catchError((e) => print(e.message));

There are not limits, you can always append a then() or a catchError(). You might have
noticed that this approach is quite verbose and it’s not so easy to read when many methods are
chained.

� That’s the reason why async and await must be your primary choice; they dras-
tically reduce the verbosity making the code look almost identical to its synchronous
counterpart.

In certain cases, you might want to wait for a series of Future<T>s to complete but you still don’t
want to block the execution. This is the perfect use case for Future.wait<T>().

Future<int> one = exampleOne();
Future<int> two = exampleTwo();
Future<int> three = exampleThree();

Future.wait<int>([
one,
two,
three

]).then(...).catchError(...);

The wait() method takes a list of Future<T>s, executes them and waits until everyone has
finished. You can chain then() and/or catchError() because wait() returns a Future<T>.
The API is very rich of useful named constructors you can use:

• Future<T>.delayed()

final future = Future<int>.delayed(const Duration(seconds: 1), ()=> 1);

Creates a Future<T> object that starts running after the given delay (in this case, it executes
after 1 second).

• Future<T>.error()

final future = Future<double>.error("Fail");

Creates a Future<T> object that terminates with an error. Other than the message, you
can also pass as second parameter the stack trace.

Flutter Complete Reference 160

Chapter 7. Asynchronous programming

• Future<T>.value()

final future = Future<String>.value("Flutter Complete Reference");

Creates a Future<T> object that completes immediately returning the given value. Basi-
cally, this constructor is used to "wrap" a non-future value into a future value.

• Future<T>.sync()

final future = Future<void>.sync(() => print("Called immediately"));

Creates a Future<T> object that immediately calls the given callback. Generally, when
calling then() you don’t know when its body will be executed. In this case, you know
that the callback is called immediately. This constructor is intended to be used when a
Future<T> has to execute immediately but in practice, there are a very few usages (we will
see one in 13.2.2 for example).

7.2.1 Comparison

In this section we’re comparing a synchronous code snippet, which uses a "simple" int, and its
asynchronous version, which uses a Future<int>, to emphasize the different behaviors.

1. Non-future version (synchronous code).

int processData(int param1, double, param2) {
// takes 4 or 5 seconds to execute...

}

void main() {
final data = processData(31, 2.5);
print("func result = $data");

print("Future is bright");
}

Nothing difficult to understand up to here, you can easily predict what the console is going
to output (10 is just there as example, it doesn’t matter):

func result = 10;
Future is bright

Both print() statements are executed in sequence (as usual) but they appear after a
few seconds. There is a visible delay which temporarily "freezes" the program because

Flutter Complete Reference 161

Chapter 7. Asynchronous programming

processData() blocks the execution flow while performing calculations.

2. Future version (asynchronous code).

Future<int> processData(int param1, double param2) {
// function that takes 4 or 5 seconds to execute...

}

void main() {
final process = processData(1, 2.5);
process.then((data) => print("result = $data"));

print("Future is bright");
}

The output is now different:

Future is bright
result = 10; // <-- printed after 4 or 5 seconds

With the usage of a Future<T> object the execution flow doesn’t get blocked anymore. The
then(...) callback returns immediately so that other operations can take place; its body
will be executed later once data are actually ready. If you had written...

final process = processData(1, 2.5);
process.then((data) {

print("result = $data");
print("Future is bright");

});

... then the console would have printed ...

result = 10;
Future is bright

... as in the first example. The body of then() executes synchronously in our example so
operations are executed in sequence.

Inside a then() callback you can execute asynchronous code as well but it’s difficult to read, due
to the verbosity of the code, and hard to understand, in case there were too much asynchrony in
the flow.

Flutter Complete Reference 162

Chapter 7. Asynchronous programming

� To put it very simply, when you use then() you’re telling Dart: "Continue doing
your work, I don’t want to wait for the operation to finish. When the result will be
ready, notify me with the callback".

If you have to deal with time-consuming operations, using a Future<T> is basically a must
because blocking the execution flow is dangerous and wrong. Thanks to asynchronous code you
keep your app always busy and responsive, which is a fundamental user experience factor.

7.2.2 async and await

The usage of async and awaitmakes the code less verbose and consequently easier to understand.
It’s just syntactic sugar to avoid the usage of then() to write callbacks:

• Using then.

void main() {
final process = processData(1, 2.5);
process.then((data) => print("result = $data"));

}

• Using async and await.

void main() async {
final data = await processData(1, 2.5);
print("result = $data")

}

The above snippets are equivalent because the result is the same but the syntax is different.
Let’s start with three very important facts:

1. You can use await only in a function marked with async.

2. To define an asynchronous functions, put the async keyword before the body.

3. You’re allowed to call await only on a Future<T>.

Our main() has the async modifier so that we’re allowed to call await. Calling await on
a Future moves the execution to the background and proceeds once the computation is done
(which is exactly what then() does). To be clear, writing...

processData(1, 2.5).then((data) => print("result = $data"));

Flutter Complete Reference 163

Chapter 7. Asynchronous programming

... is the same as ...

final data = await processData(1, 2.5);
print("result = $data");

... because the lines after the await keyword are executed only when the Future<T> completed
(without blocking). In regard to the previous example, this code...

void main() async {
final data = await processData(1, 2.5);
print("result = $data");
print("Future is bright");

}

... is equivalent to ...

void main() {
final process = processData(1, 2.5);
process.then((data) {

print("result = $data");
print("Future is bright");

});
}

... but absolutely NOT equivalent to ...

void main() {
final process = processData(1, 2.5);
process.then((data) {

print("result = $data");
});
print("Future is bright");

}

because everything after await is executed only when the Future is completed. You’re guaran-
teed that functions are asynchronously executed and you won’t block the normal execution flow.
Exceptions are also easier to catch because...

void main() {
processData(1, 2.5)

.then((result) => print(result))

.catchError((e) => print(e.message));

Flutter Complete Reference 164

Chapter 7. Asynchronous programming

}

... gets simplified with the usage of async and await:

void main() async {
try {

final result = await processData(1, 2.5);
print(result);

} on Exception catch (e) {
print(e.message);

}
}

The second version is closer to what you’re used to see in the traditional synchronous world.
Furthermore there are no nested methods/callbacks and thus the code is way shorter and more
readable.

7.2.3 Good practices

The first thing stated by the official 1 usage guidelines is "prefer async/await over using raw
futures". Since asynchronous code can be hard to read and debug, you should prefer async and
await over a chain of then() and catchError().

Future<String> example() async {
try {

final String data = await httpGetRequest();
final String other = await anotherRequest(data);
return other;

} on Something catch (e) {
print(e.message);
return "fail";

}
}

If it weren’t for await it would look like "normal" synchronous code with no callbacks at all. It’s
neater and more readable if compared to the following:

Future<String> example() {
return httpGetRequest().then((data) {

1https://dart.dev/guides/language/effective-dart/usage#asynchrony

Flutter Complete Reference 165

Chapter 7. Asynchronous programming

anotherRequest(data).then((otherData) {
return otherData;

});
}).catchError((e) {

print(e.message);
return "";

});
}

It’s not a matter of efficiency or performances because both examples are fine. The problem is
about writing code with potentially many nested callbacks and functions that become impossible
to read (the so called "callback hell").

� Again, thanks to await asynchronous code can be written in the same way as
synchronous code. Other than leading to less boilerplate, it’s also easier to read,
maintain and understand!

Returning a Future<T> from a function can be done via named constructor Future.value() or,
more easily, by making the function async and returning the plain value. The compiler will make
an automatic conversion.

// Use the named constructor
Future<int> example() => Future<int>.value(3);

// Use async and the compiler wraps the value in a Future
Future<int> example() async => 3;

Both ways are valid but maybe you should prefer the second approach as it’s a bit less ver-
bose.

7.3 Streams

In Dart a stream is a sequence of asynchronous or synchronous events we can listen to. There’s
no need to check for updates because the stream notifies us automatically when there’s a new
event available.

Flutter Complete Reference 166

Chapter 7. Asynchronous programming

This picture helps you to visualize how streams are intended to be used and who are the main
actors involved. A generator is a source of information that lazily generates new data with a
certain frequency; the stream is the pipe in which generated data flow.

• Generator. Creates new data and sends them over the stream.

• Stream. It’s the place in which the generated data flow. You can start listening to a
stream so that, when the generator emits new data, you will be notified.

• Subscribers. A subscriber is someone interested in the data travelling in the stream. If
new data are sent over the stream by the generator, everyone listening (subscribers) will be
notified.

A generator has to emit data only into a stream and nowhere else because a stream is the only
reference for listeners to subscribe. There are two types of generators:

1. Asynchronous generators: they return a Stream<T> object. Because of this, you have to
deal with an asynchronous flow of data that has to be handled by a subscriber with await.

2. Synchronous generators: they return an Iterable<T> object. Because of this, you have to
deal with a synchronous flow of data that can be handled in a loop because data are sent
in a sequential order.

A Flutter developer is used to work with Stream<T> because the framework has many asyn-

Flutter Complete Reference 167

Chapter 7. Asynchronous programming

chronous generators. In practice, unless you’re creating a package or a specific tool, you won’t
create generators too often but still you should at least be aware of how they generally work.
Futures and streams are at the basics of Dart’s asynchronous model.

7.3.1 Streams and generators

As a basic example, we’re going to create an asynchronous generator producing 100 random
numbers, one per second. In order to tell the compiler that this function is a generator, it has to
be marked with the async* modifier.

Stream<int> randomNumbers() async* { // 1.
final random = Random();

for(var i = 0; i < 100; ++i) { // 2.
await Future.delayed(Duration(seconds: 1)); // 3.
yield random.nextInt(50) + 1; // 4.

}
} // 5.

1. Since the function is a generator of asynchronous events (random numbers), the return type
must be of type Stream<T>. The async* modifier allows the usage of yield to emit data.

2. The loop generates 100 random numbers.

3. The Future.delayed(...) named constructor creates a Future that returns after a certain
delay given by the Duration2 object. It’s used to "sleep" the execution flow for a certain
time without blocking.

4. The yield keyword pushes data on the stream. It is responsible of sending new events on
the stream and it doesn’t alter the loop (it continues to cycle regularly).

5. When a function has the async* modifier there cannot be a return statement. It would
also be logically wrong because data are already sent over the stream by yield and thus
you’d have nothing to return when the generator "turns off".

So generators are created with the async* modifier and events are emitted on the stream with
the yield keyword. To make a comparison, here’s the synchronous version of the generator which
has a similar structure.

// contains the 'sleep' function
import 'dart:io';

2See appendix A.3 to know more about Duration

Flutter Complete Reference 168

Chapter 7. Asynchronous programming

Iterable<int> randomNumbers() sync* {
final random = Random();

for(var i = 0; i < 100; ++i) {
sleep(Duration(seconds:1));
yield random.nextInt(50) + 1;

}
}

The sync* star modifier tells the compiler that this function is a synchronous generator. Due to
its nature of being synchronous you cannot use futures and thus we must use sleep() instead
of awaiting Future.delayed().

� Asynchronous generators are meant to be used with asynchronous code. Syn-
chronous generators are meant to be used with synchronous code. Intuitively, if your
code needs to await something, you’re going to need an asynchronous generator.

Both kind of generators start emitting data on demand, meaning that values are produced
when a listener starts iterating on Iterator<T> or starts listening to Stream<T>. There can be
more than a single yield statement in the same block and it would simply push many values, in
sequence, on the stream:

Stream<int> randomNumbers() async* {
final random = Random();

for(var i = 0; i < 100; ++i) {
await Future.delayed(Duration(seconds: 1));
yield random.nextInt(50) + 1;
yield random.nextInt(50) + 1;
yield random.nextInt(50) + 1;

}
}

This code emits 3 random number at each iteration so the stream is going to generate 300 values
before completing. Streams can also be created using a series of useful named constructors for a
"quick setup":

Flutter Complete Reference 169

Chapter 7. Asynchronous programming

• Stream<T>.periodic()

final random = Random();

final stream = Stream<int>.periodic(
const Duration(seconds: 2),
(count) => random.nextInt(10)

);

Creates a new a stream that repeatedly emits events at the given Duration interval. The
argument of the anonymous function starts at 0 and then increments by 1 for each event
emitted (it’s an "event counter").

• Stream<T>.value()

final stream = Stream<String>.value("Hello");

Creates a new stream that emits a single event before completing.

• Stream<T>.error()

Future<void> something(Stream<int> source) async {
try {

await for (final event in source) { ... }
} on SomeException catch (e) {

print("An error occurred: $e");
}

}

// Pass the error object
something(Stream<int>.error("Whoops"));

Creates a new stream that emits a single error event before completing; the behavior is very
similar to Stream<T>.value().

• Stream<T>.fromIterable()

final stream = Stream<double>.fromIterable(const <double>[
1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

]);

Creates a new single-subscription stream that only emits the values in the list.

• Stream<T>.fromFuture()

Flutter Complete Reference 170

Chapter 7. Asynchronous programming

final stream = Stream<double>.fromFuture(
Future<double>.value(15.10)

);

Creates a new single-subscription stream from the given Future<T> object. In particular,
when the Future<T> completes, 2 events are emitted: one with the data (or the error) and
another to signal the stream has terminated (the "done" event).

• Stream<T>.empty()

final stream = Stream<double>.empty();

This kind of stream does nothing: it just immediately sends a "done" event in order to
signal the termination.

You should really check out the Stream<T> online documentation for a complete refernece of all
the methods you can call on it. The most "popular" ones for example are:

• drain(...): it discards all the events emitted by the stream but signals when it’s either
done or an error occurred;

• map(...): transforms the events of the current stream into events of another type;

• skip(int count): skips the first count event on the stream;

7.3.2 Subscribers

The generator is now ready to periodically emit new random numbers and thus we can subscribe
to get notified for new values.

Stream<int> randomNumbers() async* {
// see code above...

}

void main() async { // 1.
final stream = randomNumbers(); // 2.

await for (var value in stream) { // 3.
print(value);

}

print("Async stream!"); // 4.

Flutter Complete Reference 171

Chapter 7. Asynchronous programming

}

1. Since we’re dealing with an asynchronous stream, there’s the need to mark the function
with async because we’re going await soon.

2. We subscribe to the stream by simply getting a reference to it. This is the moment in which
the generator starts emitting data because someone has just started listening (on-demand
initialization).

3. When dealing with streams, the await for loop is able to "catch" values sent over the
stream by a yield in the generator. It works exactly like a regular for loop.

4. The string is printed when the loop terminates so it will appear at the end.

To be precise, the example is almost good because generators are generally put inside classes and
exposed with a getter, which returns a Stream<T> instance, or with a listen() method which
does a manual subscription. Let’s give a look at the synchronous version of the generator:

Iterable<int> randomNumbers() sync* {
// see code above...

}

void main() {
final stream = randomNumbers();

for(var value in stream) {
print(value);

}

print("Sync stream!");
}

Apart from a plain for instead of an await for the code is identical. The List<T> and Set<T>
classes are both Iterable<T>, exactly like most types in the collection library. Exceptions are
caught in the usual way:

void main() {
final stream = randomNumbers();

try {
await for(var value in stream) {

print(value);

Flutter Complete Reference 172

Chapter 7. Asynchronous programming

}
} on Something catch (e) {

print("Whoops :(");
}

}

Other than data events a stream can also send error events, which may occur because an exception
has been thrown in the generator. Here’s another example of a stream continuously sending data
at a given interval:

Stream<int> counterStream([int maxCount = 10000]) async* {
final delay = const Duration(seconds: 1);
var count = 0;

while (true) {
if (count == maxCount) {

break;
}
await Future.delayed(delay);
yield ++count;

}
}

void main() async {
await for(var c in counterStream) {

print(c);
}

}

Each second a new number is printed to the console until maxCount is reached; if you wanted
the loop to last forever, just remove the if condition. For an even more detailed coverage about
streams, check out the official Flutter YouTube channel along with the documentation which is
full of details and examples:

1. Stream usage: https://dart.dev/tutorials/language/streams

2. Generators: https://dart.dev/articles/libraries/creating-streams

3. Stream docs: https://api.dart.dev/stable/2.9.2/dart-async/Stream-class.html

In Flutter the StreamBuilder<T> object is used to subscribe to a stream and we’re going to use

Flutter Complete Reference 173

Chapter 7. Asynchronous programming

it quite often, especially in Part III of the book.

7.3.3 Differences

Key differences for asynchronous and synchronous streams are summarized in this short table:

Asynchronous Synchronous

Returns a Stream<T> Returns an Iterable<T>

Mark function with async* Mark function with sync*

Can use await Cannot use await

Subscribers have to use await for Subscribers have to use for

In both cases yield is used to send data on the stream and there must not be a return statement
in the function. You might be wondering: "If I wanted to write a generator, should I make it
synchronous or asynchronous?"

� As we’ve already said, you rarely need to write a generator if you work with Flut-
ter, unless you’re doing something specific. In most of the cases you will subscribe
to streams so you won’t have to decide anything because the generator is exposed by
the library.

A reasonable answer to the question would be "it depends" because there are cases and cases. As
a general guideline we can say that a good decisional aspect is whether you have to use Future<T>
or not.

• If you have to deal with Future<T>s because of network usages or I/O operations for
example, you are forced to use an asynchronous generator otherwise you can’t use await.

• When you don’t have to deal with asynchrony and you have the need of sending a series of
sequential data, go for a synchronous stream.

Sometimes, especially when using the flutter_bloc library we will cover in chapter 11, it can be

Flutter Complete Reference 174

Chapter 7. Asynchronous programming

useful splitting the logic of a Stream<T> into multiple pieces. This is the case where yield* is
required:

Stream<int> numberGenerator(bool even) async* {
if (even) {

yield 0;
yield* evenNumbersUpToTen();
yield 0;

} else {
yield -1;
yield* oddNumbersUpToTen();
yield -1;

}
}

Stream<int> evenNumbersUpToTen() async* { ... }
Stream<int> oddNumbersUpToTen() async* { ... }

Basically yield* is used to "pause" the execution and start emitting values from the other stream;
once finished, the source stream is "restarted" so that it can regularly send its values again. To
be more clear, here’s an example of what happens when numberGenerator(true) is called:

• The value 0 is emitted with yield, the "normal" way of sending data on the stream.

• Because of yield*, numberGenerator pauses and starts emitting values generated from the
other stream (evenNumbersUpToTen).

• Once evenNumbersUpToTen has completed, numberGenerator resumes and executes the
next yield statement.

In practice yield* is used to say "stop here, emit values from the other stream and when it’s
completed you’re free to restart your regular flow". This pattern is used when a stream should
internally use another stream to split the logic in multiple functions to make the code more
readable.

7.3.4 Using a controller

The examples we’ve shown so far aren’t very useful actually. In particular, the creation of an "in
place" stream hasn’t much use cases a part from examples and demos. You’re already familiar
with this simple setup:

Flutter Complete Reference 175

Chapter 7. Asynchronous programming

Stream<String> someStream() async* { ... }

void main() async {
final stream = someStream();

}

The stream is started as soon as we do the stream = someStream(); assignment. This is the
manual way of creating streams but it doesn’t scale well on larger applications. Especially in Flut-
ter, you’ll find out that StreamController<T> is a more convenient way to work with streams.
We’re going to create a more complex stream that periodically produces random numbers.

/// Exposes a stream that continuously generates random numbers
class RandomStream {

/// The maximum random number to be generated
final int maxValue;
static final _random = Random();

Timer? _timer;
late int _currentCount;
late StreamController<int> _controller;

/// Handles a stream that continuously generates random numbers. Use
/// [maxValue] to set the maximum random value to be generated.
RandomStream({this.maxValue = 100}) {

_currentCount = 0;
_controller = StreamController<int>(

onListen: _startStream,
onResume: _startStream,
onPause: _stopTimer,
onCancel: _stopTimer

);
}

/// A reference to the random number stream
Stream<int> get stream => _controller.stream;

// other methods coming soon...
}

Flutter Complete Reference 176

Chapter 7. Asynchronous programming

Notice how we’ve used triple slashes (///) to document the code 3. The Timer class comes
from the dart:async package: it’s a count-down timer that can be configured to fire once or
repeatedly. It counts down from the given duration up to 0 and then triggers the callback. It has
two constructors:

• Timer(Duration duration, void callback())
Executes once the callback after the given duration.

• Timer.periodic(Duration duration, void callback(Timer timer))
The callback is invoked repeatedly with duration intervals.

A timer can be stopped with cancel(). We’re using it to push each second new random numbers
in the stream, handled by StreamController<T>. This class is basically a wrapper around a
stream with many facilities to easily send data, errors and done events.

• onListen: this callback is called when the stream is listened to (new subscription made).

• onCancel: this callback is called when the stream is canceled (subscription canceled).

• onPause: this callback is called when the stream is paused (subscription paused).

• onResume: this callback is called when the stream is resumed (subscription resumed).

A StreamController<T> is a very handy tool to easily manage a Stream<T>. Thanks to
get stream we expose to the outside a reference to the stream so that listeners can subscribe
and receive events. This is how we’ve defined the callbacks of the controller:

void _startStream() {
_timer = Timer.periodic(const Duration(seconds: 1), _runStream);
_currentCount = 0;

}

void _stopTimer() {
_timer?.cancel();
_controller.close();

}

void _runStream(Timer timer) {
_currentCount++;
_controller.add(_random.nextInt(maxValue));

3More on documenting code in 23.1.2

Flutter Complete Reference 177

Chapter 7. Asynchronous programming

if (_currentCount == maxValue) {
_stopTimer();

}
}

We have declared Timer? _timer as a nullable variable because we cannot immediately initialize
the timer in the constructor. Doing so would be an error because events would start being emitted
on the stream from the beginning, even if there are no listeners!

RandomStream({this.maxValue = 100}) {
_currentCount = 0;
_controller = StreamController<int>(...);

// WRONG! In this way, the timer is started and thus events are
// emitted on the stream immediately (even if no one is listening)
_timer = Timer.periodic(...);

}

We safely use the ?. operator to access the nullable variable. Inside _startStream() we actually
initialize the timer so that it pushes new random values every 1 second. The actual processing is
done inside _runStream():

// New value added to the stream. Listeners will be notified
_controller.add(_random.nextInt(maxValue));

// When the maximum value is reached, we need to stop both the
// timer AND close the controller to stop the stream.
if (_currentCount == maxValue) {

_stopTimer();
}

We can now play with our RandomStream class. In this example, we’re subscribing to the stream
using listen() and then we cancel the subscription after a certain delay. You’ll see that random
numbers are printed to the console only 3 times in total.

void main() async {
final stream = RandomStream().stream;
await Future.delayed(const Duration(seconds: 2));

// The timer inside our 'RandomStream' is started
final subscription = stream.listen((int random) {

Flutter Complete Reference 178

Chapter 7. Asynchronous programming

print(random);
});

await Future.delayed(const Duration(milliseconds: 3200));
subscription.cancel();

}

After 2 seconds, we subscribe to the stream using listen() but numbers are printed only three
times because, 3 seconds later, we cancel the subscription. As you can see, StreamController<T>
is more complex to use but more powerful and scalable: it’s the preferred way to work with streams
in Dart and Flutter.

7.4 Isolates

Many popular programming languages such as Java and C# have a very wide API to work
with multiple threads and parallel computation. They can handle complex multithreading scenes
thanks to the various primitives they support. Dart however has none of the following:

• there is no way to start multiple threads for heavy background computation;

• there is no equivalent, for example, of thread-safe types such as AtomicInteger;

• there are no mutexes, semaphores or other classes to prevent data races and all those
problems arisen from multithreaded programming.

The Dart code (and thus Flutter applications) is run inside an isolate which has its own private
area of memory and an event loop. An isolate can be seen as a special thread in which an event
loop processes the instructions. If you aren’t familiar with these concepts, we will break down
for you what is going on:

Flutter Complete Reference 179

Chapter 7. Asynchronous programming

Any program runs in a process which can be made up of one or more threads. Some program-
ming languages (picture on the left) allow you to manually create multiple threads to execute
long running tasks in the "background" not to block the UI.

� All the threads living on a process share the same memory. You need to be aware
of this because writing the same data, at the same time, in the same memory area
can lead to problematic situations known as data races.

In Dart, a process is made up of one or more isolates containing an event loop. Differently from
classic threads, each isolate allocates its own memory area so there are no data sharing issues. In
other words, the key difference is that threads do share the same memory while isolates don’t.
Thanks to this fact, Dart needs no data synchronization primitives since problems like data races
can never happen by default. If we made a zoom on an isolate, it would look like this:

Flutter Complete Reference 180

Chapter 7. Asynchronous programming

The white event rectangles can be anything from I/O disk operations, HTTP requests, actions
triggered by a finger tap in the Flutter framework and so on. The gear on the right is the event
loop, a sort of machinery that continuously executes events. You might be asking yourself: if
there’s only a single thread, how is asynchronous code executed? Let’s take a look at those 2
simple examples:

1. Let’s say that somewhere in our Dart program (or Flutter app) there are two methods which
get called in sequence. They are synchronous, because inside they use no asynchronous code
(no Stream<T>s or Future<T>s).

// this is called first
var json = myModel.readFromDisk();

// and this is called after the above
final result = computeIntegerValue();

The event loop processes incoming events in order one by one so first it executes the I/O
operation and then the computation. Here’s a visual representation of the situation:

Flutter Complete Reference 181

Chapter 7. Asynchronous programming

The second event is processed only when the first is finished. If there were no events
available, the event loop would be in "idle" waiting for new work to do. The event loop is
the "engine" that actually executes the Dart code you’ve written.

2. Let’s now see another example in which a Future<T> is involved in order to understand
how asynchronous code is processed. The same strategy is also applied when it comes to
streams.

void printName() async {
final int id = generateId();
final String name = await HttpModel.getRequest(id);

print(name);
}

As you already know, what comes after await is executed only when the Future<T> has
terminated. In this case, the value will be printed only when the HTTP request is finished.
Pretend to have this code:

printName();
final time = getTime();

The first event to be executed is printName() but since it internally calls await, what
comes after (the print(name) statement) is separated and added later as a new event in
the queue! This is the actual sequence that will be processed:

Flutter Complete Reference 182

Chapter 7. Asynchronous programming

In practice, asynchronous calls are divided in multiple events: the synchronous part and
the callbacks. What comes after an await is not executed immediately because there’s the
need to wait for the Future<T> to finish. In order to not waste time, the callback is divided
from the event, "remembered" and added in the queue again later (when the Future<T>
finished).

// This part is executed immediately; it's the rightmost rectangle on
// the image
final int id = generateId();
final String name = await HttpModel.getRequest(id);

// This callback is executed later; it's the leftmost rectangle on the
// image. This part "separated" and added later in the event loop again
// to complete the execution
print(name);

Splitting function calls is fundamental because it avoids events on the queue to wait for
futures to finish. If printName() were executed entirely, the event loop would have been
blocked until the Future<T> completed and other events would have to wait.

The event loop should always be busy but it shouldn’t execute long-lived events otherwise others
will be blocked. In addition, other than events fired by your app there are also other kind of
actions to be performed such as garbage collection. To sum it up, here’s a comparison with other
programming languages:

• Java or C#. You can create multiple threads to run time-consuming work in the back-
ground. Threads share memory, which can be dangerous, but you have a rich API with
mutexes, atomic types and so on to keep consistency in your program.

• Dart. There’s only a single thread with its own memory. You cannot create multiple
threads. The event loop processes anything sequentially as soon as possible. In order to

Flutter Complete Reference 183

Chapter 7. Asynchronous programming

not waste time, asynchronous calls are split so that callbacks are executed in a second
moment in order to not block the loop.

7.4.1 Multiple isolates and Flutter

A single Dart application can have more than a single isolate; you can create them by using
Isolate.spawn() from the "dart:isolate" library. Isolates have their own event loop and
memory area, there are no dependencies or shared components at all. The only way they have
to communicate is via messages.

Each isolate has a port from which messages enter and exit; they are respectively represented by
ReceivePort and SendPort. A message is regularly processed by the event loop as any other
action but this really is the only way to communicate.

� There’s the possibility to also spawn new isolates in Flutter but you’d have to use
Future<T> compute(...) rather than Isolate.spawn.

Working with isolates is quite low level and it’s something you generally don’t do on a regular
basis. Using async/await is almost always enough. To make a practical example, if you had
a Flutter app with a really time-expensive data computing your frame rate might drop under

Flutter Complete Reference 184

Chapter 7. Asynchronous programming

60fps. This is the case for a new isolate:

// Very computational-heavy task
int sumOfPrimes(int limit) {...}

// Function to be called in Flutter
Future<int> heavyCalculations() {

return compute<int, int>(sumOfPrimes, 50000);
}

The compute() method requires the function to be executed (which cannot be an anonymous
function) and the parameters it needs (if any). If you had the need for multiple input parameters,
simply wrap them into a model class and pass it as a dependency, like this:

// Model class
class PrimeParams {

final int limit;
final double another;
const PrimeParams(this.limit, this.another);

}

// Use the model as parameter
int sumOfPrimes(PrimeParams data) {

final limit = data.limit;
final another = data.another;
...

}

// Function to be called in Flutter
Future<int> heavyCalculations() {

final params = PrimeParams(50000, 10.5);
return compute<PrimeParams, int>(sumOfPrimes, params);

}

In compute<Q,R> the parameters are defined as follows: Q is the type of the parameter needed
by the function and R is the return type. In chapter 16 we will discuss when it’s convenient using
separated isolates in Flutter applications to optimize performances.

Flutter Complete Reference 185

8 | Coding principles with Dart

This chapter is a big "good practice" section as it contains some well-known suggestions from the
OOP world. We’d love to also talk about design patterns, TDD, clean code and much more but
these contents go beyond the scope of this book. Many people have written books and articles
on these topics, we recommend you read up on these for more in-depth details.

• Design patterns are a series reusable solutions to common, well-known problems. The
original concept came by a group of four people, called Gang of four, but nowadays new
patterns come out in parallel with the evolution of languages.

– Look for any recent book or resource that includes the widest range of patterns. They
apply to any programming language; the programming language in which they’re
explained is not so relevant.

• TDD, abbreviation of Test Driven Development, is a programming style strongly centered
on code testing. You have to first write the tests, cover every possible case and only after
this process you can start coding.

– https://resocoder.com/flutter-clean-architecture-tdd

• DDD, abbreviation of Domain Driven Design, is a programming style which focuses on
code maintainability and separation of concerns. We recommend to follow Reso Coder’s
DDD course which gives a step-by-step explanation about DDD using Dart and Flutter.

– https://resocoder.com/flutter-firebase-ddd-course

• Dart has a very wide, user-friendly documentation in which you can find examples for
almost any topic. It’s a wide growing resource that tells you how to properly write Dart
code through good practices and articles.

– https://dart.dev/guides/language/effective-dart

– https://dart.dev/tutorials

Flutter Complete Reference 186

https://resocoder.com/flutter-clean-architecture-tdd
https://resocoder.com/flutter-firebase-ddd-course
https://dart.dev/guides/language/effective-dart
https://dart.dev/tutorials

Chapter 8. Coding principles with Dart

That said, you can of course completely skip this part since it has no core Dart or Flutter concepts
but we encourage you to at least know what SOLID and DI are about. These concepts are valid
regardless the programming language in which they’re applied.

8.1 SOLID principles

The term SOLID should actually be written as S.O.L.I.D. because it’s an acronym for 5 design
principles, one for each letter, which help the programmer writing maintainable and flexible
code.

8.1.1 Single Responsibility Principle

Very intuitively, this principle (abbreviated with SRP) states that a class should only have a
single responsibility so that it could change for one reason and no more. In other words, you
should create classes dealing with a single duty so that they’re easier to maintain and harder to
break.

class Shapes {
List<String> cache = List<>();

// Calculations
double squareArea(double l) { /* ... */ }
double circleArea(double r) { /* ... */ }
double triangleArea(double b, double h) { /* ... */ }

// Paint to the screen
void paintSquare(Canvas c) { /* ... */ }
void paintCircle(Canvas c) { /* ... */ }
void paintTriangle(Canvas c) { /* ... */ }

// GET requests
String wikiArticle(String figure) { /* ... */ }
void _cacheElements(String text) { /* ... */ }

}

This class totally destroys the SRP as it handles internet requests, painting and calculations all
in one place. You’ll have to make changes very often to Shape because it has many duties, all in
one place; maintenance for this class is not going to be pleasant. What about this?

Flutter Complete Reference 187

Chapter 8. Coding principles with Dart

// Calculations and logic
abstract class Shape {

double area();
}
class Square extends Shape {}
class Circle extends Shape {}
class Rectangle extends Shape {}

// UI painting
class ShapePainter {}

// Networking
class ShapesOnline {}

There are 3 separated classes focusing on a single task to accomplish: they are easier to read,
test, maintain and understand. With this approach the attention of the developer is focused on
a certain area of interest (such as mathematical calculations on Shape) rather than on a messy
collection of methods, each with different purposes.

8.1.2 Open closed principle

The open closed principle states that in a good architecture you should be able to add new
behaviors without modifying the existing source code. This concept is notoriously described with
the sentence "software entities should be open for extensions but closed for modifications". Look
at this example:

class Rectangle {
final double width;
final double height;
Rectangle(this.width, this.height);

}

class Circle {
final double radius;
Rectangle(this.radius);

double get PI => 3.1415;
}

Flutter Complete Reference 188

Chapter 8. Coding principles with Dart

class AreaCalculator {
double calculate(Object shape) {

if (shape is Rectangle) {
// Smart cast
return r.width * r.height;

} else {
final c = shape as Circle;
return c.radius * c.radius * c.PI;

}
}

}

Both Rectangle and Circle respect the SRP as they only have a single responsibility (which is
representing a single geometrical shape). The problem is inside AreaCalculator because if we
added other shapes, we would have to edit the code to add more if conditions.

class Rectangle {...}
class Circle {...}
class Triangle {...}
class Rhombus {...}
class Trapezoid {...}

class AreaCalculator {
double calculate(Object shape) {

if (shape is Rectangle) {
// code for Rectangle...

} else if (shape is Circle) {
// code for Circle...

} else if (shape is Triangle) {
// code for Triangle...

} else if (shape is Rhombus) {
// code for Rhombus...

} else {
//code for Trapezoid...

}
}

}

Having added 3 new classes, the double calculate(...) must be changed because it requires

Flutter Complete Reference 189

Chapter 8. Coding principles with Dart

more if conditions to handle proper type casts. In general, every time that a new shape is added
or removed, this method has to be maintained due to the presence of type casts. We can do
better!

// Use it as an interface
abstract class Area {

double computeArea();
}

// Every class calculates the area by itself
class Rectangle implements Area {}
class Circle implements Area {}
class Triangle implements Area {}
class Rhombus implements Area {}
class Trapezoid implements Area {}

class AreaCalculator {
double calculate(Area shape) {

return shape.computeArea();
}

}

Thanks to the interface, now we have the possibility to add or remove as many classes as we want
without changing AreaCalculator. For example, if we added class Square implements Area
it would automatically be "compatible" with the double calculate(...) method.

� The gist of this principle is: depend on abstractions and not on implementations.
Thanks to abstract classes you work with abstractions and not with the concrete
implementations: your code doesn’t rely on "predefined" entities.

8.1.3 Liskov Substitution Principle

The Liskov Substitution Principle states that subclasses should be replaceable with superclasses
without altering the logical correctness of the program. In practical terms, it means that a
subtype must guarantee the "usage conditions" of its supertype plus something more it wants
to add. Look at this example:

Flutter Complete Reference 190

Chapter 8. Coding principles with Dart

class Rectangle {
double width;
double height;
Rectangle(this.width, this.height);

}

class Square extends Rectangle {
Square(double length): super(length, length);

}

We have a big logic problem here. A square must have 4 sides with the same length but the
rectangle doesn’t have this restriction. We’re able to do this:

void main() {
Rectangle fail = Square(3);

fail.width = 4;
fail.height = 8;

}

At this point we have a square with 2 sides of length 4 and 2 sides of length 8... which is ab-
solutely wrong! Sides on a square must be all equal but our hierarchy is logically flawed. The
LSP is broken because this architecture does NOT guarantee that the subclass will maintain the
logic correctness of the code.

� This example also shows that inheriting from abstract classes or interfaces, rather
than concrete classes, is a very good practice. Prefer composition (with interfaces)
over inheritance.

To solve this problem, simply make Rectangle and Square two independent classes. Breaking
LSP does not occur if you depend from interfaces: they don’t provide any logic implementation
as it’s deferred to the actual classes.

8.1.4 Interface Segregation Principle

This principle states that a client doesn’t have to be forced to implement a behavior it doesn’t
need. What turns out from this is: you should create small interfaces with minimal methods.
Generally it’s better having 8 interfaces with 1 method instead of 1 interface with 8 methods.

Flutter Complete Reference 191

Chapter 8. Coding principles with Dart

// Interfaces
abstract class Worker {

void work();
void sleep();

}

class Human implements Worker {
void work() => print("I do a lot of work");
void sleep() => print("I need 10 hours per night...");

}

class Robot implements Worker {
void work() => print("I always work");
void sleep() {} // ??

}

Robots don’t need to sleep and thus the method is actually useless, but it still needs to be
there otherwise the code won’t compile. To solve this, let’s just split Worker into multiple
interfaces:

// Interfaces
abstract class Worker {

void work();
}
abstract class Sleeper {

void sleep();
}

class Human implements Worker, Sleeper {
void work() => print("I do a lot of work");
void sleep() => print("I need 10 hours per night...");

}

class Robot implements Worker {
void work() => print("I always work");

}

This is definitely better because there are no useless methods and we’re free to decide which
behaviors should the classes implement.

Flutter Complete Reference 192

Chapter 8. Coding principles with Dart

8.1.5 Dependency Inversion Principle

This is very important and useful: DIP states that we should code against abstractions and not
implementations. Extending an abstract class or implement an interface is good but descending
from a concrete classed with no abstract methods is bad.

// Use this as interface
abstract class EncryptionAlgorithm {

String encrypt(); // <-- abstraction
}

class AlgoAES implements EncryptionAlgorithm {}
class AlgoRSA implements EncryptionAlgorithm {}
class AlgoSHA implements EncryptionAlgorithm {}

Dependency injection (DI) is a very famous way to implement the DIP. Depending on abstractions
gives the freedom to be independent from the implementation and we’ve already dealt with this
topic. Look at this example:

class FileManager {
void secureFile(EncryptionAlgorithm algo) {

algo.encrypt();
}

}

The FileManager class knows nothing about how algo works, it’s just aware that the encrypt()
method secures a file. This is essential for maintenance because we can call the method as we
want:

final fm = FileManager(...);

fm.secureFile(AlgoAES());
fm.secureFile(AlgoRSA());

If we added another encryption algorithm, it would be automatically compatible with secureFile
as it is a subtype of EncryptionAlgorithm. In this example, we’re respecting the 5 SOLID
principles all together.

Flutter Complete Reference 193

Chapter 8. Coding principles with Dart

8.2 Dependency Injection

Two classes are said to be "coupled" if at least one of them depends on the other. Class A
depends on class B when you can’t compile class A without the presence of class B. This can be
very dangerous, let’s see why.

class PaymentValidator {
final Date date;
final String cardNumber;
const PaymentValidator(this.date, this.cardNumber);

// Uses the MasterCard payment circuit
void validatePayment(int amount) { ... }

}

class PaymentProcessor {
late final _validator;
PaymentProcessor(String cardNumber) {

_validator = PaymentValidator(DateTime.now(), cardNumber);
}

Date get expiryDate => _validator.date;
void pay(int amount) =>

_validator.validatePayment(amount);
}

abstract class Checker {
PaymentValidator mastercardCheck();

}
class CheckerOne extends Checker { /*... code ... */ }
class CheckerTwo extends Checker { /*... code ... */ }

Both Checker and PaymentProcessor have a strong dependency on PaymentValidator because
it’s essential in order to compile. Subclasses, of course, inherit the dependency too.

Flutter Complete Reference 194

Chapter 8. Coding principles with Dart

Let’s say you’ve written this code at work. One day, your project manager tells you to ditch
Mastercard and replace it with PayPal. You’ll quickly get a stomach ache as soon as you realize
that, from an apparently small change, the whole architecture has to be refactored.

1. Paypal just requires an email but your Mastercard implementation requires date and card
number. You’re forced to entirely change PaymentValidator but by consequence you also
need to update both PaymentProcessor and Checker as they’re strong dependencies.

class PaymentValidator {
final String _email;
const PaymentValidator(this._email);

void validatePayment(int amount) { ... }
}

class PaymentProcessor {
late final PaymentValidator _validator;

PaymentProcessor(String email) :
_validator = PaymentValidator(email);

void pay(int amount) =>
_validator.validatePayment(amount);

}

Flutter Complete Reference 195

Chapter 8. Coding principles with Dart

There’s been a "cascade" effect because changes made to a single class had consequences
to other classes as well.

2. The above changes break another part of the code: the abstract class Checker also depends
on PaymentValidator so there’s the need to fix the code.

abstract class Checker {
// earlier it was called 'mastercardCheck()'
PaymentValidator payPalCheck();

}

This change has consequences on any subclass of Checker which has to be updated. De-
pendencies on superclasses are inherited by its children and thus the coupling propagates.

3. There are no ways to solve this problem other than manually updating every single subclass
of Checker. Your IDE will come to the rescue with a refactor tool but maintenance is a
pain anyway.

As you’ve just seen, an apparently small and quick change on a class propagated to an entire
hierarchy and other big components of our project. All of this happened because classes are
strongly coupled and they depend on implementations rather than abstractions.

8.2.1 Constructor injection

Using dependency injection and abstractions rather than implementations, the above problems
fade away. Dependencies passed from the outside create a weak coupling which is safer than a
strong one as it relies on abstractions.

abstract class PaymentValidator {
const PaymentValidator();
void validatePayment(int amount);

}

class MasterCard implements PaymentValidator {
// Define date, card number and the constructor
const MasterCard();
void validatePayment(int amount) {...}

}

class PayPal implements PaymentValidator {
// Define an email and the constructor

Flutter Complete Reference 196

Chapter 8. Coding principles with Dart

const PayPal();
void validatePayment(int amount) {...}

}

The PaymentProcessor class is still going to have a PaymentValidator dependency but it’s
weak because it’s just an interface. Using "constructor injection" we pass from the outside a
concrete implementation, which can later be replaced with anything else.

class PaymentProcessor {
final PaymentValidator _validator;
const PaymentProcessor(this._validator);

void pay(int amount) =>
_validator.validatePayment(amount);

}

// And then we can freely use PayPal or MasterCard
void main() {

final p1 = const PaymentProcessor(MasterCard());
final p2 = const PaymentProcessor(PayPal());

}

In this case, we’re passing an instance of a concrete class via constructor and that’s fundamental.
PaymentProcessor knows nothing about the implementation details of the validator object, it
just knows he has to call validatePayment(int). We can also use const constructors now!

• This code is very flexible and maintainable. If your boss told you to add support for the
Visa circuit as well, you would simply have to create a new subtype of PaymentValidator.

class Visa implements PaymentValidator {
const Visa();
void validatePayment(int amount) {...}

}

No changes are required to the existing code and you at the same time you’re still embracing
S.O.L.I.D. principles. The architecture is robust!

• PaymentProcessor now doesn’t care anymore about Mastercard, Paypal or whatever be-
cause they’re given from the outside. Internally he weakly depends on an abstraction which
just gives an abstraction: the implementation is passed via constructor.

• You have a series of classes, one per payment method, that are super easy to test. You

Flutter Complete Reference 197

Chapter 8. Coding principles with Dart

could make a "mock" class for unit tests just like a regular validator type:

class TestValidator implements PaymentValidator {
const TestValidator();
void validatePayment(int amount) {...}

}

Last thing we need to refactor is the Checker class as it has to return an abstraction rather than
an implementation.

abstract class Checker {
PaymentValidator paymentCheck();

}

class CheckerOne extends Checker {...}
class CheckerTwo extends Checker {...}

Since PaymentValidator is abstract, any class along the hierarchy inherits a weak dependency
which is safe.

8.2.2 Method injection

Constructor injection is used when you class really needs an external dependency to work. When
you have an "optional" dependency not strictly required from your class, you can use method
injection.

abstract class CheckProcessor {
const CheckProcessor();
bool isActive();

}

class MastercardCheck implements CheckProcessor {
final MasterCardApi _api;
const MastercardCheck(this._api);

bool isActive() async => await _api.isOnline();
}

class PaypalCheck implements CheckProcessor {
final PaypalApi _api;

Flutter Complete Reference 198

Chapter 8. Coding principles with Dart

const PaypalCheck(this._api);

bool isActive() async => await _api.available();
}

These classes connect to the internet, perform some GET requests and return true or false
whether the service provider is online or not. Let’s say this feature is not essential in our archi-
tecture but it’s nice to have it. It might be used but it’s not certain.

class PaymentProcessor {
final PaymentValidator _validator;
const PaymentProcessor(this._validator);

void pay(int amount) => ...

bool isProcessorActive(CheckProcessor check) =>
return check.isActive();

}

In this way, if we wanted to check the availability of the service we could do this:

void main() {
final api = MasterCardApi(...);
final processor = MasterCard(api);
final checker = MastercardCheck();

final payment = PaymentProcessor(processor);
final isOnline = payment.isProcessorActive(checker);

}

Note the difference: while the processor is fundamental, and thus it’s passed via constructor, the
connection checker made with isProcessorActive is not always required. So in general:

• constructor injection is for essential dependencies that your class is always going to use;

• method injection is for optional dependencies that you class might use.

Actually both type of injection use the same concept, which is depending on abstractions and
passing implementations from the outside, but they differ in order of "importance". Dependencies
passed via constructor are fundamental while the ones passed via method are just useful but not
essential.

Flutter Complete Reference 199

"Programs must be written for people to read, and only
incidentally for machines to execute."

Abelson and Sussman

Part II

The Flutter framework

201

9 | Basics of Flutter

9.1 Structure and tools

Android Studio (AS), along with the official plugin, is Google’s first-choice IDE which offers a
very pleasant development experience. Alternatively, Flutter apps can also be created using Vi-
sual Studio Code (VS Code), Emacs or any text editor along with the Flutter command line tool.

� The official Flutter documentation gives you a step-by-step install guide 1 for
Windows, macOS and Linux. Please follow it carefully to properly setup your envi-
ronment. We have used Android Studio 4.0.1, which is the latest version at the time
of writing this book.

Any new Flutter project, whether it’s created with Android Studio or VS Code, requires a series
of files and directories for both you and the IDE. Most of them can safely be ignored because
you’ll spend basically all of your time inside lib/ and test/.

1https://flutter.dev/docs/get-started/install

Flutter Complete Reference 203

Chapter 9. Basics of Flutter

This is what we get on Windows using Android Studio but depending on the IDE you’re using,
there might be some different configuration files. Regardless the operating system and the IDE,
for sure there will always be at least:

• android/ and ios/: These folders contain platform-specific code for each OS and they’re
automatically managed by the IDE and the compiler. The structure is exactly the same
you’d get with a new Android project on Android Studio or iOS project on XCode.

• lib/: This folder is essential: it contains the Dart source code of your Flutter app. You’re
going to spend a countless amount of hours in here.

• test/: Unit tests, widget tests and integration tests all go in this folder. Chapter 16 is a
in-depth guide on how to properly test your Flutter apps.

• pubspec.yaml: This file is fundamental as it defines a Dart package and lists dependencies
of your Flutter app.

• README.md: It’s the typical markdown file you can find in any git repository. It’s used for
your git repository and at the same time as "home page" at https://pub.dev in case you
wanted to publish a package.

All the other files or folders we haven’t mentioned in the above list are automatically managed
by the IDE (or the compiler) so you shouldn’t care about them.

Flutter Complete Reference 204

https:pub.dev

Chapter 9. Basics of Flutter

9.1.1 Folder structure

Before starting your coding journey, it’d be a good idea to have a solid background in folder
structure and organization. The official Flutter documentation doesn’t give any guideline about
this since you’re free to do what you prefer. We have some suggestions for you:

• lib/. Your app’s source code goes here. Grouping files in proper folders is essential if you
don’t want to get lost in your own architecture so, before coding, mind the structure.

– routes/

– models/

– widgets/

– main.dart

– routes.dart

You could mind your project’s folder structure starting from this simple skeleton. routes/
contains your app’s pages, models/ is for the "business logic" and widgets/ is for reusable
UI widgets.

– localizations/

– routes/

– widgets/

– models/

∗ blocs/

∗ providers/

∗ repositories/

∗ ...

– main.dart

– routes.dart

If you plan to make your apps available in multiple languages, consider grouping all the lo-
calization logic inside localizations/. A complete coverage about localization techniques
in Flutter will be discussed in detail in chapter 13. Structure folders with many sub folders.

Flutter Complete Reference 205

Chapter 9. Basics of Flutter

• test/. Flutter has a powerful automated testing suite; we recommend splitting test files
according with their use case.

– unit/

– widget/

– integration/

We will cover testing in depth in chapter 16.

There would be the possibility to throw all your files inside a single folder (for example lib/)
with no structure but... no! In a medium-large app architecture, maintenance is going to be
painful because there’s no logical organization.

9.1.2 The pubspec.yaml file

This file is very important and it deserves to be properly described. It gives you control on:
dependencies used by Flutter, resources/assets of your app and the versioning system for pro-
duction binaries.

� YAML is a data-serialization language commonly used for configuration files. It
exposes a series of settings in a human-readable way; it has no punctuation as it relies
on indentation and line breaks.

Indentation and line breaks are very important because there are no semicolons or commas as
separators. We’re only giving an overview of the most important attributes but of course the
official documentation 2 will give you a full reference.

• version. Any package is required to specify a version number which increments at any
release; in chapter 24 we’ll see how to write a Flutter package that can be uploaded to
https://pub.dev. Here you see a library with its version number:

2https://dart.dev/tools/pub/pubspec

Flutter Complete Reference 206

https://pub.dev

Chapter 9. Basics of Flutter

When you’re releasing an app for the Google Play store or the Apple App store, this number
is used to assign a version value to the product. For example if you had...

version: 1.1.0+5

... it would mean that your app’s version name would be 1.1.0 and the build number would
be 4. In the Android world, inside build.gradle, the field versionName would be 1.1.0
and versionCode would be 5.

• sdk. This section contains the constraints indicating which SDK versions your app sup-
ports. The Dart team recommends to always include a lower and an upper bound but you
could simply use ">= 2.7" and it’d be valid anyway.

environment:
sdk: ">=2.7.0 <3.0.0"

With the above range you can use everything coming from version 2.7 onward so Dart
extensions for example (introduced in 2.7) are supported.

• uses-material-design. Ensures that your Flutter app is able to use icons from the Google
Material design 3 project. They are pretty common in the Google world, especially in
Android as they’re the default icons being used in many apps.

Having uses-material-design: true icons are already available, you’ve nothing to down-
load or setup because they’re bundled in the Flutter SDK. Icons are actually vectorial images
so they resize without quality loss.

3https://material.io/

Flutter Complete Reference 207

Chapter 9. Basics of Flutter

• dependencies. This is probably the most important label because it declares any package
the app is going to depend on. You just need to go to https://pub.dev, look for a package
and add a new line.

dependencies:
flutter:

sdk: flutter

http: ^0.12.2
provider: ^4.3.2+2
flutter_svg: ^0.18.1

On the left there’s the name of the package while on the right there’s the version being
downloaded from the repository. They have been added in this very simple way:

1. open https://pub.dev;

2. search for "http" or any other meaningful keyword;

3. choose a package from the list and click on the Installing tab;

4. copy/paste the given installation string, in our case "http: ^0.12.2"

• assets. This label specifies the paths to static resources your app will use such as images,
SVG vectorials, audio/video files or simple text. For example, you could create a folder
called images/ and put everything in there without having to list files one by one.

flutter:
assets:

- images/
- files/text/myFile.txt
- audio/

In the second line we have imported a text file giving the exact location. The root of the
project is the directory in which you have the pubspec.yaml file. When you declare any
kind of asset, the starting point for the path is the root.

• fonts. By convention this label is put at the bottom of the file, after assets. You can
download font files from https://fonts.google.com and import them directly in your app.

flutter:
assets:

- images/

Flutter Complete Reference 208

https://pub.dev
https://pub.dev
https://fonts.google.com

Chapter 9. Basics of Flutter

fonts:
- family: Roboto

fonts:
- asset: fonts/Roboto-Regular.ttf
- asset: fonts/Roboto-Italic.ttf

style: italic
- family: RobotoMono

fonts:
- asset: fonts/Righteous-Regular.ttf

weight: 400

Once you’ve downloaded the .ttf files from Google Font, create a folder called (by con-
vention) fonts/ and put the files in there. There’s nothing more to do because Flutter will
take care of automatically loading them.

– https://pub.dev/packages/google_fonts

Starting from January 2020 there’s an official Flutter package called google_fonts which
retrieves fonts from https://fonts.google.com/ and caches them. This is ideal for develop-
ment: no need to place font assets in the font/ folder because they will be automatically
downloaded and cached.

Text(
'This is Google Fonts',
// Download 'pacific' and cache it
style: GoogleFonts.pacific(),

),

However, you could download font files anyway and include them as assets because it’s
faster and more secure. You might be in trouble if the user opened your app for the first
time with no internet connection. The Google Fonts package will prioritize pre-bundled
files over http fetching, so you could do the following:

1. While developing, use http font fetching from the internet, which is very convenient.

2. Before publishing the app, go to https://fonts.google.com/, download the font files
you need and move them to the font/ folder in your Flutter project.

3. Open the pubspec.yaml file and add font/ under assets so that google_fonts can
automatically load font files from there.

Flutter Complete Reference 209

https://pub.dev/packages/google_fonts
https://fonts.google.com/
https://fonts.google.com/

Chapter 9. Basics of Flutter

flutter:
assets:

- images/
- fonts/

There is no need to have the fonts section because files are already included as assets.

In this way google_fonts will load font assets at startup rather than at the first usage.
However, if a given font is required and it’s not in the assets, it will be downloaded and
cached automatically.

In summary, we recommend the usage of google_fonts for development but you should provide
font files as assets so that they can be loaded at startup (rather than at runtime, via HTTP
request).

9.1.3 Hot Reload

If you know the basics of HTML, you’re aware of the fact that any edit to an .html file can be
seen immediately clicking the refresh button of the browser. It’s literally a matter of seconds
because you just need to save the file and press F5. Flutter works in the same way!

Thanks to the hot reload feature, you can refresh the UI in your emulator (or physical device)
while writing Dart code. There is no need to make a build every time and wait for gradle/Xcode
to complete. It’s like if you pressed F5 in your browser to refresh the HTML source file.

� You have to Run the app in debug mode for the first time but then you can press

Flutter Complete Reference 210

Chapter 9. Basics of Flutter

the yellow lightning which is the Hot reload button. You’ll see the UI immediately
updated and fully functional in sync with the latest code you’ve written.

Hot reload is blazing fast as it takes less than a second to refresh the UI. It increases a lot the
productivity because changes are immediately applied and ready to be tested, no need to wait
for build processes. Hot reload works in most of the cases but in certain circumstances you have
to stop and re-run the app entirely:

• when you make changes to the initState() method (more in it in the next chapter)

• when you change the definition of a class into an enum and vice versa,

• when you make changes to static fields in classes,

• when you make changes to code inside void main() {}.

In debug mode Flutter uses the JIT compilation model that, in combination with the Dart Vir-
tual Machine, allows fast injection of the source code and quick incremental rebuilds. In other
words, we can say that "Flutter’s hot reload is super fast!".

� While creating Flutter apps, it’s common having an Android or iOS simulator
on the right of the screen and your favorite IDE in the remaining space. This is the
fastest way to write code and see the results immediately with the hot reload feature.

9.1.4 Linter rules

After hours of coding, you might forget to give a generic class the type and thus the compiler
automatically assigns dynamic. It’s all good because compilation successfully executes but the
code is not type safe and thus you’re not following the good practices.

� A linter is a very helpful tool that reads the source code and spots syntax errors,
suspicious constructs, styling errors and much more. By default Dart’s linter is very
permissive and it marks something as error only when really needed.

Making the linter more severe is very productive as it can discover problems and potential bugs
even before executing the code. In order to do this there’s the need to create a file called
analysis_options.yaml in the same folder as the pubspec.

Flutter Complete Reference 211

Chapter 9. Basics of Flutter

analyzer:
strong-mode:

implicit-casts: false
implicit-dynamic: false

linter:
rules:

- avoid_unused_constructor_parameters
- await_only_futures
- directives_ordering
- empty_constructor_bodies
- empty_statements
- hash_and_equals
- implementation_imports
- null_closures
- package_api_docs
- slash_for_doc_comments
- test_types_in_equals
- throw_in_finally
- type_init_formals

Visit the official Dart documentation 4 to get a complete list of any linter rule. We strongly
encourage you to create an analysis_options.yaml for every Flutter app or Dart project you
create. There is also the possibility to change the default behavior of the linter:

analyzer:
errors:

include_file_not_found: error
dead_code: warning

For example, by default when a given include file could not be found a warning is emitted. If you
want this issue to be more important, it can be treated as an error by overriding its severity to
one of these levels:

• error: causes static analysis to fail;

• warning: static analysis doesn’t fail unless warnings are treated as errors by the analyzer;

• info: just an message info which doesn’t make static analysis fail;

• ignore: ignores the given rule.

4https://dart-lang.github.io/linter/lints/

Flutter Complete Reference 212

Chapter 9. Basics of Flutter

Basically in errors you can redefine the severity of warnings and errors as you want. In general
the default setup is fine as it is, you don’t need to override rules and in particular try to avoid
using ignore. Visit the official documentation 5 to get a complete list of any overrideable property.

� The analysis_options.yaml file summarizes the Dart’s good practices guidelines
so that you don’t have to remember everything. The IDE is able to read this file and
emit visual messages for you.

Very simply put, having proper rules set on analysis_options.yaml is like having something
that guides you to follow Dart’s best practices. Go to the Resources page of our website to
download a good template we recommend you to use.

9.1.5 Tree shaking and constants

Using import "package:flutter/foundation.dart" might be very useful while developing and
debugging Flutter apps. It exposes three constant boolean values the developer can use to execute
a series of instructions according with the build mode:

• Debug mode.

if (kDebugMode) {
// code to be executed when running the app in debug mode...

}

• Profile mode.

if (kProfileMode) {
// code to be executed when running the app in profile mode...

}

• Release mode.

if (kReleaseMode) {
// code to be executed when running the app in release mode...

}

When building a Flutter app (in any mode), "tree shaking" is automatically performed. It’s
basically the compiler removing dead code depending on variables being constant or not plus
other factors. For example, look at this piece of code:

5https://pub.dev/documentation/analyzer/latest/analyzer/analyzer-library.html

Flutter Complete Reference 213

Chapter 9. Basics of Flutter

String get name {
if (kDebugMode) {

return "Demo";
} else {

return _real();
}

}

The Run button of Android Studio and VS Code builds the app in debug mode so the above code
will always return "Demo". The other statement (return _real();) is automatically removed
by the compiler because it will never be reached. According with the build mode, after the
compilation the same piece of code can look like this:

.

Debug mode Profile mode Release mode

String get name {
return "Demo";

}

String get name {
return _real();

}

String get name {
return _real();

}

.

You should really use these constants while developing your apps as they’re very useful. There’s
also no need to manage them because the compiler will automatically remove the unused parts
(dead code is automatically discarded). Tree shaking works with any constant value:

const isGood = true;

if (isGood) {
print("Good!");

} else {
print("Bad!");

}

The compiler will remove the else branch because it’s considered to be dead code.

Flutter Complete Reference 214

Chapter 9. Basics of Flutter

9.2 Widgets and State

In Flutter everything that appears on the screen is called "widget" because, technically speaking,
it’s a descendant of the Widget class. When you create user interfaces in Flutter you make a
composition of widgets by nesting them one inside the other.

� If you talk about widgets you refer to buttons, text fields, animations, containers
and even the UI page itself. Anything appearing on the screen or interacting with it
is a widget. Widgets everywhere!

When you nest widgets one inside the other you create a hierarchy called "widget tree" in which
there are parents and children. In a fresh new Flutter project, the IDE prepares a sample
application in main.dart having this minimal structure:

import 'package:flutter/material.dart';

void main() {
runApp(MyApp());

}

class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {...}

}

As you know, any Dart program must have a void main() {} entry point and Flutter is no
exception; the runApp() method takes an instance of a Widget and makes it the root of the
widget tree. At the beginning you get a tree with a single leaf (the root itself):

In the next section we will see that a class in Flutter becomes a widget when it inherits from
StatelessWidget or StatefulWidget. For now, note that the runApp() method has made the

Flutter Complete Reference 215

Chapter 9. Basics of Flutter

class called MyApp the root of the tree. Let’s add more contents to see how the widget tree
expands.

void main() => runApp(const MyApp());

class MyApp extends StatelessWidget {
const MyApp(); // Good idea!

@override
Widget build(BuildContext context) {

return Column(
children: <Widget>[

Text("Hello"),
Text("Flutter),

]
);

}
}

The method Widget build(BuildContext context) adds new leaves to the widget tree in order
to place new graphical items in the UI. Widgets are nested one inside the other using named
parameters in the constructors to make the reading of the code very expressive. This is the new
situation:

Flutter Complete Reference 216

Chapter 9. Basics of Flutter

The addition of widgets makes the tree bigger and places new items on the screen. The context
parameter in build(BuildContext context) gives important information about the position of
the leaf in the tree. In particular:

• A BuildContext instance is used by Flutter to know details about the widget when the
tree is being traversed;

• We will see that calling SomeWidget.of(context) returns the closest widget in the tree
whose type is SomeWidget;

• Each widget has its own BuildContext instance which becomes the parent context of the
widget(s) returned by its build method.

Other than passing an instance of BuildContext to widgets’ constructors you won’t do anything
else with it. It’s intended to be used by Flutter to get info about the widget tree; the developer
hardly never is asked to use it directly.

� The interpolation of classes, nested with named constructors, embraces the so
called declarative UI design which is the typical Flutter coding style.

Flutter Complete Reference 217

Chapter 9. Basics of Flutter

9.2.1 Basic widgets

Flutter has a countless amount of widgets that can be found both in the core library or online
at https://pub.dev. We’re immediately going to list the most important ones but you’ll discover
many others while reading the book.

� We strongly encourage you to visit the online catalog as it showcases the most
important UI widgets for both material (Android) and cupertino (iOS) styles. The
Flutter team is very active and the catalog is improved/expanded very often.

9.2.1.1 Text

You wouldn’t be surprised to find out that the Text widget is used to display a piece of text on
the screen. It’s highly customizable as you can change the color, the font using font assets or the
Google Font package and much more.

const Text(
"Text on the screen",
style: TextStyle(

color: Colors.amber,
fontSize: 16,
wordSpacing: 3,

),
);

It just requires a string as a parameter, which is the text being displayed on the UI, and the
styling is made with the TextStyle() 6 class. It defines many properties of the text itself and
it’s also the place in which the google_fonts package can be used.

Text(
"Text on the screen",
style: GoogleFonts.lato(

textStyle: const TextStyle(
color: Colors.amber,
fontSize: 16,
wordSpacing: 3,

),

6https://api.flutter.dev/flutter/painting/TextStyle-class.html

Flutter Complete Reference 218

https://pub.dev

Chapter 9. Basics of Flutter

),
);

9.2.1.2 Row

This widget places one or more children in the horizontal axis with the given space constraints.
It’s used very often when you need to have multiple items aligned side by side. There is no const
constructor for Row but you can assign it, when possible, to the children value.

Row(
mainAxisAlignment: MainAxisAlignment.center,
children: const [

Text("Hello"),
Text("Flutter!"),
Text("!!"),

],
),

You can easily figure out that there will be three Text widgets side by side at the center of the
screen. By default, a row tries to totally cover the available horizontal space; you can make sure
it shrinks to fit the width of its content using:

Row(
mainAxisSize: MainAxisSize.min,

),

Widgets in rows can be placed in different ways according to the value of mainAxisAlignment.
The default behavior is start but of course it can be changed passing different values to the
constructor.

• center. Places the items at the center of the row.

• start. Places the items at the beginning of the row.

Flutter Complete Reference 219

Chapter 9. Basics of Flutter

• end. Places the items at the end of the row.

• spaceAround. Places the items with equal distance between each other and the margins.

• spaceBetween. Places the items with an evenly space between them.

9.2.1.3 Column

This widget places one or more children in the vertical axis with the given space constraints. A
Column is the opposite of a Row as it has the same purpose but it works in the opposite direction
(vertical rather than horizontal).

Flutter Complete Reference 220

Chapter 9. Basics of Flutter

Column(
mainAxisAlignment: MainAxisAlignment.center,
children: const [

Text("Hello"),
Text("Flutter!"),
Text("!!"),

],
),

It’s identical to a Row but here items are placed one above the other because a Column works in
the vertical axis. It tries to totally cover the available vertical space; you can make sure that it
shrinks to fit the height of its content using

Column(
mainAxisSize: MainAxisSize.min,

),

You can place widgets in different ways just by passing a new alignment to the mainAxisAlignment
parameter of the constructor. It’s completely identical to a Row because alignments work in the
same way.

A column does NOT have a scroll behavior so if there’s not enough space, you’ll get an overflow
error at runtime.

Flutter Complete Reference 221

Chapter 9. Basics of Flutter

9.2.1.4 ListView

A ListView is basically a Column with scrolling behavior as it places one or more children in the
vertical axis, in sequence. This widget is very widely used because it provides the possibility to
scroll contents when they are bigger than the screen size.

ListView(
children: const [

Text("Hello"),
Text("Flutter!"),
Text("!!"),

],
),

Widgets are aligned to the top and the scrolling direction is vertical by default but of course
you can change it. With scrollDirection you can decide whether the list has to scroll in the
horizontal or vertical axis.

ListView(
scrollDirection: Axis.horizontal,

),

When the content of the list is known in advance, children are simply declared inside a list as
you’ve seen above. The ListView.builder(...) named constructor is very useful when the list
has to be built based on an existing collection.

// Somewhere in the code there's a list of 100 integers
final myList = List<int>.generate(100, (i) => i);

// The 'builder' named constructor builds a list of widgets
// by taking the 'myList' list as data source.
ListView.builder(

itemCount: myList.length,
itemBuilder: (context, index) {

return Text("${myList[index]}"),
},

),

The official Flutter documentation 7 suggests to use the builder(...) named constructor when
the data source is a long list because it efficientlymanages the children. So, rather than manually

7https://flutter.dev/docs/cookbook/lists/long-lists

Flutter Complete Reference 222

Chapter 9. Basics of Flutter

filling a long ListView with a for loop, use its builder() which is more efficient.

9.2.1.5 Container

This widget is the equivalent of a <div></div> tag in the HTML world; it’s a general purpose
container you can use to customize painting, positioning, sizing and much more. A Container
is very widely used since it accomplishes many use cases such as making rounded borders or
working with shapes.

It might seem a complex result to achieve but it’s actually very easy because a container is made
exactly for this kind of purposes.

Widget build(BuildContext context) =>
Container(

height: 80,
width: 260,
color: Colors.blueGrey,
alignment: Alignment.center,
transform: Matrix4.rotationZ(-0.25),
child: const Text(

"Containers!",
style: TextStyle(

color: Colors.white,
fontSize: 25

)
)

Flutter Complete Reference 223

Chapter 9. Basics of Flutter

);

The rotation is obtained thanks to transform: Matrix4.rotationZ(-0.25), which defines how
to place an object in the 3D space. This is often used in animations but you’ll have to wait until
chapter 14 to read more. In order to style a Container you have to use a BoxDecoration
class:

Container(
child: const Center(...),
width: 100,
height: 100,
decoration: const BoxDecoration(

shape: BoxShape.circle,
boxShadow: [

BoxShadow(
color: Colors.grey,
spreadRadius: 5,
blurRadius: 7,
offset: Offset(0, 3),

),
],
gradient: LinearGradient(

begin: Alignment.topCenter,
end: Alignment.bottomCenter,
colors: [

Color.fromARGB(...),
Color.fromARGB(...)

],
)

),
);

In this example we’ve created a circle with a shadow behind and a linear gradient as back-
ground. The BoxShadow class is very similar to the CSS box-shadow property, exactly like
LinearGradient which can of course interpolate more than two colors. It isn’t the only type of
gradient you can use:

• LinearGradient: a progressive transition of two or more colors along a straight line;

• RadialGradient: a progressive transition of two or more colors radiating around a central

Flutter Complete Reference 224

Chapter 9. Basics of Flutter

point;

• SweepGradient: a progressive transition of two or more colors with a circular sweep on a
central point.

You can also have rounded borders with borderRadius: BorderRadius.circular(30.0) or
a simple plain background color with the color: property. Be sure to check out the official
documentation about BoxDecoration 8 to see how you can fully customize a Container.

9.2.1.6 Stack and Positioned

Thanks to the Stack widget you can overlap widgets and freely position them on the screen using
Positioned. Even if children are placed outside the bounds of the UI, no overflow errors will
appear because a Stack doesn’t constrain the bounds of width and height.

Stack(
children: [

Container(
width: 40,
height: 40,
decoration: const BoxDecoration(

color: Colors.red
)

),

const Text("Hello"),
]

)

With this simple example, the UI is created with a red box and the Text widget is painted in
front of the Container. The order in which you place the widgets really matters because children
at the bottom of the list are placed, relatively, in front of the ones at the top. The foreground
widget goes at the end of the list.

Stack(
children: [

const Text("Hello"),

Container(

8https://api.flutter.dev/flutter/painting/BoxDecoration-class.html

Flutter Complete Reference 225

Chapter 9. Basics of Flutter

width: 40,
height: 40,
decoration: const BoxDecoration(

color: Colors.red
)

),
]

)

In this case the red box would be placed in front of the Text widget because, in order, it comes
after and thus "Hello" is not visible because covered by the Container. You could however
decide to move the text at a specific position of the screen:

Stack(
children: const [

Positioned(
top: 40,
left: 65
child: Text("Hello"),

),
]

)

You could also have used a negative offset such as left: -15 to position the text outside the
bounds of the visible area.

9.2.2 Stateless and Stateful widgets

A class becomes a Flutter widget when it subclasses StatelessWidget or StatefulWidget and
overrides the Widget build(...); abstract method. That’s it: the main task of a widget is
laying out other widgets on the tree using the build() method.

� You already know from the previous examples how widgets are laid out inside
build() to compose the UI. They’re nested one inside the other.

Before creating a widget the developer must decide whether the state will change during the
time or not. If the state changes at some point, then it means that something has happened such
as:

Flutter Complete Reference 226

Chapter 9. Basics of Flutter

• the user has tapped on a button and thus something in the UI must change;

• the device has been rotated and the UI must be repainted;

• there’s a new event on a stream and a widget depending on it is notified (and thus a rebuild
happens in order to reflect the changes brought by the stream).

In other words, you have to ask yourself if the widget is immutable or if it’s "dynamic", in the
sense that something might change during the time. The decision translates into Dart code by
extending one of these two classes.

• Stateless widget. Use this kind of widget when you need to create a piece of UI that
is not going to change over the time. It’s a "standalone" block that doesn’t depend on
external events or sources; it just relies on its constructor and the internal data.

class MyName extends StatelessWidget {
// Notice the constant constructor
const MyName();

@override
Widget build(BuildContext context) {

return Row(
mainAxisAlignment: MainAxisAlignment.spaceAround,
children: const [

Icon(Icons.person),
Text("Flutter developer"),

]
);

}
}

This is a perfect example of a StatelessWidget because the contents will always be the
same; no external dependencies or streams are going to change the text or the icon. Once
created, the widget is "static" because it will never change: it’s a "solid block".

class MyName extends StatelessWidget {
final String name;
const MyName({

// use the annotation '@required' if your Dart version does not
//support nnbd
required this.name

Flutter Complete Reference 227

Chapter 9. Basics of Flutter

});

@override
Widget build(BuildContext context) => const Text(name);

}

By convention Flutter widgets have named optional parameters in the constructor; in case
they were required, use the required keyword. Since this class is immutable it’s a very
good idea marking the instance variables as final so that a const constructor can be de-
clared.

� Even if the class takes a string from the outside, via constructor, it still
doesn’t change over the time. The given name will always be the same and thus
the widget will never change/rebuild, so a stateless solution is fine.

If you’re working with Dart 2.9 or lower versions, instead of the required keyword you’re
going to use the @required annotation.

• Stateful widget. Use this kind of widget when you need to create a piece of UI that is
going to change over the time. In this case the UI is going to dynamically change due to
external events such as the received response of an HTTP request or the callback triggered
by a button tap.

class Counter extends StatefulWidget {
// Don't forget the constant constructor!
const Counter();

@override
_CounterState createState() => _CounterState();

}

// Notice the underscore: the state is a package-private class
class _CounterState extends State<Counter> {

int _counter = 0;

@override
Widget build(BuildContext context) {

return Column(

Flutter Complete Reference 228

Chapter 9. Basics of Flutter

children: [
Text("$_counter"),
IconButton(

child: Icon(Icons.add),
onPressed: () {

setState(() => _counter++);
}

),
],

);
}

}

Buttons and UI design will be introduced in the next section, they aren’t key point now.
In this widget the main actor is the IconButton: once tapped by the user, the onPressed
callback is triggered and the _counter variable is incremented.

1. Counter is the widget itself and thus it’s inserted in the widget tree; _CounterState
is the mutable state of the Counter widget. When Flutter rebuilds the widget tree to
refresh the UI, the build(...) method of State<T> is called.

2. This is the standard pattern for the creation of a stateful widget and you should really
follow it. Both Android Studio and VS Code can automatically create the boilerplate
for you.

3. Subclasses of State<T> gain access to the setState(...) method which rebuilds the
widget (it’s like a refreshing tool).

4. Member instances, such as _counter, survive to rebuilds. Only what’s inside the
build() method is refreshed.

When you tap on the button, the onPressed callback is activated: setState(...) executes
its body and then Flutter rebuilds the widget. In our example, int _counter gets incre-
mented by 1 and then the widget is refreshed so that Text can display the new updated
value.

� The variable _counter belongs to the state State<Counter> object and for
this reason it’s not reset when the widget is rebuilt. Remember that the state
"survives" when a build happens.

Flutter Complete Reference 229

Chapter 9. Basics of Flutter

Counter is the widget (what’s inserted on the tree) while _CounterState is the state.
The state survives to rebuilds but its build() method doesn’t. If you’re not convinced yet,
we’re going to tell you that this snippet works as intended.

class _CounterState extends State<Counter> {
int _counter = 0;

@override
Widget build(BuildContext context) {

return Column(...);
}

}

The state survives to rebuilds so _counter is not reinitialized to zero, it keeps the count.
Only what’s inside the build method is refreshed. If you did this...

class _CounterState extends State<Counter> {
@override
Widget build(BuildContext context) {

int _counter = 0;

return Column(...);
}

}

... your counter would always be zero! It’s still correctly incremented by setState() which
nicely does _counter++ but then the widget is rebuilt and the first line does _counter = 0
which sets it back to zero.

If you used the constructor of a StatefulWidget to set some data, the associated State<T> class
can get a reference to them by simply using the widget getter. Again, try to use const as much
as possible.

class WidgetDemo extends StatefulWidget {
final int id;
const WidgetDemo(this.id);

@override
_WidgetDemoState createState() => _WidgetDemoState();

}

Flutter Complete Reference 230

Chapter 9. Basics of Flutter

class _WidgetDemoState extends State<WidgetDemo> {
@override
Widget build(BuildContext context) {

return Text("The given id is ${widget.id}");
}

}

In the above example, WidgetDemo is allowed to have a const constructor because once in-
serted in the widget tree, it will never change. What really changes is its state, represented by
_WidgetDemoState, which in fact cannot have a constant constructor.

9.2.2.1 Good practices

First of all, there’s the need to say that there are NO performance differences between a stateful
widget and a stateless widget. You don’t have to think that a stateless widget is an optimized
version of a stateful one or vice versa.

� Actually a StatelessWidget can be seen as a StatefulWidget without the
setState() method. When creating a stateful widget, the state is clearly visible
because it’s a separated private class:

// Widget
class Counter extends StatefulWidget { ... }
// Widget's state
class _CounterState extends State<Counter> { ... }

A stateless widget is just syntactic sugar for those cases in which you don’t need
to create a custom state. A StatelessWidget has a state too but you can’t see it
because it’s not meant to be manually changed.

You could use StatefulWidgets all day all night without having problems but it wouldn’t make
sense. If the state doesn’t change, go for a StatelessWidget which is less boilerplate code and
it exposes less methods. Here’s a guideline to help you deciding which one should be used:

• When every instance variable of your widget can be marked with the final modifier, use
a stateless widget with a const constructor.

class PersonWidget extends StatelessWidget {
final String name;

Flutter Complete Reference 231

Chapter 9. Basics of Flutter

final String age;
const PersonWidget({

required this.name,
required this.age

});

@override
Widget build(BuildContext context) { ... }

}

This is an immutable class because it has final variables and a constant constructor: once
instantiated, the widget will never change. This is a "static block", widget that doesn’t
change over the time.

• When your widget has some variables that cannot be final because they might change
over the time, use a stateful widget. It might happen when you have to lazily initialize
some values or you’re waiting for an asynchronous request.

class Counter extends StatefulWidget {
const Counter();

@override
_CounterState createState() => _CounterState();

}

class _CounterState extends State<Counter> {
int _counter = 0;

@override
Widget build(BuildContext context) { ... }

}

In this case _counter cannot be final because the build() method is going to alter it.
When an instance variable can be changed over the time, by consequence the state of the
widget will also change. In this case, a StatefulWidget is the right choice.

• In all those cases where a widget is something "static" that doesn’t depend on anything
external, consider making it stateless as you don’t need to change its state.

class AuthorsWidget extends StatelessWidget {
const AuthorsWidget();

Flutter Complete Reference 232

Chapter 9. Basics of Flutter

@override
Widget build(BuildContext context) {

return Row(
children: [

Text("Alberto Miola"),
Text("Felix Angelov"),
Text("Rémi Rousselet"),
Text("Matej Rešetár"),

]
);

}
}

This widget doesn’t need to change its state nor it depends on external data. It’s just a
single reusable "block".

To sum it up, a StatelessWidget is good when you have to make independent "reusable" widgets
or when you don’t need to change the state of your widget. In all the other cases, consider using
a StatefulWidget.

9.2.3 Keys

You might have noticed that any widget provided by Flutter has the optional key parameter.
Very simply, it’s used to uniquely identify a widget in the tree, like when a primary key is assigned
to a column of a relational database. There are mainly four types of keys (they’re all sub-types
of Key):

• ValueKey<T>. Suppose you created a shopping list using a ListView and a series of Text
widgets (with no duplicated strings). A key can be assigned in this way:

final itemKey = ValueKey<String>("item-id-0025");

// and then on the build method...
Text(

itemText,
key: itemKey,

)

Use a ValueKey when you have an object represented by an unique and constant value.

Flutter Complete Reference 233

Chapter 9. Basics of Flutter

In this case, the String doesn’t change and the list doesn’t have duplicates so it’s a good
choice. It is the default type of key returned by Key:

abstract class Key {
const factory Key(String value) = ValueKey<String>;

}

• ObjectKey. Suppose you had a list of complex objects, such as List<Task> where Task is
internally made up of other classes.

final list = [
Task(

owner: const OwnerData(...),
date: "...",
duration: const Duration(...),

)
]

When you’re not guaranteed that a single field is unique but a combination of multiple
values is, go for an ObjectKey. In this case, we’re sure that each Task is unique but some
might have the same date for example. However, we know that there cannot be 2 tasks
with the same owner/date/duration combination so the object itself is unique.

• UniqueKey. This key is only equal to itself: there’s only one across the entire app. Use
an UniqueKey when there are no constant unique values (so no ValueKey) and no single
combinations of values (so no ObjectKey).

• GlobalKey. You will see it in action in chapter 19 as it’s also used to work with input
validation on form fields. Generally, global keys are useful to keep in sync the state of
multiple widgets.

In practice, a ValueKey is used when a single value can uniquely represent an object (like an
id). ObjectKey is good when there isn’t a single unique value but a combination of properties
(such as name, surname, birthday and fiscal code) can be unique. In Flutter, we will see you’ll
need a GlobalKey. In any other case, go for a UniqueKey.

Flutter Complete Reference 234

Chapter 9. Basics of Flutter

The bar at the bottom represents how many fields combined together represent an unique entity.
In general keys can safely be ignored because there are only a few cases in which they’re useful
(in fact key is optional). Here’s when you might have the need to uniquely identify a widget with
a Key:

1. In chapter 16 you’ll see that a key can be useful while testing to easily identify a widget
on the tree. Being it unique, Flutter can quickly reach the widget on the tree and obtain a
reference to it.

2. Imagine you had two tabs having, in both pages, a scrollable list. You want to store the
scroll position even when tabs are swiped so that the user doesn’t have to start scrolling
from the top every time.

// Tab layout is covered in chapter 21
TabBarView(

controller: tabController,
children: [

ListView.builder(
key: const PageStorageKey<String>(('list1'),
itemBuilder: (context, index) {...},

),
ListView.builder(

key: const PageStorageKey<String>(('list2'),

Flutter Complete Reference 235

Chapter 9. Basics of Flutter

itemBuilder: (context, index) {...},
),

]
)

A PageStorageKey<T> (subclass of ValueKey<T>) is used to remember the scrolling position
of a list when the page of a tab is changed. If you didn’t use a PageStorageKey, the scroll
position of the lists will be reset to 0 every time that a tab is changed (the position is not
remembered by default).

Keys are also useful when you want to swipe to dismiss an item from a list: you’ll see and example
later in 19.2.1. Of course, you might decide to define an unique key for any widget you create
but it would be useless.

9.3 Rebuilds and optimization

The framework traverses the widget tree very often. The build() method is called, for sure, the
first time the UI is rendered. It will be called more than once during your app’s lifetime but you
can’t predict how many times because lots of factors can trigger a re-build:

• calling setState,

• rotating the screen of the device,

• awaiting the result of a future,

• listening to incoming stream events.

When we say "the framework does many rebuilds" we mean that the method build() of a specific
widget is called more than once. Because of the structure of the widget tree, every children will
be rebuilt as well because there must be consistency along the hierarchy.

� Flutter is very efficient at traversing the widget tree and rebuilding the leaves.
However, if you write bad code your app might suffer of performance issues or it won’t
always run at 60 fps (on average).

Even if Flutter is very fast, you don’t have to abuse of its efficiency because your goal should
always be: "allow rebuilds of widgets only when it’s really needed". Let’s see what can be done
in order to write good code that doesn’t waste time and memory.

Flutter Complete Reference 236

Chapter 9. Basics of Flutter

9.3.1 const constructor

You already know something from 4.3.1 "const constructors" and now it’s time to see why they’re
so useful in Flutter. Let’s say you had this simple widget:

class ExampleWidget extends StatelessWidget {
const ExampleWidget();

@override
Widget build(BuildContext context) {...}

}

Since there’s a constant constructor defined for this class, you’re allowed to create a constant list
of widgets. Of course, it would have been the same if you used a Row or a Column:

ListView(
children: const [

ExampleWidget(),
ExampleWidget(),
ExampleWidget(),
ExampleWidget(),

]
);

If you mark a list with const by consequence every object inside it will also be constant. Flutter
builds constant widgets one time only. Using const constructors on widgets is like caching
them: once created, they will never be re-built again.

� It really makes sense! If the class is allowed to have a const constructor, then
it’s immutable. It will never change over the time so Flutter doesn’t have to rebuild
it more than once. A constant constructor on a big subtree can save a lot of compu-
tational time.

Try to use const constructors as much as possible because the build method of a constant
widgets is executed only once (at the time of the creation). Any subsequent re-build will simply
ignore every widget whose constructor have been marked with const.

class ExampleWidget extends StatelessWidget {
// No constant constructor

Flutter Complete Reference 237

Chapter 9. Basics of Flutter

@override
Widget build(BuildContext context) {.}

}

In this case there isn’t a constant constructor and thus the widget cannot be inserted in the tree us-
ing const ExampleWidget(). Stateful widgets can have a const constructor too of course:

class Example extends StatefulWidget {
const Example();

@override
_ExampleState createState() => _ExampleState();

}

Try to use constant constructors as much as possible but don’t get obsessed with them because
they can’t be created in every situation. In certain cases, const constructors can cache very large
subtrees and save much computational time!

constant version not-constant version

ListView(
children: const [

ExampleWidget(),
ExampleWidget(),
ExampleWidget(),
// ... + other 7 entries

]
);

ListView(
children: [

ExampleWidget(),
ExampleWidget(),
ExampleWidget(),
// ... + other 7 entries

]
);

The visual difference is minimal but the computational difference is big. If ExampleWidget had
a very complex build() method, the performance gap would be even bigger. Without const,
the entire list is unnecessarily rebuilt many times.

9.3.2 Prefer widget composition over functions

It’s common knowledge that code duplication is bad and so you’ll create very often reusable
widgets. For example, many apps have a "footer" which includes icons and a bit of text about
the copyrights.

Flutter Complete Reference 238

Chapter 9. Basics of Flutter

class FooterWidget extends StatelessWidget {
const FooterWidget();

@override
Widget build(BuildContext context) {

return Column(
mainAxisSize: MainAxisSize.min,
children: [

Row(
mainAxisAlignment: MainAxisAlignment.spaceAround,
children: const [

Icon(Icons.email),
Icon(Icons.tablet_mac),

]
),
const Text("Developed by X"),

]
);

}
}

We’ve decided to make FooterWidget stateless because it’s a reusable block of code that doesn’t
change its state and it’s not influenced by external events. It lives on its own and it can be reused
in many different pages to show a footer at the bottom:

• there is a constant constructor because the class has no mutable variables;

• in Column we can’t use children: const [...] because Row does not define a constant
constructor. Nevertheless, we can manually put const in the single child inside, where
possible.

That’s how you should write widgets and the same concept applies if it were a stateful one, no
differences. Instead, what you absolutely DON’T have to do is this:

Widget footerWidget(BuildContext context) =>
Column(

mainAxisSize: MainAxisSize.min,
children: [

Row(
mainAxisAlignment: MainAxisAlignment.center,

Flutter Complete Reference 239

Chapter 9. Basics of Flutter

children: const [
Icon(Icons.email),
Icon(Icons.tablet_mac),
Icon(Icons.tune)

]
),

const Text("Developed by X"),
]

);
}

It’s a function returning the Column widget with its children: you should absolutely NEVER
prefer functions over widgets because:

• Functions of course doesn’t have const constructors.

• Flutter is forced to rebuild widgets returned by a function every time because it knows
nothing about them (no BuildContext is provided).

• Classes are leaves of the widget tree but functions aren’t and thus there’s no BuildContext
available.

Widgets can be cached thanks to const constructors; functions can NOT be cached and thus
they’re executed every time. You should (or actually... must!) always rely on reusable widgets
rather than functions.

9.4 Architecture

In this section we’re giving a general overview of the architecture of the framework digging a bit
more into the details. Flutter is divided into three layers (it’s said to be a layered system)
where each depends on the one below. Layers are made up of libraries written in different
languages.

Flutter Complete Reference 240

Chapter 9. Basics of Flutter

The embedder is written in different languages according with the platform in which Flutter
has to run: Objective C++ for iOS / macOS, Java / C++ for Android and C++ for Linux /
Windows. It’s a native application that takes care of "hosting" your Flutter contents on the OS.
When the app is started, the embedder provides a valid entrypoint, obtains threads for UI and
rendering, starts the Flutter engine and much more.

Flutter Complete Reference 241

Chapter 9. Basics of Flutter

� The embedder is at the lowest layer and it directly interacts with the operating
system providing entry points for access to services. The developer mostly works on
the third layer and sometimes on the second, but never on the first.

The engine is the heart of Flutter, it’s mostly written in C++ and it’s always packaged in
the binary produced by the flutter build tool. It’s a portable runtime for hosting Flutter
application which includes core libraries for network I/O, file, animations and graphics. The
engine is exposed to the developer via import "dart:ui", which basically wraps C++ sources
into Dart classes. For the web world, the situation is different:

The C++ engine is designed to work with the operating system but for the web Flutter has to

Flutter Complete Reference 242

Chapter 9. Basics of Flutter

deal with a browser. For this reason, the approach has to be different. Dart can be compiled
to JavaScript thanks to the highly-optimized dart2js compiler so, by consequence, Flutter apps
can be ported as well. There are 2 ways to deploy an application for the web:

1. HTML mode. Flutter uses HTML, CSS, JavaScript and Canvas.

2. WebGL mode. Flutter uses CanvasKit, which is Skia compiled to WebAssembly.

For the web, there’s no need for the Dart runtime because your Flutter app is compiled to
JavaScript as we’ve already said. The produced code is already minified and it can be deployed
to any server. At the time of publishing this book (September 2020), web support for Flutter is
only available in the beta channel.

� In case you didn’t know, WebAssembly is recognized 9 by the W3C as the 4th
language to natively run on browsers along with HTML, CSS, and JavaScript. We-
bAssembly can be both AOT and JIT compiled.

9.4.1 Element and RenderObject

You’ve already seen that, to build the UI, the developer has to create a widget tree by nesting
widgets one inside the other. In reality, Flutter doesn’t only rely on widgets because internally
there are two other kinds of trees maintained in parallel 10. Through this section, we’re assuming
that SomeText is just a simple widget showing some text.

class MyWidget extends StatelessWidget {
const MyWidget();

@override
Widget build(BuildContext context) {

return Container(
decoration: BoxDecoration(),
child: SomeText(

text: "Hello"
),

);

9https://www.w3.org/TR/wasm-core-1/
10See "The Layer Cake" by Frederik Schweiger on Medium

Flutter Complete Reference 243

Chapter 9. Basics of Flutter

}
}

When it’s time to render, Flutter calls the build() method of the widget which might introduce
some new widgets, in case of nesting. In our case, the widget tree will contain Container,
SomeText plus some more you actually don’t see. In fact, if you looked at the definition of a
Container...

if (decoration != null)
current = DecoratedBox(decoration: decoration, child: current);

... you’d notice that an instance of DecoratedBox is added under the hood if a decoration is
given. For this reason, if you made a DevTools 11 inspection you’d see more children than you
actually inserted. It’s because widgets might insert other widgets inside but you just don’t see
it; the tree actually looks like this:

Some boxes are in grey to visualize the fact they haven’t been added by you. Along with the
widget tree, Flutter also builds in parallel the element tree and the render tree. They are
created calling respectively createElement() and createRenderObject() on the widget being
traversed. Note that createElement() is always called on widgets but createRenderObject()
is only called on elements whose type is RenderObjectElement. So yes, at the end Flutter works
with 3 trees.

11More on it in chapter 16

Flutter Complete Reference 244

Chapter 9. Basics of Flutter

An Element can hold a reference to a widget and the respective RenderObject. There are a lot
of new things you’ve never seen up to now so let’s carefully analyze the trees to understand how
Flutter really works.

• Render tree. A RenderObject contains all the logic to render the corresponding widget
and it’s expensive to create. They take care of the layout, the constraints, hit testing
and painting. The framework keeps them in memory as much as possible, changing their
properties whenever there’s a chance. They can be of many types:

– RenderFlex

– RenderParagraph

– RenderBox ...

During the build phase, the framework updates or creates a new type of RenderObject
only when a RenderObjectElement is encountered in the element tree.

• Element tree. An Element is the link between a Widget and its respective RenderObject
so it holds references inside. Elements are very good at comparing items and looking for
changes but they don’t perform rendering. They can be of two types:

– ComponentElement. An element that contains other elements. It’s associated to a
widget that can nest other widgets inside.

abstract class ComponentElement extends Element { ... }

Flutter Complete Reference 245

Chapter 9. Basics of Flutter

– RenderObjectElement. An element that takes part in painting, layout and hit testing
phases.

abstract class RenderObjectElement extends Element { ... }

The element tree is basically a series of ComponentElement or RenderObjectElement, de-
pending on the widget they refer to. In our example, a Container is a ComponentElement
because it can host other widgets inside.

• Widget tree. It’s made up of classes extending StatelessWidget or StatefulWidget.
They’re used by the developer to build the UI and are not expensive to be created (much
less than a RenderObject).

Whenever the widget tree is changed (by a state management library for example), Flutter
uses the element tree to make a comparison between the new widget tree and the render tree.
An Element is a "middle way" between a Widget and a RenderObject used to make quick
comparisons needed to keep the trees updated.

1. A Widget is "light" and it’s instantiated quickly so frequent rebuilds aren’t a problem at all.
Widgets are all immutable and that’s why the state of a StatefulWidget is implemented
in another separated class. A stateful widget itself is immutable but the state it returns
can mutate.

class Example extends StatefulWidget {
const Example();

@override
_ExampleState createState() => _ExampleState();

}

class _ExampleState extends State<Example> {
@override
Widget build(BuildContext context) { ... }

}

The widget itself (Example) is immutable and so its mutable state (_ExampleState) is
implemented in another class. A StatelessWidget is immutable as well.

2. A RenderObject is relatively "expensive" and it takes time to instantiate so it’s recreated
only when really needed. Most of the times they’re internally modified (reusability is the
key).

Flutter Complete Reference 246

Chapter 9. Basics of Flutter

For each rebuild, Flutter traverses the entire tree looking for changes on widgets. If the type of
the Widget changed, then it’d be removed and replaced together with its associated Element
and RenderObject. All the 3 subtrees would also be recreated. If the Widget were of the same
type and just some properties changed, the Element would stay untouched and the RenderObject
would be updated (and not recreated). Let’s see an example:

Widget build(BuildContext context) {
return Container(

decoration: BoxDecoration(),
child: SomeText(

text: "Hello"
),

);
}

This is what we had earlier. Of course, on the first build the 3 trees are entirely created but from
now on, the framework will try to recreate the render tree as less as possible. Let’s say our state
management library changed the text of SomeText.

Widget build(BuildContext context) {
return Container(

decoration: BoxDecoration(),
child: SomeText(

text: "Hello world!"
),

);
}

When a rebuild happens, thanks to the element tree, Flutter notices that the type is still the
same (SomeText) but an internal property (text) has changed. By consequence, the associated
RenderObject just needs an update, which is cheap.

Flutter Complete Reference 247

Chapter 9. Basics of Flutter

This process is very fast because the RenderObject is not recreated but it’s just modified. Widgets
and elements are also quick to update so this is a good situation. Let’s now say that our library
replaces SomeText with Flutter’s Text widget.

Widget build(BuildContext context) {
return Container(

decoration: BoxDecoration(),
child: Text("Hello world!"),

);
}

While traversing the tree, the framework notices again the change thanks to the element tree. In
particular, this time the type of the widget is completely different so there’s the need to rebuild
the entire subtrees (widgets, elements and renders).

Flutter Complete Reference 248

Chapter 9. Basics of Flutter

The associated RenderObject is not updated: it has to be entirely recreated because the wid-
get has a different type and thus there’s no way to reuse the old instance. In summary, Flutter
relies on 3 trees to efficiently handle the rendering and tries to reuse RenderObjects as much
as possible. Thanks to Elements, the framework knows when something has changed on Widgets.

� The BuildContext parameter you see in any build() method basically represents
the Element associated to the widgets. In reality, BuildContext objects are Element
objects. The Flutter team created BuildContext to avoid the direct interaction with
Element, which should be used by the framework and not by you.

The render tree is the one that actually takes care of painting elements to the UI. The widget
tree is manually built by you, the developer. The element tree is maintained by the framework
to decide whether it’s time to update or recreate a RenderObject.

9.4.2 Foreign Function Interface

Thanks to the dart:ffi library, also known as Foreign Function Interface, your Dart code
can directly bind to native APIs written in C. FFI is very fast because there’s no serialization
required to pass data since calls are made to dynamically or statically linked libraries. Here’s a
an example:

// demo.h
void print_demo() {};

Flutter Complete Reference 249

Chapter 9. Basics of Flutter

// demo.c
#include <stdio.h>
#include "demo.h"

void print_demo() {
printf("Dart FFI demo!");

}

int main() {
print_demo();
return 0;

}

We’re going to call void print_demo() written in C inside a Dart app thanks to FFI. To keep
the example simple, we assume that every file is in the same folder and the following Dart code
is all inside main.dart. Let’s start with the fundamentals:

import "dart:ffi" as FFI;

// Signature of the function in C
typedef print_demo_c = FFI.Void Function();
// Signature of the function in Dart
typedef PrintDemo = void Function();

The first typedef uses FFI to represent the signature of the C function we’re going to call. It’s
basically used to represent the C function into its Dart counterpart, identified by PrintDemo. Of
course, you have to declare two typedef whose signatures match.

import "dart:ffi" as FFI;

typedef print_demo_c = FFI.Void Function();
typedef PrintDemo = void Function();

void main() {
// Open the library
final path = "demo_lib.dll"; // On Windows
final lib = FFI.DynamicLibrary.open(path);

// Create a "link" from C to Dart

Flutter Complete Reference 250

Chapter 9. Basics of Flutter

final PrintDemo demo = lib
.lookup<FFI.NativeFunction<print_demo_c>>('print_demo')
.asFunction();

// Call the function
demo();

}

In general, when working with FFI you always have to create two typedef: one for the "C side"
and the other for the "Dart side". When building the C code, various files are created but you’re
only interested in the one with the following extension: .dll on Windows, .so on Linux and
.dylib on macOS. On Windows, be sure that your compiler properly exports to the DLL the
functions Dart has to use.

int sum(int a, int b) {
return a + b;

}

The above code can easily be used by Dart in the same way we did earlier in the demo function.
Inside dart:ffi you’ll find many types representing the C primitive ones, such as Int32, Double,
UInt32, Handle and much more.

typedef sum_c = FFI.Int32 Function(FFI.Int32 a, FFI.Int32 b);
typedef Sum = int Function(int a, int b);

Check out the official documentation 12 for some nice examples on how to interact with structs,
strings and SQLite databases.

9.4.3 Method channels

Available only for mobile and desktop, method channels allow Dart to call platform-specific code
of your hosting app. Data are serialized from Dart and then deserialized in Java, Kotlin, Swift
or Objective-C. Look how easy it is:

const channel = MethodChannel("person");
final name = await channel.invokeMethod<String>("getPersonName");
print(name); // 'name' is a regular Dart string

As example, let’s say the above code is going to call the getPersonName(): String function
declared in a native Android app written in Kotlin. There’s a similar setup to do in the native

12https://api.dart.dev/stable/2.9.2/dart-ffi/dart-ffi-library.html

Flutter Complete Reference 251

Chapter 9. Basics of Flutter

part as well but it’s very simple to understand:

// Initialization
val channel = MethodChannel(flutterView, "person")
channel.setMethodCallHandler {call, result ->

when (call.method) {
"getPersonName" -> result.success(getPersonName())
else -> result.notImplemented()

}
}

// This function is defined somewhere
fun getPersonName(): String {

return "Alberto"
}

In both cases, the MethodChannel instance has to be created with the same name ("person") oth-
erwise the "link" between Dart and Kotlin won’t work. The name of the function matches the ac-
tual name on the native side just for convenience but it’s not required. With invokeMethod<T>()
you can also pass parameters in case the function were asking for some. For example, if you called
this in Dart...

const channel = MethodChannel("random");
final random = await channel.invokeMethod<int>("getRandom", 60);

... it would mean that you’re expecting a method on the native language called getRandom asking
for a single integer parameter. This example instead is written in Swift but the logic is always
the same (just a different syntax):

// Initialization
let chl = FlutterMethodChannel(name: "random", binaryMessenger: flutterView)
chl.setMethodCallHandler {

(call: FlutterMethodCall, result: FlutterResult) -> Void in
switch (call.method) {

case "getRandom": result(getRandom(call.arguments as! Int))
default: result(FlutterMethodNotImplemented)

}
}

// This function is defined somewhere

Flutter Complete Reference 252

Chapter 9. Basics of Flutter

func getRandom(value: Int) -> Int {
return Int.random(in: 0...value);

}

Thanks to call.arguments you access the argument passed via method channel which could be,
for example, a primitive type or a map. A MethodChannel is a common interface for both Dart
and the other native language that allows Flutter to send/receive messages. This is a scheme of
how method channels are implemented:

In the native code, method channels must be called in the main thread and not in a background

Flutter Complete Reference 253

Chapter 9. Basics of Flutter

one (in Android, the "main" thread is actually called UI thread). To sum up, the communication
flow works like this:

1. Flutter sends a message to the iOS or Android part of the app using a method channel;

2. the underlying system listens on the method channel and so the message is received;

3. one or more platform-specific APIs are called, using the native programming language;

4. a response is sent back to the client (Flutter) which processes the result.

You can’t do the same with FFI because there are no libraries to be linked and data need seri-
alization/deserialization: method channels work differently and require a native implementation
as well.

Flutter Complete Reference 254

10 | Building UIs in Flutter

Flutter allows the developer to completely customize the UI: you have control over each single
pixel of the screen. Layouts can be created from scratch but for common use-cases there are a
series of built-in widgets that are going to save hours of work.

10.1 Material

Flutter gives you a series of pre-built components to create apps embracing the typical Android
design, also known as Material Design. It’s very likely you’ve already seen this kind of UI
appearance somewhere, in landscape mode:

Flutter Complete Reference 255

Chapter 10. Building UIs in Flutter

This is a classic example of material design with a Floating Action Button (FAB) on the bottom
right and an app bar at the top. There are two possible ways to create the above material
layout:

• Not recommended. Create the entire layout from scratch using stateless and stateful
widgets. Actually there’d be quite a lot of work to do because you’ll have to deal with
screen dimensions, positioning, buttons and so on.

• Recommended. Import the material.dart package and use the MaterialApp() widget
provided by Flutter. It represents the "skeleton" of a UI following the material design
guidelines 1; it’s very convenient:

Widget build(BuildContext context) {
return MaterialApp(

home: Scaffold(
appBar: AppBar(

title: const Text("Flutter"),
actions: const [

Padding(
padding: EdgeInsets.only(right: 20),
child: Icon(Icons.info),

)
]

),
drawer: const Drawer(),
body: const Center(

child: Text("Wow nice book"),
),
floatingActionButton: FloatingActionButton(

onPressed: () {},
child: const Icon(Icons.add),

),
),

);
}

}

The big advantage is that you don’t have to write thousands of lines of code trying to

1https://material.io/design/guidelines-overview/

Flutter Complete Reference 256

Chapter 10. Building UIs in Flutter

emulate the material design aspect. Flutter already gives you everything you need and
with MaterialApp you’re guaranteed to create a beautiful material app.

The constructor of class MaterialApp(...) has many interesting parameters we will cover later
in the book, such as the ones for setup pages navigation and localization. We’re now giving you
a showcase of the most relevant material widgets.

10.1.1 Scaffold

As you’ve seen in the preceding code snippet, class Scaffold(...) implements the basic ma-
terial design layout structure for you. Other than providing the typical Android "look-and-feel"
it gives the possibility to handle many other widgets:

• AppBar. It’s always placed at the top of the screen and it’s the Java/Kotlin equivalent of the
Toolbar class. If the Scaffold had a drawer, an hamburger button would automatically
be added to handle the opening/closing of the menu.

While navigating back and forth between your app’s pages (or routes, in the Flutter world)
the AppBar automatically adds a "back" button, the typical left arrow.

Scaffold(
appBar: AppBar(

// Set this to false if you don't want the
// back button to automatically appear next
// to the title while navigating among pages
automaticallyImplyLeading: false,
// Title
title: const Text("App Bar without Back Button"),

)
)

Flutter Complete Reference 257

Chapter 10. Building UIs in Flutter

Buttons on the right are called action buttons and they can be set by passing a list of
widgets to the actions named parameter. In general, actions are clickable icons that
visually represent what’s the purpose of that button.

Scaffold(
appBar: AppBar(

actions: [
IconButton(

icon: const Icon(Icons.info),
onPressed: () {...}

),
]

)
)

• Drawer. A drawer is a container that horizontally slides from a side of the screen to show
a series of items. In general it’s used to display a combination of icons and texts that route
the user to specific pages of the app.

Flutter Complete Reference 258

Chapter 10. Building UIs in Flutter

By default a drawer slides from the left to the right but you can also create an endDrawer
which slides in the opposite direction, from right to left. It’s still the same Drawer() class
but it’s assigned to another constructor named parameter.

Scaffold(
// The 'classic' left to right drawer
drawer: Drawer(

child: ListView(
ListTile(

leading: const Icon(Icons.people),
title: const Text("Item 1"),
onTap: () {},

),
ListTile(

leading: const Icon(Icons.train),
title: const Text("Item 2"),
onTap: () {},

)
)

),
// The same as before but this slides
// from the right to the left
endDrawer: Drawer()

)

• Floating Action Button. Also known as FAB , it is a special rounded button with
elevation that usually appears on the bottom-right corner of the screen. By using a float-
ingActionButtonLocation you can decide the position of the widget:

Scaffold(
floatingActionButton: FloatingActionButton(

child: const Icon(Icons.add),
backgroundColor: Colors.red,
onPressed: () {...},

),
)

This snippet adds a FAB to the default position of the screen (bottom-right):

Flutter Complete Reference 259

Chapter 10. Building UIs in Flutter

Do you want to have it at the center rather than on the right? There are many positions
available you can use:

floatingActionButton: FloatingActionButton(
child: const Icon(Icons.add),
backgroundColor: Colors.red,
onPressed: () {},

),
floatingActionButtonLocation:

FloatingActionButtonLocation.centerFloat,

A Scaffold can only have a single FAB.

The Scaffold widget is for sure very important as it’s the base building block for material user
interfaces and probably you’ll use it very often. In the third part of the book you’ll see many
examples highlighting the strength of this widget. 2

10.1.2 Material widgets

Flutter provides a very big collection of widgets that follow the official material guidelines. The
Flutter team constantly improves them and adds new ones as time goes by. We’re not going to
make a full list of every kind of widget because you’ll encounter them in the practical examples
of Part III.

2https://api.flutter.dev/flutter/material/Scaffold-class.html

Flutter Complete Reference 260

Chapter 10. Building UIs in Flutter

10.1.2.1 Buttons

Buttons are fundamental in any kind of app because they’re the most intuitive way to tell the user
that, when pressed, something is going to happen. Flutter has many material widgets created to
follow material guidelines for buttons.

• RaisedButton.

This is a typical Android button with a rectangular shape and a default elevation (the
shadow behind). When hovered the elevation increases so that you can visually see the
interaction with the button.

• FlatButton.

It’s very similar to a RaisedButton with the difference that here there is no elevation and
nothing happens visually when you tap on it. It’s like a "static" version of a RaisedButton.

• ButtonBar.

It’s an horizontal container holding a series of button. It can be useful in those cases where
you have a dialog and you want to show two buttons like NO and YES.

ButtonBar(
alignment: MainAxisAlignment.center,

Flutter Complete Reference 261

Chapter 10. Building UIs in Flutter

children: [
FlatButton(

onPressed: () {},
child: const Text("No")

),
RaisedButton(

onPressed: () {},
child: const Text("YES")

),
],

);

• IconButton.

You’ve already seen an example in the AppBar as they make icons clickable; it’s a button
whose content is a material Icon rather than a plain string.

10.1.2.2 Dialogs

The most common type of dialog is the one that asks you for the confirmation or rejection of an
action; this kind of widget is well-known as AlertDialog. You have to use the showDialog(...)
method to make it appear on the screen.

showDialog<void>(
context: context,
builder: (BuildContext context) {

return AlertDialog(
title: const Text("Example"),
content: const Text("Do you like this book?"),
actions: [

FlatButton(
child: const Text("Yes"),
onPressed: () {},

),
FlatButton(

child: const Text("Sure"),
onPressed: () {},

)

Flutter Complete Reference 262

Chapter 10. Building UIs in Flutter

]
);

}
);

By default a dialog can be closed just by tapping outside of the white area of the box. If you
don’t want this behavior, just set barrierDismissible: false and the dialog will disappear
only if a button is pressed.

Of course you can fully customize the dialog as much as you want because the content parameter
can be any widget such as an image. You could use icons or raised buttons instead of the flat
ones. You could even change the borders of the dialog.

It’s just a matter of using RoundedRectangleBorder and Flutter will take care of everything

Flutter Complete Reference 263

Chapter 10. Building UIs in Flutter

else.

showDialog<void>(
context: context,
builder: (BuildContext context) {

return AlertDialog(
title: const Text("Example"),
content: const Text("Do you like this book?"),
actions: [...],
shape: RoundedRectangleBorder(

borderRadius: BorderRadius.circular(30),
)

);
}

);

If you want the dialog to look like a circle, use instead CircleBorder as border shape. In order to
close a dialog there’s the need to use class Navigator {} which will be fully covered in chapter
12.

AlertDialog(
actions: [

FlatButton(
child: const Text("Close"),
onPressed: () =>

Navigator.pop(context),
),

]
);

There are also other kinds of dialogs you could use in your applications:

• SimpleDialog. This is a simple dialog in which the user can choose between a series of
options. The selected value will be asynchronously returned by T showDialog<T>().

final type = await showDialog<String>(
context: context,
builder: (BuildContext context) {

return SimpleDialog(
title: const Text("Cake flavor?"),
children: [

Flutter Complete Reference 264

Chapter 10. Building UIs in Flutter

SimpleDialogOption(
onPressed: () =>

Navigator.pop(context, "chocolate"),
child: const Text("Chocolate"),

),
SimpleDialogOption(

onPressed: () =>
Navigator.pop(context, "apple"),

child: const Text("Apple"),
),

]
);

}
);

Very shortly, the Navigator class is used to navigate between routes (your app’s pages)
and close alert dialogs (which are routes too). The pop() method removes the currently
visible route from the screen and thus the alert disappears.

As always, this is fully customisable because instead of a boring plain text you could have
put any widget such as images or a coloured text with a fancy font.

• showBottomSheet. This method animates a dialog that slides from the bottom of the

Flutter Complete Reference 265

Chapter 10. Building UIs in Flutter

screen up to a certain height, which is determined by the size of the contained widget. In
general it’s a good idea having a Container as "base" child which has an easy setup for
height, shape and colors.

showBottomSheet<String>(
context: context,
builder: (BuildContext context) {

return Container(
color: Colors.blueAccent,
height: 40,
child: const Center(

child: Text(
"BottomSheet",
style: TextStyle(

color: Colors.white,
)

)
),

);
}

);

The result of this code is a blue stripe at the bottom of the screen which slides up and
shows its content. Calling Navigator.pop(context); closes the dialog which slides down
until it disappears.

10.2 Cupertino

The CupertinoApp widget is the Apple counterpart of MaterialApp as it focuses on the typical
iOS design. It’s a series of pre-built components that allow you to create applications that follow
the typical iOS UI style.

Flutter Complete Reference 266

Chapter 10. Building UIs in Flutter

The same recommendations we made for material also apply here. You could create an iOS theme
from scratch but it would require a lot of time and testing; it’s not worth the effort because you
can use Flutter’s cupertino components.

Widget build(BuildContext context) {
return CupertinoApp(

home: const CupertinoPageScaffold(
navigationBar: CupertinoNavigationBar(

middle: Text("Cupertino App"),
),
child: Center(

child: Text("Cupertino theme!"),
),

),
);

}

The constructor of class CupertinoApp() has many interesting parameters we will cover later
in the book, such as the ones to setup page navigation and localization. We’re now giving you a
showcase of the most relevant cupertino widgets.

Flutter Complete Reference 267

Chapter 10. Building UIs in Flutter

10.2.1 CupertinoPageScaffold

There are two main kind of scaffolds in the cupertino library: the CupertinoPageScaffold,
which has a navigation bar at the top, and the CupertinoTabScaffold, which uses tabs to
display contents.

CupertinoApp(
home: const CupertinoPageScaffold(

// It's a "plain" bar with the title and some icons
navigationBar: CupertinoNavigationBar(

middle: Text("Page title"),
trailing: Icon(CupertinoIcons.info),

),
child: Center(

child: Text("Body of the app")
)

),
);

The CupertinoTabBar widget instead implements the tab navigation pattern in a typical iOS
style. It allows multiple pages to be shown in a single view by tapping on the icons at the bottom
but there’s no swipe gesture enabled. The onTap callback is triggered when the user taps on an
icon:

The only required widget is the icon but the text that lies underneath can be omitted if it’s not
needed. Visit the official documentation 3 to see any custom parameter that can be set for this
widget.

CupertinoTabScaffold(

3https://api.flutter.dev/flutter/cupertino/CupertinoTabBar-class.html

Flutter Complete Reference 268

Chapter 10. Building UIs in Flutter

tabBar: CupertinoTabBar(
onTap: (index) {...},
activeColor: Colors.blue,
items: const [

BottomNavigationBarItem(
icon: Icon(Icons.home),
title: Text("Home"),

),
BottomNavigationBarItem(

icon: Icon(Icons.email),
title: Text("E-mail"),

),
],

),
tabBuilder: (context, index) {...}

),

Once icons have been defined via items, the tabBuilder parameter defines which pages have to
be shown when an item is tapped. When the tab becomes inactive, its content is automatically
cached in the widget tree for better reusability in subsequent calls.

CupertinoTabScaffold(
tabBar: CupertinoTabBar(...)
tabBuilder: (context, index) =>

CupertinoTabView(
builder: (context) {

switch (index) {
case 0:
return const PageOneWidget();

case 1:
default:

return const PageTwoWidget();
}

},
),

),

In general, CupertinoTabScaffold should be your first choice when a tabbed layout is required
for your UI; if it’s not the case, go for CupertinoPageScaffold which is basically a "plain" iOS

Flutter Complete Reference 269

Chapter 10. Building UIs in Flutter

page.

10.2.2 Cupertino widgets

Flutter provides a very big collection of widgets that follow the iOS design guidelines. At the
time of writing this book, the cupertino library has less widgets than material but the Flutter
team has stated in their roadmap 4 that the collection is going to grow over the time.

• CupertinoAlertDialog.

An iOS alert dialog that notifies the user and requires an action, defined by buttons. Typ-
ically an instance of CupertinoAlertDialog is passed as child widget to showDialog(),
which displays the dialog.

showDialog<void>(
context: context,
builder: (context) {

return CupertinoAlertDialog(
title: const Text("Cupertino Alert"),
content: const Text("iOS alert dialog"),
actions: <Widget>[

CupertinoButton(
child: const Text("Ok"),
onPressed: () => Navigator.pop(context),

)

4https://github.com/flutter/flutter/wiki/Roadmap

Flutter Complete Reference 270

Chapter 10. Building UIs in Flutter

],
);

}
),

Generally iOS dialog buttons are red, in case of a deletion action, or in old blue, in case of a
default option. Rather than using a CupertinoButton, a CupertinoDialogAction would
be better:

CupertinoAlertDialog(
actions: <Widget>[

CupertinoDialogAction(
isDefaultAction: true,
child: const Text("Ignore"),
onPressed: () {...},

),
CupertinoDialogAction(

isDestructiveAction: true,
child: const Text("Delete"),
onPressed: () {...},

),
],

);

isDestructiveAction: true makes the text red while isDefaultAction: true makes it
blue.

• CupertinoButton.

It’s a typical flat iOS button which has no background color by default but of course it can
be set via color property. When tapped, the onPressed callback is triggered.

CupertinoButton(
child: const Text("iOS Button",

style: TextStyle(

Flutter Complete Reference 271

Chapter 10. Building UIs in Flutter

color: CupertinoColors.white
),

),
color: CupertinoColors.activeBlue,
onPressed: () {...},

),

The cupertino library has less widgets than material because an iOS button style has less "vari-
ants" than the Android counterpart but still it’s fully customizable. Be sure to check the cupertino
catalog 5 in the official Flutter documentation.

10.3 Building layouts

10.3.1 Platform support

You have just seen that the framework has a lot of useful pre-built components you can use to
create beautiful UIs. Before starting the development you have to think about what the end user
needs and how many platforms you have to support at the same time.

At the time of writing this book, Flutter is at production quality only for mobile devices. Web
support is in beta while desktop support is still in early alpha. Nevertheless, it’s just a matter
of time because in the future Flutter will target any platform. For this reason, your apps should
adopt to various screen sizes and input types.

10.3.1.1 Single OS

The simplest case is the one in which you have to create an application that is going to run
exclusively on Android or iOS, not in both. If the structure of the app is fairly "standard",
Material or Cupertino widgets are enough to do the work. To be more precise, saying "standard"
in the Android world refers to the fact of having at least:

• a horizontal bar at the top with the title and maybe a series of buttons;

5https://flutter.dev/docs/development/ui/widgets/cupertino

Flutter Complete Reference 272

Chapter 10. Building UIs in Flutter

• a menu sliding from the right/left of the screen (a Drawer);

• probably a FAB or a layout with swipeable tabs.

A Scaffold helps you to easily create a layout with the above characteristics but if you want to
have a completely different structure or something very particular, don’t use it. Look at these
two examples:

Both are Android apps and you can immediately see that the one on the left is very close to a
"traditional" material app: it has a drawer, and app bar, icons and a swipeable tab on the bottom.

Flutter Complete Reference 273

Chapter 10. Building UIs in Flutter

� The example on the right would be impossible to realize with a Scaffold because
it has a completely different structure from the one that a Scaffold proposes, so in
this case you’d have to create everything from scratch.

The thing is: don’t use the material library when your app’s design has nothing to do with ma-
terial guidelines. If the layout is very particular, it’d be better if you created it from scratch and
it’s perfectly doable in Flutter. Don’t force yourself using Flutter’s material/cupertino libraries
because they aren’t always the right choice for the UI you’re going to implement.

� Of course the same recommendations also appliy to the cupertino library. If your
iOS app is going to look quite different to what is a "standard" iOS design, go for a
complete custom UI and don’t rely on cupertino.

10.3.1.2 Multiple OSes

This is the hardest case and probably the most common because, in general, companies want
their app to be available for both Android and iOS. Here’s where cross-platform tools, such as
Flutter, come to the rescue. As always, they can become your enemy if misused but we have
some recommendations for you.

� In the following paragraphs, let’s pretend that you’re asked to create an app for
a restaurant with the possibility to make a reservation, see the menu and a gallery of
images.

UI consistency is very important: the app should look exactly the same in any OS it’s running on.
Surely your customer will ask not only for the same design, but also for identical functionalities.
This is what we suggest:

• DO NOT use material and cupertino to create two different versions for the same app.
For example, doing this is absolutely wrong:

// Contains 'TargetPlatform'
import 'dart:io' show Platform;

void main() {

Flutter Complete Reference 274

Chapter 10. Building UIs in Flutter

if (Platform.isAndroid) {
runApp(const AndroidVersion());

} else {
runApp(const iOSVersion());

}
}

// Uses MaterialApp
class AndroidVersion extends StatelessWidget {}

// Uses CupertinoApp
class iOSVersion extends StatelessWidget {}

With this approach, you’re forced to keep 2 separate versions of the same app and all
the advantages of cross-platform development are gone. This is the same as having two
separated native projects in Java/Kotlin and Objective-C/Swift!

• DO create an nice UI for both operating systems so that you can write the code only once.
Even if this might seem obvious, it’s still worth saying rather then taking it for granted.
Flutter is made for this purpose.

import 'dart:io' show Platform;

void main() => runApp(RestaurantApp());

class RestaurantApp extends StatelessWidget {
const RestaurantApp();

// Depending on the platform, return a different logo
String _logoName() {

if (Platform.isIOS) {
return "Welcome iOS user!";

}
return "Welcome Android user!";

}

Widget build(BuildContext context) {...}
}

In this example, the same single codebase works for both Android and iOS. Certain settings

Flutter Complete Reference 275

Chapter 10. Building UIs in Flutter

may differ according to the OS type but it’s fine since there’s still a single project being
maintained.

You should try as much as possible to not depend on OS-specific settings or configurations; always
try, when possible, to make your architecture working fine regardless the OS on which it runs.
Writing robust cross-platform applications is not easy but Flutter gives you a great boost in the
correct direction!

10.3.2 Responsive UIs

High quality apps are responsive because they automatically adapt to the size of the screen by
rearranging the UI in order to properly fill all the available space. Just think of an orientation
changing in your mobile phone for example: the horizontal space increases/decreases and your
UI should adapt by consequence.

Lists are a common UI element and in fact ListView is a very popular Flutter widget. In the
above picture you can see a scrollable list with a series of items. It looks good as it is but if we
rotated the screen the situation would change:

Flutter Complete Reference 276

Chapter 10. Building UIs in Flutter

Now there is a lot of free space on the right and there are only two fully visible items; the user
has to scroll a lot more than before. In such cases, a good responsive UI rearranges its contents
in order to cover all the available space.

� This problem is not only tied to the screen rotation case. If your app runs on
both mobile phones and tablets (which is very likely) there are big size differences on
the screens and your UI should be flexible enough to look well in any case.

More in general, if you plan to run your Flutter app on mobile devices, desktop and web there
will be huge screen size differences. You really need to take this into account and create the UI
by consequence.

10.3.2.1 LayoutBuilder

Considering the above example of a simple list with items, the code is pretty simple at the
moment. The ListView is always used in the vertical direction without taking into account the
orientation of the screen. As we’ve seen, this is not a responsive usage at all:

Scaffold(
body: ListView.builder(

itemCount: 50,
itemBuilder: (context, id) {

return ListTile(
leading: const Icon(Icons.add_box),
title: Text("Item $id"),

);
}

Flutter Complete Reference 277

Chapter 10. Building UIs in Flutter

)
),

The LayoutBuilder widget gives information about the constraints of the parent such as the
width and the height. Really consider using this class to make your apps responsive because it
can be used to decide how to arrange the UI according to the available space.

Scaffold(
body: LayoutBuilder(

builder: (BuildContext context, BoxConstraints sizes) {
if (sizes.maxWidth < 500) {

return const ListData();
}
return const GridData();

}
)

)

The BoxConstraints class gives a series of information about the size of the parent widget. In
this case, we’re using it to decide the following: if the width is lower than 500 a list is good,
otherwise it’s better rearranging in a grid to fill the space in a better way.

class ListData extends StatelessWidget {
const ListData();

@override
Widget build(BuildContext context) {

return ListView.builder(
itemCount: 100,
itemBuilder: (context, id) {

return ListTile(
leading: const Icon(Icons.add_box),
title: Text("Item $id"),

);
}

);
}

}

class GridData extends StatelessWidget {

Flutter Complete Reference 278

Chapter 10. Building UIs in Flutter

const GridData();

@override
Widget build(BuildContext context) {

return GridView.count(
crossAxisCount: 2,
children: List.generate(100, (index) {

return Center(
child: ListTile(

leading: const Icon(Icons.add_box),
title: Text("Item $index"),

);
);

}
);

}
}

The Grid widget automatically places elements in a grid and the number of columns is determined
by the value passed to crossAxisCount. This code is said to be responsive because when the
width of the screen changes, thanks to LayoutBuilder, the UI is rearranged accordingly.

If you opened your app in a tablet, which has a very wide screen, you’ll already see the grid
instead of the list. LayoutBuilder is good for screen rotations and much more; you can (and
should) use it to adapt the UI to the dimensions of many devices such as mobile phones, tablets

Flutter Complete Reference 279

Chapter 10. Building UIs in Flutter

and desktop.

10.3.2.2 MediaQuery

The MediaQuery class is a sort of more powerful version of LayoutBuilder because it’s always
available and it gives you more control over various settings of the screen. It just requires a
context:

@override
Widget build(BuildContext context) {

// We're using 'double.nan' but it could have been any other value
final width = MediaQuery.of(context)?.size.width ?? double.nan;
return Text("$width");

}

With size you also have access to height, padding, distances and much more. You can handle
the nullable value returned by of() with a default value (like we did) of with an null check (an
if statement). For example, you might want to know which is the current orientation of the
device:

final orientation = MediaQuery.of(context)?.orientation;

// Using a null check rather than providing a default value
if ((orientation != null) && (orientation == Orientation.portrait)) {...}

10.3.2.3 Good practices

High quality applications are responsive and so we strongly encourage you to not test your app
only on a mobile device locked in portrait mode. Do a lot of tests with different screen sizes in
both portrait and landscape mode. Other than this, here are a few tips you can try:

• If you have to make your app responsive, avoid using MediaQuery.of(context) to calculate
the spaces and the dimensions. It holds a lot of metadata about the physical screen but it
knows nothing about the widget itself.

• Use LayoutBuilder to make responsive layouts as it provides dimensions about the con-
taining widget andNOT about the screen itself, like MediaQuery does. This example might
give a better idea of the difference between the two approaches.

// 1.
Widget build(BuildContext context) {

final width = MediaQuery.of(context)?.size.width ?? 0;

Flutter Complete Reference 280

Chapter 10. Building UIs in Flutter

return Text("$width");
}

// 2.
Widget build(BuildContext context) {

return LayoutBuilder(
builder: (context, constraints) {

return Text("${constraints.maxWidth}");
}

);
}

To get the most out of this example, put this build method in the root widget of your tree.
You’ll see that both cases 1 and 2 will print the same size because:

– MediaQuery returns the width of the screen

– LayoutBuilder returns the width of the parent widget but, being it the root, it takes
the entire size of the screen.

Now try to run this example which is a little different:

// 1.
Widget build(BuildContext context) {

final width = MediaQuery.of(context)?.size.width ?? 0;
return Padding(

padding: EdgeInsets.all(15),
child: Text("$width"),

);
}

// 2.
Widget build(BuildContext context) {

return Padding(
padding: EdgeInsets.all(15),
child: LayoutBuilder(

builder: (context, constraints) {
return Text("${constraints.maxWidth}");

}
)

Flutter Complete Reference 281

Chapter 10. Building UIs in Flutter

);
}

Here there’s the important difference between the two widgets. MediaQuery still returns the
same value, because the width of the screen hasn’t changed, but LayoutBuilder returns a
different size which is 30 units smaller than before.

– LayoutBuilder takes into account the fact that there is a padding and the returned
dimension is screenSize - paddingAmount, which is the available space.

– MediaQuery will always return the same value because the device’s screen width didn’t
change. It doesn’t consider the padding.

You really should not use MediaQuery as it’s just the "measures" of the device; use
LayoutBuilder instead which calculates the actual remaining space by considering the
dimensions of other widgets that contain it.

As we’ve already seen, use MediaQuery.orientation if you only need to know whether the device
is in landscape mode or not . Be aware that there is also the OrientationBuilder widget:

OrientationBuilder(
builder: (context, orientation) {

if (orientation == Orientation.portrait) {
//work in portrait mode

} else {
//work in landscape mode

}
}

);

Pay attention to the fact that OrientationBuilder depends on the parent widget’s orientation,
which is not the device orientation. For example, if your device were in portrait mode and you
opened the keyboard to fill a form, the height might become smaller than the width and thus
OrientationBuilder would return landscape.

1. Use MediaQuery to get the current orientation of the device. In practice it’s the physical
position (horizontal or vertical) of the mobile phone or tablet,

2. Use OrientationBuilder to get the current orientation according to the parent widget’s
orientation. It’s not based on the orientation of your physical device but it relies on the
dimensions of the containing widget (whether the height is smaller or greater than the
height).

Flutter Complete Reference 282

Chapter 10. Building UIs in Flutter

10.3.3 Scrolling and constraints

Both ListViews and Columns are very popular but you have to pay attention to how they treat
the contents in the vertical axis. This code seems to work as intended but it will throw a runtime
exception because the height of the column is infinite.

Column(
children: [

const Text("My name"),
const Text("My surname"),

ListView(
children: const [

Text("Skill 1"), Text("Skill 2"),
]

)
]

);

You want your name and surname to stay always at the top but the list of your endless skills
must scroll. The above solution is not doable because a Column expands to fill the entire available
space and a ListView does the same. They both don’t have a defined height. Here’s how the
boundaries look like:

They are two widgets without a specific value for the height because they always try to fill the
entire available space and so determining a value in advance is not possible. If you nested them

Flutter Complete Reference 283

Chapter 10. Building UIs in Flutter

like this...

... you would get an error because both try to expand to cover the entire space but there are
no parent widgets with a fixed height. The solution is to always be sure they’re inside a widget
which sets a finite height and there are a few ways to do this:

1. You can use the Expanded widget which expands to fill the remaining available space in a
Column or in a Row by giving a full set of dimensions.

Column(
children: [

const Text("My name"),
const Text("My surname"),

Expanded(
child: ListView(

children: const [
Text("Skill 1"),
Text("Skill 2"),

]
),

Flutter Complete Reference 284

Chapter 10. Building UIs in Flutter

),
]

);

In this way ListView works properly because Expanded doesn’t return an infinite height:
it expands to fill exactly the remaining space and calculates a finite height. This widget
can also be used with Columns and Rows.

� A Row has the same "problem" but in the other direction (the horizontal
axis). Every consideration made for columns is also valid for rows with the only
difference that the orientation is on the x-axis rather than the y-axis.

2. There’s an interesting attribute of ListView that changes the behavior of the widget so
that it has a fixed height and the problem of the lower bound disappears.

Column(
children: [

Text("My name"),
Text("My surname"),

ListView(
shrinkWrap: true,
children: [

Text("Skill 1"),
Text("Skill 2"),

]
)

]
);

By setting shrinkWrap: true the list occupies only the space it needs and it does not
expand to fill all the available space. In this way it has a well-defined height because it’s
calculated according to the dimensions of the children.

Flutter Complete Reference 285

Chapter 10. Building UIs in Flutter

However, since Column doesn’t handle overflows with scroll bars, if the list is too long and
the screen cannot contain it entirely you’ll see anyway the runtime overflow exception. This
isn’t really a "safe" solution.

3. The Expanded widget is generally the most convenient to use but you can put the list inside
any kind of widget with a well-defined height such as a Container or a SizedBox.

SizedBox.fromSize(
size: const Size(100, 100),
child: ListView(...),

);

You could also make it so that the container automatically fills the entire width and force
its height to be a fixed value. It’s like an Expanded on which you can control the height
and/or the width.

Container(

Flutter Complete Reference 286

Chapter 10. Building UIs in Flutter

constraints: const BoxConstraints.expand(
height: 200

),
child: ListView(...),

);

There are lots of possibilities, including the combined usage of a LayoutBuilder with a Container
but it might get too complicated. Try to keep it simple by using Expanded or another single wid-
get that automatically handles the sizes.

� In general, you get this kind of "infinite constraint" issues with rows, columns and
lists as they’re very frequently used. Very often, the simple solution is called Expanded
but if you’re looking for a more sophisticated approach, consider using SizedBoxes or
Containers.

10.3.4 Using themes

If you want to share font styles, colors and other UI appearance settings throughout an app, use
the ThemeData class, in case of a MaterialApp, or a CupertinoThemeData, for the CupertinoApp
widget. For example, if you used this kind of setup...

MaterialApp(
theme: ThemeData(

fontFamily: "Times New Roman",
),

)

... the default fontFamily property of your app’s widget will be "Times New Roman". This is
very convenient because, for example, any Text widget will inherit that specific font family and
you wouldn’t have to this all the time:

const Text("Something",
style: TextStyle(

// Useless because "Times New Roman" is already inherited thanks
// to 'ThemeData'
fontFamily: "Times New Roman",

)
)

With the usage of ThemeData changes are automatically reflected on any children so the mainte-

Flutter Complete Reference 287

Chapter 10. Building UIs in Flutter

nance is a lot easier. Do you want to use a different font family such as "Georgia"? Just setup
the new value in ThemeData and automatically the changes will be reflected anywhere else. It’s
a centralized place in which you can style widgets:

MaterialApp(
theme: ThemeData(

buttonColor: Colors.red, // Color of a RaisedButton
focusColor: Colors.white, // Color when a widget is focused
selectedRowColor: Colors.orange,

primaryColor: Colors.green,
accentColor: Colors.red,

),
)

Generally a ThemeData should always declare a primaryColor, which defines the color of the
most common UI widgets (scaffolds, tab bars, textfields focuses...), and a primaryAccent, which
defines the color for foreground widgets (FABs, list overscroll glow...). If you want to implement
a dark or light theme for your app, consider using the following named constructors:

// Predefined set of colors to implement dark and light themes
theme: ThemeData.dark()
theme: ThemeData.light(),

You can get a reference to the theme properties by calling Theme.of(context) anywhere on the
widget tree. There is also the possibility to override only a specific set of properties for a given
theme in order to preserve the other settings:

MaterialApp(
theme: ThemeData.dark().copyWith(

primaryColor: Colors.grey
)

)

This is a dark() theme with the only difference that primaryColor has been changed to be grey
(all the other parameters are still the same). You could also decide to override theme settings
for certain parts of the tree rather than applying a global theme like we’ve done in the above
example. This is possible thanks to the Theme widget:

// main.dart
MaterialApp(

Flutter Complete Reference 288

Chapter 10. Building UIs in Flutter

theme: ThemeData.dark();
)

// light_footer.dart
Widget build(BuildContext context) {

return Theme(
data: ThemeData.light(),
child: const MyFooter(),

);
}

In this example, the entire app has a dark() theme but the MyFooter widget and all of its
children will use the light() theme instead. In other words Theme is used to override the current
theme with a new one for the entire subtree. In fact:

• calling Theme.of(context) inside MyFooter returns a reference to the light theme;

• calling Theme.of(context) outside MyFooter returns a reference to the dark theme.

Note that Theme.of() doesn’t return a nullable value. In the next chapter we will show you how
to change your app’s theme from dark to light (and vice versa) with ease using the HydratedBloc
from the flutter_bloc package.

Flutter Complete Reference 289

11 | State management

Up to this point, you know what is the state in a Flutter app because we’ve exhaustively treated
this topic in chapter 9.2.2 Stateless and Stateful widgets . What you don’t know yet is how to
properly handle the changes of the state.

� We’re going to analyze in detail provider and flutter_bloc but there are many
other state-management libraries out there such as Redux, MobX or Scoped model.
You can find more details in the official documentation 1.

Knowing how to properly handle the state of a Flutter app is fundamental: a well-structured
code is easy to read and maintain. In addition, you’ll almost always create production apps with
interaction from the user (or external sources) and thus the state is going to change a lot of times.
In this chapter we’re going to create this simple app:

Very easily, it does nothing more than incrementing and decrementing the counter in the middle
when you press respectively +1 or -1, which are FlatButton. We’re going to implement the app
using 3 different state management strategies:

1https://flutter.dev/docs/development/data-and-backend/state-mgmt/options

Flutter Complete Reference 290

Chapter 11. State management

1. Updating the UI using setState,

2. Passing the state around the widget tree, with the help of the Provider widget,

3. Alternatives to setState(), implemented with the help of the BlocBuilder widget.

You’ll end up having seen the same app built in 3 different ways, one for each strategy, so that
you can analyze their mechanisms and see the differences in how they work.

11.1 Updating the UI

It’s the simplest way of handling the state of a widget but you should really avoid this approach
because it mixes UI logic with business logic. You’re also going to see very soon that a proper
usage of setState(...) requires too much boilerplate code.

� Please note that we haven’t said you should avoid using StatefulWidgets but
you should avoid the usage of setState: you’ll see soon why. As you already know,
a stateful widget is fundamental when a stateless one can’t be created due to the lack
of immutability of the class itself.

Before explaining the reasons why directly using setState is bad, let’s see again how it works in
a traditional counter app.

// 1.
class DemoPage extends StatefulWidget {

// 2.
const DemoPage();

// 3.
@override
_DemoPageState createState() => _DemoPageState();

}

class _DemoPageState extends State<DemoPage> {
// 4.
int _counter = 0;

// 5.

Flutter Complete Reference 291

Chapter 11. State management

void _increment() {
setState(() => _counter++);

}

void _decrement() {
setState(() => _counter--);

}

@override
Widget build(BuildContext context) {...}

}

This is the typical setup of a widget whose state is managed with setState.

1. You have to follow this pattern: there’s the need for a class that extends StatefulWidget
as it’s going to be put in the widget tree. The other class is private as it represents and
handles the state of the widget.

MaterialApp(
// don't forget the const constructor!
home: const DemoPage(),

);

2. There’s the possibility to define a const constructor for DemoPage because it’s not going to
change over the time. What is going to change is the state of the widget, represented by
_DemoPageState (hence the class _DemoPageState can’t have a constant constructor).

3. The creation of the widget’s persisting state which will "survive" to rebuilds. You’re going
to work a lot with this class as it exposes the setState(...) method.

4. The counter which will be displayed in a Text widget.

5. Two functions that increment and decrement the counter; they both call setState so that
the widget and its children get rebuilt in order to refresh the UI.

The build method is very easy to understand because the UI is minimal, you’ll get immediately
what’s going on. Note the usage of const in front of Text, when possible, which "caches" both
Text and TextStyle.

Row(
mainAxisAlignment: MainAxisAlignment.spaceAround,

Flutter Complete Reference 292

Chapter 11. State management

children: [
FlatButton(

child: const Text("+1",
style: TextStyle(

color: Colors.green,
fontSize: 25

),
),
onPressed: _increment,

),
Text("$_counter",

style: const TextStyle(
fontSize: 30,

),
),
FlatButton(

child: const Text("-1",
style: TextStyle(

color: Colors.red,
fontSize: 25

),
),
onPressed: _decrement,

),
],

)

As you already know, when setState is called its callback is executed and then the widget is
rebuilt. Since the state persists, the increment of the variable is "remembered" and so the Text
widget will display the new updated value.

11.1.1 Considerations

First of all there are ABSOLUTELY NO reasons to say that this approach causes performance
issues because we’ve used a StatefulWidget instead of a StatelessWidget. The problem is that
setState has to be used together with InheritedWidget otherwise there will be uncontrolled
rebuilds.

Flutter Complete Reference 293

Chapter 11. State management

In the case of a widget with no children like A, when setState is called a rebuild happens only
for A. In the above image, the black box represents a rebuilt widget. Performance issues start to
get real when the widget being rebuilt has one or more children. Look at this example:

class _WidgetAState extends State<WidgetA> {
int _value = 0;

@override
Widget build(BuildContext context) {

return Column(
children: [

const WidgetB("$_value"),
const WidgetC(),
RaisedButton(

child: const Text("Update"),
onPressed: () => setState(() {

_value += 10;
}),

),
]

);
}

}

When tapping on the button, setState will always trigger a rebuild for the current widget and
all of its children. In the above example, both WidgetB and WidgetC are rebuilt even if only
WidgetB should, as it’s the only which has a dependency from WidgetA.

Flutter Complete Reference 294

Chapter 11. State management

As you can see from the image, children of A are always rebuilt even if they don’t have variables
in common or any other kind of dependency. Calls to setState() rebuild the entire subtree,
even if it’s not really needed. It would be better if Flutter rebuilt only the widgets that really
need to be updated, like this:

If you used setState in combination with a particular class, called InheritedWidget, you would
be able to make optimized rebuilds that doesn’t waste resources. When used together, you get the
possibility to rebuild only those widgets that really need to be updated leaving others untouched.

� The big problem is the usage of a stateless widget combined with an InheritedWidget:
it produces a lot of boilerplate which is very hard to understand and maintain. You
NEVER want to deal with it as it’s not needed; there are many libraries (such as
provider) that do all this tedious work for you!

Flutter Complete Reference 295

Chapter 11. State management

If you are curious to understand the details of InheritedWidget, as always we recommend you
to visit the official documentation 2 which also has a video about it. We’re not covering it in the
book because there’s no point in doing it since nowadays provider is the default choice, which
actually is just syntactic sugar for InheritedWidget.

1. Stateless and stateful widgets are both efficient and good, you don’t have to think that one
is less performant than the other. If you want to manage the state using a StatefulWidget
you should really use setState and InheritedWidget together.

2. Passing data down the tree and controlling the rebuilds with InheritedWidget is compli-
cated and produces a lot of boilerplate code; don’t do it. Prefer the usage of a library such
as provider which does everything for you with less code (and it’s also way more readable).

3. With setState you’re mixing UI logic and business logic. For example, _DemoPageState is
like a huge hammer dropping from the sky and totally destroying the single responsibility
principle glass. It does too many things:

• it handles the UI logic, which is responsible of drawing widgets;

• it handles the business logic, which takes care of _counter ;

• it handles the state of the app, which is managed by setState

Production-ready applications contain thousands of lines of code that are written across
hundreds of files. The situation might already be quite complicated and for sure adding
even more complexity by breaking the SRP is not convenient at all.

4. The usage of setState is too "basic" as it just tells Flutter to rebuild the widget and all
its children; for a more subtle control there would be the need to also use InheritedWidget.

Inheriting from State<T> gives access to the initState method; it’s called only once in the
moment in which the state is created. Since the state persists until the widget is disposed, you’re
guaranteed that void initState() will run only once during the lifecycle of the class.

class _DemoPageState extends State<DemoPage> {

@override
void initState() {

2https://api.flutter.dev/flutter/widgets/InheritedWidget-class.html

Flutter Complete Reference 296

Chapter 11. State management

super.initState();
// put the code here...

}

@override
Widget build(BuildContext context) {...}

}

You should override initState when the widget has to be configured before being built or if
there’s the need to call methods that must be executed only once at the creation of the state.
Actually initState() can be seen as if it were the constructor of a widget and dispose() the
destructor.

class _DemoPageState extends State<DemoPage> {

@override
void dispose() {

// your code here...
super.dispose();

}

@override
Widget build(BuildContext context) {}

}

It’s executed only once when the state is destroyed and it should be used when there’s the need
for a clean up of resources used by the widget. If you had the need to declare a variable that
cannot be immediately initialized, and you don’t want it to be nullable, you’d use late.

late String value;

@override
void initState() {

super.initState();
value = "Init me";

}

If that value is going to be assigned only once inside initState, consider making it late final.

Flutter Complete Reference 297

Chapter 11. State management

With the arrival of NNBD, variables could also be directly initialized in this way:

late String value = "Init me";

No need to use initState() at all but that’s just because you’re doing an assignment: you can’t
do this when it comes to calling functions, for example.

11.1.2 Good practices

We want to point out again the fact that using stateful widgets is absolutely fine: the problem
lies in the usage of setState with no InheritedWidget associated. Other than giving too many
responsibilities to the widget, it doesn’t give you control on rebuilds of the children widgets and
this can be a big performance issue. Other than this:

• Do the initialization of the widget inside the initState method so that you’re guaran-
teed that the phase will be executed only once. In case of assignments, consider using
late final and initialize variables directly to reduce the amount of boilerplate code.

• The official documentation 3 says that setState should only update values, like assigning
new values to variables, it shouldn’t compute anything. For example you should do this...

void _increment(int value) async {
setState(() {

_counter += value;
});

await writeToFile(_counter);
}

... rather than calling the function inside the state updater:

void _increment(int value) {
setState(() async {

_counter += value;
await writeToFile(_counter);

});
}

Furthermore if the callback function is an instance of a Future you’ll get a runtime excep-
tion. Regardless, this is bad anyway because writing data to a file should not happen in a
class that deals with the UI!

3https://api.flutter.dev/flutter/widgets/State/setState.html

Flutter Complete Reference 298

Chapter 11. State management

• Do not call initState after dispose since it leads to undefined behavior. StatelessWidget
has the bool get mounted property which tells you whether the widget is created or dis-
posed.

Use stateful widgets with no worries but avoid using setState for state management; prefer using
a library like provider or flutter_bloc. Avoid the "raw" usage of setState, because it rebuilds
the entire subtree, and the setState() + InheritedWidget combination as well, as it produces
a huge amount of boilerplate code.

11.2 Passing the state with Provider

The provider 4 package has been created by Rémi Rousselet and it’s available in the official
package repository. Be sure to properly install it by opening the pubspec and adding the depen-
dency.

dependencies:
provider: ^4.3.2

The Flutter SDK includes a simple class called ChangeNotifier which provides change notifica-
tion to its listeners. In practical terms, if you use this class as a mixin you get the possibility to
send an "alert" that something has changed to the subscribed widgets

� Provider uses Flutter’s ChangeNotifier to create a class that encapsulates the
state and, when something changes, the interested widgets are notified and rebuilt.
As the name suggests, it’s a notifier that alerts listeners about changes.

We’re still going to create the same app which increases and decreases the counter but in the
"provider-way". First of all there’s the need to create a class that takes care of the business
logic and makes the state to persist; we’re creating a file named counter_model.dart with this
content:

// The mixin is needed because it contains 'notifyListeners()'
class CounterModel with ChangeNotifier {

int _counter = 0;

void increment() {

4https://pub.dev/packages/provider

Flutter Complete Reference 299

Chapter 11. State management

_counter++;
notifyListeners();

}

void decrement() {
_counter--;
notifyListeners();

}

int get currentCount => _counter;
}

If you go back to the previous section, you’ll see that this code is almost identical to what’s
inside _DemoPageState with the difference that we’re calling notifyListeners() instead of
setState(...).

• The void notifyListeners() method, contained in the ChangeNotifier mixin, is used
to send a "signal" to the interested widgets that something has changed and a rebuild is
needed to update the data.

// Stateful widget
setState(() => _counter++);

// ChangeNotifier mixin
_counter++;
notifyListeners();

Logically they do the same things: first the variable is increased and then the UI is rebuilt
because there’s a signal that something has changed.

• With this approach we’ve moved the logic of the app from the UI widget to a separated class
(CounterModel) and it’s a big step forward. We’re now respecting the Single Responsibility
Principle.

At this point all the logic lies inside a class called CounterModel and the next move is "linking"
the model with the UI part. There are two steps to do:

1. Use the ChangeNotifierProvider widget to create an instance of the class (which is mixed
with ChangeNotifier) so that the entire subtree will be able to use it.

void main() {
runApp(const MyApp());

Flutter Complete Reference 300

Chapter 11. State management

}

class MyApp extends StatelessWidget {
const MyApp();

@override
Widget build(BuildContext context) {

return ChangeNotifierProvider(
create: (context) => CounterModel(),
child: const DemoPage(),

);
}

}

Thanks to ChangeNotifierProvider, the DemoPage widget and every children of it will
be able to get the instance of CounterModel. The provider package has the goal to expose
an object to the subtree of a given widget.

2. Obtain the value from the above widgets using Provider.of<T>(context) and use it to
read and/or update the state of the widget.

class DemoPage extends StatelessWidget {
const DemoPage();

@override
Widget build(BuildContext context) {

// The type of 'counter' is CounterModel
final counter = Provider.of<CounterModel>(context);

return Scaffold(
body: Center(
child: Row(

mainAxisAlignment: ...,
children: [

// FlatButtons and Text widget
]

)
);

}

Flutter Complete Reference 301

Chapter 11. State management

}

The method of<CounterModel>(context) returns the instance of the given type that’s
been created and exposed from above the tree. ChangeNotifierProvider can be seen like
a "cache" that stores a class and serves it to the children when they ask for it. This is the
new body of the Row:

FlatButton(
child: const Text(

"+1",
style: TextStyle(

color: Colors.green,
fontSize: 25

),
),
onPressed: () => counter.increment(),

),
Text(

"${counter.currentCount}",
style: const TextStyle(

fontSize: 30,
),

),
FlatButton(

child: const Text(
"-1",
style: TextStyle(

color: Colors.red,
fontSize: 25

),
),
onPressed: () => counter.decrement(),

),

If you pressed on +1, the increment() method would increase by 1 the counter and then
it’d call notifyListeners() which triggers a rebuild of the widget. A rebuild takes place
because DemoPage is a listener (it’s a child of ChangeNotifierProvider) and thus it’s
listening to changes.

The Text widget shows the newly updated count thanks to currentCount, which is simply a getter

Flutter Complete Reference 302

Chapter 11. State management

that returns the current value of the counter. To sum up, with this approach you have to:

1. create a model class which uses ChangeNotifier as a mixin and then call notifyListeners
whenever the UI has to be updated;

2. use ChangeNotifierProvider to create an instance of the model that can be exposed and
watched by the children;

3. in the build method use Provider.of<T>(context), where T is the type that you’re look-
ing for, to get the instance.

11.2.1 Considerations

You’ve just seen how the state can be handled without having to use setState. Thanks to
provider there’s the possibility to use a combination of stateless widgets and notifier classes to
achieve the same result. Nevertheless ChangeNotifierProvider isn’t the only important feature
of the package.

11.2.1.1 Provider class

In the examples we’ve shown that class Provider<T> has the static method of<T>() which
obtains, from above the tree, the instance of the given type T. Other than notifying children
about UI updates, it’s also a very useful way to cache classes and expose them.

class Something {
final description = "something is better than nothing";
final descriptionCache = {...}

}

class ExamplePage extends StatelessWidget {
@override
Widget build(BuildContext context) {

return Provider<Something>(
create: (context) => Something(),
child: ChildWidget(),

);
}

}

class ChildWidget extends StatelessWidget {

Flutter Complete Reference 303

Chapter 11. State management

@override
Widget build(BuildContext context) {

final value = Provider.of<Something>(context);

return Text("${value.description}");
}

}

Notice that we’ve used Provider<T> rather than ChangeNotifierProvider<T> and thus children
won’t be able to listen to updates. How can this be useful?

• You might want to put a provider at a certain point of the widget tree and use it as a
"cache" which holds data in memory. For example, you’ll see in chapter 12 that provider
is very convenient when it comes to share data between multiple pages.

return Provider<DataCache>(
create: (context) => DataCache(),
child: PageWithTabs(),

);

The cache is served to the children pages with provider and it won’t be destroyed because
it’s one level above in the tree. You can make a simple call to Provider.of<DataCache>()
instead of creating complicated ways to pass data between widgets.

• The usage of provider is like an automatic usage of initState and dispose so you have
less code to write and less lifecycle logic to implement.

• Your app’s UI logic is separated from the business logic.

11.2.1.2 Consumer class

This widget does nothing more than automatically calling Provider.of<T>(context) in a new
widget to give you the instance of the class. It also solves a problematic situation in which you
cannot use Provider<T> inside build:

Flutter Complete Reference 304

Chapter 11. State management

1. The static method of<T>(...) looks for the instance T starting from one level above the
current leaf. No problems here.

2. When of<T>(...) is being called in the same widget that exposes a class via Provider<T>,
an exception occurs because there’s no matching provider above.

class ExamplePage extends StatelessWidget {
@override
Widget build(BuildContext context) {

return Provider<Something>(
create: (context) => Something(),
child: Text(

"${Provider.of<Something>(context).description}"
),

);
}

}

Both Provider<T> and of<T>(...) are in the same widget and thus there will be a runtime
failure.

In certain cases however there might be the need to call of<T>(...) at the same level of the
provider but the classic approach doesn’t work, as you’ve just seen. There are two solutions:

Flutter Complete Reference 305

Chapter 11. State management

• Wrap the code requiring to access the provider in a child widget so that it gets a descendant
context from its parent. This is not bad because you can also define a const constructor.

// Widget with provider
Provider<Something>(

create: (context) => Something(),
child: const ChildWidget(),

);

// Another wiget
class ChildWidget extends StatelessWidget {

const ChildWidget();

@override
Widget build(BuildContext context) {

final description = Provider
.of<Something>(context)
.description;

return Text(description);
}

}

• Use the Consumer<T> class which automatically obtains the value for you. In this case
there’s no need to create additional widgets, it will automatically take care of taking the
instance for you.

class ExamplePage extends StatelessWidget {
@override
Widget build(BuildContext context) {

return Provider<Something>(
create: (context) => Something(),
child: Consumer<Something>(

builder: (_, value, __) {
return Text("${value.description}");

}
)

);
}

Flutter Complete Reference 306

Chapter 11. State management

}

You’re allowed to use Consumer<T> as a direct child of a Provider<T> as it will automati-
cally take care of properly returning the object.

Both ways are absolutely fine but probably the first one would be better because of the possibility
to define a const constructor.

11.2.2 Good practices

Whenever you call Provider.of<T>(context) the associated widget is rebuilt unless you pass
listen: false to the method. For example, if you’re using Provider as a cache just to hold
data, you probably don’t need to always trigger a rebuild.

// Equivalent to of<DataCache>(context) because the
// 'listen' parameter is set to true by default
Provider.of<DataCache>(context, listen: true)

// A later value change won't trigger a rebuild
Provider.of<DataCache>(context, listen: false);

Remember to set listen: false when you’re just working with the data and UI should not
listen to changes. It may also be useful in such cases where a provider is called from outside the
widget tree:

void _action(BuildContext context) {
final p = Provider.of<MyObject>(context, listen: false);
...

}

@override
Widget build(BuildContext context) {

return RaisedButton(
child: const Text("Tap me"),
onPressed: () => _action(context);

);
}

The method _action is not inside build and thus Provider.of<T>() is called outside of the wid-
get tree. You’ll get a runtime exception if listen is true. Nevertheless, in general Consumer<T>
should be preferred because it could optimize your code. Consider this example:

Flutter Complete Reference 307

Chapter 11. State management

class Test extends StatelessWidget {
@override
Widget build(BuildContext context) {

final value = Provider.of<Info>(context);

return Center(
child: Padding(

padding: EdgeInsets.all(15),
child: Text("${value.text}");

),
);

}
}

As usual, Provider.of<T>() is used to get an instance of the object from above the tree. Note
that only the Text widget depends on provider because Center and Padding don’t care about
value. However, with this code, not only Text will be updated but also Center and Padding.

� Being in a stateful or stateless widget doesn’t make any difference, the concept
is the same. What’s important for performance is trying to rebuild only what really
needs to be updated.

In this case we want that, when Info changes, only the Text widget gets rebuilt while Center
and Padding don’t. In other words, we want to optimize the notifier so that only a few widgets
will be rebuilt and not everything. Here’s the solution:

Widget build(BuildContext context) {
return Center(

child: Padding(
padding: EdgeInsets.all(15),
child: Consumer<Info>(

builder: (_, value, __) => Text("$value");
)

),
);

}

This is much better because only Text will be rebuilt while Center and Padding will stay

Flutter Complete Reference 308

Chapter 11. State management

untouched. With this example we want to suggest you to avoid using of<T>() and prefer
Consumer<T> for a more granular rebuild.

MultiProvider(
providers: [

Provider<HttpCache>(create: (_) => HttpCache()),
Provider<LocalCache>(create: (_) => LocalCache()),
ChangeNotifierProvider<Charts>(create: (_) => Charts()),

],
child: const AwesomeApp(),

)

Very likely you’ll have to use more providers at once and, if they’re at the same level, consider
using MultiProvider. It is a nice way to group multiple providers without having to nest them
one by one.

� Don’t put any kind of provider "too high" in the tree if it’s not needed because it
pollutes the scope. Place in at a reasonable position, ideally immediately before the
first widget that needs it.

With provider there’s also the possibility to expose values returned by a Future<T> or explicitly
write the rebuild constraints for listeners.

• So far we’ve only told you how to expose non-future values but provider has a very rich
collection of classes.

FutureProvider<T>(
create: (_) async => _makingHttpRequest(),
catchError: (context, error) => _inCaseOfError(),
child: const MyWidgets(),

),

This class listens to a Future<T> and exposes its result to the children, as it happens with
any other type of provider. Passing a Future<T> that could emit errors without providing
the catchError callback is considered an error.

FutureProvider<T>(
create: (_) async => _makingHttpRequest(),
catchError: (_, __) => _inCaseOfError(),

Flutter Complete Reference 309

Chapter 11. State management

lazy: false,
child: const MyWidgets(),

),

The default behavior is lazy: true so that create is called only the first time the value
is read. If you set lazy: false the future is fetched immediately and not lazily.

• A Selector<T> is the equivalent of a Consumer<T> which can explicitly set the rebuild
constraints. If your widget rebuilds too often even with a Consumer<T>, consider using a
Selector which is an even finer optimization system:

Selector<PersonData, String>(
selector: (context, person) => person.name,
builder: (context, name, _) {

return Text(name);
}

),

By default a Selector<T> does a deep comparison of the value obtained by the Provider<T>
and the one returned by the selector callback. If they are different, a rebuild happens. In
the above example, person.name is compared with the value obtained by the provider to
decide whether a rebuild has to take place or not.

Selector<PersonData, String>(
selector: (context, person) => person.name,
shouldRebuild: (previous, next) {

return (previous != next) &&
(person.age > 18);

}
builder: (context, name, _) {

return Text(name);
}

),

Using the shouldRebuild callback you can implement a custom logic to decide when the
children should rebuild; it overrides the default deep comparison behavior. Define this
behavior when simple object comparison is not enough.

When using Selector<T> be sure to use classes that override operator== or collections. Using
mutable classes, the comparison of the values might not work as you’d expect. Another thing
to mention is the usage of listen: false when you try to get an instance of an object. Rémi

Flutter Complete Reference 310

Chapter 11. State management

Rousselet suggests:

1. Don’t think that listen: false always boosts your app’s performances by default: yes, it
could, but it’s an implementation detail which depends on your architecture.

2. When inside the widget tree, in general leaving the default value (listen: true) is good.
You might decide to use listen: false in a second moment but it might be a maintenance
problem in the future if you don’t document this behavior properly. Watch out to not
introduce breaking changes in your codebase. In general, avoid using listen: false when
you’re inside the build method.

3. Use listen: false when a provider is called anywhere outside the build method of a
widget. It’s actually fact and rather than a good practice because not doing so causes a
runtime exception!

Starting from version 4.1.0 there are some shortcuts you can use to reduce the boilerplate code
required for common actions. The library introduced two new extension methods you should
prefer over the classic verbose way:

// Default provider (with listen: true)
final before = Provider.of<T>(context);
final after = context.watch<T>();

// Non-listening provider (with listen: false)
final before = Provider.of<T>(context, listen: false);
final after = context.read<T>();

They all work in the same way, no differences, but the new version is shorter and more readable.
Note that calling read<T>() from outside the widget tree is fine but if it’s used inside the build
method an exception is thrown (see the point 2 of the above Remi’s suggestions). If you’re looking
for a recap:

1. When inside the build method (also when using a ChangeNotifier):

• use Provider.of<T>(context) or

• use context.watch<T>() (identical to above) or

• use Consumer<T> (for optimization).

You should prefer using watch<T> over of<T> as it’s less code to write and more modern.
Consumer<T> can do performance optimizations so consider using it.

Flutter Complete Reference 311

Chapter 11. State management

2. When inside the build method and you don’t want to listen for changes or you need to
listen only for certain values:

• use Selector<A, S> or

• use context.select((A a) => S) (identical to above)

With Selector you can optimize even more than Consumer<T> as it allows you to select
the exact values to listen or specify rebuild conditions.

3. When you are outside of the build method:

• use Provider.of<T>(context, listen: false) or

• use context.read<T>() (identical to above)

Avoid using of<T>, prefer instead the usage of context.read<T> which is shorter and more
modern as it uses Dart’s extension methods.

Note that you can access data via provider inside initState() even if there isn’t a visible
BuildContext variable being passed as parameter. As such, you could do this:

void initState() {
super.initState();
myValue = context.read<Something>().value;

// Or also, using the 'old' syntax:
// myValue = Provider.of<Something>(context, listen: false).value;

}

Using watch<T>() (which is the equivalent of calling of<T>() without listen: false) will cause
an exception.

11.3 Alternative to setState: BLoC pattern

The Flutter Bloc 5 package has been created by Felix Angelov and it’s of course available in the
official package repository. It’s an implementation of the BLoC state management patter that
was presented at the Google I/O event back in 2018.

dependencies:
flutter_bloc: ^6.0.5

5https://pub.dev/packages/flutter_bloc

Flutter Complete Reference 312

Chapter 11. State management

We’re going to create the same app which increases and decreases the counter but in the "bloc-
way". The term "BLoC" is an acronym which stands for Business Logic Components and it
relies on asynchronous streams.

The gist of a bloc is the conversion of an event into a state. There are a series of steps in-
volved:

1. A widget sends an event to the bloc, which is a class implementing a certain logic;

2. The bloc is notified because a new event has arrived on the stream. It processes the requests
and then produces an output: the new state for the widget;

3. The listening widget receives the new state given by the bloc and rebuilds.

Let’s map these theoretical steps to our concrete example. When the user presses on+1 or -1, the
flat button sends an increment or decrement event to the stream. The bloc does the calculation
and then it produces a new state for the Text widget (a new int, the updated counter), which
is rebuilt.

Flutter Complete Reference 313

Chapter 11. State management

The first thing to do is the creation of the bloc, the class taking care of the logic we’re going to
implement. This is very good because we’re separating the UI logic from the business logic in
favor of the Single Responsibility Principle.

// 1.
enum CounterEvent { increment, decrement }

// 2.
class CounterBloc extends Bloc<CounterEvent, int> {

// 3.
CounterBloc() : super(0);

// 4.
@override
Stream<int> mapEventToState(CounterEvent event) async* {

switch (event) {
// 'state' is a getter defined inside Bloc<E,S> which
// represents the current state of the bloc
case CounterEvent.increment:

yield ++state;
break;

case CounterEvent.decrement:
yield --state;
break;

}

Flutter Complete Reference 314

Chapter 11. State management

}
}

This is the content of a file named counter_bloc.dart.

1. Events are represented by an enum and the two items represent, very intuitively, the in-
crement or decrement of the counter. In Part III we will see that for more complex cases,
using classes is better than enums.

2. The CounterBloc class is the bloc itself which takes a stream of events and produces new
updates for the state. The int is produced by the bloc and it represents the new state of
the Text widget, which will be rebuilt.

3. This is the initial value of the bloc, which is required. From version 5.0.0 onward, you have
to pass the value via super as we’ve done above. Versions 4.0.1 and earlier had to override
initialState instead:

// v4.0.1 and lower
class CounterBloc extends Bloc<CounterEvent, int> {

// No calls to 'super'

@override
int get initialState => 0;

@override
Stream<int> mapEventToState(CounterEvent event) async* {...}

}

Basically from version 5 there’s been a breaking change that replaced the initialState
getter with a call to super. There’s no logical difference since the purpose of both is giving
the bloc an initial state (it’s just a syntactic difference).

4. This method is the heart of the bloc as it listens for incoming events and produces new
states. The syntax is very nice and self-explanatory because you can immediately guess
what comes in and what goes out.

// Something of type 'CounterEvent' comes in from the stream and
// it's going to be converted by the bloc into an integer
class CounterBloc extends Bloc<CounterEvent, int> {}

The variable state is given by the bloc, it’s initialized by overriding initialState and in
this case it’s an integer. If the incoming event were of type increase a new state (containing

Flutter Complete Reference 315

Chapter 11. State management

the old value increased by 1) would be emitted.

The business logic has been properly isolated inside a single class, which is CounterBloc, and
now it’s time to link the UI with the bloc. We have to make it so that widgets can send events
and receive new states.

void main() => runApp(const MyApp());

class MyApp extends StatelessWidget {
const MyApp();

@override
Widget build(BuildContext context) {

// Yes, provider is used internally by the bloc library
// to expose instance of blocs to the children widgets
return BlocProvider<CounterBloc>(

create: (context) => CounterBloc(),
child: const DemoPage();

);
}

}

The flutter_bloc package uses provider internally so you might find this familiar. You may have
guessed that class BlocProvider<T> exposes a particular instance of a bloc to the children so
that they can send events and listen to updates.

class DemoPage extends StatelessWidget {
const DemoPage();

@override
Widget build(BuildContext context) {

// For older versions of Dart that don't use extension
// methods, simply go for:
// final counterBloc = BlocProvider.of<CounterBloc>(context);
final counterBloc = context.bloc<CounterBloc>();

return Scaffold(
body: Center(
child: Row(

mainAxisAlignment: MainAxisAlignment.spaceAround,

Flutter Complete Reference 316

Chapter 11. State management

children: [
// FlatButtons and Text widget

]
)

);
}

}

The content of counter is simply a reference of the CounterBloc instance that has been passed
from above the widget tree. This variable will be used by widgets to dispatch new events and
receive state updates.

FlatButton(
child: const Text(

"+1",
style: TextStyle(

color: Colors.green,
fontSize: 25

),
),
onPressed: () => counterBloc.add(CounterEvent.increment),

),
BlocBuilder<CounterEvent, int>(

builder: (context, count) =>
Text(

"$count",
style: const TextStyle(

fontSize: 30,
),

),
),
FlatButton(

child: const Text(
"-1",
style: TextStyle(

color: Colors.red,
fontSize: 25

),
),

Flutter Complete Reference 317

Chapter 11. State management

onPressed: () => counterBloc.add(CounterEvent.decrement),
),

The BlocBuilder<T, K> widget is the one that rebuilds the UI in response to state changes sent
by the bloc. Thanks to final counterBloc we’re able to dispatch events very easily:

// +1
onPressed: () => counterBloc.add(CounterEvent.increment),

// -1
onPressed: () => counterBloc.add(CounterEvent.decrement),

The new state emitted by the bloc is captured by BlocBuilder<CounterBloc, int> which re-
builds only what’s inside the builder callback. The variable int count contains the new counter
value (the new state) which has been processed by the bloc.

� Widgets just send rebuild requests (events) and wait for the arrival of a new state
from the bloc. The UI knows nothing about the logic behind it as it’s entirely de-
ferred to the bloc itself; this is a complete separation of business logic from design
logic. Awesome!

11.3.1 Considerations

In this simple example we had to deal with increasing and decreasing a counter; nothing complex
to represent in both ways (events and states) enum and int were enough. However things can be
more complicated than this and there could be the need for a better representation of the input
and outputs of the bloc.

� Enumerations are good when the type of events are very simple to represent and
they have no data to carry. Consider using classes when events need to have some
info since they can be easily stored and accessed via setters and getters.

In most of the cases, both input events and output states are represented by classes following
a particular structure (it’s a convention, not a strict rule). Taking again our counter app ex-
ample, if we decided to use classes rather than enumerations for events the code would be the
following:

Flutter Complete Reference 318

Chapter 11. State management

abstract class CounterEvent extends Equatable {
const CounterEvent();

@override
List<Object> get props => [];

}

class Increment extends CounterEvent {
const Increment();

}

class Decrement extends CounterEvent {
const Decrement();

}

An important note is that classes must be immutable because the new altered state is going to
be changed exclusively by the bloc. In the same way, if the output state were represented by a
class rather than an enum the structure would be identical. The advantage here is that classes
can carry extra-data (as instance variables), if needed.

class CounterState extends Equatable {
final int count;

const CounterState(this.count);

@override
List<Object> get props => [count];

}

Logically this is nothing different from what you’ve seen in the original example; the difference is
that we’re using classes instead of an enumerations. In this cases a hierarchy is useless because
a simple enum suffices but if we had data or a logic to carry with the event, classes would be useful.

� Using Equatable is not required but it’s very convenient as it reduces the amount
of boilerplate code required for proper object comparisons. If you don’t want to use
it, simply go for a classic overriding of operator== and hashCode.

The management of the bloc itself would be a bit different too. There’s the need to recognize the

Flutter Complete Reference 319

Chapter 11. State management

type of incoming events (with a series of ifs) and dispatch a proper response.

class CounterBloc extends Bloc<CounterEvent, CounterState> {
CounterBloc() : super(const CounterState(0));

@override
Stream<CounterState> mapEventToState(CounterEvent event) async* {

if (event is Increment) {
final newCount = state.count + 1;
yield CounterState(newCount);

} else if (event is Decrement) {
final newCount = state.count - 1;
yield CounterState(newCount);

}
}

}

Finally, BlocBuilder<CounterBloc, CounterState> widget will simply require to reference
newCount to get the newly updated counter. You’ll find most of the online examples and docu-
mentation relying on classes rather then enumerations so we recommend you to get familiar with
them.

The official flutter_bloc documentation 6 contains a lot of step-by-step examples with images and
many side note explainations to make sure that you won’t get lost.

6https://bloclibrary.dev

Flutter Complete Reference 320

Chapter 11. State management

11.3.1.1 BlocListener class

This widget is useful in such cases where a callback has to be triggered whenever the bloc outputs
a new state. For example, we could make it so that when the user presses on+1 or -1, a snackbar
with a message appears in the UI notifying the alteration of the counter.

� There’s an awesome package called Flushbar 7 which allows you to fully customize
snackbars in your apps. It doesn’t require a Scaffold or any other particular setup:
we’re using it in this example.

We’re referring to the original example where the bloc takes a CounterEvent enumeration as
input and emits an int.

class DemoPage extends StatelessWidget {
const DemoPage();

@override
Widget build(BuildContext context) {

return BlocListener<CounterBloc, int>(
listener: (context, state) {

Flushbar(
message: "The counter has been altered!",
duration: Duration(seconds: 1),

)..show(context);
}
child: const ButtonsAndText(),

);
}

}

// Clickable buttons and the Text widget with the counter
// have been moved here.
class ButtonsAndText extends StatelessWidget {

const ButtonsAndText();

@override

7https://pub.dev/packages/flushbar

Flutter Complete Reference 321

Chapter 11. State management

Widget build(BuildContext context) {
final counterBloc = context.bloc<CounterBloc>();

return Scaffold(
body: Center(

child: Row(
mainAxisAlignment:

MainAxisAlignment.spaceAround,
children: [...]

)
)

);
}

}

Thanks to class BlocListener<B,S>() we’re able to listen to the stream and "catch" the
responses (the states) that have been emitted by the bloc. In other words, this widget is a
listener that listens for new states and lets you do something in response.

return BlocListener<CounterBloc, int>(
condition: (previous, current) {

// return true/false to decide if listening or not
},
listener: (context, state) {

// code...
},
child: const ButtonsAndText(),

);

The listenWhen callback is not required because true is the default value. condition returns
a boolean value which decides whether the listener callback will be called or not. It exposes the
current and the previous values of the state so that they can be compared, if needed.

return BlocListener<CounterBloc, int>(
listenWhen: (previous, current) {

return (previous != current) && (current > 5);
},
listener: (context, state) {

_showBar(context);
},

Flutter Complete Reference 322

Chapter 11. State management

child: const ButtonsAndText(),
);

In this example, the listener callback will be triggered only if the newly emitted value of the
counter is greater than five.

11.3.2 BlocObserver class

If you’re developing an app with multiple blocs and thus a lot of events flowing on the streams,
it might be useful being able to log the activities to the console. This can be very helpful while
debugging and it’s not hard to do at all because the BlocObserver class comes to the rescue.

An observer is an object that observes what’s going on in the bloc and gives you the possibility
to log various things. It’s very useful while debugging your app; you can log the data flow in the
console for example or make some kind of analytics. An observer does NOT interact with the
logic of the bloc because it’s just a passive observer.

class MyObserver extends BlocObserver {
@override // 1.
void onEvent(Bloc bloc, Object event) {

super.onEvent(bloc, event);
print(event);

}

@override // 2.

Flutter Complete Reference 323

Chapter 11. State management

void onTransition(Bloc bloc, Transition transition) {
super.onTransition(bloc, transition);
print(transition);

}

@override // 3.
void onError(Bloc bloc, Object error, StackTrace stacktrace) {

super.onError(bloc, error, stacktrace);
print('$error | $stacktrace');

}
}

A bloc observer is nothing more than a subtype of class BlocObserver which overrides a series
of methods. There’s no need to implement them all, only define the ones that you need:

• override onEvent if you want to log information about incoming events;

• override onTransition if you want to log information about a transition. A transition is
made of the current state, the next state and the input event;

• override onError if you want to log errors.

The only other thing that you have to do is initialize the observer and you’re done. In the case
of a Flutter app, the best place is before the initialization.

void main() {
Bloc.observer = MyObserver();
runApp(const MyApp());

}

You don’t need to pass any list of blocs in use or whatever else because Bloc does everything
automatically. Every bloc of your app will be observed by the observer which will trigger the
events that you’ve overridden.

11.3.3 Persisting the state with HydratedBloc

The hydrated_bloc package is an extension of the flutter_bloc library which automatically stores
states so that they can be restored even if the app is closed and opened again later. We’re going
to create a bloc that switches the theme of the app between light and dark automatically storing
the state. In this way, the user’s preferred theme is remembered and used the next time the app
is opened.

Flutter Complete Reference 324

Chapter 11. State management

• Events. The events being fired are only two, indicating whether the current theme should
be light or dark. We haven’t used an enum because in the future you could want to add
more themes, maybe created by you, which might require a complex setup.

abstract class ThemeEvent extends Equatable {
const ThemeEvent();

@override
List<Object> get props => [];

}

class DarkTheme extends ThemeEvent {
const DarkTheme();

}

class LightTheme extends ThemeEvent {
const LightTheme();

}

• States. The states can simply be of type ThemeData since it’s exactly what we need. There
are no extra data to return, so no need for a class hierarchy.

So far it’s the same usual setup for a bloc where both events and states have been defined. The
bloc itself is also very similar to the usual one but this time we’re extending HydratedBloc. It’s
basically a Bloc with two more methods to override:

class ThemeBloc extends HydratedBloc<ThemeEvent, ThemeData> {
static final _lightTheme = ThemeData.light();
static final _darkTheme = ThemeData.dark();

@override
Stream<ThemeData> mapEventToState(ThemeEvent event) async* {

if (event is DarkTheme) {
yield _lightTheme;

}

if (event is LightTheme) {
yield _darkTheme;

}
}

Flutter Complete Reference 325

Chapter 11. State management

// other overrides coming soon...
}

We’ve decided to cache the states just to avoid copy/pasting the named constructor many times
as you’ll see in a moment. That’s absolutely not required, you could have gone for a classic
yield ThemeData.dark() for example. Here’s the other interesting part of the bloc:

class ThemeBloc extends HydratedBloc<ThemeEvent, ThemeData> {
ThemeBloc() : super(ThemeData.light());

@override
Stream<ThemeData> mapEventToState(ThemeEvent event) async* {...}

@override
ThemeData? fromJson(Map<String, dynamic> source) {

try {
if (source['light'] as bool) {

return ThemeData.light();
}

return ThemeData.dark();
} catch (_) {

return null;
}

}

@override
Map<String, bool>? toJson(ThemeData themeData) {

try {
return {

'light': state != ThemeData.light()
};

} catch (_) {
return null;

}
}

}

Flutter Complete Reference 326

Chapter 11. State management

Exactly as it happens with flutter_bloc, the constructor makes a call to super to pass the initial
state of the bloc. However, there’s an internal check on the base class constructor that loads the
persisted state in case it existed. In other words, the above example works like this:

• If there isn’t a state stored on the disk, ThemeData.light() is picked as initial state thanks
to super(ThemeData.light());.

• If there is a state stored on the disk, the value passed to super() is ignored and the stored
state is picked as initial.

Version 4.0.1 and earlier of hydrated_bloc had to override the initialState getter in order to set
an initial state. If we made this example using any version prior to 5.0.0 we’d have to initialize
the bloc in this way:

// hydrated_bloc 4.0.1 and earlier versions
ThemeData get initialState =>

super.initialState ?? ThemeData.light();

It checks whether there’s or not a state stored on the disk: if not, the default ThemeData.light()
value is passed. In version 5.0.0 this check is automatically performed when calling super(). The
other two important methods you’re asked to override are:

• fromJson: it’s called when trying to read the state from the internal storage. Be sure to
return null in case of exceptions or if there are no cached states.

• toJson: it’s called on each state change to store on the device, in this case, the user’s
preferred theme. If null is returned, no caching happens.

Last but not least, in order to properly initialize the bloc storage you need to make these two
calls before the runApp() method. This is also the perfect place to change the directory in which
HydratedBloc should store the data (by default it picks the device’s temporary directory):

void main() {
WidgetsFlutterBinding.ensureInitialized();
HydratedBloc.storage = await HydratedStorage.build(

storageDirectory: await getApplicationDocumentsDirectory()
);

runApp(const App());
}

The convenient path_provider package gives you a cross-platform access to various locations of
the filesystem in which the app is running. In the end, an HydratedBloc is a bloc (they work in

Flutter Complete Reference 327

Chapter 11. State management

the same way) with the addition of automatic state storage management.

11.3.4 Undo and redo with ReplayBloc

Undo and redo operations are quite common actions to find in a program. To keep consistency
with the examples we made, imagine this flow in a classic counter app:

1. At startup, the counter is 0.

2. Tap on +1: the counter is now 1.

3. Tap on +1: the counter is now 2.

4. Tap the "undo" button: the counter is now 1 because the last action has been canceled.

Basically, "undo" means canceling the latest operation performed on the bloc. On the other side,
"redo" means repeating the latest action performed on the bloc. Thanks to ReplayBloc you can
very easily add automatic undo and redo support with almost no efforts.

// states.dart
class CounterEvent extends ReplayEvent {

const CounterEvent();
}

class Increment extends CounterEvent {
const Increment();

}

class Decrement extends CounterEvent {
const Decrement();

}

Rather than extending Equatable, this time we need to subclass ReplayEvent in order to enable
undo and redo operations on a bloc. Other than this, nothing new to do: we’re already ready to
create the Bloc for our counter:

class CounterBloc extends ReplayBloc<CounterEvent, int> {
CounterBloc() : super(0);

@override
Stream<int> mapEventToState(CounterEvent event) async* {

if (event is Increment) {

Flutter Complete Reference 328

Chapter 11. State management

yield state + 1;
}

if (event is Decrement) {
yield state - 1;

}
}

}

The state, for sake of simplicity, is just an int. There’s really nothing new: it’s a "regular" bloc
which overrides mapEventToState as usual. The difference lies in the usage because, other than
being able to send new events on the bloc with add(), there are also the two additional methods:
undo() and redo().

// Get a reference to the bloc
final counterBloc = context.bloc<CounterBloc>();

// Then in the 'build' function, add events or call undo()/redo()
FlatButton(

child: const Text("+1"),
onPressed: () => counterBloc.add(const Increment()),

),
FlatButton(

child: const Text("-1"),
onPressed: () => counterBloc.add(const Decrement()),

),
FlatButton(

child: const Text("Undo"),
onPressed: () => counterBloc.undo(),

),
FlatButton(

child: const Text("Redo"),
onPressed: () => counterBloc.redo(),

),

If you want to add undo/redo support to a bloc, just remember to extend ReplayEvent in your
classes representing the event. All the other setup is just a regular bloc. You can even add
undo/redo support for existing kinds of blocs, such as an HydratedBloc for example:

class HydratedCounterBloc extends HydratedBloc<CounterEvent, int>

Flutter Complete Reference 329

Chapter 11. State management

with ReplayBlocMixin {
CounterBloc() : super(0);

@override
Stream<int> mapEventToState(CounterEvent event) async* { ... }

@override
int fromJson(Map<String, dynamic> json) { ... }

@override
Map<String, int> toJson(int state) { ... }

}

With ReplayBlocMixin any bloc gains access to undo/redo operations, even "regular" blocs
you’ve created extending Bloc<E,S>. You just need to add the mixin; there’s nothing to add in
the definition of the class.

// Get a reference to the bloc
final hydratedCounterBloc = context.bloc<HydratedCounterBloc>();

// Then in the 'build' function, add events or call undo()/redo()
hydratedCounterBloc.add(const Increment());
hydratedCounterBloc.add(const Decrement());
hydratedCounterBloc.undo();
hydratedCounterBloc.redo();

This example shows how powerful mixins can be: they add functionalities to a class without
changing its internal definition.

11.3.5 The internals of Bloc: Cubit

Starting from version 6.0.0 of flutter_bloc the internals of the library got reworked and this is the
reason why initialState has been removed and replaced with super(). There’s a new class
called Cubit which is the new core of Bloc:

• Cubit is absolutely NOT a replacement of Bloc. Bloc uses Cubit internally!

• There’s no point in asking which one is better. If you’re using Bloc, then you’re also using
Cubit because it’s the "engine" that runs your blocs.

• A Cubit is a "lightweight" version of a Bloc.

Flutter Complete Reference 330

Chapter 11. State management

Keep in mind that Cubit has a simple and concise API which is great for managing simple states.
However, if you plan to completely replace cubit with Bloc for complex state management cases,
you might get in trouble. Here’s a comparison that might help you making a mental map:

• Bloc is a very powerful solution which is great for both simple and complex state manage-
ment. It can really be used in any Flutter project with no restrictions.

• Cubit has a very simple and concise API and it should be used when the state to be managed
is simple. It’s a "subset" of the Bloc library.

We’re going to show you how a Cubit<T> can be used to easily increment and decrement a
counter. Here’s a comparison on how the traditional "Counter app" would look like if you used
Cubit or Bloc to manage the state. Let’s start with the state management code:

• Cubit.

// counter_cubit.dart
class CounterCubit extends Cubit<int> {

CounterCubit() : super(0);

void increment() => emit(state + 1);
void decrement() => emit(state - 1);

}

• Bloc.

// event.dart
abstract class CounterEvent extends Equatable {...}

// state.dart
class CounterState extends Equatable {...}

// count_bloc.dart
class CounterBloc extends Bloc<CounterEvent, CounterState> {

CounterBloc() : super(const CounterState(0));

@override
Stream<CounterState> mapEventToState(CounterEvent e) async* {...}

}

As you can see, the CounterCubit version is simpler and with much less code to write. Note that
cubits don’t have states and events: they simply emit new states using methods. The usage of a

Flutter Complete Reference 331

Chapter 11. State management

cubit in the widget tree should be very familiar to you:

• Cubit

BlocProvider<CounterCubit>(
create: (_) => CounterCubit(),
child: CounterPage(),

),

• Bloc

BlocProvider<CounterBloc>(
create: (_) => CounterBloc(),
child: CounterPage(),

),

Once the provider has been placed right above the widgets you need, you can easily use a "builder
widget" to listen for updates. It’s no different from the structure you’ve been used to see up to
now and all flutter_bloc widgets are compatible with both Bloc and Cubit instances.

• Cubit

// Cubits are used inside 'BlocBuilder's
BlocBuilder<CounterCubit, int>(

builder: (_, counter) {
return Text("$counter");

},
),

• Bloc

BlocBuilder<CounterBloc, CounterState>(
builder: (context, state) {

return Text("${state.count}");
},

),

If we compared the amount of code, it’s clear that blocs require more boilerplate than cubits. In
this simple counter app, going for Cubit is fine since the state to manage is very easy (but still,
Bloc would be fine anyway). We want to point out again that cubit shouldn’t be the default
choice for any project: for advanced state management you’d better use Bloc.

Flutter Complete Reference 332

Chapter 11. State management

� In certain cases, you might not be sure that the state will always be simple to
manage. For example, it might happen that your project manager could tell you to
add more features and things might get complicated. If you’re stuck in this situation,
go for Bloc which has you covered in any situation.

There are also HydratedCubit<T> and ReplayCubit<T> which do the same thing as the "bloc
counterpart" with the same name. In the following example, we show how to persist and restore
the state of a Cubit<T> of a traditional "counter app".

class CounterCubit extends HydratedCubit<int> {
CounterCubit() : super(0);

void increment() => emit(state + 1);
void decrement() => emit(state - 1);

@override
int fromJson(Map<String, dynamic> json) =>

json['value'] as int;

@override
Map<String, int> toJson(int state) =>

{'value': state};
}

It works exactly like a HydratedBloc<T> with the only difference that only cubits are allowed.
Of course, you need to initialize the storage before starting the application.

void main() async {
WidgetsFlutterBinding.ensureInitialized();
HydratedBloc.storage = await HydratedStorage.build();
runApp(MyApp());

}

11.3.6 Good practices

If you decide to use flutter_bloc for your projects you’ll probably find yourself in the situation
where it’s required to have a BlocBuilder<B,S> is inside a BlocListener<B,S>. It’s perfectly
fine:

Flutter Complete Reference 333

Chapter 11. State management

BlocListener<BlocA, StateA>(
listener: (context, state) {

// listen to state changes and do something,
// like showing a snackbar or a dialog

}
child: Column(

children: [
const Text("Something"),
BlocBuilder<BlocA, StateA>(

builder: (context, state) {
return UseTheState(state);

}
)

]
)

)

No performance problems here but there’s quite a lot of code to write and many types to define.
There are two main ways to improve the readability of this code:

• Use the BlocConsumer<B,S> widget which allows you to use a listener and a builder all
together. It’s like nesting a BlocBuilder<B,S> inside a BlocListener<B,S> but with less
boilerplate code.

BlocConsumer<BlocA, StateA>
// This is the 'BlocListener' part
listener: (context, state) {

// listen to state changes and do something,
// like showing a snackbar or a dialog

}
// This is the 'BlocBuilder' part
builder: (context, state) {

return Column(
children: [

const Text("Something"),
UseTheState(state),

]
)

}

Flutter Complete Reference 334

Chapter 11. State management

)

It’s much easier to read and for sure you have less code to write because both listener and
builder expose the main parameters of the respective widgets. You should use consumer
only when you need to rebuild the UI and listen to state changes; if this is not the case,
use BlocBuilder and BlocListener alone.

• Move the content of the child in a separated widget so that you can also try to make, if
possible, a const constructor. It’s what we’ve done earlier while showing how to implement
a snackbar for the counter app:

BlocListener<BlocA, StateA>(
listener: (context, state) {

// listen to state changes and do something,
// like showing a snackbar or a dialog

}
child: const SubWidget(),

)

And then move the Column with its contents inside a dedicated widget:

class SubWidget extends StatelessWidget {
const SubWidget();

@override
Widget build(BuildContext context) {

// Column with text and BlocBuilder
}

}

Always remember to make constant constructors whenever possible!

If your app has a complex logic which requires more than a single bloc in the same widget,
consider using a MultiBlocProvider. The name should sound familiar because in practice it’s
just a MultiProvider which exposes a series of blocs to the children:

MultiBlocProvider(
providers: [

BlocProvider<Bloc1>(
create: (context) => Bloc1(),

),
BlocProvider<Bloc2>(

Flutter Complete Reference 335

Chapter 11. State management

create: (context) => Bloc2(),
),
BlocProvider<Bloc3>(

create: (context) => Bloc3(),
),

]
);

Be aware that flutter_bloc uses provider under the hood but you cannot mix the two libraries
together, simply because your code won’t compile. Prefer using the above approach rather than
nesting a series of BlocProviders because the code might become very hard to read.

11.4 Good practices for state management

We want to repeat (for the last time!) that using StatefulWidgets is perfectly fine and sometimes
fundamental, for example when the class has non-final instance variables like int counter = 0;.
A stateful widget isn’t more efficient than a stateless one and vice versa. What is bad is the usage
of setState without InheritedWidget:

• It breaks the SRP because a widget has to take care of the UI and the logic together, which
can also become messy very quickly in large apps.

• In a complex architecture the usage of setState alone can be problematic because it
doesn’t give the possibility to optimize children rebuilds. It should be integrated with
InheritedWidget but there would be a lot of work to do in terms of development, testing
and maintenance.

• If you really have to use it because you’re doing maintenance of an app made by someone
else, be sure that it doesn’t compute anything. Don’t call functions that calculate/compute
something; just do simple assignments.

The official Flutter documentation 8 maintains a list of active state management libraries; among
them you can find provider and flutter_bloc that we’ve covered in the previous sections.

� You can decide to manage the state of your app with whatever package you want,
whether it be a provider, bloc, Redux or MobX. The decision is up to you because
they all do their job very well.

8https://flutter.dev/docs/development/data-and-backend/state-mgmt/options

Flutter Complete Reference 336

Chapter 11. State management

It’s not possible to say which one is the best or if one works better than the other.
For sure they solve the same problem but they use different approaches and different
logics so it’s difficult to make a fair comparison.

If you want to have another complete example about the provider package, check the official
documentation 9 which uses ChangeNotifier and ChangeNotifierProvider. In the end, here’s
a quick recap of the best practices about state management:

• provider

– Prefer the usage Consumer<T> which rebuilds only the widgets that you want. If you
want to have even more control for better optimization, use Selector which is able
to specifically tell when a rebuild should happen.

– Avoid the usage of Provider.of<T>(context) inside build as it will rebuild any
children, even the ones that don’t need to be updated.

– Consider using a MultiProvider() when you have more than a single provider at the
same level; it makes the code more readable.

– Prefer using context.watch<T>() and the other extension methods on BuildContext
since it’s more concise and modern. There’s no performance difference if compared to
Provider.of<T>() but it’s just a shorter syntax.

– In general, prefer using extension methods since they’re shorter and more modern.

• flutter_bloc

9https://flutter.dev/docs/development/data-and-backend/state-mgmt/simple

Flutter Complete Reference 337

Chapter 11. State management

– Prefer using context.bloc<T>() which is less verbose than using the non-extension
version BlocProvider.of<T>(context)

– Put inside BlocBuilder<T>() only the widgets that actually need a rebuild in response
to a state change. Don’t place into it widgets that don’t need to listen to changes,
even if they are const because they "pollute" the scope of the bloc.

– If you have the need to both listen and build for a bloc, use BlocConsumer<B,S>
instead of nesting widgets; it reduces the amount of boilerplate code.

– Consider using ReplayBloc or ReplayBlocMixin to add undo/redo actions to your
blocs.

Flutter Complete Reference 338

12 | Routes and navigation

12.1 Basics of navigation and routing

Organizing information across several screens is one of the most important building blocks of
any architecture. A very common example is the one in which your app’s first page is a login
form and, if the user provides a correct combination of username and password, a welcome page
appears.

� In the Flutter world, your app’s pages are called routes, or screens, and they are
the equivalent of Activities in Android or ViewControllers in iOS.

The most common way to create a page involves the usage of a stateless or stateful widget with
a Scaffold (or a CupertinoPageScaffold). This chapter is going to show how to properly
structure and manage the pages of your app. Before getting started, we want to suggest you a
possible folder structure for your app:

- lib/
- routes/
- widgets/
- main.dart
- routes.dart

Very intuitively, routes/ is going to contain all those UI widgets representing a route of the app.
Inside widgets/ we recommend putting all those reusable widgets that support the creation of
your app’s pages. Look at this simple widget:

class FooterName extends StatelessWidget {
const FooterName();

Flutter Complete Reference 339

Chapter 12. Routes and navigation

@override
Widget build(BuildContext context) {

return Text("Your name",
style: const TextStyle(...)

);
}

}

Placing this code in widgets/footer_name.dart is very convenient because you know it’s an
"utility" piece of UI that will be reused across multiple pages as a footer. It can be integrated
with const FooterName() and a simple change on footer_name.dart is automatically reflected
everywhere.

12.1.1 Creation of routes

We’re going to create a simple application with two screens: HomePage, the first route which
appears when the app starts, and RandomPage, a route that displays a random number at the
center of the screen. The layout of the pages will be created with a convenient Scaffold from
the material library.

// Located in routes/home_page.dart
class HomePage extends StatelessWidget {

const HomePage();

@override
Widget build(BuildContext context) {

return Scaffold(
body: Center(

child: RaisedButton(
onPressed: () {}
child: const Text("Random"),

),
),

);
}

}

// Located in routes/random_page.dart

Flutter Complete Reference 340

Chapter 12. Routes and navigation

class RandomPage extends StatelessWidget {
const RandomPage();

@override
Widget build(BuildContext context) {

return Scaffold(
body: Center(

child: Text("${Random().nextInt(20)}"),
),

);
}

}

Any other page of the app will go in the routes/ folder which might contain other folders to
better organize the files. When there are many files, creating a good hierarchy of directories and
sub-directories is fundamental in order to not get lost in your own architecture.

12.1.2 The main.dart file

The general structure of a main.dart file might look like the following. The usage of mate-
rial instead of cupertino is not relevant, it just means we’re using MaterialApp() in place of
CupertinoApp().

import 'package:flutter/material.dart';

void main() => runApp(const RandomApp());

// 1.
class RandomApp extends StatelessWidget {

const RandomApp();

@override
Widget build(BuildContext context) {

return MaterialApp(
onGenerateTitle: (context) => "Random App",

initialRoute: RouteGenerator.homePage, // 2.
onGenerateRoute: RouteGenerator.generateRoute, // 3.

Flutter Complete Reference 341

Chapter 12. Routes and navigation

// Hides the debug stripe on the top-right corner
// which might be annoying to see!
debugShowCheckedModeBanner: false,

);
}

}

This is how you should structure your main.dart file. Of course you can rearrange it as you prefer
but generally it should only contain the code that initializes the app and nothing more.

1. This is the widget located at the root of the tree which has the task to setup the various
routes and redirect the user to the first page.

2. This is a string. We’re going to explain what is RouteGenerator in a moment; it basically
tells Flutter which is the first route that has to be loaded.

3. This is a method reference. The navigation between pages in Flutter works like if you were
using a browser. Each page has a name, which is like an "url" and you show a page by
"navigating" to that address.

If your pages need to share a cache or you have the need for one (or more) notifiers, it’s good
practice wrapping the MaterialApp inside a MultiProvider which nicely gathers a series of
providers.

@override
Widget build(BuildContext context) {

return MultiProvider(
providers: [

Provider<DataCache>(create: (_) => DataCache()),
ChangeNotifierProvider<Something>(

create: (_) => Something()
),

],
child: MaterialApp(...)

);
}

12.1.3 The routes.dart file

Having a single class that handles the entire routing of your app is very nice as it fully embraces
the single responsibility principle. By consequence, when you’ll have to deal with routes you’ll

Flutter Complete Reference 342

Chapter 12. Routes and navigation

always open routes.dart because every route-related logic is only there.

� This is a "centralized" control of your routes which keeps the code clean. Give
this file whichever name you want but we suggest it should contain the word "route"
so that you’ll recognize its contents immediately.

The following snippet shows the contents of routes.dart. The example is using the material
library, so we’re using return MaterialPageRoute(), but if you were in the cupertino world
you’d go for return CupertinoPageRoute().

// 1.
class RouteGenerator {

// 2.
static const String homePage = '/';
static const String randomPage = '/random';

// 3.
RouteGenerator._() {}

// 3.
static Route<dynamic> generateRoute(RouteSettings settings) {

//4.
switch (settings.name) {

case homePage:
// .5
return MaterialPageRoute(

builder: (_) => const HomePage(),
);

case randomPage:
return MaterialPageRoute(

builder: (_) => const RandomPage(),
);

default:
throw FormatException("Route not found");

}

Flutter Complete Reference 343

Chapter 12. Routes and navigation

}
}

// 5.
class RouteException implements Exception {

final String message;
const RouteException(this.message);

}

There must be a route named '/' which has to map to the first page that’s being shown when
your app starts. It’s a requirement, not a just a good practice.

1. Actually this class is just a "wrapper" for a single static function because declaring global
functions is possible, but it’s not a good idea.generateRoute() is the main actor.

2. Each page of the app is uniquely identified by a string; it’s the same thing you’re used to
see on the internet where web pages are identified by URLs. In this case:

• The DemoPage route is associated with the '/' path

• The RandomPage route is associated with the '/random' path

Do you want to press on a button and show the RandomPage widget? It’s very easy, you
just need to write...

Navigator.of(context)?.pushNamed(RouteGenerator.randomPage);

... and the new screen appears. The pushNamed() method takes a path, which is linked to
a page, and navigates to it; in this case it looks for '/random' and shows the widget that’s
been assigned to it.

3. The settings parameter carries some info gathered by the Navigator.of method such as
the name of the route. This part is very important because it’s were you map an URI (the
path) to the route/screen.

4. The MaterialPageRoute<T> class replaces one screen with another by using an Android
slide transition. The equivalent class for the cupertino package is CupertinoPageRoute<T>
which does the same job but with an iOS slide transition.

You’ve just seen how to create a series of "named routes" (routes at which you assign a name).
For example, the route '/random' is said to be the named route of the RandomPage widget.

// Inside 'MaterialApp()' of main.dart
initialRoute: RouteGenerator.homePage,

Flutter Complete Reference 344

Chapter 12. Routes and navigation

onGenerateRoute: RouteGenerator.generateRoute,

initialRoute takes the path of the first page that Flutter has to load when the app is opened.
onGenerateRoute maps an URI (a string like '/random') to a widget (a route like RandomPage)
so that the Navigator class is able to show the pages.

12.1.4 Navigating between pages

At this point, we have our routes properly set up inside routes.dart and we’re ready to move
from one page to the other. A quick recap of the job we’ve done so far:

• creation of two routes called DemoPage and RandomPage;

• setup of the routes in the MaterialApp() of main.dart;

• The creation of the RouteGenerator class which maps an URI to a widget so that the
Navigator class can open routes.

The first page of our example app is HomePage which has to open another route when the button
is pressed. All we need to do is calling pushNamed() with the name of the target route that has
to appear.

// The 'HomePage' widget's build method
return Scaffold(

body: Center(
child: RaisedButton(

onPressed: () =>
Navigator.of(context)?.pushNamed(

RouteGenerator.randomPage
)

child: const Text("Random"),
),

),
);

This code makes the RandomPage route appear with a sliding animation from the bottom to the
top of the screen. If you want to come back to the HomePage route just press the back button or
make a simple call to Navigator.of(context)?.pop().

// The 'RandomPage' widget's build method
final rand = Random().nextInt(20);

Flutter Complete Reference 345

Chapter 12. Routes and navigation

return Scaffold(
body: Center(

child: Text("$rand"),
),

);

12.1.5 Good practices

Both MaterialApp and CupertinoApp are needed to configure the routes that will be used by
the Navigator, you’ve just seen it. Actually, we’ve only described the good way to implement
routes management but in reality there are more ways to achieve the same result:

• Good. Encapsulate the routing management in a single class of a dedicated file. Other
than respecting the SRP, you’ll be able to easily handle a lot of routes with ease in a single,
centralized place.

MaterialApp(
initialRoute: RouteGenerator.homePage,
onGenerateRoute: RouteGenerator.generateRoute,

);

Nothing new, this is what we’ve implemented in the previous section. The route manage-
ment is completely separated from the rest of the app thanks to class RouteGenerator.

• Bad. Do the routing management directly inside the MaterialApp widget with no logic
separation between various areas. This example may look good, but if there were many
routes there would probably be maintenance problems.

MaterialApp(
initialRoute: '/',
routes: <String, WidgetBuilder>{

'/': (BuildContext context) => const HomePage(),
'/random': (BuildContext context) => const RandomPage(),

},
);

You can use the routes parameter and assign it a Map<String, WidgetBuilder> which
maps a path to a route. This is what we did inside generateRoute with the exception

Flutter Complete Reference 346

Chapter 12. Routes and navigation

that here the routing logic is being injected directly in the widget. In this case, there’s no
separation between UI logic and routing logic.

MaterialApp(
initialRoute: '/',
routes: <String, WidgetBuilder>{

'/': (BuildContext context) => MaterialPageRoute(
builder: (context) => const HomePage(),

),
'/random': (BuildContext context) => MaterialPageRoute(

builder: (context) => const HomePage(),
),

},
);

Wrapping screens inside MaterialPageRoute() automatically adds the transition anima-
tion while navigating and a BuildContext to use if needed. The biggest problem is that
builder methods can be complicated or require more logic; if you had many routes your
code would become messy and hard to maintain.

• Bad. Do the same thing but use home instead of initialRoute.

MaterialApp(
home: const HomePage(),
routes: <String, WidgetBuilder>{

// define routes...
},

);

Do NOT define home and initialRoute together because it’d be a conflict that might end
up in an unexpected behavior.

While the RouteGenerator class approach is harder to understand and involves multiple steps,
it’s the best to use as it also scales well. Do not mix different routing management approaches
together, you might get lost in your own code!

MaterialApp(
// This is very error-prone!
initialRoute: RouteGenerator.homePage,
onGenerateRoute: RouteGenerator.generateRoute,

Flutter Complete Reference 347

Chapter 12. Routes and navigation

routes: <String, WidgetBuilder>{
'/': (BuildContext context) => MaterialPageRoute(

builder: (context) => const HomePage(),
),
'/random': (BuildContext context) => MaterialPageRoute(

builder: (context) => const HomePage(),
),

},
);

Can you guess what’s going on? How can you know which parameter will be chosen by the
framework to handle the routing? There is an order actually 1:

1. Flutter looks first if the home parameter is set;

2. if home is null, then the routes parameter is chosen;

3. if routes is null, then the onGenerateRoute callback is chosen;

4. if none of the above resolved to a valid call, the onUnknownRoute callback is called.

You don’t need to remember this sequence at all. In order to not make confusion avoid the
setup of the routes inside MaterialApp or CupertinoApp and walk in the SRP-way by creating
a separated class, like RouteGenerator.

12.1.6 Navigator 2.0

The Navigator class existed since the early days of Flutter and we’re describing how to use it in
this chapter. The Flutter team will deliver an update on the routing system with the following
changes (some of them are breaking):

• pop() doesn’t return a value anymore;

• the isInitialRoute property of RouteSetting is deprecated;

• the presence of a new widget called Router.

Router is a new widget you can use to open and close pages of an app. It wraps a Navigator
and configures its current list of pages based on the current app state. Let’s see what you’ll have
to do in order to migrate the code to the new navigation system.

1https://api.flutter.dev/flutter/material/MaterialApp-class.html

Flutter Complete Reference 348

Chapter 12. Routes and navigation

• If you rely on RouteSettings.isInitialRoute, replace it with the new callback introduced
in both MaterialApp and CupertinoApp. Of course, the RouteGenerator class has to be
changed accordingly as well:

// Before
RouteGenerator {

static Route<dynamic> generateRoute(RouteSettings settings) {
if (settings.isInitialRoute) {

return A();
}
return B();

}
}

MaterialApp(
onGenerateRoute: RouteGenerator.generateRoute,

)

// Migration
RouteGenerator {

static Route<dynamic> generateRoute(RouteSettings settings) {
return B();

}

static List<Route> generateInitialRoutes(String name) {
return <Route>[A()];

}
}

MaterialApp(
onGenerateInitialRoutes: RouteGenerator.generateInitialRoutes,
onGenerateRoute: RouteGenerator.generateRoute,

)
)

Basically, you don’t have to perform a check inside generateRoute anymore because it’s
done internally by the framework when you assing values to onGenerateInitialRoutes.

• In the next section, we will see that pop() can return a value. You’ll learn that working

Flutter Complete Reference 349

Chapter 12. Routes and navigation

with pop() to exchange data is not good and should be avoided. Furthermore, with the
new update you’ll be forced to use use canPop() and then call pop() separately.

// Before
if (Navigator.pop(context)) {

print("Can pop");
} else {

print("Cannot pop");
}

// Migration
if (Navigator.canPop(context)) {

print("Can pop");
} else {

print("Cannot pop");
}
Navigator.pop(context);

The navigator pops the route anyway, so in the new version we call pop() at the end.

Keep in mind that Navigator won’t be removed in favor of Router. Be sure to have a look at
the documentation when the navigator 2.0 upgrade will come out.

12.2 Passing data between pages and widgets

Sharing data between two or more pages is a very common need: different widgets located in
various parts of the tree might require some data sharing. Common use cases can be:

1. in a layout with many tabs, you need to pass data from a tab to another;

2. you have a route (a page) which has to send a primitive type or a complex object to another
route when navigating to it;

3. in the same page, two widgets need to exchange data.

All of these tasks can be easily accomplished with the provider package as it’s a perfect option for
data sharing among widgets. There would also be the possibility to pass data using Navigator
but we will see why it’s discouraged.

Flutter Complete Reference 350

Chapter 12. Routes and navigation

12.2.1 The Navigator class

The Navigator class allows you to move from a route to another going back and forth. The
pages you navigate to are "overlapped" and the framework keeps track of them using a stack.
This picture gives you an idea of how it works:

When you navigate to a new screen with pushNamed("/route_name"), the Navigator adds a
new route to its internal stack. By consequence, the route at the top of the stack is the one you’re
seeing on the screen. If you want to go back to the previous page, call pop():

This method removes the route at the top of the stack so that the widget below becomes the

Flutter Complete Reference 351

Chapter 12. Routes and navigation

new visible screen. Going forth and back between pages is just a matter of pushing and popping
routes in a stack data structure managed by the Navigator.

• Navigator.of(context)?.pushNamed("/route_name")

• Navigator.of(context)?.pop()

But there’s also another equivalent way to use them:

• Navigator.pushNamed(context, "/route_name")

• Navigator.pop(context)

Maybe it’d be better using the of(context) version as it’s a more common pattern also used by
other widgets, but it returns a nullable type. If you don’t want to use named routes, you can use
"plain routes" that work without strings:

• Named route.

Navigator.of(context)?.pushNamed("/route_name");

• Plain route

Navigator.of(context)?.push(
MaterialPageRoute(

builder: (context) => YourScreen()
)

);

If you aren’t using named routes, you have to manually specify the destination every time (=
code duplication) and mix UI logic with navigation logic. Again, the RouteGenerator approach
we’ve covered at the beginning of the chapter is what we recommend!

12.2.2 Passing data with Navigator

We’re creating a simple to-do app; when an item of the list is tapped, a new route appears with
a description of the selected to-do. The first thing to do is the creation of a Todo type which
represents an entry of the list.

class Todo {
final String title;
final String description;

Flutter Complete Reference 352

Chapter 12. Routes and navigation

const Todo(this.title, this.description);
}

In the first page, called TodosPage, we’re creating a list of Todos that are displayed using a
ListView. When a to-do is tapped, a new route called InfoPage is opened to show the description
of the selected item.

class TodosPage extends StatelessWidget {

// Some todos to show on the screen.
final List<Todo> todos = [

Todo("Item 1", "First to-do of the list"),
Todo("Item 2", "Second to-do of the list"),
Todo("Item 3", "Third to-do of the list"),

];

const TodosPage();

void _itemPressed(BuildContext context, Todo item) =>
Navigator.of(context)?.push(

MaterialPageRoute(
builder: (context) => InfoPage(todo: item),

),
);

@override
Widget build(BuildContext context) {...}

}

The to-do list is directly given by the widget just to keep the example simple and focus on the
problem, which lies in _itemPressed. As you can see named routes aren’t being used and we’ll
explain why in a moment.

// build method of 'TodosPage'
return Scaffold(

body: ListView.builder(
itemCount: todos.length,
itemBuilder: (context, index) {

return ListTile(
title: Text(todos[index].title),

Flutter Complete Reference 353

Chapter 12. Routes and navigation

onTap: () => _itemPressed(context,
todos[index].description

),
);

},
),

);

Finally, we need a route that displays the description of the selected widget such as InfoPage.

class InfoPage extends StatelessWidget {
final Todo item;
const InfoPage(this.item);

@override
Widget build(BuildContext context) {

return Scaffold(
body: Center(

child: Text("${item.description}")
),

);
}

}

The biggest problem of this approach is that Navigator cannot take a named route with the
RouteGenerator strategy we’re used to adopt. You have to inject MaterialPageRoute directly
inside the method of the navigator and this can be a problem:

• First of all, the single responsibility principle is not respected because the navigation logic is
spread across multiple files. Widgets now have to take care about navigation management
and, if any, custom transitions between pages.

• With this approach you can send data to InfoPage by writing some boilerplate code. What
if you had the need to return data back from InfoPage to TodosPage? There is a solution:

// In the 'TodosPage' widget, send data to 'InfoPage'
void _itemPressed(BuildContext context, Todo item) async {

// Result contains the data returned by 'pop' in InfoPage
final result = await Navigator.of(context)?.push(

MaterialPageRoute(
builder: (context) => InfoPage(todo: item),

Flutter Complete Reference 354

Chapter 12. Routes and navigation

),
);

}

// In the 'InfoPage' widget, send data back to 'InfoPage'
void _returnSomething() {

Navigator.pop(context, "Pasta pizza maccheroni");
}

We’ve changed the body of the method because the push function returns a Future<T>
which completes only when pop has been called somewhere. In practice the push method
returns a value when pop is called somewhere in the tree; in this case the string is stored
inside final result.

To sum up, passing data with Navigator is complicated and badly mixes many logics inside
your widgets. Keeping track of the data flow across various push and pop calls can quickly get
confusing.

12.2.3 Passing data with provider

Sharing data among routes with Navigator can be troublesome and you’ve just seen why. Using
provider you can get rid of all those problems and easily pass objects between widgets without
caring about the navigation.

1. The first thing to do is the creation of a model class, which is a class representing a to-do
item, like we’ve done earlier.

// Still the same todo.dart file
class Todo {

final String title;
final String description;

const Todo(this.title, this.description);
}

2. Rather than having the to-do list in a widget, we move it to a dedicated class that’s going
to be used as a cache. Thanks to provider the various pages will be able to access the list
whenever they want without having to move data back and forth.

// todo_cache.dart
class TodoCache {

Flutter Complete Reference 355

Chapter 12. Routes and navigation

var _index = -1;

final List<Todo> _todos = [
Todo("Item 1", "First to-do of the list"),
Todo("Item 2", "Second to-do of the list"),
Todo("Item 3", "Third to-do of the list"),

];

void addItem(String title, String descr) {
_todos.add(Todo(title, descr));

}

int get index => _index;
set index(int value) {

if ((value >= 0) && (value < _todos.length)) {
_index = value;

} else {
_index = -1;

}
}

UnmodifiableListView<Todo> get list =>
UnmodifiableListView<Todo>(_todos);

}

We know this is a very simple logic: you could also implement the deletion of an item, the
lookup on the list and much more. For the scope of our example that’s enough.

3. Using a Provider<TodoCache> we can expose the list to the children (the routes) so that
they’re able to share the data. We’ve decided to place a provider right above the widget
containing our pages and not inside runApp() just to not pollute the scope. It actually
wouldn’t make any difference but MyApp doesn’t require data sharing so including it in the
provider would be useless.

// todo_cache.dart
void main() => runApp(const MyApp());

class MyApp extends StatelessWidget {
@override

Flutter Complete Reference 356

Chapter 12. Routes and navigation

Widget build(BuildContext context) {
return Provider<TodoCache>(

create: (_) => TodoCache(),
child: const TodosPage(),

);
}

}

Nothing new up to here because that’s the typical setup for a provider. The TodosPage doesn’t
change much; the only difference from before is on how the Navigator is called. We’re about to do
dependency injection thanks to provider and thus a huge step forward to respect the SRP.

class TodosPage extends StatelessWidget {
const TodosPage();

void _open(BuildContext context) =>
Navigator.of(context)?.pushNamed(RouteGenerator.infoPage);

@override
Widget build(BuildContext context) {

return Scaffold(
body: Consumer<TodoCache>(

builder: (context, cache, _) {
return ListView.builder(

itemCount: cache.list.length;
itemBuilder: (context, index) {...}

);
}

),
);

}
}

We can now use named routes with the RouteGenerator approach because data are not coupled
to the navigation logic anymore. In this way we have separated data sharing from navigation
logic and thus there’s no need to work with push and pop to send/receive objects.

// 'itemBuilder' of ListView.builder in TodosPage
itemBuilder: (context, index) {

return ListTile(

Flutter Complete Reference 357

Chapter 12. Routes and navigation

title: Text("${cache[index].title}"),
onTap: () {

cache.index = index;
_open(context);

}
);

}

Tapping an item of the list calls _open which pushes a new route to the screen. Thanks to
cache.index = index; we can remember which item has been selected so that other widgets
will be able to get a reference to the to-do just by calling:

final selectedTodo = cache.list[cache.index];

For example, if you tapped on the second item of the list cache.index would be 1 because the
selected item is the second to-do of the list. Our InfoPage route doesn’t need to get the index
via constructor anymore because the provider has anything we need:

class InfoPage extends StatelessWidget {
const InfoPage();

@override
Widget build(BuildContext context) {

return Scaffold(
body: Center(

child: Consumer<TodoCache>(
builder: (context, cache, _) {

final item = cache.list[cache.index];
return Text("${item.description}");

}
),

),
);

}
}

If you wanted to improve this code even more, you could remove the index variable and use
another strategy to select the correct to-do item in the list. Apart from this, what you should
learn from this chapter is that dependency injection (with provider) is the way to go for data
sharing among routes.

Flutter Complete Reference 358

Chapter 12. Routes and navigation

• the routing logic can be isolated in a RouteGenerator class or whatever you want to name
it;

• the business logic can be isolated in a dedicated class (TodoCache for example):

• the UI is not mixed with the logic; thanks to provider you inject the dependencies in the
widgets but there’s a very loose coupling between components.

Passing data using push and pop directly is bad: you cannot use named routes, routing logic
mixes with business logic and keeping track of the data flow quickly becomes cumbersome.

12.3 Other routing techniques

As you’ve seen throughout this chapter, a BuildContext is essential to navigate among routes.
In some cases, you could have the need to move to a new page without having a context available:
in this case, you can use keys.

class RouteGenerator {
RouteGenerator._();

// Expose a key to use a navigator without a context
static final key = GlobalKey<NavigatorState>();

static Route<dynamic> generateRoute(RouteSettings settings) {...}
}

We’ve added a new static field to our famous RouteGenerator class which will be used to call
pushNamed without a context. It needs to be linked to the material or cupertino root widget in
order to work as expected:

MaterialApp(
navigatorKey: RouteGenerator.key,

)

CupertinoApp(
navigatorKey: RouteGenerator.key,

)

Now you can use RouteGenerator.key.currentState?.pushNamed() to navigate among routes
as usual. The difference is that no BuildContext is required but keep in mind the following:

Flutter Complete Reference 359

Chapter 12. Routes and navigation

• Try to use Navigator.of(context)?.pushNamed() as much as possible. It should be your
default choice.

• Remember that global keys are relatively expensive to use.

• Use a GlobalKey<NavigatorState>() only if really needed. In chapter 22 we will see a
case in which a navigation key is essential, but still it’s a single case.

Flutter’s navigation tools are easy to use but they aren’t perfect; data sharing between routes
can become quite cumbersome and thus relying on provider is essential. Here’s a list of the most
relevant packages for an alternative routes management (with a link to their repository):

1. Flutter modular.
https://pub.dev/packages/flutter_modular

class AppModule extends MainModule {
// Injectable classes such as "provider" or "flutter_bloc"
@override
List<Bind> get binds => [];

// Your app's routes
@override
List<Router> get routers => [

Router("/", child: (_, __) => HomePage()),
Router("/info", child: (_, __) => InfoPage()),

];

// The widget that contains MaterialApp or CupertinoApp
@override
Widget get bootstrap => MyRootWidget();

}

.

2. Fluro.
https://pub.dev/packages/fluro

final router = Router();

// Define a route
var loginRoute = Handler(

Flutter Complete Reference 360

https://pub.dev/packages/flutter_modular
https://pub.dev/packages/fluro

Chapter 12. Routes and navigation

handlerFunc: (context, params) {
return LoginScreen();

}
);

// Assign it to the router
void defineRoutes(Router router) {

router.define("/login", handler: loginRoute);
}

// Navigate
router.navigateTo(context, "/login",

transition: TransitionType.fadeIn
);

.

3. Sailor.
https://pub.dev/packages/sailor

// Routing class
class Routes {

static final sailor = Sailor();

static void createRoutes() {
sailor.addRoute(SailorRoute(

name: "/loginPage",
builder: (context, args, params) {

return LoginPage();
},

));
}

}

// Routes initialization
void main() async {

Routes.createRoutes();
runApp(const MyApp());

}

Flutter Complete Reference 361

https://pub.dev/packages/sailor

Chapter 12. Routes and navigation

// Registration of Sailor
Widget build(BuildContext context) {

return MaterialApp(
navigatorKey: Routes.sailor.navigatorKey,
onGenerateRoute: Routes.sailor.generator(),

);
}

// No context needed for navigation
Routes.sailor.navigate("/loginPage");

They’re not necessarily better or worse than Flutter’s Navigator approach; it’s just a series of
alternatives you might find interesting.

Flutter Complete Reference 362

13 | Localization and internationalization

13.1 Introduction

Other than being responsive, high quality apps are also well localized: it means that they auto-
matically adapt the contents in order to appeal to a geographically specific target device. While
this might sound quite complicated to understand, this example will get you to the point:

The above picture shows how the same application behaves in two different mobile phones of

Flutter Complete Reference 363

Chapter 13. Localization and internationalization

people coming from different parts of the world. The app is said to be "localized" because,
according with the locale in which it’s run, it adopts to the user’s culture and geographical
area.

• On the left, the app is loaded in a mobile device whose locale is set to "Italy". For this
reason it shows the price in euro, the italian flag and the text is translated in the native
language.

• On the right, the app is loaded in a mobile device whose locale is set to America. For
this reason it shows the price in dollars, the american flag and the text is translated in the
native language.

In other words, your app is localized when certain graphical elements of the UI automatically
change according with the culture and the geographical area of the device. In general, the most
relevant aspects to take into account are:

• translating sentences in the proper language;

• showing prices in the proper currency (euro, dollar, Sterling and so on);

• choosing between 24h or 12h time format (18.30 or 8.30pm)

• time-based implementations should take into account time zones.

Making a fully localized app is not so easy because there are many aspects to consider; the bigger
your app is, the more you’ll have to localize. However, Flutter comes to the rescue with the intl
1 package which includes many localization facilities.

import 'package:intl/intl.dart';

void main() => runApp(
const DemoApp()

);

class DemoApp extends StatelessWidget {
const DemoApp();

@override
Widget build(BuildContext context) {

// Same exact thing with 'CupertinoApp'
return MaterialApp(

1https://pub.dev/packages/intl

Flutter Complete Reference 364

Chapter 13. Localization and internationalization

localizationsDelegates: [
GlobalMaterialLocalizations.delegate,
GlobalCupertinoLocalizations.delegate,
GlobalWidgetsLocalizations.delegate,

],
);

}
}

The minimal setup required for intl to work is the declaration of a few localization delegates
in MaterialApp() or CupertinoApp() at the root of your widget tree; they are used by intl
to automatically gather information about the device’s locale. The package provides a series of
facilities:

• The simpleCurrency method gets currency information according with the device’s locale:

// The device in which this example is run is italian and thus the
// locale resolves to "it". Since 'localeOf()' is nullable, we
// provide a default value so that "en" becomes the fallback.
var localeFormat = NumberFormat.simpleCurrency(

locale: Localizations.localeOf(context)?.toLanguageTag() ?? "en",
);

debugPrint("${localeFormat.currencySymbol}"); // € (the 'euro' symbol)
debugPrint("${localeFormat.currencyName}"); // EUR

If you want to get data about a specific currency just hard-code the language tag with, for
example, simpleCurrency("en_US") which will return "$" or "USD".

• Thanks to DateFormat there are many ways to format a DateTime object according with
the current locale. Visit the official documentation 2 to get a detailed explaination of the
various possible combinations

var today = DateTime.now();

// Using the default locale obtained by intl ("en")
final d1 = DateFormat("yyyy-MM-dd - kk:mm").format(today);
// d1 = "2020-05-31 - 10:58"
final d2 = DateFormat("EEE, M/d/yyyy").format(today);

2https://pub.dev/documentation/intl/latest/index.html

Flutter Complete Reference 365

Chapter 13. Localization and internationalization

// d2 = "Sun, 5/31/2020"

// Using a given locale which overrides the default one
final d2 = DateFormat("EEE, M/d/yyyy", "it").format(today);
// d2 = "dom, 5/31/2020"

While "Sun" stands for "Sunday", in the second example "dom" stands for "domenica"
which is the italian translation of sunday.

• A very useful feature of this package is the automatic string translation for material and
cupertino widgets. For example if you had a search button in your app, rather than hard
coding the textual value...

RaisedButton(
child: const Text("Search"), // <-- hard coded string
onPressed: () {}

)

... you can use intl which automatically translates the strings according with the device’s
locale:

RaisedButton(
// "Search" for the English/American locale
// "Cerca" for the Italian locale
// "Rechercher" for the French locale
// and so on...
child: Text(MaterialLocalizations.of(context).searchFieldLabel),
onPressed: () {}

)

The CupertinoLocalizations class works in the same exact way but it’s meant to be used
with cupertino components.

When localizing an app, it’s also fundamental approaching to internationalization which is
the process of translating strings into different languages according with the current locale. You
can do it by using MaterialLocalizations and CupertinoLocalizations but they’re limited
to translate a series or pre-built widgets.

� Localization (L10n) and internationalization (i18n) are not the same thing, even
if sometimes they’re erroneously used as if they were synonyms. Internationalization,
date time formatting, currency formatting and much more more are all localization

Flutter Complete Reference 366

Chapter 13. Localization and internationalization

techniques.

What you should do is being able to completely translate each string of your app, including those
that don’t belong to Flutter’s UI libraries. In the following two sections we’re going to show how
to completely internationalize Flutter applications so that they automatically translate according
with the devices’s locale.

When the app is opened, the user doesn’t have to choose the preferred language because the device
automatically recognizes it (thanks to class Locale). Before starting, keep in mind that:

• Both techniques you’re going to see are good: don’t think that, in terms of performance, one
is better than the other. If you’re not sure which one you should use, try both approaches
to determine which is the one that suits more to your needs.

• Manual internationalization is faster to implement and probably easier to use but it just
translates strings. Basic approach.

• Internationalization with intl requires various configurations to setup but it’s more than
plain string translation (subtle control for plurals, nouns, first/third person and so on).
Advanced approach.

Flutter Complete Reference 367

Chapter 13. Localization and internationalization

13.2 Manual internationalization

This kind of internationalization is manual because it doesn’t rely on automated tools or external
files; you have to manage the various translations by yourself. In terms of efficiency there are no
problems at all but probably, in larger apps, maintenance might be tedious if there are a lot of
languages to support.

lib/
localization/
routes/
main.dart
routes.dart

We recommend the creation of a folder called localization which is going to contain localization-
specific files, such as the ones we’re going to create now to internationalize the app.

13.2.1 AppLocalization

Create a new file called app_localization.dart which is going to host the AppLocalization
class. It contains a database with the translations of each string for all locales that the app is
going to support. We have decided to use English ("en") as default language.

// app_localization.dart
class AppLocalization {

final Locale locale;
const AppLocalization(this.locale);

static AppLocalization? of(BuildContext ctx) =>
Localizations.of<AppLocalization>(ctx, AppLocalization);

static Map<String, Map<String, String>> _db = {
"en": {

"hello": "Hello!",
"hello_world": "Hello world",

},
"it": {

"hello": "Ciao!",
"hello_world": "Ciao mondo",

},

Flutter Complete Reference 368

Chapter 13. Localization and internationalization

"es": {
"hello": "Hola!",
"hello_world": "Hola Mundo",

}
};

}

The database is implemented with maps because when it comes to data retrieval they are very
fast (O(1) time complexity); making it static is a good idea because data has to be initialized
only once. In this example, our app is going to translate strings for the following locales:

• en - English;

• it - Italian;

• es - Spanish

The static method of() takes care of extracting the proper locale according with the context. In
fact, thanks to it you’re able to do the following...

final locale = AppLocalization.of(context)?.locale.languageCode ?? "en";

... where final locale is a string containing the language code of the device’s locale such as
"en", "it" or "es". Having a final Locale instance variable is not required but it might be
good to have if you wanted to implement some locale-specific features. Feel free to remove it if
you won’t need it.

� In the translations database (_db), the various locale keys must all match other-
wise the lookup strategy won’t work. You cannot use different keys like this:

"en": {
"hello": "Hello!",

},
"it": {

// NO, should be 'hello'
"ciao": "Ciao!",

},

To keep the example simple we’ve decided to use strings. However, a better approach
would be the usage of an enum for keys in order to avoid working with strings, which
might introduce typing errors.

Flutter Complete Reference 369

Chapter 13. Localization and internationalization

enum _LocKeys {
hello,
hello_world

}

class AppLocalization {
static Map<String, Map<_LocKeys, String>> _db = {

"en": {
_LocKeys.hello: "Hello!",

},
"it": {

_LocKeys.hello: "Ciao!",
},
"es": {

_LocKeys.hello: "Hola!",
},

}
}

Less strings to maintain! Make sure to make _LocKeys private to hide access to it
from the outside (hiding implementation details is always a good practice).

Still in the same file, create an extension method which allows calling a localize method di-
rectly on a BuildContext object, which is very convenient. The extension method can access
AppLocalization’s private members because they live in the same file.

extension LocalizationExt on BuildContext {
String localize(String value) {

// Getting the device's locale, which can be for example
// "en", "it", "es" or anything else
final code = AppLocalization.of(this)?.locale.languageCode ?? "en";
final database = AppLocalization._localizedValues;

// Checks whether the current app locale is supported
if (database.containsKey(code)) {

return database[code]?[value] ?? "-";
} else {

// Default to English if the locale is not supported

Flutter Complete Reference 370

Chapter 13. Localization and internationalization

return database["en"]?[value] ?? "-";
}

}
}

class AppLocalization {...}

In our example, if the locale were "en", "it" or "es" the condition would evaluate to true
because the database contains translation strings for those locales. If the device’s locale were
"fr" (French) for example, which is not supported...

return database["en"]?[value] ?? "-";

... the if statement would go to the second branch which is a fallback to the English locale. In
other words, if your app doesn’t support the device’s locale, English is chosen as default. At this
point you’re able to retrieve internationalized strings like this:

Text(context.localize("hello"));

Very short and concise!

13.2.2 Localization delegate

Create another file called localization/localization_delegate.dart which is going to con-
tain the localization delegate for our class AppLocalization. A delegate is a class that produces
collections of localized values according with the current locale (which is the device’s locale).

class AppLocalizationDelegate
extends LocalizationsDelegate<AppLocalization> {

const AppLocalizationDelegate();

@override
bool isSupported(Locale locale) =>

["en", "it", "es"].contains(locale.languageCode);

@override
Future<AppLocalization> load(Locale locale) =>

SynchronousFuture<AppLocalization>(
AppLocalization(locale)

);

Flutter Complete Reference 371

Chapter 13. Localization and internationalization

@override
bool shouldReload(LocalizationsDelegate<AppLocalization> d) => false;

}

This is the standard pattern when creating localization delegates; the only part you should take
care of is the first overridden method as it tells which locales your app supports.

1. isSupported: the returned boolean indicates whether the device’s locale is supported by
the application or not. Since our database has support for English, Italian and Spanish,
the array contains respectively ["en", "it", "es"].

2. load: loads resources for the given locale and the object generated with this method can be
referenced later by using Localizations.of<T>(). You have noticed the usage of a weird
class here:

class SynchronousFuture<T> implements Future<T> { ... }

This is a Future<T> in which the callback defined inside then runs immediately (so it
doesn’t wait for something at all). This case is probably the only one in which it can be
used; in general avoid working with a SynchronousFuture<T>.

3. shouldReload: returns true or false whether the resources for this delegate should be
loaded again with load or not. It’s almost never required so returning false by default is
fine.

The last setup takes place in the MaterialApp or CupertinoApp at the root of your widget tree.
There’s the need to "install" the localization delegate we’ve just created.

void main() => runApp(const MyApp());

class MyApp extends StatelessWidget {
const MyApp();

@override
Widget build(BuildContext context) {

return MaterialApp(
initialRoute: RouteGenerator.homePage,
onGenerateRoute: RouteGenerator.generateRoute,

localizationsDelegates: [
const AppLocalizationDelegate(),
// Global localization delegates provice localized

Flutter Complete Reference 372

Chapter 13. Localization and internationalization

// strings and other values for the Material and
// Cupertino libraries. They support 70+ locales!
GlobalMaterialLocalizations.delegate,
GlobalCupertinoLocalizations.delegate,
GlobalWidgetsLocalizations.delegate,

],

supportedLocales: const [
Locale.fromSubtags(languageCode: "en"),
Locale.fromSubtags(languageCode: "it"),
Locale.fromSubtags(languageCode: "es"),

],
);

}
}

You have to include AppLocalizationDelegate in the localizationsDelegates list along with
the other common delegates so that the correct locale can be automatically inferred. Also be
sure that the same type of locales are supported in both the delegate and the widget:

// Inside 'AppLocalizationDelegate'
bool isSupported(Locale locale) =>

["en", "it", "es"].contains(locale.languageCode);

// Inside 'MaterialApp'
supportedLocales: const [

Locale.fromSubtags(languageCode: "en"),
Locale.fromSubtags(languageCode: "it"),
Locale.fromSubtags(languageCode: "es"),

]

In both cases "en" (English), "it" (Italian) and "es" (Spanish) are supported locales and thus
there’s consistency (which is correct). Be sure to keep these two properties "in sync" to get a
proper behavior.

13.2.3 Backward compatibility

Dart 2.6 and earlier version don’t support extension method and thus you have to change
your strategy. It’s nothing difficult at all as there’s only the need to move the logic inside

Flutter Complete Reference 373

Chapter 13. Localization and internationalization

AppLocalization.

class AppLocalization {
final Locale locale;
const AppLocalization(this.locale);

// Rather than being in the extension method, 'localize()' is directly
// inside the AppLocalization class.
String localize(String value) {

final code = locale.languageCode;

if (_db.containsKey(code)) {
return _db[code][value] ?? "-";

} else {
return _db["en"][value] ?? "-";

}
}

}

It’s basically the same thing we did in the extension method but now the code is a bit more
verbose than earlier:

// Dart 2.6 - It also works up to Dart 2.9 because nnbd isn't supported yet
Text(AppLocalization.of(context).localize("hello"))

Of course, if you want, you can also use this approach in Dart 2.10 or higher versions. However,
you’d have to deal with nullable types (and thus every time you’d have to perform null-checks or
provide default values).

// Dart 2.10 - Null checks or default values are required because the
// returned value is of type 'String?'
Text(AppLocalization.of(context)?.localize("hello") ?? "-")

// Dart 2.10 - No checks to do because they're done inside the extension
Text(context.localize("hello"))

Flutter Complete Reference 374

Chapter 13. Localization and internationalization

13.3 Internationalizing using intl

The internationalization process with intl is similar to the one we’ve just seen since they share
the same identical setup but the translations database is managed by dedicated files rather than
a simple Map<K, V>.

dependencies:
flutter:

sdk: flutter
flutter_localizations:

sdk: flutter

intl: ^0.16.1
intl_translation: ^0.17.10

Add the required dependencies and consider using the following template for the creation of a
folder structure. It’s very similar to the one in the previous section; the only additions are in
localization/ since we’re going to deal with potentially a lot of files.

lib/
localization/

arb_files/
dart_files/

routes/
main.dart
routes.dart

13.3.1 AppLocalization

Create the usual app_localization.dart file which is going to host AppLocalization. It’s the
translation database but differently from the manual approach, rather than using a Map we’re
interacting with command line tools.

class AppLocalization {
final Locale locale;
const AppLocalization(this.locale);

static AppLocalization? of(BuildContext context) =>
Localizations.of<AppLocalization>(context, AppLocalization);

Flutter Complete Reference 375

Chapter 13. Localization and internationalization

static Future<AppLocalization> load(Locale locale) async {
final String localeName = Intl.canonicalizedLocale(

locale.languageCode
);

// It produces an error now but it's fine; it will
// disappear as soon as we use code generation to
// create internationalization utilities
await initializeMessages(localeName);

// Setup intl to work with the device's locale
Intl.defaultLocale = localeName;

return AppLocalization(locale);
}

String get helloWorld => Intl.message(
"Hello world!",
name: "helloWorld",

);

String get hello => Intl.message(
"Hello",
name: "hello",

);
}

Strings that need to be internationalized and/or localized are defined as getters returning the
result of Intl.message, which is made up of two basic (required) parameters:

1. the string itself, such as "Hello world!";

2. the exact name of the getter which returns the string to be localized. To be clear, this is
fine:

String get helloWorld => Intl.message(
"Hello world!",
name: "helloWorld",

);

Flutter Complete Reference 376

Chapter 13. Localization and internationalization

But this is not fine because the name parameter doesn’t exactly match the getter name:

String get helloWorld => Intl.message(
"Hello world!",
name: "hello_world", // NO, must be "helloWorld"

);

Getters defined inside AppLocalization contain the "default" value of the string and in order
to internationalize them, we need to use a code generator.

flutter pub run intl_translation:extract_to_arb
--output-dir=lib/localization/arb_files
lib/localization/app_localization.dart

Open the command line from your environment or, in Android Studio, just click the Terminal
label at the bottom and type the above command. It will generate, in localization/arb_files,
an .arb file which is used to manage translations of strings in various languages.

� ARB files are nothing more than JSON files whose keys start with "@". They
can be edited manually by you with a simple text editor but the more languages and
strings you’re going to support, the harder they become to handle.

• Localizely

• BabelEdit

• Crowdin

The above list is a series of localization services that help you (or your team) with
the management of ARB files. We recommend you to look at them because manual
management gets exponentially harder for each new language you decide to support.

The tool generates intl_messages.arb: it’s a JSON format map with one entry for each
Intl.message() function defined in AppLocalization. It’s a template you can use to create one
ARB file per locale:

localization/
arb_files/

intl_messages.arb
intl_en.arb
intl_it.arb

Flutter Complete Reference 377

Chapter 13. Localization and internationalization

intl_es.arb
dart_files/

Each file contains the various translations of the strings you defined in AppLocalization. You
should not touch the keys of the JSON map otherwise the automated tool will fail; just change
the string values. Here’s an example:

// A piece of 'intl_en.arb'
"hello": "Hello",
"@hello": { ... }

// A piece of 'intl_it.arb'
"hello": "Ciao",
"@hello": { ... }

// A piece of 'intl_es.arb'
"hello": "Hola",
"@hello": { ... }

As you can see, the "translations database" is made up of the various ARB files. In order to
use them in your Flutter app, run this command which converts those JSON maps into .dart
files.

flutter pub run intl_translation:generate_from_arb
--output-dir=lib/localization/dart_files
--no-use-deferred-loading lib/localization/app_localization.dart
lib/localization/arb_files/intl_en.arb
lib/localization/arb_files/intl_it.arb
lib/localization/arb_files/intl_es.arb

The tool has generated a series of files inside your dart_files/ which are the ones Flutter is
going to look for when it comes to internationalizing strings. Notice that code generation created
the initializeMessages method inside AppLocalization so that you can now successfully
compile.

static Future<AppLocalization> load(Locale locale) async {
...

// No errors anymore
await initializeMessages(localeName);
...

Flutter Complete Reference 378

Chapter 13. Localization and internationalization

}

13.3.2 Localization delegate

The creation and setup of the delegate "links" your custom localization logic (AppLocalization)
to the app itself (MaterialApp or CupertinoApp). It’s very similar to the manual approach:

class AppLocalizationDelegate
extends LocalizationsDelegate<AppLocalization> {
const AppLocalizationDelegate();

@override
bool isSupported(Locale locale)

=> ["en", "it", "es"].contains(locale.languageCode);

@override
Future<AppLocalization> load(Locale locale)

=> AppLocalization.load(locale)

@override
bool shouldReload(LocalizationsDelegate<AppLocalization> d) => false;

}

And again, remember to setup the delegate and the supported locales list in your app’s root
widget:

return MaterialApp(
localizationsDelegates: [

const AppLocalizationDelegate(),
GlobalMaterialLocalizations.delegate,
GlobalCupertinoLocalizations.delegate,
GlobalWidgetsLocalizations.delegate,

],
supportedLocales: const [

Locale.fromSubtags(languageCode: "en"),
Locale.fromSubtags(languageCode: "it"),
Locale.fromSubtags(languageCode: "es"),

],
);

Flutter Complete Reference 379

Chapter 13. Localization and internationalization

Strings can be obtained in the same way we have seen in the previous section. The difference is
that, instead of passing a String or an enum, you’re using a getter.

// Good but there are null-checks to do
Text(AppLocalization.of(context)?.helloWorld ?? "-");

As we had already suggested in the previous section, you should prefer the usage of extension
methods. You’d have to use context.localize.helloWorld which is shorter, more readable
and doesn’t involve nullable types.

13.3.3 Plurals and data interpolations

The intl internationalization strategy is pretty handy when it comes to advanced strings localiza-
tion. For example consider having an application that, according with today’s date, has to show
a countdown label:

final days = getDaysLeft();
final value = "$days days remaining.";

It’s fine but there’s a problem with the plural when the days left counter is 1 or 0. The output
might be one of the following:

• "2 days remaining."

• "1 days remaining." (the noun should be singular)

• "0 days remaining." (doesn’t make much sense)

We should fix the code in order to get proper singular/plural nouns and, in case of the counter
being zero, show a different message. It’s doable with a bit of boilerplate code but strings are
still not internationalized:

final days = getDaysLeft();
var value = "$days days remaining.";

if (days == 1) {
value = "$days day remaining.";

}

if (days == 0) {
value = "No days left.";

}

Flutter Complete Reference 380

Chapter 13. Localization and internationalization

Now it’s better but strings are not internationalized and thus we should work on localization,
which is even more boilerplate code to add. intl offers a very elegant solution to deal with plurals
and arguments:

class AppLocalization {
final Locale locale;
const AppLocalization(this.locale);
// other code...

String remainingDays(int days) =>
Intl.plural(days,

zero: "No days remaining",
one: "One day left",
other: "$days days remaining",
name: "remainingDays",
args: [days],

);
}

According with the number of days left, intl shows a different string and it can also interpolate
values. We’ve used a function because getters cannot declare input parameters:

• zero: string returned when days is 0;

• one: string returned when days is 1;

• other: string returned when days is >= 2;

As usual, launch the command line tools and translate the strings into the generated ARB
files. Once you’ve got the dart files with the localization, you’ll be able to call this from your
widgets:

final days = getDaysLeft();
final value = AppLocalization.of(context)?.remainingDays(days) ?? 0;

/*
* days = 0 | "No days remaining"
* days = 1 | "One day left"
* days = 2 | "2 days remaining"
* days = 3 | "3 days remaining" ...
*/

Flutter Complete Reference 381

Chapter 13. Localization and internationalization

With a single line of code you’re able to not only localize a string, but also interpolate data (a
number in this case), handling purals (days or day) and showing variants for the same string.
Note that args parameter must contain, in order, the arguments that are being interpolated in
the strings.

13.4 Considerations

Both internationalization ways are fine but one might be better than the other under certain
circumstances. They can also be implemented with similar steps; the difference lies on the data
source from which they extract the various strings translations:

Manual Using intl

1. Create class AppLocalization and
also an extension method, which is
very convenient.

2. Fill the database (it’s a Map<K, V>).
3. Create the localization delegate.

1. Create class AppLocalization and
also an extension method, which is
very convenient.

2. Create .arb files by copy/pasting the
generated template.

3. Translate strings and convert from
.arb to .dart.

4. Create the localization delegate.

a

When the application starts, the device’s locale is recognized and automatically passed to the
delegate so that the user isn’t asked to select its language. Only for iOS, there’s an extra step to
do in order to get localization working properly:

• open with XCode the project under the ios/ folder;

• under the Runner folder, open the Info.plist file;

• select Information Property List, click Add item and then choose Localization

• add one entry per locale, such as English, Italian, Spanish etc. Keep consistency with the
list you’ve declare in supportedLocale

While both localization approaches are perfectly fine, there are cases in which one suits better
than the other. Take the following considerations just as general guidelines:

Flutter Complete Reference 382

Chapter 13. Localization and internationalization

• Manual

– Good when there are a few languages to support, like two or three, and a relatively
small amount of terms/sentences to localize. To be more precise, this approach is
good as long as you’re able to manually maintain the strings database in a reasonable
amount of time.

– Very easy setup.

– No generation tools or external files involved.

• intl

– Good when there is a wide range of languages to support, like four or more. It supports
plurals management, strings interpolation and also other localization utilities such as
date format and currencies.

– Easy setup but an efficient ARB files management requires an external tool.

– Relies on code generation tools and external ARB files.

We can say that intl is very powerful and scalable but such strength isn’t always required for
smaller applications. If you’re working on a team, using ARB files is essential as they can be
shared and managed by a GitHub repository or external tools.

Localizely is a service that allows you to easily work with strings localization using ARB files.
It’s especially powerful when you’re working on a team and/or your apps have to support many
languages. They offer a free plan for open source projects publicly hosted on GitHub; take a look
at their website 3 for more info.

3https://localizely.com

Flutter Complete Reference 383

Chapter 13. Localization and internationalization

By installing the Flutter Intl plugin for Android Studio or VS Code you get the possibility
to integrate your ARB files with Localizely. They can be uploaded to the website and later
downloaded with the newly localized strings so that you only need to compile them into .dart
files.

Flutter Complete Reference 384

14 | Animations

When using Flutter, the developer is able to control each single pixel of the UI so that he can
fully customize the design of the app. Animations are no exception as the framework gives you
the possibility to create something from scratch or using the built-in widgets. There are three
types of "implementation difficulty" when it comes to making animations:

1. Implicit animations: it’s a series of pre-built widgets integrated in the Flutter SDK and
ready for you to use. They are very convenient: sometimes they don’t even need a setup
because default settings are just fine.

2. Animation library: inheritable classes or utility widgets that help you building custom
animations. They give you more control on the animation itself and the possibility to
manually improve performances.

3. Custom animations: animations made from scratch by using specific classes such as
Matrix4 (4D matrix) or Transform. You’re creating "low level" animations using trigonom-
etry by directly controlling the 3D space.

We are covering all of those animation techniques, which have been sorted from the easiest to the
hardest. Flutter helps the developer even in the most complicated scenarios; nevertheless, building
complex animations is not so straightforward as it requires some maths and experience.

14.1 Implicit animations

Thanks to the animation facilities shipped with the SDK you can add animated widgets and
create visual effects in your UI with a minimal effort. Flutter offers a set of pre-built widgets,
called implicitly animated widgets, that manage animations automatically: in most of the cases,
you’ve almost nothing to do.

Flutter Complete Reference 385

Chapter 14. Animations

� Not every widgets have their animated counterpart but the Flutter team might im-
plement them in the future. Generally, the animated version of a widget is called An-
imatedFoo where Foo is the name of a "standard" UI component such as a Container.

The developer has almost nothing to do in order to animate a widget: it’s just a matter of
assigning one or two parameters. Look at this simple container whose dimensions are determined
by the counter variable held by a provider:

// "CounterModel" is exposed by a ChangeNotifierProvider
// so the dimensions vary at any change of the variable.
Consumer<CounterModel>(

builder: (_, counter, __) {
return Container(

height: counter,
width: counter,
color: Colors.lightBlue,
alignment: Alignment.center,

);
}

)

When the value of counter changes the container resizes as well but with no animation (you
see an "immediate" change). For a better user experience, you can animate the size change by
simply renaming the widget and setting the duration.

Consumer<CounterModel>(
builder: (_, counter, __) {

return AnimatedContainer(
height: counter,
width: counter,
color: Colors.lightBlue,
alignment: Alignment.center,
duration: const Duration(seconds: 2),

);
}

)

That’s it, changes are automatically animated for you. We’ve just renamed a widget and the ani-
mation is ready. With a bit more of effort it’s also possible, for example, changing the background

Flutter Complete Reference 386

Chapter 14. Animations

color or the Container and setting a different animation type.

color: counter % 2 == 0 ? Colors.lightBlue : Colors.lime,
alignment: counter < 500 ? Alignment.center : Alignment.topCenter,
curve: Curves.easeInOut,

The default curve is Curves.linear but thanks to the curve parameter you can change the
animation type. Check the official documentation 1 to see a complete list of curves that Flutter
currently supports.

� A curve is a mathematical function that expresses how values change over the
time. For example, a linear curve is a type of animation which executes at constant
speed for all of its duration.

As time goes by (horizontal axis) the values changed by the animation (vertical axis)
follow a linear trend. That’s why in the first animated example the size "linearly"
changes.

1https://api.flutter.dev/flutter/animation/Curves-class.html

Flutter Complete Reference 387

Chapter 14. Animations

The animation described by a easeInOut starts slowly, speeds up and then finishes
slowly again. The documentation has a very nice page with a detailed description for
each curve and short video that shows how the animation looks like.

We’re now going to showcase the entire list of implicitly-animated widgets at the time of writing
this book. In any case, you’ll always have the possibility to set the duration and the type of
curve.

• AnimatedAlign. Animated version of the Align widget that transitions the position of a
child widget from one area of the screen to another. Here’s an example:

// Somewhere 'value' has been declared as 'int'
AnimatedAlign(

alignment: value % 2 == 0 ? Alignment.center :
Alignment.topCenter,

duration: const Duration(seconds: 1),
)

• AnimatedOpacity. Animated version of the Opacity widget that transitions the opacity of
a child widget from one value to another. The opacity parameter can range from 0 to 1
where 0 makes the widget invisible.

// Somewhere 'value' has been declared as 'int'
AnimatedOpacity (

opacity: value,
duration: const Duration(seconds: 2),
curve: Curves.easeInOut,

Flutter Complete Reference 388

Chapter 14. Animations

)

In terms of performances, this widget is relatively expensive (as it requires an intermediate
buffer) so use it carefully (or avoid using it at all).

• AnimatedDefaultTextStyle. Animated version of the DefaultTextStyle widget that
transitions the style of a Text widget from the current setup to a different one.

// Somewhere 'color' and 'fontSize' have been declared and they
// can change over the time
AnimatedDefaultTextStyle(

duration: const Duration(milliseconds: 500),
curve: Curves.elasticInOut,
style: TextStyle(

fontSize: fontSize,
color: color,
fontWeight: FontWeight.bold,

),
child: const Text("Pasta"),

)

The animation is applied to any children whose type is Text so the same effect works on
different instances. For example, you could display multiple lines of text in a Column and
every children will be equally animated:

AnimatedDefaultTextStyle(
duration: const Duration(seconds: 2),
style: TextStyle(...),
child: Column(

children: [
const Text("I'm animated"),
const Text("I'm animated as well"),

]
),

)

The unchanged properties such as textAlign, softWrap, textOverflow, and maxLines are
not animated.

• AnimatedPadding. Animated version of the Padding widget that transitions the padding
between widgets from one value to another.

Flutter Complete Reference 389

Chapter 14. Animations

AnimatedPadding(
// 'value' has been declared somewhere and it may change
duration: const Duration(minutes: 1),
padding: EdgeInsets.only(top: value),
child: const Text("Padding!"),

)

• AnimatedPhysicalModel. Animated version of the PhysicalModel widget that transitions
the elevation, the color and the border radius of the widget. The shape is not animated.

// Somewhere 'value' has been declared as 'int'
AnimatedPhysicalModel (

duration: const Duration(seconds: 2),
borderRadius: BorderRadius.circular(value),
elevation: value,
shape: BoxShape.rectangle,
color: Colors.lightBlue,
shadowColor: Colors.black45,
child: const Text("Hello"),

),

This widget requires you to define, at least, all those parameters. If you want to also add a
transition effect for the background color of the shape, you have to set animateColor: true.

// Somewhere 'canChange' has been declared as 'boolean'
AnimatedPhysicalModel (

// code...
animateColor: true,
color: canChange ? Colors.lime : Colors.black,
child: const Something(),

),

• AnimatedPositioned. Animated version of the Positioned widget that transitions the
position from a point of the screen to another. It works only when inside a Stack.

// Somewhere 'value' has been declared as 'int'
Stack(

children: [
AnimatedPositioned(

duration: const Duration(seconds: 1),
top: value,

Flutter Complete Reference 390

Chapter 14. Animations

right: 30,
child: const Text("Hello"),

),
]

),

Pay attention: with this widget, the size of the child would change at the end of the
animation. If the child must not change its dimensions, consider using a SlideTransition
we’re going to cover later.

• AnimatedCrossFade. This widget cross-fades between two children and animates while the
transition (with the eventual resize) is happening. For example, when an item goes out of
stock you want to replace the purchase button with some text saying "SOLD OUT!".

// Somewhere 'canBuy' has been declared as 'bool'
AnimatedCrossFade (

duration: const Duration(seconds: 1),
crossFadeState: canBuy ? CrossFadeState.showFirst :

CrossFadeState.showSecond,
firstChild: RaisedButton(

child: const Text("Buy item"),
onPressed: () {...}

),
secondChild: const Text("SOLD OUT!"),

),

firstChild appears if CrossFadeState is showFirst otherwise secondChild is shown.
Changing this value animates the transition between the two widgets.

• AnimatedSize. Animated version of the Size widget that transitions the size whenever its
child’s size changes. In other words, this widget automatically animates the resizing when
its child changes dimensions.

// Somewhere 'value' has been declared as 'int'
AnimatedSize(

duration: const Duration(seconds: 1),
curve: Curves.easeIn,
child: Container(

width: 100,
height: value

)

Flutter Complete Reference 391

Chapter 14. Animations

),

Whenever the Container changes the height, the AnimatedSize widget will automatically
change its height as well.

• AnimatedIcon. Animated version of the IconData widget which animates the transition of
an icon from a shape to another.

AnimatedIcon(
icon: AnimatedIcons.menu_arrow,
progress: controller,

)

In the next section you’ll understand how AnimatedController controller works. The
menu_arrow constant is basically an hamburger icon which can change into a back arrow
with a nice rotation:

Visit the official documentation for the AnimatedIcon class 2 to see a complete list of all
the available animated icons.

14.2 The animation library

When you’re looking for a more advanced type of animation, very likely implicit animations won’t
be enough anymore. They’re customizable... but not so much. In this case you need to create the
animation by yourself working with controllers and values. From now on, you should be familiar
with some basic trigonometry.

14.2.1 AnimatedWidget

The creation of an animation involves generally two steps. We’re going to show them by creating
a simple app which has a rotating Flutter logo at the center of the screen. Here’s some captures
of the running animation to get the idea:

2https://api.flutter.dev/flutter/material/AnimatedIcons-class.html

Flutter Complete Reference 392

Chapter 14. Animations

We’re going to use a widget called FlutterLogo() which simply shows a high quality Flutter
logo. It’s like a vectorial image and thus it can be resized without losing quality. Let’s create the
rotating animation:

1. Our goal is taking a class FlutterLogo() and animating it with an endless rotation. An
AnimatedWidget has the purpose of taking any widget and providing facilities to animate
it so we’re going to use it:

import 'dart:math' as math;

// 'AnimatedWidget' can animate any widget
class RotatingLogo extends AnimatedWidget {

final AnimationController _controller;
const RotatingLogo({

required AnimationController controller
}) : _controller = controller, super(listenable: controller);

// (a).
static const _fullRotation = 2 * math.pi;

@override
Widget build(BuildContext context) {

// (b).
return Transform.rotate(

// (c).
angle: _controller.value * _fullRotation,
child: const FlutterLogo(

Flutter Complete Reference 393

Chapter 14. Animations

size: 80,
),

);
}

}

When working with animations, const constructors are even more important because they
tell Flutter to not rebuild certain widgets every frame. The framework has a very high
refresh rate (up to 120 fps) so unneeded rebuilds might waste resources.

(a) In order to achieve a full rotation, values for angle must range from 0 to 360 degrees.
Since Flutter works with radians, there’s the need to make a conversion.

(b) The Transform.rotate() named constructor returns a rotated widget with an angle
of given radians. That’s why we had to use the math.pi constant.

(c) The listenable object is passed via constructor following the good dependency injec-
tion practices. You’ll see soon that _controller.value is constantly updated every
frame and it’s what gives "life" to the widget making it rotate.

Transform.rotate() itself doesn’t give motion to the widget, it just sets a specific inclina-
tion and nothing more. The rotation animation is obtained because _controller.value
constantly changes and the widget is rebuilt so that, at each frame, you see the widget with
a different angle.

2. Now it’s time to put the animation on the widget tree and give it the data source for
motion. The AnimationController class generates data with a specific frequency and a
given duration.

By default, a controller emits values from 0 to 1 with a linear interval. Our animated
widget receives them and gets rebuilt. The _controller variable holds a reference to the
animation controller and value represents values that periodically arrive.

Flutter Complete Reference 394

Chapter 14. Animations

angle: _controller.value * _fullRotation,

The product between the emitted values and the angle (in radians) represents the rotation
of the logo at a certain frame. Here’s how to link a controller to the widget:

class FLSpinner extends StatefulWidget {
const FLSpinner();

@override
_FLSpinnerState createState() => _FLSpinnerState();

}

class _FLSpinnerState extends State<FLSpinner>
with TickerProviderStateMixin {
// (a).
late final AnimationController _controller;

@override
void initState() {

super.initState();
_controller = AnimationController(

duration: const Duration(seconds: 3),
// (b).
vsync: this,

)..repeat(); // (c).
}

@override
void dispose() {

_controller.dispose();
super.dispose();

}

@override
Widget build(BuildContext context) {

return RotatingLogo(controller: _controller);
}

}

Flutter Complete Reference 395

Chapter 14. Animations

A StatefulWidget is essential here because there’s the need to dispose the controller when
the widget is "destroyed"; in this way the animation won’t waste resources. Always remem-
ber to initialize and clean the animation instances via initState and dispose.

(a) The AnimationController class 3 continuously generates a series of values, for a given
duration, whenever the hardware is ready for a new frame. By default it produces
values from 0.0 to 1.0 for the entire duration.

(b) The AnimationController class generally generates 60 new values per second but
it may vary according with the refresh rate of the device. Having multiple animations
running even if they aren’t visible might cause a performance drop.

(c) The repeat() method executes the animation forever. In our example, it means that
there will be an infinite chain of animations lasting for the given duration (3 seconds).
The class gives you the flexibility to choose between different behaviors:

• forward: starts the animation forward, in the sense that values vary from start
to the end. (0 > 1)

• reverse: starts the animation reverse, in the sense that values vary from the end
to the start. (1 > 0)

• repeat: starts the animation in forward direction and then restarts it (in the same
direction). (0 > 1, 0 > 1, 0 > 1...)

If you used forward() instead of repeat() you’d have seen the logo spinning around
only once and not forever.

AnimationController(
vsync: this,

)

The vsync parameter of the controller prevents offscreen animations from consum-
ing unnecessary resources 4. Initializing it with this gives the stateful widget the
possibility of handling the animation resources automatically.

... with TickerProviderStateMixin {}

There’s the need to add this mixin to your class because it allows a StatefulWidget to
be assignable to a vsync, which is an instance of a TickerProvider (a class internally
used by animations).

3https://api.flutter.dev/flutter/animation/AnimationController-class.html
4https://flutter.dev/docs/development/ui/animations/tutorial

Flutter Complete Reference 396

Chapter 14. Animations

The setup for the animation is now ready. We’ve worked on two parts: the widget being animated,
RotatingLogo, and the surrounding widget, FLSpinner, which is responsible for periodically
generating new values with a controller.

MaterialApp(
home: Scaffold(
appBar: AppBar(

title: const Text("Animations"),
),
body: const Center(

child: FLSpinner(),
),

),
);

The FLSpinner widget internally has a controller which generates, for the given duration, a series
of values very frequently (generally 60 per second). These values are passed each time to the
Transform object which is being repainted and thus the animation runs smoothly on the UI.

14.2.2 AnimationBuilder

The AnimationBuilder class is simply an AnimatedWidget which automatically optimizes the
animations to avoid unnecessary rebuilds. Understanding how animations work is very important
because you don’t want them to slow down your app due to the lack of optimization in your Dart
code.

class RotatingLogo extends AnimatedWidget {
// Constructor, getter and other code omitted for brevity

@override
Widget build(BuildContext context) {

return Transform.rotate(
angle: _controller.value * _fullRotation,
child: const FlutterLogo(

size: 80,
),

);
}

}

Flutter Complete Reference 397

Chapter 14. Animations

As you already know, thanks to a constant constructor the FlutterLogo widget is built only
once. What gets rebuilt every 1/60 of second (potentially 1/120) is only the Transform widget
because it has to actually make the animation.

// 'Container' has no constant constructor so it's not cached
Transform.rotate(

angle: _controller.value * _fullRotation,
child: Container(...)

),

Pretend you had the same situation but rather than having a simple FlutterLogo to rotate there
would be a Container with many non-constant children. It happens quite often when working
with rows and columns as well because they have no const constructor.

� If children of Container were not constant as well the situation might be even
worse. The framework could potentially rebuild every 1/60 second a big part of a
subtree: it might not be efficient at all.

In such cases, where you cannot have a const constructor, there are two possible solutions that
should really be taken into account:

1. Manually cache the portion of the tree that doesn’t depend on the animation so that the
framework won’t rebuild it every time.

late final Widget _cachedTree = _cachedTree();

@override
Widget build(BuildContext context) {

return Transform.rotate(
angle: _controller.value * _fullRotation,
child: _cachedTree,

);
}

Widget _cachedTree() {
return Container(

child: Row(
children: [

Flutter Complete Reference 398

Chapter 14. Animations

WidgetNonConst1(),
WidgetNonConst2(),

]
)

);
}

This is the equivalent of using a constant constructor; the initialization of the final variable
is executed only once so subsequent rebuilds will take effect only on Transform.

2. Make the code more readable with less boilerplate using AnimatedBuilder, which internally
uses an AnimatedWidget and does the caching for you.

@override
Widget build(BuildContext context) {

return AnimatedBuilder(
animation: someController,
builder: (context, child) {

return Transform.rotate(
angle: _controller.value * _fullRotation,
child: child,

);
}
child: Container(...),

);
}

The child parameter holds the part of the tree being cached (so that it gets built only
once). The builder part instead contains the animation logic and the child parameter is
a reference to the cached subtree.

Which widget should you use between AnimatedBuilder and AnimatedWidget? The one that
you like more because they both do the same thing! Look at how Flutter internally implements
class AnimatedBuilder:

class AnimatedBuilder extends AnimatedWidget {
final TransitionBuilder builder;
final Widget child;

const AnimatedBuilder({
Key? key,

Flutter Complete Reference 399

Chapter 14. Animations

required Listenable animation,
required this.builder,
this.child,

}) : super(key: key, listenable: animation);

@override
Widget build(BuildContext context) {

return builder(context, child);
}

}

This is the exact same thing we’ve done in the first option of the above list: the child param-
eter is stored in a final instance so that it doesn’t get rebuilt every frame. It’s doing "manual
caching". This is a very important optimization you have to keep in mind when creating custom
animations.

� Don’t ask yourself which widget is the best because they really do the same thing,
use the one that you like more. Maybe AnimatedBuilder could the a bit better
because it leads to less boilerplate and increases the readability of the code.

14.2.2.1 Curves

Any animation is linear by default, meaning that values are emitted at a constant speed like it
happens with the rotating logo that we’ve created. It’s of course possible to alter this behavior
and make something more interesting, such as a "bouncing" effect:

late final AnimationController _controller;
late final CurvedAnimation _curved;

@override
void initState() {

super.initState();
_controller = AnimationController(

duration: const Duration(seconds: 2),
vsync: this,

)..repeat();
_curved = CurvedAnimation(

parent: _controller,

Flutter Complete Reference 400

Chapter 14. Animations

curve: Curves.bounceIn,
);

}

Widget build(BuildContext context) {
return RotatingLogo(controller: _curved);

}

Instead of rotating at a constant speed, the logo will have a bouncing animation executing at
different speeds. Instances of CurvedAnimations don’t need to be disposed; you can choose
between a myriad of effects (* is a placeholder):

• Curves.bounce*: bouncing effects such as bounceIn or bounceOut;

• Curves.easeIn*: ease in effects such as easeInCubic or easeInSine;

• Curves.easeOut*: ease out effects such as easeOutQuartic or easeOutExpo;

• Curves.elastic*: elastic effects such as elasticIn or elasticOut;

If you want to have a quick video preview of how an animation type looks like visit the official
documentation 5 about the Curve class. Do you want to have a bouncing animation executed in
the opposite direction?

late final AnimationController _controller;
late final CurvedAnimation _curved;
late final ReverseAnimation _reverse;

@override
void initState() {

super.initState();
_controller = AnimationController(

// code...
)..repeat();
_curved = CurvedAnimation(

// code...
);
_reverse = ReverseAnimation(_curved);

}

5https://api.flutter.dev/flutter/animation/Curves-class.html

Flutter Complete Reference 401

Chapter 14. Animations

RotatingLogo(controller: _reverse) will now run the same bouncing animation but in the
opposite direction. If you wanted the original spinning logo animation to rotate backwards, you’d
simply have to do this:

@override
void initState() {

super.initState();
_controller = AnimationController(

// code...
)..repeat();
_reverse = ReverseAnimation(_controller);

}

It repeats the animation forever but running backwards. You could have used reverse() instead
of repeat() but then the animation would have ran only once and not forever.

_controller = AnimationController(
// code...

)..reverse();

It does the same thing as ReverseAnimation but you cannot loop forever.

14.2.2.2 Tweens

By default an AnimationController produces a series of double values ranging from 0 to 1.
Thanks to Tween<T> you can alter this behavior for the cases where something different from
numbers in [0..1] is required.

late final AnimationController _controller;
late final Animation<double> _tween;

@override
void initState() {

super.initState();
_controller = AnimationController(

duration: const Duration(seconds: 3),
vsync: this,

)..repeat();
_tween = Tween<double>(

begin: 0,
end: 2 * math.pi,

Flutter Complete Reference 402

Chapter 14. Animations

).animate(_controller);
}

This tween alters the behavior of the controller which now ranges from 0 to 6.2831... and not
anymore from 0 to 1. With this change, going back to the original spinning logo example, we
could have changed the code to make it look like this:

// This isn't needed anymore because the controller already
// produces values from 0 to 2pi, so no conversions at all!
//
// static const _fullRotation = 2 * math.pi;
@override
Widget build(BuildContext context) {

return Transform.rotate(
// Earlier it was '_controller.value * _fullRotation'
angle: _controller.value,
child: const FlutterLogo(

size: 80,
),

);
}

The values produced by the controller are already in the range [0, 2pi] so we can directly pass
_controller.value. We had to make a conversion in the previous example because values were
emitted in the default [0, 1] range. With Tween<T> you can create a wide range of animations
that aren’t strictly tied to numbers. You could for example animate the color transition of a
button:

late final AnimationController _controller;
late final Animation<Color> _colorTween;

@override
void initState() {

_controller = AnimationController(...);
_colorTween = ColorTween(

begin: Colors.white,
end: Colors.green

).animate(_controller);

super.initState();

Flutter Complete Reference 403

Chapter 14. Animations

}

@override
void dispose() {

_controller.dispose();
super.dispose();

}

void _buttonTapped() {
if (_controller.status == AnimationStatus.completed) {

_controller.forward();
} else {

_controller.reverse();
}

}

Thanks to ColorTween the color property of any widget is animated from the starting value to
the ending value. As you can see it’s not difficult at all.

AnimatedBuilder(
animation: _colorTween,
builder: (context, child) {

return RaisedButton(
child: child,
color: _colorTween.value,
onPressed: _buttonTapped,

);
},
child: const Text("Animate me!"),

),

Notice how we’ve efficiently cached the Text widget which doesn’t require rebuilds as it’s not
part of the animation. When the button is tapped, the animation runs forward or backwards
according to the completion status. There are many kinds of tweens:

• BorderRadiusTween,

• IntTween,

• DecorationTween,

Flutter Complete Reference 404

Chapter 14. Animations

• ShapeBorderTween,

• SizeTween,

And much more! Visit the official documentation 6 to see them all.

14.3 Custom animations

If you’re looking for specific kinds of animations, such as 3D ones or simply motions that aren’t
directly supported by Flutter with a particular widget, it’s time to do some maths.

� While we will try to be as clear as possible, you’ll need some skills on matrices
and trigonometry to get the most out of this section. Here we’re working in the 3D
space so math is really required.

Marcin Szałek made a great talk at Flutter Europe about this topic, which is available on YouTube
7. Creating complex animations in Flutter is really a matter of being able to master the combi-
nation of three classes only:

• AnimationController: emits a certain range of values with a given frequency in order to
animate a widget;

• Transform: scales, rotates, skews or alters the aspect of a widget using matrices;

• Stack: overlaps a series of children and allows custom positioning using the Positioned
widget.

Let’s try to create a container with a little skew that rotates on the Y-axis periodically. It looks
like a 3D animation where the container rotates around its left side. Here are some frames of the
animation:

6https://api.flutter.dev/flutter/animation/Tween-class.html
7Implementing complex UI with Flutter - Marcin Szałek

Flutter Complete Reference 405

Chapter 14. Animations

While it might seem quite hard to achieve, it’s just a matter of calling two Transform methods
and wrapping them in the usual AnimatedBuilder (which does the actual animation by emitting
new values).

class _DemoAppState extends State<DemoApp>
with SingleTickerProviderStateMixin {

late final AnimationController _controller;

@override
void initState() {

super.initState();
_controller = AnimationController(

vsync: this,
duration: const Duration(seconds: 15),

)..repeat();
}

@override
void dispose() {

_controller.dispose();
super.dispose();

}

@override
Widget build(BuildContext context) {...}

}

Nothing new up to here, it’s just the "traditional" setup for animations where you declare a

Flutter Complete Reference 406

Chapter 14. Animations

controller which is properly disposed inside void dispose();. The interesting part is the build
method:

@override
Widget build(BuildContext context) {

return AnimatedBuilder(
animation: _controller,
builder: (context, child) {

return Transform(
transform: Matrix4.skewY(0.1)
..rotateY(_controller.value * 2 * math.pi),
child: child,

);
},
child: Container(

decoration: const BoxDecoration(...),
// 'child' is simply a 'Text' widget with
// some styling declared via 'TextStyle'
child: ...

),
);

The usage of a AnimatedBuilder caches the container and the text, which are not animated.
Let’s analyze the Transform class:

• the skewY(double value) method keeps the widget sides parallel while inclinating the
whole children in a certain direction, determined by double value.

• calling rotateY(double radians) rotates the children along the given axis, in our case Y,
making it look like if it were a 3D motion. There are three kind of rotations:

1. rotateX(double radians)

2. rotateY(double radians)

3. rotateZ(double radians)

Feeding the rotateY method with new values at 60 fps, shows a smooth 3D rotation. On a side
note, it’s possible making the animation going on forever but it’d only move forth and back rather
than always in the forward direction.

// This is like calling 'forward()' forever

Flutter Complete Reference 407

Chapter 14. Animations

_controller.repeat();
// This is like calling 'forward()' and then 'reverse()' forever
_controller.repeat(reverse: true); // 2.

While in the first case the animation always goes in a single direction (forward), in the second
one it goes back and forth. We’re now showing another simple example in which a container,
once tapped, scales and moves to another position of the screen with a sliding animation.

Scaling widgets and moving them is actually very easy because Transform exposes both scale()
and translate(). We’re able to decide the direction in which the animation has to run thanks
to the AnimationStatus enum.

// 'onPressed' callback for the button
void _moveMe() {

if (_controller.status == AnimationStatus.completed)
_controller.reverse();
else
_controller.forward();

}

On the first tap the animation goes forward while on the second one the widget "restores" to its

Flutter Complete Reference 408

Chapter 14. Animations

original position and size. In order to easily move on the screen without interfering with other
widgets, the combination of Stack and Positioned is the perfect choice.

AnimatedBuilder(
animation: _controller,
builder: (context, child) {

final scale = 1 - (_controller.value * 0.5); // scaling logic
final newPos = 20 + (_controller.value * 400); // position control

return Stack(
children: [

Transform(
transform: Matrix4.identity()

..scale(scale)

..translate(newPos, newPos),
child: child,

),
const Text("Hello"),

]
);

},
child: RaisedButton(

child: Text("Move me"),
onPressed: _moveMe

),
);

The identity matrix returned by identity() is the "starting point" when scaling or translating
widgets. Very easily, Matrix4 is a 4x4 matrix which is used to represent the coordinates of a 3D
space and apply calculations on them. The screen has two dimensions (width and height) but
thanks to matrices we’re able to work in three dimensions (width, height and depth) even if the
available plan is "flat".

1. final scale is used to determine how much the child is going to resize (getting smaller in
forward() or bigger in reverse());

2. final newPos moves the child from a position on the screen to another. The translate()
method can take three parameters indicating the x, y and z coordinates of the widget. By
changing them, you’re able to move the child;

Flutter Complete Reference 409

Chapter 14. Animations

3. We recommend using a Stack so that the moving widget doesn’t cause problems to the
position of other widgets. Since a Stack is a series of overlapped "levels", widgets can
move without interfering with others.

You could make countless different animations since the only limit is your creativity. The point is
that you really just need a controller, a Stack and the Transform widget along with its matrices
and calculations. Don’t be afraid to get lost in the "animation" world; just by using those three
classes together you possess a great power!

14.4 Good practices

There’s been a lot of information up to here about how you can animate widgets in Flutter
and a recap might be very useful. Our suggestions come from both the documentation and the
personal experience we’ve acquired: mastering animations is very doable but a lot of practice is
required!

• When it comes to implementing an animation, the first thing we recommend is trying to
see if Flutter has an implicit animation that might fit for the use case. They are pre-made
animations offered by the framework which can be implemented with a minimal effort
(sometimes you don’t even need to setup any parameter):

1. AnimatedAlign

2. AnimatedOpacity

3. AnimatedPadding

4. ... and in general, many AnimatedFoo widgets.

They basically are the animated counterparts of standard Flutter widgets with a few addi-
tions required to setup the animation. They are very easy to use but actually not too much
customizable if compared to an AnimatedBuilder. Using implicit animations have a some
advantages:

– They keep consistency between the animated and non-animated version of the same
widget. If you know how the Padding widget works AnimatedPadding is exactly
identical (with the addition of motion).

– They’re already in your Flutter installation ready to be used, why should you ignore
them and create something from scratch? It would be a waste of time!

• If what you’re looking for is not available as an implicitly animated widget, start creating

Flutter Complete Reference 410

Chapter 14. Animations

your own using an AnimatedWidget or an AnimatedBuilder. Both are the same thing but
a builder requires a bit less code from your part; since developers are lazy, it might be the
default choice.

• Flutter tries to run at least at 60 frames per second, or anyway at the highest refresh speed
supported by the hardware, so animations can be a problem if you don’t optimize your
code. For this reason, remember to:

1. use const constructors as much as possible in order to avoid unnecessary rebuilds that
might impact the performance of the app;

2. if a constant constructor cannot be used, it’s good practice caching the portion of the
sub-tree either by storing it in a final variable or by using the AnimatedBuilder
widget.

• The AnimationController class gives "life" to your widgets: it produces, by default,
values from 0 to 1 which are used to animate certain properties. Of course you’re not tied
to numbers alone, in fact controllers can emit different type of values at different speed
rates:

1. with class Tween<T> you can change the range of values periodically emitted by a
controller;

2. use widgets like CurvedAnimation or ReverseAnimation to have even more power on
animations.

• Very specific animations need to be created from scratch but there isn’t the need to get lost
in the vastness of the animation API provided by Flutter. It’s just a matter of combining
together three classes:

1. AnimationController;

2. Stack

3. Transform

Transform is quite "low level" as it works with matrices and trigonometry but at the same
time it’s very powerful. It relies on values emitted from a controller so that the UI refreshes
quickly and the animation runs smoothly.

14.4.1 Hero animations

A hero transition is a kind of animation which keeps the focus on a certain item while navigating
from one route to another. If you tapped on an image in a certain route, there would be the

Flutter Complete Reference 411

Chapter 14. Animations

possibility to open a new route and animating the Image widget so that it always stays in the
foreground of screen.

The image widget will nicely animate, remaining in the foreground, while the routes on the
background are changing with another animation. In this way, the user’s attention is kept on
what he’s tapped (the image, in our case). As always, implementing hero transitions in Flutter
is quite easy:

class RouteA extends StatelessWidget {
const RouteA();

@override
Widget build(BuildContext context) {

...
Hero(

tag: 'FlutterLogo'
child: SvgPicture.asset("assets/flutter_logo.svg"),

),
...

}
}

Flutter Complete Reference 412

Chapter 14. Animations

class RouteB extends StatelessWidget {
const RouteB();

@override
Widget build(BuildContext context) {

...
Hero(

tag: 'FlutterLogo'
child: SvgPicture.asset("assets/flutter_logo.svg"),

),
...

}
}

On both routes, there must be a Hero widget with the same tag property so that Flutter knows
which hero has to be animated. Since Hero doesn’t provide tap callbacks, generally it’s wrapped
it in a GestureDetector:

GestureDetector(
onTap: () => Navigator.of(context)?.pushNamed(

RouteGenerator.routeB
),
child: Hero(

tag: 'FlutterLogo'
child: SvgPicture.asset("assets/flutter_logo.svg"),

),
),

In this way, when tapping on the image, a hero animation will happen while navigating from a
route to another. Be sure to check the official documentation 8 for more examples and videos
about hero animations.

14.4.2 Custom route transitions

When moving from a page to another using Navigator.of(context).pushNamed(...), Flutter
applies a default material transition. Of course, you can easily change the animation type and
it’s even more straightforward with the RouteGenerator technique we’ve explained in chapter

8https://flutter.dev/docs/development/ui/animations/hero-animations

Flutter Complete Reference 413

Chapter 14. Animations

12.

class RouteGenerator {
RouteGenerator._();

static Route<dynamic> generateRoute(RouteSettings settings) {
switch (settings.name) {

case homePage:
return MaterialPageRoute(

builder: (_) => HomePage(),
);

case secondPage:
return MaterialPageRoute(

builder: (_) => SecondPage(),
);

default:
throw Exception("Route not found");

}
}

static const String homePage = '/';
static const String secondPage ='/second';

}

As it is, page transitions are handled by MaterialPageRoute which uses the default material
animation. Let’s say we want to customize our app by running a sliding transition when moving
to the SecondPage route. You just need to create a new type of PageRouteBuilder, preferably
inside a new file called routes_transitions.dart.

class SlidingPageRoute extends PageRouteBuilder {
final Widget navigateTo;
SlidingPageRoute({

required this.navigateTo
}) : super(

pageBuilder: (context, _, __) => navigateTo,
transitionsBuilder: (context, animation, _, child) =>

SlideTransition(
position: Tween<Offset>(

Flutter Complete Reference 414

Chapter 14. Animations

begin: const Offset(-1, 0),
end: Offset.zero,

).animate(animation),
child: child,

),
);

}

Subclasses of PageRouteBuilder can define the transitionBuilder callback which is used to
create a custom type of animation to be run while navigating to the route. The callback passed to
pageBuilder is used to build the page contents but since it is created in the build method of the
page itself, just return the child itself (for flexibility and reusability purposes, don’t implement
route-specific logic here).

case homePage:
// Default material animation transition
return MaterialPageRoute(

builder: (_) => const HomePage(),
);

case secondPage:
// Custom sliding transition
return SlidingPageRoute(

navigateTo: const SecondPage(),
);

Now you can replace MaterialPageRoute with SlidingPageRoute to apply the newly created
transition when navigating to '/second'. However, if you find SlideTransition boring, just
create another class and use another type of transition:

// 1.
ScaleTransition(

scale: Tween<double>(
begin: 0,
end: 1,

).animate(animation),
child: child,

)

// 2.
RotationTransition(

Flutter Complete Reference 415

Chapter 14. Animations

turns: Tween<double>(
begin: 0,
end: 1,

).animate(animation),
child: child,

),

// 3.
FadeTransition(

opacity: Tween<double>(
begin: 0,
end: 1,

).animate(animation),
child: child,

),

Place all of these transitions in a dedicated class inside the routes_transitions.dart file we
created earlier so that any route-related animation is located in a single place.

Flutter Complete Reference 416

15 | Working with JSON and other for-
mats

15.1 Parsing JSON

Nowadays JSON is one of the most popular data-interchange formats. For example, very likely
you’ll have to deal with HTTP requests returning a json-encoded string . Flutter has an incredible
support for this format as it allows you to convert objects from and to JSON very quickly.

{
"id": 1,
"name": "Alberto",

}

What’s inside curly brackets is called json object and it’s always made up of a string, which is
the key of the field, and a value which can be a string, a number, a boolean, a list, null or another
object. This is another example with a JSON array (or list):

[
{

"id": 1,
"name": "Alberto",

},
{

"id": 2,
"name": "Patrick",

}
]

Lists are simply collections of objects. In Flutter you can decide between manually parsing strings,

Flutter Complete Reference 417

Chapter 15. Working with JSON and other formats

using facilities from import "dart:convert", or using automatic code generation, which does
most of the work automatically. Both ways are fine but you’ll see that code generation simplifies
maintenance a lot, especially for large JSON objects.

15.1.1 Manual parsing

In all those cases where there’s the need to deal with a list or small objects, parsing and main-
taining JSON manually is fine. The best approach to handle the received data is the creation of
a model class from its JSON representation. In other words, you should convert a json-encoded
string into a Dart class. Let’s say we have to parse this string.

{ "id": 1, "value": "json test" }

First of all there’s the need to use the jsonDecode method, from "dart:convert", which trans-
lates a json string into a Dart object whose type is Map<String, dynamic>. As we told you back
in chapter 2, this is one of the rare cases in which dynamic has to be used.

import "dart:convert";

void main () {
final jsonString = '{ "id": 1, "name": "Alberto" }';

Map<String, dynamic> data = jsonDecode(jsonString);
}

If you think about it, this design choice really makes sense because a json object is nothing more
than a map whose keys are strings and values can be integers, strings, objects or lists. There’s
the possibility to make a 1:1 comparison which is very expressive:

JSON string Dart object

{
"id": 1,
"name": "Alberto"

}

Map<String, dynamic> data = {
"id": 1,
"name": "Alberto"

}

The values of the map are dynamic because we have to take care of converting the content into a
proper data type. The next step is the creation of a model class which converts a given object
from and to JSON.

Flutter Complete Reference 418

Chapter 15. Working with JSON and other formats

class Person {
final int id;
final String value;

// 1.
Person._({

required this.id,
required this.value

});

// 2.
factory Person.fromJson(Map<String, dynamic> json) =>

Person._(
id: json["id"],
value: json["name"],

);

// 3.
Map<String, dynamic> toJson() =>

{
"id": id,
"name": value

};

@override
String toString() => "$id - $value";

}

All the parsing logic lies inside class Person and nowhere else; casts only happen internally so
from the outside there’s no need to deal with dynamic. In practice, calling Person.fromJson()
is safe because the developer is not asked to make any cast since they’re hidden internally.

1. The constructor is private because this class can be instantiated only if a well-formed json
string is passed via factory.

2. The factory constructor takes the result of a jsonDecode method and constructs a Person
object. This is the only place in which we should pay attention to types. We could also
have written this...

Flutter Complete Reference 419

Chapter 15. Working with JSON and other formats

Person._(
id: json["id"] as int,
value: json["value"] as String,

);

... but the compiler is smart enough to infer the types and perform automatic casts. Note
that this approach is required if you set strict implicit casts rules in analysis_options.yaml.

3. Converts the object into a data structure that can be passed to jsonEncode, which will
convert the Map into a JSON string. It’s very easy to use:

final jsonString = jsonEncode(personObject);

The jsonEncode method automatically calls Map<String, dynamic> toJson() so be sure
to have it defined otherwise an error will occur.

As you can see, parsing and converting is all around the creation of a model class which should
define factory MyObj.fromJson and MyObj.toJson. Thanks to these conversion methods, han-
dling strings is very easy:

void main () {
final jsonString = '{ "id": 1, "name": "Alberto" }';

final decodedMap = jsonDecode(jsonString);
final user = Person.fromJson(decodedMap);

print("${user.id}"); // prints "1"
print("${user.value}"); // prints "Alberto"

final json = jsonEncode(user);
print(json); // prints "{'id': 1, 'name': 'Alberto'}"

}

Having a private constructor, a Person object can only be created from a JSON string and
nothing more. Any model class is asked to, at least, define:

• a factory constructor which creates new instances using the returned value of jsonDecode;

• a method called toJson() that will be automatically called by jsonEncode

Flutter Complete Reference 420

Chapter 15. Working with JSON and other formats

15.1.1.1 Parsing lists

Very often JSON strings are long lists containing a series of objects and of course Dart has an
easy way to deal with them. Suppose you had to work with the following string:

[
{ "id": 1, "name": "Alberto" },
{ "id": 2, "name": "Felix" },
{ "id": 3, "name": "Rémi" },
{ "id": 4, "name": "Matt" }

]

In order to parse a list there’s the need to intuitively use a List<T> object and then treating
each item as a JSON object. We’re using the same model class we’ve created in the previous
section.

void main() {
final jsonString =

'''[
{ "id": 1, "name": "Alberto" },
{ "id": 2, "name": "Felix" },
{ "id": 3, "name": "Rémi" },
{ "id": 4, "name": "Matt" }

]''';

// It's a list of json objects
List<dynamic> jsonList = jsonDecode(jsonString);

// Each object is converted by the model class
final List<Person> people = jsonList

.map((value) => Person.fromJson(value))

.toList();
}

The decoder is allowed to return a List<dynamic> when it encounters a list; each json object
inside it is nicely converted by the model class. A list is simply a collection of objects which can
be handled by a model class.

� The usage of a model class is very handy in this case; the code is highly readable

Flutter Complete Reference 421

Chapter 15. Working with JSON and other formats

and type safe. If we didn’t use Person.fromJson there would have been the need to
make manual casts for any list to be parsed.

A model class is always required to keep your code readable and easily testable.

15.1.1.2 Parsing nested objects

With the manual approach, things start to get complicated when the JSON string is quite complex
because, for example, it’s made up of nested objects or lists. Imagine having to work with this
apparently simple string:

{
"type": "Developers",
"data": [

{ "id": 1, "name": "Alberto" },
{ "id": 2, "name": "Felix" },
{ "id": 3, "name": "Rémi" },
{ "id": 4, "name": "Matt" }

]
}

If you’re used to work with REST APIs you might have already encountered something like this
millions of times. Jumping into the code, parsing logic starts to get more difficult to write and
thus harder for a developer to read. Now Person is not enough anymore and we need another
model class to handle the outer object:

// Same as before
class Person { ... }

// New class for the main object containing 'type' and 'data'
class Data {

final String type;
final List<Person> people;

Data._({
required this.type,
required this.people

});

Flutter Complete Reference 422

Chapter 15. Working with JSON and other formats

factory Data.fromJson(Map<String, dynamic> json) {
List<dynamic> list = json["data"];
List<Person> peopleList = list

.map((personObj) => Person.fromJson(personObj))

.toList();

return Data._(
type: json["type"],
people: peopleList,

);
}

}

Performance is not an issue; the problem instead is the fact that for a fairly simple JSON string
we’ve had to create two different model classes. You can always use manual parsing but with
very complex and nested objects, you might get in trouble.

� As time goes by the maintenance can also get harder. What if the REST API
from which you depend changed the structure? Potentially, you’d have to refactor
most of your code. The solution is the usage of code generation.

Every json object requires his dedicated model class. There isn’t a strict rule to determine when
you should go for the manual approach but that’s up to you; when you see that parsing starts to
get hard and there’s a lot of boilerplate code, consider moving to automatic parsing.

15.1.2 Automatic parsing

When JSON strings are very complex, with many nested objects and lists, it would be better
using code generation which handles most of the tedious work automatically. First of all, you
need to add a few dependencies to the project making sure to use the latest version of any
package:

dependencies
json_annotation: ^3.0.1
json_serializable: ^3.4.0

The automatic way of parsing JSON is nothing new from what you’ve just seen. The process

Flutter Complete Reference 423

Chapter 15. Working with JSON and other formats

is identical to manual parsing with the only difference that model classes are generated by a
command line tool rather than by you, the developer. In order to make an efficient comparison
between automatic and manual parsing, we’re going to use the same JSON string as exam-
ple.

{ "id": 1, "value": "json test" }

As usual, there’s the need to create the famous model class which takes care of converting from
and to JSON. This time the code looks a bit different from the usual:

import 'package:json_annotation/json_annotation.dart';

// 1.
part 'person.g.dart';

// 2.
@JsonSerializable()
class Person {

final int id;
final String name;
Person(this.id, this.name);

// 3.
factory Person.fromJson(Map<String, dynamic> json)

=> _$PersonFromJson(json);

Map<String, dynamic> toJson()
=> _$PersonToJson(this);

}

With this setup the code generator tool will be able to automatically create the bodies of both
fromJson and toJson; there’s no need for you to make casts or converting data. For now, ignore
the errors underlined by the IDE because we’re removing them soon.

1. The code generator will automatically create a file called 'person.g.dart'. Thanks to the
part directive, the Person class is able to access private members in the generated file.

2. The annotation is fundamental as it tells the code generator that Person needs the JSON
serialization logic to be created. It’s a "marker" to recognize the classes that needs code
generation.

Flutter Complete Reference 424

Chapter 15. Working with JSON and other formats

3. The syntax is a bit weird but it’s telling the generator to create for us the code of these
methods. You already know what they do from the previous section.

The setup is now ready and it’s time to invoke the code generator. Open the terminal from your
IDE and run this command, making sure to be at root of the project (which should be already
there by default):

$ flutter pub run build_runner build

Wait until it completes and at the end you will see a new file called person.g.dart which has
just been created. It contains the same logic you would have implemented by hand as it does
casts from dynamic to the correct type according with the structure of the model class.

� Any change made to the model class requires the command build_runner to be
run again in order to update the generated class. Doing this repeatedly might be
tedious or you could simply forget about it:

$ flutter pub run build_runner watch

Using the command with watch rather than build automatically runs the code gen-
erator whenever a change is made to the class.

The IDE doesn’t complain anymore about person.g.dart not being declared because it’s now
been generated by the tool. You’re going to use Person in the exact same way we had already
seen in the manual parsing section.

void main () {
final jsonString = '{ "id": 1, "name": "Alberto" }';

final dataMap = jsonDecode(jsonString);
final user = Person.fromJson(dataMap);

print("${user.id}"); // prints "1"
print("${user.name}"); // prints "Alberto"

final json = jsonEncode(user);
print(json); // prints "{'id': 1, 'name': 'Alberto'}"

}

In such a simple example it’s hard to see why code generation is useful, in fact you could have

Flutter Complete Reference 425

Chapter 15. Working with JSON and other formats

done it by hand. The real usefulness of the code generator comes when, for example, complex
objects like the following have to be parsed:

[
{

"id": 1,
"roles": [

{"id": 1, "type": "Author"},
{"id": 2, "type": "Reviewer"}

],
"data": {

"params": [0, 3],
"values": {

"data": []
},
"keys": [13, 6, 7]

},
"extra": "none"

}
]

Each object needs its dedicated model class plus a series of handlers for the lists. Doing a manual
parsing is going to require a lot of boilerplate code and by consequence it will also be quite hard
to maintain as time goes by. Thanks to code generation, an automated tool takes care of the
most tedious part.

@JsonKey(required: true)
final int id;

@JsonKey(defaultValue: "no name")
final String name;

There are some extra annotations to instruct the behavior of the generator in certain situations.
In the first case, the required marker throws an error if the key is not present in the JSON
string. In the second case defaultValue puts the given value in the variable if the JSON key
doesn’t exist or if it’s null.

Flutter Complete Reference 426

Chapter 15. Working with JSON and other formats

15.1.2.1 Parsing lists

Parsing lists doesn’t involve any extra effort because, again, the generator does all the work for
you. Unless you’re parsing a primitive type, such as strings or integers, you need a model class
for the objects in the array.

{
"total": 4,
"values": ["A", "B", "C", "D"]

}

Declaring a List<String> instance variable is enough to tell build_runner to generate the
needed code to parse a list of strings. In the next section we will show you what to do in case of
lists of objects.

@JsonSerializable()
class Example {

final int total;
final List<String> values;
Example(this.id, this.name);

factory Example.fromJson(Map<String, dynamic> json)
=> _$ExampleFromJson(json);

Map<String, dynamic> toJson()
=> _$ExampleToJson(this);

}

You could have put JsonKey(defaultValue: []) above values if you wanted it to be initialized
with an empty array. Even if default values are not required, it’s a good practice always defining
them just to be sure that a variable is always initialized as expected.

15.1.2.2 Parsing nested objects

As you probably have already guessed, parsing nested object requires no efforts from your side
because the implementation will be automatically generated. Let’s take as example the same
JSON string we have already seen in the previous section:

{
"type": "Developers",
"data": [

Flutter Complete Reference 427

Chapter 15. Working with JSON and other formats

{ "id": 1, "name": "Alberto" },
{ "id": 2, "name": "Felix" },
{ "id": 3, "name": "Rémi" },
{ "id": 4, "name": "Matt" }

]
}

We had already created a model class for the items in the array (Person, with the manual
approach) but you could easily generate one with build_runner. What’s missing is a model for
the "outer" object, the one made up of "data" and "type".

@JsonSerializable(explicitToJson: true)
class Data {

final String type;
final List<Person> data;
Data(this.type, this.data);

factory Data.fromJson(Map<String, dynamic> json)
=> _$DataFromJson(json);

Map<String, dynamic> toJson()
=> _$DataToJson(this);

}

Use explicitToJson: true when you have a class that contains another class in one of its
fields. In this case, in order to properly parse each Person object of the JSON array, you have
to set explicitToJson: true on Data so that the inner-objects are included in the generation
flow.

@JsonSerializable()
class Person { ... }

@JsonSerializable(explicitToJson: true)
class Data { ... }

Only the classes containing other classes need to have the explicitToJson parameter set. In
case of primitive types, the annotation is not required. If your classes were big and deeply nested,
the generator might take some more seconds but still it’d be faster than a manual approach.

� The official documentation discourages the usage of the part keyword by the

Flutter Complete Reference 428

Chapter 15. Working with JSON and other formats

developer 1. The only case in which it’s good is when code generation tools are in-
volved, like in this case. For all the other needs, rely on a package-like structure using
library and export statements.

15.2 Parsing XML

Another well-known data exchange format is XML which is still widely used even with the arrival
of JSON, so you might be interested in knowing how to deal with it. One of the best packages
available is called xml 2, made by Lukas Renggli.

<articles>
<item>

<name>Book</name>
<quantity>5</quantity>

</item>
<item>

<name>Tablet</name>
<quantity>2</quantity>

</item>
</articles>

Reading this string and converting it into a handy xml object is very easy as you just need to call
XmlDocument.parse(). Version 4.1.0 and earlier of the package had a top-level method called
parse() which is now deprecated.

import 'package:xml/xml.dart';

void main() {
var xmlString = "<articles> ... </articles>";

try {
final xmlDoc = XmlDocument.parse(xmlString);

} on XmlParserException {
// error while parsing the string

}

1https://dart.dev/guides/libraries/create-library-packages
2https://pub.dev/packages/xml

Flutter Complete Reference 429

Chapter 15. Working with JSON and other formats

}

If the XML string is malformed, for example due to a syntax error, an exception is thrown. The
xmlDoc variable is of type XmlDocument which provides many functionalities. It overrides the
toString() so that the object can easily be printed.

print("$xmlDoc");

The returned string is "pretty" encoded, meaning that it’s properly indented with spaces and
tabulations. If you want to have more control on the output formatting, use indent:

final output = xmlDoc.toXmlString(
pretty: true,
indent: '-'

);

print(output);

Having set pretty: true the XML tree is not printed verbatim because useless leading spaces
are removed and indentation is fixed. With indent: '-' the indentation spaces are replaced
with - producing this:

<articles>
-<item>
--<name>Book</name>
--<quantity>5</quantity>
-</item>
-<item>
--<name>Tablet</name>
--<quantity>2</quantity>
-</item>
</articles>

By default the indentation uses a double white space ' ' but you could also use indent: '\t'
or anything else.

� When calling XmlDocument.parse() you need to pass a string in a proper UTF
encoding. In Dart, String is a sequence of UTF-16 code units so everything works
fine.

// All good because strings in Dart are UTF encoded

Flutter Complete Reference 430

Chapter 15. Working with JSON and other formats

final xmlDoc = XmlDocument.parse("<articles></articles>");

If you’re retrieving the XML from the internet, for example via GET request, the
string encoding might be different from UTF (it could be Latin1, for example). Since
parse() works well only with UTF, you could have the need to use the Latin1Decoder()
class.

// More info on GET requests and networking on chapter 17.
// This is a GET request which returns a 'Response' object
final response = await http.get("https://website.com/get/myFile.xml");

// Convert the response to a proper UTF format, which is how Dart
// strings are internally represented
final String xmlString = Latin1Decoder().convert(response.bodyBytes);

// You're now sure that parsing will execute successfully
final xmlDoc = XmlDocument.parse(xmlString);

The response body (response.body) is a String but it’s not guaranteed to be in
UTF encoding. If the response header specifies charset=latin1 for example, then
the string encoding will be Latin1. Thanks to Latin1Decoder() you can convert a
latin1-encoded string into a Dart string (UTF-16).

AsciiDecoder().convert(response.bodyBytes);
Utf8Decoder().convert(response.bodyBytes);

They all work like Latin1Decoder(): use the convert() method to return a well-
formed Dart string. This conversion should be taken into account not only when
working with the xml package but in general (the same problem might happen when
working with JSON as well).

15.2.1 Parsing strings

Once an XML-encoded string has been converted into a XmlDocument, there’s the possibility to
traverse the elements in many ways. Let’s say we wanted to print the name of any article in the
list:

final xmlString = """
<articles>

<item>
<name>Book</name>

Flutter Complete Reference 431

Chapter 15. Working with JSON and other formats

<quantity>5</quantity>
</item>
<item>

<name>Tablet</name>
<quantity>2</quantity>

</item>
</articles>

""";

final xmlDoc = XmlDocument.parse(xmlString);

xmlDoc.findAllElements("name")
.map((item) => item.text)
.forEach(print);

// Prints:
// Book
// Tablet

Very intuitively, findAllElements(String name) returns an iterable object containing every
XML element whose tag matches the given string. We could also have iterated on item and
extracted the various values of the children by hand:

xmlDoc.findAllElements("item")
.map((item) {

final name = item.findElements("name").single.text;
final qty = item.findElements("quantity").single.text;

return "$name (amount = $qty)";
})
.forEach(print);

// Prints:
// Book (amount = 5)
// Tablet (amount = 2)

The findElements() method looks for any children of the currently selected node, it doesn’t
look on the entire tree. In order to obtain a reference to the node you can use:

• single: Checks if there’s only one child node with the given name and returns it. If not,

Flutter Complete Reference 432

Chapter 15. Working with JSON and other formats

an exception is thrown.

• first: Returns the first child node that matches the given name and returns it. If it’s not
present, an exception is thrown.

• last: Returns the last child node that matches the given name and returns it. If it’s not
present, an exception is thrown.

While findAllElements() finds every children in the tree with a given name, findElements()
instead looks only for children of the current node. Look at this simple comparison to better
understand the difference:

• result is an iterable containing 2 children, more precisely the two <item> tags representing
the book and the tablet. With findAllElements() you’re looking for any node across the
entire tree.

final xmlDoc = XmlDocument.parse(xmlString);
final result = xmlDoc.findAllElements("item");

// <articles> is at the root and it contains 2 <item> nodes;
// findAllElements for any element whose tag is 'item'

• result is an iterable containing no children because it looks only for direct children of the
current node. The current node is the root which has a single child (<articles>).

final xmlDoc = XmlDocument.parse(xmlString);
final result = xmlDoc.findElements("item");

// The current node is the root, which only contains
// <articles>; the various <item> elements are not direct
// children of the root

When calling parse() the currently selected node becomes the root of the tree which only
has the <articles> node. The root has no <item> children so the method finds nothing.

• In this case both methods return an iterable of size 1 which contains <articles> and all
of its children.

final xmlDoc = XmlDocument.parse(xmlString);
final deepChildren = xmlDoc.findAllElements("articles");
final directChildren = xmlDoc.findElements("articles");

<articles> is a direct children of the root, the currently selected node, so findElements

Flutter Complete Reference 433

Chapter 15. Working with JSON and other formats

is able to get a result. At the same time, <articles> is the only tag in the tree so
findAllElements will return an identical result.

In general you should use findAllElements when you want to get an entire list of elements and
then inside it you call findElements to retrieve the specific values. This is an example of how
they can be used together:

// Get every <item> node with 'findAllElements' and then
// use 'findElements' to find only direct children of the
// currently selected element.
final tot = xmlDoc.findAllElements("item")

.map((item) =>
int.parse(item.findElements("quantity").single.text)

)
.reduce((a, b) => a + b);

print("$tot"); // prints '7', the sum of all quantities

15.2.2 Building XML strings

Let’s say we want to create an XML string representing a series of personal information such as
name, surname and age. The final result has to look like this:

<people>
<person>

<name>Alberto</name>
<surname>Miola</surname>
<age>23</age>

</person>
<person>

<name>Another</name>
<surname>One</surname>
<age>36</age>

</person>
</people>

Thanks to the class XmlBuilder this job is quite easy but the code could get hard to read
due to the big amount of nested functions. For this reason, it would be better creating series of
methods for each recurring item, in this case the <person> child.

Flutter Complete Reference 434

Chapter 15. Working with JSON and other formats

void addPerson(XmlDocument.XmlBuilder builder, {
required String name,
required String surname,
required int age

}) {
builder.element('person', nest: () {

builder.element('name', nest: name);
builder.element('surname', nest: surname);
builder.element('age', nest: age);

});
}

Each time addPerson(...) is called, a new <person> element is added and the code still remains
readable. Using nest you can pass a primitive value, such a string/number, or a function which
generally builds new XML items.

� Of course there is also the possibility to set attributes to specific elements. For
example, if we wanted to add the age attribute we’d have to use attribute():

builder.element('person', nest: () {
builder.attribute("young", age <= 18);
// name, surname and age...

});

The result might look like <person young="false"></person> where true or false
depends whether the age is lower or higher than 18.

Now you just need to create an instance of XmlBuilder and compose the string; once finished,
call the build() method. Helper functions such as addPerson make the code more readable
because nesting too many functions might be quite pesky.

final builder = XmlBuilder();

builder.processing('xml', 'version="1.0"');
builder.element('people', nest: () {

addPerson(builder,
name: "Alberto",
surname: "Miola",

Flutter Complete Reference 435

Chapter 15. Working with JSON and other formats

age: 23);
addPerson(builder,

name: "Another",
surname: "One",
age: 23);

});

final peopleXML = builder.build();

Converting the XML object with peopleXML.toXmlString(pretty: true); is probably the best
human-readable solution. However, you can also go for a plain toString() which uses no spaces
nor indentation.

Flutter Complete Reference 436

16 | Testing and profiling apps

16.1 Testing Flutter apps

For demo applications consisting of one or two routes and a few lines of code, it’s probably fine if
you do "naive" debugging just by printing values to the console. The more features your program
has, the harder it is to manual testing code and execution flows.

� Nowadays multithreading is a fundamental aspect of computer programming and
it increases the logical complexity of the code. As you know, Dart doesn’t have
synchronization problems since Isolates doesn’t share memory and thus testing asyn-
chronous code is much easier in comparison with Java or C# for example.

Multithreading aside, in general having a reliable and robust way of testing your code is essential
to guarantee the quality of the product. There are three main testing strategies:

• Unit test. Kind of tests made on small pieces of Dart code such as classes or functions.
They check whether the logic of the code works as intended or not.

• Widget test. Kind of tests made on Flutter widgets. They check if a widget is present in
the widget tree or how many times does it appear.

• Integration test. Kind of tests in which different parts of the code are combined and
tested together as a group.

Imagine you’re working on a Flutter application with some friends of yours using, for example,
Android Studio and GitHub. Everything works fine but one day you have to do a breaking change
which requires a quite important refactoring.

• With tests. Right click on the test/ folder and hit Run. If you’ve broken something,

Flutter Complete Reference 437

Chapter 16. Testing and profiling apps

one or more tests will fail indicating exactly where’s the issue so that you can immediately
investigate and solve it.

• Without tests. You have absolutely no idea if fixed bugs have been broken again or other
working components of your software are still healthy. Nothing will automatically tell you
where known issues are! You have to scan the entire code seeking for bugs and hoping to
not miss anything. You can only hope that major changes won’t break the code but you
understand that this way of working is really a "no-go".

Writing tests (generally using testing frameworks) is basically making sure that errors won’t be
repeated in the future. Once you’ve found a bug, solve it and write a test to make sure that
future changes won’t lead again to the same erroneous behaviors.

� Of course, passing tests doesn’t assure your program is flawless because there
might be bugs you haven’t spotted yet. However, a perfect result (tests passed with
no errors) ensures that known bugs have been fixed and they’re not present anymore.

Having no tests means having no guarantees that known bugs are gone. Any change, be it big
or small, is a potential danger. Manually checking the code is tedious, time-consuming and very
risky because you might forget to check certain issues (especially if the codebase is large).

16.1.1 Unit Test

Unit tests are used to test small blocks of code (such as classes or methods) by verifying their
logical correctness using some conditions defined by the developer. We’re going to test this simple
class:

// created inside 'lib/fraction.dart'
class Fraction {

int _num;
int _den;

Fraction({int numerator = 0, int denominator = 1}) :
_num = numerator,
_den = denominator;

void negate() => _num *= -1;
double get toDouble => _num / _den;

Flutter Complete Reference 438

Chapter 16. Testing and profiling apps

@override
String toString() => "$_num / $_den";

}

The test package 1 from the Dart team is a very powerful testing framework which also integrates
with flutter_test. In our example, class Fraction is said to be the unit and here’s how to
test it:

1. We’re going to test "pure" Dart code, in the sense that no Flutter widgets are involved.
Let’s start by adding a dependency to the testing framework:

dev_dependencies:
test: ^1.15.3

Check https://pub.dev/packages/test to get the latest version.

2. Create a file called fraction_test.dart inside the test library of your project, which is
already added by Android Studio or VS Code by default. You should end up with this
structure:

Name it whatever you want but by convention test files should always end with *_test.dart
to be easily recognizable. The must always be a void main() {} function.

3. Inside fraction_test.dart start implementing the logic of your tests using the API pro-
vided by test test package. There are mainly two functions to use:

• void test(). It accepts a string, which briefly describes what is being checked, and
a callback, the actual logic of the test.

• void expect(a, b). The second value is compared to the first one and, if they don’t

1https://pub.dev/packages/test

Flutter Complete Reference 439

https://pub.dev/packages/test

Chapter 16. Testing and profiling apps

match, the test fails by throwing an exception.

It doesn’t matter in which order you pass parameters to expect but by convention the
value produced by your code goes on the left.

void main() {
test('10 divided by 2 should be 5', () {

final fraction = Fraction(
numerator: 10,
denominator: 2

);

expect(fraction.toDouble, 5.0);
});

}

4. Generally, a class has more than a single method to be tested. Using the group() function
multiple tests can be logically grouped under the same "container".

void main() {
group("Fraction class testing", () {

test("10 divided by 2 should be 5", () {
final fraction = Fraction(

numerator: 10,
denominator: 2

);
expect(fraction.toDouble, 5.0);

});

test("'negate' should produce opposed signs", () {
final fraction = Fraction(

numerator: 10,
denominator: 2

);
fraction.negate();
expect(fraction.toDouble, -5.0);

});
});

}

Flutter Complete Reference 440

Chapter 16. Testing and profiling apps

5. Tests are now ready to be run either via command line or using the facilities provided by
the IDE. For old school developers, just type this in the terminal:

$ flutter test test/fraction_test.dart

Otherwise, the official Flutter plugin for both Android Studio and VSCode supports unit
testing so that you can run tests in a more friendly way. In Android Studio (as of version
4.1.0):

• Open the fraction_test.dart file;

• Go on Run > Edit Configurations;

• Click on the + button on the left and select "Dart Test" (or "Flutter Test");

• Give it a meaningful description and be sure that in Test scope the All in file option
is selected;

• Select the test file we’ve just created. Click OK;

Now in the drop-down next to the Run button select the test you’ve just created and run
it; results will appear in the console underneath. In VSCode:

• Open the fraction_test.dart file;

• Select the Debug menu;

• Click on Start Debugging and the tests will be run.

If you have set a keyboard shortcut for executing tests immediately, use it.

Creating unit tests is not so hard; once you’ve your class or function ready to be tested, create
a dedicated file in the test/ folder. Use test("Description", () {} to write the logic and
possibly group() to group more tests together.

� To collect code coverage, add the --coverage <directory> flag when calling the
test command line tool. The directory will be automatically created if it doesn’t
exist and the results will be put there.

So far you’ve only seen expect() being called, which just matches for a single case. There’s the
possibility to run multiple checks for a single test thanks to allOf(). Be sure to check out the
documentation of the matcher 2 for a complete list of methods you can use inside allOf().

2https://pub.dev/documentation/matcher/latest/matcher/matcher-library.html

Flutter Complete Reference 441

Chapter 16. Testing and profiling apps

expect('A short string.', allOf([
contains('rt'),
startsWith('A '),
endsWith('.')

]));

If you want to make sure that your code throws an exception under certain circumstances, you
could include it in a try catch block and call expect() with boolean values. It’s doable for sure
but there’s a better way of dealing with exceptions:

expect(() => Fraction(1, 0), throwsA(isA<FractionException>()));

The throwsA() function catches exceptions and it’s generally used together with isA<T>() to
match the exact type. There’s also the possibility to use a "shortcut" in case of common exception
types:

expect(() { ... }, throwsException);
expect(() { ... }, throwsFormatException);
expect(() { ... }, throwsUnsupportedError);
// and more...

Writing throwsA(isA<Exception>()) is equivalent to throwsException but with less code. As
always, check out the official documentation 3 to see every kind of common exception type
available.

16.1.1.1 Testing asynchronous code and streams

If you use async and await regularly, tests will work "normally" like if you were working with
synchronous calls. The only exception is that they may take a bit longer to execute because the
test runner waits until every Future<T> completes.

void main() {
test('Testing with async and await', () async {

final age = await Future<int>.value(25);
expect(age, equals(25));

});
}

We could have also achieved the same result without using async and await at all. For consistency
and readability, we don’t recommend you to go for this kind of approach.

3https://api.flutter.dev/flutter/test_api/test_api-library.html

Flutter Complete Reference 442

Chapter 16. Testing and profiling apps

void main() {
test('Testing without async and await', () {

final age = Future<int>.value(25);
expect(age, completion(equals(25)));

});
}

The completion() function is used to test a Future<T> object: it ensures that the test doesn’t
finish until the operation completes. Once available, the value is passed to equals(). With
streams, nothing new again:

final rocketLaunch = Stream<String>.fromIterable([
"3", "2", "1", "0", "Ignition", "Success!"

]);

test("rocket launch test", () {
expect(rocketLaunch, emitsInOrder([

// This is a value and it matches individual events
"3",

// Asserts that one of the options in the list is emitted
emitsAnyOf(["Success!", "Failure"]),

// By default, more events are allowed at the end. 'emitsDone'
// makes ensure that nothing else is emitted after this matcher.
emitsDone

]));
});

We’ve created a dummy rocketLaunch stream just as test. Details aside, the structure is always
the same: create a new test with test("description", () { ... }) and then use expect() to
ensure the correctness of the output. There are many matchers available 4 such as emitsAnyOf()
or neverEmits().

16.1.1.2 Mocking dependencies

In real-world applications it’s very likely you’ll have to deal with http connectivity or Future<T>s
in general. They’re very annoying to test using the technique we’ve just described for a few

4https://pub.dev/packages/test#asynchronous-tests

Flutter Complete Reference 443

Chapter 16. Testing and profiling apps

reasons:

1. You could successfully run your tests but then, due to a bug in the online API that you
don’t control, failures start to pop out.

2. Making HTTP requests might slow down the execution time of the tests. They could also
fail due to a series of connectivity problems related to the response sent by the server.

3. If the web service goes down for maintenance in the exact moment in which you want to
test, you simply can’t do it.

Flutter gives you the possibility to mock dependencies. The term "mocking" indicates the act
of emulating a database, a web service or any other external source in local so that it’s always
available.

� Let’s say your app normally sends http requests to an online REST API service.
When it’s time to test you should create a mock, which is a "local fake API" under
your control which acts like if it were a real external service.

We’re going to create mocks by using the official mockito 5 package, created by the Dart team.
We’re still doing unit tests but with a different approach. Rather than directly connecting to the
server, we emulate a fake one just for testing purposes.

import 'package:http/http.dart' as http;

class Todos {
final _source = "https://myonlineapi/get/todos";

String getJson(http.Client client) async {
final response = await client.get(_source);

if (response.statusCode != 200)
return response.body;

else
return "{}";

}
}

5https://pub.dev/packages/mockito

Flutter Complete Reference 444

Chapter 16. Testing and profiling apps

In chapter 17 you’ll see many examples about HTTP requests and data parsing. In this example
we’re showing how to unit test the class Todos, which uses the official http 6 package to retrieve
a JSON string.

• Add the mockito package in the dependencies list along with the usual test package. As
always, be sure to use the latest versions.

dependencies:
http: ^0.12.2

dev_dependencies:
test: ^1.15.3
mockito: ^4.1.1

• Like we’ve done before, create the file todos_test.dart inside the test folder which is
going to contain our logic. For convenience, mocks can be created in the same file as the
main():

// The fake API server
class HTTPMock extends Mock implements http.Client {}

void main() {
// tests go here as usual...

}

The String getJson(...) method is going to receive an instance of HTTPMock rather than
http.Client. It works because the mock implements the http client object and thus
there’s type compatibility.

• Writing tests is nothing new from what you had seen earlier; use test() to write the logic
and, for a better mental organization, divide the methods in multiple groups with group().

class HTTPMock extends Mock implements http.Client {}

void main() {
final url = "https://myonlineapi/get/todos";

test("Returns JSON in case of success", () async {
// 1.
final todo = Todos();

6https://pub.dev/packages/http

Flutter Complete Reference 445

Chapter 16. Testing and profiling apps

// 2.
final mock = HTTPMock();
final fakeJson = '[{"id": 1, "desc": "Test!"}]';

// 3.
when(mock.get(url).whenComplete(() {

return http.Response(fakeJson, 200);
}));

// 4.
expect(

await todo.getJson(mock),
// ... or compare the result with 'fakeJson'
const TypeMatcher<String>()

);
});

}

The void when(...) function is provided by the mockito package.

1. The instante of the class that is going to be tested.

2. The instance of the mock, the "fake API" which is going to return a particular json
response.

3. When the test runs on a specific url, the method get(String url) is not called on
the real http client but instead it returns the fake JSON string provided by the mock.

4. When we call getJson we’re not passing a real http object which connects to the online
API. We pass the fake http object which emulates a request and returns a JSON string
we can control.

• Run the test via command line by typing:

$ dart test/todos_test.dart

When HTTP and/or database connectivity are involved, use a package like mockito to easily run
your tests. In every other case where there is just "plain" Dart code to test, with no Future<T>s
or other time-consuming tasks, use a traditional unit test.

� Note that even if the web service were down or the connectivity were absent, we

Flutter Complete Reference 446

Chapter 16. Testing and profiling apps

would still be able to run tests thanks to the mock. Everything is local to the current
machine so tests don’t rely on external sources.

16.1.1.3 Unit testing blocs

State management libraries require to be unit tested like any other logic implemented in the app
and thus flutter_bloc is no exception. Thanks to the bloc_test 7 package verifying the behavior
of your blocs and cubits couldn’t be easier.

� In this example we’re unit-testing the simple CounterBloc we made in chapter 11.
It just expects an event of type increase or decrease and returns an integer. You
could manually test blocs using test() but, other than being difficult, there wouldn’t
be the possibility of verifying certain cases.

Testing blocs is very easy: instead of relying on the classic test() we should use blocTest()
which simplifies the process a lot and makes it very intuitive. Look at this example:

void main() {
blocTest(

'emits [1] when increment is added',
build: () => CounterBloc(),
act: (bloc) => bloc.add(CounterEvent.increment),
expect: [1],

);
}

With act you can send events to the bloc being created in build and expect() is a list of
expected emitted states. Of course there’s the possibility to send multiple events and look for
multiple results:

blocTest(
"emits [1, 2, 1] when 2 increments and 1 decrement are added",
build: () => CounterBloc(),
act: (bloc) => bloc

..add(CounterEvent.increment);

..add(CounterEvent.increment);
7https://pub.dev/packages/bloc_test

Flutter Complete Reference 447

Chapter 16. Testing and profiling apps

..add(CounterEvent.decrement);
},
expect: [1, 2, 1],

);

Setting the optional skip parameters allows you to ignore a certain number of states. By default
skip: 0 is set and the initial state is excluded from the expect list. Does your bloc await
somewhere and thus you need to wait some time?

build: () => MyBloc(),
act: (bloc) => ...,
wait: const Duration(seconds: 2),
expect: [...],

In this way, when act sends an event to the bloc, the emitted state is returned after the given
time span (which is 2 seconds in the example). This is very useful when you need to wait, for
example, when debouncing events.

build: () => MyBloc(),
act: (bloc) => bloc.add(Something()),
expect: [0],
errors: [

isA<Exception>(),
]

The errors parameter is used to catch exceptions, generally together with isA<T> to exactly
match the type. Of course, bloc tests can be grouped like any other unit test.

void main() {
group('CounterBloc', () {

blocTest(...);

blocTest(...);

blocTest(...);
});

}

Flutter Complete Reference 448

Chapter 16. Testing and profiling apps

16.1.2 Widget Test

Testing Flutter widgets requires the same process you’ve seen in unit testing with the addition
of some new techniques brought by the built-in flutter_test package. It’s already bundled in the
SDK so no need to install it via pub.

class Myself extends StatelessWidget {
final int age;
final String name;
const Myself(this.name, this.age);

@override
Widget build(BuildContext context) {

return Row(
children: [

Text(name),
Text("$age"),

]
);

}
}

Before starting the testing journey for this widget, be sure that the pubspec.yaml file declares
flutter_test in the dev_dependencies section. Widget tests are meant to check whether one
or more widgets have been properly put in the widget tree.

• As usual, create a new file called myself_test.dart inside the test folder but this time
the main player is testWidgets() rather than test().

void main() {
testWidgets("Testing if 'Myself' has name and age",

(WidgetTester tester) async {
// 1.
await tester.pumpWidget(MySelf("Alberto", "100"));

// 2.
// Basically we're looking for 2 'Text' widgets
// containing "Alberto" and "100" inside 'MySelf'
final CommonFinders name = find.text("Alberto");
final CommonFinders age = find.text("100");

Flutter Complete Reference 449

Chapter 16. Testing and profiling apps

// 3.
expect(name, findsWidgets);
expect(age, findsOneWidget);

}
);

}

1. The Future<void> pumpWidget() method is used to build and render a widget in
a testing environment. It’s like if MySelf were inserted in the widget tree and the
framework called its build() method to render it.

2. The CommonFinders find is part of Flutter’s testing utilities so no external packages
are required. The text() method looks for Text widgets in the tree containing the
given string.

3. We’re making sure that the two Text widgets actually appear in the tree (and thus
they’re visible on the UI) using a Matcher. The method wants to know how many
widgets it has to look for:

– findsNothing: asserts that the finder has found no widgets in the tree;

– findsOneWidget: asserts that the finder has found exactly one widget in the tree;

– findsWidgets: asserts that the finder has found one or more widgets in the tree;

– findsNWidget: asserts that the finder has found exactly N widget in the tree,
where N is a value defined by you.

• Run the test in the same way you’d do for a classic Dart unit test; the results will appear
in your IDE indicating the failures, if any.

As you’ve seen, widget testing consists of building a "fake" widget tree with pumpWidget() and
looking for specific types using a Finder. Of course you can look for any kind of widget, not only
Text:

• find.text(...): you’ll often have the need to look for the presence of a Text widget and
this method does exactly that.

• find.byWidget(...): it’s useful when you want to look for a specific widget in the tree
making sure it appears on the screen a certain number of times. The usage is very easy:

// You want to look for an error icon
final target = Icon(Icons.error);

Flutter Complete Reference 450

Chapter 16. Testing and profiling apps

// Build the widget that has to be tested
await tester.pumpWidget(

Center(
child: Padding(

padding: const EdgeInsets.all(10.0),
child: target,

)
)

);

// Search the icon
final finder = find.byWidget(target);

// Ensure the icon actually appears
expect(finder, findsOneWidget);

With this code we’re ensuring that the widget tree contains exactly one error Icon.

• find.byType(...): looks for widgets of a particular type. It can be used in the following
way:

expect(find.byType(IconButton), findsWidgets);

After having obtained an instance of a Finder, the expect method tells us if the finder was able
to satisfy the criteria we imposed such as findsOneWidget or findsWidgets.

� Suppose you had to test a StatefulWidget which has a series of animations
inside. Other than making sure certain widgets are appearing to the UI, you could
also want to test its performances:

await tester.pumpWidget(MyWidget());
await tester.pump(Duration(milliseconds: 100));

Thanks to Future<void> pump(...) we can trigger rebuilds of the tree after a given
Duration. In our example, after 100 milliseconds MyWidget() will be rebuilt.

await tester.pumpWidget(MyWidget());
await tester.pump();
await tester.pump();

Flutter Complete Reference 451

Chapter 16. Testing and profiling apps

Calls can also be chained for subsequent rebuilds. Passing no parameters to the
method causes an immediate rebuild.

Be aware that Widget build(...) of the tested widget is called only once, which is when it’s
being created via pumpWidget(). In a testing environment, calling setState() has no effect
because rebuilds only happen via tester.pump().

16.1.2.1 Testing blocs and providers

It might happen that a particular part of the widget tree you want to test depends on one or
more providers of any kind. There’s nothing special to do when it comes to testing as just need
to normally wrap the widget in the provider you need.

// With a provider...
await tester.pumpWidget(

Provider<Something>(
child: MyWidget(),

),
);

// In case of multiple providers...
await tester.pumpWidget(

MultiProvider(
providers: [...]
child: MyWidget(),

),
);

Values are still compared using expect. The same concept also applies for flutter_bloc with the
exception that, only for widget testing, the bloc has to be mocked. Taking into account the
CountBloc example again, you should create a mock being sure to also depend on mockito:

class MockCounterBloc extends MockBloc<int> implements CounterBloc {}

void main() {
final counterBloc = MockCounterBloc();

// Emit a series of states we've decided
whenListen(counterBloc, Stream.fromIterable([0, 1, 2]))

Flutter Complete Reference 452

Chapter 16. Testing and profiling apps

// Build a subtree like you'd regularly do in a widget test
await tester.pumpWidget(

BlocProvider<CounterBloc>.value(
value: counterBloc,
child: MyWidget(),

)
);

// Making sure the state is correct
expect(counterBloc.state, equals(2));

}

Basically before using pumpWidget() you need to create a "fake bloc" using a mock, similarly
to what you’d do with a fake HTTP client. In this way there’s the possibility to send a series
of states we decide just by using whenListen(). It’s also possible making sure that states are
emitted in a certain order:

// Making sure the state is correct
expect(counterBloc.state, equals(2));

// Making sure the stream emits certain values
await expectLater(counterBloc, emitsInOrder(<int>[1, 2])));

The first case just makes sure that the latest state equals 2 while the second one ensures that
the entire "emission flow" is correct.

16.1.3 Integration testing

This kind of test gathers together both the UI and the business logic so that you can test the
app as a whole. With integration tests you’re able to verify how the visual components and the
code behave together; the app runs on a device (or simulator) and it’s told to do certain things
automatically, such as pressing on buttons.

Flutter Complete Reference 453

Chapter 16. Testing and profiling apps

We’re going to test the counter app we’ve created in chapter 11 with provider ; the test has to
ensure that both buttons properly increment and decrement the counter at the center.

• The full source code can be found in the website at Resources > Chapter 16 > Integration
test. The only difference from the original example in chapter 11 is the addition of a Key
required to reference the specific widgets while testing.

FlatButton(
key: Key("increment"),
child: const Text(...),
onPressed: () => counter.increment(),

),
Text(

key: Key("counter"),
child: const Text(...),

),
FlatButton(

key: Key("decrement"),
child: const Text(...),
onPressed: () => counter.decrement(),

),

• Integration tests are made with the flutter_driver package which has to be added as
dependency, as always, in the pubspec.yaml file.

dev_dependencies:
flutter_driver:

sdk: flutter
test: any

• Instead of using the usual test folder, you have to create a new one called test_driver
located at the root of your project (the same level as lib).

Flutter Complete Reference 454

Chapter 16. Testing and profiling apps

Integration test tools run don’t run in the same process as your app and so, to better
represent this separation, Flutter requires you to have a dedicated folder apart.

• Create the file test_driver/app.dart but you can name it whatever you want. This file
initializes the environment so that it can "automatically" use your app. In practice the
code automatically presses on buttons and analyzes the consequences of this action, which
is what a human would do in a manual test.

void main() {
// 1.
enableFlutterDriverExtension();

// 2.
runApp(CounterApp())

}

Notice that in widget testing we could only check if a certain widget were present or not in
the tree and, at best, count its occurrences. Here instead we’re testing the functionalities
of the widget combined with the Dart logic behind it.

1. This method prepares the Dart Virtual Machine for executing an "instrumented test"
of the app which is, in practical terms, performing actions on various UI widgets
(such as tapping buttons, scrolling lists or reading text). Instead of being you tapping
buttons, it’s the testing driver doing it.

2. Start the app in the usual way calling runApp(). Pass it any widget you want to test.

• The final step is the implementation of the logic inside the test_driver/app_test.dart
file. In this example we’re instructing the driver to press on buttons and read the counter

Flutter Complete Reference 455

Chapter 16. Testing and profiling apps

value from a Text widget.

void main() {
group("Counter App test", () {

// 1.
final counterText = find.byValueKey('counter');
final incrementButton = find.byValueKey('increment');
final decrementButton = find.byValueKey('decrement');

late final FlutterDriver driver;

// 2.
setUpAll(() async {

driver = await FlutterDriver.connect();
});

// 3.
tearDownAll(() async {

driver.close();
});

// 4.
test("Counter increment", () async {

await driver.tap(incrementButton);

var readText = await driver.getText(counterText);
expect(readText, "1");

});
test("Counter decrement", () async {

await driver.tap(decrementButton);

var readText = await driver.getText(counterText);
expect(readText, "0");

});
});

}

1. Here you see why we had set the keys at the beginning; thanks to them, we can locate
the widgets in the tree. Each variable holds a "reference" that’s going to be used by

Flutter Complete Reference 456

Chapter 16. Testing and profiling apps

the driver to interact with the widget.

2. The setUpAll() method is called before any test starts and performs initialization.
The driver is connected so that it can start interacting with the app.

3. By contrary. tearDownAll() is called before the test ends and does the final cleanup
of the instances which require a disposing.

4. It’s the usual test() method you’re used to see in this chapter. The driver variable
is able to interact with our app by doing many things:

– Future<void> enterText(): enters the given text in an input field like if the
user were tapping on the keyboard;

– Future<void> getText(): reads the text from a Text widget.

– Future<void> scroll(): the driver simulates a finger scrolling on a list. It’s
possible to also set the direction and the duration.

– Future<void> screenshot(): takes a screenshot of the page and stores it in a
PNG file.

To see any action that a driver can perform on a widget, visit the official documentation
8.

• Now you’re ready to run the test. First of all, start your app in an Android or iOS emulator
pressing the Run in your IDE. When the simulator is ready and connected to your IDE,
run this command:

flutter drive --target=test_driver/app.dart

Wait for the initialization to finish and you’ll see the driver interacting with the app for
you pressing on the buttons, reading text or doing any other action it got told to do.

The driver tool is very powerful: it’s a convenient way to systematically and automatically test
functionalities of your widgets combined with the business logic. Look what the driver could do
for you:

test("Counter decrement", () async {
final textField = find.byValueKey("itsName");

await driver.setTextEntryEmulation(enabled: true);

8https://api.flutter.dev/flutter/flutter_driver/FlutterDriver-class.html

Flutter Complete Reference 457

Chapter 16. Testing and profiling apps

await driver.tap(textField);
await driver.enterText("Flutter is... ");
await driver.enterText("Awesome!");

});

This code writes some strings in a text field (more on this in chapter 19) and also emulates the
insertion of the characters like if they were typed by a real person. You should really try the
driver at least once to see how useful and user-friendly it is.

16.2 Testing performances

Flutter guarantees to run at 60 fps regularly and at 120 fps in those devices whose display is ca-
pable to. If your code wastes resources due to heavy rebuilds, caused by a lack of const widgets,
or badly-handled animations the frame rate might drop.

� If you follow the numerous good practices we’ve exposed in this book, there are
very high chances that your app won’t suffer of performance issues. Caching widgets
(entire branches of the tree) and not wasting resources are the most fundamental
guidelines to put in practice.

Sometimes you might be able to see with your eyes that the UI doesn’t render smoothly but of
course it depends on the device. Flutter ships with very useful profilers to help you analyzing
the performances of your app while it’s running in profile mode. Consider that:

• Profile mode works only if your IDE is connected to a physical device, so there’s the need to
connect an Android or iOS phone to your development machine. Profiling on an emulator
might not reflect the actual performances of the app so a real device is required.

• Profile mode is similar to release mode but they’re absolutely NOT interchangeable. In
addition, some services and/or features might not be available while profiling.

In practical terms, the profile mode exposes a series of graphs and indications about your app’s
performance. According with the results, the developer should be able to identify the potential
bottlenecks and make accurate fixes. It’s the last step before proceeding to the release phase.

Flutter Complete Reference 458

Chapter 16. Testing and profiling apps

Debugging happens while testing and developing. Profiling is done before releasing the product
to make sure that everything is optimal or at least in an acceptable state.

16.2.1 DevTools

DevTools is a series of debugging and profiling tools for Dart and Flutter. It works in both debug
and profile mode but when it’s time to test the actual performances of your app, you should use
it when profiling. It’s like a Flutter-specific debugger with a lot of built-in functionalities. This
is how it looks when you’re testing your app’s performances in profile mode:

It’s also able to directly interact with the app performing rebuilds, showing grids and slowing
down animations to inspect how they affect the performances. The first time you start DevTools,
your IDE will automatically download it.

16.2.2 Using the Flutter inspector

The Flutter inspector is a powerful tool for exploring you app’s widget tree: it allows you to
see literally everything about the widgets you’ve created. The inspector can also be opened in
Android Studio/Visual Studio code but the web version on DevTools is more spacious and user
friendly. It can be used in debug mode.

Flutter Complete Reference 459

Chapter 16. Testing and profiling apps

In the above image we’re analyzing a Column with the possibility to also change in real time its
properties. For example, you could click on center, change it to end and see a preview of how
the new configuration would look like. On the left, there’s a representation of your app’s widget
tree which can easily be explored. In this page, there are many actions to perform:

• Slow Animations. Slows down animations to inspect whether the source of the slowness
is a particular animation. It’s very useful when you have a jank in the UI and you want to
find out if the source of problems is a too expensive animation.

• Debug Mode Banner. Enables or disables the red "debug" stripe on the top-right border.

• Select widget mode. It allows you to click in a widget on the tree (on the left) to inspect
it. You can for example see the associated keys, the sizes, the constraints of the widget
itself and so on.

• Debug Paint. Adds debugging hints to better see spaces such as alignments, margins and
paddings. It’s useful when you want to see relative alignments of widgets to make sure
they’re properly placed on the screen.

Flutter Complete Reference 460

Chapter 16. Testing and profiling apps

• Paint Baselines. Any RenderBox paints a line at each of its text baselines.

16.2.3 Using the Timeline view

This view is made up of multiple bars, each of them representing a single Flutter frame. Clicking
on a bar opens a detailed view at the bottom with any single call made by the CPU.

There also is the possibility to show these bars directly in your app clicking on the button next to
Profile granularity. They appear at the top of your application, when run in profile mode, with
two important graphs. You don’t have control on them as they aren’t regular Flutter widgets;
they’re painted directly by Skia on top of you app. Both charts are identical: they show the same
data but with a different layout.

Flutter Complete Reference 461

Chapter 16. Testing and profiling apps

The charts show the latest 300 frames produced by your app and they’re updated whenever Flut-
ter paints something to the UI, which is when build() is called. Each bar is a frame. If you want
your app to run at 60 frames per second (fps), each frame should be built in about 16 milliseconds.

� 60fps means that each frame has to be rendered in 1/60th of a second which is
about 1/60s = 0,01667s (16 milliseconds). A frame is said to be janky if it’s taken
more than 16ms to complete (and it’s represented by a red bar).

The charts represent data about the raster thread and the UI thread, which are the relevant ones
for the developer. Flutter also has an I/O thread, for time-consuming operations, and a platform
thread which talks to the underlying OS.

• UI thread: here’s where your code is executed in the Dart VM. Any action made in the
UI thread has consequences on the other threads so it doesn’t have to be blocked for a long
time. In practical terms, using async/await and const constructors plays a fundamental
role!

• Raster thread: Skia runs here. If this thread is slow it’s a consequence of the fact that
your Dart code (which runs in the UI thread) is also slow. The raster thread executes
graphics code from the Flutter engine.

Let’s jump to the practical part to see how to actually profile a Flutter application. Once you’ve
connected the IDE to a real device and launched the profile mode, show the performance overlay
and start profiling:

• Interact with your app as much as possible: press on buttons, navigate among routes, scroll
repeatedly list and so on. Use different devices with different hardware specs if possible.
Whenever you see a red bar (jank), start investigating to find the cause.

• The overlay could show red vertical bars indicating that a particular frame took too long
to render (more than 16ms). If it happens in the UI thread, then you should review the
Dart source code and improve it:

– try to improve animations (if any) using the caching techniques we’ve shown in chapter
14 (especially, look at 14.2);

– have you used const constructors? can you refactor to create more immutable widgets
(so that they can have a constant constructor)? can you "manually" cache some
portions of the tree?

Flutter Complete Reference 462

Chapter 16. Testing and profiling apps

– be sure you’re lazily-initializing ListViews and GridViews using their builder named
constructor. It’s very efficient.

– try to see if unnecessary rebuilds are happening. Is FutureBuilder using a non cached
Future?

FutureBuider<String>(
future: _MakeHttpRequest(),

)

Doing something like this is absolutely bad and we will explain, in detail, why in
chapter 17. Basically, a Future<T> object should be cached and initialized inside
initState() (or with late final).

– You can optimize a ListView by setting the itemExtent property, which is used to
determine the height of the children.

ListView.builder(
itemExtent: 75.5,
itemCount: 350,
itemBuilder: (context, index) {...}

)

In this way Flutter knows in advance the extent and this foreknowledge saves some
work making the scrolling more efficient, especially when there are drastic position
changes.

– Do you have the possibility to cache data using a Map<K,V>? Do you have the possi-
bility to cache data on a local storage like a database? In this way, you could save a
lot of computational time.

Red bars on the raster thread are a consequence of your Dart code being too "slow" and
thus the app, on average, doesn’t run at 60fps.

• It might happen that red bars appear only in the raster chart and not in the UI one. There
are a few actions you can take in order to investigate the problem:

– Some widgets such as Opacity are relatively expensive: if you’re using them many
times (especially inside animations) they could be a problem. If you’re using them,
try to remove them or reduce their usage and see what happens.

– Click the Slow animation to run animations slower in the DevTool control panel. See if
the problem is caused by the entire animation or only at certain points of the execution.

Flutter Complete Reference 463

Chapter 16. Testing and profiling apps

– Use DevTool to discover, in the TimelineView section, which part of your app is slow
(more on this later).

In most of cases, red bars indicate that at certain frames the UI is rebuilt more than required so
you should act on the Dart code. Generally, this behavior is caused by animations or Future<T>s.

� Make apps whose frames are ready in less than 16ms (all blue bars) or at least
try to stay at 16ms on average. Other than visual benefits you might not notice, low
frame rendering leads to better battery life and less device heating.

Don’t profile your apps exclusively on powerful last generation devices. If your app renders good
frames on older devices, whose hardware is not particularly excellent, on better devices results can
only improve. You can always display the performance overlay programmatically inside material
or cupertino widgets:

MaterialApp(
showPerformanceOverlay: true,
title: 'My App',

)

CupertinoApp(
showPerformanceOverlay: true,
title: 'My App',

)

The performance overlay always works, but a meaningful usage only happens in profile mode
(which is the closest to the release mode).

16.2.4 Using the Memory view

In Dart there’s no need to take care of cleaning the memory from unused objects because there’s
an efficient garbage collector doing the job for us. Thanks to the Memory View tab you can see
how an isolate is using the memory at a given moment.

Flutter Complete Reference 464

Chapter 16. Testing and profiling apps

This tab should be used only in profile mode as it’s the "closest" to release mode in terms of
performances. Despite being very accurate, profile mode might show sometimes some slightly
higher values because the isolate is running a special service in order to run the profiling. This
special service doesn’t exist in release mode. There are two main parts on the page:

1. At the top, a chart shows the state of the heap at a certain point of the time. In other
words, it’s a general overview of the memory while the application is running having some
dots and lines updating in real time. Dots represents GC events, which is when garbage
collection happens.

2. At the bottom, there’s the Snapshot button which takes a "photo" of the memory at the
given instant and reports a detailed analysis of the heap status. Note that external refers
to data put on the heap by the operating system and thus not managed by Flutter.

Thanks to this chart you could also find potential memory leaks, which are unused object lying
on the heap wasting memory. They are hard to debug and the garbage collector isn’t able to
catch those "leaked objects": they waste space, put pressure on the VM and increase memory
fragmentation. Finding memory leaks requires experience and skill (as it’s not an easy job), but
there are two buttons you can use to try spotting them:

• Clicking the Reset button in the top-right corner sets to 0 the total instances count of the
classes.

• Clicking the Snapshot button in the bottom area of the page shows the list of currently
active objects on the heap (along with an instance counter).

Flutter Complete Reference 465

Chapter 16. Testing and profiling apps

If you click on Snapshot after having pressed Reset, you’ll be able to see how many new in-
stances have been allocated on the heap since the last reset. This can be an useful strategy to
find potential leaks, which is the case where there are object that cannot be reached anymore
(and cannot be freed by the garbage collector).

� Analyzing the memory to spot leaks and improve you app’s performance it not
easy at all. It requires a lot of experience and skills we cannot explain here because
they go beyond the scope of this book.

Dart and Flutter themselves don’t leak memory. You can leak memory when you forget to call
dispose() on resources that require to be "cleared" after being used. As you already know from
chapter 14, an AnimationController has to be disposed in order to avoid leaks.

16.2.5 Using the Network view

Use this tab to inspect HTTP network traffic from your Flutter (or Dart) application. By default
the traffic is captured and logged in the big list on the left: clicking on a row, shows all the details
about that particular HTTP event.

Flutter Complete Reference 466

Chapter 16. Testing and profiling apps

As you can see, there are a lot of very useful details about requests being sent. We strongly
recommend you to use this tab rather than using debugPrint() or other logging techniques (see
below) to deeply analyze HTTP requests.

16.2.6 Using the Logging view

As the name suggests, this tab simply consists of a logger showing events from Flutter, the Dart
runtime and other logging events coming from your application. By default, the page will show
you:

• Flutter framework events;

• events from the garbage collector;

• events sent from the application, such as the ones fired by log()

When we talk about "events sent from the application" we’re referring to the fact that you can
log messages (or error messages) from your Dart/Flutter apps while debugging. You have two
ways to show messages in the logger tab of DevTools:

1. Use the debugPrint("...") from Flutter’s foundation library. You could also use print()
but if the string is too long, some lines might be ignored by Android. This doesn’t happen
if you use debugPrint.

2. While debugPrint is very simple (it just prints a string), log is more powerful as it’s able
to log more information about something you need to analyze.

import 'dart:developer' as developer;
import 'dart:convert';

String getName(BuildContext context) {

// Getting some data using provider
final userData = context.read<UserData>();

// Logging the data
developer.log(

'Checking whether the name is correct',
name: 'event_name',
error: jsonEncode(userData)

);

Flutter Complete Reference 467

Chapter 16. Testing and profiling apps

return userData.name;
}

Using developer.log() we can send a log event to the Logging view with many mode
information. For example, name is the name of the source of the log message and error
generally contains additional data to show along with the message.

String getName(BuildContext context) {
final userData = context.read<UserData>();

if (kDebugMode) {
developer.log(...);

}

return userData.name;

With the following approach, logs are being sent only in debug more and thanks to tree
shaking 9 developer.log() is automatically removed in profile and release mode.

16.2.7 Monitoring widget rebuilds

In Android Studio, when the app is running in debug mode on a real device or emulator, you can
easily track the rebuild statistics of any widget. In practice, this table tells you how many times
any widget was rebuilt both in the last frame or since when the route has been opened.

9See chapter [TODO] about tree shaking

Flutter Complete Reference 468

Chapter 16. Testing and profiling apps

Tapping on the grey circle moves the code editor to the interested widget. With these interesting
data you can also see how important const constructors are: without them the rebuild count
will frequently increase. Instead, constant widgets are built only once and thus you’ll see their
counter being stuck at 1, which is good.

• When you see red bars in profile mode, run the app in debug mode and use this table to
see which widgets rebuild quite often. Try to see if you can reduce calls to build by using
constant constructors, caching data into fields or using some strategies we’ve listed above.

• Don’t look at the Frame rendering time chart above because it shows your app’s fps in
debug mode, which is not accurate as you know.

Flutter Complete Reference 469

"The most important property of a program is whether it
accomplishes the intention of its user."

Charles A. R. Hoare

Part III

Practical Flutter examples

471

17 | Networking

17.1 Making HTTP requests

Nowadays almost any app uses internet to fetch data from an API, interact with Firebase or any
other action that requires a Wi-Fi or wired connection. This chapter shows how to properly use
Flutter to efficiently make HTTP requests to send/receive data from servers.

B Resources > Chapter 17 > HTTP Requests

17.1.1 GET requests

In this example we’re connecting to JSONPlaceholder 1, an online API used for testing purposes.
It’s a free service at which you can send GET or POST requests and it returns various types of
JSON-encoded strings as response.

dependencies:
http: ^0.12.2

Install the official http 2 package from the Dart team and follow these step-by-step indications
to properly make HTTP requests with Flutter. For brevity, some small classes aren’t shown but
they’re of course available in the Resources page of our website.

1. Our code has to be easily maintainable over the time and easy to read. Here’s where the
single responsibility principle and dependency injection come to the rescue.

// To be 'implemented' and not 'extended'

1https://jsonplaceholder.typicode.com
2https://pub.dev/packages/http

Flutter Complete Reference 473

Chapter 17. Networking

abstract class HTTPRequest<T> {
Future<T> execute();

}

This interface will be implemented by all those classes that perform HTTP requests. Other
than respecting the SRP, this class will be injected in the UI widgets via constructor.

2. The online API we’re connecting to returns a JSON string containing data of a test item.
There’s the need to implement HTTPRequest<T> to perform a GET request and returning
a model class (Item) representing the received data.

import 'package:http/http.dart' as http;

class RequestItem implements HTTPRequest<Item> {
final String url;
const RequestItem({ required this.url });

Future<Item> execute() async {
// HTTP request
final response = await http.get(url);

if (response.statusCode != 200) {
throw http.ClientException("Oh darn!");

}

// Use the model class to make a JSON-to-Item conversion
return _parseJson(response.body);

}

Item _parseJson(String response) =>
Item.fromJson(jsonDecode(response));

}

Thanks to the http package we can perform asynchronous GET or POST requests to get
an object of type Response which exposes many useful properties:

• body: the body of the response as a string;

• statusCode: the HTTP status code of the request which can be 200, 404 or 500 for
example;

Flutter Complete Reference 474

Chapter 17. Networking

• contentLength: the size, in bytes, of the response body;

• headers: the headers sent from the server in response to our request.

As you can imagine, class Item is a simple model that converts a JSON string into an
object with the techniques we’ve covered in chapter 15. It’s been put in a separated function
just for readability purposes.

3. When dealing with futures, like in the case of HTTP requests, there’s the need to use
stateful widgets in order to cache the Future<T> object and use it only once. Let’s start
with the widget itself:

class HTTPWidget extends StatefulWidget {
final HTTPRequest<Item> _request;
const HTTPWidget(this._request);

@override
_HTTPWidgetState createState() => _HTTPWidgetState();

}

The HTTP request is going to return a JSON object represented by the Item class so we’re
requesting for that type in the constructor. Actually, there would be a better way to do
this and in 17.3 we will show how to implement a more complete and flexible version of
HTTPRequest<T>.

class _HTTPWidgetState extends State<HTTPWidget> {
late final Future<Item> futureItem;

@override
void initState() {

super.initState();
futureItem = widget._request.execute();

}

// ...
}

Since initState executes only once, the API call triggered by execute() is also executed
only once. What is absolutely WRONG is fetching HTTP data, or triggering any other
method, inside Widget build():

class _HTTPWidgetState extends State<HTTPWidget> {

Flutter Complete Reference 475

Chapter 17. Networking

@override
Widget build(BuildContext context) {

// This is absolutely BAD
final futureItem = widget._request.execute();

// ...
}

}

Flutter calls build more than once and you can’t predict how many times; with the above
code, you’re making an HTTP request at every rebuild of the widget.

� Even if you don’t see them, rebuilds happen more often than you think.
Putting API calls inside a build method is a bad idea as it wastes resources and
performs unneeded HTTP request repeatedly.

With a late final member variable you can assign a value only once inside setState and
then, in case of a rebuild, the API call won’t be executed again.

4. Now that we have learnt how to "cache" the request, it’s time to use the FutureBuilder<T>
widget. Very simply, you give it a Future<T> and it notifies you when it’s completed.

class _HTTPWidgetState extends State<HTTPWidget> {
// ... variables and initState

@override
Widget build(BuildContext context) {

return FutureBuilder<Item>(
future: futureItem,
builder: (context, snapshot) {

if (snapshot.hasError) {
return const ErrorItemWidget();

}

if (snapshot.hasData) {
return SuccessItemWidget(snapshot.data);

}

Flutter Complete Reference 476

Chapter 17. Networking

return const Center(
child: CircularProgressIndicator()

);
}

);
}

}

Thanks to FutureBuilder<T> you can handle the waiting time, the failure and the success of
a Future<T> very easily. The variable AsyncSnapshot<T> snapshot gives you information
about the status of the future:

(a) hasError: if an exception occurred while executing the Future<T>, this property
evaluates to true. A proper widget appears to the screen indicating that something
has gone wrong while performing the API call.

(b) hasData: it’s false by default but when the Future<T> completes with no errors it
becomes true. This is a signal that data have been successfully received and they’re
ready to appear. Note that snapshot.data returns a nullable value.

The final return statement shows a waiting spinner at the center of the screen. It appears
while the Future<T> is still executing; it is very important because it lets the user visually
know that some processing is going on in the background.

5. To use this widget, you first must create an instance of HTTPRequest<T>, outside the build
method, and then pass the dependency to the widget.

static const _url = "https://jsonplaceholder.typicode.com/posts/10";

@override
Widget build(BuildContext context) {

return MaterialApp(
home: Scaffold(

appBar: AppBar(
title: const Text("Request Demo"),

),
body: const Center(

child: HTTPWidget(
RequestItem(

url: _url
)

Flutter Complete Reference 477

Chapter 17. Networking

)
),

),
);

}

Notice how we’ve tried to use const constructors as much as possible, especially inside the builder
of FutureBuilder<T> where rebuilds happen very frequently. Caching widgets or using constant
constructors is always important.

17.1.2 POST requests and headers

Making a POST request is no different from a GET but in addition you have to provide a body
of course, which is the payload being sent to the server.

final response = await http.post(url,
body: "send this string via POST",

);

You can set encoding: Encoding.getByName("utf-8") by passing a lower-case version of the
standard charsets names 3. The body can be of three different types:

• String: the content-type of the request is automatically set to text/plain;

• List<T>: it’s used as a list of bytes for the body of the request;

• Map<K, V>: it’s treated like if it contained form fields and it automatically sets the content-
type to application/x-www-form-urlencoded

When you do a POST request the returned object is a Future<Response>. For both get() and
post() you have the possibility to set headers for the HTTP request; they’re simply implemented
as a map where both keys and values are strings:

// 'http.post(...)' it works in the same way
final response = await http.get(url,

headers: {
"Authorization": "your_api_key",

}
);

3http://www.iana.org/assignments/character-sets/character-sets.xml

Flutter Complete Reference 478

Chapter 17. Networking

An API might require incoming requests to contain a special header called "Authorization"
with a password or a long key. For any request header, add a new entry in the map associated
to the headers parameter.

� Note that "Authorization" is the primary header used by clients to authenticate
but it’s not mandatory. The server might request it under a different name such as
"x-api-key" or whatever else so be sure to check the documentation before sending
the key. The name may vary.

The Response object, which is what the request returns, contains the headers returned by the
server. It’s a Map<String, String> so it’s easily accessible using the [] operator:

final response = await http.get(url);

final headers = response.headers; // map of strings
final contentLength = response.contentLength;
final statusCode = response.statusCode;

17.1.3 Good practices

The most important thing to keep in mind is the initialization of a Future<T> inside the
initStatemethod so that each rebuild won’t trigger an HTTP request. This is also recommended
by the Flutter team 4 in one of their online examples available in the digital cookbook.

• The best way to wait for a Future to complete is the usage of a FutureBuilder<T> widget.
It allows you to show a loading indicator while waiting and a very easy handling of the
request status (running, completed or failed).

• The builder function of a FutureBuilder<T> class is called many times and thus the usage
of const constructors is fundamental. Always remember to use them if possible.

When you have to execute a single request, calling http.get(...) or http.post(...) is enough.
However, if you’re going to make multiple requests to the same server consider using an instance
of an http.Client.

final client = http.Client();

try {

4https://flutter.dev/docs/cookbook/networking/fetch-data#why-is-fetchalbum-called-in-initstate

Flutter Complete Reference 479

Chapter 17. Networking

final one = await client.get(...);
final two = await client.get(...);
final three = await client.post(...);

// do something else...
} finally {

client.close();
}

Keeping an open connection is more efficient than opening and closing single request multiple
times. There is less overhead but it’s more "wasteful" in terms of internet resources so when
you’re done with all of them, close the client immediately.

final response1 = await http.get(url);
final response2 = await http.post(url);

Both get and post methods of the http package are global scope functions you can call straight
away. If you look at their internals, they instantiate a client which shoots a single request:

// This is how 'get(...)' and 'post(...)' internally work. These functions
// are just a shorthand for the creation of a Client object!
var client = Client();
try {

// 'fn' is declared and used internally
return await fn(client);

} finally {
client.close();

}

If you wanted to make a POST request, for example, you could either choose to use the convenient
method http.post(...) or create a http.Client() instance. It would be the same. Since there’s
no need to add boilerplate code to your logic, in case of single requests use the global methods
rather than a client.

final url = "https://mywebsite.com/posts/profile?id=1&pages=30";

final response = await http.get(url);

The url can directly contain query parameters and the request will execute successfully. If you
want to have more control over the string, you have to create an URI object and pass it to the
method.

Flutter Complete Reference 480

Chapter 17. Networking

// Use 'var' if you plan to change this Map later
final params = {

"id": 1,
"pages": 30,

};

// Domain and path are required in an URI object
final domain = "mywebsite.com";
final path = "/posts/profile":

final uri = Uri.https(domain, path, params);

// Pass headers, if any, using the 'header' named optional param
await http.get(uri);

This is more flexible but we’ve had to write quite a bit more of boilerplate code than what we’d
expect. Notice that Uri defines http and https factories and they are of course not interchange-
able.

17.2 Working with data

The http package can also perform I/O operations but dealing with them is actually not so easy.
You’d have to work with bytes, encodings, File objects and other things that are a bit too "low
level".

� It’s not a matter of efficiency because http does its job very well. The problem
is that, for example, there’s no http.downloadFile() and so you’d have to create it
by yourself. It doesn’t have many pre-made functions ready to use.

There is a very powerful package called dio 5 which provides an easy way to deal with files
download/upload and, of course, many other networking tasks such as HTTP requests. We
recommend to follow this guideline:

• If your app is only going to make HTTP requests, choose between the http or dio packages.
They both give you an intuitive and easy way to deal with requests, just pick the one you

5https://pub.dev/packages/dio

Flutter Complete Reference 481

Chapter 17. Networking

like more. Both are very efficient.

• If your app is going to perform networking operations with data, such as downloads or
uploads, we recommend to stick with dio as it’s simpler to use. It has a lot of pre-made
and useful functions that we’re going to cover in this section.

As we’ve already said, with dio you can easily make GET and POST requests which return a
Response object, similarly to what http does. There is no need to explain what’s going on because
the code is self-explanatory (this is great in terms of maintenance):

void main() async {
final dio = Dio();
final url = "https://website.com";

try {
final response1 = await dio.get<String>(url);
print("${response1.data}");

final response2 = await dio.post<String>(url, data: {
"key1": "1",
"key2": 2,

});
print("${response2.data}");

} on DioError catch (e) {
print(e);

}
}

Very intuitively, queryParameters offers a convenient way to pass query params using a Map<K,V>.
In http this process is a bit more tedious because there’s the need for a separated URI object which
produces a good amount of boilerplate code.

final response1 = await dio.get<String>(url, queryParameters: {
"param1": 1,
"param2": "2"

});

You can also execute multiple requests concurrently and wait for all of them to finish. In this
case, instead of repeating the same base URL for every request, just set it up once in a new
instance of BaseOptions and then make calls with relative paths:

Flutter Complete Reference 482

Chapter 17. Networking

// The timeout is expressed in milliseconds
final options = BaseOptions(

baseUrl: "https://website.com/api/",
connectTimeout: 3000, // 3 seconds

);

// New instance of dio with the given options
final dio = Dio(options);

// Executes 3 requests concurrently and waits for all of them
// to complete
final response = await Future.wait([

dio.get<String>("/version"),
dio.get<String>("/products/list"),
dio.post<String>("/login",

options: Options(
headers: {

"Authentication": "auth-key",
}

)
),

]);

Thanks to the BaseOptions object the get("/version") method is actually calling the extended
version of the URL (get("https://website.com/api/version")) because the value of baseUrl
is put in front of the URL endpoint.

B Resources > Chapter 17 > Files download

17.2.1 Downloading data

We’re now going to see how to create an app that downloads a file from a sever and stores
it on the device. It’s going to have a button to start the download and a Text to show the
completion percentage of the operation. As bytes are received, the percentage increases to reflect
the progression of the download.

Flutter Complete Reference 483

Chapter 17. Networking

dependencies:
dio: ^3.0.10
provider: ^4.3.2+1
path_provider: ^1.6.14

The path_provider package is maintained by the official Flutter team and it provides a series
of utilities to easily get paths to common directories on various operating systems. Just await
one of its methods, which return a Directory object, and use the path getter to retrieve the
location.

final tempDir = await getTemporaryDirectory();
final extDir = await getExternalStorageDirectory();
final downloadDir = await getDownloadsDirectory();

// and more...

Our app is going to use the temporary directory of the device but of course it’s just for the sake
of the example, you can use any directory you want. The UI is going to look like this:

In order to change the text of the button there’s the need to create a ChangeNotifierProvider
which will update the percentage while the download is running. DownloadProgress is a model
class encapsulating the network I/O logic so it’s a good idea placing it in a dedicated file.

class DownloadProgress with ChangeNotifier {
// Initial value
var _progress = 0.0;
double get progress => _progress;

void start({
required String url,
required String filename

}) async {

Flutter Complete Reference 484

Chapter 17. Networking

// download logic...
}

void _resetProgress() {
if (progress != 0) {

_progress = 0;
notifyListeners();

}
}

void _updateProgress(double value) {
_progress = value;
notifyListeners();

}

}

The class exposes only the start method, which starts downloading the given file to a particular
location on the device, and the progress getter, which indicates the completion percentage of
the download.

void start({
required String url,
required String filename

}) async {
// Reset the percentage in case it isn't at zero
_resetProgress();

// Path and name
final directory = await getTemporaryDirectory();
final pathName = "${directory.path}/$filename";

// Download
await Dio().download(url, pathName,

options: Options(
headers: {

HttpHeaders.acceptEncodingHeader: "*"
}

),

Flutter Complete Reference 485

Chapter 17. Networking

onReceiveProgress: (received, total) {
if (total != -1) {

// The percentage of the received bytes over
// the total size of the file being downloaded
var pos = received / total * 100;
_updateProgress(pos);

}
}

);
}

In certain cases it might happen that the total file size is not available due to the gzip compression;
to avoid this problem set the accept-encoding header to "*". If the dimension of the downloaded
file is not available, total will be set to -1 so always be sure to make a check.

@override
Widget build(BuildContext context) {

return ChangeNotifierProvider<DownloadProgress>(
create: (_) => DownloadProgress(),
child: MaterialApp(

home: Scaffold(
appBar: AppBar(

title: const Text("Demo Download");
)
body: const Center(

child: DownloadWidget(),
)

)
),

);
}

The notifier has to be placed right above the widget listening for progress updates; in this simple
application there is a single screen so it just wraps MaterialApp. Be sure to use a Consumer so
that only the button will be rebuilt rather than the whole subtree.

class DownloadWidget extends StatelessWidget {
final String url = "https://website.com/files/test.pdf";
const DownloadWidget();

Flutter Complete Reference 486

Chapter 17. Networking

@override
Widget build(BuildContext context) {

return Center(
child: Consumer<DownloadProgress>(

builder: (context, status, _) {
var progress = status.progress.toStringAsFixed(1);

return RaisedButton(
child: Text("$progress %"),
onPressed: () => status.start(

url: url,
localPath: "myfile.pdf"

),
);

},
),

);
}

}

If the download fails for any reason, dio automatically stops the download and deletes the contents
that have been downloaded up to that point.

17.2.2 Uploading data

In certain cases it might happen you had the need to send form data to the server via POST
request to a particular URL. For example, one of the most common scenario for this situation is
the case in which you have to fill an HTML form.

<form method="post" action="/admin/adduser" enctype="multipart/form-data">
<input type="text" name="nickname" />
<input type="file" name="avatar" accept="image/jpeg" />

<input type="submit" value="Upload" />
</form>

When clicking Upload on the browser, the client sends a request to the server passing a string
and an image. With dio it’s possible doing the same thing in just a few lines of code; it sends a
POST request to an endpoint with the given payload.

Flutter Complete Reference 487

Chapter 17. Networking

// Path to the file in the device
final fileDir = await getTemporaryDirectory();
final filePath = "${fileDir.path}/myfile.txt",

// "Fill the form" by passing the data
final payload = FormData.fromMap({

"nickname": "Roberto",
"file": await MultipartFile.fromFile(filePath),

});

// Send the request with the payload
await dio.post<String>("/admin/adduser", data: payload);

The server expects a POST request with "nickname" and "file" contents; both the HTML page
and the Flutter app are sending the data in the same way. Of course you can also send multiple
files at once in the same request:

final payload = FormData.fromMap({
"nickname": "Roberto",
"moreFiles": [

await MultipartFile.fromFile(filePath1),
await MultipartFile.fromFile(filePath2),
await MultipartFile.fromFile(filePath3),

]
});

With FormData the default encoding is "multipart/form-data" so that your request can also
send files. If you want another type of encoding, just specify it in the options of the request:

await dio.post<String>("/admin/adduser", data: payload,
options: Options(

contentType: Headers.formUrlEncodedContentType
),

);

Like we’ve done for the download, there’s the possibility to show the completion percentage of
the upload using a callback that provides the total size of the payload and the current amount
of bytes sent. The setup is very similar to what we’ve done in the previous section:

• Create a class UploadProgress with ChangeNotifier which will update our UI with
the upload completion percentage. It’s basically the same code of the download example

Flutter Complete Reference 488

Chapter 17. Networking

with just the difference that we’re using a post() rather than a get().

class UploadProgress with ChangeNotifier {
var _progress = 0.0;
double get progress => _progress;

void start({
required String url,
required String filename

}) async {
// upload logic...

}

void _resetProgress() {
if (progress != 0) {

_progress = 0;
notifyListeners();

}
}

void _updateProgress(double value) {
_progress = value;
notifyListeners();

}

}

• Call the usual post() method but in addition listen to completion percentage changes by
giving a value to onSendProgress.

void start({
required String url,
required String filename

}) async {
// See the code of the previous example.
// Here we reset the progress and get the path to the file

await Dio().post<String>(url, fileName,
onSendProgress: (sent, total) {

Flutter Complete Reference 489

Chapter 17. Networking

vas pos = sent / total * 100;
_updateProgress(pos);

}
);

}

• At this point use a Consumer<UploadProgress>() in your UI exactly as we did in the
previous example to refresh the percentage in the button.

This library has a consistent API which is easy to use and full of useful utilities to conveniently
convert data formats or construct objects in a few lines. Another demonstration of this is the
fact that you’ve multiple ways to pass a file to the payload:

• MultipartFile.fromBytes(...): takes as input a List<int> which is the series of bytes
representing the file;

• MultipartFile.fromFile(...): extracts the file’s contents from the given location on the
device;

• MultipartFile.fromString(...): converts a string into bytes using the default UTF-8
charset

17.2.3 Good practices

We want to point out again that this library isn’t better than http for performance reasons or
whatever else because both are very good packages. The biggest advantage in favor of dio is the
vastness of its API and the ease of use. For example, downloading a file is just a matter of calling
download() while http doesn’t have this feature, you’d have to implement it by yourself.

• When you want to listen for upload or download percentages, always rely on provider,
flutter_bloc or another state management library. Avoid the usage of setState or, if it’s
really needed (is it?) use it together with InheritedWidget.

• For single requests that don’t need special configurations, you can create an in-place object
and use one of its methods immediately.

final result = await Dio().get<T>(...);

This is not always convenient; for example, if you’re connecting to an API that requires a
token you’d better create an instance of Dio with BaseOptions and store the setting in it.
In this way any method will inherit the configurations by default.

Flutter Complete Reference 490

Chapter 17. Networking

final options = BaseOptions(
baseUrl: "https://www.api.website.com/v3/",
connectTimeout: 4000,
receiveTimeout: 3000,
headers: {

"api-key": "value",
"something": 5,

}
);

final dio = Dio(options);

// These request will carry the 'api-key' and 'something'
// headers along with all the other settings
await dio.get<T>(...);
await dio.post<T>(...);
await dio.download(...);

If you didn’t do this, you’d have to specify the configuration for each single request and of
course this is not handy at all.

• When you have to deal with file downloading, advanced POST requests and/or progress
completion status, consider using dio. You’ve seen how easy it is to use in such cases; you
could do it with http as well but you’d have to do most of the work by yourself.

• Look for Reso Coder’s online video 6 about Dio and interceptors, a sort of listeners that
run every time an action is performed. It will show you how to easily implement retiries in
case of connection failures.
.

B Resources > Chapter 17 > Advanced HTTP

17.3 Advanced REST API calls

Unless you’re using Firebase, which will be covered in detail in chapter 22, apps very often need
to communicate with a JSON REST service. In this section we’re illustrating a possible imple-

6Dio Connectivity Retry Interceptor - Flutter Tutorial

Flutter Complete Reference 491

Chapter 17. Networking

mentation of efficient data fetching and parsing from an online API.

� In the following example we’re working with JSON but of course any other format
is fine. Nowadays most of the REST services work with JSON but, for example, you
still might encounter a SOAP service which uses XML.

We’re going to receive data from https://jsonplaceholder.typicode.com, a fake online REST API
service for testing purposes. Before starting, we need to create a good folder structure for the
HTTP client which might look like this:

lib/
api/

json_models/
json_parsers/
http_client.dart

main.dart
routes.dart

Let’s see how the logic has been splitted into multiple files and folders.

17.3.1 Model classes

Inside json_models/ we’re going to place all those model files required to parse a json-encoded
string into a Dart object, using code generation. For example, the endpoint "/posts/10" (it
could have been any other number) returns this kind of response:

{
"userId": 1,
"id": 10,
"title": "abc",
"body": "abc def"

}

As we’ve seen in chapter 15, thanks to code generation, we can easily create a model class for
this JSON string. The code is located in json_models/post.dart

part 'post.g.dart';

@JsonSerializable()

Flutter Complete Reference 492

https://jsonplaceholder.typicode.com

Chapter 17. Networking

class Post {
final int userId;
final int id;
final String title;
final String body;
const Post(this.userId, this.id, this.title, this.body);

factory Post.fromJson(Map<String, dynamic> json) =>
_$PostFromJson(json);

Map<String, dynamic> toJson() => _$PostToJson(this);
}

Similarly, inside json_models/todos.dart, we’re creating another model class to deal with a list
of todo items having the following structure:

[
{

"userId": 1,
"id": 1,
"title": "delectus aut autem",
"completed": false

},
{

"userId": 1,
"id": 2,
"title": "quis ut nam facilis et officia qui",
"completed": false

},
]

Since the returned JSON is an array, and not an object containing an array, you just need to
create a model for the inner object. The array will be manually converted.

part 'todo.g.dart';

@JsonSerializable()
class Todo {

...
}

Flutter Complete Reference 493

Chapter 17. Networking

Note that if the response were a bit different, maybe something like this...

{
"data": [

{
"userId": 1,
"id": 1,
"title": "delectus aut autem",
"completed": false

},
]

}

... you would have to create two model classes. The first one for the "outer" object, the one with
the list, and the second one to handle the contents of the list:

part 'todo.g.dart';

@JsonSerializable(explicitToJson: true)
class TodoObject {

final List<Todo> data;
const TodoObject(this.data);

factory TodoObject.fromJson(Map<String, dynamic> json) => ...
Map<String, dynamic> toJson() => ...

}

@JsonSerializable()
class Todo {

...
}

17.3.2 Parsing JSON

Once the HTTP request has completed with success, as you know, we need to convert the JSON
string into a convenient Dart object. We should think about a good way of doing it because
there’d be the need to:

• keep the maintenance easy so that the addition or removal of JSON parsers shouldn’t affect
any other part of the code;

Flutter Complete Reference 494

Chapter 17. Networking

• classes should be small, concise and to the point;

• there shouldn’t be strong dependencies in the hierarchy.

In other words, our architecture should respect the SOLID principles. Let’s start with a good
setup for a base class that will be used by parsers:

// lib/api/json_parsers/json_parser.dart
library json_parser;

export "post_parser.dart";
export "todo_parser.dart";
export "object_decoder.dart";

abstract class JsonParser<T> {
const JsonParser();

Future<T> parseFromJson(String json);
}

This kind of structure is the same you’d use to create Dart/Flutter libraries, as we will see in
detail in chapter 23. We’re creating the "json_parser" library and, at the same time, exporting
the various parsers we need to translate JSON strings into Dart objects.

� Thanks to the export keyword we’re able to import together with the json_parser.dart
file also other files. This is very useful because you can do the following:

import 'package:myapp/api/json_parsers/json_parser.dart';

final todo = TodoParser();
final post = PostParser();

There’s only one import directive to be able to use any kind of parsers. If you didn’t
use export, you had instead to import classes one by one:

import 'package:myapp/api/json_parsers/todo_parser.dart';
import 'package:myapp/api/json_parsers/post_parser.dart';

final todo = TodoParser();
final post = PostParser();

Flutter Complete Reference 495

Chapter 17. Networking

This export-way of writing libraries is exactly what the Flutter team suggests when
it comes to writing package. This technique is also well described in 23.1 where we
build a Dart/Flutter package from scratch.

We have created some convenient mixins. We constrained the mixin (on JsonParser<T>) so
that only its subtypes will be able to use those methods.

mixin ObjectDecoder<T> on JsonParser<T> {
Map<String, dynamic> decodeJsonObject(String json) =>

jsonDecode(json) as Map<String, dynamic>;
}

mixin ListDecoder<T> on JsonParser<T> {
List<dynamic> decodeJsonList(String json) =>

jsonDecode(json) as List<dynamic>;
}

Since our parsers are often going to use jsonDecode(), we want to avoid code duplication among
classes and so a mixin is what we’re looking for. Here’s the implementation of the various
parsers:

// lib/api/json_parsers/post_parser.dart
class PostParser extends JsonParser<Post> with ObjectDecoder<Post> {

const PostParser();

@override
Future<Post> parseFromJson(String json) async {

final decoded = decodeJsonObject(json);
return Post.fromJson(decoded);

}
}

// lib/api/json_parsers/todo_parser.dart
class TodoParser extends JsonParser<List<Todo>>

with ListDecoder<List<Todo>> {
const TodoParser();

@override

Flutter Complete Reference 496

Chapter 17. Networking

Future<List<Todo>> parseFromJson(String json) async {
return decodeJsonList(json)

.map((value) => Todo.fromJson(value as Map<String, dynamic>))

.toList();
}

}

In the future you may have the need to parse data from the "/info" endpoint, for example. No
problem! Create the class Infomodel and then add a new implementation of JsonParser<T>:

class InfoParser extends JsonParser<Info> with ObjectDecoder<Info> {
@override
Future<List<Album>> parseFromJson(String json) async {}

}

Adding new features doesn’t involve touching existing code but just creating new classes (open-
closed principle) and each class is specific for a single type of parsing (single responsibility prin-
ciple).

17.3.3 HTTP Client

Now that we can parse JSON strings and represent them as Dart objects, there’s the need to
make the actual request. The http package is fine but dio is more customizable and easier to use
on large scale:

// lib/api/http_client.dart
class RequestREST {

final String endpoint;
final Map<String, String> data;

const RequestREST({
required this.endpoint,
this.data = const {},

});

/// HTTP dio client
static final _client = Dio(

BaseOptions(
baseUrl: "https://jsonplaceholder.typicode.com/",
connectTimeout: 3000, // 3 seconds

Flutter Complete Reference 497

Chapter 17. Networking

receiveTimeout: 3000, // 3 seconds
headers: <String, String>{

"api-key": "add_one_if_needed",
},

)
);

Future<T> executeGet<T>(JsonParser<T> parser) async {...}

Future<T> executePost<T>(JsonParser<T> parser) async {...}
}

We’ve decided to make the client static because those settings will always be the same, so no
need to create a new Dio instance for each request. In the constructor we’re asking for two
parameters:

• String endpoint: the API endpoint at which the request has to be sent;

• Map<String, String> data: it could hold query parameters for a GET request or the
payload of a POST. It’s up to you and it could also be removed if not needed.

The only public methods are executeX<T>: they’re called in order to make the actual request.
Note how the parser is asked via method injection rather than being directly hard-coded inside
the class.

Future<T> executeGet<T>(JsonParser<T> parser) async {
final response = await _client.get<String>(endpoint);
return parser.parseFromJson(response.data);

}

Future<T> executePost<T>(JsonParser<T> parser) async {
final formData = FormData.fromMap(data);
final response = await _client.post<String>(

endpoint,
data: formData,

);

return parser.parseFromJson(response.data);
}

Thanks to generics the code is not tied to a specific model class; both methods can be called on

Flutter Complete Reference 498

Chapter 17. Networking

any type of object. The parser is passed from the outside so that the methods know nothing
about parsing details, which is not their business.

� If your app connects to different APIs you shouldn’t make the internal client
of the request class static. Instead, the client should come from the outside via
dependency injection:

class RequestREST {
final Dio client;
final String endpoint;
final Map<String, String> data;

const RequestREST({
required this.client,
required this.endpoint,
this.data = {},

});
}

In this way, there’s the need to pass a client with the given settings for each request
(endpoint, timeouts etc).

You could make requests in a bloc or in a FutureBuilder<T>, caching the future as you’ve learnt,
but they’re always performed in the same way. After having instantiated a RequestREST instance,
make a POST or a GET passing the proper parser for the data.

// Example of a request in the state of a StatefulWidget
late final Future<List<Todo>> todos;

@override
void initState() {

super.initState();

todos = RequestREST(endpoint: "/todos")
.executeGet<List<Todo>>(const TodoParser());

}

Thanks to this setup you can easily write requests: for the simplest cases, you just need to assign

Flutter Complete Reference 499

Chapter 17. Networking

an endpoint and pass an instance of the JSON parser. The UI is going to use a FutureBuilder<T>
with the classic setup:

late final Future<List<Todo>> todos;

@override
void initState() {

super.initState();
todos = RequestREST(endpoint: "/todos")

.executeGet<List<Todo>>(const TodoParser());
}

@override
Widget build(BuildContext context) {

return FutureBuilder<List<Todo>>(
future: todos,
builder: (context, snapshot) {

if (snapshot.hasData) {
// Remember that 'snapshot.data' returns a nullable
final data = snapshot.data ?? [];

return ListView.builder(
itemCount: data.length,
itemBuilder: (context, index) { ... },

);
}

if (snapshot.hasError) {
return const ErrorWidget();

}

return const Center(
child: CircularProgressIndicator(),

);
},

);
}

In case snapshot.data was null, we could also have shown the error widget. We have provided

Flutter Complete Reference 500

Chapter 17. Networking

an empty list as default value just for the sake of the example, but of course you have multiple
ways to handle the nullability.

final data = snapshot.data;

if (data != null) {
return ListView.builder(

itemCount: data.length,
itemBuilder: (context, index) { ... },

);
} else {

return const ErrorWidget();
}

Flutter Complete Reference 501

18 | Assets, images and multimedia

18.1 Assets and images

In Flutter you have the possibility to add a series of resources to your app, technically known as
assets, like images and videos. Assets are bundled with the binary file in order to be used at
runtime; there are no restrictions on the file formats:

• images of various formats such as JPG, PNG or GIF;

• videos;

• textual files such as those with txt, xml or json extension;

• databases such as SQLite files;

• any other kind of static data.

In order to bundle an asset within your app, and thus being able to use it in the code, it has to
be declared in the pubspec.yaml file. For example if you wrote this...

flutter:
assets:

- myassets/

... it would mean that Flutter will look for assets in a folder called myassets. Paths are relative
to the root of the project so writing myassets/ implies that a directory called myassets is located
at the same level as the pubspec.yaml file.

flutter:
assets:

- myassets/logo.png
- myassets/client_config.json

Flutter Complete Reference 502

Chapter 18. Assets, images and multimedia

It’s also possible selectively including certain files to the app; in this way only those assets you’ve
specified will be bundled while the others will simply be ignored. From your code, you can
reference assets using class AssetBundle which provides two important methods:

• loadString(String path): loads a text asset;

• load(String path): loads a binary asset which can be an image or any other type of file;

Again, the path is relative to the root of the project and it doesn’t have to start with a slash.
Let’s say your project were made up of the following files and directories:

lib/
myassets/

file.txt
pubspec.yaml

Flutter would access the asset using load("myassets/file.txt") and not load("file.txt".
You have to specify the path from the root to the file because directories are not implicitly
deducted at build time.

import 'package:flutter/services.dart' show rootBundle;

class ConfigLoader {
void loadConfig() async {

final cfg = await rootBundle.loadString("myassets/some_cfg.json");
doSomething(cfg);

}
}

Any Flutter app exposes a rootBundle object that allows you to easily load assets but it shouldn’t
be used inside a StatelessWidget or a StatefulWidget. In the example, ConfigLoader is simply
a model class made by us.

class MyWidget extends StatelessWidget {
const MyWidget();

Future<String> loadConfig(BuildContext context) async =>
await DefaultAssetBundle.of(context)

.loadString("myassets/some_cfg.json");
}

When you have the need to retrieve an asset from a widget, use DefaultAssetBundle instead of

Flutter Complete Reference 503

Chapter 18. Assets, images and multimedia

the rootBundle object. Both approaches return the same type of object so you’ll always end up
calling load() or loadString().

� We’ve only shown json files in the examples but load() is able to read any kind
of binary resource from the bundled assets. It returns a ByteData object which is
simply a fixed-length sequence of bytes representing the resource.

There is also the possibility to load different variants of an image in different ways according to
the context in which they are rendered. While this sentence might sound difficult to understand,
this example will clarify what it’s saying. The following PNG image is the same but it comes in
three different sizes:

If you created three different PNG files, one for each size, and you gave them the same name,
Flutter would automatically pick the best image according to the pixel ratio of your device. This
is quite easy to achieve: just place the smallest "default" image at the root of the asset directory
and then make a series of sub-directories with a specific name:

myassets/
logo.png
2.0x/logo.png
3.0x/logo.png

Here myassets/logo.png is the default image with a resolution of 1.0 (32x32); if your app is run
on a device with a 2.1 aspect ratio, Flutter will automatically pick the myassets/2.0x/logo.png
variant. It’s important having the names of the folder reflecting the actual sizes, so inside 2.0x
the image should double the size of the default one. In fact:

• logo.png: 32 x 32 (default)

Flutter Complete Reference 504

Chapter 18. Assets, images and multimedia

• 2.0x/logo.png 64 x 64 (which is 32 * 2)

• 3.0x/logo.png 96 x 96 (which is 32 * 3)

Different variants of the image must have the same name: notice that we’ve always used
logo.png. You also must call directories following the "Rx/ " pattern where R is the num-
ber indicating the ratio. You can also use floating point numbers such as 1.5x/ which is valid.

� We highly recommend using asset variants for your images because Flutter auto-
matically picks the one that suits better according to the device in which the app is
being used.

Keep in mind that the more assets you bundle in your app, the bigger the size of your final
executable will be. Try to reduce the sizes of your assets with techniques such as minification.
We recommend you to try following these guidelines as much as possible:

• Don’t create too much variants for the same image, make your decision according to the
devices that your app is going to run on.

• The size of a PNG image can be reduced up to 75% by optimizing it with dedicated software
or even online tools. Try to use them as much as possible if you use PNG images so that
the final size of your executable won’t be bloated too much.

• Instead of resizing and scaling an image at runtime, which might result in a low quality
picture, use assets variants and bundle different sizes of the same file.

On a side note, your app’s configuration can also be stored using shared preferences (more on
them in chapter 20), a secure storage or simply on a web service. Storing data in json assets and
loading them is not common.

18.2 Working with images

Once you’ve declared the images you’re going to use as assets via pubspec.yaml they’re ready to
be used in the code. Very intuitively you’re going to use the Image() widget to deal with all the
supported formats and it will automatically pick the best variant according to the pixel ratio of
the device.

@override
Widget build(BuildContext context) {

Flutter Complete Reference 505

Chapter 18. Assets, images and multimedia

return const Center(
child: Image(

image: AssetImage("myassets/something.png"),
)

);
}

Notice the usage of the const constructor which is as always very important. Alternatively, you
can use a named constructor which does the same thing with the exception it doesn’t provide a
constant constructor:

@override
Widget build(BuildContext context) {

return Center(
child: Image.asset("myassets/something.png"),

);
}

If you have to load an image stored as a sequence of bytes, use the Image.memory() variant of
the constructor which supports only compressed formats (such as png). Uncompressed formats
such as rawRgba will lead to undesired runtime exceptions.

B Resources > Chapter 18 > Network images

18.2.1 Loading from the network

In this example we are going to see how to load an image stored in a server rather than loading
it from the assets. We’re first going to see how to do it with a progress indicator, which is
useful to show the fetching progress, and then in another way, that just shows a Loading...
placeholder.

1. In this first example we’re creating a widget showing an image obtained from the network
and, while it’s being downloaded, a progress indicator appears. All of this is possible thanks
to class Image and its very convenient Image.network() constructor.

class ImageFromWeb extends StatelessWidget {
final String url;
const ImageFromWeb({ required this.url });

Flutter Complete Reference 506

Chapter 18. Assets, images and multimedia

@override
Widget build(BuildContext context) {

return Center(
child: Image.network(url,

loadingBuilder: (context, child, progress) {
if (progress == null)

return child;

return const Center(
child: CircularProgressIndicator(),

);
},

),
);

}
}

Given an url pointing to a valid image, while it’s being loaded an animated circular progress
indicator appears at the center of the screen. Instead of having a rotating circle spinning
around, you might decide to show the actual progression percentage:

var percentage = 0.0;
final total = progress.expectedTotalBytes;

if (total != null) {
final current = progress.cumulativeBytesLoaded;
percentage = current / total;

}

return Center(
child: CircularProgressIndicator(

value: percentage
)

);

Alternatively, instead of using a circle, there’s the possibility to use a classic linear progress
bar using a different class name but with the same setup:

return Center(
child: LinearProgressIndicator(

Flutter Complete Reference 507

Chapter 18. Assets, images and multimedia

value: percentage
),

);

2. In this example we’re doing the same thing as before but instead of showing a progress
indicator, we are just using a "placeholder" widget that doesn’t care about the progression
percentage. It just tells the user that the image is being fetched but it gives no info about
the progress.

class ImageFromWeb extends StatelessWidget {
final String url;
const ImageFromWeb({ required this.url });

@override
Widget build(BuildContext context) {

return Center(
child: Image.network(url,

frameBuilder: (context, child, _, loaded) {
if (loaded)

return child;

// 'Text' or anything else that doesn't
// depend on the prgoression value
return const Text("Loading...");

},
),

);
}

}

The text "Loading..." remains visible until the first frame of the image is available and then
it’s replaced with the picture. Basically this example is the same as before but instead of
a progress indicator there’s a simple text.

Use the approach that suits better the use-case you’re going to implement; for example if you’re
loading a big image, it might be good using the frameBuilder to show progress. If you have
something like a custom widget to display while waiting for the download, and it doesn’t depend
on the progress, use frameBuilder.

Flutter Complete Reference 508

Chapter 18. Assets, images and multimedia

� When using loadingBuilder the Image() widget is rebuilt very often until the
image is ready to be displayed. If you’re showing a loading progress indicator it’s
fine, but in any other case (for instance when you use text such as Loading ...) prefer
using frameBuilder.

The biggest problem is that there isn’t the possibility to directly handle any possible error while
fetching the image. A solution would be trying to instantiate a dio client and make a GET request
to check if the resource is available, or directly use it for the entire fetching process. However
this would require a lot of boilerplate code.

Image.network(url,
frameBuilder: (...) {},
errorBuilder: (...) {} // it doesn't exist

)

These problems are solved by a very popular package called cached_network_image 1 which
implements error handling, caching and image fetching. It’s very straightforward to use.

class CachedImgNetwork extends StatelessWidget {
final String imgUrl;
const CachedImgNetwork({ required this.imgUrl });

@override
Widget build(BuildContext context) {

return CachedNetworkImage(
imageUrl: imgUrl,
placeholder: (context, url)

=> const CircularProgressIndicator(),
errorWidget: (context, url, error)

=> const Icon(Icons.error),
);

}
}

When the download completes, the progress indicator goes away and the image appears on the
screen with, by default, an animation of type Curves.easeIn. Any issue, such as invalid format
or connection error, is handled by errorWidget which also provides the description of what’s
gone wrong. You can also set:

1https://pub.dev/packages/cached_network_image

Flutter Complete Reference 509

Chapter 18. Assets, images and multimedia

• the type of animation and the duration;

• HTTP headers if needed;

• the size of the images and the box fit.

By default images are cached and stored in the temporary directory of your device; if you try to
load the image multiple times it will be downloaded only once. You can change this behavior by
subclassing BaseCacheManager and creating your own manager.

CachedNetworkImage(
imageUrl: imgUrl,
progressIndicatorBuilder: (context, url, status) {

return CircularProgressIndicator(
value: status.progress,

);
},
errorWidget: (context, url, error)

=> const Icon(Icons.error),
);

This is a variant of the preceding example in which we’re still using a loading indicator but it’s
also showing the progression percentage of the download.

� We recommend the usage of CachedNetworkImage as it’s very simple to use and
it offers many functionalities. With Image.network(...) you have more work to do
to achieve the same results:

• both loadingBuilder and frameBuilder can be animated too but you have to
do everything by yourself;

• it doesn’t have an internal cache so you’d have to create it from scratch and
handle it separately;

• it has no error detection so you have to invent something.

18.3 Scalable vector graphics

Images in the .svg format are the ones that you should really consider while developing your app.
Potentially, they lead to bandwidth savings, simplified workflow and high image quality. The
main big advantages of vector images are the following:

Flutter Complete Reference 510

Chapter 18. Assets, images and multimedia

1. This file format does NOT depend on the resolution of the screen, the size or any other
hardware spec. SVG images are based on shapes, paths and fills so they have no resizing
or scaling problems; they’ll always be painted in high quality.

2. Generally a .svg file is smaller in size than a .png 2.

We’ve seen that PNG images require different variants for the same asset because the file format
is dependent on the screen. The pixels of the image are well-defined on a matrix of colors and,
when resizing, the result will drop in quality.

If you migrated to SVG images you’d just need to have a single file; it has no resizing or pixel
density problems at all and it can infinitely scale. This is also a practical advantage because
there’s no need to maintain n different variants but only one.

� SVG files can be optimized as well and there are many online tools for this such
as nano 3 that we recommend to use.

Vector images guarantee high quality images and (in most of the cases) a small file size but

2https://vecta.io/blog/comparing-svg-and-png-file-sizes
3https://vecta.io/nano

Flutter Complete Reference 511

Chapter 18. Assets, images and multimedia

they’re not always the best choice for your project. While the perfect file format for any use case
doesn’t exist, we can give you this general guideline:

• Use vector images when you need your images to scale well without losing quality at all.
This can be the case of a background image whose size can vary a lot because, for example,
you might have the need to show it on a mobile phone (6 inches) and a tablet (12 inches).

• Use PNG images in all those cases in which the image is very complex, full of details and it
also has to preserve the transparency. Always remember to optimize the file to reduce its
overall size. Also, if the image has a fixed size and it doesn’t need scaling, maybe a PNG
would work better than a SVG.

When the image is very detailed and complex, the SVG representation is hard to create and also
relatively expensive for the graphic engine to decode. A PNG would be better because it’s just
a map of colors which needs no paths calculations, it still has a high quality but it doesn’t resize
well. There are a lot of compromises for both formats, so wisely test your apps before deciding
which one suits better.

18.3.1 Working with SVG files

If you want to work with SVG images you should use the famous flutter_svg 4 package made by
Dan Field. In this simple example we’re going to load an vector image from the assets (assuming
it contains no errors inside).

� Add the package as dependency in the pubspec.yaml file following the instruc-
tions at https://pub.dev. Before putting the .svg in your assets, be sure to optimize
the file with a proper tool such as nano.

The SvgPicture class is able to load vector assets from various sources, similarly to what we’ve
seen earlier with the Image() class.

class SvgDemo extends StatelessWidget {
const SvgDemo();

@override
Widget build(BuildContext context) {

return Center(

4https://pub.dev/packages/flutter_svg

Flutter Complete Reference 512

https://pub.dev

Chapter 18. Assets, images and multimedia

child: SvgPicture.asset(
"myassets/question.svg",
width: 120,
placeholderBuilder: (_) =>

const CircularProgressIndicator(),
)

);
}

}

If the vector is particularly complex and it requires some time to load, there’s the possibility to
show a loading indicator. As you can see, this class is very easy to use and it exposes many useful
parameters such as:

• width and height to specify the dimensions of the image;

• fit to determines how to draw the picture in the box that contains it;

• alignment that defaults to Alignment.center

18.3.2 Loading from the network

Loading an image from the network with flutter_svg follows the same pattern you already saw
in the previous section. There’s the possibility to show a progress indicator while the file is being
downloaded and processed, but the class doesn’t provide a way to handle connection errors.

SvgPicture.asset(
"https://website.com/images/theimg.svg"
height: 100,
placeholderBuilder: (_) =>

const CircularProgressIndicator(),
)

We’re now going to show a more complete approach that also takes care of error handling and
ensures that, in case of problems, the user is notified. We’re doing it with dio but you could have
used any other HTTP package that easily allows you to handle connection failures.

1. The first step involves the creation of a model class about networking; once the image
has been downloaded, it will be passed to the SvgPicture widget which will take care of
painting it to the UI. We’ve made the client variables static so that they’re created only
once (the same instance can be reused).

Flutter Complete Reference 513

Chapter 18. Assets, images and multimedia

class Downloader {
final String url;
const Downloader({ required this.url });

static final _opt = BaseOptions(
baseUrl: "https://fluttercompletereference.com/",
connectTimeout: 3000,
responseType: ResponseType.bytes

);

static final _client = Dio(_opt);

Future<List<int>> start() async {
final request = await _client.get<List<int>>(url);
return request.data;

}
}

We’re not downloading the vector as a string but as raw bytes; they will be passed to a
SvgPicture object which will handle the decoding. For this reason, there’s the need to set
the response type to ResponseType.bytes which returns a list of integers. Note:

class Downloader {
final String url;
const Downloader({ required this.url });

Future<List<int>> start(Dio client) async {
final request = await client.get<List<int>>(url);
return request.data;

}
}

If each request needs a particular setup, don’t make the client and its options static but
instead ask them as external dependency (method injection).

2. Using a FutureBuilder<T> we’re able to place a loading indicator while dio performs the
request but we can also show an error message or whatever else in case of problems. You
can find the code of the error widgets in the Resources section of our website.

class SvgFromWeb extends StatefulWidget {

Flutter Complete Reference 514

Chapter 18. Assets, images and multimedia

const SvgFromWeb();

@override
_SvgFromWebState createState() => _SvgFromWebState();

}

class _SvgFromWebState extends State<SvgFromWeb> {
late final Downloader downloader;
late final Future<List<int>> svgImage;

@override
void initState() {

super.initState();
downloader = const Downloader(url: "/demoimages/firefox.svg");
svgImage = downloader.start();

}

// build method...
}

As always, we need to create a stateful widget because we don’t want the FutureBuilder<T>
to execute multiple unneded requests. We had already covered this topic in chapter 17 with
the same situation; this pattern always applies when working with Future<T>s inside
widgets.

FutureBuilder<List<int>>(
future: svgImage,
builder: (context, snapshot) {

if (snapshot.hasError) {
return const ErrorWidget();

}

if (snapshot.hasData) {
if (snapshot.data != null) {

return SvgPicture.memory(
Uint8List.fromList(snapshot.data!),
placeholderBuilder: (_) => const DecoderLoader(),

);
} else {

Flutter Complete Reference 515

Chapter 18. Assets, images and multimedia

return const ErrorWidget();
}

}

return const NetworkLoader();
},

);

By default, a loading indicator appears while the image is being received from the network.
If all goes well, we want SvgPicture to show another loader in case the image takes some
time to be decoded; the user will always be aware that there’s some work going on.

The raw bytes downloaded by dio are passed to the SvgPicture.memory() constructor
which decodes an SVG from a series of bytes. memory() loads an in-memory representation
of a vector stored as a List<int> and that’s why we set

responseType: ResponseType.bytes

in our client’s options. Those bytes are stored in memory and then the SvgPicture decoder
will read them and paint the image to the screen.

In this example we’ve used dio to deal with the networking part and all of its details, SvgPicture
to paint the image to the screen and FutureBuilder<T> to take care of loading spinners and error
messages, if any. To sum up, this is the execution flow:

1. get the SVG as raw bytes from the network using dio;

2. thanks to FutureBuilder<List<int>> show a loading indicator;

3. use the memory() constructor to decode the in memory representation of the vector and
paint it.

Flutter Complete Reference 516

Chapter 18. Assets, images and multimedia

18.4 Audio and video with Flutter

B Resources > Chapter 18 > Playing a video

18.4.1 Playing a video

In this example we’re going to see how to load a video from the network; we will interact with
it changing the volume and using the play/stop button. The Flutter team has created the
video_player 5 package which provides an easy way to handle video files from assets, network or
file system. The app is going to look like this:

The buttons interact with the video by playing or pausing it and the slider below changes the
volume. While the UI seems very poor, there are many aspects to consider when writing the

5https://pub.dev/packages/video_player

Flutter Complete Reference 517

Chapter 18. Assets, images and multimedia

actual code.

1. First of all there’s the need to add video_player as external dependency in the pubspec file.
Be sure to open pub.dev and check which is the latest version.

2. The slider has to change the volume of the video and update its current position so the
state of the widget is going to change. We’re going to handle this with provider using the
same approach you’ve seen many times up to now.

class VolumeManager with ChangeNotifier {
var _volume = 50.0;
double get volume => _volume;

void setVolume({
required double volumeValue,
required VideoPlayerController controller

}) {
_volume = volumeValue;
controller.setVolume(_volume);

notifyListeners();
}

}

The VideoPlayerController class comes from video_player package and it’s used to
change the volume or play/pause/stop the video; it’s an external dependency. What we
really want to do here is notify the Slider that the volume has changed and refresh it.

3. The widget containing the video, the buttons and the slider have to be stateful because
there are initialization and finalization tasks to execute. They are needed to setup the video
handler and release it when it’s not needed anymore in order to not waste resources.

class _VideoWidgetState extends State<VideoWidget> {
late final VideoPlayerController controller;
late final Future<void> initVideo;

@override
void initState() {

super.initState();

Flutter Complete Reference 518

Chapter 18. Assets, images and multimedia

// In this example we're loading it from the assets
// but you could also get it from the network!
controller = VideoPlayerController.asset(

"assets/butterfly.mp4"
);

controller.setLooping(true);
initVideo = controller.initialize();

}

@override
void dispose() {

controller.dispose();
super.dispose();

}

// build...
}

We’re are going to use a FutureBuilder<void> to await the loading of the video so in
initState we need to assign the returned value of initialize() to an instance variable.
Always remember to dispose the controller inside dispose() to avoid potential memory
leaks. Note that class VideoControllerPlayer has many constructors:

• VideoControllerPlayer.asset(): loads a video from the assets;

• VideoControllerPlayer.network(): loads a video from the network;

• VideoControllerPlayer.file(): loads a video from a file located somewhere in the
filesystem of your device.

Their initialize() method returns a Future<void> so the interface doesn’t change; just
use the named constructor you need and all the other code will stay the same.

4. Since the controller doesn’t return any data, in FutureBuilder<void> we don’t have to look
for snapshot.hasData but instead snapshot.connectionState, which tells us something
about the state of the future.

@override
Widget build(BuildContext context) {

return FutureBuilder<void>(

Flutter Complete Reference 519

Chapter 18. Assets, images and multimedia

future: initVideo,
builder: (context, snapshot) {

if (snapshot.connectionState == ConnectionState.done) {
return PlayWidget(controller);

}

return const Center(
child: CircularProgressIndicator(),

);
},

);
}

When the status is ConnectionState.done, the video has been loaded with success and it’s
ready to be played. The buttons and other UI widgets that interact with the user have been
moved to a another widget (PlayWidget) to separate the concerns and keep the method
short.

5. Passing a reference to the controller via constructor injection is very important because we
don’t want a strong dependency with the object responsible of playing and stopping the
video. We’ve created two private methods that will be called by the buttons to start or
pause the video.

class PlayWidget extends StatelessWidget {
final VideoPlayerController controller;
const PlayWidget(this.controller);

// build method...

void _play() {
if (!controller.value.isPlaying) {

controller.play();
}

}

void _pause() {
if (controller.value.isPlaying) {

controller.pause();
}

Flutter Complete Reference 520

Chapter 18. Assets, images and multimedia

}
}

This is the body of the build method with the most important parts. Of course the entire
source code is available online in the Resources area of our official website.

Column(
mainAxisAlignment: MainAxisAlignment.spaceAround,
children: <Widget>[

// The video
AspectRatio(

aspectRatio: controller.value.aspectRatio,
child: VideoPlayer(controller),

),

// "Play!" and "Pause" buttons
Row(...),

// The slider
Consumer<VolumeManager>(

builder: (context, manager, _) =>
Slider(

value: manager.volume,
onChanged: (value) {

manager.setVolume(
volumeValue: value,
controller: controller,

);
},

),
),

],
);

The AspectRatio widget is very important because it ensures that the size of the widget
is consistent with the aspect ratio of the video. If you’re playing a video that has a 4:3
width:height aspect ratio, this widget automatically sets the size.

AspectRatio(
aspectRatio: 4/3,

Flutter Complete Reference 521

Chapter 18. Assets, images and multimedia

child: VideoPlayer(controller),
),

You could have set the ratio value by hand, which is just a double, but if you assign it with
the aspectRatio property of the controller you get the proper value of any video automat-
ically. In general, this widget is very useful when you don’t care about the dimensions of
the child but you want to preserve its width:height ratio.

onChanged: (value) {
manager.setVolume(

volumeValue: value,
controller: controller,

);
},

The Slider has an onChanged listener which gives as parameter the current position of
the pointer (in our case, the current value of the volume). We use it to update the volume
thanks to the object provided by a Consumer<VolumeManager>() which also takes care of
rebuilding the slider.

B Resources > Chapter 18 > Listening to music

18.4.2 Listening to music

In this example we’re showing how you can listen to music, whether it be a single audio or a
playlist of any dimension, using the assets_audio_player 6 plugin. Once the music has been
bundled as asset, it will be possible to play it.

6https://pub.dev/packages/assets_audio_player

Flutter Complete Reference 522

Chapter 18. Assets, images and multimedia

The button on the left opens and starts the audio while the one on the right plays/pauses
the track. In the middle a Text widget is showing the elapsed time. We’re going to work
class AssetsAudioPlayer which is very easy to use:

final player = AssetsAudioPlayer();
player.open(Audio("assets/music/song1.mp3"));

// And then interact with it!
player.pause();
player.playOrPause();
player.stop();

You just need to call open("path/to/file.mp3") to load the file and then with the player
object you interact with the audio track. Of course, be sure to have your audio files declared as
assets in the pubspec file. You can also load a playlist and the player will play, in sequence, every
track of the list:

final player = AssetsAudioPlayer();
player.openPlaylist(

Playlist(

Flutter Complete Reference 523

Chapter 18. Assets, images and multimedia

assetAudioPaths: [
"assets/music/track1.mp3",
"assets/music/track2.mp3",
"assets/music/track3.mp3"

]
)

);

player.playlistNext();
player.playlistPrev();
player.stop();

Skip to a particular track using player.playlistPlayAtIndex(n). In our example we’re going
for a single audio file but you can easily change it to load a playlist and maybe also load a random
image at the top.

1. As usual, start by importing the latest version of the package in the pubspec.yaml file.
Create a directory called music/ and add in there the audio tracks you’re going to play.

dependencies:
assets_audio_player: ^2.0.9+2

flutter:
assets:

- music/

2. This package works with streams so we’re not going to use the classic FutureBuilder<T>
setup. This is the initialization of the audio player and the SVG image at the top (see the
previous chapter for more details about vector images).

class MusicWidget extends StatelessWidget {
static final _assetsAudioPlayer = AssetsAudioPlayer();
const MusicWidget();

@override
Widget build(BuildContext context) {

return Column(
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[

// It would have been better if we used 'LayoutBuilder'

Flutter Complete Reference 524

Chapter 18. Assets, images and multimedia

// to make the image responsive, but for the sake of
// the example hard-coding 100 is fine.
SvgPicture.asset(

"assets/music-note.svg",
height: 100,
placeholderBuilder: (_) =>

const CircularProgressIndicator(),
),

// Buttons and time elapsed...
],

);
}

}

It’s possible making the audio player static when the music, or the playlist, is always
going to be the same. There is no need to create the object many times: thanks to static,
we can define a const constructor and "cache" the instance.

3. Now we’re going to see how the buttons and the elapsed time indicator have been imple-
mented. To better discuss the pieces of code, we’ve divided them in three parts.

children: <Widget>[
// Start listening
IconButton(

icon: const Icon(Icons.open_in_browser),
onPressed: () {

_assetsAudioPlayer.open(Audio("assets/music.mp3"));
},

),

// Time elapsed
StreamBuilder<Duration>(...),

// Play or pause
StreamBuilder<bool>(...),

]

Very simply, this button tells the player to look for "music.mp3" and play it.

Flutter Complete Reference 525

Chapter 18. Assets, images and multimedia

4. The Text widget is frequently updated by a stream containing information about how much
time has passed since the audio has started. Note that asyncSnapshot.data is nullable so
we need to do a null-check or any other kind of validation.

children: <Widget>[
// Start listening
IconButton(...),

// Time elapsed
StreamBuilder<Duration>(

stream: _assetsAudioPlayer.currentPosition,
builder: (context, asyncSnapshot) {

if (asyncSnapshot.hasData) {
final time = asyncSnapshot.data;

if (time != null) {
return Text("${time.inMinutes.remainder(60)}m "

"${time.inSeconds.remainder(60)}s");
} else {

return const Text("No time available.");
}

}

return const Text("0m 0s");
}

),

// Play or pause
StreamBuilder<bool>(...),

]

Thanks to _assetsAudioPlayer.currentPosition you can subscribe and listen for up-
dates on the elapsed time, since the beginning, with the usual Duration object. We have
used this condition...

if (asyncSnapshot.hasData) { ... }

... to know whether there’s an audio playing or not. If nothing is going on (no music is
playing), we just return the "0m 0s" placeholder.

Flutter Complete Reference 526

Chapter 18. Assets, images and multimedia

5. The last part is about listening to a stream which tells us whether there is an audio playing
or not. This information can be useful to swap the play/pause button according to the
value of the bool flag.

children: <Widget>[
// Start listening
IconButton(...),

// Time elapsed
StreamBuilder<Duration>(...),

// Play or pause
StreamBuilder<bool>(

stream: _assetsAudioPlayer.isPlaying,
builder: (context, AsyncSnapshot<bool> isPlaying) {

if (isPlaying.data ?? false) {
return IconButton(

icon: const Icon(Icons.pause),
onPressed: _assetsAudioPlayer.pause,

);
} else {

return IconButton(
icon: const Icon(Icons.play_arrow),
onPressed: _assetsAudioPlayer.play,

);
}

},
)

]

If isPlaying is true it means that the audio is currently playing so there’s the need to show
a button that can pause it. On the other hand, if it’s false then the music is not playing
and thus the play button must appear. We have used a tear-off rather than a lambda just
to reduce the amount of code:

// Tear-off (which is a sort of "method reference")
onPressed: _assetsAudioPlayer.play,

// Lambda

Flutter Complete Reference 527

Chapter 18. Assets, images and multimedia

onPressed: () => _assetsAudioPlayer.play(),

Both versions are equivalent but tear-offs should be preferred.

Flutter Complete Reference 528

19 | Forms and gestures

B Resources > Chapter 19 > Login form

19.1 Forms and validation

A form consists of a series of fields (to be filled by the user with some information) that can
be processed. A typical example is a login form, in which the app generally could ask you for
email and password. Once a confirmation button in pressed, an HTTP request or another type
of authentication process happens.

In this section we are going to create the login form you see in the above picture and, in the
following subsections, we will add more functionalities.

Flutter Complete Reference 529

Chapter 19. Forms and gestures

1. The two inputs and the button are positioned at the center of the screen but they take only
2/3 of the width of the containing widget. If the user rotates the screen for example, we still
want to have the form at the center and with the same ratio in order to keep consistency.

LayoutBuilder(
builder: (context, dimensions) {

// (a)
final width = dimensions.maxWidth / 1.5;
final height = dimensions.maxHeight / 3;

return Center(
// (b)
child: SizedBox(

width: width,
height: height,
child: LoginForm(),

),
);

},
),

This is the perfect situation in which the LayoutBuilder widget has to be used because it
gives the possibility to work with the actual available space. In particular:

(a) writing maxWidth / 1.5 we can get the value of the width so that it takes 2/3 of the
horizontal space. This is very flexible because if you rotated the screen, the widget
would automatically rebuild and the ratio would remain identical;

(b) we could have used a Container but since no styling or particular effects are needed,
a class SizedBox() fits better. Its dimensions are defined by responsive values cal-
culated by LayoutBuilder.

This is not only useful when the screen rotates but also if your app runs on a big tablet.
You could also decide to implement a more complex logic for the sizes of the box but in
this case we recommend you to encapsulate the calculations in a separated function:

LayoutBuilder(
builder: (context, dimensions) {

final width = _getWidth(); // calculated width
final height = _getHeight(); // calculated height

}

Flutter Complete Reference 530

Chapter 19. Forms and gestures

),

2. The Form widget is a container for multiple form fields such as TextFormField() which takes
the user’s input. In order to provide fields validation, we need a GlobalKey<FormState>
object that uniquely identifies the form in the widget tree.

class LoginForm extends StatelessWidget {
final _key = GlobalKey<FormState>();

@override
Widget build(BuildContext context) {

return Form(
key: _key,
child: Column(

mainAxisAlignment: MainAxisAlignment.spaceAround,
children: <Widget>[...],

),
);

}

}

3. Inside the Column we’re going to put a series of TextFormFields the user has to fill. Thanks
to the decoration parameter we can customize the look of the text box adding a leading
icon and a hint text. There’s the possibility to customize the widget even more; visit the
official documentation for class InputDecoration 1 to get a better overview of the various
styling possibilities.

// Email
TextFormField(

decoration: const InputDecoration(
icon: Icon(Icons.mail),
hintText: "Email"

),
validator: _validateEmail,

),

// Password

1https://api.flutter.dev/flutter/material/InputDecoration-class.html

Flutter Complete Reference 531

Chapter 19. Forms and gestures

TextFormField(
decoration: const InputDecoration(

icon: Icon(Icons.vpn_key),
hintText: "Password"

),
obscureText: true,
validator: _validatePassword,

),

// Confirm Button
RaisedButton(...)

To validate the input, we pass a callback to validate which returns an error message if the
string doesn’t satisfy certain conditions. If there are no errors, the function must return
null.

String? _validateEmail(String value) {
if (value.isEmpty) {

return "Field cannot be empty";
} else {

return null;
}

}

String? _validatePassword(String value) {
if (value.length < 8) {

return "At least 8 chars!";
} else {

return null;
}

}

When the "Login" button is tapped but at least one of the two form fields doesn’t return
null, it means that there’s a problem and a red error text appears below. If multiple fields
have a validator, they all must return null in order to proceed with the submission of the
data otherwise the errors will appear.

Flutter Complete Reference 532

Chapter 19. Forms and gestures

4. The last step is the creation of the submission button which is going to check if no validator
returns null (meaning that all inputs are ok). If this is the case, we can start the login
logic which might be, for example, a dio HTTP request.

children: <Widget>[
// Email
TextFormField(...),

// Password
TextFormField(...),

// Login
RaisedButton(

child: const Text("Login"),
onPressed: _login,

),
]

The login logic should be placed in a dedicated class in order to keep the UI logic separated
from the business logic as much as possible.

void _login() {
if (_key.currentState?.validate() ?? false) {

final login = LoginClass();
// ...

} else {
// Show an error or something else to alert

Flutter Complete Reference 533

Chapter 19. Forms and gestures

// that the input fields contain some errors
}

}

You see now why we had to use a GlobalKey<FormState> at the beginning of the example.
It’s used to identify the form and check if every field inside is validated or not thanks to
bool validate().

19.1.1 Keyboard and overflows

In our example the Form is at the center of the screen and there’s enough vertical space so it’s
all good. However, when you press on a form field, your device’s keyboard comes out reducing
the available height and an overflow error might occur if there isn’t enough space anymore in the
vertical axis.

The problem is that the keyboard reduces the available height and so there won’t be enough space
anymore to entirely show the form. To fix this problem there are two possibilities, depending on
how you want the form to behave.

1. A class SingleChildScrollView is useful when a widget is normally visible but you want
to add scrolling behavior in case there weren’t enough space. Basically it ensures that, in
case of overflows, scrolling is activated. This can be the case where you have an entirely
visible form but when the screen rotates or the keyboard appears, some parts might get
"cut off".

Flutter Complete Reference 534

Chapter 19. Forms and gestures

As you can see from the image, the login box moves up and still remains at the center of
the remaining space. If the screen were smaller and the box didn’t fit the entire height, you
would be able to scroll it up and down very conveniently. No overflow errors at all.

LayoutBuilder(
builder: (context, dimensions) {

final width = dimensions.maxWidth / 1.5;
final height = dimensions.maxHeight / 3;

return Center(
child: SingleChildScrollView(

child: ConstrainedBox(
constraints: BoxConstraints(

minHeight: height,
maxWidth: width,

),

Flutter Complete Reference 535

Chapter 19. Forms and gestures

child: LoginForm(),
),

),
);

},
),

The direct child should really be a ConstrainedBox as it imposes its children to have the
sizes given by the constraints parameter. Since they are taken from a LayoutBuilder,
we’re sure about the responsiveness of the layout.

2. The other solution doesn’t involve any scrolling; it simply puts the keyboard "in front of
your app" but it covers the widgets behind it. This is not optimal in the case of a form
because the user cannot see what he’s typing and he’d have to close the keyboard.

You cannot scroll the login box up or down because there is no scroll bar. If this is what you

Flutter Complete Reference 536

Chapter 19. Forms and gestures

need, go to the Scaffold containing the form and add set resizeToAvoidBottomInset:

Scaffold(
resizeToAvoidBottomInset: false, // add this line
appBar: AppBar(...),
body: MyBody(...),

)

Forms aside, the solutions we’ve exposed are valid for any widget with this kind of problem.
When you aren’t sure that the height will always be enough to show a widget entirely, consider
using a SingleChildScrollView to avoid unexpected overflow errors.

19.1.2 Getting the text from a text field

So far we’ve only seen how to make sure the user has filled the inputs in a proper way (data
validation). The second step is learning how to get the text from the form fields (data acqui-
sition).

1. In a StatefulWidget, create an instance of a TextEditingController and assign it to a
TextFormField. We need to convert the previous LoginForm widget into a stateful one
because the controller has to be disposed.

class LoginForm extends StatefulWidget {
const LoginForm();

@override
_LoginFormState createState() => _LoginFormState();

}

class _LoginFormState extends State<LoginForm> {
final emailController = TextEditingController();
final passwController = TextEditingController();

@override
void dispose() {

emailController.dispose();
passwController.dispose();

super.dispose();
}

Flutter Complete Reference 537

Chapter 19. Forms and gestures

@override
Widget build(BuildContext context) { ... }

}

You have to create one controller for each form field you want to get the text.

2. Assign the controller to a form field using the controller property.

children: <Widget>[
TextFormField(

controller: emailController,
...

),

TextFormField(
controller: passwController,
...

),

RaisedButton(
child: const Text("Login"),
onPressed: _login,

),
]

3. Get the current text of the field using the text property of the controller.

void _login() {
if (_key.currentState?.validate() ?? false) {

final email = emailController.text;
final passw = passwController.text;

final login = LoginClass(
user: email,
password: passw,

);
// ...

} else {
// ...

Flutter Complete Reference 538

Chapter 19. Forms and gestures

}
}

Other than text, another very interesting property is selection 2 which lets you handle the
text the user has selected. For example, if the user selected LUTT in the word FLUTTER,
this code...

debugPrint("Selection: ${myController.selection.start} - "
"${myController.selection.end}");

... would print "Selection: 1 - 5" because the selected chars start from position 1 of the string
and end at 5 (not inclusive). If you want to get the selected text, work with the offsets to extract
a substring.

final start = myController.selection.start;
final end = myController.selection.end;

final selectedText = myController.text.substring(start, end);
debugPrint(selectedText); // prints "LUTT"

19.1.3 Constraining the input

By default the user is able to type as many characters as he wants because there are no restrictions
on the length. If you want to limit the length of the input, just set the maxLength property with
the max char count.

TextFormField(
maxLength: 20,
...

),

With this simple addition, the user is able to type up to 20 characters. A counter automatically
appears on the bottom-right corner of the field to show how much space left there is in the
field.

2https://api.flutter.dev/flutter/widgets/TextEditingController/selection.html

Flutter Complete Reference 539

Chapter 19. Forms and gestures

The counter can be disabled setting counterText: "" in the InputDecorator assigned to the
TextFormField. A custom text combined with a counter requires a bit more of setup but of
course it’s still doable:

1. Create a variable to hold the maximum allowed length and preferably make it static const
if you know that it doesn’t have to change.

class _LoginFormState extends State<LoginForm> {
static const maxLength = 10;

final emailController = TextEditingController();
}

2. We’re going to use the text property of the controller because it immediately updates
whenever a new character is added or removed in the form field. Thanks to this, we can
still show the remaining space but with a different label:

TextFormField(
controller: emailController,
maxLength: maxLength,
decoration: InputDecoration(

counterText: "Chars left: "
"${maxLength - emailController.text.length}",

),
),

If your input field contains sensible data such as a password, you can constrain it to show dots
instead of the actual text with obscureText: true. Lastly, we show you a possible way to im-
plement a dropdown menu in which the user doesn’t have the freedom to write but he’s forced
to pick an option from a set of predefined items.

Flutter Complete Reference 540

Chapter 19. Forms and gestures

B Resources > Chapter 19 > Dropdown menu

1. The dropdown has to rebuild whenever a new option is picked and we also need to store
somewhere the selected item. All of this can easily be achieved with the classic provider +
ChangeNotifier approach.

class DropdownText with ChangeNotifier {
static final _list = ["Pasta", "Pizza", "Maccheroni"]

.map<DropdownMenuItem<String>>((item) {
return DropdownMenuItem<String>(

value: item,
child: Text(item),

);
})
.toList();

final menuItems = UnmodifiableListView(_list);

var _text = "";
String get text => _text;

void setText(String value) {
_text = value;
notifyListeners();

}
}

Instead of manually writing each single DropdownMenuItem<T> by hand, you can work on a
private array (_list) which is easier maintain. The map() method will automatically build
a list of items for the dropdown widget.

2. Create a ChangeNotifierProvider right above the widget that is going to have the drop-
down picker. Other than rebuilding the dropdown, it will also expose the selected item via
text property.

ChangeNotifierProvider<DropdownText>(
create: (_) => DropdownText(),
child: Center(

child: const SizedBox(

Flutter Complete Reference 541

Chapter 19. Forms and gestures

width: 200,
child: DropDown(),

),
),

),

In a production app, instead of hard-coding the width, you should calculate it using a
LayoutBuilder to get a responsive widget.

3. The DropdownButtonFormField<T> widget must contain a list of DropdownMenuItem<T>
childred, where T is the data type the widget represents.

@override
Widget build(BuildContext context) {

return Consumer<DropdownText>(
builder: (context, dropdown, _) {

return DropdownButtonFormField<String>(
items: dropdown.menuItems,
value: dropdown.text,
onChanged: (value) =>

dropdown.setText(value),
);

},
);

}

Since we have a list of ingredients, we want them to be strings. Thanks to provider we’re able
to attach the list of items via items and also set the currently visible element via value.
The dropdown gets automatically updated when the selected item is changed thanks to
setText(value).

Whenever we want to obtain the currently selected value of the dropdown picker we need to
use provider and ask for dropdown.text which returns a stirng. Please keep in mind that an
exception will be thrown if:

• items is null or has no elements;

• there are duplicates in items;

• value doesn’t appear somewhere in items;

Flutter Complete Reference 542

Chapter 19. Forms and gestures

19.2 Gestures

A gesture is a semantic action (such as "tap", "slide" or "drag") recognized by a pointer event
on the UI. In practice, with the term gesture you indicate all those actions that can be done with
one or more fingers such as tapping or sliding in a certain direction. Flutter handles gestures
using the class GestureDetector which has many listeners 3, such as:

• onTap,

• onDoubleTap,

• onLongPress,

• onVerticalDragStart,

• onVerticalDragEnd

• and much more...

A GestureDetector is very useful because it can make any widget "clickable". For example,
an image has no onPressed event by default (or similar) but you can assign it one or more
gestures:

GestureDetector(
onTap: () => debugPrint("Click!"),
onDoubleTap: () => debugPrint("Double click!"),
child: Image.asset("..."),

)

In this way a lot of widgets gain the possibility to interact with the user in many different ways.
Nevertheless, keep in mind that Flutter also has dedicated widgets for single tap events that
should be preferred. For instance:

• DO use the class IconButton if you want to make an icon clickable because there already
is a tap handler (the onPressed callback).

// OK
IconButton(

icon: const Icon(Icons.add),
onPressed: () {}

)

3https://flutter.dev/docs/development/ui/advanced/gestures#gestures

Flutter Complete Reference 543

Chapter 19. Forms and gestures

• DO NOT use a GestureDetector if you want to make an icon clickable. There already is
a dedicated widget made by the Flutter team.

// It works but it's not a good idea; prefer using an 'IconButton'
GestureDetector(

onTap: () {},
child: const Icon(Icons.add),

)

When you want to implement a gesture for a widget, whether it be a tap, a swipe or anything else,
first try to see if there’s something already crafted in the material or cupertino library. If it’s not
the case then you can start working on your own gesture management using a GestureDetector.

B Resources > Chapter 19 > Swipe to dismiss

19.2.1 Swipe to dismiss

When there’s an item of a list that needs to be deleted, rather than clicking on a button the
user can swipe to the left/right to remove it. This is a common UI pattern known as "swipe to
dismiss" and we’re going to implement it in Flutter:

Given a list of widgets, when you swipe an item to the right it gets deleted. Later on we will also
implement a deletion confirmation dialog.

Flutter Complete Reference 544

Chapter 19. Forms and gestures

1. Since the list is potentially going to remove elements, we need to manage the state of the
widget. We’re using the usual model class with ChangeNotifier so that a provider can
listen for changes.

class SourceList with ChangeNotifier {
final _myList = List<String>.generate(10, (i) {

return "Number $i";
});

List<String> get values => UnmodifiableListView(_myList);

void removeItem(int index) {
_myList.removeAt(index);
notifyListeners();

}
}

Rather than returning the list itself, we return an unmodifiable view of the list to ensure
that the only way to delete items is via removeItem(int). This is compulsory because the
method contains a call to notifyListeners() while removeAt() alone doesn’t.

2. Now we need to setup the provider making sure it’s placed exactly one level above the
widget with the list. In this way the scope doesn’t get polluted and all those widgets that
don’t care about the list aren’t involved.

ChangeNotifierProvider(
create: (_) => SourceList(),
child: const SwipeItems(),

),

As always, we need a Consumer<T> to retrieve the value held by provider which is, in this
case, a list of strings.

class SwipeItems extends StatelessWidget {
const SwipeItems();

@override
Widget build(BuildContext context) {

return Consumer<SourceList>(
builder: (context, list, _) {

return ListView.builder(...)

Flutter Complete Reference 545

Chapter 19. Forms and gestures

},
);

}
}

3. For long lists, the builder() 4 constructor of ListView is very convenient as it automat-
ically generates the children. The "swipe to dismiss" pattern is implemented with the
Dismissible widget.

return ListView.builder(
itemCount: list.values.length,
itemBuilder: (context, index) {

var item = list.values[index];

return Dismissible(
// a.
key: Key(item),
// b.
background: Container(color: Colors.redAccent),
// c.
onDismissed: (direction) => list.removeItem(index),
direction: DismissDirection.startToEnd,
child: ListTile(

leading: const Icon(Icons.trending_flat),
title: Text(item),

),
);

},
);

By default, each item of the list can be swiped to the left or to the right; thanks to
direction we’ve forces that the only allowed action to delete is "swipe to the right". Of
course you can change it to whatever you want because DismissDirection provides many
directions.

(a) The Key is fundamental because it uniquely identifies an item of the list and it’s
internally used by Dismissible. Be sure to create the key with an unique value for
each item, otherwise you’ll incur an error.

4https://api.flutter.dev/flutter/widgets/ListView/ListView.builder.html

Flutter Complete Reference 546

Chapter 19. Forms and gestures

(b) This is the background widget that will appear while the item is being moved to the
right. Of course it doesn’t always have to be a Container: any widget is fine.

(c) This callback is triggered when the swiping action is finished, which is when the user’s
finger leaves the screen and the item has completely slided to the right. The element
will be removed and the notifier will rebuild the list immediately.

As you can see, the Dismissible widget makes the implementation of the "swipe to dismiss"
pattern very easy. It also offers the possibility to confirm a pending deletion by setting the
confirmDismiss callback.

One of the best confirmation widgets is AlertDialog, from the material library, and we’re going
to use it to obtain the above result. Basically it informs the user about situations where an action
from his part is needed.

1. Let’s start by defining a callback to be attached to the confirmDismiss parameter. When
set, it waits for a Future<T> to return either true or false to decide if the swiped item
has to be deleted or not.

Dismissible(
confirmDismiss: (direction) => _getConfirm(context, direction),
...

)

2. Create the Future<bool> _getConfirm(...) method and use showDialog() inside it to
actually show a dialog on the UI.

Future<bool> _getConfirm(BuildContext context,
DismissDirection direction) {

return showDialog<bool>(

Flutter Complete Reference 547

Chapter 19. Forms and gestures

context: context,
builder: (BuildContext context) {

return AlertDialog(
title: const Text("Confirm"),
content: const Text("Delete this item?"),
actions: <Widget>[

RaisedButton(
child: const Text("Nope"),
onPressed: () =>

Navigator.of(context)?.pop(false),
),
FlatButton(

child: const Text("Yes"),
onPressed: () =>

Navigator.of(context)?.pop(true),
),

]
);

},
);

}

The showDialog<bool>() method returns a Future<bool> whose computed value is the
argument of the pop() function. In fact, for example when you press on "Yes" the true
value of the pop(true) call is "captured" by the dialog and returned.

B Resources > Chapter 19 > Drag and drop

19.2.2 Dragging items

In this section we’re going to see how easy it is to implement the "drag and drop" functionality
in Flutter by creating the skeleton of a simple game. Basically a random number appears at
the center of the screen and you have to move it to the left or to the right whether it’s even or
odd.

Flutter Complete Reference 548

Chapter 19. Forms and gestures

If you move a number in the correct box, you get points. You could try to use our example as a
starting point and then add more functionalities such as a timer, a scoreboard or a more complex
point management system.

1. The logic of the game has to be encapsulated in a dedicated class or in a well-designed
hierarchy if you plan to make it more complex. In our case, we just need to handle the
total amount of gained points and the generation of new values.

class GameScore with ChangeNotifier {
var _score = 0;
var _currentValue = _random();

int get score => _score;
int get currentValue => _currentValue;

static int _random() => Random().nextInt(100) + 1;

void addPoints(int pts) {
_score += pts;

Flutter Complete Reference 549

Chapter 19. Forms and gestures

_currentValue = _random();

notifyListeners();
}

}

While _score keeps track of the total points earned, _currentValue holds the current
number that has to be dragged in the "Even" or "Odd" container of the UI.

2. Now we’re creating the widget for the game itself. We’ve removed some styling widgets
such as Padding and TextStyle to focus on the important ones; you’ll find the complete
code in the online resources.

// This is inside a stateless widget called "DragWidget"
Column(

mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[

// The blue total score at the top
Consumer<GameScore>(

builder: (context, game, _) {
return Text("Total: ${game.score}");

},
),

// The two boxes and the random number at the center
Row(

mainAxisAlignment: MainAxisAlignment.spaceAround,
children: const <Widget>[

EvenContainer(),
NumberContainer(),
OddContainer(),

],
),

]
),

This is the content of class DragWidget, the "container" of the game. At the top there is
a Consumer<GameScore> that listens to score updates and refreshes the text; below there
is the draggable number and the two target boxes.

Flutter Complete Reference 550

Chapter 19. Forms and gestures

3. With the Draggable<T> widget you’re able to drag and move around any widget. It has
the data property which represents the type of value (T) it’s holding. In our case we’re
dealing with an int.

class NumberContainer extends StatelessWidget {
const NumberContainer();

@override
Widget build(BuildContext context) {

return Consumer<GameScore>(
builder: (context, game, _) {

return Draggable<int>(
data: game.currentValue,
feedback: ...
child: ...

);
},

);
}

}

The game.currentValue variable is the random number appearing at the center of the
screen and it has to be linked to the data property. In this way, when the widget will be
freely dragged around the screen it will also carry the int value (the even/odd number).

Draggable<int>(
data: game.currentValue,
feedback: Container(

width: 60,
height: 60,
decoration: BoxDecoration(

borderRadius: BorderRadius.circular(60),
color: Colors.black26,

),
child: Center(

child: Text("${game.currentValue}"),
),

),
child: Container(

Flutter Complete Reference 551

Chapter 19. Forms and gestures

width: 60,
height: 60,
child: Center(

child: Text("${game.currentValue}"),
),

),
);

The child widget usually displays the data that the Draggable is holding and feedback
is how the item should look while it’s being dragged.

As you can see, while the number is being dragged there’s a circular transparent container
around represented by the feedback property. It’s been styled with a Container.

4. Since we want to show a snackbar at the bottom of the screen every time the user scored
new points, we’re creating a mixin to share the implementation across multiple widgets.

mixin SnackMessage {
void showMessage(BuildContext context, String text) {

Scaffold.of(context).showSnackBar(
SnackBar(

Flutter Complete Reference 552

Chapter 19. Forms and gestures

content: Text(text),
duration: const Duration(milliseconds: 600),

)
);

}
}

The EvenContainer and OddContainer widgets are going to be the landing zones of the
dragged item, depending if it’s respectively an even or an odd number. The _willAccept
method determines whether the received item is valid or not.

class EvenContainer extends StatelessWidget with SnackMessage {
const EvenContainer();

@override
Widget build(BuildContext context) {

return Container(
width: 60,
height: 60,
decoration: BoxDecoration(

borderRadius: BorderRadius.circular(10),
color: Colors.blueAccent,

),
child: DragTarget<int>(...),

);
}

void _onAccept(BuildContext context, int data) {
context.read<GameScore>().addPoints(data);
showMessage(context, "Points: + $data");

}

bool _willAccept(int? data) => data != null && data % 2 == 0;
}

A Draggable<T> widget can land only in a DragTarget<T> widget of the same type. In
our specific case we can release a Draggable<int> only inside a DragTarget<int> widget,
and our UI contains two of them.

Container(

Flutter Complete Reference 553

Chapter 19. Forms and gestures

...
child: DragTarget<int>(

onAccept: (data) => _onAccept(context, data),
onWillAccept: _willAccept,
builder: (context, _, __) {

return const Rectangle(text: "Even");
},

),
),

Very intuitively, the builder method returns the widget that will be displayed in the UI,
which is in our case a blue rectangle with a white text. The Rectangle class is a custom
widget we’ve made for reusability.

• onWillAccept: the callback is used to determine if this widget is interested in accept-
ing a piece of data being dragged over this target. In practice, it checks if we’re trying
to put in here a Draggable whose value is an even number.

• onAccept: if a dropped piece has been accepted because onWillAccept returned true,
this method is called. In other words, when we’re sure that the user dropped an even
number, we can give him the points and show the snack bar.

The OddContainer widget is very similar; it just changes some styling and the onWillAccept
callback evaluates to true only if the number is odd.

Note that instead of context.read<GameScore>() we could have used the non-extension version,
remembering to set listen: false because the call is made outside of the widget tree.

// Equivalent to calling 'context.read<GameScore>()'
Provider.of<GameScore>(context, listen: false).addPoints(data);

Flutter Complete Reference 554

20 | Interacting with the device

B Resources > Chapter 20 > Taking photos

20.1 Taking a picture

It wouldn’t be a surprise if you were asked to take a photo with your app and eventually store
the image file you’ve acquired. The official camera 1 package allows you to work with any camera
of your device, display previews and acquire photos.

1https://pub.dev/packages/camera

Flutter Complete Reference 555

Chapter 20. Interacting with the device

The app we’re going to build shows a live preview of what’s going to be captured and an icon
at the bottom which stores the picture in the temporary directory. There are some packages you
need to import:

• camera, to work with the cameras of the device;

• path_provider, to easily find folders’ paths;

• path, to easily get paths on any platform.

Please note that in order to successfully compile the camera plugin you have to change the
minimum Android sdk version to 21 at app/build.gradle. Look for the minSdkVersion label
and set it to be 21 (the default value might be lower, such as 16). For iOS users instead add two
new entries in ios/Runner/Info.plist

• Privacy - Camera Usage Description

• Privacy - Microphone Usage Description

Associate to each key a meaningful description that will be prompted to the user. At this point
the setup is ready and we can start creating the app.

1. In the initialization phase, we need to retrieve the list of all available cameras of the device
by using availableCameras(). Generally there are two, one at the front and one at the
back.

void main() async {
// This call makes sure the camera plugin has been
// properly initialized and it's ready to be used.
WidgetsFlutterBinding.ensureInitialized();

final cameras = await availableCameras();
final firstCamera = cameras.first;

runApp(...);
}

The cameras variable is of type List<CameraDescription> so calling cameras.first is
equivalent to writing cameras[0].

2. In order to establish a connection with the device’s camera you need a CameraController
and, like any other controller, it has to be initialized and disposed. For this reason, create
a StatefulWidget which will take care of the controller’s lifecycle.

Flutter Complete Reference 556

Chapter 20. Interacting with the device

class TakePicture extends StatefulWidget {
final CameraDescription camera;
TakePicture({required this.camera});

@override
_TakePictureState createState() => _TakePictureState();

}

class _TakePictureState extends State<TakePicture> {
late final CameraController _controller;
late final Future<void> _initController;

@override
void initState() {

super.initState();
_controller = CameraController(

widget.camera,
ResolutionPreset.high,

);

_initController = _controller.initialize();
}

@override
void dispose() {

_controller.dispose();
super.dispose();

}

// build...
}

You’ll see that _initController is used in a FutureBuilder<T> to wait for the loading of
the camera preview screen. You can decide to take high or low quality pictures with one of
these controller’s constants:

• ResolutionPreset.low (240p),

• ResolutionPreset.medium (480p),

Flutter Complete Reference 557

Chapter 20. Interacting with the device

• ResolutionPreset.high (720p),

• ResolutionPreset.veryHigh (1080p),

• ResolutionPreset.ultraHigh (2160p)

Alternatively, if you don’t know which is the maximum resolution supported by the device,
you can use ResolutionPreset.max which automatically picks the highest preset possible.
For the sake of the example we’ve simply used a Column but you could try to make a more
complex layout.

@override
Widget build(BuildContext context) {

return Column(
mainAxisAlignment: MainAxisAlignment.spaceAround,
children: <Widget>[

FutureBuilder<void>(...),

IconButton(...)
],

);
}

3. The FutureBuilder<void> widget is going to await for the initialization of the camera
because, as soon as it’s ready, we want it to give a live preview of what it’s framing.

FutureBuilder<void>(
future: _initController,
builder: (context, snapshot) {

if (snapshot.connectionState == ConnectionState.done) {
return Expanded(

child: Center(
child: AspectRatio(

aspectRatio: _controller.value.aspectRatio,
child: CameraPreview(_controller),

),
),

);
}

return const Center(

Flutter Complete Reference 558

Chapter 20. Interacting with the device

child: CircularProgressIndicator(),
);

},
),

We recommend the usage of the AspectRatio widget as it shows the preview with proper
proportions between width and height. It’s not compulsory, you could have put the
CameraPreview widget directly inside Expanded and it would have covered the entire avail-
able space.

return Expanded(
child: CameraPreview(_controller),

)

Since we’re inside a Column we need somehow to constrain the height and Expanded does
exactly this. Alternatively you could have used a Container or a SizedBox.

4. In the FutureBuilder<void> we’ve placed the button to actually take the photo and store
the image in the temporary directory with a "random" filename.

IconButton(
icon: const Icon(Icons.photo_camera),
onPressed: () => _takePhoto(context),

)

We underline again the fact that it’s a good idea putting the business logic outside of the UI
logic and thus the body of the onPressed callback has been created in a separated function.

void _takePhoto(BuildContext context) async {
// Ensure the controller is ready
await _initController;

// File name and path
final dir = await getTemporaryDirectory();
final name = "mypic_${DateTime.now()}.png";

// Store the picture at the given location
final fullPath = path.join(dir.path, name);
await _controller.takePicture(fullPath);

Scaffold.of(context).showSnackBar(

Flutter Complete Reference 559

Chapter 20. Interacting with the device

SnackBar(
content: const Text("Picture taken!"),
duration: const Duration(milliseconds: 600),

)
);

}

A common strategy to avoid file name conflicts is relying on the current date and time in
the name. While this approach is not bullet proof, for simple tasks it’s good enough. Note
the usage of join:

final fullPath = path.join(dir.path, name);

Combining paths in cross-platform apps is not easy because you have to take into account
the filesystem structure of every single supported OS. This is something low-level that you
don’t want to deal with, so Flutter has a package ready for you and it’s called path!

B Resources > Chapter 20 > Sensors

20.2 Working with sensors

Nowadays almost any device has built-in sensors to measure orientation, motion or other environ-
mental conditions with a very high accuracy. To monitor the three-dimensional data the device
is able to provide you can use the official sensor 2 package.

• GyroscopeEvents: data about the rotation of the device;

• AccelerometerEvent: these data let you know in which direction the device is moving,
keeping into account the gravity;

• UserAccelerometerEvent: similar to AccelerometerEvent but it doesn’t care about the
gravity

We’re creating a very basic app that shows data obtained from the sensors at the center of
the screen. They are useful when you want to implement motion-based functionalities in your
app.

2https://pub.dev/packages/sensors

Flutter Complete Reference 560

Chapter 20. Interacting with the device

The API of the sensor package is very simple to use and it relies on streams.

1. The Wrap widget places the children side by side in the horizontal or vertical direction.
It’s very similar to Row and Column but with the difference that its sizes are constrained:
when there is no more space to lay out the children, it wraps to the next column/row.

class SensorWidget extends StatelessWidget {
const SensorWidget();

@override
Widget build(BuildContext context) {

return Wrap(
spacing: 0.9,
direction: Axis.vertical,
children: const <Widget>[

AccelerometerData(),
UserAccelerometerData(),
GyroscopeData()

],
);

}
}

Flutter Complete Reference 561

Chapter 20. Interacting with the device

Here we’re placing a series of widgets vertically with a certain space in between. If you try
to rotate the screen and set a big gap, such as spacing: 150, you’ll see that widgets are
rearranged differently and no overflow errors appear.

2. As you know, the StreamBuilder<T> widget deals with streams and we strongly recommend
you to always supply some initial data to it. This ensures that the first frame will show
useful data rather than null, which is safe.

class AccelerometerData extends StatelessWidget {
static final initialData = AccelerometerEvent(0, 0, 0);
const AccelerometerData();

@override
Widget build(BuildContext context) {

return StreamBuilder<AccelerometerEvent>(
stream: accelerometerEvents,
initialData: initialData,
builder: (context, accel) {

final data = accel.data;

if (data != null) {
final x = data.x.toStringAsFixed(2);
final y = data.y.toStringAsFixed(2);
final z = data.z.toStringAsFixed(2);

return ChipWithIcon(
icon: Icon(Icons.drive_eta),
text: "Accelerometer: $x, $y, $z"

);
}

return const Text("No data to display.");
},

);
}

}

The accelerometerEvents stream is provided by the sensor package and it continuously
sends a series of three-dimensional data we’re showing on the UI. At the center of the screen

Flutter Complete Reference 562

Chapter 20. Interacting with the device

there’s a material Chip, a rounded box representing short spans of text.

class ChipWithIcon extends StatelessWidget {
final Icon icon;
final String text;
const ChipWithIcon({

required this.icon,
required this.text

});

@override
Widget build(BuildContext context) {

return Chip(
avatar: icon,
padding: const EdgeInsets.fromLTRB(10, 5, 10, 5),
labelPadding: const EdgeInsets.only(left: 10),
label: Text(text),

);
}

}

We haven’t discussed the implementations of the other two listeners because they’re basically
identical to AccelerometerData with the only difference that they subscribe to a different stream.

B Resources > Chapter 20 > Geolocation

20.3 Working with Geolocation

A very popular geolocation package for Flutter is geolocator 3, well-known for its easy way to
access the device’s location services. Before starting with the examples, apply the following
changes to your project:

• On Android you need to add two permissions in the manifest at android/app/src/main.

<uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION" />

3https://pub.dev/packages/geolocator

Flutter Complete Reference 563

Chapter 20. Interacting with the device

<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />

In addition, make sure the gradle.properties file has AndroidX enabled by checking if
these two lines are present. They are required for version 3.0.0 and above of the plugin to
work.

android.useAndroidX=true
android.enableJetifier=true

• On iOS you have to setup the permission in the Info.plist file.

<key>NSLocationWhenInUseUsageDescription</key>
<string>Give me location permissions pls</string>

Note that in early versions you had to access members using class Geolocator which im-
plemented the singleton design pattern via factory constructor. Now the class doesn’t exist
anymore: the package just exposes a series of top-level functions.

var position = await getCurrentPosition(
desiredAccuracy: LocationAccuracy.high

);

var lat = position.latitude;
var lon = position.longitude;
var alt = position.altitude;

You could also use position.speed to indicate the speed at which the device is moving but
it’s not always available. There’s also the possibility to listen for position changes thanks to
getPositionStream() which returns a Stream<Position>.

Flutter Complete Reference 564

Chapter 20. Interacting with the device

In this very simple example we have an SVG image at the top and below there is a string reporting
the current latitude and longitude. If we went out for a walk, we would see the text automatically
updating to reflect the new coordinates thanks to the stream.

1. The setup for the GPSWidget is very easy to understand. We have decided to make the
_stream variable static to be able to declare a const constructor.

class GPSWidget extends StatelessWidget {
static final _stream = getPositionStream();
const GPSWidget();

@override
Widget build(BuildContext context) {

...
}

}

2. As usual, we’re going to use the StreamBuilder<T> widget to subscribe to the stream and
constantly update the text below the image.

return Wrap(
spacing: 20,
direction: Axis.vertical,
crossAxisAlignment: WrapCrossAlignment.center,
children: <Widget>[

Flutter Complete Reference 565

Chapter 20. Interacting with the device

SvgPicture.asset(
"assets/geolocate.svg",
height: 70,

),

StreamBuilder<Position>(
stream: _stream,
builder: (context, positionData) {

if (positionData.hasData) {
final data = positionData.data;

if (data != null) {
final lat = data.latitude.toStringAsFixed(5);
final lon = data.longitude.toStringAsFixed(5);

return Text("$lat | $lon");
} else {

return const Text("No data available.");
}

}

return const CircularProgressIndicator();
},

)
],

);

Alternatively to Wrap you could have achieved the same result with a column but it would
have required more boilerplate code. It has no spacing property so you’d have to deal with
Padding or another "spacer" widget.

// A 'SizedBox' can be good to add spaces between widgets
const SizedBox(

height: 20
);

If you wish to calculate the distance between two points in the world, use distanceBetween()
and pass latitude and longitude of the starting and ending point. The distance is expressed in
meters.

Flutter Complete Reference 566

Chapter 20. Interacting with the device

final double distance = await distanceBetween(
52.2165157, 6.9437819, // starting point lat-long
52.3546274, 4.8285838 // ending point lat-long

);

Another very interesting package is called geocoding because it gives you the possibility to trans-
late latitude/longitude coordinates into an address and vice versa. It’s very easy to use:

final placemarks = await placemarkFromCoordinates(41.909986, 12.3959135);

if (placemarks.isNotEmpty) {
final result = placemarks[0];
debugPrint("${result.administrativeArea}"); // Lazio
debugPrint("${result.locality}"); // Rome
debugPrint("${result.country}"); // Italy

}

Ideally the placemarks list will contain only 1 item that exactly matches what you’re looking for
but in certain cases there might be multiple results. It’s of type List<Placemark> and it has a
ton of properties 4 (in addition to the ones we’ve used above).

var locations = await locationFromAddress("Rome");

if (locations.isNotEmpty) {
var result = locations[0];
debugPrint("${result.latitude}"); // 41.9...
debugPrint("${result.longitude}"); // 12.3...

}

This is very similar to the previous example but instead of passing the latitude and the longitude,
we pass the name of the desired location.

20.4 Platform-specific packages

Flutter’s official pub 5 page has many packages to interact with some platform-specific APIs. Be
sure to also have a look at the GitHub repo 6 for a summary table that redirects you to the install
page of the packages.

4https://pub.dev/packages/geocoding
5https://pub.dev/flutter/packages
6https://github.com/flutter/plugins

Flutter Complete Reference 567

Chapter 20. Interacting with the device

20.4.1 Battery level

The battery package lets you extract various information about your device’s battery such as the
current charge level. Once it’s been imported you just need to create an instance of class Battery
and then use its asynchronous API.

Future<int> level() async {
var b = Battery();
return await b.batteryLevel;

}

If you wanted your device to listen for battery changes, subscribe to the onBatteryStateChanged
stream which exposes a BatteryState. It is an enum representing the current state of the
battery.

enum BatteryState {
/// The battery is completely full of energy.
full,

/// The battery is currently storing energy.
charging,

/// The battery is currently losing energy.
discharging

}

20.4.2 Device info

To get a lot of info about the device in which your app is running you can use the device_info 7

package from the official Flutter team. It’s just a matter of instantiating DeviceInfoPlugin()
and then using the getters.

final deviceInfo = await DeviceInfoPlugin().androidInfo;
//final deviceInfo = await DeviceInfoPlugin().iosInfo;

debugPrint(deviceInfo.display);
debugPrint(deviceInfo.brand);
debugPrint(deviceInfo.product);

7https://pub.dev/packages/device_info

Flutter Complete Reference 568

Chapter 20. Interacting with the device

debugPrint(deviceInfo.manufacturer);
// and much more...

There is a very long series of data this package is able to extract so be sure to check out the
documentation.

B Resources > Chapter 20 > Connectivity

20.4.3 Internet connectivity

So far we’ve used dio and http to make HTTP requests, download/upload files and handle po-
tential errors. They’re not able to detect the connection status before making the actual request
but the connectivity 8 package can.

var status = await Connectivity().checkConnectivity();

switch (status) {
case ConnectivityResult.wifi:

debugPrint("Connected via wifi");
break;

case ConnectivityResult.mobile:
debugPrint("Connected via mobile");
break;

case ConnectivityResult.none:
debugPrint("not connected");
break;

}

The checkConnectivity() method returns enum ConnectivityResult which lets us know if
we are re connected to a network (via wifi or mobile) or not. In addition, we can also listen to
connectivity changes while the app is running thanks to streams.

8https://pub.dev/packages/connectivity

Flutter Complete Reference 569

Chapter 20. Interacting with the device

Thanks to a StreamBuilder<ConnectivityResult> we are able to listen to changes and show
proper widgets accordingly. You’ve seen this pattern many times up to now so it should be easy
to understand.

1. The Connectivity class implements the singleton pattern so it will always return the same
instance via factory constructor. For this reason, we can "cache" an instance in a static
variable to define a constant constructor.

class ConnectionWidget extends StatelessWidget {
static final _conn = Connectivity();
const ConnectionWidget();

@override
Widget build(BuildContext context) {

...
}

}

2. For each connection type (wifi, mobile or none) we’re creating the widget representing the
status with an icon and the text.

class WifiConnectionWidget extends StatelessWidget {
const WifiConnectionWidget();

@override
Widget build(BuildContext context) {

return Wrap(
spacing: 20,
crossAxisAlignment: WrapCrossAlignment.center,
direction: Axis.vertical,
children: const <Widget>[

Flutter Complete Reference 570

Chapter 20. Interacting with the device

Icon(Icons.wifi),
Text("Connected to WiFi")

],
);

}
}

class MobileConnectionWidget extends StatelessWidget { ... }

class NoConnectionWidget extends StatelessWidget { ... }

3. At this point we can setup the StreamBuilder<ConnectivityResult> so that it can listen
to connectivity changes and display the proper widget. A result of type none indicates that
there’s no internet connectivity at all.

@override
Widget build(BuildContext context) {

return StreamBuilder<ConnectivityResult>(
stream: _conn.onConnectivityChanged,
builder: (context, status) {

if (status.hasData) {
final data = status.data;

if (data != null) {
switch (data) {

case ConnectivityResult.wifi:
return const WifiConnectionWidget();

case ConnectivityResult.mobile:
return const MobileConnectionWidget();

case ConnectivityResult.none:
return const NoConnectionWidget();

}
} else {

debugPrint("Whoops");
}

}

return const CircularProgressIndicator();
},

Flutter Complete Reference 571

Chapter 20. Interacting with the device

);
}

20.4.4 Shared preferences

The shared_preferences 9 package is very useful when you have a small collection of key-value
data to save. Those data persist on the disk so even if you close the app, they will be available
again at the next startup. Some scenarios in which you could use them are:

• storing some flags you app has to read at startup, such as styling configurations set by the
user;

• storing some app’s preferences such as the currently selected download directory;

• storing all those "small" data like numbers or strings you want to quickly read without
having to setup a database.

Use class SharedPreferences when you want to work with int, double, String or bool. If
you have a lot of configurations to store or a complex data structure, consider using a more
reliable data structure such as a database 10.

final prefs = await SharedPreferences.getInstance();

// Store a value
await prefs.setInt('age', 23);

// Read a value
var value = prefs.getInt('age') ?? -1;

If age wasn’t an integer an exception would occur. Do not store critical data using shared
preferences nor rely on them to build you app’s storage; they are just a simple way to store small
data without having the overhead of managing a database.

SharedPreferences.setMockInitialValues({
"name": "Robert",
"age": 28

});

Use setMockInitialValues() in your tests to manually populate SharedPreferences with some
initial values.

9https://pub.dev/packages/shared_preferences
10See appendix B.2

Flutter Complete Reference 572

21 | Widgets showcase

In this section we’re going to list a series of well known widgets that follow the "Material" or
"Cupertino" design styles. A complete and updated list of any widget made by the Flutter team
is available in their official online catalog 1.

21.1 Material

• Reference: https://material.io

21.1.1 Drawer

A navigation drawer is a panel that slides from a side to the center of the screen and contains a
series of options. The material implementation of a drawer, called Drawer, is generally declared
inside a Scaffold because they nicely integrate together.

1https://flutter.dev/docs/development/ui/widgets

Flutter Complete Reference 573

https://material.io

Chapter 21. Widgets showcase

A drawer generally is made up of a header (with an image or some user data) and then a series of
clickable options below. In general, when an item is tapped the user navigates to another route.
A drawer is very useful when there are a lot of possible routes but there isn’t enough space in
the UI to show them all.

1. By default, a drawer can slide from the left side of the screen to the center hovering the
current view. Even if it’s not required, you should always use a ListView as child in order
to enable scrolling in case the vertical space weren’t enough.

Scaffold(
appBar: AppBar(),
body: const MyPage,
drawer: Drawer(

child: ListView(
children: [...]

),
)

),

The Scaffold automatically adds an hamburger icon in the top bar so that the drawer can
also be opened by tapping on that button.

There’s also the possibility to add endDrawer: Drawer(...) which is simply a drawer
sliding from the opposite side: from the right of the device to the center.

2. In general it’s a good idea having a drawer in a dedicated widget, so you should create a
stateless widget (called for example class DrawerMenu) and put all the logic there. Use a

Flutter Complete Reference 574

Chapter 21. Widgets showcase

ListView to group the children.

class DrawerMenu extends StatelessWidget {
const DrawerMenu();

@override
Widget build(BuildContext context) {

return ListView(
children: [...],

);
}

}

3. If you want to create a header section in your drawer, Flutter has the DrawerHeader class.
It’s very customizable but of course, if it doesn’t fit your needs, you can always create a
completely new widget from scratch.

ListView(
children: [

DrawerHeader(
padding: EdgeInsets.all(15),
child: Wrap(

direction: Axis.vertical,
children: const <Widget>[

Icon(Icons.person),
Text("myemail@gmail.com")

],
),

)
],

)

We’re going to show how to create items of a navigation drawer with a very Android-like imple-
mentation. Tapping on each item opens a new route because generally it’s the expected behavior
from a drawer item.

Flutter Complete Reference 575

Chapter 21. Widgets showcase

By convention, drawer items are represented by class ListTile which shows an icon and a
short piece of text. You can also visually group tiles using a Divider and maybe give a name to
the group with a Text widget.

ListView(
children: [

ListTile(
leading: const Icon(Icons.email),
title: const Text("My e-mail"),
onTap: () => Navigator.of(context)?.pushNamed(...),

),

const Divider(
height: 1,
color: Colors.grey,

),

const DrawerTitle("App management"),

ListTile(
leading: const Icon(Icons.settings),
title: const Text("Settings"),
onTap: () => Navigator.of(context)?.pushNamed(),

),

ListTile(
leading: const Icon(Icons.info),
title: const Text("Info"),

Flutter Complete Reference 576

Chapter 21. Widgets showcase

onTap: () => Navigator.of(context)?.pushNamed(),
),

const Divider(
height: 1,
color: Colors.grey,

),
],

);

Since there might be more than a single section title in your drawer, we’ve decided to create a
simple reusable DrawerTitle widget that styles some text. Note that a Divider can also have a
custom thickness and color.

class DrawerTitle extends StatelessWidget {
final String text;
const DrawerTitle(this.text);

@override
Widget build(BuildContext context) {

return Padding(
padding: const EdgeInsets.fromLTRB(15, 15, 0, 5),
child: const Text("App management",

style: TextStyle(
fontSize: 15,
fontWeight: FontWeight.w500

),
),

);
}

}

21.1.2 BottomNavigationBar

This material widget is displayed at the bottom of the screen and it’s generally used to navigate
among a small amount of pages. There are no restrictions on the maximum icon number but you
shouldn’t use more than 4 items otherwise the bar becomes too dense.

Flutter Complete Reference 577

Chapter 21. Widgets showcase

The selected icon is highlighted with a custom color. You could also decide to only show the text
or only the image. To create this kind of navigation bar, you need again a Scaffold, the basic
building block of any material app, and then a BottomNavigationBar.

Scaffold(
appBar: AppBar(...),
body: const MyPage(),
bottomNavigationBar: BottomNavigationBar(

currentIndex: 1,
selectedItemColor: Colors.orange,
onTap: (int index) {...},
items: const [

BottomNavigationBarItem(
icon: Icon(Icons.home),
label: "Home page"

),
BottomNavigationBarItem(

icon: Icon(Icons.email),
label: "E-mail",

),
],

),
)

The currentIndex parameter indicates which icon at the bottom has been tapped and thus
selected. onTap is a callback for any children in items and it should act on the currentIndex
property. In the above example we have hard coded it but in reality your code would look like
this:

Flutter Complete Reference 578

Chapter 21. Widgets showcase

bottomNavigationBar: BottomNavigationBar(
currentIndex: selectedIndex,
onTap: (int index) => _changePage(index),
items: const [...],
),

Using provider or flutter_bloc you can make it so that int selectedIndex = 0 is declared
somewhere and then, using void _changePage(int index), you change the value to rebuild the
Scaffold. In other words, changing the value of currentIndex also changes the currently visible
page.

21.1.3 NavigationRail

A class NavigationRail 2 is basically a BottomNavigationBar that appears on the left or right
of the screen (rather than at the bottom). It’s generally used to navigate among a small group
of routes, typically four or at maximum five.

Scaffold(
body: Row(

children: <Widget>[
// Contains the circles
NavigationRail(

selectedIndex: currentPage,
onDestinationSelected: (int index) {...},
destinations: const [

NavigationRailDestination(
icon: Icon(Icons.account_circle),
label: Text('User'),

),
NavigationRailDestination(

icon: Icon(Icons.book),
label: Text('Favorites'),

),
]

),
const VerticalDivider(

thickness: 1,

2https://api.flutter.dev/flutter/material/NavigationRail-class.html

Flutter Complete Reference 579

Chapter 21. Widgets showcase

width: 1
),
// Actual content of the page
Expanded(

child: Center(
child: Text('selectedIndex: $currentPage'),

),
),

]
),

);

The int currentPage variable should be handled by a state management library as it indicates
which page is currently visible. Changing the value of currentPage, which has to happen inside
the onDestinationSelected callback, also changes the selected item in destinations.

The tappable circles are represented by class NavigationRailDestination where the only
required parameter is the icon. If you want the navigation rail to be at the right of the screen,
just puy it as last child of the Row():

Row(
children: <Widget>[

Expanded(...),
const VerticalDivider(...),
NavigationRail(...),

]
);

Flutter Complete Reference 580

Chapter 21. Widgets showcase

There’s also the possibility to change the icon of a selected element by setting the selectedIcon
property. For example:

NavigationRailDestination(
icon: Icon(Icons.info_outline),
selectedIcon: Icon(Icons.info),

),

By default the Icons.info_outline icon appears but when the destination is tapped, it’s re-
placed by a Icons.info.

21.1.4 TabBar

Working with tabs in Flutter is very easy because it’s just a matter of using a controller and a
Scaffold; on Android instead there would be a lot of styling and coding to do. A tabbed layout
is used to group multiple pages in a single view: the user can move among tabs by swiping or by
tapping on the top bar.

Similarly from what we’ve suggested for a BottomNavigationBar, you should display three or at
maximum four tabs in the page. There aren’t any limitations but if you have too many icons the
bar becomes too dense and not optimal in terms of user experience (which is essential).

DefaultTabController(
length: 2,
child: Scaffold(

appBar: AppBar(

Flutter Complete Reference 581

Chapter 21. Widgets showcase

title: const Text("Using tabs"),
bottom: const TabBar(

tabs: [
Tab(

icon: Icon(Icons.vpn_key),
text: "Passwords",

),
Tab(

icon: Icon(Icons.history),
text: "History",

),
],

),
),
body: const TabBarView(

children: [
PageOne(),
PageTwo(),

],
),

),
),

There’s the need to use a DefaultTabController widget to make everything work and the length
parameter must reflect the actual number of tabs, otherwise an exception is thrown. The TabBar
widget handles the tabs in the top bar, TabBarView instead handles the body of the tabs (the
actual pages).

class PageOne extends StatelessWidget {
const PageOne();
...

}

class PageTwo extends StatelessWidget {
const PageTwo();
...

}

Be sure to create the children of a TabBarView into separated widgets so that each page lays in

Flutter Complete Reference 582

Chapter 21. Widgets showcase

its dedicated file/class. The DefaultTabController widget internally contains a TabController
which is automatically managed. However, if you want to have more control of your tabs, you
should directly work with a controller:

class _PageState extends State<Page> with SingleTickerProviderStateMixin {
late final TabController tabController;

@override
void initState() {

super.initState();
tabController = TabController(

vsync: this,
length: 2,

);
}

@override
void dispose() {

tabController.dispose();
super.dispose();

}

void _changePage(int index) {
if (index >= 0) {

tabController.animateTo(index);
}

}

@override
Widget build(BuildContext context) {

return TabBarView(
controller: tabController,
children: const [...],

);
}

}

There’s more code to write because now you have to manually create, initialize and dispose a
controller while earlier the DefaultTabController did it for you. The advantage is that you

Flutter Complete Reference 583

Chapter 21. Widgets showcase

have more control of the tabs because, for example, you can change tabs programmatically:

tabController.animateTo(index);

Thanks to animateTo() you can move to the desired tab with a swipe animation without needing
the user’s finger to swipe/tap. Unless you need to do special manual work on tabs, go for a
DefaultTabController which is much less boilerplate code.

21.1.5 Stepper

If you need a widget that guides the user over a series of steps before getting a result, a Stepper
might be the right choice. It is very useful when there is a form to fill and certain types of data
require the submission of other data in order.

There’s the possibility to control the contents of the circles, which can be a tick or a pencil to
indicate the current status, and the user can navigate back/forth. A Stepper can also be used
in vertical mode which is probably better when there is a lot of available height:

Flutter Complete Reference 584

Chapter 21. Widgets showcase

You could decide to always use the stepper in a single direction, which is fine as it provides
automatic scrolling in case of overflow. However, you should consider the usage of LayoutBuilder
to make the widget responsive:

LayoutBuilder(
builder: (context, dimensions) {

var stepperType = StepperType.vertical;

if (dimensions.maxWidth > 550) {
stepperType = StepperType.horizontal;

}

return Stepper(
type: stepperType,
steps: const [...],

);
},

),

A Stepper takes a list of Step indicating the single actions the user is asked to accomplish. Note

Flutter Complete Reference 585

Chapter 21. Widgets showcase

that class Step { ... } is not a widget but it still requires some parameters:

• currentStep. It’s the currently visible step and it should be handled via provider or
flutter_bloc, for example. The int associated with this value has to change to reflect the
actual step the user has to see.

• onStepContinue. Callback triggered when the "Continue" button is pressed; it should be
used to increment the value of currentStep.

• onStepCancel. Callback triggered when the "Cancel" button is pressed; it should be used
to decrement the value of currentStep.

In this example we’ve hard coded some values just for the sake of simplicity. Your state manage-
ment library should also handle the state parameter which changes the icon associated with the
name of the step in the UI. If you don’t set it, numbers are shown by default.

Stepper(
currentStep: 1,
type: stepperType,
onStepContinue: () {...},
onStepCancel: () {...},
steps: const [

Step(...),

Step(
title: Text("Address"),
content: Text("Form with inputs"),
state: StepState.editing,

),

Step(...),
],

);

Callbacks should be defined into separated functions rather than directly inside the Stepper.

21.1.6 DataTable

Sometimes certain type of information can only be represented in a table because other kind of
layouts just don’t fit well. You could start using the Table widget but you’d have to manually

Flutter Complete Reference 586

Chapter 21. Widgets showcase

code any extra feature (like sorting) by yourself. A very good alternative is the DataTable
widget.

Thanks to the DataTable widget you’re able to easily display tabular data, containing of course
any kind of widget. Columns automatically resize to fit the contents. Other than the following,
there are many built-in options to enable such as the possibility to sort the entire table just by
tapping on the header.

SingleChildScrollView(
child: DataTable(

sortColumnIndex: 1,
sortAscending: false,
columns: const [...],
rows: [...],

),
),

You can decide the sorting "direction" thanks to sortAscending, define callbacks for rows, setting
margins and much more. We recommend wrapping the table in a SingleChildScrollView to
ensure that overflows will be automatically handled with scroll bars. Use a DataColumn widget
to setup a column of a DataTable.

columns: [
DataColumn(

Flutter Complete Reference 587

Chapter 21. Widgets showcase

label: const Text("Language"),
onSort: (int colIndex, bool ascending) {...}

),
const DataColumn(

label: Text("Likes"),
numeric: true

),
const DataColumn(

label: Text("Mascot")
),

],

With the column parameter you give the header a name, set whether it’s numeric (which is false
by default) and/or set a callback for sorting purposes. If onSort is not defined, the column is
considered to be "fixed" and thus it cannot be sorted.

Each cell of the table can be populated with rows, which is allowed to only contain a list of
DataRows. The DataCell widget can contain anything such as images, icons, text, SVG and so
on. In our example we’ve populated the cell with a Wrap widget.

rows: [
DataRow(cells: [

DataCell(
Wrap(

spacing: 5,

Flutter Complete Reference 588

Chapter 21. Widgets showcase

children: const [
Text("Java"),
Icon(Icons.verified_user,

color: Colors.green,
size: 15,

)
],

),
),
const DataCell(Text("6")),
const DataCell(Text("Duke")),

]),
DataRow(cells: [

DataCell(...),
const DataCell(Text("8")),
const DataCell(Text("Dash")),

]),
],

The number of children in a DataRow (the table cells) must be equal to the number of columns
defined in the table otherwise an exception is thrown. Each DataCell also defines an onTap
callback and the possibility to show an icon to edit the field.

DataCell(
onTap: () {...}
showEditIcon: true,

),

The official DataTable documentation says that tables are relatively expensive to be rendered so
when you have a lot of data to display you should paginate the results. Indicatively, 10x10 or
12x12 tables are considered "big" but actually it also depends a lot on the physical device. An
old and slow mobile phone for example might be in trouble even with a few dozens of data.

Flutter Complete Reference 589

Chapter 21. Widgets showcase

The above result is obtained with a PaginatedDataTable widget: it limits the number of visible
rows by paginating the results. In this way, data can be lazy-loaded avoiding an expensive build
of the table and the user is not presented a too long list of data on the screen.

PaginatedDataTable(
rowsPerPage: 3,
header: const Text("Info"),
columns: const [

DataColumn(
label: Text("Language"),

),
DataColumn(

label: Text("Mascot"),
),

],
source: Source(),

);

You can decide how many rows have to appear per page with rowsPerPage. The header is required
and it’s just a widget that appears at the top of the table. Rows aren’t assigned in the "classic"
way using a rows parameter but instead there’s the need to subclass a DataTableSource, which
exposes data to the table.

Flutter Complete Reference 590

Chapter 21. Widgets showcase

class Source extends DataTableSource {
// The data of the table. They're here as a static list just
// to keep the example simple.
static final values = {

"Flutter": "Dash",
"Java": "Duke",
"Delphi": "Helmet",
"PHP": "ElePHPant",
"MySQL": "Dolphin",

}.entries.toList();

@override
DataRow? getRow(int index) {

final data = values[index];

return DataRow.byIndex(
index: index,
cells: [

DataCell(Text(data.key)),
DataCell(Text(data.value)),

]
);

}

@override
bool get isRowCountApproximate => false;

@override
int get rowCount => values.length;

@override
int get selectedRowCount => 0;

}

It’s declared as abstract class DataTableSource extends ChangeNotifier because when-
ever the data source changes, you need to call notifyListeners() to refresh the table. In our
example we’ve simply hard-coded a list with a few values, but in reality you should pass the data
via constructor injection.

Flutter Complete Reference 591

Chapter 21. Widgets showcase

• getRow: returns the actual data represented by a DataRow type. You should use the
byIndex constructor in order to avoid worrying about using keys to uniquely identify rows.
Remember that:

– the number of cells must match the column count;

– call notifyListeners(); whenever you add/remove a row or any content is changed.

Note that DataTableSource extends ChangeNotifier so you’re able to triggers rebuilds
calling notifyListeners() inside your model class.

• isRowCountApproximate: a value of false means that the row count is fixed (the table
won’t change). When set to true, then you’re estimating the row count which will be
finalized in a second moment (and updated via notifyListeners();). This is useful when
the table rows aren’t immediately ready: some might appear later because of waiting for a
Future<T> or an external event to finish.

• selectedRowCount: number of currently selected rows, which we’ve set to 0 by default.

• rowCount: if isRowCountApproximate returns false, then this method should just return
the exact length of the data source (because the data source won’t change). Instead, if it
returned true you should change the body of getRow();

DataRow? getRow(int index) {
// Trying to access an item not yet in the table. Return
// 'null' to show an animated circular loading indicator.
if (index >= values.length)

return null;

final data = values[index];
return DataRow.byIndex(...);

}

Basically, if the table tries to access an element not yet in the data source, you need to
return null. In this way, a loading indicator automatically appears; it will disappear once
the element has been added and updated via notifyListeners().

You should set isRowCountApproximate => true when you plan to add/remove data on the
table at runtime or when a Future<T>/Stream<T> completed. The table automatically shows a
loading indicator as a placeholder; when data are ready and the table won’t be modified anymore,
change this to returning false.

Flutter Complete Reference 592

Chapter 21. Widgets showcase

21.2 Cupertino

• Reference: https://developer.apple.com/design/human-interface-guidelines/ios/

21.2.1 CupertinoDatePicker

It’s a traditional iOS-styled picker where data are laid out in columns and they’re scrollable in
the vertical direction. The widget is localized because it automatically translates according to
the device’s language. The order of the columns may vary according to the current locale.

You can get this result using a showModalBottomSheet<T> to wrap the CupertinoDatePicker
widget. Since the popup overlays a large part of the screen, we need its height to be calculated
according to the physical device screen dimensions. For this reason, we’re using MediaQuery
rather than LayotuBuilder.

void _showPicker(BuildContext context){
showModalBottomSheet(

context: context,
builder: (BuildContext context){

Flutter Complete Reference 593

https://developer.apple.com/design/human-interface-guidelines/ios/

Chapter 21. Widgets showcase

final size = MediaQuery.of(context)?.size.height;
final panelHeight = size == null ? 150 : size / 2.8;

return SizedBox(
height: panelHeight,
child: CupertinoDatePicker(

initialDateTime: DateTime.now(),
onDateTimeChanged: (DateTime newDate) {},
minimumYear: 2010,
maximumYear: 2050,
mode: CupertinoDatePickerMode.date,

),
);

}
);

}

The widget is quite easy to setup; the _showPicker method is inkoved on a button tap and a
dialog slides up (with an animation) from the bottom. Very easily, the picker can only show the
date, the time or both just by changing the mode:

mode: CupertinoDatePickerMode.date,
mode: CupertinoDatePickerMode.dateAndTime,
mode: CupertinoDatePickerMode.time,

The onDateTimeChanged callback can be used to get the currently selected date from the picker.
It’s very convenient and efficient because there’s no need for controllers or keys.

21.2.2 CupertinoActionSheet

If you have the need to show a list of selectable options in an iOS style, the CupertinoActionSheet
could really be the right choice. It implements the "action sheet" UI design which is basically a
list of actions sliding up from the bottom of the screen.

CupertinoActionSheet(
actions: <Widget>[

CupertinoActionSheetAction(
child: const Text("Do something"),
onPressed: () {},
isDefaultAction: true,

Flutter Complete Reference 594

Chapter 21. Widgets showcase

),
CupertinoActionSheetAction(

child: const Text("Delete"),
onPressed: () {},
isDestructiveAction: true,

),
],

),

With isDefaultAction: true and isDestructiveAction: true you set the text to bold or
red respectively; the latter is used when you’re implementing a button that deletes something.
There’s also the possibility to create a separated "Cancel" button at the bottom of the list:

CupertinoActionSheet(
cancelButton: CupertinoActionSheetAction(

child: const Text("Cancel"),
onPressed: () {...},

),
actions: <Widget>[...]

),

21.2.3 CupertinoSegmentedControl

This widget is typically used when the user is asked to select between a number of mutually
exclusive options. The idea is to associate a type to a widget, which is generally a Text(), so
that when it’s pressed, the data it points to are returned.

CupertinoSegmentedControl(
children: const <int, Widget>{

0: ChildIcon("Option 1"),
1: ChildIcon("Option 2"),
2: ChildIcon("Option 3"),

},
onValueChanged: (int value) {

_currentValue = value;
},
groupValue: _currentValue,

)

The children parameter takes a map that associates an int to a ChildIcon widget. When the

Flutter Complete Reference 595

Chapter 21. Widgets showcase

user chooses one of the three options, the onValueChanged callback is called with the currently
selected value.

For example if you tapped on "Option 3", in onValueChanged the int value variable would
contain 2 because it’s the value associated with the selected widget. We have created a reusable
widget in order to keep consistency in the control and avoid code duplication, as usual:

class ChildIcon extends StatelessWidget {
final String text;
const ChildIcon(this.text);

@override
Widget build(BuildContext context) {

return Padding(
padding: EdgeInsets.fromLTRB(10, 5, 10, 5),

child: Text(text),
);

}
}

21.3 Community widgets

At https://pub.dev there are lots of packages and the number is at a constant growth thanks
to your help. We’re listing now some high quality packages you might find useful during your
development journey. The descriptions have been taken from their package’s home page.

• sqflite. Flutter plugin for SQLite, a self-contained, high-reliable, embedded database en-
gine.

• mobx. MobX is a library for reactively managing the state of your applications. Use the
power of observables, actions, and reactions to supercharge your Dart and Flutter apps.

• RxDart. RxDart is an implementation of the popular reactiveX api for asynchronous
programming, leveraging the native Dart Streams api.

Flutter Complete Reference 596

https://pub.dev

Chapter 21. Widgets showcase

• carousel_slider. A carousel slider widget, support infinite scroll and custom child widget.

• flutter_slideable. A Flutter implementation of a slidable list item with directional slide
actions that can be dismissed.

• flutter_staggered_grid_view. A Flutter staggered grid view which supports multiple
columns with rows of varying sizes.

• flutter_secure_storage. Flutter Secure Storage provides API to store data in secure
storage. Keychain is used in iOS, KeyStore based solution is used in Android.

• overflow_view. A widget displaying children in a line with an overflow indicator at the
end if there is not enough space.

• hive. Lightweight and blazing fast key-value database written in pure Dart. Strongly
encrypted using AES-256.

In chapter 23 we will talk in detail about packages, likes and the scoring system.

21.3.1 Flutter Hooks

A StatefulWidget is essential in some cases: when using animations for example, its dispose()
method must be used to perform cleanup operations on the controllers. Following this case, here’s
the typical skeleton of a StatefulWidget with two animations:

class Example extends StatefulWidget {
const Example();

@override
_ExampleState createState() => _ExampleState();

}

class _ExampleState extends State<Example>
with SingleTickerProviderStateMixin{
late final AnimationController _controller1;
late final AnimationController _controller2;

@override
void initState() {

super.initState();
_controller1 = AnimationController(

Flutter Complete Reference 597

Chapter 21. Widgets showcase

vsync: this,
duration: const Duration(seconds: 2),

);
_controller2 = AnimationController(

vsync: this,
duration: const Duration(seconds: 1),

);
}

@override
void dispose() {

_controller1.dispose();
_controller2.dispose();
super.dispose();

}

@override
Widget build(BuildContext context) {

return MyWidget();
}

}

Indeed there’s a lot of code to write because controllers generally require to be initialized and
disposed. It would have been the same if we had used a TextEditingController for example,
because it also has to be initialized and disposed. We can notice a few problems with the
"controllers pattern":

1. a lot of boilerplate code to write;

2. we’d like to create reusable instances of our controllers but they’re tied to initState()
and dispose();

3. a mixin could be a good idea but it can be used only once (if your class required two
controllers, you’d have to use the mixin twice but that’s not possible).

In other words, the code inside a StatefulWidget is difficult to reuse. Performance here don’t
matter: the problem is the potentially big amount of code duplication "caused" by the structure
of the class itself. There’s no built-in way to solve this maintenance problem but thankfully the
Flutter community comes to the rescue!

Flutter Complete Reference 598

Chapter 21. Widgets showcase

Thanks to the flutter_hooks package (by Rémi Rousselet), you can create "reusable stateful
widgets" to get rid of all those code duplication issues we exposed above. Using hooks, the same
animation example at the beginning of the section can be rewritten in the following way:

// - same thing as before but less boilerplate and more reusability
// - initState/dispose are not needed because 'useAnimationController' does
// the job for us
class Example extends HookWidget {

const Example();

@override
Widget build(BuildContext context) {

final controller1 = useAnimationController(
duration: const Duration(seconds: 2)

);
final controller2 = useAnimationController(

duration: const Duration(seconds: 1)
);

return Container();
}

}

This is a huge improvement. Hooks do everything automatically: internally they initialize and
dispose the controllers so that you don’t have to write too much code. Basically, a HookWidget is
a "reusable StatefulWidget" which automatically handles your widget’s resources. Before going
on, there’s something more to say:

• Even if declared inside build(), hooks "survive" to rebuilds and they can be reused an
infinite number of times.

• Hooks cannot be used in the build() method of StatefulWidget or StatelessWidget.

Flutter Complete Reference 599

Chapter 21. Widgets showcase

• useAnimationController() is a "hook", like many others we will see in a few lines.

• There’s nothing weird under the hood because internally HookWidget inherits from a state-
less widget so it’s still a "normal" Flutter widget.

Of course, hooks are not required but they are very convenient and you might get used to them
very quickly. Here’s a side-by-side comparison between the StatefulWidget and HookWidget
implementation of a simple animation example.

Animation with StatefulWidget .Animation with HookWidget

static const R = 2 * 3.1415;

late AnimationController ctl;

@override
void initState() {

super.initState();
ctl = AnimationController(

vsync: this,
duration: const Duration(

seconds: 2
),

)..repeat();
}

@override
void dispose() {

ctl.dispose();
super.dispose();

}

@override
Widget build(BuildContext ctx) {

static const R = 2 * 3.1415;

@override
Widget build(BuildContext context) {

final ctl = useAnimationController(
duration: const Duration(

seconds: 2
)

)..repeat();

return AnimatedBuilder(
animation: ctl,
builder: (context, child) {

return Transform.rotate(
angle: ctl.value * R,
child: child

);
},
child: const FlutterLogo(

size: 50,
),

);
}

Flutter Complete Reference 600

Chapter 21. Widgets showcase

return AnimatedBuilder(
animation: ctl,
builder: (context, child) {

return Transform.rotate(
angle: ctl.value * R,
child: child

);
},
child: const FlutterLogo(

size: 50,
),

);
}

.

The type and the usage of the ctl variable is identical because, in both cases, it’s always
a AnimationController. Initialization and disposal happen in the hook as well but they’re
"hidden". So far we’ve only shown a single type hook which works with animations but there are
many more you can use, such as:

1. useTextEditingController(). Creates a TextEditingController and automatically
takes care of disposing it when not needed anymore. Optionally, it can be initialized with
some text.

@override
Widget build(BuildContext context) {

final emailController = useTextEditingController("default@me.com");

return TextFormField(
controller: emailController,

);
}

2. useTabController(). Creates a TabController and automatically takes care of disposing
it when not needed anymore. As you’ve already seen in 21.1.4, it’s used to manually move
among tabs on a TabBarView.

3. useStream<T>(). Subscribes to a Stream<T> and uses an AsyncSnapshot<T> to return the
current state.

Flutter Complete Reference 601

Chapter 21. Widgets showcase

4. useFuture<T>(). Subscribes to a Future<T> and uses an AsyncSnapshot<T> to return the
current state.

5. useMemoized<T>(). Caches an instance of an object for a later use. As you already know,
hooks "survive" to rebuilds so this method persists the data.

@override
Widget build(BuildContext context) {

final cachedUser = useMemoized<User>(() => const User(
name: "Alberto",
surname: "Miola".

));

return UserWidget(
data: cachedUser

);
}

The User instance is immediately stored; when the HookWidget rebuilds, useMemoized()
returns the previous instance.

useContext(). Returns the BuildContext of the current HookWidget.

Be sure to visit the official documentation 3 to see all the types of hooks you can use. If you
can’t find what you’re looking for, there’s even the possibility to create your own hooks just by
overriding Hook. Let’s see how we can create a hook to generate random numbers:

1. Create a new file called time_hook.dart.

2. Create a top-level function to "hide" the actual class implementing the hook and be sure to
start with the word use. These are just conventions you should follow to keep consistency
with the "hooks environment".

int useRandomGenerator(int value) {
return use<int>(_RandomGenerator(maxValue: value));

}

3. In the same file, create the actual hook extending Hook<T> which has a the same structure
as a StatefulWidget. When inside the state, you can reference members defined in the
class using the hook property (where in a StatefulWidget you’d have used widget).

3https://pub.dev/documentation/flutter_hooks/latest/

Flutter Complete Reference 602

Chapter 21. Widgets showcase

class _RandomGenerator extends Hook<int> {
final int maxValue;

const _RandomGenerator({
required this.maxValue

});

@override
_RandomGeneratorState createState() => _RandomGeneratorState();

}

class _RandomGeneratorState extends HookState<int, _RandomGenerator> {
late final Random random;

@override
void initHook() {

super.initHook();
random = Random();

}

@override
int build(BuildContext context) => random.nextInt(hook.maxValue);

@override
void dispose() {

debugPrint("Disposed the 'RandomGenerator' hook");
super.dispose();

}
}

This is also how useAnimationController and others work under the hood. Define your ini-
tialization and finalization logic inside initHook and dispose. The build() method returns the
data type you need which is an int in this case.

21.3.2 State notifier

You’ve seen many examples where we used ChangeNotifier to create "listenable" model classes
that can be watched by a ChangeNotifierProvider<T> (from the provider package). It’s the

Flutter Complete Reference 603

Chapter 21. Widgets showcase

most common way of working and it’s very efficient.

class DateCache with ChangeNotifier {
DateTime _date = DateTime.now();

Date get currentDate => _date;

void refresh() {
_date = DateTime.now();
notifyListeners();

}
}

This small model class simply exposes a date and notifies its listeners when it’s updated. All
good here but thanks to the state_notifier package we can do the same thing with less code (and
probably readability would benefit as well).

class DateCache extends StateNotifier<DateTime> {
DateCache(): super(DateTime.now());

void refresh() {
state = DateTime.now();

}
}

StateNotifierProvider is the equivalent of ChangeNotifierProvider but in the "state noti-
fier" world. They do the same thing but of course the former works with StateNotifier<T> and
the latter with ChangeNotifier.

// Requires the 'flutter_state_notifier' package to be imported
StateNotifierProvider<DateCache, DateTime>(

create: (_) => DateCache(),
child: const Something(),

)

// Inside the 'Something' widget
@override
Widget build(BuildContext context) {

return Column(
children: [

Flutter Complete Reference 604

Chapter 21. Widgets showcase

Text("${context.watch<DateTime>()}"),

RaisedButton(
child: const Text("Refresh"),
onPressed: () => context.read<DateCache>().refresh(),

)
]

);
}

Very intuitively, watch<T>() is used to rebuild the widget whenever the date changes and read<T>
just returns a reference without rebuilding anything. Note that watch<T>() needs the type of
the state while read<T>() needs the type of the notifier.

Flutter Complete Reference 605

22 | Using Firebase with Flutter

22.1 Installation

In this chapter we’re working with FlutterFire plugins, a series of packages that connect your
Flutter apps to Firebase. Before any of the Firebase services can be used, you always need
to setup your platform and thus, for new projects, the following guide is required. We’re only
covering the most commonly used package: visit the official documentation 1 to get a complete
overview.

https://firebase.flutter.dev

As example, we’re going to configure the app we will build in the next section. Regardless, these
steps will always be the same for any new project. Go to the Firebase console 2 and log in with
your Google account. Click on "Add project", give it a name (once decided, it cannot be changed)
and leave all the other settings as they are.

1https://firebase.flutter.dev
2https://console.firebase.google.com/u/0/

Flutter Complete Reference 606

https://firebase.flutter.dev

Chapter 22. Using Firebase with Flutter

After a few seconds you’ll be redirected to the new project page from which you can link Firebase’s
services (database, storage, analytics...) to your apps. Let’s start by clicking on Add Firebase to
your Android app and follow the steps:

1. Type the package name you want and be sure to also use this same name when the Flutter
project will be created. Having an identical name is fundamental in order to link an app
to your Firebase cloud project.

2. Download the google-services.json file which we’re going to use soon. It’s a configura-
tion file needed in our projects in order to recognize which Firebase project your app has
to point at.

The Android setup is now ready so we can add more platforms clicking on "Add another app".
In case you had the need to use Firebase for iOS, just hit Add Firebase to your iOS app and
follow the same procedure as before:

1. Type the bundle ID you want and, again, be sure it matches the bundle ID name of your
iOS app. In practice, it must be identical to the string you put earlier for Android since

Flutter Complete Reference 607

Chapter 22. Using Firebase with Flutter

the project is the same.

2. Download the configuration file.

Since we’re creating a cross-platform app with Flutter, both Android and iOS should really have
the same value for package name and bundle ID respectively. Firebase is now completely setup so
it’s time to create a new Flutter project with the correct package name (screenshot from Android
Studio):

It’s the same string we’ve put earlier when registering both the Android and iOS projects. Lastly,
there’s the need to get the configuration files in place, the ones downloaded at the second step of
the platform setup. For Android:

1. Move google-services.json in your Flutter project at android/app, which is the same
directory of the build.gradle file

2. Open the android/build.gradle file and inside dependencies add a reference to google
services (be sure to use the latest version):

buildscript {

Flutter Complete Reference 608

Chapter 22. Using Firebase with Flutter

repositories {
google()
jcenter()

}

dependencies {
...
classpath 'com.google.gms:google-services:4.3.3'

}
}

3. Open the android/app/build.gradle file and at the bottom, below the dependencies
group, add this line:

apply plugin: 'com.google.gms.google-services'

For iOS instead you need to open Xcode, select the .xcworkspace file with your project’s name,
right click it and choose "Add files to ’Runner’". Select the GoogleServices-Info.plist file
and import it. Don’t manually move it via filesystem because it won’t work.

dependencies:
flutter:

sdk: flutter
firebase_core: ^0.5.0

Be sure to add the firebase_core plugin in your dependencies list because it’s required by any
FlutterFire package. It links your Flutter app to Firebase. It has to be initialized before any
Firebase interaction happens so ideally Firebase.initializeApp(); should be called in the
home page.

class HomePage extends StatefulWidget {
const HomePage();

@override
_HomePageState createState() => _HomePageState();

}

class _HomePageState extends State<HomePage> {
late final Future<FirebaseApp> _initialization;

@override

Flutter Complete Reference 609

Chapter 22. Using Firebase with Flutter

void initState() {
super.initState();
_initialization = Firebase.initializeApp();

}

@override
Widget build(BuildContext context) {

return FutureBuilder<FirebaseApp>(
future: _initialization,
builder: (context, snapshot) {

if (snapshot.hasError) {
return const ErrorWidget();

}

if (snapshot.connectionState == ConnectionState.done) {
return const HomePageBody();

}

return const Center(
child: SomeLoadingWidget(),

);
},

);
}

}

For more info on how to gracefully perform startup initialization, see appendix B.3. If you use a
FlutterFire plugin without having called initializeApp() first, your app won’t work.

22.2 Using Firestore as backend

Firestore is Google’s backend solution for your desktop, web or mobile apps which offers scalabil-
ity, reliability and real-time data sync. In this section we’re going to create an app to keep track
of votes submitted by users about their favorite programming language.

Flutter Complete Reference 610

Chapter 22. Using Firebase with Flutter

Very simply, pressing the green thumb for a certain language increases the "like" counter by 1.
We’re going to see the implementation of this app, backed by a Firestore NoSQL database, in
the very next section. We now want to focus a bit on the advantages brought by this cloud-based
service:

1. When you tap on the "like" button, the database is updated and changes are reflected
immediately on any device. Data are updated in real-time so anyone looking at the app
can see the counters increasing... in real-time! No need to press on a "refresh" button or
perform any action to update the UI.

2. The data, such as "likes" and programming language names, are stored in Firestore (a
NoSQL database) and the integration with the app happens thanks to the cloud_firestore
plugin.

3. Firestore is a very robust, distributed and reliable service maintained by Google, along with
its Flutter implementation. You don’t have to worry about compatibility or the complexity
of the API because there are a series of Dart classes ready for you to use.

4. You don’t have to create/test a web service, manage a database, setup periodic backups
and all those important backend tasks. Firestore takes care of everything so that you can
fully concentrate on app development.

Flutter Complete Reference 611

Chapter 22. Using Firebase with Flutter

Firestore is very powerful and handy but of course it’s not the only way to create a backend for a
Flutter application. For example, we could have used a Linux server with a traditional MySQL
database and a webservice exposing a REST API. In this case, we’d have to take care of both
the backend and the frontend.

Firebase instead exposes a series of services for our apps and thanks to FlutterFire, there’s even
more integration and ease of use. You can only focus on the frontend. Before adopting it, you
should explore its capabilities and doing some demo projects in order to be able to evaluate its
pros and cons.

22.2.1 Building the backend

Go to the Firestore console, choose the newly created project, click on "Database" on the left and
choose "Cloud Firestore" as project database. For our demo app, going for test mode is fine
but if you consider keeping your project alive for a long time, you should later switch to locked
mode. It’s more secure.

Flutter Complete Reference 612

Chapter 22. Using Firebase with Flutter

Wait a minute while the Firestore instance prepares and then you’re ready to start. We’re going
to work with a NoSQL database, which has no relations and foreign keys as it’s structured like a
JSON file with key-value pairs. It’s made up of three important parts:

A series of data is grouped together in a document, which must have an unique id. One or
more documents are grouped inside a collection. To be more specific, in our example we’ve
decided to use a collection called "languages" which is going to contain a series of documents
about programming languages:

Flutter Complete Reference 613

Chapter 22. Using Firebase with Flutter

Data can be of various types such as arrays, integers, strings or time. Each document has an id,
represented by a weird long string (it’s been automatically generated by Firestore but you could
manually assign one). Each document holds data about a certain programming language; you
should use the same names across the entire collection in order to make easy queries.

Flutter Complete Reference 614

Chapter 22. Using Firebase with Flutter

As you can see, "Document ID" is the unique identifier we’ve decided to automatically assign
just to keep the example easy. You should really look at the best practices 3 section of the doc-
umentation which is very useful, especially for beginners. We’re good with these settings so we
can move to the frontend section.

B Resources > Chapter 22 > Cloud Firestore

22.2.2 Building the frontend

Add the official cloud_firestore 4 package as dependency in your pubspec.yaml file and be sure
you’ve already called Firebase.initializeApp(). In order to receive real-time updates from
the database, we’re going to work with streams.

class FavoriteList extends StatelessWidget {
static Stream<QuerySnapshot> getStream() =>

FirebaseFirestore
.instance
.collection("languages")
.orderBy("likes", descending: true) // 1
.snapshots(); // 2

const FavoriteList();

// build...
}

Thanks to collection("languages") we can reference the "languages" collection on Firestore
created in the previous step. The FirebaseFirestore.instance already knows how to point to
the correct database in the cloud because settings are taken from the json or .plist configuration
files.

1. You can build a query and filter the data received from the database. In this example we’re
ordering rows but you can also use other functions such as limit() or where().

2. The snapshot() method returns a stream listening to the given collection: new values
are emitted whenever something changes. Thanks to this approach, we’re able to show

3https://firebase.google.com/docs/firestore/best-practices
4https://pub.dev/packages/cloud_firestore

Flutter Complete Reference 615

Chapter 22. Using Firebase with Flutter

live changes in our app without having to manually refresh the page. Data are always
automatically kept in sync with the database.

The stream is handled in the usual way: the hasData property tells whether data are ready to
be displayed or not. As always, remember to use const constructors as much as possible because
builder functions are called quite often.

@override
Widget build(BuildContext context) {

return StreamBuilder<QuerySnapshot>(
stream: getStream(),
builder: (context, languages) {

if (languages.hasError) {
return const ErrorWidget();

}

if (languages.hasData) {
final data = languages.data;

if (data != null) {
return ListView.builder(

itemExtent: 80.0,
itemCount: data.docs.length,
itemBuilder: (context, index) =>

LanguageItem(data.docs[index]),
);

} else {
return const ErrorWidget();

}
}

return const Center(
child: CircularProgressIndicator()

);
},

);
}

To favor code readability, making a reusable widget to represent each item of the list is a good

Flutter Complete Reference 616

Chapter 22. Using Firebase with Flutter

idea so we created class LanguageItem. The docs list contains the list of documents returned
by the query executed on the "languages" collection.

class LanguageItem extends StatelessWidget {
final String name;
final int likes;
final String asset;
final QueryDocumentSnapshot _snapshot;

LanguageItem(this._snapshot) :
asset = _snapshot.get("image") as String,
likes = _snapshot.get("likes") as int,
name = _snapshot.get("name") as String;

// build and updateVote...
}

The QueryDocumentSnapshot object holds data about a document of the collection, which is in
our case the data about a programming language. We have to pay attention to write the correct
field names otherwise an exception will be thrown. In case you wanted to add another field, go
to the online console and click on "Add field" for each object in the collection.

Each programming language is represented by a ListTile widget which is very handy when it
comes to showing data in a ListView. The image field we set in the Firestore collection indicates
the name of the .svg asset the app has to load.

@override
Widget build(BuildContext context) {

return ListTile(
leading: SvgPicture.asset("images/$asset",

height: 40,
),

Flutter Complete Reference 617

Chapter 22. Using Firebase with Flutter

title: Text(name),
subtitle: Text("Total likes: $likes"),
trailing: IconButton(

icon: const Icon(Icons.thumb_up),
onPressed: _updateVote,
...

),
);

}

When tapping on the icon we want to update the item in the database so that the "like counter"
increases by 1. We need to reference again the collection via FirebaseFirestore.instance,
increase the value on the correct document and send the update to Firestore. It will then take
care of notifying listeners about changes.

void _updateVote() {
FirebaseFirestore.instance.runTransaction((transaction) async {

// 1.
final secureSnapshot = await transaction.get(

_snapshot.reference
);

// Getting the current likes count
final int currentLikes = secureSnapshot.get("likes") as int;

// 2.
transaction.update(secureSnapshot.reference, {

"likes": currentLikes + 1
});

});
}

This approach is secure and free from data races. We’re guaranteed that there won’t be con-
currency problems thanks to the runTransaction() method, which is basically the safe way to
update data on Firestore. Inside the scope of a transaction you can update data and be sure that
the action will execute "atomically".

1. The secureSnapshot object contains a fresh new copy of the language item from which we
can safely read and, most importantly, write values.

Flutter Complete Reference 618

Chapter 22. Using Firebase with Flutter

2. With update() you can change the content of the given field, assuming you’re passing the
correct name. In our case the like counter has to be incremented by 1 so we assign the new
value to the field "likes".

Firestore has built-in support for offline mode. When reading and writing data, an internal local
database is kept in sync with the cloud. In case of no internet connection available, Firestore
continues to work and when connectivity comes back data are automatically synchronized.

void main() {
FirebaseFirestore.instance.settings = Settings(

persistenceEnabled: false,
cacheSizeBytes: Settings.CACHE_SIZE_UNLIMITED,

);

runApp(MyApp());
}

This is very powerful but you might want to rely only on the internet connection. For this reason,
setting persistenceEnabled: false disables the "offline mode". The default cache size value
is 40 MB and the minimum value you can use is 1 MB. The local database can be removed but
the following call has to be made before any Firestore interaction.

await FirebaseFirestore.instance.clearPersistence();

Calling clearPersistence() after even a single Firebase call will clear the local database on the
next app startup.

22.2.3 Working with data

In the previous example, we’ve seen how to read data and receive real-time updates whenever
something changes. Other than listening for changes on collections, you can also listen for single
documents in a similar way.

// Real-time changes on the collection
final Stream<QuerySnapshot> collection = FirebaseFirestore

.instance.collection('my_collection').snapshots();

// Real-time changes on the document
final Stream<DocumentSnapshot> document = FirebaseFirestore

.instance.collection('my_collection').doc('doc_id').snapshots();

Flutter Complete Reference 619

Chapter 22. Using Firebase with Flutter

In both cases, you get a Stream<T> instance which can be used in a StreamBuilder<T> widget.
To reference a specific document on the collection, you need to provide its ID. If you aren’t
interested in real-time updates, you can execute an one-time read:

// Get all the documents in a collection
final Future<QuerySnapshot> documents = FirebaseFirestore

.instance.collection('my_collection').get();

// Get all the data inside a single document
final Future<DocumentSnapshot> documents = FirebaseFirestore

.instance.collection('my_collection').doc('doc_id').get();

The result is now a Future<T> because data are one-time received and not listened. In both
cases (real-time and one-time) you can query collections but of course there’s no possibility to
query documents. Here are some examples based on our "languages" collection:

• Sorting.

FirebaseFirestore.instance
.collection("languages")
.orderBy("likes")
.snapshots();

FirebaseFirestore.instance
.collection("languages")
.orderBy("name", descending: true)
.snapshots();

Ascending is the default direction.

• Limiting.

FirebaseFirestore.instance
.collection("languages")
.limit(10)
.snapshots();

Limits the number of documents retrieved by a query. Use limitToLast() to limit but
from the bottom.

• Filtering.

FirebaseFirestore.instance

Flutter Complete Reference 620

Chapter 22. Using Firebase with Flutter

.collection("languages")

.where("likes", isLessThan: 5)

.snapshots();

FirebaseFirestore.instance
.collection("languages")
.where("likes", isGreaterThanOrEqualTo: 2)
.orderBy("likes", descending: true)
.snapshots();

You can also use arrayContains for collections.

To add a new document in a collection, simply use FirebaseFirestore to get a reference to
the collection and then call the add(Map<String, dynamic> data) method which returns a
Future<T> object.

// Generates an unique random ID
FirebaseFirestore.instance

.collection("languages")

.add({
"image": "java.svg",
"likes": 0,
"name": "Java"

});

With this approach, a new document is added with an auto-generated ID. If you want to be able
to manually specify an ID, use set(Map<String, dynamic> data) on a document reference.
Pay attention because a duplicate ID replaces the other document rather than throwing an
exception.

// Uses the ID you give
FirebaseFirestore.instance

.collection("languages")

.doc("my_id_012")

.set({
"image": "java.svg",
"likes": 0,
"name": "Java"

});

Call delete() on a DocumentReference to delete the document. You can also selectively delete

Flutter Complete Reference 621

Chapter 22. Using Firebase with Flutter

fields of a document using a combination of update() and FieldValue.delete().

// Remove the 'image' value from the document
FirebaseFirestore.instance

.collection("languages")

.doc("my_id_012")

.update({
"image": FieldValue.delete(),

});

Using update() alone might introduce data race problems because concurrency in Firestore
plays a very important role. For this reason, you’d better update your documents’ data inside a
transaction.

22.2.4 Transactions and batches

You’ve already seen an example of a transaction in the "languages" example where the like counter
is safely incremented by one. Transactions are generally used to ensure a safe read/update of a
field based on its current value or the value of other fields. Let’s see an example where we try to
increase the age of a person:

• Without transactions, Firestore updates a value in two different steps. It first executes
get("age") to retrieve the value and then, with another separated operation, it executes
the update() method.

final currValue = docSnapshot.get("age") as int;
await docSnapshot.reference.update({

"age": currValue + 5
});

The problem is that between get() and update(), the field "age" might be changed by
another call so our update() is actually working on "outdated" data. The final result is
undefined because it depends on the order in which calls happen. This problem is also
known as "data race".

• With transactions, Firestore updates a value in a single step because all the operations are
guaranteed to be executed together (like if they were an unique method call).

FirebaseFirestore.instance.runTransaction((transaction) async {
final secureSnapshot = await transaction.get(docSnapshot.reference);
final currValue = secureSnapshot.get("age") as int;

Flutter Complete Reference 622

Chapter 22. Using Firebase with Flutter

transaction.update(secureSnapshot.reference, {
"age": currValue + 5

});
});

In this case, get() and update() are executed together like if they were a single call. There
won’t be data race problems.

A transaction is generally made up of a series of get() followed by a series of delete(), set() or
update() calls. When it fails, an exception is thrown and no data are written in the database. A
batch instead is basically a transaction in which you don’t need to call get() to read data.

Future<void> deleteDocuments() {
final batch = FirebaseFirestore.instance.batch();
final langs = await FirebaseFirestore.instance

.collection("languages")

.get();

langs.documents.forEach((document) {
batch.delete(document.reference);

});

return batch.commit();
}

This batch deletes all the documents inside the "languages" collection in a single operation. The
gist is the same as transactions (the delete()s are executed all together like if they were a single
call), but no read operations happen in between (only delete(), set() or update()).

22.3 Monetizing your apps with AdMob

Google has two main platforms to give you money in change of showing ad banners: AdSense,
for the web world, and AdMob, for the mobile world. Giving a detailed explanation on how they
work and the techniques to maximize the earnings are out of the scope of this book. However,
we can give you a general overview of the system from a practical point of view.

1. The main requirement is an active Google account (and thus a Gmail email) which will be
linked to Adsense. Before starting monetizing your websites and/or mobile apps, there’s
the need to submit a website or a YouTube channel to the Adsense team. They need to
approve it because not every product is eligible for monetization.

Flutter Complete Reference 623

Chapter 22. Using Firebase with Flutter

When your account will be approved, you will be able to start placing ads in your products
and receive money back according to views of banners, clicks and many other factors.
Without an approved account, there’s absolutely no way to show ads. We suggest you to
do the following:

(a) If you have a YouTube channel, you can submit it to the AdSense team. If it meets
some specific criteria you can further investigate in the official website 5, your account
will be approved.

(b) If you have a website, you can submit the link to the AdSense team and they’ll review
it. If it meets their specific approval criteria, your website will be accepted and your
account will be validated. Check their resources page 6 to see how you can improve a
website to raise the chances of being approved.

Once you get an approved account, you got most of the work done. Generally the approval
phase is the longest one as it requires some technical time and not every website might be
accepted at the first try. You might have various improvements to do before having success.

2. When developing mobile apps you have to deal with the AdMob platform, which is inte-
grated in the Flutter environment. You need to have a validated AdSense account in order
to use AdMob because the two services are linked together. Even if they have two different
names, AdSense is still the "main provider".

From now on, we assume that you have a verified AdSense account and thus you’re able to
properly show ads and receive money. Activating an AdMob account is immediate because it’s
directly linked to AdSense so both work together.

5https://www.youtube.com/account_monetization?nv=1
6https://www.google.com/adsense/start/resources/

Flutter Complete Reference 624

Chapter 22. Using Firebase with Flutter

22.3.1 Ad banners

Let’s say you have an app published in the official stores for Android and iOS, or at least one of
them. To get started, login with your verified account at AdMob and register your product in
order to let Google know it has to start distributing ads for your app.

1. On the home page, look at the right and click on "App": a popup menu appears and click
on "Add app" at the bottom. If your app has already been published in the App store or
in the Play store choose Yes and search it.

If you’ve just published your app in the stores, you might not be able to see it at first but
it’s normal; just wait up to 24 hours and then try again. Google needs some time to index
the apps in the stores and refresh its databases.

2. Click on "Create ad unit" and select "Banner". The name you’re asked to give in only
used internally by AdMob to label a banner so that you can easily find it among the others.
Once saved, you’ll arrive at this point:

These two codes are very important and they should be kept in a secure place. App ID
and unit ID are used in both Android and iOS to identify your account and show the ads;

Flutter Complete Reference 625

Chapter 22. Using Firebase with Flutter

don’t expose them to the public!

Create a new Flutter project making sure is has support for AndroidX (it should be enabled by
default, don’t untick it). Be sure to also setup a new Firestore project to download the .json
configuration files as explained in the installation guide. If your app is running on Android devices,
open the AndroidManifest.xml file and add this line inside the <application> tag:

<meta-data
android:name="com.google.android.gms.ads.APPLICATION_ID"
android:value="ca-app-pub-################~##########"/>

The long code starting with ca-app-pub and containing a tilde is the app ID we obtained earlier
from the website. Similarly, for iOS open the Info.plist file and add the following entry to the
list:

<key>GADApplicationIdentifier</key>
<string>ca-app-pub-################~##########</string>

If you forget to add these settings, you app will crash at startup. Be sure to properly place both
files, google-services.json for Android and GoogleServices-Info.plist for iOS, following
the installation guide.

� At the time of writing this book, there isn’t a Flutter widget to display ads. You
can’t freely put them where you want, they’re just shown "in front" of your app using
platform-specific code. The official GitHub 7 page of the FlutterFire project states
that, in the Future, the firebase_admob package will be improved with a dedicated
Flutter widget.

At this point the setup is over and it’s time to start using firebase_admob. An ad banner is
NOT a widget and thus you can’t freely decide to put it wherever you want. It’s always placed
"in front" of you app: there’s no possibility to control this behavior so the best thing to do is
placing it at the bottom.

7https://github.com/firebaseextended/flutterfire

Flutter Complete Reference 626

Chapter 22. Using Firebase with Flutter

On the right you see how the UI would look if we didn’t add any spacing; the banner stays in
front of the whole app and it covers some contents. On the left we’ve solved the problem using the
Padding widget. Basically it creates a gap from the bottom of the screen equal to the banner’s
height, which is fixed:

• AdSize.banner is 320x50 (where the height is 50);

• AdSize.largeBanner is 320x100;

• AdSize.mediumRectangle is 300x250;

• AdSize.fullBanner is 468x60;

• AdSize.leaderboard is 728x90;

• AdSize.smartBanner the Mobile Ads SDK adjusts at runtime the width and the height
but this is hard to handle.

If you want to be sure that the dimensions of the banners are always under your control, which
is probably a good idea, don’t use a smart banner. The AdSize.banner is the shortest and least
intrusive from an user-perspective while AdSize.large and AdSize.full are intrusive. Here’s
how you can setup your app:

1. The Firebase AdMob service requires startup initialization in order to show ad banners so
we’re going to create a StatefulWidget. You should make the initialization in the root
widget so that it’s executed only once (at startup) and not repeatedly. We’re going to use
a FutureBuilder<T> following the classic pattern.

void main() => runApp(const DemoApp());

Flutter Complete Reference 627

Chapter 22. Using Firebase with Flutter

class DemoApp extends StatefulWidget {
const DemoApp();

@override
_DemoAppState createState() => _DemoAppState();

}

class _DemoAppState extends State<DemoApp> {
late final Future<bool> initializer;

Future<bool> loadAds(BannerAd banner) async {
await FirebaseAdMob.instance.initialize(

appId: "ca-app-pub-################~##########"
);

await banner.load();
return banner.show();

}

@override
void initState() {

super.initState();

initializer = loadAds(
BannerAd(

adUnitId: "ca-app-pub-################/##########",
size: AdSize.banner,

)
);

}

@override
Widget build(BuildContext context) => FutureBuilder<bool>(...);

}

If you forget to call initialize() your app will crash at startup, even if the .json configu-
ration file is at the correct place. It’s also important calling load() before show() otherwise
the ad might not appear.

Flutter Complete Reference 628

Chapter 22. Using Firebase with Flutter

2. In the same file, create a package private widget which is going to contain the body of
the app with a small gap at the bottom. In this way we can use a constant constructor
(const _AppBody()) in the FutureBuilder<void> rather than working with Padding()
which cannot be constant.

void main() => runApp(DemoApp());

class DemoApp extends StatefulWidget { ... }
class _DemoAppState extends State<DemoApp> { ... }

class _AppBody extends StatelessWidget {
const _AppBody();

@override
Widget build(BuildContext context) {

return Padding(
padding: EdgeInsets.only(

bottom: AdSize.banner.height.toDouble()
),
child: MaterialApp(...),

);
}

}

Thanks to Padding, your entire app is visible because it has a bottom padding which gives
enough space to the ad to show. The final result will look like this:

Flutter Complete Reference 629

Chapter 22. Using Firebase with Flutter

3. We can now use a FutureBuilder<void> and always return widgets with constant con-
structors.

class _DemoAppState extends State<DemoApp> with AdBanner {
late final Future<bool> initializer;

Future<bool> loadAds(BannerAd banner) async {...}

@override
void initState() {...}

@override
Widget build(BuildContext context) => FutureBuilder<bool>(

future: initializer,
builder: (context, snapshot) {

if (snapshot.hasError) {
return const ErrorWidget();

}

if (snapshot.connectionState == ConnectionState.done) {
return const _AppBody();

}

return const Center(
child: CircularProgressIndicator(),

);
}

);
}

Alternatively, you could remove the progress indicator and immediately show the app. In
this case, simply use const _AppBody() as default fallback and only handle errors. Ads
will still appear at the bottom but later.

FutureBuilder<bool>(
future: initializer,
builder: (context, snapshot) {

if (snapshot.hasError) {
return const ErrorWidget();

Flutter Complete Reference 630

Chapter 22. Using Firebase with Flutter

}

return const _AppBody();
}

);

While this solution works, you might not like having a black background behind the banner or
so much "empty" space at the bottom. A better solution would involve the usage of a Column to
contain the app and a Container to style the "empty space".

class _AppBody extends StatelessWidget {
const _AppBody();

@override
Widget build(BuildContext context) {

return Column(
children: <Widget>[

Expanded(
// The app itself
child: MaterialApp(...),

),

// What's behind the banner
LayoutBuilder(

builder: (context, constraints) {
return Container(

width: constraints.maxWidth,
height: AdSize.banner.height.toDouble(),
decoration: const BoxDecoration(...),

);
},

),
],

);
}

Thanks to Expanded we’re guaranteed that our app will cover as much space as possible. At the
bottom there is a Container covering the entire width and it has the same height as the banner;
it can be styled via decoration as you prefer.

Flutter Complete Reference 631

Chapter 22. Using Firebase with Flutter

Instead of having black spaces behind the banner, now there’s a white background which fits
better with the style of the UI. It might require some work but an Image() or SvgPicture could
end up with am even better result.

22.3.2 Rewarded video ads

This kind of advertising is different from banners as it’s not always visible. Video rewards are
used very often in mobile games: the user is asked to watch a video until the end and, as a prize,
in-game credits are added. Here’s a common execution flow:

• The player taps a button to get coins/gems/credits;

• a full screen ad video appears and it generally lasts a few seconds (it can of course be
manually closed);

• if the video has been watched until the end, the player gets a reward.

Video ads don’t need to be initialized only once because internally they implement the singleton
pattern. Nevertheless, it’s still a good practice initializing them only once in the same way as
banners, so we’re going to use the classic FutureBuilder<T> pattern:

late final Future<bool> initializer;

Future<bool> loadRewardedVideo() async {
await RewardedVideoAd.instance.load(

adUnitId: "ca-app-pub-################/##########"
);

Flutter Complete Reference 632

Chapter 22. Using Firebase with Flutter

RewardedVideoAd.instance.listener = _listener;
}

@override
void initState() {

super.initState();
initializer = loadRewardedVideo();

}

void _listener(RewardedVideoAdEvent event, {
String? rewardType,
required int rewardAmount

}) {
if (event == RewardedVideoAdEvent.rewarded) {

gamePoints.add(100);
gameCredits.increase(rewardAmount);

}
}

The listener of a RewardedVideoAd is called every time the user interacts with a video ad.
Using event we can check if the video has been watched until the end and decide whether it’s
the case or not to give a prize.

RaisedButton(
child: const Text("Show video ad"),
onPressed: () =>

RewardedVideoAd.instance.show(),
)

To display the video, you can call show everywhere in your app and the listener associated to the
RewardedVideoAdEvent will be triggered. The ad appears in front of your app covering it almost
completely but it will always have a close button, generally in the top-right corner.

22.4 Flutter ML Kit

Face detection, image labelling, text parsing and machine learning might sound hard to imple-
ment due to the complexity of the topic and the actual skills required. With Flutter’s ML Vision
plugin realizing all these tasks becomes very easy because almost all of the complex work is pow-

Flutter Complete Reference 633

Chapter 22. Using Firebase with Flutter

ered by Firebase.

� Firebase’s ML Kit is a powerful collection of machine learning modules ready for
you to use. They’re well-integrated in the Flutter environment thanks to the official
plugins made by the Google team so you should definitely give them a try.

22.4.1 Detecting faces

In this example we’re going to create a face detection app that takes an image from our device’s
gallery and detects if there are one or more humans portrayed on it. It will be also able to detect
where faces are with additional information (whether the person is smiling or not, for example).
We’re going to need two plugins:

• image_picker : the official Flutter plugin for picking images from the gallery or any other
available location in the device;

• firebase_ml_vision: a very powerful plugin that uses the ML (Machine Learning) kit from
Firebase8

The app is made up of a single page in which the user is asked to select an image from the gallery,
but it could have been taken from the camera or anywhere else. The Firebase plugin will detect
any human face, head rotation, smiles and some red rectangles will surround the results (if any).
The app will look like this:

8https://pub.dev/packages/firebase_ml_vision

Flutter Complete Reference 634

Chapter 22. Using Firebase with Flutter

As always, be sure to install google-services.json and/or the GoogleServices-Info.plist
configuration files as we’ve explained in the installation guide at the beginning of the section.

1. Let’s start with the creation of a class that is just going to contain the results of the face
detection process. Since Dart cannot return multiple values from a function, we need to
create a "wrapper" to expose more than a single value:

import "dart:ui" as ui;

class FaceDetectorData {
final List<Face> faces;
final ui.Image image;
const FaceDetectorData(this.faces, this.image);

}

Note that we’re using ui.Image rather than Image because the canvas (more on it later)
understands a different kind of image format. The type Face is given by the ML Kit
package: it contains data about the detected face.

2. Now we need a model class which uses the ML vision plugin to detect faces in a given image.
We’re hard-coding the size of the image to keep the example simple, but in general you
should handle the sizes of the images dynamically according to the screen’s dimensions.

Flutter Complete Reference 635

Chapter 22. Using Firebase with Flutter

class FaceDetectorModel {
const FaceDetectorModel();

Future<FaceDetectorData> detectFaces() async {
// Choose the image
final picker = ImagePicker();
final imageFile = await picker.getImage(

source: ImageSource.gallery,
maxWidth: 260,
maxHeight: 250,

);

// Load the image and setup the Vision kit
final file = File(imageFile.path);
final image = FirebaseVisionImage.fromFile(file);
final detector = FirebaseVision.instance.faceDetector();

// Process data
final faces = await detector.processImage(image);
final canvasImage = await _decodeImage(file);
return FaceDetectorData(faces, canvasImage);

}

Future<ui.Image> _decodeImage(File file) async {...}
}

Calling the getImage() method, your device opens the gallery and lets you select one of
the available images returning a reference to the chosen file. You could have also taken the
image directly from the camera:

source: ImageSource.camera,

The processImage() method looks for faces in the given image and returns a list of Face
objects. It contains a lot of useful information we will explore later. As you can see,
processing images and detecting faces using a machine learning library takes very few lines
of code.

Future<ui.Image> _decodeImage(File file) async {
// 'file' is a reference to the image we picked earlier from the
// gallery.

Flutter Complete Reference 636

Chapter 22. Using Firebase with Flutter

final rawFile = await file.readAsBytes();

// The 'Codec' class is used by the Flutter engine and it shouldn't
// be directly instantiated. Instead, it can be properly created
// with the 'instantiateImageCodec'
final Codec codec = await instantiateImageCodec(rawFile);

// 'FrameInfo' contains information for a single frame of an
// animation. We need it to extract an 'ui.Image' object which
// is a low level representation of an image
final FrameInfo frameInfo = await codec.getNextFrame();

// Finally... the object we need!
return frameInfo.image;

}

This function does some low-level data manipulations. In order to show images on the
canvas and draw on it, we need to return an instance of ui.Image. This is how you "load"
images into a canvas. The code is complicated but in practice you’ll never use those methods
so don’t worry too much about them.

3. Now that Firebase models are ready, we can start working on the UI. We’re using provider
to expose a boolean variable which will decide whether it’s the case to show the image
picker or the result widget with the detected faces.

class FaceProvider with ChangeNotifier {
bool _showDetector = false;

bool get isDetectorVisible => _showDetector;

void setDetectorVisible(bool isVisible) {
_showDetector = isVisible;
notifyListeners();

}
}

The isDetectorVisible getter returns false by default because when the app loads, we
want the user to click on the "Detect faces" button to select an image from the gallery.

Flutter Complete Reference 637

Chapter 22. Using Firebase with Flutter

With this technique we’re able to easily change the visible widget setting true or false in
the model class, exposed with a provider. In particular, a Consumer<T> will read the value
and will decide which widget to show.

Consumer<FaceProvider>(
builder: (context, faceDetector, _) {

if (faceDetector.isDetectorVisible) {
// Shows the image with the detected faces
return const DetectFacesFromImage();

}

// Shows the button 'Detect faces' and opens the gallery
return const DetectionImgPicker();

},
)

Flutter Complete Reference 638

Chapter 22. Using Firebase with Flutter

4. The DetectionImgPicker widget is nothing special as it’s just a Wrap() containing a
button and an icon. We need a Consumer<FaceProvider> to move from the currently
visible widget (image picker) to the result page widget (detected faces).

Consumer<FaceProvider>(
builder: (context, faceDetector, _) {

return RaisedButton(
child: const Text("Detect faces"),
onPressed: () => faceDetector.setDetectorVisible(true),

);
},

),

As we’ve explained earlier, changing the value to true, the currently visible widget becomes
DetectionImgPicker instead of DetectFacesFromImage

5. The DetectFacesFromImage widget has to be stateful because there’s a Future<T> to await
and thus we’re going to implement the classic FutureBuilder<T> pattern.

class _DetectFacesFromImageState extends State<DetectFacesFromImage> {
late final Future<FaceDetectorData> _faces;

final _model = FaceDetectorModel();

@override
void initState() {

super.initState();

_faces = _model.detectFaces();
}

@override
Widget build(BuildContext context) {

return FutureBuilder<FaceDetectorData>(
future: _faces,
builder: (context, facesList) {

if (facesList.hasData) {...}

return const Center(
child: CircularProgressIndicator(),

Flutter Complete Reference 639

Chapter 22. Using Firebase with Flutter

);
},

);
}

}

The hasData property becomes true when the plugin has successfully decoded the image.
We want to show the original image and, in addition, a series of red rectangles surrounding
any face recognized; in order to do so, we need a CustomPaint widget.

Wrap(
children: <Widget>[

SizedBox(
width: 260,
height: 250,
child: CustomPaint(

painter: RectanglePainter(
facesPositions: data.faces,
selectedImage: data.images,

),
),

),

Consumer<FaceProvider>(
builder: (context, detector, _) {

return RaisedButton(
child: const Text("New detection"),
onPressed: () =>

detector.setDetectorVisible(false),
);

},
),

],
),

The button at the bottom sets isDetectorVisible to false to come back to the image
selection widget. In the next section we’re exploring in detail the RectanglePainter class.

Flutter Complete Reference 640

Chapter 22. Using Firebase with Flutter

22.4.1.1 CustomPainter and the canvas

A CustomPainter exposes a canvas in which you can draw lines, shapes or any kind of custom
painting. While Flutter is very powerful and customizable, there could be certain cases in which
very sophisticated paintings are required for a particular UI so it’s the case to use a painter.

class RectanglePainter extends CustomPainter {
@override
void paint(Canvas canvas, Size size) { ... }

@override
bool shouldRepaint(RectanglePainter oldDelegate) { ... }

}

If you want to implement a painter, which isNOT a widget, you have to subclass CustomPainter
and override its two methods. It can be seen as a low level tool to freely draw on the UI.

• the paint() method exposes a canvas in which you can paint anything. All the drawing
commands should occur within the bounds given by the size object to avoid undesired
misalignments of the shapes. Some popular methods are:

canvas.drawRect(...); // draws a rectangle
canvas.drawCircle(...); // draws a circle
canvas.drawOval(...); // draws an oval
canvas.drawPath(...); // for Bézier curves
// and much much more...

Check out the official documentation of Canvas 9 to see the painting methods you can use.

• the shouldRepaint() method controls when the painter should redraw. If your painter
has no mutable properties, you can safely return false otherwise there will be the need to
setup a proper logic.

Given a picture, we want to draw red rectangles around the faces that have been detected. We
already have the coordinates because they’re inside the Face objects so we’re ready to paint.

1. Other than drawing the rectangles, we also want the original image to be in the background.
A canvas doesn’t understand the Image type given by Flutter but instead it works with the
Image class of the 'dart:ui' package.

import 'dart:ui' as ui show Image;

9https://api.flutter.dev/flutter/dart-ui/Canvas-class.html

Flutter Complete Reference 641

Chapter 22. Using Firebase with Flutter

We need to import "dart:ui" and give it an alias just to be sure to not get confused by the
names. Inside class FaceDetectorModel we declared the canvasImage property which
exactly returns an instance of ui.Image; it’s created right after the image is selected from
the gallery.

class RectanglePainter extends CustomPainter {
final List<Face> facesPositions;
final ui.Image selectedImage;

const RectanglePainter({
required this.facesPositions,
required this.selectedImage

});

// paint and shouldRepaint...
}

Here we have selectedImage, used as background, and facesPositions, which tells us
how many rectangles will be painted and their exact positions in the canvas.

2. This class will paint a some rectangles according to the contents of selectedImage and the
items of the list could potentially change every time the instance is used. For this reason
we need to override shouldRepaint with a logic:

@override
bool shouldRepaint(RectanglePainter oldDelegate) =>

selectedImage != oldDelegate.selectedImage ||
facesPositions != oldDelegate.facesPositions;

If the class didn’t depend on mutable external parameters, we could have overridden this
method to simply return false. In the example below we have a class with no references
to external dependencies and the drawing is always the same, so it’s a "static piece" that
doesn’t need to be repainted.

class MyPainter extends CustomPainter {
const RectanglePainter();

@override
void paint(Canvas canvas, Size size) {

canvas.drawArc(...);
}

Flutter Complete Reference 642

Chapter 22. Using Firebase with Flutter

@override
bool shouldRepaint(MyPainter oldDelegate) => false;

}

3. Let’s now see how we can actually draw red rectangles around the detected faces, if any.
Every time we call a drawX function we need to pass a Paint object which describes how
the figure has to look like.

static final Paint _painter = Paint()
..style = PaintingStyle.stroke // 1.
..strokeWidth = 3.0 // 2.
..color = Colors.redAccent; // 3.

We’ve decided to create a red (3) shape with no background color, with visible borders (1)
and with a certain thickness (2). Instead, if we used PaintingStyle.fill the shape would
have been entirely filled with the given color.

@override
void paint(Canvas canvas, Size size) {

canvas.drawImage(selectedImage, Offset.zero, Paint());

for(final face in facesPositions) {
final coords = face.boundingBox;
final rect = Rect.fromLTRB(

coords.left,
coords.top,
coords.right,
coords.bottom

);

canvas.drawRect(rect, _painter);
}

}

The Rect class represents a 2D rectangle whose coordinates are relative to a certain origin.
With drawRect() we can exactly tell the engine where the rectangle has to be painted in
the canvas. Since each Face object contains top, left, right, and botton offsets we can easily
build a Rect with no extra effort.

Flutter Complete Reference 643

Chapter 22. Using Firebase with Flutter

Those red rectangles are drawn by canvas.drawRect() and their position/sizes have been
calculated by the Firebase plugin earlier.

Since a subclass of CustomPainter can’t be directly used in the build() method, there’s the
need to wrap it into a widget called CustomPaint. The painter parameter passes an instance of
a CustomPainter telling the widget what and how has to be painted.

// Inside the 'DetectFacesFromImage' widget
CustomPaint(

painter: RectanglePainter(
facesPositions: facesList.data,
selectedImage: _model.canvasImage

),
),

22.4.2 Firebase vision kit

If you visit the official pub page of the firebase_ml_vision package 10 you’ll find many other
useful detectors for your apps. They all can be used in the same way: you could organize the
code in order to favor reusability and maintainability as much as possible.

• class BarcodeDetector. Detector for barcode scanning on an input image.

10https://pub.dev/packages/firebase_ml_vision

Flutter Complete Reference 644

Chapter 22. Using Firebase with Flutter

final file = FirebaseVisionImage.fromFile(...);
final barCodes = await FirebaseVision.instance

.barcodeDetector()

.detectInImage(file);

• class ImageLabeler. Do you have an image of a family in Paris with the Eiffel tower in
the background on a sunny day? This detector will recognize people, things, places and
much more with a certain confidence degree.

final file = FirebaseVisionImage.fromFile(...);
final labels = await FirebaseVision.instance

.imageLabeler()

.processImage(file);

Each label has a score indicating the confidence the ML model has in its relevance. In other
words, each label has a number indicating how close the algorithm is to the real meaning
of the image.

• class TextRecognizer. Detector for performing optical character recognition (OCR) on
an input image. It can output the whole text on a single string or divide it in multiple
blocks.

final file = FirebaseVisionImage.fromFile(...);
final textBlocks = await FirebaseVision.instance

.textRecognizer()

.processImage(file);

If you find these packages useful, you should keep an eye on them because the Flutter team is
looking forward into more integration with Firebase ML modules.

22.5 Push notifications with FCM

Push notifications are messages sent outside of the app’s UI, even when it’s closed, to notify the
user about something. They generally appear at the top with a small icon on the left and a short
body which describes the purpose of the alert. Firebase is the starring again because it’s respon-
sible of dispatching notifications on mobile devices. There’s a minimal setup for Android:

1. Download, as usual, the google-services.json configuration following the installation
guide at the beginning of the chapter.

2. In order to be able to react to the user’s tap on the notification bar (at the top of your

Flutter Complete Reference 645

Chapter 22. Using Firebase with Flutter

device) be sure to add the following lines in the manifest file.

<intent-filter>
<action android:name="FLUTTER_NOTIFICATION_CLICK" />
<category android:name="android.intent.category.DEFAULT" />

</intent-filter>

Of course, push notifications for iOS are managed by Firebase too and you’re asked to do the
following setup as well:

1. You need to generate a certificate for your app but it’s quite easy to do:

(a) Open your developer account page and go to "Certificates, Identifiers and Profiles".
Click on Keys and add a new one by giving a custom description.

(b) Select the checkbox next to "Apple Push Notification service"

(c) Confirm your selection and download the file. Be sure to not lose it because it’s a
one-time download that cannot be retrieved later!

2. Place the GoogleService-Info.plist following the installation guide at the beginning of
the chapter, unless you haven’t already done this step.

3. Still on Xcode, select Runner and inside "Capabilities" turn on push notifications, back-
ground modes, background fetch and remote notifications.

4. Check the pub.dev package page of firebase_messaging to see how to upload the APN
certificate and enabling the notification manager via Objective-C/Swift.

After this long preparation, you’re finally ready to write some Dart code to make the notification
work. Add firebase_messaging as dependency and create a dedicated file, which could be called
fcm_setup.dart, containing the logic to send requests to the FCM cloud service.

class FirebasePushManager {
FirebasePushManager._();

// A singleton
static final _instance = FirebasePushManager._();
factory FirebasePushManager() => _instance;

bool _initialized = false;

Future<void> init() async {

Flutter Complete Reference 646

Chapter 22. Using Firebase with Flutter

if (!_initialized) {
// Note that 'FirebaseMessaging' is a singleton as well. We
// create 'firebaseMsg' just for conveniency
final firebaseMsg = FirebaseMessaging();

// This appears only on iOS but it's really important.
await firebaseMsg.requestNotificationPermissions();
firebaseMsg.configure(...);

_initialized = true;
}

}
}

This class interacts with FCM (Firebase Cloum Messaging) to send and receive push notifi-
cations. The init() method should be called at startup, maybe in the way we’ve suggested
in appendix B.3. After having called init(), your device will be able to successfully receive
push notifications. In addition, you probably might find calling another method very useful as
well:

// still inside the 'init()' method
await firebaseMsg.requestNotificationPermissions();

firebaseMsg.configure(
onLaunch: (Map<String, dynamic> data) { ... },
onMessage: (Map<String, dynamic> data) { ... },
onResume: (Map<String, dynamic> data) { ... },

);

When a push notification is received, other than a message and the icon to show in the device’s
tray icon, it can also carry some data. The Map<String, dynamic> data parameter represents
the payload coming together with the notification:

• the onMessage callback is triggered when the app is in the foreground, which is practically
when "the app is opened" (the user can interact with it);

• the onLaunch and onResume callbacks are called when the app is closed or it’s in the
background.

When you see a push notification at the top of your device, generally you want to be able to tap
on it and open the app. More specifically, it would be even better if you were redirected to a

Flutter Complete Reference 647

Chapter 22. Using Firebase with Flutter

specific route of your app when tapping on the notification.

22.5.1 Handling push notifications

The Map<String, dynamic> data parameter contains the additional information received to-
gether with the notification. In the next section, we’re going to see how to add this kind of data.
In the init() method, we start by configuring this:

firebaseMsg.configure(
onMessage: _showAlert,
onLaunch: _navigateToRoute,
onResume: _navigateToRoute,

);

Since onMessage is triggered while the user is interacting with the app, moving suddenly to a
new page might be confusing and "intrusive". For this reason, an alert dialog (or any other form
of message) is better.

Future<void> _showAlert(Map<String, dynamic> data) async {
final author = data["author"] as String;

// Actually you should use 'showDialog' or 'showCupertinoDialog'
// to nicely display a message to the user
debugPrint("Notification sent by $author");

}

The onLaunch and onResume callbacks are triggered, respectively, when the app is closed or in
the background and the notification is tapped. A very common need is the following: the app is
closed, a push notification is received, the user taps on it and a specific route has to open.

Future<void> _navigateToRoute(Map<String, dynamic> data) async {
// When sending a notification, you add as payload the name of
// the route to which you want to navigate.
final routeName = data["route"] as String;

// Navigate to the route... but there's no context available!
Navigator.of(context)?.pushNamed(routeName);

}

In this way, tapping on the notification opens your app and moves to the given route. However,
with our setup there’s no BuildContext available because the method signature only has a

Flutter Complete Reference 648

Chapter 22. Using Firebase with Flutter

Map<K,V>. You have two solutions:

• change the signature and add a BuildContext context parameter but then you might still
be in trouble passing a context;

• use a GlobalKey and associate to it a navigatorKey in your material or cupertino root
widget. In order to do this, you could create a new key in RouteGenerator as we’ve seen
in 12.3:

class RouteGenerator {
RouteGenerator._();

// Expose a key to use a navigator without a context
static final key = GlobalKey<NavigatorState>();

state Route<dynamic> generateRoute(RouteSettings settings) {...}
}

It can now be attached to the navigator in the root widget:

MaterialApp(
onGenerateRoute: RouteGenerator.generateRoute,
navigatorKey: RouteGenerator.key,

)

There’s now the possibility to navigate among routes without having a context available.
Thanks to the key, we can now use this code so that when the push notification is tapped,
the given route is opened.

Future<void> _navigateToRoute(Map<String, dynamic> data) async {
// Name of the route received from the payload
final routeName = data["route"] as String;

// Navigate to the route without having a context
RouteGenerator.key.currentState?.pushNamed(routeName);

}

22.5.2 Sending push notifications

Push notifications can be sent very easily in the online Firebase console. Just open it, select your
project, click on "Cloud Messaging" and create a new notification. Give it a title, a body and

Flutter Complete Reference 649

Chapter 22. Using Firebase with Flutter

the URL of an image that will be displayed along with the notification.

You can schedule when the notification should be sent, the audience, give it an ID and much
more. In the final step, you have the possibility to insert some optional custom data fields: they’re
the payload of the notification.

This is what Flutter will store as Map<String, dynamic> in the callbacks you setup in the
configure() method. You must use the click_action: FLUTTER_NOTIFICATION_CLICK value
in order to be able to correctly receive data and react to tap events.

// The "route" param we set earlier as payload is the "route" you see here

Flutter Complete Reference 650

Chapter 22. Using Firebase with Flutter

// in the map. It's the landing page to be opened when the notification is
// tapped.
final routeName = data["route"] as String;

The console is very convenient but very likely you’ll also need to sent push notifications via
Flutter. That’s not a problem at all because it’s just a matter of making a POST request:

Future<void> sendPush(String title, String message) async {
final token = await FirebaseMessaging().getToken();

final jsonBody = <String, dynamic>{
"notification": <String, dynamic>{

"title": title,
"body": message,

},
"data": <String, dynamic>{

"click_action": "FLUTTER_NOTIFICATION_CLICK",
"route": "your_route_name_if_needed",

},
"to": token,

};

await Dio().post("https://fcm.googleapis.com/fcm/send",
data: jsonBody,
options: RequestOptions(

headers: {
"Authorization": "key=your_fcm_key",
"Content-Type": "application/json"

}
)

);
}

We’ve kept the code simple for the sake of the example but it’d be better if you moved Dio()
into a static variable to cache the configurations. Note that the "to" field has to be assigned
with getToken() in order to properly send the notification.

"Authorization": "key=your_fcm_key",

In order to get the key, you need to open the Firebase console and go to the settings. Once there,

Flutter Complete Reference 651

Chapter 22. Using Firebase with Flutter

choose the "Cloud Messaging" tab and copy/paste the provided key. It’s used by Firebase to
identify your app so that it knows where the notification has to be sent.

Thanks to topics, you can send push notifications to specific groups of devices or simply broadcast
them to everyone. Let’s make a very simple example to get the idea of how topic messaging
works on Firebase 11. Pretend you created an app for your friends to invite them at your home
parties.

Future<void> sendPush(String title, String message) async {
final token = await FirebaseMessaging().getToken();
final jsonBody = <String, dynamic>{

"notification": <String, dynamic>{ ... },
"data": <String, dynamic>{ ... },
"to": token,

};

await Dio().post(...)
}

This is not very useful because we’re using "to" to send the notification to a specific device.
Thanks to topic messaging, you can send a notification to everyone or only to a small group of
people. If you wanted to invite your best friends only to the party, the request would be a bit
different:

Future<void> sendPush(String title, String message) async {
final jsonBody = <String, dynamic>{

"notification": <String, dynamic>{ ... },
"data": <String, dynamic>{ ... },
"condition": "'best_friends' in topics",

};

11https://firebase.google.com/docs/cloud-messaging/android/topic-messaging

Flutter Complete Reference 652

Chapter 22. Using Firebase with Flutter

await Dio().post(...)
}

Using "condition" instead of "to" you can send a notification only to a particular group of
people, not to specific devices. Client side, your best friends’ app must be registered to the
"best_friends" FCM topic. You could make the subscription in a settings page or anywhere
else: it’s just a method to be awaited.

await firebaseMsg.subscribeToTopic("best_friends");

Calling subscribeToTopic() the device is able to receive notifications sent to the given topic.
Devices that didn’t subscribe, won’t see the notification. Actually, a device can subscribe to one
or more topics.

"condition": "'best_friends' in topics && 'parents' in topics",

You can also send a notification to multiple groups combining topics with && (and) or || (or).
In the above example, you’re inviting your best friends and your parents to the party. In sum-
mary:

• Using the "to" configuration, push notifications are sent to a single device (or group of
IDs).

• Using the "condition" configuration, push notifications are sent only to devices that sub-
scribed to a certain topic(s). You can create the "all" topic to send notifications to
everyone.

• A single client can subscribe to multiple topics.

Generally, the "condition" approach is the most flexible because it doesn’t rely on ids or specific
device-related groups.

22.6 Authenticating with Firebase

Nowadays "register" and "login" actions are very common not only in applications, but also in
websites and desktop programs. Generally you’re asked to register with a valid email address to
which a verification code will be sent. Thanks to Firebase, you can easily do the following:

• register an user with email and password;

• send a verification code via email to confirm the address;

• authenticate via Google account, Facebook or other providers;

Flutter Complete Reference 653

Chapter 22. Using Firebase with Flutter

• send verification codes via SMS, phone call and much more.

We’re going to show you how to create a flexible architecture that supports multiple kinds of
authentication providers (actually not necessarily tied to Firebase). The example shows how to
work with email and password registration/authentication.

1. As always, if you haven’t already, follow the installation guide at the beginning of the
chapter. Download the .json configuration files and place them in the correct folder.

2. Install the official "firebase_auth" 12 plugin and be sure to setup the Android build depen-
dencies. Add the following lines at /android/build.gradle:

dependencies {
classpath 'com.android.tools.build:gradle:3.2.1'
classpath 'com.google.gms:google-services:4.3.0'

}

3. In order to enable email/password authentication on Firebase, we need to open the online
console and navigate to the "Authentication" tab. From there, there’s the need to enable
the provider we want to use.

Even if they’re not shown in the above picture, you can also enable other sign-in providers
such as GitHub, Facebook, Twitter, Google, Microsoft and much more. Firebase can even

12https://pub.dev/packages/firebase_auth

Flutter Complete Reference 654

Chapter 22. Using Firebase with Flutter

make a phone call for a direct phone verification.

4. We’re now going to use the "Strategy pattern" to create a flexible architecture. Our example
is going to register users with email and password but in the future you might want to add
more authentication strategies. For this reason, we create an abstract class UserRepository
with basic authentication methods:

// Interface
abstract class UserRepository<T> {

Future<T> register();
Future<T> signIn();
Future<void> signOut();

}

We’re now going to implement this interface in /lib/models/auth/email.dart using the
Firebase authentication service. Note that AuthResult comes from the firebase_auth pack-
age.

class EmailUser implements UserRepository<AuthResult> {
final String email;
final String password;
const UserRepository({

required this.email,
required this.password,

});

@override
Future<AuthResult> register() {

final auth = await FirebaseAuth.instance
.createUserWithEmailAndPassword(

email: email,
password: password

);

// We'll deal with this later
// await auth.user.sendEmailVerification();
return auth;

}

@override

Flutter Complete Reference 655

Chapter 22. Using Firebase with Flutter

Future<void> signIn() async =>
await FirebaseAuth.instance

.signInWithEmailAndPassword(
email: email,
password: password

);

@override
Future<void> signOut() async =>

await FirebaseAuth.instance.signOut();
}

Only a few lines of code are required since Firebase will automatically take care of both
registration and login of the user. The code is self-explanatory because the class is really
small (the library does basically everything). The AuthResult class contains data about
the logged user which can be accessed and modified in various ways:

• changing the profile picture,

• deleting the account,

• changing credentials...

The registration, if successful, automatically authenticates the user so no need to call
signIn() later. If the password were too weak or the email were not valid, an excep-
tion would be thrown. If you plan to add more authentication providers in the future, just
create new concrete implementations of UserRepository<T>:

// Inside lib/models/auth/email.dart
class EmailUser implements UserRepository<AuthResult> { ... }

// Inside lib/models/auth/facebook.dart
class FacebookUser implements UserRepository<SomeFbObj> { ... }

// Inside lib/models/auth/github.dart
class GithubUser implements UserRepository<SomeGitObj> { ... }

With this architecture you’re on the good SOLID way!

Firebase takes care of creating a secure authentication process with many important features
such as email verification and phone codes. If you had to make all of this by yourself, you’d have
a lot of work to do but Firebase is just here, ready to be used and it’s very well integrated with

Flutter Complete Reference 656

Chapter 22. Using Firebase with Flutter

Flutter.

// Usage example of the EmailUser class
try {

final provider = EmailUser(
email: "hello@email.com",
password: "_my_c0mpl3x_passw0rd_"

);

final user = await provider.register();
} on FirebaseAuthException catch (e) {

if (e.code == 'weak-password') {
print('Error: weak password');

}
if (e.code == 'email-already-in-use') {

print('Error: email already in use');
}

} catch (e) {
print("Whoops, something's gone wrong :(");

}

Authentication errors are exposed via FirebaseAuthException which internally has message, a
textual description of the problem, and code, an unique error code. You can use a Stream<User>
to subscribe to real-time authentication state changes:

FirebaseAuth.instance
.authStateChanges()
.listen((User user) {

if (user != null) {
// signed in

} else {
// signed out

}
});

Similarly, there’s also the userChanges() stream but it’s more "general purpose" as it emits
events about token refreshes and more. Remember that FirebaseAuth automatically persists
the user’s authentication state so that it will survive page reloads and app restarts.

await FirebaseAuth.instance

Flutter Complete Reference 657

Chapter 22. Using Firebase with Flutter

.setPersistence(Persistence.NONE);

In other words, FirebaseAuth automatically stores your authentication state so that it will be
available again even if the app is closed and reopened. If you don’t like this default behavior, use
setPersistence() at startup to disable state persistence.

22.6.1 Authentication features

When registering users via email and password, you might want to verify the existence of the
given address with a verification code. Firebase can send an email to the given address with a
code; the user has to correctly confirm it to validate the account.

final auth = await FirebaseAuth.instance
.createUserWithEmailAndPassword(

email: email,
password: password

);

await auth.user.sendEmailVerification();

Once the user logged, you can check whether its email has been verified or not and eventually de-
cide to send a validation message. Generally, you should send the email right after the registration
but regardless, sendEmailVerification() can be called anywhere on a User object.

final user = FirebaseAuth.instance.currentUser;

if (!user.emailVerified) {
await user.sendEmailVerification();

}

There’s no need to sign-out the user and sign-in him again to refresh his email verification status.
You can create a form and ask for a code, so that the user can copy/paste it from the email. The
verification can happen immediately in the app with this method:

Future<void> validateUser(String code) async {
try {

await auth.checkActionCode(code);
await auth.applyActionCode(code);

auth.currentUser.reload();
} on FirebaseAuthException catch (e) {

Flutter Complete Reference 658

Chapter 22. Using Firebase with Flutter

if (e.code == 'invalid-action-code') {
// wrong code...

}
}

}

The reload() method refreshes the status of the current user, if authenticated, and thus it also
updates the value of emailVerified. Other than email and password registration, there are also
other kinds of authentication strategies:

• Your app might not need authentication but it could still require a way to uniquely identify
visitors. For this purpose you can use anonymous sign-in, whose state is persisted on the
device (like it happens for "normal" authentication):

final credentials = await FirebaseAuth.instance.signInAnonymously();

You have to enable this feature in the Firebase console as well otherwise it won’t work.
Simply go in the "Authorization" page and enable the feature under this "Sign-in method"
tab.

• You could authenticate using an external provider, such as Google. In this case, the user
will be asked to access with his Google credential rather than going with the classic Firebase
authentication.

// Authenticate with google and get the data back

Flutter Complete Reference 659

Chapter 22. Using Firebase with Flutter

final googleUser = await GoogleSignIn().signIn();
final googleAuth = await googleUser.authentication;

// Creation of a credential object for Firebase
final googleCredential = GoogleAuthProvider.credential(

accessToken: googleAuth.accessToken,
idToken: googleAuth.idToken,

);

// Sign in
final credentials = await FirebaseAuth.instance

.signInWithCredential(googleCredential);

In a very similar way, you can also access with Facebook, Twitter and GitHub. The library
also exposes classes to work with generic OAuth credentials and Recaptchas.

Flutter Complete Reference 660

23 | Publishing packages and apps

23.1 Publishing packages on pub.dev

As you already know, many developers around the world can contribute to Flutter’s growth writ-
ing packages and publishing them at https://pub.dev. It’s like a big public repository in which
you can find many packages for any platform (web, mobile or desktop). Are you looking for
something not present in pub yet? You can be the first to publish it!

� We’re working with Dart 2.10 and Flutter 1.20.4, which are the latest versions
at the time of writing this book. The code we’re going to write will be fine for future
versions but we can’t guarantee compatibility for Dart 2.8 and lower.

In this section we’re showing a step-by-step guide on how to publish a package, from its creation
up to the release on the official https://pub.dev repository. The package we’re creating is called
fraction since it’s going to be a facility to work with mathematical fractions. You already know
the minimum required building blocks to get started:

1. pubspec.yaml: describes the package with many info such as author, version, supported
platforms, dependencies and so on.

2. lib: contains the Dart source code of your package.

That’s really all you need to create a simple package but it’s not enough for production because
we also need to implement testing, versioning and licensing. Instead of manually creating all the
required files from scratch, the flutter command line tools can create a template for us.

$ flutter create --template=package fraction

Running this command inside a folder, flutter prepares all the files and the folders you need to

Flutter Complete Reference 661

https://pub.dev
https://pub.dev

Chapter 23. Publishing packages and apps

create a package. Open lib/ and start coding.

23.1.1 Creating the package

You could create a single file inside lib/ and throw all the code in there but it’s not a good
idea at all. When creating packages, there is a certain structure recommended by the official
documentation 1 you should follow (mostly for ease of use and consistency with other people’s
work).

That’s the template the command flutter create --template produced in your file system
and you shouldn’t change it. In addition to the generated contents, we’ve added something new
inside lib/:

1. a file with the same name as the package, in this case fraction.dart, which exports
the public API. This makes sure that using our library will require only a single import
statement.

2. a src/ folder containing the actual Dart source code of the package.

The lib/fraction.dart is the "heart" of the package because it takes the various classes, located

1https://dart.dev/guides/libraries/create-library-packages

Flutter Complete Reference 662

Chapter 23. Publishing packages and apps

in different files, and exposes them to the outside. By convention, any package should contain
inside lib/ a Dart file with this structure.

// contents of 'fraction.dart'
library fraction;

export 'src/core.dart';
export 'src/extension_num.dart';
export 'src/extension_string.dart';

It is like a "collector": it grabs and exposes your sources all together so that when it’s time to
use the library, it can simply be referenced using a single import statement...

import 'package:fraction/fraction.dart';

... rather than importing each source file one by one

import 'package:fraction/core.dart';
import 'package:fraction/extension_num.dart';
import 'package:fraction/extension_string.dart';

This fraction package is available both on GitHub 2 and pub 3. We’ve written a pure Dart
package with no Flutter dependencies but we could have easily created a FractionWidget simply
by importing the material or cupertino packages, for example.

example/
lib/
test/

fraction_test.dart
mixed_test.dart

CHANGELOG.md
LICENSE
README.md
analysis_options.yaml
pubspec.yaml

Of course, we have also written a lot of tests inside test/ using the test package as we’ve seen
back in chapter 16. They’ve been grouped into logical "categories" according to the type of
feature being tested.

2https://github.com/albertodev01/fraction
3https://pub.dev/packages/fraction

Flutter Complete Reference 663

Chapter 23. Publishing packages and apps

void main() {
group("Constructors", () {

test("Numerator and denominator", () {
var f = Fraction(5, 7);
expect(f.toString(), "5/7");

});
// other tests...

});

group("Operators", () {
...

});

group("Methods", () {
...

});
}

Packages where performance is critical might also include a benchmark/ folder with a Dart file
executing some tests. Note that this file is not meant to test the correctness of the code but its
speed, resources consumption and other metrics critical to you.

benchmark/
benchmark_feature1.dart
benchmark_feature2.dart

lib/
test/

23.1.2 Documenting the code

Packages apart, in general Dart code can be documented to explain how methods or classes work
and how they can be used. The documentation is fundamental to know what other developers
had in mind but it has to be maintained in parallel with the code: they must live together.

� While writing the code, you know what you’re thinking and those thoughts should
be properly documented for others (or for "your future self"). Anyone new to your
code needs explanations of what and why you wrote the code in that way.

Flutter Complete Reference 664

Chapter 23. Publishing packages and apps

You should always document at least you code’s public API but avoid writing long wall-texts;
whenever you can, try to be as concise as possible. If it’s the case of a complicated method
instead, don’t be afraid to write a lot. It might happen that a method has more comments than
actual code but that’s fine.

� If you look at Flutter’s source files, you’ll see that in certain cases there are more
comments and examples than actual code. They are useful for you to understand how
something works and how it can be used. If Dart and Flutter had no documentation
for their classes and methods, it would be a really big problem!

Documenting code is done with triple slashes /// Doc which is different from usual comments
because they use double slashes // Comment . You can document classes, methods, getters, setters
and so on as long as it’s Dart code.

/// Use triple slashes to document.
/// You can also go to a new line
class HttpRequest {

/// Checks whether the API is available or not
bool isOnline() {}

}

You could also document the code using only comments but that’s not ideal. If you use triple
slashes as we’ve shown above, there’s the possibility to use the dartdoc utility to generate a very
nice HTML page of your documentation. In addition, the IDE can read your docs and show hints
when you hover on the text. The process is very easy:

1. document the code with /// Triple slashes docs ;

2. use the dartdoc CLI on your Dart file and it will automatically generate a series of HTML
pages with the documentation. The documentation of the packages at pub.dev is generated
with this tool as well so here’s another reason of why you should really use triple slashes.

If you use comments dartdoc won’t be able to generate the pages for you. The official Dart
documentation 4 exposes a series of best practices for writing documentation.

• Use triple slashes rather than double slashes to document your code.

/// OK - Documentation
// NO - Comment

4https://dart.dev/guides/language/effective-dart/documentation

Flutter Complete Reference 665

Chapter 23. Publishing packages and apps

• Try to not document every single piece of code you’ve written; document most of the public
API. Of course, private members can be documented too but it’s not really needed.

• Don’t write too much details that can be omitted; be short and direct to the point.

/// Executes an asynchronous GET request with a timeout
/// of 3 seconds
Future<String> fetchData(); // OK

/// This method executes an HTTP GET request to the API
/// configured in the model class (api/mode.dart). Each request
/// has a timeout of 3 seconds; in case of success, a string
/// with the body of the response is returned.
Future<String> fetchData(); // NO

• If you’re documenting a complex method, a lot of text may be needed. Avoid writing wall-
texts: consider separating the paragraphs after 4 or 5 lines to make the reading less dense
and concentrated.

• You can also write code and dartdoc will generate a nice, formatted snippet in the resulting
HTML file. Use triple backticks fences to surround the code you want to highlight.

/// Returns the longest of two strings
///
/// ```dart
/// var l = longest("abc", "a");
/// ```
String longest(String a, String b) {}

Inside backticks you’re allowed to use markdown code to format and indent the code; it will be
parsed by dartdoc and converted into HTML. For example if you want to organize the text in a
bullet list, just use a dash.

/// Key points of this class:
///
/// - one ...
/// - two ...

Flutter Complete Reference 666

Chapter 23. Publishing packages and apps

23.1.3 Reviewing and publishing

Once the code is written, tested and documented it’s ready to be published on pub.dev so that
other developers can start using your package. Before submitting it, you should dedicate some
time to improve a few files related to the package:

• Check the LICENSE file to be sure you are fine with its contents.

• A template for pubspec.yaml was automatically generated when you created the package
and it already contains the minimal required fields. Be sure to check out the official Dart
documentation 5 for an overview of any field you can use.

• Write a detailed description of your package in the README.md file. It will be placed in your
package’s home page at pub.dev so it should look good. Describe the features, use images
in case of widgets, write examples and put a link to external references (if any, like your
package’s website).

• Edit the CHANGELOG.md file to reflect the main changes you’ve applied to the current version
that is going to be published.

If you want to compare the setup of the fraction package with yours, visit our official GitHub
repository. Once all those files have been reviewed, it’s finally time to publish the package. Just
to be sure that everything is ok, let’s run this command in the terminal:

flutter pub publish --dry-run

It executes a "fake publishing" which doesn’t upload your package but it just simulates what
would happen if you did so. It might be useful to look for warnings or problems before moving
on. If no problems are reported, make the real publishing:

1. Open the console, move to the root of your project and launch these commands:

cd lib/
flutter format .

It moves the console to the lib/ folder and uses format to format all of your Dart source
code. This is also needed in order to not get penalty points on pub (more on this soon).

2. Publish your package:

flutter pub publish

5https://dart.dev/tools/pub/pubspec

Flutter Complete Reference 667

pub.dev
pub.dev

Chapter 23. Publishing packages and apps

3. The console will tell you to open a link; login with your Google account to confirm the
submission.

4. Wait a few minutes for pub to process the files. It will also automatically generate a nice
HTML website using the documentation text you’ve written with triple slashes.

Nothing difficult at all: it’s just a matter of running two commands and confirming the submission
with a Google login. Keep in mind that once submitted, packages cannot be deleted so they’re
going to stay in the repository forever. The reason is simple: the deletion would break other
people’s code depending on your package.

23.1.4 Scores and good practices

Any package has a score ranging from 0 to 110 and your goal is of course trying to reach the max-
imum. While you can maximize pub points following some good practices, the other statistics
depend on the community. This is the current score of our fraction package at the beginning of
September 2020.

There’s the possibility to calculate pub points before publishing the package using the pana 6

analyis tool (pub uses it as well). Running pana locally will give you a preview of the points and

6https://pub.dev/packages/pana

Flutter Complete Reference 668

Chapter 23. Publishing packages and apps

the possible suggestions you’d get on the website.

Activate pana
flutter pub global activate pana

Run it
pub global run pana ~/path/to/package

Since pana makes changes to your package, run it on a copy so that the original project won’t be
affected by modifications. The three only scores of a package are:

• Likes. Indicates how many developers liked this package. To like a package, login with
your Google account and click on the thumbs up button next to the name. You can see the
packages you liked in My pub.dev > My liked packages

• Pub points. This metric gives insights about the quality of the package. The criteria used
to compute the final score are:

– Follow Dart file conventions. To pass this check, use the flutter create --template
command we’ve discussed earlier and carefully review pubspec.yaml and the mark-
down files.

– Provide documentation. Document your code using triple slashes, following the good
practices we recommended. To get the maximum score, be sure that at least 20%
of your public API is documented. Writing a proper, complete documentation goes
beyond the success on this metric: do it for quality and maintenance!

– Support multiple platforms. Currently, your packages should support both native and
web platforms but this isn’t an issue at all. Whether you’re writing a pure Dart
package or a Flutter one, in both cases you won’t have problems.

– Pass static analysis. Static analysis determines whether your package contains warn-
ings, errors or styling issues. To maximize the score of this metric, be sure to:

1. setup the analysis_options.yaml file as soon as possible (right after the creation
of the package template);

2. validate a package before publishing it with flutter analyze.

For a complete and updated reference, have a look at the official Dart style guide 7.

7https://dart.dev/guides/language/effective-dart/style

Flutter Complete Reference 669

Chapter 23. Publishing packages and apps

– Support up-to-date dependencies. If you have any dependency declared in the pubspec
file, be sure to always use the latest version.

• Popularity. Indicates how many developers are using your package in their projects. On
a scale from 0 to 100, a high percentage indicates that a big number of apps are depending
on your package.

You’re going to lose points if you don’t provide an example/ folder at the root of the project with
some runnable demos so you’d better create it. You’ll also get penalty points if the description
in your pubspec.yaml file is too short; it should contain 60 - 180 characters.

23.1.5 Verified publishers and Flutter favorite

You may have noticed that certain publishers at pub.dev have a blue shield next to the name.
Thanks to it you know that a package was uploaded by a publisher whose identity has been
verified and thus there’s more authority to the product. The badge doesn’t give info about the
quality of the code but it’s tied to the authenticity of the publisher.

Being a verified published isn’t complicated but there are a few steps to follow. You need an active
Google account which will be associated with both pub.dev and the Google Search Console.

1. Decide which Google account you want to use and login to the Google Search Console 8.

2. Any verified publisher must have a domain to associate with his pub account. In our case,
the domain is fluttercompletereference.com which also points to our website. That’s not a
requirement, you can simply have a valid domain without a website associated.

3. Type your domain in the console and then you’ll be asked to verify its identity via DNS. In
practice, you have to go to your domain provider settings and add a new DNS text record.
Even after the verification, don’t remove this entry because Google periodically checks
your domain.

IN TXT "google-site-verification=XXXXXXXXXXXX"

The console will give you the exact string to insert; the verification might take some times
due to the propagation times of the DNS entries but in 24h you should be able to do it.

8https://search.google.com/search-console/about

Flutter Complete Reference 670

pub.dev
pub.dev
fluttercompletereference.com

Chapter 23. Publishing packages and apps

There are also other ways to verify your domain, such as via HTML <meta> tag but it
doesn’t work with pub. You have to do the DNS way.

4. Once you’ve managed to verify your domain with success in the console, open pub.dev and
login. Go to the top-right corner and the click create publisher.

Type the verified domain name in the box and click "CREATE PUBLISHER". You’ll get
an error if you try to submit a domain that’s not previously been verified via DNS.

At this point you are officially a verified published and the blue badge will always appear next
to the name. If you already had published some packages with a non-verified account, just go to
the Admin area of your package and transfer it to your verified account.

Being a verified publisher is not only a matter of pride but it also gives you a chance to become
eligible for the Flutter favorite program. This campaign identifies all those top-quality packages
you should first consider when building apps. However, don’t blindly prefer them over the other
alternatives. The are very good for sure but being a flutter favorite doesn’t make a package
perfect.

Flutter Complete Reference 671

pub.dev

Chapter 23. Publishing packages and apps

It’s very unlikely that a newly created package will become a Flutter favorite in short spans of
time. There are a lot of criteria to satisfy such as feature completeness, performance, code quality,
GitHub integration, being a verified publisher and much more. You can see all the details about
this program in the official page 9.

23.2 Publishing apps on the stores

At the end of the development cycle, when all the features have been implemented and the testing
is done, it’s time to put the app in production. When you use the emulator with the hot reload
feature, Flutter is working in debug 10 mode which mainly implies a few things:

• the size of the binary file, .apk/.aab for Android or .ipa for iOS, is very large;

• sometimes the app doesn’t run so smoothly or certain transitions might not seem very fluid;

• any assert() statement in your code will be evaluated.

The emulator and the hot reload feature work only in debug mode, which is the default one when
you execute the flutter run command. When it’s time to deploy the app for production, switch
to release mode to have:

• smaller size of the binary file;

9https://flutter.dev/docs/development/packages-and-plugins/favorites
10https://flutter.dev/docs/testing/build-modes

Flutter Complete Reference 672

Chapter 23. Publishing packages and apps

• faster execution with fluid transitions, faster startup and general optimizations automati-
cally made by the compiler;

• assert() statements are removed.

As you already know from chapter 16, there is also a third mode called profile which enables
profiling with "DevTools". In the next sections we will analyze how to prepare an app for the
release mode and potentially the publication on the official stores.

23.2.1 Releasing Android apps

Before publishing to the Google Play store, there are some final steps to follow to define the
details of the app (the icon, the name and the assignments of security certificates). Be sure to
check the official documentation 11 for more info about deploying apps on Android devices.

1. You need to have Java installed on your machine because it has the keytool command line
program. It’s used to generate a keystore file to be associated with the binary being built.

$ keytool -genkey -v -keystore myAppKey.jks -keyalg RSA
-validity 30000 -keysize 2048 -alias myKey -storetype JKS

Keep this file private and be sure it doesn’t get lost otherwise you won’t be able to publish
updates for this app on the store anymore. It’s used to identify you as the owner of the
app.

2. In the IDE, go to /android/key.properties and reference the .jks file you’ve just created.
The passwords it asks are the ones you’ve had to type in the command line program in the
previous step

storePassword=store_pass
keyPassword=key_pass
keyAlias=myKey
storeFile=location_to_the_file

You can place myAppKey.jks where you want but be sure to exclude it from version control
systems such as GitHub.

3. Now go at /android/app/build.gradle and place this code before the android {} block:

def keystoreProperties = new Properties()
def keystorePropertiesFile = rootProject.file('key.properties')
if (keystorePropertiesFile.exists()) {

11https://flutter.dev/docs/deployment/android

Flutter Complete Reference 673

Chapter 23. Publishing packages and apps

keystoreProperties.load(new FileInputStream(keystorePropertiesFile))
}

In this same file, remove the buildTypes block and add all these lines. Basically they
instruct gradle to sign your app with the given keystore file any time a build in release
mode happens.

signingConfigs {
release {

keyAlias keystoreProperties['keyAlias']
keyPassword keystoreProperties['keyPassword']
storeFile keystoreProperties['storeFile'] ?

file(keystoreProperties['storeFile']) : null
storePassword keystoreProperties['storePassword']

}
}
buildTypes {

release {
signingConfig signingConfigs.release

}
}

Just to avoid possible caching problems, run flutter clean.

4. Now move to the manifest file located at /android/app/src/main. In the <application>
tag you can change the android:label to give your app the name (the one appearing below
the icon on the home screen).

<application
<!-- other settings here ... -->
android:label="App name" />

That way, the name is hard-coded but that’s not always what you’re looking for. If you
want to show different names according to the device’s language (so you want to localize
the title) there’s an extra step to do.

<application
<!-- other settings here ... -->
android:label="@string/appname" />

Change the value of android:label and then locate the app/src/main/values folder;
create inside it a file with this specific name: strings.xml. Write your app’s name in the

Flutter Complete Reference 674

Chapter 23. Publishing packages and apps

native language (in our case, english) following this scheme:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="appname">My app</string>
</resources>

Now for any new language you want to support, create a values-XX folder containing the
localized string for the given locale. For instance, if we wanted to add an Italian value, we
should create the /android/app/src/main/values-it folder with another strings.xml
file inside it.

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="appname">La mia app</string>
</resources>

The name attribute is always the same (appname). Our app will be called My app in any
language, because it’s the default value, but when italian is set the name will be La mia
app. You can add as many languages you want.

5. If needed, add the internet permission in the manifest file to allow the connectivity.

6. Your app’s icons are located inside the res/drawable-XXX folders. It’s always the same im-
age but with different sizes because Android will automatically pick the best one according
to the device’s pixel density. You have to:

(a) create one logo for each folder keeping the same sizes of the placeholder image that
you find;

(b) if you’re using Android Studio, you can use the very convenient "Image Asset Studio"
tool which automatically generates the icons.

With the asset studio tool you can even load SVG images and it will take care of generating
all the icons for each folder.

It’s been a long way but you’ve finally made it to the end; you can now build the binary file in
release mode. There are two possible formats to choose for the Play Store:

• .apk: it is the traditional file extension you’re used to see for Android apps. Go to the
console and run the following command to generate the binaries:

flutter build apk --split-per-abi

Flutter Complete Reference 675

Chapter 23. Publishing packages and apps

You’ll find three apk files at /build/app/outputs/apk/release, one for each ABI 12. This
is the best thing to do; you could also generate a single .apk with this command...

flutter build apk

... but you’ll end up with a very big file including the code compiled for each ABIs. There’s
no need for this because it would carry useless data for devices that don’t support a specific
architecture. You’d better split the files and pick only the binary compatible with your
target device.

• .aab: it’s the new file format recommended by the Android team 13 in place of apks. It
should be your primary choice when it comes to production apps to be published to the
store.

flutter build appbundle

This command generates at /build/app/outputs/bundle/release/ a single file with .aab
extension. It contains the compiled code for the supported ABIs.

Check out appendix A.3 to learn about code obfuscation and a better way of using the build
command. Both file types contain the compiled code for three ABIs but they’re built in different
ways. An app bundle is an optimized version that will be further processed by the Play Store
while an apk is like a "zip" containing all the precompiled binaries.

� If you had to share your app, for example, to an internal member of your team to
show how it looks, you could create an apk. It can be transferred to a device via file
manager and then the Android package installer will install it.

You can drag and drop an apk in the Android emulator to install it. This is not possible with
aab files because they’re made to be uploaded in the Google Play store; Android doesn’t directly
"understand" app bundles.

� If you want to extract an apk from an aab file you have to use the bundletool 14

tool, which is what the Google Play store uses. An aab file is just a better way of
handling different ABIs, rather than having multiple apks. It’s more convenient.

12Application Binary Interfaces
13https://developer.android.com/guide/app-bundle
14https://developer.android.com/studio/command-line/bundletool

Flutter Complete Reference 676

Chapter 23. Publishing packages and apps

23.2.2 Releasing iOS apps

Before publishing to the Apple App store, there are some final steps to follow to define the details
of the app (the icon, the name and the assignments of security certificates). Be sure to check the
official documentation 15 for more info about deploying apps on iOS devices.

1. First of all, you need to join the "Apple Developer Program" in order to be able to access
the "App Store Connect" (referenced as ASC from now on). This is important because iOS
builds happen via Xcode tools which require certificates obtained from the ASC. Open the
Apple Developer portal, click on Identifiers and add a new "App ID".

Go forApp IDs. On the next page, type you app’s name and be sure to check the Explicit
App ID option. Enter an ID and pick from the list below the services you app is using, if
any. Click on "Register" to confirm.

2. Open the ASC, click "My Apps" and add a new one pressing on + in the top-left corner.
Fill the forms with all the required information and then your application tab will appear
on the screen. At the end of the process, you’ll get something like this on the main page:

The My Apps section of the ASC shows any ap-
plication you’ve uploaded to the store with a brief
summary of the status. The big image is the icon
you’re required to upload (more on this later) while
at the bottom there’s a quick summary of the status:

(a) Prepare for submission
(b) Waiting for review
(c) In review
(d) Ready for sale

15https://developer.apple.com/app-store/submitting/

Flutter Complete Reference 677

Chapter 23. Publishing packages and apps

Click on the app’s logo and provide the various information they need such as screenshots
and descriptions. Let’s now open Xcode to finalize some other details.

3. Open the iOS folder of your Flutter project. Open Runner.xcworkspace and then select
"Runner" in the Xcode project navigator. Choose "Runner" as target.

• In the Identity section, change you app’s name.

• In the Signing section, make sure that automatic signing is ticked. Choose your team
(the one associated to the Apple Developer account) from the dropdown menu. This is
quite useful because Xcode will automatically handle profiles, app IDs and certificates.

• In the Deployment Info section be sure that 8.0 or higher is selected.

4. In case you’re doing the first release, make sure that pubspec.yaml has a version code
of 1.0.0 otherwise change it accordingly. Don’t manually handle versioning on XCode:
for an easier maintenance across multiple platform, rely on the version: attribute of
pubspec.yaml.

5. Add the app icon going to the Assets.xcassets folder, located inside Runner in the project
navigator, and edit the assets. There’s a default Flutter placeholder image. Replace it and
to be sure it looks as you’d expect, run the app on a Simulator (or a real device).

For a quick prototyping, you can use an online asset generator to build a temporary logo
for your app. It will create all the required assets so that you’ll just have to download and
move the images.

It’s finally time to generate the native iOS binary. Close Xcode to avoid refreshing problems with
the Flutter build tool and launch the following command:

flutter build ios

Flutter Complete Reference 678

Chapter 23. Publishing packages and apps

Once the process has completed, return to Xcode again and open the runner.xcworkspace file.
In sequence, perform the following actions on the menu bar of the IDE:

• Product > Scheme > Runner;

• Product > Destination > Generic iOS Device;

• Project Navigator > Runner > Runner

• Product > Archive

Wait for the completion of the build and then a dialog similar to the one below will appear. It
shows all the builds you’ve done up to now (we’ve removed some from the image for convenience).
You should first click Validate App to ensure that everything is ok and then click Distribute
App to upload the app on the store. This process may take several minutes.

Open the App Store Connect, click on your app, select the build you’ve uploaded via Xcode and
wait for the review of the Apple Store team. Consider reading our appendix A.3 about Dart code
obfuscation in release mode.

23.2.3 Splash screens

Some apps might not be ready as soon as they’re opened due to time-consuming operations re-
quired at startup. For example, they could have to check for updates, load a lot of data from the
cache or exchange some data with a server. The problem could also be an old, slow device.

� Think about games for mobile phones. In general, as soon as they’re opened, a
splash screen appears telling you that the app will start very soon. It gives the feeling
of fastness and responsiveness since the very beginning, which is a fundamental UX

Flutter Complete Reference 679

Chapter 23. Publishing packages and apps

aspect. Animations and loading indicators make the waiting time more pleasant.

Flutter may take more than a few milliseconds to start, especially if you’re doing a lot of initial-
ization work before calling runApp. If it’s the case, you’ll see a completely white screen appearing
(the default splash screen) but you can of course customize it:

1. iOS. Very simply, open the Runner.xcworkspace file from Xcode, select the assets folder
and double click the LaunchImage image set. It’s simply a PNG file you can customize
as much as you want to create a nice and user-friendly splash image.

2. Android. Similarly to what we’ve seen for iOS, all you need to do is editing a certain
pre-made template. Opening src/main/res/values/styles.xml you’ll find the default
definition of the splash screen, which is just a <style> element pointing to a drawable.

<style name="LaunchTheme" parent="@android:style/Theme.Black.NoTitleBar">
<item name="android:windowBackground">@drawable/launch_background</item>

</style>

Go to src/main/res/drawable/launch_background, which is the actual splash screen,
and style it as you prefer. For example, you could create a PNG image with the logo and
a small text below telling the user "Loading..." or something similar.

<!-- The background color -->
<item android:drawable="@android:color/white" />

<!-- The PNG at the center of the screen -->
<item>

<bitmap
android:gravity="center"
android:src="@drawable/my_splash_image" />

</item>

The file my_splash_image.png has been created in the drawable/ folder.

Keep in mind that even if your app has a splash screen, it shouldn’t appear for more than a few
seconds. In addition, try to keep it quite simple and be sure to mark the fact that the app is
loading and it will be ready very soon. Have a look at the appendix B.3 to see how to gracefully
execute startup initialization in Flutter.

Flutter Complete Reference 680

Chapter 23. Publishing packages and apps

23.2.4 Doing CI/CD for Flutter

In the previous sections we’ve shown you how to prepare applications for production giving a
proper name, setting icons and much more. Once it’s done, you need to run two different build
commands and Flutter will take care of creating the native binaries. To sum it up, the deployment
process is the following:

1. run tests to ensure that everything is ok;

2. prepare the app for the Android release (generate keys, configure gradle, fix the manifest
and so on);

3. prepare the app for iOS release (setup the certificates, use Xcode to work on the Runner,
load assets and so on);

4. publish the native binaries to the stores.

Indeed there’s a lot of manual work to do when it comes to publish a new update for the app but
you can’t do much about it. Icons, names and other details might not change in each new release
but still there’s the need to go through those four steps. Thanks to certain online services, such
as Codemagic, you can automate the testing/deployment phase for your Flutter apps.

Codemagic is a cloud-based CI/CD service that automatically builds, tests and deploys your
Flutter native apps to the official stores. When using these kind of services you just need to write
the app and the tests; all the other steps (from running tests up to the publication in the official
store) are automatic. In particular:

• for each commit to a git repository, there’s the possibility to automatically run tests and
make builds. For example, if you don’t have a macOS and/or an iPhone, you can still
successfully test, build and publish an iOS app because the CI/CD service has the hardware;

• any tool is always updated to the latest version. You don’t need to manually check for
Flutter updates or installing heavy Xcode releases because everything is on the cloud;

• you can run apps on Android emulators, iOS simulators or even real physical devices.

Flutter Complete Reference 681

Chapter 23. Publishing packages and apps

All of this goodness is part of a series of processes called Continuous Integration and Continuous
Delivery. We aren’t going to cover CI/CD in detail because it goes beyond the scope of this book
but in case you didn’t know what they are, here’s a description from a purely practical point of
view.

• CI. Developers push a new commit to a git repository (generally on GitHub or GitLab) and
a "listener" is triggered: the newly pushed code is built and then tested. With this approach,
building and testing automatically happen as soon as the new code is committed to the
repository so that the team can quickly find bugs.

• CD. It starts where CI ends. If tests ran with success and the team is happy with the
current status of the product, the CD process starts. The application is packaged, signed
(required for iOS and Android) and then deployed.

Codemagic offers 500 free build minutes and two team seats for free every month. For professional
developers, they offer a post-paid billing model, which means you will get billed based on usage.
Your Flutter and native mobile projects will be up and running with just a few clicks. Alterna-
tively, you could use fastlane which is local to your machine and the official Flutter documentation
16 also has a guide on how to use it.

23.2.4.1 GitHub actions

The Dart and Flutter team use GitHub to version their code. If you decide to do the same, which
is what we recommend, you can easily setup CI and CD in your repository using Actions. For
example, our dart_equations 17 package has a GitHub action that performs the following tasks
for each push (or pull request):

1. install dependencies using pub get;

2. run dartfmt to make sure the code is well formatted;

3. run tests.

For example, every time you make a git push the action installs the dependencies, checks the
formatting and runs tests. Once completed, you can see a green tick or a red cross next to the
commit telling you respectively whether the action completed with success or failed.

16https://flutter.dev/docs/deployment/cd
17https://pub.dev/packages/equations

Flutter Complete Reference 682

Chapter 23. Publishing packages and apps

To create a new action, just go on your GitHub repository, click Actions and then choose "set
up a workflow yourself". Alternatively, create the .github/workflows/ folders and create a new
YAML file (which is what the website would do for you). In practice, an action is nothing more
than a .yaml file telling the backend which steps have to be done.

name: dart_equations_ci

on:
push:

branches:
- master

pull_request:
branches:

- master

jobs:
build:

runs-on: ubuntu-latest
container:

image: google/dart:latest
steps:

- uses: actions/checkout@v2
- name: Install dependencies

run: pub get
- name: Format

run: dartfmt --dry-run --set-exit-if-changed .
- name: Run tests

run: pub run test

This is the action we have implemented for our dart_equations and fraction packages. This setup

Flutter Complete Reference 683

Chapter 23. Publishing packages and apps

is good for a "pure" Dart application but for Flutter, you need different commands:

name: master_ci

on:
push:

branches:
- master

jobs:
build:

runs-on: ubuntu-latest
steps:

- uses: actions/checkout@v2
- uses: subosito/flutter-action@v1.3.0
- name: Install Dependencies

run: flutter packages get
- name: Format

run: flutter format --set-exit-if-changed lib test
- name: Run tests

run: flutter test --no-pub

In summary, if you want to quickly setup a GitHub action for your Dart or Flutter projects,
just create the folders .github/workflows and place a YAML file containing the steps to do.
The action itself is a file telling the backend what to do. A repository can run one or more
actions.

For each action, you get the history of the results of runs. GitHub Actions usage is free for public

Flutter Complete Reference 684

Chapter 23. Publishing packages and apps

repositories and self-hosted runners. For private repositories, each GitHub account receives a
certain amount of free minutes and storage, depending on the product used with the account.
For more info on actions, visit the official documentation 18.

18https://docs.github.com/en/free-pro-team@latest/actions

Flutter Complete Reference 685

24 | Complete Flutter project example

24.1 Preparing the project

In this section we’re going to show in detail how to create a Flutter application in which an user
can register and login using the Firebase authentication system. The project uses email address
and password as authentication credentials but any other way would be fine.

Flutter Complete Reference 686

Chapter 24. Complete Flutter project example

Both buttons can be pressed; "Register" adds a new user to the system while "Login" is just
authentication for already signed up people. Let’s start by opening Firebase and creating a new
project called LoginApp. As always, follow the installation guide in chapter 22 to correctly
place the configuration files. Here’s a summary:

• Create a new Android app on Firebase with the correct package name (the same you’ve
used for the Flutter project) and download the google-services.json file.

• Move google-services.json in the android/app folder and setup the Gradle build file.

• Create a new iOS app on Firebase with the correct package name (the same you’ve used
for the Flutter project) and download the GoogleServices-Info.json file.

• Move GoogleServices-Info.json in the ios/Runner folder.

On the home page of your Firebase project, click on "Authentication" on the left sidebar, then
choose "Sign-in methods" and enable the email/password login provider. Even before opening
the IDE, do a git init and version your code!

24.1.1 Folder structures and basic setup

As you already know, managing the state of an app with setState() and InheritedWidget
is difficult and requires too much boilerplate code. For this reason, we’re working with the
flutter_bloc library. We also want to localize the contents and split the UI in multiple reusable
widgets so a good folder structure is essential.

lib/
blocs/
localization/
repository/
routes/
widgets/
main.dart
routes.dart

test/
analysis_options.yaml
pubspec.yaml

Following good coding practices is very important for our code’s health and thus we immediately
create the analysis_options.yaml file. You can find its definition in the Resources section of our
website. Inside lib/localization create the localization delegate and class AppLocalization

Flutter Complete Reference 687

Chapter 24. Complete Flutter project example

(see chapter 13), choosing between "manual" or intl approach.

// main.dart
void main() => runApp(const LoginApp());

class LoginApp extends StatelessWidget {
const LoginApp();

@override
Widget build(BuildContext context) {

return BlocProvider<AuthenticationBloc>(
create: (context) {

// More on blocs in the next section...
return AuthenticationBloc(repository);

},
child: MaterialApp(

initialRoute: RouteGenerator.homePage,
onGenerateRoute: RouteGenerator.generateRoute,

localizationsDelegates: [
const AppLocalizationDelegate(),
GlobalMaterialLocalizations.delegate,
GlobalCupertinoLocalizations.delegate,
GlobalWidgetsLocalizations.delegate,

],
supportedLocales: [

Locale.fromSubtags(languageCode: "en"),
Locale.fromSubtags(languageCode: "it"),

],

onGenerateTitle: (context) => context.localize("title"),
debugShowCheckedModeBanner: false,

),
);

}
}

Routes are going to be managed inside the routes.dart file to keep the navigation logic in
a separated file, as we’ve covered in chapter 12. For safety, we’ve decided to create a custom

Flutter Complete Reference 688

Chapter 24. Complete Flutter project example

exception type in case the route name were invalid but it won’t happen. Since we rely on hard-
coded static constants, there cannot be typos in the name of the route.

/// Routing handler for the app
class RouteGenerator {

const RouteGenerator._();

static Route<dynamic> generateRoute(RouteSettings settings) {
switch (settings.name) {

case homePage:
// We will create 'HomePage' later
return MaterialPageRoute<HomePage>(

builder: (_) => const HomePage(),
);

default:
throw RouteException("Route not found");

}
}

static const homePage = '/';
}

/// Exception thrown when a given route doesn't exist
class RouteException implements Exception {

final String message;
const RouteException(this.message);

}

A switch statement with a single case doesn’t make much sense but we’re assuming that the
app will have many routes. Our example only has the home page but in reality you’ll have more
than a single route.

24.2 State management and model classes

In order to easily manage user’s data, we’re going to create an architecture that takes care of
authentication tasks. In a more complex scenario, it might also handle authentication tokens or
the retrieval from a secured storage of cached username and password.

Flutter Complete Reference 689

Chapter 24. Complete Flutter project example

// Inside 'repository/user_repository.dart'
abstract class UserRepository {

/// Creates the repository for authenticating an user
const UserRepository();

/// Email of the signed user
String get signedEmail;

/// Login with username and password
Future<bool> authenticate(String username, String password);

/// Registration with username and password
Future<bool> register(String username, String password);

/// Logout
Future<void> logOut();

}

This class has to be implemented in order to create a login provider, such as the Firebase one
we’re going to show in a moment. This way of modelling classes is known as Strategy pattern, a
famous design pattern from the Gang of Four (GOF). Note that we’re always documenting public
methods:

// Inside 'repository/user_repository/firebase_repository.dart'
class FirebaseUserRepository extends UserRepository {

/// Firebase authentication repository
const FirebaseUserRepository();

@override
String get signedEmail =>

FirebaseAuth.instance
.currentUser
.email ?? "-";

@override
Future<bool> authenticate(String username, String password) async {

try {
await FirebaseAuth.instance

.signInWithEmailAndPassword(

Flutter Complete Reference 690

Chapter 24. Complete Flutter project example

email: username,
password: password

);

return true;
} on FirebaseAuthException catch (e) {

debugPrint(e.message);
return false;

}
}

@override
Future<bool> register(String username, String password) async {

try {
await FirebaseAuth.instance

.createUserWithEmailAndPassword(
email: username,
password: password,

);

return true;
} on FirebaseAuthException catch (e) {

debugPrint(e.message);
return false;

}
}

@override
Future<void> logOut() => FirebaseAuth.instance.signOut();

}

Note that in case of a failed authentication or registration a FirebaseAuthException is thrown
but it will be handled later in the bloc. In both cases, the result variable is of type AuthResult
which contains many data about the user such as his email, the avatar image, whether the email
has been verified or not and much more.

// Inside 'repository/user_repository/test_repository.dart'
class TestUserRepository extends UserRepository {

/// The email of the user

Flutter Complete Reference 691

Chapter 24. Complete Flutter project example

final String fakeEmail;

/// Determines whether the methods will fail or not
final bool succ;

/// Mock authentication repository (for testing)
const TestUserRepository({

required this.fakeEmail,
required this.succ,

});

@override
Future<bool> authenticate(String username, String password) {

return Future<bool>.delayed(const Duration(seconds: 1), () => succ);
}

@override
Future<bool> register(String username, String password) {

return Future<bool>.delayed(const Duration(seconds: 1), () => succ);
}

@override
Future<void> logOut() => Future.delayed(const Duration(seconds: 2));

@override
String get signedEmail => fakeEmail;

}

We’ve also created the TestUserRepository which will be used in unit tests and widget tests.
It’s a convenient mock for the Firebase authentication process which requires no internet con-
nection or platform setup. Thanks to the usage of the strategy pattern, you can easily add more
authentication providers to your application. In the future, if you wanted to also login with
Facebook Twitter or Google, you’ll just have to implement the interface:

// Inside 'repository/user_repository/twitter_repository.dart'
class TwitterUserRepository extends UserRepository {}

// Inside 'repository/user_repository/google_repository.dart'
class GoogleUserRepository extends UserRepository {}

Flutter Complete Reference 692

Chapter 24. Complete Flutter project example

// Inside 'repository/user_repository/facebook_repository.dart'
class FacebookUserRepository extends UserRepository {}

It’s also a very good way of respecting the SOLID principles. You should end up with the
following contents inside the repository/ folder:

repository/
user_repository.dart
user_repository/

firebase_repository.dart
test_repository.dart

24.2.1 Authentication bloc

The AuthenticationBloc bloc determines whether the user is authenticated or not. In other
words, it’s used to decide if the login form has to be displayed or not, according to the cur-
rent authentication status. Inside blocs/authentication_bloc/events.dart we’re creating
the events:

/// Events for the [AuthenticationBloc] bloc
abstract class AuthenticationEvent extends Equatable {

/// Base class for events fired by [AuthenticationBloc]
const AuthenticationEvent();

@override
List<Object> get props => [];

}

/// User has logged with success
class LoggedIn extends AuthenticationEvent {

const LoggedIn();
}

/// User requested to logout
class LoggedOut extends AuthenticationEvent {

const LoggedOut();
}

When the LoggedIn event is fired, the login form disappears and the actual home page is shown.

Flutter Complete Reference 693

Chapter 24. Complete Flutter project example

When LoggedOut is fired, the currently visible route disappears and the login form is shown
because the user logged out. Notice how we try to use const constructors as much as possible.
Here’s the states:

/// States emitted by [AuthenticationBloc]
abstract class AuthenticationState extends Equatable {

/// Base class for states emitted by [AuthenticationBloc]
const AuthenticationState();

@override
List<Object> get props => [];

}

/// App just opened, login or register actions required
class AuthenticationInit extends AuthenticationState {

const AuthenticationInit();
}

/// Login made with success
class AuthenticationSuccess extends AuthenticationState {

const AuthenticationSuccess();
}

/// Logout
class AuthenticationRevoked extends AuthenticationState {

const AuthenticationRevoked();
}

/// Loading (awaiting for registration or authentication)
class AuthenticationLoading extends AuthenticationState {

const AuthenticationLoading();
}

In case of AuthenticationLoading() a loading indicator appears on the UI indicating that the
app is awaiting for Firebase to return a response. It’s now time to create the bloc itself to actually
manage our app’s authentication state:

/// Manages the authentication state of the app
class AuthenticationBloc

Flutter Complete Reference 694

Chapter 24. Complete Flutter project example

extends Bloc<AuthenticationEvent, AuthenticationState> {
final UserRepository userRepository;
AuthenticationBloc(this.userRepository) :

super(const AuthenticationInit());

@override
Stream<AuthenticationState> mapEventToState(AuthenticationEvent e) async*{

if (e is LoggedIn) {
yield const AuthenticationSuccess();

}
if (e is LoggedOut) {

yield const AuthenticationLoading();
await userRepository.logOut();
yield const AuthenticationRevoked();

}
}

}

As you can see, when the LoggedIn event is fired AuthenticationSuccess is emitted by the
bloc so that the app knows to change page (move from the login page to the actual home page).
Tapping on the login button triggers the login bloc (see next sections) which, in case of success,
will fire a LoggedIn event causing the actual home page to appear.

Flutter Complete Reference 695

Chapter 24. Complete Flutter project example

Your code is surely going to reference the bloc file in an import statement but state and event files
are also required. In some cases you might end up having to import a lot of libraries, especially
if multiple blocs are needed by a single class.

import 'package:flutter_app/blocs/authentication_bloc/bloc.dart';
import 'package:flutter_app/blocs/authentication_bloc/events.dart';
import 'package:flutter_app/blocs/authentication_bloc/states.dart';
import 'package:flutter_app/blocs/credentials_bloc/bloc.dart';
import 'package:flutter_app/blocs/credentials_bloc/events.dart';
import 'package:flutter_app/blocs/credentials_bloc/states.dart';

As you already know from chapter 4, we can use the library keyword to group multiple import
statements in a single one. In other words, each bloc is a "mini library" which can easily be
referenced by a single statement.

// contents of '/lib/blocs/authentication_bloc.dart'
library authentication_bloc;

export 'authentication_bloc/bloc.dart';
export 'authentication_bloc/events.dart';
export 'authentication_bloc/states.dart';

This is very useful because with a single import statement we can reference the bloc, its events
and its states all together. Maintenance will also benefit from this so you should really use this
approach when creating blocs.

import 'package:flutter_app/blocs/authentication_bloc.dart.dart';
import 'package:flutter_app/blocs/credentials_bloc.dart';

In the next section we’re creating the CredentialsBloc class, which handles the login and fires
the LoggedIn event in case of successful authentication or authorization.

24.2.2 Credentials bloc

While AuthenticationBloc is used to move between the login and home page, CredentialsBloc
is taking care of communicating with Firebase to authenticate and/or register an user. Two events
are required, one for the Login button and the other for the Register button:

/// Events for the [CredentialsBloc] bloc
abstract class CredentialsEvent extends Equatable {

/// The username

Flutter Complete Reference 696

Chapter 24. Complete Flutter project example

final String username;

/// The password
final String password;

/// Events fired by [CredentialsBloc] when a button is pressed. It
/// provides information taken from the form.
const CredentialsEvent(this.username, this.password);

@override
List<Object> get props => [username, password];

}

/// Event fired when the login button is tapped
class LoginButtonPressed extends CredentialsEvent {

const LoginButtonPressed({
required String username,
required String password

}) : super(username, password);
}

/// Event fired when the register button is tapped
class RegisterButtonPressed extends CredentialsEvent {

const RegisterButtonPressed({
required String username,
required String paxssword

}) : super(username, password);
}

The bloc is going to use UserRepository to make the actual registration or authentication but
it also has to handle the waiting time and the errors. The following states are required:

/// States emitted by [CredentialsBloc]
abstract class CredentialsState extends Equatable {

/// State emitted by [CredentialsBloc] when the form is created
const CredentialsState();

@override
List<Object> get props => [];

Flutter Complete Reference 697

Chapter 24. Complete Flutter project example

}

/// Action required (authentication or registration)
class CredentialsInitial extends CredentialsState {

const CredentialsInitial();
}

/// Login request awaiting for response
class CredentialsLoginLoading extends CredentialsState {

const CredentialsLoginLoading();
}

/// Registration request awaiting for response
class CredentialsRegisterLoading extends CredentialsState {

const CredentialsRegisterLoading();
}

/// Invalid authentication credentials
class CredentialsLoginFailure extends CredentialsState {

const CredentialsLoginFailure();
}

/// Weak password or invalid email
class CredentialsRegisterFailure extends CredentialsState {

const CredentialsRegisterFailure();
}

Failure states are used to represent errors while trying to authenticate, due to wrong credentials,
or register, due to problems with the email. In case of errors, a generic PlatformException with
many different codes you can find in the source code 1. In order to not make the example too
complicated, we’ve decided to simply handle exceptions with a single error message indicating to
try a different email.

/// Manages the login state of the app
class CredentialsBloc extends Bloc<CredentialsEvent, CredentialsState> {

/// Data about the user
final UserRepository userRepository;

1https://github.com/FirebaseExtended/flutterfire/tree/master/packages/firebase_auth

Flutter Complete Reference 698

Chapter 24. Complete Flutter project example

/// The [AuthenticationBloc] taking care of changing pages
final AuthenticationBloc authenticationBloc;

/// Creates a Bloc taking care of managing the login state of the app.
CredentialsBloc({

required this.authenticationBloc,
required this.userRepository,

}) : super(const CredentialsInitial());

@override
Stream<CredentialsState> mapEventToState(CredentialsEvent e) async* {

if (event is LoginButtonPressed) {
yield* _loginPressed(event);

}

if (event is RegisterButtonPressed) {
yield* _registerPressed(event);

}
}

Stream<CredentialsState> _loginPressed(CredentialsEvent e) async* {}
Stream<CredentialsState> _registerPressed(CredentialsEvent e) async* {}

}

We’ve decided to split the body of mapEventToState() into multiple functions in order to keep
the code readable. If the authentication fails because of a wrong combination of username and
password, an exception of type PlatformException is thrown.

Stream<CredentialsState> _loginPressed(CredentialsEvent event) async* {
yield const CredentialsLoginLoading();

try {
await userRepository.authenticate(

event.username,
event.password,

);

authenticationBloc.add(LoggedIn());

Flutter Complete Reference 699

Chapter 24. Complete Flutter project example

yield const CredentialsInitial();
} on PlatformException {

yield const CredentialsLoginFailure();
}

}

Stream<CredentialsState> _registerPressed(CredentialsEvent event) async* {
yield CredentialsRegisterLoading();

try {
await userRepository.register(

event.username,
event.password,

);

authenticationBloc.add(LoggedIn());
yield const CredentialsInitial();

} on PlatformException {
yield const CredentialsRegisterFailure();

}
}

Note that authenticationBloc.add(LoggedIn()); tells the authentication bloc to move from
the login page to the home page because the login happened with success. We’ve done the same
thing in the registration method too, but that’s not always desired. If you need to confirm the
email address before being able to authenticate for example, remove the line so that a successful
registration will not move to the home page.

// contents of '/lib/blocs/credentials_bloc.dart'
library credentials_bloc;

export 'credentials_bloc/bloc.dart';
export 'credentials_bloc/events.dart';
export 'credentials_bloc/states.dart';

Like we did before with AuthenticationBloc, we’re creating a library here as well in order to
minimize the number of import in our files.

Flutter Complete Reference 700

Chapter 24. Complete Flutter project example

24.2.3 Localization files

We’re going to localize our application using the "manual" approach described in chapter 13.2
because we don’t have much content to internationalize. Since you’re probably going to use this
authentication example in a larger application, you could stick with intl instead because there
might be a lot of content to localize.

/// Localization delegate that builds an [AppLocalization] instance
class AppLocalizationDelegate

extends LocalizationsDelegate<AppLocalization> {
/// Localization delegte of the app
const AppLocalizationDelegate();

@override
bool isSupported(Locale locale) =>

['en','it'].contains(locale.languageCode);

@override
Future<AppLocalization> load(Locale locale) =>

SynchronousFuture<AppLocalization>(AppLocalization(locale));

@override
bool shouldReload(LocalizationsDelegate<AppLocalization> old) => false;

}

This is the classic setup for a localization delegate. AppLocalization is created following the
same structure we described in 13.2.1, along with the extension method.

/// Adds an useful localization method on a [BuildContext]
extension LocalizationExt on BuildContext {

String localize(String value) {
final code = AppLocalization.of(this)?.locale.languageCode ?? "en";
final database = AppLocalization._localizedValues;

if (database.containsKey(code)) {
return database[code]?[value] ?? "-";

} else {
return database["en"]?[value] ?? "-";

}

Flutter Complete Reference 701

Chapter 24. Complete Flutter project example

}
}

/// This class is responsible of translating strings into a certain
/// languages defined by the [Locale] passed in the constructor.
class AppLocalization {

final Locale locale;
const AppLocalization(this.locale);

static AppLocalization? of(BuildContext context) =>
Localizations.of<AppLocalization>(context, AppLocalization);

static final Map<String, Map<String, String>> _localizedValues = {
"en": {

"title": "Login app",
"login": "Login",
...

},
"it": {

"title": "Login app",
"login": "Entra",
...

},
};

}

Have a look at out GitHub repository to see the complete code.

24.3 Building the UI

The UserRepository model is required by two blocs to authenticate the user and only a single
instance of it is required. We could cache the repository using Provider so that, in the future, if
we wanted to change the authentication provider, we’d just need to make a small change in the
void main() method.

void main() => runApp(
Provider<UserRepository>(

create: (_) => FirebaseUserRepository(),

Flutter Complete Reference 702

Chapter 24. Complete Flutter project example

child: const LoginApp(),
),

);

class LoginApp extends StatelessWidget {
const LoginApp();

@override
Widget build(BuildContext context) {

final repository = context.select((FirebaseUserRepository r) => r);

return BlocProvider<AuthenticationBloc>(
create: (_) => AuthenticationBloc(repository),
child: MaterialApp(...),

);
}

}

Create a new file called routes/home_page.dart which is going to be the first route to appear in
the UI when the app loads. It’s a single widget with two children: the login form widget and the
welcome page widget. When the authentication successfully happens, there is a sliding transition
to the left which brings the user to the welcome page:

Flutter Complete Reference 703

Chapter 24. Complete Flutter project example

This kind of animation is easy to obtain with a simple trick : we just need to create a TabBarView
with no tabs at the top and the removal of the swiping gesture. In this way, we can use a controller
to programmatically swipe the pages to the left/right on successful login/logout.

return TabBarView(
physics: const NeverScrollableScrollPhysics(),
controller: tabController,
children: const [

_LoginPage(),
_WelcomePage(),

],
);

In order to move tabs programmatically (moving tabs using the code rather than the finger) we
need to use a TabController. Thanks to the animateTo method we can obtain the traditional
sliding transition for tabs using code rather than a swiping gesture.

class HomePage extends StatefulWidget{
const HomePage();

@override
_HomePageState createState() => _HomePageState();

}

class _HomePageState extends State<HomePage>
with SingleTickerProviderStateMixin {
late final TabController tabController;

@override
void initState() {

super.initState();
tabController = TabController(

vsync: this,
length: 2,

);
}

@override
void dispose() {

Flutter Complete Reference 704

Chapter 24. Complete Flutter project example

tabController.dispose();
super.dispose();

}

/// Sliding animation to show the welcome page
void loginTransition() {

if (tabController.index != 1)
tabController.animateTo(1);

}

/// Sliding animation to show the login page
void logoutTransition() {

if (tabController.index != 0)
tabController.animateTo(0);

}

@override
Widget build(BuildContext context) {...}

}

When calling loginTransition() the welcome page appears because the TabBarView widget is
showing the second page, since authentication successfully executed. With logoutTransition()
instead, the login form is shown because the user requested to logout. Those two methods are
called by the bloc according to the emitted state:

@override
Widget build(BuildContext context) {

return BlocBuilder<AuthenticationBloc, AuthenticationState>(
builder: (context, state) {

// This state is emitted on successful authentication
if (state is AuthenticationSuccess) {

loginTransition();
}

// This state is emitted on logout
if (state is AuthenticationRevoked) {

logoutTransition();
}

Flutter Complete Reference 705

Chapter 24. Complete Flutter project example

return TabBarView(
physics: const NeverScrollableScrollPhysics(),
controller: tabController,
children: const [

_LoginPage(),
_WelcomePage(),

],
);

}
);

}

Thanks to BlocBuilder we can "catch" the incoming states and login/logout the user in both
the backend (Firebase) and the frontend (moving from welcome page to the login page and vice
versa). Since a const constructor cannot be directly applied to a Scaffold because not all of
its contents are constant, we have created (in the same file) two private classes. We’re going to
analyze them in the next section.

� This is a quite common strategy which can be used in all those cases where a
"root" widget cannot be constant. For example, in this case there’s no way to use a
constant constructor because certain classes doesn’t have one:

children: const [// NOT possible.
Scaffold(

appBar: AppBar(...), // AppBar doesn't have a const constructor
body: BlocProvider(...),

),
]

If we created a stateless widget dedicated to only contain the Scaffold with its
content, we could then define a constant constructor. You could place it in a separated
file but since the code is quite short and the Scaffold is logically a "core" part of the
containing widget, we can make a class in the same file. It should be private though,
because it’s not a public reusable widget: it’s an internal part of a widget that’s been
moved outside for optimization purposes.

// create this at the bottom....
class _LoginPage extends StatelessWidget {

const _LoginPage();

Flutter Complete Reference 706

Chapter 24. Complete Flutter project example

@override
Widget build(BuildContext context) => Scaffold(...);

}

// and then in the tab we can use...
children: const [//OK now it's possible

_LoginPage(),
]

If the widget can be reused by other widgets, put it in a separated file and use a
const constructor. If the widget is used only by a single widget because it’s part of
its "internals", put it in the same file as a private class and use a const constructor.
However, consider splitting classes into multiple files if the code gets too long and
logically you prefer keeping them separated.

Actually it’s not so important placing multiple widgets in the same place (with private classes)
or splitted in various files. It’s up to you deciding what’s better, no golden rules to apply: what’s
fundamental instead is that you try to use const as much as possible.

24.3.1 Creating the login form

It’s our app’s first widget appearing since authentication is required. As you’ve just seen, we’ve
moved it into a separated class in order to have a useful constant constructor.

class _LoginPage extends StatelessWidget {
const _LoginPage();

@override
Widget build(BuildContext context) {

final repository = context.select((FirebaseUserRepository r) => r);
final authBloc = context.bloc<AuthenticationBloc>();

return Scaffold(
appBar: AppBar(...),
body: BlocProvider(

child: const LoginForm(),
create: (context) => CredentialsBloc(

userRepository: repository,

Flutter Complete Reference 707

Chapter 24. Complete Flutter project example

authenticationBloc: authBloc,
),

),
);

}
}

We’ve placed the actual Form in a separated widget in order to have the possibility to de-
clare a const constructor in the provider of the bloc. It could have been put in the same
file as a private widget but the code is quite long and thus we preferred moving it inside
widgets/home_page/login_form.dart for a better logical order. Text controllers, disposals
and form keys are not shown for brevity.

class LoginForm extends StatefulWidget {
const LoginForm();

@override
_LoginFormState createState() => _LoginFormState();

}

class _LoginFormState extends State<LoginForm> {
// controllers, form key, call to 'dispose' here...

@override
Widget build(BuildContext context) {

return LayoutBuilder(
builder: (context, data) {

var baseWidth = 250.0;

// For wider screen, such as tablets
if (data.maxWidth >= baseWidth) {

baseWidth = data.maxWidth / 1.4;
}

return Column(
mainAxisAlignment: MainAxisAlignment.center,
children: [

SvgPicture.asset("assets/flutter_logo.svg",
width: baseWidth,

Flutter Complete Reference 708

Chapter 24. Complete Flutter project example

),

...
]

);
}

);
}

}

In order to make the app responsive, we’ve used a LayoutBuilder to define the width of the
logo. It’s fixed by default but if the screen gets bigger, the image changes dimensions according
to the available space. In the same way, the baseWidth variable is used to determine the width
of the TextEditingControllers of the form.

Form(
key: _formKey,
child: Wrap(

children: <Widget>[
SizedBox(

width: baseWidth - 30,
child: TextFormField(...),

),

SizedBox(
width: baseWidth - 30,
child: TextFormField(...),

),
],

),
),

Now that the logo and the form are setup, we need to take care of the Login and Register buttons.
They’re visible by default but, when tapped, a circular indicator must appear to indicate that
a communication with the server is happening. This is quite easy to do with a BlocConsumer
widget:

BlocConsumer<CredentialsBloc, CredentialsState>(
listener: (context, state) {

if (state is CredentialsLoginFailure) {

Flutter Complete Reference 709

Chapter 24. Complete Flutter project example

// Show a snackbar or a dialog to notify the failure
}

},
builder: (context, state) {

if (state is CredentialsLoginLoading) {
return const CircularProgressIndicator();

}

return RaisedButton(
child: Text(context.localize("login")),
onPressed: () {

final state = formKey.currentState;

if (state?.validate() ?? false) {
_loginButtonPressed(context);

}
},

);
},

),

The listener is used to show a message dialog in response of an error state, which is very handy.
In the builder instead we swap between a circular indicator and the login button according
to the state emitted by the bloc. Note how we’ve localized the text of the button and used a
constant constructor. Of course the action should be performed only if the form has been properly
filled:

void _loginButtonPressed(BuildContext context) {
BlocProvider.of<CredentialsBloc>(context).add(

LoginButtonPressed(
username: _emailController.text,
password: _passwordController.text

)
);

}

There’s another BlocConsumer for the registration button which is basically identical with ex-
ception for the name displayed in Text and the different callback which fires an event of type
RegisterButtonPressed.

Flutter Complete Reference 710

Chapter 24. Complete Flutter project example

24.3.2 Creating the welcome page

When the authentication successfully executes, the user can see the welcome page and thus start
actually using our application. This widget is the starting point from which you can open new
routes using a drawer, using action buttons and much more. We’ve provided a logout button at
the top-right corner of the app, in the Scaffold.

class _WelcomePage extends StatelessWidget {
const _WelcomePage();

@override
Widget build(BuildContext context) {

return Scaffold(
appBar: AppBar(

centerTitle: true,
title: const Text("LoginApp"),
actions: <Widget>[

IconButton(
icon: const Icon(Icons.exit_to_app),
onPressed: () => BlocProvider

.of<AuthenticationBloc>(context)

.add(LoggedOut()),
),

],
),
drawer: const Drawer(),
body: const Center(

child: Text("You're logged in"),
),

);
}

}

Sending a LoggedOut event to the authentication bloc causes the TabBarView to swipe to the
right and show the login form (in other words, we’ve made a logout from the app). The bloc
emits a state of type AuthenticationRevoked which is the actual logout from Firebase and a
call to the tab controller in the UI:

// Body of the 'HomePage' widget, inside the 'BlocBuilder'
if (state is AuthenticationRevoked) {

Flutter Complete Reference 711

Chapter 24. Complete Flutter project example

logoutTransition();
}

24.4 Testing the code

Even if the testing section is at the bottom of the chapter, tests shouldn’t be written and executed
at the end of the development cycle. For example, as soon as the AuthenticationBloc is ready
to be used in the UI you should also write tests for it. We recommend the usage of this kind of
folder structure:

test/
unit/

authentication_bloc_test.dart
credentials_bloc_test.dart

widget/
login_form_test.dart

integration/

Create one folder for each testing strategy and then organize the files inside as you prefer. It’s
an intuitive way to logically group entities together for a quicker search and a better mental
order.

24.4.1 Unit tests

Create test/unit/authentication_bloc_test.dart which will test AuthenticationBloc, us-
ing the bloc_test package. Here’s where the fake user repository we created is very useful because
it can be easily used as a mock for an authentication provider:

void main() {
final authenticationRepository = const TestUserRepository(

fakeEmail: "alberto@miola.it",
success: true,

);

blocTest<AuthenticationBloc, AuthenticationEvent, AuthenticationState>(
'Authentication successful',
build: () async => AuthenticationBloc(authenticationRepository),
act: (bloc) async => bloc.add(LoggedIn()),
expect: <AuthenticationState>[

Flutter Complete Reference 712

Chapter 24. Complete Flutter project example

AuthenticationSuccess(),
],

);

blocTest<AuthenticationBloc, AuthenticationEvent, AuthenticationState>(
'Authentication failed',
build: () async => AuthenticationBloc(authenticationRepository),
act: (bloc) async => bloc.add(LoggedOut()),
expect: <AuthenticationState>[

AuthenticationLoading(),
AuthenticationRevoked(),

],
);

}

In the same way, inside test/unit/login_bloc_test.dart we’re writing the code to test the
login bloc. Again, thanks to the fake repository we’re able to easily emulate the success or failure
of the authentication just by changing the value of loginResult.

void main() {
final successRepository = const TestUserRepository(

fakeEmail: "alberto@goodtest.it",
success: true,

);

final failedRepository = const TestUserRepository(
fakeEmail: "alberto@failtest.it",
success: false,

);

blocTest<CredentialsBloc, CredentialsEvent, CredentialsState>(
'Successful login',
build: () async => CredentialsBloc(

authenticationBloc: AuthenticationBloc(successRepository),
userRepository: successRepository

),
act: (bloc) async => bloc.add(LoginButtonPressed()),
expect: <CredentialsState>[

CredentialsLoginLoading(),

Flutter Complete Reference 713

Chapter 24. Complete Flutter project example

CredentialsInitial(),
]

);

blocTest<CredentialsBloc, CredentialsEvent, CredentialsState>(
'Registration failed',
build: () async => CredentialsBloc(

authenticationBloc: AuthenticationBloc(failedRepository),
userRepository: failedRepository

),
act: (bloc) async => bloc.add(RegisterButtonPressed()),
expect: <CredentialsState>[

CredentialsRegisterLoading(),
CredentialsRegisterFailure(),

]
);

// more tests...
}

Any other model class you will create should be properly tested in a dedicated file. You should
write tests for a class as soon as it’s ready to be used in the code so that you maintain the actual
implementation and the testing in parallel.

24.4.2 Widget tests

Widget testing is also very important and the bloc_test package is essential when it comes to
testing blocs. We’re first going to create inside test/widget/mock_material.dart a reusable
mock for a MaterialApp which will be very handy.

class MockMaterialApp extends StatelessWidget {
final Widget child;
const MockMaterialApp({

required this.child
});

@override
Widget build(BuildContext context) {

return MaterialApp(

Flutter Complete Reference 714

Chapter 24. Complete Flutter project example

localizationsDelegates: [
const AppLocalizationDelegate(),
GlobalMaterialLocalizations.delegate,
GlobalCupertinoLocalizations.delegate,
GlobalWidgetsLocalizations.delegate,

],
supportedLocales: [

Locale.fromSubtags(languageCode: "en"),
Locale.fromSubtags(languageCode: "it"),

],
home: child,

);
}

}

You’d have done the same if the project worked with a CupertinoApp. Having a MaterialApp
widget is important because, for example, localization delegates are required in order to test
certain widgets relying on context.localize("my_value"). Mocking blocs is no different from
what we’ve seen in 16.1:

class MockAuthenticationBloc extends MockBloc<AuthenticationState>
implements AuthenticationBloc {}

void main() {
final authBloc = MockAuthenticationBloc();

whenListen<AuthenticationState>(
authBloc,
Stream.fromIterable(<AuthenticationState>[

AuthenticationLoading(),
AuthenticationSuccess(),

])
);

testWidgets("Testing how the authentication behaves", (tester) async {
await tester.pumpWidget(

BlocProvider<AuthenticationBloc>.value(
value: authBloc,
child: MockMaterialApp(

Flutter Complete Reference 715

Chapter 24. Complete Flutter project example

child: const WelcomePage(),
),

)
);

final key = Key("HomeMessage");
expect(find.byKey(key), findsOneWidget);

});
}

Again, mind a good folder structure to not mix different types of tests in the same file. For
example, like it happens with unit test, each bloc should be tested in a separated file for a better
organization of the code.

Flutter Complete Reference 716

A | Dart Appendix

A.1 The I/O library

The "dart:io" library is used to work with files, directories, WebSockets, HTTP clients and
processes. Almost any I/O operation in Dart is executed asynchronously to avoid blocking the
application so results are returned either via Future<T> or Stream<T>.

A.1.1 Files

In Dart you can read a file in two ways: all at once or lazily. Reading a file entirely requires
having enough memory. Note that Uint8List is basically a List<int> so its contents can be
traversed regularly like if they were items of a list.

final myFile = File('data.json');

// The entire content of 'data.txt' is read
final String content = await myFile.readAsString();

// Each line of the files is represented by a String
final List<String> contents = await myFile.readAsLines();

// Reads the file as a sequence of bytes (raw bytes)
final Uint8List data = await myFile.readAsBytes();

Consider using the above approaches when the file is not too big because it’s entirely loaded in
memory. In mobile apps you generally don’t store big text files so calling File.readAsString()
in Flutter is not a problem. With larger files, you probably should lazily read the contents using
a stream.

final myFile = File('data.json');

Flutter Complete Reference 717

Appendix A. Dart Appendix

final Stream<List<int>> stream = myFile.openRead();

final fileLines = utf8.decoder
.bind(stream)
.transform(LineSplitter());

try {
await for (var line in fileLines) {...}

} catch (e) {
print(e);

}

The file is closed as soon as the await for terminates. The utf8 variable is a constant part of
the dart:convert library. Writing to a file can easily be done using the File class:

File('something.txt').writeAsString("hello");
File('another.abc').writeAsBytes([0x3, 0xA2]);

When creating a File object you can also decide the mode, which can be one of the follow-
ing:

• FileMode.append: Read and write at the end of the file (which is created if it doesn’t exist)

• FileMode.read: File can only be read

• FileMode.write (default): Used to read and write the file (which is overwritten if it already
exists or created if it doesn’t exist).

• FileMode.writeOnly: the same as write but there’s no possibility to read the contents.

By default File is in write mode but if you don’t want, for example, overriding the file every
time, just create it with the append mode.

A.1.2 Directories

Working with directories is quite easy thanks to class Directory which exposes many useful
methods. An object of type Directory must contain a path on which operations are executed
and it can be absolute or relative.

� In Flutter you should avoid using this class directly. Instead, prefer using the
path_provider package which can be seen as the cross-platform version of Directory.

Flutter Complete Reference 718

Appendix A. Dart Appendix

It automatically resolves the correct paths to the various system folders.

Like it happened with files, most of the operations are asynchronous (or streams) so that the
main application is not blocked by I/O operations.

final dir = await Directory('folder1/folder2')
.create(recursive: true);

Thanks to recursive: true you’re sure that the target directory (folder2) is created together
with its parents (folder1) if they don’t exist. There are a series of "classic" methods you’d expect
to be able to use on this kind of object:

• createTemp(): creates a temporary directory in the given directory;

• rename(): renames a directory;

• exists(): used to determine whether a directory exists or not;

• delete(): deletes a directory;

• list(): lists all the sub-directories and files

There’s also the possibility to use a Stream<FileSystemEvent> watch() to listen for actions
happening in the directory such as insertions or deletions.

A.1.3 Server side Dart

With Dart you can easily setup an HTTP server using HttpServer, which heavily relies on
Future<T> and Stream<T>, just by providing an IP address and a specific port. Thanks to its
asynchronous nature, it can listen for requests and handle more than one at the same time:

import 'dart:io';

Future<void> main() async {
// Start server on localhost:8075
var server = await HttpServer.bind(

InternetAddress.loopbackIPv4, 8075
);

// Asynchronously handle incoming requests
await for (HttpRequest request in server) {

request.response.write("""<html><body>

Flutter Complete Reference 719

Appendix A. Dart Appendix

<p>Hello client!</p>
</body></html>""");

await request.response.close();
}

}

The class HttpRequest is a server-side object containing information about the received HTTP
request. Of course you can have more control on the incoming requests but the approach is quite
"low level" as you manually have to handle the entire response lifecylce. This is a more elaborate
example:

void main() {
var server = await HttpServer.bind(

InternetAddress.loopbackIPv4, 8075
);

await for (HttpRequest request in server) {
handle(request);

}
}

void handle(HttpRequest request) {
if (request.method == 'GET') {

handleGet(request);
} else {

if (request.method == 'POST') {
handlePost(request);

} else {
request.response

..statusCode = HttpStatus.methodNotAllowed

..write('${request.method} not handled')

..close();
}

}
}

You can also run an HTTPS server using bindSecure() rather than bind(). For a complete

Flutter Complete Reference 720

Appendix A. Dart Appendix

tutorial about writing HTTP servers with Dart, refer to the official documentation 1. You can find
on https://pub.dev a very convenient package called http_server, a higher level way of building
HTTP servers with Dart. It’s easier to use:

Future<void> main() async {
var htmlPages = VirtualDirectory('www_root');

htmlPages.directoryHandler = (directory, request) {
final homePath = Uri.file(directory.path).resolve('index.html');
final homePage = File(homePath.toFilePath());

htmlPages.serveFile(homePage, request);
};

final server = await HttpServer.bind(
InternetAddress.loopbackIPv4, 8075

);

await server.forEach(htmlPages.serveRequest);
}

The VirtualDirectory class is a secure way to serve files and directories in response to HTTP
requests. It can be used to return HTML pages together with mime-types, potential error codes
and so on. Be sure to check out the official package documentation 2 to get more info.

A.2 Date and time

In Dart the Duration class is used to represent time spans and making conversions from one unit
to another. It’s used to represent the difference between two moments, which can be negative in
case the difference were from a later time to an earlier one.

// It also has 'days', 'milliseconds' and 'microseconds'
final myWorkToday = Duration(

hours: 8,
minutes: 25,
seconds: 38,

);
1https://dart.dev/tutorials/server/httpserver
2https://pub.dev/documentation/http_server/latest/http_server/http_server-library.html

Flutter Complete Reference 721

https://pub.dev

Appendix A. Dart Appendix

The above time span can be converted into seconds, for example, using the inSeconds getter
which will return the total converted value of the interval. Look at this example to better
understand how it works:

final total = Duration(
hours: 9,
minutes: 11,
seconds: 37

);

// 9 hours, 11 minutes and 37 seconds are equivalent to 33097 TOTAL seconds:
// 9 * 3600 + 11 * 60 + 37 = 33097
print("${total.inSeconds}"); // prints 33097

// Returns the remainder of the division of the duration by 60. In fact
// 33097 % 60 = 37
print("${total.inSeconds.remainder(60)}"); // prints 37

In practice, inSeconds returns the representation of the entire duration in seconds. If you want
to only extract the seconds parameter of Duration, you need to make a division. The same gist
also applies to other getters such as inMinutes.

final d1 = const Duration(minutes: 15);
final d2 = const Duration(seconds: 548);

final d3 = (d1 < d2) ? d1 + d2 : d1 - d2;

Thanks to operator overloads you can easily compare objects and add/subtract values. If you
want to represent a point in the time, use the DateTime class instead, which is also part of
dart:core. Instances are generally created with one of the following constructors:

final d1 = DateTime.now();
final d2 = DateTime(1997, 5, 20); // May 20, 1997
final d3 = DateTime.utc(1997, DateTime.may, 20); // uses the UTC timezone
final d4 = DateTime.parse("1997-05-20 15:29:10Z");

Unless the utc() named constructor is used, the object is tied to the current device’s date and
time. Use a DateTime in conjunction with the "intl" package 3 to localize date and times. As
always, be sure to check out the official documentation for a complete overview of the numerous

3See chapter 13

Flutter Complete Reference 722

Appendix A. Dart Appendix

available getters 4.

final today = new DateTime.now();
final tomorrow = today.add(const Duration(day: 1));

A DateTime object doesn’t change once created and has no operator overloads. Use the Stopwatch
class if you’re looking for a precise tool to measure the elapsed time between one or more calls.
The two main methods you’ll almost always use are start() and stop():

final sw = Stopwatch();
print("Startng...");

sw.start();
await executeSomething();
sw.stop();

print("Elapsed = ${sw.elapsedMilliseconds}");
print("Elapsed = ${sw.isRunning}"); // false

Enclose the parts of code you want to "benchmark" between start() and stop() to retrieve the
elapsed milliseconds or microseconds. Note that reset() doesn’t start or stop the timer: it just
sets the counter back to 0.

sw.start();
await Future.delayed(const Duration(seconds: 2));
sw.reset();
await Future.delayed(const Duration(seconds: 1));
sw.stop();
print("Elapsed = ${sw.elapsedMilliseconds}"); // Elapsed = 1000

sw.start();
await Future.delayed(const Duration(seconds: 2));
await Future.delayed(const Duration(seconds: 1));
sw.stop();
print("Elapsed = ${sw.elapsedMilliseconds}"); // Elapsed = 3000

Be sure to call reset() whenever you want to reset the timer. If you wish to convert the results in
other time units, just wrap the total microseconds (or milliseconds) in a Duration object.

// Measure

4https://api.dart.dev/stable/2.8.3/dart-core/DateTime-class.html

Flutter Complete Reference 723

Appendix A. Dart Appendix

sw.start();
await Future.delayed(const Duration(

seconds: 2,
milliseconds: 75

));
sw.stop();

// Wrap the time in a convenient object
final duration = Duration(

microseconds: sw.elapsedMicroseconds
);
print(duration);

A.3 Obfuscating Dart code

After you’ve published a new project to the official stores, someone could download your Flutter
app’s binary and use some tools to see the internals (including assets and source code). This
process is always doable and it’s called reverse engineering. You can use code obfuscation to
make the binary harder for humans to understand.

� Note that code obfuscation does not encrypt your Dart files: it just makes them
harder for a human to read. In this way, the attacker will have harder times trying
to figure out the actual logic but data is still visible.

In order to obfuscate a Flutter app, you need to make a build in release mode and append the
--obfuscate flag at the end of the command. In addition, there should be --split-debug-info
to tell Flutter where output files has to be written.

flutter build appbundle --obfuscate --split-debug-info=/path/to/a/folder/
flutter build apk --obfuscate --split-debug-info=/path/to/a/folder/
flutter build ios --obfuscate --split-debug-info=/path/to/a/folder/

Files generated at the path specified by --split-debug-info are needed if you want to de-
obfuscate the binary in a second moment. Keep them in a secure place. We strongly recommend
you to obfuscate your binary before publishing it to the official stores.

Flutter Complete Reference 724

Appendix A. Dart Appendix

� The usage of --split-debug-info could drastically reduce the code size so you
should really use it. It also works without --obfuscate but you’d better go for ob-
fuscation + splitting.

Code obfuscation doesn’t work for web apps simply because there’s no need for it (web apps are
minified, not obfuscated).

Flutter Complete Reference 725

Appendix A. Dart Appendix

Flutter Complete Reference 726

B | Flutter Appendix

B.1 Riverpod

Riverpod is a new state management library created by Rémi Rousselet, the technical reviewer of
this book, which tries to fix some common problems affecting his provider package. It’s basically
"provider on steroids" that doesn’t depend on Flutter and has many interesting features. Before
describing it, there are a few points to clarify:

1. At the time of writing this book, Riverpod is a beta rewrite of Provider. As such, you can
explore and test the library making demo projects but be aware that it’s not ready yet to
be used for production. Currently, the latest Riverpod version is 0.8.0.

2. Provider is built on top of InheritedWidget to make it easier to use. Riverpod instead is
a complete rewrite of InheritedWidget from scratch.

3. Riverpod won’t be merged with Provider because they have core differences (see the above
point).

4. Riverpod could replace Provider in the future but it’s not sure.

5. If Riverpod will be proven to be a better alternative to Provider, then it might be a re-
placement. Until that time, if it will ever come, continue using Provider which is stable and
highly popular.

As you may have guessed, at the moment Provider should still be your primary choice: Riverpod
is currently a beta project that requires more testing and validations by the community. It’s born
to inherit all the benefits of Provider plus more:

1. Riverpod doesn’t depend on InheritedWidget so Flutter is not a requirement anymore:
this library can also be used with Dart!

2. In general, you can just use a ProviderScope as root widget (see the example below)

Flutter Complete Reference 727

Appendix B. Flutter Appendix

and you won’t have to worry about runtime exceptions. No more surprises caused by a
Provider<T> not being located at a certain level of the widget tree. It’s a compile-safe
solution.

3. With Riverpod you can have multiple providers of the same type. States can be disposed
when not needed anymore.

4. Last but not least... "riverpod" is the anagram of "provider"!

Riverpod comes in three flavors: riverpod (Dart), flutter_riverpod (Flutter) or hooks_riverpod
(Flutter + the hooks package). For Flutter applications, if you don’t use the hooks 1 package,
just go for flutter_riverpod.

B.1.1 Usage

In Riverpod, a "provider" is the same concept you’ve been used to see up to now: it exposes a
value that can be shared by one or more widgets in the subtree. We’re now showing how to create
the simple famous "Flutter counter app", which just does a +1 each time a button is pressed.
Let’s start with the basics:

void main() {
runApp(

const ProviderScope(
child: CounterApp(),

),
);

}

You can decide to not place ProviderScope right after runApp() but then, be aware it has to
be put one level above the values you’re trying to access. The ProviderScope class enables
Riverpod for the entire project and it should really be placed at the root of the tree. Providers
can be declared as global variables but since we don’t really like them, an equivalent but better
looking solution is the following:

// Create this in a file called lib/providers/counter.dart
abstract class CounterProvider {

static final provider = StateProvider<int>((ref) => 0);
}

1See 21.3.1 to read about "Flutter Hooks"

Flutter Complete Reference 728

Appendix B. Flutter Appendix

We prefer creating a dedicated class called CounterProvider which encloses a static reference
of the provider our app is going to use. We also recommend creating a providers/ folder with
all the providers you use (one per file). A StateProvider<T> is a provider able to react to state
changes, similarly to what a ChangeNotifierProvider does. We now have two ways to read the
value:

1. A ConsumerWidget is basically a StatelessWidget with the ability to listen to changes on
providers. Under the hood, it extends StatefulWidget so it can be put in the widget tree
as usual.

class CounterApp extends ConsumerWidget {
const CounterApp();

void _buttonPressed(BuildContext context) { ... }

@override
Widget build(BuildContext context, ScopedReader watch) {

final value = watch(CounterProvider.provider).state;

return Scaffold(
body: Center(

child: Text("$value"),
),
floatingActionButton: FloatingActionButton(

onPressed: () => _buttonPressed(context),
child: const Icon(Icons.add),

),
);

}
}

Rather than extending StatelessWidget, we use ConsumerWidget which exposes a very
useful watch parameter. It’s used to trigger a rebuild whenever the state of the listened
provider changes (so the Scaffold will be rebuild along with its children).

2. Alternatively, you can use the classic Consumer widget inside a StatelessWidget to obtain
the same result. However, in this case you can optimize performance by rebuilding only
widgets that actually depend on a provider. It’s a better approach.

class CounterApp extends StatelessWidget {

Flutter Complete Reference 729

Appendix B. Flutter Appendix

const CounterApp();

void _buttonPressed(BuildContext context) { ... }

@override
Widget build(BuildContext context) {

return Scaffold(
body: Center(

child: Consumer(
builder: (context, watch, child) {

final count = watch(CounterProvider.provider);
return Text('${count.state}');

}
),

),
floatingActionButton: FloatingActionButton(

onPressed: () => _buttonPressed(context),
child: const Icon(Icons.add),

),
);

}
}

In this case, only the Text widget is rebuilt and not only the entire subtree. In case you had
a nested widget, use the child parameter to "cache" what doesn’t depend on a provider.

Center(
child: Consumer(

builder: (context, watch, child) {
final count = watch(CounterProvider.provider).state;
return Column(

children: [
child,
Text('$count')

]
);

},
child: Container(...),

),

Flutter Complete Reference 730

Appendix B. Flutter Appendix

),

In this way, the Container (along with its children) is cached. Changes on the state will
only affect Column and Text.

Both ways are fine: you have more control on rebuilds (and thus performance) with Consumer so
it’s generally a better choice but it reduces the readability of the code. We still need to implement
the actual increasing of the counter, which happens using read():

void _buttonPressed(BuildContext context) =>
context.read(CounterProvider.provider).state++;

Riverpod’s read() is the equivalent of Provider’s read<T>(): it simply reads the value of a
provider without listening to it. When outside of the widget tree, like in this case, it’s the only
way you have to access the state of a provider. The library has then two ways to access the
state:

• use watch() inside a ConsumerWidget or Consumer to listen to changes. Rebuilds will
happen whenever the state changes. It can be used only inside the widget tree.

• use read() when you need to simply read the state of a provider without listening to it. It
has to be used when accessing the state of a provider outside of the widget tree.

Note that context.read() can be used both inside and outside of the widget tree. When you
need to listen to changes, consider using Consumer to avoid unnecessary rebuilds. Here’s the kind
of providers you can use:

• Provider<T>. It exposes a read-only value. It’s the most simple kind of provider, commonly
used as a "cache" to share data (model classes) among widgets. You could use it in the
following way:

abstract class UserDataProvider {
static final provider = Provider<UserData>((ref) => UserData());

}

class UserData {
var name = '';
var surname = '';
var age = 0;

}

Any UI widget can get access to data about the user regardless their position in the tree.
We will see later how the ref parameter can be useful.

Flutter Complete Reference 731

Appendix B. Flutter Appendix

• StateProvider<T>. It exposes a value to the outside so that it can be modified and
listened/read from. You’ve already seen an example in the above "counter" app ex-
ample where the exposed value can be read or listened: it is something similar to the
ChangeNotifierProvider of the provider package.

• FutureProvider<T>. Kind of provider that asynchronously creates a value: it can be seen
as a combination of Provider<T> and FutureBuilder<T>. For example, let’s see how you
can easily make a GET request and synchronously return data to the UI.

abstract class RequestProvider {
static final provider = FutureProvider<UserInfo>((ref) async {

final url = "https://website.com/api/json/something";
final response = await dio.get<String>(url);

return UserInfo.fromJson(response.data);
});

}

// Exposes some getters such as nickname, age and birthday
class UserInfo { ... }

There’s no need for the classic FutureBuilder<T> setup because Riverpod will take care
of everything for you. The syntax couldn’t be more expressive than this:

@override
Widget build(BuildContext context, ScopedReader watch) {

final AsyncValue<UserInfo> jsonString =
watch(RequestProvider.provider).state;

return jsonString.when(
loading: () => const CircularProgressIndicator(),
error: (err, stackTrace) => const SomeErrorWidget(),
data: (userInfo) => SomeInfoWidget(

nickname: userInfo.nickname,
age: userInfo.age,
birthday: userInfo.birthday,

),
);

}

Flutter Complete Reference 732

Appendix B. Flutter Appendix

A FutureProvider<T> returns a very useful object called AsyncValue<T> which is used to
safely handle asynchronous data. With this setup, the UI is automatically rebuild when
the data is ready.

• StreamProvider<T>. It works exactly as a FutureProvider<T> with the only difference
that the created value is a Stream<T> rather than a Future<T>. In particular, when you
have one or more resources to be disposed, be sure to use the autoDispose() named
constructor:

abstract class ExampleProvider {
static final provider =

StreamProvider.autoDispose<String>((ref) async* {
final source = SomeStreamSource();

// You can also perform cleanup operations
ref.onDispose(() => source.close());

await for (final event in source.stream) {
yield "$event";

}
});

}

The ref parameter is a reference to the current StreamProvider<T> object and it can be
used to dispose resources via onDispose(). The provider returns a AsyncValue<T> so the
syntax is the same as before:

Consumer(
builder: (context, watch, _) {

final msgStream = watch(ExampleProvider.provider).state;

return msgStream.when(
loading: () { ... },
error: (err, stackTrace) { ... },
data: (eventData) { ... },

);
}

);

You can also use FutureProvider.autoDispose() to have more control on asynchronous re-

Flutter Complete Reference 733

Appendix B. Flutter Appendix

quests. In the official documentation 2 there’s an article showing how easy it is to cancel HTTP
requests when no-longer needed. Even if Riverpod is a complete rewrite of the Provider package,
there are still many similarities in the names and usages.

B.1.2 Combining providers

In Riverpod, the constructor of any provider always exposes a ref parameter. Very simply, it’s
just a reference to the "current" provider object on which you’re working. You’ve already seen
it in action:

StreamProvider.autoDispose<String>((ref) async* {
ref.onDispose(() { ... });

});

In this case, ref is a reference to the current StreamProvider<T> instance in which you’re
working. Other than being useful to call onDispose(), it’s also great when it comes to combining
two or more providers (potentially, infinite providers!):

abstract class YearProvider {
static final provider = StateProvider<int>((_) => 2020);

}

abstract class EventProvider {
static final provider = FutureProvider<List<Event>>((ref) async {

final year = ref.watch(YearProvider.provider);
return downloadEvents(year);

});
}

In this example, EventProvider depends on another provider because it’s listening to changes. In
particular, ref is a reference to the current EventProvider object which makes possible watching
(or also reading) another source.

// Don't listen, just read
final year = ref.read(YearProvider.provider);

This would have worked anyway. In the Provider package you cannot declare two providers of
the same type but in Riverpod there isn’t this restriction. There can be two providers exposing
a variable of the same type (even the same object) without any problem:

2https://riverpod.dev/docs/concepts/modifiers/auto_dispose#example-cancelling-http-requests-when-no-
longer-used

Flutter Complete Reference 734

Appendix B. Flutter Appendix

• Provider. The following code compiles but you’ll get a runtime error because there are
two providers holding the same type. The Consumer<T> doesn’t know which provider has
to be taken into account.

MultiProvider(
providers: [

Provider<MyModel>(create: (_) => const MyModel()),
Provider<MyModel>(create: (_) => const MyModel()),

],
child: Consumer<MyModel>(

builder: (context, model, _) => Text("$model"),
},

);

• Riverpod. No runtime errors because there’s no dependency on the widget tree. We’re
using abstract classes for providers so Flutter doesn’t care about the types of the models.

abstract class AlbertoProvider {
static final provider = StateProvider<String>((_) => "Alberto");

}
abstract class RemiProvider {

static final provider = StateProvider<String>((_) => "Rémi");
}

// somewhere in the widget tree
Consumer(

builder: (context, watch, _) {
final alberto = watch(AlbertoProvider.provider).state;
final remi = watch(RemiProvider.provider).state;

return Text("$alberto $remi");
}

)

Riverpod doesn’t rely on the widget tree so errors like "Could not find the correct provider
above..." can never happen.

Flutter Complete Reference 735

Appendix B. Flutter Appendix

B.1.3 Testing

Testing an application is very straightforward and you don’t even need to use particular libraries.
Riverpod can be tested in pure Dart applications (Flutter isn’t a dependency) along with the
usual test and mockito packages. Here’s how you’d setup tests for the counter app.

// counter_provider_test.dart
abstract class CounterProvider {

static final provider = StateProvider<int>((_) => 0);
}

class Listener extends Mock {
void call(int value);

}

For simplicity, we directly create the CounterProvider in the same file but actually it should be
placed somewhere else, inside a good folders structure. Listener is a convenient callable class 3

we’ve created to keep tracks of signals sent by the provider to listeners.

// still inside counter_provider_test.dart
void main() {

test('Notifies listeners when the state changes', () {
final container = ProviderContainer();
final listener = Listener();

// "Catch" changes emitted from the provider and forward
// them to our listener
CounterProvider.provider.watchOwner(container,

(value) => listener(value.state)
);

// Make sure the initial state is 0
verify(listener(0)).called(1);
verifyNoMoreInteractions(listener);

// Increment by 1
container.read(counterProvider).state++;

3See: 4.5.1 callable classes

Flutter Complete Reference 736

Appendix B. Flutter Appendix

// Make sure the state is 1
verify(listener(1)).called(1);
verifyNoMoreInteractions(listener);

});
}

In Flutter, ProviderContainer is internally used by Riverpod so you don’t need to care about
it. It’s a very important class used to store the state of a provider. The actual testing is done
with verify() from the mockito package.

1. We make sure the initial state is really 0.

verify(listener(0)).called(1);

The called(1) call makes sure that the method has been called exactly 1 time

2. We make sure that nothing more has happened with verifyNoMoreInteractions().

When it comes to widget testing, you just need to wrap the subtree in a ProviderScope and
you’re already good to go. There’s nothing more to setup because it’s really a "normal" widget
test process.

void main() {
testWidgets('Counter increment', (tester) async {

await tester.pumpWidget(
const ProviderScope(

child: CounterApp()
)

);

// Counter must start at 0
expect(find.text('0'), findsOneWidget);

// Tap the FAB and trigger a rebuild
await tester.tap(find.byIcon(Icons.add));
await tester.pump();

// Counter now has to be 1
expect(find.text('1'), findsOneWidget);

});
}

Flutter Complete Reference 737

Appendix B. Flutter Appendix

Be sure to have a look at the official documentation 4. It’s rich of examples and it is guaranteed
to be a growing source of information about this new state management library. Be sure to keep
an eye on their official website to stay updated on the latest changes.

B.2 Local databases

It’s very common nowadays deferring data storage and processing to the server so that the mobile
device doesn’t have any heavy computing to execute. In particular, databases are hosted on a
server which exposes the contents to the outside with a REST API or an SDK (like it happens
with Firebase). This is quite useful:

1. the user can access data from different devices (so no hardware dependencies);

2. no internal memory occupied by databases or other kind of files;

3. no I/O disk operations since everything happens via internet.

You might have guessed that relying on a local data storage is not a good idea. What is absolutely
fine instead (and it’s also very common) is caching some data on the device using a database. It
may be useful for:

• storing user’s preferences (settings, values, flags...);

• caching data so that certain features of your app can be used even when there’s no internet
connection.

We’ve already seen in chapter 20 the shared_preferences package but it’s only good for simple key-
value data. If you’re looking for a better way to persist information on the device, we recommend
the usage of one of the following packages.

B.2.1 Hive (NoSQL)

Hive 5 is a fast, lightweight and secure NoSQL database for both Dart and Flutter with built-in
encryption. It can be initialized whenever you want but you should really do it at startup, at the
very first line of the main() method:

// For Dart apps
void main() async {

Hive.init("/valid/path/on/filesystem/");

4https://riverpod.dev
5https://pub.dev/packages/hive

Flutter Complete Reference 738

Appendix B. Flutter Appendix

await Hive.openBox("my_data");
}

// For Flutter apps
void main() async {

await Hive.initFlutter();
await Hive.openBox("my_data");

runApp(const MyFlutterApp());
}

Data are stored inside "boxes" which are automatically encrypted. You could, for example, create
two different boxes called "app_settings" and "cached_contents" to store different values of
your app. Once the box has been opened, reading and writing data is straightforward:

// Get a reference to the box containing the data
final data = Hive.box("my_data");

// Store a value
data.put("name", "Alberto");

// Retrieve a value
final name = data.get<String>("name", defaultValue: "-");

Don’t try to open a box more than once otherwise an exception will be thrown. This might be
another reason to open boxes as soon as possible when the app launches (you won’t have to call
bool isBoxOpen(String name) repeatedly). It would be better if you created a separated file
only containing the database’s keys, such as:

// 'hive_keys.dart'
class HiveKeys {

const HiveKeys._();

static const name = "name";
static const password = "passwd";

}

In this way you can later use HiveKeys.name rather than a plain "name" string, which is less
error-prone and better in terms of maintenance. Of course you can also store complex objects,
not only primitive types such as double, DateTime, lists and maps. This file represents data

Flutter Complete Reference 739

Appendix B. Flutter Appendix

about a particular device configuration:

@HiveType()
class Settings extends HiveObject {

// Every field has to be annotated with 'HiveField' and an integer
// ascending value for subsequent members (0, 1, 2...)
@HiveField(0)
String deviceName;

}

class SettingsAdapter extends TypeAdapter<Settings> {
@override
final typeId = 0;

@override
Settings read(BinaryReader reader) {

return Settings()
..deviceName = reader.read();

}

@override
void write(BinaryWriter writer, Settings settings) {

writer.write(settings.deviceName);
}

}

In this example, Settings is the model class we’re going to store and it has to be marked with
the HiveType annotation. The adapter can be automatically generated using hive_generator,
which is recommended, but for this simple example we’ve written it by hand.

� The documentation is very detailed and rich of interactive examples, so you should
definitely have a look at it for more info: https://docs.hivedb.dev..

Flutter Complete Reference 740

https://docs.hivedb.dev.

Appendix B. Flutter Appendix

B.2.2 SQLite (SQL)

There’s a very popular SQLite package called "sqflite" 6, which is also covered in the official
Flutter documentation. SQL databases cannot run on mobile devices because there is no server
installed; for this reason, .sqlite files are an alternative way to go. The sqflite package can
easily be initialized in this way:

import 'package:path/path.dart' as path;
import 'package:sqflite/sqflite.dart';

void main() async {
WidgetsFlutterBinding.ensureInitialized();

// Automatically get the database folder according to the current OS
final dbPath = await getDatabasesPath();

// Use 'join' to correctly build the path to the database file
final dbName = path.join(dbPath, 'settings.db');
final database = openDatabase(dbName);

// Maybe expose the reference to the database using Provider
runApp(const FlutterApp());

}

path is the cross-platform way to work with filesystem’s paths. The above setup is only required
if the database is going to be used across the entire app. If you plan to use it only in particular
areas of your app (like storing settings), avoid working in main() an prefer creating a Future<T>
which can be simply awaited by a FutureBuilder<T>:

Future<Database> initialize() async {
final dbPath = await getDatabasesPath();
final dbName = path.join(dbPath, 'settings.db');
return openDatabase(dbName);

}

In the openDatabase() method there’s also the possibility to specify the version using an
integer value. It’s generally used together with onCreate, onUpgrade or onDowngrade callbacks
to specify actions to perform when a migration of the database is required.

6https://pub.dev/packages/sqflite

Flutter Complete Reference 741

Appendix B. Flutter Appendix

openDatabase(dbName,
// Called if the database doesn't exist prior to calling 'openDatabase'
onCreate: (db, version) {...},
// Called if there is no 'onCreate' callback OR 'version' has changed
// and it's higher than the previous value
onUpgrade: (db, version) {...},
// Called when 'version' is lower than the previous value
onDowngrade: (db, version) {...},
version: 1

);

In practice, you should always start with version: 1 and define (if needed) an onCreate callback
to execute initialization queries on the database for the first time it’s created. Use onUpgrade
when a new version is available to make a migration to the new configuration. Remember that
changing the version number triggers the upgrade or downgrade callbacks.

openDatabase(dbName,
onCreate: (db, version) {

return db.execute(
"CREATE TABLE something (id INTEGER PRIMARY KEY, descr TEXT)",

);
}

);

Queries should be placed in a dedicated file: we put a CREATE statement directly in the method
just to keep the example easy. Rather than manually writing queries, the library exposes a series
of useful methods:

• INSERT: returns the internal id of the record.

final id = await db.insert('table_name', {
'id': '1',
'descr': 'custom text',

});

• UPDATE: the jolly (?) placeholder can be used but it requires a non-empty arguments list.
It returns the number of updated rows.

final count = await db.update('table_name',
{'descr': 'some text here'},
where: 'id = ?'

Flutter Complete Reference 742

Appendix B. Flutter Appendix

whereArgs: ['1'],
);

• DELETE: returns the number or deleted records.

final count = await db.delete('table_name',
where: 'id = ?',
whereArgs: ['1']

);

• SELECT: returns a list of maps.

final list = db.query('table_name', columns: ['name', 'type']);

If you used one or more placeholders in a query, the arguments are required otherwise the engine
wouldn’t know how to handle the symbol. Visit the official documentation to learn more about
this package, which also supports transactions and many other common SQL commands (such
as LIKE in combination with wildcards).

B.3 Initializing data at startup

We have seen multiple times that certain packages, such as hive or hydrated_bloc, require an
immediate initialization (even before calling runApp(). The main() is a good place to perform
this kind of setup but it might become a problem:

void main() async {
// Hydrated bloc
HydratedBloc.storage = await HydratedStorage.build();

// Firebase
await Firebase.initializeApp();
await FirebaseFirestore.instance.clearPersistence();
await FirebaseAdMob.instance.initialize(appId: "...");
await FirebaseMessaging().requestNotificationPermissions();

// Something else
await LibraryA.initialize();
await LibraryB.initialize();

// Finally, start the app

Flutter Complete Reference 743

Appendix B. Flutter Appendix

runApp(const MyFlutterApp());
}

As you can see, in some cases there might be too much initialization to do before calling runApp().
Waiting for the setup of a single component could be fine but when there is a series of await (like
above) the situation is different. The approach must change: start the app as soon as possible
and wait for initialization directly in the UI.

1. Create a model class used to gather all the startup methods required by your app. It should
really return a Future<T> so that it can be awaited in the home page as we’re going to
show in a moment:

// app_startup.dart
abstract class AppStartup {

static Future<void> setup() async {
// Hydrated bloc
BlocSupervisor.delegate = await HydratedBlocDelegate.build();

// Firebase
await Firebase.initializeApp();
await FirebaseFirestore.instance.clearPersistence();
await FirebaseAdMob.instance.initialize(appId: "...");
await FirebaseMessaging().requestNotificationPermissions();

// Something else
await LibraryA.initialize();
await LibraryB.initialize();

}
}

Since we don’t like global functions (and global variables) at all, we’ve created AppStartup
which just exposes the setup() method. The class is abstract because it doesn’t need to
be instantiated (you could have also created a regular class with a private constructor).

2. In your app’s home widget, use the FutureBuilder<T> pattern to await for the completion
of the initialization. As usual, startupFuture is a variable initialized inside the initState
method as we’ve explained in detail in chapter 17.

FutureBuilder<void>(
future: startupFuture,
builder: (context, snapshot) {

Flutter Complete Reference 744

Appendix B. Flutter Appendix

if (snapshot.connectionState == ConnectionState.done) {
return const HomePage();

}

return const SplashScreen();
}

)

In this way, a splash screen appears (or anything else) while packages and plugins are
executing their initialization phases. Once ready, the actual contents of the home page
appear.

This is a nice way to gracefully initialize data in your app rather than using a bunch of asyn-
chronous calls directly inside the main() method. We recommend you to follow this guide-
line:

• If you have only one or two initialization methods to call (and they execute quickly), there’s
no need for a splash screen. Just put them before runApp() and you’ll be fine.

• If you have a lot of initialization methods to call (and they require time), there’s the need
for a splash screen. It lets the user know that something is loading but the app is still
responsive! Use this approach if you also need to use an internet connection on startup.

In order to decide if initialization methods are "slow" or "quick" run many tests and measure,
on average, how much time they take. It’s up to you deciding if they are fast or if there’s the
need for a splash. However, if you want to stay safe, always go for a graceful initialization with
a FutureBuilder<T>.

B.4 Accessibility

An application is accessible when it can be used by a broad range of people without creating
barriers for users of any age. For example, someone might need the help of a screen reader to
interact with the device or simply a stronger color contrast to be more comfortable. Flutter has
some built-in facilities to increase your app’s accessibility level:

• Screen readers for Android and iOS are very good at understanding what’s being displayed
in the UI but they aren’t always accurate. You can help them making the user experience
even more pleasant with the Semantic 7 widget:

7https://api.flutter.dev/flutter/widgets/Semantics-class.html

Flutter Complete Reference 745

Appendix B. Flutter Appendix

const Semantics.fromProperties(
child: SomeButtonWidget(

child: Text("Play")
),
properties: SemanticsProperties(

label: "Play music button",
hint: "Tap to play music",
button: true,
enabled: true,
value: "Play"

)
)

The Semantics widget is used to describe what a piece of UI means. It’s very helpful for
screen readers because they get a more accurate idea of what’s being displayed. In the
above example, you can see how we’ve used Semantics to describe a "Play" button widget.

// No constant constructor for the default 'Semantics()'
Semantics(

child: SomeButtonWidget(
child: Text("Play")

),
label: "Play music button",

)

You should create new instances using the fromProperties() named constructor since it
can be constant. Regardless, in both cases there are more than 50 parameters you can set
so be sure to visit the documentation for a detailed overview.

• A natural physical factor is the loss of focus by the eyes when a human gets older so smaller
fonts become harder to read. Flutter automatically determines the size of the text according
to the hardware of the device but you can manually change the setting:

// By default this is 1.0
Text("Some text",

textScaleFactor: 1.2,
),

In this way, the text is 120% of the normal size. It might be a good idea, for exam-
ple, using hydrated_bloc to store user’s settings and among them defining a value for the
textScaleFactor.

Flutter Complete Reference 746

Appendix B. Flutter Appendix

• Don’t make "tappable" items too small as they might become a difficult target. The
minimum recommended size is 48x48 8 but you could raise this lower limit to 56x56 to be
even more safe.

• Make sure that buttons always "do something" and in general, any widget that requires
interaction should trigger a visual response. For example, if a button is disabled it shouldn’t
simply ignore the finger tap. Instead, open an dialog or notify the user about why the button
is disabled.

// Don't do this
IgnorePointer(

ignoring: true,
child: RaisedButton(...)

)

Whereas GestureDetector is used to add tap callbacks to widgets, IgnorePointer does
the opposite: it disables any kind of interaction on the children. In the above example, the
button cannot be pressed and it doesn’t provide animations or visual feedbacks (looks like
it’s "freezed"). Avoid this pattern and prefer something else, like this:

RaisedButton(
child: const Text("Go!"),
onPressed: () => _showSnackBar("Cannot press this because..."),

)

The button can still be pressed, which is what the user expects, but you give a reason of
why it doesn’t perform a certain action.

• Background and foreground should be easily distinguishable thanks to efficient color con-
trasts. For example, you shouldn’t use white text on a light grey background since the
contrast is not strong enough to clearly recognize the text. Eyes shouldn’t be stressed to
much.

Other than the usual three trees maintained by Flutter, the usage of Semantics creates a fourth
tree called "semantic tree" and this is used by screen readers. These tools traverse it to get
information about widgets but the accuracy depends on you: the more parameters you define in
Semantics the better the help to the users will be.

8https://flutter.dev/docs/development/accessibility-and-localization/accessibility#accessibility-release-
checklist

Flutter Complete Reference 747

Appendix B. Flutter Appendix

B.5 The Flutter community

If you want to get involved in the community, along with millions of developers around the world
sharing your passion for Flutter, we’ve good news for you. You can attend conferences, watch
video tutorials, follow online courses and stay in touch with many developers via Discord, Twitter
or Reddit.

• Flutter Europe - https://fluttereurope.dev

It’s the biggest Flutter conference in Europe which took place for the first time in Poland,
at the end of January 2020. People from all over the world gather together to attend the
talks made by people from the Google team and open source maintainers.

In case you missed the event, check out their official YouTube channel to see the replays.
The various talks are held during the day and in the evenings there usually is a party.

• Flutter Community - https://medium.com/flutter-community/

The "Flutter Community" is an organization aimed at providing a central place for com-
munity made Flutter packages and content. They write a lot of articles on Medium and
develop popular Flutter packages for https://pub.dev 9, such as:

1. RxDart, which makes Dart’s streams and controllers even better;

2. get_it, a simple service locator for Dart and Flutter;

3. flutter_webview_plugin, a native way to communicate with WebView;

4. sticky_headers, headers for scrollable contents;

5. workmanager, to schedule background tasks on Android and iOS;

6. and much more...

9https://pub.dev/publishers/fluttercommunity.dev/packages

Flutter Complete Reference 748

https://fluttereurope.dev
https://medium.com/flutter-community/
https://pub.dev

Appendix B. Flutter Appendix

You can get in touch with many passionate developers also on Reddit, at r/FlutterDev,
and via Discord, which is the official channel of the Reddit page.

• Code with Andrea - https://codewithandrea.com

Code with Andrea is a website about learning Flutter by Andrea Bizzotto. This includes
a growing collection of over 50 weekly video tutorials and articles; courses are also on offer
for students looking for a more structured approach.

The first part of our book, about Dart, is used by courses at codewithandrea.com to in-
troduce the language to students! There’s also a YouTube channel with some free courses,
such as the ones about REST APIs, state management and Flutter widgets.

• Reso Coder - https://resocoder.com

Learn Flutter app development with tutorials built to make the new concepts stick thanks
to the Reso Coder YouTube channel. It’s a very popular source of informative contents
from the Dart / Flutter world which provides both video tutorials and written articles.

Flutter Complete Reference 749

https://codewithandrea.com
https://resocoder.com

Appendix B. Flutter Appendix

The channel is very popular for its TDD and DDD complete courses: a series of 20+ videos
about Flutter best practices following specific development designs.

•• Fireship - https://fireship.io

Fireship is a project created by Jeff Delaney which offers a series of videos and courses
about Flutter, ranging from state management to best practices and UI tutorials. The
main strength of Fireship are courses and tutorials about Firebase, with a notable series
called Flutter Firebase - The Full Course.

If you’re looking for a more direct and "daily" approach to the community, you can join the
Discord server or reach the official Reddit channel. You can find every link in the "Community"
section of the official Flutter website 10. In particular, we recommend you to keep an eye on:

• the official Flutter YoubTube Channel. It’s full of interesting contents such as the "Boring
show" and the "Widget of the week" series;

• https://twitter.com/FlutterDev and https://twitter.com/dart_lang to stay updated on the

10https://flutter.dev/community

Flutter Complete Reference 750

https://fireship.io
https://twitter.com/FlutterDev
https://twitter.com/dart_lang

Appendix B. Flutter Appendix

latest changes and news on the Flutter and Dart world;

• the official GitHub repositories of both Dart and Flutter in which you can find spoilers
about the upcoming new features, join the conversations and contributing by opening new
issues.

B.6 Flutter SDK management

As always, the official documentation is the best place to get an updated step-by-step guide 11 to
install Flutter in your operating system (Windows, macOS, Linux and Chrome OS). We strongly
recommend you the usage of Android Studio or VS Code since they have an official Flutter plugin.

� As of Flutter 1.21, the Flutter SDK includes the full Dart SDK so you don’t need
to install them separately. This is very convenient because everything is centralized
and managed by a single command line tool (called flutter).

A fresh new Flutter install downloads files from the stable source channel, which is the safest one
in terms of stability. Your production software should rely on the stable version of the Flutter
and Dart SDK. However, you can also download the SDKs from other channels (sorted from the
less to the most stable):

1. master. The absolutely latest cutting edge build you can get. It generally works but
sometimes it might break. Use it if you want to play with the latest features and fixes but
absolutely don’t rely on this channel for stability.

2. dev. The latest build with a complete test coverage. It’s a bit more stable than "master"
because everything is completely tested so there’s high chance that everything will work
well. You shouldn’t rely your production code on this channel unless you heavily test your
build (but consider if it’s worth the effort).

3. beta. Once the build has arrived at this stage, it will land to "stable" in a couple of weeks.
Even if not completely reliable, contents on this channel are quite stable. If your production
app cannot wait for a feature on the "stable" channel, you can switch to "beta" and use it.

4. stable. This is the safest build of the engine as well as the recommended channel for
production app releases. Very rarely there might be issues on this channel but the team
comes to the rescue with hotfixes.

11https://flutter.dev/docs/get-started/install

Flutter Complete Reference 751

Appendix B. Flutter Appendix

Even if the default Flutter installation is in sync with stable, you can easily change the channel
to get another build. Run the following commands in sequence to ensure being on the latest build
of the selected channel:

replace <name> with 'master', 'dev', 'beta' or 'stable'
$ flutter channel <name>
$ flutter upgrade

Using the flutter channel command you can see in which channel you’re currently on. If you
want to upgrade your current Flutter installation with the latest version available, just use the
upgrade command.

$ flutter upgrade

You should also make sure that all of your dependencies listed in the pubspec.yaml are always
up to date. Rather than manually checking the versions at pub.dev, which can be very tedious if
you have a lot of dependecies, just run this command:

$ flutter pub upgrade

It automatically updates all of your dependencies to the latest version. However, before running
pub upgrade you should use the pub outdated command which tells you which packages can
safely be upgraded without having versioning conflicts.

B.6.1 Web and Desktop

At the time of publishing this book (September 2020), Flutter for web is in the beta channel
but the desktop support (Windows, macOS and Linux) is still in early alpha on the dev channel.
Once they will be released in the stable channel, we will cover these new platforms in a future
version of the book. However, you can still move to the beta channel and unlock the Flutter web
preview:

$ flutter channel beta
$ flutter upgrade
$ flutter config --enable-web

Your Android and iOS apps will look exactly the same also on web and desktop, with very high
performance. The developer really needs to write the code only once because the compiler will
take care of porting Flutter natively to any platform. Here’s a general overview of how the web
support works:

1. There’s no need for a browser plugin because Flutter generates web contents by simple using

Flutter Complete Reference 752

Appendix B. Flutter Appendix

HTML, CSS and JavaScript. Rather than compiling to native ARM code, as it happens
for mobile devices, Dart is compiled to JavaScript so that web browsers can understand it.

2. Thanks to Dart’s optimized JavaScript compiler, the entire Flutter framework (including
the core) along with your Dart source code are compiled into a single, minified source file
that can be deployed to any web server.

3. Any project made for a mobile app can be ported to web. If you have worked with layout
responsiveness in mind, there will be no extra work to do. A desktop is like a big horizontal
tablet so your layout should adapt to various sizes.

If you want to try building your Flutter app on desktop as well, there’s currently a bit more of
setup to do. Being desktop support in early alpha, complex apps might not work as expected.
Follow the latest update guide on the official Flutter website and then run the following commands
before creating a new project:

$ flutter channel dev
$ flutter upgrade
$ flutter config --enable-macos-desktop
$ flutter config --enable-linux-desktop
$ flutter config --enable-windows-desktop

You can now create a new project with desktop support. At the time of publishing this book,
macOS is the best supported OS since it has a lot of similarities with iOS. Linux is at a good
stage as well but Windows still has a long way to go. Creating builds for different OSes, as
always, can’t be easier than this:

$ flutter build macos
$ flutter build linux
$ flutter build windows

The official documentation 12 recommends to not release a desktop app until support for this
mode lands to the stable channel. You can add desktop support to an existing Flutter project
running this command from the root project directory:

$ flutter create .

Most of the pub packages are available for web but only a few support desktop (you can really
count them by hand). Visit https://flutter.dev/web and https://flutter.dev/desktop to get the
latest news about the progress the team is making on those platform to make them land on the
stable channel.

12https://flutter.dev/desktop

Flutter Complete Reference 753

https://flutter.dev/web
https://flutter.dev/desktop

Appendix B. Flutter Appendix

Flutter Complete Reference 754

Index

Symbols
–obfuscate .724
–split-debug-info724, 725
...? . 142, 146
._() . 90
<T> . 137
== . 51, 125
=> .96
?? . 55, 102
?[] . 48
[] . 41, 45, 48
. 366
. 447

A
abstract . 109
AccelerometerEvent 560
accelerometerEvents 562
add() .621
addPerson .435
AdMob .623
AdSense .623
AdSize . 627, 631
AlertDialog .262, 547
allOf() . 441
analysis_options.yaml 211
AngularDart . 20
AnimatedAlign . 388
AnimatedBuilder . 399
AnimatedContainer 386

AnimatedCrossFade 391
AnimatedDefaultTextStyle 389
AnimatedIcon . 392
AnimatedOpacity 388
AnimatedPadding 389
AnimatedPhysicalModel 390
AnimatedPositioned 390
AnimatedSize . 391
AnimatedWidget 392, 393, 397
Animation library 385
AnimationBuilder 397
AnimationController 396, 402, 405
AnimationStatus . 408
annotation . 93
AOT . 19, 20, 29
AppBar . 257
AppLocalization 368, 370, 374
ARB file . 377, 378
ARM . 16, 25, 27
arrayContains . 621
arrow syntax . 62
ART . 26
as . 51
AsciiDecoder() . 431
AspectRatio .521
assert . 60
AssetBundle .503
AssetsAudioPlayer 523
async 160, 163, 165, 166, 172

Flutter Complete Reference 755

Index

async* . 168
AsyncSnapshot<T> 477, 601, 602
AsyncValue<T> . 733
attribute() . 435
AuthResult . 655
authStateChanges() 657
availableCameras() 556
await 160, 163–167, 172, 182, 183
await for . 172

B
bang operator . 48
BarcodeDetector . 644
BaseOptions . 482
Battery . 568
BatteryState . 568
benchmark/ . 664
bind() . 720
bindSecure() . 720
BLoC . 312, 313
BlocBuilder . 291
BlocBuilder<B,S> 333
BlocBuilder<T, K> 318
BlocConsumer<B,S> 334
BlocListener<B,S>322, 333
BlocObserver .323
BlocProvider<T> 316
blocTest() . 447
BottomNavigationBar 578, 581
BoxConstraints .278
BoxDecoration 224, 225
BoxShadow . 224
break .59
bridge . 15, 16, 26–28
build_runner .425
BuildContext .217
ButtonBar . 261
ByteData . 504

C
CachedNetworkImage509, 510

call() . 64, 99, 100
called() . 737
CameraController 556
CameraDescription 556
CameraPreview . 559
cancel() . 177
CanvasKit .243
cascade notation .75
case . 57
cast<T>() . 150
catch . 130–132
catchError() . 159, 160
ChangeNotifier . 299
ChangeNotifierProvider 300, 301
checkConnectivity() 569
ChildIcon . 595
Chip . 563
clearPersistence() .619
code obfuscation . 724
collection() . 615
ColorTween . 404
Column . 220, 221
CommonFinders .450
Comparable<T> . 127
compareTo() . 127
completion() . 443
ComponentElement 245
compute() . 185
configure() . 648
Connectivity 569, 570
ConnectivityResult 569
const . 38, 90–94
const constructor . 237
constant constructor91
ConstrainedBox . 536
constructor assignment 121
Consumer . 729
Consumer<T> . 306
ConsumerWidget . 729
Container . 223, 225

Flutter Complete Reference 756

Index

contains() . 154
context.select() . 312
context.watch<T>() 311
continue . 59
copyWith() . 102–104
counterText . 540
covariant . 107
createElement() . 244
createRenderObject() 244
CrossFadeState .391
cubit . 330
Cubit<T> . 331
CupertinoActionSheet 594
CupertinoActionSheetAction 594
CupertinoAlertDialog 270
CupertinoApp 266, 341
CupertinoButton . 271
CupertinoDatePicker 593
CupertinoDatePickerMode 594
CupertinoDialogAction 271
CupertinoLocalizations 366
CupertinoPageRoute 343
CupertinoPageRoute<T> 344
CupertinoPageScaffold 268
CupertinoSegmentedControl 595
CupertinoTabBar 268
CupertinoTabScaffold 268
CupertinoThemeData 287
currentStep . 586
Curve . 401
CurvedAnimation 402
CurvedAnimations 401
Curves . 400
Curves.linear . 387
Custom animation 385
CustomPaint 640, 641, 644

D
dart2js . 20, 243
dart:convert . 418

dart:ffi . 249
DartPad . 23, 29
DataCell . 588
DataColumn . 587
DataRow .588
DataTable .587
DataTableSource . 590
DateFormat . 365
DateTime 365, 722, 723
DDD . 186
default . 56
DefaultAssetBundle 503
DefaultTabController 582
defaultValue .426
delete() .621, 743
Dependency Injection 193
DeviceInfoPlugin . 568
DevTools . 29, 459
DI . 193
diamond . 139
diamonds . 139
dio . 481, 482
DIP . 193
Directory .718
DismissDirection . 546
Dismissible . 546, 547
dispose . 297
distanceBetween() 566
Divider .576
do while . 59
DocumentSnapshot619
download() . 485, 490
Draggable<T> 551, 553
DragTarget<T> . 553
drain() . 171
Drawer . 258, 573
DrawerHeader . 575
DropdownButtonFormField<T> 542
DropdownMenuItem 542
DropdownMenuItem<T> 541

Flutter Complete Reference 757

Index

Duration . 721, 722
DVM . 19, 21
dynamic 35, 36, 123, 137–139, 146

E
Element . 245
else . 54, 55, 61
embedder . 241
enableFlutterDriverExtension() 455
engine .242
ensureInitialized() 556
enterText() .457
enum . 43, 44
equals() . 51
Equatable . 151, 319
Error . 133, 135
event loop . 179–183
every() . 154
Exception128, 132, 133, 135
exception .128
Expanded . 284, 286
expect() . 439, 447
explicitToJson .428
export . 495, 663
extend . 133
extends 106, 112–114, 139
extension .122
extension methods 121
external 144, 147, 149

F
FAB .256, 259
Face . 636
factory . 85, 120
FFI . 249
FFI.DynamicLibrary 250
FFI.NativeFunction()250
FieldValue.delete() 622
File . 717, 718
File.readAsString() 717
FileMode.append . 718

FileMode.read . 718
FileMode.write . 718
FileMode.writeOnly 718
final 37, 38, 61, 63, 64, 81, 82, 88, 90–93,

97
finally . 132
find . 675
findAllElements()432, 433
findElements()432, 433
Finder . 450
findsNothing . 450
findsNWidget . 450
findsOneWidget . 450
findsWidgets . 450
Firebase.initializeApp(); 609
FirebaseAdMob . 627
FirebaseAuthException657
FirebaseFirestore.instance 615
FirebaseMessaging 646
Firestore . 611, 612
FlatButton . 261, 290
Flutter Hooks . 597
flutter_driver . 454
flutter_test . 449
FlutterFire . 606
FlutterLogo . 393
fold() . 155
followedBy() . 154
fontFamily . 287
for . 58, 143, 146
for-in . 61, 66
forEach . 150
Form . 531
FormData . 488
forward() .396
frameBuilder . 508
Function . 63, 64
Future.delayed() .168
Future.wait<T>()160
Future<T> 158, 159, 162, 163, 166

Flutter Complete Reference 758

Index

Future<T>.delayed() 160
Future<T>.error() 160
Future<T>.sync() 161
Future<T>.value() 159, 161, 166
FutureBuilder<T> 476–479
FutureProvider<T> 309, 732

G
generator . 167, 171
GestureDetector 413, 543, 544
get . 97, 106
getPositionStream() 564
getRow() . 592
getter . 95, 151
getText() .457
GlobalKey . 234
GlobalKey<FormState> 531
GlobalKey<NavigatorState>() 359
google-services.json 608
google_fonts209, 210, 218
GoogleServices-Info.plist609
group . 440
group() . 441
GyroscopeEvents . 560

H
hasData . 477
hasError . 477
hashCode . 150–152
HashMap<K,V> . 149
Hero . 411, 413
hide . 78
Hive . 738
home .347
Hook<T> .602
hot reload . 210, 211
http.Client . 479
HTTPMock . 445
HttpRequest . 720
HTTPRequest<T> 474
HttpServer . 719

HydratedBloc 324, 325
HydratedCubit<T> 333

I
IconButton 229, 262, 543
identical() . 126, 152
identity() .409
if 55, 61, 137, 142, 143, 146
IgnorePointer . 747
Image . 505
Image.memory() .506
Image.network() .506
ImageLabeler .645
immutable class . 92
implement .133
implements 111–113, 115, 139
Implicit animation 385
import .76, 77
index . 43
InheritedWidget 295, 296
initializer list 83, 108, 109
initializing formal 82, 86
initialRoute . 345, 347
initialState . 315
initState .296, 297
inMinutes . 722
InputDecoration .531
inSeconds . 722
insert() .742
Integration test .437
interface . 111
Interface Segregation Principle 191
internationalization366
intl 364, 365, 375, 380
Intl.message . 376
Intl.plural() . 381
invokeMethod<T>() 252
is .52
isA<T>() . 442
isBoxOpen . 739

Flutter Complete Reference 759

Index

isDefaultAction . 595
isDestructiveAction595
isolate . 179, 180
Isolate.spawn() . 184
Iterable<T> . 167
Iterator<T> . 169

J
JIT . 29
JSON . 417
jsonDecode . 418–420
jsonEncode .420
JsonKey() . 426
JSONPlaceholder .473
JsonSerializable() 424

K
Key . 233, 235

L
late . 36, 81, 87, 89
late final . 81, 88
Latin1Decoder() .431
LayoutBuilder 278, 280, 530
library (keyword) . 77
library aliases . 77
limit() .620
limitToLast() .620
LinearGradient . 224
LinkedHashMap<K,V> 149
linter . 211
Liskov Substitution Principle 190
List.filled() . 145
List.generate() . 145
List.unmodifiable() 145
List<T> . 141
listen() . 178
ListTile . 576, 617
ListView . 222, 233
ListView.builder .222
load() . 503

loadingBuilder . 506
loadString() . 503
Locale . 367, 369
localization .366
Localization delegate 372
LSP . 191

M
machine learning . 633
mainAxisAlignment 219
map() . 154, 171
Map<K,V> . 147
Map<String, dynamic> toJson() 420
Matcher . 450
MaterialApp 256, 257, 341
MaterialPageRoute 343
MaterialPageRoute<T>344
Matrix4 . 409
maxLength . 539
MediaQuery . 280
method channels . 251
MethodChannel . 251
mixin . 116–120, 152
mock . 444
mockito . 444, 445
model class .418
MultiBlocProvider335
MultiProvider . 309

N
named route . 344
NavigationRail . 579
NavigationRailDestination580
Navigator . 345, 351
Navigator.of() . 344
new .80, 89
non-nullable . 46–48
notifyListeners() . 300
null37, 46–48, 52, 81, 83, 86
nullable .47, 48
num . 39, 140

Flutter Complete Reference 760

Index

O
Object . 36, 74, 124
ObjectKey . 234
obscureText . 540
OEM . 25
on . 130–132, 134
onAccept . 554
onBatteryStateChanged 568
onDateTimeChanged 594
onDestinationSelected 580
onDispose() . 733
onGenerateRoute .345
onSort . 588
onStepCancel . 586
onStepContinue . 586
onWillAccept . 554
OOP . 74, 105
open closed principle 188
openDatabase() . 741
operator== . 151, 152
orderBy() . 620
OrientationBuilder 282
override . 56

P
package (keyword) .77
PageRouteBuilder 414, 415
PageStorageKey<T>236
PaginatedDataTable590
Paint .643
paint() . 641
parse() . 40
part . 424
path_provider484, 718
Placemark . 567
placemarkFromCoordinates() 567
playlistPlayAtIndex() 524
pop() .345, 351
Positioned .225
pretty . 430

primaryAccent . 288
primaryColor .288
processImage() . 636
Provider . 291
Provider<T> . 731
ProviderScope . 728
pubspec . 211
pubspec.yaml 204, 206
pump . 451
pump() . 451
pumpWidget . 450
pumpWidget() 450, 452
pushNamed() 344, 345, 351
putIfAbsent() . 147

Q
QueryDocumentSnapshot617
queryParameters . 482
QuerySnapshot . 619
quiz . 18

R
RadialGradient . 224
RaisedButton . 261
Raster thread . 462
ReceivePort . 184
recursive . 719
reduce() . 154
reload() . 659
remainder() . 722
RenderObject . 245
repeat() . 396, 402
ReplayBloc .328
ReplayBlocMixin . 330
ReplayCubit<T> 333
requestNotificationPermissions() 646
required . 68, 228
reset() . 723
resizeToAvoidBottomInset 537
ResolutionPreset . 557
Response 474, 479, 482

Flutter Complete Reference 761

Index

ResponseType.bytes 514
rethrow . 135
reverse engineering 724
reverse() .396, 402
ReverseAnimation 402
RewardedVideoAd 632, 633
Riverpod . 727
rootBundle . 503
rotateX() .407
rotateY() .407
rotateZ() . 407
RoundedRectangleBorder263
route . 339, 341
RouteGenerator . 342
Router . 348
Row . 219–221
rowsPerPage . 590
runApp() .215
runTransaction() . 618

S
Scaffold . 257
scale() . 408
screenshot() . 457
scroll() . 457
scrollDirection .222
secondChild . 391
selection . 539
Selector<T> . 310
Semantic . 745
semantic tree . 747
sendEmailVerification()658
SendPort . 184
set . 97, 106
Set<T> . 145, 146
setMockInitialValues()572
setPersistence() . 658
setState . 229–231
setState() . 291
setter .96

setUpAll() . 457
SharedPreferences 572
short if . 56
shouldRepaint() . 641
show . 78
showBottomSheet 265
showDialog() . 262
showDialog<T>() 548
showFirst . 391
showModalBottomSheet<T>593
shrinkWrap .285
SimpleDialog . 264
SingleChildScrollView 534
skewY() . 407
Skia . 27
skip . 448
skip() . 154, 171
sleep() . 169
Slider . 518, 522
SlideTransition 391, 415
SlidingPageRoute 415
smart cast . 52
SOLID . 187
sortAscending . 587
SplayTreeMap<K,V> 149
spread operator . 142
SRP .187, 189
Stack . 225, 405
start() . 723
State<T> . 229, 230
Stateful widget . 228
StatefulWidget215, 226, 230, 233
StatelessWidget 215, 226, 227, 233
StateNotifier<T> 604
StateNotifierProvider 604
StateProvider<T> 729, 732
static . 86, 91
Step .585
Stepper . 584
stop() . 723

Flutter Complete Reference 762

Index

Stopwatch .723
stream . 166, 167
Stream<T> . 167, 169
Stream<T>.empty() 171
Stream<T>.error() 170
Stream<T>.fromFuture() 170
Stream<T>.fromIterable() 170
Stream<T>.periodic() 170
Stream<T>.value() 170
StreamBuilder<T> 173, 562, 565
StreamProvider<T> 733
StringBuffer . 42, 43
subscribeToTopic() 653
super . 106, 108, 109
SvgPicture . 512
SvgPicture.memory() 516
SweepGradient . 225
swipe to dismiss . 544
switch . 56
sync* . 169
SynchronousFuture<T>372

T
TabBar .581, 582
TabBarView . 582
TabController . 583
TargetPlatform .274
TDD . 186
tearDownAll() .457
test . 439
test() . 439
testWidgets() . 449
Text . 218
TextEditingController 537
TextFormField . 531
TextRecognizer .645
TextStyle . 218
Theme . 288
Theme.of() . 288
ThemeData287, 288, 325

then . 159, 163
then() 159, 160, 162, 163
this . 74, 85, 92, 122
throw . 133
throwsA() . 442
TickerProviderStateMixin 396
Timer . 177
toJson() . 420
toString() . 41, 43, 124
toXmlString .436
Transform . 399, 405
Transform.rotate() 394
translate() .408, 409
tree shaking . 213
try . 130, 131, 134
ttf . 209
Tween<T> . 402
typedef . 72, 73

U
UI thread . 462
Uint8List .717
UniqueKey . 234
Unit test . 437
unmodifiable() . 150
UnmodifiableListView<T> 145
update() . 742
useAnimationController() 599
useFuture<T>() . 602
useMemoized<T>602
UserAccelerometerEvent560
userChanges() . 657
useStream<T>() . 601
useTabController() 601
useTextEditingController() 601
utc() . 722
Utf8Decoder() .431

V
ValueKey . 233
ValueKey<T> . 233

Flutter Complete Reference 763

Index

var . 35–38, 63, 64
verify() .737
verifyNoMoreInteractions() 737
video_player . 518
VideoControllerPlayer 519
VideoControllerPlayer.asset()519
VideoControllerPlayer.file()519
VideoControllerPlayer.network()519
VideoPlayerController 518
virtual . 105
VirtualDirectory . 721
vsync . 396

W
wait() . 160
watch . 425
WebAssembly . 243
when() . 446

whenListen() . 453
where . 153
where() . 153, 154, 621
while . 58, 59
Widget . 215
Widget test . 437
widget tree . 215
with .116
Wrap .561

X
xml . 429
XmlBuilder .434, 435
XmlDocument 430, 431

Y
YAML . 206
yield 168, 169, 172, 174, 175
yield* . 175

Flutter Complete Reference 764

Special thanks to Felix Angelov, Matej Rešetár, Rémi Rousselet, Matthew Palomba and Alfred
Schilken

	Welcome
	Introduction
	Who is this book for
	Author
	Acknowledgments
	Online resources and the quiz

	Introduction to Dart
	Supported platforms
	Package system
	Hello World

	Intorduction to Flutter
	How does it work
	Why Flutter uses Dart
	Hello world

	I The Dart programming language
	Variables and data types
	Variables
	Initialization
	final

	Data types
	Numbers
	Good practices

	Strings
	Enumerated types
	Good Practices

	Booleans
	Arrays

	Nullable and Non-nullable types
	Data type operators
	Arithmetic operators
	Relational operators
	Type test operators
	Logical operators
	Bitwise and shift operators

	Control flow and functions
	If statement
	Conditional expressions
	Good practices

	switch statement
	for and while loops
	for-in loop

	Assertions
	Good practices
	The basics of functions
	The Function type

	Anonymous functions
	Optional parameters
	Named parameters
	Positional parameters

	Nested functions
	Good practices
	Using typedefs

	Classes
	Libraries and visibility
	Encapsulation
	Good practices

	Constructors
	Initializer list
	Named constructors
	Redirecting constructors
	Factory constructors
	Instance variables initialization
	Good practices

	const keyword
	const constructors
	Good practices and annotations

	Getters and setters
	Good practices

	Operators overload
	callable classes

	Cloning objects

	Inheritance and Exceptions
	Inheritance
	super and constructors
	Abstract classes
	Interfaces
	extends vs implements

	Mixins
	Good practices

	Extension methods
	Good practices

	The Object class
	Comparable<T>

	Exceptions
	on and catch
	finally
	Good practices

	Generics and Collections
	Generic types
	Introduction
	Type safety
	Usage

	Collections
	List
	Collection statements
	Implementation

	Set
	Implementation

	Map
	Implementation

	Good practices
	operator== and hashCode
	Transform methods

	Asynchronous programming
	Introduction
	Futures
	Comparison
	async and await
	Good practices

	Streams
	Streams and generators
	Subscribers
	Differences
	Using a controller

	Isolates
	Multiple isolates and Flutter

	Coding principles with Dart
	SOLID principles
	Single Responsibility Principle
	Open closed principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	Dependency Injection
	Constructor injection
	Method injection

	II The Flutter framework
	Basics of Flutter
	Structure and tools
	Folder structure
	The pubspec.yaml file
	Hot Reload
	Linter rules
	Tree shaking and constants

	Widgets and State
	Basic widgets
	Text
	Row
	Column
	ListView
	Container
	Stack and Positioned

	Stateless and Stateful widgets
	Good practices

	Keys

	Rebuilds and optimization
	const constructor
	Prefer widget composition over functions

	Architecture
	Element and RenderObject
	Foreign Function Interface
	Method channels

	Building UIs in Flutter
	Material
	Scaffold
	Material widgets
	Buttons
	Dialogs

	Cupertino
	CupertinoPageScaffold
	Cupertino widgets

	Building layouts
	Platform support
	Single OS
	Multiple OSes

	Responsive UIs
	LayoutBuilder
	MediaQuery
	Good practices

	Scrolling and constraints
	Using themes

	State management
	Updating the UI
	Considerations
	Good practices

	Passing the state with Provider
	Considerations
	Provider class
	Consumer class

	Good practices

	Alternative to setState: BLoC pattern
	Considerations
	BlocListener class

	BlocObserver class
	Persisting the state with HydratedBloc
	Undo and redo with ReplayBloc
	The internals of Bloc: Cubit
	Good practices

	Good practices for state management

	Routes and navigation
	Basics of navigation and routing
	Creation of routes
	The main.dart file
	The routes.dart file
	Navigating between pages
	Good practices
	Navigator 2.0

	Passing data between pages and widgets
	The Navigator class
	Passing data with Navigator
	Passing data with provider

	Other routing techniques

	Localization and internationalization
	Introduction
	Manual internationalization
	AppLocalization
	Localization delegate
	Backward compatibility

	Internationalizing using intl
	AppLocalization
	Localization delegate
	Plurals and data interpolations

	Considerations

	Animations
	Implicit animations
	The animation library
	AnimatedWidget
	AnimationBuilder
	Curves
	Tweens

	Custom animations
	Good practices
	Hero animations
	Custom route transitions

	Working with JSON and other formats
	Parsing JSON
	Manual parsing
	Parsing lists
	Parsing nested objects

	Automatic parsing
	Parsing lists
	Parsing nested objects

	Parsing XML
	Parsing strings
	Building XML strings

	Testing and profiling apps
	Testing Flutter apps
	Unit Test
	Testing asynchronous code and streams
	Mocking dependencies
	Unit testing blocs

	Widget Test
	Testing blocs and providers

	Integration testing

	Testing performances
	DevTools
	Using the Flutter inspector
	Using the Timeline view
	Using the Memory view
	Using the Network view
	Using the Logging view
	Monitoring widget rebuilds

	III Practical Flutter examples
	Networking
	Making HTTP requests
	GET requests
	POST requests and headers
	Good practices

	Working with data
	Downloading data
	Uploading data
	Good practices

	Advanced REST API calls
	Model classes
	Parsing JSON
	HTTP Client

	Assets, images and multimedia
	Assets and images
	Working with images
	Loading from the network

	Scalable vector graphics
	Working with SVG files
	Loading from the network

	Audio and video with Flutter
	Playing a video
	Listening to music

	Forms and gestures
	Forms and validation
	Keyboard and overflows
	Getting the text from a text field
	Constraining the input

	Gestures
	Swipe to dismiss
	Dragging items

	Interacting with the device
	Taking a picture
	Working with sensors
	Working with Geolocation
	Platform-specific packages
	Battery level
	Device info
	Internet connectivity
	Shared preferences

	Widgets showcase
	Material
	Drawer
	BottomNavigationBar
	NavigationRail
	TabBar
	Stepper
	DataTable

	Cupertino
	CupertinoDatePicker
	CupertinoActionSheet
	CupertinoSegmentedControl

	Community widgets
	Flutter Hooks
	State notifier

	Using Firebase with Flutter
	Installation
	Using Firestore as backend
	Building the backend
	Building the frontend
	Working with data
	Transactions and batches

	Monetizing your apps with AdMob
	Ad banners
	Rewarded video ads

	Flutter ML Kit
	Detecting faces
	CustomPainter and the canvas

	Firebase vision kit

	Push notifications with FCM
	Handling push notifications
	Sending push notifications

	Authenticating with Firebase
	Authentication features

	Publishing packages and apps
	Publishing packages on pub.dev
	Creating the package
	Documenting the code
	Reviewing and publishing
	Scores and good practices
	Verified publishers and Flutter favorite

	Publishing apps on the stores
	Releasing Android apps
	Releasing iOS apps
	Splash screens
	Doing CI/CD for Flutter
	GitHub actions

	Complete Flutter project example
	Preparing the project
	Folder structures and basic setup

	State management and model classes
	Authentication bloc
	Credentials bloc
	Localization files

	Building the UI
	Creating the login form
	Creating the welcome page

	Testing the code
	Unit tests
	Widget tests

	Dart Appendix
	The I/O library
	Files
	Directories
	Server side Dart

	Date and time
	Obfuscating Dart code

	Flutter Appendix
	Riverpod
	Usage
	Combining providers
	Testing

	Local databases
	Hive (NoSQL)
	SQLite (SQL)

	Initializing data at startup
	Accessibility
	The Flutter community
	Flutter SDK management
	Web and Desktop

	Index

		2020-10-01T08:38:29+0000
	Preflight Ticket Signature

