

The Illustrated
Network

This page intentionally left blank

The Illustrated
Network

How TCP/IP Works
in a Modern Network

Second Edition

Walter Goralski

Morgan Kaufmann is an imprint of Elsevier

50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2017, 2009 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic

or mechanical, including photocopying, recording, or any information storage and retrieval system,

without permission in writing from the publisher. Details on how to seek permission, further

information about the Publisher’s permissions policies and our arrangements with organizations such

as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:

www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the

Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience

broaden our understanding, changes in research methods, professional practices, or medical treatment

may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating

and using any information, methods, compounds, or experiments described herein. In using such

information or methods they should be mindful of their own safety and the safety of others, including

parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume

any liability for any injury and/or damage to persons or property as a matter of products liability,

negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas

contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-811027-0

For Information on all Morgan Kaufmann publications

visit our website at https://www.elsevier.com/books-and-journals

Publisher: Jonathan Simpson

Acquisition Editor: Todd Green

Editorial Project Manager: Lindsay Lawrence

Production Project Manager: Punithavathy Govindaradjane

Cover Designer: Miles Hitchen

Typeset by MPS Limited, Chennai, India

http://www.elsevier.com/permissions
https://www.elsevier.com/

Contents

About the Author ..xxi

Foreword .. xxiii

Preface ...xxv

Acknowledgments ...xxxv

PART I NETWORKING BASICS

CHAPTER 1 Protocols and Layers ...3
The Illustrated Network..7

Remote Access to Network Devices....................................... 8

File Transfer to a Router ... 10

CLI and GUI.. 12

Wireshark and Packet Capture .. 13

First Explorations in Networking.. 14

Protocols ...15

Standards and Organizations ... 16

Request for Comment and the Internet Engineering

Task Force ... 19

Internet Administration...21

Layers..23

Simple Networking.. 23

Protocol Layers.. 25

The TCP/IP Protocol Suite...25

The TCP/IP Layers .. 26

Protocols and Interfaces .. 28

Encapsulation... 28

The Layers of TCP/IP ..30

The Physical Layer .. 31

The Data Link Layer ... 32

The Network Layer ... 36

The Transport Layer .. 38

The Application Layer... 41

Session Support ... 42

Internal Representation Conversion 42

Applications in TCP/IP ... 43

The TCP/IP Protocol Suite...45

Questions for Readers...45

v

CHAPTER 2 TCP/IP Protocols and Devices................................... 47
Protocol Stacks on the Illustrated Network50

Layers, Protocols, Ports, and Sockets ..51

The TCP/IP Protocol Stack ..54

The Client�Server Model ..55

TCP/IP Layers and Client�Server...55

The IP Layer ...57

The Transport Layer ...59

Transmission Control Protocol.. 59

User Datagram Protocol .. 59

The Application Layer..60

Bridges, Routers, and Switches..60

Segmenting LANs ... 61

Bridges ... 63

Routers ... 64

LAN Switches.. 65

Virtual LANs ... 66

VLAN Frame Tagging .. 67

Questions for Readers...69

CHAPTER 3 Network Link Technologies....................................... 71
Illustrated Network Connections..74

Displaying Ethernet Traffic... 74

Displaying SONET Links.. 76

Displaying DSL Links... 79

Displaying Wireless Links .. 81

Frames and the Link Layer ... 84

The Data Link Layer ..84

The Evolution of Ethernet ..85

Ethernet II and IEEE 802.3 Frames 86

MAC Addresses... 87

The Evolution of DSL..89

PPP and DSL ... 90

PPP Framing for Packets... 91

DSL Encapsulation .. 92

Forms of DSL .. 93

The Evolution of SONET...94

A Note about Network Errors ... 95

Packet over SONET/SDH ... 96

Wireless LANs and IEEE 802.11 ..97

Wi-Fi .. 99

vi Contents

IEEE 802.11 MAC Layer Protocol 100

The IEEE 802.11 Frame.. 102

Questions for Readers...104

CHAPTER 4 Packet Optical Networks and Forward Error
Correction .. 107
Packet Optical Networks and Error Correction108

Packet Optical Networks and the Optical Transport

Network...110

Standards for Packet Optical Networks and Forward

Error Correction..111

Handling Single Bit Errors and Burst Errors...........................111

Hamming Distance and Hamming Codes........................... 113

A Better Hamming Code Method 115

Hamming Code in Action ... 117

Hamming Code Implementation ... 121

Burst Errors and Interleaving .. 123

Modern FEC Operation ..124

FEC and SONET/SDH...126

FEC and OTN...129

The OTN Frame and FEC... 131

Generic Framing Procedure... 131

FEC Research and Development ...132

OTN for the Illustrated Network..133

Questions for Readers...135

PART II CORE PROTOCOLS

CHAPTER 5 IPv4 and IPv6 Addressing 139
IP Addressing..139

The Network/Host Boundary ...147

The IPv4 Address ...147

Private IPv4 Addresses.. 152

Understanding IPv4 Addresses.. 152

The IPv6 Address ...154

Features of IPv6 Addressing ... 154

IPv6 Address Types and Notation 155

IPv6 Address Prefixes ... 156

Subnetting and Supernetting ..157

Subnetting in IPv4 ... 157

Subnetting Basics .. 158

CIDR and VLSM... 162

viiContents

IPv6 Addressing Details ...166

IP Address Assignment ... 168

Complete IPv4 and IPv6 Address Ranges 170

Questions for Readers...173

CHAPTER 6 Address Resolution Protocol 175
ARP and LANs...178

ARP Packets ...185

Example ARP Operation ..187

ARP Variations...188

Proxy ARP ... 189

Reverse ARP.. 190

ARPs on WANs... 190

ARP and IPv6 ...191

Neighbor Discovery Protocol .. 192

ND Address Resolution... 193

Questions for Readers...195

CHAPTER 7 IPv4 and IPv6 Headers.. 197
Packet Headers and Addresses...200

The IPv4 Packet Header...202

Fragmentation and IPv4 ...204

Fragmentation and MTU... 206

Fragmentation and Reassembly..208

Path MTU Determination.. 208

A Fragmentation Example..209

Limitations of IPv4.. 211

The IPv6 Header Structure.. 211

IPv4 and IPv6 Headers Compared ...214

IPv6 Header Changes .. 214

IPv6 and Fragmentation ...216

Questions for Readers...219

CHAPTER 8 Internet Control Message Protocol 221
ICMP and Ping ...224

The ICMP Message Format ...227

ICMP Message Fields.. 228

ICMP Types and Codes... 229

Sending ICMP Messages..235

When ICMP Must Be Sent.. 235

When ICMP Must Not Be Sent... 236

viii Contents

Ping ...236

Traceroute ...237

Path MTU ...239

ICMPv6...241

Basic ICMPv6 Messages ... 241

Time Exceeded .. 243

Neighbor Discovery and Autoconfiguration....................... 243

Routers and Neighbor Discovery .. 244

Interface Addresses.. 245

Neighbor Solicitation and Advertisement........................... 245

Questions for Readers...246

CHAPTER 9 Routing ... 247
Routers and Routing Tables ...250

Hosts and Routing Tables ..252

Direct and Indirect Delivery...256

Routing... 260

Direct Delivery Without Routing.. 260

Indirect Delivery and the Router... 262

Questions for Readers...266

CHAPTER 10 Forwarding IP Packets .. 267
Router Architectures...273

Basic Router Architectures.. 274

Another Router Architecture ..276

Router Access ...278

The Console Port ... 279

The Auxiliary Port... 279

The Network .. 279

Forwarding Table Lookups ..280

Dual Stacks, Tunneling, and IPv6..282

Dual Protocol Stacks ... 282

Tunneling ... 283

Tunneling Mechanisms...285

Transition Considerations...287

Questions for Readers...288

CHAPTER 11 User Datagram Protocol .. 289
UDP Ports and Sockets ..292

What UDP Is For..296

ixContents

The UDP Header ..297

IPv4 and IPv6 Notes...299

Port Numbers ..300

Well-Known Ports ... 301

The Socket ... 304

UDP Operation ...304

UDP Overflows ..304

Questions for Readers...306

CHAPTER 12 Transmission Control Protocol................................ 307
TCP and Connections ...310

The TCP Header ...310

TCP Mechanisms..313

Connections and the Three-Way Handshake...........................314

Connection Establishment ... 316

Data Transfer ... 317

Closing the Connection ... 319

Flow Control ...320

TCP Windows.. 321

Flow Control and Congestion Control 322

Performance Algorithms...323

TCP Behaving Badly? ..324

TCP and FTP ..326

Questions for Readers...329

CHAPTER 13 Multiplexing and Sockets 331
Layers and Applications...331

The Socket Interface...334

Socket Libraries ... 335

TCP Stream Service Calls ... 336

The Socket Interface: Good or Bad?337

The “Threat” of Raw Sockets ... 338

Socket Libraries ... 339

The Windows Socket Interface ..340

TCP/IP and Windows .. 340

Sockets for Windows... 341

Sockets on Linux ... 341

Questions for Readers...348

x Contents

PART III ROUTING AND ROUTING PROTOCOLS

CHAPTER 14 Routing and Peering .. 351
Network Layer Routing and Switching354

Connection-Oriented and Connectionless Networks355

Quality of Service.. 356

Host Routing Tables ...358

Routing Tables and FreeBSD.. 359

Routing Tables and RedHat Linux 360

Routing and Windows ... 361

The Internet and the Autonomous System...............................363

The Internet Today ...364

The Role of Routing Policies ...367

Peering ..368

Picking a Peer ...371

Questions for Readers...373

CHAPTER 15 IGPs: RIP, OSPF, and IS-IS 375
Interior Routing Protocols ..383

The Three Major IGPs..384

Routing Information Protocol ..385

Distance-Vector Routing ... 385

Broken Links ... 387

Distance-Vector Consequences ... 387

RIPv1 ... 388

RIPv2 ... 389

RIPng for IPv6... 393

A Note on IGRP and EIGRP ...395

Open Shortest Path First.. 395

Link States and Shortest Paths .. 396

What OSPF Can Do .. 397

OSPF Router Types and Areas ... 399

Non-backbone, Non-stub Areas .. 400

OSPF Designated Router and Backup Designated

Router... 401

OSPF Packets... 401

OSPFv3 for IPv6 ... 402

Intermediate System-Intermediate System...............................403

The IS-IS Attraction .. 404

IS-IS and OSPF ... 404

xiContents

Similarities of OSPF and IS-IS ... 405

Differences between OSPF and IS-IS 405

IS-IS for IPv6 .. 406

Questions for Readers...407

CHAPTER 16 Border Gateway Protocol... 409
BGP as a Routing Protocol ..409

Configuring BGP... 412

The Power of Routing Policy.. 414

BGP and the Internet ..416

EGP and the Early Internet ... 416

The Birth of BGP .. 417

BGP as a Path-Vector Protocol ..418

IBPG and EBGP ...419

IGP Next Hops and BGP Next Hops 420

BGP and the IGP ... 420

Other Types of BGP...421

BGP Attributes..423

BGP and Routing Policy ..425

BGP Scaling... 425

BGP Message Types...426

BGP Message Formats ...427

The Open Message .. 427

The Update Message ... 427

The Notification Message ..429

Questions for Readers...430

CHAPTER 17 Expanded Uses for BGP ... 431
Introduction...431

Optimal Route Reflection (ORR)...432

“Regular” Route Reflection .. 433

ORR Considered.. 434

BGP and Flow Specification ..435

BGP and DDoS.. 436

BGP Flow Spec Details... 439

BGP in the Very Large Data Center ..441

Data Centers as CLOS Networks.. 441

Layer 2 and Layer 3 in a Folded CLOS Network

Data Center .. 444

Use iBGP or eBGP? .. 445

xii Contents

Let Data Center Use eBGP, Not an IGP 446

Example of BGP Use in the Data Center 447

Distributing Link-State Information with BGP450

The IGP Limitations .. 451

The BGP Solution.. 451

Implementing BGP for Link-State Protocols...................... 452

Juniper Network’s Implementation Details 454

Summary of Supported and Unsupported Features 455

Configuring BGP-LS on the Illustrated Network455

Questions for Readers...458

CHAPTER 18 Multicast .. 459
A First Look at IPv4 Multicast ..463

Multicast Terminology ...465

Dense and Sparse Multicast ...466

Dense-Mode Multicast .. 467

Sparse-Mode Multicast.. 467

Multicast Notation ..467

Multicast Concepts ...468

Reverse-Path Forwarding .. 468

The RPF Table... 469

Populating the RPF Table ... 469

Shortest-Path Tree ... 470

Rendezvous Point and Rendezvous-Point

Shared Trees .. 471

Protocols for Multicast ...471

Multicast Hosts and Routers ... 472

Multicast Group Membership Protocols 473

Multicast Routing Protocols .. 474

Any-Source Multicast and SSM.. 475

Multicast Source Discovery Protocol.................................. 476

Frames and Multicast .. 477

IPv4 Multicast Addressing .. 478

IPv6 Multicast Addressing .. 480

PIM-SM ... 482

The Resource Reservation Protocol and PGM 483

Multicast Routing Protocols .. 483

IPv6 Multicast.. 484

Questions for Readers...486

xiiiContents

PART IV IP SWITCHING AND VPNs

CHAPTER 19 MPLS and IP Switching ... 489
Converging What? ..493

Fast Packet Switching ... 493

Frame Relay..494

Asynchronous Transfer Mode ... 497

Why Converge on TCP/IP?... 499

MPLS ..500

Basic MPLS Terminology... 504

Signaling and MPLS.. 505

Label Stacking ... 506

MPLS and VPNs ..507

MPLS Tables ... 508

Configuring MPLS Using Static LSPS....................................508

The Ingress Router .. 508

The Transit Routers ... 509

The Egress Router ... 509

Traceroute and LSPs ... 510

Questions for Readers...512

CHAPTER 20 MPLS-Based Virtual Private Networks 513
PPTP for Privacy ..516

Types of VPNs .. 518

Security and VPNs .. 519

VPNs and Protocols... 520

PPTP .. 520

L2TP .. 521

PPTP and L2TP Compared ... 522

Types of MPLS-Based VPNs...523

Layer 3 VPNs .. 523

Layer 2 VPNs .. 525

VPLS: An MPLS-Based L2VPN ...527

Router-by-Router VPLS Configuration 527

P Router (P9) ... 530

CE6 Router .. 532

Does it Really Work? ...532

Questions for Readers...533

CHAPTER 21 EVPN and VXLAN ... 535
EVPN Overview ...536

L2VPNs and EVPN Compared ... 540

xiv Contents

EVPN Services Overview ... 541

EVPN Control Plane Operation .. 542

Layer 2 and Layer 3 and EVPN.. 547

VXLAN and EVPN Data Planes... 549

Configuring an EVPN with VXLAN on the Illustrated

Network...557

Questions for Readers...560

PART V APPLICATION LEVEL

CHAPTER 22 Dynamic Host Configuration Protocol..................... 563
DHCP and Addressing ...566

DHCP Server Configuration.. 566

Router Relay Agent Configuration 569

Getting Addresses on LAN2 ... 569

Using DHCP on a Network... 570

BOOTP ...572

BOOTP Implementation.. 573

BOOTP Messages.. 574

BOOTP Relay Agents ... 575

BOOTP “Vendor-Specific Area” Options 575

Trivial File Transfer Protocol...576

TFTP Messages ... 577

TFTP Download .. 578

DHCP... 578

DHCP Operation.. 580

DHCP Message Type Options .. 582

DHCP and Routers ...582

DHCPv6... 583

DHCPv6 and Router Advertisements 584

DHCPv6 Operation.. 585

Questions for Readers...585

CHAPTER 23 The Domain Name System....................................... 587
DNS Basics ...590

The DNS Hierarchy... 591

Root Name Servers.. 592

Root Server Operation... 592

Root Server Details ... 592

DNS in Theory: Name Server, Database, and Resolver..........593

Adding a New Host ... 594

Recursive and Iterative Queries .. 595

xvContents

Delegation and Referral... 595

Glue Records ... 597

DNS in Practice: Resource Records and Message Formats598

DNS Message Header.. 600

DNSSec.. 601

DNS Tools: nslookup, dig, and drill 602

DNS in Action ..602

Questions for Readers...611

CHAPTER 24 File Transfer Protocol.. 613
Overview...613

PORT and PASV... 617

FTP and GUIS ..619

FTP Basics ... 621

FTP Commands and Reply Codes 623

FTP Data Transfers.. 625

Passive and Port... 626

File Transfer Types ... 629

When Things Go Wrong ... 630

FTP Commands ..631

Variations on a Theme .. 633

A Note on NFS.. 634

Questions for Readers...635

CHAPTER 25 SMTP and Email .. 637
Architectures for Email ..640

Sending Email Today .. 642

The Evolution of Email in Brief ... 646

SMTP Authentication .. 647

Simple Mail Transfer Protocol.. 647

Multipurpose Internet Mail Extensions....................................650

MIME Media Types .. 650

MIME Encoding .. 651

An Example of a MIME Message 652

Using POP3 to Access Email...652

Headers and Email..654

Home Office Email ..658

Questions for Readers...659

CHAPTER 26 Hypertext Transfer Protocol 661
HTTP in Action ..661

Uniform Resources .. 667

URIs ... 667

xvi Contents

URLs .. 668

URNs.. 670

HTTP...671

The Evolution of HTTP .. 672

HTTP Model.. 674

HTTP Messages... 675

Trailers and Dynamic Web Pages..675

HTTP Requests and Responses... 675

HTTP Methods .. 677

HTTP Status Codes ... 678

HTTP Headers ... 679

General Headers .. 679

Request Headers .. 680

Response Headers.. 680

Entity Headers ... 681

Cookies .. 682

Questions for Readers...684

CHAPTER 27 Securing Sockets with SSL 685
SSL and Web Sites ...685

The Lock.. 689

Secure Socket Layer .. 690

Privacy, Integrity, and Authentication691

Privacy ... 691

Integrity.. 692

Authentication.. 693

Public Key Encryption ...694

Pocket Calculator Encryption at the Client 694

Example ... 695

Pocket Calculator Decryption at the Server........................ 695

Public Keys and Symmetrical Encryption696

SSL as a Protocol ...697

SSL Protocol Stack.. 697

SSL Session Establishment ... 698

SSL Data Transfer ... 699

SSL Implementation .. 700

SSL Issues and Problems .. 701

SSL and Certificates .. 702

Questions for Readers...703

xviiContents

PART VI NETWORK MANAGEMENT

CHAPTER 28 Simple Network Management Protocol 707
SNMP Capabilities ...710

The SNMP Model...714

The MIB and SMI ... 716

The SMI ... 716

The MIB... 718

RMON.. 720

The Private MIB.. 721

SNMP Operation ..722

SNMPv2 Enhancements .. 726

SNMPv3... 727

Questions for Readers...729

CHAPTER 29 Cloud, SDN, and NFV ... 731
Cloud Computing and Networking Defined732

Cloud Computing Service Models ...734

Infrastructure as a Service (IaaS) .. 735

Platform as a Service (PaaS)... 736

Software as a Service (SaaS) .. 737

Cloud Computing Models ... 738

SDNs ...740

Service Chaining...742

Implementing SDNs ...744

Contrail: An Example SDN Architecture746

NFV...748

Virtio and SR-IOV .. 749

NFV and Service Chaining ... 752

Cloud Networking and TCP/IP ..753

Clouds and Security..755

Questions for Readers...757

PART VII SECURITY

CHAPTER 30 Secure Shell (Remote Access) 761
Using SSH ..761

SSH Basics... 764

SSH Features ... 765

SSH Architecture ... 766

SSH Keys... 767

xviii Contents

SSH Protocol Operation .. 768

Transport Layer Protocol... 770

Authentication Protocol ... 772

The Connection Protocol... 773

The File Transfer Protocol .. 774

SSH in Action...776

Questions For Readers..784

CHAPTER 31 Network Address Translation 785
Using NAT..788

Advantages and Disadvantages of NAT 788

Four Types of NAT ... 789

NAT in Action..795

Questions For Readers..798

CHAPTER 32 Firewalls... 799
What Firewalls Do..802

A Router Packet Filter... 802

Stateful Inspection on a Router... 803

Types of Firewalls ..807

Packet Filters ... 807

Application Proxy.. 808

Stateful Inspection ... 808

DMZ... 810

Questions for Readers...812

CHAPTER 33 IP Security ... 813
IPSEC in Action ...816

CE0 .. 817

CE6 .. 818

Introduction to IPSec..819

IPSec RFCs.. 819

IPSec Implementation.. 819

IPSec Transport and Tunnel Mode 821

Security Associations and More...822

Security Policies .. 822

Authentication Header... 823

Encapsulating Security Payload .. 825

Internet Key Exchange .. 828

Questions for Readers...829

xixContents

PART VIII MEDIA

CHAPTER 34 Voice over Internet Protocol 833
VoIP in Action..836

The Attraction of VoIP.. 838

What Is “Voice”?... 839

The Problem of Delay ... 840

Packetized Voice ... 842

Protocols for VoIP..843

RTP for VoIP Transport .. 843

Signaling .. 846

H.323, the International Standard 847

SIP, the Internet Standard ... 849

MGCP and Megaco/H.248 .. 851

Putting It All Together ...852

Questions for Readers...853

List of Acronyms...855

Bibliography ..867

Index ..869

xx Contents

About the Author

Walter Goralski has worked in the telecommunications and networking industry

since 1970. He spent 14 years in the Bell System. After that he worked with mini-

computers and LANs at Wang Laboratories and with the Internet at Pace

University, where he was a graduate professor for 15 years. He joined Juniper

Networks as a senior staff engineer in 2000 after 8 years as a technical trainer.

Goralski is the author of 10 books about networking, including the bestselling

SONET/SDH (now in its third edition). He has a master’s degree in computer

science from Pace University and several certificates in new areas of technology.

xxi

This page intentionally left blank

Foreword

I am excited and honored to provide this brief foreword to the Second Edition of

Walter Goralski’s marvelous The Illustrated Network: How TCP/IP Works in a

Modern Network. I have known Walter for over 25 years, having first met him

when we worked together as technical instructors, where he delivered in-depth

courses, seminars, and workshops on the inner workings of every aspect of

networking to the world’s largest providers of telecommunications systems and

networks. Walter is one of those gifted individuals who is able to take complex

subjects and explain them, often visually, in ways that make them much easier to

grasp and understand. Sitting in a class room with Walter at the whiteboard is a

delightful experience, in which layers of technological obscurity are peeled away

by his easy explanations and use of diagrams and other visual aids. The book you

hold in your hands is the ready and portable embodiment of that experience and

will deliver clarity, understanding, and insights to the reader in a similar fashion.

This book is not just another dense compendium of facts, standards, and

details. Rather, it tells a story that will engage you in a journey of discovery from

the beginnings, along various paths, and to many destinations on today’s modern

internet. Along the way, you will find the journey to be quite fascinating and,

when you get to the end, you will fully understand exactly how you got there.

Mark Fei

Lead Instructor, Big Data and Analytics, Amazon Web Services Training and Certification

xxiii

This page intentionally left blank

Preface

This is not a book on how to use the Internet. It is a book about how the Internet

is made useful for you. The Internet is a public global network that runs on TCP/

IP, which is frequently called the Internet Protocol Suite. A networking protocol

is a set of rules that must be followed to accomplish something, and TCP/IP is

actually a synthesis of the first two protocols that launched the Internet in its

infancy, the Transmission Control Protocol (TCP) and the Internet Protocol (IP),

which of course, allowed the transmission of information across the then youthful

Internet. TCP/IP is the heart and soul of modern networks, and this book illus-

trates how that is accomplished. By using TCP/IP, we can observe how modern

networks operate by following the transmission of modern data across all sorts of

Internet connections.

However, this book is not limited to TCP and IP. UDP is becoming more and

more popular, especially for streaming video and audio services, and sometimes

even in data centers (you’ll learn why). We poke into corners many foundational

books do not: packet optical error control, wireless systems, virtualized networks

with TCP/IP, and so on.

I hope you enjoy the journey.

AUDIENCE
This book is intended as a technical introduction into networking in general and

the Internet in particular. I will not pretend that someone who has had no previous

experience with either can easily plow through the entire book. But anyone who

is experienced enough to check their email online, browse a Web site, download

a movie or song, or chat with people around the world should have no trouble

tackling the content of this book.

There are questions at the end of each chapter, but this is not a textbook

per se. It can be used as a textbook as a first course in computer networking at

the high school or undergraduate level. It will fit in with the computer science

and electrical engineering departments. It is also explicitly intended for those

entering the telecommunications industry or working for a company where the

Internet is an essential part of the business plan (of which there are more and

more each day). Only one chapter uses C language code, and that only to provide

information for the reader. Mathematical concepts that are not taught in high

school are not used. There are no calculus, probability theory, and stochastic

process concepts used in any chapter. The “pocket calculator” examples of public

key encryption and Diffie�Hellman key distribution were carefully designed to

illustrate the concepts, and yet make the mathematics as simple as possible.

xxv

WHAT IS UNIQUE ABOUT THIS BOOK?
What’s in this book that you won’t find in a half-dozen other books about

TCP/IP? The list is not short.

1. This book uses the same network topology and addresses for every example

and chapter.

2. This book treats IPv4 and IPv6 as equals.

3. This book covers the routing protocols as well as TCP/IP applications.

4. This book discusses ISPs as well as corporate LANs.

5. This book covers services provided as well as the protocols that provide them.

6. This book covers topics (MPLS, IPSec, etc.) not normally covered in other

books on TCP/IP.

Why was the book written this way? Even in the Internet-conscious world

we live in today, few study the entire network, the routers, TCP/IP, the Internet,

and a host of related topics as part of their general education. What they do learn

might seem like a lot, but when considered in relation to the enormous complex-

ity of each of these topics, what is covered in general computer “literacy” or basic

programming courses is really only a drop in the bucket.

As I was writing this book, and printing it out at my workplace, a silicon chip

engineer-designer found a few chapters on top of the printer bin, and he began

reading it. When I came to retrieve the printout, he was fascinated by the sample

chapters. He wanted the book then and there. And as we talked, he made me

realize that thousands of people are entering the networking industry every day,

many from other occupations and disciplines. As the Internet grows, and society’s

dependence on the digital communication structure continues, more and more

people need this overview of how modern networks operate.

The intellectually curious will not be satisfied with this smattering of and con-

densation of networking knowledge in a single volume. I’m hoping they will seek

ways to increase their knowledge in specific areas of interest. This book covers

hundreds of networking topics, and volumes have been written devoted to the

intricacies of each one. For example, there are 20�30 solid books written on

MPLS complexities and evolution, while the chapter here runs at about the same

number of pages. My hope is that this book and this method of “illustrating” how

a modern network works will contribute to more people seeking out those 20�30

books now that they know how the overall thing looks and works.

Like everyone else, I learned about networks, including routers and TCP/IP,

mostly from books and from listening to others tell me what they knew. The

missing piece, however, was being able to play with the network. The books were

great, the discussions led to illumination of how this or that operated, but often

I never “saw” it working. This book is a bit of a synthesis of the written and the

seen. It attempts to give the reader the opportunity to see common tasks in a real,

working, hands-on environment of the proper size and scale, and follow what

xxvi Preface

happens behind the scenes. It’s one thing to read about what happens when a

Web site is accessed, but another to see it in action.

The purpose of this book is to allow you to see what is happening on a

modern network when you access a Web site, write an email, download a song,

or talk on the phone over the Internet. From that observation you will learn how a

modern network works.

AN AUDIENCE NOTE FOR THE SECOND EDITION
The first edition of this book, as I recall, started with a pile of junk. More than

ten years ago, Juniper Networks, like many other companies, was transitioning

from desktops in every cubicle to laptops. As a result, the IT department and labs

had piles of old equipment in every corner. Richard Hendricks and I, along with

Jason Lloyd, managed to talk several other employees into combining a core lab

router network (similar to the one I had used as a technical trainer) with these old

“servers” into a network for testing TCP/IP not only in the network, but end-to-

end. The core network would have provider edge routers, provider core routers,

multiple autonomous systems (if we wanted), and so on. We fired up Windows,

FreeBSD, and Linux operating systems and I got to play as much as I wanted

over the next year or so.

The resulting configurations and results such as routing tables were duly

recorded and packet captures of many protocols and applications were made

available to readers to download from the book web site for free. (I did this after

some packet-tracing company wanted to charge me 400 dollars for a log file con-

taining “live network” packet captures. . .the people who desperately need to

know this stuff don’t have 400 dollars to toss around, I figured.)

I mention the humble roots of the first edition on The Illustrated Network for

one good reason. When I was asked by Morgan-Kaufmann/Elsevier to put

together an updated second edition of the book, Juniper Networks, like many

other companies, was transitioning from an environment of physical equipment

connected by various types of cross-over cables (often hand-made right on the

spot) to an environment of virtual machines, virtual routers, and virtual networks.

This transition put all of the labs in flux, so I was not able to redo all of the

applications and protocols in a virtual environment. However, the transition in

networking did give the basis for the four new chapters in the book: packet

optical links, new roles for BGP, Ethernet VPNs, and cloud concepts and

implementations.

But I soon found, even after some initial probes, that the contents of the book

had aged very well. The thing that makes this possible is the fundamental nature

of the topics explored. I found that FTP is still basically FTP, email is still email,

routing protocols still carry metrics around the network, and so on. The biggest

difference, I found, is that the level of trust we extent to clients and servers on

xxviiPreface

the network has changed a lot. Who has used anonymous FTP recently? I even

managed to explore some of this in the new chapter on BGP, although I have not

made this into a security book in any way. But knowing how security expecta-

tions have changed will help readers pick up current practices, I am sure of it.

Let me close this section with something I realized as a went about updating

the material: there is a tremendous need today for a companion volume to The

Illustrated Network. I call it The Illustrated Data Center. The initial chapters

would build two or more data centers with thousands of servers and virtual

machines and top-of-rack switches on two continents. Then the chapters would

explore how a simple query from a web client could trigger hundreds of NoSQL

queries to find the information needed to create the desired web page on the fly.

What TCP/IP protocols and applications fit nicely and what pieces do not? Now,

that’s a book I would read. . . perhaps my colleagues in the technical training

business are already hard at work on this. I hope so.

WHAT YOU WON’T FIND IN THIS BOOK
It might seem odd to list things that the book does not cover. But rather than have

readers slog through and then find they didn’t find what they were after, here’s

what you will not find in this edition of the book.

You will find no mention of the exciting new peer-to-peer protocols that dis-

tribute the server function around the network. There is no mention of the proto-

cols used by chat rooms or services. The book does not explore music or movie

download services. In other words, you won’t find YouTube, IRC, iTunes, or

even eBay mentioned in this book.

These topics are, of course, interesting and/or important. But the limitations of

time and page count forced me to focus on essential topics. The other topics could

easily form the foundation for The Illustrated Network, Volume II: Beyond the Basics.

AND ONE MORE THING BEFORE I GO

For some reasons, some people are fond of going to book review sites and

criticizing my books as not being technical enough for the down-in-the-trenches

network engineers who deal with route leaking or SONET/SDH pointer shifts or

web page structure every day. That’s their right, but I think there is still a place for

technical books for people who might be interested in how the concept is imple-

mented without needing to know the nitty-gritty of internal equipment operation.

I’d like to use an analogy from old automobile maintenance to show what I mean.

Realize that there are more computers in a car today than in the whole world in

1950. I think everyone should know that as you accelerate, the ignition advances to

keep up with the increased RPMs. But I don’t think everyone needs to know how

often the points wear out (or shake loose) or just what dead bottom center is.

I’d like readers to keep this in mind as they wander through the chapters.

xxviii Preface

OH, ONE MORE THING

Let me tell you one more thing, and this is something I came to understand

only a few years ago. People often ask me why I can’t resist telling other

people about something when I think I’ve figured out how it works. The easy

answer, the one I always gave, is that this is how I teach myself something

new. I’ve always said that the ability to explain a concept to someone who

knows nothing about the topic is the essence of understanding. I have little

patience with the “I understand it but I can’t explain it to you” crowd: I always

ask to speak to the person they learned it from because, obviously, someone

explained it to them.

But now, I know the “hard answer.” Years ago, a brilliant science fiction

writer with a doctorate in biochemistry named Isaac Asimov wrote a monthly

column in The Magazine of Fantasy & Science Fiction (F&SF) in which he

explained complex topics in physics, astronomy, mathematics, and more in simple

terms. (Martin Gardiner’s column in Scientific American was similar for mathe-

matics, but much more challenging.) Asimov’s books collecting these essays are

still available, and I heartily recommend them, even after all these years.

Anyway, when I met Asimov at a sort of dinner conference in the early

1980s, I asked him why no one was doing that kind of thing to explain networks

and computers. And he said to me “Why don’t you do it?” A couple of years

later, I wrote my first article on network technology, then I wrote another,

and then someone called me up and asked me to expand that article into a book.

I had forgotten all about my brief comment and Asimov’s reply until I took

some courses in science fiction writing and someone said, almost off-handedly,

“Asimov was the most encouraging person you would ever want to meet.” And it

all came rushing back.

I am the first to say that I know I am not Isaac Asimov. But I will always be

grateful for the few times I was able to speak with him.

THE ILLUSTRATED NETWORK
Many people frustrated with simple lab setups and restricted “live” networks have

wished for a more complex and realistic yet secure environment where they can

feel free to explore the TCP/IP protocols, layers, and applications without worry-

ing that what they are seeing is limited to a quiet lab, or what they do might bring

the whole network to its knees.

The days are long gone when an interested party could take over the whole

network, from clients to servers to routers, and play with them at night or over

the weekend. Networks are run on a normal business-hour schedule, especially

now that the Web makes “prime time” on one side of the world when the other

half is trying to get some sleep.

xxixPreface

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules SONET/SDH
Dashed rules Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE P.1

The illustrated network.

xxx Preface

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP

AS 65527

Global Public
Internet

xxxiPreface

Many times I have encountered a new feature or procedure and said to myself,

“I wish I could play with this and see what happens.” But only after nearly

40 years of networking experience (I hooked up my first modem, about the size

of a microwave oven, in 1966), have I finally arrived at the point where I could

say, “I want to do this . . .,” and someone didn’t tell me it could not be done.

Juniper Networks Inc., my employer, was in a unique position to help me with

my plans to not merely talk about TCP/IP or show contrived examples of the pro-

tocols in action, but to “illustrate” each piece with a series of clients, servers, rou-

ters, and connections (including the public Internet). They had the routers and

links, and employed all the Unix and Windows-based hosts that I could possibly

need. (In retrospect, there was probably some overkill in the network, as most

chapters used only a couple of routers.) We decided not to upgrade the XP hosts

to Vista, which was relatively new at the time, and I kept Internet Explorer 6

active, more or less out of convenience.

In any case, with the blessings of Juniper Networks, I set about creating

the kind of network I needed for this book. It took a while, but in the end it

was well worth it. We assembled a collection of five routers connected with

SONET links, two Ethernet LANs, two pairs of Windows clients and servers, one

pair of Red Hat Linux hosts (running the RH 9 kernel 2.4.20-8), and a pair of

FreeBSD (release 4.10) hosts.

For this Second Edition, I have updated some of the screen captures to

Windows 10 and “modern” Linux distros, but all-in-all, the material shown in

many screen captures has not changed one bit. The capture files are the same as

from the First Edition, but the basic protocols remain as solid as ever.

Figure P.1 shows the network that we built and that is used in every chapter

of this book to illustrate the networking concepts discussed.

USING THIS BOOK
This book is designed to be read from start to finish, chapter by chapter, sequen-

tially. It seems funny to say this, because a lot of technical books these days are

not meant to be “read” in the same way as a novel or a biography. Readers tend

to look things up in books like this, and then browse from the spot they land on,

which you can certainly do with this book, but probably more on a chapter-by-

chapter level.

But I hope that the story in this book is as coherent as a mystery, if not as

exciting as an adventure tale. From the first chapter, which offers readers a unique

look at layered protocols, to the last, this book presents a story that proceeds in a

logical fashion from the bottom of the Internet protocol suite to the top

(and beyond, in some cases). So if you can, read from start to finish, as the

chapters depend on previous ones. If you are new to networking concepts, or just

beginning, I recommend this consecutive approach. For those more experienced,

xxxii Preface

bobbing in and out is just fine, but remember that all emphasis is equal in The

Illustrated Network, and sometimes you may question a topic’s coverage, when

the item questioned is covered in an earlier chapter.

As you’re reading, you’ll discover that generally, each chapter has the same

structure. The beginning chapters, however, diverge from this format more than

the later chapters do, as they require general exploration of the protocol, applica-

tion, or concept. After the first few chapters, I begin the tasks of illustrating how

it all works. In some cases, this involves not only the network built for this

book, but the global Internet as well. Note that network configuration specifics,

especially those involving the routers, vary somewhat, but these changes are

completely detailed as they occur.

The companion Web site for this book is https://www.elsevier.com/books-

and-journals/book-companion/9780128110270. There you will find many of the

capture files to explore some of the protocols on your own.

SOURCE CODE
Chapter 3 on network technologies uses examples from wireless network captures

supplied by Aeropeek. Chapter 12 on sockets uses listings from utility programs

written by Michael J. Donahoo and Kenneth L. Calvert for their excellent

book, TCP/IP Sockets in C (Morgan Kaufmann, 2001) (there was a second edition

in 2009, and the source code is available at www.jeffdonahoo.com/practical/

CSockets2/textcode.html). Thanks to both groups for letting me use their material

in this book and renewing the permission for the Second Edition.

xxxiiiPreface

https://www.elsevier.com/books-and-journals/book-companion/9780128110270
https://www.elsevier.com/books-and-journals/book-companion/9780128110270
http://www.jeffdonahoo.com/practical/CSockets2/textcode.html
http://www.jeffdonahoo.com/practical/CSockets2/textcode.html

This page intentionally left blank

Acknowledgments

I would like to thank various leaders in their respective fields who have given me

their time and read and reviewed selected chapters of this work. Their comments

have made this a much better book than it would have been without their involve-

ment. Any errors that remain are mine.

I would like to thank colleagues at Juniper Networks, Inc., who gave their time

and effort to create this network. In many cases, they also helped with the book. It

starts at the top with Rami Rahim, the current CEO. Then come Kireeti Kompella,

Juniper Network’s chief scientist and former CTO, Ben Jackson, the VP of my

department, and Tim Harrington, my manager, all of whom have created an envi-

ronment where creativity and exploration are encouraged. Thanks to all!

The list goes on to include Patrick Ames, my “in-house agent,” Jason Lloyd,

Mark Whittiker, Kent Ketell, and Jeremy Pruitt, all of whom helped with creating

the Illustrated Network in the first place. For this Second Edition, I could not

have done much without the help of Richard Hendricks and Kieran Milne, both

of whom were constantly correcting typos and errors that somehow creep into a

text when you aren’t looking.

Finally, I would like to thank Todd Green and Lindsay Lawrence of

MK/Elsevier for making sure this edition happened when it did. Todd kept asking

until I could not say “no” any longer and Lindsay gave me the extra time

I needed to get the material ready. Many thanks to Mark Fei of Amazon Web

Services for the kind words in the new foreword. I would like to thank my editor,

Punithavathy Govindaradjane, whose hard work has made this edition much better

than it would otherwise be. I would also like to thank my wife, Camille, for her

continued support of my writing and taking care of the dogs when I needed to

concentrate the most. Thanks!

TECHNICAL REVIEWERS
This edition relied on the members of Juniper Networks Tech Leaders Council

to detect errors and suggest edits. Steve Keck and Stefano Ancini helped me

to understand modern packet optical networking and forward error correction.

Susan McCoy took the time to read all of the new material, and I had input

from the other members: Richard Hendricks, Kieran Milne, Brenda Wilden,

Chris Heinrich, Greg Houde, and Pete Robbins. They all helped make this a

better book.

xxxv

This page intentionally left blank

PART

I
Networking Basics

All networks, from the smallest LAN to the global Internet, consist of similar
components. Layered protocols are the rule, and this part of the book
examines protocol suites, network devices, and the frames used on links that
connect the devices.

• Chapter 1—Protocols and Layers
• Chapter 2—TCP/IP Protocols and Devices
• Chapter 3—Network Link Technologies
• Chapter 4—Packet Optical Networks and Forward Error Correction

This page intentionally left blank

CHAPTER

1Protocols and Layers

WHAT YOU WILL LEARN

In this chapter, you will learn about the protocol stack used on the global public
Internet and how these protocols have been evolving in today’s world. We’ll review
some key basic definitions and see the network used to illustrate all of the examples
in this book, as well as the packet content, the role that hosts and routers play on the
network, and how graphic user and command line interfaces (GUI and CLI, respec-
tively) both are used to interact with devices.

You will learn about standards organizations and the development of TCP/IP
RFCs. We’ll cover encapsulation and how TCP/IP layers interact on a network.

This book is about what actually happens on a real network running the protocols

and applications used on the Internet today. We’ll be looking at the entire

network—everything from the application level down to where the bits emerge

from the local device and race across the Internet. A great deal of the discussion

will revolve around the TCP/IP protocol suite, the protocols on which the Internet

is built. The network that will run most of these protocols is shown in Figure 1.1.

For the material added in the Second Edition, we’ll have to look link types and

topologies that are not on the network, because many newer elements of TCP/IP

apply to more specialized deployments such as packet optical networks, large

data centers, and virtual machines. Nevertheless, we can fit them into the overall

architecture as needed.

Like most authors, I’ll use TCP/IP as shorthand for the entire Internet protocol

stack, but you should always be aware that the suite consists of many protocols,

not just TCP and IP. The protocols in use are constantly growing and evolving as

the Internet adapts to new challenges and applications. In the past few years, five

trends have become clear in the protocol evolution:

Increased use of multimedia—The original Internet was not designed with

proper quality of service assurances to support digital voice and video.

However, the Internet now carries this as well as bulk and interactive data.

(In this book, “data” means non-voice and non-video applications.) In the

future, all forms of information should be able to use the Internet as an

interactive distribution medium without major quality concerns.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00001-1

© 2017 Elsevier Inc. All rights reserved.
3

http://dx.doi.org/10.1016/B978-0-12-811027-0.00001-1

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 1.1

The Illustrated Network, showing the routers, links, and hosts on the network. Many of the

layer addresses used in this book appear in the figure as well.

4 CHAPTER 1 Protocols and Layers

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

5Protocols and Layers

Increasing bandwidth and mobility—The trend is toward higher bandwidth

(capacity), even for mobile users. New wireless technologies seem to promise

the “Internet everywhere.” Users are no longer as restricted to analog

telephone network modem bit rates, and new end-electronics, last-mile

technologies, and improved wiring and backbones are the reason.

Security—Attacks have become much more sophisticated as well. The use of

privacy tools such as encryption and digital signatures are no longer an option,

but a necessity. E-commerce is a bigger and bigger business every year, and

on-line banking, stock transactions, and other financial manipulations make

strong security technologies essential. Identity verification is another place

where new applications employ strong encryption for security purposes.

New protocols—Even the protocols that make up the TCP/IP protocol suite

change and evolve. Protocols age and become obsolete, and make way for newer

ways of doing things. IPv6, the eventual successor for IPv4, is showing up on

networks around the world, especially in applications where the supply of IPv4

addresses is inadequate (such as cell phones). In every case, each chapter

attempts to be as up-to-date and forward-looking as possible in its particular area.

Increased virtualization—The rise of cloud computing, large (enormous,

really) data centers, the need for more flexible networks, and the pace of

hardware evolution have combined to make three things very important: cloud

computing, software defined networks (SDNs) and network functions

virtualization (NFV). Some key concepts are in the chapters for this Second

Edition, and there is a while chapter addressing this trend later in the book.

For now, let’s take a good look at the network that will be illustrated in the

rest of this book.

KEY DEFINITIONS
Any book about computers and networking uses terminology with few firm definitions and rules

of usage. So here are some key terms that are used over and over throughout this book. Keep in

mind that these terms may have varying interpretations, but are defined according to the

conventions used in this book.

• Host: For the purposes of this book, a host is any endpoint or end system device that runs

TCP/IP. In most cases, these devices are ordinary desktop and laptop computers. However, in

some cases hosts can be cell phones, handheld personal digital assistants (PDAs), and so on.

In the past, TCP/IP has been made to run on toasters, coffee machines, and other exotic

devices, mainly to prove a point.

• Intermediate system: Hosts that do not communicate directly pass information through one

or more intermediate systems. Intermediate systems are often generically called “network

nodes” or just “nodes.” Specific devices are labeled “routers,” “bridges,” or “switches,”

depending on their precise roles in the network. The intermediate nodes on the Illustrated

Network are routers with some switching capabilities.

• System: This is just shorthand for saying the device can be a host, router, switch, node, or

almost anything else on a network. Where clarity is important, we’ll always specify “end

system” or “intermediate system.”

6 CHAPTER 1 Protocols and Layers

THE ILLUSTRATED NETWORK
Each chapter in this book will begin with a look at how the protocol or chapter

contents function on a real network. The Illustrated Network, built in the Tech

Pubs department of Juniper Networks, Inc., in Sunnyvale, California, is shown in

Figure 1.1.

The network consists of systems running three different operating systems

(Window several different types of common Linux distributions, and FreeBSD

Unix) connected to Ethernet local area networks (LANs). These systems are

deployed in pairs, as either clients (for now, defined as “systems with users doing

work in front of them”) and servers (for now, defined as “systems with adminis-

trators, and usually intended only for remote use”). When we define the client

and server terms more precisely, we’ll see that the host’s role at the protocol level

depends on which host initiates the connection or interaction. The hosts can be

considered to be part of a corporate network with offices in New York and

Los Angeles.

Addressing information is shown for each host, router, and link between

devices. We’ll talk about all of these addresses in detail later, and why the hosts

in particular have several addresses in varying formats. (For example, the hosts

only have link-local IPv6 address, and not global ones or addresses reserved for

documentation.)

The LANs are attached to Juniper Networks’ routers (also called intermediate

nodes, although some are technically gateways), which in turn are connected in

our network to other routers mainly by Gigabit Ethernet (ge- prefix in Juniper

Networks devices) point-to-point links. Other types of links, such as asynchronous

transfer mode (ATM) or synchronous optical network (SONET), can be used to

connect widely separated routers, but we’ll use only a few SONET links for our

long-haul links between routers. There is a link to the global Internet and to a

home-based wireless LAN as well. The home office link uses digital subscriber

line (DSL), a form of dedicated broadband Internet access, and not dial-up

modem connectivity.

MAJOR PARTS OF THE ILLUSTRATED NETWORK
The Illustrated Network is composed of four major components. At the top are two Ethernet

LANs with the hosts of our fictional organization, one in New York and one in Los Angeles. The

offices have different ISPs (a common enough situation), and the site routers link to Ace ISP on

the West Coast and Best ISP on the East Coast with point-to-point Ethernet links (more on links

in the next chapter). The two ISPs link to each other directly and also link to the “global public

Internet.” Just what this is will be discussed once we start looking at the routers themselves.

One employee of this organization (the author) is shown linking a home wireless network to

the West Coast ISP with a high-speed (“broadband”) digital subscriber line (DSL) link. The rest

of the links are high-speed WAN links and Gigabit Ethernet links.

The Illustrated Network is still representative of many LANs, ISPs, and users around the

world, although 10 Gigabit Ethernet and even higher speeds are becoming more widespread.

7The Illustrated Network

This network will be used throughout this book to illustrate how the different

TCP/IP protocols running on hosts and routed networks combine to form the

Internet. Some protocols will be examined from the perspective of the hosts and

LAN (on the local “user edge”) and others will be explored from the perspective

of the service provider (on the global “network edge”). Taken together, these

viewpoints will allow us to see exactly how the network works, inside and out.

Let’s explore the Illustrated Network a little, from the user edge, just to dem-

onstrate the conventions that will be used at the beginning of each chapter in this

book.

REMOTE ACCESS TO NETWORK DEVICES

We can use a host (client or server system running TCP/IP) to remotely access

another device on the local network. In the context of this book, a host is a client

or server system. We can loosely (some would say very loosely) define clients as

typically the PCs on which users are doing work, and that’s how we’ll use the

term for now. On the other hand, servers (again loosely) are devices that usually

have administrators tending them. Servers are often gathered in special equipment

racks in rooms with restricted access (the “server room”), although print servers

are usually not. We’ll be more precise about the differences between clients and

servers as the “initiating protocol” later in this book.

Let’s use host lnxclient to remotely access the host lnxserver on one of the

LANs. We’ll use the secure shell application, ssh, for remote access and log in

(the �l option) as remote-user. There are other remote access applications, but

in this book we’ll use ssh. We’ll use the command-line interface (CLI) on the

Linux host to do so. Here is a truncated but typical login sequence for Ubuntu

Linux (we’ll see different distributions of Linux used based on lab device avail-

able and to show the variations available).

[root@lnxclient admin]# ssh -l remote-user@lnxserver
Password:
Welcome to Ubuntu 16.04 LTS (GNU/Linux 4.4.0-28-generic x86_64)
� Documentation: https://help.ubuntu.com
� Management: https://landscape.canonical.com
� Support: https://ubuntu.com/advantage
System information as of Thu Mar 17 11:14:55 MDT 2016 . . .

0 packages can be updated.
0 updates are security updates.
Last login: Thu Mar 17 11:07:56 2016 from . . .

We can also use a host to access a router on the network. As mentioned ear-

lier, a router is a type of intermediate system (or network node) that forwards IP

data units along until they reach their destination. A router that connects a LAN

to an Internet link is technically a gateway. We’ll be more precise about these

terms and functions in later chapters dealing with routers and routing specifically.

8 CHAPTER 1 Protocols and Layers

https://help.ubuntu.com
https://landscape.canonical.com
https://ubuntu.com/advantage

Let’s use host lnxclient to remotely access the router on the network that is

directly attached to the LAN, router CE0 (“Customer Edge router #10”). Usually,

we’d do this to configure the router using the CLI. As before, we’ll use the secure

shell application, ssh, for remote access and log in as remote-user. We’ll again

use the CLI on the Unix host to do so.

lnxclient. ssh -l remote-user@CE0
remote-user@CE0’s password:
--- JUNOS 15.1X49-D50 built 2015-05-06 06:58:15 UTC
remote-user@CEO.

These examples show the conventions that will appear in this book when com-

mand-line procedures are shown. All prompts, output, and code listings appear

like this. Whenever a user types a command to produce some output, the com-

mand typed will appear like this. We’ll see CLI examples from Windows hosts

as well.

ILLUSTRATED NETWORK ROUTER ROLES
The intermediate systems or network nodes used on the Illustrated Network are routers. Not all of

the routers play the same role in the network, and some have switching capabilities. The router’s

role depends on its position in the network. Generally, smaller routers populate the edge of the

network near the LANs and hosts, while larger routers populate the ISP’s network core. The

routers on our network have one of three network-centric designations; we have LAN switches

also, but these are not routers.

• Customer edge (CE): These two routers belong to us, in our role as the customer who owns

and operates the hosts and LANs. These CE routers are smaller than the other routers in terms

of size, number of ports, and capabilities. Technically, on this network, they perform a

gateway role.

• Provider edge (PE): These two routers gather the traffic from customers (typically there are

many CE routers, of course). They are not usually accessible by customers.

• Provider (P): These six routers are arranged in what is often called a “quad.” The two service

providers on the Illustrated Network each manage two providers’ routers in their network core.

Quads make sure traffic flows smoothly even if any one router or one link fails on the

provider’s core networks.

• Ethernet LAN switches: The network also contains two Ethernet LAN switches. We’ll spend

some time exploring switches later. For now, consider that switches operate on Layer 2 frames

and routers operate on Layer 3 packets.

Now, what is this second example telling us? First of all, it tells us that rou-

ters, just like ordinary hosts, will allow a remote user to log in if they have the

correct user ID and password. It would appear that routers aren’t all that much

different from hosts. However, this can be a little misleading. Hosts generally

have different roles in a network than routers. For now, we’ll just note that for

security reasons, you don’t want it to be easy for people to remotely access rou-

ters, because intruders can cause a lot of damage after compromising just a single

9The Illustrated Network

router. In practice, a lot more security than just passwords is employed to restrict

router access.

Secure remote access to a router is usually necessary, so not running the

process or entity that allows remote access isn’t an option. An organization with a

large network could have routers in hundreds of locations scattered all over the

country (or even the world). These devices need management, which includes

tasks such as changing the configuration of the routers. Router configuration often

includes details about the protocols’ operation and other capabilities of the router,

which can change as the network evolves. Software upgrades need to be distrib-

uted as well. Troubleshooting procedures often require direct entry of commands

to be executed on the router. In short, remote access and file transfer can be very

helpful for router and network management purposes.

FILE TRANSFER TO A ROUTER

Let’s look at the transfer of a new router configuration file, for convenience

called routerconfig.txt, from a client host (wincli2) to router CE6. This time

we’ll use a GUI for the file transfer protocol (FTP) application, which will be

shown as a figure, as in Figure 1.2. First, we have to remotely access the router.

FIGURE 1.2

Remote access for FTP using a GUI. Note how the different panes give different types of

information, yet bring it all together.

10 CHAPTER 1 Protocols and Layers

The main window section in the figure shows remote access and the file

listing of the default directory on the router, which is /var/home/remote (the

router uses the Unix file system). The listing in the lower right section is the

contents of the default directory, not part of the command/response dialog

between host and router. The lower left section shows the file system on the

host, which is a Windows system. Note that the file transfer is not encrypted or

secured in any way.

Most “traditional” Unix-derived TCP/IP applications have both CLI and GUI

interfaces available, and which one is used is usually a matter of choice. Older

Unix systems, the kind most often used on the early Internet, didn’t typically

have GUI interfaces, and a lot of users prefer the CLI versions, especially for

book illustrations. GUI applications work just as well, and don’t require users to

know the individual commands well. When using the GUI version of FTP, all the

user has to do is “drag and drop” the local routerconfig.txt file from the lower

left pane to the lower right pane of the window to trigger the commands (which

the application produces “automatically”) for the transfer to occur. This is shown

in Figure 1.3.

With the GUI, the user does not have to issue any FTP commands directly.

FIGURE 1.3

File transfer with a GUI. There are commands (user mouse clicks that trigger

messages), responses (the server’s replies), and status lines (reports on the state of the

interaction).

11The Illustrated Network

CLI AND GUI

We’ll use both the CLI and GUI forms of TCP/IP applications in this book. In a

nod to tradition, we’ll use the CLI on the Unix systems and the GUI versions

when Windows systems are used in the examples. (CLI commands often capture

details that are not easily seen in GUI-based applications.) Keep in mind that you

can use GUI applications on Unix and the CLI on Windows (you have to run cmd
first to access the Windows CLI). This listing shows the router configuration file

transfer of newrouterconfig.txt from the Windows XP system to router CE6, but
with the Windows CLI and using the IP address of the router.

PS C:\Users\Owner. ftp 10.10.12.1
Connected to 10.10.12.1.
220 R6 FTP server (version 6.00LS) ready.
User (10.10.12.1:none)):walterg
331 Password required for walterg.
Password: ��������

ftp. dir
200 PORT command successful.
150 Opening ASCII mode data connection for '/bin/ls'.
total 128
drwxr-xr-x 2 remote staff 512 Nov 20 2004 .ssh
-rw-r--r-- 1 remote staff 4316 Mar 25 2006 R6-base
-rw-r--r-- 1 remote staff 4469 May 11 20:08 R6-cspf
-rw-r--r-- 1 remote staff 4316 Jun 3 18:46 R6-rsvp
-rw-r--r-- 1 remote staff 4242 Jun 16 14:44 R6-rsvp-message
-rw-r----- 1 remote staff 559 Feb 3 2005 juniper.conf
-rw-r--r-- 1 remote staff 4081 Dec 2 2005 merisha-base
-rw-r--r-- 1 remote staff 2320 Dec 3 2005 richard-ASP-manual-SA
-rw-r--r-- 1 remote staff 2358 Dec 2 2005 richard-base
-rw-r--r-- 1 remote staff 7344 Sep 30 11:28 routerconfig.txt
-rw-r--r-- 1 remote staff 4830 Jul 13 17:04 snmp-forwarding
-rw-r--r-- 1 remote staff 3190 Jan 7 2006 tp6
-rw-r--r-- 1 remote staff 4315 May 5 12:49 wjg-ORA-base-TP6
-rw-r--r-- 1 remote staff 4500 May 6 09:47 wjg-tp6-with-ipv6
-rw-r--r-- 1 remote staff 4956 May 8 13:42 wjg-with-ipv6
226 transfer complete
ftp: 923 bytes received in 0.00Seconds 923000.00Kbytes/sec.
ftp. bin
200 Type set to I
ftp. put newrouterconfig.text
200 PORT command successful.
150 Opening ASCII mode data connection for "newrouterconfig.txt".
226 Transfer complete.
ftp: 7723 bytes received in 0.00Seconds 7344000.00Kbytes/sec.
ftp._

12 CHAPTER 1 Protocols and Layers

In some cases, we’ll list CLI examples line by line, as here, and in other cases

we will show them in a figure.

WIRESHARK AND PACKET CAPTURE

Of course, showing a GUI or command line FTP session doesn’t reveal much

about how the network functions. We need to look at the bits that are flowing

through the network. Also, we need to look at applications, such as the file trans-

fer protocol, from the network perspective.

To do so, we’ll use a packet capture utility. Wireshark (Ethereal) is available

free of charge at www.wireshark.org. It is notable that Wireshark, unlike a lot of

similar applications, is available for Windows as well as most Unix/Linux

variations.

Wireshark is a network protocol analyzer program that keeps a copy of every

packet of information that emerges from or enters the system on a particular

interface. Wireshark also parses the packet and shows not only the bit patterns,

but what those bit groupings mean. Wireshark has a summary screen, a pane for

more detailed information, and a pane that shows the raw bits that Wireshark

captured. The nicest feature of Wireshark is that the packet capture stream can

be saved in a standard libpcap format file (usually with a .cap or .pcap exten-

sion), which is common among most protocol analyzers. These files can be read

and parsed and replayed by tcpdump and other applications or Ethereal on other

systems. There is also a command line version we’ll be using that is still often

called tethereal or tshark. It’s the same idea, but under different names (and

versions of Linux stick in different places in the distribution). You might have to

hunt for it a bit.

Figure 1.4 shows the same router configuration file transfer as in Figure 1.2

and 1.3, and at the same time. However, this time the capture is not at the user

level, but at the network level.

Each packet captured is numbered sequentially and given a time stamp, and

its source and destination address is listed. The protocol is in the next column,

followed by the interpretation of the packet’s meaning and function. The packet

to request the router to STOR routerconfig.txt is packet number 26 in the

sequence.

Already we’ve learned something important: that with TCP/IP, the number of

packets exchanged to accomplish even something basic and simple can be surpris-

ingly large. For this reason, in some cases, we’ll only show a section of the panes

of the full Wireshark screen, only to cut down on screen clutter. The captured

files are always there to consult later.

With these tools—CLI listings, GUI figures, and Ethereal captures—

we are prepared to explore all aspects of modern network operation using

TCP/IP.

13The Illustrated Network

http://www.wireshark.org

FIRST EXPLORATIONS IN NETWORKING

We’ve already seen that an authorized user can access a router from a host.

We’ve seen that routers can run the ssh and ftp server applications sshd and

ftpd, and the suspicion is that they might be able to run even more (they can just

as easily be ssh and ftp clients). However, the router application suite is fairly

restrictive. You usually don’t, for example, send email to a router, or log in to a

router and then browse Web sites. There is a fundamental difference in the roles

that hosts and routers play in a network. A router doesn’t have all of the applica-

tion software you would expect to find on a client or server, and a router uses

them mainly for management purposes. However, it does have all the layers of

the protocol suite.

TCP/IP networks are a mix of hosts and routers. Hosts often talk to other

devices on the network, or expose their applications to the network, but their

basic function is to run programs. However, network systems like routers exist to

keep the network running, which is their primary task. Router-based applications

support this task, although in theory, routers only require a subset of the TCP/IP

protocol suite layers to perform their operational role. You also have to manage

routers, and that requires some additional software in practice. However, don’t

expect to find chat or other common client applications on a router.

FIGURE 1.4

Ethereal FTP capture of the file transfer shown earlier from the user perspective.

14 CHAPTER 1 Protocols and Layers

What is it about protocols and layers that is so important? That’s what the rest

of this chapter is about. Let’s start with what protocols are and where they come

from.

PROTOCOLS
Computers are systems or devices capable of running a number of processes.

These processes are sometimes referred to as entities, but we’ll use the term pro-

cesses. Computer networks enable communication between processes on two dif-

ferent devices that are capable of sending and receiving information in the form

of bits (0 s and 1 s). What pattern should the exchange of bits follow? Processes

that exchange bit streams must agree on a protocol. A protocol is a set of rules

that determines all aspects of data communication.

A protocol is a standard or convention that enables and controls the connec-

tion, communication, and transfer of information between two communications

endpoints, or hosts. A protocol defines the rules governing the syntax (what can

be communicated), semantics (how it can be communicated), and synchronization

(when and at what speed it can be communicated) of the communications proce-

dure. Protocols can be implemented on hardware, software, or a combination of

both.

Protocols are not the same as standards: some standards have never been

implemented as workable protocols, while some of the most useful protocols are

only loosely defined (this sometimes makes interconnection an adventure). The

protocols discussed in this book vary greatly in degree of sophistication and pur-

pose. However, most of the protocols specify one or more of the following:

Physical connection—The host typically uses different hardware depending on

whether the connection is wired or wireless, and some other parameters might

require manual configuration. However, protocols are used to supply details

about the network connection (speed is part of this determination). The host

can usually detect the presence (or absence) of the other endpoint devices as

well.

Handshaking—A protocol can define the rules for the initial exchange of

information across the network.

Negotiation of parameters—A protocol can define a series of actions to

establish the rules and limits used for communicating across the network.

Message delimiters—A protocol can define what will constitute the start and

end of a message on the network.

Message format—A protocol can define how the content of a message is

structured, usually at the “field” level.

Error detection—A protocol can define how the receiver can detect corrupt

messages, unexpected loss of connectivity, and what to do next. A protocol

can simply fail or try to correct the error.

15Protocols

Error correction—A protocol can define what to do about these error

situations. Note that error recovery usually consists of both error-detection and

error-correction protocols.

Termination of communications—A protocol can define the rules for

gracefully stopping communicating endpoints.

Protocols at various layers provided the abstraction necessary for Internet

success. Application developers did not have to concern themselves overly with

the physical properties of the network. The expanded use of communications proto-

cols has been a major contributor to the Internet’s success, acceptance, flexibility,

and power.

STANDARDS AND ORGANIZATIONS

Anyone can define a protocol. Simply devise a set of rules for any or all of the

phases of communication and convince others to make hardware or software that

implements the new method. Of course, an implementer could try to be the only

source of a given protocol, a purely proprietary situation, and this was once a

popular way to develop protocols. After all, who knew better how to network

IBM computers than IBM? Today, most closed protocols have given way to open

protocols based on published standards, especially since the Internet strives for

connectivity between all types of computers and related devices and is not limited

to equipment from a certain vendor. Anyone who implements an open protocol

correctly from public documents should in most cases be able to interoperate with

other versions of the same protocol.

Standards promote and maintain an open and competitive market for network

hardware and software. The overwhelming need for interoperability today, both

nationally and internationally, has increased the set of choices in terms of vendor

and capability for each aspect of data communications. However, proprietary pro-

tocols intended for a limited architecture or physical network are still around, of

course. Proprietary protocols might have some very good application-specific pro-

tocols, but could probably not support things like the Web as we know it. Making

something a standard does not guarantee market acceptance, but it is very difficult

for a protocol to succeed without a standard for everyone to follow. Standards

provide essential guidelines to manufacturers, vendors, service providers, consul-

tants, government agencies, and users to make sure the interconnectivity needed

today is there.

Data communication standards fall into two major categories: de jure (“by

rule or regulation”) and de facto (“by fact or convention”).

De jure—These standards have been approved by an officially recognized

body whose job is to standardize protocols and other aspects of networking.

De jure standards often have the force of law, even if they are called

recommendations (for these basic standards, it is recommended that nations

16 CHAPTER 1 Protocols and Layers

use their own enforcement methods, such as fines, to make sure they are

followed).

De facto—Standards that have not been formally approved but are widely

followed fall into this category. If someone wants to do something different,

such as a manufacturer of network equipment, this method can be used to

quickly establish a new product or technology. These types of standards can

always be proposed for de jure approval.

When it comes to the Internet protocols, things are a bit more complicated.

There are very few official standards, and there are no real penalties involved for

not following them (other than the application not working as promised). On the

Internet, a “de facto standard” forms a reference implementation in this case.

De facto standards are also often subportions or implementation details for formal

standards, usually when the formal standard falls short of providing all the infor-

mation needed to create a working program. Internet standard proposals in many

cases require running code at some stages of the process: at least the de facto

code will cover the areas that the standard missed.

The standards for the TCP/IP protocol suite now come from the Internet

Engineering Task Force (IETF), working in conjunction with other Internet orga-

nizations. The IETF is neither strictly a de facto nor de jure standards organiza-

tion: There is no force of law behind Internet standards; they just don’t work the

way they should if not done correctly. We’ll look at the IETF in detail shortly.

The Internet uses more than protocol standards developed by the IETF. The

following organizations are the main ones that are the sources of these other

standards.

Institute of Electrical and Electronics Engineers
This international organization is the largest society of professional engineers in

the world. One of its jobs is to oversee the development and adaptation of interna-

tional standards, often in the local area network (LAN) arena. Examples of IEEE

standards are all aspects of wireless LANs (IEEE 802.11).

American National Standards Institute
Although ANSI is actually a private nonprofit organization, and has no affiliation

with the federal government, its goals include serving as the national institution

for coordinating voluntary standardization in the United States as a way of

advancing the U.S. economy and protecting the public interest. ANSI’s members

are consumer groups, government and regulatory bodies, industry associations,

and professional societies. Other countries have similar organizations that closely

track ANSI’s actions. The indispensable American Standard Code for Information

Interchange (ACSII) that determines what bits mean is an example of an ANSI

standard.

17Protocols

Electronic Industries Association
This is a nonprofit organization aligned with ANSI to promote electronic

manufacturing concerns. The EIA has contributed to networking by defining

physical connection interfaces and specifying electrical signaling methods. The

popular Recommended Jack #45 (RJ-45) connector for twisted pair LANs is an

example of an EIA standard.

ISO, or International Standards Organization
Technically, this is the International Organization for Standardization in English,

one of its official languages, but is always called the ISO. “ISO” is not an

acronym or initialism for the organization’s full name in either English or French

(its two official languages). Rather, the organization adopted ISO based on the

Greek word isos, meaning equal. Recognizing that the organization’s initials

would vary according to language, its founders chose ISO as the universal short

form of its name. This, in itself, reflects the aim of the organization: to equalize

and standardize across cultures. This multinational body’s members are drawn

from the standards committees of various governments. They are a voluntary

organization dedicated to agreement on worldwide standards. The ISO’s major

contribution in the field of networking is with the creation of a model of data

networking, the Open Systems Interconnection Reference Model (ISO-RM),

which also forms the basis for a working set of protocols. The United States is

represented by ANSI in the ISO.

International Telecommunications Union�Telecommunication
Standards Sector
A global economy needs international standards not only for data networks, but

for the global public switched telephone network (PSTN). The United Nations

formed a committee under the International Telecommunications Union (ITU),

known as the Consultative Committee for International Telegraphy and

Telephony (CCITT), that was eventually reabsorbed into the parent body as the

ITU-T in 1993. All communications that cross national boundaries must follow

ITU-T “recommendations,” which have the force of law. However, inside a

nation, local standards can apply (and usually do). A network architecture called

asynchronous transfer mode (ATM) is an example of an ITU-T standard.

In addition to these standards organizations, networking relies on various

forums to promote new technologies while the standardization process proceeds at

the national and international levels. Forum members essentially pledge to follow

the specifications of the forum when it comes to products, services, and so forth,

although there is seldom any penalty for failing to do so. The Metro Ethernet

Forum (MEF) is a good example of the modern forum in action.

The role of regulatory agencies cannot be ignored in standard discussions. It

makes no sense to develop a new service for wireless networking in the United

States, for example, if the Federal Communications Commission (FCC) has

18 CHAPTER 1 Protocols and Layers

forbidden the use of the frequencies used by the new service for that purpose.

Regulated industries include radio, television, and wireless and cable systems.

REQUEST FOR COMMENT AND THE INTERNET ENGINEERING
TASK FORCE

What about the Internet itself? The Internet Engineering Task Force (IETF) is the

organization directly responsible for the development of Internet standards. The

IETF has its own system for standardizing network components. In particular,

Internet standards cover many of the protocols used by devices attached to the

Internet, especially those closer to the user (applications) than to the physical

network.

Internet standards are formalized regulations followed and used by those who

work on the Internet. They are specifications that have been tested and must be

followed. There is a strict procedure that all Internet components follow to

become standards. A specification starts out as an Internet draft, a working docu-

ment that often is revised, has no official status, and has a 6-month life span.

Developers often work from these drafts, and much can be learned from the prac-

tical experience of implementation of a draft. If recommended, the Internet

authorities can publish the draft as a request for comment (RFC). The term is his-

torical, and does not imply that feedback is required (most of the feedback is pro-

vided in the drafting process). Each RFC is edited, assigned a number, and

available to all. Not all RFCs are standards, even those that define protocols.

This book will make heavy use of RFCs to explain all aspects of TCP/IP and

the Internet, so a few details are in order. RFCs have various maturity levels that

they go through in their lifetimes, according to their requirement levels. The RFC

life-cycle maturity levels are shown in Figure 1.5. Note that the timeline does not

always apply, or is not applied in a uniform fashion.

A specification can fall into one of six maturity levels, after which it passes to

historical status and is useful only for tracking a protocol’s development.

Following introduction as an Internet draft, the specification can be a:

Proposed standard—The specification is now well understood, stable, and

sufficiently interesting to the Internet community. The specification is now

usually tested and implemented by several groups, if this has not already

happened at the draft level.

Draft standard—After at least two successful and independent

implementations, the proposed standard is elevated to a draft standard.

Without complications, and with modifications if specific problems are

uncovered, draft standards normally become Internet standards.

Internet standard—After demonstrations of successful implementation, a draft

standard becomes an Internet standard.

Experimental RFCs—Not all drafts are intended for the “standards track” (and

a huge number are not). Work related to an experimental situation that does

19Protocols

affect Internet operation comprise experimental RFCs. These RFCs should not

be implemented as part of any functional Internet service.

Informational RFCs—Some RFCs contain general, historical, or tutorial

information rather than instructions.

RFCs are further classified into one of five requirement levels, as shown in

Figure 1.6.

Required—These RFCs must be implemented by all Internet systems to

ensure minimum conformance. For example, IPv4 and ICMP, both discussed

in detail in this book, are required protocols. However, there are very few

required RFCs.

Recommended—These RFCs are not required for minimum conformance, but

are very useful. For example, FTP is a recommended protocol.

Elective—RFCs in this category are not required and not recommended.

However, systems can use them for their benefit if they like, so they form a

kind of “option set” for Internet protocols.

Limited Use—These RFCs are only used in certain situations. Most

experimental RFCs are in this category.

Not Recommended—These RFCs are inappropriate for general use. Most

historic (obsolete) RFCs are in this category.

There are also RFCs that indicate the “best current practice” (BCP) for a given

category. For example, RFC2119, which outlines the meaning of the key words

for requirement lvels, is also known as BCP 14.

Internet Draft

Internet
Standard

Historic RFCs

Informational
RFCs

Experimental
RFCs

Proposed
Standard

Draft Standard

Six months

Four months

FIGURE 1.5

The RFC life cycle. Many experimental RFCs never make it to the standards track.

20 CHAPTER 1 Protocols and Layers

RFCs can be found at www.rfc-editor.org/rfc.html. Current Internet drafts

can be found at www.ietf.org/ID.html. Expired Internet drafts can be found at

www.watersprings.org/pub/id/index-all.html.

INTERNET ADMINISTRATION
As the Internet has evolved from an environment with a large student user popu-

lation to a more commercialized network with a broad user base, the groups that

have guided and coordinated Internet issues have evolved. Figure 1.7 shows the

general structure of the Internet administration entities.

Internet Society (ISOC)—This is an international nonprofit organization

formed in 1992 to support the Internet standards process. ISOC maintains and

supports the other administrative bodies described in this section. ISOC also

supports research and scholarly activities relating to the Internet.

Internet Architecture Board (IAB)—This group is the technical advisor to

ISOC. The IAB oversees the continued development of the Internet protocol

suite and plays a technical advisory role to members of the Internet

community involved in research. The IAB does this primarily through the two

organizations under it. In addition, the RFC editor derives authority from the

IAB, and the IAB represents the Internet to other standards organizations and

forums.

RFC Requirement Levels

Required: All systems must implement

Recommended: All systems should implement

Elective: Not required nor recommended

Limited Use: Used in certain situations, such as experimental

Not Recommended: Systems should not implement

FIGURE 1.6

RFC requirement levels. There are very few RFCs that are required to implement an

Internet protocol suite.

21Internet Administration

http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
http://www.watersprings.org/pub/id/index-all.html

Internet Engineering Task Force (IETF)—This a forum of working groups

managed by the Internet Engineering Steering Group (IESG). The IETF

identifies operational problem areas and proposes solutions. They also develop

and review the specifications intended to become Internet standards. The

working groups are organized into areas devoted to a particular topic. Nine

areas have been defined, although this can change: applications, Internet

protocols, routing, operations, user services, network management, transport,

IPv6, and security. The IETF has taken on some of the roles that were

invested in ISOC.

Internet Research Task Force (IRTF)—This is another forum of working

groups, organized directly under the Internet Research Steering Group

(IESG) for management purposes. The IRTF is concerned with long-term

research topics related to Internet protocols, applications, architecture,

and technology.

Two other groups are important for Internet administration, although they

do not appear in Figure 1.7.

Internet Corporation for Assigned Names and Numbers (ICANN)—This is a

private nonprofit corporation that is responsible for the management of all

Internet domain names (more on these later) and Internet addresses. Before

1998, this role was played by the Internet Assigned Numbers Authority

Internet Society

Internet Architecture Board

Internet Engineering Task Force

IESG

AreaArea

IRSG

Research
Group

Working
Group

Working
Group

Working
Group

Working
Group

Research
Group

Internet Research Task Force

FIGURE 1.7

Internet administration groups, showing the interactions between the major components.

22 CHAPTER 1 Protocols and Layers

(IANA), which was supported by the U.S. government. In 2016,

the U.S. government abandoned any role in this process.

Internet Network Information Center (InterNIC)—The job of the InterNIC,

run by the U.S. Department of Commerce, is to collect and distribute

information about IP names and addresses. They are at http://www.internic.net.

LAYERS
When it comes to communications, all of these standard organizations have one

primary function: the creation of standards that can be combined with others to

create a working network. One concern is that these organizations be able to rec-

ommend solutions that are both flexible and complete, even though no single

standards entity has complete control over the entire process from top to bottom.

The way this is done is to divide the communications process up into a number of

functional layers.

Data communication networks rely on layered protocols. In brief, processes

running on a system and the communication ports that send and receive network

bits are logically connected by a series of layers, each performing one major func-

tion of the networking task.

The key concept is that each layer in the protocol stack has a distinct purpose

and function. There is a big difference between the application layer protocols

we’ve seen, such as FTP and SSH, and a lower-level protocol such as Ethernet on

a LAN. Each protocol layer handles part of the overall task.

For example, Ethernet cards format the bits sent out on a LAN at one layer,

and FTP client software communicates with the FTP server at a higher layer.

However, the Ethernet card does not tell the FTP application which bits to send

out the interface. FTP addresses the higher-end part of the puzzle: sending com-

mands and data to the FTP server. Other layers take care of things like formatting,

and can vary in capability or form to address differences at every level. You

don’t use different Web browsers depending on the type of links used on a net-

work. The whole point is that not all networks are Ethernet (for example), so a

layered protocol allows a “mix and match” of whatever protocols are needed for

the network at each layer.

SIMPLE NETWORKING

Most programming languages include statements that allow the programmer to

send bits out of a physical connector. For example, suppose a programming lan-

guage allowed you to program a statement like write(port 20$, “test 1”). Sure
enough, when compiled, linked, and run, the program would spit the bits repre-

senting the string “test 1” out the communications port of the computer. A similar

statement like read(port 20$, STUFF) would, when compiled, linked, and run,

23Layers

http://www.internic.net

wait until something appeared in the buffer of the serial port and store the bits in

the variable called STUFF.

A simple network using this technique is shown in Figure 1.8. (There is still

some software in use that does networking this way.)

However, there are some things to consider. Is there anything attached to the

port at all? Or are the bits just falling into the “bit bucket”? If there was a link

attached, what if someone disconnected it while the bits are in flight? What about

other types of errors? How would we know that the bits arrived safely?

Even assuming that the bits got there, and some listening process received

them, does the content make sense? Some computers store bits differently than

others, and “test 1” could be garbled on the other system. How many bits are sent

to represent the number 1? How do we know that a “short integer” used by the

sender is the same as the “short integer” used by another? (In fairness, TCP/IP

does little to address this issue directly.)

We see that the networking task is not as simple as it seems. Now, each and

every networked application program could conceivably include every line of

code that is needed to solve all of these issues (and there are even others), but

that introduces another factor into the networking equation. Most hosts attached

to a network have only one communications port active at any one time (the “net-

work interface”). If an “all-in-one” network application is using it, perhaps to

download a music file, how can another application use the same port for email?

It can’t.

Besides the need to multiplex in various ways, another factor influencing

layers is that modern operating systems do not allow direct access to hardware.

The need to go through the operating system and multiplex the network interface

leads to a centralization of the networking tasks in the end system.

Protocol layers make all of these issues easier to deal with, but they cannot be

added haphazardly. (You can still create a huge and ugly “layer” that implements

everything from hardware to transport to data representation, but it would work.)

As important as the layers are, the tasks and responsibilities assigned to those

layers are even more important.

System A
(sender)

System B
(receiver)

read (port 20$, STUFF)write (port 20$, “test 1”)

Bits

FIGURE 1.8

An extremely simple network with a distinctly non-layered approach to networking.

24 CHAPTER 1 Protocols and Layers

PROTOCOL LAYERS

Each layer has a separate function in the overall task of moving bits between pro-

cesses. These processes could be applications on separate systems, but on modern

systems a lot of process-to-process communication is not host-to-host. For exam-

ple, a lot of printer management software runs as a Web browser using a special

loopback TCP/IP address to interface with the process that gathered status infor-

mation from the printer.

As long as the boundary functions between adjacent layers are respected,

layers can be changed or even completely rewritten without having to change the

whole application. Layers can be combined for efficiency, “mixed-and-matched”

from different vendors, or customized for different circumstances, all without

having to rework the entire stack from top to bottom.

Nearly every layer has some type of multiplexing field to allow the receiver to

determine the type of payload, or content of the data unit at a particular layer. A

key point in networking is that the payload and control information at one layer is

just a “transparent” (meaningless) payload to the layer below. Transparent bits, as

the name implies, are passed unchanged to the next layer.

How can protocol layers work together? Introducing a bunch of new interfaces

and protocols seems to have made the networking task harder, not easier. There is

a simple method called encapsulation that makes the entire architecture workable.

What is encapsulation? Think of the layers of the protocol suite in terms of writ-

ing a letter and the systems that are involved in letter delivery. The letter goes

inside an envelope which is gathered with others inside a mailbag which is trans-

ported with others inside a truck or plane. It sounds like a very complicated way

to deliver one message, but this system makes the overall task of delivering many

messages easier, not harder. For example, there now can be facilities that only

deal with mailbags and do not worry about an individual letter’s language or the

transportation details.

THE TCP/IP PROTOCOL SUITE
The protocol stack used on the Internet is the Internet Protocol Suite. It is usually

called TCP/IP after two of its most prominent protocols, but there are other proto-

cols as well. The TCP/IP model is based on a five-layer model for networking.

From bottom (the link) to top (the user application), these are the physical, data

link, network, transport, and application layers. Not all layers are completely

defined by the model, so these layers are “filled in” by external standards and

protocols. The layers have names but no numbers, and although sometimes people

speak of “Layer 2” or “Layer 3,” these are not TCP/IP terms. Terms like these

are actually from the OSI Reference Model.

The TCP/IP stack is open, which means that there are no “secrets” as to how

it works. (There are “open systems” too, but with TCP/IP, the systems do not

25The TCP/IP Protocol Suite

have to be “open” and often are not.) Two compatible end-system applications

can communicate regardless of their underlying architectures, although the con-

nections between layers are not defined.

THE OSI REFERENCE MODEL
The TCP/IP or Internet model is not the only standard way to build a protocol suite or stack. The

Open Standard Interconnection (OSI) reference model is a seven-layer model that loosely maps

into the five layers of TCP/IP. Until the Web became widely popular in the 1990s, the OSI

reference model, with distinctive names and numbers for its layers, was proposed as the standard

model for all communication networks. Today, the OSI reference model (OSI-RM) is often used

as a learning tool to introduce the functions of TCP/IP.

The TCP/IP stack is comprised of modules. Each module provides a specific

function, but the modules are fairly independent. The TCP/IP layers contain rela-

tively independent protocols that can be used depending on the needs of the sys-

tem to provide whatever function is desired. In TCP/IP, each higher layer

protocol is supported by lower layer protocols. The whole collection of protocols

forms a type of hourglass shape, with IP in the middle, and more and more proto-

cols up or down from there.

SUITE, STACK, AND MODEL
The term “protocol stack” is often used synonymously with “protocol suite” as an implementation

of a reference model. However, the term “protocol suite” properly refers to a collection of all the

protocols that can make up a layer in the reference model. The Internet protocol suite is an

example of the Internet or TCP/IP reference model protocols, and a TCP/IP protocol stack

implements one or more of these protocols at each layer.

THE TCP/IP LAYERS

The TCP/IP protocol stack models a series of protocol layers for networks and

systems that allows communications between any types of devices. The model

consists of five separate but related layers, as shown in Figure 1.9. The Internet

protocol suite is based on these five layers. TCP/IP says most about the network

and transport layers, and a lot about the application layer. TCP/IP also defines

how to interface the network layer with the data link and physical layers, but is

not directly concerned with these two layers themselves.

The Internet protocol suite assumes that a layer is there and available, so

TCP/IP does not define the layers themselves. The stack consist of protocols, not

implementations, so describing a layer or protocols says almost nothing about

how these things should actually be built.

Not all systems on a network need to implement all five layers of TCP/IP.

Devices using the TCP/IP protocol stack fall into two general categories: a host

26 CHAPTER 1 Protocols and Layers

or end system (ES) and an intermediate node (often a router) or an intermediate

system (IS). The intermediate nodes usually only involve the first three layers of

TCP/IP (although many of them still have all five layers for other reasons, as we

have seen).

In TCP/IP, as with most layered protocols, the most fundamental elements of

the process of sending and receiving data are collected into the groups that

become the layers. Each layer’s major functions are distinct from all the others,

but layers can be combined for performance reasons. Each implemented layer has

an interface with the layers above and below it (except for the application and

physical layers, of course) and provides its defined service to the layer above and

obtains services from the layer below. In other words, there is a service interface

between each layer, but these are not standardized and vary widely by operating

system.

TCP/IP is designed to be comprehensive and flexible. It can be extended to

meet new requirements, and has been. Individual layers can be combined for

implementation purposes, as long as the service interfaces to the layers remain

intact. Layers can even be split when necessary, and new service interfaces

defined. Services are provided to the layer above after the higher layer provides

the lower layer with the command, data, and necessary parameters for the lower

layer to carry out the task.

Layers on the same system provide and obtain services to and from adjacent

layers. However, a peer-to-peer protocol process allows the same layers on differ-

ent systems to communicate. The term peer means every implementation of some

layer is essentially equal to all others. There is no “master” system at the protocol

User Application Programs

Application Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Network Link(s)

FIGURE 1.9

The five layers of TCP/IP. Older models often show only four layers, combining the

physical and data link layers.

27The TCP/IP Protocol Suite

level. Communications between peer layers on different systems use the defined

protocols appropriate to the given layer.

In other words, services refer to communications between layers within the

same process, and protocols refer to communications between processes. This can

be confusing, so more information about these points is a good idea.

PROTOCOLS AND INTERFACES

It is important to note that when the layers of TCP/IP are on different systems,

they are only connected at the physical layer. Direct peer-to-peer communication

between all other layers is impossible. This means that all data from an applica-

tion have to flow “down” through all five layers at the sender, and “up” all five

layers at the receiver to reach the correct process on the other system. These data

are sometimes called a service data unit (SDU).

Each layer on the sending system adds information to the data it receives from

the layer above and passes it all to the layer below (except for the physical layer,

which has no lower layers to rely on in the model and actually has to send the

bits in a form appropriate for the communications link used).

Likewise, each layer on the receiving system unwraps the received message,

often called a protocol data unit (PDU), with each layer examining, using, and

stripping off the information it needs to complete its task, and passing the remain-

der up to the next layer (except for the application layer, which passes what’s left

off to the application program itself). For example, the data link layer removes

the wrapper meant for it, uses it to decide what it should do with this data unit,

and then passes the remainder up to the network layer.

The whole interface and protocol process is shown in Figure 1.10. Although

TCP/IP layers only have names, layer numbers are also used in the figure, but

only for illustration. (The numbers come from the ISO-RM.)

As shown in the figure, there is a natural grouping of the five-layer protocol

stack at the network layer and the transport layer. The lower three layers of TCP/

IP, sometimes called the network support layers, must be present and functional

on all systems, regardless of the end system or intermediate node role. The trans-

port layer links the upper and lower layers together. This layer can be used to

make sure that what was sent was received, and what was sent is useful to the

receiver (and not, for example, a stray PDU misdirected to the host or unreason-

ably delayed).

The process of encapsulation makes the whole architecture workable.

Encapsulation of one layer’s information inside another layer is a key part of how

TCP/IP works.

ENCAPSULATION

Each layer uses encapsulation to add the information its peer needs on the receiv-

ing system. The network layer adds a header to the information it receives from

28 CHAPTER 1 Protocols and Layers

the transport at the sender and passes the whole unit down to the data link layer.

At the receiver, the network layer looks at the control information, usually in a

header, in the data it receives from the data link layer and passes the remainder

up to the transport layer for further processing. This is called encapsulation

because one layer has no idea what the structure or meaning of the PDU is at

other layers. The PDU has several more or less official names for the structure at

each layer.

The exception to this general rule is the data link layer, which adds both a

header and a trailer to the data it receives from the network layer. The general

flow of encapsulation in TCP/IP is shown in Figure 1.11. Note that on the trans-

mission media itself (or communications link), there are only bits, and that some

“extra” bits are added by the communication link for its own purposes. Each

PDU at the other layers is labeled as data for its layer, and the headers are abbre-

viated by layer name. The exception is the second layer, the data link layer, which

shows a header and trailer added at that level of encapsulation.

Although the intermediate nodes are not shown, these network devices will

only process the data (at most) through the first three layers. In other words, there

is no transport layer to which to pass network-layer PDUs on these systems for

data communications (management is another issue).

Intermediate
System (node)

Intermediate
System (node)

Device BDevice A

Application

Transport

Network Network
L3

L2

L1

L3

L2

L1

L3

L2

5

4

3

2

1

5
4–5 Interface

3–4 Interface

2–3 Interface

1–2 Interface

4

3

2

1
L1

Data Link Data Link

Physical

Application

Transport

Network

Data Link

Physical

Network

Data Link

PhysicalPhysical

Peer-to-Peer Protocol at Layer 5

Physical Communication Links

2–3 Interface 2–3 Interface

4–5 Interface

3–4 Interface

2–3 Interface

1–2 Interface1–2 Interface 1–2 Interface

Peer-to-Peer Protocol at Layer 4

FIGURE 1.10

Protocols and interfaces, showing how devices are only physically connected at the lowest

layer (Layer 1). Note that functionally, intermediate nodes only require the bottom three

layers of the model.

29The TCP/IP Protocol Suite

THE LAYERS OF TCP/IP
TCP/IP is mature and stable, and is the only protocol stack used on the Internet.

This book is all about networking with TCP/IP, but it is easy to get lost in the

particulars of TCP/IP if some discussion of the general tasks that TCP/IP is

intended to accomplish is not included. This section takes a closer look at the

TCP/IP layers, but only as a general guide to how the layers work.

TCP/IP LAYERS IN BRIEF
• Physical Layer: Contains all the functions needed to carry the bit stream over a physical

medium to another system.

• Data Link Layer: Organizes the bit stream into a data unit called a “frame” and delivers the

frame to an adjacent system.

• Network Layer: Delivers data in the form of a packet from source to destination, across as

many links as necessary, to non-adjacent systems.

• Transport Layer: Concerned with process-to-process delivery of information.

• Application Layer: Concerned with differences in internal representation, user interfaces, and

anything else that the user requires.

Device A

Data from Application

Device B

Data to Application

Application Layer Data

Transport Layer Data

Application Layer Data

TH

Network Layer Data

Data Link Layer Data

NH

Hdr

Network Layer Data NH

Transport Layer Data TH

Trl Data Link Layer Data HdrTrl

Transmission Media

010101010101011100101010101010101011110 110 010101010101011100101010101010101011110 110

FIGURE 1.11

TCP/IP encapsulation and headers. The unstructured stream of bits represents frames

with distinct content.

30 CHAPTER 1 Protocols and Layers

THE PHYSICAL LAYER

The physical layer contains all the functions needed to carry the bit stream over a

physical medium to another system. Figure 1.12 shows the position of the physi-

cal layer to the data link layer and the transmission medium. The transmission

medium forms a pure “bit pipe” and should not change the bits sent in any way.

Now, transmission “on the wire” might send bits through an extremely complex

transform, but the goal is to enable the receiver to reconstruct the bit stream

exactly as sent. Some information in the form of transmission framing can be

added to the data link layer data, but this is only used by the physical layer and

the transmission medium itself. In some cases, the transmission medium sends a

constant idle bit pattern until interrupted by data.

Physical layer specifications have four parts: mechanical, electrical or optical,

functional, and procedural. The mechanical part specifies the physical size and

shape of the connector itself so that components will plug into each other easily.

The electrical/optical specification determines what value of voltage or line con-

dition determines whether a pin is active or what exactly represents a 0 or 1 bit.

The functional specification specifies the function of each pin or lead on the

connector (first lead is send, second is receive, and so on). The procedural specifi-

cation details the sequence of actions that must take place to send or receive bits

on the interface. (For Ethernet, the send pair is activated, then a “preamble” is

sent, and so forth.) The Ethernet twistedpair interfaces from the IEEE are com-

mon implementations of the physical layer that includes all these elements.

There are other things that the physical layer must determine, or be configured

to expect.

Data Link Layer

Physical
Layer

Data Link Layer

Transmission
Framing

Transmission Media

“bit pipe”

010101011100101010101010101011110 10110 010101011100101010101010101011110

FIGURE 1.12

The physical layer. The transmission framing bits are used for transmission media

purposes only, such as low-level control.

31The Layers of TCP/IP

Data rate—This transmission rate is the number of bits per second that can be

sent. It also defines the duration of a symbol on the wire. Symbols usually

represent one or more bits, although there are schemes in which one bit is

represented by multiple symbols.

Bit synchronization—The sender and receiver must be synchronized at the

symbol level so that the number of bits expected per unit time is the same. In

other words, the sender and receiver clocks must be synchronized (timing is in

the millisecond or microsecond range). On modern links, the timing

information is often “recovered” from the received data stream.

Configuration—So far we’ve assumed simple point-to-point links, but this is

not the only way that systems are connected. In a multipoint configuration, a

link connects more than two devices, and in a multisystem bus/broadcast

topology such as a LAN, the number of systems can be very high.

Topology—The devices can be arranged in a number of ways. In a full mesh

topology, all devices are directly connected and one hop away, but this

requires a staggering amount of links for even a modest network. Systems can

also be arranged as a star topology, with all systems reachable through a

central system. There is also the bus (all devices are on a common link) and

the ring (devices are chained together, and the last is linked to the first,

forming a ring).

Mode—So far, we’ve only talked about one of the systems as the sender and

the other as the receiver. This is operation in simplex mode, where a device

can only send or receive, such as with weather sensors reporting to a remote

weather station. More realistic devices use duplex mode, where all systems

can send or receive with equal facility. This is often further distinguished as

half-duplex (the system can send and receive, but not at the same time) and

full-duplex (simultaneous sending and receiving).

THE DATA LINK LAYER

Bits are just bits. With only a physical layer, System A has no way to tell System B,

“Get ready some bits,” “Here are the bits,” and “Did you get those bits okay?”

The data link layer solves this problem by organizing the bit stream into a data

unit called a frame.

It is important to note that frames are the data link layer PDUs, and these are

not the same as the physical layer transmission frames mentioned in the previous

section. For example, network engineers often speak about T1 frames or SONET

frames, but these are distinct from the data link layer frames that are carried

inside the T1 or SONET frames. Transmission frames have control information

used to manage the physical link itself and has little to do directly with process-

to-process communications. This “double-frame” arrangement might sound redun-

dant, but many transmission frames originated with voice because digitized voice

has no framing at the “data link” layer.

32 CHAPTER 1 Protocols and Layers

The data link layer moves bits across the link and can add reliability to the

raw communications link. The data link layer can be very simple, or make the

link appear error-free to the layer above, the network layer. The data link layer

usually adds both a header and trailer to the data presented by the network layer.

This is shown in Figure 1.13.

The frame header typically contains a source and destination address (known

as the “physical address” since it refers to the physical communication port) and

some control information. The control information is data passed from one data

link layer to the other data link layer, and not user data. The body of the frame

contains the sequence of bits being transferred across the network. The trailer usu-

ally contains information used in detecting bit errors (such as cyclical redundancy

check [CRC]). A maximum size is associated with the frame that cannot be

exceeded because all systems must allocate memory space (buffers) for the

data. In a networking context, a buffer is just special memory allocated for

communications.

The data link layer performs framing, physical addressing, and error detection

(error correction is another matter entirely, and can be handled in many ways,

such as by resending a copy of the frame that had the errors). However, when it

comes to frame error detection and correction in the real world, error detection

bits are sometimes ignored and frames that defy processing due to errors are sim-

ply discarded. This does not mean that error detection and correction are not part

of the data link layer standards: It means that in these cases, ignoring and discard-

ing are the chosen methods of implementation. In discard cases, the chore of han-

dling the error condition is “pushed up the stack” to a higher layer protocol.

This layer also performs access control (this determines whose turn it is to

send over or control the link, an issue that becomes more and more interesting as

the number of devices sharing the link grows). In LANs, this media access con-

trol (MAC) forms a sublayer of the data link layer and has its own addressing

From Network Layer

To Physical Layer From Physical Layer

To Network Layer

Frame
Trailer

Frame
Header

Trl HdrData Link Layer Data Trl HdrData Link Layer Data

Frame

FIGURE 1.13

The data link layer, showing that data link layer frames have both header and trailer.

33The Layers of TCP/IP

scheme known (not surprisingly) as the MAC layer address or MAC address.

We’ll look at MAC addresses in the next chapter. For now, it is enough to note

that LANs such as Ethernet do not have “real” physical layer addresses and that

the MAC address performs this addressing function.

In addition, the data link layer can perform some type of flow control. Flow

control makes sure senders do not overwhelm receivers: a receiver must have

adequate time to process the data arriving in its buffers. At this layer, the flow

control, if provided, is link-by-link. (We’ll see shortly that end-to-end—host-

to-host—flow control is provided by the transport layer.) LANs do not usually

provide flow control at the data link layer, although they can.

Not all destination systems are directly reachable by the sender. This means

that when bits at the data link layer are sent from an originating system, the bits

do not arrive at the destination system as the “next hop” along the way. Directly

reachable systems are called adjacent systems, and adjacent systems are always

“one hop away” from the sender. When the destination system is not directly

reachable by the sender, one or more intermediate nodes are needed. Consider the

network shown in Figure 1.14.

Now the sender (System A) is not directly connected to the receiver

(System B). Another system, System 3, receives the frame and must forward it

toward the destination. This system is usually called a switch or router (there

are even other names), depending on internal architecture and network role. On

a WAN (but not on a LAN), this second frame is a different frame because

there is no guarantee that the second link is identical to the first. Different links

need different frames. Identical frames are only delivered to systems that are

directly reachable, or adjacent, to the sender, such as by an Ethernet switch on

a LAN.

Networking with intermediate systems is called hop-by-hop delivery. A “hop”

is the usual term used on the Internet or a router network to indicate the forward-

ing of a packet between one router or another (or between a host and router).

System A
(sender)

System 3
(switch/router)

System B
(receiver)

A Frame A Different
Frame

Send “STUFF”
to System B

Intermediate
System

I got “STUFF”
from System A

FIGURE 1.14

A more complex network. Note that the frames are technically different even if the same

medium is used on both links.

34 CHAPTER 1 Protocols and Layers

Frames can “hop” between Layer 2 switches, but the term is most commonly

used for Layer 3 router hops (which can consist of multiple switch-to-switch

frame “hops”). There can be more than one intermediate system between the

source and destination end systems, of course, as shown in Figure 1.15. Consider

the case where End System A is sending a bit stream to End System C.

Note that the intermediate systems (routers) have two distinct physical and

data link layers, reflecting the fact that the systems have two (and often more)

communication links, which can differ in many ways. (The figure shows a typical

WAN configuration with point-to-point links, but routers on LANs, and on some

types of public data service WANs, can be deployed in more complicated ways.)

However, there is something obviously missing from this figure. There is no

connection between the data link layers on the intermediate systems! How does

the router know to which output port and link to forward the data in order to ulti-

mately reach the destination? (In the figure, note that Intermediate System 1 can

send data to either Intermediate System 2 or Intermediate System 3, but only

through Intermediate System 3, which forwards the data, is the destination

reachable.)

These forwarding decisions are made at the TCP/IP network layer.

Frames

Bits

Data Link

Physical

End System A

End System B

Intermediate
System 1

Intermediate
System 2

Intermediate
System 3

Hop-by-Hop
Forwarding

Hop-by-Hop
Forwarding

Hop-by-Hop
Forwarding

End System C

FIGURE 1.15

Hop-by-hop forwarding of frames. The intermediate systems also have a Layer 3, but this

is not shown in the figure for clarity.

35The Layers of TCP/IP

THE NETWORK LAYER

The network layer delivers data in the form of a packet from source to destina-

tion, across as many links as necessary. The biggest difference between the net-

work layer and the data link layer is that the data link layer is in charge of data

delivery between adjacent systems (directly connected systems one hop away),

while the network layer delivers data to systems that are not directly connected to

the source. There can be many different types of data link and physical layers on

the network, depending on the variety of the link types, but the network layer is

essentially the same on all systems, end systems, and intermediate systems alike.

Figure 1.16 shows the relationship between the network layer and the transport

layer above and the data link layer below. A packet header is put in place at the

sender and interpreted by the receiver. A router simply looks at the packet header

and makes a forwarding decision based on this information. The transport layer

does not play a role in the forwarding decision.

How does the network layer know where the packet came from (so the sender

can reply)? The key concept at the network layer is the network address, which

provides this information. In TCP/IP, the network address is the IP address.

Every system in the network receives a network address, whether an end

system or intermediate system. Systems require at least one network address (and

sometimes many more). It is important to realize that this network address is

different from, and independent of, the physical address used by the frames that

carry the packets between adjacent systems.

Why should the systems need two addresses for the two layers? Why can’t

they just both use either the data link (“physical”) address or the network address

at both layers? There are actually several reasons. First, LAN addresses like those

used in Ethernet come from one group (the IEEE), while those used in TCP/IP

come from another group (ICANN). Also, the IP address is universally used on

From Transport Layer

To Data Link Layer From Data Link Layer

Network Layer Data Network Layer Data

Packet
Header

NH NH

Packet

To Transport Layer

FIGURE 1.16

The network layer. These data units are packets with their own destination and source

address formats.

36 CHAPTER 1 Protocols and Layers

the Internet, while there are many types of physical addresses. Finally, there is no

systematic assignment of physical addresses (and many addresses on WANs can

be duplicates and so have “local significance only”). On the other hand, IP net-

work addresses are globally administered, unique, and have a portion under which

many devices are grouped. Therefore, many devices can be addressed concisely

by this network portion of the IP address.

A key issue is how the network addresses “map” to physical addresses, a pro-

cess known generally as address resolution. In TCP/IP, a special family of

address resolution protocols takes care of this process.

The network address is a logical address. Network addresses should be orga-

nized so that devices can be grouped under a part of that address. In other words,

the network address should be organized in a fashion similar to a telephone num-

ber, for example, 212-555-1212 in the North American public switched telephone

network (PSTN). The sender need only look at the area code or “network” portion

of this address (212) to determine if the destination is local (area codes are the

same) or needs to be sent to an intermediate system to reach the 212 area code

(source and destination area codes differ).

For this scheme to work effectively, however, all telephones that share the

212 area code should be grouped together. The whole telephone number begin-

ning with 212 therefore means “this telephone in the 212 area code.” In TCP/IP,

the network address is the beginning of the device’s complete IP address. A group

of hosts is gathered under the network portion of the IP address. IP network

addresses, like area codes, are globally administered to prevent duplication, while

the rest of the IP address, like the rest of the telephone number, is locally admin-

istered, often independently.

In some cases, the packet that arrives at an intermediate system inside a frame

is too large to fit inside the frame that must be sent out. This is not uncommon:

different link and LAN types have different maximum frame sizes. The network

layer must be able to fragment a data unit across multiple frames and reassemble

the fragments at the destination. We’ll say more about fragmentation in a later

chapter.

The network layer uses one or more routing tables to store information about

reachable systems. The routing tables must be created, maintained, and purged of

old information as the network changes due to failures, the addition or deletion of

systems and links, or other configuration changes. This whole process of building

tables to pass data from source to destination is called routing, and the use of

these tables for packet delivery is called forwarding. The forwarding of packets

inside frames always takes place hop by hop. This is shown in Figure 1.17, which

adds the network layer to the data link layers already present and distinguishes

between hop-by-hop forwarding and end-to-end delivery.

On the Internet, the intermediate systems that act at the packet level (Layer 3)

are called routers. Devices that act on frames (Layer 2) are called switches, and

some older telephony-based WAN architectures use switches as intermediate net-

work nodes. Whether a node is called a switch or router depends on how they

37The Layers of TCP/IP

function internally. In a very real sense, the network layer is at the very heart of

any protocol stack, and TCP/IP is no exception. The protocol at this layer is IP,

either IPv4 or IPv6 (some think that IPv6 is distinct enough to be known as

TCPv6/IPv6).

THE TRANSPORT LAYER

Process-to-process delivery is the task of the transport layer. Getting a packet to

the destination system is not quite the same thing as determining which process

should receive the packet’s content. A system can be running file transfer, email,

and other network processes all at the same time, and all over a single physical

interface. Naturally, the destination process has to know on which process the

sender originated the bits inside the packet in order to reply. Also, systems cannot

simply transfer a huge multimegabit file all in one packet. Many data units exceed

the maximum allowable size of a packet.

End System A

End System B

Hop-by-Hop
Forwarding

Hop-by-Hop
Forwarding

Network Packets

Frames

Bits

Data Link

Physical

Hop-by-Hop
Forwarding

Intermediate
System 1

Intermediate
System 2

Intermediate
System 3

End System C

End-to-End
Delivery

FIGURE 1.17

Source-to-destination delivery at the network layer. The intermediate systems now have all

three required layers.

38 CHAPTER 1 Protocols and Layers

This process of dividing message content into packets is known as

segmentation. The network layer forwards each and every packet indepen-

dently, and does not recognize any relationship between the packets. (Is this a

file transfer or email packet? The network layer does not care.) The transport

layer, in contrast, can make sure the whole message, often strung out in a

sequence of packets, arrives in order (packets can be delivered out of

sequence) and intact (there are no errors in the entire message). This function

of the transport layer involves some method of flow control and error control

(error detection and error correction) at the transport layer, functions which

are absent at the network layer. The transport-layer protocol that performs all

of these functions is TCP.

The transport-layer protocol does not have to do any of this, of course. In

many cases, the content of the packet forms a complete unit all by itself, called a

datagram. (The term “datagram” is often used to refer to the whole IP packet, but

not in this book.) Self-contained datagrams are not concerned with sequencing or

flow control, and these functions are absent in the User Datagram Protocol (UDP)

at the transport layer.

So there are two very popular protocol packages at the transport layer:

• TCP—This is a connection-oriented, “reliable” service that provides ordered

delivery of packet contents.

• UDP—This is a connectionless, “unreliable” service that does not provide

ordered delivery of packet contents.

In addition to UDP and TCP, there are other transport-layer protocols that

can be used in TCP/IP, all of which differ in terms of how they handle trans-

port-layer tasks. Developers are not limited to the standard choices for appli-

cations. If neither TCP nor UDP nor any other defined transport-layer service

is appropriate for your application, you can write your own transport-layer

protocols and get others to adapt it (or use your application package

exclusively).

In TCP/IP, it is often said that the network layer (IP itself) offers an “unreli-

able” or “best effort” service, while the transport layer adds “reliability” in the

form of flow and error control. Later in this book, we’ll see why these terms are

unfortunate and what they really mean.

The network layer gets a single packet to the right system, and the transport

layer gets the entire message to the right process. Figure 1.18 shows the transport

layer breaking up a message at the sender into three pieces (each labeled “TL

data” for transport-layer data and “TH” for transport-layer header). The

figure then shows the transport layer reassembling the message at the receiver

from the various segments that make up a message. In TCP/IP, there are also

data units known as datagrams, which are always handled as self-contained

units. There are profound differences between how the transport layer treats seg-

ments and datagrams, but this figure is just a general illustration of segment

handling.

39The Layers of TCP/IP

The functions that the transport layer, which in some protocols is called the

end-to-end layer, might have to include follow:

Process addressing and multiplexing—Also known as “service-point

addressing,” the transport layer has to decide which process originated the

message and to which process the message must be delivered. These are also

known as port addresses in TCP/IP. Port addresses are an important portion of

the application socket in TCP/IP.

Segment handling—In cases where each message is divided into segments,

each segment has a sequence number used to put the message back together at

the destination. When datagrams are used, each data unit is handled

independently and sequencing is not necessary.

Connection control—The transport layer can be connectionless or connection-

oriented (in fact, several layers can operate in either one of these ways).

Connectionless (CL) layers treat every data unit as a self-contained,

independent unit. Connection-oriented (CO) layers go through a three-phase

process every time there is data to send to a destination after an idle period

(connection durations can vary). First, some control messages establish the

connection, then the data are sent (and exchanged if replies are necessary),

and finally the connection is closed. Many times, a comparison is made

between a telephone conversation (“dial, talk, hang up”) with connections and

an intercom (“push and talk any time”) for connectionless communications,

but this is not precise. Generally, segments are connection-oriented data units,

and datagrams are connectionless data units.

Flow control—Just as with the data link layer, the transport layer can include

flow control mechanisms to prevent senders from overwhelming receivers.

From Application Layer To Application Layer

To Network Layer

TL data TH

Segments

TL data TL dataTH TH TL data

Chunk of Data

TH

2

From Network Layer

Chunk of Data

TL data TH

3
TL data TH

1

FIGURE 1.18

The transport layer, showing how data are broken up if necessary and reassembled at the

destination.

40 CHAPTER 1 Protocols and Layers

In this case, however, the flow control is end-to-end rather than link-by-link.

Datagrams do not require this service.

Error control—This is another function that can be performed at the data link

layer, but again end-to-end at the transport layer rather than link-by-link.

Communications links are not the only source of errors, which can occur

inside a system as well. Again, datagrams do not require this service.

Figure 1.19 shows the relationship between the network layer and transport

layer more clearly. The network layer operates from network interface to network

interface, while the transport layer is more specific and operates from process to

process.

THE APPLICATION LAYER

It might seem that once data are transferred from end-system process to end-sys-

tem process, the networking task is pretty much complete. There is a lot that still

needs to be done at the application level itself. In models of protocol stacks, it is

common to place another layer between the transport layer and the user, the appli-

cation layer. However, the TCP/IP protocol stack really stops at the transport

layer (where TCP and UDP are). It is up to the application programmer to decide

what should happen at the client and server level at that point, although there are

individual RFCs for guidance, such as for FTP.

Although it is common to gather these TCP/IP applications into their own

layer, there really is no such thing in TCP/IP as an application layer to act as

some kind of “glue” between the application’s user and the network.

In nearly all TCP/IP stacks, the application layer is part of the application

process. In spite of the lack of a defined layer, a TCP/IP application might still

Process on System A Process on System B

Internetwork
(for example, the Internet)

Network Layer
End-to-End Delivery

Transport Layer
 Process-to-Process Delivery

FIGURE 1.19

Reliable process-to-process delivery with the transport layer.

41The Layers of TCP/IP

have a lot to do, and in some ways the application layer is the most complex

“layer” of all.

There are two major tasks that the application often needs to accomplish: ses-

sion support and conversion of internal representation. Not all applications need

both, of course, and some applications might not need either, but this overview

includes both major functions.

SESSION SUPPORT

A session is a type of dialog controller between two processes that establishes,

maintains, and synchronizes (controls) the interaction (dialog). A session decides

if the communication can be half-duplex (both ends take turns sending) or full-

duplex (both ends can send whenever they want). It also keeps a kind of “history”

of the interaction between endpoints, so that when things go wrong or when the

two communicate again, some information does not have to be resent.

In practical terms, the session consists of all “state variables” necessary to

construct the history of the connection between the two devices. It is more diffi-

cult, but not impossible, to implement sessions in a connectionless environment

because there is no easy way to associate the variables with a convenient label.

INTERNAL REPRESENTATION CONVERSION

The role of internal representation conversion is to make sure that the data exchange

over the network is useful to the receivers. If the internal representation of data dif-

fers on the two systems (integer size, bit order in memory, etc.), the application layer

translates between the formats so the application program does not have to. This

layer can also provide encryption and compression functions, although it is more

common to implement these last two functions separately from the network.

Standard protocol specifications can use the Abstract Syntax Notation 1

(ASN.1) definitions for translation purposes. ASN.1 can be used in programming,

network management, and other places. ASN.1 defines various things such as

which bit is “first on the wire” regardless of how it is stored internally, how many

bits are to be sent for the numbers 0 through 255 (8), and so on. Everything can

be translated into ASN.1, sent across the network, and translated back to whatever

internal format is required at the destination.

The role of internal representation conversion is shown in Figure 1.20. The

figure shows four sequential memory locations, each storing the letter “a” followed

by the integer 259. Note that not only are there differences between the amount of

memory addressed at once, but also in the order of the bits for numerics.

In some protocol stacks, the application program can rely on the services

of a fully functional conversion for internal representation to perform these

services. However, in TCP/IP, every network application program must do

these things for itself.

42 CHAPTER 1 Protocols and Layers

APPLICATIONS IN TCP/IP

TCP/IP does not provide session or presentation services directly to an appli-

cation. Programmers are on their own, but this does not mean they have to

create everything from scratch. For example, applications can use a charac-

ter-based presentation service called the Network Virtual Terminal (NVT),

part of the Internet’s telnet remote access specification. Other applications

can use Sun’s External Data Representation (XDR) or IBM’s (and

Microsoft’s) NetBIOS programming libraries for presentation services. In

this respect, there are many presentation layer services that TCP/IP can use,

but there is no formal presentation service standard in TCP/IP that all appli-

cations must use.

Host TCP/IP implementations typically provide a range of applications that

provide users with access to the data handled by the transport-layer protocols.

These applications use a number of protocols that are not part of TCP/IP proper,

but are used with TCP/IP. These protocols include the Hyper-Text Transfer

Protocol (HTTP) used by Web browsers, the Simple Message Transfer Protocol

(SMTP) used for email, and many others.

In TCP/IP, the application protocol, the application service, and the user appli-

cation itself often share the same name. The file transfer protocol in TCP/IP,

called FTP, is at once an application protocol, an application service, and an

application run by a user. It can sometimes be confusing as to just which aspect

of FTP is under discussion.

The role of TCP/IP applications is shown in Figure 1.21. Note that this “layer”

sits on top of the TCP/IP protocol stack and interfaces with programs or users

directly.

Some protocols provide separate layers for sessions, internal representation

conversion, and application services. In practice, these are seldom implemented

independently. It just makes more sense to bundle them together by major appli-

cation, as in TCP/IP.

Architecture A

a

00000001

00000011

a

00000001

text “a”

integer 259
00000011

Architecture B

FIGURE 1.20

Internal representation differences. Integers can have different bit lengths and can be

stored differently in memory.

43The Layers of TCP/IP

FTP DNS SSH SNMP

DHCPTFTPHTTP

Application

Transport

Network

IPv4

IPv6 IPSec

ARP RARP

Protocols and Links Determined by Underlying Network
(includes SLIP and PPP)

Data Link

Physical

IP NAT IP Support
Protocols:
ICMPv4
ICMPv6
Neighbor
Discovery

Routing
Protocols:

RIP, OSPF,
BGP

UDP TCP Others

SMTP

FIGURE 1.22

TCP/IP protocols and layers. Note the position of some protocols between layers.

From User

HTTP NVT (others) HTTP NVT (others)

Application Data

Content of Segment or Datagram

To Transport Layer From Transport Layer

To User

Application Data

SMTPSMTP

FIGURE 1.21

TCP/IP applications, showing how multiple applications can all share the same network

connection.

THE TCP/IP PROTOCOL SUITE
To sum up, the five layers of TCP/IP are physical, data link, network, transport,

and application. The TCP/IP stack is a hierarchical model made up of interactive

modules. Each module provides a specific function. In TCP/IP, the layers contain

relatively independent protocols that can be “mixed and matched” depending on

the needs of the system to provide whatever function is desired. TCP/IP is hierar-

chical in the sense that each higher layer protocol is supported by one or more

lower layer protocols.

Figure 1.22 maps some of the protocols used in TCP/IP to the various layers

of TCP/IP. Every protocol in the figure will be discussed in this book, most in

chapters all their own.

With few exceptions, the TCP/IP protocol suite does not really define any

low-level protocols below the network layer. TCP/IP usually specifies how to put

IP packets into frames and how to get them out again. Many RFCs define IP map-

ping into these lower-layer protocols. We’ll talk more about this mapping process

in Chapter 2.

QUESTIONS FOR READERS
Refer to Figure 1.23 to help you answer the following questions.

Device A

5 Application

4-5 Interface

3-4 Interface

2-3 Interface

1-2 Interface

2-3Interface

1-2Interface

2-3Interface

1-2Interface

Transport

Application

Transport

Network

Data Link

Physical

Network

Representation Differences Addressed

Process-to-Process Communication

Physical Communication Links Supporting Communication between Peer Processess

Data Link

Physical

Network

Data Link

Physical

Network

Data Link

Physical

4

3
L3

L2

L1

L3

L2

L1

2

1

5

4

3

2

1

Device B

Intermediate
System (node)

Intermediate
System (node)

L3

L2

L1

4-5Interface

3-4Interface

2-3Interface

1-2Interface

FIGURE 1.23

Summary of layered communications.

45Questions for Readers

1. What are the differences between network-layer delivery and transport-layer

delivery?

2. What are the main characteristics of a peer-to-peer process?

3. What are port addresses, logical addresses, and physical addresses?

4. What are the functions of the data link layer in the Internet model?

5. Which two major types of services can be provided at the application “layer”?

46 CHAPTER 1 Protocols and Layers

CHAPTER

2TCP/IP Protocols and
Devices

WHAT YOU WILL LEARN

In this chapter, you will learn more about the TCP/IP protocol stack and the tools
used in this book to investigate the Illustrated Network. We’ll look at more details of
TCP/IP and explore how TCP/IP devices provide internetworking from LAN to LAN.

You will learn about the types of devices used to connect LANs (such as bridges
and routers) and conclude with the concept of VLANs and Metro Ethernet services.

The LANs on the Illustrated Network, including the LAN in the home office, are

connected using routers as the network nodes. Each LAN forms a discrete net-

work by itself, with its own clients and servers. When previously separate LANs

are connected, or a previously complete LAN is segmented, the result is often

called an internetwork.

Routers can be used to build an internetwork of LANs, but this is not the only

way. Routers operate at the packet layer (Layer 3 of the TCP/IP model), and

LANs can be linked or segmented at other layers of a protocol stack as well.

Some routers can also function at these other layers, as the routers on the

Illustrated Network can (i.e., routers often include functions other than pure rout-

ing). However, in many cases, different devices are used to link and segment

LANs, devices that are not really routers at all.

This chapter will take a closer look at the Illustrated Network in several areas.

First, we’ll take a closer look at the individual layers and protocols that make up

the TCP/IP protocol stack. Then, we’ll investigate how devices handle internet-

working from LAN to LAN at each protocol layer. Finally, we’ll describe some

other devices or methods that can be used between LANs, ending with a concept

known as a virtual LAN or VLAN. VLANs are used by service providers to sup-

port a service known as Metropolitan Ethernet or Metro Ethernet.

Figure 2.1 shows the areas of the Illustrated Network we will be investigating

in this chapter. The protocol stacks and layers run mainly on the host clients and

servers, so the devices on the two LANs are shaded, along with the customer

edge routers. We’ll also mention the Gigabit Ethernet links and a Metro Ethernet,

so those are highlighted as well.

Each host in Figure 2.1 has three types of addresses associated with the inter-

face connected to the LAN. The first is the IPv4 address. For example, the LAN

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00002-3

© 2017 Elsevier Inc. All rights reserved.
47

http://dx.doi.org/10.1016/B978-0-12-811027-0.00002-3

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 2.1

Internetworking on the Illustrated Network LAN. Note that there are two geographically

separate LANs in New York and Los Angeles that must communicate.

48 CHAPTER 2 TCP/IP Protocols and Devices

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

49TCP/IP Protocols and Devices

interface on host lnxserver is eth0 and the IPv4 address is 10.10.11.66. The
next address is the hardware address, or MAC address on a LAN: 00:d0:b7:1 f:
fe:e6. Finally, each host lists the link-local IPv6 address based on this MAC

address, or fe80::2d0:b7ff:fe1f:fee6 for lnxserver. We’ll talk more about

IPv4 and IPv6 addressing and packets in Chapters 4 through 6.

PROTOCOL STACKS ON THE ILLUSTRATED NETWORK
LANs on the Illustrated Network send and receive frames, mainly Ethernet II

frames. Inside the frames are the packets that flow from source to destination.

The packets, and the messages inside the packets, are formatted according to the

individual protocols that make up the TCP/IP protocol stack.

What major TCP/IP protocols are used on the Illustrated Network? Wireshark

has a convenient summary screen that displays whenever Wireshark is capturing

packets. Let’s run Wireshark on wincli2 and see what kind of protocols we cap-

ture when we remotely access router CE6 and find the IP address associated with

winsrv1. The summary screen is shown in Figure 2.2. Note that the figures still

FIGURE 2.2

Ethereal capture summary, showing the number of packets used by different protocols.

Often a very few types predominate.

50 CHAPTER 2 TCP/IP Protocols and Devices

shows the former name of “Ethereal,” but the output shows essentially the same

information as the current version.

Most of the packets we have captured contain TCP. There are a couple from the

User Datagram Protocol (UDP) and Address Resolution Protocol (ARP). The rela-

tionship between Ethernet II frames, IP packets, and these protocols is clearer when

we look at the Wireshark protocol hierarchy statistics screen, as shown in Figure 2.3.

It is easy to see in the figure that all of the frames are Ethernet (II) frames,

and that all but 3 of the 73 packets captured are IP packets. The 70 IP packets

include 67 TCP packets and 3 UDP packets. We’ll explore more about how all of

these protocols fit together in this chapter.

LAYERS, PROTOCOLS, PORTS, AND SOCKETS
We’ll take a closer look at frames in Chapter 3. For now, all we need to know is

that layered protocols like TCP/IP function in a specific way. Frames are sent on

LANs and inside the frame are packets. The packets carry the information from

device to device. This information can be application data, but there are also

packets that perform control and administrative tasks as well as data transfer.

Layering is not a magical solution to network protocol implementation. There

is usually only one network interface on a host, so all applications must share this

common interface, which has the network (IP) address. But how are arriving

packets distributed to the proper application? The packets are all for this IP

address, but which application layer process gets the information inside the

packet?

The transport-layer protocol that should process the information inside the

packet is indicated by the value in the protocol field of the IPv4 header. (We’ll

talk about IPv4 now, and detail the fields in the IPv4 and IPv6 headers in a later

chapter.)

FIGURE 2.3

Ethereal protocol hierarchy statistics. We’ll be working almost exclusively with Ethernet

frames on the Illustrated Network, but not always.

51Layers, Protocols, Ports, and Sockets

Inside the transport layer data unit, the receiving application is indicated by

the port number in the transport layer header (again, we’ll discuss these header

fields in full in later chapters). By looking at the protocol and port fields, the

TCP/IP stack at the destination knows which application gets the information. If

two applications try to use the same port at the same time, this is an error

condition.

Another important application layer concept in TCP/IP is the socket. A socket

is the combination of the IP address and port number. We’ve already seen that

this combination will uniquely identify an application. The socket is also the way

that programmers often write networking application, using the socket as a kind

of entry point to the other layers of the protocol stack. Often, sockets are built

into the application programming interface (API).

An API is an important part of the application layer interface, but not all APIs

are socket-based. Sockets are not even tied to the protocols themselves. Sockets

and ports are important enough in TCP/IP to merit a detailed examination in a

later chapter of this book. For now, we’ll just look where the port number is car-

ried and how the socket identifier is determined.

How can we find the port and socket in an IP packet inside an Ethernet frame?

Let’s use Wireshark to find them.

First, we’ll use a little “echo” client and server utility on the Linux hosts to

generate the frames for this exercise. (Note: This “echo” utility is not the same as

the /bin/echo program on Linux systems.) We can invoke the server on the

lnxserver host and use the client to send a simple string to be echoed back by

the server process. We’ll use Tethereal (the text version of Wireshark) this time,

just to show that the same information is available in either the graphical or text-

based version.

First, we’ll run the Echo server process, which normally runs on port 7, on

port 55555. This will help us easily locate the data we are looking for in the

Ethereal capture.

[root@lnxserver admin]# . /echo 55555

We have to run Tethereal on each end as well, if we want to compare frames.

The command is the same on the client and server. We’ll use the verbose (�V)
switch to see the MAC layer information as packets arrive.

[root@lnxclient admin]# /usr/sbin/tethereal �V
Capturing on eth0

Now we can invoke the Echo client to bounce the string TESTING123 off the

server process.

[root@lnxclient admin]# . /echo 10.10.11.66 TESTING123 55555
Received: TESTING123
[root@lnxclient admin]#

52 CHAPTER 2 TCP/IP Protocols and Devices

What did we get? Let’s look at the frames leaving the client. We only need to

examine the information pertaining to the port and socket. Only one of the frames

captured is shown.

[root@lnxclient admin]# /usr/sbin/tethereal �V
Capturing on eth0

. . .

Frame 4 (52 bytes on wire, 52 bytes captured)

Arrival Time: May 16, 2008 13:32:59.702046000
Time delta from previous packet: 57.243134000 seconds
Time relative to first packet: 62.239970000 seconds
Frame Number: 4
Packet Length: 52 bytes
Capture Length: 52 bytes

Ethernet II, Src: 00:b0:d0:45:34:64, Dst: 00:05:85:8b:bc:db

Destination: 00:05:85:8b:bc:db (Juniper__8b:bc:db)
Source: 00:b0:d0:45:34:64 (Dell_45:34:64)
Type: IP (0x0800)

Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr:
10.10.11.66
(10.10.11.66)

Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. 5 Differentiated Services Codepoint: Default (0x00)
.... ..0. 5 ECN-Capable Transport (ECT): 0
.... ...0 5 ECN-CE: 0
Total Length: 38
Identification: 0x0000
Flags: 0x04
.1.. 5 Don't fragment: Set
..0. 5 More fragments: Not set
Fragment offset: 0
Time to live: 64
Protocol: UDP (0x11)
Header checksum: 0x0ecc (correct)
Source: 10.10.12.166 (10.10.12.166)
Destination: 10.10.11.66 (10.10.11.66)

53Layers, Protocols, Ports, and Sockets

User Datagram Protocol, Src Port: 32825 (32825), Dst Port: 55555 (55555)

Source port: 32825 (32825)
Destination port: 55555 (55555)
Length: 18
Checksum: 0x1045 (correct)

Data (10 bytes)
0000 54 45 53 54 49 4e 47 31 32 33 TESTING123

Let’s look at the fields that are emphasized. First, we have captured an

Ethernet II frame with an IPv4 packet inside. The frame’s type field value of

0x800 determines this. In the IP packet, the message from the client to the server,

which starts on the next line, the source address is 10.10.12.166 (lnxclient)
and the destination address is 10.10.11.66 (lnxserver), as they should be.

We can ignore the rest of the IP header fields for now, and skip down to

where the source and destination port are highlighted. The source port chosen by

the client is 32825 and the port on the server that will receive the data is 55555.
We decided that 55555 would be the server port, and the client chose a port num-

ber to use based on certain rules, which we will talk about in a later chapter.

Now that we know the IP addresses and ports used, we can determine the

socket at each host. This is shown in Table 2.1.

THE TCP/IP PROTOCOL STACK
The layering of TCP/IP is important if IP packets are to run on almost any type

of network. The IP packet layer is only one layer, and from the TCP/IP perspec-

tive, the layer or layers below the IP layer are not as important as the overall flow

of packets from one host (end system) to another across the network.

Layering means that you only have to adapt one type of packet to an underly-

ing network type to get the entire TCP/IP suite. Once the packet has been

“framed,” you need not worry about TCP/UDP, or any other protocol: they come

along for the ride with the layering. Only the IP layer has to deal with the under-

lying hardware.

All that really matters is that the device at the receiving end understands the

type of IP packet encapsulation used at the sending end. If only one form of

Table 2.1 Port and Sockets

Value lnxclient lnxserver

IP address 10.10.12.166 10.10.11.66
Port 32825 55555
Socket 10.10.12.166:32825 10.10.11.66:55555

54 CHAPTER 2 TCP/IP Protocols and Devices

packet encapsulation was used, the IP packets could remain inside the frame with

a globally unique MAC address from source to destination. Network nodes could

forward the frame without having to deal with the packet inside. We’ll talk more

about the differences between forwarding frames and forwarding packets later on

in this book.

TCP/IP is considered to be a peer protocol stack, which means that every

implementation of TCP/IP is considered to have the same capabilities as every

other. There are no “restricted” or “master” versions of TCP/IP that anyone need

be concerned about. So, for example, there is no special server stack needed.

However, this does not mean that all protocol stacks function in precisely the

same way. TCP/IP, like many other protocol stacks, is implemented according to

a model known as the client�server model.

THE CLIENT�SERVER MODEL
The hosts that run TCP/IP usually fall into one of two major categories: The host

could be client or the host could be a server. However, this is mostly an applica-

tion-layer model issue because most computers are fully multitasking-capable

today. It is possible that the same host could be running the client version of a

program for one application (e.g., the Web browser) and the server version of

another program (e.g., a file transfer server) at the same time. Dedicated servers

are most common on the Internet, but almost all client computers can act as ser-

vers for a variety of applications. The details are not as important as the interplay

among layers and applications.

PEER-TO-PEER MODELS
The client�server model is not the only way to implement a protocol stack. Many applications

implement a peer-to-peer model. Peer applications have exactly the same capabilities whether used

as a client or as a server. Distributed file-sharing systems on the Internet typically function as both

client (fetching files for the user) and as a server (allowing user files to be shared by others).

The differences between client�server and peer-to-peer models are mainly application layer

differences. A desktop computer that runs a Web browser and has file sharing turned on is both

client and server, but is not now peer-to-peer. As an aside, in X-windows, which is not discussed

in this book, the terms “client” and “server” are actually reversed and users sit in front of

“X-servers” and access “X-clients.”

TCP/IP LAYERS AND CLIENT�SERVER
TCP/IP has five layers. The bottom layers are the physical layer and underlying

network layer. The underlying network technologies at the network layer are the

55TCP/IP Layers and Client�Server

topic of the next chapter. Above the data link layer is the IP layer itself. The IP

layer forms and routes the IP packet (also called a datagram in a lot of documen-

tation) and IP is the major protocol at this layer.

The transport layer of TCP/IP consists of two major protocols: The

Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP).

TCP is a reliable layer added on top of the best-effort IP layer to make sure that

even if packets are lost in transit, the hosts will be able to detect and resend miss-

ing information. TCP data units are called segments. UDP is as best-effort as IP

itself, and UDP data units are called datagrams. The messages that applications

exchange are made up of strings of segments or datagrams. Segments and data-

grams are used to chop up application content, such as huge, multimegabyte files,

into more easily handled pieces.

TCP is reliable in the sense that TCP always resends corrupt or lost segments.

This strategy has many implications for delay-sensitive applications such as voice

or video.

TCP is a connection-oriented layer on top of the connectionless IP layer. This

means that before any TCP segment can be sent to another host, a TCP connec-

tion must be established to that host. Connectionless IP has no concept of a con-

nection, and simply forwards packets without any understanding if the packets

ever really got where they were going.

In contrast to TCP, UDP is a connectionless transport layer on top of connec-

tionless IP. UDP segments are simply forwarded to a destination under the

assumption that sooner or later a response will come back from the remote host.

The response forms an implied or formal acknowledgment that the UDP segment

arrived.

At the top of the TCP/IP stack is the application, or application services, layer.

This is where the client�server concept comes into play. The applications them-

selves typically come in client or server versions, which is not true at other layers

of TCP/IP. While a host computer might be able to run client processes and

server processes at the same time, in the simplest case, these processes are two

different applications.

Client�server application implementation can be extremely simple. A server

process can start and basically sit and “listen” for clients to “talk” to the server.

For example, a Web server is brought up on a host successfully whether there is a

browser client pointed at it or not. The Web server process issues a passive open

to TCP/IP and essentially remains idle on the network side until some client

requests content. However, the Web browser (the client) process issues an active

open to TCP/IP and attempts to send packets to a Web site immediately. If the

Web site is not reachable, that causes an error condition.

To sum up the simplest application cases: Clients talk and servers listen (and

usually reply). It is very easy to program an application that either talks or listens,

although TCP/IP specifications allow for the transition of passive and active open

from one state to another. We’ll talk more about client and server application and

passive and active opens in the chapter on sockets.

56 CHAPTER 2 TCP/IP Protocols and Devices

A more detailed look at the TCP/IP protocol stack is shown in Figure 2.4. The

TCP/IP stack bridges the gap between interface connector on the network side

(hardware) and the memory address space of the application on the host

(software).

The names of the protocol data units used at each layer are worth reviewing.

The unit of the network layer is the frame. Inside the frame is the data unit of the

IP layer, the packet. The unit of the transport layer is the segment in TCP and

datagram in UDP. The segment or datagram by definition is the content of the

information-bearing packet. Finally, applications exchange messages. Segments

and datagrams taken together form the messages that the applications are sending

to each other.

This is a good place to explore some of the operational aspects of the TCP/IP

protocol stack above the network access (or data link) layer.

THE IP LAYER
The connectionless IP layer routes the IP packets independently through the col-

lection of network nodes such as routers that make up the “internetwork” that

connects the LANs. Packets at the IP layer do not follow “paths” or “virtual cir-

cuits” or anything else set up by signaled or manually defined connections for

Other
TCP

Client–
Server

Applica-
tions

FTP

Some
Routing
Protocols

TCP
Connection-Oriented, Reliable

UDP
Connectionless, Best-Effort

SMTP SSH NFS* SNMP DNS*
Other
UDP

Client–
Server

Applica-
tions

File
Transfer Email

Remote
Access

Remote
File

Access

Network
Manage-

ment

Name
Lookup
Service

IP (Best-effort) ICMP ARPs

Network Access and Physical Layer
(Etherent LANs or other)

*In some instances, NFS and DNS use TCP.

FIGURE 2.4

The TCP/IP protocol stack in detail. The many possible applications on top and many

possible network links on the bottom all funnel through the IP “hourglass.”

57The IP Layer

packet flow in other types of network layers. However, this also means that the

packets’ content might arrive out of sequence, or even with gaps in the sequence

due to lost packets, at the destination.

IP does not care to which application a packet belongs. IP delivers all

packets without a sense of priority or sensitivity to loss. The whole point of

IP is to get packets from one network interface to another. IP itself is not

concerned with the lack of guaranteed quality of service (QoS) parameters

such as bandwidth availability or minimal delay, and this is characteristic of

all connectionless, best-effort networks. Even the basics, such as sequenced

delivery of packet content, priorities, and guaranteed delivery in the form of

acknowledgments (if these are needed by the application), must be provided

by the higher layers of the TCP/IP protocol stack. These reliable transport

functions are not functions of the IP layer, and some are not even functions

of TCP.

Two other major protocols run at the IP layer besides IPv4 or IPv6 (or

both). The routers that form the network nodes in a TCP/IP network must be

able to send error messages to the hosts if a router must discard a packet

(e.g., due to lack of buffer space because of congestion). This protocol is

known as the Internet Control Message Protocol (ICMP). ICMP messages are

sent inside IP packets, but ICMP is still considered a different protocol and

not a separate layer.

The other major protocol placed at the IP layer has many different func-

tions depending on the type of network that IP is running on. This is the

Address Resolution Protocol (ARP). The main function of ARP is to provide

a method for IPv4, which technically knows only about packets, to find out

the proper network layer address to place in the frame header destination

field. On LANs, this is the MAC address. Without this address, the network

beneath the IP layer could not deliver the frame containing the IP packet to

the proper destination. (IPv6 does not use ARP: IPv6 uses multicast for this

purpose.)

On a LAN, ARP is a way for IPv4 to send a broadcast message onto the LAN

asking, in effect, “Who has IP address 192.168.13.84?” Each system, whether

host or router, on the LAN will examine the ARP message (all systems must pay

attention to a broadcast) and the system having the IP address in question will

reply to the sender’s MAC address found in the source field of the frame. This

target system will also cache the IP address information so that it knows the

MAC address of the sender (this cuts down on ARP traffic on the network). The

MAC layer address needed by the sending system is found in the source address

field of the frame carrying the ARP reply packet.

ARP messages are broadcast to every host in what is called the network layer

broadcast domain. The broadcast domain can be a single physical group (e.g., all

hosts attached to a single group of hubs) or a logical grouping of hosts forming a

virtual LAN (VLAN). More will be said about broadcast domains and VLANs

later in this chapter.

58 CHAPTER 2 TCP/IP Protocols and Devices

THE TRANSPORT LAYER
The two main protocols that run above the IP layer at the transport layer are TCP

and UDP. Lately, UDP has been assuming more and more prominence on the

Internet, especially with applications such as voice and multicast traffic such as

video. One reason is that TCP, with its reliable resending, is not particularly well

suited for real-time applications (real time just means that the network delays

must be low and stable or else the application will not function properly). For

these applications, late-arriving data are worse than data that do not arrive at all,

especially if the late data cause all the data “behind” it to also arrive late. (Of

course, in spite of these limitations, TCP is still used for some audio streaming

and similar applications).

TRANSMISSION CONTROL PROTOCOL

TCP’s built-in reliability features include sequence numbering with resending,

which is used to detect and resend missing or out-of-sequence segments. TCP

also includes a complete flow control mechanism (called windowing) to prevent

any sender from overwhelming a receiver. Neither of these built-in TCP features

is good for real-time audio and video on the Internet. These applications cannot

“pause” and wait for missing segments, nor should they slow down or speed up

as traffic loads vary on the Internet. (The fact that they do just points out the

incomplete nature of TCP/IP when it comes to quality of service for these appli-

cations and services).

TCP contains all the functions and mechanisms needed to make up for the

best-effort connectionless delivery provided by the IP layer. Packets could arrive

at a host with errors, out of their correct sequence, duplicated, or with gaps in

sequence due to lost (or discarded) packets. TCP must guarantee that the data

stream is delivered to the destination application error-free, with all data in

sequence and complete. Following the practice used in connection-oriented net-

works, TCP uses acknowledgments that periodically flow from the destination to

the source to assure the sender that all is well with the data received to that point

in time.

On the sending side, TCP passes segments to the IP layer for encapsulation in

packets, which the IP layer in hosts and routers route connectionlessly to the des-

tination host. On the receiving side, TCP accepts the incoming segments from the

IP layer and delivers the data they represent to the proper application running

above TCP in the exact order in which the data were sent.

USER DATAGRAM PROTOCOL

The TCP/IP transport layer has another major protocol. UDP is as connectionless

as IP. When applications use UDP instead of TCP, there is no need to establish,

59The Transport Layer

maintain, or tear down a connection between a source and destination before

sending data. Connection management adds overhead and some initial delay to

the network. UDP is a way to send data quickly and simply. However, UDP

offers none of the reliability services that TCP does. UDP applications cannot

rely on TCP to ensure error-free, guaranteed (via acknowledgments), in-sequence

delivery of data to the destination.

For some simple applications, purely connectionless data delivery is good

enough. Single request�response message pairs between applications are sent

more efficiently with UDP because there is no need to exchange a flurry of initial

TCP segments to establish a connection. Many applications will not be satisfied

with this mode of operation, however, because it puts the burden of reliability on

the application itself.

UDP is often used for short transactions that fit into one datagram and packet.

Real-time applications often use UDP with another header inside called the real-

time transport protocol (RTP). RTP borrows what it needs from the TCP header,

such as a sequence number to detect (but not to resend) missing packets of audio

and video, and uses these desirable features in UDP.

THE APPLICATION LAYER
At the top of the TCP/IP protocol stack, at the application layer, are the basic

applications and services of the TCP/IP architecture. Several basic applications are

typically bundled with the TCP/IP software distributed from various sources and,

fortunately, are generally interoperable.

The standard application services suite usually includes a file transfer method

(File Transfer Protocol: FTP), a remote terminal access method (Telnet, which is

not commonly used today, and others, which are), an electronic mail system

(Simple Mail Transfer Protocol: SMTP), and a Domain Name System (DNS)

resolver for domain name to IP address translation (and vice versa), and more.

Many TCP/IP implementations also include a way of accessing files remotely

(rather than transferring the whole file to the other host) known as the Network

File System (NFS). There is also the Simple Network Management Protocol

(SNMP) for network operations. For the Web, the server and browser applications

are based on the Hypertext Transfer Protocol (HTTP). Some of these applications

are defined to run on TCP and others are defined to run on UDP, and in many

cases can run on either.

BRIDGES, ROUTERS, AND SWITCHES
The TCP/IP protocol stack establishes an architecture for internetworking. These

protocols can be used to connect LANs in the same building, on a campus,

60 CHAPTER 2 TCP/IP Protocols and Devices

or around the world. Not all internetworking devices are the same. Generally, net-

work architects seeking to extend the reach of a LAN can choose from one of

four major interconnection devices: repeaters, bridges, routers, and switches.

Not long ago, the network configuration and the available devices determined

which type of internetworking device should be used. Today, network configura-

tions are growing more and more complex, and the devices available often com-

bine the features of several of these devices. For example, the routers on the

Illustrated Network have all the features of traditional routers, plus some switch-

ing capabilities.

In their simplest forms, repeaters, bridges, and routers operate at different

layers of the TCP/IP protocol stack, as shown in Figure 2.5. Roughly, repeaters

forward bits from one LAN segment to another, bridges forward frames, and rou-

ters forward packets. Switches are important enough to deserve a separate discus-

sion at the end of this section.

This section will explore the major characteristics of internetworking with

bridges, routers, and switches. It will show how the LAN collision and broadcast

domains are defined. This section will also show how the IP layer in particular

and other protocols in TCP/IP interact in a routing environment.

SEGMENTING LANs

Network administrators and designers are often faced with a need to increase the

amount of bandwidth available to users, increase the number of users supported,

or extend the coverage of a LAN. The good news is that this means that the net-

work is popular and useful, but the bad news is that there are lots of ways that

these goals can be accomplished, some better than others.

Layer 4

Layer 5

Layer 3

Layer 2

Layer 1

Host

Application Layer

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Host

Application Layer

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Bridge

Repeater

Router

FIGURE 2.5

Repeater, bridge, and router. A repeater “spits bits,” while a bridge deals with complete

frames. A router operates at the packet level and is the main mode of the Internet.

61Bridges, Routers, and Switches

Sometimes the answer is relatively straightforward. If a 100-Mbps Fast

Ethernet is congested, moving everyone to Gigabit Ethernet will provide an

instant increase in bandwidth (close to the theoretical tenfold increase with lots of

tuning). However, this also usually means replacing adapter cards and replacing

the “hubs” to support the new bandwidth and frames. This type of wholesale

upgrade can be very expensive.

HUB
We avoid the use of the term “hub” in this book. Repeaters were called hubs when there were no

others types of hubs. When bridges and switches and other LAN devices came along, it was better

to call a repeater a repeater. Today the term “hub” can mean a repeater, bridge, switch, or a

hybrid device like a multispeed repeater (which is really many single-speed repeaters connected

by a bridge). The term “hub” never had a specific meaning.

Another way to give each user more bandwidth (and at the same time increase

users and coverage) is to segment the LAN. Segmenting does not require repla-

cing all of the user equipment. As the name implies, segmenting breaks the LAN

into smaller portions and then reconnects them with an internetworking device.

Another consequence of the different protocol layers at which the various

internetworking devices function is the number of LAN collision and broadcast

domains created. Ethernet’s CSMA/CD access method can result in collisions

when stations on the LAN try to send at almost the same time. Collisions “waste”

bandwidth because they destroy the frames, and the colliding stations must wait

and try to send again. (Actually, unless they are oversubscribed, CSMA/CD sys-

tems offer better performance than token-passing or other methods.) Even when

Ethernets do not generate collisions, broadcast frames must be examined by each

receiver because the destination address cannot be used to determine interest in

content. Bandwidth is wasted if broadcast frames are sent to systems that have no

interest in the content of the broadcast message. (In TCP/IP, ARPs are the major

type of broadcast frames that systems send and receive).

It should be noted that although CSMA/CD is part of Gigabit Ethernet, it is

essentially nonexistent and not present at all in 10-Gigabit Ethernet.

Extending a LAN by forward bits still creates a single collision and broadcast

domain. The number of collision and broadcast domains created by all the inter-

networking devices discussed is shown in Table 2.2. We’ll look at why this is

true of each device in detail shortly.

The use of these devices is not mutually exclusive. In other words, a router

can be used to segment a LAN into two (or more) segments, and each resulting

segment can be divided further with bridges. In an extreme case, each individ-

ual user or system has the full media bandwidth available. This is what

switches can do.

Repeaters are a type of special case in that they do not segment a LAN at all.

Repeaters do not furnish more bandwidth for users; they just extend the reach of

62 CHAPTER 2 TCP/IP Protocols and Devices

the LAN. Repeaters are included in the table as a “baseline” for comparison.

Repeaters forward bits from one segment to another and have no intelligence with

regard to data format. If the frame contains errors, violates rules about minimum

or maximum frame sizes, or anything else is wrong, the repeaters forward the

frame anyway.

Note that wireless LAN devices connected to an attachment point share the

same properties as a repeater network. And repeaters, technically obsolete on

wired networks, have renewed life on wireless networks, especially what are

called “ad hoc” wireless networks.

A 100BaseT Ethernet LAN consists of at least one multiport repeater (often

called a “hub”) with twisted-pair wires connected directly to each system. All sys-

tems see all frames, for better or worse. There are strict limits to the size to which

a network made up of repeater-connected LAN segments can grow. The more

systems there are that can send, the less of the total shared bandwidth each system

has. Ethernet limits the number of systems that each LAN segment can have (the

number varies by specific Ethernet type). Finally, there are distance limits to the

electrical signals that repeaters propagate.

BRIDGES

Ethernet specifications limit the number of systems on a LAN segment and the

overall distance spanned. To add devices to a LAN that has reached the maximum

in one or both of these categories, a bridge can be used to connect LAN segments.

Bridged networks normally filter frames and do not forward all frames onto all

segments connected to the bridge. This is why bridges create more than one colli-

sion domain. However, the LAN segments linked by the bridge still normally

form one broadcast domain. Although the word “bridge” is often applied to pro-

ducts, pure bridges are at least as obsolete as hubs.

The filtering process employed by a bridge differs according to specific LAN

technology. Ether net uses transparent bridging to connect LAN segments. A

transparent bridge looks at the destination MAC address to decide if the frames

should be:

• Forwarded—The frame is sent only onto the LAN segment where the

destination is located. The bridge examines the source MAC address fields to

find specific device locations.

Table 2.2 Collision and Broadcast Domains

Internetwork Device Collision Domains Broadcast Domains

Repeater One One
Bridge Many One
Router Many Many
Switch Many Depends on VLAN configuration

63Bridges, Routers, and Switches

• Filtered—The frame is dropped by the bridge. No message is sent back to the

source.

• Flooded—The frame is sent to every LAN segment attached to the bridge.

This is done for broadcast and multicast traffic.

When bridges are used to connect LAN segments, the media bandwidth is

shared only by the devices on each segment. Because the broadcast domain is

preserved, the bridged LANs still function as one big LAN. Bridges also discard

frames with errors, as well as frames that violate LAN protocol length rules, and

thus protect the other LAN segments when things go wrong.

Bridges are certainly an improvement over repeaters, but still have a number

of issues. The common ARPs used to associate IP addresses at Layer 3 with LAN

MAC addresses at Layer 2 pass through all bridges, but broadcasts due to proto-

cols are not usually the issue. However, multicast traffic is also flooded, and mul-

timedia applications such as videoconferences can easily overwhelm a bridged

network. Some issues are more mundane: printers, which generate very little traf-

fic, sometimes remain invisible in a bridged network.

Ethernet bridges must also be spanning tree bridges. These bridges can detect

loops in the interconnected topology of LAN segments and bridges. Loops are a

problem in bridged networks because some frames are always flooded onto all

segments. Flooding multiplies the total number of frames on the network. Loops

multiply frames over and over until a saturation point is reached and the LAN

ceases to function.

ROUTERS

Bridges add functions to an interconnected LAN because they operate at a higher

layer of the protocol stack than repeaters. Bridges run at Layer 2, the frame layer,

and can do everything a repeater can do, and more, because bridges create more

collision domains. In the same way, routers add functionality to bridges and oper-

ate at Layer 3, the packet layer. Routers not only create more collision domains,

they create more LAN broadcast domains as well.

In a LAN with repeaters or bridges, all of the systems belong to the same sub-

net or subnetwork. Layer 3 addresses in their simplest form—and IP addresses

are a good example of this—consist of a network and system (host) portion of the

address. LANs connected by routers have multiple broadcast domains, and each

LAN segment belongs to a different subnetwork.

Because of the presence of multiple subnets, TCP/IP devices must behave dif-

ferently in the presence of a router. Bridges connecting TCP/IP hosts are transpar-

ent to the systems, but routers connecting hosts are not. At the very least, the host

must know the address of at least one router, the default router, to send packets

beyond the local subnet. As we’ll soon see, use of the default router requires the

use of a default route, a route that matches all IPv4/IPv6 packets.

64 CHAPTER 2 TCP/IP Protocols and Devices

Bridges are sometimes called “protocol independent” devices, which really

means that bridges can be used to connect LAN segments regardless of whether

TCP/IP is used or not. However, routers must have Layer 3 software to handle

whichever Layer 3 protocols are in use on the LAN. Many routers, especially rou-

ters that connect to the Internet, can and do understand only the IP protocol.

However, many routers can handle multiple Layer 3 protocols, including proto-

cols that are not usually employed with routed networks.

LAN SWITCHES

The term “switch” in networking has threatened to become as overused as “hub.”

When applied to LANs, a switch is still a device with a number of common char-

acteristics that can be compared to bridges and routers.

The LAN switch is really a complex bridge with many interfaces. LAN

switching is the ultimate extension of multiport bridging. A LAN switch has

every device on its own segment, giving each system the entire media bandwidth

all for itself. Multiple systems can transmit simultaneously as long as there are no

“port collisions” on the LAN switch. Port collisions occur when multiple source

ports try to send a frame to the same output port at the same time.

All of the ports on the switch establish their own broadcast domain. However,

when broadcast frames containing ARPs or multicast traffic arrive, the switch

floods the frames to all other ports. Unfortunately, this makes LAN switching not

much better than a repeater or a bridge when it comes to dealing with broadcast

and multicast traffic (but there is an improvement because broadcast traffic cannot

cause collisions that would force retransmissions).

To overcome this problem, a LAN switch can allow multiple ports to be

assigned to a broadcast domain. The broadcast domains on a LAN switch are con-

figurable and each floods broadcast and multicast traffic only within its own

domain. As a matter of fact, it is not possible for any frames to cross the bound-

ary of a broadcast domain: Another external device, such as a router, is always

required to internetwork the domains.

When LAN switches define multiple broadcast domains they are creating vir-

tual LANs (VLANs). Not all LAN switches can define VLANs, especially smaller

ones, but many can. A VLAN defines membership to a LAN logically, through

configuration, not physically by sharing media or devices. Today, VLANs are

extended by use of virtual extensible LANs (VXLANs) and those are important

enough to deserve a chapter considering their use in this book.

On a WAN, the term “switch” means a class of network nodes that behave

very differently than routers. We’ll look more closely at how “fast packet net-

work” devices, such as Frame Relay and ATM switches as network nodes, differ

from routers in a later chapter. Although Frame Relay and ATM have limited

deployment today, the ideas behind them are important. What fast packet technol-

ogies tried to accomplish is worth at least a brief look.

65Bridges, Routers, and Switches

VIRTUAL LANs

A VLAN, according to the official IEEE definition, defines broadcast domains at

Layer 2. VLANs, as a Layer 2 entity, really have little to do with the TCP/IP pro-

tocol stack, but VLANs make a huge difference in how switches and routers oper-

ate on a TCP/IP network.

Routers do not propagate broadcasts as bridges do, so a router automatically

defines broadcast domains on each interface. Layer 2 LAN switches logically cre-

ate broadcast domains based on configuration of the switch. The configuration

tells the LAN switch what to do with a broadcast received on a port in terms of

what other ports should receive it (or if it should even be flooded to all other

ports).

When LAN switches are used to connect LAN segments, the broadcast

domains cannot be determined just by looking at the network diagram. Systems

can belong to different, the same, or even multiple, broadcast domains. The con-

figuration files in the LAN switches determine the boundaries of these domains

as well as their members. Each broadcast domain is a type of “virtual bridge”

within the switch. This is shown in Figure 2.6.

Each virtual bridge configured in the LAN switch establishes a distinct broad-

cast domain, or VLAN. Frames from one VLAN cannot pass directly to another

VLAN on the LAN switch (or else you create one big VLAN or broadcast

domain). Layer 3 internetworking devices such as routers must be used to connect

the VLANs, allowing internetworking and at the same time keeping the VLAN

LAN Switch

Cli

VLAN 1

Cli

VLAN 2
Broadcast messages from VLAN 1

devices are sent only to the
VLAN 1 broadcast domain.

Broadcast messages from VLAN 2
devices are sent only to the
VLAN 2 broadcast domain.

Cli

VLAN 1

Cli

VLAN 2

Cli

VLAN 1

Cli

VLAN 2

Svr

VLAN 1

Svr

VLAN 2

FIGURE 2.6

VLANs in a LAN switch. Broadcast domains are now logical entities connected by “virtual

bridges” in the device.

66 CHAPTER 2 TCP/IP Protocols and Devices

broadcast domains distinct. All devices that can communicate directly without a

router (or other Layer 3 or higher device) share the same broadcast domain.

VLAN FRAME TAGGING

VLAN devices can come in all shapes and sizes, and configuration of the broad-

cast domains can be just as variable. Interoperability of LAN switches is compro-

mised when there are multiple ways for a device to recognize the boundaries of

broadcast domains. To promote interoperability, the IEEE established IEEE

802.1Q to standardize the creation of VLANs through the use of frame tagging.

Some care is needed with this aspect of VLANs. VLANs are not really a for-

mal networking concept, but they are a nice feature that devices can support. One

key VLAN feature is the ability to place switch ports in virtual broadcast

domains. The other key feature is the ability to tag Ethernet frames with a VLAN

identifier so that devices can easily distinguish the boundaries of the broadcast

domains. These devices and tags are not codependent, but you have to use both

features to establish a useful VLAN.

In a later chapter, we’ll see how the Virtual Extensible LAN (VXLAN) builds

on the basic VLAN idea here.

Multiple tags can be placed inside Ethernet frames. There is also a way to

assign priorities to the tagged frames, often called IEEE 802.1p, but officially

known as IEEE 802.1D-1998. Internetworking devices, not just LAN switches,

can read the tags and establish VLAN boundaries based on the tag information.

VLAN tags add 4 bytes of information between the Source Address and Type/

Length fields of Ethernet frames. The maximum size of the modified Ethernet frame

is increased from 1518 to 1522 bytes, so the frame check sequence must be recal-

culated when the VLAN tag is added. VLAN identifiers can range from 0 to 4095.

The use of VLAN “q in q” tags increases the available VLAN space (ISPs often

assign each customer a VLAN identifier, and customers often have their own

VLANs as well). In this case, multiple tags are placed in an Ethernet frame. The for-

mat and position of VLAN tags according to IEEE 802.3ac are shown in Figure 2.7.

VLANs are built for a variety of reasons. Among them are:

Security—Frames on an Ethernet segment are delivered everywhere, and

devices only process (look inside) MAC frames that are addressed to them.

Nothing stops a device from monitoring everything that arrives on the

interface (that’s essentially how Ethereal works). Sensitive information, or

departmental traffic, can be isolated with virtual LANs.

Cutting down on broadcasts—Some network protocols are much worse than

others when it comes to broadcasts. These broadcast frames can be an issue

because they rarely carry user data and each and every system on the segment

must process the content of a broadcast frame. VLANs can isolate protocol

broadcasts so that they arrive only at the systems that need to hear them. Also,

a number of hosts that might otherwise make up a very large logical network

67Bridges, Routers, and Switches

(e.g., Page 19 what we will call later a “/19-sized wireless subnet”) could use

VLANs because they can be just plain noisy.

Router delay—Older routers can be much slower than LAN switches. VLANs

can be used to establish logical boundaries that do not need to employ a router

to get traffic from one LAN segment to another. (In fairness, many routers

today route at “wire speed” and do not introduce much latency into a

network.)

The Illustrated Network uses Gigabit Ethernet links to connect the customer-edge

routers to the ISP networks. Many ISPs would assign the frame arriving from LAN1

and LAN2 a VLAN ID and tag the frames at the provider-edge routers. If the sites

are close enough, some form of Metro Ethernet could be configured using the tag

information. However, the sites are far enough apart that we would have to use some

other method to create a single LAN out of LAN1 and LAN2.

In a later chapter, we’ll use VLAN tagging, along with some other router

switching features, to create a “virtual private LAN” between LAN1 and LAN2

on the Illustrated Network, mainly for security purposes. Then we’ll look at

VXLANs in a chapter on Ethernet VPNs (EVPNs).

After that, we’ll use VXLAN as well.

Ethernet Frame Structure

Destination
Address
6 bytes

Source
Address
6 bytes

Tag
4 bytes

Type
2 bytes

Information
46–1500 bytes

FCS
4 bytes

Tag Protocol ID
16 bits

Priority
3 bits

CFI
1 bit

VLAN ID
12 bits

VID (unique):
0 to 4095

Ethernet q-in-q VLAN tags

Original Ethernet Frame

802.1q Tagged Frame

Doubly-Tagged Frame

802.1p
priority levels
(0�7)

(Canonical Format Indicator: 0 � canonical MAC, 1 � noncanonical MAC)

TPID:
0 � 8100 (defaut),
0 � 9100,
0 � 9200

DA SA Type

Type

Type

Data FCS

DA SA Tag Data FCS

DA SA Tag Tag Data FCS

FIGURE 2.7

VLAN tags and frames. Note that frames can contain more than one tag, and often do.

68 CHAPTER 2 TCP/IP Protocols and Devices

QUESTIONS FOR READERS

Figure 2.8 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. What is the main function of the ARP message on a LAN?

2. What is the difference between TCP and UDP terms of connection overhead

and reliability?

3. What is a transparent bridge?

4. What is the difference between a bridge and a router in terms of broadcast

domains?

5. What is the relationship between a broadcast domain and a VLAN?

Client Client

Client ClientServer Server

VLAN 1

Broadcast messages
sent only to the VLAN 1

broadcast domain
(and router).

Broadcast messages
sent only to the VLAN 2

broadcast domain
(and router).

VLAN 2

Server

Router

Transparent
Bridge

Hub

Hub

ARP on LAN segement
before sending frame

Use UDP for connectionless,
TCP for connection-oriented

LAN Switch

Hub

FIGURE 2.8

Hubs, bridges, and routers can connect LAN segments to form an internetwork.

69Questions for Readers

This page intentionally left blank

CHAPTER

3Network Link Technologies

WHAT YOU WILL LEARN

In this chapter, you will learn more about the links used to connect the nodes of the
Illustrated Network. We’ll investigate the frame types used in various technologies
and how they carry packets. We’ll take a long look at Ethernet, and mention many
other link types used primarily in private networks.

You will learn about SONET/SDH, DSL, and wireless technologies as well as
Ethernet. All four link types are used on the Illustrated Network.

This chapter explores the physical and data link layer technologies used in the

Illustrated Network. We investigate the methods used to link hosts and intermedi-

ate nodes together over shorter LAN distances and longer WAN distances to

make a complete network.

For most of the rest of the book, we’ll deal with packets and their contents.

This is our only chance to take a detailed look at the frames employed on our

network, and even peer inside them. Because the Illustrated Network is a real

network, we’ll emphasize the link types used on the network and take a more cur-

sory look at link types that might be very important in the TCP/IP protocol suite,

but are not used on our network. We’ll look at Ethernet and the Synchronous

Optical Network/Synchronous Digital Hierarchy (SONET/SDH) link technolo-

gies, and explore the variations on the access theme that digital subscriber line

(DSL) and wireless technologies represent.

We’ll look at public network services like frame relay and Asynchronous

Transfer Mode (ATM) in a later chapter. In this book, the term private network is

used to characterize network links that are owned or directly leased by the user orga-

nization, while a public network is characterized by shared user access to facilities

controlled by a service provider. The question of Who owns the intermediate nodes?

is often used as a rough distinguisher between private and public network elements.

Because of the way the TCP/IP protocol stack is specified, as seen in

Chapter 1, we won’t talk much about physical layer elements such as modems,

network interface cards (NICs), and connectors, or the differences between

Gigabit and 10-Gigabit Ethernet. As important as these aspects of networking are,

they have little to do directly with how TCP/IP protocols or the Internet operates.

For example, a full exploration of all the connector types used with fiber-optic

cable would take many pages, and yet add little to anyone’s understanding of

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00003-5

© 2017 Elsevier Inc. All rights reserved.
71

http://dx.doi.org/10.1016/B978-0-12-811027-0.00003-5

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet
Dotted rules�DSL

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

FIGURE 3.1

Connections used on the Illustrated Network. SONET/SDH links are indicated by heavy

lines, Ethernet types by dashed lines, and DSL is shown as a dotted line. The home

wireless network is not given a distinctive representation.

72 CHAPTER 3 Network Link Technologies

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

73Network Link Technologies

TCP/IP or the Internet. Instead, we will concentrate on the structure of the frames

sent on these link types, which are often important to TCP/IP, and present some

operational details as well.

ILLUSTRATED NETWORK CONNECTIONS
We will start by using Wireshark (and its command line version, tethereal or

tshark), the network protocol analyzer introduced in the last chapter, to investigate

the connections between systems on the Illustrated Network. It runs on a variety

of platforms, including Linux, and Windows. Wireshark can display real-time

packet interpretations and, if desired, also save traffic to files (with a variety of

formats) for later analysis or transfer to another system. Wireshark is most helpful

when examining all types of Ethernet links. The Ethernet links are shown as

dashed lines in Figure 3.1.

The service provider networks’ SONET links are shown as heavy solid lines,

and the DSL link to the home office is shown as a dotted line. The wireless net-

work inside the home is not given a distinctive representation in the figure. Note

that ISPs today typically employ more variety in WAN link types.

In the next chapter, we’ll talk about newer types of optical links, based on the

standards for the Optical Transport Network (ITN).

DISPLAYING ETHERNET TRAFFIC

On the Illustrated Network, all of the clients and servers with detailed information

listed are attached to LANs. Let’s start our exploration of the links used on the

Illustrated Network by using Ethereal both ways to see what kind of frames are

used on these LANs.

Here is a capture of a small frame to show what the output looks like using

tethereal, the text-based version of Wireshark. The example uses the verbose

mode (2V) to force tethereal to display all packet and frame details. The example

shows, highlighted in bold, that Ethernet II frames are used on LAN1.

[root@lnxserver admin]# /usr/sbin/tethereal �V
Frame 2 (60 bytes on wire, 60 bytes captured)
Arrival Time: Mar 25, 2008 12:14:36.383610000
Time delta from previous packet: 0.000443000 seconds
Time relative to first packet: 0.000591000 seconds
Frame Number: 2
Packet Length: 60 bytes
Capture Length: 60 bytes

Ethernet II, Src: 00:05:85:88:cc:db, Dst: 00:d0:b7:1 f:fe:e6
Destination: 00:d0:b7:1 f:fe:e6 (Intel_1 f:fe:e6)
Source: 00:05:85:88:cc:db (Juniper__88:cc:db)

74 CHAPTER 3 Network Link Technologies

Type: ARP (0x0806)
Trailer: 00000000000000000000000000000000. . .

Address Resolution Protocol (reply)
Hardware type: Ethernet (0x0001)
Protocol type: IP (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: reply (0x0002)
Sender MAC address: 00:05:85:88:cc:db (Juniper__88:cc:db)
Sender IP address: 10.10.11.1 (10.10.11.1)
Target MAC address: 00:d0:b7:1 f:fe:e6 (Intel_1 f:fe:e6)
Target IP address: 10.10.11.66 (10.10.11.66)

Many details of the packet and frame structure and content will be discussed in later

chapters. However, we can see that the source and destination MAC addresses are

present in the frame. The source address is 00:05:85:88:cc:db (the router), and the

destination (the Linux server) is 00:d0:b7:1 f:fe:e6. Ethereal even knows which orga-

nizations have been assigned the first 24 bits of the 48-bit MAC address (Intel and

Juniper Networks). We’ll say more about MAC addresses later in this chapter.

Figure 3.2 shows the same packet, and the same information, but in graphical

format. Only a small section of the entire window is included. Note how the pres-

ence of Ethernet II frames is indicated, parsed on the second line in the middle

pane of the window.

Why use text-based output when a graphical version is available? The graphi-

cal output shows the raw frame in hex, something the text-based version does not

do, and the interpretation of the frame’s fields is more concise.

However, the graphical output is not always clearer. In most cases, the graphi-

cal representation can be more cluttered, especially when groups of packets are

involved. The graphical output only parses one packet at a time on the screen,

FIGURE 3.2

Graphical interface for Ethereal. There are three main panes. Top to bottom: (1) a digest of

the packets header and information, (2) parsed details about frame and packet contents, and

(3) the raw frame captured in hexadecimal notation and interpreted in ASCII.

75Illustrated Network Connections

while a whole string of packets can be parsed with tethereal (but printouts of

graphical information can be formatted like tethereal).

In addition, many network administrators of Internet servers do not install or

use a graphical interface, and perform their tasks from a command prompt. If

you’re not sitting in front of the device, it’s more expedient to run the non-GUI

version. Tethereal is the only realistic option in these cases. We will use both

types of Wireshark in the examples in this book.

In our example network, what about LAN2? Is it also using Ethernet II

frames? Let’s capture some packets on bsdserver to find out.

bsdserver# tethereal �V
Capturing on em0
Frame 1 (98 bytes on wire, 98 bytes captured)

Arrival Time: Mar 25, 2008 13:05:00.263240000
Time delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Number: 1
Packet Length: 98 bytes
Capture Length: 98 bytes

Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
Destination: 00:05:85:8b:bc:db (Juniper__8b:bc:db)
Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
Type: IP (0x0800)

Internet Protocol, Src Addr: 10.10.12.77 (10.10.12.77), Dst Addr: 10.10.12.1
(10.10.12.1)

Version: 4
Header length: 20 bytes
. . ..

Yes, an Ethernet II frame is in use here as well. Even though we’re running

Wireshark (tethereal) on a different operating system (FreeBSD) instead of on

Linux, the output is nearly identical (the differences are due to a slightly different

version of Ethereal on the servers). However, LANs are not the only type of con-

nections used on the Illustrated Network.

DISPLAYING SONET LINKS

What about link types other than Ethernet? ISPs in the United States often use

SONET fiber links between routers separated by long distance. In most other

parts of the world, SDH is used. SONET was defined initially in the United

States, and the specification was adapted, with some changes, for international

use by the ITU-T as SDH.

As noted above, in the next chapter we’ll talk about OTN.

The Illustrated Network uses SONET, not SDH. There are small but important

differences between SONET and SDH, but this book will only reference SONET.

76 CHAPTER 3 Network Link Technologies

Line monitoring equipment that allows you to look directly at SONET/SDH

frames is expensive and exotic, and not available to most network administrators.

So we’ll take a different approach: We’ll show you the information that’s avail-

able on a router with a SONET interface. This will show the considerable band-

width available even in the slowest of SONET links, which runs at 155 Mbps and

is the same as the basic SDH speed.

SONET AND SDH
The SONET fiber-optic link standard was developed in the United States and is mainly used

in places that follow the digital telephony system used in the United States, such as Canada

and the Philippines. SDH, on the other hand, is used in places that follow the international

standards developed for the digital telephony system in the rest of the world. SDH must be

used for all international links, even those that link to SONET networks in the United

States.

The differences between SONET and SDH transmission frame structures, nomenclature,

alarms, and other details are relatively minor. In most cases, equipment can handle SONET/SDH

with equal facility.

We can log in to router CE0 and monitor a SONET interface for a minute or

so and see what’s going on.

ROUTERS AND USERS
Usually, network administrators don’t let ordinary users casually log in to routers, even edge

routers, and poke around. Even if they were allowed to, the ISP’s core routers would still remain

off limits. But this is our network, and we can do as we please, wherever we please.

Admin.ssh CE0
adminCE6’s password: ���������

--- JUNOS 15.1X49-D50 built 2015-05-06 06:58:15 UTC
admin@CE0. monitor interface so-0/0/1

R2 Seconds: 59 Time: 13:36:05
Delay: 2/0/3

Interface: so-0/0/1, Enabled, Link is Up
Encapsulation: PPP, Keepalives, Speed: OC3
Traffic statistics: Current delta

Input bytes: 166207481 (576 bps) [2498]
Output bytes: 171979817 (48 bps) [2713]
Input packets: 2868777 (0 pps) [39]
Output packets: 2869671 (0 pps) [39]

77Illustrated Network Connections

Encapsulation statistics:

Input keepalives: 477607 [6]
Output keepalives: 477717 [7]

LCP state: Opened
Error statistics:

Input errors: 0 [0]
Input drops: 0 [0]
Input framing errors: 0 [0]
Input runts: 0 [0]
Input giants: 0 [0]
Policed discards: 0 [0]
L3 incompletes: 0 [0]
L2 channel errors: 0 [0]
L2 mismatch timeouts: 0 [0]
Carrier transitions: 1 [0]
Output errors: 0 [0]
Output drops: 0 [0]
Aged packets: 0 [0]

Active alarms : None
Active defects: None
SONET error counts/seconds:

LOS count 1 [0]
LOF count 1 [0]
SEF count 3 [0]
ES-S 1 [0]
SES-S 1 [0]

SONET statistics:

BIP-B1 0 [0]
BIP-B2 0 [0]
REI-L 0 BIP-B3 Z [0]

Not much is happening yet on our network in terms of traffic, but the output

is still informative. The first column shows cumulative values and the second col-

umn shows the change since the last monitor “snapshot” on the link. “Live” traf-

fic during these 59 seconds, in this case mostly a series of keepalive packets, is

shown in parentheses, both in bytes per second and in packets per second (the

example rounds the 39 packets in 59 seconds, or 0.66 packets per second, down

to 0 packets per second). The frames carried on the link, listed as encapsulation,

belong to a protocol called Point-to-Point Protocol (PPP). Six PPP keepalives

have been sent in the 59-second window, and seven have been received (they are

78 CHAPTER 3 Network Link Technologies

exchanged every 10 seconds), adding to the total of more than 477,000 since the

link was initialized. The cumulative errors also occurred as the link was initializ-

ing itself, and it is reassuring that there are no new errors.

DISPLAYING DSL LINKS

The Illustrated Network also has a broadband DSL link from an ISP that is used

to allow a home office to attach to the router network. This link is shown in red

in Figure 3.1. If the permissions are set up correctly, the home user will be able

to access network resources on LAN1 and LAN2. DSL links are much faster than

ordinary dial-up lines and are always available, just like a leased access line. The

DSL link terminates at home in a DSL router (more properly, a residential gate-

way), and the distribution of information to devices in the home can be by wired

or wireless LAN.

On the network end of the DSL link, the link terminates at a DSL access mul-

tiplexer (DSLAM), typically using IP or ATM technology.

At the user end of the DSL link on the Illustrated Network, the office in

the home uses both a wired and a wireless network. This is a common

arrangement today: People with laptops can wander, but desktop PCs usually

stay put. The wireless network encapsulates packets and sends them to a spe-

cial device in the home (a wireless access point, often built into a DSL

router).

What kind of frames does the DSL link use? That’s hard to determine,

because the DSL modem is upstream of the DSL router in most cases (sometimes

on the side of the house, sometimes closer to the service provider). The wired

LAN between DSL router and computer uses the same type of Ethernet frames

we saw on LAN1 and LAN2. On a wired LAN, Wireshark will always capture

Ethernet II frames, as shown in Figure 3.3.

What can we learn about DSL itself? Well, we can access the DSL router

using a Web browser and see what kinds of information are available. Figure 3.4

shows the basic setup screen of the Linksys DSL router (although it’s really not

doing any real routing, just functioning as a simple gateway between ISP and

home LAN).

Because this is a working LAN, I’ve restored the default names and addresses

for this example. The router itself is WRT54G (a product designation), and the

ISP does not expect only one host to use the DSL link, so no host or domain

name is required. We’ll talk about the maximum transmission unit (MTU) size

later in this chapter. This is set automatically on the link.

The DSL router itself uses IPv4 address 192.168.1.1. We’ll talk about what

the subnet mask does in Chapter 4. The router hands out IP addresses as needed

to devices on the home network, starting with 192.168.1.100, and it uses the

Dynamic Host Configuration Protocol (DHCP) to do this. We’ll talk about DHCP

in Chapter 18.

79Illustrated Network Connections

FIGURE 3.3

Ethernet frames on a wired LAN at the end of a DSL link. Capturing raw DSL frame

“on the wire” is not frequently done, and is difficult without very expensive and specialized

equipment.

FIGURE 3.4

Basic setup screen for a DSL link. We’ll talk about all of these configuration parameters

and protocols, such as subnet masks and DHCP, in later chapters.

80 CHAPTER 3 Network Link Technologies

What kinds of statistics are available on the DSL router? Not much on this

model. There are simple incoming and outgoing logs, but these capture only the

most basic information about addresses and ports. A small section of the outgoing

log is shown in Table 3.1.

These are all Web browser entries that were run with names, not IP addresses

(Yahoo is one of them). The table lists the addresses because the residential gate-

way does not bother to look the names up. However, instead of presenting the

port numbers, the log interprets them as a service name (www is port 80 on most

servers).

We’ll take a more detailed look at DSL later in this chapter. Now, let’s take a

look at the fourth and last link type used on the Illustrated Network: the four

available wireless links used to hook a laptop and printer up to the home office

DSL router.

The wireless implementation is a fairly straightforward bridging exercise. A

single wireless interface is bridged in software with the Ethernets in the box. The

wireless network is a single broadcast/collision domain.

DISPLAYING WIRELESS LINKS

The physical arrangement of the home office equipment used on the Illustrated

Network is shown in Figure 3.5. In addition to the three wired PCs (used for vari-

ous equipment configurations), there are two wireless links. One is used by the

laptop for mobility, and the other is used to share a color laser printer. The DSL

router does not have “ports” in the same sense as wired network devices, but it

only supports up to four wireless devices.

The wireless link from the laptop to the DSL router, which uses something

called IEEE 802.11 g (this is an older version of the specification, used in the

First Edition, but it still is supported). Wireless LANs have a distinct Layer 2 net-

work technology and should not use Ethernet II frames. Let’s make sure.

Capturing traffic at the wireless frame level requires special software and spe-

cial drivers for the wireless network adapter card. The examples in this chapter

use information from a wireless packet sniffer called Airopeek NX from

Wildpackets (Wildpackets is now Savvius, and the Airopeek product is now part

of the Savvius capture product Omnipeek).

A sample capture of a data packet and frame from a wireless link is shown in

Figure 3.6.

Table 3.1 Outgoing Log Table from DSL Router

LAN IP Destination URL/IP Service/Port Number

192.168.1.101 202.43.195.13 www
192.168.1.101 64.86.142.99 www
192.168.1.101 202.43.195.52 www
192.168.1.101 64.86.142.120 www

81Illustrated Network Connections

DSL Link to ISP
(4 Ethernet ports)

PC 1

PC 2

PC 3

DSL
Router

(4 wireless ports)

Laptop Color Laser
Printer

FIGURE 3.5

The home office network for the Illustrated Network. Devices must have either Ethernet

ports or wireless interfaces (some have both). Not all printers are network-capable or

wireless.

FIGURE 3.6

Data frame and packet on a wireless link. Note that the IEEE 802.11 MAC header is

different from the Ethernet in many ways and uses the IEEE 802.2 LLC inside.

82 CHAPTER 3 Network Link Technologies

Wireless LANs based on IEEE 802.11 use a distinct frame structure and a

complex data link layer protocol. We’ll talk about 802.11 shortly, but for now we

should just note that the Illustrated Network uses USB-attached wireless NICs

(today, they are almost always built-in, but they still work the same way), and

few wireless sniffers support these types of adapters.

The frame addressing and encapsulation on wireless LANs is much more com-

plicated than Ethernet. Note that the 802.11 MAC frame has three distinct MAC

addresses, labeled Destination, BSSID, and Source. The wireless LAN has to

keep track of source, destination, and wireless access point (Base Station System

ID, or BSSID) addresses. Also note that these are not really Ethernet II frames.

The frames on the wireless link are structured according to the IEEE 802.2 LLC

header. These have “SNAP SAP”, indicated by 0xAA, in the frame, in contrast to

Ethernet II frames, which are indicated by 0x01.

The address fields in 802.11 also “shift” their meaning, as shown in

Figure 3.7. The fields are now BSSID, Source, and Destination. This is another

FIGURE 3.7

The next data frame in the sequence, showing how the contents of the address fields shift

based on direction and type of wireless frame.

83Illustrated Network Connections

capture from Airopeek NX, showing the next data frame sent in the captured

exchange. The address fields have different meanings based on whether they are

sent to the wireless router or are received from the wireless router.

FRAMES AND THE LINK LAYER

In summary, we have seen that the connections on the Illustrated Network consist

of several types of links. There are wired Ethernet LANs and Gigabit and

10-Gigabit Ethernet links, SONET links and DSL links, and even a wired LAN in

the home network. We’ve looked at some of the frame types that carry informa-

tion back and forth on the network connections.

There are many more types of frames that can carry IP packets between

systems at the data link layer. The rest of this chapter will explore the data link

layer in a little more depth.

RFCs AND PHYSICAL LAYERS
Internet RFCs usually describe not how the physical (or data link) layers in a TCP/IP network

should function, but how to place packets inside data link frames and get them out again at the

other end of the link to the adjacent system. It is always good to remember that frames flow

between adjacent (directly connected or reachable) systems on a network.

THE DATA LINK LAYER
Putting the world of connectors, modems, and electrical digital signal levels of

the physical layer aside, let’s go right to the data link layer of the TCP/IP protocol

stack. It’s not that these things are not important to networking; it’s just that these

things have nothing directly to do with TCP/IP.

The data link layer of TCP/IP takes an IP packet at the source and puts it

inside whichever frame structure is used between systems (e.g., an Ethernet

frame). The data link layer then passes the frame to the physical layer, which

sends the frame as a series of bits over the link itself. At the receiver, the physical

and data link layers recover the frame from the arriving sequence of bits and

extract the packet. The packet is then passed to the receiving network (IP) layer.

The advantage of not tying the network layer to any specific type of links at

the lower layers is flexibility (IP can run on anything). A new type of network

interface can be added without great effort. Also, it makes linking these various

network types into an internetwork that much easier.

All TCP/IP implementations must be able to support at least one of the

defined interface types. Most implementations of TCP/IP will do fine today with

only a handful of interface types, and, as we have seen, Ethernet frames are per-

haps the most common of all data-link frame formats for IP packets, especially at

the endpoints of the network.

84 CHAPTER 3 Network Link Technologies

The rest of this chapter provides a closer look at the four link types used on

the Illustrated Network, as well as PPP, the major IEFT data-link protocol that we

saw used on SONET. The coverage is not intended to be exhaustive, but will be

enough to introduce the technologies.

Although all four link types are covered, the coverage is not equal. There is

much more information about Ethernet and wireless than SONET or DSL. The

main reason is that expensive and exotic line monitoring equipment is needed in

order to burrow deep enough in the lower layers of the protocol stacks used in

SONET and DSL to show the transmission frames. End users, and even many

smaller ISPs, do just fine diagnosing problems on SONET and DSL links with

basic Ethernet and IP monitoring tools. Then again, point-to-point links are a bit

easier to diagnose than shared media networks. (Is the line protocol up in both

directions? Is the distance okay? Is the bit error rate acceptable? Okay, it’s not

the link layer . . .)
SONET and DSL are distinguished from Ethernet and wireless LANs with

regard to addressing. SONET and DSL are point-to-point technologies and use

much simpler link-level addressing schemes than LAN technologies. There are

only two ends in a point-to-point connection, and you always know which end

you are. Anything you send is intended for the other end of the link, and anything

you receive comes from the other end as well.

THE EVOLUTION OF ETHERNET
The original Ethernet was developed at the Xerox Palo Alto Research Center

(PARC) in the mid-1970s to link the various mainframes and minicomputers that

Xerox used in their office park campus environment of close-proximity buildings.

The use of WAN protocols to link all of these buildings did not appeal to Xerox

for two reasons. First, an efficient WAN infrastructure would have demanded a

mesh of leased telephone lines, which would have been enormously expensive

given the number of computers. Second, leased telephone lines did not have the

bandwidth (usually these carried only up to 9600 bps, and at most 56 Kbps, in the

late 1970s) needed to link the computers.

Their solution was to invent the local area network, the LAN. However,

Xerox was not interested in actually building hardware and chipsets for their new

invention, which was named Ethernet. Instead, Bob Metcalf, the Ethernet inven-

tor, left Xerox and recruited two other companies, one to make chipsets for

Ethernet and the other to make the hardware components to employ these chip-

sets. The two companies were chip-maker Intel and computer-maker Digital

Equipment Corporation (DEC). Ethernet v1.0 was rolled out in 1980, followed by

Ethernet v2.0 in 1982, which fixed some annoying problems in v1.0. This is why,

in our examples, Ethereal keeps showing that IP packets are inside Ethernet II

frames when they leave and arrive at hosts.

85The Evolution of Ethernet

DIX Ethernet, the proprietary version, ran over a single, thick coaxial cable

“bus” that snaked through a building or campus. Transmitting and receiving

devices (transceivers) were physically clamped to the coaxial cable (with “vam-

pire taps”) at predetermined intervals. Transceivers usually had multiple ports for

attaching the transceiver cables that led to the actual PC or minicomputer linked

by the Ethernet LAN. The whole LAN ran at an aggregate speed of 10 Mbps, an

unbelievable rate for the time. But Ethernet had to be fast, because up to 1024

computers could share this single coaxial cable bus to communicate using a media

access method known as carrier-sense multiple access with collision detection

(CSMA/CD). DIX Ethernet had to be distinguished from all other forms of

Ethernet, which were standardized by the IEEE starting in 1984.

The IEEE first standardized a slightly different arrangement for 10-Mbps

CSMA/CD LANs (IEEE 802.3) in 1984. Why the IEEE felt compelled to change

the proprietary Ethernet technology during the standardization process is some-

what of a puzzle. Some said the IEEE always did this, but around the same time

the IEEE essentially rubberstamped IBM’s proprietary Token Ring LAN specifi-

cation as IEEE 802.5. The changes to the hardware of DIX Ethernet were minor.

There was no v1.0 support at all (i.e., all IEEE 802.3 LANs were DIX Ethernet

v2.0) and the terminology was changed slightly. The DIX transceiver became the

IEEE 802.3 “media attachment unit” (MAU), and so on.

However, throughout the 1980s and into the 1990s, as research into network

capabilities matured, the IEEE added a number of variations to the original IEEE

802.3 CSMA/CD hardware specification. The original specification became

10Base5 (which meant 10-Mbps transport, using baseband signaling, with a

500-meter LAN segment). This was joined by a number of other variants

designed to make LAN implementation more flexible and—especially—less

expensive. New IEEE 802.3 variations included 10Base2 (with 200-meter seg-

ments over thin coaxial cable), the wildly popular 10BaseT (with hubs instead of

segments linked to PCs by up to 100 meters of unshielded twistedpair copper

wire), and versions that ran on fiber-optic cable. Eventually, all of these technolo-

gies except those on coaxial cable went first to 100 Mbps (100BaseT), then 1000

Mbps (Gigabit Ethernet), which run over twisted pair for short spans and can use

fiber for increasingly long hauls, now in the SONET/SDH ranges.

Today, IEEE 802.3ae 10G-base-er (extended range) LAN physical layer links

can span 40 km. Another, “zr,” can stretch the span to 80 km. And interestingly,

10-Gbps Ethernet is back on coaxial cable as “10 Gbps cx4.”

Although we do not use them in our network, it should be noted that newer Ethernet

speeds extend to 40 and 100 Gbps. New work is always pushing the speeds higher.

ETHERNET II AND IEEE 802.3 FRAMES

Today, of course, the term “Ethernet” essentially means the same as “IEEE 802.3

LAN.” In addition to changing the hardware component names and creating IEEE

802.3 10BaseT, the IEEE also changed the Ethernet frame structure for reasons

86 CHAPTER 3 Network Link Technologies

that remain obscure. It was this development that had the most important implica-

tion for those implementing the TCP/IP protocol stack on top of Ethernet LANs.

The DIX Ethernet II frame structure was extremely simple. There were fields

in the frame header for the source and destination MAC (the upper part of the

data link layer, used on LANs) address, a type field to define content (packet)

structure, a variable-length data field, and an error-detecting trailer. The source

and destination addresses were required for the mutually adjacent systems on a

LAN (a point-to-point-oriented data link layer with just a “destination” address

would not work on LANs: Who sent this frame?). The type field was required so

the recipient software would know the structure of the data inside the frame. That

is, the destination NIC could examine the type field and determine if the frame

contents were an IP packet, some other type of packet, a control frame, or almost

anything else. The destination NIC card could then pass the frame contents to the

proper software module (the network layer) for further processing on the frame

data contents. The type field value for IP packets was set as 0x0800, the bit string

00001000 00000000.
However, the IEEE 802 committee changed the simple DIX Ethernet II frame

structure to produce the IEEE 802.3 CSMA/CD frame structure. Gone was the

DIX Ethernet II type (often called “Ethertype”) field, and in its place was a same-

sized length field. This action somewhat puzzled observers of LAN technology.

DIX Ethernet II frames worked just fine without an explicit length field. The total

frame length was determined by the positions of the starting and ending frame

delimiters. The data were always after the header and before the trailer. Simple

enough for software to figure out.

Now, with IEEE 802.3 it was even easier to figure out the length of a received

frame (the software just had to look at the length field value). However, it was

now impossible for the receiving software to figure out just what the structure of

the frame data was by looking only at the frame header. Clearly, a place in the

IEEE 802.3 CSMA/CD frame had to be found to put the DIX Ethernet II type
field, since receivers had to have a way to figure out which software process

understood the frame content’s data structure. Other protocols did not understand

IP packet structures, and vice versa.

The IEEE 802.3 committee “robbed” some bytes from the payload area, bytes

which in DIX Ethernet were data bytes. Since the overall length of the frame was

already fixed, and this set the length of the frame data to 1500 bytes (the same as in

DIX Ethernet), the outcome was to reduce the allowed length of the data contents of

an IEEE 802.3 frame. A simplified picture of the two frame types indicating the loca-

tion of the 0x0800 type field and the length of the data field is shown in Figure 3.8.

MAC ADDRESSES

The MAC addresses used in 802 LAN frames are all 48 bits (6 bytes) long. The

first 24 bits (3 bytes) are assigned by the IEEE to the manufacturer of the NIC

(manufacturers pay for them). This is the Organizationally Unique Identifier

(OUI). The last 24 bits (3 bytes) are the NIC manufacturer’s serial number for

87The Evolution of Ethernet

that NIC. Some protocol analyzers know the manufacturer’s ID (which is not pub-

lic but seldom suppressed) and display this along with the address. This is how

Ethereal displays MAC addresses not only in hex but starting with “Intel_” or

“Juniper_.”

Note that both frame types use the same, familiar source and destination MAC

address, and use a 32-bit (4-byte) frame check sequence (FCS) for frame-level

error detection. The FCS used in both cases is a standard, 32-bit cyclical redun-

dancy check (CRC-32). The important difference is that the DIX Ethernet frame

indicates information type (frame content) with a 2-byte type field (0x0800 means

there is an IPv4 packet inside and 0x86DD means there is an IPv6 packet inside)

and the IEEE 802.3. CSMA/CD frame places this Ethertype field at the end of an

additional 8 bytes of overhead called the Subnetwork Access Protocol (SNAP)

header. Another 3 bytes are the OUI given to the NIC vendor when they regis-

tered with the IEEE, but this field is not always used for that purpose.

The 802.3 frame must subtract these 8 bytes from the IP packet length so that

the overall frame length is still the same as for DIX Ethernet II. This is because

the maximum length of the frame is universal in almost all forms of Ethernet.

The maximum IEEE 802.3 frame data is 1492 due to the 8 extra bytes needed to

represent the type field. Any IP packet larger than this will not fit in a single

frame, and must fragment its payload into more than one frame and have the pay-

load reassembled at the receiver.

Destination Address
6 bytes

Source Address
6 bytes

Type
2 bytes

Information
46–1500 bytes

Type � 0�0800 for IP packets

FCS
4 bytes

Destination Address
6 bytes

8 bytes of added overhead
Logical Link Control (LLC)
Destination Service Access Point (DSAP) � 0�AA (“SNAP SAP”)
Source Service Access Point (SSAP) � 0�AA
Control � 0�03 (same as in PPP)
Subnetwork Access Protocol (SNAP)
Organizationally Unique ID � �‘0000 0000’ (usually)
Type � 0�0800 for IPv4 packets, 0�08DD for IPv6, etc.

Source Address
6 bytes

Length
2 bytes

Information
48–1492 bytes

FCS
4 bytes

DIX Ethernet Frame Structure

IEEE 802.3 LANs Frame Structure

FIGURE 3.8

Types of Ethernet frames. The frames for Gigabit and 10 Gigabit Ethernet differ in detail,

but follow the same general structure.

88 CHAPTER 3 Network Link Technologies

That’s not all there is to it. LAN implementers and vendors quickly saw that

the IEEE 802.3 hardware arrangement was more flexible (and less expensive)

than DIX Ethernet. They also saw that the DIX Ethernet II frame structure was

simpler and could carry slightly more user data than the complex IEEE 802.3

frame structure. Being practical people, the vendors simply used the flexible

IEEE 802.3 hardware with the simple DIX Ethernet II frame structure, creating

the mixture that is commonly seen today on most LANs.

Today, just because the hardware is IEEE 802.3 compliant (e.g., 100BaseT),

does not mean that the frame structure used to carry IP packets is also IEEE

802.3 compliant. The frame structure is most likely Ethernet II, as we have seen.

(It’s worth pointing out that Ethernet frame content other than IP usually uses the

802.3 frame format. However, the Illustrated Network is basically an IP-only

network.)

THE EVOLUTION OF DSL
IP packet interfaces have been defined for many LAN and WAN network tech-

nologies. As soon as a new transport technology reaches the commercial-

deployment stage, IP is part of the scheme, if for no other reason than regard-

less of what is in the middle, TCP/IP in Ethernet frames is at both ends. DSL

technologies are a case in point. Originally designed for the “national net-

works” that would offer everything that the Internet does today, but from the

telephone company as part of the Integrated Services Digital Network (ISDN)

initiatives of the 1980s, DSL was adapted for “broadband” Internet access

when the grand visions of the telephone companies as content providers were

reduced to the reality of a restricted role as ISPs and little more. (Even the

term “broadband” is a topic of much debate: A working definition is “speeds

fast enough to allow users to watch video without getting a headache or becom-

ing disgusted,” speeds that keep dropping as video coding and compression

techniques become better.)

DSL once included a complete ATM architecture, with little or no TCP/IP.

Practical considerations forced service providers to adapt DSLs once again, this

time for the real consumer world of Ethernet LANs running TCP/IP. And a tor-

tured adaptation it proved to be. The problem was deeper than just taking an

Ethernet frame and mapping it to a DSL frame (even DSL bits are organized

into a distinctive transport frame). Users had to be assigned unique IP addresses

(not necessary on an isolated LAN), and the issues of bridging versus routing

versus switching had to be addressed all over again. This was because linking

two LANs (the home user client LAN, even if it had but one PC, and the server

LAN) over a WAN link (DSL) was not a trivial task. The server LAN could be

the service provider’s “home server” or anyplace else the user chose to go on

the Internet.

89The Evolution of DSL

Also, ATM logical links (called permanent virtual circuits, or PVCs) are

normally provisioned between the usual local exchange carrier’s DSLAM and the

Internet access provider’s aggregation router. This can be very costly because IP

generally has much better statistical multiplexing properties and there can be long

hauls through the ATM networks before the ATM link is terminated.

NETWORKING VISIONS TODAY AND YESTERDAY
Today, when anyone can start a Web site with a simple server and provide a service to one and

all over the Internet, it is good to remember that things were not always supposed to be this way.

Not so long ago, the control of services on a public global network was supposed to be firmly

under the control of the service provider. Many of these “fast-packet” networking schemes were

promoted by the national telephone companies, from broadband ISDN to ATM to DSL. They all

envisioned a network much like the Internet is today, but one with all the servers “in the cloud”

owned and operated by the service providers. Anyone wanting to provide a service (such as a

video Web site) would have to go to the service provider to make arrangements, and average

citizens would probably be unable to break into that tightly controlled and expensive market.

This scheme avoided the risk of controversial Web site content (such as copyrighted material

available for download), but with the addition of restrictions and surveillance. Also, the

economics for service providers are much different when they control content from when they

do not.

Today, ISPs most often provide transport and connectivity between Web sites and servers

owned and operated by almost anyone. ISP servers are usually restricted to a small set of services

directly related to the ISP, such as email or account management.

That said, large service providers are always trying to favor their own services over a strictly

“neutral” approach to traffic.

The solution was to scrap any useful role for ATM (and any non-TCP/IP infra-

structure) except as a passive transport for IP packets. This left ATM without any

rationale for existence, because most of the work was done by running PPP over

the DSL link between a user LAN and a service provider LAN.

PPP AND DSL

Why is PPP used with DSL (and SONET)? The core of the issue is that ISPs

needed some kind of tunneling protocol. Tunneling occurs when the normal mes-

sage-packet-frame encapsulation sequence of the layers of a networking protocol

suite are violated. When a message is placed inside a packet, then inside a frame,

and this frame is placed inside another type of frame (or even another frame-

packet-frame sequence), this is a tunneling situation. Although many tunneling

methods have been standardized at several different TCP/IP layers, tunneling

works as long as the tunnel endpoints understand the correct sequence of headers

and content (which can also be encrypted for secure tunnels).

In DSL, the tunneling protocol had to carry the point-to-point “circuits” from

the central networking location to the customer’s premises and across the shared

media LAN to the end user device (host). There are many ways to do this, such

90 CHAPTER 3 Network Link Technologies

as using IP-in-IP tunneling, a virtual private network (VPN), or lower level

tunneling. ISPs chose PPP as the solution for this role in DSL.

Using PPP made perfect sense. For years, ISPs had used PPP to manage their

WAN dial-in users. PPP could easily assign and manage the ISP’s IP address

space, compartmentalize users for billing purposes, and so on. As a LAN technol-

ogy, Ethernet had none of those features. PPP also allowed user authentication

methods such as RADIUS to be used, methods completely absent on most LAN

technologies (if you’re on the LAN, it’s assumed you belong there).

Of course, keeping PPP meant putting the PPP frame inside the Ethernet

frame, a scheme called Point-to-Point Protocol over Ethernet (PPPoE), described

in RFC 2516. Since tunneling is just another form of encapsulation, all was well.

PPP is not the only data link layer framing and negotiation procedure (PPP is

not a full data link layer specification) from the IETF. Before PPP became popu-

lar, the Serial Line Internet Protocol (SLIP) and a closely related protocol using

compression (CSLIP, or Compressed SLIP) were used to link individual PCs and

workstations not connected by a LAN, but still running TCP/IP, to the Internet

over a dial-up, asynchronous analog telephone line with modems. SLIP/CSLIP

was also once used to link routers on widely separated TCP/IP networks over

asynchronous analog leased telephone lines, again using modems. SLIP/CSLIP is

specified in RFC 1055/STD 47.

PPP FRAMING FOR PACKETS

PPP addresses many of the limitations of SLIP, and can run over both asynchro-

nous links (as does SLIP) and synchronous links. PPP provides for more than just

a simple frame structure for IP packets. The PPP standard defines management

and testing functions for line quality, option negotiation, and so on. PPP is

described in RFC 1661, is protocol independent, and is not limited to IP packet

transport.

The PPP control signals, known as the PPP Link Control Protocol (LCP), need

not be supported, but are strongly recommended to improve performance. Other

control information is included by means of a Network Control Protocol (NCP),

which defines management procedures for frame content protocols. The NCP

even allows protocols other than IP to use the serial link at the same time. The

LCP and NCP subprotocols are a distinguishing feature of PPP.

The use of LCP and NCP on a PPP link on a TCP/IP network follows:

• The source PPP system (user) sends a series of LCP messages to

configure and test the serial link.

• Both ends exchange LCP messages to establish the link options to be used.

• The source PPP system sends a series of NCP messages to establish the

Network Layer protocol (e.g., IP, IPX, etc.).

• IP packets and frames for any other configured protocols are sent across the

link.

91The Evolution of DSL

• NCP and LCP messages are used to close the link down in a graceful and

structured manner.

The benefits are to create a more efficient WAN transport for IP packets. The

structure of a PPP frame is shown in Figure 3.9.

The Flag field is 0x7E (0111 1110), as in many other data link layer protocols.

The Address field is set to 0xFF (1111 1111), which, by convention, is the “all-sta-

tions” or broadcast address. Note that none of the other fields in the Point-to-Point

Protocol header have a source address for the frame. Point-to-point links only care

about the destination, which is always 0xFF in PPP and essentially means “any

device at the other end of this link that sees this frame.” This is one reason why

serial interfaces on routers sometimes do not have IP addresses (but many serial

interfaces, especially to other routers, have them anyway—this is the only way to

make the serial links “visible” to the IP layer and network operations).

The Control field is set to 0x03 (0000 0011), which is the Unnumbered

Information (UI) format, meaning that there is no sequence numbering in these

frames. The UI format is used to indicate that the connectionless IP protocol is in

use. The Protocol field identifies the format and use of the content of the PPP

frame itself. For LCP messages, the Protocol field has the value 0xC021 (1100
0000 0010 0001), for NCP the field has the value 0x8021 (1000 0000 0010 0001),
and for IP packets the field has the value 0x0021 (0000 0000 0010 0001).

Following the header is a variable-length Information field (the IP packet),

followed by a PPP frame trailer with a 16-bit, frame check sequence (FCS) for

error control, and finally an end-of-frame Flag field.

PPP frames may be compressed, field sizes reduced, and used for many spe-

cific tasks, as long as the endpoints agree.

DSL ENCAPSULATION

How are IP packets encapsulated on DSL links? DSL specifications establish a

basic DSL frame as the physical level, but IP packets are not placed directly into

Flag
0�7E

Address
0�FF

Control
0�03

Protocol
2 bytes

Information
(variable)

FCS
2 bytes

Flag
0�7E

0111
1110

Protocol field values:
0�C021 � Link Control Protocol (LCP)
0�8021 � Network Control Protocol (NCP)
0�0021 � IP Packet inside

0111
1110

1111
1111

0000
0011

FIGURE 3.9

The PPP frame. The flag bytes (0x7E) essentially form an “idle pattern” on the link that is

“interrupted” by frames carrying information.

92 CHAPTER 3 Network Link Technologies

these frames. IP packets are placed inside PPP frames, and then the PPP frames

are encapsulated inside Ethernet frames (this is PPP over Ethernet, or PPPoE).

Finally, the Ethernet frames are placed inside the DSL frames and sent to the

DSL Access Module (DSLAM) at the telephone switching office.

Once at the switching office, it might seem straightforward to extract the

Ethernet frame and send it on into the “router cloud.” But it turns out that almost

all DSLAMs are networked together by ATM, a technology once championed by

the telephone companies. (Some very old DSLAMs use another telephone com-

pany technology known as frame relay.) ATM uses cells instead of frames to

carry information.

So the network/data-link/physical layer protocol stack used between DSLAMs

and service provider routers linked to the Internet usually looks like five layers

instead of the expected three:

• IP packet containing user data, which is inside a PPP frame, which is

inside an

• Ethernet frame running to the DSL router (PPPoE), which is inside a series of

• ATM cells, which are sent over the physical medium as a series of bits.

We’ll take a closer look at frame relay and ATM in a later chapter on public

network technologies that can be used to link routers together.

FORMS OF DSL

Entire books are devoted to the variations of DSL and the DSL protocol

stacks used by service providers today. Instead of focusing on all the details

of these variations, this section will take a brief look at the variation of DSL

that can be used when IP packets make their way from a home PC onto the

Internet.

DSL often appears as “xDSL” where the “x” can stand for many different

letters. DSL is a modern technology for providing broadband data services over

the same twisted pair (TP), copper telephone lines that provide voice service.

DSL services are often called “last-mile” (and sometimes “first-mile”) technolo-

gies because they are used only for short connections between a telephone switch-

ing station and a home or office. DSL is not used between switching stations

(SONET is often used there).

DSL is an extension of the Integrated Services Digital Network (ISDN) tech-

nology developed by the telephone companies for their own set of combined

voice and data services. They operate over short ranges (less than 18 kilofeet) of

24 American Wire Gauge (AWG) voice wire to a telephone central office. DSLs

offer much higher speeds than traditional dial-up modems, up to 52 mbps for traf-

fic sent “downstream” to the user and usually from 32 kbps to 1 Mbps from traf-

fic sent “upstream” to the central office. The actual speed is distance limited,

dropping off at longer distances.

93The Evolution of DSL

At the line level, DSLs use one of several sophisticated modulation techniques

running in premises DSL router chipsets and DSLAMs at the telephone switching

office. These include the following:

• Carrierless Amplitude Modulation (CAP)

• Discrete Multitone Technology (DMT)

• Discrete Wavelet Multitone (DWM)

• Simple Line Code (SLC)

• Multiple Virtual Line (MVL)

DSL can operate in a duplex (symmetrical) fashion, offering the same speeds

upstream and downstream. Others, mainly targeted for residential Internet brows-

ing customers, offer higher downstream speeds to handle relatively large server

replies to upstream mouse clicks or keystrokes. However, standard VDSL and

VDSL2 have much less asymmetry than other methods. For example, 100-Mbps

symmetric operation is possible at 0.3 km, and 50 Mbps symmetric at 1 km.

The DSLAMs connect to a high-speed service provider backbone, and then

the Internet. DSLAMs aggregate traffic, typically for an ATM network, and then

connect to a router network. On the interface to the premises, the DSLAM demul-

tiplexes traffic for individual users and forwards it to the appropriate users.

In order to support traditional voice services, most DSL technologies require a

signal filter or “splitter” to be installed on the customer premises to share the

twisted-pair wiring. The DSLAM splits the signal off at the central office.

Splitterless DSL is very popular, however, in the form of “DSL Lite” or several

other names.

In Table 3.2, various types of DSL are compared. The speeds listed are typi-

cal, as are the distance (there are many other factors that can limit DSL reach)

and services offered.

In many cases, the speeds and distances are always being extended, but often

by just adding more fiber at one end or the other.

VDSL requires a fiber-optic feeder system to the immediate neighborhood, but

VDSL can provide a full suite of voice, video, and data services. These services include

the highest Internet access rates available for residential services, and integration

between voice and data services (voice mail alerts, caller ID history, and so on, all on

the TV screen). VDSL is used on the Illustrated Network to get packets from the home

office’s PCs to the ISP’s router network (the overall architecture is not very different

from DSL in general). From router to router over WAN distances, the Illustrated

Network uses a common form of transport for the Internet in the United States: SONET.

THE EVOLUTION OF SONET
SONET is the North American version of the international SDH standard and

defines a hierarchy of fast transports delivered on fiber-optic cable. One of the

most exciting aspects of SONET when it first appeared around 1990 was the

94 CHAPTER 3 Network Link Technologies

ability to deploy SONET links in self-healing rings, which nearly made outages a

thing of the past. (The majority of link failures today involve signal “backhoe

fade,” a euphemism for accidental cable dig-ups.)

Before networks composed almost entirely of fiber-optic cables came along,

network errors were a high-priority problem. Protocols such as IP and TCP had

extensive error-detection and error-correction (the two are distinct) methods built

into their operation, methods that are now quietly considered almost a hindrance

in modern networks.

Now, SONET rings do not inherently protect against the common problem of a

lack of equipment or route diversity, but at least it’s possible. Not all SONET links

are on rings, of course. The links on the Illustrated Network are strictly point-to-point.

A NOTE ABOUT NETWORK ERRORS

Before SONET, almost all WAN links used to link routers were supplied by a

telephone company that subscribed to the Bell System standards and practices,

even if the phone company was not part of the sprawling AT&T Bell System. In

1984, the Bell System engineering manual named a bit error rate (BER) of 1025

(one error in 100,000 bits sent) as the target for dial-up connections, and put

Table 3.2 Types of DSL

Type Meaning
Typical
Data Rate Mode Distance Applications

IDSL ISDN DSL 128 Kbps Duplex 18k ft on
24 AWG TP

ISDN services: voice and
data; Internet access

HDSL High-speed
DSL

1.544 to
42.048
Mbps

Duplex 12k ft on
24 AWG TP

T1/E1 service, feeder,
WAN access, LAN
connections, Internet
access

SDSL Symmetric
DSL

1.544 to
2.048
Mbps

Duplex 12k ft on
24 AWG TP

Same as HDSL

ADSL Asymmetric
DSL

1.5 to
6 Mbps
16 to 640
kbps

Down
Up

18k ft on
24 AWG TP

Internet access, remote
LAN access, some video
applications.

DSL Lite
(G.Lite)

“Splitterless”
ADSL

1.5 to
6 Mbps
16 to 640
kbps

Down
Up

18k ft on
24 AWG TP

Same as ADSL, but does
not require a premises
“splitter” for voice services

VDSL Very-high-
speed DSL

13 to
52 Mbps
1.5 to 2.3
Mbps

Down
Up

1k to 4.5k
ft
depending
on speed

Same as ADSL plus full
voice and video services,
including HDTV

95The Evolution of SONET

leased lines (because they could be “tuned” through predictable equipment) at

10 times better, or 1026 (one error in every 1,000,000 bits).

SONET/SDH fiber links typically have BERs of 1000 (103) to 1 million (106)

times better than those common in 1984. Since 1000 days is about 3 years, con-

verting a copper link to fiber meant that all the errors seen yesterday are now

spread out over the next 3 years (a BER of 1029) to 3000 years (10212). LAN

error rates, always much lower than those of WANs due to shorter spans and less

environmental damage, are in about the same range. Most errors today occur on

the modest-length (a kilometer or mile) access links between LAN and WAN to

ISP points of presence, and most of those errors are due to intermittently failing

or faulty connectors.

Popular alternatives for SONET/SDH high-speed WAN links are newer ver-

sions of Ethernet, especially in a metropolitan Ethernet context, and the newer

OTN links running on fiber. The megabit-speed T1 (1.544 Mbps) or E1 (2.048

Mbps) links are used for the local loop. However, even those copper-based cir-

cuits are usually serviced by newer technologies and carried over optical fiber on

the backbone.

How are IP packets carried inside SONET frames? The standard method is

called Packet over SONET/SDH (POS). The procedures used in POS are defined

in three RFCs:

• RFC1619, PPP over SONET/SDH

• RFC1661, the PPP

• RFC1662, PPP in HDLC-like framing

PACKET OVER SONET/SDH

SONET/SDH frames are not just a substitute for Ethernet or PPP frames.

SONET/SDH frames, like T1 and E1 frames, carry unstructured bit informa-

tion, such as digitized voice telephone calls, and are not usually suitable for

direct packet encapsulation. In the case of IP, the packets are placed inside a

PPP frame (technically, a type of High-Level Data Link Control [“HDLC-

like”] PPP frame with some header fields allowed to vary in HDLC fixed for

IP packet payloads). The PPP frame, delimited by a stream of special 0x7E

interframe fill (or “idle” pattern) bits, is then placed into the payload area of

the SONET/SDH frame.

Figure 3.10 shows a series of PPP frames inside a SONET frame running at

51.84 Mbps. Although SONET (and SDH) frames are always shown as two-

dimensional arrays of bits, the figure is not very accurate. It doesn’t show any of

the SONET framing bytes, and IP packets are routinely set to around 1500 bytes

long, so they would easily fill an entire 774-byte, basic SONET transmission-

frame payload area. Even the typical network default maximum IP packet size of

576 bytes is quite large compared to the SONET payload area. However, many

packets are not that large, especially acknowledgments.

96 CHAPTER 3 Network Link Technologies

One other form of transport used on the Illustrated Network is common on IP

networks today. Wireless links are rapidly becoming more common than anything

else, especially the links from device to network node.

WIRELESS LANs AND IEEE 802.11
Wireless technologies are the fastest-growing form of link layer for IP packets,

whether for cell phones or home office LANs. Cell phone packets are a bit of a

challenge, and wireless LANs are evolving rapidly, but this section will focus on

wireless LANs, if only because wireless LANs are such a good fit with Ethernet.

This section will be a little longer than the others, only because the latest wireless

LANs are newer than the previous methods discussed.

The basic components of the IEEE 802.11 wireless LAN architecture are

the wireless stations, such as a laptop, and the access point (AP). The AP is

not strictly necessary, and a cluster of wireless stations can communicate

directly with each other without an AP. This is called an IEEE 802.11 inde-

pendent, basic service set (IBSS) or ad hoc network. One or more wireless sta-

tions form a basic service set (BSS), but if there is only one wireless station

SONET
Frame 1

SONET
Frame

Overhead

SONET
Frame 2

SONET
Frame

Overhead

SONET
Frame 3

SONET
Frame

Overhead

SONET
Frame 4

SONET
Frame

Overhead

7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet.... | IP trailer | 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet

... | IP trailer | 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet
 ... | IP trailer | 7E 7E

... | IP trailer | 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet
 ... | IP trailer | 7E 7E

7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet | IP trailer | 7E
7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E 7E
7E 7E 7E | PPP Hdr | IP packet
 ...

SONET Frame Payload Area

FIGURE 3.10

Packet over SONET, showing how the idle pattern of 0x7E surrounds the PPP frames with

IP packets inside.

97Wireless LANs and IEEE 802.11

in the BSS, an AP is necessary to allow the wireless station to communicate.

An AP has both wired and wireless connections, allowing it to be the access

“point” between the wireless station and the world. In a typical home wireless

network (an arbitrarily low limit), one BSS supports up to four wireless

devices, and the AP is bundled with the DSL router or cable modem with the

high-speed link for Internet access. (The DSL router or cable modem can

have multiple wired connections as well.) In practice, the number of systems

you can connect to a given type of AP depends on your performance needs

and the traffic mix.

A wireless LAN can have multiple APs, and this arrangement is sometimes

called an infrastructure wireless LAN. This type of LAN has more than one BSS,

because each AP establishes its own BSS. This is called an extended service set

(ESS), and the APs are often wired together with an Ethernet LAN or an Ethernet

hub or switch. The three major types of IEEE 802.11 wireless LANs—ad hoc

(IBSS), BSS, and ESS—are shown in Figure 3.11.

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

Access Point
for BSS 1

Access Point

Access Point
for BSS 2

Internet

Internet

BSS with AP
BSS without AP

(ad hoc network)

ESS

Wireless Laptop
Station

Wireless Laptop
Station

Wireless Laptop
Station

FIGURE 3.11

Wireless LAN architectures. Most home networks are built around an access point built

into a DSL router/gateway.

98 CHAPTER 3 Network Link Technologies

Wi-Fi

An intended interoperable version of the IEEE 802.11 architecture is known as

Wi-Fi, a trademark and brand of the Wi-Fi Alliance. It allows users with properly

equipped wireless laptops to attach to APs maintained by a service provider in

restaurants, bookstores, libraries, and other locations, usually to access the

Internet. In some places, especially downtown urban areas, a wireless station can

receive a strong signal from two or more APs. While a wireless station can

belong to more than one BSS through its AP at the same time, this is not helpful

when the APs are offering different network addresses (and perhaps prices for

attachment). This collection of Wi-Fi networks is sometimes called the “Wi-Fi

jungle,” and will only become worse as wireless services turn up more and more

often in parks, apartment buildings, offices, and so on. How do APs and wireless

stations sort themselves out in the Wi-Fi jungle?

If there are APs present, each wireless station in IEEE 802.11 needs to associ-

ate with an AP before it can send or receive frames. For Internet access, the

802.11 frames contain IP packets, of course. The network administrator for every

AP assigns a Service Set Identifier (SSID) to the AP, as well as the channels (fre-

quency ranges) that are associated with the AP. The AP has a MAC layer address

as well, often called the BSSID.

The AP is required to periodically send out beacon frames, each including the

AP’s SSID and MAC layer address (BSSID), on its wireless channels. These

channels are scanned by the wireless station. Some channels might overlap

between multiple APs, because the “jungle” has no central control, but (hope-

fully) there are other channels that do not. In practice, interference between over-

lapping APs is not a huge problem in the absence of a high volume of traffic.

When you “view available networks” in Windows XP, the display is a list of the

SSIDs of all APs in range. To get Internet access, you need to associate your

wireless station with one of these APs.

After selecting an AP by SSID, the wireless host uses the 802.11 association

protocol to join the AP’s subnet. The wireless station then uses DHCP to get an

IP address, and becomes part of the Internet through the AP.

If the wireless Internet access is not free, or the wireless LAN is intended for

restricted use (e.g., tenants in a particular building), the wireless station might

have to authenticate itself to the AP. If the pool of users is small and known, the

host’s MAC address can be used for this purpose, and only certain MAC

addresses will receive IP addresses.

Once the user is on the wireless network, many hotels use the captive portal

form of authentication. The captive portal technique makes the user with a Web

browser (HTTP client) to see a special Web page before being granted normal

Internet access. The captive portal intercepts all packets regardless of address or

port, until the browser is used as a form of authentication device. Once the

acceptable use terms are viewed or the payment rates are accepted and arranged,

“normal” Internet access is granted for a fixed period of time. It should be noted

99Wireless LANs and IEEE 802.11

that captive portals can be used to control wired access as well, and many places

(hotel rooms, business centers) use them in this fashion. In many cases, the nor-

mal device “firewall” capabilities must be turned off or configured to allow the

captive portal Web page to appear.

Another post-access approach employs usernames and passwords—these are

popular at coffee shops and other retail establishments. In both cases, there is usu-

ally a central authentication server used by many APs, and the wireless host com-

municates with this server using either RADIUS (RFC 2138) or DIAMETER

(RFC 3588). Once authenticated, the users’ traffic is commonly encrypted to pre-

serve privacy over the airwaves, where signals can usually be picked up easily

and without the knowledge of end users.

When accessing the office remotely, even if captive portal or some other

method is used, most organizations add something to secure tunneling based on

PPTP (Microsoft’s Point-to-Point Tunneling Protocol) or PPPoE to run proprie-

tary VPN client software. We’ve already mentioned PPPoE, and PPTP with

VPNs will be explored later in this book.

IEEE 802.11 MAC LAYER PROTOCOL

IEEE 802.11 defines two MAC sublayers: the distributed coordination function

(DCF) and the point coordination function (PCF). The PCF MAC is optional and

runs on top of the DCF MAC, which is mandatory. PCF is used with APs and is

very complex, while DCF is simpler and uses a venerable access method known

as carrier sense multiple access with collision avoidance (CSMA/CA). Note that

while Ethernet LANs detect collisions between stations sending at the same time

with CSMA/CD, wireless LANs avoid collisions. Collision detection is not appro-

priate for wireless LANs for a number of reasons, the most important being the

hidden terminal problem.

To understand the hidden terminal problem, consider the two wireless laptops

and AP shown in Figure 3.12. (The problem does not only occur with an AP, but

the figure shows this situation.) Both laptops are within range of the AP, but not

of each other (there are many reasons for this, from distance to signal fading).

Obviously, if L1 is sending a frame to the AP, L2 could also start sending a

frame, because the carrier sensing shows the network as “clear.” However, a colli-

sion occurs at the AP and both frames have errors, although both L1 and L2 think

their frames were sent just fine.

Now, the AP clearly knows what’s going on. It just needs a way to tell the

wireless stations when it’s okay to send (or not). CSMA/CD can use an optional

method known as request to send (RTS) and clear to send (CTS) to avoid these

types of undetected collisions. When a sender wants to send a data frame, it must

first reserve the channel by sending a short RTS frame to the AP, telling the AP

how long it will take to send the data, and receive an acknowledgement frame

(ACK) that all went well. If the sender receives a short CTS control frame back,

100 CHAPTER 3 Network Link Technologies

then it can send. Other stations hear the CTS as well, and refrain from sending

during this time period.

The way that RTS/CTS works for sending data to an access point is shown in

Figure 3.13.

Source

Access Point

All Other NodesDestination

DIFS

SIFS

SIFS

SIFS

Defer Access

DATA

ACK

CTS

RTS

Reservation
Time

FIGURE 3.13

RTS and CTS in wireless LANs showing how all other nodes must defer access to the

medium. The CTS is heard by all other nodes, although this is not detailed in the figure.

Wireless Laptop
L2

Wireless Laptop
L1

Access Point

FIGURE 3.12

Hidden terminals on wireless LANs. This can be a problem in larger home networks, and

special “LAN extender” devices can be used to prevent the problem.

101Wireless LANs and IEEE 802.11

There are two time notations in the figure: DIFS and SIFS. The distributed

inter-frame space (DIFS) is the amount of time a wireless station waits to

send after sensing that the channel is clear. The station waits a bit “just in

case” because wireless LANs, unlike Ethernet, do not detect collisions and

cease sending, so collisions are very debilitating and must be avoided at all

costs. The short inter-frame spacing (SIFS) is also used between frames for

collision avoidance. There is also a duration timer in all 802.11 frames, mea-

sured in microseconds, that tells the other stations how long it will take to

send the frame and receive a reply. Stations avoid link access during this time

period.

While RTS/CTS does reduce collisions, it also adds delay and reduces

the available bandwidth on a channel. In practice, each wireless station sets

an RTS threshold so that CTS/RTS is used only when the frame is longer

than this value. Many wireless stations set the threshold so high that the

value is larger than the maximum frame length, and the RTS/CTS is skipped

for all data.

THE IEEE 802.11 FRAME

Although the IEEE 802.11 frame shares a lot with the Ethernet frame (which is

one reason some packet sniffers can parse wireless frames as if they were

Ethernet), there are a number of unique fields in 802.11. There are nine main

fields, and the frame control (FC) field has 10 fields. The nine major fields of

the IEEE 802.11 MAC frame are shown in Figure 3.14. The only fields in the

two FC bytes that we will talk about are the From DS and To DS fields. (In

some cases, the first three fields of the 802.11 MAC frame, the version, type,

and subtype, are presented separately from the frame control flags, which are

all bits.)

Frame control (FC)—This field is 2 bytes long and contains, among

other things, two important flag bits: To DS (distribution system) and

From DS.

Duration—This byte gives the duration of the transmission in all frame types

except one. In one control frame, this “D” byte gives the ID of the frame.

Frame
Control

2 bytes 2 bytes 6 bytes 6 bytes 6 bytes 6 bytes 0–2312
bytes

4
bytes

2 bytes

Duration Address 1 Address 2 Address 3 Address 4 Payload
F
C
S

Seq.
Control

FIGURE 3.14

IEEE 802.11 frame structure. Note the potential number of address fields (four) in

contrast to the two used in Ethernet II frames.

102 CHAPTER 3 Network Link Technologies

Addresses—There are four possible address fields, each 6 bytes long and

structured the same as Ethernet MAC addresses. The fourth field is only

present when multiple APs are in use in an ESS. The meaning of each address

field depends on the value of the DS flags in the FC field, discussed later.

Sequence control—This 2-byte field gives the sequence number of the frame

and is used in flow control.

Payload—This field can be from 0 to 2312 bytes long. Usually it is fewer

than 1500 bytes and holds an IP packet, but there are other types of payloads.

The precise type and subtype of the content is determined by the content of

the FC field.

CRC—The frame cyclical redundancy check is a 4-byte CRC-32, used to

determine the nature of the acknowledgement sent.

Why does the wireless frame need to define four address fields? Mainly

because the arrangements of wireless stations can be complicated. Is there an AP

in the BSS? Is there more than one AP? What type of frame is being sent? Data?

Control? Management? The number of address fields present, and what they rep-

resent, depend on the answers to these questions.

How do receivers know exactly how many addresses are used and what they

represent? That’s where the two DS flags in the FC field come in. The meaning

of the address fields (and possible presence of the Address 4 field) depends on

the values of these two bits. Actually, there are five types of MAC addresses used

in wireless LANs:

BSSID—This is usually the MAC address of the AP, but it is generated

randomly in an IBSS or ad hoc network.

Transmitter Address (TA)—The TA is the MAC address of the individual

station that has just sent the frame.

Receiver Address (RA)—The RA is the MAC address of the immediate

receiver of the frame. This can be a group or broadcast address.

Source Address (SA)—The SA is the MAC address of the individual station

that originated the frame. Due to the possible role played by the AP, the SA is

not necessarily the same as the TA.

Destination Address (DA)—The DA is the MAC address of the final

destination of the frame, and can also be a group or broadcast as well as an

individual station. Again, due to the AP(s), this address might not match

the RA.

The interplay among these address types and the meaning of the two DS flags

for data frames is shown in Table 3.3.

A look back at Figures 3.6 and 3.7 will show that these address patterns

are reflected in the screen captures. The last two bits of the frame control

flags are the DS bits, which are 01 (To AP) and 10 (From AP), respectively.

The Proxima AP is passing the frame between the Cisco and Farallon wireless

stations.

103Wireless LANs and IEEE 802.11

The Address 4 field appears only when there are multiple APs. Usually, data

frames in a simple BSS with AP use DS bit combinations 01 and 10 to make their

way through the AP from one wireless station to another.

QUESTIONS FOR READERS

Table 3.3 DS Bits and Wireless LAN Data Frame Address Fields

Type of
Network

From
DS

To
DS Address 1

Address
2

Address
3

Address
4

Ad hoc (IBSS) 0 0 DA (5 RA) SA BSSID N/A
To AP 0 1 RA (5

BSSID)
SA DA N/A

From AP 1 0 DA (5 RA) BSSID SA N/A
ESS (multiple
APs)

1 1 RA TA DA SA

Hub

Client

Hub

Ethernet || Frames
Carrying IP Packets

Client Server

LAN 1

LAN 2

Router

IP Packet over
SONET (POS) on
SONET/SDH (with

added frame
overhead)

Client

Home FTTN

Home

Router

Wireless
AP

Wireless Network Carrying
IP Packets inside
802.11 Frames

Client Server Router

Fiber Carrying IP Packets
inside DSL Frames

FIGURE 3.15

IP packets are carried in many different types of frames, and some of those frames are

tucked inside lower level transmission frames.

104 CHAPTER 3 Network Link Technologies

Figure 3.15 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. Both LAN1 and LAN2 use Ethernet II frames. What would happen if frame

types on the two LANs were different?

2. SONET/SDH still has its own overhead bytes when IP packets are carried

inside the SONET/SDH frames. Why is the SONET/SDH overhead still

necessary?

3. What is the captive portal method of wireless access permission and how does

it work?

4. Ethernet LANs can extend to metropolitan area distances and perhaps beyond.

If Metro Ethernet evolved to remove all distance limits, what are the

advantages and disadvantages of always using Ethernet frames for IP packets?

5. Why are more than two addresses used in wireless frames in some cases?

Which cases require more than two addresses?

105Questions for Readers

This page intentionally left blank

CHAPTER

4Packet Optical Networks
and Forward Error
Correction

WHAT YOU WILL LEARN

In this chapter, you will learn more about packet optical networks, the latest optical
technology used to link nodes in the Illustrated Network. We’ll introduce coherent
optical transmission networks and dense wavelength division multiplexing. Then we’ll
examine forward error correction (FEC) in depth, starting with simple Hamming codes
and working up to Reed�Solomon block codes and new standards used in Optical
Transport Networks (OTNs).

You will learn how to configure FEC codes for various speed links used in the
Illustrated Network.

When it comes to technology, packet optical networks and links depend on three

key technology concepts:

• Optical networking with dense wavelength division multiplexing (DWDM)

• Tuneable wavelengths and coherent communication using higher-order

modulation

• Forward error correction (FEC).

Although not listed separately, packet optical networks often include interface

cards that can be inserted directly into a router or switch. These cards give the

device access to bit error rate (BER) statistics and other network parameters pre-

viously available only to other network devices such as external transponders or

“muxponders.”

Although all three of these technologies can be used independently, packet

optical networks benefit greatly when they are all used together. Multiplexing has

been used since the early days of networking, and fiber optic links use it as well.

Many optical fibers are engineered to do more than carry one very fast serial bit

stream. The bandwidth available on these types of fiber optic cables, just as cer-

tain forms of copper cables (especially coaxial cables) can carry more than one

serial bit stream. In copper networks, various channels are distinguished by fre-

quency, but in optical networks, it makes more sense to distinguish the channels

by wavelength. Various wavelengths can be multiplexed onto a single strand of

fiber—and demultiplexed at the opposite end of the link—with a process known

as wavelength division multiplexing (WDM). If the separation of wavelengths is

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00004-7

© 2017 Elsevier Inc. All rights reserved.
107

http://dx.doi.org/10.1016/B978-0-12-811027-0.00004-7

narrow enough and the resulting channels are dense enough (and there are at least

eight channels on the fiber), the result is known as dense wavelength division

multiplexing (DWDM). In this system, “non-dense” WDM is known as coarse

wavelength division multiplexing (CWDM).

Today, DWDM is standardized for international use as part of the Optical

Transport Network (OTN) defined as G.709 by the International Telecommunications

Union (ITU). Operation of these advanced fiber optical networks is tied to the use of

FEC codes to enable higher-speed connections over extended distances.

Why are FECs needed? Because with this increased DWDM bit-carrying

capacity comes an increased risk. A failed or marginally operating link can

threaten not only the loss of one stream of bits, but many bit streams that flow on

the same physical link. A failed link carrying many gigabits of information can

be catastrophic for a network unless some method to compensate for these losses

is used. These methods include not only FECs but also fast traffic reroute.

In the sections that follow, one other aspect of packet optical networks is

important to keep in mind. First, these networks, as the name implies, are in a

very real sense “optimized” for the transport of IP packets. This is not a literal

optimization in the sense that IP packets are favored over other types of traffic—

optical networks are intended to be versatile. But it is nonetheless true that most

voice and video today is carried inside IP packets, and optical networks have to

acknowledge that dominance.

However, the second point is that IP packets are usually sent over these packet

optical networks inside Ethernet frames. Ethernet has become more or less the de

facto standard for interface input and output, and packet optical networks are not

an exception. A lot of hardware and software exists to generate and interpret

Ethernet frames and so it makes sense to use this capability rather than invent yet

another Layer 2 frame format (Layer 2 frames are not the same as transmission

frames, as we will see again in this chapter).

PACKET OPTICAL NETWORKS AND ERROR CORRECTION
Whole books have been written on packet optical networks, so we’ll have to

limit this chapter to one aspect of packet optical network or another. We could

look at coherent optics with phase considerations, or how optical interface cards

make possible for routers and switches to directly monitor the state of the link

and protection switch long before a failed link loses gigabits of data. But this

chapter will focus on one of the most critical aspects of modern packet optic

transmission: the use of FEC to vastly improve the performance and reach of a

fiber optic link.

Even in this day and age, all communication networks deal with errors. Errors

can be induced by a number of things and showed up in digital networks as indi-

vidually flipped 0 and 1 bits, bursts of lost digits altogether, and outright loss of

108 CHAPTER 4 Packet Optical Networks and Forward Error Correction

signal until some intervention takes place. Odder sources of error include aircraft

landing on seldom used runaways (microwave), nuclear radiation in power plants

(fiber optic cable), and even fire heating wires strung over a building (twisted-

pair copper). One of the most common causes is inadvertent dig-ups (sometimes

called “backhoe fade”). Whatever the cause, all types of media are vulnerable to

the loss of one or (many) more bits in a data stream.

There is no Nobel Prize in networking for one very good reason: it’s too easy.

Only the simple stuff has any chance of working in the messy and complex real

world. The only real complication is the need to sometimes deal with mathemat-

ics, and mathematics makes many people’s eyes glaze over, mainly because they

have been taught mathematics in the most inefficient way: as a series of memo-

rized operations and relationships, methods that often prevent learners from see-

ing the profoundly important connections that numbers have with themselves and

the real world. The notations used (the “formalism” of mathematics) can be

daunting as well. One famous mathematician (Poincare) supposedly remarked

that while writing and poetry involve “giving different names to the same

thing”—think of all the different words we have for the color “red”—mathematics

involves “the art of giving the same name to different things”. . .the equal sign

rules everything.

Nevertheless, important mathematical concepts can be conveyed and explained

without heavy formalism. It just takes a lot more work. But the effort is always

worthwhile.

Returning to the simplicity of networking, it is easy to see that networks

implement a very basic form of communication. The terms used here were first

used by the man who invented in all back in 1948: Claude Shannon. His model

starts with this basic form of signaling:

Source/sender/transmitter-channel (noisy, error prone)-destination/receiver

The noisy channel introduces errors. If the signal is analog, meaning that all

possible values that the channel can carry are valid (as in an analog voice net-

work), there is no possible way to distinguish error from source signal.

Fortunately for analog voice networks, our brains do a good job of filtering out

errors in the form of hiss or pops, unless the noise exceeds to power of the origi-

nal signal (and we all know this happens). On the other hand, digital signals, usu-

ally a stream of bits (0 or 1 are the only valid values), offer a way to detect and

correct errors on a noisy channel, even if a bit sent as a 1 shows up as a 0 and

vice versa. And we’re going to see how that happens in a modern network with

packet optical links.

This is a good time to be more specific about the sources of error on the com-

munications channel. The nice thing about digitizing everything is that no matter

what type of noise is encountered on the link, the receiver can “clean up” the sig-

nal and eliminate errors. Seriously, methods explored here can essentially make

errors go away, no matter where they came from.

Modern networks do such a good job of dealing with errors that people

seldom realize that error handling is always a two-step process: error detection

109Packet Optical Networks and Error Correction

and error correction. But an elaborate system for error detection and correction

is not always needed in all communications systems. For example, receivers of

voice and video streams are very tolerant of transient errors, which show up as

pops in your ear or “static” on a screen. Data is more sensitive and usually han-

dled with retransmission requests. Some data, such as instructions sent to deep

space probes, simply cannot be repeated and yet must be received and used

without errors.

The extreme example of critical data that cannot be retransmitted led to the

deployment of FEC codes. Initially enormously expensive to implement, all forms

of communication can benefit today from a variety of available FEC techniques.

A functional definition of FEC could be “the ability of the receiver, based on

the possibly flawed information sent by the transmitter, to detect and correct

digital errors, within some limiting parameters, without the need to request a

retransmission.”

But exactly how do these various FEC techniques work? How do they help

eliminate errors in modern packet optical networks? And do you have to be a

mathematician to understand how these FEC codes are implemented at the trans-

mission frame level? (Fortunately, the answer to this last question is “No.”)

What follows is intended for a general reader conversant with modern Internet

terms and technology. No math skills are needed beyond an understanding of the

bitwise manipulation XOR. In fact, this piece includes the only explanation of

FEC codes for the nonengineer or mathematician that I have ever seen. (Full dis-

closure: I couldn’t find one, so I wrote my own in 1994.)

PACKET OPTICAL NETWORKS AND THE OPTICAL TRANSPORT
NETWORK
FEC is an essential part of a new set of standards that are part of the overall

architecture of a Packet Optical Network. At its simplest, this is a network that

is optimized for the sending of IP packets, not analog voice or asynchronous

transport mode (ATM) cells, over a fiber optic link. The distinguishing charac-

teristic of a packet optical network is that in many cases, but not all, the optical

interfaces are not in separate pieces of equipment, but implemented on simple

line cards that are placed in the router or switch like any other physical

interface.

Packet optical networks depend on more than just new optical interfaces. They

also rely on new optical transmission capabilities using higher-order modulation.

At the most fundamental level, contemporary optical links can modulate the light

on a span with more than just simple pulse amplitude modulation (PAM), where

a received signal above a given threshold signals a 1 bit and everything else is a

0. Coherent detection is a receiver-specific technique to allow reception of these

newer signals. DWDM transmitters transmit on a specific wavelength, while

110 CHAPTER 4 Packet Optical Networks and Forward Error Correction

receivers can be broadband (that is, they can receive several wavelengths) or

wavelength-specific (as in the case of coherent reception).

Packet optical networks can optimize for IP in many ways, but most follow a

set of international standards known as OTN. OTN defines standards that are

used in packet optical networks to assure interoperability and establish a level

playing field for vendors.

STANDARDS FOR PACKET OPTICAL NETWORKS
AND FORWARD ERROR CORRECTION
The ITU issues standards (technically, “recommendations” but they have the force

of international law) for all aspects of telecommunications. The main for packet

optical networks is G.709, which defines a standard OTN. There are also closely

related standards such as G.707 for submarine fiber optical cables and G.975,

which contains recommendation for FEC code use in DWDM submarine optical

systems. However, the FEC codes in G.975 can be used in other places as well.

What should an enterprise or network operator do if their local communica-

tions carrier does not offer fiber links that conform to OTN standards? You could

always run your own fiber, or course, but in many cases that is not possible.

Fortunately, the IETF has standardized RFC 6363, which defines how FEC

can be used with a stream of IP packets, whether the carrier employs packet opti-

cal network technologies or not.

When we configure FEC on our core routers at the end of this chapter, we’ll

see what types of parameters are usually configurable by network operators, even

though everything is based on OTN and packet optical standards.

HANDLING SINGLE BIT ERRORS AND BURST ERRORS
There are two categories of errors when bits are stored or sent over a communica-

tions channel. There are single bit errors and burst errors. Single bit errors are

likely to occur when bits are stored in memory or on a DVD and need to be read

by an application. Scratches on a DVD can reflect the light of the reading laser

and flip a bit, and radiation in the form of cosmic rays can flip a bit in computer

memory. For communications channels functioning at high bit rates, even the

smallest interference can wipe out multiple bits. In either case, reading or send-

ing, FEC codes make the equipment more reliable.

We will examine each type of error here and the types of FEC used to correct

bit errors. However, the emphasis will be on techniques used in high-bit-rate fiber

optical communication systems such as a packet optical network. Every network,

including packet optical networks, are subject to noise on the channel link, after

encoding and before decoded the bits. This is shown in Figure 4.1.

Let’s look at a bit stream example to see how adding an FEC code can make

errors all but disappear. Consider a stream of 100 bits send from a source to a

111Handling Single Bit Errors and Burst Errors

destination. There is no obvious pattern to the source bits, and they can represent

many things: a data file, a musical composition, or a video with sound track.

Suppose that the BERT in the line is 5%, or 0.05, or 1 in 20 (all are the

same). Now, this is a much higher BER than experienced in all but in the most

extreme conditions, a lot of errors will help to illustrate the points being made. In

this case, 5 out of the 100 bits sent will arrive with errors: 0 instead of a 1 bit, or

a 1 bit instead of a 0. These errors can be spread out as single bit errors, or con-

centrate in a single burst of 5 errors in a row.

What can be done to our string of 0s and 1s to improve the BER of 0.05 or

5%? The first thing to notice is that this also means we have a “success rate” of

0.95 or 95%. . .but we’d like to make that higher. We can do this by adding some

“parity bits” or “check bits” to the data stream and sending not a single bit at a

time, but a combination of data bits and check bits (we’ll call them check bits

and not parity bits because “parity bit” has a more narrow definition in asynchro-

nous communications channels).

Now watch what happens when we add a check bit to every data bit, sending

two bits instead of one, but doubling the number of bits needed to represent a

message (or halving the true data rate, whichever way you’d like to view it).

There are still only two valid “code words” to our system:

0 is sent as 00

1 is sent as 11.

Naturally, errors can flip one of more bits as the move along the channel. Two

valid states are sent but can be received as four possible states (that’s all that are

possible with two-bit code words):

00 (valid for 0)

01 (an error)

10 (an error)

11 (valid for 1).

Note that burst errors can easily change 00 to 11, which is still an error in the

data stream, but a valid code word at the line or channel level. These are unde-

tected errors and will be passed through as if they were valid symbols in the sys-

tem. We’ll have to do something else later to try and address these.

FIGURE 4.1

Channel and noise.

112 CHAPTER 4 Packet Optical Networks and Forward Error Correction

But if we restrict ourselves to considering single bit errors, and receive either

01 or 10, we know there has been an error on the line because we never send 01

or 10. These are not valid code words.

HAMMING DISTANCE AND HAMMING CODES

So we have detected the errors (in this case). But we can’t correct them, even

knowing they are in errors. Should 01 be “corrected” to 00? In a mathematical

sense, 01 is “closer” to 00 than it is to 11, as 10 is “closer” to 11. But not really:

either bit error pattern is certainly equally possible, and it’s just as likely 00

would become 10 or 01 or that 11 would become 10 or 01 (Figure 4.2).

Now, our simple two-bit code words can detect some errors, but correct none.

And at the cost of 100% overhead, we’ll have to do better. What if instead of two

bits for each data bit, we sent three bits? (I owe this example to Professor

Benjamin Schumacher at Kenyon College.)

Now there are eight possible code words, but we use only two valid ones, just

as before:

000 (valid for 0 bit sent)

001 (an error)

010 (an error)

011 (an error)

100 (an error)

101 (an error)

110 (an error)

111 (valid for 1 bit sent).

Now let’s look at a single bit error in one of these “triplet” code words. What

if 000 is sent, but an error causes it to be received as 010? We have detected the

error, just as before. But should the error be corrected to 000 or 111? Now we do

have a case where the distance between errored word and valid word is closer to

one valid code word than the other. 010 is “one step” (one bit change) away from

000, but two steps away from 111, meaning we would have to change two bits to

create the valid 111 code word. This is called the Hamming distance and we

should always choose the valid code word closest to the received error to correct

the error.

FIGURE 4.2

Simple two-bit code as square.

113Handling Single Bit Errors and Burst Errors

With burst errors, however, we might make things worse instead of better by

using the Hamming distance. What if 111 is sent, but a burst flips two bits and

we receive 001? We would “correct” this error as 000, and in doing so add an

error to the bit stream instead of subtracting one. This is a hazard of all error-cor-

recting codes: in some circumstances, we actually increase the net BER when try-

ing to correct errors. What we have with our simple three-bit code is a simple

form of SECDED: single error correction and double error detection.

As long as most of the bit errors are single bit errors, a SECDED system is

fine. (Later, we’ll see that some codes can use a soft-decision method to add

some measure of confidence to the simple hard decision “is-it-0-or-1?” code

implementation.) For example, if all previous errors have been two-bit bursts,

then 001 could use a soft decision implementation to correct the code word to

111 instead of the hard decision 000.

Leaving hard and soft decisions aside, we should always correct the error by

using the minimum Hamming distance from valid source code word to errored

received code word.

Often, the eight states of our simple three-bit code are laid out in cube, with

all 0xx code words forming one square and all 1xx code words forming the other.

Any errored state will always be fewer “edge steps” away from one valid code

word than the other (Figure 4.3).

The Hamming distance (d) between the code words used in any FEC system

is important. If d5 1, then we essentially have only 0 and 1 to work with, and

any bit error at all will turn one into the other—not a good situation. If d5 2, as

in our simple “send each bit twice” code using 00 and 11, then things get more

interesting. As we saw, we can detect errors in the form of 01 or 10, but we can’t

correct them. We call this a (2,1) code, where each information bit (1) is sent as

two-bit long code words (2).

FIGURE 4.3

Three-bit code Hamming distance cube.

114 CHAPTER 4 Packet Optical Networks and Forward Error Correction

But when d5 3, and the code is in the form (3,1), this allowed us to correct

any single bit error, as we saw, because any single bit error (see our list) still

leaves us closer to one alternative of the other (000 or 111). We can detect multi-

ple bit errors, but we can’t correct them (Figure 4.4).

Generally, if the Hamming distance d is equal to some even number x, then

the Hamming code can detect d/2 errors and correct (d/2)2 1 errors. For example,

if we chose code words so that the Hamming distance d5 6, then we can correct

(6/2)�15 2 bit errors and detect 6/25 3 bit errors. This is shown in Table 4.1.

A BETTER HAMMING CODE METHOD

Note that this higher performance is achieved at the price of 200% overhead (or

three times the bandwidth required).

In 1948, Claude Shannon proved that enough information could be sent

through a noisy channel to allow error correction. But the invention of a system

to actually perform the error correction came from Richard Hamming, who

worked with Shannon and even shared an office with him for a while. Shannon

included Hamming’s work as an example in his original paper.

The Hamming code investigated here, which is still in use in computers and

cellular systems, adds not 200%, but about 43% overhead to the information we

are sending. In order to do this, we have to get a lot more inventive with bit

manipulation than just sending more copies of the same bits. We have to add a

bit of processing to the bits before they leave and as they arrive. This can add

FIGURE 4.4

Correction and detection with Hamming distance54.

Table 4.1 The Relation Between Hamming Distance and
Error Correction Capabilities

If d is Then corrects this many And detects this many

1 NA NA
2 NA 1
3 1
4 1 2
5 2
6 2 3
7 3
8 3 4

115Handling Single Bit Errors and Burst Errors

delay to the throughput of the system, so different FECs are often used in differ-

ent places and for different applications.

For memory reads from a computer, 43% overhead is not too bad. But in case

you’re wondering, modern FECs for packet optical networks add anywhere from

5% to 20% to the raw data stream because the added delay is worth the enhanced

performance of the link. As always, the trade-off is in processing power and

throughput delay (Figure 4.5).

The popular Hamming code used here is written as (7,4). This means that the

sender looks at four data bits at the time (note we have progressed from examin-

ing 2 bits at a time, to three, and now four, and at each step we get the ability to

do more and more). Imagine is we could deal with thousands (!) of bytes, not

bits, at a time. . .we’ll do that soon.

Each group of four bits is examined and to them three check bits (also called

parity bits) are added, giving the “7” in the code notation. These are always the

important numbers in FEC notations: how many bits total are we sending, and

how many of them are raw data bits? For the (7,4) Hamming code, the answers

are 7 and 4.

We can add these “Hamming numbers” to Hamming distance and create a list

of essential parameters for all error correction techniques. Later, we will apply

them to byte-oriented Reed�Solomon codes, but for now, we’ll stick to bit-ori-

ented Hamming examples. Here are the parameters:

• m or s: Some texts use m and some use s, but to avoid confusion, we’ll just

use the term “symbols” to indicate whether the code is acting on individual

bits, 8-bit bytes, or even some other unit to produce the code words sent over

the wire. Technically, this is the “smallest correctable entity” (usually bits or

bytes) that the code can operate on.

• n: This is this number of symbols in the overall code word produced by the

method. In our example, n5 7.

• k: This is the number of information bits that are taken as a group to produce

the code word. In our example, k5 4.

FIGURE 4.5

Where error correction fits in.

116 CHAPTER 4 Packet Optical Networks and Forward Error Correction

• d: This is the Hamming distance that we have already talked about. In our

example, you have to change 3 bits to make another valid code word, so

d5 3.

There is one other parameter, t, that we’ll introduce later, when we talk about

Reed�Solomon codes. For now, all we have to know is that t is related to the dif-

ference between k and n (i.e., n�k) and measures the capabilities of the number

of check or parity bits that are added to the information bits k.

HAMMING CODE IN ACTION

In this example, we’ll call our 4 data bits d1 through d4, and the added parity bits

p1 through p3.

It’s obvious that the values of the four data bits we start with are provided by

the source. So how do we decide what values the three check/parity bits should

have? It’s clear that the 4-bit input groups can only be one of the 16 possibilities

listed here:

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111.

(I used to watch people draw these up by columns, right to left, and finally

realized that the rightmost column goes 0-1-0-1-0-1. . . and the next column goes

0-0-1-1-0-0-1-1. . . and third goes 0-0-0-0-1-1-1-1. . . for however many you need.

Who does them horizontally?)

To derive or compute the value of the three parity bits, we use the bitwise

exclusive-or (XOR) operation: the bits are 0 or 1, but not both. So 0 XOR 05 0

(false), and 1 XOR 1 is also 0 (false) because both values cannot be the same

with XOR. On the other hand, 1 XOR 05 0 XOR 15 1 (true) because it’s one or

the other, but not both.

117Handling Single Bit Errors and Burst Errors

With these simple rules, we can formulate three rules for determining the

value of the parity bits:

p15 d1 XOR d2 XOR d4
p25 d2 XOR d3 XOR d4
p35 d3 XOR d1 XOR d4

Don’t be thrown by the “double XOR” operation: just take the result of the

first XOR and use it as one of the values for the second XOR.

At this point, it might be a good idea to tackle the issue of what the numbers

mean. As soon as mathematics rears its ugly head, in fields as diverse as quantum

physics to relativity, we can take one of two attitudes. Either we can “shut up and

calculate” and follow the rules because they work, or we can wonder what the

numbers are telling us about the way reality works at a more fundamental level.

How can a series of XORT operations reveal whether received bits are differ-

ent than the ones sent and, moreover, which bits they are? I don’t claim to be a

mathematical theorist, but way to look at it is to consider how XOR works. If it’s

“one or the other but not both” then a bit-flipping error to either component

reverses the outcome (the XOR’d 0 result becomes 1, or 1 becomes 0). If we

overlap these XORs cleverly, not only can we detect the error, but we can find

out where in the string of bits the XOR has gone wrong and set the offending bit

back to the proper value. It is at once astonishing to the novice and inevitable to

the mathematician.

Let’s investigate an example using our Hamming (7,4) code. The data bits to

be sent are 1010. What are the values of the parity bits?

Well, p15 d1 XOR d2 XOR d45 (1 XOR 0) XOR 05 (1) XOR 05 1, so

p15 1

In the same way, p25 d2 XOR d3 XOR d45 (0 XOR 1) XOR 05 (1) XOR

05 1, so p25 1

And p35 d3 XOR d1 XOR d45 (1 XOR 1) XOR 05 (0) XOR 05 0

We can visualize the relationship between the four data bits (d1 through d4)

and the three parity/check bits (p1 through p3) as overlapping circles (Figure 4.6).

FIGURE 4.6

Data and parity bits as overlapping circles.

118 CHAPTER 4 Packet Optical Networks and Forward Error Correction

Note the relationship between three of the four data bits and the p-bit that

depends on them. If we fill in the data values from our 1010 example and then

add the values of the parity bits, we get this result (Figure 4.7).

Note now that each of the “p circles” contains an even number of ones. This

is the direct result of our XOR operations and a key to detecting and correcting

single bit errors in our example.

Suppose, for instance, that during transmission of our bit stream data bit

d1 is garbled and interpreted at the receiver as a 0 instead of a 1. The result

would be as shown in Figure 4.8, where the errored bit is shown in bold and

underlined.

How would the receiver know that there was an error in the first place? Let’s

work through the examples at first as if the receiver actually could look at our cir-

cles and make deductions based on their values. Then we’ll see how computers

actually do it.

If we were the receiver, we would first note that the p1 and p3 circles no lon-

ger have even parity (i.e., an even number of 1 bits). These two circles now have

odd parity. Circle p2, on the other hand, still has even parity. Therefore the

errored bit is where the p1 and p3 parity circles overlap, or with data bit d1. We

can correct it easily, as shown in Figure 4.9.

Is it really that simple? Yes, it is. Now let’s consider a bit error in data bit d4,

which is included not in two parity circles, but in all three. Again the errored bit

is in bold and underlined, as in Figure 4.10.

FIGURE 4.7

Parity bit values for the 1010 Example.

FIGURE 4.8

Correcting a d1 bit error.

119Handling Single Bit Errors and Burst Errors

Note now that the even parity of all three circles is thrown off. All circles

have an odd number of 1 bits. Therefore, the error is where all three circles over-

lap, or in data bit d4. Again, this is easy enough to correct, as shown in

Figure 4.11.

There’s only one more case to consider. What about a bit error that wipes out

not one of the data bits, but a parity bit? Can the Hamming error protection sys-

tem detect and correct errors in the parity bits themselves? Yes! Figure 4.12

shows a case where parity bit p2 has been changed from a 1 to a 0 bit during

transmission.

In this case, it’s not two overlapping circles that violate even parity, or even

all three, as in the previous cases. Now, only the p2 circle has odd parity, so this

FIGURE 4.10

A data bit d4 bit error.

FIGURE 4.11

The d4 data bit error corrected.

FIGURE 4.9

The d1 bit error corrected.

120 CHAPTER 4 Packet Optical Networks and Forward Error Correction

must be where the error is. When only one circle has a parity error, then it is the

parity bit itself that needs correcting, as shown in Figure 4.13.

And those are the only three cases we have to worry about: a parity violation

in one, two, or all three parity circles. The only difference would be which circles

contain the parity violations. Correcting the parity also corrects the error.

HAMMING CODE IMPLEMENTATION

Now, you might wonder how the receiver board in a computer looks at circles

that way we just did. Of course, computers are much too dumb to actually do

what we humans just did very easily. But we can get the same result with XORs,

just as we did at the sending side.

Here’s how. Both sender and receiver know that they are sending and receiv-

ing a Hamming (7,4) code (this is a must). The receiver first isolates the four data

bits and ignores, for the time being, the value of the three received parity bits.

Then the receiver recalculates the parity bit values, exactly as the sender did.

That is:

p15 d1 XOR d2 XOR d4
p25 d2 XOR d3 XOR d4
p35 d3 XOR d1 XOR d4

Once the values of these three p-bits are computed, the receiver performed

one additional XOR operation: the receiver XORs the received parity bits with

FIGURE 4.12

A bit error in the p2 parity bit.

FIGURE 4.13

The p2 bit error corrected.

121Handling Single Bit Errors and Burst Errors

the recomputed parity bits. The result of this operation is known as the syndrome

of the operation. (In many texts, the computed syndrome is called z.)

Figure 4.14 looks at the bit errors in each of the cases examined (i.e., errors to

d1, d4, and p2). The first two columns show the seven bits as sent and received,

then the third column shows the recalculated parity values at the receiver. The

last column shows the syndrome computed when the received parity bits are

XOR’d with the recalculated parity bits.

How does the syndrome help the receiver figure out which bits are in error?

Simple: you look it up in a table! The three bits of the parity syndrome z form

the index of an eight entry tables: 000 to 111. Each possible result tells the

receiver which bit is in error (or if there is no error at all, which we want to be

the case every time).

Table 4.2 shows the syndrome table for the (7,4) code.

Let’s apply each of our examples from our “circle examination method” to

our new “table lookup method”:

1. The d1 bit error syndrome5 101, so the receiver should flip bit d1. (That is, if

the received bit is 0, make it a 1, and if the received bit is 1, make it a 0.)

2. The d4 bit error syndrome5 111, so the receiver should flip bit d4.

3. The p2 bit error syndrome5 010, so the receiver should flip bit p2.

Note that if the received parity bit pattern matches the recalculated parity bit

pattern exactly, the syndrome would be 000, a case that occurs much more often

than an error, hopefully.

FIGURE 4.14

Syndrome computation at the receiver.

Table 4.2 The Syndromes for the (7,4) Code Example

Syndrome z 000 001 010 011 100 101 110 111
Unflip bit: All OK! p3 p2 d3 p1 d1 d2 d4

122 CHAPTER 4 Packet Optical Networks and Forward Error Correction

We’ve looked in detail at only three of the possible eight cases (no errors, to

errors in each of the four data bits and three parity bits). I hate to do this, but the

“proof” or demonstration that the syndrome method works for all five of the other

cases is, as they say, left as an exercise to the student. You will either verify the

method or make an unexpected mathematical discovery.

The nice thing about making this table is that it will be the same for every

implementation of the (7,4) code and therefore can be hard-coded into the

receiver chip. The other nice feature is that computers do many things very

quickly, and one of the things is using a computed result as an index into a table.

So this method is consistent, simple, and fast.

Another exercise is to examine cases where two (or more) bits out of the

seven-bit code words are flipped or errored. These can be consecutive or nonadja-

cent bit errors, it makes no difference. In these cases, it is easy to show that error

correction using computed syndrome results not in error correction (i.e., restoral

of the original seven bits sent), but in more bit errors than we started out with!

When a system is designed to correct single bit errors, that is precisely what

it does.

BURST ERRORS AND INTERLEAVING

So none of the methods we just examined do anything about the issue of burst

errors. Single bit errors are fine to correct, but many errors come not as single

events that smash individual bits, but longer bursts of static or other types of

impulse noise that wipes out several bits in a row: often tens of bits, sometimes

hundreds, occasionally thousands. In cases where thousands of bits might be

flipped or simply eradicated, one of the reasons that we have layered protocols

comes into play. One of the main tasks of an upper layer is to recover from

uncorrectable errors that occur at a lower layer. For example, uncorrectable errors

that might occur on a hop between two intermediate systems can be detected and

fixed by an end-to-end resend between the client and server at the endpoints.

But maybe we can do something about our error-correcting system to make it

more robust in the face of limited burst errors (there will always be a point where

the length of the burst exceeds the ability of the designed correction code’s to fix

bit errors).

The method commonly used is called interleaving, sometimes seen as scram-

bling. With interleaving, we do not send the code bits sequentially as soon as we

get them. We buffer the bits, both the data bits and derived parity bits, at the

sender until we have a set of bits in some predefined structure. Then we can inter-

leave the bits and send them not sequentially as they arrived, but in another pat-

tern altogether.

Let’s look at a simple example using of initial (3,1) code which sent every

data bit three times, so 0 became 000 and 1 became 111. As we saw, single bit

errors could be corrected as 010 -. 000 or 110 -. 111 due to the Hamming

123Handling Single Bit Errors and Burst Errors

distance characteristics. But if 000 became 110, we lost that ability by trying to

correct the string to 111.

But let’s buffer five of these code words together first. So if, for instance, 0

came in and became 000, we would not send it right away. Let’s call that AAA

and wait for another bit like 1 to became 111. That would be BBB in our simple

system, with the three letters standing for a particular 000 or 111.

In fact, let’s do this five times: AAA BBB CCC DDD EEE. (Note that the

spaces are simply for convenience of visualization: in practice, the bits would all

run together.)

Not we’re ready to send the 15 bits. . .but interleaved. We would send

ABCDE ABCDE ABCDE. At the received, even before error correction, the orig-

inal “frame” structure would be recovered by “unscrambling” the bits. Only after

de-interleaving would error correction be applied (010 -. 000) and the bits

decoded into the sent information (000 -. 0).

Now, suppose a burst error wiped out four consecutive bits in the stream, per-

haps like this:

ABCDE ABXXXX BCDE

When this sequence was un-interleaved, we would have: AAX BBB CXC

DXD EXE.

We have just, through the process of interleaved, made four single bit errors

out of a four-bit burst error! We have, with this simple method, created a system

that can recover from bursts up to five bits long. However, we have also intro-

duced another buffering and processing delay at the sender and receiver, and

delay and processing burden that grow with complexity and robustness. But given

the delay and burden of resending large chunks of errored data, the trade-off is

often more than worthwhile.

In practice, we can interleave much more complex “transmission frames” and

actually nest the interleavings to create more and more robust burst error correc-

tion methods. Audio CDs next interleavings and error correction to create a

method that can recover from some 3600 consecutive bits in error. This “delay”

is acceptable because audio is strictly a one-way process from disc to your ear.

The interleaving delay is absorbed long before the disc is burned, and the delay

to de-interleave when you press “play” is acceptable because once the audio pipe-

line is filled, the decoding is a continuous process.

So a more complete look at the steps in an error-correcting process includes

one or more interleaving stages, as shown in Figure 4.15.

MODERN FEC OPERATION
We are getting closer to configuring FEC on our inter-router SONET/SDH links.

But no one would use the simple Hamming (7,4) method and process every four

data bits before and after they were sent, not on a link that runs at multiple

124 CHAPTER 4 Packet Optical Networks and Forward Error Correction

Gigabits per second. For that use, we need something much more robust.

Fortunately, something much more robust does exist, in the form of

Bose�Chauduri�Hocquenghem (BCH) codes and Reed�Solomon (RS) codes,

both invented around 1960. It took a while before they became common, how-

ever, because 1960 was long before computer line cards were small enough and

fast enough to employ FECs based on either BCH or RS.

At the risk of getting too abstract, we should note that RS codes are a subset

of BCH codes, and both are in turn examples of cyclical codes. In fact, there is a

family of linear block codes, which are codes that act on blocks of symbols, usu-

ally byte or octets and not bits. Some linear block codes are polynomial codes

that are based on expressions like x51 x21 1. In practice, the polynomial mathe-

matics is handled by simple bit-shifting of the polynomial as a string of 0s and 1.

For example, the polynomial x51 x21 1 is the same as 10011. You just put a 1 in

a “1s position” and the “x2 position” and the “x5 position.” The rest of the bits are

0. These are the strings we use to XOR with our data stream at the sender and

receiver.

Some polynomial codes are cyclical codes based on Galois fields (“fields”

mean “based on modular n arithmetic”) that can never yield a result that is not

part of “code field” (this is a good thing). Examples of cyclical codes include

BCH and RS codes, although the whole field remains a very active place for

research.

It took a long time for computing to catch up with the mathematics. When I

wrote my first book on ATM cell-relay technology in the early 1990s, ATM used

a simple (for today) BCH (40,32) code that covered the 32 bits of the ATM cell

header and added 8 parity bits to the 40-bit header error control (HEC) field.

FIGURE 4.15

Interleaving and error correction.

125Modern FEC Operation

Note that outside of the 5-btye cell header, the rest of the 53-byte cell had no

error correction or detection at all! Let the higher layers worry about that.

The BCH (40,32) code for ATM provided SECDED: single error correction,

double error detection, all based on the Hamming distance of the code words used.

FEC AND SONET/SDH
In a way, it is unfortunate that our router network uses SONET/SDH links instead

of more modern OTN links. We’ll see why that is important soon, but for now it

is enough to note that the OTN standard (G.709) was finalized in 2012, after the

first edition of this book was written. However, SONET/SDH was standardized in

1988 (along with ATM), and there is still a lot of SONET/SDH out there. This

section will explore the limitations of employing FEC on SONET/SDH links, and

then examine the recommendations for using FEC on the digital wrappers estab-

lished by the OTN standard.

FEC codes used in SONET/SDH do not act on individual bits (the s or m

value for symbols). These BCH and RS codes act on 8-bit bytes or octets. They

use multiple levels of nested interleavings, and, as we have seen, each interleave

handles error correction for more and more consecutive bit errors by turning them

into single bit errors at heart. BCH and RS codes are much more complex than

Hamming codes, and we won’t be looking into how the mathematics works in

any detail. One good reason is that the FEC codes are not in the form (7,4) but

have notations like a shortened form of BCH-3 (8191, 8152). This code adds 39

parity or check bits to 4320 SONET/SDH information bits and corrects any 3 bits

in error. This method “sprays” the FEC bits around inside a SONET/SDH frame

to correct up to 24 bits in error, consecutive or not.

The FEC codes used in SONET/SDH are considered to be usages of in-band

FEC. This is unfortunate, because all FEC codes are actually “in-band” and sent

right along with the information bits they protect. If our Hamming (7,3) code was

not in-band, but truly “out-band” then we would have to send the 4 data bits on

one channel and the 3 parity bits on another, somehow synchronizing their arrival

and pasting them together at the receiver to perform the operations needed to cal-

culate the syndrome. A better name for the techniques used would be “in-the-

frame-FEC” for the SONET/SDH method and “out-of-the-frame-FEC” for the

others.

For all its technical inaccuracies, the use of the term “in-band” for SONET/

SDH FEC usage is not all bad. If nothing else, it points out how unique the FEC

technique is for SONET/SDH, and how different it is from “out-band” FEC used

for OTN links. The rigid structure of the OSNET/SDH frame means that only

higher link speeds have enough “spare bits” and therefore room in the frame for

the additional FEC bits. So the official G.707 FEC revision for SONET/SDH

applies only to OC-48/STM-16 line rates and above, starting at about 2.488 Gbps.

126 CHAPTER 4 Packet Optical Networks and Forward Error Correction

The rigid structure of the SONET/SDH frame, which defines the precise num-

ber, structure, and meaning of bits that must be sent every 125 microseconds

(1/8000th of a second), cannot change the line rate at which bits are sent. This

means that the FEC definition must be very creative when “retro-fitted” onto a

SONET/SDH link. The method is defined mainly for OC-48 or STM-16, but

higher rates such as 10 Gbps can be addressed as long as the line rate is a multi-

ple of 48 (SONET) or 16 (STM). You basically interleave N/48 or N/16 bit

streams 16 octets at a time in a very complex pattern to place the added FEC bits

inside the SONET/SDH frames.

To see where the FEC parity bits are placed in a SONET/SDH frame, recall

that the basic SONET/SDH frame is not a linear structure, but a two-dimensional

frame consisting of nine rows and a variable number of columns, as mentioned in

Chapter 3. The initial columns of each frame are the transport overhead (TOH)

and the remaining columns are the payload data bits. Frames are sent row by row,

left to right, until all none rows are sent and then the process begins again with

the next frame.

At the OC-48 or STM-16 line rate, the TOH consists of 9 rows and 144 col-

umns of octets (followed by 4176 octets of payload, which we need not consider

here). For FEC purposes, we assemble a “super-frame” of eight consecutive

frames, forming a kind of cubic structure that we can index with a coordinate sys-

tem such as a, b, c, although with certain twists.

In-band FEC uses only the first 18 columns of the TOH and not all 144 col-

umns. Confusingly, the columns are grouped not into 8-bit octets, but into 16-bit

groups indexed by parameter b, which can thus have the value b5 1 to b5 9

(actually, these 16-bit groups are only for OC-48/STM-16 FEC, but that’s all we

consider here). Thankfully, the a parameter still indexes the row, so ranges

between a5 1 and a5 9.

What about c? This index does not indicate which frame of the super-frame

being considered, as you might expect, but the individual bits within each b group

of 16 bits. The maximum value of c varies, and is always N/3 for SONET and N

for SDH. At the OC-48 line rate, c5 16 and for STM-16, c5 16 also. In other

words, the value of b is always 9 for all sizes of TOH, but c gets larger and

larger. At OC-192 and STM-64, the maximum value of c is 64. Tricky, but not

hard to figure out.

So a set of values of a5 3, b5 6, c5 9 means the third row of the TOH of

the super-frame, sixth group of “b-groups,” and the ninth bit (left to right) of the

sixth “b-group.” Therefore, the first A2 framing bit in the first frame of a super-

frame is indicated by a5 1, b5 4, c5 1, or S(1,4,1) in G.707 notation.

How does the a,b,c system help us to figure out where the FEC bits are placed

in a SONET/SDH frame? Well, let’s look at the FEC code used first. SONET/

SDH FEC is based on a BCH-3 code, shortened from (8191, 8152) to cover 4320

payload bits with 39 (81912 81525 39) FEC parity bits. Now, how can they just

shorten the code like that? By realizing that many of the fields in SONET/SDH

frames are set to all-zero, you can just take out these 0 bits at the sender and add

127FEC and SONET/SDH

them back in at the receiver, you can make the processing times much shorter.

The BCH-3 code can correct up to three bits in error. But we are going to inter-

leave these eight times (that super-frame structure), so the result is a method that

can correct bursts up to 24 bits in length.

To make sure people are paying attention, these 39 FEC parity bits are

referred to in the standard as an, where n5 0 to 38 (not 1 to 39, of course). And

these bits should never be confused with the a vector coordinate in the S(a,b,c)

notation, which ranges from a5 1 to a5 9. This is a good way to make sure

instructors and consultants have jobs, but not so good for students seeing this for

the first time. Here, we’ll refer to these 39 FEC bits as “FEC parity bit an” so

there is less confusion.

First, break up those 39 parity bits into 3 groups of 13 bits each. Then we

can “spray” them around the rows of the SONET/SDH frame they apply to.

This is done to minimize the delay: if the FEC bits for a row were not in the

row they protect, then more than one row would have to be buffered to com-

pute the syndrome and apply the corrections. This keeps the delay down to

about 14 microseconds. There are exceptions: there is no room at all in the 1st

and 4th rows of the SONET/SDH frame for FEC bits because the whole row is

taken up with other functions and pointers. So the FEC bits for these rows are

sent in the following rows, adding a slight delay to sender and receiver

processing.

Now we can see exactly where the 39 parity bits are placed in the frame. This

is shown in Figure 4.16. Note that each FEC symbol in each row represents

FIGURE 4.16

In-band FEC and the SONET/SDH “Super-frame.”.

128 CHAPTER 4 Packet Optical Networks and Forward Error Correction

13 parity bits. Although not shown in the figure, the 13 bits are located after three

unused bits in the b group, in bits c5 4 through 16.

How does a receiver know if the link is using in-band FEC or not? There is a

bit located at S(3,9,3) that, taken with the 7 bits in the super-frame “behind” it,

form an 8-bit repeated field called the FEC Status Indicator (FSI). For those who

have been paying really close attention: yes, this is the last unused bit before the

FEC parity bits for row 2 in the last b column. Only two bits are used for the FSI

(the last two bits in the super-frame): 00 means “no FEC used,” 01 means “FEC

in use,” and the 10 and 11 values are undefined.

There are more details not covered here, such as how the FEC bits are orga-

nized in the row, but this is most of it. There is a reason to cover all this complex-

ity, although the process remains essentially transparent to users. Is all the effort

really worth it? Aren’t SONET/SDH link already low enough in error rates that

we can just leave them alone?

Some vendors say “Yes, leave it be. . .” Because of all this complexity, not all

hardware vendors support FEC for SONET/SDH at all.

Yet there is a tangible payoff. If we assume the errors are independent

and Gaussian (very normal assumptions), then the FEC can improve a link

with a BER of 10210 to one of 10214, or 10,000 times fewer errors. Even a

seriously degraded link with a BER of 1026 (truly horrible for fiber optic

links) improves to 10214 with FEC in use. This can mean the difference

between keeping a link in service and having to replace it because of poor

performance.

Every FEC has limits too. This method fails at about 1023 BER (1 in every

1000 bits in error). Here the FEC will add to the errors instead of correcting

them.

FEC AND OTN
Once FEC moves from the strictures of the rigid SONET/SDH frame structures

and line rates, the shackles are off and the sky’s the limit. A few simple changes

make it possible to use almost any FEC you like, as long as sender and receiver

agree on its use. One key change is that OTN standards (often just called

“G.709”) allow various types of digital wrappers to operate at tunable wave-

lengths. When it comes to what you can do, the rules of OTN are much more per-

missive than they were in SONET/SDH.

You want to send IP packets over an OTN link? Go ahead. Ethernet frames?

No problem. SONET/SDH? Yes, even those frames and rates have been adopted

for OTN use.

The three Optical Transport Unit (OTU) levels of the OTN digital hierarchy

are shown in Table 4.3.

129FEC and OTN

There are four key aspects of the OTN standards (and I present them in a par-

ticular order here):

Protocol Transparency—OTN can carry all types of payload data, including,

as mentioned, IP packet, Ethernet frames and SONET/SDH frames. OTN line

rates are 7% higher than their corresponding payload line rates. The additional

bits are used for additional overhead and to accommodate many different

types of FEC methods.

Asynchronous Timing—OTN maps payloads into digital wrappers in an

asynchronous manner. This means that the OTN clock generating the frames

can run freely and not be locked to the “client” signal clock. Timing

mismatches are handled by allowing the payload to float in the OTN wrapper.

As an option, the payload clock can be used to generate the timing for the

OTN frames.

Management—OTN allows monitoring and management of both link

segments and end-to-end. Segments can overlap (a span can be a member of

more than one management segment) and the architecture allows up to six

monitoring segments at any point. So if a link from Network A passes through

Network B, the operator of both networks has access to relevant monitoring

and management information.

FEC—OTN does not add FEC onto a basic architecture, but builds FEC

consideration into it fabric. As should be obvious by now, very high data rates

over very long distances are subject to significant noise and large error bursts.

These links could not function without FEC. OTN uses RS (255, 239) FEC code

built right into the OTN frame outside of the frame payload area in a special

section called the FEC area (and so is considered to be out-band FEC instead

of in-band: it is outside of the payload, but still inside the OTN frame). Each 255

byte block contains 16 FEC bytes generated from 239 data bytes. As the code

designation indicates, OTN can correct up to 8 bytes of errors in a block and

detect up to 16 bytes of error in a block, and more sophisticated interleaving

can improve this at the cost of more processing and buffering delay.

Table 4.3 OTN and SONET/SDH Line Rates

G.709 OTN
level

Line rate Contents

OTU1 2.666 Gbps OC-48/STM-16 (2.488 Gbps)
OTU2 10.709 Gbps OC-192/STM-64 or WAN PHY for 10GBase-W Ethernet
OTU2e 11.09 Gbps 10G LAN Ethernet from switch/router at 10.3 Gbps

(G.Sup43)
OTU2f 11.32 Gbps 10 Fibre Channel
OTU3 43.018 Gbps OC-768/STM-256 or 40G Ethernet
OTU3e2 44.58 Gbps Up to four OTU2e signals
OTU4 112 Gbps 100 Gbps Ethernet

130 CHAPTER 4 Packet Optical Networks and Forward Error Correction

THE OTN FRAME AND FEC

Like SONET/SDH, OTN is layered hierarchy which spans the optical fiber at the

bottom to the payloads (called “clients” in OTN) that are carried inside the wrap-

per: IP packets, Ethernet frames, SONET/SDH, and others. It’s not necessary to

detail these layers, but it will be a good idea to take a quick look at the OTN

frame structure, if only to appreciate the difference between FEC accommodation

in SONET/SDH and OTN.

OTN frames have 4 rows and 4080 columns of bytes (octets). Frames are sent

starting with row 1, column 1, left to right, to row 4, column 4080. Each row con-

sists not of bytes as in SONET/SDH, but 16 interleaved FEC “blocks” of 255

bytes (16 3 2555 4080). Each 255-octet block consists of 238 bytes of payload,

1 octet of overhead, and 16 bytes of redundant FEC bytes. The FEC bytes are

carried in a special “FEC area” in the frame, columns 3825 to 4080 (16 FEC

bytes 3 16 blocks5 256 columns).

The 16 blocks in each row are interleaved so that each block can correct up to 8

bytes (64 bits) in error, and burst errors can be corrected up to 128 bytes long. All in

all, the frame structure in OTN is “optimized” for FEC and expects FEC to be used,

not added on. Unlike SONET/SDH, the FECs used in OTN can be or more than one

type, depending on whether the optical span is a submarine cable or in some other

environment. Naturally, both ends of the link must agree on the FEC method used.

There is OTU and optical data unit (ODU) overhead in the first 14 columns of

each row, flowed by two columns of optical payload unit overhead that is used to

fit the payload client signals into the OTN frame. The first six bytes of each OTN

frame are used for frame alignment, followed by eight bytes of OUT overhead.

The overall structure of the OTN frame is shown in Figure 4.17.

GENERIC FRAMING PROCEDURE

How do OTN frames allow so many different types of client payloads inside the

frame? Well, one way is that many potential client signals such as IP packets or

FIGURE 4.17

The OTN frame structure.

131FEC and OTN

Ethernet frames can be adapted to the OTN frame by using a kind of intermediate

structure called the Generic Framing Procedure (GFP) frame. IP packets can be

carried in OTN by loading them first into ATM cells or SONET/SDH frames, but

many IP packets will end up in OTN frames inside Ethernet over GFP frames.

Many interfaces use Ethernet already, so it will be easy to adapt these interfaces

to OTN using DWDM, but, as mentioned, this is not mandatory. As always, the

main requirement is that the equipment on the other end of the span be compati-

ble with whatever method is used by the sender.

GFP frames fall into two main categories: client frames and control frames.

Client frames carry the payloads (and some types of payload control information)

and control frames carry things like idle frames (to fill the link when no IP packet

or Ethernet frame is available) and other link management information.

Unlike OTN frames, the GFP frame has a simple, linear structure. The first two

bytes are the payload length identifier (PLI) and the next two bytes are a cyclical

redundancy check (CRC-16) to protect the PLI. The payload area that follows can

be up to 65,535 bytes long and end with an optional 4-byte frame check sequence

(FCS). The payload area includes a payload header that indicates the structure of a

payload (Ethernet frame, SONET/SDH, and so on), followed by the client signal

information. The general structure of the GFP is shown in Figure 4.18.

FEC RESEARCH AND DEVELOPMENT
Optical software engineers and developers continue to explore more and more

powerful varieties of FEC codes. As the minimization of hardware components and

the maximization on processing power continues FEC methods that were beyond

the capabilities of equipment not so long along will become (like everything else in

this field) first possible, then affordable, and finally common. Newer methods

might not yet be covered by standards or open implementations, which will impact

multivendor interoperability. However, there will always be a market for the first

or the best implementation of a given FEC technique, especially if it lowers the

overall cost of running the network.

This chapter has explored Hamming codes in depth and introduced BCH and

RS code. BCH and RS codes are examples of block codes and cyclical codes, but

there are other types of codes that remain an area of active research. Most

FIGURE 4.18

The GFP frame structure.

132 CHAPTER 4 Packet Optical Networks and Forward Error Correction

notable are the convolutional codes using Viterbi decoders. These codes operate

with a sliding sequence of data bits that are used to generate the code words. One

form of recursive convolutional code that acts on blocks and can be used in

OTNs is called a staircase code because of the particular way it operates. This is

often referred to as high-gain FEC (HG-FEC).

There are also concatenated codes and turbo codes that are very complex, but

offer very high degrees of error correction gain. Many of the codes in use today

are known as hard-decision FECs. That is, a single parameter such as the ampli-

tude of the incoming signal is examined and a decision is made as to whether this

should be a 0 or 1 bit. But when coherent optical devices are used, more than one

parameter is used to modulate the digital signal, such as phase and amplitude. But

which is more critical to 0 or 1 determination? Is an impulse more critical to the

value of the signal than phase? Or is it the other way around? Can this sensitivity

vary over time and in different situations such as in submarine cables? FEC codes

that take this all into consideration are called soft-decision FEC codes and are

important in coherent optic implementations.

OTN FOR THE ILLUSTRATED NETWORK
To add FEC to the links on the Illustrated Network, we would have to upgrade

the links from SONET/SDH to 10 Gbps. In practice, this could be a long and

tedious process, but in a book like this, it’s as easy as changing the Juniper

Networks SONET/SDH hardware interface port format (e.g., so-0/0/0) to the

interface format for 10G (xe-0/0/0). Juniper Networks also supports DWDM OTN

100G interfaces, which have the form et-0/0/0.

We haven’t examined the full configuration of interfaces yet, or how to assign

IP addresses, so we’ll confine ourselves to the FEC methods for 10G and 100G

interfaces and use the FEC codes available for each. Juniper Networks line cards

can detect and correct up to 1 in every 70 bits in error, on average. This can be

up to 1.9 billion error corrections per second, all in real-time and done without

resending any information. That kind of error rate without packet loss is what

makes FEC so attractive.

If we examine the FEC options for 10G interfaces, we’ll find three varieties of

FEC listed. Table 4.4 lists their common name in the parameter, the formal name,

and the originator of the method.

The ITU has been discussed before (G.975 is a standard for FEC on submarine

cables, but the FECs can be used in other types of links, of course), but AMCC

stands for Applied Micro Circuits Corporation (also abbreviated APM, as shown

in the table). Cortina Systems developed the Ultra-FEC method and was acquired

by Inphi afterwards, which is also reflected in the table. It’s not unusual for pri-

vate companies to pioneer new methods that are later adapted by standards bod-

ies: indeed, that’s better than standardizing on technologies that have never been

implemented (they know who they are).

133OTN for the Illustrated Network

These three methods are for Juniper Networks’ DWDM and OTN hardware,

but most other vendors support them, although interoperability is not always

given. Because gfec/efec/ufec are so common, they are sometimes called the “tri-

FEC” methods.

What 100 G interfaces? At this high data rate, FEC gets interesting. Not too

long ago, all FEC methods were hard-decision methods that decoded the inbound

signals bit-by-bit and dealt with only simple “is it a 0 or is it a 1?” situations

because direct-detect optics were used to recover these individual bits from the

optical-to-electrical domain.

But once coherent optical transmission came along with DWDM and OTN,

receivers took multi-bit samples of the incoming signals and looked at more than

one signal parameter before creating electrical 0 and 1 strings. This led to the

development of more powerful and intelligent FEC methods. These newer FECs

were called soft-decision FECs to distinguish them from their hard-decision pre-

decessors. Both perform the same basic tasks (error correction and signal gain)

but SD-FECs were better at the task (at the cost of more delay and processing

power required).

In other words, SD-FEC can correct more errors and tolerate more noise on a

link over greater distances than HD-FECs can. Table 4.5 shows the FEC para-

meters that can be used on Juniper Networks’ 100G Ethernet interfaces by com-

mon name, formal name, and FEC type.

For wireless networks, soft-decision low-density parity-check (LDPC) FECs are

very popular. Soft-decision FEC codes based on Turbo codes (Turbo product codes

or TPC), which have very high processing requirements, are also becoming more

common. Note that proprietary or vendor-specific implementations have interopera-

bility issues that standard methods are intended to avoid (but that does not mean

there are none: it just means no one should say “You should know better. . .”).
If performance is more of a concern than compatibility, you should use efec

or ufec for 10 Gbps and a soft-decision over a head-decision method for 100

Gbps. In many cases, gfec is the default method and the others must be explicitly

configured.

Once we’ve configured, e.g., sd-fec-ldpc on a 100G link, how do we know that

the FEC method is doing its job? All routers and related devices will have ways to

examine the operation of the interface, and for Juniper Networks devices on the

Illustrated Network, we can use the command show interfaces . . . extensive.

Table 4.4 FEC Methods for Juniper Networks 10G Interfaces

Common Name of FEC
Method Formal Name

Organization
(Originator)

gfec (“RS(255,239)” or “G709 FEC”) ITU G.709 Annex A ITU G.975
efec (“Enhanced FEC”) ITU G.975.1 Clause I.4 AMCC (APM)
ufec (“Ultra FEC”) ITU G.975.1 Clause I.7 Cortina/Inphi

134 CHAPTER 4 Packet Optical Networks and Forward Error Correction

Here’s example FEC performance output:

. . .

OTN FEC statistics:
Corrected Errors 13032402
Uncorrected Words 0
Corrected Error Ratio (3 sec average) 3.42e-05

. . .

What do these numbers mean? The answer is in Table 4.6.

QUESTIONS FOR READERS
1. What are some differences between hard decision versus soft decision error

control?

2. What is the meaning of the (x,y) notation in error correction codes?

3. Using the (7,4) example in the chapter, the string 0110101 is received as

0110100. What data or parity bit is in error and what is the syndrome?

4. How is the syndrome used to correct the bit in error?

5. What is the difference between “in-band” and “out-of-band” FEC in optical

networks?

Table 4.5 FEC Methods for Juniper Networks 100G Interfaces

Common Name of FEC Method Formal Name FEC Type

gfec (“RS(255,239)” or “G709 FEC”) ITU G.709 Annex A Hard decision
hg-fec (“High-gain FEC”, “staircase”) NA (proprietary) Hard decision
sd-fec-ldpc NA (Juniper-specific) Soft decision
sd-fec-tpc NA (Juniper-specific) Soft decision

Table 4.6 FEC Methods for Juniper Networks 100G Interfaces

FEC
Performance
Parameter Definition Notes

Corrected errors Number of bits received that
were in error but corrected

Count of corrected errors (should
be viewed along with uncorrected
words)

Uncorrected
words (UCW)

Number of code words received
that could not be corrected

A non-zero UCW count is good
and means no packet loss

Corrected Error
Ratio

Number of corrected bits
divided by number of bits
received

An estimate of the BER on the
link. A good overall measure of
link health.

135Questions for Readers

This page intentionally left blank

PART

II
Core Protocols

All hosts attached to the Internet run certain core protocols to enable their
applications to function properly. This part of the book examines these
protocols and shows how the router forms the glue that holds the Internet
together.

• Chapter 5—IPv4 and IPv6 Addressing
• Chapter 6—Address Resolution Protocol
• Chapter 7—IPv4 and IPv6 Headers
• Chapter 8—Internet Control Message Protocol
• Chapter 9—Routing
• Chapter 10—Forwarding IP Packets
• Chapter 11—User Datagram Protocol
• Chapter 12—Transmission Control Protocol
• Chapter 13—Multiplexing and Sockets

This page intentionally left blank

CHAPTER

5IPv4 and IPv6 Addressing

WHAT YOU WILL LEARN

In this chapter, you will learn about the addressing used in IPv4 and IPv6. We’ll
assign addresses of both types to various interfaces on the hosts and routers of the
Illustrated Network. We’ll mention older classful IPv4 addressing and the current
classless system. We will start to explore the differences between IPv4 and IPv6
addressing and why both exist.

You will learn about the important concept of subnetting and supernetting and
other aspects of IP addressing. We’ll detail the IP subnet mask as well.

In many ways, IPv4 and IPv6 are distinct protocols with important differences.

Nevertheless, both IPv4 and IPv6 are valid IP layer addresses, some networks use

both IPv4 and IPv6, and the packet data content is the same in both. Network

engineers often deal with both every day, and we will too. In the future, the

importance of IPv6 will only grow.

IPv4 addressing was fairly straightforward to understand before the Internet

exploded all over the world. Then the original (“classful”) rules for assigning net-

works IPv4 addresses didn’t work as well, and routers were getting overwhelmed

by the size and resources needed to maintain routing and forwarding tables.

This chapter investigates both IPv4 and IPv6 addressing, and the host and

router interfaces on the Illustrated Network have both IPv4 and IPv6 addresses

(see Figure 5.1). We’ll assign these addresses manually in this chapter.

We’ll start the discussion by describing the classless Internet routing (CIDR)

rules created so that we did not run out of IPv4 addresses in 1994, shortly after

the Web exploded onto the scene. Then we’ll describe the older classful system,

and, finally, we’ll talk about IPv6 addressing. This chapter also explores impor-

tant aspects of IP addressing subnetting and supernetting.

IP ADDRESSING
In Chapter 2 we worked a lot with the Linux and Windows clients and servers.

Let’s start with our FreeBSD hosts and routers to look at IPv4 and IPv6 addresses

on the device’s interfaces.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00005-9

© 2017 Elsevier Inc. All rights reserved.
139

http://dx.doi.org/10.1016/B978-0-12-811027-0.00005-9

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 5.1

The Illustrated Network IP addressing, showing the interfaces on the LANs and customer-

edge routers that we will be working with. Note that in most cases, all of the network

interfaces will have both IPv4 and IPv6 addresses.

140 CHAPTER 5 IPv4 and IPv6 Addressing

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

141IP Addressing

Figure 5.1 shows through shading the portion of the network we’ll be working

with in this chapter. All of the ISP routers have IP addresses, of course, both IPv4 and

IPv6, but we’ll only look at the addressing of the customer routers. Although it can be

important, we won’t worry about the addressing used internally by service providers.

The things that can go wrong there are far beyond this introductory discussion.

When the Illustrated Network was first configured, we manually assigned an

IPv4 address to the bsdserver Ethernet interface (em0) with ifconfig. The only

tricky part was translating the prefix length used on our network (/24) to a deci-

mal network mask for this host (this was done only to show this common

method). We could have used 10.10.12.77/24 as well, or even hex

(0xffffff00). We’ll talk about prefix lengths and network masks later on in this

chapter. The ifconfig command generates no output, but we can look at the

result using ifconfig without any parameters.

bsdserver# ifconfig em0 inet 10.10.12.77 netmask 255.255.255.0
bsdserver# ifconfig

em0: flags58843,UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST. mtu 1500

options53,RXCSUM,TXCSUM.

inet6 fe80::20e:cff:fe3b:8732%em0 prefixlen 64 scopeid 0x1
inet 10.10.12.77 netmask 0xffffff00 broadcast 10.10.12.255
ether 00:0e:0c:3b:87:32
media: Ethernet autoselect (100baseTX ,full-duplex.)
status: active

AUTOMATIC IP ADDRESSING
This chapter assigns IPv4 and IPv6 addresses manually on each device. This is still done, but it is

more common by far to assign IP addresses automatically with the Dynamic Host Configuration

Protocol, or DHCP. Routers can use DHCP as well. We’ll look at DHCP in a later chapter.

The interface flags are interpreted on the first line of the output. Interface em0

is up and running, and can send or receive, but not at the same time (simplex). It

can send and receive broadcasts and multicast, and has a Maximum Transmission

Unit (MTU) of 1500 bytes (a normal Ethernet frame). If a packet is queued for

output and is too large for this 1500-byte frame, then the packet content must be

fragmented into multiple frames, each in its own packet. We’ll talk about frag-

mentation in detail in a later chapter. The option line says that the frame check

sequence is generated when transmitting and checked when receiving.

Note that we got an IPv6 address (the inet6 line) as well. This is called the

link-local (0xfe80) IPv6 address. It is based on the MAC address and generated

automatically, with a prefix length (prefixlen) of /64. Newer versions of

FreeBSD function this way, as long as the local router is properly configured to

run IPv6. You can use the ifconfig command with the inet6 option to assign a

specific IPv6 address to the interface. (There’s a lot more to IPv6 addressing,

such as router-assigned prefixes, but we’re keeping it very basic here.)

142 CHAPTER 5 IPv4 and IPv6 Addressing

The next line lists the IPv4 address, netmask, and the address used as an IP

broadcast address to send packets to every device on the network. The MAC

address has a line all its own, followed by the type of media: 100-Mbps, twisted-

pair Ethernet, capable of sending and receiving (full-duplex) at the same time

(but em0 will not do that). The interface is active as well as up, which means that

it is sending and receiving bits.

Linux uses slightly different syntax to assign IPv4 addresses to interfaces.

Let’s assign an IPv4 address to the lnxclient Ethernet interface (eth0) using

ifconfig. In this case, the network mask format is easier to read. We’ll look at

the interface before the address is assigned, and then after, and find something

very different from FreeBSD with regard to the network broadcast address.

[root@lnxclient admin]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:B0:D0:45:34:64

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:43993 errors:0 dropped:0 overruns:1 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:7491082 (7.1 Mb) TX bytes:0 (0.0 b)
Interrupt:5 Base address:0xec00

[root@lnxclient admin]# ifconfig eth0 10.10.12.166 netmask 255.255.255.0
[root@lnxclient admin]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:B0:D0:45:34:64

inet addr:10.10.12.166 Bcast:10.255.255.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:44000 errors:0 dropped:0 overruns:1 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:7492614 (7.1 Mb) TX bytes:0 (0.0 b)
Interrupt:5 Base address:0xec00

This output gives much the same information as FreeBSD, but provides more

details for traffic statistics and error conditions. The last line of output gives details

about how the interface card communicates with the operating system and has noth-

ing directly to do with the network. Note that no automatic IPv6 addresses are gener-

ated. All versions of the Linux kernel newer than 2.2, regardless of distribution, now

support ways to give an interface an IPv6 address, but we will not do that.

However, Linux has also done something very odd with the broadcast address.

We’ll talk more about broadcast address formats later in this chapter, but it is sup-

posed to be formed by setting all of the host bits that follow the network bits in

the IP address to 1. Now, we set a network mask for 24 bits (255.255.255.0),
but Linux has set all the bits in the field to a string of 1 bits in the broadcast

mask to the last 24 bits of the IPv4 address, or 10.255.255.255. As we saw with

FreeBSD, the correct broadcast address for this network mask should be

10.10.12.255.
This means, as we’ll soon discover, that this older version of Linux expects

classful IPv4 addresses, and today we mostly use classless IPv4 addresses. (There

143IP Addressing

was some debate as to whether this was a “broken” version or install, but the

behavior is consistent and all else seems well. I was going to update this behavior

for this edition, but I decided to keep it to show how small things can have odd

effects, and how some things might need fixing to work properly.)

To fix the broadcast address so that the network functions properly (yes, it

matters), we’ll have to specify a broadcast address for lnxclient (and do the

same for lnxserver).

[root@lnxclient admin]# ifconfig eth0 broadcast 10.10.12.255
[root@lnxclient admin]# ifconfig
eth0 Link encap:Ethernet HWaddr 00:B0:D0:45:34:64

inet addr:10.10.12.166 Bcast:10.10.12.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:44000 errors:0 dropped:0 overruns:1 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:7492614 (7.1 Mb) TX bytes:0 (0.0 b)
Interrupt:5 Base address:0xec00

Let’s move on to the Windows devices. In Windows, you typically use the

graphical interface to assign IPv4 addresses, subnet masks, and default gateways.

The method is well-documented in many places and need not be detailed here.

You can easily view the current IP addresses by running the Windows ipconfig
command in the PowerShell. Here’s the result on wincli2.

Microsoft Windows PowerShell
(C) Copyright 2016 Microsoft Corporation. All rights reserved.
C:\Users\walterg.ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:

Media State : Media Disconnected
Connection-specific DNS Suffix . :

Wireless LAN Adapter Local Area Connection� 2:
Media State : Media Disconnected
Connection-specific DNS Suffix . :

Wireless LAN Adapter Local Area Connection� 3:
Media State : Media Disconnected
Connection-specific DNS Suffix . :

Wireless LAN Adapter wireless Network Connection:
Connection-specific DNS Suffix: Home Link-Local

IPv6 Address : fe80::25be:2a5a:2bbf:f25e%5
IPv4 Address: 10.10.12.222
Subnet Mask: 255.255.255.0
Default Gateway: 10.10.12.1

Tunnel Adapter isatap.Home:
Media State : Media Disconnected
Connection-specific DNS Suffix . : Home

144 CHAPTER 5 IPv4 and IPv6 Addressing

Tunnel adapter Teredo Tunneling Pseudo-Interface:
Connection-specific DNS Suffix . :
IPv6 Address. : 2001:0:9d38:90d7:3c93:2507:b820:7732
Link-Local IPv6 Address: fe80::3c93:2507:b820:7732%12
Default Gateway: ::

Unlike the Unix-based output, Windows associates a default gateway with the

interface. This information is properly part of the host routing and forwarding

routing table, and we’ll talk more about default gateways in a later chapter on

routing.

The IPv6 address for the LAN interface is a site-local address based on the

MAC address of the interface (see Chapter 3). The “%” number is just an index

for the order in which certain types of IP addresses were generated.

On working networks, more than just the automatic tunnel IPv6 address

is usually created. It is not unusual to see a Tunnel adapter Teredo
Tunneling Pseudo-Interface. Teredo is a Microsoft initiative, defined in

RFC 3904, that allows devices to reach the IPv6 Internet from behind a net-

work address translation (NAT) device. There is often a Tunnel adapter 6to4
Tunneling Pseudo-Interface as well, depending on how the routers are con-

figured. A full discussion of these Windows IPv6 interfaces is beyond the

scope of this book, but we’ll discuss IPv6 tunneling in more detail in

Chapter 9.

The customer edge routers are Juniper Networks routers. The configuration

files on these routers look very different from those on a Cisco router. Juniper

Networks router configurations are more like C language programs and are orga-

nized with braces in indented stanzas. However, Juniper Networks router config-

urations can be rendered in “set” language that looks more like Cisco’s style. For

example, on router CE0, the addressing on interface fe-1/3/0 is more complex

than on a host:

admin@CE0. show interface ge-1/3/0
unit 0 {

family inet {
address 10.10.11.1/24;

}
family inet6 {

address fc00:ffb3:d5:b:205:85ff:fe88:ccdb/64;
}

}
user@CE0.

In this format, all statements configured under another statement

(indented) apply to that higher level statement. Thus, both family inet and

family inet6 apply to unit 0, but only the address 10.10.11.1/24 applies to

family inet. The form is used often in this book, and becomes more familiar

with repetition.

145IP Addressing

This form can also be shown in the following more compact format, which is

the style we will use in this book:

admin@CE0. set interface ge-1/3/0 unit 0 family inet address 10.10.11.1/24;
admin@CE0. set interface ge-1/3/0 unit 0 family inet6 address

fc00:ffb3:d5:b:205:85ff:fe88:ccdb/64;

This output is for logical unit 0, the simplest case. Juniper Networks router

interfaces can have logical units numbered from 0 to 65535, and each can have

more than one IPv4 or IPv6 address. The LAN interface on CE6 looks very much

the same, except for the address specifics.

We’ll talk about the specifics of the IPv4 and IPv6 address formats, network

marks, and prefix lengths, and other topics, in the rest of this chapter. At the end,

we’ll see just what the complex IPv6 address format is telling us about the

Illustrated Network.

One type of address we won’t be exploring in this chapter is the anycast

address. To understand anycast addresses, consider that there are three major

types of IP addresses.

Unicast—This type of IP address is used to identify a single network

interface. It establishes a one-to-one relationship between the network address

and network endpoint (interface). So each unicast address uniquely identifies a

network source or destination.

Broadcast/Multicast—This type of IP address is used to identify a changeable

group of interfaces. Broadcast addresses are used to send a message to every

reachable interface, and broadcast domains are typically defined physically.

Multicast addresses are not limited to a single domain and multicast groups

are established logically. IPv6 relies on multicast addresses for many of the

discovery features of IPv6 and things that are done with broadcasts in IPv4. In

both multicast and broadcast, there is a many-to-one association between

network address and network endpoints. Consequently, one address identifies

a group of network endpoints, and information is replicated by routers to

reach them all.

Anycast—This type of IP address, formally defined in IPv6, is used to identify

a defined set of interfaces, usually on different devices. Anycast addresses are

used to deliver packets to the “nearest” interface, where nearness is defined as

a routing parameter. The same can be done in IPv4, but not as elegantly.

However, multicasts deliver to many interface destinations, while anycasts

deliver to only one, although many might be reachable. Anycasts are useful

for redundancy purposes, so servers can exist around the world, all with the

same address, but traffic is only sent to the one that is the “closest” to the

source.

This book uses mainly unicast IP addresses. Multicast and anycast addresses

will be introduced and used as necessary.

146 CHAPTER 5 IPv4 and IPv6 Addressing

THE NETWORK/HOST BOUNDARY
We just saw that the mask determines where the boundary between the network

and host portions of the IP address lies. This boundary is important: If it is set too

far to the right, there are lots of networks, but none of them can have many hosts.

If it is set too far to the left, then there are plenty of hosts allowed, but fewer net-

works overall.

In IP, the address boundary is moveable, and always has been. But in the past,

right through the big Internet explosion in the mid-1990s, the network/host

boundary in IPv4 could only be in one of three places. This produced lots of net-

works that were too small in terms of hosts, and many that were far too large,

capable of holding millions of hosts. Not only that, but there were so many small

networks, each of which needing a separate routing table entry in each and every

core Internet router, that the Internet threatened to drown under its own weight.

In a nutshell, the inability to aggregate Class C blocks drove routing

table pressure and the unsustainable rate of allocation of Class A and Class B

addresses. This would have caused IPv4 exhaustion by 1994 to 1995, as projected

in 1990.

So the rules were changed to allow the network/host boundary in IPv4 and

IPv6 addresses to be set almost anywhere (there are still some basic rules). When

applied to the former, fixed, IPv4 octet boundaries, if you moved the “natural”

boundary of the mask to the right of its normal position, this was called subnet-

ting and the address space gets smaller. (Actually, even the older “natural” IPv4

addresses could always be subnetted.) And if you moved the “natural” boundary

of the mask to the left of its normal position, this was called supernetting and the

address space became larger.

In this chapter, we will talk about subnetting and supernetting in detail.

Supernetting is more commonly called “aggregation” today, but we’ll call it

supernetting in this chapter just to make the contrast with subnetting explicit. We

will also talk about the current system of rules for hosts and routers concerning

the positioning of the boundary between the network and host portion of the IP

address, variable-length subnet masking (VLSM), and classless interdomain rout-

ing (CIDR). But first, let’s look at the IPv4 address in detail.

THE IPv4 ADDRESS
The IPv4 address is a network layer concept and has nothing to do with the

addresses that the data link layer uses, often called the hardware address on

LANs. IPv4 addresses must be mapped to LAN hardware addresses and WAN

serial link addresses. However, there is no real relationship between LAN media

access control (MAC) or WAN serial link addresses in the frame header and the

147The IPv4 Address

IPv4 addresses used in the packet header, with the special exception of multicast

addresses.

The original IPv4 addressing scheme established in RFC 791 is known as

classful addressing. The 32 bits of the IPv4 address fall into one of several classes

based on the value of the initial bits in the IPv4 address. The major classes used

for addresses were A, B, and C. Class D was (and is) used for IPv4 multicast traf-

fic, and Class E was “reserved” for experimental purposes. Each class differs in

the number of IPv4 address bits assigned to the network and the host portion of

the IP address. This scheme is shown in Figure 5.2.

Note that with Class A, B, and C, we are referring to the size of the blocks

being allocated as well as the region from which they were allocated by IANA.

However, Classes D and E refer to the whole respective region. Multicast

addresses, when they were assigned for applications, for example, were assigned

one at a time like (for instance) port numbers. (We’ll talk about port numbers in a

later chapter.) In the rest of this chapter, references to Classes A, B, and C are

concerned with address space sizes and not locations.

The 4 billion (actually 4,294,967,296) possible IPv4 addresses are split up into

five classes. The five classes are not equal in size, and Class A covers a full half

of the whole IPv4 address space. Class E addresses are “experimental” and some

of them have been used for that purpose, but they are seldom seen today.

In practice, only the Class D addresses are still used on the Internet in a class-

ful manner. Class D addresses are the IPv4 multicast addresses (224.0.0.0 to

239.255.255.255), and we’ll talk about those as needed. We will nonetheless talk

32-bit Address Starts with:

Class A

Class B

Class C

Class D

Class E

0 (0–127)

10 (128–191)

110 (192–223)

1110 (224–239)

1111 (240–255)

First
byte

Second
byte

Third
byte

Fourth
byte

Number of
Addresses:

% of
Address Space

231� 2,147,483,648

230� 1,073,741,824

229� 536,870,912

228� 268,435,456

228� 268,435,456

50

25

12.5

6.25

6.25

FIGURE 5.2

Classful IPv4 addressing, showing the number of addresses possible and percentage of

the total address space for each class. Class D is still the valid IPv4 address range used

for multicasting.

148 CHAPTER 5 IPv4 and IPv6 Addressing

about classful IPv4 addressing in this book, especially later on in this chapter

when subnetting is considered and when mentioning the routing protocol RIPv1.

However, the significance of classful IPv4 addressing is strictly historical.

Classful addressing comes up occasionally, and at least some introduction is

necessary.

This chapter, and this book, emphasizes classless IP addresses, the current

way of interpreting the 32-bit IPv4 address space. This scheme assumes that no

classes exist and is how routers on the Internet interpret IPv4 addresses. In class-

less addressing, the IPv4 network mask or prefix determines the boundary

between the network and host portion of the IP address instead of the initial IP

address bits. On a host, it is still often called a network mask, because hosts don’t

care about classful or classless, but it is called a prefix on a router.

Hosts really don’t deal with the differences between classful and classless IP

addresses. Routers, on the other hand, must. Because this book deals with net-

works as a whole, including routers, some understanding of both classful and

classless IPv4 addressing is beneficial.

DOTTED DECIMAL
IPv4 addresses are most often written in dotted decimal notation. In this format, each 8-bit byte in

the 32-bit IPv4 address is converted from binary or hexadecimal to a decimal number between 0

(0000 0000 or 0x00) and 255 (1111 1111 or 0xFF). The numbers are then written as four decimal

numbers with dots between them: W.X.Y.Z.

For example, 1010 1100 0001 0000 1100 1000 0000 0010 (0xAC 10 C8 02) becomes

172.16.200.2. And 1011 1111 1111 1111 0000 1110 0010 1100 (0xBF FF 0E 2 C) becomes

191.255.14.44, and so on.

Hosts on the same network (essentially a LAN) must have the prefix (network

portion) of their IP addresses (IPv4 or IPv6) be the same. This is how routers

route packets between networks that form the Internet: by the network portion of

the IP address. The whole IP address specifies the host on the network, and the

network portion identifies the LAN. The boundary between network and host IP

address bits is move-able for either classful or classless IP addresses. An IP

address can be expressed in dotted decimal, binary, octal, or hexadecimal. While

all are correct and mean the same thing, it’s most common to use dotted decimal

notation for IPv4 and hexadecimal (hex) for IPv6. (In fact, some RFCs, such as

those for HTTP [covered in Chapter 22], require dotted decimal for IPv4

addresses.)

The basic concepts of classful IPv4 addressing are shown in Figure 5.3 for the

three most common classes—A, B, and C. The figure shows the Internet name

assigned to the IPv4 address, the default network mask and prefix length for each

of the three common classes, and the IPv4 address in dotted decimal.

Note that when no network mask is given, the class of the address is deter-

mined by the value of the initial bits of the address, as already described. The

149The IPv4 Address

network mask can move this boundary, but in practice only to the right in classful

addressing.

Classless IPv4 addressing, on the other hand, as used on routers, does not

derive a default subnet mask or prefix length. The prefix length for classless IPv4

addressing must be given (by the netmask) to properly place the boundary

between NetID and HostID portions of the IPv4 address.

IP addresses, both IPv4 and IPv6, can be public or private. Public network

address spaces are assigned by a central authority and should be unique. Private

network addresses are very useful, but are not guaranteed to be unique. Therefore,

the use of private network address spaces has to be carefully managed, because

routers on the Internet would not work properly if a LAN showed up in two

places at the same time. Nevertheless, the use of private address spaces in IP is

popular for perceived security reasons. The security aspects are often overempha-

sized: The expansion of the locally available address space is the key reason for

private address use. (If you have one IP address and three hosts, you have a prob-

lem without private addressing.) But private address spaces must be translated to

public addresses whenever a packet makes it way onto the global public Internet.

Moreover, private IP addresses are not routable outside a local network, so a

router is not allowed to advertise a route to a private address space onto the pub-

lic Internet. Note that private addresses are just as routable as public ones within

your own network (as on the Illustrated Network), or by mutual consent with

another party. They are not generally routable on the global public Internet due to

their lack of uniqueness and usual practices.

Class A

Class B

Class C

First
byte

Second
byte

Third
byte

Fourth
byte

NetID HostID

NetID HostID

NetID HostID

8 bits for NetID, 24 bits for HostID

16 bits for NetID, 16 bits for HostID

24 bits for NetID, 8 bits for HostID

FIGURE 5.3

The classful IPv4 address for classes A, B, and C. Note how the boundary between

network identifier and host identifier moves to the right, allowing more networks and fewer

hosts in each class.

150 CHAPTER 5 IPv4 and IPv6 Addressing

Almost all networks today rely on private network addresses to prevent public

IPv4 address exhaustion, so these addresses are not just to test networks and labs

any longer. Customer-edge routers often translate between a large pool of private

(internal) and a smaller pool of public (external) addresses and insulate the local

LAN from the outside world. We’ll talk more about private IPv4 address in the

next section of this chapter.

When obtaining a public IP address, a user or organization receives an address

space that should be globally unique on the Internet. (Sadly, you often find your-

self “blackholed” to nowhere for some ISP to route your packets because some-

one else used your address space internally for some private network without

permission!) This first piece is the network portion (prefix) of an IP address

space, such as 191.255.0.0. This example uses a so-called “Martian” IPv4

address, which is a valid IP address, but not used on the Internet. Technically, the

address space beginning with 191.255 is reserved, but could be assigned in the

future. The 0.0 ending means an IP network is referenced, and not a host (in this

case, but hosts sometimes have IPv4 addresses that end with 0). Some TCP/IP

protocol stacks struggle with IPv4 addresses ending in 0 or 255, so it is best to

avoid them. The host portion of the IPv4 address is assigned locally, usually by

the LAN network administrator. For example, a host could be assigned IPv4

address 191.255.14.44.
The examples in this chapter use the manual, static IP address assignment

method. When this method is used with public IP addresses, the organization

still either obtains the IP network address range on its own, or uses the range

of IP addresses assigned to the organization by its ISP. The Dynamic Host

Configuration Protocol (DHCP) makes it possible to assign IP addresses to

devices in a dynamic fashion. DHCP is the method many organizations use

either for security reasons (to make it harder to find device IP addresses) or to

assign a unique IP address to a device only when it actually needs to access the

Internet. There are many more uses for dynamic IP address allocations on the

Internet, and much more to discuss, and DHCP will be explored in a later

chapter.

When the topic is routers, IP addresses are often written in the ,netid,
hostid/prefix. form to determine the netid/hostid boundary. To completely

identify a particular host on a particular network, the whole address is needed.

When all 32 bits of the IPv4 address are given, and the prefix is not, this is called

a host address on a router. In classless routing, there is no fixed separation point

between the network and host portion of the IP address: It is completely deter-

mined by the prefix, which must be known. In dotted decimal notation, the full

range of possible IP addresses can run from 0.0.0.0 to 255.255.255.255.
Prefixes can run from /0 (a special, but useful, case) to /31. Until recently,

the /31 prefix was often useless to routers (some organizations still avoid them,

while others embrace them), as we will see in a later chapter, and the /32 prefix

is the same as the host address.

151The IPv4 Address

PRIVATE IPv4 ADDRESSES

RFC 1918 established private address spaces for Classes A, B, and C to be used

on private IP networks, and these are still respected in classless IP addressing.

Books such as this one, where it is not desirable to use public IP addresses for

examples, use RFC 1918 addresses throughout, much like using “555” telephone

numbers in movies and on TV.

There are also IP address ranges set aside specifically for documentation,

established in RFC 5737. These are 192.0.2.0/24 (TEST-NET), 198.51.100.0/24
(TEST-NET-2), and 203.0.113.0/24 (TEST-NET-3). There are even a few other

“documentation” ranges for specialized applications. However, this book uses

RFC 1918 addresses (except for the chapter on NAT) because they are so com-

mon, a book like this is not technically “documentation,” and because the subnets

are all the same size (/24) and often similar (192 and 198, for example).

The private IP address ranges follow:

• Class A: 10.0.0.0 through 10.255.255.255 (10.0.0.0/8, or just 10/8)

• Class B: 172.16.0.0 through 172.31.255.255 (172.16.0.0/12, or just 172.16/12)

• Class C: 192.168.0.0 through 192.168.255.255 (192.168.0.0/16, or just

192.168/16)

There are three very important points that should always be kept in mind

regarding private addresses. First, these addresses should never be announced by

a routing protocol on a local router to the public Internet. However, these

addresses are frequently assigned and used when they are isolated or translated to

other addresses. We’ll look at network address translation (NAT) in a later chap-

ter. In summary,

• Private IP addresses are not routable outside the local network (they cannot be

advertised to the public Internet).

• They are widely used on almost all networks today (even our small home

network with DSL uses private IP addresses).

• Private addresses are usually translated with NAT at an edge router to map the

private addresses used on a LAN to the public address space used by the ISP.

UNDERSTANDING IPv4 ADDRESSES

IP addresses and their prefixes are read in a certain way and have special mean-

ings depending on how they are written and used. For example, the classful IPv4

address 192.168.19.48 is read as “host 48 on IP network 192.168.19.0.” In a

classless environment, as on a router, the prefix length, in this case /24, must be

known. Routers often drop trailing zeros, 192.168.19.0/24 is the same as

192.168.19/24. All IP network addresses must have the bits in the host address

field set to 0 and this address cannot be assigned to any host. (Typically, nothing

152 CHAPTER 5 IPv4 and IPv6 Addressing

on a host prevents this address assignment. It just probably won’t work properly.)

Note that while the table is describing a particular /24 address in the examples,

it’s not the address itself but its location in the field specified by the mask that is

critical.

Table 5.1 lists some specific forms of IPv4 addresses, what they look like, and

whether they can be used as a source or destination address or have some other

special use.

IPv4 addresses in example formats such as 0.0.0.46 and 192.168.14.0 are

never actually seen as packet header addresses. Loopback addresses are used on

hosts and routers for testing and aren’t even numbered on the interface. All sys-

tems “know” that packets sent to the loopback addresses (any IPv4 address start-

ing with 127) are not sent out the network interface. Note that on a router, the

“loopback interface,” as opposed to the loopback address, is often used to hold

the IP address of the router itself (and not a particular interface). Because routers

have many interfaces, using the “router address” as a source of destination

address helps make the router reachable—and manageable—even when a particu-

lar interface is down.

When these forms are not used in their defined roles (e.g., when something

like 172.16.255.255 is used as a packet source address instead of a destination),

the result is usually an error.

Table 5.1 Special Forms of IPv4 Addresses, Showing How Some Are Limited
in Application to Source or Destination

Special
Address NetID HostID Example Use

Network itself Non-0 All
zeros
(0 s)

192.168.14.0 Used by routers: on a host,
means “some host,” but it is
not used.

Directed
broadcast

Non-0 All
ones
(1 s)

192.168.14.255 Destination only: used by
routers to send to all host on
this network.

Limited
broadcast

All 1 s All 1 s 225.255.255.255 Destination only: direct
broadcast when NetID is not
known.

This host on
this network

All 0 s All 0 s 0.0.0.0 Source only: used when host
does not know its IPv4
address.

Specific host
on this network

All 0 s Non-0 0.0.0.46 Destination only: defined, but
not used

Loopback 127 Any 127.0.0.0 Destination only: packet is not
sent out onto network.

153The IPv4 Address

THE IPv6 ADDRESS
In addition to IPv4 (often written as just IP), there is IP version 6 (IPv6). IPv6

was developed as IPng (“IP: The Next Generation” because the developers were

supposedly fans of the TV show “Star Trek: The Next Generation”). (IPv5 existed

and is defined in RFC 1819 as the Streams 2 [ST2] protocol.)

This section is not intended to be an exhaustive investigation of IPv6.

The emphasis here is on the IPv6 header and address, and how IPv6 will affect

router operation. IPv6 has been around since about 1995, but pressure to transi-

tion from IPv4 to IPv6 is mostly recent. (The exhaustion of the IPv4 address

space has been delayed mainly through the use of NAT and DHCP.) Today, the

pressure for transition from IPv4 to IPv6 comes mainly from network service

providers and operators and other groups with large internal networks, such as

cellular telephone network operators, as well as places with large populations

with mobile devices of all kinds, including cars, tablets, and anything that can

attach to the “Internet of Things” (IoT).

In some applications, major IPv6 addresses are confined to the core of large

IP networks, and customers and users still see only IPv4 addresses.

FEATURES OF IPv6 ADDRESSING

The major features of IPv6, such as IPSec, have nearly all been back-ported into

IPv4. However, the major design features of IPv6 follow:

• An increase in the size of the IP address from 4 bytes (32 bits) to 16 bytes

(128 bits).

• An increase in the size of the IP header from 24 bytes (192 bits) to 40 bytes

(320 bits). (Although aside from the address fields, the header is actually

smaller than in IPv4.)

• Enhanced security capabilities using IPSec (if needed).

• Provision of special “mobile” and autoconfiguration features.

• Provision for support of flows between routers and hosts for interactive

multimedia.

• Inclusion of header compression and extension techniques.

The IPv6 address increases the size of the IP address from 4 bytes (32 bits) to

16 bytes (128 bits). For backward compatibility, all currently assigned public IP

addresses are supported as a subset of the IPv6 address space. The IPv6 address

size increases the overall IP packet header size (and total TCP/IP overhead) from

the current 24 bytes (192 bits) to 40 bytes (320 bits). However, the IPv6 header is

much simpler than the IPv4 header.

IPv6 includes autoconfigured address and special support for mobile (not

always wireless) users. A new mobile feature called chained headers might allow

the faster forwarding of IPv6 packets through routers, and forbids intermediate

154 CHAPTER 5 IPv4 and IPv6 Addressing

fragmentation of IPv6 packets in routers. The path MTU size must always be

respected in IPv6 routers.

IPv6 features support for what are called “flows.” Flows were included in

IPv6 because forwarding packets at wirespeed was originally considered impossi-

ble. Flow caching (the association of IPv6 packets into flows with similar TCP/IP

header fields) was thought to be the workaround. However, flow caching is now

widely discredited in the IPv4 world and flows are now established and applied

to stateful firewall filters (Chapter 28). The flow field in IPv6 is normally set to

all 0 s.

IPv6 is a good fit for a dynamic environment. There are many address discov-

ery options bundled with IPv6, including support for autoconfiguration, finding

the maximum path MTU size (to avoid the need for fragmentation, which IPv6

routers will not do), finding other hosts’ MAC addresses without ARP broadcasts,

and finding routers other than the default.

The last major feature in IPv6 is a standard for header compression and exten-

sion. At first, these two features may seem contradictory, but they are actually

complementary. Header compression addresses situations where the 40 bytes of

the IPv6 header consists mostly of “empty” or repeated fields (like all-0 bit

fields). In IPv6, there is a standard way of compressing the 40 bytes of the header

down to 20 or so. There is also a way to extend these IPv6 header fields for future

new features (IPv4 also has header extension options).

IPv6 ADDRESS TYPES AND NOTATION

There are no broadcast addresses at all in IPv6, even directed broadcasts (these

were favorites of IPv4 hackers). In IPv6, multicast addresses serve the same pur-

pose as broadcasts do in IPv4. The difference between IPv6 anycast and multicast

is that packets sent to an anycast IPv6 address are delivered to one of several

interfaces, while packets sent to a multicast IPv6 address are delivered to all of

many interfaces.

There is no such thing as dotted decimal notation for IPv6. All IPv6 addresses

are expressed in hexadecimal. They could be expressed in binary as well, but 128

0 s and 1 s are tedious to write down. IPv6 addresses are written in 8 groups of

16 bits each, or 8 groups of 4 hexadecimal numbers, separated by colons. Some

examples of IPv6 addresses follow (you may see the hex “letters” in upper-case

or lower-case):

FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
1080:0000:0000:0000:0008:0800:200 C:417 A
Because this is still a lot to write or type, there are several ways to abbreviate

IPv6 addresses. For example, any group can leave out leading 0 s, and all-0

groups can be expressed as just a single 0. A long string of leading 0 s can simply

be replaced by a double colon (::). In fact, as long as there is no ambiguity,

groups of 0 s anywhere in the IPv6 address can be expressed as ::. The double

colon can only be used once in an IPv6 address.

155The IPv6 Address

Even with these conventions, the first IPv6 address given earlier cannot be

compressed at all. The second address can be expressed as

1080::8:800:200 C:417 A
This is better than writing out all 128 bits, even as hexadecimal. Because only

one set of double colons can ever be used inside an IPv6 address,

1080:0000:0000:9865:0000:0000:0000:4321
could be written as

1080:0:0:9865::4321
or

1080::9865:0:0:0:4321
but never as

1080::9865::4321
(How big are the missing groups of 0 s to the left or right of 9865?)
A special case in IPv6 is made for using IPv4 addresses as IPv6 addresses.

For example, the IPv4 address 10.0.0.1 could be written in IPv6 as

0:0:0:0:0:0:A00:1
or even

::A00:1
IPv4 addresses in IPv6 can still be written in dotted decimal as

::10.0.0.1
The double colon at the start is the sign that this is an IPv6 address even

though it looks just like an IPv4 address. Many routers and other devices allow

this convention.

IPv6 ADDRESS PREFIXES

The first few bits of an IPv6 address do reveal something about the IPv6 address,

although IPv6 addressing is in no way classful. IPv6 addresses have an address

type, and the type is determined by the format prefix of the IPv6 address. There

are reserved addresses in IPv6 as well, for things like loopback (::1), multicast

(starting with FF), and so on. There is also an unspecified address consisting of

all 0 s (0:0:0:0:0:0:0:0, compressed as just ::) that can be used as a source

address by an IPv6 device that has not yet been assigned an IPv6 address. IPv6

address space is also reserved for OSI-RM Network Service Attachment Point

(NSAP) addresses, and some other protocols.

All of these format prefixes are supposed to be given in hexadecimal, not

binary. An IPv6 address that begins with 1101 means 0001 0001 0000 0001, and is

the same as 11::1.. . . An IPv6 multicast address begins with FF and means 1111
1111:1111 1111.

There are several basic forms of IPv6 address. Like many IPv4 addresses,

IPv6 address spaces are often handed out by ISPs to their customers, usually

starting with 200x. There are also ways to assign variable-length fields for

the registry identifier (the authority that assigned this IPv6 address space to the

ISP), provider identifier (the ISP), subscriber identifier (the customer), subnet

156 CHAPTER 5 IPv4 and IPv6 Addressing

identifier (a group of physical links), and the interface identifier (such as the

MAC address). However, most ISPs will assign IPv6 addresses just as they do

IPv4 addresses (i.e., as a network address space and prefix length). Provider

independent IPv6 addresses are not handed out by ISPs.

There used to be two types of local IPv6 addresses: site-local and link-local.

Local IPv6 addresses are addresses without global significance, and they can be

used over and over again as long as they do not cause confusion to hosts or rou-

ters. Local addresses start with the same 7 bits: 1111 111 or FE in hexadecimal

(overall, the first 10 bits are important). Site-local addresses are now deprecated

(the Internet word for “more than obsolete”). Link-local addresses can be used

between two devices that are part of the same broadcast domain or on a point-to-

point link.

Private IPv6 addresses usually begin with FC00 (the full form is FC00::/7) and
are called unique local-unicast addresses (ULA or ULA local or even ULA-L).

Usually, link-local IPv6 addresses end with a 64-bit representation (called EUI-64

by the IEEE) of the 48-bit MAC address. The EUI-64 is a concatenation of the

24-bit OUI used in the MAC address with the 40-bit extension formed by pre-

pending the 16 bits 0xFFFE to the lower 24 bits of the MAC address.

SUBNETTING AND SUPERNETTING
Let’s take a look at all aspects of finding and moving the boundary between net-

work and host bits in the IP address. The moveable boundary is an important one,

because routers performing indirect delivery generally only need to look at the

NetID or prefix of the entire IP address to determine the next hop and then find

the output interface to send the packet on its way. Of course, direct delivery

requires both prefix and host addressing examination, which is why the location

of the NetID/HostID boundary is so important.

How do routers and hosts know precisely where the boundary between prefix

and host address is in the IP address? Only when this prefix/host boundary is

known will the device know if the next hop is a router. And that, as we’ll see in a

later chapter, makes all the difference.

In the following discussions, the examples used are chosen for their simplicity,

not for completeness.

SUBNETTING IN IPv4

The IP address space was originally classful. (Of course, they didn’t know it was

classful back then—it was just the IP address space). As such, it contained a num-

ber of special purpose and private addresses. These characteristics of the first

three classes, which have already been discussed, are summarized in Table 5.2.

157Subnetting and Supernetting

Even before the Web exploded and everyone needed an IP network address

for their PCs and Web sites, it was obvious that Class A and B addresses would

quickly become exhausted, leaving only Class C addresses for most networks.

However, these addresses only allow 254 hosts per IP network (0 and 255 were

for the network and broadcast addresses). Many networks quickly exceeded this

limit.

Also, Internet core routers must have a separate routing table entry for every

reachable IP network. For example, in 1993 there were fewer than 10,000 routes

on most backbone routers, and this did not grow to 100,000 until about 2001.

Now, it is not uncommon to add 2000 routes per week.

SUBNETTING BASICS

IP address subnetting applies to any IP address. The original application of sub-

netting was so that point-to-point links between routers did not require a full /24

address for each link. Subnetting also allowed a single Class C IP address to be

used on small LANs having fewer than 254 hosts connected by routers instead of

bridges. Bridges would simply shuttle frames among all of the ports on the

bridge, but routers, as packet layer devices, determine the output interface for a

packet based on the network portion of the IP address. If only one address is

assigned to the entire site, but two LANs on the site are connected through a

router, then the address must be subnetted so that the router functions properly.

Basically, you need to create two distinct address spaces, and the IP host

addresses assigned on each LAN segment must be correct as well. The LAN seg-

ments now become subnets of the main IP address space.

Subnetting is done using an IP address mask. The mask is a string of bits as

long as the IP address (32 bits in the case of IPv4). If the mask bit is a 1 bit, the

corresponding bit in the IP address is part of the network portion of the IP

address. If the address bit is part of the host portion, the corresponding mask bit

is set to a 0 bit. A mask of 255.255.0.0 means that the first 16 bits of the IP

address are part of the network address and the last 16 bits are part of the host

portion of the address.

All subnet masks must end in 0, 128, 192, 224, 240, 248, 252, 254, or 255—the

values of each bit position as they are “turned on” left to right in any octet.

Table 5.2 Classful IPv4 Addresses and Default Masks

Class Initial Bits Range Default Mask

A 0 0 to 127 255.0.0.0
B 10 128 to 191 225.255.0.0
C 110 192 to 223 255.255.255.0

Note: The value of the initial bits automatically limits the range of addresses possible in each class.

158 CHAPTER 5 IPv4 and IPv6 Addressing

Strangely, subnet masks were once allowed to turn on bits that were “noncontiguous”

(not starting at the left of the address without gaps). This is no longer true, and the

effect is to restrict masks to the ending values listed. Note that 255.224.0.0 is a valid

subnet mask, as is 255.255.248.0 and 255.255.255.252. Once the 1 bits stop, the

rest of the subnet mask must be set to all 0 bits.

Subnet masks can be written in as many forms as there are for IP addresses:

dotted decimal notation, bit string, octal, or hexadecimal. Seeing subnet masks in

either dotted decimal or hexadecimal notation, or the newer prefix “slash” nota-

tion, also known as CIDR notation, are the most common. Sometimes the default

mask for an IP address class is called the “natural mask” for that type of address.

In all cases it is possible to change the default mask to move the boundary

between the network and host portions of the IP address to wherever the device

needs to see it. All devices, whether hosts or routers, which need to route the

packets within the subnetted network, must have identical masks. All routing pro-

tocols in wide use today exchange subnet mask information together with routing

information.

The use of the default masks for the original classful IP address space is

shown in Table 5.3. The more bits, the more network identifiers, and the fewer

bits, the fewer host identifiers possible.

Subnetting moves the boundary between the network and host for a particular

classful IP address to the right of the position where the boundary is normally

found. We will see later that supernetting moves the boundary between network

and host for a particular classful IP address to the left of this position. CIDR

(which uses VLSM) can move the boundary anywhere.

It is important to realize that subnetting does not change anything with respect

to the outside world. Internet routers still deliver the packets as before. It is the

customer or site router that applies the subnet mask and delivers packets to the

subnets. Instead of the usual two parts of the IP address, network, and host, we

now have network, subnet, and host. However, even at the beginning of the class-

ful era, Class A blocks were subnetted into /16 s and /24 s internally as

appropriate.

Table 5.3 Use of Default or “Natural” Subnet Masksa

Original
Class Default Mask

Network/
Host Bits Example Interpretation

A 255.0.0.0 8/24 (/8
prefix)

10.24.215.86 is host 0.24.215.86 on
network 10.0.0.0

B 255.255.0.0 16/16 (/16
prefix)

172.17.44.200 is host 0.0.44.200 on
network 172.17.0.0

C 255.255.255.0 24/8 (/24
prefix)

192.168.27.3 is host 0.0.0.3 on network
192.168.27.0

aThe more bits, the more network identifiers; the fewer bits, the fewer host identifiers possible.

159Subnetting and Supernetting

Look at a simple LAN (192.168.15.0) before and after subnetting, as shown

in Figure 5.4. The subnet creates two equal-sized subnets, but the Internet

routers deliver packets as before. The subnet adds one “extra” bit to the default

Class C mask. If this bit is 0, the first subnet is intended, and if the bit is 1,

then the second subnet is intended. The hosts must be numbered according to

the subnet, naturally, and all have the same subnet mask so they can determine

which addresses are still on their subnet (same NetID) and which are not

(different NetID).

Many implementations will not allow the assignment of the first subnet

address (the network) or the last (broadcast). A LAN with 254 hosts subnetted

into two subnets only yields 126 host addresses per subnet, not 127.

A sometimes tricky subnet issue is determining exactly what the subnet

address (all 0 bits after the mask) and broadcast address (all 1 bits after the mask)

are for a given IP address and subnet mask. This can be difficult because subnet

masks do not always fall on byte boundaries as do classful addresses. An IP

address like 172.31.0.128 might not look like the address of the network itself,

Hosts

Router

Internet

192.168.15.0
network

192.168.15.255
broadcast

255.255.255.0
mask

Before Subnetting

192.168.15.1 192.168.15.2 192.168.15.129 192.168.15.253 192.168.15.254

Hosts

Router

Internet

192.168.15.0
network

192.168.15.127
broadcast

192.168.15.128
network

192.168.15.255
broadcast

255.255.255.128
mask

After Subnetting

192.168.15.1 192.168.15.126 192.168.15.129 192.168.15.253 192.168.15.254

Router

Internet

192.168.15.0
network

192.168.15.255
broadcast

255.255.255.0
mask

efore Subnetting

Hosts

Router

192.168.15.0
network

192.168.15.127
broadcast

192.168.15.128
network

192.168.15.255
broadcast

55.255.255.128

92.168.15.1 192.168.15.126 192.168.15.129 192.168.15.253 192.168.1

FIGURE 5.4

Subnetting a LAN, showing how the value of the initial bits determines the subnet. Host

addresses, if assigned manually, must follow the subnet mask convention.

160 CHAPTER 5 IPv4 and IPv6 Addressing

but it might be. A network address, in some implementations of TCP/IP, cannot

be assigned to a host. (172.31.0.128 with a subnet mask of 255.255.255.128 is a

network address.) Consider the address 172.18.0.126 with a subnet mask of

255.255.255.192. What is the subnet and broadcast address for this subnet?

What range of host addresses can be assigned to this subnet? These questions

come up all the time, and there are utilities available on the Internet that do this

quickly. But here’s one way to do it by hand.

The first thing to do is to mask out the network portion of the IP address with

the subnet mask by writing down the mask bits. Then the subnet portion of the

address can be easily marked off by “turning on” the masked bits. Next, it is easy

to form the subnet and broadcast address for the subnet by setting the rest of the

bits in the address (the host bits) first to all 0 bits (network) and then to all 1 bits

(broadcast). The resulting address range forms the limits of the subnet.

Let’s look at an example. Figure 5.5 shows how to derive the network and

broadcast address answers for IP address 172.18.0.126 with the subnet mask

255.255.255.192.
These answers are important when subnetting the IP address space because

care is needed to assign host addresses to the proper subnets (and router inter-

faces). Having a “discontiguous” classful major network that has been subnetted

–>
–>

–>
–>

–>

–>

IP Address
Subnet Mask

Subnet Address
(Host = all 0s)

Broadcast
Address
(Host = all 1s)

Many TCP/IP implementations allow assignment of
172.18.0.64 and 172.18.0.127, but not all!

The valid host address range on subset
172.18.0.64 is 172.18.0.65 through

172.18.0.126 (62 hosts).

Mark out
subnet...

Then get the:

172.18. 0.126
255.255.255.192

172.18. 0.126
255.255.255.192

172.18. 0.64

172.18. 0.127

10101010
11111111

00010010
11111111

00000000
11111111

10101010
11111111

00010010
11111111

00000000
11111111

10101010

10101010 00010010

00010010 00000000

00000000

Natural Class B Mask Subnet Host

Prefix (network portion)

01111110
11000000

01111111

01000000

01111110
11000000

FIGURE 5.5

Finding subnet host address range, showing those available for host assignment. Many

routers allow the use of subnet and broadcast addresses as if they were host addresses.

161Subnetting and Supernetting

so that part of the space is reached through one interface of the router

(“10.24.0.0 over here. . .”), and the other part of the subnetted major network is

reached through another interface (“10.25.0.0 over there . . .”) can be a problem

unless care is taken with the subnets and the masks that establish them.

One of the issues using RFC 5737 addresses for books such as these is that all

three networks are “/24 s,” which means that any subnetting cannot fall on a byte

boundary. That’s one reason the 10.0.0.0/8 RFC 1918 private address remains so

popular: it is easily subnetted on byte boundaries (/16, /24) and therefore the

most flexible private address.

CIDR AND VLSM

Today, the standard methods for moving the network/host address boundary are

variable-length subnet masking (VLSM) for host addressing and routing inside a

routing domain, and classless interdomain routing (CIDR) for routing between

routing domains. (We’ll talk more about routing domains later in this book. For

now, think of a routing domain as an ISP’s collection of routers.) And although

treated separately here for introductory reasons, it is important to realize that

VLSM is the fundamental mechanism of CIDR.

CIDR (defined in RFC 1519) and VLSM (defined in RFC 1860) address more

general issues than simple subnetting. We’ve been looking at addresses from the host

perspective in this chapter so far. Let’s discuss CIDR from the router perspective.

CIDR was an immediate answer to two problems: first, the impending exhaus-

tion of the Class A and Class B address space, and second, the rapid increase in

Internet core routing table sizes to handle the many Class C addresses required to

handle new users.

In CIDR, a block of contiguous IP addresses from the former classful address

space are assigned in a group, such as groups of Class C addresses. This allows a

service provider or large customer to configure IP networks from a few hosts up

to 16,384 hosts. The number of contiguous addresses needed is determined by a

simple count of the number of host addresses required. The original CIDR plan,

applied to Class C addresses, is shown in Table 5.4. Contiguous address numbers

flow seamlessly between former class boundaries, allowing assignment of address

“chunks” for larger networks.

The CIDR RFC does not “subtract” two host addresses for the network itself

(final bits all 0 s) and a broadcast address (final bits all 1 s). CIDR applies mainly

to router operation, and routers do not assume any structure of the IP addresses in

the packets they route. The limitation on assigning the high and low IP addresses

to a host interface is a function of the host TCP/IP implementation (and some,

like routers, do not enforce any limitations at all).

CIDR changed the terminology that applied to IP addresses. Routes to IP net-

works are now represented by prefixes. A prefix consists of an IP network

address, followed by a slash (/), and followed with an indication of how many of

the leftmost contiguous bits in the address are part of the network mask applied

162 CHAPTER 5 IPv4 and IPv6 Addressing

for routing purposes. For example, before CIDR, the Class C address

192.168.64.0 would ordinarily have a mask of 255.255.255.0. Subnetting could

add bits to this major network mask, but only in the fixed patterns and values out-

lined in the previous section. CIDR enabled a “CIDR-ized” network address to be

represented as 192.168.64.0/18, and that was all the information needed.

Sometimes this is abbreviated even further to just 192.168.64/18, but the two

forms are equivalent. The notation just means that a “subnet mask 18 bits long

should be applied to 192.168.64.0.” This is the same as writing “192.168.64.0
with mask 255.255.192.0” but in more compact form.

Table 5.5 shows all possible prefix lengths, their netmasks in dotted decimal,

and the number of classful networks the prefix represents. It also shows the num-

ber of usable IPv4 addresses that can be assigned to hosts once the network

address itself and the directed broadcast address are subtracted. We’ll talk about

the special 0/0 address and prefix length in Chapter 8. All possible mask lengths

are shown for /1 to /32. The /0 mask, when applied to the 0.0.0.0 IP address,

matches the whole Internet and is discussed in the routing chapters.

Even when CIDR was used, all bits after the IP network address had to be zero,

an aspect of IP addressing that did not change. For example, 192.168.64.0/18 was

a valid IP network address, but 192.168.64.0/17 was not (due to the presence

of the “1” bit for the “64” in the 17th bit position). This aspect of CIDR is

shown in Figure 5.6. The IP network 192.168.64.0/18 is a CIDR “supernet”

because the mask contained fewer bits than the natural mask in classful

IP addressing.

THE /31 PREFIX
In many cases, a /31 prefix that allows only two IPv4 addresses on a subnet is useless. Hosts are

not normally assigned addresses that indicate the network itself (the lowest address on the subnet)

or the directed broadcast (the highest address on the subnet). Because a /31 prefix only allows

the final bit to be 0 or 1, this prefix was not useful for a subnet with hosts. Many subnets

(Continued)

Table 5.4 Address Grouping Under CIDRa

Number of Hosts Needing Addresses Class C Addresses Given by Registry

Fewer than 256 1 Class C network
Fewer than 512 but more than 256 2 contiguous Class C networks
Fewer than 1024 but more than 512 4 contiguous Class C networks
Fewer than 2048 but more than 1024 8 contiguous Class C networks
Fewer than 4096 but more than 2048 16 contiguous Class C networks
Fewer than 8192 but more than 4096 32 contiguous Class C networks
Fewer than 16,384 but more than 8192 64 contiguous Class C networks

aContiguous address numbers flow seamlessly between former class boundaries, allowing
assignment of address “chunks” for larger networks.

163Subnetting and Supernetting

THE /31 PREFIX (CONTINUED)
normally use a /30 prefix (at most), which yields two useful host addresses in addition to the low

and high addresses.

However, many router networks employ the /31 prefix to address the end-points of a point-

to-point link. There are no hosts to worry about, and only the router network need worry about

(Continued)

Table 5.5 CIDR Prefixes and Addressinga

Prefix
Length

Dotted Decimal
Netmask

Number of Classful
Networks

Number of Usable
IPv4 Addresses

/1 128.0.0.0 128 Class A’s 2,147,483,646
/2 192.0.0.0 64 Class A’s 1,073,741,822
/3 224.0.0.0 32 Class As 536,870,910
/4 240.0.0.0 16 Class A’s 268,435,454
/5 248.0.0.0 8 Class A’s 134,217,726
/6 252.0.0.0 4 Class A’s 67,108,862
/7 254.0.0.0 2 Class A’s 33,554,430
/8 255.0.0.0 1 Class A or 256 Class B’s 16,777,214
/9 255.128.0.0 128 Class B’s 8,388,606
/10 255.192.0.0 64 Class B’s 4,194,302
/11 255.224.0.0 32 Class B’s 2,097,150
/12 255.240.0.0 16 Class B’s 1,048,574
/13 255.248.0.0 8 Class B’s 524,286
/14 255.252.0.0 4 Class B’s 262,142
/15 255.254.0.0 2 Class B’s 131,070
/16 255.255.0.0 1 Class B or 256 Class C’s 65,534
/17 255.255.128.0 128 Class C’s 32,766
/18 255.255.192.0 64 Class C’s 16,382
/19 255.255.224.0 32 Class C’s 8,190
/20 255.255.240 16 Class C’s 4,094
/21 255.255.248.0 8 Class C’s 2,046
/22 255.255.252.0 4 Class C’s 1,022
/23 255.255.254.0 2 Class C’s 510
/24 255.255.255.0 1 Class C 254
/25 255.255.255.128 1/2 Class C 126
/26 255.255.255.192 1/4 Class C 62
/27 255.255.255.224 1/8 Class C 30
/28 255.255.255.240 1/16 Class C 14
/29 255.255.255.248 1/32 Class C 6
/30 255.255.255.252 1/64 Class C 2
/31 255.255.255.254 1/128 Class C 0
/32 255.255.255.255 1/256 Class C (1 host) 2 (1 host route)

aAll possible mask lengths are shown, for /1 to /32. The /0 mask matches the whole Internet and will
be discussed in the routing chapters.

164 CHAPTER 5 IPv4 and IPv6 Addressing

THE /31 PREFIX (CONTINUED)
the use of internal address spaces. With /31 prefixes, a single Class C address space can be used

to provide addresses for 128 (256 divided by 2) point-to-point inter-router links, not just 64 (256

divided by 4).

CIDR allowed the creation of a network such as 192.168.64.0/18 with

16,384 hosts (14 bits remain for the host portion of the 192.168.64.0 network)

instead of requiring 64 separate IP network addresses to be assigned and config-

ured. CIDR did more than allow the grouping of contiguous Class C addresses

into bigger networks than possible before. Once the principle was established,

CIDR allowed the aggregation of all possible IP addresses under the specified

prefix into this one compact notation. This kept routing table sizes under control

in the late 1990s.

Where does VLSM fit in? As mentioned, VLSM applied more to hosts and a

single routing domain. Basically, in the days of classful IP addressing, all subnets

of the same address had to have the same mask length. So you could, for exam-

ple, subnet 10.0.0.0/8 into 10.0.0.0/16 subnets, but every device on every sub-

net had to have the same /16 mask. This could be okay if all the subnetted LANs

had roughly the same number of hosts, but what about point-to-point links

between routers on the subnet? They could get by with a /31 or /30 mask because

there were only two endpoints, but they had to have room for the same thousands

of hosts as the rest of the /16.

IP Address

Natural Mask

CIDR Mask Bits

This method allows
64 Class C networks
to be gathered into
one routing table entry:
192.168.64/18.

00000000

00000000

00000000

11111111 11111111 11111111

111111111111111111111111

11000000 10101000 01000000

Supernet Portion

Natural Class C Mask

Natural mask:
192.168.64.0 � 192.168.64/24

CIDR mask:
192.168.64.0 � 192.168.64/18

192.168.64.0/18

255.255.255.0

255.255.192.0(/18)

FIGURE 5.6

CIDR in operation. Basically, supernetting moves the natural mask to the left while

subnetting moves it to the right.

165Subnetting and Supernetting

Note that the Illustrated Network is an offender: The links between our routers

use /24 masks for point-to-point links (falling on an easy-to-use byte boundary).

We would not do this in the real world, but it will help our understanding of sim-

ple examples when we turn to routing later in this book.

IPv6 ADDRESSING DETAILS
Let’s take a quick look at some of the differences between IPv4 and IPv6 addres-

sing. The use of the IPv6 address space is determined by the value of the first

few bits of an IPv6 address. Routing in IPv6 is similar to IPv4 with CIDR and

VLSM, but there are a few points to be made to clarify this.

IPv6 addresses can be provider based, provider independent, or for local use.

All provider-based IPv6 addresses for “aggregatable” global unicast packets begin

with either 0010 (2) or 0011 (3) in the first four bit positions of the 128-bit IPv6

address.

Typical IPv6 address prefixes would look like:

2001:0400::/23
2001:05FF::/29
2001:0408::/35
and so on.

The 64 bits that make up the low-order bits of the IPv6 address must be in a

format known as the EUI-64 (64-bit Extended Unique Identifier). Normally, the

48-bit MAC address consists of 3 bytes (24 bits) assigned to the manufacturer

and 3 bytes (24 bits) for the serial number of the NIC itself. A typical MAC

address would look like 0000:900 F:C27E. The next to the last bit in the first

byte of this address is the global/local bit, and is usually set to a 0 bit (global).

This means that the MAC address is globally assigned and is using the native

address assigned by the manufacturer. In EUI-64 format, this bit is flipped

and usually ends up being set to a 1 bit (the meaning is flipped too, so in IPv6,

1 here means global). This would make the first byte 02 instead of 00. For example,

0000:900 F:C27E becomes 0200:900 F:C27E (not always, but this is just a

simple example).

To convert a MAC address to a 64-bit address that can be used on an interface

for the host portion of an IPv6 address, we insert the string FFFE between the

manufacturer and the serial number fields of the MAC address (between the first

and the last 3 bytes). The MAC address becomes 0200:90 FF:FE0F:C27E. This is

more easily shown as follows:

• MAC address: 0200:900 F:C27E
• Split in half: 0200:90 0 F:C27E
• Insert FFFE: FF FE
• Form EUI-64: 0200:90 FF:FE0F:C27E

166 CHAPTER 5 IPv4 and IPv6 Addressing

Link-local IPv6 addresses begin with 1111 1110 1000 (FE80 in hexadecimal,

making the first two bytes FE80 if all of the trailing 6 bits in the second byte are

0 bits). ULA local addresses are in the form FC00::/7. In IPv6, interfaces

are expected to have multiple addresses, a shift from IPv4. It’s common to find

three IPv6 addresses on an interface: global, link local, and site local. It is also

common to use multiple link-local addresses, one based on the MAC and the

other based on random numbers.

Both forms usually end with the 48-bit IEEE MAC address, but again with the

added FFFE bits to form the EUI-64 identifier. The FC00 ULA address forms are

used as the private addresses in IPv6 (just as 10.0.0.0 and the others in IPv4),

and that’s how they are used in this book.

IPv6 addresses appear in sources and outputs about equally with capitals

(FE80) or lower case (fe80), and we’ll see both. (In the RFCs, however, these are

universally capitalized.) The major formats of the IPv6 address are shown in

Figure 5.7.

Two routers connected by a small LAN can use the link-local IPv6 address

of FE80::,EUI-64 formatted MAC address. on their interfaces. This type of

address is never advertised by an IPv6 router attached to the Internet, and it

cannot be used across subnets. On point-to-point links, a distinguishing identifier

128 bits

Provider Site

16 bits

Host

64 bits48 bits

16 bits 64 bits38 bits

0 Interface ID

7 bits

Global Routing Prefix

001 Global Unicast Address Format

Private ULA Unicast Address Format

Link-Local Unicast Address Format

Subnet ID Interface ID

Subnet ID

0

1111110110000
FC00::/7

11111110100000
FE80::/10

10 bits 54 bits 64 bits

Interface ID

FIGURE 5.7

Major IPv6 address formats, showing how the value of the initial bits determine format.

The FC00 address format is often used as private IPv6 address.

167IPv6 Addressing Details

of the interface card other than the MAC address can be used at the end of the

link-local address.

ULA-L addresses can include a 16-bit subnet field, so these forms of private

IPv6 addresses can be used across subnets (through routers), but these addresses

are not usually advertised onto the Internet. Using link-local and ULA-local IPv6

addresses, an organization can build an entire global network, but usually only if

none of the traffic tries to travel across the Internet. If it does, IPv6 provi-

der�based addresses are needed. This is similar to building a complete corporate

network in IPv4 using the 10.0.0.0 private address space, but using Network

Address Translation (NAT) for traffic that must travel across the Internet.

However, in IPv6, hosts are assigned multiple addresses, some global and some

local. In this case, the lower order bits (80 bits) of the site-local address (subnet

and interface) are just pasted onto the higher fields (48 bits) of the provider-based

forms of the IPv6 address.

What about private masks and routing in IPv6? As shown above, prefix masks

in IPv6 have the same general form as prefix masks in IPv4. Here is a sample

IPv6 link-local host address (this time in lower case hex notation) and one possi-

ble network prefix for it:

fe80::90:69ff:fea0:8000/128
fe80:: /64
As in keeping with all of the addresses used in this book, this IPv6 address is

a private address. The /64 mask tells the router that the first 64 bits of the address

are to be used for routing purposes.

IP ADDRESS ASSIGNMENT

Most people get IP addresses from their ISP. But where do ISPs get their IP

addresses? Large organizations can still apply for their own IP addresses indepen-

dent from any ISP. To whom do they apply?

IP addresses (and the Internet domain names associated with them) were ini-

tially handed out by the Internet Assigned Number Authority (IANA). Today the

Internet Corporation for Assigned Names and Numbers (ICANN), an international

nonprofit organization, oversees the process of assigning IP addresses.

Actual IP addresses are handed out by the following Regional Internet

Registries (RIRs):

• ARIN (American Registry for Internet Numbers) at www.arin.net—ARIN has

handed out IP addresses for North and South America, the Caribbean, and

Africa below the Sahara since 1997.

• RIPE NCC (Reseaux IP European Network Coordination Center) at www.ripe.

net—RIPE assigns IP addresses in Europe and surrounding areas.

• APNIC (Asian Pacific Network Information Center) at www.apnic.net—

APNIC assigns IP addresses in 62 countries and regions in Central Asia,

Southeast Asia, Indochina, and Oceania.

168 CHAPTER 5 IPv4 and IPv6 Addressing

http://www.arin.net
http://www.ripe.net
http://www.ripe.net
http://www.apnic.net

• LACNIC (Latin American and Caribbean Network Information Center) at

www.lacnic.net—LACNIC assigns IP addresses from ARIN in 38 countries,

including Mexico.

• AfriNIC (African Network Information Center) at www.afrinic.net—AfriNIC

took over assignment of African IP addresses from ARIN.

All of these Internet Registries databases (who has what IP address space?)

combined are known as the Internet Routing Registry (IRR). Internet domain

names comprise a related activity, but (like IP addresses) names must be globally

unique and (unlike IP addresses) can be almost anything.

For the latest information on IP address assignment, which is always subject

to change, see www.icann.org.

When it comes to IPv6, in particular, IANA still hands out addresses to the

registries, which pass them along to IPv6 ISPs, who allocate IPv6 addresses to

their customers. The current policy is given at www.arin.net/policy. An older pol-

icy is used in this chapter (see www.arin.net/policy/ipv6_policy.html) and uses

these prefixes at each step of the process:

• 2001::/16 is reserved for IANA.

• IANA hands out a /23 prefix to each registry.

• Registry hands out a /32 or shorter prefix to an IPv6 ISP.

• ISP allocates a /48 prefix for each customer site.

• Local administrators add 16 bits for each LAN on their network, for a /64 prefix.

This scheme is shown in Figure 5.8. When the LAN is included, most IPv6

addresses have /64 network masks. This is the prefix length used on the

Illustrated Network. IPv6 routers can perform the following tasks:

Registry

ISP Prefix

Site Prefix

LAN Prefix

/23

/32

/48

/64

One IPv6 Address Allocation Policy

128 bits

2001 Interface ID

FIGURE 5.8

IPv6 address allocation, showing how various bits should be assigned by different entities.

In some places, mobile phone providers are heavy users of IPv6 addresses.

169IPv6 Addressing Details

http://www.lacnic.net
http://www.afrinic.net
http://www.icann.org
http://www.arin.net/policy
http://www.arin.net/policy/ipv6_policy.html

• Route traffic to a particular ISP based on the first 32 bits of the IPv6

destination address.

• Route traffic to a particular site based on the first 48 bits of the IPv6

destination address.

• Route traffic to a particular LAN based on the first 64 bits of the IPv6

destination address.

In practice, IPv6 core routers can look at (and build forwarding tables based

on) /32 or shorter prefixes, routers inside a particular AS (routing domain) can

look at /48 prefixes, and site routers on the customer edge can look at /64 pre-

fixes to get traffic right to the destination LAN.

Now we can better understand the IPv6 address assigned to CE0 that we saw at

the beginning of the chapter:

fc00:ffb3:d5:b:205:85ff:fe88:ccdb
or

FC00:FFB3:00D5:000B:0205:75FF:FE88:CCDB
Let’s break it down one element at a time and see where it all comes from:

• Registry—We use FC00 instead of 2001 to indicate a private ULA-local IPv6

address.

• ISP—We add Best ISP’s AS number of 65531 (0xFFB3) for LAN 1 or Ace

ISP’s AS number 65527 (0xFE67) for LAN2.

• Site—We add telephony area code 213 (0x00D5) for the Los Angeles or 212
(0x00D4) for New York sites. (We could always use more of the phone

number, but this is enough.)

• LAN—We add 11 (0x000B) for LAN1 or 12 (0x000 C) for LAN 2. These are

borrowed from the IPv4 addresses.

• EUI-64—We add 0x0205 85FF FE88 CCDB for the hardware MAC address.

The mask is /64, naturally. Keep in mind that in the real world, none of this

complex coding would be done.

COMPLETE IPv4 AND IPv6 ADDRESS RANGES

In this chapter, we’ve seen that some IPv4 and IPv6 addresses and ranges are

reserved for special purposes. For IPv4 these include things like the private

address ranges in RFC 1918 and documentation addresses in RFC 5737. This is

good place to present two tables that list all the currently reserved IPv4 and IPv6

address ranges.

The reserved address ranges for IPv4 are shown in Table 5.6. The ranges

for IPv6 are shown in Table 5.7. These address ranges should only be used for

the purposes intended.

170 CHAPTER 5 IPv4 and IPv6 Addressing

Table 5.6 Complete Reserved IPv4 Address Ranges

Block Range # Addresses Scope Purpose

0.0.0.0/8 0.0.0.0�0.255.255.255 16,777,216 Software Broadcast: RFC1700 p.4
10.0.0.0/8 10.0.0.0�10.255.255.255 16,777,216 Private Local use: RFC1918
100.64.0.0/10 100.64.0.0�100.127.255.255 4,194,304 Private CGNAT: RFC6598
127.0.0.0/8 127.0.0.0�127.255.255.255 16,777,216 Host/loopback Loopback: RFC990
169.254.0.0/16 169.254.0.0 � 169.254.255.255 65,536 Subnet DHCP use: RFC3927
172.16.0.0/12 172.16.0.0�172.31.255.255 1,048,576 Private Local use: RFC1918
192.0.0.0/24 192.0.0.0�192.0.0.255 256 Private Registry use: RFC5736
192.0.2.0/24 192.0.2.0�192.0.2.255 256 Documentation TEST-NET: RFC5737
192.88.99.0/24 192.88.99.0�192.88.99.255 256 Internet 6to4 anycast: RFC3068
192.168.0.0/16 192.168.0.0�192.168.255.255 65,536 Private Local use: RFC1918
198.18.0.0/15 198.18.0.0�198.19.255.255 131,072 Private Network test: RFC2544
198.51.100.0/24 198.51.100.0�198.51.100.255 256 Documentation TEST-NET-2: RFC5737
203.0.113.0/24 203.0.113.0�203.0.113.255 256 Documentation TEST-NET-3: RFC5737
224.0.0.0/4 224.0.0.0�239.255.255.255 268,435,456 Internet Multicast: RFC5771a

240.0.0.0/4 240.0.0.0�255.255.255.254 268,435,455 Internet Future use: RFC6890
255.255.255. 255/32 225.255.255.255 1 Subnet broadcast Broadcast: RFC6890

aRFC5736 reserves 233.252.0.0/24 for MCAST-TEST-NET for documentation use only.
Source: ARIN/IANA.

Table 5.7 Complete Reserved IPv6 Address Ranges

Block Range # Addresses Scope Purpose

::/128 :: 1 Software Unspecified
address

::1/128 ::1 1 Host Loopback
::ffff:0:0/96 ::ffff:0.0.0.0 through ::

ffff:255.255.255.255
232 Software Mapping IPv4

addresses
100::/64 100:: through 100::ffff:ffff:ffff:ffff 264 Discard:

RFC6666
64:ff9b::/96 64:ff9b::0.0.0.0 through 64:

ff9b::255.255.255.255
232 Internet IPv4/IPv6:

RFC6052
2001::/32 2001:: through 2001::ffff:ffff:ffff:

ffff:ffff:ffff
296 Internet Terado

tunneling
2001:10::/28 2001:10:: through 2001:1 f:ffff:

ffff:ffff:ffff:ffff:ffff
2100 Software Deprecated:

ORCHID
2001:20::/28 2001:20:: through 2001:2 f:ffff:

ffff:ffff:ffff:ffff:ffff
2100 Software ORCHIDv2

Source: ARIN/IANA.

172 CHAPTER 5 IPv4 and IPv6 Addressing

QUESTIONS FOR READERS

Figure 5.9 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. How many bits make up IPv4 and IPv6 addresses?

2. Which special address formats make up the IPv4 network itself and directed

broadcast (all hosts on the subnet) addresses?

3. How many hosts can be configured with an IPv4 network mask of

255.255.255.240?
4. What are the differences in format and use between IPv6 link-local and

private ULA-local addresses?

5. How many “double colons” (::) can appear in an IPv6 address?

IPv4

IPv6

Private ULA Unicast Address Fromat

Global Unicast Address Format

Link-Local Unicast Address Fromat

First byte

Class A NetID
HostID

8 bits for NetID, 24 bits for HostID

NetID
16 bits for NetID

NetID
24 bits for NetID, 8 bits for HostID

HostID
16 bits for NetIDClass B

128 bits

48 bits

001

10 bits 38 bits

0

10 bits 54 bits 64 bits

Interface ID0

FE80::/10

FC00::/7

Subnet ID Interface ID

16 bits 64 bits

16 bits 64 bits

Global Routing Prefix Subnet ID Interface ID

Class C

Second byte Third byte Fourth byte

HostID

FIGURE 5.9

Some major IPv4 and IPv6 address formats, showing classes in IPv4 and FE80 FC00 IPv6

addresses.

173Questions for Readers

This page intentionally left blank

CHAPTER

6Address Resolution Protocol

WHAT YOU WILL LEARN

In this chapter, you will learn about the hardware addressing used in the data link
layer frame and how it is found by the sender. We’ll talk a lot about the hardware
addresses used on LANs, the MAC addresses.

You will learn about the ARP protocol, which is how IP stacks on LANs identify
the hardware address that the destination field of the frame should use.

The Internet, or any internetwork, is made up of a combination of physical net-

works such as LANs and internetworking devices such as routers. A packet sent

by a host might pass through several different physical networks before finally

reaching its destination.

The hosts and routers at the network layer are identified by their network

addresses (also sometimes called “logical addresses”). In TCP/IP, the network

or logical address is the IP address, as we saw in the last chapter. These

addresses are usually implemented in software, and must be globally unique on

the Internet. At the data link layer, the interface that sends and receives frames

is identified by the physical or hardware address. An example of a hardware

address is the 48-bit MAC address we have been seeing at the frame level.

(See Figure 6.1.)

The hardware address and the network address are two different identifiers

with different sizes, but we need both of them. Layered protocol stacks can use

different types of packets (such as IPv4 and IPv6) on the same Ethernet. Also,

IPv4 packets can be sent over an Ethernet link and then over a point-to-point link

with a very different frame structure.

However, we need some way to map back and forth between addresses at

the network and hardware levels. In TCP/IP, this mapping is provided by the

address resolution protocols (the technical term is bindings). ARP results are

stored in an ARP cache on a host so that the entire process does not have to

be constantly repeated. And to keep the MAC table from constantly getting

bigger and bigger, the table entries are purged periodically.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00006-0

© 2017 Elsevier Inc. All rights reserved.
175

http://dx.doi.org/10.1016/B978-0-12-811027-0.00006-0

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 6.1

ARP on the Illustrated Network, showing that devices on the LANs employ ARP to

determine hardware (MAC) addresses.

176 CHAPTER 6 Address Resolution Protocol

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

177Address Resolution Protocol

WHAT LAYER IS ARP?
Although often shown at the same layer as IP because the messages ride inside frames, as in this

book, the ARPs are really in a class all by themselves. Some authors describe them as a “high”

data link layer function, but they are more of a boundary function between the logical network

and its physical hardware. Also, ARPs are not really protocols, but rather mapping methods

(bindings).

The main address resolution protocol is the Address Resolution Protocol

(ARP) itself, but there are also Reverse ARP (RARP), proxy ARP, Inverse ARP

(InARP), and ARP for ATM networks (ATMARP). Other ARPs have been pro-

posed as well (such as a generic “WARP” for ARPs on a wide area network). In

many ways, the various ARP flavors are not really separate protocols. For that

reason, only the main ARP will be described in detail in this chapter. The pur-

poses of the other members of the ARP family will be mentioned, but they are

not used very often, and not at all on the Illustrated Network.

Most implementations allow the static entry of ARP IP-address-to-physical-

address information as permanent entries into the ARP cache. However, this poses

an administrative nightmare (many organizations have a hard enough time

keeping track of IP addresses alone) and is seldom done today. Most ARP

tables today are built and maintained dynamically.

ARP AND LANs
Let’s see how the Illustrated Network uses ARP to map IPv4 addresses to physi-

cal addresses. We can look at some ARPs sent by FreeBSD, Linux, and

Windows, and see what they look like. Then we can examine the ARP caches

and see what information is kept and how it is stored.

Figure 6.1 shows the devices on the Illustrated Network that we’ll be working

with in this chapter. This time we’ll be using the hosts on each LAN and a pair of

routers.

We’ll use these hosts and routers to look at four different cases where ARP is

used, as shown in Figure 6.2.

Host to host—The ARP sender is a host and wants to send a packet to another

host on the same LAN. In this case, the IP address of the destination is known

and the MAC address of the destination must be found.

Host to router—The ARP sender is a host and wants to send a packet to

another host on a different LAN. A forwarding (routing) table is used to find

the IP address of the router. In this case, the IP address of the router is known

and the MAC address of the router must be found.

178 CHAPTER 6 Address Resolution Protocol

Router to router—The ARP sender is a router and wants to forward a packet

to another router on the same LAN. A forwarding (routing) table is used to

find the IP address of the router. In this case, the IP address of the router is

known and the MAC address of the destination router must be found.

Router to host—The ARP sender is a router and wants to forward a packet to

a host on the same LAN. In this case, the IP address of the host is known

(from the IP destination address on the packet) and the MAC address of the

host must be found.

Let’s look at Case 1 in detail because the others are more or less variations on

this basic theme. In Case 1, ARP is used when a host wants to send to another

host on the same IP subnet and the MAC address of the destination is not already

known. We’ll start the LAN2 host lnxclient sending a short message to winsrv2
(it doesn’t really matter what the message is). Because this is the first time that

these devices have communicated in a long time, an ARP request is broadcast on

LAN2 and the sender waits for a reply.

Now let’s capture the ARP request and response pair on the lnxclient host at

IPv4 address 10.10.12.166. We’ll set a filter to only capture and display ARP

packets.

Case 1: Find the address
of a host on the same
subnet as the source.

Case 2: Find the address
of a router on the same
subnet as the source.

Case 4: Find the address
of a host on the same

subnet as the source router.

Case 3: Find the address
of a router on the same

subnet as the source router.

Sending Host Sending Host

Sending RouterSending Router

bsdclient

bsdserver

LAN

ARP

ARPARP

ARP

LAN

LANLAN

CEO

PE5

CE6CE0

Inxserver

Receiving Host

Receiving HostReceiving Router

Receiving Router

Wincli1

FIGURE 6.2

Four ARP scenarios. Note that routers employ ARP just as hosts do, and that an ARP

stays on the same subnet as the sender.

179ARP and LANs

root@lnxclient admin]# /usr/sbin/tethereal -V arp
Capturing on eth0
Frame 1 (42 bytes on wire, 42 bytes captured)

Arrival Time: May 5, 2008 22:13:40.148457000
Time delta from previous packet: 0.000000000 seconds
Time relative to first packet: 0.000000000 seconds
Frame Number: 1
Packet Length: 42 bytes
Capture Length: 42 bytes

Ethernet II, Src: 00:b0:d0:45:34:64, Dst: ff:ff:ff:ff:ff:ff
Destination: ff:ff:ff:ff:ff:ff (Broadcast)
Source: 00:b0:d0:45:34:64 (Dell_45:34:64)
Type: ARP (0x0806)

Address Resolution Protocol (request)
Hardware type: Ethernet (0x0001)
Protocol type: IP (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: request (0x0001)
Sender MAC address: 00:b0:d0:45:34:64 (Dell_45:34:64)
Sender IP address: 10.10.12.166 (10.10.12.166)
Target MAC address: 00:00:00:00:00:00 (00:00:00_00:00:00)
Target IP address: 10.10.12.52 (10.10.12.52)

Frame 2 (106 bytes on wire, 106 bytes captured)
Arrival Time: May 5, 2008 22:13:40.148642000
Time delta from previous packet: 0.000185000 seconds
Time relative to first packet: 0.000185000 seconds
Frame Number: 2
Packet Length: 106 bytes
Capture Length: 106 bytes

Ethernet II, Src: 00:0e:0c:3b:88:56, Dst: 00:b0:d0:45:34:64
Destination: 00:b0:d0:45:34:64 (Dell_45:34:64)
Source: 00:0e:0c:3b:88:56 (00:0e:0c:3b:88:56)
Type: ARP (0x0806)
Trailer: 00000000000000000000000000000000. . .

Address Resolution Protocol (reply)
Hardware type: Ethernet (0x0001)
Protocol type: IP (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: reply (0x0002)
Sender MAC address: 00:0e:0c:3b:88:56 (00:0e:0c:3b:88:56)
Sender IP address: 10.10.12.52 (10.10.12.52)
Target MAC address: 00:b0:d0:45:34:64 (Dell_45:34:64)
Target IP address: 10.10.12.166 (10.10.12.166)

180 CHAPTER 6 Address Resolution Protocol

We’ll look at the fields of an ARP in detail later. For now, note that the

ARP request, indicated by a 0x0806 in the Ethertype field goes out as a broad-

cast frame with an all-zero MAC address field. It’s looking for the MAC

address that goes with IP address 10.10.12.52 (winsrv2), the target IP

address. The ARP reply frame returns the reply with the correct MAC address

plugged into the all-zero field (and with the MAC address as the source

address in the frame).

The results of an ARP pair between the bsdclient host (10.10.11.177) and

the lnxserver host (10.10.11.66) is almost the same, but not quite. The frame

sent in reply to the ARP is smaller than before.

bsdclient# tethereal -V arp
Capturing on em0
Frame 1 (42 bytes on wire, 42 bytes captured)

Arrival Time: May 5, 2008 22:24:04.518213000
Time delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Number: 1
Packet Length: 42 bytes
Capture Length: 42 bytes

Ethernet II, Src: 00:0e:0c:3b:8f:94, Dst: ff:ff:ff:ff:ff:ff
Destination: ff:ff:ff:ff:ff:ff (Broadcast)
Source: 00:0e:0c:3b:8f:94 (10.10.11.177)
Type: ARP (0x0806)

Address Resolution Protocol (request)
Hardware type: Ethernet (0x0001)
Protocol type: IP (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: request (0x0001)
Sender MAC address: 00:0e:0c:3b:8f:94 (10.10.11.177)
Sender IP address: 10.10.11.177 (10.10.11.177)
Target MAC address: 00:00:00:00:00:00 (00:00:00_00:00:00)
Target IP address: 10.10.11.66 (10.10.11.66)

Frame 2 (60 bytes on wire, 60 bytes captured)
Arrival Time: May 5, 2008 22:24:04.518421000
Time delta from previous packet: 0.000208000 seconds
Time since reference or first frame: 0.000208000 seconds
Frame Number: 2
Packet Length: 60 bytes
Capture Length: 60 bytes

Ethernet II, Src: 00:d0:b7:1f:fe:e6, Dst: 00:0e:0c:3b:8f:94
Destination: 00:0e:0c:3b:8f:94 (10.10.11.177)
Source: 00:d0:b7:1f:fe:e6 (10.10.11.66)
Type: ARP (0x0806)
Trailer: 000000000000000000000000000000000000

181ARP and LANs

Address Resolution Protocol (reply)
Hardware type: Ethernet (0x0001)
Protocol type: IP (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: reply (0x0002)
Sender MAC address: 00:d0:b7:1f:fe:e6 (10.10.11.66)
Sender IP address: 10.10.11.66 (10.10.11.66)
Target MAC address: 00:0e:0c:3b:8f:94 (10.10.11.177)
Target IP address: 10.10.11.177 (10.10.11.177)

The reply from the Linux system is only 60 bytes, 46 bytes less than the

response from the Windows server in the first example. That’s interesting; let’s

take a closer look at what Windows is doing. Figure 6.3 shows a graphical cap-

ture of the reply from winsrv2 (10.10.12.52) to an ARP request from wincli2
(10.10.12.222).

The reply is indeed 106 bytes long, but the extra bits are all zeros. The only

difference in the replies is the number of trailing zeroes in the frame. And we can

also see that the ARP software can deal with these easily.

We’ve already mentioned that ARP results are cached. The devices that send

the ARP requests cache the results, and the device that receives the ARP usually

FIGURE 6.3

Windows ARP reply capture. The ARP message, in this case an ARP reply,

is encapsulated directly inside the Ethernet frame.

182 CHAPTER 6 Address Resolution Protocol

also caches the MAC address in the arriving ARP request. The idea is that if one

device in a pair sends in one direction, the other device in the pair will probably

send in the opposite direction as well.

Let’s look at the ARP cache on the bsdserver host (10.10.12.77) using the

-a (all) option.

bsdserver# arp -a
? (10.10.12.1) at 00:05:85:8b:bc:db on em0 [ethernet]
? (10.10.12.52) at 00:0e:0c:3b:88:56 on em0 [ethernet]
? (10.10.12.166) at 00:b0:d0:45:34:64 on em0 [ethernet]
? (10.10.12.222) at 00:02:b3:27:fa:8c on em0 [ethernet]

All four other devices on LAN2 are represented (don’t forget the router CE6).

The question marks are there because we have no DNS running at the moment.

Let’s see if we can add to the cache by sending a ping to the Windows server

(winsrv1) on LAN1.

bsdserver# ping 10.10.11.111
PING 10.10.11.111 (10.10.11.111): 56 data bytes
64 bytes from 10.10.11.111: icmp_seq50 ttl5126 time50.403 ms
64 bytes from 10.10.11.111: icmp_seq51 ttl5126 time50.413 ms
64 bytes from 10.10.11.111: icmp_seq52 ttl5126 time50.376 ms
^C
--- 10.10.11.111 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev 5 0.376/0.397/0.413/0.016 ms
bsdserver# arp -a
? (10.10.12.1) at 00:05:85:8b:bc:db on em0 [ethernet]
? (10.10.12.52) at 00:0e:0c:3b:88:56 on em0 [ethernet]
? (10.10.12.166) at 00:b0:d0:45:34:64 on em0 [ethernet]
? (10.10.12.222) at 00:02:b3:27:fa:8c on em0 [ethernet]

Nothing was added to the ARP cache on the FreeBSD server. Then again,

why should it be? The other host is only reachable through a router, and the rou-

ter’s ARP entry is already there (10.10.12.1). These common types of ARPs,

host to host ARPs, are only used when the destination is on the same LAN subnet

as the source.

Entries in the ARP cache are deleted when no communication occurs with

another device, usually after 300 seconds (5 minutes) of silence between the

devices. We can force the ARP cache to empty by using the �d (delete) option.

bsdserver# arp -d -a
10.10.12.1 (10.10.12.1) deleted
10.10.12.52 (10.10.12.52) deleted
10.10.12.166 (10.10.12.166) deleted
10.10.12.222 (10.10.12.222) deleted

In Linux, the command to display the ARP cache is the same (arp), but the -e
option displays the result in the “default” Linux format (using no option gives the

same result). The “C” means that the entry is “complete.”

183ARP and LANs

[root@lnxserver admin]# /sbin/arp
Address HWtype HWaddress Flags Mask Iface
10.10.11.1 ether 00:05:85:88:CC:DB C eth0
10.10.11.111 ether 00:0E:0C:3B:88:3C C eth0
10.10.11.177 ether 00:0E:0C:3B:8F:94 C eth0
10.10.11.51 ether 00:0E:0C:3B:87:36 C eth0

[root@lnxserver admin]# /sbin/arp -e
Address HWtype HWaddress Flags Mask Iface
10.10.11.1 ether 00:05:85:88:CC:DB C eth0
10.10.11.111 ether 00:0E:0C:3B:88:3C C eth0
10.10.11.177 ether 00:0E:0C:3B:8F:94 C eth0
10.10.11.51 ether 00:0E:0C:3B:87:36 C eth0

In Linux, use of the -a option displays the results in “BSD” style. The output

is still slightly different, however.

[root@lnxserver admin]# /sbin/arp -a
? (10.10.11.1) at 00:05:85:88:CC:DB [ether] on eth0
? (10.10.11.111) at 00:0E:0C:3B:88:3C [ether] on eth0
? (10.10.11.177) at 00:0E:0C:3B:8F:94 [ether] on eth0
? (10.10.11.51) at 00:0E:0C:3B:87:36 [ether] on eth0

Windows displays the ARP cache with arp -a as well. This output is from

winsrv2 on LAN2.

C:\Users\walterg.arp -a
Interface: 10.10.12.52 --- 0x1003
Internet Address Physical Address Type

10.10.12.1 00-05-85-8b-bc-db dynamic
10.10.12.77 00-0e-0c-3b-87-32 dynamic
10.10.12.166 00-b0-d0-45-34-64 dynamic
10.10.12.222 00-02-b3-27-fa-8c dynamic

The term dynamic distinguishes these entries from statically defined entries.

There is no separate ARP for IPv6. MAC addresses can be embedded in the

IPv6 addresses, but this does not solve the problem of a source host knowing the

physical address of a destination host or router. When a host uses IPv4-derived

IPv6 addresses, such as ::10.10.11.111, IPv4 ARP information can be used to

supply the MAC addresses for IPv6.

The address resolution process in IPv6 uses ICMPv6 messages and is part of

the Neighbor Discovery (ND) process. Generally, a multicast Neighbor

Solicitation message is sent and a unicast Neighbor Advertisement message is

received in reply. We’ll talk more about this process in the chapter on ICMPv6.

For now, let’s just verify that IPv6 address resolution uses ICMPv6 messages.

Wireshark can capture and display IPv6 traffic as well as IPv6. Let’s send a

test message using the link-local IPv6 addresses from winsrv1 to wincli1, and
capture the address resolution in action. We’ll capture everything but only display

ICMPv6 messages. The result is shown in Figure 6.4.

184 CHAPTER 6 Address Resolution Protocol

Figure 6.4 shows the details of the Neighbor Solicitation message. The frame

destination address is highlighted in the figure, showing that a special multicast

frame address is used instead of the ARP broadcast frame address. The major dif-

ferences between this procedure and the ARP process in IPv4 are that ICMPv6 is

used in IPv6, and the solicitation message is sent to the IPv6 multicast group

address associated with the target address.

ARP PACKETS
ARP uses packets, but these are not IP packets. ARP messages ride inside

Ethernet frames, or any LAN frame, in exactly the same way as IP packets. There

is no need to use an IP address here anyway: ARP frames are valid only for a par-

ticular LAN segment and never leave the local LAN (i.e., ARP messages cannot

be routed). The structure of an ARP message is shown in Figure 6.5.

FIGURE 6.4

IPv6 address resolution with ICMPv6, showing that the Neighbor Solicitation frame is sent

to the special IPv6 Neighbor Discovery address.

185ARP Packets

This figure is because the 28-byte ARP message includes fields 1, 2, 4,

and 6 bytes in length, and does not readily lend itself to “normal” 32-bit

representation. The first five fields form a type of message header. The next

four fields are the sender’s and target’s IP and MAC addresses. Usually, it’s

the target’s MAC address that needs to be found with the ARP process. And

as we have already seen, the ARP message can end with a variable number of

trailing zeros.

On an Ethernet LAN, ARP messages have their own Ethertype value

(0x0806). However, some ARP implementations used the “regular” Ethertype for

IP packets (0x0800) because the IP implementation itself can easily decide if the

information inside the frame is IPv4 (packet starts with 0x04) or an ARP message

(packet starts with 0x0001 for Ethernet).

The main fields are present in both ARP request and ARP reply messages:

Type of Hardware—This 2-byte field is used to identify the style of hardware

address. (The Ethernet-style MAC address, with value51, is the most

common, of course.)

Type of Protocol—This 2-byte field identifies the type of Layer 3, or network

layer, protocol that is being queried. (ARP messages, because they are not IP

packets, can be used for more than IP addresses.) This uses the same set of

values as the Ethertype field, so IP is 0x0800.
Hardware Size—This byte identifies the size, in bytes, of the hardware

address. The Ethernet MAC address is 6 bytes long.

Type of Hardware Type of Protocol

Protocol
Size

Sender’s Ethernet

Sender’s IP Address

Sender’s IP Address (cont)

Address

Operation

Target’s

(Trailing 0s)

4 bytes

Target’s IP Address

Ethernet Address

Hardware
Size

FIGURE 6.5

The ARP message’s fields. The message is placed directly inside a frame, such as an

Ethernet frame.

186 CHAPTER 6 Address Resolution Protocol

Protocol Size—This byte identifies the size, in bytes, of the Layer 3 protocols.

IPv4 addresses are 4 bytes long.

Operation—This 2-byte field identifies the ARP message’s intent. For

example, an ARP request (“Who has this IPv4 address?”) has the operation

value of 1 and a reply value of 2.

The rest of the fields do not have a fixed size. Their size is determined by the

value in the Hardware Size and Protocol Size fields. On our Ethernet LANs, the

hardware address size is 6 bytes (MAC) and the protocol address size is 4 bytes

(IPv4). In that case, the sizes and functions of these fields are as follows.

Sender’s Ethernet Address—This 6-byte field holds the sender’s Ethernet

address. It should be the same as the source address in the Ethernet frame.

Sender’s IP Address—This 4-byte field holds the sender’s Ethernet address.

(This is how targets fill in their own ARP caches without requiring more

ARPs.)

Target’s Ethernet Address—This 6-byte field holds the target’s Ethernet

address. This field in set to all 0 bits in a request. The reply will have this

field filled in and the operation changed to “reply.”

Target’s IP Address—This 4-byte field holds the target’s IPv4 address.

EXAMPLE ARP OPERATION
What the ARP process adds to TCP/IP is a mechanism for a source device to ask,

“Who has IP address 10.10.12.52 (this was our first example from the Illustrated

Network) and what is the physical (hardware) address associated with it?”

ARP messages are broadcast frames sent to all stations. The proper destination

IP layer realizes that the destination IP address in the packet matches its own and

replies directly to the sender. The target device replies by simply reversing the

source and destination IP address in the ARP packet. The target also uses its own

hardware address as the source address in the frame and message.

The ARP process is shown in Figure 6.6. The steps are numbered and taken

from the example earlier in this chapter, where lnxclient ARPs to find the MAC

address of winsvr2.

1. The system lnxclient (10.10.12.166) assembles an ARP request and sends it

as a broadcast frame on the LAN. Because it is unknown, the requested MAC

address field in the ARP message uses all zeros (0s), which are placeholders.

2. All devices attached to the LAN receive and process the broadcast, even the

router CE6. But only the device with the target’s IP address in the ARP

message (winsvr2 at 10.10.12.52) replies to the ARP. The target also caches

the MAC address associated with 10.10.12.166 (the source address in the

broadcast frame).

187Example ARP Operation

3. The target system winsvr2 sends a unicast ARP reply message back to

lnxclient. The reply has the MAC address requested both in the frame (as a

source address) and in the ARP message field sent as 0s.

The originating source system and the target system will cache the hardware

address of the destination and proceed to send “live” IP packets with the informa-

tion, at the same time supplying the proper frame address as a parameter to the

network access layer software.

Figure 6.7 shows how the ARP request and reply message shown at the begin-

ning of this chapter look like “on the wire.” The field values can be compared to

the ARP message format shown in Figure 6.5. Again, the lnxclient to winsrv2
ARP pair are used as the example. Trailing zeros are not shown.

ARP operation is completely transparent to the user. ARP operation is usually

triggered when a user runs some TCP/IP application, such as FTP, and the

frame’s destination MAC address is not in the ARP cache.

ARP VARIATIONS
ARP is a fairly straightforward procedure to determine the LAN hardware address

that goes with a given IP address. However, there are more network types than

1

4

3

2

What’s the MAC address of 10.10.12.52?
Tell 10.10.10.166, okay?

Here’s my MAC address...

Ethernet LAN

ARP
Request

Broadcast

ARP Request
Sent and Reply

Processed

Not me!
(request
ignored)

Not me!
(request
ignored)

Not me!
(request
ignored)

Hey!
That’s me!
(reply sent
unicast)

(These two devices can cache the
sender’s MAC and IP addresses.)

Inxclient
10.10.12.166

bsdserver
10.10.12.77

wincli2
10.10.12.222

CE6
10.10.12.1

winsvr2
10.10.12.52

FIGURE 6.6

The ARP request and reply process. The message asks for the MAC address associated

with the destination, and the sender’s address that should receive the reply. Other devices

that hear the reply can cache the information.

188 CHAPTER 6 Address Resolution Protocol

LANs and there are more “addresses” that need to be associated with IP addresses

than “hardware” addresses. Consequently, there are a few other types of ARPs

that have evolved to deal with other IP network situations.

PROXY ARP

Proxy ARP is an older technique (it was called the “ARP Hack”) that was used

in early routers, and is still supported in some routers today. LANs connected

by bridges had hosts that did not (and could not) use different IP network

addresses. The same IP network address is used on both sides of a bridge, so

there is one broadcast domain, and ARPs are shuttled back and forth. This

practice wasted bandwidth on the LANs (and on any WAN link between the

bridges). Proxy ARP allowed the router that replaced the bridge to respond to

Inxclient
10.10.12.166

00:b0:dO:45:34:64

0�0001
0�00001
0�0800

0�0001 0�0800

0�00B0D0453464
0�0A0A0CA6

0�000000000000
0�0A0A0C34 (10.10.12.52)

(10.10.12.166)

(10.10.12.166)

(10.10.12.52)

Source
0�00B0D0453464

Destination

0�06 0�04

0�000020�06 0�04

winsvr2

LAN2

Source

CRC

CRC

Data (28 bytes)

Data (28 bytes)

10.10.12.52
00:0e:0c:3b:88:56

ARP Request

0�FFFFFFFFFFFF

0�00E0C3B8856
0�0A0A0C34

0�00B0D0453464
0�0A0A0CA6

ARP Reply

0�00B0D0453464

Destination

0�0806

0�00E0C3B8856 0�0806

FIGURE 6.7

ARP exchange example, showing how the requested information is provided by the

destination’s reply.

189ARP Variations

ARP requests directly with its own MAC address, without having to propagate

the ARP packets onto the other LAN segment. Hosts then sent frames to the

router, but acted as if they were sending the frames directly to the destination

host. Proxy ARP makes sure that the router received the frame, just as with

indirect delivery.

Routers normally require that the same IP subnet address not be configured on

more than one router port. Proxy ARP was a method of assigning a single Class

A, B, or C address to both sides of router without using subnet masking, allowing

the router to function as a bridge. Proxy ARP was useful as networking transi-

tioned from bridges to routers.

Proxy ARP is still often used in Mobile IP networks, which often bridge

between devices.

REVERSE ARP

Reverse ARP (RARP) is used in cases where a device on a TCP/IP network

knows its physical (hardware) address but must determine the IP address associ-

ated with it. A RARP request (“I have MAC address X . . . What’s my IP

address?”) is sent to a device running the RARP server process. The RARP server

replies with the IP address of the device. The RARP server should be located on

the local LAN segment, but it does not have to be.

RARP messages use the same packet format as ARP, but the Ethertype is

0x0835, and the operation field is 3 for a RARP request and 5 for a RARP reply.

Of course, the information to be supplied is the IP address. As with ARP, the

request is broadcast and the reply is unicast. RARP is defined in RFC 903.

RARP was frequently used for diskless network devices on TCP/IP networks

such as workstations, X-terminals, routers, and hubs. These devices needed to

obtain variable configuration information such as the IP address for an external

source whenever they were rebooted or powered on. In addition, the amount of

configuration information you could obtain through RARP was very limited.

Today, with almost every device having flash memory to store configuration

information during reboot when power is off, the need for RARP is greatly

diminished.

Even in cases where configuration information or IP addresses need to be

assigned dynamically, there are better ways to achieve the same result than with

RARP, such as BOOTP and DHCP. Both will be discussed in Chapter 22 of this

book.

ARPs ON WANs

On most WANs, ARP is still used, but as a limited multicast rather than a broad-

cast. ARP has a couple of variations used to address WAN environments such as

frame relay and ATM networks. These public network technologies use virtual

190 CHAPTER 6 Address Resolution Protocol

circuits (a type of logical connection) at the frame (frame relay) or cell (ATM)

level instead of MAC addresses. The issue in frame relay and ATM (both called

non-broadcast multiaccess [NBMA] link networks) is to find the virtual circuit

number, such as the Data Link Connection Identifier (DLCI) in frame relay, asso-

ciated with a particular IP address.

InARP (Inverse ARP) was developed for use on frame relay networks. Instead

of using ARP to determine MAC-layer LAN addresses, TCP/IP networks linked

by frame relay networks use InARP to determine the IP address at the other end

of a frame relay DLCI number to use when sending IP packets. InARP is used as

soon as frame relay DLCI are created. The replies are used to build the routing

table in the frame relay access device (router). The InARP process is shown in

Figure 6.8. InARP is essentially an adaptation of the reverse ARP (RARP) pro-

cess used on LANs.

ATMARP is a similar method used to find the ATM virtual path identifier

(VPI) and/or virtual channel identifier (VCI) over an ATM network.

ARP AND IPv6
IPv6 really has no need for a separate ARP function. Instead, the Neighbor

Discovery protocol (ND, sometimes NDP) described in RFC 2461 performs the

functions of the IPv4 ARP in IPv6.

Router 1 Frame
Relay

Network

Router 3

Router 2

DLCI �19

DLCI �18
InARP message 1:

“Which IP address is at
the end of DLCI 18?”

InARP message 2:
“Which IP address is at
the end of DLCI 19?”

Reply to InARP message 2:
“My IP address is in the ARP

reply ... use this in the
routing table.”

Reply to InARP message 1:
“My IP address is in the ARP

reply ... use this in the
routing table.”

FIGURE 6.8

Inverse ARP (InARP) exchange over a frame relay network. In this case, the hardware

address (DLCI) is known and the sender needs to determine the IP address.

191ARP and IPv6

ND is really a superset of most of the functions of IPv4’s ARP, ICMP

Redirect, and ICMP Router Discovery features. This section will discuss

some of the features of NDP, but most of this will be covered in the chapter

on ICMP.

NEIGHBOR DISCOVERY PROTOCOL

The Neighbor Discovery protocol is the way that IPv6 hosts and routers find

things out about their immediate neighborhood, typically the LAN segment. A lot

of effort was expended in IPv4 to find out configuration necessities such as

default routers, any alternate routers, MAC addresses of adjacent hosts, and so

on. In some cases, these addresses could not be found automatically with IPv4

and had to be entered manually (the default router). IPv6 was designed to be

almost automatic in this regard.

When an IPv6 host comes up for the first time, the host advertises its MAC

layer address and asks for neighbor and router information. Because these mes-

sages are in the form of ICMPv6 messages, only the basics will be presented here.

WHY NEIGHBOR AND ROUTER DISCOVERY?
Why does IPv6 have separate neighbor and router discovery messages? After all, IPv4 did fine

using a single broadcast frame structure for host�host and router�host address discovery.

IPv6 is more sophisticated than IPv4 when it comes to devices and networks. In IPv6, devices

can be located on a local multiple access link (LAN), which are considered on link, or off link.

Generally, there are a lot more hosts on a network than routers. IPv6 directs messages that

discover host addresses only to the local hosts, while messages to discover one or more default

routers are processed only by the routers.

Instead of a single mass broadcast, neighbor discover in IPv6 is done with multicast groups.

We’ll talk about multicast in Chapter 18.

Many routers today forward packets in hardware, but broadcasts have to be processed by

software. IPv6 routers can ignore the numerous messages sent from host to host on a LAN. This

makes the use of the network resources with IPv6 more efficient.

The ARP function in IPv6 is performed by four messages in ND. The Router

Solicitation/Router Advertisement mechanism is noteworthy in that it provides

the key for host IPv6 address configuration, default route selection, and poten-

tially even bootstrap configuration information.

Neighbor Solicitation—This message is sent by a host to find out the MAC

layer address of another host. It is also used for Duplicate Address detection

(Does another host have the same IPv6 address?) and for Neighbor

Unreachability Detection (Is the other host still there?). The receiving host

must reply with a Neighbor Advertisement.

192 CHAPTER 6 Address Resolution Protocol

Neighbor Advertisement—This message contains the MAC layer address of

the host and is sent in reply to a Neighbor Solicitation message. Hosts also

send unsolicited Neighbor Advertisement when they first start up or if any of

the advertised information changes.

Router Solicitation—This message is sent by a host to find routers. The

receiving router must reply with a Router Advertisement.

Router Advertisement—This message contains the MAC layer address of the

router and is sent in reply to a Router Solicitation message. Routers also send

an unsolicited Router Advertisement when they first start up if any of the

advertised information changes.

ND ADDRESS RESOLUTION

ND functions are performed only for local IPv6 addresses (the hop limit is set to

1 for these messages). ND messages, unlike ARP, are not broadcast (“Everyone

pay attention to this”) but rather multicast (“Only those interested pay attention

to this”).

When an IPv6 host or router starts up, it joins several multicast groups. The

IPv6 mode must join the all-nodes group. It must also join a solicited-node group

for each interface running IPv6 or IPv6 address that the node has. Joining these

groups allows the device to receive packets without having all the details of its

address established. This is a much more sophisticated arrangement than the ARP

method used in IPv4. The IPv6 device must keep these multicast groups active

until all of its addressing details have been resolved.

When an IPv6 device needs to resolve the MAC layer address of another host

on the LAN, a Neighbor Solicitation message is sent to the solicited-node multi-

cast address. The IPv6 solicited-node multicast address is formed by taking the

low-order 24 bits of the IPv6 address and adding the 104-bit prefix FF02::1 to it.

Thus, for the link-local IPv6 address fe80::20e:cff:fe3b:883c, the IPv6 multi-

cast group address used is fe02::1: fe3b:883c.
But what multicast address should the message use in the Ethernet frame?

That multicast address is formed by prepending 33:33 to the lower 24 bits of the

IPv6 address. Each device with an IP address registers this form with the local

NIC and expects to receive ND messages this way initially. For the IPv6 multicast

group address fe02::1:fe3b:883c, the multicast address used in the Ethernet des-

tination field is 33:33:fe:3b:88:3c.
An example of the address resolution pair capture earlier in this chapter is

shown in Figure 6.9. Note the use of multicast IPv6 and frame addresses in the

Neighbor Solicitation request and the way the information is supplied in the uni-

cast Neighbor Announcement reply.

If no response is received, the sender can generate the Neighbor Solicitation

message several times. When a Neighbor Advertisement message is received by

193ARP and IPv6

the sender, the content is used to update the IPv6 Neighbor cache (the equivalent

of the IPv4 ARP cache).

More details on ND message formats and operation are discussed in the ICMP

chapter.

wincli1 winsvr1

LAN1

IPv6 source address:

IPv6 destination address:

IPv6 source address:

For target address:

IPv6 destination address:

ND target address is:

fe80::20e:cff:fe3b:883c

fe80::20e:cff:fe3b:8736

fe80::20e:cff:fe3b:883c

ff80::20e:cff:fe3b:8736
MAC is: 00:0e:0c:3b:87:36

ff80::20e:cff:fe3b:8736
(find physical address)

ff02::1:fe3b:883c

10.10.11.51
00:0e:0c:3b:88:3c

fe80::20e:cff:fe3b:883c

10.10.11.111
00:0e:0c:3b:88:56

fe80::20e:cff:fe3b:8736

Neighbor
Solicitiation

(multicast request)

Neighbor
Annoucement
(unicast reply)

Source

SourceDestination

Neighbor Solicitation 0�33FE3B8736

0�000E0C3B88736

0�000E0C3B883C

0�000E0C3B883C

Destination

Neighbor Announcement

FIGURE 6.9

IPv6 neighbor discovery and address resolution, showing how the request uses multicast

frame and packet addresses.

194 CHAPTER 6 Address Resolution Protocol

QUESTIONS FOR READERS

Figure 6.10 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. Why can’t the same address structure and value be used for network layer and

hardware addresses?

2. Why do ARPs have to pass through bridges, but should not pass through

routers?

3. Why does a receiver place the sender’s MAC address in its own ARP cache?

4. What is Proxy ARP used for?

5. What is the advantage of using multicast groups instead of broadcasts for

address resolution?

IP Layer
(32-bit address)

IP Layer
(32-bit address)

MAC Layer
(48-bit address)

MAC Layer
(48-bit address)

Bridge

Ethernet LAN Ethernet LAN

To Another
Broadcast
Domain

(Nontarget destinations parse, but ignore, broadcast ARP messages.)

Router

One Broadcast Domain

FIGURE 6.10

ARP messages are used to coordinate IP addresses with lower layer addressing.

195Questions for Readers

This page intentionally left blank

CHAPTER

7IPv4 and IPv6 Headers

WHAT YOU WILL LEARN

In this chapter, you will learn about the IP layer. We’ll start with the fields in the IPv4
and IPv6 packet headers. We’ll discuss most of the fields in detail and show how
many of them relate to each other.

You will learn about fragmentation, and how large content is broken up, spread
across a sequence of many packets, and reassembled at the destination. We’ll also
talk about some of the perceived hazards of this fragmentation process.

Thus far, we’ve created a network of hosts and routers, linked them with a variety

of architectures and link types (LANs and WANs), and discussed the frame for-

mats and methods used to distribute packets among the nodes. We’ve considered

the IPv4 and IPv6 address formats, and the ways that they map to lower, link

layer addresses. Now it’s time to concentrate on the IP layer itself.

Even casual users of the TCP/IP protocol suite are familiar with the basic IP

packet, or, as it was initially called (and still often is) the datagram. An IP data-

gram or packet is the connectionless IP network-layer protocol data unit (PDU).

When TCP/IP came along, packets were often associated with connection-ori-

ented data networks such as X.25, the international packet data network standard.

To emphasize the connectionless nature of IP, then a radical approach to network

layer operation, the TCP/IP developers decided to invent a new term for the IP

packet. Through analogy with the telegram (a terse message sent hop by hop

through a network of point-to-point links), they came up with the term

“datagram.”

The IP layer of the whole TCP/IP protocol stack is the very heart of TCP/IP.

The frames that are sent and delivered across the network from host to router and

router to host contain IP packets. However, like almost all statements about nearly

any network protocol, there are exceptions to the general “frames contain IP

packets” rule. As shown in the last chapter, an important class of IP layer proto-

cols known as the Address Resolution Protocols (ARPs) does not technically use

IP packets, but ARP messages are very close in structure to IP packets. Also, the

Internet Control Message Protocol (ICMP) uses IP packets and is included in the

IP layer. We’ll look at ICMP in the next chapter.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00007-2

© 2017 Elsevier Inc. All rights reserved.
197

http://dx.doi.org/10.1016/B978-0-12-811027-0.00007-2

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 7.1

The LANs on the Illustrated Network use both IPv4 and IPv6 packets. We’ll be looking at

the headers generated by the hosts on the LANs.

198 CHAPTER 7 IPv4 and IPv6 Headers

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

199IPv4 and IPv6 Headers

Both IPv4 and IPv6 packet structures will be detailed in this chapter.

However, for the sake of simplicity, whenever the term “IP” is used without qual-

ification, “IPv4” is implied.

PACKET HEADERS AND ADDRESSES
Let’s take a close look at the packets used on the Illustrated Network. We’ll look

at the IPv4 header and addresses first. We worked with the Windows clients and

servers a lot in the last few chapters, and we’ll work with them again in this chap-

ter. But we’ll also work with the Unix devices and tethereal (or tshark) captures in

this chapter, especially for fragmentation and IPv6. And, as we’ll soon see, one of

the biggest differences between IPv4 and IPv6 is how fragmentation is handled.

FRAGMENTATION
People talk loosely about the pros and cons of “IP packet fragmentation,” but this terminology is

not correct. It is not the IP packet itself that is fragmented, but the packet content. If the payload

is too large to fit inside a single IP packet (as determined by the IP layer implementation), the

content is spread across several packets, each with its own IP header.

In some cases, as we will see in this chapter, the content of an IP packet must be further

broken up to traverse the next link on the network. However, it’s not really the IP packet that is

fragmented. The original packet is discarded, and a string of IP packets is created that preserves

the packet content and overall header fields, but changes specifics. When we say that “the packet

is the data unit that flows end-to-end through the network,” it is not the packet that is unchanged,

but the content.

Naturally, if packet content is kept small enough, no fragmentation is necessary.

Figure 7.1 shows the parts of the Illustrated Network that we’ll be using for

our investigation of IP headers and fragmentation. The LAN clients and servers

are highlighted, as are the local customer-edge routers.

Let’s start with IPv4. We can just start a flow of IPv4 packets between a client

and server and capture them. Then we can parse the packets until we find some-

thing of interest.

Let’s take a good look at all the fields in an IPv4 packet header. We’ve

already captured plenty of them. This example is from the FTP transfer from host

(wincli2, with address 10.10.12.222) to router (CE6, with interface address

10.10.12.1) that we first saw in Chapter 2. Figure 7.2 shows a frame from the

actual data transfer itself, frame 35, in fact.

The Ethernet frame is of type 0x0800 to show it carries an IPv4 packet. All of

the lines from “Internet Protocol” to the line before “Transmission Control

Protocol” interpret fields in the IPv4 header. The source and destination addresses

are listed first. Although we’ll see that they are not the first fields in the header,

they are definitely the fields that most frequently are of interest.

Wireshark interprets a field in the IPv4 header called the Type of Service

(TOS) field according to something called Differentiated Services (DiffServ).

200 CHAPTER 7 IPv4 and IPv6 Headers

DiffServ is only one way, but a very common way, to interpret these fields. The

figure shows that there are three things indicated by the 8 bits in the TOS field:

Differentiate Services Code Point (DSCP)—The default is zero, which means

this packet does not require special handling by any router or host other than

IP’s normal best-effort service.

Explicit-Congestion-Notification Capable Transport (ECT)—This bit is set by

devices when the transport is able to provide an indication of network

congestion to network-attached devices. The value of zero shows that Ethernet

is not an ECT, so packets cannot tell devices when the LAN is congested.

ECN Congestion Explicit (ECT-CE)—On transport that can report congestion,

this bit is set when some predefined criteria for network congestion is met.

This is often a percentage of output buffer fullness. On Ethernet this bit is

always zero.

We’ll say a little more about DSCP and quality of service (QOS) in a later

chapter. However, the incomplete support for and variations in QOS implementa-

tions rule out QOS or DSCP as a topic for an entire chapter.

There are also four flag bits shown in the figure. The two most important are

the bits that indicate this packet content is not to be fragmented (the DF bit is set

to 1) and that there are no more frames carrying pieces of this packet’s payload

(the More Fragments bit is set to 0).

In the following, we talk about fragmentation in IPv4 in more detail, and then

explore all of the fields in the IPv4 header in more detail.

FIGURE 7.2

Capture of IPv4 header fields. The frame is broken out to show the content and meaning of

every field in the IPv4 header. Note that the DF (Don’t Fragment) bit is set on the packet.

201Packet Headers and Addresses

THE IPv4 PACKET HEADER
The general structure of the IPv4 packet is shown in Figure 7.3. The minimum

header (using no options, the most common situation) has a length of 20 bytes

(always shown in a 4-bytes-per-line format), and a maximum length (very rarely

seen) of 60 bytes. Some of the fields are fairly self-explanatory, such as the fields

for the 4-byte (32-bit) IPv4 source and destination address, but others have

specialized purposes.

Version—Currently set to 0x04 for IPv4.

Header Length—Technically, this is the Internet header length (IHL). It is the

length of the IP header in 4-byte (32-bit) units known as “words,” and

includes any option fields present and padding needed to align the header on a

32-bit boundary. In Figure 7.2, this is 20 bytes, which is most common.

Type of Service (TOS)—Contains parameters that affect how the packet

is handled by routers and other equipment. Never widely used, it was

redefined as Differentiated Services (DiffServ or DS) code points. The

meaning of these bits, which are all set to 0 in Figure 7.2, was detailed earlier

in this chapter.

1 byte

Header
Length

Type of Service Total Packet Length

Fragment OffsetIdentification

1 byte

Header Checksum

1 byte

Time to Live Protocol

32-bit IPv4 Source Address

32-bit IPv4 Destination Address

(Options, if present, padded if needed)

1 byte

Flags

DATA

32 bits

Version

H
e
a
d
e
r

FIGURE 7.3

IPv4 Packet and Header

202 CHAPTER 7 IPv4 and IPv6 Headers

The next four fields, shown in italics in Figure 7.3, figure directly in the frag-

mentation process. Fragmentation, introduced in Chapter 4, occurs when a packet

is forwarded onto a data link and the packet content will not fit inside a single

frame. In these cases, the packet content must be fragmented and spread across

several frames, then reassembled at the destination host. Fragmentation will be

discussed in detail in the next section of this chapter.

Total Packet Length—This is the length of the whole packet in bytes. The

maximum value for this two-byte field is 65,535 bytes. This length is

approached by no common TCP/IP implementation or network MTU size.

The packet in Figure 7.2 is 1500 bytes long, the most common length due to

the prevalence of Ethernet LANs.

Identification—A 16-bit number set for each packet to help the destination

host reassemble like-numbered fragments. Even intact, single packets could

be fragmented by routers (sometimes repeatedly) on their way to a

destination, so this field must be filled in. This field is set to 0378be (30910)
in Figure 7.2.

Flags—Only the first 3 bits of this field are defined. Bit 1 is reserved and

must be set to 0. Bit 2 (DF) is set to 0 if fragmentation is allowed or 1 if

fragmentation is not allowed. Bit 3 (MF) is set to 0 if the packet is the last

fragment, or 1 if there are more fragments to come. Note that the MF field

does not imply any sequencing of the arriving fragments, nor does it

guarantee that the set is complete. Other fields are examined to determine

sequencing and completeness. The packet in Figure 7.2 will generate an error

when it encounters a device that wants to fragment the packet content.

Fragment Offset—When a packet is fragmented, the fragments must fall on an

8-byte boundary. That is, an 800-byte packet can be fragmented into two

packets of 400 bytes each, but not as eight packets of 100 bytes each, since

100 is not evenly divisible by 8. This field contains the number of 8-byte

units, or blocks, in the packet fragment. The offset is 0 in Figure 7.2.

The rest of the IP header fields do not deal with fragmentation.

Time to Live (TTL)—This 8-bit field value is supposed to be the number of

seconds, up to 255 maximum, that a packet can take to reach the destination.

Each router is supposed to decrement this field by a preconfigured amount

which must be greater than 0. If a packet arriving at a router has this field set

to 0, it is discarded and never routed. Unfortunately, there is no standard way

to track time across a group of routers, so most TCP/IP networks interpret this

field as a simple hop count between routers and simply decrement this field

by 1. The TTL in Figure 7.2 is 128, a high, but fairly typical value.

Protocol—This 8-bit field contains the number of the transport-layer protocol

that is to receive and process the data content of the packet. The protocol

number for TCP is 6 and UDP is 17, but almost 200 have been defined. The

packet in Figure 7.2 carries TCP.

203The IPv4 Packet Header

Header Checksum—An error-detection field for the IP header only, not the

packet data fields. If the computed checksum does not match at the receiver,

the header is damaged and not routed. Figure 7.2 not only shows the header

checksum of 0x4f6b, but Ethereal tells us that it is correct.
Source and Destination Addresses—The 32-bit IPv4 addresses of the source

and destination hosts. The packet in Figure 7.2 is sent from 10.10.12.222 to

10.10.12.1.

Options—The IPv4 options are seldom used today for data transfer and will

not be described further, nor do they appear in Figure 7.2.

Padding—When options are used, the padding field makes sure the header

ends on a 32-bit boundary. That is, the header must be an integer number of

4-byte “words.” The header in Figure 7.2 is not padded, and few are since

options use is unusual.

FRAGMENTATION AND IPv4
Let’s look at IPv4 fragmentation on the Illustrated Network. We can determine

how the MTU size and fragmentation affect IPv4 data transfer rates.

It’s not all that important (and not all that interesting) to show the fragmentation

process with a capture. Moreover, it is difficult to convey a sense of what’s going

on with a series of snapshots, even when Ethereal parses the fragmentation fields.

Appreciating the effects of a small MTU size on data transfers is more important.

Let’s use the bsdclient on LAN1 and bsdserver on LAN2 to show what

fragmentation does to data throughput. We’ll use FTP to transfer a small file

(about 30,000 bytes) called test.stuff from the server to the client. Why so

small a file? Just to show that if fragmentation plays a role in small transfers, the

effects will be magnified with larger files. First, we’ll use the default MTU sizes.

bsdclient# ftp 10.10.12.77
Connected to 10.10.12.77.
220 bsdserver FTP server (Version 6.00LS) ready.
Name (10.10.12.77:admin): admin
331 Password required for admin.
Password:
230 User admin logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp. get test.stuff
local: test.stuff remote: test.stuff
150 Opening BINARY mode data connection for 'test.stuff' (29752 bytes).
100%
|���
�������| 29752 00:00 ETA
226 Transfer complete.
29752 bytes received in 0.01 seconds (4.55 MB/s)

204 CHAPTER 7 IPv4 and IPv6 Headers

This is about 4.5 MBps (or about 36 Mbps) and transfer time of about 1/100th

of a second. Not too bad. (Keep in mind that 1/100th of a second is about the

smallest interval that can be reported without special hardware.) This is good

throughput, but remember there are only a few routers involved. There is also no

other traffic on the network, so the transfer rate is totally dependent on the ability

of the host to fill the pipe from server to client.

Now let’s change to Maximum Transmission Unit size at the server connected

to LAN2 (the server LAN) from the default of 1500 to 256 bytes. How much of a

difference will this make?

ftp. get test.stuff
local: test.stuff remote: test.stuff
150 Opening BINARY mode data connection for 'test.stuff' (29752 bytes).
100%
|��
������| 29752 00:00 ETA
226 Transfer complete.
29752 bytes received in 1.30 seconds (22.29 KB/s)
ftp.

The transfer time is up to 1.3 seconds, about 130 times longer than before!

And the transfer rate fell from about 36 Mbps to about 184 KILOBITS per second,

three orders of magnitude less than before. This is the “performance penalty” of

fragmentation. (It should be pointed out that these numbers are not precise, and

there are many other reasons that file transfers speed up or slow down. However,

the point is entirely valid.)

We can view a lot of packet statistics, including fragment statistics, using the

netstat utility. With netstat, we can monitor an interface in real time, display

the host routing table, observe running network processes, and so on. We’ll do

more with netstat later. For now, we’ll just see how many fragments our

30,000-byte file transfer has generated.

To do this, we’ll look at the IP statistics on the client before and after the file

transfer has been run with the small MTU size. We’ll set the counters to zero first.

bsdclient# netstat -sp ip
ip:

0 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size , data length
0 with ip length . max ip packet size
0 with header length , data size
0 with data length , header length
0 with bad options
0 with incorrect version number
0 fragments received

205Fragmentation and IPv4

0 fragments dropped (dup or out of space)
0 fragments dropped after timeout
0 packets reassembled ok
[many more lines deleted for clarity. . .]

Now we’ll reset the counters, run the transfer again, and check the IP

statistics.

bsdclient# netstat -sp ip
ip:

57 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size , data length
0 with ip length . max ip packet size
0 with header length , data size
0 with data length , header length
0 with bad options
0 with incorrect version number
171 fragments received
0 fragments dropped (dup or out of space)
0 fragments dropped after timeout
57 packets reassembled ok
[many more lines deleted for clarity. . .]

The file was transferred as 171 fragments that were reassembled into 57 pack-

ets. Let’s take a closer look at fragmentation of the MTU size in IPv4.

FRAGMENTATION AND MTU

If an IP packet is too large to fit into the frame for the outgoing link, the packet

content must be fragmented to fit into multiple “transmission units.” The

Maximum Transmission Unit (MTU) size is a key concept in all TCP/IP net-

works, often complicated by the fact that different types of links (LAN or WAN)

have very different MTU sizes. Many of these are shown in Table 7.1. The link

protocols shown in italics have “tunable” (configurable) MTU sizes instead of

defined defaults, but almost all interfaces allow you to lower the MTU size. The

figures shown are the usual maximums. The 9000-byte packet size is not standard

in Gigabit Ethernet, but common.

Hosts reassemble any arriving fragmented packets to avoid routers pasting

together and then tearing apart packets repeatedly as they are forwarded from link

to link. Fragments themselves can even be fragmented further as a packet makes

its way from, for example, Gigabit Ethernet to frame relay to Ethernet.

Fragmentation is something that all network administrators used to try to avoid.

As a famous paper circulated in 1987 asserted bluntly, “Fragmentation [is]

206 CHAPTER 7 IPv4 and IPv6 Headers

considered harmful.” As recently as 2004, an Internet draft (http://ietfreport.isoc.

org/all-ids/draft-mathis-frag-harmful-00.txt) took this one step further with the title,

“Fragmentation Considered Very Harmful.” The paper asserts that most of the

harm occurs when a fragment of packet content, especially the first, is lost on the

network. And a number of older network attacks involved sending long sequences

of fragments to targets, never finishing the sequence, until the host or router ran

out of buffer space and crashed. Also, because of the widespread use of tunnels

(see Chapter 26), there are link layers that really need an MTU larger than 1500 to

support encapsulation, and you can’t fragment MTUs inside a tunnel.

There are several reasons for the quest to determine the smallest of the MTU

sizes on the links between source and destination. This “minimum” MTU size

can be used between a source and destination in order to avoid fragmentation.

The main reasons today follow:

• Fragmentation is processor intensive. Early routers were hard pressed to both

route and fragment. Even today, high link speeds force routers to concentrate

on routing and minimize “housekeeping” tasks.

• Many hosts struggle to reassemble fragments. Fragmentation puts the

reassembly burden on the receiving host, which can be a cell phone, watch, or

something else. This requires processing power and delays the processing of

the packet.

• Fragmentation fields are favorite targets for hacking. TCP/IP implementation

behaviors are not spelled out in detail for many situations where the

fragmentation fields are set to inconsistent or contradictory values. Many a

host and router have been hung by exploiting this variable behavior.

Fragments can be lost, out-of-sequence, or errored. The more pieces there are,

the more things that can go wrong. The worse occurs when the first fragment

is lost on the network.

• Early IP implementations avoided fragmentation by setting the default IP

packet size very low, to only 576 bytes. All link protocols then in common

Table 7.1 Typical MTU Sizesa

Link Protocol Typical MTU Limit Maximum IP Packet

Ethernet 1518 1500
IEEE 802.3 1518 1492
Gigabit Ethernet 9018 9000
IEEE 802.4 8191 8166
IEEE 802.5 (Token Ring) 4508 4464
FDDI 4500 4352
SMDS/ATM 9196 9180
Frame relay 4096 4091
SDLC 2048 2046

aFrame overhead accounts for the differences between the theoretic limit and maximum IP packet size.

207Fragmentation and IPv4

http://ietfreport.isoc.org/all-ids/draft-mathis-frag-harmful-00.txt
http://ietfreport.isoc.org/all-ids/draft-mathis-frag-harmful-00.txt

use could handle this small packet size, and many IP implementations to this

day still use this default packet size. Naturally, the smaller the MTU size, the

greater the number of packets sent for a given message, and the greater the

chances something can go wrong.

Fragmentation behavior changes in IPv6. In IPv6, routers do not perform

fragmentation.

FRAGMENTATION AND REASSEMBLY
The point has already been made that fragmentation is a processor-intensive oper-

ation. Naturally, if all hosts sending packets were aware of the minimum MTU

size on a path from source to destination before sending an IP packet, the problem

would be solved. There are ways to determine the path MTU size.

PATH MTU DETERMINATION

The commonly used method to determine this path MTU is slow, but it works.

The method involves “testing” the path to the destination before sending “live”

packets to a destination system where the path MTU is not known. The source

system sends out an echo packet. (The echo service just bounces back the content

of the packet to the sender.) The echo packet is usually the MTU size of the

source system’s own TCP/IP network, which could be 1500 bytes for Ethernet,

4500 for Token Ring, and so on. This packet has the DF bit set in the Flags field

in the IPv4 header. If the echo packet comes back successfully, then the MTU

size is fine and can be used for “live” data.

However, if the current path through the routers includes a smaller MTU size

on a link or network that the packet must traverse as the packet makes its way to

the destination, the router attached to this smaller MTU size network must discard

the packet, since the DF bit is set. The router sends an ICMP error message back

to the source indicating the error condition, which is that the packet was discarded

because the DF bit was set. The source can then adjust the packet size downward

and try again. This process can be repeated several times, trying to find the opti-

mal path MTU.

This path MTU determination method works, but it is awkward and slow. The

live data basically wait until the path MTU size is determined for a destination.

And because each packet is independently routed, if there are multiple paths

through the router network (and there usually are, this being the whole point of

using routers), the MTU size may change with every possible path that an IP

packet can take from the source to the destination. However, this method is better

than nothing.

208 CHAPTER 7 IPv4 and IPv6 Headers

A FRAGMENTATION EXAMPLE
Figure 7.4 shows a router on a TCP/IP network. The arriving IP packet is coming

from a WAN link with a configured MTU size of 4500 bytes. The destination sys-

tem is attached to the router by means of an Ethernet LAN, which has an MTU

size of 1500 bytes. Obviously, the 4500-byte packet must be fragmented across

three Ethernet frames to reach the destination host.

Figure 7.4 shows the portions of the IP packet data and the values of the frag-

mentation fields for each fragment. The figure also shows how the destination

system interprets the fragmentation fields to reassemble the entire packet at the

destination.

We’ve already looked at the problems with fragmentations from the router

and network perspective. From the perspective of the receiving host, there are

two main reasons that fragmentation should be avoided. One is the need to wait

for undelivered fragments, and the other is the lack of knowledge on the part of a

destination of the reassembled datagram size. Let’s look at the destination host

reassembly process to explore the “performance penalty” that fragmentation

involves.

A fragmented packet is always reassembled at the destination host and never

by routers. (Why put together packets that might require fragmentation all over

again?) However, because all packets are independently routed, the pieces of a

WAN link:
4500-byte MTU size Router

4488
03E4
LAST
0

Host
(destination)

(187 8-byte blocks �1496 bytes)

Packet from WAN:
Total Packet Length:
Identification:
Flags:
Fragment Offset:
(blocks from start)

Packet from LAN:
Total Packet Length:
Identification:
Flags:
Fragment Offset:
(blocks from start)

Ethernet:
1500-byte MTU size

4488
03E4
MORE
0

4488
03E4
MORE
187

4488
03E4
LAST
374

Frag #1: Frag #2: Frag #3:

FIGURE 7.4

An IPv4 fragmentation example, showing the various header field values for each of the

three fragments loaded into the frames.

209A Fragmentation Example

packet can arrive out of sequence. When the first fragment arrives, local buffer

memory is allocated for the reassembly process. The Fragment Offset of the arriv-

ing packet indicates exactly where in the sequence the newly arrived fragment

should be placed.

At a busy destination, such as a Web server, many different packets from sev-

eral sources can arrive in fragments. All of these pieces can be subjected to the

reassembly process at the same time. The destination host IP layer software will

associate packets having matching Identification, Source, Destination, and

Protocol fields as belonging to the same packet.

However, the Total Length field in a packet fragment’s header only indicates

the length of that particular fragment, not the entire packet before fragmentation.

It is only when the destination system receives the last fragment that the total

length of the original packet can be determined.

If a packet is partially reassembled and the final piece to complete the set has not

arrived, IP includes a tunable reassembly time-out parameter. If the reassembly timer

expires, the remaining packet fragments are discarded. If the final piece of the packet

arrives after the time-out, this packet fragment must be discarded as well.

This description of the reassembly process shows the twin problems of mem-

ory allocation woes from packet size uncertainties and delays due to the reassem-

bly time-out.

Arriving IP packets have no way to inform the destination system that “I am

the first of 10 fragments.” If so, it would be easy for the destination system to

allocate memory for reassembly that was the best-fit for remaining contiguous

buffer space. But all packet fragments can indicate is “I am the first of many,” “I

am the second of many,” and so on, until one finally says, “I am the last of

many.” This uncertainty of reassembled size makes many TCP/IP implementa-

tions allocate as large a block of memory as available for reassembly. Obviously,

a fragmented packet may have been quite large to begin with, because it was frag-

mented in the first place. But the net result is that local buffers become quite frag-

mented. And if smaller blocks of memory are allocated, the resulting non-

contiguous pieces must be moved to an adequate sized memory buffer before the

transport layer can process the reassembled datagram.

The reassembly time-out value must have a value low enough to make the

recovery process delay of the transport layer reasonable. The transport layer con-

tains session (connection) information that will detect a missing packet in a

sequence of segments (the contents of the packets), and TCP always requests

missing information to be resent. Too long a value for the reassembly timer

makes this retransmission process very inefficient. Too short a value leads to

needlessly discarded packets. In most TCP/IP implementations, the reassembly

timer is set by the software vendor and cannot be changed. This is yet another

reason to avoid fragmentation.

Reassembly “deadlock” used to be a problem as well. When memory was a

scarce commodity in hosts, all available local buffer memory could end up hold-

ing partially assembled fragments. An arriving fragment could not be accepted

210 CHAPTER 7 IPv4 and IPv6 Headers

even if it completed a set and the system eventually hung. However, in these days

of cheap and plentiful memory, this rarely happens.

LIMITATIONS OF IPv4

The limitations of IPv4 are often cast solely in terms of address space.

As important as that is, it is only part of the story. Address space is not the only

IPv4 limitation. Some others follow:

• The fragmentation fields are present in every IPv4 packet.

• Fragmentation is always done with a performance penalty and is best avoided.

Yet the fields involved—all 6 bytes worth and more than 25% of the basic

20-byte IPv4 header—must be present in each and every packet.

• IPv4 Options were seldom used and limited in scope.

• The IPv4 Type of Service field was never used as intended.

• The IPv4 Time To Live field was also never used as intended.

• The 8-bit IPv4 Type field limited IPv4 packet content to 256 possibilities.

All of these factors contributed to the structure of the IPv6 packet header.

THE IPv6 HEADER STRUCTURE

Let’s go back to our Windows devices and capture some IPv6 packets. Then we

can examine those headers and compare them to IPv4 headers.

bsdserver# ping6 fc00:fe67:d4:b:205:85ff:fe8b:bcdb
PING6(565401818 bytes) fc00:fe67:d4:b:20e:cff:fe3b:8732 --.

fc00:fe67:d4:b:205:85ff:fe8b:bcdb
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq50 hlim564
time516.027 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq51 hlim564
time50.538 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq52 hlim564
time50.655 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq53 hlim564
time50.622 ms
^C
--- fc00:fe67:d4:b:205:85ff:fe8b:bcdb ping6 statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/std-dev 5 0.538/4.461/16.027/6.678 ms

Here is the first packet we captured:

bsdserver# tethereal -V
Capturing on em0
Frame 1 (70 bytes on wire, 70 bytes captured)

Arrival Time: May 23, 2008 18:39:58.914560000

211A Fragmentation Example

Time delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Number: 1
Packet Length: 70 bytes
Capture Length: 70 bytes

Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
Destination: 00:05:85:8b:bc:db (JuniperN_8b:bc:db)
Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
Type: IPv6 (0x86dd)

Internet Protocol Version 6
Version: 6
Traffic class: 0x00
Flowlabel: 0x00000
Payload length: 16
Next header: ICMPv6 (0x3a)
Hop limit: 64
Source address: fc00:fe67:d4:b:20e:cff:fe3b:8732 (fc00:fe67:d4:

b:20e:cff:fe3b:8732)
Destination address: fc00:fe67:d4:b:205:85ff:fe8b:bcdb (fc00:

fe67:d4:b:205:85ff:fe8b:bcdb)
Internet Control Message Protocol v6

Type: 128 (Echo request)
Code: 0
Checksum: 0x7366 (correct)
ID: 0x0565
Sequence: 0x0000
Data (8 bytes)

0000 6e b9 73 44 43 f4 0d 00 n.sDC. . .

In contrast to the IPv4 header, there are only eight lines (and eight fields) in

the IPv6 header. Since the packet is simple enough, let’s look at the header fields

in detail as we examine the meaning and values in this IPv6 packet.

The IPv6 header is shown in Figure 7.5. Besides the new expanded, 16-byte IP

source and destination addresses, there are only six other fields in the entire IPv6

header. This simpler header structure makes for faster packet processing in most cases.

IPv6 packets have their own frame Ethertype value, 0x86dd, making it easy

for receivers that must handle both IPv4 and IPv6 on the same interface to distin-

guish the frame content.

Version—A 4-bit field for the IP version number (0x06).
Traffic Class—A 12-bit field that identifies the major class of the packet

content (e.g., voice or video packets). Our capture shows this field as the

default at 0, meaning that it is ordinary bulk data (as FTP should carry) and

requires no special handling at devices.

212 CHAPTER 7 IPv4 and IPv6 Headers

Flow Label—A 16-bit field used to label packets belonging to the same flow

(those with the same values in several TCP/IP header parameters). The flow

label here is 0, but this is common.

Payload Length—A 16-bit field giving the length of the packet in bytes,

excluding the IPv6 header. The payload of this packet, an ICMP message, is

16 bytes long.

Next Header—An 8-bit field giving the type of header immediately following

the IPv6 header (this served the same function as the Protocol field in IPv4).

This packet carries an ICMPv3 message, so the value is 0x3a.
Hop Limit—An 8-bit field set by the source host and decremented by 1 at

each router. Packets are discarded if the hop limit is decremented to zero (this

replaces the IPv4 Time To Live field). The hop limit here is 64, half of the
FTP value in our IPv4 example. Generally, implementers choose the default to

use, but values such as 64 or 128 are common.

1 byte

Version Flow LabelTraffic Class

Next HeaderPayload Length

128-bit IPv6 Source Address

128-bit IPv6 Destination Address

Hop Limit

1 byte 1 byte 1 byte

FIGURE 7.5

The IPv6 header fields. Note the reduction in field number of how the address fields

occupy most of the header.

213A Fragmentation Example

IPv4 AND IPv6 HEADERS COMPARED
Figure 7.6 shows the fields in the IPv4 packet header compared to the fields in

the IPv6 header.

IPv6 HEADER CHANGES

In summary, the following are some of the most important changes to the IP

header in IPv6.

• Longer addresses (32 bits to 128 bits). No fragmentation fields.

• No header checksum field. No header length field (there is a fixed length

header).

• Payload length given in bytes, not “blocks” (32-bit units). Time to Live (TTL)

field becomes Hop Limit.

• Protocol field becomes Next Header (determines content format). 64-bit

alignment of the packet, not 32-bit alignment. A Flow Label field has been

added.

• No Type of Service bits (which were seldom respected anyway). Many of

the IPv4 fields vanish completely, especially the fields used for packet

1 byte

Hdr
Len

Type of
Service

Time to
Live

Source Address (32-bit IPv4)

Destination Address (32-bit IPv4)

Destination Address (128-bit IPv6)

Source Address (128-bit IPv6)

Field names kept from IPv4 to IPv6

Field name and position changed in IPv6

New field in IPv6

Fields not kept in IPv6

(Options, if present, padded in needed)

Protocol Header Checksum

Identification Fragment OffsetFlags

1 byte

Total Packet Length
Ver-
sion

1 byte 1 byte

Traffic Class

1 byte 1 byte 1 byte 1 byte

Flow Label

Next
Header Hop LimitPlayload Length

Ver-
sion

FIGURE 7.6

IPv4 and IPv6 headers compared, showing how the old fields and new fields relate to

each other.

214 CHAPTER 7 IPv4 and IPv6 Headers

fragmentation. IPv6 addresses fragmentation performance penalties and

problems by forbidding it altogether in routers. Source hosts can still

fragment, however, if the source host wants to send packets larger than

the Path MTU size to a destination. In IPv6, as in IPv4, fragmentation

issues can be avoided altogether by making all packets 1280 bytes long—

the minimum established by RFC 2460—but this results in many “extra”

packets.

• The IPv4 header Checksum field is absent because destination host error

checking is the preferred method of error detection in today’s more reliable

networks, and almost all transmission frames provide better error detection

than the IP layer. There is no header length field because all IPv6 headers

are the same length. The Payload Length field excludes the IPv6 header

fields and is measured in bytes, rather than the awkward 4-byte units of

IPv4.

• The TTL field, never interpreted as time anyway, is gone as well. In its place

is the Hop Limit field, a simple indication of the number of routers that a

packet can pass through before it should reach the destination host. The

Protocol field of IPv4 has become the Next Header field in IPv6. The term

“next header” is more accurate because the information inside the IPv6 packet

is not necessarily a higher layer protocol (e.g., TCP segment) in IPv6. There

are many other possibilities.

• The entire packet must be an integer number of 64-bit (8-byte) units. The

32-bit unit for IPv4 was established when many high-performance computers

were 32-bit machines, meaning memory access and internal bus operations

moved 32-bit units (called a “word”) around. Today high-performance

computers often support 64-bit words. It only made sense to align the new

IPv6 header for ease and speed of processing on the newer architecture

computers.

• Finally, in place of the ToS field in IPv4, the IPv6 header defines a Flow

Label field. Flows are used by routers to pick out IPv6 packets containing

delay-sensitive data such as voice, video, and multimedia. The Type of

Service field was usually ignored by routers in IPv4, and other uses were not

standardized.

• The IPv6 specification includes a concept known as Extension Headers.

Extension Headers essentially take the place of the Options in the IPv4 packet

header. IPv6 Extension Headers are only present when necessary and are

designed to be extensible (new functions may be defined in the future), but the

term “extensible Extension Headers” is awkward.

• The current Extension Headers include a Hop-by-Hop Option Header,

examined by every router handling the IPv6 packet and an Authentication

Header for enhanced security on TCP/IP networks (these are used in IPv4 as

part of IPSec). There is also a Fragmentation header for the use of the source

host when there is no way to prevent the source from sending packets larger

than the path MTU size (IPv6 routers cannot fragment, but hosts can). Also,

215IPv4 and IPv6 Headers Compared

there used to be a Routing Header specifying the IP addresses of the routers

on the path from source to destination (similar to “source routing” in token

ring LANs), but this is deprecated by RFC 5095. There are several others,

but these show the kinds of capabilities included in the IPv6 Extension

Headers.

IPv6 AND FRAGMENTATION
What would happen if we put IPv6 into a situation where it has to fragment

packet content to make it fit into a frame? Let’s use the Illustrated Network to

find out. Two useful ping parameters are the size of the packet to bounce off a

remote device and the count of packets sent. We’ll capture the packets sent

when bsdserver sends a 2000-byte packet (too large for an Ethernet frame) to

the router.

bsdserver# ping6 -s 2000 -c 1 fc00:fe67:d4:b:205:85ff:fe8b:bcdb
PING6(20485401812000 bytes) fc00:fe67:d4:b:20e:cff:fe3b:8732 --.

fc00:fe67:d4:b:205:85ff:fe8b:bcdb
2008 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq50
hlim564 time52.035 ms

--- fc00:fe67:d4:b:205:85ff:fe8b:bcdb ping6 statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/std-dev 5 2.035/2.035/2.035/0.000 ms
bsdserver#

This makes 2008 bytes with the IPv6 header. Here’s what we have (the data

fields, which contain test strings, have been omitted):

bsdserver# tethereal -V
Capturing on em0
Frame 1 (1510 bytes on wire, 1510 bytes captured)

Arrival Time: May 25, 2008 08:39:21.231993000
Time delta from previous packet: 0.000000000 seconds
Time since reference or first frame: 0.000000000 seconds
Frame Number: 1
Packet Length: 1510 bytes
Capture Length: 1510 bytes

Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
Destination: 00:05:85:8b:bc:db (JuniperN_8b:bc:db)
Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
Type: IPv6 (0x86dd)

Internet Protocol Version 6
Version: 6
Traffic class: 0x00

216 CHAPTER 7 IPv4 and IPv6 Headers

Flowlabel: 0x00000
Payload length: 1456
Next header: IPv6 fragment (0x2c)
Hop limit: 64
Source address: fc00:fe67:d4:b:20e:cff:fe3b:8732 (fc00:fe67:d4:
b:20e:cff:fe3b:8732)

Destination address: fc00:fe67:d4:b:205:85ff:fe8b:bcdb (fc00:
fe67:d4:b:205:85ff:fe8b:bcdb)

Fragmentation Header
Next header: ICMPv6 (0x3a)
Offset: 0
More fragments: Yes
Identification: 0x000000e5

Internet Control Message Protocol v6
Type: 128 (Echo request)
Code: 0
Checksum: 0x74df
ID: 0x0e60
Sequence: 0x0000
Data (1440 bytes) (OMITTED)

Frame 2 (622 bytes on wire, 622 bytes captured)
Arrival Time: May 25, 2008 08:39:21.232007000
Time delta from previous packet: 0.000014000 seconds
Time since reference or first frame: 0.000014000 seconds
Frame Number: 2
Packet Length: 622 bytes
Capture Length: 622 bytes

Ethernet II, Src: 00:0e:0c:3b:87:32, Dst: 00:05:85:8b:bc:db
Destination: 00:05:85:8b:bc:db (JuniperN_8b:bc:db)
Source: 00:0e:0c:3b:87:32 (Intel_3b:87:32)
Type: IPv6 (0x86dd)

Internet Protocol Version 6
Version: 6
Traffic class: 0x00
Flowlabel: 0x00000
Payload length: 568
Next header: IPv6 fragment (0x2c)
Hop limit: 64
Source address: fc00:fe67:d4:b:20e:cff:fe3b:8732 (fc00:fe67:d4:

b:20e:cff:fe3b:8732)
Destination address: fc00:fe67:d4:b:205:85ff:fe8b:bcdb (fc00:

fe67:d4:b:205:85ff:fe8b:bcdb)
Fragmentation Header

217IPv6 and Fragmentation

Next header: ICMPv6 (0x3a)
Offset: 1448
More fragments: No
Identification: 0x000000e5

Data (560 bytes) (OMITTED)
(Frames 3 and 4, the echoed frames sent back in response, are mirror
images of Frames 1 and 2 and have been omitted for brevity.)

bsdserver#

Because the host cannot pack 2000 bytes into an Ethernet frame, the IPv6 host

does the fragmenting before it sends the bits onto the LAN. There are no frag-

mentation fields in the IPv6 header, however, so IPv6 includes a second header

(next header) that carries the information needed for the destination to reassemble

the fragments (in this case, two of them). The important fields are highlighted in

bold in the preceding code.

The first frame (the capture says “packet”) is 1510 bytes long, including 1456

bytes of payload (given in the Payload Length field). The Next Header value of

0x2c indicates that the next header is an IPv6 fragment header. The

Fragmentation Header fields are listed in full:

• Next Header (0x3a)—The header following the Fragmentation Header is an

ICMPv6 message header.

• Offset (0)—This is the first fragment of a series.

• More Fragments (Yes)—There are more fragments to come.

• Identification (0x000000e5)—Only reassemble fragments that share this

identifier value.

The data field in the ICMPv6 message is 1440 bytes long. The rest of the

1510 bytes are from the various headers pasted onto these bytes.

Frame 2 holds the rest of the 2000 bytes in the ping. This frame is 622 bytes

long and carries 568 bytes of payload. The Next Header is still an IPv6 fragment

(0x2c). The Fragmentation Header fields follow:

• Next Header (0x3a)—The header following the Fragmentation Header is an

ICMPv6 message header.

• Offset (1448)—These bytes start 1448 bytes after the content of the first

frame. (The “extra” 8 bytes are for the ICMPv6 header.)

• More Fragments (No)—The contents of this packet complete the series.

• Identification (0x000000e5)—This fragment goes with the previous one with

this identifier value.

The data field in the ICMPv6 message is 560 bytes long. Along with the 1440

bytes in the first fragment, these add up to the 2000 bytes sent.

218 CHAPTER 7 IPv4 and IPv6 Headers

QUESTIONS FOR READERS

Figure 7.7 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. Why are diagnostics like ping messages routinely given high hop-count values

such as 64 or 128?

2. Without any IPv4 options in use, what value should be seen in the Header

Length field most of the time?

3. How does an IP receiver detect missing fragments?

4. Is there any way for an IP receiver to determine how many fragments are

supposed to arrive?

5. Since almost all the IPv4 header fields are options in IPv6, is it correct to say

that the IPv6 header is “simplified”?

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 1 byte

Hdr
Len

FlagsIdentification

Time to
Live

Protocol Header Checksum

Source Address (32-bit IPv4)

Destination Address (32-bit IPv4)

(Options, if present, padded if needed)

Fragment Offset

Type of
Service Total Packet Length

Ver-
sion Traffic Class

Playload Length

Source Address (128-bit IPv6)

Destination Address (128-bit IPv6)

Flow Label

Next
Header Hop Limit

Ver-
sion

FIGURE 7.7

The IPv4 and IPv6 packet header fields. IPv6 can employ most IPv4 options as

“next header” fields following the basic header.

219Questions for Readers

This page intentionally left blank

CHAPTER

8Internet Control Message
Protocol

WHAT YOU WILL LEARN

In this chapter, you will learn about ICMP messages, their types, and (in many cases)
the codes used in each type. We’ll look at which ICMP messages are routinely
blocked at firewalls and which are essential for proper device operation.

You will learn about the common ping utility for determining device accessibility
(“reachability”) on an IP network. We’ll discuss the mechanics of both ping and tra-
ceroute, and use several ping examples to illustrate ICMP on the network.

The only function of the IP layer is to provide addressing for and to route the

IP packet. That’s all. Once an IP packet has been dealt with, the IP layer just

looks for the next packet. But IP is a connectionless, “best effort,” or “unreli-

able” method of packet delivery. The terms “best effort” and “unreliable” often

make it sound like IP is casual about the delivery of packets, which is why

they are in quotes so that no one takes them too literally. IP’s best effort is usu-

ally just fine, given the low error rates on modern transports, and it is mostly

unreliable with regard to a lack of guarantees, as has been pointed out. Besides,

there is nothing wrong with letting other layers, such as the TCP segments or

the Ethernet frames, have the major responsibility for error detection and

correction.

This is not to say that IP should be oblivious to errors. The network layer,

in its ubiquitous and key position at the heart of the protocol stack, should

know about packet errors and is in a good position to let layers above know

what’s going on (although IP lets the upper layers decide what to do about the

condition).

And there’s plenty that can still go wrong, and not just with regard to bit

errors. A packet might wander the router cloud until the TTL field hits zero.

A destination server might be down. A destination server might no longer exist.

The “do not fragment” bit might forbid fragmentation when it is needed to send a

packet, stopping the routing process cold. In all of these situations, the sender

should be informed of the condition.

Without error condition feedback from the network, the natural response to

an unexpected result (in this case, a reply) is to simply repeat the original

message. Sometimes this might work, especially if the condition is transient, but

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00008-4

© 2017 Elsevier Inc. All rights reserved.
221

http://dx.doi.org/10.1016/B978-0-12-811027-0.00008-4

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 8.1

ICMP is used on all devices on the Illustrated Network, routers, and hosts. In this chapter,

we’ll work with the hosts on the LANs.

222 CHAPTER 8 Internet Control Message Protocol

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

223Internet Control Message Protocol

semipermanent or permanent error conditions must be reported to the source.

Otherwise, repetitive sending might result in an endless error loop, and certainly

adds unnecessary traffic loads to the network.

This chapter explores aspects of IP’s built-in error reporting protocol, the

Internet Control Message Protocol (ICMP). Note that ICMP does not deal with

“error messages,” but “control messages,” a better term to cover all of the roles

that have evolved for ICMP. We’ll start by looking at one indispensable utility

used on all TCP/IP network: ping. We’ll be using the same LAN-based hosts as

in the previous chapter, as shown in Figure 8.1.

ICMP AND PING
The easiest way to look at ICMP on the Illustrated Network is with ping and

traceroute. Both utilities have been used before in this book, but because traceroute

will be used again in the chapters on routing, this chapter will use ICMP and ping.

The ping utility is just a way to “bounce” packets off a target device and see

if it is there—that is, it has the IP address that was provided, is powered on, and

alive. The device might still not function in the correct way (i.e., the router might

not be routing properly), but at least the device is present and accounted for. It is

routine to ping a newly installed device, host, router, or anything else, just to

see if it responds. If it doesn’t, network administrators have a place to start

troubleshooting.

Let’s use ping from the lnxclient to the bsdserver, both on LAN2, to start

exploring ICMP. Windows only sends four pings by default, but Unix systems

will just keep going until stopped with XC (which is what was done here).

[root@lnxclient admin]# ping 10.10.12.77
PING 10.10.12.77 (10.10.12.77) 56(84) bytes of data.
64 bytes from 10.10.12.77: icmp_seq51 ttl564 time50.549 ms
64 bytes from 10.10.12.77: icmp_seq52 ttl564 time50.169 ms
64 bytes from 10.10.12.77: icmp_seq53 ttl564 time50.171 ms
64 bytes from 10.10.12.77: icmp_seq54 ttl564 time50.187 ms
64 bytes from 10.10.12.77: icmp_seq55 ttl564 time50.216 ms
^C
--- 10.10.12.77 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3996ms
rtt min/avg/max/mdev 5 0.169/0.258/0.549/0.146 ms
[root@lnxclient admin]#
The output shows the ICMP sequence numbers and round-trip time (rtt) for

the group in terms of minimum, average, maximum, and even the maximum devi-

ation from the mean. We do not have DNS on the network, so we have to use IP

addresses. Most ping implementations will accept host names, and some (such as

Cisco routers) will even do a reverse DNS lookup when given an IP address and

report the host name in the result. This can be very helpful when an IP address is

entered incorrectly or assigned to a different device than anticipated.

224 CHAPTER 8 Internet Control Message Protocol

We can look at the ICMP packets used with ping in more detail. Let’s use

both LANs this time, and ping from wincl1 (10.10.11.51) on LAN1 to wincli2
(10.10.12.222) on LAN2. With Windows, we won’t have to worry about stop-

ping the sequence.

C:\Users\walterg. ping 10.10.12.222
Pinging 10.10.12.222 with 32 bytes of data:
Reply from 10.10.12.222: bytes532 time51ms TTL564
Reply from 10.10.12.222: bytes532 time512ms TTL564
Reply from 10.10.12.222: bytes532 time52ms TTL564
Reply from 10.10.12.222: bytes532 time56ms TTL564
Ping statistics for 10.10.12.222:

Packets: Sent 5 4, Received 5 4, Lost 5 0 (0% less),
Approximate round-trip times in milli-seconds:

Minimum 5 1ms, Maximum 5 12ms, Average 5 5ms
Due to the way the Windows operating systems handle timing, it’s not unusual

to have RTTs of 0 on wired networks. Wireless networks often have variations

such as reflected here.

What does this group of packets look like at the target? Figure 8.2 shows us.

We can see that the four pings are accomplished with eight packets sent over

the network. Look at the last column in the upper part of the figure. Ping employs

messages in request�reply pairs using the ICMP protocol. An Echo request is

sent out which basically tells the receiver to “send an ICMP Echo message back

FIGURE 8.2

Ping ICMP requests and replies showing details of the ping echo request in the middle

pane. Note that the content of the packet is the ICMP message, not TCP or UDP.

225ICMP and Ping

to me, okay?” Once the reply is received, the next request is sent, statistics com-

piled as the procedure goes along, and so on.

The details of Frame 1 show that the ICMP message is carried directly inside

an IP packet (and then Ethernet II frame). But ICMP is not often shown as a

transport layer protocol. That would make ICMP function at the same level as

things like TCP and UDP, and this is simply not true. ICMP, as we will find, is

concerned with network layer problems, so portraying ICMP as a type of special

protocol associated with IP is not really a mistake.

So technically, because IPv4 packets carry ICMP messages as protocol

number 1, ICMP is as valid a layer above IP as TCP or UDP or any other of the

200 or so defined IP protocols that can be carried inside IP packets. But because

every IP implementation must include ICMP (and IPv6 has ICMPv6), it makes

sense to bundle ICMP and IP together. This also implies that ICMP messages do

not report their own errors.

What if no reply is received by the source of a ping? The source then times

out and another ICMP Echo request message is sent. Naturally, no statistics can

be generated, and we get a “host unreachable” message in most cases. We can

force a timeout simply by trying to ping a nonexistent address (this could also be

the result of a simple typo).

[root@lnxclient admin]# ping 10.10.12.55
PING 10.10.12.55 (10.10.12.55) 56(84) bytes of data.
From 10.10.12.166 icmp_seq51 Destination Host Unreachable
From 10.10.12.166 icmp_seq52 Destination Host Unreachable
From 10.10.12.166 icmp_seq53 Destination Host Unreachable
--- 10.10.12.55 ping statistics ---
3 packets transmitted, 0 received, 13 errors, 100% packet loss, time
5022ms, pipe 3
[root@lnxclient admin]#
Many ping implementations report either “unreachable” or “unknown” errors. The

unreachable report implies that the target was once known to the source and reach-

able, but isn’t “reachable” at the moment. The unknown report implies that the source

has never heard of the target address or port. However, unreachable reports are often

returned by a host source pinging a new device, which obviously should be unknown.

Most network people treat both error condition reports the same way:

Something is just plain wrong.

Ping remains the first choice for checking connectivity on the Internet,

between hosts, and between host and router. On LANs, the first troubleshooting

step is “can you ping it?” If you cannot, there’s no sense of going further. If you

can, and things like applications still do not function as expected, at least the trou-

bleshooting process can continue productively.

Firewalls sometimes screen out ICMP messages in the name of security.

A well-known Denial of Service (DoS) attack called the “Ping of Death” uses

malformed (usually enormous) and fragmented ping packets to disrupt a target. In

these cases, even a failed ping does not prove that a device is not working prop-

erly. In these cases, diagnostics become more complex, although not impossible.

Of course, screening out all ICMP messages from a site usually also eliminates

226 CHAPTER 8 Internet Control Message Protocol

correct error reporting and proper operation of the device. After we list the ICMP

message types, we’ll discuss which ICMP messages are essential.

Ping works with IPv6, too. On most Unix hosts, it’s called ping6. When used

with the special IPv6 multicast address ff02::1, the %em0 addition probes for the

IPv6 address of every interface on the LAN, a form of forced neighbor discovery

in IPv6. Here’s what it looks like on LAN2 when run from the bsdserver.
bsdserver# ping6 ff02::1%em0
PING6(565401818 bytes) fe80::20e:cff:fe3b:8732%em0 —. ff02::1%em0
16 bytes from fe80::20e:cff:fe3b:8732%em0, icmp_seq50 hlim564
time50.154 ms
16 bytes from fe80::202:b3ff:fe27:fa8c%em0, icmp_seq50 hlim5128
time50.575
ms(DUP!)
16 bytes from fe80::5:85ff:fe8b:bcdb%em0, icmp_seq50 hlim564
time51.192
ms(DUP!)
16 bytes from fe80::20e:cff:fe3b:8856%em0, icmp_seq50 hlim564
time50.097
ms(DUP!)
^C
—- ff02::1%em0 ping6 statistics —-
1 packets transmitted, 1 packets received, 13 duplicates, 0% packet
loss
round-trip min/avg/max/std-dev 5 0.071/2.520/39.406/8.950 ms
bsdserver#
All four systems on LAN2 are listed, except for lnxclient, which does not

have an IPv6 address. But hosts winsrv2 (fe80::20e:cff:fe3b:8856), wincli2
(fe80::202:b3ff: fe27:fa8c), router TP6 (fe80::5:85ff:fe8b:bcdb), and even

bsdserver (fe80::20e: cff:fe3b:8732) itself have all replied. Oddly, the

Windows XP client replies with a hop limit of 128.

IPv6 traffic (and ICMPv6) is also visible to Ethereal, so we can explore the

format of these packets a little further. Figure 8.3 shows how the exchange of the

ping6 ff02::1%em0 packets looks like from wincli2 when run from bsdserver.
Note that this only captures the exchange of packets that wincli2 processes.

IPv6 uses its own version of ICMP, called (not surprisingly) ICMPv6. The

ICMPv6 Echo reply message, sent in response to the ping to multicast group ff02::1,
is highlighted in the figure. From the source address, we can tell this is from wincli2.
We looked at the details of the IPv6 header in the last chapter. Note that the hop limit

is 128 in the reply, and that the protocol number for ICMP is 0x3a (58 decimal).

THE ICMP MESSAGE FORMAT
ICMP is usually considered to be part of the IP layer itself, and that is how ICMP

is presented here. Hosts are supposed to set the IPv4 packet header TOS field to 0

if the packet carries an ICMP message, and routers are supposed to set the prece-

dence field to 6 or 7.

227The ICMP Message Format

Figure 8.4 shows the format of two ICMP messages. All ICMP messages start

with the same three fields: an 8-bit Type and Code, followed by a 16-bit

Checksum. Then, depending on the value of the Type, the details of what follows

varies. So to be more informative, a second ICMP message is shown. The second

message displays the format used for a very common network condition,

Destination Unreachable, which we saw earlier.

Destinations on a TCP/IP network can be unreachable for a number of rea-

sons. The host could be down, or have a new IP address that is not yet known to

all systems. The destination’s Internet name could have been typed incorrectly

(but still maps to an existing IP address), the only link to the site could have

failed, and so on.

ICMP MESSAGE FIELDS

The fields that appear in all ICMP messages follow:

Type—This 8-bit field defines the major purpose of the ICMP message. Most

indicate error conditions, but two of the most common type values, 8 and 0,

mean Echo Request and Echo Reply, respectively. A Type value of 3 means

FIGURE 8.3

ICMPv6 capture showing the ICMPv6 echo reply message from wincli2. The header

details are shown in the middle pane.

228 CHAPTER 8 Internet Control Message Protocol

Destination Unreachable. All Types determine the format of the rest of the

ICMP message beyond the first three fields.

Code—This 8-bit field gives additional information about the condition in the

Type field. This is often not necessary, and many Types have only a Code5 0

defined. Other Types have many Code values defined to allow the source to

focus on the real problem. For example, Destination Unreachable (Type5 3)

has 16 codes (0�15) defined.

Checksum—This is the same type of checksum as used for the IP packet

header. This points out that ICMP, although considered part of IP itself, is

really just as much a separate layer as anything else in TCP/IP and so must

provide for its own error checking.

ICMP TYPES AND CODES

There are about 40 defined ICMP message types, and message types 41 through

255 are reserved for future use. Only a handful of the types have more than a

Code value of 0 defined, but these are the more important ICMP message types.

There are two major categories of ICMP messages: error messages (reports

that do not expect a response) and queries (messages sent with the expectation

1 byte 1 byte 1 byte 1 byte

ChecksumCode

ICMP Data
(content and format depends on Type)

(A)

(B)

Type

ChecksumCode

Unused (all 0 bits)

IP Header (20 bytes)
and

First 8 bytes of Original Packet Data (usually TCP/UDP header)

Type � 3

1 byte 1 byte 1 byte 1 byte

FIGURE 8.4

ICMP message format, showing how a specific message such as Destination Unreachable

uses the fields following the initial three. (A) General format of ICMP message. (B) Format

of Destination Unreachable ICMP message.

229The ICMP Message Format

of a matching response). Some others do not fall neatly into either category.

The structure of the fields following the checksum depends on the type of ICMP

message. These two formats are shown in Figure 8.5.

Note that the Destination Unreachable format shown in Figure 8.4 is an ICMP

error message and does not generate a reply. The fields that appear following the

initial three in the ICMP Destination Unreachable message are very common.

Unused—This 32-bit field must be set to all 0 bits for Destination

Unreachable, but in other ICMP messages it is often used as a sequence

number to allow requests and responses to be coordinated by senders and

receivers.

IP Header and More—The last 28 bytes of the ICMP Destination

Unreachable message consist of the original IP header (usually 20 bytes, but

can be up to 60 bytes) and the first 8 bytes of the segment inside the packet.

1 byte 1 byte

Code

Content Depends on Type/Code*

ChecksumType

1 byte 1 byte

IP Header (20 bytes)
and

First 8 bytes of Original Packet Data (usually TCP/UDP header)

1 byte 1 byte

Code

Content depends on Query Type

ChecksumType � 3

1 byte 1 byte

(A)

*Usually all 0 (unused) except for:
Type 3/Code 4: Destination unreachable, fragmentation needed
 (fields are 2 bytes unused and 2-byte link MTU size)
Type 3/Code 5: Destination unreachable, redirect (field is router IP address)
Type 12/Code 0: Parameter problem (field is 4-bit pointer to parameter, rest all 0)

(B)

Identifier for Request/Response pairs
(usually PID in Unix)

Sequence Number
(set to 0 initially and incremented)

FIGURE 8.5

ICMP error and query messages. Note that error messages include the IP header that

generated the error. (A) ICMP error message. (B) ICMP query message.

230 CHAPTER 8 Internet Control Message Protocol

Usually, this includes the ports used by the TCP or UDP segment. This

practice allows senders to realize exactly what field value is objectionable. It’s

one thing to say “Port unreachable,” but better to say “Hey! The port in the

UDP segment you sent, which is port 6735, can’t be reached here right

now. . .”

Usually, the error messages have the all-zero unused byte followed by the 28-

byte header and packet data, but not always. Identifiers track Query message

request/response pairs, and the sequence numbers help sort out queries sent by the

same process (the process identifier, the PID, is often the ICMP Query identifier

in Unix systems).

The suite of the 40 ICMP message types can be implemented by hosts or rou-

ters. Some of the types are mandatory, some are optional, some are for experi-

mental use, and some are obsolete. In some cases, specifications explicitly state

that hosts or routers be able to transmit and receive (process) ICMP messages,

but not in all cases.

Let’s take a look at what the specifications say about ICMP messages. First,

we’ll look at error messages, and then query messages, and then all the rest.

ICMP Error Messages
ICMP Error messages report semipermanent network conditions. The five ICMP

error messages are displayed in Table 8.1, which shows how routers and hosts

should handle each type.

Time-exceeded errors result from TTL expiration (Code5 0) or when frag-

ments cannot be completed quickly enough at a receiver (Code5 1). Parameter

problems are usually sent in regard to IP options. The codes are for a bad IP

header (0), missing a required option field (1), or a bad length (2).

Which of these message types are essential to device operation and should not

be blocked? Generally, the Destination Unreachable is essential (it is used by tra-

ceroute), and used in MTU path calculations. Of the others, the Redirect message

is most often blocked, because it does just as it says, that is, it tells another device

to send packets somewhere else.

Many ICMP errors are Destination Unreachable errors. The 16 codes for this

error type and their meanings are shown in Table 8.2, which includes a likely

cause for the condition.

The precedence bits are in the TOS field of the IPv4 packet header, and are

distinct from the TOS bits themselves (and are almost universally ignored

anyway).

ICMP Query Messages
ICMP Query messages are used to question conditions on the network. These

messages are used in pairs, and each request anticipates a response. The 10 ICMP

Query messages are listed in Table 8.3, which shows how routers and hosts

should handle each type.

231The ICMP Message Format

These ICMP messages in Table 8.3 allow routers and hosts to query for time-

stamp, address mask, and domain name information. Echo requests and replies

have special uses described in the section of this chapter on ping.

Which of these should be allowed to pass through firewalls? Sites most often

allow Echo messages (used by ping), although some allow only incoming Echo

replies but not Echo requests (which allows my devices to ping yours, but not the

Table 8.2 ICMP Destination Unreachable Codes

Code Meaning

0 Network is unreachable (the router’s links to it might have failed).
1 Host is unreachable (the router can’t reach the host; it might be turned off).
2 Requested protocol is unreachable (the process might not be running on the host).
3 Port is unreachable (the remote application might not be running on the host).
4 Fragmentation needed at router but DF flag is set (used for path MTU determination).
5 Source route has failed (source route path might go through down link or router).
6 Destination network is unknown (different than Code5 0; router can’t find it).
7 Destination host is unknown (different than Code5 1; router can’t find host).
8 Source host is isolated (source host is not allowed to send onto the network).
9 Communication with this network is administratively forbidden (due to firewall).
10 Communication with this host is administratively forbidden (due to firewall).
11 Network is unreachable with specified Type of Service (router can’t forward).
12 Host is unreachable with specified Type of Service (router can’t forward).
13 Communication administratively prohibited (by route filtering).
14 Host precedence violation (the first-hop router does not support this precedence).
15 Precedence cut-off in effect (requested precedence too low for router network).

Table 8.1 ICMP Error Messages

Type Meaning Codes Data
Router
Sends

Router
Receives

Host
Sends

Host
Receives

3 Destination
Unreachable

0�15 IP hdr18
bytes

M M M M

4 Source
Quench

0 IP hdr18
bytes

Obs Obs Obs Obs

5 Redirect 0�3 IP hdr18
bytes

M M Opt Opt

11 Time
Exceeded

0�1 IP hdr18
bytes

M M Opt Opt

12 Parameter
Problem

0�2 IP hdr18
bytes

M M M M

Obs, obsolete; Opt, optional; M, mandatory.

232 CHAPTER 8 Internet Control Message Protocol

other way around). The timestamp reply is also used by traceroute, and if these

messages are blocked, asterisks (�) appear instead of times in the traceroute
report (we’ll look at traceroute operation in detail in Chapter 9).

Other ICMP Messages
Some ICMP messages do not fall neatly into either the error or query category.

These messages are typically used in specialized circumstances. The other 25

ICMP messages are listed in Table 8.4, again showing how routers and hosts

should handle each type.

The messages displayed in Table 8.4 are less intuitive than others. Many of

the other messages are relatively new, apply to special circumstances, and not

much has been published about their use.

Very little has been written on the use of the alternate host address message

and the table is filled in more with suggestions than anything else. Router adver-

tisement and solicitation messages are defined in RFC 1256 as part of “neighbor

discovery” for IPv4 and a way around network administrators needing to know

local router addresses.

The traceroute message was introduced in RFC 1393 and was supposed to be

a more formal way to perform a traceroute, but never really caught on. RFC 1393

Table 8.3 ICMP Query Messages

Type Meaning Codes Data
Router
Sends

Router
Receives

Host
Sends

Host
Receives

0 Echo reply 0 Varies M M M M
8 Echo

request
0 Varies M M M M

13 Timestamp
request

0 12 bytes Opt Opt Opt Opt

14 Timestamp
reply

0 12 bytes Opt Opt Opt Opt

15 Information
request

0 0 bytes Obs Obs Obs Obs

16 Information
reply

0 0 bytes Obs Obs Obs Obs

17 Mask
request

0 4 bytes M M Opt Opt

18 Mask reply 0 4 bytes M M Opt Opt
37 Domain

name
request

0 0 bytes M M M M

38 Domain
name reply

0 0 bytes M M M M

Obs, obsolete; Opt, optional; M, mandatory.

233The ICMP Message Format

Table 8.4 Other ICMP Query Messages

Type Meaning Codes Data Router Sends Router Receives Host Sends Host Receives

1 Unassigned NA NA NA NA NA NA
2 Unassigned NA NA NA NA NA NA
6 Alternate host address 0 (4 bytes) (Prohibited) (Prohibited) Opt Opt
9 Router advertisement 0 Varies M Opt Prohibited Opt
10 Router solicitation 0 0 bytes M M Opt Opt
19 Reserved-security NA NA NA NA NA NA
20�29 Reserved-robustness NA NA NA NA NA NA
30 Traceroute 0�1 Varies Opt Opt M M
31 Datagram conversion error 0�11 Varies ? ? ? ?
32 Mobile host redirect 0 Varies Opt Opt Opt Opt
33 IPv6 where-are-you 0 ? Opt Opt Opt Opt
34 IPv6 I-am-here 0 ? Opt Opt Opt Opt
35 Mobile registration request 0, 16 Varies Opt Opt Opt Opt
36 Mobile registration reply 0, 16 Varies Opt Opt Opt Opt
39 SKIP 0 Varies Opt Opt Opt Opt
40 Photurius 0�3 Varies Exp Exp Exp Exp

Exp, expired; Obs, obsolete; Opt, optional; M, mandatory; NA, not applicable.

describes an alternate traceroute method that uses a single packet with an IP

header Traceroute option field and uses the answering ICMP Type5 30 messages

from routers to gather the same information while using far fewer messages.

However, support for this method is not mandatory on routers, making this form

of traceroute problematic.

Datagram conversion errors are part of the “Next Generation Internet” proto-

col using 64-bit addresses described in RFC 1475 and occurring when packets

cannot be converted to the new format. The mobile-related messages (32, 36,

and 37) are part of Mobile IP (or “IP Mobility”). SKIP is the Simply Key

Management for Internet Protocols and is used for Internet security. So is

Photurius, an experimental aspect of IPSec that has four codes: one reserved (0),

one for an unknown IPSec Security Parameter Index (SPI, 1), one for failed

authentication (2), and one for failed decryption (3).

SENDING ICMP MESSAGES
Few TCP/IP protocols have been the subject of as much tinkering and add-on

functionality as ICMP. The original specification of ICMP was in RFC 792 and

refined in RFC 1122 (Host Network Requirements) and RFC 1812 (Router

Requirements). RFC 1191 added path MTU discovery functions to ICMP, RFC

1256 added router discovery, and RFC 1393 extended traceroute functions with a

special message type not often used.

But at heart, ICMP is a collection of predefined messages to indicate very spe-

cific conditions. If the sender of a packet receives an ICMP message that involves

ICMP itself (the query messages), then ICMP deals with it directly. Otherwise,

other protocols are notified. (Unreachable ports are reported to UDP, which lacks

the segment tracking that TCP has, and so forth.) The precise response of an

application to an ICMP message can vary, but usually the error is reported to the

user so that corrective action (even if it’s just “Stop doing that!”) can be taken.

WHEN ICMP MUST BE SENT

Systems that detect a packet error and discard the packet may or may not send an

ICMP message back to the originating host. Usually it depends on whether the

error is transient or semipermanent.

Things like invalid checksums are ignored in TCP/IP, because these are con-

sidered to be transient failures that should not persist. The philosophy is that if

the data are important, the sender will simply resend. Transient errors are unlikely

to repeatedly manifest themselves in a chain of packets, and thus do not indicate

a network-wide problem.

However, semipermanent errors such as invalid IP addresses need to be

reported to the originator. These are fundamental problems with the network or in

235Sending ICMP Messages

the way that the application is trying to use the network. The sender must either

stop or change the content of the packets.

It is important to realize that the presence of many ICMP messages on a net-

work does not mean that things are not working well, nor does the lack of ICMP

messages mean that the network is working fine.

Most users see only a handful of ICMP message types, especially those used

for ping and traceroute, such as the Time Exceeded, Timestamp Reply,

Destination Unreachable, and Echo messages.

WHEN ICMP MUST NOT BE SENT

ICMP also establishes situations when ICMP messages must not be sent.

Transients like checksum errors or intermittent link-level failures are clear exam-

ples, but ICMP goes further than this. Generally, error messages should not be

sent if they will generate more network traffic and add little new information to

what is obvious to the sender.

For example, RFC 1122 says that ICMP error message should never be sent if

a receiver gets the following:

• ICMP error message (e.g., errors in ICMP checksums should not be reported

as errors)

• Internet Group Management Protocol (IGMP) message (IGMP is for multicast,

and multicast traffic tends to multiply exponentially on the network, and one

error could trigger many error messages)

• Packet with a broadcast or multicast destination address (another traffic-

oriented rule)

• Link-layer frame with broadcast or multicast address

• Packet with a special source address (all zeros, loopback, and so on)

• Any fragment other than the first fragment of a fragmented packet

PING
Most people who know little about how TCP/IP works usually know of the

ICMP-based application known as ping. The original metaphor was the “ping”

of a naval sonar unit. Ping is a simple Echo query-and-response ICMP message

that is used to see if another device is up and reachable over the network.

A successful ping means that network administrators looking at problems can

relax a great deal: The network routers on the path and at least two hosts are

running just fine.

Ping implementations and the parameters supported vary greatly among oper-

ating systems and routers (most routers support ping). Some only send four

236 CHAPTER 8 Internet Control Message Protocol

packets and quit, unless told to send more. Others send constantly until told to

stop. The parameters can usually set many of the IPv4 packet header fields such

as TTL, TOS, and so on to specific values.

Usually, Unix versions use the PID as the Identifier field in the ping message,

but Linux increments this based on application calls. Unix ping messages are usu-

ally 56 bytes long, but Windows implementations use only 32 bytes. The payload

of the ping message echoed back to the sender typically consists of an 8-byte

timestamp and a fill pattern. The timestamp can be used to roughly calculate

round-trip delays through the network (in milliseconds).

Ping has some quirks that users should be aware of. First, small pings (maybe

56 or 64 bytes in the packet) often work fine, while larger pings with more realis-

tic payload sizes do not go through reliably. That’s what users care about—the

network is struggling with real data packets. Seeing a small ping getting through

reliably is not always helpful.

Also, the round-trip times are not often vital information. You expect

round-trip times to go up as packet sizes increase, and that’s typically what

is observed. The same is true if the network is heavily loaded. But this is a

relative, not absolute, observation. Only when round-trip times are longer than

expected, or if they vary by huge amounts, is there an indication that some-

thing is wrong.

Part of the reason that round-trip times are not reliable is that routers (in par-

ticular) and even hosts might process ICMP Echo requests at a lower priority than

other traffic. In fact, in many router architectures, ICMP message processing

requires a trip to the control-plane processor, while transit traffic is forwarded in

the forwarding-plane hardware.

We’ll be using ping extensively in many chapters in this book.

TRACEROUTE
Traceroute is not an ICMP-based network utility in the same sense that ping is.

However, because traceroute uses ICMP messages to perform its functions, and

for many people the next step after ping is traceroute, this is the place to dis-

cuss this utility. We’ll use traceroute heavily in Chapter 9 and throughout the

rest of the book.

After ping has been used to verify that an IP address is reachable over the net-

work, the next logical step is to determine how the packets make their way to the

destination and back. In other words, we would like to trace the route from source

to destination (the reverse path is normally the same). Yes, IP networks route

around failures and routing tables can change, but paths are usually stable on the

order of hours if not days when things are not going completely haywire. Of

237Traceroute

course, paths might also simply be asymmetric, yet stable, so it is not only path

changes that are challenging for traceroute interpretation.

Traceroute implementations vary even more than those for ping. Some have

graphical displays and use other Internet utilities to display location and admin-

istrative information about the routers and networks uncovered. This in turn has

made many network administrators so nervous that they routinely block tracer-

oute ICMP messages with firewalls or route filters to hide topology details. In

fairness, the Internet is no longer a teaching tool or good place to explore the

limits of knowledge, and there are so many disruptive or even malicious people

on the Internet, that a certain amount of anxiety is completely understandable

(which is why a network such as the one used for this book makes so much

sense).

On Unix-based systems, traceroute often sends a sequence of three UDP packets

(a typical default is three) to an invalid port on another host (this number starts at

33434). The utility can also use ICMP Echo requests, which is what the Windows

version does. Some versions even use TCP (a utility called tcptraceroute).
Whatever the type of packet, the TTL field is initially set to 1 in the three

packet set, so the first router along the path should generate an ICMP Time

Exceeded message to the sender. The round-trip delay in the timestamp field and

IP address of the router is recorded by the sender and another set of packets is

sent, this time with the TTL set to 2. These packets are discarded by the second

router, and another ICMP message is sent back. The process is repeated until the

destination host is reached and the host returns a Destination Port Unreachable

message, or until a firewall is encountered that blocks the ICMP messages or

unsolicited UDP traffic. (These messages mimic port scans and are sometimes

blocked, as mentioned earlier in this chapter.)

The end result should be a list of the routers on the path from source to

destination (or the firewall) that also records round-trip delays. In some cases

(sometimes many cases), some routers will not respond to the TTL “timeout”

with an ICMP message, but simply silently discard the offending packet. If the

packet does not return within the timeout window (Cisco routers use a default

timeout of 2 seconds), most traceroute implementations indicate this with an

asterisk (�) or some other placeholder and just keep going, trying to reach the

next router. (The appearance of the asterisk does not necessarily mean that

the packet was lost.)

One nagging traceroute issue is the number of messages exchanged over the

network needed to reveal fairly basic information. RFC 1393 describes an alter-

nate traceroute method that uses a single packet with an IP header Traceroute

option field and uses the answering ICMP Type5 30 messages from routers to

gather the same information while using far fewer messages. However, support

for this method is not mandatory on routers.

We’ll use traceroute a lot in many of the chapters of this book too.

238 CHAPTER 8 Internet Control Message Protocol

PATH MTU
ICMP messages also play a role in path MTU discovery. We’ve already

mentioned the MTU as a critical link parameter determined by the maximum

frame size. Packets, including all headers, that fit inside the smallest frame size

on the path from source to destination do not have to be fragmented and do not

incur any of the penalties that fragmentation involves.

But tuning the path MTU size to packet size has another network benefit: This

practice maximizes throughput and minimizes the overhead required to move

large messages from system to system. Overhead bytes are those that do no useful

work in terms of data transfer, but are necessary for the data transfer to take

place at all.

Consider a data transfer using 68-byte MTUs, once the smallest size

possible. If usual IP and TCP headers are used, which are 20 bytes each,

they will take up 40 bytes of the packet, leaving only 28 bytes for data. So a

whopping 59% (40/68) of the packet is made of overhead. And a minimum of

35,715 packets need to be sent, routed, and processed to transfer every mega-

byte of data. Bumping this MTU size up to 576 bytes (a typical default value

and the functional minimum for IPv4) cuts the overhead down to about 7%

(40/576) and requires only 1866 packets per megabyte of data, about 5% of

the previous number of packets.

Using the typical Internet frame size of 1500, the overhead shrinks to about

2.5% and the number of packets required for a megabyte of data becomes a

respectable 685. Larger MTUs have proportional benefits. (It is sometimes

pointed out that bigger packets are not always more efficient; they can add delay

for smaller units of traffic, a phenomenon often called “serial delay,” and on high

bit error links, larger packets almost guarantee that a bit error requiring a resend

will occur during frame transmission. On older, more error-prone networks,

throughput shrank to zero as packet size grew.)

The 576-btye MTU size was selected as a compromise between latency

(“delay”) and throughput for modems and low-speed serial link implementation.

This is directly related to the serialization delay discussed below. And use of an

MTU size smaller than 512 precludes the use of the Dynamic Host Configuration

Protocol (DHCP).

Now, TCP can adjust this message size, no matter what the default, but UDP

traffic, which is growing, cannot. Of course, every link from host to router to

router to host can have a different MTU size. That is what path MTU discovery is

all about. It works via the following:

• Setting the DF flag in the IP header to 1 (don’t fragment)

• Sending a large packet to the destination to which the path MTU is being

determined

239Path MTU

• Seeing if any router responds with an ICMP Destination Unreachable message

with Code5 4 (fragmentation required but don’t fragment bit is set)

• Repeating the first three steps with a smaller packet size

The process stops when a message is received from the destination host, show-

ing that a path MTU of this size works. Again, paths are fluid on TCP/IP router

networks, but they are remarkably stable considering all that can go wrong. By

the way, it is assumed that the path MTU for outbound packets is the same as the

path MTU size for inbound packets, but this is not true just often enough to make

the process unnecessarily haphazard.

The path MTU “seed” or probe size and adjustment steps are not randomly

chosen. A series of “plateaus” representing common link MTU limits has been

established. Some of these are shown in Table 8.5.

In practice, as important as the path MTU size is, little is often done

about the MTU size except to change the default to 1500 bytes if the default

value is less (it usually is). This is because most networks that hold the

source and destination networks are Ethernet LANs that do not support 9000-

byte jumbo frames. Between routers, WAN links typically support larger

MTU sizes (around 4500 bytes or larger), but that does no good if the end sys-

tem can only handle 1500-byte frames. However, WAN links with MTUs

greater than 1500 bytes allow the use of tunnel encapsulation of 1500-byte

MTU packets without the need for fragmentation, so the larger MTU is not

actually wasted.

Table 8.5 Path MTU Plateaus for Various Network Link Types

Plateau Size in Bytes Description

65535 Maximum MTU and packet size
32000 A value established “just in case”
17914 16-Mbps IBM token ring LANs
8166 IEEE 802.4 token bus LANs
4352 FDDI (100 Mbps fiber rings)
2314 Wireless IEEE 802.11b native frame (often “adjusted”

to 1492)
2002 4-Mbps IEEE 802.5 token ring (recommended value)
1492 IEEE 802.3 LANs (also used in 802.2)
1006 SLIP
508 Arcnet (proprietary LAN from Datapoint)
296 Some point-to-point links use this value
68 Minimum MTU size

240 CHAPTER 8 Internet Control Message Protocol

ICMPv6
A funny thing happened to ICMP on its way to IPv6. It didn’t work. ICMP, now

officially called ICMPv4, is built around the IPv4 packet header and things that

could go wrong with it. And not only is the IPv6 packet header different, as well

as many fields and address sizes, but many functions added to IPv4 that affected

ICMPv4 were scattered in separate RFCs and implementation varied. These func-

tions are systematized in ICMPv6.

ICMPv6 makes some major changes to ICMPv4:

• New ICMPv6 messages and procedures replace ARPs.

• There are ICMPv6 messages to help with automatic address configuration.

• Path MTU discovery is automatic, and a new Packet Too Big message is sent

to the source for over-large packets because IPv6 routers do not fragment.

• There is no Source Quench in ICMPv6 (it is obsolete in ICMPv4, but still

exists).

• IGMP for multicast is included in ICMPv6.

• ICMPv6 helps detect nonfunctioning routers and inactive partner hosts.

• ICMPv6 is so different that it now has its own IP protocol number. IPv6 uses

the next header value of 58 for ICMPv6 messages.

BASIC ICMPv6 MESSAGES

The general ICMPv6 message format is similar to ICMPv4, but somewhat

simpler. The structure of a generic ICMPv6 message and the common

Destination Unreachable message are shown in Figure 8.6. ICMPv6 error

messages are in the range 0 to 127. Some of the most common are shown in

the figure as well.

Destination Unreachable
In ICMPv6, the Destination Unreachable message type is Type5 1. The codes

that can be compared to Table 8.2 IPv4 codes number only five and are listed in

Table 8.6.

Packet Too Big
A router sends an ICMPv6 Packet Too Big message to the source when the

packet is bigger than the MTU for the next-hop link. The next-hop link’s MTU

size is reported in the message. In ICMPv4, this type of information was supplied

in the Destination Unreachable message. The format of the Packet Too Big

message is shown in Figure 8.7.

241ICMPv6

Table 8.6 Destination Unreachable Codes for ICMPv6

Code Meaning

0 No route to destination
1 Communication with destination administratively prohibited
2 Next destination in the IPv6 Routing header is not a neighbor, and this is a strict

route (routing headers are not currently supported)
3 Address unreachable
4 Port unreachable

1 byte 1 byte 1 byte 1 byte

ChecksumCode

Message Body

(A)

Type

 1 Destination Unreachable
 2 Packet Too Big
 3 Time Exceeded
 4 Parameter Problem
 5 Redirect
128 Echo Request
129 Echo Reply

Basic ICMPv6 Type field values:

1 byte 1 byte 1 byte 1 byte

ChecksumCode

Unused

As Much as Original IPv6 Packet as Will Fit in 576 bytes or Less

Type � 1

(B)

FIGURE 8.6

ICMPv6 message formats, which can be compared to the IPv4 versions in

Figure 7.4. (A) Generic ICMPv6 message format. (B) ICMPv6 Destination

Unreachable message.

242 CHAPTER 8 Internet Control Message Protocol

TIME EXCEEDED

An ICMPv6 Time Exceeded message is sent by a router when the Hop Limit field

of the IPv6 header reaches 0 (ICMPv6 Code5 0) or when the receiver’s fragment

reassembly timeout (senders can still fragment under IPv6) has expired (ICMPv6

Code5 1). The format is the same as for the ICMPv6 Destination Unreachable

message, except that the Type is 3.

Parameter Problem
As in ICMPv4, an ICMPv6 Parameter Problem message is sent by a host or router

that cannot process a packet due to a header field problem. The codes are listed

in Table 8.7.

Echo Request and Reply
Under IPv6, ping becomes “pingv6” (the name is not important) and uses

ICMPv6 Echo Request and Reply messages, but with Type5 128 used for

requests and Type5 129 used for replies.

NEIGHBOR DISCOVERY AND AUTOCONFIGURATION

ICMPv6 provides a number of neighbor discovery functions that help with:

• Location of routers

• IPv6 parameter configuration

Table 8.7 Parameter Problem Codes and Meanings

Code Meaning

0 Erroneous header field encountered
1 Unrecognized next header type encountered
2 Unrecognized IPv6 option encountered

1 byte 1 byte 1 byte 1 byte

ChecksumCode

Next Link MTU

Type

As Much as Original IPv6 Packet as Will Fit in 576 bytes or Less

FIGURE 8.7

ICMPv6 Packet Too Big format, showing details of the fields used.

243ICMPv6

• Location of local hosts

• Neighbor unreachability detection

• Automatic address configuration and duplicate detection

These ICMPv6 functions use the following message types:

Router Solicitation Type5 133 messages are sent by a host to ask neighbor

routers to make their presence known and provide link and Internet

parameters, similar to the ICMPv4 Router Solicitations. The message is sent

to the all-router link-local IPv6 multicast address.

Router Advertisement Type5 134 messages are sent periodically by every

router and in response to a host’s Router Solicitation, similar to the ICMPv4

Router Advertisements. The message is sent either to the all-nodes IPv6

multicast address (unsolicited) or to the querying host (solicited).

Neighbor Solicitation Type5 135 messages are used, as ARP in IPv4, to find

the link-layer address of a neighbor, verify the neighbor is still reachable with

the cached entry, or check that no other node has this IPv6 address. These

messages also detect unresponsive neighbors.

Neighbor Advertisement Type5 136 messages are sent in response to

Neighbor Solicitation messages and resemble the ARP response. Nodes can

also announce changes in link-layer addresses by sending unsolicited.

Neighbor Advertisements. Redirect Type5 137 messages perform the same

role as the ICMPv4 redirect.

ROUTERS AND NEIGHBOR DISCOVERY

IPv6 routers provide their hosts with basic configuration and parameter informa-

tion using Router Advertisement messages sent to the all-hosts link-local IPv6

multicast address. Hosts do not have to wait for these periodic router messages

and can send a Router Solicitation message at startup. This reply is sent to the

host’s link-local address.

Each router will supply data that includes the following:

• Link-layer router address

• MTU for any links that have variable MTUs

• List of all prefixes and lengths used on the LAN (the specification says

“link”)

• Prefixes that a host can use to create its addresses

• Default Hop Limit value to use on packets

• Values for miscellaneous timers

• Location of a DHCP server where the host should fetch more information

Note that the Router Advertisement (RA) will indicate the availability of a

DHCP server for stateless configuration (RA option O), or the requirement to per-

form stateful configuration (RA option M). The location of the DHCPv6 server is

not specified, merely that it’s available and what the requirements are for use.

244 CHAPTER 8 Internet Control Message Protocol

INTERFACE ADDRESSES

Each IPv6 interfaces has a list of addresses and prefixes associated with it,

including a unique link-local address. In theory, this should allow LANs to eas-

ily migrate from one ISP to another simply by changing prefixes and allowing

the older prefix to age-out of the host. In practice, migration between IPv6 ser-

vice providers is not as simple. DNS entries do not just “flop over,” and host

and router configuration (and firewalls!) have static configuration parameters.

The point is that router advertisements assign a lifetime, which must be

refreshed, to advertised prefixes. This also makes it easier to move hosts from

LAN to LAN.

Each host can use some of the prefixes and lengths advertised by the

routers (if they are flagged for this use) to construct host addresses. A private

(ULA local) or global address can be constructed by appending a unique inter-

face identifier to the advertised prefix and added to the list of the host’s IPv6

addresses.

Router advertisements can also direct a host to a DHCP server that can assign

addresses chosen by a network administrator.

NEIGHBOR SOLICITATION AND ADVERTISEMENT

One of the problems with ARP in IPv4 was that it was essentially a frame-level

protocol that did not fit in well with the IP layer at all. In IPv6, “ARPs” are

ICMPv6 messages. ICMPv6 packets can be handled easily at the IPv6 layer, and

can be authenticated and even encrypted with IPSec techniques.

In addition to finding neighbor link-layer addresses, the Neighbor Solicitation

and Advertisement messages are used to find “dead” routers and partner hosts,

and detect duplicate IPv6 addresses.

Neighbor Solicitation messages are sent to the solicited-node IPv6 multicast

address, which is formed by appending the last 3 bytes of an IPv6 link-local

address to a multicast prefix. The use of the multicast address cuts down on the

number of hosts that has to pay attention to the “ARP” message (in fact, only the

target system should process the request). The sender also includes its own link-

layer address with the message.

Duplicate IP addresses are always a problem, especially with wireless LANs

that hand out addresses dynamically instead of on a fixed, port basis. Before a

system can claim an IPv6 address or any other address not constructed by adding

a link-local address to a prefix, the system sends a Neighbor Solicitation message

asking whether any neighbor already has that IPv6 address. This message uses the

special IPv6 Unspecified Source address as the source address, because you can’t

ask about a source address by using the source address! If the address is in use,

the response is multicast to inform all devices. Addresses that are manually

assigned are tested in the same fashion.

Dead routers and hosts are detected by a sending unicast Router and Neighbor

Solicitation message to the device in question.

245ICMPv6

QUESTIONS FOR READERS

Figure 8.8 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. How many types of error-reporting messages are there in ICMP? How many

pairs of query messages are there in ICMP?

2. Which pair of ICMP messages can be used to obtain the subnet mask?

3. Which kind of ICMP message notifies a host that there is a problem in the

packet header?

4. Which fields are used for the ICMP checksum calculation?

5. A ping sent to IP address 10.10.12.77 (the address assigned to bsdserver) on
LAN2 is successful. Later, it turns out that the bsdserver was powered off for

maintenance at the time. What could have happened?

1 byte

Type Code Checksum

Content Depends on Type/Code*

1 byte 1 byte 1 byte

IP Header (20 bytes) and
First 8 bytes of Original Packet Data (usually TCP/UDP header)

(A)

1 byte

Identifier for Request/Response Pairs
(usually PID in Unix)

Type � 3 Code Checksum

Sequence Number
(set to 0 initially and incremented)

1 byte 1 byte 1 byte

Content Depends on Query Type

(B)

*Usually all 0 (unused) except for:

FIGURE 8.8

ICMP error and query messages in general. (A) Error message. (B) Query message.

246 CHAPTER 8 Internet Control Message Protocol

CHAPTER

9Routing

WHAT YOU WILL LEARN

In this chapter, you will learn how routing works. We’ll look at both direct delivery of
packets to a destination without a router and indirect delivery through a router, both
of which happen all the time. Routers provide indirect delivery between LANs while
bridges essentially provide direct delivery only. Packet switching, on the other hand,
is a related form of indirect delivery that will be explored in a later chapter.

You will learn about the role of routing tables and forwarding tables in the routing
process. Technically, routers use the information in the routing table to create a for-
warding table to forward packets to the next hop based on a metric, but many people
use the terms routing and forwarding loosely, often using one term for both. We’ll
try to use the terms as defined here consistently in this chapter, but there is no real
formal definition of either term.

The Internet is the largest router-based network in the world. Router-based

networks, as we’ll see in this chapter, are characterized by certain features and

methods of operation. The most obvious feature of a router-based network is that

the most essential network nodes are routers and not bridges or switches or more

exotic devices. This does not mean that there are no bridges, switches, and other

types of network devices. It just means that routing is the most important function

in moving packets from source to destination. This chapter is an introduction to

routing as a process.

Figure 9.1 shows the areas of the Illustrated Network we will be investigating

in this chapter. The LANs and customer-edge routers are highlighted, but the

other routers play a large but unseen part in this chapter. We’ll look at the role of

the service-provider routers in the chapters on routing protocols. For now, we’ll

focus on how sending devices decide whether the destination is on their own net-

work or whether the packets must be sent to a router for forwarding through a

routing network.

We’ll talk about forwarding tables in later chapters that investigate routing

and routers more deeply. For now, let’s take a look at the simple routing

tables that are used on the Illustrated Network’s hosts and routers.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00009-6

© 2017 Elsevier Inc. All rights reserved.
247

http://dx.doi.org/10.1016/B978-0-12-811027-0.00009-6

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 9.1

The Illustrated Network LAN internetworking, showing how the routers are connected and

the links available to forward (route) packets through the network.

248 CHAPTER 9 Routing

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

249Routing

ROUTING TABLE AND FORWARDING TABLE
There are really two different types of network tables used in routers and hosts, and we’ll

distinguish them in this chapter. The routing table holds all of the information that a device knows

about network addresses and interfaces, and is usually held in a fairly user-friendly format such as

a standard set of tables or even a database, often with metrics (costs) associated with each route.

A forwarding table, on the other hand, is usually a machine-coded internal table that contains

the routes actually used by the device to reach destinations. In most cases, the routing table holds

more information than is distilled into the forwarding table.

ROUTERS AND ROUTING TABLES
The router that attaches LAN1 to the world is CE0, a Juniper Networks router.

Let’s look at the information in the routing table on CE0.

admin@CE0. show route
inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
15 Active Route, - 5 Last Active, � 5 Both

0.0.0.0/0 �[Static/5] 3d 02:59:20
. via ge-0/0/3.0

10.0.50.0/24 �[Direct/0] 2d 14:25:52
. via ge-0/0/3.0

10.0.50.1/32 �[Local/0] 2d 14:25:52
Local via ge-0/0/3.0

10.10.11.0/24 �[Direct/0] 2d 14:25:52
. via fe-1/3/0.0

10.10.11.1/32 �[Local/0] 2d 14:25:52
Local via fe-1/3/0.0

inet6.0: 5 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
15 Active Route, -5 Last Active, � 5 Both

::/0 �[Static/5] 2d 13:50:23
. via ge-0/0/3.0

fe80::/64 �[Direct/0] 2d 14:25:53
. via fe-1/3/0.0

fe80::205:85ff:fe88:ccdb/128
�[Local/0] 2d 14:25:53

Local via fe-1/3/0.0
fc00:fe67::/32 �[Static/5] 2d 13:50:23

. via ge-0/0/3.0
fc00:ffb3:d4:b::/64 �[Direct/0] 2d 10:45:08

. via fe-1/3/0.0
fc00:ffb3:d4:b:205:85ff:fe88:ccdb/128

�[Local/0] 2d 10:45:08
Local via fe-1/3/0.0

250 CHAPTER 9 Routing

Because both IPv4 and IPv6 addresses are configured, we have both IPv4 and

IPv6 routing tables. There’s a lot of information here that we’ll detail in later

chapters on routing protocols, so let’s just look at the basics of CE0‘s routing

tables. Only physical interface addresses are used for now, on the LAN1 interface

fe-1/3/0 and the Gigabit Ethernet link to the provider routers, ge-0/0/3. Later,
we’ll also assign an address to the router’s loopback interface, but not in this

example.

In both tables, there are local, direct, and static entries. Local entries are the

full 32- or 128-bit addresses configured on the interfaces. Direct entries are for

the network portions of the interface address, so they have prefixes shorter than

32 or 128 bits. For example, the entry for the fe-1/3/0 interface has a local entry

of 10.10.11.1/32 and a direct entry of 10.10.11.0/24. Both were derived from

the configuration of the address string 10.10.11.1/24 to the interface (techni-

cally, a string like 10.10.11.1/24 is neither 32-bit host address nor 24-bit net-

work address, but a concatenation of address and network mask).

Static entries are entries that are placed in the routing table by the network

administrator, and they stay there no matter what else the router learns about the

network. In this case, the static entry is also the default route, a type of “router of

last resort” that is used if no other entry in the routing table seems to represent

the correct place to forward the packet. The default route matches the entire IPv4

address space, so nothing escapes the default. Note that the highlighted default

route for IPv4 is 0.0.0.0/0 (or 0/0) and sends packets out via interface ge-0/0/3
onto the service provider router network.

The local and direct entries for the ge-0/0/3 interface make up the last two

entries in this simple five-entry routing table. The default entry basically says to

the router, “If you don’t know where else to forward the packet, send it out here.”

This seems trivial, but only because router CE0 has only two interfaces. Backbone

routers can have very complicated routing tables.

Each route in the table has a preference associated with the route. A lower

value means the route is somehow “better” than another route to the same place

having a higher value. The value of 0 associated with local/direct entries means

that no other route can be a better way of reaching the locally attached interface,

which only makes sense.

Routing table entries often have a metric associated with them. Why do routes

need both preferences and metrics? Preference indicates how the router knows

about a route; the metric assigns a cost of using the route, no matter how it was

learned. Both preference and metric are considered in determining the active route to

a destination. Generally, only active routes are loaded into the forwarding table.

We’ll look at this process more closely in the later chapters on routing. An asterisk

(�) marks routes that are both currently active and have been active the last time the

router recomputed its routes to use in the forwarding table.

There are no metrics in the CE0 routing tables. Why? Because metrics are

usually assigned by routing protocols and we don’t have any routing protocols

running yet on CE0. Static routes can be configured with metrics, but they still

work fine without them.

251Routers and Routing Tables

The six entries in the IPv6 routing table mimic the five entries in the IPv4

table, and the default ::0 static route is highlighted. The only unassigned or

“extra” entry is the fe80::/64 direct route (which is generated automatically) for

the link-local prefix for LAN1.

HOSTS AND ROUTING TABLES
Routers are not the only network devices that have routing tables. Hosts have

them as well. It’s how they know whether to send a packet inside a frame directly

to the destination or to send the packet and frame to a router so it can be for-

warded to its destination.

The following code block shows what the routing table on bsdserver looks

like. We can display it with the netstat 2r command (the r option displays net-

work statistics about the routing table). We’ll use netstat 2nr in this chapter

because the n option forces the output to use IP addresses instead of DNS names.

This is a good practice because when trouble strikes the network, chances are that

DNS will be down (or possibly providing the wrong information), so it’s best to

get used to seeing IP addresses in these reports.

bsdserver# netstat -nr
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
Default 10.10.12.1 UGSc 0 0 em0
10.10.12/24 link#1 UC 0 0 em0
Localhost localhost UH 0 144 lo0

Internet6:
Destination Gateway Flags Netif Expire
localhost.booklab. localhost.booklab. UH lo0
fe80::%em0 link#1 UC em0
fe80::20e:cff:fe3b 00:0e:0c:3b:87:32 UHL lo0
fe80::%lo0 fe80::1%lo0 Uc lo0
fe80::1%lo0 link#4 UHL lo0
fc00:: link#1 UC em0
fc00::20e:cff:fe3b 00:0e:0c:3b:87:32 UHL lo0
fc00:fe67:d4:b:: link#1 UC em0
fc00:fe67:d4:b:205 00:05:85:8b:bc:db UHLW em0
fc00:fe67:d4:b:20e 00:0e:0c:3b:87:32 UHL lo0
ff01:: localhost.booklab. U lo0
ff02::%em0 link#1 UC em0
ff02::%lo0 localhost.booklab. UC lo0

252 CHAPTER 9 Routing

The IPv4 routing table is even simpler than the CE0 router’s, which we might

have expected, because the host only has one interface (em0). The third entry

(localhost) is for the loopback interface (lo0), so there are really only two

entries. The 10.10.12/24 entry points to link#1, which is the em0 interface that

attaches bsdserver to LAN1. It says Gateway above the column, but it really

means “what is the next hop for this packet?”

Why does it say “gateway” and not “router”? Because technically it is a gate-

way, not a router. A gateway, as mentioned before, connects one or more LANs

to the Internet (and can route from LAN to LAN, not just onto or off of the

Internet). A router, on the other hand, can have nothing but other routers con-

nected to it. People speak very loosely, of course, and usually the terms “gate-

way” or “router” can be used without confusion.

So the default entry does point to a router, in this case CE6, which is the gate-

way to the world on LAN2. The Refs and Use columns are usage indicators, and

there is no Expire value because this information, as on router CE0, was not

learned via a routing protocol and therefore will not get “stale” and need to be

refreshed.

The flags commonly seen in FreeBSD follow:

• U (Up)—The route is the active route.

• H (Host)—The route destination is a single host.

• G (Gateway)—Send packets for this destination here, and it will figure out

where to forward it.

• S (Static)—A manually configured route that was not generated by protocol or

other means.

• C (Clone)—Generates a new route based on this one for devices that we

connect to. Normally used for the local network(s).

• W (Was cloned)—A route that was autoconfigured based on a LAN clone

route.

• L (Link)—The route references hardware.

Although listed as default, the actual entry value for the default route is

0.0.0.0/0 or 0/0. We can force numeric displays in netstat by using the n
option, but we won’t use that here (generally, the fewer options you have to

remember to use, the better).

WHERE’S THE METRIC?
Note the netstat 2nr on the host did not display any metric values, and show route on the

router didn’t either. In the case of CE0, that was explained by the fact that we have no routing

protocol running to provide metrics for routes (destination networks). But even if a routing

protocol were running, netstat never shows any metrics associated with routes. Does that mean

hosts have no metrics or do not bother to compute them? Not necessarily, as we’ll soon see in the

case of Windows.

253Hosts and Routing Tables

Why is the Internet6 routing table so much larger than either the Internet
(IPv4) table on bsdserver or the tables on router CE0? It is larger because of the

IPv6 neighbor discovery feature that populates the table with all of the local IPv6

hosts on LAN2. An easy way to spot them is by their MAC addresses in the

Gateway column. There are also number link-local (fe80) and private (fc00)
entries absent in IPv4, as well as multicast addresses beginning with ff.

Let’s look at the routing table on lnxclient for comparison. We don’t have

IPv6 running, so the table includes the IPv4 address only. Most of the information

is the same as in FreeBSD, just arranged differently.

[root@lnxclient admin]# netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
10.10.12.0 � 255.255.255.0 U 0 0 0 eth0
127.0.0.0 � 255.0.0.0 U 0 0 0 lo
Default 10.10.12.1 0.0.0.0 UG 0 0 0 eth0
[root@lnxclient admin]#

The Gateway column has asterisks because we don’t have DNS running and

the address is the same as the Destination. Only the default gateway entry

(10.10.12.1) is different than the usual entry (0.0.0.0/0). Instead of prefixes,

lnxclient uses netmask (Genmask) notation for the table entries, but either way,

the network is 10.10.12.0/24.
The flags used in Linux follow (note the slightly different meanings compared

to FreeBSD):

• G (Gateway)—The route uses a gateway.

• U (Up)—The interface to be used is up.

• H (Host)—Only a single host can be reached by the route.

• D (Dynamic)—The route is not a static route, but a dynamic route learned by

a routing protocol.

• M (Modified)—This flag is set if the entry was changed by an ICMP redirect

message.

• ! (Exclamation)—The route will reject (drop) all packets sent to it.

Linux hosts have the maximum segment size (MSS), Window size, and initial

round-trip time (irtt) lists associated with the route, but these are not IP parameters.

They’re most useful for TCP, and we’ll talk about them in the TCP chapter.

And confusingly, a value of 0 in these columns does not mean that their values are

zero (which would make for an interesting network), but that the defaults are

used. The Iface column shows the interface used to reach the destination address

space, with lo being loopback.

Finally, Windows hosts have routing tables as well. You can display the rout-

ing table contents with the route print command or with the same netstat 2nr
command using in Unix-based systems. This output is from wincli1 and lists

only the IPv4 routes.

254 CHAPTER 9 Routing

PS C:\Users\walterg.route print
==
IPv4 Route Table
==
Active Routes:
Network Destination Netmask Gateway Interface Metric
0.0.0.0 0.0.0.0 10.10.11.1 10.10.11.51 20
127.0.0.0 255.0.0.0 On-link 127.0.0.1 306
127.0.0.1 255.255.255.255 On-link 127.0.0.1 306
127.255.255.255 255.255.255.255 On-link 127.0.0.1 306
10.10.11.0 255.255.255.0 On-link 10.10.11.51 276
10.10.11.1 255.255.255.255 On-link 10.10.11.51 276
10.10.11.255 255.255.255.255 On-link 10.10.11.51 276
224.0.0.0 240.0.0.0 On-link 127.0.0.1 306
224.0.0.0 240.0.0.0 On-link 10.10.11.51 276
224.0.0.0 240.0.0.0 On-link 10.10.11.51 256
255.255.255.255 255.255.255.255 On-link 127.0.0.1 306
255.255.255.255 255.255.255.255 On-link 10.10.11.51 276
255.255.255.255 255.255.255.255 On-link 10.10.11.51 256
==
Persistent Routes:
None

The table looks different, yet is still very familiar. There is an entry for the

default gateway (10.10.11.1), which is also listed separately for emphasis. One

oddity is the many “On-Link” entries. These are addresses that don’t need a gate-

way because they are resolved locally and do not need routing. There are explicit

loopback (127.0.0.0/8) and multicast (224.0.0.0/4) entries, and a

255.255.255.255/32 entry, as well as for the host itself (10.10.11.51/32), which
point to the loopback interface.

Instead of relying on a flag, Windows just shows you Active Routes. But
there is also a Persistent Route that is always in the table, no matter what.

This is entered in the table manually, like a static route, and makes sure that

any packets sent to LAN2 go to the router at 10.10.11.1. It would still work

with only a default route, but this shows how a static route would show up in

Windows.

Note that even though no routing protocol is running in the host, wincli1
assigns metrics to all the routes (many of the default metrics are very high so that

“real” routes would be more attractive). These can be changed, but they are

always there. But what about when netstat 2nr is used on the Windows host?

We didn’t see any metrics on the Unix-based systems. Take a look at what we

get with netstat 2nr.
This output is from wincli1 and lists only the IPv4 routes.

255Hosts and Routing Tables

PS C:\Users\walterg.netstat �nr
==
IPv4 Route Table
==
Active Routes:
Network Destination Netmask Gateway Interface Metric
0.0.0.0 0.0.0.0 10.10.11.1 10.10.11.51 20
127.0.0.0 255.0.0.0 On-link 127.0.0.1 306
127.0.0.1 255.255.255.255 On-link 127.0.0.1 306
127.255.255.255 255.255.255.255 On-link 127.0.0.1 306
10.10.11.0 255.255.255.0 On-link 10.10.11.51 276
10.10.11.1 255.255.255.255 On-link 10.10.11.51 276
10.10.11.255 255.255.255.255 On-link 10.10.11.51 276
224.0.0.0 240.0.0.0 On-link 127.0.0.1 306
224.0.0.0 240.0.0.0 On-link 10.10.11.51 276
224.0.0.0 240.0.0.0 On-link 10.10.11.51 256
255.255.255.255 255.255.255.255 On-link 127.0.0.1 306
255.255.255.255 255.255.255.255 On-link 10.10.11.51 276
255.255.255.255 255.255.255.255 On-link 10.10.11.51 256

==
Persistent Routes:
None

That’s right—the output is identical, and does show the metrics. However,

Windows appears to be the only implementation that shows the metrics associated

with routes when netstat is used.

Let’s take a more detailed look at how routing tables are used to determine

whether packets should be sent to the destination directly or to a router for for-

warding. We’ll see how IP and MAC addresses are used in the packets and

frames as well.

DIRECT AND INDIRECT DELIVERY
When routers are used to connect or segment Ethernet LANs, the Ethernet frame

that leaves a source may or may not be the same frame that arrives at the destina-

tion. If the source and destination host are on the same LAN, then a method

sometimes known as direct delivery is used and the frame is delivered locally.

This means that the source and destination MAC addresses are the same in the

frame that is sent from the source and in the frame that arrives at the destination.

Let’s see if we can verify that frames are delivered locally, without a router,

when the IP address prefix is the same on the destination and on the source. In

this case, the MAC addresses on the frame that leave the source and the ones in

the frame that arrive at the destination should be the same.

256 CHAPTER 9 Routing

We can also check and make sure that the frames use different MAC

addresses when the source and destination hosts are on different IP networks and

the frames pass through a router. We can even check and make sure that the

frames came from the router.

First, let’s use the Windows client and server (which are located in pairs on

the two LANs) to generate some packets to capture with Ethereal. We’ll use a lit-

tle utility called “ping” (discussed more fully in Chapter 7) to bounce some pack-

ets off the Windows IPv4 addresses.

Wireshark is running on wincli2. When we send some pings to the client

(10.10. 12.222) from the Windows server (10.10.12.52), what we see is shown

in Figure 9.2.

The MAC address 00:02:b3:27:fa:8c is associated with IPv4 address

10.10.12.222, and the MAC layer address 00:0e:0c:3b:88:56 is associated with

IPv4 address 10.10.12.52. If we looked at the same stream of pings on the

server, the MAC address and IP address associations would be the same. The

frame sent is the same as the one that arrives.

What about a packet sent to other IP networks? We’ll use a little “echo” client

and server utility on the Linux hosts to generate the frames for this exercise.

We’ll say more about where this little utility came from in the chapter on sockets

(Chapter 12). For now, just note that this is not the usual Linux echo utility bun-

dled with most distributions. With this utility, we can invoke the server on the

lnxserver host and use the client to send a simple string to be echoed back by

the server process. We’ll use tethereal (the text version of Wireshark, sometimes

FIGURE 9.2

MAC addresses and direct delivery. Note that the MAC layer addresses in the frame that is

sent are the same as in the frame that will arrive at the destination.

257Direct and Indirect Delivery

seen as tshark) this time, just to show that the same information is available in

either the graphical or text-based version.

First, we’ll run the Echo server process, which normally runs on port 7, on

port 55555:

[root@lnxserver admin]# ./Echo 55555

We have to run tethereal on each end too, if we want to compare frames. The

command is the same on the client and server. We’ll use the verbose (�V) switch
to see the MAC layer information as packets arrive.

[root@lnxclient admin]# /usr/sbin/tethereal-V
Capturing on eth0

Now we can invoke the Echo client to bounce the string TESTING123 off the

server process.

[root@lnxclient admin]# ./Echo 10.10.11.66 TESTING123 55555
Received: TESTING123
[root@lnxclient admin]#

What did we get? Let’s look at the frames leaving the client. We only need to

examine the Layer 2 and IP address information.

[root@lnxclient admin]# /usr/sbin/tethereal-V
Capturing on eth0
Frame 1 (74 bytes on wire, 74 bytes captured)

Arrival Time: May 5, 2008 13:39:34.102363000
Time delta from previous packet: 0.000000000 seconds
Time relative to first packet: 0.000000000 seconds
Frame Number: 1
Packet Length: 74 bytes
Capture Length: 74 bytes

Ethernet II, Src: 00:b0:d0:45:34:64, Dst: 00:05:85:8b:bc:db
Destination: 00:05:85:8b:bc:db (Juniper__8b:bc:db)
Source: 00:b0:d0:45:34:64 (Dell_45:34:64)
Type: IP (0x0800)

Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr:
10.10.11.66
(10.10.11.66)

Version: 4
Header length: 20 bytes. . . [much more information not shown]

We can see that the Ethernet frame leaving the Linux client has source MAC

address 00:b0:d0:45:34:64 and destination MAC address 00:05:85:8b:bc:db.
The packet inside the frame has the source IPv4 address 10.10.12.166 and desti-

nation address 10.10.11.66, as expected.

258 CHAPTER 9 Routing

How do we know that the destination MAC address 00:05:85:8b:bc:db is not

associated with the destination address 10.10.11.66? We can simply look at the

frame that arrives at the Linux server.

[root@lnxserver admin]# /usr/sbin/tethereal -V
Capturing on eth0
Frame 1 (74 bytes on wire, 74 bytes captured)

Arrival Time: May 5, 2008 13:39:34.104401000
Time delta from previous packet: 0.000000000 seconds
Time relative to first packet: 0.000000000 seconds
Frame Number: 1
Packet Length: 74 bytes
Capture Length: 74 bytes

Ethernet II, Src: 00:05:85:88:cc:db, Dst: 00:d0:b7:1 f:fe:e6
Destination: 00:d0:b7:1 f:fe:e6 (Intel_1 f:fe:e6)
Source: 00:05:85:88:cc:db (Juniper__88:cc:db)
Type: IP (0x0800)

Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr:
10.10.11.66
(10.10.11.66)

Version: 4
Header length: 20 bytes. . .(much more information not shown)

Note that the frame arriving at 10.10.11.66 has the MAC address 00:d0:
b7:1 f:fe:e6, which is not the one used as the destination MAC address in the

frame leaving the 10.10.12.166 client (that MAC address is 00:b0:d0:45:34:64).
Now, if the MAC address associated with the frame leaving the 10.10.12.166

client is 00:bo:do:45:34:64, then the MAC address associated with the same IP

address on the server LAN cannot magically change to 00:05:85:88:cc:db. As

expected, the IP packet is identical (except for the decremented TTL field), but the

frame is different. This is sometimes called indirect delivery of packets because the

packet is sent through one or more network nodes and not directly to the destination.

These relationships are displayed in Table 9.1, which shows how the MAC

addresses relate to the IP subnet addresses.

Table 9.1 Frame IP and MAC Addresses

MAC Source
Address

IP Source
Address

MAC Destination
Address

IP
Destination
Address

Frame
leaving client

00:b0:d0:45:34:64
(Linux client)

10.10.12.166
(Linux client)

00:05:85:8b:bc:db
(Juniper router)

10.10.11.66
(Linux server)

Frame
arriving at
server

00:05:85:88:cc:db
(Juniper router)

10.10.12.166
(Linux client)

00:d0:b7:1 f:fe:e6
(Linux server)

10.10.11.66
(Linux server)

259Direct and Indirect Delivery

Wireshark (or tshark or tethereal) not only gives the MAC addresses, but also

parses the 24-bit OUI and helpfully lists Intel as the owner of 00:d0:b7 and

Juniper as the owner of 00:05:85. We can verify this on the Linux client or

server. Let’s look at the client’s ARP cache.

[root@lnxclient admin]# /sbin/arp -a
? (10.10.12.1) at 00:05:85:8b:bc:db [ether] on eth0
[root@lnxclient admin]#

The question mark (?) just means that our routers do not have names in DNS.

The Illustrated Network uses two small LAN switches for LAN1 and LAN2,

but the nodes used for internetworking are routers. Let’s take a closer look at just

what a router does and how it delivers packets from LAN to LAN over an

internetwork.

ROUTING

Routing is done entirely with IP addresses, of course. Many books make extensive

use of the concepts of direct routing and indirect routing of packets. This can be

confusing, since direct “routing” of packets does not require a router. In this chap-

ter, the terms direct delivery and indirect delivery are used instead. A host can

use direct delivery to send packets directly to another host, perhaps using a

VLAN, or use indirect delivery if the destination host is reachable only through a

router.

How does the source host know whether the destination host is reachable

through direct (local) delivery or indirect (remote) delivery through a router?

The answer has a lot to do with the way bridges and routers differ in their fun-

damental operation, and how routers use the IP address to determine how to

handle packets. Here’s an example using the Illustrated Network’s actual MAC

and IP addresses.

DIRECT DELIVERY WITHOUT ROUTING

Let’s look at a packet sent from wincli on LAN1 to winsvr1. Both of these hosts

are on LAN1, so no routing is needed. The IPv4 addresses are 10.10.11.51 for

wincli1 and 10.10.11.111 for winsvr1, and both use the same 255.255.255.0
mask. Therefore, both addresses have the same network portion of the IPv4

address, 10.10.11.0/24.
The host software knows that no router is needed to handle a packet sent

from the source host to the destination host because the IP addresses of the

source and destination hosts have the same IP network portion (prefix) in both

source and destination IP addresses. This is a simple and effective way to let

hosts know whether they are on the same LAN. The packet can be placed in a

260 CHAPTER 9 Routing

frame and sent directly to the destination using the local link. This is shown in

Figure 9.3.

In Figure 9.3, a packet is followed from client to server when both are on the

same LAN segment and there is no router between client and server. All direct

delivery means is that the packet and frame do not have to pass through a router

on the way from source to destination.

The TCP/IP protocol stack on the client builds the TCP header and IP header.

In Figure 9.3, the IP packet is placed inside an Ethernet MAC frame. The MAC

source and destination addresses are shown as well. The client knows its own

MAC address, and if the server’s MAC address is not cached, an ARP broadcast

message that asks, “Who has IP address 10.10.11.111?,” is used to determine the

MAC address of the server.

The source host knew to ask for the MAC address of the destination host

because the destination host is on the same LAN as the source. Hosts with the

same IP network addresses must be on the same LAN segment. Destination hosts

on the same LAN are simply “asked” to provide their MAC addresses. The desti-

nation MAC address in the frame is the MAC address that corresponds to the des-

tination IP address in the IP packet inside the MAC frame.

What would be different when the client and server are on different LANs and

must communicate through a router?

Sender (wincli1):
1. Server on same subnet? YES!
2. ARP for IP address of server
3. Use ARP response to determine
 MAC address for frame
4. Build packet and frame and
 send!

(Router ignores
this frame:

It is addressed to
00:0e:0c:3b:87:36)

MAC Address:
00:0e:0c:3b:88:3b

MAC Address:
00:0e:0c:3b:87:36

winsvr1wincli1

Router
MAC Address

00:05:85:88:cc:db

To: 00:0e:0c:3b:88:3b
From: 00:0e:0c:3b:87:36

To: 10.10.11:111
Network 10.10.11 Host 111
From: 10.10.11.51
Network 10.10.11 Host 51

Frame:

Packet:

FIGURE 9.3

Direct delivery of packets on a LAN. Note that the MAC address does not change from

source to destination, and that the router ignores the frame.

261Direct and Indirect Delivery

INDIRECT DELIVERY AND THE ROUTER

It is one thing to say that the router is the network node of the Internet, but

exactly what does this mean? What is the role of the router on the Internet?

Routers route IP packets to perform indirect delivery (through the forwarding) of

packets from source to destination.

Unlike direct delivery, where the packets are sent between devices on the

same LAN, indirect delivery employs one or more routers to connect source and

destination. The source and destination could be near in terms of distance, per-

haps on separate floors of the same building. All that really matters is whether

there is a router between source and destination or not.

Figure 9.4 shows a simple network consisting of two LANs connected by rou-

ters. The routers are connected by a serial link using PPP, but SONET would do

just as well. Of course, the Internet consists of thousands of LANs and routers,

but all of the essentials of routing can be illustrated with this simple network.

The routing network has been simplified to emphasize the architectural fea-

tures without worrying about the details. The routers are just Router 1 and Router

wincli1

wincli2 winsvr2

10.10.12.52

winsvr1

LAN1:
IP Network

10.10.11/24

00:0e:0c:3b:88:3c 00:0e:0c:3b:87:36

10.10.11.51

00:05:85:88:cc:db

00:05:85:8b:bc:db

00:0e:0c:3b:88:56

10.10.11.111

10.10.11.1

10.0.99.1

10.10.12.1

10.10.12.222

Router 1

Router 2
PPP

Serial
Link

10.0.99.2

00:02:b3:27:fa:8c
LAN2:

IP Network
10.10.12/24

S1

S1

FIGURE 9.4

Indirect delivery using a router. Note the different MAC and link-level addresses in place

between source and destination.

262 CHAPTER 9 Routing

2, not CE0 and CE6. But the LANs are still LAN1 and LAN2, and we’ll trace a

packet from wincli1 on LAN1 to winsvr2 on LAN2.

Both LAN segments in Figure 9.4 are implemented with Ethernet hubs and

unshielded twisted pair (UTP) wiring, but are shown as shared media cables, just

to make the adjacencies clearer. Each host in the figure has a network interface

card (NIC) installed. It is important to realize that it is the interface that has the

IP address, not the entire host, but in this example each host has only one inter-

face. However, the routers in the figure have more than one network interface

and therefore more than one IP network address. A router is a network device

that belongs to two or more networks at the same time, which is how they con-

nect LANs. A typical router can have 2, 8, 16, or more interfaces. Each interface

usually gets an IP address and typically represents a separate “network” as the

term applies to IP, but there are exceptions.

Each NIC in a host or router has a MAC address, and these are given in

Figure 9.4. The routers are only shown with network layers and IP layers,

because that’s all they need for packet forwarding (most routers do have appli-

cation layers, as we have seen). Because the routers in this example are in dif-

ferent locations, they are connected by a serial link. The serial link is running

PPP and packets are placed inside PPP frames on this link between the routers.

There is no need for global uniqueness on serial ports, since they are point-to-

point links in the example, so each is called “S1” (Serial1) at the network layer.

They don’t even require IP addresses, but these are usually provided to make

the link visible to network management and make routing and forwarding

tables a lot simpler.

All of the pieces are now in place to follow a packet between client and server

on the “internetwork” in Figure 9.4 using indirect delivery of packets with rou-

ters. Let’s see what happens when a client process running on wincli1 wants to

send a packet to a server process running on winsvr2. The application is unimpor-

tant. What is important is that the source host knows that the destination host

(server) is not on the same LAN. Once the IP address of the server is obtained, it

is obvious to the source that the destination IP network address (10.10.12.52) is
different than the source IP network address (10.10.11.51).

The source client software now knows that the packet going to 10.10.12.52
must be sent through at least one router, and probably several routers, using indi-

rect delivery. It is called indirect delivery (or indirect routing) because the packet

destination address is the destination IP address of winsvr2, but the initial frame

destination address is the MAC address of the Router1. The packet is sent indi-

rectly to the destination host inside a frame sent to the router. The address fields

of the frame and packet constructed and sent on the LAN by wincli1 are shown

in Figure 9.5.

Note that the frame is sent to Router1’s MAC address (00:05:85:88:cc:db),
but the packet is sent to 10.10.12.52 (winsvr2). This is how routing works.

(Bridges, or direct delivery even in routing, always has frames in which the desti-

nation MAC address is the same as the IP address it represents.)

263Direct and Indirect Delivery

How did the source host, wincli1, know the MAC address of the correct

router? There could be several routers on a LAN, if for no other reason than

redundancy. All that wincli1 did was use the routing table to look up the IP

address of the destination. But there’s no specific entry for a network associated

with 10.10.12.52. However, TCP/IP configuration on a host often includes con-

figuration of at least one default gateway to be used when packets must leave the

local LAN. The default gateway (a router in this case) can be set statically, or

dynamically using the Dynamic Host Configuration Protocol (DHCP), or even

other ways. In this example network, the default gateway IP address has been

entered statically when the host was configured for TCP/IP.

Since the default gateway is by definition on the same LAN as the source host

(they share the same IP address prefix), the source host can just send an ARP to

get the MAC address of the interface on the router attached to that LAN. Note

that the IP address of the router is used only to get the MAC address of the router,

not so that the source host wincli1 can send packets to the router (the packets are

being forwarded to winsvr2).
When this packet is sent, the router pays attention to the frame when it arrives,

but winsrv1 ignores it (the frame is not for 00:0e:0c:3b:87:36). Router1 looks at

the packet inside the frame and knows that the destination host is not directly

connected to Router1. The next hop to the destination is another router. How does

Router1 know? In much the same way as wincli1: Router1 compares the destina-

tion IP address to the IP addresses assigned to its local interfaces. These are

10.10.11.0/24 and 10.0.99.0/24. The packet’s destination IP address of

10.10.12.0/24 does not belong to either of the two networks local to Router1.

However, a router can have many interfaces, not just the two in this example.

Which output port should the router use to forward the packet? The network por-

tion of the IP address is looked up in the forwarding table according to certain

rules to find out the IP address of the next-hop router and the output interface

leading to this router. (In practice, Router1 might simply have a default route

pointed at the serial WAN interface.) The rules used for these lookups will be dis-

cussed in more detail in a later chapter. For now, assume that Router1 finds out

Destination
MAC Address:

00:05:85:
88:cc:db

Source
MAC Address:

00:0e:0c:
3b:88:3c

Source
IP Address:
10.10.11.51

Destination
IP Address:
10.10.12.52

DATA
(Segment)

Ethernet Frame (trailer not shown)

Packet

FIGURE 9.5

Frame and packet sent to Router1, showing source and destination IP and MAC

addresses.

264 CHAPTER 9 Routing

that the next hop for the packet to winsvr2 is Router2, and that Router2 is

reached on serial port S1.

Router1 now encapsulates the packet from wincli1 to winsvr2 inside a PPP

frame for transport on the serial link. Another key feature distinguishing routers

from bridges, as we have seen, is an IPv4 router’s ability to fragment a packet for

transport on an output link. Fragmentation depends on every router knowing the

maximum transmission unit (MTU) frame size for the link types on all of the rou-

ter’s interfaces. Ethernet LANs, for example, all have an MTU size of 1500 bytes

(1518 bytes, including the LAN frame header). Serial links usually have MTU

sizes larger than that, so this example assumes that Router1 does not have to frag-

ment the content of the packet it received from the LAN.

When the packet sent by wincli1 to winsvr2 arrives at Router2 on the serial

link from Router1, Router2 knows that the next hop for this packet is not another

router. Router2 can deliver the packet directly to winsvr2 using direct delivery.

How does it know? Because the network portion of the IP address in the packet

destination, 10.10.12.52/24, is on the same network as the router on one of its

interfaces, 10.10.12.1/24. In brief, it has a route that covers the destination net-

work on one of its interfaces.

The frame containing the packet is sent onto the LAN with the structure

shown in Figure 9.6. Note that in this case the MAC address of the source is

Router2, and the MAC address of the destination is the MAC address of winsrv2.
Again, Router2 can always use ARP to get the MAC address associated with IP

address 10.10.12.52 if the MAC address of the destination host is not in the local

ARP cache on the router. The source and destination IP addresses on the packet

do not change in this example, of course. Winsvr2 must be able to reply to the

sender, wincli1 in this case. (We’ll talk about cases using NAT, when the source

and destination packet addresses do and must change, in the chapter on NAT.)

It is assumed that there is no problem with MTU sizes in this example.

However, MTU sizes are often important, especially when the operational differ-

ences between IPv4 and IPv6 routers, when it comes to fragmentation, are

considered.

Destination
MAC Address:

00:0e:Oc:
3b:88:58

Source
MAC Address:

00:05:85:
8b:bc:db

Source
IP Address:
10.10.11.51

Destination
IP Address:
10.10.12.52

DATA
(Segment)

Ethernet Frame (trailer not shown)

Packet

FIGURE 9.6

Frame sent by Router2 to winsvr2, showing source and destination IP and MAC

addresses.

265Direct and Indirect Delivery

QUESTIONS FOR READERS

Figure 9.7 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. What is the difference between a routing table and a forwarding table?

2. In the IPv6 routing table for router CE0, what is the IPv6 address associated

with interface ge-0/0/3?
3. In the IPv6 routing table for router CE0, what is the precise IP address value

of the default route for IPv4 and IPv6?

4. Why are there so many entries in the IPv6 host routing table on bsdserver?
5. What is a “persistent” route? What is a “static” route?

Router
CEO

bsdserver

admin@CEO� show route
inet .0 : 5 destinations, 5 routes (5 active, 0 holddown, 0
hidden)
� � Active Route, � � Last Active, * � Both

0.0.0.0/0 * [Static/5] 3d 02:59:20
� via ge-0/0/3.0

10.0.50.0/24

10.0.50.1/32

10.10.11.1/32

10.10.11.0/24

*Direct/0] 2d 14:25:52
� via ge-0/0/3.0
*[Local/0] 2d 14:25:52
Local via ge-0/0/3.0

*[Local/0] 2d 14:25:52
Local via fe-1/3/0.0

*[Direct/0] 2d 14:25:52
� via fe-1/3/0.0

bsdserver# netstat -nr
Routing tables
Internet:
Destination
default
10.10.12/24
localhost
Internet 6:
Destination
localhost.booklab.
fe80::%emo
fe80::20e:cff:fe3b
fe80::%1o0
fe80::1%1o0
fec0::
fec0::20e:cff:fe3b
fec0::fe67:d4:b::
fec0::fe67:d4:b:205
fec0::fe67:d4:b:20e
ff01::
ff02::%em0
ff02::%1o0

Flags

Flags

UGSC
UC
UH

UH

UHL

UHL

UC
UHLW

UHL

UHL

UC
UC

UC

UC

UC

10.10.12.1
Gateway

link#1
localhost

link#1
00:0e::0c:3b:87:32
fe80::1&1o0

00:0e::0c:3b:87:32
link#1

Gateway
localhost.booklab

localhost.booklab.
link#1
localhost.booklab.

link#4
link#1

00:05:85:8b:bc:db
00:0e:0c:3b:87c:32

Refs Use
0 0 em0

em0
144

0 0
0

1o0

1o0

em0
1o0

1o0

1o0
em0

1o0

Netif Expire

Netif Expire

1o0

em0

em0
1o0

em0
1o0

U

FIGURE 9.7

The routing table output from router CE0 (IPv4 only) and host bsdserver.

266 CHAPTER 9 Routing

CHAPTER

10Forwarding IP Packets

WHAT YOU WILL LEARN

In this chapter, you will learn how routers forward IP packets. We’ll start with the logi-
cal steps a router follows to forward (“route”) a packet out the next-hop interface.
Then we’ll look at router architectures to see how specialized devices (there are “soft-
ware-only” routers) accomplish routing and forwarding.

Finally, you will learn about how IPv4 routers transition to handling IPv6 routing
and various methods to tunnel IPv6 packets through links connected by IPv4-only
routers. Tunnels were introduced in Chapters 3 and 4 and occur when the normal
encapsulation sequence of packet�inside frame is violated in some fashion.

This chapter is really a continued investigation into many of the concepts intro-

duced in the previous chapter. Figure 10.1 highlights the network components

we’ll be working with in this chapter.

The routers on our network are Juniper Networks routers. These routers have

a different “look and feel” compared to other routers, most of which use a more

“Ciscolike” interface and display. For example, the routing tables seem very long

and detailed compared to Cisco routers’ default displays.

admin@CE6. show route 10.10/16

inet.0: 34 destinations, 35 routes (34 active, 0 holddown, 0 hidden)
1 5 Active Route, -5 Last Active, � 5 Both

10.10.11.0/24 �[OSPF/10] 1w5d 18:25:05, metric 6
. via ge-0/0/3.0

10.10.12.0/24 �[Direct/0] 2w2d 00:15:44
. via fe-1/3/0.0

10.10.12.1/32 �[Local/0] 2w2d 00:15:44
Local via fe-1/3/0.0

We’ll talk about the routing table entry marked Open Shortest Path First (OSPF)

in Chapter 14. This route was learned by a routing protocol running between the rou-

ters on our network, and we’ll see how OSPF is configured in a later chapter. Note

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00010-2

© 2017 Elsevier Inc. All rights reserved.
267

http://dx.doi.org/10.1016/B978-0-12-811027-0.00010-2

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 10.1

Forwarding packets across the network. Note that we’ll be using the customer-edge

routers CE0 and CE6 in this chapter.

268 CHAPTER 10 Forwarding IP Packets

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

269Forwarding IP Packets

that the entry has a preference of 10 (which makes it more “costly” to use than

direct/local interface routes [0] or static routes [5]). Traffic to destinations on LAN1

is sent to PE1 over the ge-0/0/3 interface. A preference is distinct from the metric or

cost of a route itself; preference applies to routes learned in different ways.

We can make the routing table display more Cisco-like by using the terse option:

admin@CE6. show route 10.10/16 terse

inet.0: 34 destinations, 35 routes (34 active, 0 holddown, 0 hidden)
1 5 Active Route, -5 Last Active, � 5 Both

A Destination P Prf Metric 1 Metric 2 Next hop AS path
�10.10.11.0/24 O 10 6 .ge-0/0/3.0
�10.10.12.0/24 D 0 .fe-1/3/0.0
�10.10.12.1/32 L 0 Local

The asterisk (�) means the route is active (used for forwarding), and the P field

is for protocol. One metric is used (two are allowed), the next-hops are the same

(thankfully!), and we’ll talk about what an AS path is in the chapter on the BGP

routing protocol.

Let’s use traceroute to see which routers CE6 uses to reach LAN1, attached

to router CE0 at interface 10.10.11.1.

admin@CE6. traceroute 10.10.11.1

traceroute to 10.10.11.1 (10.10.11.1), 30 hops max, 40 byte packets
1 10.0.16.1 (10.0.16.1) 0.743 ms 0.681 ms 0.573 ms
2 10.0.12.2 (10.0.12.2) 0.646 ms 0.647 ms 0.620 ms
3 10.0.24.2 (10.0.24.2) 0.656 ms 0.664 ms 0.632 ms
4 10.0.45.2 (10.0.45.2) 0.690 ms 0.677 ms 0.695 ms
5 10.10.11.1 (10.10.11.1) 0.846 ms 0.819 ms 0.775 ms

Each router handles the three-packet set generated by the source (CE6) in one

of three ways:

1. If the packet is not for this router (the device does not have 10.10.11.1
configured locally), and the TTL is 1 or 0, then the router creates an ICMP

Time-Exceeded message, sets the source address to the router’s receiving

interface address, sets the destination address to the source’s, and sends the

ICMP packet out the interface listed as the route back to the source in the

forwarding table. This does not have to be the same as the receiving interface,

but it usually is.

2. If the packet is not for this router and the TTL is not 1 or 0, then the router

decrements the TTL field and forwards the packet out the interface leading to

the next hop on the way to the destination address.

3. If the packet is for this router or device, then it sends back an ICMP Port

Unreachable message.

270 CHAPTER 10 Forwarding IP Packets

Why a TTL of 1 or 0? Some routers decrement the TTL immediately and

others only as part of the forwarding process, right before output queuing. This

way both types of router handle the packet consistently.

When the source receives a Time-Exceeded message, it records the results of

the round-trip time for the three packets, checks to see if it has a DNS entry for

the IP address, and prints a line of output with a “hop” number and the rest of the

statistics. When it receives a Port Unreachable message, the traceroute utility

prints the final results and exits.

Because we don’t yet have DNS running, all the IPv4 addresses are repeated

twice. From the network diagram, we can see that the packets flowed from CE6 to

PE1 (not surprisingly) at 10.0.16.1 and then through P2 (10.0.12.2), P4
(10.0.24.2), PE5 (10.0.45.2) and on to CE0 (10.10.11.1, the local interface tar-

get, is used instead of 10.0.50.2 on this last hop). (We’ll see what happens when

one of the P routers or links between them fails in a later chapter.)

We have IPv6 running on the LANs and routers CE0 and CE6. Let’s see what

happens on CE6 when we ping the LAN1 interface address four times using the

LAN2 interface IPv6 source address. Recall that the private ULA IPv6 addresses

on LAN1 start with fc00:ffb3:d5:a. Do not confuse these with the fe80 link

local addresses shown in the figure: these are private ULA addresses. However,

the endings are the same as in the figure.

admin@CE6. ping count 4 inet6 source
fc00:fe67:d4:b:205:85ff:fe8b:bcdb
fc00:ffb3:d5:a:205:85ff:fe88:ccdb
PING6(565401818bytes)fc00:fe67:d4:b:205:85ff:fe8b:bcdb—.

fc00:ffb3:d5:
a:205:85ff:fe88:ccdb
—� fc00:ffb3:d5:a:205:85ff:fe88:ccdb ping6 statistics —�
4 packets transmitted, 0 packets received, 100% packet loss

What happened to the packets? Well, for one thing, we have no routes to any

IPv6 addresses on LAN1 in the IPv6 routing table. And if they’re not in the rout-

ing table, they won’t be in the forwarding table.

admin@CE6. show route table inet6 fc00:ffb3:d5:a::/64

admin@CE6.

What can we do about this? Well, we could add some static routes to the IPv6

tables on each router, or we could run an IPv6 routing protocol between the routers to

share the routing information (we’ll do this in a later chapter). Or, we can configure an

IPv6 over IPv4 tunnel between routers CE6 and CE0 (and back). We know we have

connectivity with IPv4 between the edge routers, as shown with traceroute.

Here’s how to configure an IPv6-over-IPv4 tunnel on routers CE0 and CE6. It
basically tells the router to take any traffic for LAN1 or LAN2 IPv6 addresses,

put them inside IPv4 packets with the LAN IPv4 interface addresses, and send

them out as if they were IPv4 packets. We’ll apply the tunnels on a logical

271Forwarding IP Packets

interface known as the Generic Routing Encapsulation (GRE) interfaces, abbrevi-

ated gr- on Juniper Networks routers. Once again, we are using ULA IPv6

addresses and not the link local forms (the ending digits are the same). Only the

final configuration statements are shown.

[edit interfaces gr-1/0/0]
admin@CE6# set interfaces gr-1/0/0
admin@CE6# set unit 0 tunnel source 10.10.12.1;

/�source address on LAN2 interface�/
admin@CE6# set unit 0 tunnel destination 10.10.11.1;

/�destination address on LAN1 interface�/
admin@CE6# set unit 0 family inet6 address fc00:ffb3::/32

/�LAN1 addresses�/

[edit interfaces gr-1/0/0]
admin@CE0# set interfaces gr-1/0/0
admin@CE0# set unit 0 tunnel source 10.10.11.1;

/�source address on LAN1 interface�/
admin@CE0# set unit 0 tunnel destination 10.10.12.1;

/�destination address on LAN2 interface�/
admin@CE0# set unit 0 family inet6 address fc00:ffb3::/32

/�LAN2 addresses�/

Now we should be able to ping and traceroute an IPv6 address on LAN1 (in

this case, fc00:ffb3:d5:a:20e:cff:fe3b:8f95 for bsdclient) from the cus-

tomer-edge router on LAN2. And we can. Note that, because of the tunnel, the

destination seems to be only two hops away.

admin@CE6. ping inet6 count 4 source
fc00:fe67:d4:b:205:85ff:fe8b:bcdb
fc00:ffb3:d5:a:20e:cff:fe3b:8f95
PING6(565401818 bytes) fc00:fe67:d4:b:205:85ff:fe8b:bcdb —. fc00:
ffb3:d5:a:20e:cff:fe3b:8f95
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq50 hlim564
time50.900 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq51 hlim564
time50.728 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq52 hlim564
time50.856 ms
16 bytes from fc00:fe67:d4:b:205:85ff:fe8b:bcdb, icmp_seq53 hlim564
time50.838 ms

admin@CE6. traceroute inet6 source
fc00:fe67:d4:b:205:85ff:fe8b:bcdb
fc00:ffb3:d5:a:20e:cff:fe3b:8f95
traceroute6 to fc00:ffb3:d5:a:20e:cff:fe3b:8f95 (fc00:ffb3:d5:a:205:85ff:
fe88:ccdb) from
fc00:fe67:d4:b:205:85ff:fe8b:bcdb, 30 hops max, 12 byte packets

272 CHAPTER 10 Forwarding IP Packets

1 fc00:ffb3:d4:b:205:85ff:fe88:ccdb
(fc00:ffb3:d4:b:205:85ff:fe88:ccdb) 1.059 ms 0.979 ms 0.819 ms
2 fc00:ffb3:d5:a:20e:cff:fe3b:8f95
(fc00:ffb3:d5:a:20e:cff:fe3b:8f95) 0.832 ms 0.887 ms 0.823 ms

Let’s take a look at some of the basic types of router architectures that can be

used to implement these packet-forwarding strategies.

ROUTER ARCHITECTURES
There are three main steps that a router must follow to process and forward a

packet to the next hop. Processing a packet means to check an incoming packet

for errors and other parameters, looking up the destination address in a forwarding

table to determine the proper output port for the packet, and then sending the

packet out on that port.

But how are the input ports connected to the output ports? In smaller routers,

which can even be implemented on PC or laptop computers with two or more

interfaces, software simply examines the packet headers and forwards the packets

where they need to go. Windows PCs can do this, and often do on home net-

works. In Linux, there is a command to allow the “host” to forward packets with-

out processing the content of the packet more fully.

[root@lnxserver admin]# echo "1" . /proc/sys/net/ipv4/ip_forward

LINUX IP FORWARDING
If you enter the ip_forward command from the shell command prompt, the setting is not

“remembered” after a reboot. If the host is to function as a gateway as well as host, place the

command in an initialization script.

Small routers, such as those for DSL or small-edge LANs, can allow the

incoming packet to sit in a memory buffer somewhere and adjust header fields,

perform tunnel encapsulation, and so on, and then queue the packet for output.

Larger routers, such as those used by ISPs or on the Internet backbones, must

route as fast as they can, usually at wire speeds (this means that the device pro-

cesses data without reducing overall transmission speed, so even if the packets

arrive as fast as the input line allows, under maximum load, there is minimal

delay through the router).

Instead of software-based forwarding architectures, these larger routers use

hardware-based forwarding fabric architectures. The differences are important, so

we’ll take a look at them in more detail.

273Router Architectures

BASIC ROUTER ARCHITECTURES

When it comes to architecture, routers look very much like a PC. This was one of

the reasons for the initial success of routers: Routers could be fabricated out of

simple, off-the-shelf parts and did not require extensive or customized chipsets or

hardware. So these routers have a CPU, memory, interfaces, peripheral ports—in

short, usually everything but a hard drive. Small routers do not even have floppy

drives or other forms of external storage. This makes sense: Routers don’t need to

store much of anything. A forwarding table needs to be in memory at all times,

because it’s much too slow to try and fetch a piece of the table off a hard drive

when needed. A lot of routers boot themselves from special servers, and have non-

volatile random access memory (NVRAM) that keeps whatever information they

need to remember whenever their power is cut or turned off. Volatile memory like

normal RAM is always erased when power is lost, but NVRAM is like a disk.

The chief distinction is that at the heart of such routers is a general-purpose

computer. The architecture for large modern routers does not have a “center.”

Routers do not have to worry about adding cards for video, graphics, or other

tasks either. The slots in the chassis just handle various types of networking inter-

faces such as Ethernet, ATM, SONET/SDH (Synchronous Optical Network/

Synchronous Digital Hierarchy), or other types of point-to-point WAN links. Most

interface modules have multiple ports, depending on the type of interface that they

support. In a lot of high-end router models, the interface cards are complex devices

all by themselves and often called blades. Interfaces usually can be added as

needed for the networking environment—one or more LAN cards for the routers

that handle customers and one or more WAN cards for connection to other routers.

Backbone routers often have only WAN cards and no customers at all.

Another difference between a software-based router and a common PC is that

PCs almost always have only a single CPU. Because of the central role of these

chips in running all of the hardware and software on the computer, single-CPU

architectures require very powerful CPU chips.

Some routers use a variety of CPU chips, and because the tasks are shared

among the processors, these CPU chips do not have to be tremendously powerful

either. Each CPU set is chosen to fit the mission of the router. They have enough

horsepower for the home and small office, and these chips are stable, plentiful,

and inexpensive.

Some routers use different types of memory. Figure 10.2 shows the general

layout of the motherboard of a generic software-based router. Many router

motherboards have four types of memory intended for specific purposes. Each

type of memory and its location on the motherboard is shown in the figure. This

architecture is also very similar to the network processor engine (NPE) for larger

Cisco router architectures. A lot of architectures forgo packet memory because of

the bandwidth available in their shared memory architecture or because the CPU

itself contains a dedicated packet handling architecture.

274 CHAPTER 10 Forwarding IP Packets

Every router ships with at least the factory default minimum of DRAM

(dynamic random access memory) and flash memory, but more can be added in

the factory or in the field. Generally, the DRAM can be doubled or increased

fourfold, depending on model, and flash memory can be doubled.

RAM/DRAM is sometimes called working storage because in the days before

hard drives and other types of external storage, memory was all that computers

had for storing information outside of the immediate CPU. In a router, the RAM/

DRAM performs the same functions for the router’s CPU as the memory in a PC

does for its CPU. So when the router is up and running, the RAM/DRAM con-

tains an image of the operating system software, the running configuration (called

running-config in routers using the Cisco configuration conventions) file, the rout-

ing table and associated tables built after startup, and the packet buffer. If this

seems like a lot of work for one type of memory, this just shows the flexibility of

function in a general-purpose architecture router.

The RAM acronym often used by router vendors is somewhat misleading.

Almost all RAM in a router today is DRAM, since static memory—regular

RAM—became obsolete some time ago. But people are used to the old RAM

acronym, and it’s included in a lot of literature just for familiarity.

In addition to the DRAM near the CPU, these types of routers include shared

DRAM or shared memory. Also known as packet memory, the shared DRAM

handles the packet buffers in the router. Splitting the packet buffers from the

other DRAM improves I/O performance, because the shared DRAM is physically

closer to the interfaces that handle the packets.

Nonvolatile RAM (NVRAM) is memory that retains information even when

power is cut off to the router. Routers use NVRAM to store a copy of the router

Shared DRAM DRAM

CPU

Flash
MemoryROM

NVRAM

FIGURE 10.2

Software-based architecture for small routers, showing the various types of memory used.

275Router Architectures

configuration file. Without NVRAM, the router would never be able to remember

its proper configuration when it was restarted. NVRAM is where the startup con-

figuration (called startup-config on routers using the Cisco configuration conven-

tions) is stored.

Flash memory is another form of nonvolatile memory. But although flash

memory is different from NVRAM, flash memory can also be erased and repro-

grammed as needed. In many routers, flash memory is used to hold one or more

copies of the router’s operating system: In the case of Cisco, this is called the

Internetwork Operating System, or IOS.

ROM is read-only memory and is therefore nonvolatile, but, as might be

expected, ROM cannot be changed. Routers use ROM to hold what is called the

bootstrap program. Normally, flash memory and NVRAM hold all of the informa-

tion that the router needs to come up again properly with the current configuration

after a shutdown or other power loss. But if there is a catastrophe, the bootstrap

program in ROM can be used to boot the router into a minimum configuration.

ROM used for this purpose is also called ROMMON (ROM monitor) and usually

has a distinctive rommon.. prompt taken from early Unix systems. ROMMON at

least gets the router to the point where simple commands can be typed in through a

system console terminal (monitor). In smaller routers, ROM holds only a minimal

subset of the router’s operating system software. In larger routers, the ROM often

holds a full copy of the router’s operating system software.

ANOTHER ROUTER ARCHITECTURE
In contrast to the basic router architecture just explored, no one would accuse a

large Internet backbone router of looking or acting like a PC. Routers based on a

central CPU just about run out of gas once link speeds move into the multigigabit

ranges with OC-48 (2.4 Gbps) and OC-192 (10 Gbps). And with 10 Gigabit

Ethernet and OC-768 (40 Gbps), a change to the basic architecture of the router for

the Internet backbone is necessary. Many Internet backbone routers share the same

basic architecture, whether they come from Cisco or Juniper Networks or someone

else. However, the terminology used for the components varies considerably from

vendor to vendor. Because the Illustrated Network uses Juniper Networks routers

as its network nodes, we’ll use the Juniper Networks architecture and terminology

in this section, but only as an example, not necessarily as an endorsement.

Larger network routers, oddly enough, do have hard drives. In fact, many

Internet backbone routers have a complete PC built right in (some even have two

PCs). But wait a minute. Isn’t the PC architecture much too slow for heavy duty,

“wire-speed” routing? And isn’t a hard drive useless when it comes to routing

because the forwarding table has to be in memory? Right on both counts. The PC

in the backbone router, called the routing engine (RE) in Juniper Networks rou-

ters, does not forward packets at all. Packets are routed and forwarded by the

packet-forwarding engine (PFE), which is where all the specialized ASICs are

276 CHAPTER 10 Forwarding IP Packets

located. The RE controls the router, handles the routing protocols, and performs

all of the other tasks that can be handled more leisurely than wire-speed packet

transit traffic. Packets are forwarded from input to output port using the forward-

ing table (FT) in the hardware fabric.

The fundamental principle in large router design is the idea that the functions

of a router can be split into two distinct parts: one portion for handling routing

and control operations and another for forwarding packets. By separating these

two operations, the router hardware can be designed and optimized to perform

each function well.

This division of labor makes perfect sense. It has already been pointed out sev-

eral times that no one really sends traffic to a router. The vast majority of packets

just pass through the router. So transit packets never leave the hardware-based fab-

ric linking input and output ports and control packets, such as those for the routing

protocols, which only come along every few seconds or so, and can be handled as

required by the RE.

Just like other routers, large backbone routers can handle various types of net-

working interfaces. But these routers are normally intended for mainly customer

traffic aggregation or for an ISP backbone, although many corporations are

attracted to edge-oriented routers with this architecture as well. And anywhere in

an enterprise where there is a requirement for sustained 2-Gbps operation, routing

is probably not being done in software.

The overall concept of the division between routing engine (routing protocol

control and management) and packet-forwarding engine (line-rate routing transit

traffic) with a hardware-based “switching” fabric is shown in Figure 10.3.

The section of the router that is designed to handle the general routing opera-

tions (and control-plane management tasks) is the RE. The RE is designed to

Routing
Engine

Console

AUX

fxp0 Ethernet

FPC 0

0

1 1

2

3

0
Input

Transit Traffic
Output

IP II

Packet-
Forwarding

Engine
2

3

FPC n
fxp1

Transit Traffic

100

FIGURE 10.3

A hardware-based router with a switching fabric architecture. Note that the figure uses the

architecture and terminology of Juniper Networks routers, which are used on the

Illustrated Network.

277Another Router Architecture

handle all the routing protocols, user interaction, system management, and

OAM&P (operations, administration, maintenance, and provisioning), and so on.

The second section in Juniper Networks routers is the PFE, and is specifically

designed to handle the forwarding of packets across the router from input to out-

put interface. Transit packets never enter the routing engine at all.

The communications channel between the routing engine and the PFE is a

standard 100-Mbps Fast Ethernet. This might seem somewhat surprising at first,

because the interfaces on a Juniper Networks router can be many gigabits per sec-

ond. But only control information needs to enter the routing engine. The vast

majority of packets only transits the PFE at wire speeds. There are many advan-

tages to using a standard interface, even internally. A standard interface is easier

to implement than creating a new proprietary interface, and standard chipsets are

readily available, inexpensive, and so on.

The routing engine of a Juniper Networks router contains the router’s operat-

ing system, the JUNOS Internet software, the command line interface (CLI) for

configuration and control, and the routing table (RT) itself. The routing table in a

Juniper Networks router contains all of the routing information gathered from all

routing protocols running on the router, as well as miscellaneous information

such as interface addresses, static routes, and so forth.

It might not seem that the RE would have to be very powerful, or have a large

hard drive, but it usually does. This is because of the increasing expense of con-

verging a growing routing table.

The PFE is where the forwarding table resides. The forwarding table contains

all the active route information that is actually used to determine the packet’s

next hop without needing to send the packet to the routing engine.

Note that these router architectures are conceptual and should not be taken too

literally. Modern routers can be made both with more specialized hardware (“fab-

rics”) or more virtualized software (as a “virtual routing function”), as we’ll see

in a later chapter on “the cloud.”

ROUTER ACCESS
Users don’t generally communicate directly with routers, but rather through rou-

ters. The situation is different for network administrators and managers, however,

who must communicate directly with the individual routers in order to install,

configure, and manage the routers.

Routers are key devices on the Internet and almost any type of network. Many

backbone routers handle packets for hundreds or thousands of users, and some

handle packets for even more. So when a router goes down, or even slows down

due to congestion or a problem, the users go wild and the network managers react

immediately. For this reason, network managers need multiple and foolproof

ways to access the routers they are responsible for in order to manage them.

278 CHAPTER 10 Forwarding IP Packets

Larger routers, and many smaller ones, do not normally come with a

keyboard, mouse, and monitor. Nevertheless, there are usually three ways that a

network administrator can communicate with a router.

THE CONSOLE PORT

This port is for a serial terminal that is at the same location as the router and

attached by a short cable from the serial port on the terminal to the console port

on the router. The terminal is usually a PC or Unix workstation running a termi-

nal emulation program. There are several physical connector types used for this

port on Cisco routers. Network administrators sometimes have to carry around

several different connector types so they can be sure to have the proper connector

for the router they need to manage. (Usually, after initial installation, the console

ports are connected to a terminal server on a management network so that access

does not have to be right where the router is.)

THE AUXILIARY PORT

This port is for a serial terminal that is at a remote location. Connection is

made through a pair of modems, one connected to the router and the other con-

nected to the terminal. There is little difference, if any, between the auxiliary

(AUX) and console ports in terms of characteristics. They are separate because

routers might require simultaneous local and remote access that would be impos-

sible if there were only one serial port on the router.

THE NETWORK

The router can always be managed over the same network on which it is routing

packets. This is often called “in-band management” in contrast to the console and

AUX ports, which are “out-of-band.” This just means that the network access

method shares the link to the router “in the same bandwidth” as user packets tran-

siting the router. There are often three ways to access a router over the network:

through Telnet (called VTY lines on a Cisco router), with a more secure remote

access program called secure shell (SSH), using a Web browser (HTTP is the pro-

tocol), or with SNMP (Simple Network Management Protocol), a protocol

invented expressly for remote router management.

These arrangements are shown in Figure 10.4. Small routers usually only have

a console port. With the proper cables, these console ports can be hooked up to

a modem for remote access, but obviously cannot be used simultaneously for local

access. On some routers, the console ports are labeled “Admin” or “Management.”

It is tempting to try and access a console or AUX ports using the normal graphical

interface provided by Windows, a Mac, or Unix X-Windows. But the console and

AUX ports only understand a simple, character-based serial protocol. On Windows

PCs, for example, only HyperTerminal (or another serial terminal emulation pro-

gram) can communicate with a router through the console or AUX ports.

279Router Access

FORWARDING TABLE LOOKUPS
In the connectionless, best-effort world of IP, every packet is forwarded indepen-

dently, hop by hop, toward the destination. Each router determines the next hop

for the destination address in the packet header based on information gathered

into the routing table and distilled into the forwarding table. The essential opera-

tion of a router is the looking up of the packet’s destination IP address in this

table to determine the next hop.

It’s unusual that a packet address is an exact match for a table entry.

Otherwise, routing and forwarding tables would need an entry for every host in

the world—all 32 bits for IPv4 and 128 bits for IPv6! So in the current classless

(prefix) world of IP addressing, the host-hop destination is chosen by the longest

match rule. Figure 10.5 shows how the next-hop address and interface information

are used with the ARP process (cache or query) to forward the packet in a frame

toward the destination.

Consider a packet sent to 10.10.11.77 (bsdclient) from LAN2. Remember,

the network is 10.10.11.0/24. Suppose the Best ISP edge router, PE1, has the

entries shown in Table 10.1 about 10.10/16 networks in its tables; the longest

match determines the correct interface that should forward the packet.

Which interface is the “best” next hop toward the destination? It would be

easy if we had an entry like 10.10.11/24 to work with, but routers closer to the

backbone use aggregate addresses in their tables. In most cases, Internet back-

bone routers usually accept prefixes of /24 or shorter. (They would like to accept

only /19 or shorter.)

Router

Console
Port

AUX
Port

Network
Interface

Local
Cable

Modem

Modem

Dial-up

Management
Terminal

Management
Terminal

Management
Terminal

Telnet, HTTP, SNMP

Network

FIGURE 10.4

The three router access methods. Note that the console port requires access to the router,

while the others allow remote access.

280 CHAPTER 10 Forwarding IP Packets

So where should the router send a packet for network 10.10.11.0/24? Which

next hop should it use? All three table entries are “close” to the destination

address, but which one is “best”?

According to the longest-match rule, the router will send the packet for

10.10.11.77 to 10.10.17.2 on interface so-0/0/2. But how exactly does it work?

Routers today can “mix and match” prefixes of differing lengths in a routing

or forwarding table and still send packets to the correct next hop. In the table,

10.10.8/21 and 10.10.8/22 are different routes, as would be 10.10.8/23 and

10.10.8/24.
Now, the 32-bit destination address, 10.10.11.77, in bits is 00001010 00001010

00001011 01001101. There is, of course, no subnet mask associated with a host

address. Looking at the table, the first 20 bits are exactly the same in all three

entries, as well as the destination address. But which is the longest match? The

Forwarding Module

Extract
Destination

Address
Packet

Lookup
Table Next-hop Address

and Interface
Information

To ARP

Interface
Next-hop
Address

Prefix
Network
Address

FIGURE 10.5

How the longest match rule applies to a forwarding table lookup. More specific (longer)

routes are preferred to less specific (shorter) routes.

Table 10.1 Tables for Router PE1

Network (Network Bits in Bold) Prefix
Next-Hop
Address Interface

10.10.0 (00001010 00001010 0000xxxx xxxx) /20 10.0.12.2 so-0/0/0
10.10.8 (00001010 00001010 00001xxx xxxx) /21 10.0.19.2 so-0/0/1
10.10.8 (00001010 00001010 000010xx xxxx) /22 10.0.17.2 so-0/0/2

281Forwarding Table Lookups

router will keep comparing the addresses in the table to the destination address bit

by bit until the table runs out of entries. The last match is the longest match, no

matter if it’s all 32 bits, or none (the default 0/0 entry matches everything).

The 21st bit is a 1 bit in the table entry for 10.10.8/21, and so is the 21st bit in

the destination address. The 22nd bit is a 0 bit in the table entry for 10.10.8/22,
and so is the 22nd bit in the destination address. There is no longer entry. This

makes the /22 entry the longest match for the destination address, and the packet is

forwarded to 10.10.17.2. The rest of the bits are used for local delivery of the

packet on LAN2.

The longest match is also often called the best match or the more specific

route for a given destination IP address. But whatever it is called, the point is the

same: The longest-match next hop is always used in favor of a potential, but

shorter match, next hop.

What if there were other entries such as 10.10.8/23 or 10.10.8/24? It doesn’t

matter. The 1 bit in the 23rd position will not match these entries, which all have

0 s at the end of the entry. The same longest match rules apply at each router.

DUAL STACKS, TUNNELING, AND IPv6
So far, we’ve seen how routers forward packets, what the routers look like inter-

nally, and how the longest match determines the output port. But most of this

chapter dealt with IPv4. But what about IPv6 packets? It’s one thing to say that

some routers can handle both IPv4 and IPv6, but what about older or smaller rou-

ters and hosts that don’t integrate IPv6 support and handle IPv4 only? This chap-

ter ends with a consideration of the role of the router in a world that is slowly

making its way toward IPv6.

The transition to IPv6 will be a long one for most networks. There might be net-

works where it will be necessary to mix hosts and routers that run IPv4 only, IPv6

only, and a combination of the two. Why would a host need to run both IPv4 and

IPv6? Well, a Web site that only ran IPv6 would be forever unreachable by IPv4

browsers. Routers, of course, can be used to build separate IPv4 and IPv6 router

networks. For example, LAN1 and LAN2 could have two routers each—one for

IPv4 and one for IPv6 traffic. But newer routers handle both IPv4 and IPv6 packets.

There are two main strategies that have emerged for dealing with mixed IPv4

and IPv6 environments. These are dual protocol stacks and tunneling.

DUAL PROTOCOL STACKS

All of the hosts on the Illustrated Network, as we have seen, are capable of

assigning both an IPv6 and IPv4 address to their network interfaces. This is possi-

ble because they all implement a sort of “split” IP network layer. For example, if

the Ethernet Type field is set to 0x0800 the packet is handed off to the IPv4

282 CHAPTER 10 Forwarding IP Packets

process, and if the Type field is set to 0x86DD, then the packet is handed off to the

IPv6 process. This is shown conceptually in Figure 10.6.

The dual protocol stack must provide error messages that are IPv6 “aware,”

and routing protocols have to adapt to IPv6 addresses as well (as we’ll see). And

in spite of the figure, which is a very common representation, the TCP/UDP layer

is also dual.

Dual protocols stacks are not new with IPv6. This method was frequently used

whenever two or more protocol stacks had to share a single host interface. In fact,

very complex arrangements were not unknown, with IBM’s (and Microsoft’s)

NetBios sharing the network with Novell’s NetWare and IP itself (for Internet

access).

TUNNELING

Tunneling is a much misunderstood topic in general. This section talks about

IPv6 tunnels, but networks also feature IPSec tunnels, VPN tunnels, and possibly

even more. But they all employ tunnels. Tunneling occurs whenever the normal

sequence of encapsulation headers is violated. That’s all.

Normally, a message is broken up into segments, which are put inside packets

placed inside frames that are sent as a sequence of bits to an adjacent system. The

receiver usually expects that the frame contains a packet, and so on, but what if it

doesn’t? Then the device is using tunneling.

We’ve already seen a form of tunneling in action. When we put PPP frames

inside Ethernet frames, we put a frame inside a frame and violated the normal

OSI-RM sequence of headers. That’s okay, as long as the receiver knows the

sequence of headers the sender is generating.

Not all devices need to know the exact sequence of encapsulations used by

the sender and receiver. Only the endpoints (usually hosts, but not always) need

to know how to encapsulate the data at one end and process the headers correctly

Application Services

TCP/UDP

IPv4 IPv6

Network Access (Ethernet, etc.)

Physical Network

FIGURE 10.6

Dual protocol stacks for IPv4 and IPv6 sharing a single network connection. Technically,

TCP and UDP have to be adjusted for an IPv6 environment.

283Dual Stacks, Tunneling, and IPv6

at the destination. In between, inside the tunnel, all other devices can treat the

data units as usual.

Tunneling in a mixed IPv4 and IPv6 network is used to transport IPv6 packets

over a series of IPv4 routers or to an IPv4 host. There is a lot of variation in tun-

nels to support IPv4/IPv6 operation. For example, a native IPv6 backbone might

tunnel IPv4 to reduce address consumption in the network core. For the sake

of simplicity, let’s consider four types of tunnels and two major scenarios for

their use:

1. Host to router—Hosts with dual-stack capabilities can tunnel IPv6 packets to

a dual-stack router that is only reachable over a series IPv4-only device.

2. Router to router—Routers with dual-stack capabilities can tunnel IPv6

packets over an IPv4 infrastructure to other routers.

3. Router to host—Routers with dual-stack capabilities can tunnel IPv6 packets

over an IPv4 infrastructure to a dual-stack destination host.

4. Host to host—Hosts with dual-stack capabilities can tunnel IPv6 packets over an

IPv4 infrastructure to other dual-stack IP hosts without an intervening router.

The four types of tunnels are shown in Figure 10.7. When the IPv6 packet is

sent to a router (the first two tunneling methods), the endpoint of the tunnel is not

the same as the destination, so the destination address of the IPv6 packet does not

indicate the same device as the IPv4 tunnel endpoint address that carries the IPv6

packet. The source host or router must have the tunnel endpoint’s IPv4 address

configured. This is called configured tunneling.

IPv4/IPv6
Host

Host to Router

Router to Router
(intermediate
hops)

Router to Host
(last hop)

Host to Host

IPv4 Network
(IPv4 routers)

IPv4 Network
(IPv4 routers)

IPv4 Network
(IPv4 routers)

IPv4 Network
(IPv4 routers)

IPv4/IPv6
Host

IPv4/IPv6
Host

IPv4/IPv6
Router

IPv6-only
Router

IPv4/IPv6
Router

IPv4-only
Router

IPv4/IPv6
Host

FIGURE 10.7

The various types of IPv6 tunnels, showing host and router situations that can be used to

connect.

284 CHAPTER 10 Forwarding IP Packets

In contrast, the last two methods send the encapsulated IPv6 packet directly to

the destination host, so the IPv4 and IPv6 addresses used correspond to the same

host. This lets the IPv6 destinations use IPv4-compatible addresses that are

derived automatically by the devices. This is called automatic tunneling because

it does not require explicit configuration.

Automatic tunneling uses a special form of the IPv6 address. The 32-bit IPv4

address is simply prepended with 96 zero bits in the form 0:0:0:0:0:0:,IPv4
address. . This format is abbreviated as ::,IPv4 address. .

All dual-stack IP hosts recognize this format and encapsulate the IPv6 packet

inside an IPv4 packet using the embedded IPv4 address, creating an end-to-end

tunnel. The receiver simply strips off the IPv4 header and processes the IPv6

header and packet inside.

Hosts that only run IPv6 can use dual-stack routers to communicate using this

special form of IPv6 address also. Dual-stack routers recognize the IPv6 traffic

and use the last 32 bits to create the IPv4 address for the IPv4 “wrapper.”

Figure 10.8 shows how this special addressing format works. Naturally, this

requires IPv6-only hosts to have valid and routable IPv4 addresses, which clearly

marks the format as a transitional method. If the IPv6 address is not in this special

address form, then a configured tunnel must be used, or, if every device on the

path from source to destination uses dual protocol stacks, or IPv6 only, well-

formed IPv6 addresses can be used.

TUNNELING MECHANISMS
The theory of tunneling IPv6 packets through a collection of IPv4 routers is one

thing. Exactly how to do it is another. There are several tunnel mechanisms that

embody the concepts discussed previously.

IPv4 Header IPv6 Header

IPv6 Header

IPv4
Dest.
Addr.:
192.168.38.156

TCP/UDP Header

TCP/UDP Header

Data

Data

IPv6 Destination Address:
0:0:0:0:0:0:192.168.38.156

(::192.168.38.156)

FIGURE 10.8

The special IPv6 tunnel-addressing format for dual-stack routers.

285Tunneling Mechanisms

Manually configured tunnels—These are defined in RFC 2893, and both end-

points of the tunnel must have both IPv4 and IPv6 addresses. These tunnels

are usually used between dual-stack edge routers.

Generic Routing Encapsulation (GRE) tunnels—GRE tunnels were designed to

transport non-IP protocols over an IP network. But GRE is also a good way to

carry IPv6 across the IPv4 routers. We used a GRE tunnel earlier in this chapter.

IPv4-compatible (6over4) tunnels—Also defined in RFC 2893, these are the

automatic tunnels based on IPv4-compatible IPv6 addresses using the ::,IPv4
address. form of IPv6 address.

6to4 tunnels—Another form of automatic tunnel defined in RFC 3065. They

use an IPv4 address embedded in the IPv6 address to identify the tunnel

endpoint.

Intra-site Automatic Tunnel Addressing Protocol (ISATAP) tunnels—ISATAP

tunnels are a mechanism much like 6to4 tunneling, but for local site (campus)

networks. An ISATAP address uses a special prefix and the IPv4 address to

identify the endpoint.

The differences between the 6to4 tunnel and the ISATAP tunnel address are

shown in Figure 10.9.

128 bits

16 bits 32 bits

32 bits64 bits

Subnet Prefix 0005EFE IPv4 Address

32 bits

16 bits 64 bits

Interface IDSubnet ID

(a)

(b)

001000000000000010
2002: ...

IPv4 Address

FIGURE 10.9

The differences between 6to4 and ISATAP tunnel addressing, showing how the 128 bits

of the IPv6 address are structured in each case. (a) 6to4 tunneling address format

(b) ISATAP tunneling address format

286 CHAPTER 10 Forwarding IP Packets

TRANSITION CONSIDERATIONS
Routers occupy a key position during the transition period between IPv4 and

IPv6. There are still a lot of routers, mostly older ones, that do not handle IPv6 or

understand only the ::,IPv4 address. form of IPv6 address. How will IPv4

and IPv6 routers and hosts interoperate?

A transition plan has been put in place and contains some distinct terminology

that is new. The IPv4 to IPv6 transition plan defines the following terms for

nodes:

• IPv4-only Node—A host or router that implements only IPv4.

• IPv6/IPv4 (dual) Node—A host or router that implements both IPv4 and IPv6.

• IPv6-only Node—A host or router that implements only IPv6.

• IPv6 Node—A host or router that implements IPv6. Both IPv4/IPv6 dual

nodes and IPv6-only nodes are included in this category.

• IPv4 Node—A host or router that implements IPv4. Both IPv4/IPv6 dual

nodes and IPv4-only nodes are included in this category.

In addition, the plan defines three types of addresses:

1. IPv4-compatible IPv6 address—An address assigned to an IPv6 node that can

be used in both IPv6 and IPv4 packets. The ::,IPv4 address. format is

used for this type of IP address. For example, an address such as

::10.10.11.66 is used when there is no IPv6 router available.

2. IPv4-mapped IPv6 address—An address assigned to an IPv4-only node

represented as an IPv6 address. These addresses always identify IPv4-only

nodes, never IPv4/IPv6 or IPv6-only nodes. These are provided when

an IPv6 application requests the host name for a node with an IPv4

address only. For example, ::FFFF:10.10.12.166 is an IPv4-mapped IPv6

address.

3. IPv6-only address—An address globally assigned to any IPv4/IPv6 or IPv6-

only node. These addresses never identify IPv4-only nodes.

These terms can be somewhat confusing, but all they mean is that hosts

and routers can be classified either as IPv4 devices, IPv6 devices, or both

IPv4 and IPv6 devices. The IPv4/IPv6 devices are capable of understanding

and using both IPv4 and IPv6. However, the IPv6-only address (an address

that has no relationship to an IPv4 address) can be used in an IPv6/IPv4

device.

287Transition Considerations

QUESTIONS FOR READERS

Figure 10.10 shows some of the concepts discussed in this chapter and can be

used to help you answer the following questions.

1. Which router, based on the architecture in the figure, is probably a small site

router? Which is probably a large Internet backbone router?

2. Which output interface, based on the routing table shown in the figure, will

packets arriving from the directly attached host for IPv4 address 10.10.11.1
use for forwarding? Assume longest match is used.

3. Which output interface will packets for 10.10.192.10 use? Assume the

longest match is used.

4. Which IPv6 tunneling protocol can be used between the two hosts? How

many bits will be used for the subnet identifier?

5. Do the routers require IPv6 support to deliver packets between the two hosts?

Router with
NVRAM

and DRAM

Interface 1

Interface 2

Interface 3Router
with RE
and PFE

Host
Supporting
6to4 and
ISATAP
Tunnels

Host
Supporting

6to4
Tunnels

admin@router0> show route
inet.0: 2 destinations, 2 routes (2 active...
10.10.0.0/16 >via interface #1
10.10.64.0/18 >via interface #2
10.10.128.0/18 >via interface #3

FIGURE 10.10

A simple network of routers and hosts, showing architecture, a routing table, and tunnel

support.

288 CHAPTER 10 Forwarding IP Packets

CHAPTER

11User Datagram Protocol

WHAT YOU WILL LEARN

In this chapter, you will learn about UDP, one of the major transport layer protocols in
the TCP/IP stack. We’ll talk about datagrams and the structure of the UDP header.

You will learn about ports and sockets and how they are used at the transport layer.

The User Datagram Protocol (UDP) is one the major transport layer protocols that

rides on top of IPv4 or IPv6. Most explorations of the TCP/IP transport layer treat

the other major protocol, the connection-oriented Transmission Control Protocol

(TCP) first and present connectionless UDP later. But the complexities of TCP,

and the reasons for these often sophisticated procedures, are better understood after

appreciating the basic connectionless service provided by UDP. In addition, certain

concepts that are shared by both UDP and TCP, such as ports, can be introduced in

UDP and so reduce the number of new ideas that must be covered during TCP dis-

cussions to a more manageable level.

The UDP acronym shows the effects of early Internet efforts to distinguish

connectionless packet delivery (“It’s a datagram, not a packet!”) from more con-

ventional connection-oriented schemes in use at the time. The data unit of UDP is

not a packet, but a datagram, the content of a connectionless packet (many authors

call IP packets datagrams as well, but we do not in this book). UDP datagrams

have their own headers, naturally, and the UDP header is about as simple as a

header can get. That’s only to be expected, because UDP operation is also very

simple, making UDP ideal for a first look at end-to-end functions on a network.

In recent years, UDP’s popularity as a transport layer protocol for applications

has been growing. The simple and fast operation of UDP makes it ideal for delay-

sensitive traffic like voice samples (the digital representation of analog speech),

multicast digital video, and other types of streaming and “real-time” traffic that

cannot be resent piecemeal if lost on the network. This use of UDP is not as origi-

nally intended, and there are other things that need to be done before UDP is

ready for voice and video, but in the true spirit of Internet innovation, UDP has

adapted to these new circumstances.

UDP is used by many common network applications, including DNS, IPTV

streaming media applications, voice over IP (VoIP), the Trivial File Transfer

Protocol (TFTP), and online games. UDP is required for multicast applications.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00011-4

© 2017 Elsevier Inc. All rights reserved.
289

http://dx.doi.org/10.1016/B978-0-12-811027-0.00011-4

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 11.1

UDP ports and sockets on the Illustrated Network. Note that this chapter mainly uses the

Unix-based hosts on the network to explore UDP.

290 CHAPTER 11 User Datagram Protocol

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

291User Datagram Protocol

UDP PORTS AND SOCKETS
Figure 11.1 shows the hosts on the Illustrated Network that we’ll be using in this

chapter to explore UDP ports and sockets. We’ll primarily use the Unix-based

hosts, both FreeBSD and Linux.

Let’s look at a simple application of UDP between the lnxclient and lnxser-
ver hosts. The standard Unix “echo” utility (not the same “echo” program as the

application used in a previous chapter) sends a simple text string from a client to

a server using UDP port 7. The server just bounces a UDP datagram back with

the same content. But even with this simple interaction, all of the major points

about UDP discussed in this chapter can be illustrated.

The capture is from lnxserver (10.10.11.66). The server is responding to the

lnxclient (10.10.12.166) request to echo the string “TEST.” The important sec-

tions of the request and response packets relevant to UDP are highlighted.

[root@lnxserver admin]# /usr/sbin/tethereal -V port 7
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)

Arrival Time: May 6, 2008 16:31:30.947137000
Time delta from previous packet: 0.000000000 seconds
Time relative to first packet: 0.000000000 seconds
Frame Number: 1
Packet Length: 60 bytes
Capture Length: 60 bytes

Ethernet II, Src: 00:05:85:88:cc:db, Dst: 00:d0:b7:1 f:fe:e6
Destination: 00:d0:b7:1 f:fe:e6 (Intel_1 f:fe:e6)
Source: 00:05:85:88:cc:db (Juniper__88:cc:db)
Type: IP (0x0800)
Trailer: 0000000000000000000000000000

Internet Protocol, Src Addr: 10.10.12.166 (10.10.12.166), Dst Addr:
10.10.11.66 (10.10.11.66)

Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. 5 Differentiated Services Codepoint: Default (0x00)

.... ..0. 5 ECN-Capable Transport (ECT): 0

.... ...0 5 ECN-CE: 0
Total Length: 32
Identification: 0x0000
Flags: 0x04

.1.. 5 Don’t fragment: Set

..0. 5 More fragments: Not set
Fragment offset: 0
Time to live: 62
Protocol: UDP (0x11)

292 CHAPTER 11 User Datagram Protocol

Header checksum: 0x10d2 (correct)
Source: 10.10.12.166 (10.10.12.166)
Destination: 10.10.11.66 (10.10.11.66)

User Datagram Protocol, Src Port: 32787 (32787), Dst Port: echo (7)
Source port: 32787 (32787)
Destination port: echo (7)
Length: 12
Checksum: 0xac26 (correct)

Data (4 bytes)
0000 54 45 53 54 TEST

Frame 2 (46 bytes on wire, 46 bytes captured)
Arrival Time: May 6, 2008 16:31:30.948312000
Time delta from previous packet: 0.001175000 seconds
Time relative to first packet: 0.001175000 seconds
Frame Number: 2
Packet Length: 46 bytes
Capture Length: 46 bytes

Ethernet II, Src: 00:d0:b7:1 f:fe:e6, Dst: 00:05:85:88:cc:db
Destination: 00:05:85:88:cc:db (Juniper__88:cc:db)
Source: 00:d0:b7:1 f:fe:e6 (Intel_1 f:fe:e6)
Type: IP (0x0800)

Internet Protocol, Src Addr: 10.10.11.66 (10.10.11.66), Dst Addr:
10.10.12.166 (10.10.12.166)

Version: 4
Header length: 20 bytes
Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
0000 00.. 5 Differentiated Services Codepoint: Default (0x00)

.... ..0. 5 ECN-Capable Transport (ECT): 0

.... ...0 5 ECN-CE: 0
Total Length: 32
Identification: 0x0000
Flags: 0x04

.1.. 5 Don’t fragment: Set

..0. 5 More fragments: Not set
Fragment offset: 0
Time to live: 64
Protocol: UDP (0x11)
Header checksum: 0x0ed2 (correct)
Source: 10.10.11.66 (10.10.11.66)
Destination: 10.10.12.166 (10.10.12.166)

User Datagram Protocol, Src Port: echo (7), Dst Port: 32787 (32787)
Source port: echo (7)
Destination port: 32787 (32787)
Length: 12

293UDP Ports and Sockets

Checksum: 0xac26 (correct)
Data (4 bytes)

0000 54 45 53 54 TEST

The DF bit in the packet is set, and the UDP checksum field is used.

Technically, the UDP checksum is optional, and the client decides whether to use

it. The server responds with a checksum because the client used a checksum in

the request. In fact, Windows and FreeBSD do the same.

The UDP checksum was made optional to cut processing on reliable networks

like small LAN segments to a bare minimum. Today, client and server on the

same LAN segment are not very common, and processing the checksum is not a

burden for modern computing devices. Also, UDP checksum calculation can be

offloaded to modern Ethernet chipsets, so it’s less “expensive” than it used to be.

Currently, use of the UDP checksum is common, and most traditional texts say it

“should” be used with IPv4. Use of the UDP checksum is mandatory with IPv6.

Note that the program uses client UDP port 32787. This is in the range of ports

known as registered ports. We’ll talk about those, and the dynamic port range of

49152 to 65535, later in this chapter. The dynamic port range that a Unix system

uses is a kernel-tunable parameter and can be changed using tweaks to the /etc/
sysctl.conf file, but information on exactly how to do it is scarce and beyond

the scope of this book.

We can see the sockets in use on a Linux host by using the netstat 2lp com-

mand to display listening sockets. (Although the options imply these are listening

ports, it is the socket information that is displayed.)

[root@lnxserver admin]# netstat -lp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign

Address
State

PID/Program name
tcp 0 0 �:32768 �:� LISTEN

1664/
tcp 0 0 localhost.localdo:32769 �:� LISTEN

1783/xinetd
tcp 0 0 localhost.localdoma:783 �:� LISTEN

1853/spamd -d
-c -a

tcp 0 0 �:sunrpc �:� LISTEN
1645/

tcp 0 0 �:x11 �:� LISTEN
2103/X

tcp 0 0 �:ssh �:� LISTEN
1769/sshd

tcp 0 0 localhost.localdoma:ipp �:� LISTEN
6813/cupsd

294 CHAPTER 11 User Datagram Protocol

tcp 0 0 localhost.localdom:smtp �:� LISTEN
1826/

udp 0 0 �:32768 �:�

1664/
udp 0 0 �:echo �:�

1923/Echo
udp 0 0 �:sunrpc �:�

1645/
udp 0 0 �:631 �:�

6813/cupsd
udp 0 0 localhost.localdoma:ntp �:�

1800/
udp 0 0 �:ntp �:�

1800/

Active UNIX domain sockets (only servers)
Proto RefCnt Flags Type State I-Node PID/Program name
Path
unix 2 [ACC] STREAM LISTENING 2663 1939/
/tmp/jd_sockV4
unix 2 [ACC] STREAM LISTENING 2839 2053/
/tmp/.gdm_socket
unix 2 [ACC] STREAM LISTENING 2714 2016/
/tmp/.font-unix/fs7100
unix 2 [ACC] STREAM LISTENING 2542 1872/
/tmp/.iroha_unix/IROHA
unix 2 [ACC] STREAM LISTENING 2849 2103/X
/tmp/.X11-unix/X0
unix 2 [ACC] STREAM LISTENING 2535 1862/gpm
/dev/gpmctl

The output is difficult to parse, but we can see our little echo utility

(highlighted, and the second line of the UDP section) patiently waiting for clients

on port 7 (the output identifies it as the standard “echo” port). UDP, being a state-

less protocol, is not technically in a “listening” state, but that’s what the server

socket essentially does. The asterisks (�:�) mean that communications will be

accepted from another IP address and port.

The command to reveal the same type of information on bsdserver is sockstat.

bsdserver# sockstat
USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root sendmail 88 4 tcp4 �:25 �:�

root sendmail 88 6 tcp4 �:587 �:�

root sshd 83 4 tcp4 �:22 �:�

root inetd 79 4 tcp4 �:21 �:�

295UDP Ports and Sockets

root inetd 79 5 tcp4 �:23 �:�

root syslogd 72 5 udp4 �:514 �:�

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
Root sendmail 88 5 tcp46 �:25 �:�

Root sshd 83 3 tcp46 �:22 �:�

Root syslogd 72 4 udp6 �:514 �:�

USER COMMAND PID FD PROTO ADDRESS
Admin sshd 48218 3 stream sshd[48216]:4
Root sshd 48216 4 stream sshd[48218]:3
Smmsp sendmail 91 3 dgram syslogd[72]:3
Root sendmail 88 3 dgram syslogd[72]:3
Root syslogd 72 3 dgram /var/run/log

The little “echo” port is not listed because it is not running on this host. Note

that the syslogd process in FreeBSD listens on both the UDP and TCP ports (in

this case, port 514) for clients.

What about Windows? The command here is netstat 2a (all), but be pre-

pared to be surprised. Windows hosts listen to a larger number of sockets than

Unix systems. It depends on exactly what the system is doing, but even on our

“quiet” test network, winsrv2 has 25 TCP and 19 UDP processes waiting to

spring into action (44 seems a fairly common number on most Windows systems).

You could see Netbios (an old IBM and Microsoft LAN protocol) to Microsoft-

specific functions. Heavily loaded systems have even higher numbers.

What about looking at UDP with IPv6? It’s not really necessary. We are now

high enough in the TCP/IP protocol stack not to worry about differences between

IPv4 and IPv6. (In practical terms, we still have to worry about DNS a bit, but

we’ll talk about that in Chapter 19.) With the exception of the checksum use and

something called the pseudo-header, UDP is the same in both.

WHAT UDP IS FOR
UDP was defined in RFC 768 and refined in RFC 1122. All implementations

must follow both RFCs to make interoperability reliable, and all do. UDP uses IP

protocol ID 17. Any IPv4 or IPv6 packet received with 17 in the protocol ID field

is given to the local UDP service.

UDP is defined as stateless (no session information is kept by hosts) and unre-

liable (no guarantees of any QoS parameters, not even delivery). This does not

mean that UDP traffic is somehow lower priority on the network or through rou-

ters. It’s not as if UDP traffic is routinely tossed by stressed-out routers. It just

means that if the application using UDP needs to keep track of a session history

(“How many datagrams did you get before that link failed?”) or guaranteed deliv-

ery (“I’m not sending any more until I know if you got the datagrams I sent.”),

then the application itself must do it, because UDP can’t and won’t.

296 CHAPTER 11 User Datagram Protocol

Nevertheless, there is a whole class of applications that use UDP, some almost

exclusively. These are applications that are invoked to exchange quick, reques-

t�response pairs of messages, such as DNS (“Quick! What IP address goes with

www.example.com?”). These applications could suffer while waiting for all the

overhead that TCP requires to set up a connection between hosts before sending a

message.

Multicast allows one source to send a single packet stream to multiple destina-

tions (TCP is strictly a one-source-to-one-destination protocol), so UDP must be

used for multicast data transfer as well. Multicast is not only used with video or

audio, but also in applications such as the Dynamic Host Configuration Protocol

(DHCP).

In other words, UDP is a low-overhead transport for applications that do not

need, or cannot have, the “point-to-point” connections or guaranteed delivery that

TCP provides.

Packets carrying UDP traffic in IPv4 sometimes have the DF (Don’t

Fragment) bit set in the IPv4 header. However, no one should be surprised or

upset to find a UDP datagram riding inside an IPv4 packet without the DF bit set.

THE UDP HEADER
Figure 11.2 shows the UDP header. There are only four fields, and the data inside

the datagram (the message) are optional.

The header is only 8 bytes (64 bits) long. First are the 2-byte Source Port field

and the 2-byte Destination Port field. These fields are the datagram counterparts

of the source and destination IP addresses at the packet level. But unlike IP

addresses, there is no structure to the port fields: All values between 0 and 65,353

are represented as pure numerics. This does not mean that all port numbers,

source and destination, are the same, however. Port values can be divided into

well-known, registered, and dynamic port numbers.

The Length field gives the length in bytes of the UDP datagram, and includes

the header fields along with any data. The minimum length is 8 (the header

1 byte

Source Port

Datagram Data (optional)

Length (including header) Checksum

1 byte 1 byte 1 byte

Destination Port

FIGURE 11.2

The four UDP header fields. Technically, use of the checksum is optional, but it is often

used today.

297The UDP Header

http://www.example.com?

alone), and the maximum value is 65,353. However, the achievable maximum

UDP datagram lengths are determined by the size of the send and receive buffers

on the host end systems, which are usually set to around 8000 bytes (although

they can be changed).

As already mentioned, hosts are required to handle 576-byte IP packets at a

minimum, but many protocols (the most common being DNS and DHCP) limit

the maximum size of the UDP datagram that they use to 512 bytes or less.

The Checksum field is the most interesting field in the UDP header. This is

because the checksum is not a simple value calculated on the UDP header fields

and data, if present. The UDP checksum is computed on what is called the

pseudo-header. The pseudo-header fields for IPv4 are shown in Figure 11.3.

The all-zero byte is used to provide alignment of the pseudo-header, and the

data field must be padded to align it with a 16-bit boundary. The 12 bytes of the

UDP pseudo-header are prepended to the UDP datagram, and the checksum is

computed on the whole object. For this computation, the Checksum field itself is

set to zero, and the 16-bit result placed in the field before transmission. If the

checksum computes to zero, an all-1s value is sent, and all-1s is not

a computable checksum. The pseudo-header fields are not sent with the datagram.

At the receiver, the value of the Checksum is copied and the field again

set to zero. The checksum is again computed on the pseudo-header and com-

pared to the received value. If they match, the datagram is processed by the

receiving application indicated by the destination port number. If they do not

match, the datagram is silently discarded (i.e., no error message is sent to the

source).

Naturally, using 32-bit IPv4 addresses to compute transport layer checksums

will not work in IPv6, although the procedure is the same. RFC 2460 establishes

a different set of pseudo-header fields for IPv6. The IPv6 pseudo-header is shown

in Figure 11.4.

The Next Header value is not always 17 for UDP, because other extension

headers could be in use. Length is the length of the upper layer header and the

data it carries.

1 byte 1 byte 1 byte 1 byte

Source IPv4 Address

Destination IPv4 Address

UDP LengthAll 0 byte Protocol (�17)

FIGURE 11.3

The UDP IPv4 pseudo-header. These fields are used for checksum computation and

include fields in the IP header.

298 CHAPTER 11 User Datagram Protocol

IPv4 AND IPv6 NOTES
The presence of the IP source and destination address in an upper layer check-

sum computation strikes many as a violation of the concept of protocol layer

independence. (The same concern applies to NAT, discussed in Chapter 27.) In

fact, a lot of TCP/IP books mention that including packet level fields in the

end-to-end checksum helps assure (when the checksum is correct at

the receiver) that the message has not only made its way to right port, but to

the correct system.

The presence of a pseudo-header also shows how late in the development pro-

cess that TCP and UDP were separated from IP. Not only that, but the transport

layer and network layer (or, to give them their more intuitive names, the end-to-

end layer and routing layer) have always been tightly coupled in any working

network.

The use of the UDP checksum is not required for IPv4, but highly recom-

mended. It is required in IPv6, of course. In IPv4, servers that receive client data-

grams with the checksum field set are supposed to reply using the checksum, but

this is not always enforced. If the IPv4 checksum field is not used, it is set to all

0 bits (recall that all 0 checksums are sent as all-1s).

1 byte

Source IPv6 Address

1 byte 1 byte 1 byte

Destination IPv6 Address

UDP (Upper Layer Protocol) Length

Next HeaderAll 0 bytes

FIGURE 11.4

The UDP IPv6 pseudo-header. Use of the UDP checksum is not optional in IPv6.

299IPv4 and IPv6 Notes

PORT NUMBERS
Each application running above UDP (and TCP) and IP is indexed by its port

number, allowing for the multiplexing of the IP layer. Just as frames with differ-

ent types of packets inside (on Ethernet, IPv4 is 0x0800 and IPv6 is 0x86DD) are
multiplexed onto a single LAN interface, the individual IPv4 or IPv6 packets are

multiplexed and distributed by the protocol number (UDP is IP protocol number 17,

and TCP is 6).

The port numbers in turn multiplex and distribute datagrams from applica-

tions, allowing them to share a single UDP or TCP process, which is usually inte-

grated closely with the operating system. This function of frame Ethertype,

packet protocol, and datagram port is shown in Figure 11.5. The figure shows

how IPv4 data for DNS makes its way from frame through IPv4 through UDP to

the DNS application listening on UDP port 53.

TCP
Applications

UDP
Applications

UDP Process

Echo Service
Domain
Name
Server

7 53

TCP Process

Ethertype � 0800 for IPv4,
86DD for IPv6

IPV6 Process SegmentProtocol � 6 for TCP,
17 for UDP

Port � 53 for DNS,
7 for Echo

Packet Header

Packet

Frame Header

Data

FIGURE 11.5

UDP port multiplexing and distribution, showing how a single IP layer (IPv6 in this case)

can be used by multiple transport protocols and applications.

300 CHAPTER 11 User Datagram Protocol

WELL-KNOWN PORTS

Port numbers can run from 0 to 65353. Port numbers from 0 to 1023 are reserved for

common TCP/IP applications and are called well-known ports. The use of well-

known ports allows client applications to easily locate the corresponding server appli-

cation processes on other hosts. For example, a client process wanting to contact a

DNS process running on a server must send the datagram to some destination port.

The well-known port number for DNS is 53, and that’s where the server process

should be listening for client requests. These ports are sometimes called “privileged”

ports, although a number of applications that formerly ran in “privileged” mode,

such as HTTP servers, do not run this way anymore except when binding to the port.

It should be noted that it is getting harder and harder to register new applications in

the space below 1023 (these often use registered ports in the range 1024 to 49151).

Ports used on servers are persistent in the sense that they last for a long time,

or at least as long as the application is running. Ports used on clients are ephem-

eral (“lasting a short time,” although the term technically means “lasting a day”)

in the sense that they “come and go” as the user runs client applications.

Technically, UDP port numbers are independent from TCP port numbers. In prac-

tice, most of the applications indexed by port numbers are the same in UDP or TCP

(although a few applications can use either protocol), excepting a handful that are

maintained for historical reasons. This does not imply that applications can use TCP or

UDP as they choose. It just means that it’s easier to maintain one list rather than two.

But no matter what port numbers are used, UDP port 1000 is a different application

than TCP port 1000, even though both applications might perform the same function.

Some of the more common well-known port numbers are shown in

Table 11.1. In the table, the UDP and TCP port numbers are identical.

Table 11.1 Some Well-Known Ports Used by UDP and TCP Services and
Functions

Port Number Service Meaning

7 Echo Used to echo data back to the sender
9 Discard Used to discard data at receiver
13 Daytime Reports time information in user-friendly format
17 Quote Returns a “quote of the day” (rarely used today)
19 Chargen Character generator
53 DNS Domain Name Service
67 DHCP server Server port used to send configuration information
68 DHCP client Client port used to receive configuration information
69 TFTP Trivial file transfer
161 SNMP Used to receive network management queries
162 SNMP traps Used to receive network problem reports
1011�1023 Reserved Reserved for future use

301Port Numbers

Port numbers above 1023 can be either registered or dynamic (also called pri-

vate or non-reserved). Registered ports are in the range 1024 to 49151. Dynamic

ports are in the range 49152 to 65535. As mentioned, most new port assignments

are in the range from 1024 to 49151.

Registered port numbers are non�well-known ports that are used by vendors

for their own server applications. After all, not every possible application capabil-

ity will be reflected in a well-known port, and software vendors should be free to

innovate. Of course, if another vendor chooses the same port number for a server

process, and they are run on the same system, there would be no way to distin-

guish between these two seemingly identical applications.

• Well-known ports—Ports in the range 0 to 1023 are assigned and controlled.

• Registered ports—Ports in the range 1024 to 49151 are not assigned or

controlled, but can be registered to prevent duplication.

• Dynamic ports—Ports in the range 49152 to 65535 are not assigned,

controlled, or registered. They are used for temporary or private ports.

They are also known as private or non-reserved ports. Clients should choose

ephemeral port numbers from this range, but many systems do not.

Vendors can register their application’s ports with ICANN. Other software

vendors are supposed to respect these registered values and register their own

server application port numbers from the pool of unused values. Some registered

UDP and TCP protocol numbers are shown in Table 11.2.

The private, or dynamic, port numbers are used by clients and not servers.

Datagrams sent from a client to a server are typically only sent to well-known or

registered ports (although there are exceptions). Server applications are usually

Table 11.2 Selected Registered UDP and TCP Ports with Service and
Brief Description of Meaning

Port Number Service Brief Description of Use

1024 Reserved Reserved for future use
1025 Blackjack Network version of blackjack
1026 CAP Calendar access protocol
1027 Exosee ExoSee
1029 Solidmux Solid Mux Server
1102 Adobe 1 Adobe Server 1
1103 Adobe 2 Adobe Server 2
44553 Rbr-debug REALBasic Remote Debug
46999 Mediabox MediaBox Server
47557 Dbbrowse Databeam Corporation
48620�49150 Unassigned These ports have not been registered
49151 Reserved Reserved for future use

302 CHAPTER 11 User Datagram Protocol

long lived, while client processes come and go as users run them. Client applica-

tions therefore are free to choose almost any port number not used for some

other purpose (hence the term “dynamic”), and many use different source port

numbers every time they are run. The server has no trouble replying to the

proper client because the server can just reverse the source and destination port

numbers to send a reply to the correct client (assuming the IP address of the cli-

ent is correct).

All TCP/IP implementations must know the range of well-known, regis-

tered, and private ports when choosing a port number to use. Unix systems

hold this information is the /etc/services file. Windows users can find this

C:\%SystemRoot%\system32\drivers\etc\SERVICES file, where %SystemRoot%
will be automatically referred to a folder such as WinNT or WINDOWS. UDP or

TCP, but some are unique to one or the other. For example, FTP control uses

TCP port 21.

Here is the beginning of the file from winsrv2:

Copyright (c) 1993-2004 Microsoft Corp.
#
This file contains port numbers for well-known services defined by IANA
#
Format:
#
,service name. ,port number./,protocol. [aliases...] [#,comment.]
#

echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null
systat 11/tcp users #Active users
systat 11/tcp users #Active users
daytime 13/tcp
daytime 13/udp
qotd 17/tcp quote #Quote of the day
qotd 17/udp quote #Quote of the day
chargen 19/tcp ttytst source #Character generator
chargen 19/udp ttytst source #Character generator
ftp-data 20/tcp #FTP, data
ftp 21/tcp #FTP. control
telnet 23/tcp
[many more lines not shown...]

For the latest global list of well-known, registered, and private port numbers,

see www.iana.org/assignments/port-numbers. The port numbers are the same for

IPv4 and IPv6.

303Port Numbers

http://www.iana.org/assignments/port-numbers

THE SOCKET

The combination of IPv4 or IPv6 address and port numbers forms an abstract

concept called a socket. We’ve mentioned the socket concept briefly before,

and will do so again and again in later chapters. The socket concept is impor-

tant for many reasons, and a later chapter will explore some of them more

completely. For now, all that is important to mention is that, for each

client�server interaction, there is a socket on each host at the endpoints of the

network. The sockets at each end uniquely identify that particular

client�server interaction, although the same sockets can be used for subsequent

interactions.

Sockets are usually written in IPv4 and IPv6 by adding a colon (:) to the IP

address, although sometimes a dot (.) is used instead. In IPv6, it is also necessary

to add brackets to avoid confusion with the :: notation, such as in [FC00:490:
f100:1000::1]:80. A UDP socket on lnxclient, for example, would be

10.10.12.166:17, while one on bsdserver would be 10.10.12.77:17.

UDP OPERATION
The delivery of UDP datagrams is by no means certain. The lack of an expected

response on the part of a server to a UDP client request is handled by a simple

timeout. Responses are not always expected, as might be the case with streaming

audio and video. The client might resend the datagram, but in many cases this

might not be the best strategy.

In some cases, lack of response is not a reliable indication that anything is

wrong with the network or remote host. Routers routinely filter out unwanted

packets, and many do so silently, while others send the appropriate ICMP

“administratively prohibited” message.

In general, there are five major possible results when an application sends a

UDP request, shown in Figure 11.6. Note that any of the replies can be lost on

the way back to the sender, generating a timeout.

UDP OVERFLOWS
We’ve looked at UDP as a sort of quick-and-dirty request�response interaction

between hosts over a network. Delivery is not guaranteed, but neither is an impor-

tant network property called flow control. A lot of nonsense has been written

about flow control, which is a very simple idea. It just means that no sender

should ever be able to overwhelm a receiver with traffic. In other words, receivers

304 CHAPTER 11 User Datagram Protocol

must have a way to tell senders to slow down. UDP, of course, has no such

mechanism.

The confusion over flow control often comes from treating flow control as a

synonym for a related concept called congestion control. While flow control is

strictly a local property of individual senders and receivers, congestion control is

a global property of the network. No sender has to overwhelm a receiver in a con-

gested network: There’s just too much traffic in the router network for things to

work properly.

Congestion control often uses flow control to accomplish its goals (source

quench was a not-too-sophisticated mechanism). There’s not much else a router

can use other than flow control to tell senders to shut up for a while. But that’s

no excuse for treating the two as one and the same.

What has this to do with UDP? Well, it is possible for UDP receivers’ buffers,

which are usually fixed, to overflow with unexpected UDP datagrams and be

forced to discard traffic. Most UDP implementations include a way to display

“UDP socket overflows” or discarded UDP datagrams.

But what if an application needs guaranteed delivery, sequencing, and flow

control to work properly, and we don’t want to add these to the application? Files

cannot use quick request�response messages to transfer themselves over a net-

work. That’s the job of TCP, which is the topic of the next chapter.

Action

UDP request
sent to server

UDP request
sent to server

UDP request
sent to server

UDP request
sent to server

UDP request
sent to server

UDP request
sent to server

Condition

Server
available

Server host
does not exist

Port is blocked by
firewall/router

Port is blocked
by silent

firewall/router

Reply is lost on
way back

Port is closed
on server

Outcome

Sender gets ICMP
“Port unreachable”

message

Sender gets
UDP reply from

server

Sender gets ICMP
“Port unreachable—

Administrative
prohibited”message

Sender gets ICMP
“Host unreachable”

message

(timeout)

(timeout)

FIGURE 11.6

UDP protocol actions, showing the request�reply outcomes.

305UDP Overflows

QUESTIONS FOR READERS

Figure 11.7 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. Which UDP header field does UDP use for demultiplexing?

2. What is UDP’s only attempt at error control?

3. A socket is comprised of which two TCP/IP components?

4. What is the registered port range? Is this assigned or controlled?

5. What is the dynamic or private port range? Are these assigned or controlled?

1 byte 1 byte 1 byte 1 byte

Source Port

Length (including header)

Datagram Data (optional)

(a)

Destination Port

Checksum

(b)

1 byte 1 byte 1 byte 1 byte

Source IPv4 Address

Destination IPv4 Address

UDP LengthAll 0 byte Protocol (�17)

FIGURE 11.7

The UDP header (a) and pseudo-header (b) fields for IPv4.

306 CHAPTER 11 User Datagram Protocol

CHAPTER

12Transmission Control
Protocol

WHAT YOU WILL LEARN

In this chapter, you will learn about the TCP transport layer protocol, which is the
connection-oriented, more reliable companion of UDP. We’ll talk about all the fields
in the TCP header (which are many) and how TCP’s distinctive three-way handshake
works.

You will learn how TCP operates during the data transfer and disconnect phase,
as well as some of the options that have been established to extend TCP’s use for
today’s networking conditions.

The Transmission Control Protocol (TCP) is as complex as UDP is simple. Some

of the same concepts apply to both because both TCP and UDP are end-to-end

protocols. Sockets and ports, well-known, dynamic, and private, apply to both.

TCP is IP protocol 6, but the ports are usually the same as UDP and run from

0 to 65,535. The major difference between UDP and TCP is that TCP is connec-

tion oriented. And that makes all the difference.

Internet specifications variously refer to connections as “virtual circuits,”

“flows,” or “packet-switched services,” depending on the context. These subtle

variations are unnecessary for this book, and we simply use the term “connec-

tion.” A connection is a logical relationship between two endpoints (hosts) on a

network. Connections can be permanent (although the proper term is “semiperma-

nent”) or on demand (often called “switched”). Permanent connections are usually

set up by manual configuration of the network nodes. (On the Internet, this

equates to a series of very specific static routes.) On-demand connections require

some type of signaling protocol to establish connections on the fly, node by node

through the network from the source (the “caller”) host to the destination (the

“callee”) host.

Permanent connections are like intercoms: You can talk right away or at any

time and know the other end is there. However, you can only talk to that specific

endpoint on that connection. On-demand connections are like telephone calls:

You have to wait until the other end “answers” before you talk or send any infor-

mation, but you connect to (call) anyone in the world.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00012-6

© 2017 Elsevier Inc. All rights reserved.
307

http://dx.doi.org/10.1016/B978-0-12-811027-0.00012-6

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 12.1

TCP client�server connections, showing that this chapter uses a client and server pair on

the same LAN.

308 CHAPTER 12 Transmission Control Protocol

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

309Transmission Control Protocol

TCP AND CONNECTIONS
As much as router discussions become talks about IP packets and headers, host

discussions tend to become talks about TCP. However, a lot of the demonstrations

involving TCP revolve around things that can go wrong. What happens if an

acknowledgment (ACK) is lost? What happens when two hosts send almost

simultaneous connection requests (SYN) to open a connection? With the emphasis

on corner cases, many pages written on TCP become exercises in exceptions. Yet

there is much to be learned about TCP just by watching it work in a normal,

error-free environment.

Instead of watching to check whether TCP recovers from lost segments (it

does), we’ll just capture the sequence of TCP segments used on various combina-

tions of the three operating system platforms and see what’s going on. Later,

we’ll use an FTP data transfer between wincli2 and bsdserver (both on LAN2)

to look at TCP in action. In many ways it is an odd protocol, but we’ll only look

at the basics and examine FTP in detail in a later chapter. Figure 12.1 shows these

hosts on the network.

As before, we’ll use Wireshark to look at frames and packets. There is also a

utility called tcpdump, which is bundled with almost every TCP/IP implementa-

tion. The major exception, as might be expected, is Windows. The Windows ver-

sions, windump (for older versions of Windows) and win10pcap (for newer

versions, such as Windows 10, which can capture VLAN information), are not

much different than our familiar Wireshark, so we’ll just use Wireshark to capture

our Windows TCP sessions. Because TCP operation is complicated, let’s look at

some details of TCP operation before looking at how TCP looks on the Illustrated

Network.

THE TCP HEADER
The TCP header is the same for IPv4 and IPv6 and is shown in Figure 12.2.

We’ve already talked about the port fields in the previous chapter on UDP. Only

the features unique to TCP are described in detail.

Source and destination port—In some Unix implementations, source port

numbers between 1024 and 4999 are called ephemeral ports. If an application

does not specify a source port to use, the operating systems will use a source

port number in this range. This range can be expanded and changed (but not

always), and 49,152 through 65,535 is more in line with current standards.

Use of ephemeral ports impacts firewall use and limits the number of

connections a host can have open at any one time.

Sequence number—Each new connection (re-tries of failed connections do not

count) uses a different initial sequence number (ISN) as the basis for tracking

310 CHAPTER 12 Transmission Control Protocol

segments. Windows uses a very simple time-based formula to compute that

ISN, while Unix ISNs are more elaborate (ISNs can be spoofed by hackers).

Acknowledgment number—This number must be greater than or equal to zero

(even a TCP SYN consumes one sequence number) except for the all 1’s ISN.

All segments on an established connection must have this bit set. If there is no

actual data in the received segment, the acknowledgment number increments

by 1. (Every byte in TCP is still counted, but that’s not all that contributes to

the sequence number field.)

Header length—The TCP header length in 4-byte units.

Reserved—Four bits are reserved for future use.

ECN flags—The two explicit congestion notification (ECN) bits are used to

tell the host when the network is experiencing congestion and send windows

should be adjusted.

URG, ACK, PSH, RST, SYN, FIN—These six single-bit fields (Urgent,

Acknowledgment, Push, Reset, Sync, and Final) give the receiver more

information on how to process the TCP segment. Table 12.1 shows their

functions.

Window size—The size of receive window that the destination host has set.

This field is used in TCP flow control and congestion control. It should not be

set to zero in an initial SYN segment.

1 byte

32 bits

H
e
a
d
e
r

1 byte

Source Port

Sequence Number

Acknowledgment Number

Window SizeRESV
E
C
N

E
C
N

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Header
Length

TCP Checksum

DATA (application message)

Options Field (variable length, maximum 40 bytes, 0 padded to 4-byte multiple)

Urgent Pointer

Destination Port

1 byte 1 byte

FIGURE 12.2

The TCP header fields. Note that some fields are a single bit wide, and others, like the

options field, can be up to 40 bytes (320 bits) long.

311The TCP Header

Checksum—An error-checking field on the entire TCP segment and header as

well as some fields from the IP datagram (the pseudo-header). The fields are

the same as in UDP. If the checksum computed does not match the received

value, the segment is silently discarded.

Urgent pointer—If the URG control bit is set, the start of the TCP segment

contains important data that the source has placed before the “normal”

contents of the segment data field. Usually, this is a short piece of data (such

as CTRL-C). This field points to the first nonurgent data byte.

Options and padding—TCP options are padded to a 4-byte boundary and can

be a maximum of 40 bytes long. Generally, a 1-byte Type is followed by a

1-byte Length field (including these initial 2 bytes), and then the actual

options. The options are listed in Table 12.2.

Table 12.1 TCP Control Bits by Abbreviation and Function

Bit Function

URG If set, the Urgent Pointer field value is valid (often resulting from an interrupt-like
CTRL-C). Seldom used, but intended to raise the priority of the segment.

ACK If set, the Acknowledgment Number field is valid.
PSH If set, the receiver should not buffer the segment data, but pass them directly to

the application. Interactive applications use this, but few others.
RST If set, the connection should be aborted. A favorite target of hackers “hijacking”

TCP connections, a series of rules now govern proper reactions to this bit.
SYN If set, the hosts should synchronize sequence numbers and establish a

connection.
FIN If set, the sender had finished sending data and initiated a close of the

connection.

Table 12.2 TCP Option Types, Showing Abbreviation (Meaning), Length, and
RFC in Which Established

Type Meaning Total Length and Description RFC

0 EOL 1 byte, indicates end of option list (only used if end
of options is not end of header)

793

1 NOP 1 byte, no option (used as padding to align header
with Header-Length Field)

793

2 MSS 4 bytes, the last 2 of which indicate the maximum
payload that one host will try to send another. Can
only appear in SYN and does not change.

793879

3 WSCALE 3 bytes, the last establishing a multiplicative
(scaling) factor. Supports bit-shifted window values
above 65,535.

1072

4 SACKOK 2 bytes, indicating that selective ACKs are
permitted.

2018

(Continued)

312 CHAPTER 12 Transmission Control Protocol

TCP MECHANISMS
It might not be obvious why TCP connections should be such a complication.

One of the reasons is that TCP adds more to connectionless IP than connection

capability. The TCP service also provides aspects of what the ISO-RM defines as

Session Layer services, services that include the history (a popular term is “state

variables”) of the connection progress. Connections also provide a convenient

structure with which to associate QoS parameters, although every layer of any

protocol stack always has some QoS duties to perform, even if it is only error

checking.

Officially, TCP is a virtual circuit service that adds reliability to the IP

layer, reliability that is lacking in UDP. TCP also provides sequencing and

flow control to the host-to-host interaction, which in turn provides a conges-

tion control mechanism to the routing network as a whole (as long as TCP,

normally an end-to-end concern, is aware of the congested condition). The

flow control mechanism in TCP is a sliding window procedure that prevents

senders from overwhelming receivers and applies in both directions of a TCP

connection.

TCP was initially defined in RFC 793, refined in RFCs 879, 1106, 1110,

and 1323 (which obsoleted RFC 1072 and RFC 1185). RFCs 1644 and 1693

extended TCP to support transactions, which can be loosely understood as

“connection-oriented request�response pairs that cannot use UDP.” RFC 3168

added explicit congestion notification (ECN) bits to the TCP header, which we

Table 12.2 TCP Option Types, Showing Abbreviation (Meaning), Length, and
RFC in Which Established Continued

Type Meaning Total Length and Description RFC

5 SACK Of variable length, these are the selective ACKs. 1072
6 Echo 6 bytes, the last 4 of which are to be echoed. 1072
7 Echo reply 6 bytes, the last 4 of which echo the above. 1072
8 Timestamp 10 bytes, the last 8 of which are used to compute

the retransmission timer through the RTT
calculation. Makes sure that an old sequence
number is not accepted by the current connection.

1323

9 POC perm 2 bytes, indicating that the partial order service is
permitted.

1693

10 POC
profile

3 bytes, the last carrying 2-bit flags. 1693

11 CC 6 bytes, the last 4 providing a segment connection
count.

1644

12 CCNEW 6 bytes, the last 4 providing new connection count. 1644
13 CCECHO 6 bytes, the last 4 echoing previous connection count. 1644

313TCP Mechanisms

will see again in the chapter on Cloud computing and large data centers. These

bits were “added” by redefining bits 6 and 7 in the TOS field of the packet

header.

TCP AND TRANSACTIONS
It is important to note that TCP does not use the term “transaction” to describe those peculiar

interactions that require coordinated actions among multiple hosts on the network. A familiar

“transaction” is an accounting process that is not complete until both one account has been

debited and another has been credited. Database transactions are a completely different notion

than what a transaction means in TCP.

But this is not the purpose of transactions for TCP (T/TCP)! TCP “transactions” are a way to

sneak a quick burst of request�response data into an exchange of connection setup segments,

similar to the way that UDP works.

TCP headers can be between 20 bytes (typical) and 60 bytes long when

options are used (not often). A segment, which is the content of a TCP data

unit, is essentially a portion of the application’s send buffer. As bytes accumu-

late in the send buffer, they will exceed the maximum segment size (MSS)

established for the connection. These bytes receive a TCP header and are sent

inside an IP packet. There are also ways to “push” a partially full send buffer

onto the network.

At the receiver, the segment is added to a receive buffer until complete or

until the application has enough data to process. Naturally, the amount of data

exchanged varies greatly.

Let’s look at how TCP works and then examine the header fields that make it

all happen. It might seem strange to talk about major TCP features before the

TCP header has been presented, but the operation of many of the fields in the

TCP header depend on terminology and concepts used during TCP connection

and other procedures.

CONNECTIONS AND THE THREE-WAY HANDSHAKE
TCP establishes end-to-end connections over the unreliable, best-effort IP packet

service using a special sequence of three TCP segments sent from client to server

and back called a three-way handshake. Why three ways? Because packets con-

taining the TCP segment that ask a server to accept another connection and the

server’s response might be lost on the IP router network, leaving the hosts unsure

of exactly what is going on. The third message adds to the overall reliability.

Once the three segments are exchanged, data transfer can take place from host

to host in either direction. Connections can be dropped by either host with a sim-

ple exchange of segments (four in total), although the other host can delay the

dropping until final data are sent, a feature rarely used.

314 CHAPTER 12 Transmission Control Protocol

TCP uses unique terminology for the connection process. A single bit called

the SYN (synchronization) bit is used to indicate a connection request. This single

bit is still embedded in a complete 20-byte (usually) TCP header, and other infor-

mation, such as the initial sequence number (ISN) used to track segments, is sent

to the other host. Connections and data segments are acknowledged with the

ACK bit, and a request to terminate a connection is made with the FIN (final) bit.

The entire TCP connection procedure, from three-way handshake to data

transfer to disconnect, is shown in Figure 12.3. TCP also allows for the case

where two hosts perform an active open at the same time, but this is unlikely.

This example shows a small file transfer to a server (with the server sending

1000 bytes back to the client) using 1000-byte segments, but only to make the

sequence numbers and acknowledgments easier to follow. The whole file is smal-

ler than the server host’s receive window and nothing goes wrong (but things

often go wrong in the real world).

CLIENT

Active OPEN

SERVER
Passive OPEN

Client–Server File Transfer Using
1000-byte Segments

OPEN

3-way Handshake
Complete

(sends 1000
bytes back)

(3000 bytes of
window full)

CLOSING

WAIT!

OPEN

Data Transfer
SEQ and ACK

SEQ (ISN) 2000 WIN 5840

SYN SEQ (ISN) 4000 WIN 8760

SEQ 2001 WIN 5840

MSS (OPT)1460

MSS (OPT)1460

SEQ 2001 ACK 4001

SEQ 4001 ACK 3001

ACK 4001SEQ 3001

ACK 4001SEQ 4001

ACK 4001SEQ 5001

ACK 6001(no data)
(Transfer
continues...)

Connection
Release

CLOSING

FIN SEQ 4001 ACK 10001

ACK SEQ 10001 ACK 4002

FIN SEQ 10001 ACK 4002

ACK SEQ 4002 ACK 10002

ACK

SYN

ACK 4001

WAIT!

..

FIGURE 12.3

Client�server interaction with TCP, showing the three connection phases of setup, data

transfer, and release (disconnect).

315Connections and the Three-Way Handshake

Note that to send even one exchange of a request�response pair inside seg-

ments, TCP has to generate seven additional packets. This is a lot of packet over-

head, and the whole process is just slow over high latency (delay) links. This is

one reason that UDP is becoming more popular as networks themselves become

more reliable. We’ll talk more about the limitations of TCP in a section at the

end of this chapter.

CONNECTION ESTABLISHMENT

Let’s look at the normal TCP connection establishment’s three-way handshake in

some detail. The three messages establish three important pieces of information

that both sides of the connection need to know.

1. The ISNs to use for outgoing data (in order to deter hackers, these should not

be predictable).

2. The buffer space (window) available locally for data, in bytes.

3. The Maximum Segment Size (MSS) is a TCP Option and sets the largest

segment that the local host will accept. The MSS is usually the link MTU size

minus the 40 bytes of the TCP and IP headers, but many implementations use

segments of 512 or 536 bytes (it’s a maximum, not a demand).

A server issues a passive open and waits for a client’s active open SYN, which

in this case has an ISN of 2000, a window of 5840 bytes and an MSS of 1460

(common because most hosts are on Ethernet LANs). The window is almost

always a multiple of the MSS (14603 45 5840 bytes). The server responds with

a SYN and declares the connection open, setting its own ISN to 4000, and

“acknowledging” sequence number 2001 (it really means “the next byte I get

from you in a segment should be numbered 2001”). The server also established a

window of 8760 bytes and an MSS of 1460 (14603 65 8760 bytes).

Finally, the client declares the connection open and returns an ACK (a seg-

ment with the ACK bit set in the header) with the sequence number expected

(2001) and the acknowledgment field set to 4001 (which the server expects). TCP

sequence numbers count every byte on the data stream, and the 32-bit sequence

field allows more than 4 billion bytes to be outstanding (nevertheless, high-speed

transports such as Gigabit Ethernet roll this field over too quickly for comfort, so

special “scaling” mechanisms are available for these link speeds).

TCP’s three-way handshake has two important functions. It makes sure that

both sides know that they are ready to transfer data and it also allows both sides

to agree on the initial sequence numbers, which are sent and acknowledged (so

there is no mistake about them) during the handshake. Why are the initial

sequence numbers so important? If the sequence numbers are not randomized and

set properly, it is possible for malicious users to hijack the TCP session (which

can be reliable connections to a bank, a store, or some other commercial entity).

Each device chooses a random initial sequence number to begin counting every

byte in the stream sent. How can the two devices agree on both sequence number

316 CHAPTER 12 Transmission Control Protocol

values in about only three messages? Each segment contains a separate sequence

number field and acknowledgment field. In Figure 12.3, the client chooses an ini-

tial sequence number (ISN) in the first SYN sent to the server. The server ACKs

the ISN by adding one to the proposed ISN (ACKs always inform the sender of

the next byte expected) and sending it in the SYN sent to the client to propose its

own ISN. The client’s ISN could be rejected, if, for example, the number is the

same as used for the previous connection, but that is not considered here.

Usually, the ACK from the client both acknowledges the ISN from the server

(with server’s ISN 1 1 in the acknowledgment field) and the connection is estab-

lished with both sides agreeing on ISN. Note that no information is sent in the

three-way handshake; it should be held until the connection is established.

This three-way handshake is the universal mechanism for opening a TCP con-

nection. Oddly, the RFC does not insist that connections begin this way, espe-

cially with regard to setting other control bits in the TCP header (there are three

others in addition to SYN and ACK and FIN). Because TCP really expects some

control bits to be used during connection establishment and release, and others

only during data transfer, hackers can cause a lot of damage simply by messing

around with wild combinations of the six control bits, especially SYN/ACK/FIN,

which asks for, uses, and releases a connection all at the same time. For exam-

ple, forging a SYN within the window of an existing SYN would cause a reset.

For this reason, developers have become more rigorous in their interpretation of

RFC 793.

DATA TRANSFER

Sending data in the SYN segment is allowed in transaction TCP, but this is not

typical. Any data included are accepted, but are not processed until after the

three-way handshake completes. SYN data are used for round-trip time measure-

ment (an important part of TCP flow control) and network intrusion detection

(NID) evasion and insertion attacks (an important part of the hacker arsenal).

The simplest transfer scenario is one in which nothing goes wrong (which, for-

tunately, happens a lot of the time). Figure 12.4 shows how the interplay between

TCP sequence numbers (which allow TCP to properly sequence segments that

pop out of the network in the wrong order) and acknowledgments allow both

sides to detect missing segments.

The client does not need to receive an ACK for each segment. As long as the

established receive window is not full, the sender can keep sending. A single

ACK covers a whole sequence of segments, as long as the ACK number is

correct.

Ideally, an ACK for a full receive window’s worth of data will arrive at the

sender just as the window is filled, allowing the sender to continue to send at

a steady rate. This timing requires some knowledge of the round-trip time

(RTT) to the partner host and some adjustment of the segment-sending rate

317Connections and the Three-Way Handshake

based on the RTT. Fortunately, both of these mechanisms are available in TCP

implementations.

What happens when a segment is “lost” on the underlying “best-effort” IP

router network? There are two possible scenarios, both of which are shown in

Figure 12.4.

In the first case, a 1000-byte data segment from the client to the server fails to

arrive at the server. Why? It could be that the network is congested, and packets

are being dropped by overstressed routers. Public data networks such as frame

relay and ATM (Asynchronous Transfer Mode) routinely discard their frames and

cells under certain conditions, leading to lost packets that form the payload of

these data units.

If a segment is lost, the sender will not receive an ACK from the receiving

host. After a timeout period, which is adjusted periodically, the sender resends

the last unacknowledged segment. The receiver then can send a single ACK for

the entire sequence, covering received segments beyond the missing one.

But what if the network is not congested and the lost packet resulted from a

simple intermittent failure of a link between two routers? Today, most network

Client–Server Response to Lost SegmentsCLIENT SERVER
ACK 3001SEQ 8001

ACK 3001SEQ 8001

ACK 3001SEQ 10001

ACK 3001SEQ 11001

ACK 10001(no data)

ACK 10001(no data)

ACK 14001(no data)

ACK 10001(no data)

ACK 10001(no data)

ACK 3001SEQ 12001

ACK 3001SEQ 13001

ACK 3001SEQ 10001

ACK 3001SEQ 9001
(Where is 8001?)

LOST!

LOST!

(Where is 10001?
Repeat ACK for
100001)

(Ah! There it is...)

(Ah! There it is...)

(Sending data...)

(Thanks!)

(Where’s my
ACK for 8001
and 9001?)

Timeout!
(resend)

(Sending data...)

..

FIGURE 12.4

How TCP handles lost segments. The key here is that although the client might continue

to send data, the server will not acknowledge all of it until the missing segment shows up.

318 CHAPTER 12 Transmission Control Protocol

errors are caused by faulty connectors that exhibit specific intermittent failure pat-

terns that steadily worsen until they become permanent. Until then, the symptom

is sporadic lost packets on the link at random intervals. (Predictable intervals are

the signature of some outside agent at work.)

Waiting is just a waste of time if the network is not congested and the lost

packet was the result of a brief network “hiccup.” So TCP hosts are allowed to

perform a “fast recovery” with duplicate ACKs, which is also shown in

Figure 12.4.

The server cannot ACK the received segments 11,001 and subsequent ones

because the missing segment 10,001 prevents it. (An ACK says that all data bytes

up to the ACK have been received.) So every time a segment arrives beyond the

lost segment, the host only ACKs the missing segment. This basically tells the

other host “I’m still waiting for the missing 8001 segment.” After several of these

are received (the usual number is three), the other host figures out that the miss-

ing segment is lost and not merely delayed and resends the missing segment. The

host (the server in this case) will then ACK all of the received data.

The sender will still slow down the segment sending rate temporarily, but

only in case the missing segment was the result of network congestion.

CLOSING THE CONNECTION

Either side can close the TCP connection, but it’s common for the server to

decide just when to stop. The server usually knows when the file transfer is com-

plete, or when the user has typed logout and takes it from there. Unless the client

still has more data to send (not a rare occurrence with applications using persis-

tent connections), the hosts exchange four more segments to release the

connection.

In the example, the server sends a segment with the FIN (final) bit set, a

sequence number (whatever the incremented value should be), and acknowledges

the last data received at the server. The client responds with an ACK of the FIN

and appropriate sequence and acknowledgment numbers (no data were sent, so

the sequence number does not increment).

The TCP releases the connection and sends its own FIN to the server with the

same sequence and acknowledgment numbers. The server sends an ACK to the

FIN and increments the acknowledgment field but not the sequence number. The

connection is down.

But not really. The “best-effort” nature of the IP network means that delayed

duplicated could pop out of a router at any time and show up at either host.

Routers don’t do this just to be nasty, of course. Typically, a router that hangs or

has a failed link rights itself and finds packets in a buffer (which is just memory

dedicated for communications) and, trying to be helpful, sends them out.

Sometimes routing loops cause the same problem.

In any case, late duplicates must be detected and disposed of (which is one

reason the ISN space is 32 bits—about 4 billion—wide). The time to wait is

319Connections and the Three-Way Handshake

supposed to be twice as long as it could take a packet to have its TTL go to zero,

but in practice this is set to 4 minutes (making the packet transit time of the

Internet 2 minutes, an incredibly high value today, even for Cisco routers, which

are fond of sending packets with the TTL set to 255).

The wait time can be as high as 30 minutes, depending on TCP/IP implemen-

tation, and resets itself if a delayed FIN pops out of the network. Because a server

cannot accept other connections from this client until the wait timer has expired,

this often led to “server paralysis” at early Web sites.

Today, many TCP implementations use an abrupt close to escape the wait-

time requirement. The server usually sends a FIN to the client, which first ACKs

and then sends a RST (reset) segment to the server to release the connection

immediately and bypass the wait-time state.

FLOW CONTROL
Flow control prevents a sender from overwhelming a receiver with more data

than it can handle. With TCP, which resends all lost data, a receiver that is dis-

carding data that overflows the receive buffers is just digging itself a deeper and

deeper hole.

Flow control can be performed by either the sender or the receiver. It sounds

strange to have senders performing flow control (how could they know when

receivers are overwhelmed?), but that was the first form of flow control used in

older networks.

Many early network devices were printers (actually, teletype machines, but

the point is the same). They had a hard enough job running network protocols

and printing the received data, and could not be expected to handle flow control

as well. So the senders (usually mainframes or minicomputers with a lot of horse-

power for the day) knew exactly what kind of printer they were sending to and

their buffer sizes. If a printer had a two-page buffer (it really depended on byte

counts), the sender would know enough to fire off two pages and then wait for an

acknowledgment from the printer before sending more. If the printer ran out of

paper, the acknowledgment was delayed for a long time, and the sender had to

decide whether it was okay to continue or not.

Once processors grew in power, flow control could be handled by the receiver,

and this became the accepted method. Senders could send as fast as they could,

up to a maximum window size. Then senders had to wait until they received an

acknowledgment from the receiver. How is that flow control? Well, the receiver

could delay the acknowledgments, forcing the sender to slow down, and usually

could also force the sender to shrink its window. (Receivers might be receiving

from many senders and might be overwhelmed by the aggregate.)

Flow control can be implemented at any protocol level or even every protocol

layer. In practice, flow control is most often a function of the transport layer (end

320 CHAPTER 12 Transmission Control Protocol

to end). Of course, the application feeding TCP with data should be aware of the

situation and also slow down, but basic TCP could not do this.

TCP is a “byte-sequencing protocol” in which every byte is numbered.

Although each segment must be acknowledged, one acknowledgment can apply

to multiple segments, as we have seen. Senders can keep sending until the data in

all unacknowledged segments equals the window size of the receiver. Then the

sender must stop until an acknowledgment is received from the receiving host.

This does not sound like much of a flow control mechanism, but it is. A

receiver is allowed to change the size of the receive window during a connection.

If the receiver finds that it cannot process the received window’s data fast

enough, it can establish a new (smaller) window size that must be respected by

the sender. The receiver can even “close” the window by shrinking it to zero.

Nothing more can be sent until the receiver has sent a special “window update

ACK” (it’s not ACKing new data, so it’s not a real ACK) with the new available

window size.

The window size should be set to the network bandwidth multiplied by the

round-trip time to the remote host, which can be established in several ways. For

example, a 100-Mbps Ethernet with a 5-millisecond (ms) round-trip time (RTT)

would establish a 64,000-byte window on each host (100 Mbps3 5 ms5 0.5

Mbits5 512 kbits5 64 kbytes). When the window size is “tuned” to the RTT this

way, the sender should receive an ACK for a window full of segments just in

time to optimize the sending process.

“Network” bandwidths vary, as do round-trip times. The windows can always

shrink or grow (up to the socket buffer maximum), but what should their initial

value be? The initial values used by various operating systems vary greatly, from

a low of 4096 (which is not a good fit for Ethernet’s usual frame size) to a high

of 65,535 bytes. FreeBSD defaults to 17,520 bytes, Linux to 32,120, and

Windows to anywhere between 17,000 and 18,000 depending on details.

In Windows, the TCPWindowSize can be changed to any value less that 64,240.

Most Unix-based systems allow changes to be made to the /etc/sysctl.conf
file. When adjusting TCP transmit and receive windows, make sure that the buffer

space is sufficient to prevent hanging of the network portion on the OS. In

FreeBSD, this means that the value of nmbclusters and socket buffers must be

greater than the maximum window size. Most Linux-based systems autotune this

based on memory settings.

TCP WINDOWS

How do the windows work during a TCP connection? TCP forms its segments in

memory sequentially, based on segment size, each needing only a set of headers

to be added for transmission inside a frame. A conceptual “window” (it’s all

really done with pointers) overlays this set of data, and two moveable boundaries

are established in this series of segments to form three types of data. There are

segments waiting to be transmitted, segments sent and waiting for an

321Flow Control

acknowledgment, and segments that have been sent and acknowledged (but have

not been purged from the buffer).

As acknowledgments are received, the window “slides” along, which is why

the process is commonly called a “sliding window.”

Figure 12.5 shows how the sender’s sliding window is used for flow control.

(There is another at the receiver, of course.) Here the segments just have num-

bers, but each integer represents a whole 512, 1460, or whatever size segment. In

this example, segments 20 through 25 have been sent and acknowledged, 26

through 29 have been sent but not acknowledged, and segments 30 through 35

are waiting to be sent. The send buffer is therefore 15 segments wide, and new

segments replace the oldest as the buffer wraps.

FLOW CONTROL AND CONGESTION CONTROL

When flow control is used as a form of congestion control for the whole network,

the network nodes themselves are the “receivers” and try to limit the amount of

data that senders dump into the network.

But now there is a problem. How can routers tell the hosts using TCP (which

is an end-to-end protocol) that there is congestion on the network? Routers are

not supposed to play around with the TCP headers in transit packets (routers have

enough to do), but they are allowed to play around with IP headers (and often

have to).

Routers know when a network is congested (they are the first to know), so

they can easily flip some bits in the IPv4 and IPv6 headers of the packets they

route. These bits are in the TOS (IPv4) and Flow (IPv6) fields, and the hosts can

read these bits and react to them by adjusting windows when necessary.

RFC 3168 establishes support for these bits in the IP and TCP headers.

However, support for explicit congestion notification in TCP and IP routers is not

Sliding Window

Data sent and
acknowledged

Data sent and waiting
for acknowledgment

Data to
be sent

Data to
be sent

(Each integer represents a segment of
hundreds or thousands of bytes)

2120 22 23 24 25 26 27 28 29 30 31 32 33 34 35

FIGURE 12.5

TCP sliding window.

322 CHAPTER 12 Transmission Control Protocol

mandatory, but common in many data center and cloud computing implementa-

tions today. Congestion in routers is usually indicated by dropped packets.

PERFORMANCE ALGORITHMS
By now, it should be apparent that TCP is not an easy protocol to explore and

understand. This complexity of TCP is easy enough to understand: The underly-

ing network should be fast and simple, IP transport should be fast and simple as

well, but unless every application builds in complex mechanisms to ensure

smooth data flow across the network, the complexity of networking must be

added to TCP. This is just as well, as the data transfer concern is end to end, and

TCP is the host-to-host layer, the last bastion of the network shielding the appli-

cation from network operations.

To look at it another way, if physical networks and IP routers had to do all

that the TCP layer of the protocol stack does, the network would be over-

whelmed. Routers would be overwhelmed by the amount of state information that

they would need to carry, so we delegate carrying that state information to the

hosts. Of course, applications are many, and each one shouldn’t have to duplicate

it all. So TCP does it. By the way, this consistent evolution away from “dumb ter-

minal on a smart network” like X.25 to “smart host on a dumb network” like

TCP/IP is characteristic of the biggest changes in networking over the years.

This chapter has covered only the basics, and TCP has been enhanced over

the years with many algorithms to improve the performance of TCP in particular

and the network in general. ECN is only one of them. Several others exist and

will only be mentioned here and not investigated in depth.

Delayed ACK—TCP is allowed to wait before sending an ACK. This cuts

down on the number of “stand-alone” ACKs, and lets a host wait for outgoing

data to “piggyback” an acknowledgment onto. Most implementations use a

200-ms wait time.

Slow Start—Regardless of the receive window, a host computes a second

congestion window that starts off at one segment. After each ACK, this

window doubles in size until it matches the number of segments in the

“regular” window. This prevents senders from swamping receivers with data

at the start of a connection (although it’s not really very slow at all).

Defeating Silly Window Syndrome Early—TCP implementations processed

receive buffer data slowly, but received segments with large chunks of data.

Receivers then shrunk the window as if this “chunk” were normal. So

windows often shrunk to next to nothing and remained here. Receivers can

“lie” to prevent this, and senders can implement the Nagle algorithm to

prevent the sending of small segments, even if PUSHed. (Applications that

naturally generate small segments, such as a remote login, can turn this

behavior off.)

323Performance Algorithms

Scaling for Large Delay-Bandwidth Network Links—The TCP window-scale

option can be used to count more than 4 billion or so bytes before the

sequence number field wraps. A timestamp option sent in the SYN

message helps also. Scaling is sometimes needed because the Window field

in the TCP header is 16 bits long, so the maximum window size is

normally 64 kbytes. Larger windows are needed for large-delay times,

high-bandwidth product links (such as the “long fat pipes” of satellite

links). The scaling uses 3 bytes: 1 for type (scaling), 1 for length (number

of bytes), and 2 for a shift value called S. The shift value provides a binary

scaling factor to be applied to the usual value in the Window field. Scaling

shifts the window field value S bits to the left to determine the actual

window size to use.

Adjusting Resend Timeouts Based on Measured RTT—How long should a

sender wait for an ACK before resending a segment? If the resend timeout is

too short, resends might clutter up a network slow in relaying ACKs because

it is teetering on the edge of congestion. If it is too long, it limits throughput

and slows recovery. And a value just right for TCP connection over the local

LAN might be much too short for connections around the globe over the

Internet. TCP adjusts its value for changing network conditions and link

speeds in a rational fashion based on measured RTT, how fast the RTT has

change in the past.

TCP BEHAVING BADLY?
TCP has long been the object of concern in TCP/IP networks. As soon as the

Web came along in the early 1990s, behavior that had been merely annoying now

become critical. For real-time, request-and-response queries, the reliability that

characterized TCP came at the price of decreased speed. In other words, TCP was

s-l-o-w due to connection overhead and error recovery.

Many ISPs began to cache commonly accessed Web pages at strategic places

in their networks in order to serve them up quicker. However, this practice vio-

lated the end-to-end features of TCP, where a client was supposed to fetch a page

from a server and not a cached (and possibly obsolete) copy of a page. This began

a movement to “reform” and modify TCP that continues today. If anything, the

ubiquitous nature of the Internet has only intensified this pressure.

One of the most important developments in networking today is the rise of the

data center. It used to be (and not too long ago) that when people went on vaca-

tion, they called a travel agent. When they wanted to watch a movie, they went to

a movie theater (often the only air conditioned place in town). If they wanted

to watch television, the family sat together in their living room. If they wanted to

buy a book, they went to the book store. If they wanted to shop, they went out

to go shopping. Now all these activities, and many more like playing video games

324 CHAPTER 12 Transmission Control Protocol

and gambling, are accomplished by using a client computer to access a server

somewhere.

This means that the companies that supply goods and services over the

Internet are constantly collecting data about their customer base. This information

is used to focus marketing efforts, sales collateral, and product development and

placements strategies. The data center is becoming the key technology for modern

businesses of all shapes and sizes, from direct-to-consumer to business-to-busi-

ness applications.

This is not the place to explore the rise and structure of massive data centers.

This book is about TCP/IP. It is enough to note a few overall structural characteris-

tics of these data centers and show why TCP is often a problem in their operation.

The real heart of the issue is related to the time value of information. All

information has value, of course, but some information has a value that rapidly

diminishes to zero as soon as everyone knows it. Once, all the world’s stock

exchanges operated independently, based on local opening and closing times.

By the 1950s, corporations were global and so were communications (at least

for voice) and financial markets could exploit knowing the closing price in one

market before the opening of another. There was even a movie made in 1961

called Five Golden Hours that explored the advantages of knowing the closing

price in Rome before the opening of the stock market in New York five

“golden” hours later.

What was then true of financial markets is now true of almost everything. We

live in world where, if I know something a crucial five minutes before you do, I will

make a million dollars and you will lose a million. Automatic trading algorithms

based on AI often convert this margin to seconds or even fractions of a second.

But let’s consider a more pedestrian example. You operate a multi-national

corporation that sells goods over the Internet on three continents. You have data

centers gathering customer orders and information in three large data centers. The

servers are mounted in large racks with a switch at the top called, naturally, a top

of rack (TOR) switch. These connect to other switches in what is called a “leaf

and spine” topology (we’ll talk more about these “CLOS networks” in the chapter

on new uses for BGP). Because of the distributed nature of the data, the querying

client could be inside the data center itself, finding out or sharing what it knows

with other servers using TCP/IP.

Databases in these data centers often use NoSQL (for “Not Only SQL”) for

updates and queries. Online customers are notoriously lax about entering complete

information about zip codes or middle names or telephone numbers. Entries are

often incomplete, but as long as you can take an order, you’ll consider the entries

sufficient, even if they are duplicates (as happens when a customer fills out the

“new customer” form twice). NoSQL does not care if the database is perfect, as

long as it is functional.

You would like to know where your customers live. Are they in rural areas,

small towns, cities, or megalopolises? This data could determine resources for

325TCP Behaving Badly?

factory locations, marketing efforts, sales offices, and be useful for a myriad of

other business purposes. But I need to know NOW.

Modern networks use a “scatter-gather” technique to distribute the query to

multiple data centers and the multiple servers in the racks that hold the informa-

tion. (We’ll say more about this movement to cloud computing and virtualized

services later, but for now, this does not matter.) Once I have partial results, I

quickly process the gathered information and distill an answer for you: 30% rural,

20% small towns, 15% cities and 35% in large metropolitan areas.

Why is TCP such a bad fit for this world? Well, if TCP connections are

required for each scatter-gather communication and query, the enormous hand-

shake overhead of TCP becomes a bottleneck. If one server in one rack holds cru-

cial information, all of the NoSQL queries tend to pile onto one destination

server, causing congestion in the leaf-and-spine network. And every segment

dropped must be resent and sequenced correctly. This traffic creates “TCP in-cast

storms” that can bring a whole data center to its knees.

So TCP is constantly being adjusted for modern data center use. We’ve

already seen one adaptation that is essential for modern data center use of TCP:

ECN. We’ll meet others in the chapter on cloud computing.

TCP AND FTP
First we’ll use a Windows FTP utility on wincli2 (10.10.12.222) to grab the

30,000-byte file test.stuff from the server bsdserver (10.10.12.77) and cap-

ture the TCP (and FTP) packets with Wireshark. Both hosts are on the same LAN

segment, so the process should be quick and error-free.

The session took a total of 91 packets, but most of those were for the FTP

data transfer itself. The Ethereal statistics of the sessions note that it took about

55 seconds from first packet to last (much of which was “operator think time”),

making the average about 1.6 packets per second. A total of 36,000 bytes were

sent back and forth, which sounds like a lot of overhead, but it was a small file.

The throughput on the 100 Mbps LAN2 was about 5,200 bits per second, showing

why networks with humans at the controls have to be working very hard to fill up

even a modestly fast LAN.

We’ve seen the Wireshark screen enough to just look at the data in the screen

shots. And Wireshark lets us expand all packets and create a PDF out of the cap-

ture file. This in turn makes it easy to cut-and-paste exactly what needs to be

shown in a single figure instead of many.

For example, let’s look at the TCP three-way handshake that begins the ses-

sion in Figure 12.6.

The first frame, from 10.10.12.222 to 10.10.12.77, is detailed in the figure.

The window size is 65,535, the MSS is 1460 bytes (as expected for Ethernet), and

selective acknowledgments (SACK) are permitted. The server’s receive window

326 CHAPTER 12 Transmission Control Protocol

size is 57,344 bytes. Figure 12.7 shows the relevant TCP header values from the

capture for the initial connection setup (which is the FTP control connection).

Wireshark shows “relative” sequence and acknowledgment numbers, and these

always start at 0. But the figure shows the last bits of the actual hexadecimal

values, showing how the acknowledgment increments the value in sequence and

acknowledgment number (the number increments from 0x. . .E33A to 0x. . .E33B),
even though no data have been sent.

This older version of Windows uses 2790 as a dynamic port number, which is

really in the registered port range and technically should not be used for this

purpose.

This example is actually a good study in what can happen when “cross-plat-

form” TCP sessions occur, which is often. Several segments have bad TCP check-

sums. Since we are on the same LAN segment, and the frame and packet passed

error checks correctly, this is probably a quirk of TCP pseudo-header computation

and no bits were changed on the network. There is no ICMP message because

FIGURE 12.6

Capture of three-way handshake. Note that Ethereal sets the “relative” sequence number

to zero instead of presenting the actual ISN value.

Checksum Bad!
(But 3-way handshake
complete anyway...)

OPEN

Passive OPEN
bsdserverwincli2

Active OPEN
(Client port 2790)

OPEN

FTP Handshake Using 1460-byte Segments
SYN SEQ (ISN) ...72d1 WIN 65535

ACK SEQ ...72d2 WIN 65535
ACK ... e33b

SYN SEQ (ISN) ... e33a WIN 57344

MSS (OPT) 1460

MSS (OPT) 1460

FIGURE 12.7

FTP three-way handshake, showing how the ISNs are incremented and acknowledged.

327TCP and FTP

TCP is above the IP layer. Note that the application just sort of shrugs and keeps

right on going (which happens not once, but several times during the transfer).

Things like this “non�error error” happen all the time in the real world of

networking.

At the end of the session, there are really two “connections” between wincli2
and bsdserver. The FTP session rides on top of the TCP connection. Usually, the

FTP session is ended by typing BYE or QUIT on the client. But the graphical

package lets the user just click a disconnect button, and takes the TCP connection

down without ending the FTP session first. The FTP server objects to this breach

of protocol and the FTP server process sends a message with the text, You could
at least say goodbye, to the client. (No one will see it, but presumably the server

feels better.)

TCP sessions do not have to be complex. Some are extremely simple. For

example, the common TCP/IP “echo” utility can use UDP or TCP. With UDP, an

echo is a simple exchange of two segments, the request and reply. In TCP, the

exchange is a 10-packet sequence.

This is shown in Figure 12.8, which captures the echo “TESTstring” from

lnxclient to lnxserver. It includes the initial ARP request and response to find

the server.

Why so many packets? Here’s what happens during the sequence.

Handshake (packets 3 to 5)—The utility uses dynamic port 33,146, meaning

Linux is probably up-to-date on port assignments. The connection has a

window of 5840 bytes, much smaller than the FreeBSD and Windows XP

window sizes. The MMS is 1460, and the exchange has a rich set of TCP

options, including timestamps (TSV) and windows scaling (not used, and not

shown in the figure).

Transfer (packets 6 to 9)—Note that each ECHO message, request and

response, is acknowledged. Ethereal shows relative acknowledgment numbers,

so ACK5 11 means that 10 bytes are being ACKed (the actual number is

0x0A8DA551, or 177,055,057 in decimal.

Disconnect (packets 10 to 12)—A typical three-way “sign-off” is used.

FIGURE 12.8

Echo using TCP, showing all packets of the ARP, three-way handshake, data transfer, and

connection release phases.

328 CHAPTER 12 Transmission Control Protocol

We’ll see later in the book that most of the common applications implemented

on the Internet use TCP for its sequencing and resending features.

QUESTIONS FOR READERS

Figure 12.9 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. What are the three phases of connection-oriented communications?

2. Which fields are present in the TCP header but absent in UDP? Why are they

not needed in UDP?

3. What is the TCP flow control mechanism called?

4. What does it mean when the initial sequence and acknowledgment numbers

are “relative”?

5. What is the silly window syndrome? What is the Nagle algorithm?

1 byte

Source Port

1 byte 1 byte 1 byte

Destination Port

Sequence Number

Acknowledgment Number

Header
Length

RESV Control Bits Window Size

TCP Checksum

wincli2
Active OPEN
(Client port 2790)

Urgent Pointer

Options Field (variable length, maximum 40 bytes, 0 padded to 4-byte multiple)

DATA (application message)

H
e
a
d
e
r

FTP Handshake Using 1460-byte Segments bsdserver
Passive OPEN

OPEN

OPEN

SYN SEQ (ISN) ... e33a WIN 57344

MSS (OPT) 1460

ACK SEQ ...72d2 WIN 65535

ACK ... e33b

SYN SEQ(ISN) ...72d1 WIN 65535

MSS (OPT) 1460

3-Way Handshake
Complete

FIGURE 12.9

The TCP header fields and three-way handshake example.

329Questions for Readers

This page intentionally left blank

CHAPTER

13Multiplexing and Sockets

WHAT YOU WILL LEARN

In this chapter, you will learn about how multiplexing (and demultiplexing) and sock-
ets are used in TCP/IP. We’ll see how multiplexing allows many applications can
share a single TCP/IP stack process.

You will learn how layer and applications interact to make multiplexing and the
socket concept very helpful in networking. We’ll use a small utility program to investi-
gate sockets and illustrate the concepts in this chapter.

Now that we’ve looked at UDP and TCP in detail, this chapter explores two key

concepts that make understanding how UDP and TCP work much easier: multi-

plexing and sockets. Technically, the first term should be “multiplexing and

demultiplexing,” but because mixing things together makes little sense unless you

can get them back again, most people just say “multiplexing” and let it go at that.

Why is multiplexing necessary? Most TCP/IP hosts have only one TCP/IP

stack process running, meaning that every packet passing into or out of the host

uses the same software process. This is due to the fact that the hosts usually have

only one network connection, although there are exceptions. However, a host sys-

tem typically runs many applications (technically, if other systems can access

them, the host system is a server). All these applications share the single network

interface through multiplexing.

LAYERS AND APPLICATIONS
Both the source and destination port numbers, each 16 bits long, are included as

the first fields of the TCP or UDP segment header. Well-known ports use num-

bers between 0 and 1023, which are reserved expressly for this purpose. In many

TCP/IP implementations, there is a process (usually inetd or xinetd, the

“Internet daemon”) that listens for all TCP/IP activity on an interface. This pro-

cess then launches to FTP or other application processes on request, using the

well-known ports as appropriate.

However, the well-known server port numbers can be statically mapped to

their respective application on the TCP/IP server, and that’s how we will explore

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00013-8

© 2017 Elsevier Inc. All rights reserved.
331

http://dx.doi.org/10.1016/B978-0-12-811027-0.00013-8

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 13.1

Sockets between Linux client and server, showing the devices used in this chapter to

illustrate socket operation.

332 CHAPTER 13 Multiplexing and Sockets

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

333Layers and Applications

them in this introduction to sockets. With static mapping, the DNS (port number

53) or FTP (port number 21) server processes (for example) must be running on

the server at all times in order for the server TCP protocol to accept connections

to these application form clients. Things are more complex when both IPv4 and

IPv6 are running, but this chapter considers the situation for IPv4 for simplicity.

This chapter will be a little different than the others. Instead of jumping right

in and capturing packets and then analyzing them, the socket packet capture is

actually the whole point of the chapter. So we’ll save that until last. In the mean-

time, we’ll develop a socket-based application to work between the lnxclient
(10.10.12.166 on LAN2) and lnxserver (10.10.11.66 on LAN1), as shown in

Figure 13.1.

THE SOCKET INTERFACE
Saying that applications share a single network connection through multiplexing is

not much of an explanation. How does the TCP/IP process determine the source

and destination application for the contents of an arriving segment? The answer is

through sockets. Sockets are the combination of IP address and TCP/UDP

port number. Hosts use sockets to identify TCP connections and sort out UDP

request�response pairs, and to make the coding of TCP/IP applications easier.

The server TCP/IP application processes that “listen” through passive opens for

connection requests use well-known port numbers, as already mentioned. The client

TCP/IP application processes that “talk” through active opens and make connection

requests must choose port numbers that are not reserved for these well-known num-

bers. Servers listen on a socket for clients talking to that socket. There is nothing

new here, but sockets are more than just a useful concept. The socket interface is

the most common way that application programs interact with the network.

There are several reasons for the socket interface concept and construct. One

reason has already been discussed. Suppose there are two FTP sessions in prog-

ress to the same server, and both client processes are running over the same net-

work connection on a host with IP address 192.168.10.70. It is up to the client to

make sure that the two processes use different client port numbers to control the

sessions to the server. This is easy enough to do. If the clients have chosen client

port numbers 14972 and 14973, respectively, the FTP server process replies to the

two client sockets as 192.168.10.79:14972 and 192.168.10.70:14973. So

the sockets allow simultaneous file transfer sessions to the same client from the

same FTP server. If the client sessions were distinguished only by IP address or

port number, the server would have no way of uniquely identifying the client FTP

process. And the FTP server’s socket address is accessed by all of the FTP clients

at the same time without confusion.

Now consider the server shown in Figure 13.2. Here there is a server that has

more than one TCP/IP interface for network access, and thus more than one IP

334 CHAPTER 13 Multiplexing and Sockets

address. Yet these servers may still have only one FTP (or any other TCP/IP

application) server process running. With the socket concept, the FTP server pro-

cess has no problem separating client FTP sessions from different network inter-

faces because their socket identifiers will differ on the server end. Since a TCP

connection is always identified by both the client and server IP address and the

client and server port numbers, there is no confusion.

This illustrates the sockets concept in more depth, but not the use of the socket

interface in a TCP/IP network. The socket interface forms the boundary between

the application program written by the programmer and the network processes

that are usually bundled with the operating system and quite uniform compared to

the myriad of applications that have been implemented with programs.

SOCKET LIBRARIES

Developers of applications for TCP/IP networks will frequently make use of a

sockets library to implement applications. These applications are not the standard

“bundled” TCP/IP applications like FTP, but other applications for remote data-

base queries and the like that must run over a TCP/IP network. The sockets

library is a set of programming tools used to simplify the writing of application

programs for TCP or UDP. Since these “custom” applications are not included in

the regular application services layer of TCP/IP, these applications must interface

directly with the TCP/IP stack. Of course, these applications must also exist

in the same client�server, active�passive open environment as all other TCP/IP

applications.

The socket is the programmer’s identifier for this TCP/IP layer interface. In

Unix and Linux environments, the socket is treated just like a file. That is, the

socket is created, opened, read from, written to, closed, and deleted, which are

exactly the same operations that a programmer would use to manipulate a file on

a local disk drive. Through the use of the socket interface, a developer can write

FTP ProcessSocket 1:
172.16.24.17:22

Socket 2:
172.16.43.11:22

172.16.24.17 172.16.43.11

FIGURE 13.2

The concept of sockets applied to FTP. Note how sockets allow a server with two different

IP addresses to access the FTP server process using the same port.

335The Socket Interface

TCP/IP networked client�server applications without thinking about managing

TCP/IP connections on the network.

The programmer can use sockets to refer to any remote TCP/IP application

layer entity. Many developers use socket interfaces to provide “front-end” graphi-

cal interfaces to common remote TCP/IP server processes such as FTP. Of course,

the developers may choose to write applications that implement both sides of the

client�server model.

The socket can interface with either TCP (called a “stream” socket), UDP

(called a “datagram” socket), or even IP directly (called the “raw” socket).

Figure 13.3 shows the three major types of socket programming interfaces. There

are even socket libraries that allow interfaces with the frames of the network

access layer below IP itself. More details must come from the writers of the sock-

ets libraries themselves, since socket libraries vary widely in operational

specifics.

TCP STREAM SERVICE CALLS

When used in the stream mode, the socket interface supplies the TCP protocol

with the proper service calls from the application. These service calls are few in

number, but enough to completely activate, maintain, and terminate TCP connec-

tions on the TCP/IP network. Their functions are summarized in the following:

OPEN—Either a passive or active open is defined to establish TCP

connections.

SEND—Allows a client or server application process to pass a buffer of

information to the TCP layer for transmission as a segment.

Application Programs

Stream
Interface

Network

Datagram
Interface

Raw Socket
Interface

TCP UDP

IP Layer

FIGURE 13.3

The three socket types. Note that the raw socket interface bypasses TCP and UDP. (The

socket program often builds its own TCP or UDP header.)

336 CHAPTER 13 Multiplexing and Sockets

RECEIVE—Prepares a receive buffer for the use of the client or server

application to receive a segment from the TCP layer.

STATUS—Allows the application to locate information about the status of a

TCP connection.

CLOSE—Requests that the TCP connection be closed.

ABORT—Asks that the TCP connection discard all data in buffers and

terminate the TCP connection immediately.

These commands are invoked on the application’s behalf by the socket inter-

face, and therefore are not seen by the application programmer. But it is always

good to keep in mind that no matter how complicated a sockets library of routines

might seem to a programmer, at heart the socket interface is a relatively simple

procedure.

THE SOCKET INTERFACE: GOOD OR BAD?
However, the very simplicity of socket interfaces can be deceptive. The price of

this simplicity is isolating the network program developers from any of the details

of how the TCP/IP network actually operates. In many cases, the application pro-

grammers interpret this “transparency” of the TCP/IP network (“treat it just like a

file”) to mean that the TCP/IP network really does not matter to the application

program at all.

As many TCP/IP network administrators have learned the hard way, nothing

could be further from the truth. Every segment, datagram, frame, and byte that an

application puts on a TCP/IP network affects the performance of the network for

everyone. Programmers and developers that treat sockets “just like a file” soon

find out that the TCP/IP network is not as fast as the hard drive on their local sys-

tems. And many applications have to be rewritten to be more efficient just

because of the seductive transparency of the TCP/IP network using the socket

interface.

For those who have been in the computer and network business for a very

long time, the socket interface controversy in this regard closely mirrors the con-

troversy that erupted when COBOL, the first “high-level” programming language,

made it possible for people who knew absolutely nothing about the inner work-

ings of computers to be trained to write application programs. Before COBOL,

programmers wrote in a low-level assembly language that was translated (assem-

bled) into machine instructions. (Some geniuses wrote directly in machine code

without assemblers, a process known as “bare metal programming.”)

Proponents then, as with sockets, pointed out the efficiencies to be enjoyed by

freeing programmers from reinventing the wheel with each program and writing

the same low-level routines over and over. There were gains in production as

well—programmers who wrote a single instruction in COBOL could rely on the

compiler to generate about 10 lines of underlying assembly language and machine

337The Socket Interface: Good or Bad?

code. Since programmers all wrote about the same number of lines of code a day,

a 10-fold gain in productivity could be claimed.

The same claims regarding isolation are often made for the socket interface.

Freed from concerns about packet headers and segments, network programmers

can concentrate instead on the real task of the program and benefit from similar

productivity gains. Today, no one seriously considers the socket interface to be an

isolation liability, although similar claims of “isolation” are still heard when pro-

grammers today can generate code by pointing and clicking at a graphical display

in Python front ends or another even higher level “language.”

THE “THREAT” OF RAW SOCKETS

A more serious criticism of the socket interface is that it forms an almost perfect

tool for hackers, especially the raw socket interface. Many network security

experts do not look kindly on the kind of abuses that raw sockets made possible

in the hands of hackers.

Why all the uproar over raw sockets? With the stream (TCP) and datagram

(UDP) socket interfaces, the programmer is limited with regard to what fields in

the TCP/UDP or IP header that they can manipulate. After all, the whole goal is

to relieve the programmer of addressing and header field concerns. Raw sockets

were originally intended as a protocol research tool only, but they proved so pop-

ular among the same circle of trusted Internet programmers at the time that use

became common.

But raw sockets let the programmer pretty much control the entire content of

the packet, from header to flags to options. Want to generate a SYN attack to

send a couple of million TCP segments with the SYN bit sent one after the other

to the same Web site, and from a phony IP address? This is difficult to do through

the stream socket, but much easier with a raw socket. Consequently, this is one

reason why you can find and download over the Internet hundreds of examples

using TCP and UDP sockets, but raw socket examples are few and far between.

Not only could users generate TCP and UPD packets, but even “fake” ICMP and

traceroute packets were now within reach.

Microsoft unleashed a storm of controversy in 2001 when it announced sup-

port for the “full Unix-style” raw socket interface for Windows XP. Limited sup-

port for raw sockets in Windows had been available for years, and third-party

device drivers could always be added to Windows to support the full raw socket

interface, but malicious users seldom bestirred themselves to modify systems that

were already in use. However, if a “tool” was available to these users, it would

be exploited sooner or later.

Many saw the previous limited support for raw sockets in Windows as a bless-

ing in disguise. The TCP/UDP layers formed a kind of “insulation” to protect the

Internet from malicious application programs, a protective layer that was stripped

away with full raw socket support. They also pointed out that the success of

Windows NT servers, and other Windows releases, all of which lacked full raw

338 CHAPTER 13 Multiplexing and Sockets

socket support, meant that no one needed full raw sockets to do what needed

doing on the Internet. But once full raw sockets came to almost everyone’s desk-

top, these critics claimed, hackers would have a high-volume, but poorly secured,

operating system in the hands of consumers.

Without full raw sockets, Windows PCs could not spoof IP addresses, generate

TCP segment SYN attacks, or create fraudulent TCP connections. When taken

over by email-delivered scripts in innocent-looking attachments, these machines

could become “zombies” or “bots” and be used by malicious hackers to launch

attacks all over the Internet.

Microsoft pointed out that full raw sockets support was possible in previous

editions of Windows, and that “everybody else had them.” Eventually, with the

release of Service Pack 2 for Windows XP, Microsoft restricted the traffic that

could be sent over the raw socket interface (receiving was unaffected) in two

major ways: TCP data could not be sent and the IP source address for UDP data

must be a valid IP address. These changes did a lot to reduce the vulnerability on

Windows XP in this regard.

Also, in traditional Unix-based operating systems, access to raw sockets is

a privileged activity. So, in a sense the issue is not to hamper raw sockets, but

to prevent unauthorized access to privileged modes of operation. According to

this position, all raw socket restrictions do is hamper legitimate applications

and form an impediment to effectiveness and portability. Restrictions have

never prevented a subverted machine from spoofing traffic before Windows

XP or since.

SOCKET LIBRARIES

Although there is no standard socket programming interface, there are some

socket interfaces that have become very popular for a number of system types.

The original socket interface was developed for the 1982 version of the Berkeley

Systems Distribution of Unix (BSD 4.1c). It was designed at the time to be used

with a number of network protocol architectures, not just TCP/IP alone. But since

TCP/IP was bundled with BSD Unix versions, sockets and TCP/IP have been

closely related. Many improvements have been made to the original BSD socket

interface since 1982. Some people still call the socket interfaces “Berkeley sock-

ets” to honor the source of the concept.

In 1986, AT&T (the former regulated “Bell System,” not the new incarnation),

the original developers of Unix, introduced the Transport Layer Interface (TLI).

The TLI interface was bundled with AT&T UNIX System V and also supported

other network architectures besides TCP/IP. However, TLI is also almost always

used with TCP/IP network interface. Today, TLI remains somewhat of a

curiosity.

WinSock, as the socket programming interface for Windows is called, is a

special case and deserves a section of its own.

339The Socket Interface: Good or Bad?

THE WINDOWS SOCKET INTERFACE
One of the most important socket interface implementations today, which is not

for the Unix environment at all, is the Windows Socket interface programming

library, or WinSock. WinSock is a dynamic link library (DLL) function that is

linked to a Windows TCP/IP application program when run. WinSock began with

a 16-bit version for Windows 3.1, and then a 32-bit version was introduced for

Windows NT and Windows 95. All Microsoft DLLs have well-defined applica-

tion program interface (API) calls, and in WinSock these correspond to the sock-

ets library functions in a Unix environment. Microsoft continues to develop

Winsock (now without the capital “S”) for all versions of Windows.

It is somewhat surprising, given the popularity of the TCP/IP protocol architec-

ture for networks and the popularity of the Microsoft Windows operating system for

PCs, that it took so long for TCP/IP and Windows to come together. For a while,

Microsoft championed the virtues of multimedia CD-ROMs over the joys of surfing

the Internet. That quickly changed when Microsoft got on the Internet bandwagon

(much to the chagrin of first-wave Internet companies like Netscape). In fairness to

Microsoft, there were lots of established companies, such as Novell, that failed to

foresee the rise of the Internet and TCP/IP and their importance in networking.

There were several reasons for the late merging of Windows and TCP/IP.

TCP/IP AND WINDOWS

First, TCP/IP was always closely associated with the Unix world of academics

and research institutions. As such, Unix (and the TCP/IP that came with it) was

valued as an open standard that was easily and readily available, and in some

cases even free. Windows, on the other hand, was a commercial product by

Microsoft intended for corporate or private use of PCs. Windows came to be

accepted as a proprietary, de facto standard, easily and readily available, but

never for free. Microsoft encouraged developers to write applications for

Windows, but until the release of Windows for Workgroups (WFW) these appli-

cations were almost exclusively “stand-alone” products intended to run complete

on a Windows PC. Even with the release of Windows for Workgroups, the net-

work interface bundled with WFW was not TCP/IP, but NetBIOS, a network

interface for LANs jointly owned by IBM and Microsoft.

Second, in spite of Windows multitasking capabilities (the ability to run more

than one process at a time), Windows used a method of multitasking known as

“non-preemptive multitasking.” In non-preemptive multitasking, a running process

had to “pause” during execution on its own, rather than the operating system taking

control and forcing the application to pause and give other processes a chance to

execute. Unix, in contrast, was a preemptive multitasking environment. With pre-

emptive multitasking, the Unix operating system keeps track of all running pro-

cesses, allocating computer and memory resources so that they all run in an

340 CHAPTER 13 Multiplexing and Sockets

efficient manner. This system is characterized by more work for the operating sys-

tem, but it is better for all the applications in the long run. Windows was basically

a multitasking GUI built on top of a single-user operating system (DOS).

SOCKETS FOR WINDOWS

The pressure that led to the development of the WinSock interface is simple to

relate. Users wanted to hook their Windows-based PCs into the Internet. The

Internet only understands one network protocol, TCP/IP. So WinSock was devel-

oped to satisfy this user need. At first the WinSock interface was used almost

exclusively to Internet-enable Windows PCs. That is, the applications developed

in those pre-Web days to use the WinSock interface were simple client process

interfaces to enable Windows users to Telnet to Internet sites, run FTP client

process programs to attach to Internet FTP servers, and so on. This might sound

limited, but before WinSock, Windows users were limited to dialing into ports

that offered asynchronous terminal text interfaces and performed TCP/IP

conversion for Windows users.

There were performance concerns with those early Windows TCP/IP imple-

mentations. The basic problem was the performance of multitasked processes in

the old Microsoft Windows non-preemptive environment. Most TCP/IP processes,

client or server, do not worry about when to run or when to pause, as the Unix

operating system handles that. With initial Windows applications written for the

WinSock DLL, all of the TCP/IP processes worried about the decision of whether

to run or pause, since the Windows operating system could not “suspend” or

pause them on its own. This voluntary giving up of execution time was a charac-

teristic of Windows, but not of most TCP/IP implementations.

Also, Unix workstations had more horsepower than PC architectures in those

early days, and the Unix operating system has had multitasking capabilities from

the start. Originally, Unix required a whole minicomputer’s resources to run

effectively. When PCs came along in the early 1980s, they were just not capable

of having enough memory or being powerful enough to run Unix effectively (a

real embarrassment for the makers of AT&T PCs for a while). By the early

1990s, when the Web came along, early Web sites often relied on RISC proces-

sors and more memory than Windows PCs could even address in those days.

It is worth pointing out that today, no one would hesitate to run an Internet

server on a Windows platform, and many do.

SOCKETS ON LINUX

Any network, large or small, can use sockets. In this section, let’s look at some

socket basics on Linux systems.

We could write socket client and server applications from scratch, but the

truth is that programmers hate to write anything from scratch. Usually, they hunt

around for code that does something pretty close to what they want and modify it

341The Windows Socket Interface

for the occasion (at least for noncommercial purposes). There are plenty of socket

examples available on the Internet, so we downloaded some code written by

Michael J. Donahoo and Kenneth L. Calvert. The code, which comes with no

copyright and a “use-at-your-own-risk” warning, is taken from their excellent

book, TCP/IP Sockets in C (Morgan Kaufmann, 2001). The book had a second

edition in 2009, and all the book’s current source code versions are available at

www.jeffdonahoo.com/practical/CSockets2/textcode.html.

We’ll use TCP because there should be more reliability derived from a connection-

oriented, three-way handshake protocol like TCP than in a simple request�response

protocol like UDP. This application sends a string to the server, where the server socket

program bounces it back. (If no port is provided by the user, the client looks for well--

known port 7, the TCP Echo function port.) First, we’ll list out and compile my version

of the client socket code (TCPsocketClient and DieWithError.c) on lnxclient.
(Ordinarily, we would put all this is its own directory.)

[root@lnxclient admin]# cat TCPsocketClient.c

#include ,stdio.h. /� for printf() and fprintf() �/
#include ,sys/socket.h. /� for socket(), connect(), send(), and recv() �/
#include ,arpa/inet.h. /� for sockaddr_in and inet_addr() �/
#include ,stdlib.h. /� for atoi() and exit() �/
#include ,string.h. /� for memset() �/
#include ,unistd.h. � for close() �/
#define RCVBUFSIZE 32 /� Size of receive buffer �/

void ErrorFunc(char �errorMessage); /� Error handling function �/

int main(int argc, char �argv[])
{

int sock; /� Socket descriptor �/
struct sockaddr_in echoServAddr; /� Echo server address �/
unsigned short echoServPort; /� Echo server port �/
char �servIP; /� Server IP address (dotted quad)

�/
char �echoString; /� String to send to echo server �/
char echoBuffer[RCVBUFSIZE]; /� Buffer for echo string �/
unsigned int echoStringLen; /� Length of string to echo �/
int bytesRcvd, totalBytesRcvd; /� Bytes read in single recv() and

total bytes read �/
if ((argc , 3) || (argc . 4)) /� Test for correct number of

arguments �/
{

fprintf(stderr,"Usage:%s,ServerIP. ,EchoWord. [,EchoPort.]
\n",argv[0]);
exit(1);

}
servIP 5 argv[1]; /� First arg: server IP address (dotted quad) �/
echoString 5 argv[2]; /� Second arg: string to echo �/

342 CHAPTER 13 Multiplexing and Sockets

http://www.jeffdonahoo.com/practical/CSockets2/textcode.html

if (argc 5 5 4)
echoServPort 5 atoi(argv[3]); /� Use given port, if any �/

else
echoServPort 5 7; /�7 is the well-known port for the echo service �/

/� Create a reliable, stream socket using TCP �/
if ((sock 5 socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) , 0)

DieWithError("socket() failed");

/� Construct the server address structure �/
memset(&echoServAddr, 0, sizeof(echoServAddr)); /� Zero out

structure �/
echoServAddr.sin_family 5 AF_INET; /� Internet

address
family �/

echoServAddr.sin_addr.s_addr 5 inet_addr(servIP); /� Server
IP address �/

echoServAddr.sin_port 5 htons(echoServPort); /� Server port �/
/� Establish the connection to the echo server �/
if (connect(sock, (struct sockaddr �) &echoServAddr,

sizeof(echoServAddr)) , 0)
DieWithError("connect() failed");

echoStringLen 5 strlen
(echoString);

/� Determine input length �/

/� Send the string to the server �/
if (send(sock, echoString, echoStringLen, 0) !5 echoStringLen)

DieWithError("send()sentadifferentnumberofbytesthanexpected");

/� Receive the same string back from the server �/
totalBytesRcvd 5 0;
printf("Received: "); /� Setup to print the echoed string �/
while (totalBytesRcvd , echoStringLen)
{

/� Receive up to the buffer size (minus 1 to leave space for a null
terminator) bytes from the sender �/
if ((bytesRcvd 5 recv(sock, echoBuffer, RCVBUFSIZE - 1, 0)) ,5 0)
DieWithError("recv() failed or connection closed prematurely");

totalBytesRcvd 1 5 bytesRcvd; /� Keep tally of total bytes �/
echoBuffer[bytesRcvd] 5 ‘\0’; /� Terminate the string! �/
printf(echoBuffer); /� Print the echo buffer �/
}
printf("\n"); /� Print a fi nal linefeed �/

close(sock);
exit(0);

}

343The Windows Socket Interface

[root@lnxclient admin]# cat DieWithError.c
#include ,stdio.h. /� for perror() �/
#include ,stdlib.h. /� for exit() �/
void DieWithError(char �errorMessage)
{

perror(errorMessage);
exit(1);

}
[root@lnxclie3nt admin]#

The steps in the program are fairly straightforward. First, we create a stream

socket, and then establish the connection to the server. We send the string to

echo, wait for the response, print it out, clean things up, and terminate. Now we

can just compile the code and get ready to run it.

[root@lnxclient admin]# gcc �o TCPsocketClient TCPsocketClient.c
DieWithError.c
[root@lnxclient admin]#

Before we run the program with TCPsocketoClient ,ServerIPAddress.

,StringtoEcho. ,ServerPort. , we need to compile the server portion of the

code on lnxserver. The code in these two files is more complex.

[root@lnxserver admin]# cat TCPsocketServer.c
#include ,stdio.h. /� for printf() and fprintf() �/
#include ,sys/socket.h. /� for socket(), bind(), and connect() �/
#include ,arpa/inet.h. /� for sockaddr_in and inet_ntoa() �/
#include ,stdlib.h. /� for atoi() and exit() �/
#include ,string.h. /� for memset() �/
#include ,unistd.h. /� for close() �/

#define MAXPENDING 5 /� Maximum outstanding connection requests �/

void ErrorFunc(char �errorMessage); /� Error handling function �/
void HandleTCPClient(int clntSocket); /� TCP client handling function �/

int main(int argc, char �argv[])
{

int servSock; /� Socket descriptor for server �/
int clntSock; /� Socket descriptor for client �/
struct sockaddr_in echoServAddr; /� Local address �/
struct sockaddr_in echoClntAddr; /� Client address �/
unsigned short echoServPort; /� Server port �/
unsigned int clntLen; /� Length of client address data

structure �/

344 CHAPTER 13 Multiplexing and Sockets

if (argc !5 2) /� Test for correct number of arguments �/
{

fprintf(stderr, "Usage: %s ,Server Port.\n", argv[0]); exit(1);
}

echoServPort 5 atoi(argv[1]); /� First arg: local port �/
/� Create socket for incoming connections �/
if ((servSock 5 socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) , 0)

DieWithError("socket() failed");

/� Construct local address structure �/
memset(&echoServAddr, 0, sizeof(echoServAddr)); /� Zero out

structure �/
echoServAddr.sin_family 5 AF_INET; /� Internet

address
family �/

echoServAddr.sin_addr.s_addr 5 htonl(INADDR_ANY); /� Any incoming
interface �/

echoServAddr.sin_port 5 htons(echoServPort); /� Local port
�/

/� Bind to the local address �/

if (bind(servSock, (struct sockaddr �) &echoServAddr,
sizeof(echoServAddr)) , 0)
DieWithError("bind() failed");

/� Mark the socket so it will listen for incoming connections �/
if (listen(servSock, MAXPENDING) , 0)

DieWithError("listen() failed");

for (;;) /� Run forever �/
{

/� Set the size of the in-out parameter �/
clntLen 5 sizeof(echoClntAddr);

/� Wait for a client to connect �/
if ((clntSock 5 accept(servSock, (struct sockaddr �)

&echoClntAddr,
&clntLen)) , 0)

DieWithError("accept() failed");

/� clntSock is connected to a client! �/
printf("Handling client %s\n", inet_ntoa(echoClntAddr.sin_addr));
HandleTCPClient(clntSock);

}
/� NOT REACHED �/

}

345The Windows Socket Interface

[root@lnxserver admin]# cat HandleTCPClient.c

#include ,stdio.h. /� for printf() and fprintf()
�/

#include ,sys/socket.h. /� for recv() and send() �/
#include ,unistd.h. /� for close() �/

#define RCVBUFSIZE 32 /� Size of receive buffer �/
void DieWithError(char �errorMessage); /� Error handling function �/
void HandleTCPClient(int clntSocket)
{

char echoBuffer[RCVBUFSIZE]; /� Buffer for echo string �/
int recvMsgSize; /� Size of received message �/

/� Receive message from client �/
if ((recvMsgSize5recv(clntSocket, echoBuffer, RCVBUFSIZE, 0)),0)

DieWithError("recv() failed");

/� Send received string and receive again until end of transmission �/
while (recvMsgSize. 0) /� zero indicates end of transmission �/
{

/� Echo message back to client �/
if (send(clntSocket,echoBuffer, recvMsgSize,0)!5 recvMsgSize)

DieWithError("send() failed");

/� See if there is more data to receive �/
if((recvMsgSize5recv(clntSocket,echoBuffer,RCVBUFSIZE,0)),0)

DieWithError("recv()failed");
}
close(clntSocket); /� Close client socket �/

}
[root@lnxserver admin]#

The server socket performs a passive open and waits (forever, if

need be) for the client to send a string for it to echo. It’s the

HandleTCPClient.c code that does the bulk of this work. We also need the

ErrorFunc.c code, as before, so we have three files to compile instead of

only two, as on the client side.

[root@lnxserver admin]# gcc -o TCPsocketServer TCPsocketServer.c
HandleTCPClient.c DieWithError.c
[root@lnxserver admin]#

346 CHAPTER 13 Multiplexing and Sockets

Now we can start up the server on lnxserver using the syntax

TCPsocketServer ,ServerPort. . (Always check to make sure the port you

choose is not in use already!)

[root@lnxserver admin]# . /TCPsocketServer 2005

The server just waits until the client on lnxclient makes a connection and

presents a string for the server to echo. We’ll use the string TEST.

[root@lnxclient admin]# . /TCPsocketClient 10.10.11.66 TEST 2005
Received: TEST
[root@lnxclient admin]#

Not much to that. It’s very fast, and the server tells us that the connection

with lnxclient was made. We can cancel out of the server program.

Handling client 10.10.12.166
^C
[root@lnxserver admin]#

We’ve also used Wireshark to capture any TCP packets at the server while the

socket client and server were running. Figure 13.4 shows what we caught.

So that’s the attraction of sockets, especially for TCP. Ten packets (two ARPs

are not shown) made their way back and forth across the network just to echo

“TEST” from one system to another. Only two of the packets actually do this, as

the rest are TCP connection overhead.

But the real power of sockets is in the details, or lack of details. Not a single

line of C code mentioned creating a TCP or IP packet header, field values, or

anything else. The stream socket interface did it all, so the application program-

mer can concentrate on the task at hand and not be forced to worry about network

details.

FIGURE 13.4

The socket client�server TCP stream captured. This is a completely normal TCP

connection accomplished with a minimum of coded effort.

347The Windows Socket Interface

QUESTIONS FOR READERS

Figure 13.5 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. In the figure, two clients have picked the same ephemeral port for their FTP

connection to the server. What is it about the TCP connection that allows this

to happen all the time without harm?

2. What if the user at the same client PC ran two FTP sessions to the same

server process? What would have to be different to make sure that both TCP

control (and data) connections would not have problems?

3. What is the attraction of sockets as a programming tool?

4. Why can’t the same type of socket interface be used for both TCP and UDP?

5. Are fully supported raw sockets an overstated threat to the Internet and

attached hosts?

Server Socket:
172.16.19.10:22 FTP Server

FTP Client 1:
IP: 192.168.14.76

Port: 50001

FTP Client 2:
IP: 192.168.243.17

Port: 50001

Internet

Application Programs

Stream
Interface

Datagram
Interface

TCP UDP

IP Layer

Network

Raw Socket
Interface

FIGURE 13.5

A socket in an FTP server and the various types of socket programming interfaces.

348 CHAPTER 13 Multiplexing and Sockets

PART

III
Routing
and Routing
Protocols

Internet service providers (ISPs) use routers and routing protocols to connect
pieces of the Internet together. This part explores IGPs such as RIP, OSPF,
and IS-IS, and also BGP. It includes a look at multicast routing protocols
and MPLS, a method of IP switching.

• Chapter 14—Routing and Peering
• Chapter 15—IGPs: RIP, OSPF, and IS-IS
• Chapter 16—Border Gateway Protocol
• Chapter 17—Expanded Uses for BGP
• Chapter 18—Multicast

This page intentionally left blank

CHAPTER

14Routing and Peering

WHAT YOU WILL LEARN

In this chapter, you will learn about how routing differs from switching, the other network
layer technology. We’ll compare connectionless and connection-oriented networking
characteristics and see how quality of service (QOS) can be supported on both.

You will learn what a routing protocol is and what they do. We’ll investigate the
differences between interior and exterior routing protocols as the terms apply to an
ISP. We’ll also talk about routing policies and the role they play on the modern
Internet.

In Chapter 9, we introduced the concept of forwarding packets hop by hop across

a network of interconnected routers and LANs. This process is loosely called

“routing,” and that chapter comprised a first look at routing tables (and the associ-

ated forwarding tables). In this chapter, we’ll discuss how ISPs manipulate their

routing tables with routing policies to influence the flow of traffic on the Internet.

This chapter will focus more closely on the routing tables on hosts. In Chapters

14 and 15, we discuss in more detail the routing tables and routing policies on the

network routers.

This chapter will look at the routing tables on the hosts on the LANs, as

shown in Figure 14.1. But we’ll also discuss, for the first time, how the two ISPs

on the network (called Ace ISP and Best ISP) relate to each other and how their

routing tables ensure that traffic flows most efficiently between LAN1 and

LAN2. For example, it’s obviously more effective to send LAN1�LAN2 traffic

over the direct link between P4 and P2 instead of shuttling them onto the Internet

from P4 and relying on Internet routers (beyond the control of either Best or Ace

ISP) to route the packets back to P2. (Of course, traffic could flow from P4 to P7,

or even end up at P9 to be forwarded to P7, but this is just an example.) But how

do the routers know how P2 and P4 are connected? More importantly, how do the

routers PE5 and PE1 know how other routers are connected? What keeps router

PE5 from forwarding Internet-bound traffic to P9 instead of P4? And, because P9

is also connected to P4, why should it be a big deal anyway?

This chapter will begin to answer these questions, and the next two chapters

will complete the investigation. However, it should be mentioned right away that

connectionless routers that route (forward) each packet independently through the

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00014-X

© 2017 Elsevier Inc. All rights reserved.
351

http://dx.doi.org/10.1016/B978-0-12-811027-0.00014-X

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 14.1

The hosts on the LANs have routing tables as well as the routers. The ISPs on the

Illustrated Network have chosen to implement an ISP peering arrangement.

352 CHAPTER 14 Routing and Peering

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

353Routing and Peering

network are not the only way ISPs can connect LANs on the Internet. The net-

work nodes can be connection-oriented switches that forward packets along fixed

paths set up through the network nodes from source to destination.

We’ve already discussed connectionless and connection-oriented services at

the transport layer (UDP and TCP). Let’s see what the differences are between

connectionless and connection-oriented services at the network layer.

NETWORK LAYER ROUTING AND SWITCHING
Are the differences between connection-oriented and connectionless networking

at the network layer really that important? Actually, yes. The difference between

the way connectionless router networks handle traffic (and link and node failures)

is a major reason that IP has basically taken over the entire world of networking.

A switch in modern wide-area networking is a bit different than a top of rack

or leaf-spine LAN switch in a data center. In an ISP, a network node forwards

packets toward a destination depending on a locally significant connection identi-

fier over a fixed path. This fixed path is called a virtual circuit and is set up by a

signaling protocol (a switched virtual circuit, or SVC) or by manual configuration

(a permanent virtual circuit, or PVC). A connection is a logical association of

two endpoints. Connections only need be referenced, not identified by “to” and

“from” information. A data unit sent on “connection 22” can only flow between

the two endpoints where it is established—there is no need to specify more.

(We’ve seen this already at Layer 2 when we looked at the connection-oriented

PPP frame.) As long as there is no confusion in the switch, connection identifiers

can be reused, and therefore have what is called local significance only.

Packets on SVCs or PVCs are often checked for errors hop by hop and are

resent as necessary from node to node (the originator plays no role in the pro-

cess). Packet switching networks offer guaranteed delivery (as least as error-free

as possible). The network is also reliable in the sense that certain performance

guarantees in terms of bandwidth, delay, and so on can be enforced on the con-

nection because packets always follow the same path through the network. A

good example of a switched network is the public switched telephone network

(PSTN). SVCs are normal voice calls and PVCs are the leased lines used to link

data devices, but frame relay and asynchronous transfer mode (ATM) are also

switched network technologies. We’ll talk about public switched network technol-

ogies such as frame relay and ATM in a later chapter.

On the other hand, a router is a network node that independently forwards

packets toward a destination based on a globally unique address (in IP, the IP

address) over a dynamic path that can change from packet to packet, but usually

is fairly stable over time. Packets on router networks are seldom checked for

errors hop by hop and are only resent (if necessary) from host to host (the origina-

tor plays a key role in the process). Packet routing networks offer only “best-

effort” delivery (but as error-free as possible). The network is also considered

354 CHAPTER 14 Routing and Peering

“unreliable” in the sense that certain performance guarantees in terms of band-

width, delay, and so on cannot be enforced from end to end because packets often

follow different paths through the network. A good example of a router-based net-

work is the global, public Internet.

CONNECTION-ORIENTED AND CONNECTIONLESS NETWORKS
Many layers of a protocol stack, especially the lower layers, offer a choice of con-

nection-oriented or connectionless protocols. These choices are often independent.

We’ve seen that connectionless IP can use connection-oriented PPP at Layer 2. But

what is it that makes a network connectionless? Not surprisingly, it’s the

implementation of the network layer. IP, the Internet protocol suite’s network layer

protocol, is connectionless, so TCP/IP networks are connectionless.

Connection-oriented networks are sometimes called switched networks, and

connectionless networks are often called router-based networks. The signaling

protocol messages used on switched networks to set up SVCs are themselves

routed between switches in a connectionless manner using globally unique

addresses (such as telephone numbers). These call setup messages must be routed,

because obviously there are no connection paths to follow yet. Every switched

network that offers SVCs must also be a connectionless, router-based network as

well, at least for what is often called the control plane.

One of the major reasons to build a connectionless network like the Internet

was that it was inherently simpler than connection-oriented networks that must

route signaling setup messages and forward traffic on connections. The Internet

essentially handles everything as if it were a signaling protocol message. The dif-

ferences between connection-oriented switched networks and connectionless

router networks are shown in Table 14.1.

Table 14.1 Switched and Connectionless Networks Compared by Major
Characteristics

Characteristic Switched Network Connectionless Network

Design philosophy Connection oriented Connectionless
Addressing unit Circuit identifiers Network and host address
Scope of address Local significance Globally unique
Network nodes Switches Routers
Bandwidth use As allowed by “circuit” Varies with number and size

of frames
Traffic processing Signaling for path setup Every packet routed

independently
Examples Frame relay, ATM, ISDN, PSTN,

most other WANs
IP, Ethernet, most other
LANs

355Connection-Oriented and Connectionless Networks

Note that every characteristic listed for a connectionless network applies to

the signaling network for a switched network. It would not be wrong to think of

the Internet as a signaling network with packets that can carry data instead of

connection (call) setup information. The whole architecture is vastly simplified by

using the connectionless network for everything.

The simplified router network, in contrast to the switched network, would auto-

matically route around failed links and nodes. In contrast, connection-oriented net-

works lost every connection that was mapped to a particular link or switch. These

had to be re-established through signaling (SVCs) or manual configuration

(PVCs), both of which involved considerable additional traffic loads (SVCs) or

delays (PVCs) for all affected users. One of the original aims of the early

“Internet” was explicitly to demonstrate that packet networks were more robust

when faced with failures. Therefore, connectionless networks could be built more

cheaply with relatively “unreliable” components and still be resistant to failure.

Today, “best-effort” and “unreliable” packet delivery over the Internet is much

better than any other connection-oriented public data network not so long ago.

Of course, an Internet router has to maintain a list of every possible reachable

destination in the world (and so did signaling nodes in connection-oriented net-

works), but processors have kept up with the burden imposed by the growth in

the scale of the routing tables. A switch only has to keep track of local associa-

tions of two end-points (connections) currently established. We’ll talk about mul-

tiprotocol label switching (MPLS) in Chapter 19 as an attempt to introduce the

efficiencies of switching into router-based networking. (MPLS does not relieve

the main burdens of interdomain routing in and of itself, but we will see that

MPLS has traffic engineering capabilities that allow ISPs to shift the paths that

carry this burden.)

In only one respect is there even any discussion about the merits of connec-

tion-oriented networks versus the connectionless Internet. This is in the area of the

ability of connectionless router networks to deliver quality of service (QoS).

QUALITY OF SERVICE

It might seem odd to talk about QoS in a chapter on connectionless Internet rout-

ing and forwarding. But the point is that in spite of the movement to converge all

types of information (voice and video as well as data) onto the Internet, no uni-

versal inter-domain QoS mechanism exists. QoS is at heart a queue management

mechanism, and only by applying these strategies across an entire routing domain

will QoS result in any route optimization at all. Even then, no ISP can impose its

own QoS methodology on any other, although consistent methods are emerging.

There are often differences in vendor implementation as well.

One of the biggest challenges in quality of service (QoS) discussions is that

there is no universal, accepted agreement of just what network QoS actually

represents. Some sources define QoS quite narrowly, and others define it more

356 CHAPTER 14 Routing and Peering

broadly. For the purposes of this discussion, a broader definition is more desir-

able. We’ll use six parameters in this book.

COS OR QOS?
Should the term for network support of performance parameters be “class of service” (CoS) or

“quality of service” (QoS)? Many people use the terms interchangeably, but in this book QoS is

used to mean that parameters can take on almost any value between maximum and minimum.

CoS, on the other hand, establishes groups of parameters based on real world values (e.g.,

bandwidth at 10, 100, or 1000 Mbps with associated delays), and is offered as a “class” to

customers (e.g., bronze, silver, or gold service).

Our working definition of QoS in this book is the “ability of an application to

specify required values of certain parameters to the network, values without which

the application will not be able to function properly.” The network either agrees to

provide these parameters for the applications data flow, or not. These parameters

include things like minimum bandwidth, maximum delay, and security. It makes no

sense to put delay-sensitive voice traffic onto a network that cannot deliver delays

less than 2 or 3 seconds one way (voice service suffers at substantial delays), or to

put digital, wide-screen video onto a network of low-bandwidth connections.

Table 14.2 shows some typical example values that are used often. In some

cases, an array of values is offered to customers as a CoS.

Bandwidth is usually the first and foremost QoS parameters, for the simple

reason that bandwidth was for a long time the only QoS parameter that could be

delivered by networks with any degree of consistency. It has also been argued

that, given enough bandwidth (exactly how much is part of the argument), every

other QoS parameter becomes irrelevant.

Jitter is just delay variation, or how much the end-to-end network latency var-

ies from time to time due to effects such as network queuing and link failures,

which cause alternate routes to be used. Information loss is just the effect of net-

work errors. Some applications can recover from network errors by retransmission

and related strategies. Other applications, most notably voice and video, cannot

realistically resend information and must deal with errors in other ways, such as

the use of forward error correction (FEC) codes. Either way, the application must

be able to rely on the network to lose only a limited amount of information, either

Table 14.2 The Six QoS Parameters

QoS Parameter Example Values (Typical)

Bandwidth (minimum) 1.5 Mbps, 155 Mbps, 1 Gbps
Delay (maximum) 50-millisecond (ms) round-trip delay, 150-ms delay
Jitter (delay variation) 10% of maximum delay, 5-ms variation
Information loss (error effects) 1 in 10,000 packets undelivered
Security All data streams encrypted and authenticated

357Connection-Oriented and Connectionless Networks

to minimize resends (data) or to maximize the quality of the service (voice/

video).

Availability and reliability are related. Some interpret reliability as a local net-

work quality and availability as global quality. In other words, if my local link

fails often, I cannot rely on the network, but global availability to the whole pool

of users might be very good. There is another way that reliability is important in

TCP/IP. IP is often called an unreliable network layer service. This does not

imply that the network fails often, but that, at the IP layer, the network cannot be

relied on to deliver any QoS parameter values at all, not even minimum band-

width. But keep in mind that a system built of unreliable components can still be

reliable, and QoS is often delivered in just this fashion.

Security is the last QoS parameter to be added, and some would say that it is

the most important of all, especially today.

Many discussions of QoS focus on the first four items on the parameter list.

But reliability and security also belong with the others, for a number of reasons.

Security concerns play a large part in much of IPv6. And reliability can be maxi-

mized in IP routing tables. There are several other areas where security and reli-

ability impact QoS parameters; the items discussed here are just a few examples.

Service providers seldom allow user application to pick and choose values

from every QoS category. Instead, many service providers will gather the typical

values of the characteristics for voice, video, and several types of data applica-

tions (bulk transfer, Web access, and so on), and bundle these as a class of service

(CoS) appropriate for that traffic flow. (On the other hand, some sources treat

QoS and CoS as synonyms, although QoS came from the “voice world” and CoS

came from the “data world.”) Usually, the elements in a CoS suite that a service

provider offers have distinctive names, either by type (voice, video) or character-

istic (“gold” level availability), or even in combination (“silver-level video

service”).

The promise of widespread and consistent QoS has been constantly derailed

by the continuing drop in the cost (and availability) of network links of higher

and higher bandwidth. Bandwidth is a well-understood network resource (some

would say the only well-understood network resource), and those who control net-

work budgets would rather spend a dollar on bandwidth (known effects, low risk,

etc.) than on other QoS schemes such as DiffServ (which might have implementa-

tion issues).

HOST ROUTING TABLES
Now that we’ve shown that the Illustrated Network is firmly based on connection-

less networking concepts, let’s look at the routing tables (not switching tables) on

some of the hosts. Host routing tables can be very short. When initially config-

ured, many of them have only four types of entries.

358 CHAPTER 14 Routing and Peering

Loopback—Usually called lo0 on Unix-based systems (and routers), this is the

prefix 127/8 in IPv4 and ::1 in IPv6. Not only used for testing, the loopback

is a stable interface on a router (or host) that should not change even if the

interface addresses do.

The host itself—There will be one entry for every interface on the host with

an IP address. This is a /32 address in IPv4 and a /128 address in IPv6.

The network—Each host address has a network portion that gets its own

routing table entry.

The default gateway—This tells the host which router to use when the

network portion of the destination IP address does not match the network

portion of the source address.

GATEWAY OR EDGE ROUTER?
A lot of texts simply say that the term “router” is the new term for “gateway” on the Internet, but

that this old term still shows up in a number of acronyms (such as IGP). Other sources use the

term “gateway” as a kind of synonym for what we’ve been calling the customer-edge router,

meaning a router with only two types of routing decisions, that is, local or Internet. A DSL

“router” is really just a “gateway” in this terminology, translating between local LAN protocols

and service provider protocols. On the other hand, a backbone router without customer LANs is

definitely a router in any sense of the term.

In this book, we’ll use the terms “gateway” and “router” more or less interchangeably,

keeping in mind that the gateway terminology is still used for the entry or egress point of a

particular subnet.

ROUTING TABLES AND FREEBSD

FreeBSD systems keep this fundamental information in the /etc/default/rc.
conf file. But this information can be manipulated with the ifconfig command,

which we’ve used already. However, interface information does not automatically

jump into the routing table unless the changes are made to the rc.conf file. (If

the network_interfaces variable is kept to the default of auto, the system finds its

network interfaces at boot time.)

Let’s use the netstat 2nr command to take a closer look at the routing

table on bsdserver.

bsdserver# netstat -nr

Routing tables
Internet:
Destination Gateway Flags Refs Use Netif Expire
Default 10.10.12.1 UGSc 1 97 em0
10.10.12/24 link#1 UC 2 0 em0
10.10.12.1 00:05:85:8b:bc:db UHLW 2 0 em0 335
10.10.12.52 00:0e:0c:3b:88:56 UHLW 0 4 em0 1016
127.0.0.1 127.0.0.1 UH 0 6306 lo0

359Host Routing Tables

Internet6:
Destination Gateway Flags Netif Expire
::1 ::1 UH lo0
fe80::%em0/64 link#1 UC em0
fe80::20e:cff:fe3b:8732%em0 00:0e:0c:3b:87:32 UHL lo0
fe80::%xl0/64 link#2 UC xl0
fe80::2b0:d0ff:fec5:9073%xl0 00:b0:d0:c5:90:73 UHL lo0
fe80::%lo0/64 fe80::1%lo0 Uc lo0
fe80::1%lo0 link#4 UHL lo0
ff01::/32 ::1 U lo0
ff02::%em0/32 link#1 UC em0
ff02::%xl0/32 link#2 UC xl0
ff02::%lo0/32 ::1 UC lo0

FreeBSD merges the routing and ARP tables, which is why hardware

addresses (and their timeouts) appear in the output. The C and c flags are host

routes, and the S is a static entry.

To manually configure an Ethernet interface and add the route to the routing

table, we use the ifconfig and route commands.

bsdserver# ifconfig em0 inet 10.10.12.77/24
bsdserver# route add �net 10.10.12.77 10.10.12.1

ROUTING AND FORWARDING TABLES
Remember, the routing tables we’re looking at here are tables of routing information and mainly

for human inspection. Generally, everything the system learns about the network from a routing

protocol is put into the routing table. But not all of the information is used for packet

forwarding.

At the software level, the system creates a forwarding table in a much more compact and

machine-useable format. The forwarding table is used to determine the output, the next-hop

interface (if the system is not the destination). However, we’ll use the friendly routing tables to

illustrate the routing process, as is normally done.

ROUTING TABLES AND REDHAT LINUX

RedHat Linux systems keep most network configuration information in the /etc/
sysconfig and /etc/sysconfig/network-scripts directories. The hostname,

default gateway, and other information are kept in the /etc/sysconfig/network
file. The Ethernet interface-specific information, such as IP address and network

mask for eth0, is in the /etc/sysconfig/network-scripts/ifcfg-eth0 file

(loopback is in ifcfg-lo0).
Let’s look at the lnxclient routing table with the netstat 2nr command.

360 CHAPTER 14 Routing and Peering

[root@lnxclient admin]# netstat -nr
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
10.10.12.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 10.10.12.1 0.0.0.0 UG 0 0 0 eth0

Oddly, the host address isn’t here. This system does not require a route for the

interface address bound to the interface. The loopback entries are slightly differ-

ent as well. Only network entries are in the Linux routing table. If we added a

second Ethernet interface (eth1) with IPv4 address 172.16.44.98 and a different

default router (172.16.44.1), we’d add that information with the ipconfig and

route commands.

[root@lnxclient admin]# ifconfig eth1 172.16.44.98 netmask
255.255.255.0
[root@lnxclient admin]# route add default gw 172.16.44.0 eth1

We’re not looking at IPv6 on the Linux systems, so no IPv6 information is

displayed.

ROUTING AND WINDOWS

Windows, of course, handles things a little differently. We’ve already used

ipconfig to assign addresses, and Windows uses the route print command to

display routing table information, such as on wincli2. Let’s look at IPv4 first.

PS C:\Users\walterg.route print
==
IPv4 Route Table
==
Active Routes:
Network
Destination

Netmask Gateway Interface Metric

0.0.0.0 0.0.0.0 10.10.12.1 10.10.12.222 20
127.0.0.0 255.0.0.0 On-link 127.0.0.1 306
127.0.0.1 255.255.255.255 On-link 127.0.0.1 306
127.255.255.255 255.255.255.255 On-link 127.0.0.1 306
10.10.12.0 255.255.255.0 On-link 10.10.12.222 276
10.10.12.1 255.255.255.255 On-link 10.10.12.222 276
10.10.12.255 255.255.255.255 On-link 10.10.12.222 276
224.0.0.0 240.0.0.0 On-link 127.0.0.1 306
224.0.0.0 240.0.0.0 On-link 10.10.12.222 276
224.0.0.0 240.0.0.0 On-link 10.10.12.222 256
255.255.255.255 255.255.255.255 On-link 127.0.0.1 306

361Host Routing Tables

255.255.255.255 255.255.255.255 On-link 10.10.12.222 276
255.255.255.255 255.255.255.255 On-link 10.10.12.222 256
==
Persistent Routes:
None

The table is an odd mix of loopbacks, multicast, and host and router informa-

tion. Persistent routes are static routes that are not purged from the table. We can

delete information, add to it, or change it. If no gateway is provided for a new

route, the system attempts to figure it out on its own.

Now let’s look at the IPv6 routing table.

IPv6 Route Table
==
Active Routes:
If Metric Network Destination Gateway
1 306 ::1/128 On-link
3 276 fe80::/64 On-link
2 261 fe80::/64 On-link
2 261 fe80::202:b3ff:fe27:fa8c/128 On-link
3 276 fe80:5:85ff:fe8b:bcdb/128 On-link
1 306 ff00::/8 On-link
3 276 ff00::/8 On-link
2 261 ff00::/8 On-link

===
Persistent Routes:

None

All we have are the IPv6 link-local addresses for wincli2 and CE6. This won’t

even let us ping the wincli1 system on LAN1, even though we know to what

router to send the IPv6 packets.

C PS C:\Users\walterg.ping -6 fe80::20c:cff:fe3b:883c

Pinging fe80::20c:cff:fe3b:883c with 32 bytes of data:

No route to destination.
Specify correct scope-id or use �s to specify source address.

No route to destination.
Specify correct scope-id or use �s to specify source address.

No route to destination.
Specify correct scope-id or use �s to specify source address.

No route to destination.
Specify correct scope-id or use �s to specify source address.

Ping statistics for fe80::20c:cff:fe3b:883c:
Packets: Sent 5 4, Received 5 0, Lost 5 4 (100% loss)

362 CHAPTER 14 Routing and Peering

What’s wrong? Well, we’re using link-local addresses, for one thing.

Also, we have no way to get the routing information known about LAN2 and

router CE6 to LAN1 and router CE0 (and about LAN1 to LAN2). That’s the

job of the Interior Gateway Protocols (IGPs), the types of routing protocols

that run between ISP’s routers. Why do we need them? Let’s look at the

Internet first, and then we’ll use an IPG in the next chapter so that the IPv6

ping works.

THE INTERNET AND THE AUTONOMOUS SYSTEM
Before taking a more detailed look at the routing protocols that TCP/IP uses to

ensure that every router knows how to forward packets closer to their ultimate

destination, it’s a good idea to have a firm grasp of just what routing protocols

are trying to accomplish on the modern Internet. The Internet today is composed

of interlocking network pieces, much like a jigsaw puzzle of global proportions.

Each piece is called an autonomous system (AS), and it’s convenient to think of

each ISP as an AS, although this is not strictly true. The idea of a routing

domain—a collection of routers under the control of a single administration which

determines overall routing policy—is related to the AS, but again these are not

identical.

ROUTING PROTOCOLS AND ROUTING POLICIES
A routing protocol is run on a router (and can be run on a host) to allow the router to dynamically

learn about its network neighborhood and pass this knowledge on until every router has built a

consistent view of the network “map” and the least cost (“best”) place to forward traffic toward

any reachable destination. Until the protocol converges there is always the possibility that some

routers do not have the latest view of the network and might forward packets incorrectly.

Actually, it’s possible that some of the “maps” never converge and that some less-than-optimal

path might be taken. But that need not be a disaster, although the reasons are far beyond this

simple introduction.

A routing policy can be defined as “a rule implemented on the router to determine the

handling of routing protocol information.” An example of an ISP’s routing policy rule is to

“accept no routing protocol updates from hosts or routers not part of this ISP’s network.” This

rule, intended to minimize the effects of malicious users, can be combined with others to create

an overall routing policy for the whole ISP.

The term should not be confused with policy routing. Policy routing is usually defined as the

forwarding of packets based not only on destination address, but also on some other fields in the

TCP/IP header, especially the IPv4 ToS bits. Confusingly, policy routing can be made more

effective with routing policies, but this book will not deal with policy routing or QoS issues.

Routing protocols do not and cannot blend all these ASs together into a seam-

less whole all on their own. Routing protocols allow routers or networks to share

adjacency information with their neighbors. They establish the global connectivity

between routers, within an AS and without, and ASs in turn establish the global

363The Internet and the Autonomous System

connectivity that characterizes the Internet. Routing policies change the behavior

of the routing protocols so AS connectivity is made into what the ISPs want (usu-

ally, ISPs add some term like “AS connectivity is made more effective and effi-

cient” but routing policy doesn’t always do this, as we’ll see).

Routers are the network nodes of the global public Internet, and they pass IP

address information back and forth as needed. The result is that every router

knows how to reach every IP network (really, the IP prefix) anywhere in the

world, or at least those that advertise that they are willing to accept traffic for that

prefix. They also know when a link or router has failed, and thus other networks

might then be (temporarily) unreachable. Routers can dynamically route around

failed links and routers, unless the destination network is connected to the

Internet by only one link or happens to be right there on the local router.

There are no users on the router itself that originate or read email (as an exam-

ple), although routers routinely take on a client or a server role (or both) for con-

figuration and administrative purposes. Routers usually pass IP packet traffic

through from one interface to another, input port to output port, while trying to

ensure that the packets are making progress through the network and moving one

step closer to its destination. It is said that routers route packets “hop by hop”

through the Internet. In a very real sense, routers don’t care if the packet ever

reaches the destination or not: All the router knows is that if the IP address prefix

is X, that packet goes out port Y.

THE INTERNET TODAY
There is really no such thing as the Internet today. The concept of “the Internet”

is a valid one, and people still use the term all the time. But the Internet is no lon-

ger a thing to be charted and understood and controlled and administered as in

the early days. What we have today is an interlocking grid of ISPs, an ISP “grid-

net,” so to speak. Actually, the graph of the Internet is a bit less organized than

this, although ISPs closer to the core have a higher level of interconnection than

those at the edge. This is an interconnected mesh of ISPs and related Internet-con-

nected entities such as government bureaus and learning institutions. Also, keep

in mind that in addition to the “big-I internet,” there are other internetworks that

are not part of this global, public whole.

If we think of the Internet as a unity, and have no appreciation of actual ISP

connectivity, then the role of routing protocols and routing policies on the

Internet today cannot be understood. Today, Internet talk is peppered with terms

like peers, aggregates, summaries, Internet exchange points (IXPs), backbones,

border routers, edge routers, and points of presence (POPs). These terms don’t

make much sense in the context of the Internet as a unified network.

The Internet as the spaghetti bowl of connected ISPs is shown in Figure 14.2.

There are large national ISPs, smaller regional ISPs, and even tiny local ISPs.

364 CHAPTER 14 Routing and Peering

There are also pieces of the Internet that act as exchange points for traffic, such

as the Internet Exchange Points (IXPs). IXPs can by housed in POPs (also called

carrier hotels), formal places dedicated for this purpose, and in various colloca-

tion facilities, where the organizations rent floor space for a rack of equipment

(“broom closet”) or larger floor space for more elaborate arrangements, such as

redundant links and power supplies. The IXPs are also called transit exchanges in

some contexts and are often run by former telephone companies.

Each cloud, except the one at the top of the figure, basically represents an

ISP’s AS. Within these clouds, the routing protocol can be an IGP such as OSPF,

because it is presumed that each and every network device (such as the backbone

routers) in the cloud is controlled by the ISP. However, between the clouds, an

EGP such as BGP must be used, because no ISP can or should be able to directly

control a router in another ISP’s network.

The ISPs are all chained together by a complex series of links with only a few

hard and fast rules (although there are exceptions). As long as local rules are fol-

lowed, as determined by contract, the smallest ISP can link to another ISP and

High speed Medium speed Low speed

Customer Customer Customer
Customer

Customer

Customer

Customer

CustomerCustomer

Customer

Customer

Customer

Customer

Customer
Customer

Customer

Customer

Heavily interconnected
public peering points

Large, National ISPs

Regional ISPs

Small, Local ISPs

Large ISPs Connect
IXPs, POPs or

Collocation Facilities

Peer of ISP A,
Customer of

ISP B

ISP A ISP B

Customer
of ISP B

FIGURE 14.2

The haphazard way that ISPs are connected on today’s Internet, showing IXPs at the top.

Customers can be individuals, organizations, or other ISPs.

365The Internet Today

thus give their users the ability to participate in the global public Internet.

Increasingly, the nature of the linking between these ISPs is governed by a series

of agreements known as peering arrangements. Peers are equals, and national

ISPs may be peers to each other, but treat smaller ISPs as just another customer,

although it’s not all that unusual for small regional ISPs to peer with each other.

Peering arrangements detail the reciprocal way that traffic is handed off

from one ISP (and that means AS) to another. Peers might agree to deliver each

other’s packets for no charge, but bill non-peer ISPs for this privilege, because

it is assumed that the national ISP’s backbone will be shuttling a large number

of the smaller ISPs’ packets. But the national ISP won’t be using the small ISP

much. A few examples of national ISPs, peer ISPs, and customer ISPs are

shown in the figure. These large “Tier 1” ISPs all connect to one another and

usually pass traffic from one to another without worrying about payments.This

is just an example, and very large ISPs often have plenty of very small custo-

mers and some of those will be attached to more than one other ISP and employ

high capacity links. There will also be “stub AS” networks with no downstream

customers.

Millions of PCs and Unix systems act as clients, servers, or both on the

Internet. These hosts are attached to LANs (typically) and linked by routers to the

Internet. The LANs and “site routers” are just “customers” to the ISPs. Now, a

customer of even moderate size could have a topology similar to that of an ISP

with a distinct border, core, and aggregation or services routers. Although all

attached hosts conform to the client�server architecture, many of them are

strictly Web clients (browsers) or Web servers (Web sites), but the Web is only

one part of the Internet (although probably the most important one). It is impor-

tant to realize that the clients and servers are on LANs, and that routers are the

network nodes of the Internet. The number of client hosts greatly exceeds the

number of servers.

The link from the client user to the ISP is often a simple cable or DSL link. In

contrast, the link from a server LAN’s router to the ISP could be a leased, private

line, but there are important exceptions to this (Metro Ethernet at speeds greater

than 10 Mbps is very popular). There are also a variety of Web servers within the

ISP’s own network. For example, the Web server for the ISP’s customers to cre-

ate and maintain their own Web pages is located inside the ISP cloud.

The smaller ISPs link to the backbones of the larger, national ISPs. Some

small ISPs link directly to national backbones, but others are forced for technical

or financial reasons to link in a “daisy-chain” fashion to other ISPs, which link to

other ISPs, and so on until an ISP with direct access to an IXP is reached.

Peering bypasses the need to use the IXP structure to deliver traffic.

Many other countries obtain Internet connectivity by linking to an IXP in the

United States, although many countries have established their own IXPs. Large

ISPs routinely link to more than one IXP for redundancy, while truly small ones

rarely link to more than one other ISP for cost reasons. Peer ISPs often have mul-

tiple, redundant links between their border routers. (Border routers are routers

366 CHAPTER 14 Routing and Peering

that have links to more than one AS.) For a good listing of the world’s major

IXPs, see http://en.wikipedia.org under Internet Exchange Point.

Speeds vary greatly in different places on the global Internet. Client access in

rural areas is still often by way of low-speed dial-up telephone lines, typically

33.6 to 56 kbps. Servers are connected by Metro Ethernet or by medium-speed

private leased lines, typically faster than 1.5 Mbps. The highspeed backbone links

between national ISPs run at yet higher speeds, and between the IXPs themselves,

speeds of 155 Mbps (known as OC-3c), 622 Mbps (OC-12c), 2.4 Gbps (OC-48c),

and 10 Gbps (OC-192c) can be used, although “n 3 10” Gbps Ethernet trunks

are less expensive. Higher speeds, such as 40 Gbps and 100 Gbps Ethernet, are

always needed, both to minimize large Web site content-transfer latency times

(like video and audio files) and because the backbones concentrate and aggregate

traffic from millions of clients and servers onto a single network.

THE ROLE OF ROUTING POLICIES
Today, it is impossible for all routers to know all details of the Internet. The Internet

now consists of an increasing number of routing domains. Each routing domain has

its own internal and external routing policies. The sizes of routing domains vary

greatly, from only one IP address space to thousands, and each domain is an AS.

Many ISPs have only one AS, but national or global ISPs might have several

AS numbers. A global ISP might have one AS for North America, another for

Europe, and one for the rest of the world. Each AS has a uniquely assigned AS

number, although there can be various, logical “sub-ASs” called confederations or

subconfederations (both terms are used) inside a single AS.

We will not have a lot to say about routing policies, as this is a vast and

complex topic. But some basics are necessary when the operation of routers on

the network is considered in more detail.

An AS forms a group of IP networks sharing a unified routing policy

framework. A routing policy framework is a series of guidelines (or hard rules)

used by the ISP to formulate the actual routing policies that are configured on the

routers. Among different ASs, which are often administered by different ISPs,

things are more complex. Careful coordination of routing policies is needed to

communicate complicated policies among ASs.

Why? Because some router somewhere must know all the details of all the

IPv4 or IPv6 addresses used in the routing domain. These routes can be

aggregated (or summarized) as shorter and shorter prefixes for advertisement to

other routers, but some routers must retain all the details.

Routes, or prefixes, not only need to be advertised to another AS, but need to

be accepted. The decision on which routes to advertise and which routes to accept

is determined by routing policy. The situation is summarized in the extremely

simple exchange of routing information between two peer ASs shown in

367The Role of Routing Policies

http://en.wikipedia.org

Figure 14.3. (Note that the labels “AS #1” and “AS #2” are not saying “this is

AS1” or “this is AS2”—AS numbers are reserved and assigned centrally.) The

routing information is transferred by the routing protocol running between the

routers, usually the Border Gateway Protocol (BGP).

The exchange of routing information is typically bidirectional, but not always.

In some cases, the routing policy might completely suppress or ignore the flow of

routing information in one direction because of the routing policy of the sender

(suppress the advertising of a route or routes) or the receiver (ignore the routing

information from the sender). If routing information is not sent or accepted

between ASs, then clients or servers in one AS cannot reach other hosts on the

networks represented by that routing information in the other AS.

Economic considerations often play a role in routing policies as well. In the

old days, there were always subsidies and grants available for continued support

for the research and educational network. Now the ISP grid-net has ISPs with

their own customers, and they can also be customers of other ISPs as well. Who

pays whom, and how much?

PEERING
Telephony faced the same problem and solved it with a concept called settle-

ments. This is where one telephone company bills the call originator and shares a

portion of the billed amount with other telephone companies as an access charge.

Access charges compensate the other telephone companies, long distance and

local, that carry the call for the loss of the use of their own facilities (which could

otherwise make money for the company directly) for the duration of the call.

Now, in the IP world the source and destination share the cost of delivering pack-

ets, but the point is that telephony solved a similar issue and the terminology has

been borrowed by the ISPs, which are often telephone companies as well.

ISP B
(AS 2)

Announces Net3 to ISP Peer and
Accepts Net1, But NOT Net2

ISP A
(AS 1)

Announces Net1 and Net2 to
ISP Peer and Accepts Net3

FIGURE 14.3

A simple example of a routing policy, showing how routes are announced (sent) and

accepted (received). ISP A and ISP B are peers.

368 CHAPTER 14 Routing and Peering

The issue on the Internet becomes one of how one ISP should compensate

another ISP for delivering packets that originate on the other ISP (if at all). The

issue is complicated because the “call” is now a stream of packets, and an ISP

might just be a transit ISP for packets that originate in one ISP’s AS and are des-

tined for a third ISP’s AS.

ISP peers have tried three ways to translate this telephony “settlements” model

to the Internet. First, there are very popular bilateral (between two sides) settle-

ments based on the “call,” usually defined as some aspect of IP packet flows. In

this settlement arrangement, the first ISP, where the packet originates at a client,

gets all of the revenue from the customer. However, the first ISP shares some of

this money with the other ISP (where the server is located). Second, there is the

idea of sender keeps all (SKA), where the flow of packets from client to server

one way is supposedly balanced by the flow of packets from client to server the

other way. So each ISP might as well just keep all of the revenue from their cus-

tomers. Finally, there are transit fees, which are just settlements between one ISP

and another, usually paid by a smaller ISP to a larger (because this traffic flow is

seldom symmetrical).

Unfortunately, there is no universal solution for the public Internet. TCP/IP is

not telephony and routers are not telephone switches. There are often many more

than just two or three ISPs involved between client and server. There is no easy

way to track and account for the packets that should constitute a “call,” and even

TCP sessions leave a lot to be desired because a simple Web page load might

involve many rapid TCP connections between client and server. It is often hard to

determine the “origin” because a packet and packets do not always follow

stable network paths. Packets are often dropped, and it seems unfair to bill the

originating ISP for resent packets replacing those that were not delivered by the

billing ISP in the first place. Finally, dynamic routing might not be symmetric:

So-called “hot potato” routing seeks to pass packets off to another ISP as soon as

possible. So the path from client to server often passes through different ISPs

rather than keeping requests and replies all on one ISP’s network. This common

practice has real consequences for QoS enforcement.

These drawbacks of the telephony settlements model resulted in a movement

to more simplistic arrangements among ISP peers, which usually means ISPs of

roughly equal size. These are often called peering arrangements or just peering.

There is no strict definition of what a peer is or is not, but it often describes two

ISPs that are directly connected and have instituted some routing policies between

them. In addition, there is nearly endless variation in settlement arrangements.

These are just some of the broad categories. The key is that any traffic that a

small network can offload onto a peer costs less than traffic that stays on internal

transit links.

Economically, there is often also a sender-keeps-all arrangement in place, and

no money changes hands. An ISP that is not a peer is just another customer of the

ISP, and customers pay for services rendered. An interesting and common situa-

tion arises when three peers share a “transit peer” member. This situation is

369Peering

shown in Figure 14.4. There are typically no financial arrangements for peer ISPs

providing transit services to the third peer, so peer ISPs will not provide transit to

a third peer ISP (unless, of course, the third peer ISP is willing to pay and become

a customer of one of the other ISPs).

All three of these ISPs are “peers” in the sense that they are roughly equal in

terms of network resources. They could all be small or regional or national ISPs.

ISP A peers with ISP B and ISP B peers with ISP C, but ISP A has no peering

arrangement (or direct link) with ISP C. So packet deliveries from hosts in ISP A

to ISP B (and back) are allowed, as are packet deliveries from hosts in ISP C to

and from ISP B. But ISP B has routing policies in place to prevent transit traffic

from ISP A to and from ISP C through ISP B. How would that be of any benefit

to ISP B? Unless ISP A and ISP C are willing to peer with each other, or ISP A

or ISP C is willing to become a customer of ISP B, there will be no routing infor-

mation sent to ISP A or ISP C to allow these ISPs to reach each other through

ISP B. The routing policies enforced on the routers in ISP B will make sure of

this, telling ISP A (for example) “you can’t get to ISP C’s hosts through me!”

The real world of the Internet, without a clearly defined hierarchy, complicates

peering drastically. Peering is often a political issue. The politics of peering began

in 1997, when a large ISP informed about 15 other ISPs that its current, easy-

going peering arrangements would be terminated. New agreements for transit

Traffic with Sources
and Destinations

in ISP A and ISP B
Is Okay

Traffic with Sources
and Destinations

in ISP C and ISP B
Is Okay

ISP B

Peer of ISP A and ISP C

ISP A

Peer of ISP B,
but not ISP C

ISP C

Peer of ISP B,
but not ISP A

Traffic with Sources
and Destinations

in ISP A and ISP C
Is Blocked

No Direct Connections
Exist between ISP A

and ISP C

FIGURE 14.4

ISPs do not provide free transit services, and generally are either peers or customers of

other ISPs. Unless “arrangements” are made, ISP B will routinely block transit traffic

between ISP A and ISP C.

370 CHAPTER 14 Routing and Peering

traffic were now required, the ISP said, and the former peers were effectively

transformed into customers. As the trend spread among the larger ISPs, direct

connections were favored over public peering points such as the IXPs.

This is one reason that Ace ISP and Best ISP in Figure 14.1 at the beginning

of the chapter maintain multiple links between the four routers in the “quad”

between their border routers. Suppose for a moment that routers P2 and P4 only

have a single, direct link between them to connect the two ISPs. What would hap-

pen if that link were down? Well, at first glance, the situation doesn’t seem very

drastic. Both have links to “the Internet,” which we know now is just a collection

of other ISPs just like Ace and Best.

Can LAN1 reach LAN2 through “the Internet”? Maybe. It all depends on the

arrangements between our two ISPs and the ISPs at the end of the “Internet”

links. These ISPs might not deliver transit traffic between Ace and Best, and may

even demand payment for these packets as “customers” of these other ISPs. The

best thing for Ace and Best to do—if they don’t have multiple backup links in

their “quad”—is to make more peers of other ISPs.

PICKING A PEER
All larger ISPs often want to be peers, and peers of the biggest ISPs around. (For

many, buying transit and becoming a customer of some other ISP is a much less

expensive and effective way to get access to the global public Internet if being a

transit provider is not your core business.) When it comes to peering, bigger is

better, so a series of mergers and acquisitions (it is often claimed that there are no

mergers, only acquisitions) among the ISPs took place as each ISP sought to

become a “bigger peer” than another. This consolidation decreased the number of

huge ISPs and also reduced the number of potential peers considerably.

Potential partners for peering arrangements are usually closely examined in

several areas. ISPs being considered for potential peering must have high capacity

backbones, be of roughly the same size, cover key areas, have a good network

operations center (NOC), have about the same quality of service (QoS) in terms

of delay and dropped packets, and (most importantly), exchange traffic roughly

symmetrically. Nobody wants their routers, the workhorse of the ISP, to peer with

an ISP that supplies 10,000 packets for every 1000 packets it accepts. Servers,

especially Web sites, tend to generate much more traffic than they consume, so

ISPs with “tight” networks with many server farms or Web hosting sites often

have a hard time peering with anyone. On the other hand, ISPs with many casual,

intermittent client users are courted by many peering suitors. Even if match is not

quite the same in size, if the traffic flows are symmetrical, peering is always pos-

sible. The peering situation is often as shown in Figure 14.5. Keep in mind that

other types of networks (such as cable TV operators and DSL providers) have dif-

ferent peering goals than presented here.

371Picking a Peer

Without peering arrangements in place, ISPs rely on public exchange and

peering points like the IXPs for connectivity. The trend is toward more private

peering between pairs of peer ISPs.

Private peering can be accomplished by installing a WAN link between the

AS border routers of the two ISPs. Alternatively, peering can be done at a collo-

cation site where the two peers’ routers basically sit side by side. Both types of

private peering are common.

The Internet today has more routes than there were computers attached to the

Internet in early 1989. Routing policies are necessary whether the peering rela-

tionship is public or private (through an IXP or through a WAN link between

border routers). Routing information simply cannot be easily distributed every-

where all at once. Even the routing protocols play a role. Some routing protocols

send much more information than others, although protocols can be “tuned” by

adjusting parameters and with routing policies.

Routing policies help interior gateway protocols (IGPs) such as OSPF and

IS-IS distribute routing information within an AS more efficiently. The flow

of routing information between routing domains must be controlled by routing

policies to enforce the public or private peering arrangements in place

between ISPs.

ISP A

Traffic with Balance
ISP A to ISP B: 1000
 packets per min.
ISP B to ISP A: 1000
 packets per min.

Traffic Flow Unbalanced
ISP A to ISP C: 1000
 packets per min.
ISP C to ISP A: 10,000
 packets per min.

Medium Infrastructure
Mix of Clients and Servers

ISP B

Large Infrastructure
with Many Clients

ISP C

Many Web Servers
on Lots of Server Farms

Who will peer
with ISP A?

(a) (b)

FIGURE 14.5

Good and bad peering candidates. Note that the goal is to balance the traffic flow as

much as possible. Generally, the more servers the ISP maintains, the harder it is to peer.

(a) ISP A will propose peering to ISP B; (b) ISP A will not want to peer with ISP C but will

take them on as a customer.

372 CHAPTER 14 Routing and Peering

In the next chapter, we’ll see how an IGP works within an AS or routing

domain.

QUESTIONS FOR READERS

Figure 14.6 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. What is an Internet autonomous system (AS)?

2. Why might a single ISP like Even Better ISP have more than one routing

domain?

3. What is the purpose of a routing policy?

4. What does “ISP peering” mean?

5. What is the difference between public and private peering? Are both

necessary?

Even Better ISP
(established when EveNet ISP

bought Better ISP)

One Unified Routing
Policy and Domain

Lower Speed
Link

Higher Speed
Link

Private Peering with Ace
ISP (large amounts of

traffic exchanged)
Public Peering with Best

ISP at an IXP

AS
(former EveNet ISP) AS

(former Better ISP)

FIGURE 14.6

Even Better ISP, showing peering arrangements and routing domains.

373Questions for Readers

This page intentionally left blank

CHAPTER

15IGPs: RIP, OSPF, and IS-IS

WHAT YOU WILL LEARN

In this chapter, you will learn about the role of IGPs and how these routing protocols
are used in a routing domain or autonomous system (AS). We’ll use OSPF and RIP,
but mention IS-IS as well.

You will learn how a routing policy can distribute the information gathered from
one routing protocol into another, where it can be used to build routing and forward-
ing tables, or announced (sent) to other routers. We’ll create a routing policy to
announce our IPv6 routes to the other routers.

As is true of many chapters in this book, this chapter’s content is more than
enough for a whole book by itself. Only the basics of IGPs are covered here, but they
are enough to illustrate the function of an internal routing protocol on our network.

In this chapter, we’ll configure an IGP to run on the Juniper Networks routers

that make up the Illustrated Network. In Chapter 9 we saw output that showed

OSPF running on router CE6 as part of Best ISP’s AS. So first we’ll show how

OSPF was configured on the routers in AS 65527 and AS 65531. We could

configure IS-IS on the other AS, but that would make an already long chapter

even longer. Because we closed the last chapter with IPv6 ping messages not

working, let’s configure RIPng, the version of RIP that is for IPv6. This is not an

endorsement of RIPng, especially given other available choices. It’s just an

example.

Why not add OSPFv3 (the version of OSPF used with IPv6) for IPv6 sup-

port? We certainly could, but suppose the smaller site routers only supported

RIP or RIPng? (RIP is usually bundled with basic software, but other IGPs

often have to be purchased.) Then we would have no choice but to run RIPng

to distribute the IPv6 addresses. If we configure RIPng to run on the ASs

between on-site routers CE0 and CE6, we can always extend RIPng support

right to the Unix hosts (the IPv6 hosts just need to point to CE0 or CE6 as their

default routers).

In this chapter, we’ll use the routers heavily, as shown in Figure 15.1.

Unfortunately, when it comes to networks, a lot of things are interrelated,

although we’d like to learn them sequentially. For example, we’ve already shown

in Chapter 9 that OSPF is configured on the routers, although we didn’t

configure it. Also, although both ASs will run the same IGP (RIPng) in this

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00015-1

© 2017 Elsevier Inc. All rights reserved.
375

http://dx.doi.org/10.1016/B978-0-12-811027-0.00015-1

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 15.1

The routers on the Illustrated Network, showing routers on which OSPF and RIPng will be

running. The IGPs will not be running between the two AS routing domains; instead, an

EGP will run.

376 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

377IGPs: RIP, OSPF, and IS-IS

chapter, the ASs are not running RIPng or any other IGP in between (e.g., on the

links between routers P9 and P7). That’s the job of the EGP, which we’ll explore

in the next chapter. There is a lot going on in this chapter, so let’s list the topics

covered here (and in Chapter 16), so we don’t get lost.

1. We’ll talk about ASs and the role of IGP and EGPs on a network.

2. We’ll configure RIPng as the IGP in both ASs, starting with the IPv6 address

on the interfaces and show that the routing information about LAN1 and

LAN2 ends up everywhere. We will not talk about the role of the EGP in all

this until Chapter 16.

3. We’ll compare three major IGPs: RIP, OSPF, and IS-IS. In the OSPF

section, we’ll show how OSPF was configured in the two ASs for

Chapter 10.

INTERNAL AND EXTERNAL LINKS
In this chapter, we’ll add RIPng as an IGP on all but the links between AS 65531 and AS 65527.

This affects routers P9 and P4 in AS 65531 and routers P7 and P2 in AS 65527. IGPs run on

internal (intra-AS) links, and EGPs run on external (inter-AS) links.

In Chapter 16, we’ll configure BGP as the EGP on those links. This chapter assumes that BGP

is up and running properly on the external links between P9 and P4 in AS 65531 and P7 and P2

in AS 65527.

We’ll use our Windows clients for this exercise, just to show that the “home

version” of Windows is completely comfortable with IPv6.

AUTONOMOUS SYSTEM NUMBERS
Ace and Best ISP on the Illustrated Network use AS numbers (ASNs) in the private range, just as

our IP addresses. IANA parcels them out to the various registries that assign them as needed to

those who apply. Before 2007, AS numbers were 2-byte (16-bit) values with the following ranges

of relevance:

• 0: Reserved (can be used to identify nonrouted networks)

• 1�43007: Allocated by ARIN, APNIC, AfriNIC, and RIPE NCC

• 43008�48127: Held by IANA

• 48128�64511: Reserved by IANA

• 64512�65534: Designated by IANA for private use

• 65535: Reserved

In 2007, ASNs were allocated as 4-byte values. Because each field can run from 0 to 65535,

the “asdot” way of designating ASNs is as two numbers in the form nnnnn.nnnnnn. The “asplain”

way from RFC 4893 in 2012 allows simple numerics from 0 to 4,294,967,295 in decimal.

In this book, we’ll just use the “legacy” 2-byte AS format for Ace and Best ISP: 65531 and

65527.

Now, let’s see what it takes to get RIPng up and running on these routers. So

far, the link-local fe80 addresses have been fine for running ping and for neighbor

378 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

discovery from router to host, but these won’t be useful for LAN1 to LAN2

communications with IPv6. For this, we’ll use routable fc00 private ULA IPv6

addresses (only the link-local forms are shown in the figure, but the endings are

the same). Once we get RIPng up and running with routable addresses on our

hosts and routers, we should be able to successfully ping from LAN1 to LAN2

using only IPv6 addresses. While we’ll be configuring IGPs on both Ace and

Best ISP’s AS routing domains, we won’t be running IGPs between them. That’s

the job of the EGP (Border Gateway Protocol, or BGP), and we’ll add that in

Chapter 15.

We need to create four routable IPv6 addresses and prefixes—two for the

hosts and two for the router’s LAN interfaces (both are fe-1/3/0). We’ve already

done this in Chapter 5. The site IPv6 addresses, and the IPv4 and MAC addresses

used on the same interfaces, are shown in Table 15.1. We don’t need to change

the link-local addresses on the link between the routers because, well, they are

link-local.

We know from Chapter 14 that we have these IPv6 addresses configured on

wincli1 and wincli2. We have to do three things to enable RIPng on the routers:

• Configure routable addresses on interface fe-1/3/0

• Configure the RIPng protocol to run on the site (customer-edge) routers (CE0

and CE6), the provider-edge routers (PE5 and PE1), and the internal links on

the provider-backbone routers (P9, P7, P4, and P2).

• Create and apply a routing policy on CE0 and CE6 to advertise the fe-1/3/0

IPv6 addresses with RIPng.

The configurations are completely symmetrical, so one of each type will do

for illustration purposes. Let’s use router CE0 as the customer-edge router. First,

the addresses for IPv4 (family inet) and IPv6 (family net6) must be configured on

LAN interface fe-1/3/0.

set interfaces fe-1/3/0 unit 0 family inet address 10.10.11.1/24
set interfaces fe-1/3/0 unit 0 family inet6 address fe80::205:85ff:

fe88:ccdb/64
set interfaces fe-1/3/0 unit 0 family inet6 address fc00:fe67:d4:c:205:85ff:

fe88: ccdb/64

Table 15.1 Routable IPv6 Addresses Used on the Network

System

IPv4
Network
Address MAC Address IPv6 Address

wincli1 10.10.11/24 02:0e:0c:3b:88:3c fc00:ffb3:d5:b:20e:cff:fe3b:883c
CE0 (fe-1/3/0) 10.10.11/24 00:05:85:88:cc:db fc00:ffb3:d5:b:205:85ff:fe88:ccdb
CE6 (fe-1/3/0) 10.10.12/24 00:05:85:8b:bc:db fc00:fe67:d4:c:205:85ff:fe8b:bcdb
Wincli2 10.10.12/24 00:02:b3:27:fa:8c fc00:fe67:d4:c:202:b3ff:fe27:fa8c

379IGPs: RIP, OSPF, and IS-IS

Note that the link-local address is fine as is. We usually have many addresses

on an interface in most IPv6 implementations, including multicast. We just added

the second address to it. Now we can configure RIPng itself on the link between

CE0 and PE5. We have to explicitly tell RIPng to announce (export) the routing

information specified in the send-ipv6 routing policy (which we’ll write shortly)

and tell it the RIPng “neighbor” (routing protocol partner) is found on interface

ge-0/0/3 logical unit 0.

set protocols ripng group ripv6group export send-ipv6
set protocols ripng group ripv6group neighbor ge-0/0/3.0

Because RIPv2 and RIPng use multicast addresses, we specify the router’s

neighbor location with the physical address information (ge-0/0/3) instead of uni-

cast address. And because Juniper Network’s implementation of RIP always listens

for routing information but never advertises or announces routes unless told, we’ll

have to write a routing policy to “export” the IPv6 addresses we want into RIPng.

There’s only one interface needed in this case, fe-1/3/0.0 to LAN1. It seems odd to

say “from” when sending, but in a Juniper Networks routing policy, “from” really

means “out of”—”Out of all the interfaces, this applies to interface fe-1/3/0.”

set policy-options policy-statement send-ipv6 from interface fe-1/3/0.0
set policy-options policy-statement send-ipv6 from family inet6
set policy-options policy-statement send-ipv6 then accept

All this routing policy says is that “if the routing protocol (which is RIPng)

running on the LAN1 interface (fe-1/3/0) wants to advertise an IPv6 route (from

family inet6), let it (accept).”

We also have to configure RIPng on the other routers. We know that we can’t

run RIPng on the external links on the border routers (P7, P9, P2, and P4), but we

can show the full configurations on PE5 and PE1. These routers have to run

RIPng on three interfaces, not just one, so that RIPng routing information flows

from site router to backbone (and from backbone to site router). Let’s look at PE5

(PE1 is about the same).

set interfaces fe-1/3/0 unit 0 family inet address 10.10.50.1/24
set interfaces fe-1/3/0 unit 0 family inet6 address fe80::205:85ff:fe85:

aafe/64
set interfaces fe-1/3/0 unit 0 family inet6 address fc00:fe67:d4:c:205:85ff:

fe85: aafe/64

We have IPv6 addresses on the SONET links to P9 and P4, so-0/0/0 and so-0/

0/2, but the details are not important. What is important is that we run RIPng on

all three interfaces.

set protocols ripng group ripv6group export send-ipv6
set protocols ripng group ripv6group neighbor ge-0/0/3.0
set protocols ripng group ripv6group neighbor so-0/0/0.0
set protocols ripng group ripv6group neighbor so-0/0/2.0

380 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

The routing policy now will export the interface IPv6 addresses we want into

RIPng. This policy has one term for each interface and is more complex than the

one for the site routers.

set policy-options policy-statement send-ipv6 term A from interface
ge-0/0/3.0

set policy-options policy-statement send-ipv6 term A from family inet6
set policy-options policy-statement send-ipv6 term A then accept
set policy-options policy-statement send-ipv6 term B from interface

so-0/0/0.0
set policy-options policy-statement send-ipv6 term B from family inet6
set policy-options policy-statement send-ipv6 term B then accept
set policy-options policy-statement send-ipv6 term C from interface

so-0/0/2.0
set policy-options policy-statement send-ipv6 term C from family inet6
set policy-options policy-statement send-ipv6 term C then accept

The policy simply means this: “Out of all interfaces, look at ge-0/0/3, so-0/0/

0, and so-0/0/2. If the routing protocol running on those links (which is RIPng)

wants to advertise an IPv6 route (from family inet6), let it (accept).”

The backbone routers run RIPng on their internal interfaces, but the configura-

tions and policies are very similar to those on the provider-edge routers. We don’t

need to list those.

When all the configurations are committed and made active on the routers, we

form an adjacency and exchange IPv6 routing information with each neighbor

according to the policy. The IPv6 routing table on CE0 now shows the prefix of

LAN2 (fc00:fe67: d4:c::/64) learned from CE6 with RIPng.

admin@CE0# show route table inet6 fc00:fe67:d4:c::/64

inet6.0: 38 destinations, 38 routes (38 active, 0 holddown, 0 hidden) 1

5 Active Route, - 5 Last Active, � 5 Both

fc00:ffbe:d5:b::/64 �[RIPng/100] 01:15:19, metric 6, tag 0
to fc00:ffbe:d5:b::a00:3b01 via so-0/0/0.0
. to fc00:ffbe:d5:b::a00:2d01 via so-0/0/2.0

What does all this mean? We’ve learned this route with RIPng, and its prefer-

ence is 100 (high compared to local interfaces, which are 0). When routes are

learned in different ways from different protocols, the route with the lowest pref-

erence will be the active route. The metric of 6 (hops) essentially shows that

LAN2 is 6 routers away from LAN1. If there are different paths with different

metrics through a collection of routers, the hop to the path with the lowest metric

becomes the active route. More advanced routing protocols can compute metrics

on the basis of much more than simply number of routers (hops).

Note the right angle bracket (.) to the left of the so-0/0/2.0 link to router P9.

Remember, there are two ways for PE5 to forward packets to LAN2: through

router P4 at the end of link so-0/0/0.0 and through router P9 at the end of link

381IGPs: RIP, OSPF, and IS-IS

so-0/0/0.0. The . indicates that packets are being forwarded to router P9.

(Usually, all other things being equal, a router chooses the link with the lower IP

address.) However, the other link is available if the active link or router fails. (If

we want to forward packets out both links, we can turn on load balancing and the

links will be used in a round-robin fashion.)

But even with RIPng up and running among the routers, we still have to give

non�link-local addresses to the hosts. Right now, if we try to use ping6 on LAN2

to ping a different IPv6 private address on LAN1, we’ll still get an error condi-

tion. Let’s try it from wincli2 on LAN2 to wincl1 on LAN1.

PS C:\Users\walterg.ping -6 fe80::20c:cff:fe3b:883c

Pinging fe80::20c:cff:fe3b:883c with 32 bytes of data:

No route to destination.
Specify correct scope-id or use �s to specify source address.

No route to destination.
Specify correct scope-id or use �s to specify source address.

No route to destination.
Specify correct scope-id or use �s to specify source address.

No route to destination.
Specify correct scope-id or use �s to specify source address.

Ping statistics for fe80::20c:cff:fe3b:883c:

Packets: Sent 5 4, Received 5 0, Lost 5 4 (100% loss)
Like the routers, the Windows hosts need routable addresses. We assign an

interface (by index shown by ipconfig) that is a routable IPv6 address with the

ipv6 adu (address update) command. But the address is still shown with ipconfig

(only the output of interest is shown).

PS C:\Users\walterg.ipconfig

Ethernet adapter Local Area Connection� 5:

Connection-specific DNS Suffix . :
Link-local IPv6 Address. : fe80::202:b3ff:fe27:fa8c%5
IPv6 Address. : fc00:fe67:d5:c:202:b3ff:fe27:fa8c
IPv4 address. : 10.10.12.222
Subnet Mask. : 255.255.255.0
Default Gateway : 10.10.12.1

fe80::5:85ff:fe8b:bcdb%5
fc00:fe67:d5:c:205:85ff:fe8b:bcdb

How did the host know the default gateway to use for IPv6? We probed for

neighbors earlier, but even if we had not, IPv6 router advertisement (which was

382 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

configured with RIPng on the routers, and the main reason we did it) takes care

of that.

Now we should be able to ping end to end from wincli2 to wincli1 by IPv6

address.

PS C:\Users\walterg.ping -6 fc00:ffb3:d4:b:20e:cff:fe3b:883c

Pinging fc00:ffb3:d.4:b:20e:cff:fe3b:883c
from fc00:fe67:d5:c:202:b3ff:fe27:fa8c with 32 bytes of data:

Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes532 time,1ms
Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes532 time,1ms
Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes532 time,1ms
Reply from fc00:ffb3:d4:b:20e:cff:fe3b:883c: bytes532 time,1ms

Ping statistics for fc00:ffb3:d4:b:20e:cff:fe3b:883c:
Packets: Sent 5 4, Received 5 4, Lost 5 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum 5 4ms, Maximum 5 5ms, Average 5 4ms

The reverse also works as well. In the rest of this chapter, let’s take a closer

look at how the IGPs perform their task of distributing routing information within

an AS. Remember, how the IGP routing information gets from AS to AS with an

EGP is the topic of Chapter 15.

INTERIOR ROUTING PROTOCOLS
Routers initially know only about their immediate environments. They know the

IP addresses and prefixes configured on their local interfaces, and at most a little

more statically defined information. Yet all routers must know all the details

about everything in their routing domain to forward packets rationally, hop by

hop, toward a given destination. So routers offer to and ask their neighbor routers

(adjacent routers one hop away) about the routing information they know. Little

by little, each router then builds up a detailed routing information database about

the TCP/IP network.

How do routers exchange this routing information within a domain and

between routing domains? With routing protocols. Within a routing domain, sev-

eral different routing protocols can be used. Between routing domains on the

Internet, another routing protocol is used. This chapter focuses on the routing

protocols used within a routing domain and the next chapter covers the routing

protocol used between routing domains.

Interior routing protocols, or IGPs, run between the routers inside a single

routing domain, or autonomous system (AS). A large organization or ISP

can have a single AS, but many global networks divide their networks into one

383Interior Routing Protocols

or more ASs. IGPs run within these routing domains and do not share infor-

mation learned across AS boundaries except physical interface addresses if

necessary.

Modern routing protocols require minimal configuration of static routes

(routes configured and maintained by hand). Today, dynamic routing protocols

allow adjacent (directly connected) routers to exchange routing table information

periodically to build up the topology of the router network as a whole by passing

information received by adjacent neighbors on to other routers.

IGPs essentially “bootstrap” themselves into existence, and then send informa-

tion about their IP addresses and interfaces to other routers directly attached to

the source router. These neighbor, or adjacent, routers distribute this information

to their neighbors until the network has converged and all routers have the identi-

cal information available.

When changes in the network as a result of failed links or routers cause the

routing tables to become outdated, the routing tables differ from router to router

and are inconsistent. This is when routing loops and black holes happen. The fas-

ter a routing protocol converges, the better the routing protocol is for large-scale

deployment.

THE THREE MAJOR IGPs
There are three main IGPs for IPv4 routing: RIP, OSPF, and IS-IS. The Routing

Information Protocol (RIP), often declared obsolete, is still used and remains a

routing protocol for small networks. (Even if it wasn’t, the educational value of

RIP far exceeds any points about low use today.) The newer version of RIP,

known as RIPv2, should always be used for IPv4 routing today. Open Shortest

Path First (OSPF) and Intermediate System-Intermediate System (IS-IS) are simi-

lar and much more robust than RIP. There are versions of all three for IPv6:

OSPFv3, RIPng (sometimes seen as RIPv6), and IS-IS works with either IPv4 or

IPv6 today.

RIP is a distance-vector routing protocol, and OSPF and IS-IS are link-state

routing protocols. Distance-vector routing protocols are simple and make routing

decisions based on one thing: How many routers (hops) are there between here

and the destination? To RIP, link speeds do not matter, nor does congestion near

another router. To RIP, the “best” route always has the fewest number of hops

(routers).

Link-state protocols care more about the network than simply the number of

routers along the path to the destination. They are much more complex than dis-

tance-vector routing protocols, and link-state protocols are much more suited for

networks with many different link speeds, which is almost always the case today.

However, link-state protocols require an elaborate database of information about

384 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

the network on each router. This database includes not only the local router

addressing and interfaces, but each and every router in the immediate area and

often the entire AS.

ROUTING INFORMATION PROTOCOL
RIP is still used on TCP/IP networks. The basics of RIP were spelled out in RFC

1058 from 1988, but this is misleading. RIP was in use long before 1988, but no

one bothered to document RIP in detail. RIP is bundled with almost all imple-

mentations of TCP/IP, so small networks often run only RIP. Why pay for some-

thing when RIP was available for free?

RIP version 1 (RIPv1) in RFC 1058 has a number of annoying limitations, but

RIP is so popular that doing away with RIP is not a realistic consideration. RFC

1388 introduced RIP version 2 (RIPv2 or sometimes RIP-2) in 1993. RIPv2

addressed RIPv1 limitations, but could not turn a distance-vector protocol into a

link-state routing protocol such as OSPF and IS-IS.

RIPv2 is backward compatible with RIPv1, and most RIP implementations

run RIPv2 by default and allow RIPv1 to be configured. In this chapter, the term

“RIP” by itself means “a version of RIP runs RIPv2 by default but can also be

configured as RIPv1 as required.”

Router vendor Cisco was deeply dissatisfied with RIPv1 limitations and so

created its own vendor-specific (proprietary) version of an IGP routing protocol,

which Cisco called the Interior Gateway Routing Protocol (IGRP). IGRP

improved upon RIPv1 in several ways, but “pure” IGRP could only run between

Cisco routers. As good as IGRP was, IGRP was still basically implemented as a

distance-vector protocol. As networks grew more and more complex in terms of

link speeds and router capacities, it was possible to switch to a link-state protocol

such as OSPF or IS-IS, but many network administrators at the time felt these

new protocols were not stable or mature enough for production networks. Cisco

then invented Enhanced IGRP (EIGRP) as a sort of “hybrid” routing protocol that

combined features of both distance-vector and link-state routing protocols all in

one (proprietary) package.

Due to the proprietary nature of IGRP and EIGRP, only the basics of these

routing protocols are covered in this chapter.

DISTANCE-VECTOR ROUTING

RIP and related distance-vector routing protocols are classified as “Bellman�Ford”

routing protocols because they all choose the “best” path to a destination based on

the shortest path computation algorithm. It was first described by R. E. Bellman in

1957 and applied to a distributed network of independent routers by L. R. Ford,

385Routing Information Protocol

Jr. and D. R. Fulkerson in 1962. Every version of Unix today bundles RIP

with TCP/IP, usually as the routed (“route management daemon”) process, but

sometimes as the gated process.

All routing protocols use a metric (measure) representing the relative “cost” of

sending a packet from the current router to the destination. The lowest relative

cost is the “best” way to send a packet. Distance-vector routing protocols have

only one metric: distance. The distance is usually expressed in terms of the num-

ber of routers between the router with the packet and the router attached to the

destination network. The distance metric is carried between routers running the

same distance-vector routing protocol as a vector, a field in a routing protocol

update packet.

A simple example of how distance-vector, or hop-count, routing works will

illustrate many of the principles that all routing protocols simple and complex

must deal with. All routing protocols must pass along network information

received from adjacent routers to all other routers in a routing domain, a con-

cept known as flooding. Flooding is the easiest way to ensure consistency of

routing tables, but convergence time might be high as routers at one end of a

chain of routers wait for information from routers at the far end of the chain to

make its way through the routers in between. Flooding also tends to maximize

the bandwidth consumed by the routing protocol itself, but there are ways to

reduce this.

RIP floods updates every 30 seconds. Note that routing information takes at

least 30 seconds to reach the closest neighbor if that is the routing update interval

used. Long chains of routers can take quite a long time to converge (several min-

utes) when a network address is added or when a link fails.

When this network converges, each routing table will be consistent and each

router will be reachable from every other router over one of the interfaces. The

network topology has been “discovered” by the routing protocol. An example of

the information in one of these tables is shown in Table 15.2.

Routers can have alternatives other than those shown in the table. For

example, the cost to reach network 192.168.44.0 from this router could be the

same (3) over E1 as it is over E2. The E1 interface is most likely in the

table because the update from the neighbor router saying “send 192.168.44.0

packets here” arrived before the update from another router saying the same

Table 15.2 Example RIP Routing Table

Network Next Hop Interface Cost

10.0.14.0 Ethernet 1 (E1) 2
172.16.15.0 Serial 1 (S1) 1
192.168.44.0 Ethernet 2 (E2) 3
192.168.66.0 Serial 2 (S2) INF (15)
192.168.78.0 Locally attached 0

386 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

thing, or the entry was already in the table. When costs are equal, routing

tables tend to keep what they know.

BROKEN LINKS

The distance-vector information has now been exchanged and the routers all have

a way to reach each other. Usually, the routing protocol will update an internal

database in the router just for that routing protocol and one or more entries based

on the database are made in the routing table, which might contain information

from other routing protocols as well. The routing table information is then used to

compute the “best” routes to be used in the forwarding table (sometimes called

the switching table) of the router. This chapter blurs the distinctions between

routing protocol database, routing table, and forwarding table for the sake of

simplicity and clarity.

What will happen to the network if a link “breaks” and can no longer be

used to forward traffic? In a static routing world, this would be disastrous. But

when using a dynamic routing protocol, even one as simple as a distance-vector

routing protocol, the network should be able to converge around the new

topology.

The routers at each end of the link, since they are locally connected to the

interface (direct), will notice the outage first because routers constantly monitor

the state of their interfaces at the physical level. Distance-vector protocols note

this absent link by noting that the link now has an “infinite” cost. All routers

formerly reachable through the link are now an infinite distance away.

DISTANCE-VECTOR CONSEQUENCES

In some cases, distance-vector updates are generated so closely in time by

different routers that a link failure can cause a routing loop to occur, and

packets can easily “bounce” back and forth between two adjacent routers until

the packet TTL expires, even though the destination is reachable over another

link. The “bouncing effect” will last until the network converges on the

new topology.

However, this convergence can take some time, since routers not located at

the end of a failed link have to gradually increase their costs to infinity one “hop”

at a time. This is called “counting to infinity,” and can drag out convergence time

considerably if the value of “infinity” is set high enough. On the other hand, a

low value of “infinity” will limit the maximum number of routers that can form

the longest path through the network from source to destination.

In order to minimize the effects of bouncing and counting to infinity, most

implementations of distance-vector routing protocols such as RIP also implement

split horizon and triggered updates.

387Routing Information Protocol

Split Horizon
If Router A is sending packets to Router B to reach Router E, then it makes no

sense at all for Router B to try to reach Router E through Router A. All Router A

will do is turn around and send the packet right back to Router B. So Router A

should never advertise a way to reach Router E to Router B.

A more sophisticated form of split horizon is known as split horizon with poi-

son reverse. Split horizon with poison reverse eliminates a lot of counting to

infinity problems due to single link failures. However, many multiple link failures

will still cause routing loops and counting to infinity problems even when split

horizon with poison reverse is in use.

Triggered Updates
With triggered updates, a router running a distance-vector protocol such as RIP

can remain silent if there are no changes to the information in the routing table. If

a link failure is detected, triggered updates will send the new information.

Triggered updates, like split horizon, will not eliminate all cases of routing loops

and counting to infinity. However, triggered updates always help the counting

process to reach infinity much faster.

RIPv1

A RIP packet must be 512 bytes or smaller, including the header. RIP packets

have no implied sequence, and each update packet is processed independently by

the router receiving the update. A router is only required to keep one entry associ-

ated with each route. But in practice, routers might keep up to four or more routes

(next hops) to the same destination so that convergence time is lowered.

RIPv1 required routers running RIP to broadcast the entire contents of their

routing tables at fixed intervals. On LANs, this meant that the RIPv1 packets

were sent inside broadcast MAC frames. But broadcast MAC frames tell not

only every router on the LAN, but every host on the LAN, “pay attention to

this frame.” Inside the frame, the host would find a RIPv1 update packet, and

probably ignore the contents. But every 30 seconds, every host on the LAN

had to interrupt its own application processing and start throwing away RIPv1

packets.

Each host could keep the information inside the RIPv1 update packet.

Some hosts on LANs with RIPv1 routers have as elaborate a routing table as

the routers themselves. Hackers loved RIPv1: With a few simple coding

changes, any host could impersonate a RIPv1 router and start pumping out

fake routing information, as many college and university network administra-

tors discovered in the late 1980s. (This is one reason you don’t run RIP on

host interfaces.)

Many people see RIP updates vary from 30 seconds and assume that timers

are off. In fact, table updates in RIP are initiated on each router at approximate

388 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

30-second intervals. Strict synchronization is avoided because RIP traffic spikes

can easily lead to discarded RIP packets. The update timer usually adds or sub-

tracts a small amount of time to the 30-second interval to avoid RIP router

synchronization.

Network devices running RIP can be either active or passive (silent) mode.

Active RIP devices will listen for RIP update packets and also generate their

own RIP update packets. Passive RIP devices will only listen for RIP updates

and never generate their own update packets. Many hosts, for example, which

must process the broadcast RIP updates sent on a LAN, are purely passive RIP

devices.

RIPv1 Limitations
RIPv1 had a number of limitations that made RIPv1 difficult to use in large net-

works. The larger the routing domain, the more severe and annoying the limita-

tions of RIPv1 become.

Wasted Space—All of the RIPv1 packet fields are larger than they need to be,

sometimes many times larger. There are almost three times as many 0 bits as

information bits in a RIP packet.

Limited Metrics—As a network grows, the distance-vector might require a

metric greater than 15, which is unreachable (infinite).

No Link Speed Allowances—The simple hop count metric will always result

in packets being sent (as an example) over two hops using low-speed, 64-kbps

links rather than three hops using SONET/SDH links.

No Authentication—RIPv1 devices will accept RIPv1 updates from any other

device. Hackers love RIPv1 for this very reason, but even an innocently mis-

configured router can disrupt an entire network using RIPv1.

Subnet Masks—RIPv1 requires the use of the same subnet mask because

RIPv1 updates do not carry any subnet mask information.

Slow Convergence—Convergence can be very slow with RIPv1, often

5 minutes or more when links result in long chains of routers instead of neat

meshes. And “circles” of RIPv1 routers maximize the risk of counting to

infinity.

RIPv2

RIPv2 first emerged as an update to RIPv1 in RFC 1388 issued in January 1993.

This initial RFC was superseded by RFC 1723 in November 1994.The only real

difference between RFC 1388 and RFC 1723 is that RFC 1723 deleted a 2-byte

Domain field from the RIPv2 packet format, designating this space as unused. No

one was really sure how to use the Domain field anyway. The current RIPv2 RFC

is RFC 2453 from November 1998. RFC 4822 added cryptographic authentication

for RIPv2 in 2007, but we won’t consider that here.

389Routing Information Protocol

RIPv2 was not intended as a replacement for RIPv1, but to extend the func-

tions of RIPv1 and make RIP more suitable for VLSM. The RIP message format

was changed as well to allow for authentication and multicasting.

In spite of the changes, RIPv2 is still RIP and suffers from many of the same

limitations as RIPv1. Most router vendors support RIPv2 by default, but allow

interfaces or whole routers to be configured for backward compatibility with

RIPv1. RIPv2 made major improvements to RIPv1:

• Authentication between RIP routers

• Subnet masks to be sent along with routes

• Next hop IP addresses to be sent along with routes

• Multicasting of RIPv2 messages

The RIPv2 packet format is shown in Figure 15.2.

Command Field (1 byte)—This is the same as in RIPv1: A value of 1 is for a

Request and a value of 2 is for a Response.

Version Number (1 byte)—RIPv1 uses a value of 1 in this field, and RIPv2

uses a value of 2.

1 byte
R
o
u
t
e

E
n
t
r
y

R
o
u
t
e

E
n
t
r
y

Command Version

Address Family Identifier

Address Family Identifier

Authentication or Route Tag

Authentication or Route Tag

Subnet Mask

Next Hop

IP Address

Metric

Subnet Mask

Next Hop

IP Address

Metric

32 bits

(Repeats multiple times,up to a maximum of 25)

Unused (set to all zeros)

1 byte 1 byte 1 byte

FIGURE 15.2

RIPv2 packet format, showing how the subnet mask is included with the routing

information advertised.

390 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

Unused (2 bytes)—Set to all zero bits. This was the Domain field in RFC

1388. Now officially unused in RFC 1723, this field is ignored by routers

running RIPv2 (but this field must be set to all 0 bits for RIPv1 routers).

Address Family Identifier (AFI) (2 bytes)—This field is set to a value of 2

when IP packet and routing information is exchanged. RIPv2 also defined a

value of 1 to ask the receiver to send a copy of its entire routing table. When

set to all 1 s (0xFFFF), the AFI field is used to indicate that the 16 bits

following the AFI field, ordinarily set to 0 bits, now carry information about

the type of authentication being used by RIPv2 routers.

Authentication or Route Tag (2 bytes)—When the AFI field is not 0xFFFF,

this is the Route Tag field. The Route Tag field identifies internal and

external routes in RIPv2. Internal routes are those learned by RIP itself, either

locally or through other RIP routers. External routes are routes learned from

another routing protocol such as OSPF or BGP.

IPv4 Address (4 bytes)—This field and the three that follow can be repeated

up to 25 times in the RIPv2 Response packet. This field is almost the same as

in RIPv1. This address can be a host route, a network address, or a default

route. A RIPv2 Request packet has the IP address of the originator in this

field.

Subnet Mask (4 bytes)—This field, the biggest change in RIPv2, contains

the subnet mask that goes with the IP address in the previous field. If the

network address does not use a subnet mask different from the natural

classful major network mask, then this field can be set to all zeroes, just

as in RIPv1.

Next Hop (4 bytes)—This field contains the next hop IP address that traffic to

this IP address space should use. This was a vast improvement over the

“implied” next hop used in RIPv1.

Metric (4 bytes)—Unfortunately, the metric field is unchanged. The range is

still 1 to 15, and a metric value of 16 is considered unreachable.

RIPv2 is still RIP. But RIPv2’s additions for authentication, subnet masks,

next hops, and the ability to multicast routing information increase the sophistica-

tion of RIP and have extended RIP’s usefulness.

Authentication
Authentication was added in RIPv2 (and updated in RFC 4822). The Response

messages contain the routing update information, and authenticating the responder

to a Request message is a good way to minimize the risk of a routing

table becoming corrupted either by accident or through hacker activities.

However, there were really only 16 bits available for authentication, hardly ade-

quate for modern authentication techniques. So the authentication actually takes

the place of one routing table entry and authenticates the entire update message.

This gives 16 bytes (128 bits) for authentication, which is not state of the art, but

is better than nothing.

391Routing Information Protocol

The really nice feature of RIPv2 authentication is that router vendors can add

their own Authentication Type values and schemes to the basics of RIPv2, and

many do. For example, Cisco and Juniper Networks routers can be configured to

use MD5 (Message Digest 5) authentication encryption to RIPv2 messages. Thus,

most routers can have three forms of authentication on RIP interfaces: none, sim-

ple password, or MD5. Naturally, the MD5 authentication keys used must match

up on the routers.

Subnet Masks
The biggest improvement from RIPv1 to RIPv2 was the ability to carry the subnet

mask along with the route itself. This allowed RIP to be used in classless IP

environments with VLSM.

Next Hop Identification
Consider a network where there are several site routers with only one or a few

small LANs. The small routers run RIPv2 between themselves and their ISP’s

router, but might run a higher speed link to one router and a lower speed link

to another. The higher speed link might be more hops away than the lower

speed link.

The next hop field in RIPv2 is used to “override” the ordinary metric method

of deciding active routes in RIP. RIPv2 routers check the next hop field in the

routing update message. If the next hop field is set for a particular route, the RIP

router will use this as the next hop for the route, regardless of distance-vector

considerations.

This RIPv2 next hop mechanism is sometimes called source routing in some

documents. But true source routing information is always set by a host, not a

router. This is just RIPv2 next hop identification.

Multicasting
Multicasting is a kind of “halfway” distribution method between unicast (one

source to one destination) and broadcast (one source to all possible destinations).

Unlike broadcasts that are received by all nodes on the subnet, only devices that

join the RIPv2 multicast group will receive packets for RIPv2. (We’ll talk more

about multicast in Chapter 16.) RIPv2 multicasting also offers a way to filter out

RIPv2 messages from a RIPv1 only router. This can be important, since RIPv2

messages look very much like RIPv1 messages. But RIPv2 messages are all

invalid by RIPv1 standards. RIPv1 devices would either discard RIPv2 messages

because the mandatory all-zero fields are not all zeroes, or accept the routes and

ignore the additional RIPv2 information such as the subnet mask. RIPv2 multi-

casting makes sure that only RIPv2 devices see the RIPv2 information. So RIPv1

and RIPv2 routers can easily coexist on the same LAN, for instance. The multi-

cast group used for RIPv2 routers is 224.0.0.9.

392 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

RIPv2 is still limited in several ways. The 15 maximum-hop count is still

there, as well as counting to infinity to resolve routing loops. And RIPv2 does

nothing to improve on the fixed distance-vector values that are a feature of all

versions of RIP.

RIPng FOR IPv6

The version of RIP used with IPv6 is called RIPng, where “ng” stands for “next

generation.” (IPv6 itself was often called IPng in the mid-1990s.) RIPng uses

exactly the same hop count metric as RIP as well as the same logic and timers.

So RIPng is still a distance-vector RIP, with two important differences.

1. The packet formats have been extended to carry the longer IPv6 addresses.

2. IPv6 security mechanisms are used instead of RIPv2 authentication.

The overall format of the RIP packet is the same as the format of the RIPv2

packet (but RIPng cannot be used by IPv4). There is a 32-bit header followed by

a set of 20-byte route entries. The header fields must be the same as those used in

RIPv2: There is a 1-byte Command code field, followed by a 1-byte Version field

(now 6), and then 2 unused bytes of bits that must still be set to all 0 bits.

However, the 20-byte router entry fields in RIPng are totally different that those

in RIPv2.

IPv6 addresses are 16 bytes long, leaving only 4 bytes for any other informa-

tion that must be associated with the IPv6 route. First, there is a 2-byte Route Tag

field with the same use as in RIPv2: The Route Tag field identifies internal and

external routes. Internal routes are those learned by RIP itself, either locally or

through other RIP routers. External routes are routes learned from another routing

protocol such as OSPF or BGP. Then there is a 1-byte Prefix Length field that

tells the receiver where the boundary between network and host is in the IPv6

address. Finally, there is a 1-byte Metric field (this field was a full 32 bits in

RIPv1 and RIPv2). Since infinity is still 16 in RIPng, this is not a problem.

The fields of the RIPng packet are shown in Figure 15.3. The combination of

IPv6 address and Prefix Length do away with the need for the Subnet Mask field

in RIPv2 packets. The Address Format Identifier (AFI) field from RIPv2 is not

needed in RIPng, since only IPv6 routing information can be carried in RIPng.

But IPv6 still needs a Next Hop field. This RIPv2 field contained the next-hop

IP address that traffic to this IP address space should use, and was a vast improve-

ment over the “implied” next hop used in RIPv1. Now, IPv6 does not always

need this Next Hop information, but in many cases the next hop should be

included in an IPv6 routing information update. An IPv6 Next Hop needs another

128 bits (16 bytes). The creators of RIPng decided to essentially reproduce the

same route entry structure for the IPv6 Next Hop, but use a special value of the

last field (the Metric) to indicate that the first 16 bytes in the route entry was an

IPv6 Next Hop, not the route itself. The value chosen for the metric was 256

(0xFF) because this was far beyond the legal hop count limit (15) for RIP.

393Routing Information Protocol

When the route entry used is an IPv6 Next Hop, the 3 bytes preceding the

0xFF Metric must be set to all 0 bits. This is shown in Figure 15.4.

At first it might seem that the amount of the IPv6 routing information sent

with RIPng must instantly double in size, since now each 20-byte IPv6 route

1 byte 1 byte 1 byte 1 byte

Next Hop IPv6 Address

Must Be All Zeros

32 bits

Metric � 0xFF

FIGURE 15.4

The Next Hop in IPv6 with RIPng. Note the use of the special metric value.

1 byte 1 byte 1 byte 1 byte

Unused (set to all zeros)VersionCommand

IPv6 Address

IPv6 Address

Route Tag

(Repeats multiple times, up to a maximum of 25)

Prefix Length Metric

Route Tag Prefix Length Metric

32 bits

R
o
u
t
e

E
n
t
r
y

R
o
u
t
e

E
n
t
r
y

FIGURE 15.3

RIPng for IPv6 packet fields. Note the large address fields and different format than RIPv2

fields.

394 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

requires a 20-byte IPv6 Next Hop field. This certainly would make IPv6 very

unattractive to current RIP users. But it was not necessary to include a Next Hop

entry for each and every IPv6 route because the creators of RIPng used a clever

mechanism to optimize the use of the Next Hop entry.

A Next Hop always qualifies any IPv6 routes that follow it in the string of

route entries until another Next Hop entry is reached or the packet stream ends.

This keeps the number of “extra” Next Hop entries needed in RIPng to an abso-

lute minimum. And due to the fact that the Next Hop field in RIPv2 has only spe-

cialized use, a lot of IPv6 routes need no Next Hop entry at all.

The decision to replace RIPv2 authentication with IPv6 security mechanisms

was based on the superior security used in IPv6. When used with RIPng updates,

the IPv6 Authentication Header protects both the data inside the packet and the IP

addresses of the packet, but this is not the case with RIPv2 authentication no matter

which method is used. And IPv6 encryption can be used to add further protection.

A NOTE ON IGRP AND EIGRP
Cisco routers often use a proprietary IGP known as the Interior Gateway Routing

Protocol (IGRP) instead of RIP. Later, features were added to IGRP in the form

of Enhanced IGRP (EIGRP). In spite of the name, EIGRP was a complete rede-

sign of IGRP. This section will only give a brief outline of IGRP and EIGRP.

IGRP improves on RIP in several areas, but IGRP is still essentially a

distance-vector routing protocol. EIGRP, on the other hand, is advertised by

Cisco as a “hybrid” routing protocol that includes aspects of link-state routing

protocols such as OSPF and IS-IS among the features of EIGRP. Cisco recently

made EIGRP an “open standard” and has more or less encouraged other vendors

to consider implementations and support. However, with few exceptions, other

vendors prefer the more open standard protocols OSPF and IS-IS.

OPEN SHORTEST PATH FIRST

OSPF is not a distance-vector protocol like RIP, but a link-state protocol with a

set of metrics that can be used to reflect much more about a network than just the

number of routers encountered between source and destination. In OSPF, a router

attempts to route based on the “state of the links.”

OSPF can be equipped with metrics that can be used to compute the “shortest”

path through a group of routers based on link and router characteristics such as

highest throughput, lowest delay, lowest cost (money), link reliability, or even

more. OSPF is still used very cautiously, with default metrics based entirely on

link bandwidth. Even with this conservative use, OSPF link states are an improve-

ment over simple hop counts.

Distance-vector routing protocols like RIP were fine for networks comprised

of equal speed links, but struggled when networks started to be built out of WAN

395A Note on IGRP and EIGRP

links with a wide variety of available speeds. When RIP first appeared, almost all

WANs were composed of low-speed analog links running at 9600 bps. Even digi-

tal links running at 56 or 64 kbps were mainly valued for their ability to carry

five 9600-bps channels on the same physical link. Commercial T1s at 1.544

Mbps were not widely available until 1984, and then only in major metropolitan

areas. Today, the quickest way to send packets from one router to another is not

always through the fewest number of routers.

The “open” in OSPF is based on the fact that the Shortest Path First (SPF)

algorithm was not owned by anyone and could be used by all. The SPF algorithm

is often called the Dijkstra algorithm after the computer and network pioneer that

first worked it out from graph theory. Dijkstra himself called the new method

SPF, first described in 1959, because compared to a distance-vector protocol’s

counting to infinity to produce convergence, his algorithm always found the

“shortest path first.”

OSPF version 1 (OSPFv1), described in RFC 1131, never matured beyond the

experimental stage. The current version of OSPF, OSPFv2, which first appeared as

RFC 1247 in 1991, and is now defined by RFC 2328 issued in 1998, became the

recommended replacement for RIP (although a strong argument could be made in

favor of IS-IS, discussed later in this chapter). Since then, updates to the basic

OSPF functions have been made in RFCs 5709, 6549, 6845, 6860, and 7474.

LINK STATES AND SHORTEST PATHS

Link-state protocols are all based on the idea of a distributed map of the network.

All of the routers that run a link-state protocol have the same copy of this

network map, which is built up by the routing protocol itself and not imposed

on the network from an outside source. The network map and all of the informa-

tion about the routers and links (and the routes) are kept in a link-state database

on each router. The database is not a “map” in the usual sense of the word:

Records represent the topology of the network as a series of links from one router

to another. The database must be identical on all of the routers in an area for

OSPF to work.

Initially, each router only knows about a piece of the entire network. The local

router knows only about itself and the local interfaces. So link-state advertise-

ments (LSAs), the OSPF information sent to all other routers from the local

router, always identify the local router as the source of the information.

The OSPF routing protocol “floods” this information to all of the other routers

so that a complete picture of the network is generated and stored in the link-state

database. OSPF uses reliable flooding so that OSPF routers have ways to find out

if the information passed to another router was received or not.

The more routers and links that OSPF has to deal with, the larger the link-state

database that has to be maintained. In large router networks, the routing informa-

tion could slow traffic. OSPFv2 introduced the idea of stub areas into an OSPF

routing domain. A stub area could function with a greatly reduced link-state data-

base, and relied on a special backbone area to reach the entire network.

396 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

WHAT OSPF CAN DO

By 1992, OSPF had matured enough to be the recommended IGP for the Internet

and had delivered on its major design goals.

Better Routing Metrics for Links
OSPF employs a configurable link metric with a range of valid values between 1

and 65,535. There is no limit on the total cost of a path between routers from

source to destination, as long as all the routers are in the same AS. Network

administrators, for example, could assign a metric of 10,000 to a low-bandwidth

link and 10 to a very high-bandwidth Metro Ethernet or SONET/SDH link. In the-

ory, these values could be manually assigned through a central authority. In prac-

tice, most implementations of OSPF divide a reference bandwidth by the actual

bandwidth on the link, which is known through the router’s interface configura-

tion. The default reference bandwidth is usually 100 Mbps (Fast Ethernet). Since

the metric cannot be less than 0, all links at 100 Mbps or faster use a 1 as a link

metric and thus revert to a simple hop count when computing longest cost paths.

The reference bandwidth is routinely raised to accommodate higher and higher

bandwidths, but this requires a central authority to carry out consistently.

Equal-Cost Multipaths
There are usually multiple ways to reach the same destination network that the

routing protocol will compute as having the same cost. When equal-cost paths

exist, OSPF routers can find and use equal-cost paths. This means that there can

be multiple next hops installed in a forwarding table with OSPF. OSPF does not

specify how to use these multipaths: Routers can use simple round-robin per

packet, round-robin per flow, hashing, or other mechanisms. Equal cost multipath

(ECMP) is also of great value in other routing protocols such as BGP.

Router Hierarchies
OSPF made very large routing domains possible by introducing a two-level hier-

archy of areas. With OSPF, the concepts of an “edge” and “backbone” router

became common and well understood.

Internal and External Routes
It is necessary to distinguish between routing information that originated within

the AS (internal routing information) and routing information that came from

another AS (external routing information). Internal routing information is gener-

ally more trusted than external routing information that might have passed from

ISP to ISP across the Internet.

Classless Addressing
OSPF was first designed in a classful Internet environment with Class A, B, and

C addresses. However, OSPF is comfortable with the arbitrary network/host

boundaries used by CIDR and VLSM.

397A Note on IGRP and EIGRP

Security
RIPv1 routers accepted updates from anyone, and even RIPv2 routers only offi-

cially used simple plain-text passwords that could be discovered by anyone with

access to the link. OSPF allows not only for simple password authentication, but

strong MD5 key mechanisms on routing updates.

ToS Routing
The original OSPF was intended to support the bit patterns established for the

Type of Service (ToS) field in the IP packet header. Routers at the time had no

way to enforce ToS routing, but OSPF anticipated the use of the Internet for all

types of traffic such as voice and video and went ahead and built into OSPF ways

to distribute multiple metrics for links. So OSPF routing updates can include ToS

routing information for five IP ToS service classes, defined in RFC 1349. The

service categories and OSPF ToS values are normal service (ToS 5 0), minimize

monetary cost (2), maximize reliability (4), maximize throughput (8), and mini-

mize delay (16). Since all current implementations of OSPF support only a ToS

value of 0, no more need be said about the other ToS metrics.

By the way, here’s all we did on the customer- and provider-edge routers in

each AS to configure OSPF to run on every router interface. Now, in a real net-

work, we wouldn’t necessarily configure OSPF to run on all of the router’s inter-

nal or management interfaces, but it does no harm here.

set protocols ospf area 0.0.0.0 interface all

All OSPF routers do not have to be in the same area, and in most real router

networks, they aren’t. But this is a simple network and only configures an OSPF

backbone area, 0.0.0.0. The provider routers in our ISP cores (P9, P7, P4 and

P2), which are called AS border routers, or ASBRs, run OSPF on the internal

links within the AS, but not on the external links to the other AS (this is where

we’ll run the EGP).

The relationship between the OSPF use of a reference bandwidth and ToS

routing should be clarified. Use of the OSPF link reference bandwidth is dif-

ferent from and independent of ToS support, which relies on the specific

settings in the packet headers. OSPF routers were supposed to keep separate

link-state databases for each type of service, since the least-cost path in terms

of bandwidth could be totally different from the least-cost path computed based

on delay or reliability. This was not feasible in early OSPF implementations,

which struggled to maintain the single, normal ToS 5 0 database. And it

turned out that the Internet users did not want lots of bandwidth or low delay

or high reliability when they sent packets. Internet users wanted lots of band-

width and low delay and high reliability when they sent packets. So the refer-

ence bandwidth method is about all the link-state that OSPF can handle, but

that is still better than nothing.

398 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

OSPF ROUTER TYPES AND AREAS

OSPFv2 introduced areas as a way to cut down on the size of the link-state data-

base, the amount of information flooded, and the time it takes to run the SPF

algorithm, at least on areas other than the special backbone area.

An OSPF area is a logical grouping of routers sharing the same 32-bit Area

ID. The Area ID can be expressed in dotted decimal notation similar to an IP

address, such as 192.168.17.33. The Area ID can also be expressed as a decimal

equivalent, so Area 261 is the same as Area 0.0.1.5. When the Area ID is less

than 256, usually only a single number is used, but Area 249 is still really Area

0.0.0.249.

There are five OSPF area types. The position of a router with respect to OSPF

areas is important as well. The area types are shown in Figure 15.5.

The OSPF Area 0 (0.0.0.0) is very special. This is the backbone area of an

OSPF routing domain. An OSPF routing domain (AS) can consist of a single

area, but in that case the single area must be Area 0. Only the backbone area can

generate the summary routing topology information that is used by the other

areas. This is why all interarea traffic must pass through the backbone area.

(There are backdoor links that can be configured on some routers to bypass the

Area 0
(backbone)

ABR
ABR ABR

ASBR

ASBR

AS

ABR

Area 10.0.0.3
(NSSA: ASBR
allowed, otherwise
same as stub)

Area 24
(total stub area:
no ASBR, only
one default
route)

Area 1.17
(stub: no ASBR
allowed, default
external routes)

Area 11
(non-backbone
non-stub)

Inter-AS
Link

ASBR

Inter-AS
Link

Inter-AS
Link, RIP, etc.

FIGURE 15.5

OSPF area types, showing the various ways that areas can be given numbers (decimal, IP

address, or other). Note that ABRs connect areas and ASBRs have links outside the AS or

to other routing protocols.

399A Note on IGRP and EIGRP

backbone area, but these violate the OSPF specification.) In a sense, the backbone

area knows everything. Not so long ago, only powerful high-end routers could be

used on an OSPF backbone. On the Illustrated Network, each AS consists of only

an Area 0.

If an area is not the backbone area, it can be one of four other types of areas.

All of these areas connect to the backbone area through an Area Border Router

(ABR). An ABR by definition has links in two or more areas. In OSPF, routers

always form the boundaries between areas. A router with links outside the OSPF

routing domain is called an autonomous system boundary router (ASBR). Routing

information about destination IP addresses not learned from OSPF are always

advertised by an ASBR. Even when static routes, or RIP routes, are redistributed

by OSPF, that router technically becomes an ASBR. ASBRs are the source of

external routes that are outside of the OSPF routing domain, and external routes

are often very numerous in an OSPF routing domain attached to the global

Internet. If a router is not an ABR or ASBR, it is either an internal router and

has all of its interfaces within the same area, or a backbone router with at least

one link to the backbone. However, these terms are not as critical to OSPF con-

figurations as to ABRs or ASBRs. That is, not all backbone routers are ABRs or

ASBRs; backbone routers can also be internal routers, and so on.

NON-BACKBONE, NON-STUB AREAS

These areas are really smaller versions of the backbone area. There can be links

to other routing domains (ASBRs) and the only real restriction on a non-back-

bone, non-stub area is that it cannot be Area 0. Area 11 in Figure 15.5 is a non-

backbone, non-stub area.

Stub Area
Stub areas cannot have links outside the AS. So there can be no ASBRs in a stub

area. This minimizes the amount of external routing information that needs to be

distributed into the link-state databases of the stub area routers. Because an AS

might be an ISP on the Internet, the number of external routes required in an

OSPF routing domain is usually many times larger than the internal routes of the

AS itself. Stub area routers only obtain information on routes external to the AS

from the ABR. Area 1.17 in Figure 15.5 is a stub area.

Total Stub Area
This is also called a “totally stubby area.” Recall that stub areas cannot have

ASBRs within them, by definition. But stub areas can only reach other ASBRs,

which have the links leading to and from other ASs, through an ABR. So why

include detailed external route information in the stub area router’s link-state

database? All that is really needed is the proper default route as advertised by the

ABR. Total stub areas only know how to reach their ABR for a route that is not

within their area. Area 24 in Figure 15.5 is a total stub area.

400 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

Not-So-Stubby Area
Banning ASBRs from stub areas was very restrictive. Even the advertisement of

static routes into OSPF made a router an ASBR, as did the presence of a single

LAN running RIP, if the routes were advertised by OSPF. And as ISPs merged

and grew by acquiring smaller ISPs, it became difficult to “paste” the new OSPF

area with its own ASBRs onto the backbone area of the other ISP. The easiest

thing to do was to make the new former AS a stub area, but the presence of an

ASBR prevented that solution. The answer was to introduce the concept of a not-

so-stubby area (NSSA) in RFC 1587. An NSSA can have ASBRs, but the external

routing information introduced by this ASBR into the NSSA is either kept within

the NSSA or translated by the ABR into a form useful on the backbone Area 0

and to other areas. Area 10.0.0.3 in Figure 15.5 is an NSSA.

OSPF DESIGNATED ROUTER AND BACKUP DESIGNATED ROUTER

An OSPF router can also be a Designated Router (DR) and Backup Designated

Router (BDR). These have nothing to do with ABRs and ASBRs, and concern

only the relationship between OSPF routers on links that deliver packets to more

than one destination at the same time (mainly LANs).

There are two major problems with LANs and public data networks like ATM

and frame relay (called non-broadcast multiple-access, or NBMA, networks).

First is the fact that the link-state database represents links and routers as a

directed graph. A simple LAN with five OSPF routers would need N (N 2 1)/2,

or 5(4)/25 20 link-state advertisements just to represent the links between the

routers, even though all five routers are mutually adjacent on the LAN and any

frame sent by one is received by the other four. Second, and just as bad, is the

need for flooding. Flooding over a LAN with many OSPF routers is chaotic, as

link-state advertisements are flooded and “reflooded” on the LAN.

To address these issues, multiaccess networks such as LANs always elect a

designated router for OSPF. The DR solves the two problems by representing the

multiaccess network as a single “virtual router” or “pseudo-node” to the rest of

the network and managing the process of flooding link-state advertisements on

the multiaccess network. So each router on a LAN forms an OSPF adjacency

only with the DR (and also the Backup DR [BDR] as mentioned later). All link-

state advertisements go only to the DR (and BDR), and the DR forwards them on

to the rest of the network and internetwork routers.

Each network that elects a DR also elects a BDR that will take over the func-

tions of the DR if and when the DR fails. The DR and BDR form OSPF adjacen-

cies with all of the other routers on the multiaccess network and the DR and BDR

also form an adjacency with each other.

OSPF PACKETS

OSPF routers communicate using IP packets. OSPF messages ride directly inside

of IP packets as IP protocol number 89. Because OSPF does not use UDP or

401A Note on IGRP and EIGRP

TCP, the OSPF protocol is fairly elaborate and must reproduce many of the fea-

tures of a transport protocol to move OSPF messages between routers.

There can be one of five OSPF packet types inside the IP packet, all of which

share a common OSPF header. The structure of the common OSPF header is

shown in Figure 15.6.

The version field is 2, for OSPFv2, and the type has one of the five values. The

packet length is the length of the OSPF packet in bytes. The Router ID is the IP

address selected as OSPF Router ID (usually the loopback interface address), and the

Area ID is the OSPF area of the router that originates the message. The checksum is

the same as the one used on IP packets and is computed on the whole OSPF packet.

The Authentication Type (or AuType) is either none (0), simple password authenti-

cation (1), or cryptographic authentication (2). The simple password is an eight-

character plain-text password, but the use of AuType 5 2 authentication gives the

authentication field the structure shown in the figure. In this case, the Key ID identifies

the secret key and authentication algorithm (MD5) used to create the message digest,

the Authentication Data Length specifies the length of the message digest appended to

the packet (which does not count as part of the packet length), and the Cryptographic

Sequence Number always increases and prevents hacker “replay” attacks.

OSPFv3 FOR IPv6

The changes made to OSPF for IPv6 are minimal. It is easy to transition from

OSPF for IPv4 to OSPF for IPv6. There is new version number, OSPF version 3

(OSPFv3), and some necessary format changes, but less than might be expected.

32 bits

1 byte

Version Type Packet Length

Router ID

Area ID

Checksum Authentication Type

Authentication Length

Authentication*

Authentication*

1 byte 1 byte 1 byte

*When authentication type � 2, the authentication field has this structure:

Key ID0�0000

Cryptographic Sequence Number

FIGURE 15.6

OSPF packet header fields, showing how the structure can vary with type.

402 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

The basics are described in RFC 5340, which obsoletes the original definition in

RFC 2740. Updates have been made in RFCs 6845, 6860, and 7503.

OSPF for IPv6 (often called OSPFv6) uses link local IPv6 addresses

and IPv6 multicast addresses. The IPv6 link-state database is totally inde-

pendent of the IPv4 link-state database, and both can operate on the same

router.

Naturally, OSPFv6 must make some concessions to the larger IPv6

addresses and next hops. But the common LSA header has few changes as

well. The Link State Identifier field is still there, but is now a pure identi-

fier and not an IPv4 address. There is no longer an Options field, since

this field also appears in the packets that need it, and the LSA Header

Type field is enlarged to 16 bits. Naturally, when LSAs carry the details of

IPv6 addresses, those fields are now large enough to handle the 128 bit

IPv6 addresses.

INTERMEDIATE SYSTEM-INTERMEDIATE SYSTEM
OSPF is not the only link-state routing protocol that ISPs use within an AS.

The other common link-state routing protocol is IS-IS (Intermediate System-

Intermediate System). When IS-IS is used with IP, the term to use is

Integrated IS. IS-IS is not really an IP routing protocol. IS-IS is an ISO proto-

col that has been adapted (“integrated”) for IP in order to carry IP routing

information inside non-IP packets.

IS-IS packets are not IP packets, but rather ConnectionLess Network Protocol

(CLNP) packets. CLNP packets have ISO addresses, not IP source and destination

addresses. CLNP packets are not normally used for the transfer of user traffic

from client to server, but for the transfer of link-state routing information between

routers. IS-IS does not have “routers” at all: Routers are called intermediate sys-

tems to distinguish them from the end systems (ES) that send and receive traffic.

The independence of IS-IS from IP has advantages and disadvantages.

One advantage is that network problems can often be isolated to IP itself if

IS-IS is up and running between two routers. One disadvantage is that

there are now sources and destinations on the network (the ISO addresses)

that are not even “ping-able.” So if a link between two routers is config-

ured with incorrect IP addresses (such as 10.0.37.1/24 on one router and

10.0.38.2/24 on the other), IS-IS will still come up and exchange routing

information over the link, but IP will not work correctly, leaving the net-

work administrators wondering why the routing protocol is working but the

routes are broken.

Our network does not use IS-IS, so much of this section will be devoted

to introducing IS-IS terminology, such as link-state protocol (LSP) data

unit instead of OSPF’s link-state advertisement (LSA), and contrasting IS-IS

behavior with OSPF.

403Intermediate System-Intermediate System

THE IS-IS ATTRACTION

If IS-IS is used instead of OSPF as an IGP within an AS, there must be strong

reasons for doing so. Why introduce a new type of packet and addressing to the

network? And even the simple task of assigning ISO addresses to routers can be a

complex task. Yet many ISPs see IS-IS as being much more flexible than OSPF

when it comes to the structure of the AS.

IS-IS routers can form both Level 1 (L1) and Level 2 (L2) adjacencies. L1

links connect routers in the same IS-IS area, and L2 links connect routers in dif-

ferent areas. In contrast to OSPF, IS-IS does not demand that traffic sent between

areas use a special backbone area (Area 0.0.0.0). IS-IS does not care if interarea

traffic uses a special area or not, as long as it gets there. The same is true when a

larger ISP acquires a smaller one and it is necessary to “paste” new areas onto

existing areas. With IS-IS, an ISP can just paste the new area wherever it makes

sense and configure IS-IS L1/L2 routers in the right places. IS-IS takes care of

everything.

A backbone area in IS-IS is simply a contiguous collection of routers in

different areas capable of running L2 IS-IS. The fact that the routers must be

directly connected (contiguous) to form the backbone is not too much as a

limitation (most core routers on the backbone usually have multiple connec-

tions). Each and every IS-IS backbone router can be in a different area. If an

AS structure similar to centralized OSPF is desired, this is accomplished in

IS-IS by running certain (properly connected) routers as L2-only routers in

one selected area (the backbone), connecting areas adjacent to the central

area with L1/L2 routers, and making the other the routers in the other areas

L1-only routers. The IS-IS attraction is in this type of flexibility compared to

OSPF.

IS-IS AND OSPF

ISO’s idea of a network layer protocol was CLNP. To distribute the routing infor-

mation, ISO invented ES�IS to get routing information from routers to and from

clients and servers, and IS-IS to move this information between routers.

IS-IS came from DEC as part of the company’s effort to complete DECnet

Phase V. Standardized as ISO 10589 in 1992, it was once thought that IS-IS

would be the natural progression from RIP and OSPF to a better routing protocol.

(OSPF was struggling at the time.) To ease the transition from IP to OSI-RM pro-

tocols, Integrated IS-IS (or Dual IS-IS) was developed to carry routing informa-

tion for both IP and ISO-RM protocols.

OSPF rebounded, ironically by often borrowing what had been shown to

work in IS-IS. Today OSPF is the recommended IGP to run on the Internet, but

IS-IS still has adherents for reasons of flexibility. Of course, OSPF has much to

recommend it as well.

404 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

SIMILARITIES OF OSPF AND IS-IS

• Both IS-IS and OSPF are link-state protocols that maintain a link-state

database and run an SPF algorithm based on Dijkstra to compute a shortest

path tree of routes.

• Both use Hello packets to create and maintain adjacencies between

neighboring routers.

• Both use areas that can be arranged into a two-level hierarchy or into interarea

and intraarea routes.

• Both can summarize addresses advertised between their areas.

• Both are classless protocols and handle VLSM.

• Both will elect a designated router on broadcast networks, although IS-IS calls

it a designated intermediate system (DIS).

• Both can be configured with authentication mechanisms.

DIFFERENCES BETWEEN OSPF AND IS-IS

Many of the differences between IS-IS and OSPF are terminology. The use of the

terms IS and ES have been mentioned. IS-IS has a subnetwork point of attach-

ment (SNPA) instead of an interface, protocol data units (PDUs) instead of pack-

ets, and other minor differences. OSPF LSAs are IS-IS link-state PDUs (LSPs),

and LSPs are packets all on their own and do not use OSPF’s LSA-OSPF header-

IP packet encapsulation.

But all IS-IS and OSPF differences are not trivial. Here are the major ones.

Areas—In OSPF, ABRs sit on the borders of areas, with one or more

interfaces in one area and other interfaces in other areas. In IS-IS, a router

(IS) is either totally in one area or another, and it is the links between the

routers that connect the areas.

Route Leaking—When L2 information is redistributed into L1 areas, it is

called route leaking. Route leaking is defined in RFC 5302 (this obsoletes

RFC 2966). A bit called the Up/Down bit is used to distinguish routes that are

local to the L1 area (Up/Down 5 0) from those that have been leaked in the

area from an L1/L2 router (Up/Down 5 1). This is necessary to prevent

potential routing loops. Route leaking is a way to make IS-IS areas with LI

only routers as “smart” as OSPF routers in not-so-stubby-areas (NSSAs).

Network Addresses—CLNP does not use IP addresses in its packets. IS-IS

packets use a single ISO area address (Area ID) for the entire router because

the router must be within one area or another. Every IS-IS router can have up

to three different area ISO addresses, but this chapter uses one ISO address

per router. The ISO Area ID is combined with an ISO system address (System

ID) to give the ISO Network Entity Title, or NET. Every router must be given

an ISO NET as described in ISO 8348.

405Intermediate System-Intermediate System

Network Types—OSPF has five different link or network types that OSPF can

be configured to run on: point-to-point, broadcast, non-broadcast multi-access

(NBMA), point-to-multipoint, and virtual links. In contrast, IS-IS defines only

two types of links or subnetworks: broadcast (LANs) and point-to-point

(called “general topology”). This only distinguishes links that can support

multicasting (broadcast) and use a designating router (DIS) and links that do

not support multicasting.

Designated Intermediate System (DIS)—Although IS-IS technically uses a

DIS, many still refer to these devices as a designated router (DR). The DIS or

DR represents the entire multiaccess network link (such as a LAN) as a single

pseudo-node. The pseudo-node (a “virtual node” in some documentation) does

not really exist, but there are LSPs that are issued for the entire multiaccess

network as if the pseudo-node were a real device. Unlike OSPF, all IS-IS

routers on a pseudo-node (such as a LAN) are always fully adjacent to the

pseudo-node. This is due to the lack of a backup DIS, and new DIS elections

must take place quickly.

LSP Handling—IS-IS routers handle LSPs differently than OSPF routers

handle LSAs. While OSPF LSAs age from zero to a maximum (MaxAge)

value of 3600 seconds (1 hour), IS-IS LSPs age downward from a MaxAge of

1200 seconds (20 minutes) to 0. The normal refresh interval is 15 minutes.

Since IS-IS does not use IP addresses, multicast addresses cannot be used in

IS-IS for LSP distribution. Instead, a MAC destination address of 0180.

c200.0014 (AllL1ISs) is used to carry L1 LSPs to L1 ISs (routers), and a

MAC destination address of 0180.c200.0015 (AllL2ISs) is used to carry L2

LSPs to L2 ISs (routers).

Metrics—Like OSPF, IS-IS can use one of four different metrics to calculate

least-cost paths (routes) from the link-state database. For IS-IS, these are

default (all routers must understand the default metric system), delay, expense,

and error (reliability in OSPF). Only the default metric system is discussed

here, as with OSPF, and that is the only system that most router vendors

support. The original IS-IS specification used a system of metric values that

could only range from 0 to 63 on a link, and paths (the sum of all link costs

along the route) could have a maximum cost of 1023. Today, IS-IS

implementations allow for “wide metrics” to be used with IS-IS. This makes

the IS-IS metrics 32 bits wide.

IS-IS FOR IPv6

One advantage that IS-IS has over OSPF is that IS-IS is not an IP protocol and is

not as intimately tied up with IPv4 as OSPF. So IS-IS has fewer changes for

IPv6: IPv4 is already strange enough.

With IPv6, the basic mechanisms of RFC 1195 are still used (with updates),

but two new Type-Length-Vector (TLVs, which define representation) types are

defined for IPv6.

406 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

IPv6 Interface Address (type 232)—This TLV just modifies the interface

address field for the 16-byte IPv6 address space.

IPv6 Reachability (type 236)—This TLV starts with a 32-bit wide metric.

Then there is an Up/Down bit for route leaking, an I/E bit for external

(other routing protocol or AS) information, and a “sub-TLVs present?” bit.

The last 5 bits of this byte are reserved and must be set to 0. There is then

1 byte of Prefix Length (VLSM) and from 0 to 16 bytes of the prefix itself,

depending on the value of the Prefix Length field. Zero to 248 bytes of

sub-TLVs end the TLV.

Both types have defined sub-TLVs fields, but none of these has yet been

standardized.

QUESTIONS FOR READERS

RIP

RIP

RIP Distance-
Vector Routing

Domain

R

R

R

R

R

L2

L2

R

AS
BR

AS
BR

ABR

RIP

ABR

R

R

R

R

L2

OSPF
Area 0.0.0.0

OSPF Link-State
Routing Domain

with Multiple Areas
IS-IS Link-State Routing Domain

with L2 Router “Chain” as Backbone

FIGURE 15.7

Three IGPs and some of their major characteristics.

407Questions for Readers

Figure 15.7 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. Why does RIP continue to be used in spite of its limitations?

2. What is the difference between distance-vector and link-state routing protocols?

3. It is often said that it is easier to configure a backbone area in IS-IS than in

OSPF. What is the basis for this statement?

4. What are the similarities between OSPF and IS-IS?

5. What are the major differences between OSPF and IS-IS?

408 CHAPTER 15 IGPs: RIP, OSPF, and IS-IS

CHAPTER

16Border Gateway Protocol

WHAT YOU WILL LEARN

In this chapter, you will learn about the BGP and the essential role it plays on the
Internet. With BGP, routing information is circulated outside the AS and to all routing
domains. We’ll see how a simple routing policy change can make a destination
unreachable.

You will learn about the differences between the Internet BGP (IBGP) and the
Exterior Gateway Protocol (EBGP), and why both are needed. We’ll also look at BGP
attributes and message formats.

The EGP used on the Internet is the Border Gateway Protocol (BGP). IGPs run

between the routers inside a routing domain (single AS). BGP runs between dif-

ferent autonomous services (ASs). BGP runs on links between the border routers

of these routing domains and shares information about the routes within the AS

or learned by the AS with the AS on the other side of the “border.”

BGP makes sure that every network and interface in any AS located anywhere

on the Internet is reachable from every other place. BGP does not generate any

routing information on its own, unlike the IGPs, which essentially “bootstrap”

themselves into existence. BGP relies on an underlying IGP (or static routes) as

the source of the BGP-distributed information.

BGP runs on the border routers of Ace ISP’s AS 65531 (routers P9 and P4)

and Best ISP’s AS 65527 (routers P7 and P2). These are highlighted in

Figure 16.1. An IGP such as OSPF or IS-IS runs on the direct links between rou-

ters P9 and P4 and routers P7 and P2, but these are interior links. BGP runs on

the other links between the backbone routers.

BGP AS A ROUTING PROTOCOL
There are EGPs defined other than BGP. The Inter-Domain Routing Protocol

(IDRP) from ISO is the EGP that was to be used with IS-IS as an IGP. IDRP is

also sometimes promoted as the successor to BGP, or the best way to carry IPv6

routing information between ISP ASs. However, when it comes to the Internet

today, the only EGP worth considering is BGP.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00016-3

© 2017 Elsevier Inc. All rights reserved.
409

http://dx.doi.org/10.1016/B978-0-12-811027-0.00016-3

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 16.1

BGP on the Illustrated Network.

410 CHAPTER 16 Border Gateway Protocol

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

411BGP as a Routing Protocol

In a very real sense, BGP is not a routing protocol at all. BGP does not really

carry routing information from AS to AS, but information about routes from AS

to AS. Generally, a route that passes through fewer ASs (ISPs) than another is

considered more attractive, although there are many other factors (BGP attributes)

to consider. BGP is a routing protocol without real routes or metrics, and both of

those derive from the IGP. BGP is not a link-state protocol, because the state of

links in many AS clouds would be difficult to convey and maintain across the

entire network (and links would tend to “average out” to a sort of least common

denominator anyway). But it’s not a distance-vector protocol either, because more

attributes than just AS path length determine active routes. BGP is called a “path-

vector” protocol (a vector has a direction as well as value), but mainly because a

new term was needed to describe its operation.

BGP information is not even described as a “route.” BGP carries network

layer reachability information (NLRI). BGP “routes” do not have metrics, like

IGP routes, but attributes. Together, the BGP NLRI and their attributes allow

other ASs to make decisions about the best way to reach a route (network) in

another AS. Once a packet is routed to the correct AS through BGP information,

the packet is delivered locally using the IGP information.

The differences between BGP and IGPs should always be remembered. Some

new to BGP struggle with BGP terminology and concepts because they attempt to

interpret BGP features in terms of more familiar IGP features. BGP does not

work like an IGP because BGP is not an IGP and should not work like an IGP.

When BGP passes information from one AS border router to another AS border

router inside an AS, a form known as interior BGP (IBGP) is used. When BGP

passes information from one AS to another AS, the form of BGP used is called

exterior BGP (EBGP).

This chapter does not deal much with routing policies for BGP based on mul-

tiple attributes, which determine how the routers use BGP to route packets.

Complex routing policies are beyond the scope of this book.

CONFIGURING BGP

It’s important to keep in mind exactly what is meant by a routing domain and

routing policy. For example, is CE0 part of AS 65531 or not? This is not as sim-

ple a question as it sounds, because there might be a dozen routers behind CE0

that the Ace ISP knows nothing about. But the interface to PE5 is firmly under

the control of Ace, and generally all customer site routers are considered part

of the ISP’s routing domain in the sense that a routing policy on PE5 can always

control the routing behavior of CE0.

This does not mean something like preventing the users on LAN1 from run-

ning Internet Chat or something. This type of application-level detailing is not

what a routing policy is for. Corporate policies of this type (application policing)

are best handled by an appliance on site. ISP routing policies determine things

like where the 10.10.11.0/24 route to LAN1 is advertised or held back, and

which routes are accepted from other sources.

412 CHAPTER 16 Border Gateway Protocol

Let’s see how easy it is to configure BGP on the border routers. Each of them

is essentially identical in basic configuration, so let’s use P9 as an example.

set protocols bgp group ebgp-to-as65527 type external;
set protocols bgp group ebgp-to-as65527 peer-as 65527;
set protocols bgp group ebgp-to-as65527 neighbor 10.0.79.1;
set protocols bgp group ebgp-to-as65527 neighbor 10.0.29.1;

set protocols bgp group ibgp-mesh type internal;
set protocols bgp group ibgp-mesh local-address 192.168.9.1;
set protocols bgp group ibgp-mesh neighbor 192.168.4.1;
set protocols bgp group ibgp-mesh neighbor 192.168.5.1;

BGP configurations are organized into groups that have user-defined names

(ebgp-to-as65527 and ibgp-mesh) Note that there are two types of BGP running on

the border routers: EBGP and IBGP. EBGP must know the other AS number and

IBGP must know the local address to use as a source address (routers typically have

many IP addresses). Note that EBGP uses link addresses and IBGP uses the router’s

“loopback” address, in this case the address assigned to the routing engine. We’ll see

why this is usually done when we discuss EBGP and IBGP later in this chapter.

We showed at the end of the previous chapter that we could ping IPv6

addresses from the Windows client on LAN1 to the Windows client on LAN2.

Let’s see if the same works for the IPv4 addresses on the Unix hosts. All is well

between bsdclient and bsdserver.

bsdclient# ping 10.10.12.77
PING 10.10.12.1 (10.10.12.77): 56 data bytes
64 bytes from 10.10.12.77: icmp_seq50 ttl5255 time50.600 ms
64 bytes from 10.10.12.77: icmp_seq51 ttl5255 time50.477 ms
64 bytes from 10.10.12.77: icmp_seq52 ttl5255 time50.441 ms
64 bytes from 10.10.12.77: icmp_seq53 ttl5255 time50.409 ms
^C
--- 10.10.12.77 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev 5 0.409/0.482/0.600/0.072 ms

The default behavior for BGP is to advertise all active routes that it learns by

its own operation, so no special advertising policies are needed on the backbone

routers. Because there are direct links in place between the two ISPs to connect

the Los Angeles office (LAN1) with the New York office (LAN2), each ISP

relies on the routing protocol metrics to make sure traffic flowing between LAN1

(10.10.11/24) and LAN2 (10.10.12/24) is not forwarded onto the Internet. That

is, the cost of forwarding a LAN1-LAN2 packet between the provider backbone

routers will always be less than using the Internet at large.

However, one day the users on LAN1 and LAN2 discover a curious thing: no

one can reach servers on the other LAN. Pings to the local router work fine, but

pings to remote hosts on the other LAN produce no results at all.

bsdserver# ping 10.10.12.1
PING 10.10.12.1 (10.10.12.1): 56 data bytes

413BGP as a Routing Protocol

64 bytes from 10.10.12.1: icmp_seq50 ttl5255 time50.599 ms
64 bytes from 10.10.12.1: icmp_seq51 ttl5255 time50.476 ms
64 bytes from 10.10.12.1: icmp_seq52 ttl5255 time50.401 ms
64 bytes from 10.10.12.1: icmp_seq53 ttl5255 time50.443 ms
^C
--- 10.10.12.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev 5 0.401/0.480/0.599/0.071 ms
bsdserver# ping 10.10.11.177
PING 10.10.11.177 (10.10.11.177): 56 data bytes
^C
--- 10.10.11.177 ping statistics ---
5 packets transmitted, 0 packets received, 100% packet loss

The remote router cannot be pinged either (presumably, no security prevents

them from pinging to another site router’s port).

bsdserver# ping 10.10.11.1
PING 10.10.11.1 (10.10.11.1): 56 data bytes
^C
--- 10.10.11.1 ping statistics ---
7 packets transmitted, 0 packets received, 100% packet loss

THE POWER OF ROUTING POLICY

There are many things that could be wrong in this situation. In this case, the cause

of the problem is ultimately determined to be a feud between the Ace ISP and

Best ISPs running the service provider routers. The issue (greatly exaggerated

here) is a server located on LAN2 in New York. This essential server provides

full-motion video, huge database files, and all types of other information to the

clients in Los Angeles on LAN1. Naturally, a lot more packets flow from Best

ISP’s AS to Ace ISP’s AS than the other way around. So, the Ace ISP (AS

65531) controlling border routers P9 and P4 decided that Best ISP (AS 65527)

should pay for all these “extra” packets they were delivering from the New York

server. Shortly before the LANs stopped communicating, they sent a bill to Best

ISP—turning AS 65527 from a peer into a customer.

Naturally, Best ISP was not happy about this new arrangement and refused to

pay. So, Ace ISP decided to do a simple thing: they applied a routing policy and did

not send any information about the LAN1 network (10.10.11/24) to AS 65527’s

border routers (P7 and P2). If the border routers don’t know how to send packets

back to LAN1 from the servers on LAN2, Ace ISP will be getting what they paid

Best ISP for—which is nothing. (In the real world, the customer paying for LAN1

and LAN2 connectivity would be asked to pay for the asymmetrical traffic load.)

Without the correct routing information available on the routers on both

ASs, no one on LAN2 can find a route to LAN1. Even if there were still

some connectivity between the sites through Ace and Best ISPs’ links to

the Internet, this means that the symptom would show up as a sharply

increased network delay (and related application timeouts), as packets now

414 CHAPTER 16 Border Gateway Protocol

wander through many more hops than before. Something would still clearly

be wrong.

This large effect comes from a very simple cause. Let’s look at the routing

tables and policies on P2 and P7 (and P9 and P4) and see what has happened.

Best ISP has applied a very specific routing policy to their external BGP session

with Ace ISP’s border routers. Here’s what it looks like on P7.

setpolicy-statementno-10-10-11term1fromroute-filter10.10.11.0/24exact;
set policy-statement no-10-10-11 term1 then reject;

This basically says, “Out of all the routing protocol information, find (filter)

the information matching the network 10.10.11.0/24 exactly and nothing else;

then discard (reject) this information and do not use it in the routing or forward-

ing tables.”

This import policy on P7 and P2 (Best ISP’s routers) is applied on links from

neighbor border routers P4 and P9 (Ace ISP’s routers). The effect is to block

BGP in AS 65527 from learning anything at all about network 10.10.11/24 from

P4 and P9. Normally, Best ISP’s backbone routers would pass the information

about the route to LAN1 through P7 and P2 to all other routers in the AS, includ-

ing CE6 (LAN2’s site router). Without this information, no forwarding table can

be built on CE6 to allow packets to reach LAN1. Problem solved: no packets for

LAN1 can flow through Best ISP’s router network.

Note that Best ISP (AS 65527) still advertises its own LAN2 network

(10.10.12/24) to Ace ISP, and Ace ISP’s routers accept and distribute the

information. So, on LAN1 the site router CE0 still knows about both

LANs.

admin@CE0# show route 10.10/16
inet.0: 38 destinations, 38 routes (38 active, 0 holddown, 0 hidden)
1 5 Active Route, - 5 Last Active, � 5 Both
10.10.11.0/24 �[Direct/0] 00:03:31
. via fe-1/3/0.0
10.10.11.1/32 �[Local/0] 00:03:31
Local via fe-1/3/0.0
10.10.12.0/24 �[BGP/170] 00:00:09
. via ge-0/0/3.0

But this makes no difference: Packets can get to LAN2 through CE6 (and

from anywhere else in Best ISP’s AS), but they have no way to get back if they

have a source address of 10.10.12.x. Let’s verify this on CE6.

admin@CE6# show route 10.10/16
inet.0: 38 destinations, 38 routes (37 active, 0 holddown, 1 hidden)
1 5 Active Route, - 5 Last Active, � 5 Both
10.10.12.0/24 �[Direct/0] 00:25:42
. via fe-1/3/0.0
10.10.12.1/32 �[Local/0] 00:25:42
Local via fe-1/3/0.0

415BGP as a Routing Protocol

How are packets to get back to 10.10.11/24? They can’t. (The former route

to LAN1 is now hidden because the network is no longer reachable.) This simple

example shows the incredible power of BGP and routing policies on the Internet.

BGP AND THE INTERNET
BGP is the glue of the Internet. Generally, an ISP cannot link to another ISP

unless both run BGP. Contrary to some claims, customer networks (even large

customer networks with many routers and multiple ASs) do not have to run BGP

between their own networks and to their ISP (or ISPs). Smaller customers espe-

cially can define a limited number of static routes provided by the ISP, and larger

customers might be able run IGP passively (no adjacency formed) on the border

router’s ISP interface. It depends on the complexity of the customer and ISP net-

work. A customer with only one link to a single ISP generally does not need BGP

at all. But if a routing protocol is needed, it will be BGP.

When a customer network links to two ISPs and runs BGP, routing policies are

immediately needed to prevent the large ISPs from seeing the smaller network as a

transit AS to each other. This actually happened a number of times in the early days

of BGP, when small corporate networks new to BGP suddenly found themselves

passing traffic between two huge national ISPs whose links to each other had failed.

Why pass traffic through two or three other ISPs when “Small Company, Inc.” has a

BGP path a single AS long? BGP routing policies are immediately put in place to

not advertise routes learned for one national ISP to the other. As long as “you can’t

get there from here,” all will be fine at the little network in the middle.

BGP summarizes all that is known about the IP address space inside the local

AS and advertises this information to other ASs. The other ASs pass this informa-

tion along, until all ASs running BGP know exactly what is where on the

Internet. Without BGP, a single default route must handle all destinations outside

the AS. This is okay when a single router leads to the Internet, but inadequate for

networks with numerous connections to other ASs and ISPs.

BGP was not the original EGP used on the Internet. The first exterior gateway

protocol was Exterior Gateway Protocol (EGP). EGP is still around, but only on

isolated portions of the original Internet—such as for the U.S. military. An appre-

ciation of EGP’s limitations helps to understand why BGP works the way it does.

EGP AND THE EARLY INTERNET

In the early 1980s, the Internet had grown to include almost 1000 computers.

Several noted that distance-vector routing protocols such as the original Gateway-

to-Gateway Protocol (GGP), an IGP, would not scale to a large network environ-

ment. If every router needed to know everything about every route, convergence

times when links failed would be very high. GGP routing changes had to happen

globally and in a coordinated fashion. But the Internet, even in the 1980s, was a

416 CHAPTER 16 Border Gateway Protocol

huge network with many different types of computers and routers run by many

different organizations.

The answer divided the emerging Internet into independent but interconnected

ASs. As seen in Chapter 15, the AS is identified by a 4-byte (32-bit) number

assigned by the same authorities that assign IP addresses. Inside the AS, the net-

work was assumed to be under the control of a single network administrator.

Within the AS, local network matters (addressing, links, new routers, and so on)

could be addressed locally with GGP. But GGP ran only within the AS. Between

ASs, some way had to be found to communicate what networks were reachable

within and through one AS to the other AS.

EGP was the solution. EGP ran on the border routers (gateways), with links to

other ASs. EGP routers just sent a list of other routers and the classful major networks

that the router could reach. This cut down on the amount of information that needed

to be sent between ASs. Today, aggregation should be used as often as possible with

BGP instead of classful major network routes, but the intent and result are the same.

So, if a BGP router knows about networks 10.10.1.0/24 through 10.10.127.0/24 it

can aggregate the route as 10.10.0.0/17 and advertise that one route (NRLI) instead

of 128 separate routing updates. Even if a network such as 10.10.11.0/24 is not

included in the range, the more specific advertisement of 10.10.11.0/24 and the lon-

gest match rule will make sure traffic finds its way to the right place—as long as the

route is advertised properly. Nevertheless, there are many reasons people do not

aggregate as much as they should, and many of their reasons are flawed. For example,

trying to protect a network against “prefix hijacking” is a bad reason not to aggregate.

There is no need for an EGP to reproduce the features of an IGP. An IGP needs

to tell every router in the AS which router has which interfaces and what IP

addresses are attached to these interfaces or reachable through that router (such as

static routes). All that other ASs need to know is which IP addresses are reachable

in a particular AS and how to get to a border router on, or nearer to, the target AS.

THE BIRTH OF BGP

EGP suffered from a number of limitations, too technical to recount. After some

initial attempts to upgrade EGP, it was decided to create a better EGP (as a class

of routing protocol, contrasted with IGPs) than EGP: BGP. BGP was defined in

1989 with RFC 1105 (BGP1 or BGP-1 or BGPv1), revised in 1990 as RFC 1163

(BGP2), and revised again in 1991 as RFC 1267 (BGP3). The version of BGP

used today on the Internet, BGP4, emerged in 1994 as RFC 1654 and was

extended for classless operation in 1995 as RFC 1771. The baseline BGP specifi-

cation today is RFC 4271. There have been updates, mainly for behaviors of BGP

in certain cases, in RFC 6286, RFC 6608, RFC 6793, RFC 7606, RFC 7607, and

RFC 7705. This chapter describes BGP4.

BGP has been extended for new roles on the Internet. BGP extended commu-

nities are used with virtual private networks (VPNs). Communities are simply

labeled that so they can be used to associate NLRIs that do not share other traits.

For example, a community value can be assigned to small customers and another

417BGP and the Internet

community value used to identify a small customer with multiple sites. There are

few limits to the community “tags’” usage. And BGP routes are often the only

ones that can use multiprotocol label switching (MPLS) label-switched paths

(LSPs). BGP is as easily extensible as IS-IS and OSPF to support new functions

and add routing information that needs to be circulated between ASs. Some of

these new roles are so important that we’ll talk about them in the next chapter.

Many organizations find themselves suddenly forced to adapt BGP in a hurry,

for instance, when they have to multihome their networks. Also, when they

deploy VPNs or MPLS or any one of the many newer technologies used to poten-

tially span ISPs and ASs, BGP is needed. The problem with IGPs is that they can-

not easily share information across routing domain boundaries.

BGP AS A PATH-VECTOR PROTOCOL
One of the problems with EGP was that the metrics looked very much like RIP

hop counts. Simple distance vectors were not helpful at the AS level, because hop

counts did not distinguish the fast links that began appearing in major

ISP network backbones. Destinations that were “close” over two or three 56- or

64-kbps links actually took much longer to reach than through four or five hops

over 45-Mbps links, and distance vectors had no protection against routing loops.

Link-state protocols could have dealt with the problem by implementing some

of the alternate TOS metrics described for OPSF and IS-IS. However, these would

rely not only on consistent implementation among all ISPs but the proper setting

of bits in IP packets. In the world of independent highly competitive ISPs, this

consistency was next to impossible. So, BGP was developed as a path-vector

protocol. This means that one of the most important attributes BGP uses to choose

the active route is the length of the AS path reported in the NLRI.

To create this AS list, BGP routing updates carry a complete list of transit net-

works (ASs) that must be traversed between the AS receiving the update and the

AS that can deliver the packet using its IGP. A loop occurs when an AS path list

contains the same AS that is receiving the update, so this update is rejected and

loops are prevented. If the update is accepted, that AS will add its own AS to the

list when advertising the routing update to other ASs. This lets an AS apply rout-

ing policies to the updates and avoid using routes that lead through an AS that is

not the preferred way to reach a destination.

Path vectors do not mean that all ASs are created equal. Numerous small ASs

might get traffic through faster than one huge AS. But more aspects of a route are

described in BGP than just the length of the AS path to the destination. The sys-

tem allows each AS to represent the route with a different metric that means

something to the AS originating the route.

But more ASs generate more and longer path information. RFC 1774 in 1995

estimated that 100,000 routes generated by 3000 ASs would have paths about 20

ASs long. There was a concern about router memory and processor requirements

to store and maintain all of this information, especially in smaller routers.

418 CHAPTER 16 Border Gateway Protocol

Several mechanisms are built into BGP to address this. ISPs would not usually

accept a BGP route advertisement with a mask more than 19 bits long (/19). This

was called the universally reachable address level. The price for compact routing

tables and maintenance was a loss of routing accuracy, and many ISPs relaxed

this policy. Most today accept /24 prefixes (although they can accept more spe-

cific addresses from their own customers, of course). The other BGP mechanisms

to cut down on routing table size and maintenance complexity are route reflectors,

confederations (also called sub-confederations), and route damping (or dampen-

ing). All of these are beyond the scope of this chapter, but should be mentioned.

IBPG AND EBGP
BGP is an EGP that runs between individual routing domains, or ASs. When

BGP speakers (the term for routers configured to peer with BGP neighbors) are

in different ASs, the routers use an exterior BGP (EBPG) session to exchange

information. When BGP peers are within the same AS, the routers use interior

BGP (IBGP). These terms often appear as E-BPG/I-BGP or eBGP/iBGP.

IBGP is not some IGP version of BGP. It is used to allow BGP routers to

exchange BGP routing information inside the same AS. IBGP sessions are usually

only required when an AS is multihomed or has multiple links to other ASs.

(However, we used them on the Illustrated Network anyway, and that’s fine too.)

An AS with only a single link to one other AS need only run EBGP on the border

router and relies on the IGP to distribute routes learned by EBPG to the other rou-

ters. In the case where there is only one exit point for the entire AS, a single static

default route to the border router can be used effectively instead. The reason that

IBGP is needed is shown in Figure 16.2.

Without IBGP, all routes learned by EBGP must be dumped into the IGP to

make sure all routes are known in the entire AS. This can easily overwhelm the

IGP. For this reason, it is usual to create an IBGP mesh between routers on the

backbone (other routers can make do with a handful of default routes).

“I can reach
10.10.11.0/24”

“I can reach
10.10.12/24”

EBGP EBGPIBGP

AS 65511Router in
AS 65531

Router in
AS 65527Router A

“How can Router A
know how to reach
10.10.12.0/24?”

“How can Router B
know how to reach
10.10.11.0/24?”

Router B

FIGURE 16.2

The need for IBGP. Note that if only EBGP is running, the AS in the middle must dump all

BGP routes into the IGP to advertise them throughout the network.

419IBPG and EBGP

EBGP sessions typically peer to the physical interface address of the neighbor

router. These are often point-to-point WAN links, and are the only way to reach

another AS. If the link is down, the other AS is unreachable over that link. So,

there is little point in trying to keep a BGP session going to the peer.

On the other hand, IBGP sessions usually peer to the stable “loopback” inter-

face address of the peer router. An IBGP peer can typically be reached over more

than one physical interface within the AS, so even if an IBGP peer’s “closest”

interface is down the BGP sessions can stay up because BGP packets use the IGP

routing table to find an alternate route to the peer.

Two BGP neighbors, EBGP or IBGP, first exchange their entire BGP routing

tables—subject to the policies on each router. After that, only incremental or par-

tial table information is exchanged when routing changes occur. BGP keepalives

are exchanged because in stable networks long periods of time might elapse

before something interesting happens.

IGP NEXT HOPS AND BGP NEXT HOPS

BGP uses NLRIs as the way one AS tells another, “I know how to reach IP

address space 192.168.27.0/24 and 172.16.44.0/24 and. . .” The AS does not

say that it is the AS that has assigned that IP address space locally. Many of the

addresses might be from other ASs beyond the AS advertising the routes. The AS

path allows an AS to figure out how far away a destination is through the AS that

has advertised the route, or NLRI.

With an IGP, the next hop associated with a route is usually the IP address of

the physical interface on the next hop router. But the BGP next hop (also some-

times called the “protocol next hop”) is often the IP address of the router that is

advertising the BGP NLRI information. The BGP next hop is the address of the

BGP peer, most often the loopback interface address (the BGP Identifier) for

IBGP and the physical interface address in the other AS for EBGP. The BGP

next hop is the way one BGP router tells another, “If you have a packet for this

IP address space, send it here.”

The IGP has to know how to reach the next hop, whether it’s a BGP next hop

or not. But the next hop for EBGP is often at the end of a link to the other AS and

is not running an IGP (it’s not an internal link). So, how is the IGP to know about

it? Well, BGP routes could be “dumped” into the IGP—but there are a lot more

external routes than internal, and the whole point is to keep the IGP and EGP sepa-

rate to some extent. This brings up an interesting point about the relationship of

BGP and the IGP and a practice known as next hop self.

BGP AND THE IGP

There is a well-known unreachable condition in BGP that must be solved with

a simple routing policy know as next hop self, or just NHS. An EBGP route

(NLRI) normally arrives from another AS with the physical address of the

remote interface as the BGP next hop. If the EBGP route is readvertised

420 CHAPTER 16 Border Gateway Protocol

through IBPG, it is likely that the BGP next hop will be completely unknown

to the IGP routing tables inside the receiving AS. A router within an AS does

not care how to reach a physical interface IP address in another AS. Next hop

self is just a way to have the router advertising the route through IBGP use

itself as the next hop for the EBGP route. The idea is not BGP “next-hop-is-

the-physical-interface-in-another-AS” but BGP “next-hop-is-me-in-this-AS” or

BGP “next-hop-self.”

BGP is not a routing protocol built directly on top of IP. BGP relies on TCP

connections to reach its peers, and so resembles an IP application more than an

IGP routing protocol. Without the IGP to provide connectivity, TCP sessions for

the BGP messages cannot be established except on links to adjacent routers. BGP

does not flood information with IBPG. So, what an IBGP router learns from its

IBGP peers is never passed along to another IBGP neighbor.

To fully distribute BGP information among the routers within an AS, a full

mesh of IBGP connections (adjacencies) is necessary. Every IBGP router must

send complete routing information to every other IBGP router in the AS. In a

large AS with many external links to other ASs, this meshing requirement can

add a lot of overhead traffic and configuration maintenance to the network.

This is where route reflectors and confederations come in (these concepts are

far beyond the scope of this chapter and will not be discussed further).

The main reasons BGP was built this way were to keep BGP as simple as possi-

ble and to prevent routing loops inside the AS. The dependency on TCP and the lack

of flooding means that IBGP must communicate directly with every other router that

needs to know BGP routing information. This does not mean that every router must

be adjacent (connected by a direct link), because TCP can be routed through many

routers to reach its destination. What it does mean is that routers connected by IBGP

inside an AS must create a full mesh of IGBP peering sessions. This need to create a

full mesh and synchronize BGP with the IGP is shown in Figure 16.3.

In the figure, Ace ISP and Best ISP are no longer peers. Now they are both custo-

mers of National ISP. Naturally, everyone on LAN2 still has to know how to reach

LAN2 at 10.10.11.0/24 (and vice versa, of course). EBGP advertises LAN1 to

National ISP, and IBGP from border router to border router makes sure that LAN2

on Best ISP can reach 10.10.11.0/24. But what about an internal router inside

National ISP’s AS? There are only two ways to allow everyone in National ISP’s ser-

vice area to access LAN1 (presumably to buy something, although there are cases

concerning LAN1 security where the route might not be advertised everywhere).

With a full mesh of IBGP sessions in National ISP, there is no need to dump all

external routes into the IGP (the IGP should only handle routes within the AS).

OTHER TYPES OF BGP
The major types of BGP are EBGP for external peers outside the AS and IBGP for

internal peers within the same AS. These are usually the only types of BGP men-

tioned in most sources. But there are other variations of BGP used in other situations.

421Other Types of BGP

One BGP variation that is becoming very important, especially where VPNs

are concerned, is Multiprotocol BGP (often seen as MBGP or MPBGP).

Multiprotocol BGP originally extended BGP to support IP multicast routes and

routing information. But MBGP is also used to support IP-based VPN information

and to carry IPv6 routing information, such as from RIPng and OSPF for IPv6.

MBGP work on IPv6 is just starting, so no special consideration of using BGP for

IPv6 appears in this chapter other than to note than MBGP is used for this pur-

pose. MBGP is currently defined in RFC 4760.

There is also Multihop BGP, sometimes seen as EBGP multihop. Multihop

BGP is only used with EBGP and allows an EBGP peer in another AS to be more

than one hop away. Usually, EBGP peers are directly connected by a point-to-

point WAN link. But sometimes it is necessary to peer with a router beyond the

border router that actually terminates the link. Normally, BGP packets have a

TTL of 1 and thus never travel beyond the adjacent router. Multihop BGP packets

have a TTL greater than 1 and the peer is beyond the adjacent router. Multihop

BGP is also used in load balancing situations when there is more than one link

between two border routers, and for “route-view”�style route collectors.

Finally, there is a slight change in behavior of the BGP that runs between confed-

erations. In most cases, the version of BGP that runs between confederations is just

called EBGP. However, there are slight differences in the EBGP that runs between

ASs and the EBGP that runs between confederations—which are always inside the

same AS. Sometimes the variant of BGP that runs between confederations is known

as Confederation BGP, or CBGP, although use of this term is not common.

Internal
RTR 1

Internal
RTR 2

Border
RTR 1

“How do I get to
10.10.11.0/24?”

“I know how
to get to

10.10.11.0/24”

Border
RTR 2

Best ISP

National ISP EBGP
10.10.11.0/24

IBGP

EBGP

Ace ISP

10.10.11.0/24

Internal RTR 3

FIGURE 16.3

The need for a full IBGP mesh. Note that the routers inside National ISP do not

necessarily know how to reach 10.10.11.0/24 (LAN1).

422 CHAPTER 16 Border Gateway Protocol

BGP ATTRIBUTES
The information that all forms of BGP carry is associated with a route (NLRI) as

a series of attributes. This is the major difference between BGP and IGPs. IGP

routes carry the route, next hop, metric, and maybe an optional tag (or two). BGP

routes can carry a considerable amount of information, all intended to allow an

AS to choose the “best” way to reach a destination.

Most implementations of BGP will understand 10 attributes, and some use and

understand even more. Every BGP attribute is characterized by two major para-

meters. An attribute is either well known or optional. Well-known attributes must

be understood and processed by every implementation of BGP regardless of ven-

dor. Optional attributes are exactly that: there is no guarantee that a given BGP

implementation will understand or process that particular attribute. BGP imple-

mentations that do not support an optional attribute simply pass that information

on if that is what is called for, or ignore it.

In addition, a well-known BGP attribute is either mandatory or discretionary.

Mandatory BGP attributes must be present in every BGP update message for

EBGP, IBGP, or something else. Discretionary BGP attributes appear only in

some types of BGP update messages, such as those used by EBGP only.

Finally, optional BGP attributes are transitive or nontransitive. Transitive BGP

optional attributes are passed from peer to peer even if the router does not support

that option. Nontransitive BGP optional attributes can be ignored by the receiver

BGP process if not supported and not sent along to peers. The ten BGP attributes

discussed in this chapter are listed in Table 16.1 and their characteristics are

described in the list that follows.

ORIGIN—This attribute reflects where BGP obtained knowledge of the route

in the first place. This can be the IGP, EGP, or “incomplete.”

AS_PATH—This forms a sequence of AS numbers that leads to the

originating AS for the NLRI. The main use of the AS Path is for loop

avoidance among ASs, but it is common to artificially extend the AS Path

Table 16.1 BGP Attributes

Attribute and Type
Code

Well-Known
Mandatory

Well-Known
Discretionary

Optional
Transitive

Optional
Nontransitive

ORIGIN (1) X
AS_PATH (2) X
NEXT_HOP (3) X
LOCAL_PREF (4) X
ATOMIC_AGGR (5) X
AGGREGATOR (6) X
COMMUNITY (7) X
MED (8) X
ORIGINATOR_ID (9) X
CLUSTER_LIST (10) X

423BGP Attributes

attribute through a routing policy so that a particular path through a certain

router looks very unattractive. The AS Path attribute can consist of an ordered

list of AS numbers (AS_SEQUENCE) or just a collection of AS numbers in

no particular order (AS_SET).

NEXT_HOP—The BGP Next Hop (or “protocol next hop”) is quite distinct

from an IGP’s next hop. Outside an AS, the BGP Next Hop is most likely the

border router—not the actual router inside the other AS that has this network

on a local interface. Next Hop Self is the typical way to make sure that the

BGP Next Hop is reachable.

LOCAL_PREF—The Local Preference of the NLRI is relative to other routes

learned by IBGP within an AS and therefore is not used by EBGP. When

routes are advertised with IBGP, traffic will flow toward the AS exit point

(border router) that advertised the highest Local Preference for the route. It is

used to establish a preferred exit link to another AS.

MULTI_EXIT_DISC (MED)—The Multi-Exit Discriminator (MED) attribute

is the way one AS tries to influence another when it goes to choosing among

multiple exit points (border routers) that link to the AS. A MED is the closest

thing to a purely IGP metric that BGP has. Changing MEDs is one of the most

common ways one ISP tries to make another ISP use the links it wants between

the ISPs, such as higher speed links (“use this address on this link to reach me,

unless it’s down, then use this one. . .”). MED values are totally arbitrary.

ATOMIC_AGGREGATE and AGGREGATOR—These two attributes work

together. Both are used when routing information is aggregated for BGP. A

common goal on the Internet today is to represent as many networks (routes)

with as few routing table entries as possible. So, as routing information makes

its way through the Internet each AS will often try to condense (aggregate)

the routing information as much as possible with as short a VLSM as can be

properly contrived.

COMMUNITY—The BGP Community attribute is sort of a “club for

routes.” Communities make it easier to apply policies to routes as a group.

There might be a community that applies to an ISP’s customers. In that case,

it is not necessary to list every customer’s IP address in a policy to set

Local Pref or MED (for example) as long as they all are assigned to a

unique “customer” community value. Community values are often used

today as a way for one ISP to inform a peer ISP of the value of the Local

Pref for the route inside the originating ISP’s AS (Local Pref is not present

in EBGP). The Community attribute was originally Cisco specific, but

was standardized in RFC 1997. Communities just make it easier for a

router to find all NLRIs associated with (for example) a particular VPN.

ORIGINATOR_ID and CLUSTER_LIST—These attributes are used by BGP

route reflectors. Both of these attributes are used to prevent routing loops when

route reflectors are in use. The Originator ID is a 32-bit value created by the

route reflector and is the originator of the route within the local AS. If the

originator router sees that its own ID is a received route, a loop has occurred and

424 CHAPTER 16 Border Gateway Protocol

the route is ignored. The Cluster List is a list of the route reflection cluster IDs of

the clusters through which the route has passed. If a route reflector sees it own

cluster ID in the Cluster List, a loop has occurred and the route is ignored.

BGP AND ROUTING POLICY
BGP is a policy-driven protocol. What BGP does and how BGP does it can be

almost totally determined by routing policy. It is difficult to make BGP do exactly

what an ISP wants without the use of routing policies.

Want BGP to advertise customers on static routes or running OSPF, IS-IS, or

RIP? Redistribute statics, OSPF, IS-IS, and RIP into BGP? Want to artificially

extend an AS path to make an AS look very unattractive for transit traffic? Write a

routing policy to prepend the AS multiple times. Want to change the community

attribute to add or subtract information? Use a routing policy. Concerned about the

shear amount of routes advertised? Write a routing policy to aggregate the routes

any way that makes sense. Want to advertise a more specific route along with a

more general aggregate (called “punching a hole” in the advertised address space)?

Write a routing policy. BGP depends on routing policy to behave the way it should.

BGP SCALING

A global corporation today might have 3000 routers large and small spread

around the world. Even with multiple ASs, there could be 1000 routers within an

AS that might all need IBGP information—no matter how the routes have been

aggregated. To fully mesh 1000 IBGP routers within an AS requires 499,500

IBGP sessions. A network 100 times larger than a 10-router network requires

more than 10,000 times more IBGP sessions. Adding one router adds 1000 addi-

tional IBGP sessions to the network.

This problem with the exponential growth of IBGP sessions is the main BGP

scaling issue. There are two ways to deal with this issue: the use of router reflec-

tors (RR) and confederations.

What is the difference between RRs and confederations? At the risk of offend-

ing BGP purists, it can be loosely stated that RRs are a way of grouping BGP

routers inside an AS and running IBGP between the RR clusters. Confederations

are a way of grouping BGP routers inside an AS and running EBGP between the

confederation “sub-ASs.” Because of the differences between RRs and confedera-

tions, it is even possible to have both configured at the same time in the same

AS. There is also BGP route damping, which is not a way of dealing with BGP

scaling directly but rather a way to deal with the effects of BGP scaling in terms

of the amount of routing information that needs to be distributed to IBGP and

EBGP peers when a router or link fails.

425BGP and Routing Policy

BGP MESSAGE TYPES
BGP messages types are simpler than those used by OSPF and IS-IS because of the

presence of TCP. TCP handles all of the details of connection setup and maintenance,

and before a BGP peering session is established the router performs the usual TCP

three-way handshake using TCP port 179 on one router. The other router uses a port

that is not well known, and it is just a matter of whose TCP SYN message arrives first

that determines which BGP peer is tehnically the “server.” All BGP messages are then

unicast over the TCP connection. There are only four BGP message types.

Open—Used to exchange version numbers (usually four, but two routers can

agree on an earlier version), AS numbers (same for IBGP, different for

EBGP), hold time until a Keepalive or Update is received (the smaller value is

used if they differ), the BGP identifier (Router ID, usually the loopback

interface address), and options such as authentication method (if used).

Keepalive—Keepalive messages are used to maintain the TCP session when

there are no Updates to send. The default time is one-third of the hold time

established in the Open message exchange.

Update—This advertises or withdraws routes. The Update has fields for the

NLRI (both prefix and VLSM length), path attributes, and withdrawn routes

by prefix and length.

Notification—These are for errors and always close a BGP connection. For example,

a BGP version mismatch in the Open message closes the connection, which must

then be reopened when one router or the other adjusts its version support.

The maximum TCP segment size for a BGP message is 4096 bytes and the mini-

mum is 19 bytes. All BGP messages have a common header, as shown in Figure 16.4.

The Marker is a 16-byte field used for synchronizing BGP connections and in

authentication. If no authentication is used and the message is an Open, this field

is set to all 1s. The Length is a 16-bit field that contains the length of the mes-

sage, including the header, in bytes. Finally, the Type is an 8-bit field set to 1

(Open), 2 (Update), 3 (Notification), or 4 (Keepalive).

1 byte

H
e
a
d
e
r

1 byte 1 byte

Marker

Length Type

32 bits

1 byte

FIGURE 16.4

The BGP message header carried inside a TCP segment.

426 CHAPTER 16 Border Gateway Protocol

BGP MESSAGE FORMATS
A data portion follows the header in all but the Keepalive messages. Keepalives consist

of only the BGP message headers and so need not be discussed further in this section.

THE OPEN MESSAGE

Once a TCP connection has been established between two BGP speakers, Open

messages are exchanged between the BGP peers. If the Open is acceptable to a

router, a Keepalive is sent to confirm the Open. Once Keepalives are exchanged,

peers can exchange Updates, Keepalives, and Notification messages. The format

of the Open message is shown in Figure 16.5.

The Open message has an 8-bit Version field, a 2-byte My Autonomous System

field, a 2-byte Hold Time value (0 or at least 3 seconds), a 32-bit BGP Identifier

(router ID), an 8-bit Optional Parameters Length field (set to 0 if no options are

present), and the optional parameters themselves in the same TLV format used by

IS-IS in the previous chapter. BGP options are not discussed in this chapter.

THE UPDATE MESSAGE

The Update message is used to advertise NLRIs (routes) to a BGP peer, to with-

draw multiple routes that are now unreachable (or unfeasible), or both. The for-

mat of the Update message is shown in Figure 16.6. Because of the peculiar

“skew” the 19-byte BGP header puts on subsequent fields, this message is shown

in a different format than the others. There are two distinct sections to the Update

message. They are used to Withdraw and Advertise routes.

The Update message starts with a 20-byte field indicating the total length of

the Withdrawn Routes field in bytes. If there are no Withdrawn Routes, this field

is set to zero. If there are Withdrawn Routes, the routes follow in a variable-

length field with the list of Withdrawn Routes. Each route is a Length/Prefix pair.

1 byte 1 byte 1 byte 1 byte

My Autonomous System Hold Time

BGP Identifier

Option Parameters
Length

Optional Parameters

Optional Parameters

Version

32 bits

FIGURE 16.5

The BGP Open message showing optional fields at the end.

427BGP Message Formats

The length indicates the number of bits that are significant in the following prefix

and form a mask/prefix pair.

The next field is a 2-byte Total Path Attribute Length field. This is the length

in bytes of the Path Attributes field that follows. A value of zero means that noth-

ing follows.

The variable-length Path Attributes field lists the attributes associated with the

NRLIs that follow. Each Path attribute is a TLV of varying length, the first part

of which is the 2-byte Attribute Type. There is a structure to the Attribute Type

field, as shown in Figure 16.7. There are four flag bits, four unused bits, and then

an 8-bit Attribute Type code.

Unfeasible Routes Length
(2 bytes)

Total Path Attribute Length
(2 bytes)

Path Attribute
(variable length)

Network Layer Reachability Information
(variable length)

Withdrawn Routes
(variable length)

FIGURE 16.6

The BGP Update message. This is the main way routes are advertised with BGP.

8 bits 8 bits

O T P E U U U U Attribute Type Code

Flag bits:

O: Optional bit
 0 � Optional
 1 � Well known
T: Transitive bit
 0 � Transitive
 1 � Nontransitive
P: Partial bit
 0 � Optional transitive attribute is partial
 1 � Optional transitive attribute is complete
E: Extended length bit
 0 � Attribute length is 1 byte
 1 � Attribute length is 2 bytes
U: Unused

FIGURE 16.7

The BGP Attribute Type format. This is how NRLIs are grouped.

428 CHAPTER 16 Border Gateway Protocol

There are other attribute codes in use with BGP, but these are not discussed in

this chapter. One of the most important of these other attributes is the Extended

Community attribute used in VPNs.

The Update message ends with a variable-length NLRI field. Each NLRI

(route) is a Length/Prefix pair. The length indicates the number of bits that is sig-

nificant in the following prefix. There is no length field for this list that ends the

Update message. The number of NLRIs present is derived from the known length

of all of the other fields.

So, instead of saying “here’s a route and these are its attributes. . .” for every

NLRI advertised the Update message basically says “here’s a group of path attri-

butes and here are the routes that these apply to. . .” This cuts down on the number

of messages that needs to be sent across the network. In this way, each Update

message forms a unit of its own and has no further fragmentation concerns.

THE NOTIFICATION MESSAGE
Error messages in BGP have an 8-bit Error Code, an 8-bit Subcode, and a vari-

able-length Data field determined by the Error Code and Subcode. The format of

the BGP Notification message is shown in Figure 16.8.

A full discussion of BGP Notification codes and subcodes is beyond the scope

of this chapter. The major Error Codes are Message Header Error (1), Open

Message Error (2), Update Message Error (3), Hold Timer Expired (4), Finite

State Machine Error (5), used when the BGP implementation gets hopelessly con-

fused about what it should be doing next, and Cease (6), used to end the session.

32 bits

Data

Error SubcodeError Code

1 byte 1 byte 1 byte 1 byte

Error codes:
1: Message header error
2: Open message error
3: Update message error

4: Hold timer expired
5: Finite State Machine error
6: Cease

FIGURE 16.8

The BGP Notification message format. BGP benefits from using TCP as a transport

protocol.

429The Notification Message

QUESTIONS FOR READERS

Figure 16.9 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. BGP distributes “reachability” information and not routes. Why doesn’t BGP

distribute route information?

2. What does it mean to say that the BGP is a “path-vector” protocol?

3. What is “next hop self” and why is it important in BGP?

4. Which two major BGP router configurations are employed to deal with BGP

scaling?

5. What are the ten major BGP attributes?

“I don’t know
10.0.75.1!

It’s not in this AS!”

Router
192.168.14.1

“Oh! I know how to reach
192.168.14.1”

IBGP
without

NHS

IBGP with
NHS

EBGP
(No IGP)

Router in
AS 65527

“I can reach
10.10.12/24.
Use 10.0.75.1
as a next hop.”

10.0.75.2 10.0.75.1

FIGURE 16.9

How Next Hop Self allows internal routers to forward packets for BGP routes. Border

router 192.168.14.1 substitutes its own address for the “real” next hop.

430 CHAPTER 16 Border Gateway Protocol

CHAPTER

17Expanded Uses for BGP

WHAT YOU WILL LEARN

In this chapter, you will learn more about the newer features of Border Gateway
Protocol (BGP). BGP, as we have seen, is the main way that information about routes
gets around the global public Internet. Once used exclusively for spreading “routing
about routing” information, BGP now forms the basis for many advanced capabilities.

We will examine the two advantages BGP enjoys when used for new purposes. First,
BGP was designed to be extensible, so new features can be added without inventing a
completely new protocol. In most cases, if a BGP peer does not know how to parse and
use a certain type of update inside a network layer reachability information (NLRI)
update, the receiver can simply ignore it (although in many cases, it will still have to
pass the information on to other peers). Second, BGP crosses routing domain
(Autonomous System or AS) boundaries with ease, something it was designed to do.

You will learn how to configure BGP for one new feature in the Illustrated
Network, in this case how to use BGP to distribute interior gateway protocol (IGP)
metrics outside an AS boundary.

INTRODUCTION
This chapter began as a series of notes I called “new tricks for BGP.” BGP started

as an infrastructure protocol and first evolved to a basic connectivity method and

now to an underlay for advanced service networks. An “underlay” is a basic net-

work protocol used to support the features of a protocol or service running as an

“overlay” so that the entire protocol does have to be duplicated. Later on, we’ll

see a case where a Layer 3 routing network underlay supports a virtual Layer 2

LAN-type network overlay.

BGP emerged in 1989 as the need to share information across independent

routing domains became necessary. In fact, BGP has become so common as the

basis for new capabilities on the Internet that this chapter has had to exclude

many of them and concentrate on only a few.

Many services on the Internet are moving to BGP:

• BGP-based Multicast VPNs

• BGP VPLS

• BGP Flow Specifications.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00017-5

© 2017 Elsevier Inc. All rights reserved.
431

http://dx.doi.org/10.1016/B978-0-12-811027-0.00017-5

We will also investigate some of the newer uses of BGP in the data center, a

role that was never imagined not so long ago. These applications include:

BGP Labeled-Unicast-based Egress Peering Engineering (BGP-LU-based EPE)

BGP-based Source Packet Routing in Networking (SPRING)

BGP Link State (BGP-LS) and BGP Monitoring Protocol (BMP)

Some of these are beyond the scope of an introductory text. Others, armed with a

basic understanding of BGP message formats and procedures, we can explore in detail.

In particular, we will explore four main areas for uses of BGP:

• BGP Optimal Route Reflection (ORR)

• BGP and Flow Specification

• BGP in the very large data center

• BGP for distributing IGP Link-State information (BGP-LS).

We’ll close with a quick look at the statements needed on the Illustrated

Network to implement BGP-LS.

OPTIMAL ROUTE REFLECTION (ORR)
When a routing domain uses BGP, scaling the peering sessions required to estab-

lish the Routing Information Base (RIB) can be done using a BGP router reflector

(RR) instead of a fully meshed IBGP session. Instead of sharing information with

every router running iBGP in the routing domain, the RR client routers peer only

with the RR. The RR decides what the “best path” to each destination is and the

RR then distributes this information to each and every router in the area covered

by this particular RR.

The whole point of iBGP is to distribute information about AS “exit points”

for certain IP prefixes, such as the location of provider edge (PE) routers used to

reach a destination. Router reflectors have clients running iBGP, and even eBGP

if they are on the packet forwarding path and can reach BGP AS border routers

(ASBRs) in other routing domains. All the clients and the RR form a collection

called a “cluster” that is identified with a 32-bit number similar to an IPv4

address. The cluster ID is a cumulative, non-transitive attribute of BGP. Every

RR prepends their local cluster ID to a “cluster list” to avoid routing loops.

Route reflection cuts down on the number of peering sessions needed for

iBGP and lets the AS scale higher than without route reflection. For example,

mesh iBGP peering of 10 routers requires 90 TCP sessions to be established and

maintained, along with their associated database (routing information base or

RIB). The formula is N5R3 (R2 1), where R is the number of routers in the

AS running iBGP and N is the number of peering sessions required. Now, there

are R3 (R2 1)/2 links between these 10 routers (45 links), but each endpoint of

the point-to-point link has to maintain the session information and RIB for that

peer. For 100 routers, N is a staggering 9900!

432 CHAPTER 17 Expanded Uses for BGP

The nice thing about RR devices is that they can be used with eBGP peers

and iBGP peers that are not part of an RR clusters. How does this work? Route

reflectors, which are technically “servers,” propagate routes in the domain with

three main rules:

• If the route is received from a non-client peer, then the RR reflects the route

to its clients only and all eBGP peers.

• If the route comes from a client peer, reflect that to all non-client peers as

well as client peers, except the originator of the information. Also, reflect this

information to eBGP peers.

• If a route is received from an eBGP peer, reflect this information to all client

and non-client peers as well as other eBGP peers.

“REGULAR” ROUTE REFLECTION

A generic use of RR devices is shown in Figure 17.1.

With an RR running on one of the 10 routers, the same number of peering

sessions is only 18 (if the RR is not also a forwarding point). In most cases,

there is more than one RR for a cluster, because the RR device is a single point

of failure. But it is not necessary to explain all of the quirks of route reflection

to understand ORR.

It is enough to note that a routing domain can have many RR routers, and that

these can be dedicated routers that only exist to reflect routes and paths to other

devices, or the RRs can also be used to route “regular” traffic as well as reflect

routes. The issue depends on many factors, including the power of the routers, the

number of reflected routes, the need for redundancy (high availability), and the

extent of the sphere covered by the RR.

ASBR

eBGP

Internet

Route
Reflector

Route
Reflector

Cluster 1

Cluster 2

Autonomous System

FIGURE 17.1

Generic use of route reflection.

433Optimal Route Reflection (ORR)

For this section, one aspect of RR operation is essential. The RR device

chooses the best path from its own perspective (usually the active route) and it is

only this route that is advertised to the clients of the particular RR. In other words,

the choice of the exit point for the RR and all its clients in the one that is best for

the RR, not necessarily all of the clients that receive the reflected information.

As RFC4456 on BGP RRs puts it, because the IGP cost metric to a given

point in the network varies from router to router “the route reflection approach

may not yield the same route selection result as that if the full IBGP mesh

approach.” The impact of this practice is that it can ruin attempts to impose “hot

potato” routing in the routing domain. Hot potato routing tries to direct traffic to

the “best” AS exit point in cases where no higher priority routing policy demands

another exit be used.

But in many cases it would be better for the RR to pick the best path from the

client’s perspective. That route is then selected to be reflected to the client. This

matching of iBGP mesh best path with RR best path can be accomplished by

placing RR devices outside of the forwarding path, often gathered in the core of a

large ISP network.

However, this practice leads to the drawback mentioned above: when the RR

learns of a route from multiple devices, it relies on the IGP metric to select the

best paths to advertise to the clients. This will often be the exit point closest to

the RR and not necessarily the client router. There are workarounds for this, but

ORR solves the problem directly.

ORR CONSIDERED

Let’s look at a case where ORR is needed. Figure 17.2 shows a route reflector

getting a network layer reachability information (NLRI) message about network

10.7.7.0/24

PE1

10.7.7.0/24 => PE1
Metric = 10

PE2 PE3Metric = 10

10.7.7.0/24 => PE2
Metric = 20

10.7.7.0/24 => PE1 (!)
Metric = 20

Route Reflector

FIGURE 17.2

The need for optimized route reflection.

434 CHAPTER 17 Expanded Uses for BGP

10.7.7/24 from different PE routers. All three—PE1, PE2, and PE3—can reach

10.7.7/24. The RR knows both PE2 and PE3 can reach 10.7.7/24, but because of

the IGP metric, the route through PE3 becomes the active router and PE2 a

known path, but inactive. So because the cost metric on the link to PE3 is less

than the cost metric to PE1 or PE2 (in spite of the cost between them), PE1 is

told by the RR to reach 10.7.7/24 through PE3 instead of PE2, which is clearly

not the “best” path.

With ORR, the router reflector will reflect the proper path from PE2 to PE1,

as expected from the topology. To accomplish this, ORR adds two modifications

to the RR algorithm and “rules” to find the best path. ORR devices can imple-

ment one or both of these modifications as needed to obtain the result desired.

The nice things about these modifications is that only the RR devices and not the

client routers need to be modified for the new software features of ORR.

The two modifications are referred to the draft as IGP-based best path selec-

tion and policy-based best path selection.

In IGP-based selection, the RR is assigned a “virtual” IGP location and

metrics. This virtual location can be specified per RR, per peer group, or per par-

ticular peer. When considering the best path to a given destination, the RR can

now use the details of the virtual location in the network inside of the “IGP loca-

tion” to consider the best path. Interestingly enough, the draft does not contain

any details as to how the route selection calculation is changed to complete the

IGP metric adjustments needed. For details, please see the ORR Internet draft.

In policy-based selection, an additional routing policy is applied to the infor-

mation received by RR clients (and perhaps other routers). Because it is an estab-

lished policy, this approach can be good for mandating dedicated exit points for

certain destinations. Because of potential interactions when both modifications

are used, the policy is always applied first before any other best path selection,

which might include IGP-based modifications, takes place. So whatever the pol-

icy, the route information is still subject to normal RR route selection rules and

even IGP-based ORR. This makes the two modifications very flexible to imple-

ment and consistent in result.

Now, ORR does not really add much to BGP or route reflection itself. What

can BGP do to help other types of services besides BGP? Let’s take a look at

how BGP works with flow specification.

BGP AND FLOW SPECIFICATION
A flow is defined as group of fields in IP and TCP/UDP headers that share com-

mon values. This group is called an “n-tuple” and is usually implemented as a set

of matching criteria rules in a routing policy. For example, a packet can be exam-

ined to evaluate the source and destination network prefixes, the protocol carried,

or TCP/UDP port numbers.

435BGP and Flow Specification

An individual packet belongs to the defined flow if these headers fields match

every specified value (which might include ranges) in the n-tuple. After a flow

spec is made, there are also a set of defined “actions” that determine what the

router should do with the corresponding packets that make up the flow. These

actions might include changing the next-hop destination, counting the packets,

classifying them for class of service (CoS) purposes, or all of these at the same

time.

Although this deep examination of packet headers is only now becoming the

normal processing procedure on a network node, routers have done more than

merely forward traffic since they were first developed. As RFC5572 on the dis-

semination of flow specification rules notes, routers have long been able to “clas-

sify, shape, rate limit, filter, or redirect packets” based on policies defined on the

router. Routine use of flow specs is a natural evolution of these capabilities. Only

a few years ago, it was a very real burden on the processing power of the router

to look at packet headers as the router struggled to keep up with every-increasing

line rate of input ports. These inputs often few low-speed output ports, requiring a

lot of memory dedicated to output packet queues (memory dedicated to input and

output ports are called “buffers”).

Using BGP with flow specification has been around for a while, at least since

2009 with RFC5575. However, it is only in the past few years that ISP and other

Internet-related groups have applied BGP flow specification (RFC5575) to traffic

diversion to react to distributed denial-of-service attacks. This is the aspect of

BGP and flow specs that we will explore in this section.

Why should using BGP with a flow specification be so special? Because BGP

goes everywhere. . . iBGP goes everywhere inside the AS, and eBGP goes outside.

It should be noted that the implementation of eBGP flow specs (i.e., outside the

AS), requires the agreement on its use by the organizations administering the

ASs. Without such cooperation, it makes little sense to send flow spec informa-

tion outside the iBGP sphere.

In fact, the power of BGP flow specs is greatest precisely when this technique

is applied among more than one organizational AS or routing domain. Consider

the case where BGP flow specs can be used to blunt the force of a distributed

denial-of-service (DDoS) attack on a victim, usually a large web site or other cen-

tral collection of servers.

BGP AND DDoS

The basics of a DDoS attack is shown in Figure 17.3. There is nothing unusual

about the figure: clients are attached to the global public Internet on the left, and

the server reside in an enterprise network or large data center on the right. In the

middle is the customer’s service provider network, although most of the customer

site protection is provided by firewall or intrusion detection systems on the server

side, not the network side. As a result, attacks are not easily deflected until they

436 CHAPTER 17 Expanded Uses for BGP

have compromised the service provider networks as well as the customer site.

This is one problem that BGP flow specs can solve.

The DDoS attack begins when a number of software bundles are placed on

otherwise innocent client computers attached to the Internet. This software often

hides inside otherwise innocent packages of upgraded freeware, drivers, shared

files (often of copyrighted material), and so on. Normally, hacking attacks would

be easy to deflect by the site firewalls, as shown by the lower arrow, because the

original of the attack soon becomes well known.

However, the power of a DDoS attack is twofold: the attack is launched from

many places (often distributed among thousands of infected “bots” that are trig-

gered all at the same time) and that attack masquerades as simply a large number

of visits to particular server site. However, as shown in the figure, these bot-com-

promised systems can quickly overwhelm service provider network capacity as

the traffic concentrated as it moves closer and closer to the target victim site.

Once at the site, the DDoS traffic, which is otherwise indistinguishable from reg-

ular client queries, also overwhelms the inline security devices such as the fire-

wall(s) and intrusion prevention systems. When unchecked, the DDoS traffic

saturates the target service or application at the victim and, as a result, denies ser-

vice to the legitimate users of the site.

How does BGP help this DDoS situation? In one of two ways. The first way

is shown in Figure 17.4. In this case, the victim data center or enterprise can use

BGP flow spec updates to initiate a BGP announcement to temporarily “black

hole” (send to the bit bucket) the traffic flow that characterizes the DDoS attack.

It might not be obvious that a DDoS traffic stream contains enough common

header fields to define a flow, but if the attack is to be effective, the traffic gener-

ated by the bots must be targeted as precisely as possible.

Once these BGP updates reach the service provider routers, they establish a

remotely triggered black hole (RTBH) at the peer service provider edge (because

this is where the DDoS traffic enters and leaves the network). These BGP updates

Bots

Internet

Service Provider
Enterprise or Data Center

Victim

DDos attacks from

Bot-compromised systems

DDos traffic overwhelms

network capacity

DDos traffic overwhelms

Inline security devices

DDos traffic targets

applications and

services

FIGURE 17.3

The basics of a DDoS attack.

437BGP and Flow Specification

have the next-hop set to a preset black hole route. As a result, the destination

RTBH discards all traffic to the victim until the flow ceases for a certain amount

of time and normal routing to the victim resumes.

Now, many service providers might be nervous about letting their customers

set next hops in their core network, whether on the edge or not. So there is

another way to halt the DDoS attack flow with BGP. In this case, the BGP next-

hop updates for the DDoS victim are detected and triggered by the service pro-

vider. This is shown in Figure 17.5. The only difference is that in this second

case, the victim might not even be aware that the DDoS attack has taken place,

unless some reporting mechanism is in place (and usually is).

Bots

Internet

Service Provider
Enterprise or Data Center

Victim

Dest RTBH discards all

traffic to the victim Victim initiates BGP

announcement

BGP with next-hop set

to preset black hole route

RTBH RTBH

Remotely Triggered Black

Hole filter at peer SP edge

FIGURE 17.4

An RTBH triggered by the victim.

Dest RTBH discards all

traffic to the victim

Bots

Internet

Service Provider
Enterprise or Data Center

Victim

Remotely Triggered Black

Hole filter at SP edge

BGP with next-hop set

to preset black hole route

RTBH RTBH

FIGURE 17.5

An RTBH triggered by the service provider.

438 CHAPTER 17 Expanded Uses for BGP

Note that in both cases, not only with DDoS attacks, but with other types of

hacker activity, these attacks can be deflected by using BGP with RTBH next

hops. The major difference is who know about the attack first and who issues the

proper BGP updates to start and end the black hole.

BGP FLOW SPEC DETAILS

How does BGP perform this flow spec magic? Through NLRIs, of course.

RFC5565 established an Address Family Identifier (AFI) and Subsequent AFI

(SAFI) values for flow specs and these were extended to IPv6 later. The AFI/

SAFI values are:

• 1/133 for IPv4 unicast filtering

• 1/134 for BGP or MPLS VPN filtering.

In these NLRIs, the routing “prefix” contains the destination and source IP

address, as well as the protocol and port that applies to the matching rule. For

example, the advertised information could be something like ,dest5 10.0.1/24

(more specific forms possible), srce5 � (any), protocol5 6 (TCP), port5 80 (html/

web).. BGP routers then understand flow spec NLRIs can implement the flow

spec rules any way they like (within limits: there is an order that the flow spec rules

must be applied to prevent interpretation conflicts). For example, Juniper Networks

devices will keep flow spec routes in a separate table (inetflow.0) and apply the

contents of this table as an ingress forwarding table filter. In Juniper Network’s

implementation, the flow spec routes are always validated against unicast routing

information or through the devices’ routing policies.

Flow specs can match on the following:

• Destination and source prefix

• IP protocol such as TCP, UDP, ICMP, and so on

• Destination or source port (TCP or UDP)

• ICMP type and code

• TCP header flags

• Packet length

• DCSP value

• Fragmentation values (do not fragment, last fragment, more fragments,

and so on).

Implementation often adds several other parameters to these fields. For exam-

ple, some Juniper Networks routers allow the setting of additional match para-

meters such as:

• Bandwidth: The number of packet-per-second of the matched traffic type the

device will accept

• Burst: The number of packets of the matched type that the router allows

during a burst

439BGP and Flow Specification

• Priority: specifies are priority level for the matched packet (such as “low”)

• Recovery time: The number of second that must elapse before the matched

flow is considered revered from the attack

• Bypass the aggregate policer: The DDoS protection will bypass any aggregate

policer configured for the protocol group (for details, see Juniper Networks

technical documentation)

• Disable lice card (FPC) or routing engine policers: Another Juniper-Network-

specific operation

• Disable logging: Do not log the DDoS event (DDoS attacks can overwhelm

device logging capabilities).

This is not even an exhaustive list. All of these parameters are configured

optionally and have default values and actions. Other parameters include line card

specifics as well as bandwidth and burst scaling percentages. All in all, Juniper

Networks routers allow 12 different additional parameters for DDoS protection,

all under a ddos-protection stanza in the configuration.

The actions that a flow spec can take are defined using Extended

Communities in BGP:

• 0x8006: traffic rate (a rate value of 0 discards all traffic in the flow)

• 0x8007: traffic action (for instance, sample the flow periodically)

• 0x8008: redirect the flow to a certain routing instance

• 0x8009: mark the traffic (e.g., with a certain DSCP value).

When it comes to DDoS protection, many implementations simply silently dis-

card the traffic (the whole RTBH concept). After all, it makes little sense to add

processing complexity to a network currently under DDoS attack.

Although flow spec use in BGP is very flexible, the main purpose of these

NLRIs is to make the distribution of traffic filter lists to routers more or less auto-

matic during DDoS attacks. Routers that understand these NLRIs can drop traffic

flows based on the packet and TCP/UDP header fields referenced by the AFI/

SAFI. Each router can do this independently, but it makes a lot of sense to coordi-

nate actions when routers are struggled under a DDoS attack in the first place. So

a central platform can build filter rules to drop the harmful traffic and distribute

these in advertisements to BGP peers.

It is often problematic to use IP prefixes as the basis for flow spec traffic

diversion. This is a large hammer to use for a problem that is often best

addressed using a more focused method. So there is a way of using the redi-

rect action to perform a kind of “surgical diversion” of suspect traffic to a

“scrubbing center” where further action can be taken. This mitigation can

even include the reinjection of traffic once the central location has decided

what to do.

In several implementations, it makes a lot of sense to make central point of

coordination the route reflector.

440 CHAPTER 17 Expanded Uses for BGP

In summary, here are the benefits of using BGP flow specs to address the

issue of DDoS attacks, with or without surgical diversion:

• The filtering rules are “piggybacked” onto regular BGP NLRI distribution,

which is common inside (iBGP) and outside (eBGP) routing domains.

• The new address family (AFI/SAFI values) separates filtering information

from pure routing information (and in most implementation is kept in a

separate “flow spec” table).

• The method provides a good tool to react to DDoS attacks quickly and

automatically, saving valuable time between attack detection and mitigation

efforts.

BGP IN THE VERY LARGE DATA CENTER
One of the most startling things about the new aspects of BGP is its use in places

where BGP was seldom found not too long ago. But new Internet drafts propose

the use of BGP in “large-scale” data centers. . . and they mean VERY large:

places with “hundreds of thousands of servers.” Nevertheless, BGP in the data

center is worth discussing, not only because the role that BGP would play in a

data center is not obvious, but because many things that apply to extreme cases in

networking end up being useful in more routine environments.

DATA CENTERS AS CLOS NETWORKS

A lot of concepts and network architecture are taken from the old Public

Switched Telephone Network (PSTN) in the United States. Often the connection

between these original voice network innovations and their later implementation

in, e.g., a modern data center is not obvious. Let’s look at how something called

a CLOS network is used in a data center and how BPG often plays a role as well.

At first it might seem odd that the meta-routing protocol (“routing about rout-

ing”) like BGP could apply in the tight, closed world of the data center. However,

the challenge of networking is often keeping apart things that naturally belong

together and bringing together things that naturally want to stay apart. For

instance, a Layer 2 network like a LAN connected by switches or bridges natu-

rally forms one big network while a Layer 3 network connected by routers natu-

rally forms many networks, but all interconnected at Layer 3.

Let’s see how this all comes together with BGP. Many data center designs are

based on a PSTN architecture called a CLOS network or folded CLOS network.

Why? Well, the Clos concept worked well for the voice network, so it made no

sense to reinvent the wheel when it was time to invent an architecture for large-

scale data centers.

441BGP in the Very Large Data Center

What is it about large-scale data centers that make CLOS networks such a

good fit?

To see that, we need a bit of history. Once a telephone became popular among

“subscribers” (as customers for the voice service were known) the question of

how to pay for the service came into play as well. Early customers rebelled at

flat-rate services, where subscribers paid a fixed amount per month whether they

called anyone or not, and there weren’t that many people to call then at all. So

the leading payment model became metered services, a kind of pay-as-you-go ser-

vice that recorded and billed based on the calls you made (incoming calls were

free to encourage people to get phones).

But there were two situations that could cut down on telephone company

revenues. It is good to remember that if you called someone, a connection path

through the network had to be found and set up before the phone would ring

at the other end of the line. In some cases, all this work was done only to find

that the other person was already on a call. In that case, there was nothing to

do but give the caller a “busy signal” and hope they would call back later (they

usually did).

The other case was a bit trickier. In that case, the connection attempt was

blocked along the path because there was no circuit path available between tele-

phone switches. Eventually, the caller would receive a “fast busy” tone to indicate

this lack of resources in the network. If this condition happened frequently

enough, it could severely impact the revenues of the telephone company. If only

there was a way to maximize the resources of a given network so that there were

many multiple paths through the network to route connections.

This is where Charles Clos comes in. Charles Clos worked at Bell Labs, the

R&D arm of the AT&T Bell System, the largest telephone network in the United

States and the world (in 1970, AT&T had a staggering 1 million employees). In

an article published in 1953 in Bell Labs Technical Journal, Clos explored the

mathematics behind a type of multi-stage “crossbar” switch that allowed graceful

scaling of larger and larger capacity switches (i.e., inputs and outputs).

CLOS networks consist of three stages: the ingress stage, the middle stage,

and the egress stage. Each stage is made up of a number of “switch points”

(crossbars) to route calls (or any type of traffic) from an input port to an output

port. The characteristics of the CLOS network are defined by three integer para-

meters: n, m, and r. The number n represents the number of inputs that feed the r

ingress stages, while the number m represents that number of outputs for each

switch stage.

Clos’s paper showed that if the number of stage outputs (m) was greater or

equal than twice the number of inputs (n) minus 1, there would always be a path

through the network from input to output:

m. 5 2n2 1

That is, the switch would be non-blocking. Scaling would be provided not nec-

essarily by increasing the values of m and n, although that was possible, but by

442 CHAPTER 17 Expanded Uses for BGP

adjusting the value of r, the number of inputs and outputs in each individual

switching element.

The CLOS network concept can be made much clearer by showing the rela-

tionship of the numbers in Figure 17.6. Note that the gross number of inputs and

outputs (n) is not the same as the number of stage outputs (m) or the way the

ports are packaged in a stage element (r).

Let’s see if you’ve been paying attention. Is the folded CLOS network shown

in Figure 17.1 blocking or non-blocking? The formula is m. 5 2n2 1, and we

see in the figure that n5 4. Therefore, we need 23 42 15 7 middle stage

switches. But there are only 3 shown. (And obviously, if there are only three out-

puts to the three middle switches, for example, the fourth input from each ingress

stage will always be blocked). However, we have an out: the dotted lines indicate

that there could be more links and stages than shown in the figure.

Now the attraction of CLOS networks for large-scale data centers becomes

obvious. But in the data center, it’s common to represent the CLOS network in a

folded form by realizing that the n ports can be connections to the client and

server hosts (or their VMs) inside racks in a big data center. To show this, we can

just “fold” the CLOS network in the middle, making each input n also a potential

output n and making the middle stage a second level on top of the first level

ingress stage switches. This folded CLOS network is shown in Figure 17.7.

Now, in a real data center, the top of rack (TOR) switches usually form

another level in the network, below the stage shown in the figure. In this architec-

ture, the TOR switches feed the “leafs” of the folder CLOS network, and these

1

1

2 r –1

r –1

r

1 2 r

2 m

. . .

1 2 n–1 n 1 2 n–1 n 1 2 n–1 n 1 2 n–1 n

.

.

.

.
. . .

1 2 n–1 n 1 2 n–1 n 1 2 n–1 n

.

1 2 n–1 n

. . .

FIGURE 17.6

Ports and stages in a CLOS network.

443BGP in the Very Large Data Center

leafs are linked by a third level called the spine. In some data centers, the top

level can perform gateway functions to other data centers of the Internet, or the

spine devices can try to provide this “gateway router” function. Any oversubscrip-

tion, which is the allowance of ports in excess of the strictly calculated Clos

capacity, can be done at the TOR level.

There is no standard definition of the levels or components, leaving each

explanation the burden—or freedom—to define its own terms. In this chapter,

we’ll use the TOR-Leaf-Spine model and not worry about leaving the data center.

(There is a lot of documentation that mentions Tier 1, Tier 2, and Tier 3 devices

in the data center, but this terminology is also used for reliability capabilities, so

we will not employ it here.)

LAYER 2 AND LAYER 3 IN A FOLDED CLOS NETWORK DATA CENTER

So far, we have taken the concepts of the CLOS network and extended them to

data centers. But have we created one big monolithic network or many smaller

interconnected networks? As mentioned earlier, the challenge of networking is

keeping apart things that naturally belong together and bringing together things

that naturally want to stay apart. Which case are we looking at in a big CLOS

network data center?

Let’s first examine the consequences of placing each server or host into one

giant Layer 2 network, making the data center a LAN connected by switches or

bridges. Let’s call this the “Layer 2 data center.” Then we’ll look at making mul-

tiple Layer 2 networks in the data center, but connected by routers interconnected

at Layer 3. The good news is that there is no single right answer, but the bad

news is that at some point scaling issues tend to indicate it would be more effi-

cient to use Layer 3 in the data center, and perhaps even use BGP to further break

the data center up into independent routing domains (autonomous systems).

The nice thing about creating a single data-center-wide Layer Lan is that ser-

vers (and the services they host) can be as mobile as we like. There is no location

1

1 2 2r -1 2r

2 m.

.
. . .

1 2 n–1 n

. . .
1 2 n–1 n

. . .
1 2 n–1 n

. . .
1 2 n–1 n

FIGURE 17.7

A folded CLOS network.

444 CHAPTER 17 Expanded Uses for BGP

implied by a Layer 2 MAC address, so it does not matter which rack, shelf, or

slot the endpoint of a connection dwells. But this scheme works best with a lim-

ited number of devices and ancillary protocols such as TRILL (Transparent

Connection of Lots of Links: RFC6325). Otherwise, at some point scaling issues

make bridging convergence a nightmare, broadcast storms might never end, and

the sizes of the MAC and ARP tables would be gigantic.

Also, verbose TCP tends to overwhelm larger data centers. Critics of the

Layer 2 approach point out the data centers using Layer 2 exclusively are trying

to solve a problem that has already been resolved with IP and Layer 3 protocols.

But if we go to Layer 3 for the data center, which routing protocol should be

used? It would be nice to use OSPF or IS-IS, but routing database size quickly

becomes an issue as the number of Layer 3 devices rises. The leaf-spine-gateway

architecture is inherently hierarchical, but both OSPF and IS-IS tend to view hier-

archies on their own terms, with continuous areas or levels. Also, traffic engineer-

ing, necessary to shift traffic around a spine that is under maintenance, is possible

with both IGPs, but this is seldom easy.

Finally, and most tellingly, the data center network needs an EGP such as

BGP in any case. If nothing else, the data center routing domain will be separated

from any external routing domain. So if at least one BGP AS is needed, why not

explore possible roles for multiple ASs in a large data center?

So, in this way of thinking, the large-scale data center should embrace BGP

because BGP is extensible, stable, and universally supported.

Data center switch purists might be surprised at this point. But the goal is to

make things work, not try to stretch a methodology beyond its limits just to prove

a point. To skeptics, we might point out that:

• BGP is not only alive and well, but evolving. And it is the engine of the

Internet.

• BGP tends to get very complex when needing complex routing policies, true.

But we’ll soon see that there is really no need for complicated policies in a data

center, and that what you need is to spread the reachability information around.

• BGP sessions do have to be configured, but that’s true of everything. If BGP

can improve your data center fabric performance, it’s always worth doing.

• BGP implementations have been slow to converge because it better to make

sure the global public Internet keeps chugging along. But data center BGP can

converge as fast as an IGP when adjusted correctly.

• BGP configuration is usually more lines and larger than using an IGP-like

OSPF configuration, but the use of widespread network automation to push

configurations to devices makes this a small objection.

USE iBGP OR eBGP?

BGP, as we have seen, comes in two major packages: internal BGP for use inside

an AS routing domain and external BGP for use among AS routing domains. This

445BGP in the Very Large Data Center

issue is very important, but most data centers divide their tiered devices up into

multiple AS routing domains and run eBGP among them.

Why not iBGP? Using iBGP would require all switches, even the TOR

switches, to peer with every other device running Layer 3 in the data center. Of

course, the peering burden and overhead can be lessened by using route reflectors,

and several major data center schemes propose doing just that.

However, standard BGP route reflection only reflects the “best” route prefix.

This makes route reflection very difficult to use with equal-cost multipath

(ECMP) schemes, which we definitely want for the large data center. Traditional

IGP routing, and basic BGP route reflection, favors the path with the lowest met-

ric “cost” value. If several paths have the same cost, IGPs pick one to use and

basically use the rest as backups. But a CLOS network has many paths that have

exactly the same cost metric, and a lot of them. So ECMP keeps the traffic flow-

ing on all paths regardless of metric.

It is true that the BGP AddPath feature can provide additional ECMP paths in

BGP advertisements. But this is an added complexity that eBGP does provides

without additions.

LET DATA CENTER USE eBGP, NOT AN IGP

Let’s take a final look at why we should use eBGP and not an IGP such as OSPF

or IS-IS in our large data center. The easiest way to compare the two methods is

in a table, as in Table 17.1.

So, all in all, eBGP is a good fit for large data centers, especially those

expected to grow even larger. This does not rule out the use of IGPs, of course.

The IGPs and GBP can complement each other, as they do on the Internet

backbone.

Table 17.1 IGP and eBGP in the Data Center

IGP eBGP Comment

Hello messages are
very chatty

TCP sessions needed,
but not many

Large IGP domains quickly require
a lot of bandwidth

Area-wide propagation
of failure events

Very fast new path
resolution

CLOS networks are very symmetric
and BGP finds new best path
quickly

Messy implementation
of recursive next hops

Recursive next hops
and next-hop-self built
into BGP

Recursion stable in BGP but often
complex in IGPs

Multi-topology support
available but complex

AS Path attribute has
built-in loop prevention

BGP is well-adapted to multi-tier
architectures with long paths
remaining unused

446 CHAPTER 17 Expanded Uses for BGP

EXAMPLE OF BGP USE IN THE DATA CENTER

This is a good time to look at an example of using eBGP in a data center CLOS

network. There is no standard way to add BGP to a data center, although there

are a series of Internet drafts titled “Use of BGP for Routing in Large-Scale Data

Centers.”

Although the document is short on hard and fast rules, it does contain a

number of guidelines for implementing eBGP in the data center. Some of

these are:

• The BGP sessions are established as single-hop sessions over direct point-to-

point links (no problem in CLOS networks). No multi-hop or loopback

sessions are used, even when there are multiple links between the same pair of

switching nodes.

• AS numbers are drawn from the private ASN space established in RFC6996 to

avoid ASN conflicts. This range (for 16-bit ASNs) is 64512 through 65534

(1023 values).

At this point, it would be good to introduce a sample network to see how the

BGP ASNs would be assigned and used. Let’s start with the TPR-Leaf-Spine data

center network shown in Figure 17.8.

The figure shows a folded CLOS network with eight TOR switches and eight

leaf switches arranged in quads (a topology of four nodes and six links that

TOR 1

. . .

TOR 2

. . .

TOR 3

. . .

TOR 4

. . .

TOR 5

. . .

TOR 6

. . .

TOR 7

. . .

TOR 8

. . .

L1

S1

L2 L3 L4 L5 L6 L7 L8

S2 S3 S4

eBGP

AS 64512

AS 6451X

AS 6552Y

eBGP

FIGURE 17.8

An example data center network.

447BGP in the Very Large Data Center

survives the loss of any single link or switch in the quad). This cuts down on the

number of links required, and we only have to configure two ports and addresses

on each switch. There are also four spine switches, which are mesh-connected to

each of the eight leafs. This creates a need for 8 TOR switches3 2 links per TOR

1 8 leafs switches3 four spine switches5 48 IP addresses.

We’ll assign a private AS number to each TOR and leaf switch, so a single

digit ending will be enough to vary for each level. We’ll also use a single AS for

the spine switches, mainly due to gateway considerations. As we’ve already

decided, all of these AS domains run eBGP between them.

What we’ve done so far is shown in Figure 17.9. And this system works

fine—up to a point.

Now, in truly huge (“large-scale”) data center, we quickly run out of

suitable private AS numbers. We could always use 32-bit private ASNs, but these

are unfamiliar and located in an odd range. But we could also reuse ASNs for

each quad cluster. This reuse requires that the spine AS devices enable the

BGP “Allow AS In” option, but that is seldom an issue for modern BGP

implementations.

TOR 1

. . .

TOR 2

. . .

TOR 3

. . .

TOR 4

. . .

TOR 5

. . .

TOR 6

. . .

TOR 7

. . .

TOR 8

. . .

L1

S1

L2 L3 L4 L5 L6 L7 L8

S2 S3 S4

eBGP

AS 64512

AS 6451X

AS 65541

eBGP

AS 65542 AS 65541 AS 65542 AS 65541 AS 65542 AS 65541 AS 65542

FIGURE 17.9

Re-using ASNs in a large data center.

448 CHAPTER 17 Expanded Uses for BGP

What IP addresses should these eBGP sessions distribute in its NLRIs? If we

advertise all the link addresses, then there is little advantage over using an IGP as

the data center scales to thousands of servers. It’s also not clear why the spine

switches would need to know the addresses of a link between L1 and TOR2 and

what the next hop might be. But eBGP can use the loopback address of each indi-

vidual router (the switches must also employ Layer 3 if they are running BGP)

for that purpose. Server subnets still need to be known and announced by BGP,

but reaching the servers is the main goal. Also, because of the way that CLOS

networks function, summarization of IP addresses would lead to black-holing traf-

fic (any further discussion of this point is beyond the bounds of this summary

chapter).

To connect through a gateway router beyond the Clos structure, to a WAN or

the Internet or another data center, this data center needs to conceal the private

ASNs used. However, this is necessary even for a single private AS when used

for an enterprise network. And from leaf to spine, we can rely on a default route

to direct traffic up to the spine and beyond the data center for external

reachability.

Note that we still inject BGP routes from the spine and gateways to the leafs

because external destination must still be known. But for “outbound” traffic, only

a default route (“if you don’t know where to send it, send it here”) is needed.

Finally, notice that we do not distribute the full BGP prefix list on the quads from

the leafs to the TOR switches.

BGP can use ECMP to distribute traffic headed for the same IP address across

multiple links if they have the same underlying metrics. Usually, this just means

that all links in the data center run at the same speed.

However, when a leaf device loses a path for a prefix, it still has a default

route to the spine device. For a period of time, usually short, the spine device

might still have a path that leads to the leaf device. This creates a short-lived

“micro-loop” in the network. To avoid this, we can configure “discard

routes” on the leafs switches to make sure that traffic heading for the

TOR switch does not bounce back to the spine devices because of the default

route.

One example use of eBGP in the data center is shown in Figure 17.9. In our

modest network, there really is very little gain over using an IGP to establish

reachability. In fact, iBGP could be used with a route reflector (RR: there are vir-

tual route reflectors specialized for use in the data center) to cut down on peering

requirements. But standard RR devices only reflect the “best” prefix and so strug-

gle with ECMP unless the device supports the BGP “AddPath” feature.

Optimized Route Reflection (ORR), discussed earlier in this chapter, can address

this issue (Figure 17.10).

In any case, as the data center scales into the “hundreds of thousands of ser-

vers” range (as the draft explicitly mentions), BGP becomes more and more

attractive for use in the data center network.

449BGP in the Very Large Data Center

DISTRIBUTING LINK-STATE INFORMATION WITH BGP
As we have seen, routers and other type of network nodes use an IGP to distribute

routing information inside a routing domain or AS. IGP determines which routes

are the best candidates to distribute using one of two methods:

• Distance vector—This technique is used by older protocols such as the routing

information protocol (RIP). These protocols advertise the entire routing

table to their directly connected neighbors using a broadcast address

(“Everybody, pay attention to this!”). The best path to a destination is simply

the minimum number of hops (routers or network nodes) that the packet

would take to the destination, regardless of link speed or node processing

power.

• Link-state protocols—This technique, used by protocols such as OSPF or

IS-IS, advertise information about the network topology to all routers in a

routing domain using multicast addresses (“If you are interested, pay attention

to this”). This triggers other updates until all routers running the protocol have

the same information about the network, a process known as convergence.

Best paths can then be determined by different criteria: delay, bandwidth,

or other parameters.

BGP
Routes

AS 64512

AS 6451X

BGP
Prefix
List

Default
Routing

S1 S2 S3 S4

L2 L3 L4 L5 L6 L7 L8L1

TOR 1

. . .
TOR 2

. . .
TOR 3

. . .
TOR 4

. . .
TOR 5

. . .
TOR 6

. . .
TOR 7

. . .
TOR 8

. . .

AS 65541 AS 65542 AS 65541 AS 65542 AS 65541 AS 65542 AS 65541 AS 65542

FIGURE 17.10

One example of data center BGP use.

450 CHAPTER 17 Expanded Uses for BGP

Whatever the method, the IGP provides routing connectivity information

within the routing domain, the set of routers under common control of a single

administration entity that controls the domain. A BGP AS can contain a single rout-

ing domain (the simplest case) or several, and these separate domains can even run

different IGPs. Inside an AS, the IGP(s) learns reachable prefixes and the interfaces

to reach them and advertised the “best” way to get to them to all IGP neighbors.

When an AS consists of multiple routing domains, the IGPs can exchange informa-

tion gathered from different routing protocols through a process known as route

redistribution. This redistribution ties multiple routing domains together inside a

single AS (so the routes are still intra-AS and not external routes).

THE IGP LIMITATIONS

No matter which IGP is used inside a routing domain, IGPs are limited when scal-

ing and in performance (link-state calculation and convergence time). IGPs have

to take into account all types of traffic engineering considerations to determine the

link state (we don’t usually think of link bandwidth as an aspect of traffic engi-

neering, but static parameters count as much as dynamic ones like queue length).

IGPs struggle with large databases and have the added limitation of viewing

only as portion of the entire global network, limiting their ability to calculate end-

to-end traffic engineering results. Once a path from source to destination breaks

out of the sphere of the IGP routing domain, traffic engineering considerations

break down because complete routing information is not available to all routers.

What we would like to have is a way to get IGP link-state information from

one routing domain to another, whether the routing domains are inside one AS or

not. If the routing domains are different ASs and have different ISPs, the ISP can

agree to share their link-state information without enabling global distribution and

the resulting confidentiality and scaling issues.

Fortunately, we can use a form of spanning link-state distribution with BGP.

THE BGP SOLUTION

As soon as IGP information is needed outside a routing domain, an EGP is

needed. The EGP can get link-state, traffic engineering, and other information

from an IGP and share it across the routing boundary to enable computation of

effective inter-domain paths.

Naturally, BGP is the standard EGP used for this purpose. If BGP can carry

information about every prefix on the global public Internet everywhere, it can be

extended to handle this aspect of routing as well. In contrast to IGPs, BGP does

not use broadcast or multicast addressing to send out information, but uses

TCP session to designated peers (“You, and you alone, pay attention to this”).

This cuts down on the amount a time a server or other device (anything not a

router) on the same LAN as a router spends parsing frames and packets that con-

tain nothing of interest to the destination (except for potential hackers, or course).

451Distributing Link-State Information with BGP

The use of TCP enables peers to employ flow control during periods of routing

information “churn” be delaying TCP acknowledgments, something that IGPs are

unable to do.

As we have seen before, the extensible nature of BGP NLRIs provide a nice

platform for adding capabilities without compatibility concerns or altering the

basic protocol. Also, BGP routing polices provide excellent control over exactly

what information is sent to peers and what information each peer will accept. The

BGP routing policies can also filter and modify the information inside the NLRIs.

Inside an AS, however, IGP and BGP are distributing the same set of traffic

engineering parameters (hopefully, BGP polices are not altering bandwidth and

other characteristics within a routing domain). But BGP scales more gracefully

than the IGP. The information acquired by the IGP can be aggregated by BGP

and distributed even beyond the AS is desired (and allowed). In these days of

control plane separation, BGP can be used by a central or external path computa-

tion entity to passively listen to a route reflector for all the traffic engineering and

link-state information it needs.

In summary, if we want a way to distribute IGP link-state information beyond

the reach of the IGP, then BGP is that way to do it.

IMPLEMENTING BGP FOR LINK-STATE PROTOCOLS

How should routers implement this new capability for BGP? The standards say

that there should be a “protocol agnostic representation” of nodes and links for

these purposes. This is a fancy way of saying that any implantation should be

more abstract than the concrete link-state parameters used by the IGP for nodes

and links.

Because the Illustrated Network is built out of Juniper Networks equipment,

let’s look in a bit more detail at how Juniper Networks routers implement sharing

link-state information across IGP boundaries using BGP. The “protocol agnostic”

database for this information already exists in every Juniper Networks router (and

other Layer 3 devices) as the Traffic Engineering Database (TED). All topology

information is also in the TED. All that is missing is a way to “transcode” this

link-state information into a format suitable for BGP NLRI updates.

To do this, we’ll put all relevant link-state information into a separate

table called the “link-state distribution table,” or lsdist.0. All of the link and

nodes entries in the TED are converted into routes before being placed into the

TED table, a process called TED import, and users can examine these entries if

they wish. In fact, a routing policy can be inserted here to control exactly which

routes are “leaked” into the lsdist.0 table. Then we can export this collected

information back into the TED (because it is a cumulative process) and out to

BGP for export to peers. This overall process is shown in Figure 17.11.

Another policy can be used to export (advertise) routes from the lsdist.0
table using BGP. To do this, BGP needs to be configured with the BGP-TE

address family and an export policy to select these routes for BGP distribution.

452 CHAPTER 17 Expanded Uses for BGP

BGP then sends these routes as it would any other NLRIs. BGP peers that

have the BGP-TE address family enabled receive and process these BGP-TE

NLRIs, storing them in the receiver’s lsdist.0 table.
All routes in the lsdist.0 table must be selected for export with a routing

policy. By default, no entries are leaked from the lsdist.0 table unless directed

by a policy.

One other aspect of Juniper Network’s link-state BGP distribution should be

mentioned. That is the fact that the TED uses a protocol preference scheme based

on the protocol used to provide the information to the table. Entries learned by

BGP can be supplied by different protocols, and TED entries can correspond to

more than one protocol. To make sense out of this multiplicity, a protocol with a

higher “credibility” value is favored over a source with a lower value. The credi-

bility values can be changed by configuration.

The default credibility values for BGP-TE are:

• Unknown—80

• OSPF—81

• ISIS Level 1—82

• ISIS Level 2—83

OSPF IS-IS

Traffic Engineering
Database (TED)

lsdist.0

BGP

Internet

Internet

TED Import TED Export

BGP Export

FIGURE 17.11

Implementing BGP link-state distribution.

453Distributing Link-State Information with BGP

• Static—84

• Direct—85.

JUNIPER NETWORK’S IMPLEMENTATION DETAILS

The Junos OS implements distribution on BGP-TE NLRIs through route reflector.

The following list of NLRIs are supported:

• Link NLRI

• Node NLRI

• IPv4 Prefix NLRI (receive and propagate)

• IPv6 Prefix NLRI (receive and propagate).

Juniper Networks does not support the route-distinguisher form of these

NLRI.

With respect to the node and link NLRI’s the Junos OS supports the following

fields:

• Protocol-ID—NLRI origins with the following protocol values:

• ISIS-L1

• ISIS-L2

• OSPF

• Identifier—This value is configurable. By default, the identifier value is set to 0
• Local/Remote node descriptor, which include:

• Autonomous system

• BGP-LS Identifier—This value is configurable. By default, the BGP-LS

identifier value is set to 0
• Area-ID

• IGP router-ID

• Link descriptors (only for the link NLRI), which include:

• Link Local/Remote Identifiers

• IPv4 interface address

• IPv4 neighbor address

• IPv6 neighbor/interface address—The IPv6 neighbor and interface

addresses are not originated, but only stored and propagated when received

• Multi-topology ID—This value is not originated, but stored and propagated

when received.

The following is a list of supported LINK_STATE attribute TLVs:

• Link attributes:

• Administrative group

• Maximum link bandwidth

• Maximum reservable bandwidth

• Unreserved bandwidth

• TE default metric

• SRLG

454 CHAPTER 17 Expanded Uses for BGP

• The following TLVs, which are not originated, but only stored and

propagated when received:

• Opaque link attributes

• MPLS protocol mask

• Metric

• Link protection type

• Link name attribute

• Node attributes:

• IPv4 Router-ID

• Node flag bits—Only the overload bit is set

• The following TLVs, which are not originated, but only stored and

propagated when received:

• Multi-topology

• OSPF-specific node properties

• Opaque node properties

• Node name

• IS-IS area identifier

• IPv6 Router-ID

• Prefix attributes—These TLVs are stored and propagated like any other

unknown TLVs.

SUMMARY OF SUPPORTED AND UNSUPPORTED FEATURES

The Junos OS supports the following features with link-state distribution using BGP:

• Advertisement of multiprotocol assured forwarding capability

• Transmission and reception of node and link-state BGP and BGP-TE NLRIs

• Nonstop active routing for BGP-TE NLRIs

• Policies.

The Junos OS does not support the following functionality for link-state distri-

bution using BGP:

• Aggregated topologies, links, or nodes

• Route distinguisher support for BGP-TE NLRIs

• Multi-topology identifiers

• Multi-instance identifiers (excluding the default instance ID 0)

• Advertisement of the link and node area TLV

• Advertisement of MPLS signaling protocols

• Importing node and link information with overlapping address.

CONFIGURING BGP-LS ON THE ILLUSTRATED NETWORK
In the previous chapter, we’ve already split the Illustrated Network into two AS

routing domains and put core routers P9 and P4 in one AS (AS 65531) along with

455Configuring BGP-LS on the Illustrated Network

edge router PE5, and P7 and P2 in another (AS 65527). We configured iBGP on

router P9 to make router P4 and PE5 iBGP internal neighbors and eBGP to make

routers P7 and P2 external neighbors of P9.

Here’s all we had to do on router P9 to establish eBGP sessions to routers P7

and P2.

set protocols bgp group ebgp ebgp-to-as65527 type external;
set protocols bgp group ebgp ebgp-to-as65527 peer-as 65527;
set protocols bgp group ebgp ebgp-to-as65527 neighbor 10.0.79.1;
set protocols bgp group ebgp ebgp-to-as65527 neighbor 10.0.29.1;

We also had an iBGP group to peer with routers P4 and PE5.

set protocols bgp group ibgp-mesh type internal;
set protocols bgp group ibgp-mesh local-address 192.168.9.1;
set protocols bgp group ibgp-mesh neighbor 192.168.4.1;
set protocols bgp group ibgp-mesh neighbor 192.168.5.1;

(Note the peering to router loopback addresses for internal peers and interface

addresses for eBGP.)

Now let’s add the statements needed on a Juniper Networks router to create

the lsdist.0 TED table on router P9 using the metrics received from an IGP (in

this case, we’ll use OSPF).

The first thing we have to do on router P9 is to allow OSPF to use traffic

engineering link-state advertisements (LSAs) in the first place on the links to P4

and PE5 that run the IGP.

set protocols ospf traffic-engineering
set protocols ospf area 0.0.0.0 interface s0-0/0/0 traffic-engineering

remote-node-id 10.0.59.1
set protocols ospf area 0.0.0.0 interface s0-0/0/0 traffic-engineering

remote-node-router-id 192.168.5.1
set protocols ospf area 0.0.0.0 interface s0-0/0/3 traffic-engineering

remote-node-id 10.0.49.1
set protocols ospf area 0.0.0.0 interface s0-0/0/3 traffic-engineering

remote-node-router-id 192.168.4.1

For reasons that are far beyond the scope of this introductory chapter, it’s also

a good practice to run OSPF in passive mode (i.e., without worrying about a full

exchange of routing information) on the interfaces they are also running eBGP,

i.e., P7 and P2 in AS 65527.

set protocols ospf area 0.0.0.0 interface s0-0/0/1 passive traffic-
engineering remote-node-id 10.0.79.1

set protocols ospf area 0.0.0.0 interface s0-0/0/1 passive traffic-
engineering remote-node-router-id 192.168.7.1

set protocols ospf area 0.0.0.0 interface s0-0/0/2 passive traffic-
engineering remote-node-id 10.0.29.1

456 CHAPTER 17 Expanded Uses for BGP

set protocols ospf area 0.0.0.0 interface s0-0/0/2 passive traffic-
engineering remote-node-router-id 192.168.2.1

Now we can also configure eBGP with the only other statement needed to use

traffic engineering LSAs and NLRIs.

set protocols bgp group ebgp ebgp-to-as65527 type external;
set protocols bgp group ebgp ebgp-to-as65527 family traffic-engineering

unicast;
set protocols bgp group ebgp ebgp-to-as65527 peer-as 65527;
set protocols bgp group ebgp ebgp-to-as65527 neighbor 10.0.79.1;
set protocols bgp group ebgp ebgp-to-as65527 neighbor 10.0.29.1;

In order to get traffic engineering information from AS65527, we would add

traffic engineering to our iBGP peers as well.

set protocols bgp group ibgp-mesh type internal;
set protocols bgp group ibgp-mesh family traffic-engineering unicast;
set protocols bgp group ibgp-mesh local-address 192.168.9.1;
set protocols bgp group ibgp-mesh neighbor 192.168.4.1;
set protocols bgp group ibgp-mesh neighbor 192.168.5.1;

What about the routing policies needed to get link-state information into and

out of the TED table? Those are not difficult to configure either.

set policy-options policy-statement bgp-to-ted from family traffic-
engineering;
set policy-options policy-statement bgp-to-ted then accept;

When applied, this policy takes all BGP NRLI updates concerning traffic engi-

neering (i.e., our link-state information from the IGP) and places it into the TED.

To export this information to other routers is a simple policy as well (and also

uses next-hop self):

set policy-options policy-statement nlri-bgp term 1 from family traffic-
engineering;

set policy-options policy-statement nlri-bgp term 1 then next-hop self;
set policy-options policy-statement nlri-bgp term 1 then accept;

Normally, we would apply these polices to interface or protocols, but we

haven’t discussed one of the most common protocol families used with traffic

engineering. This family is Multiprotocol Label Switching (MPLS), but we will

have to wait for a couple of chapters to talk about statements like these:

set protocols mpls traffic-engineering database import policy ted-to-nlri;
set protocols mpls cross-credibility-cspf

Let’s close by saying that the cross-credibility statement allows the router to

create constrained shortest path first (CSPF) ways through the network using traf-

fic engineering information from more than one source, such as OSPF and IS-IS.

457Configuring BGP-LS on the Illustrated Network

QUESTIONS FOR READERS
1. What is ORR and what does it do?

2. What does a RTBH do and what are two ways that these mechanisms can be

triggered?

3. What is a CLOS network and what form of CLOS network is often used in a

large data center?

4. Why consider BGP for use in a large data center? Discuss at least four

reasons.

5. Compare very large data center use of IGP with use of eBGP.

458 CHAPTER 17 Expanded Uses for BGP

CHAPTER

18Multicast

WHAT YOU WILL LEARN

In this chapter, you will learn how multicast routing protocols allow multicast traffic
to make its way from a source to interested receivers through a router-based network.
We’ll look at both dense and parse multicast routing protocols, as well as some of the
other protocols used with them (such as IGMP).

You will learn how the PIM rendezvous point (RP) has become the key component
in a multicast network. We’ll see how to configure an RP on the network and use it to
deliver a simple multicast traffic stream to hosts. We’ll also see why multicast is not
as common as people thought it might be.

If the Internet and TCP/IP are going to be used for everything from the usual data

activities to voice and video, something must be done about the normal unicast

packet addressing reflecting one specific source and one specific destination.

Almost everything described in this book so far has featured unicast, although

multicast addresses have been mentioned from time to time—especially when

used by routing protocols.

The one-to-many operation of multicast is a technique between the one-to-one

packet delivery operation of unicast and the one-to-all operation of broadcast.

Broadcasts tend to disrupt hosts’ normal processing because most broadcasts are

not really intended for every host yet each receiving host must pay attention to

the broadcast packet’s content. Many protocols that routinely used broadcasts,

such as RIPv1, were replaced by versions that used multicast groups instead

(RIPv2, OSPF). Even the protocols in IPv4 that still routinely use broadcast, such

as ARPing to find the MAC address that goes with an IP address, have been

replaced in IPv6 with multicast-friendly versions of the same procedure.

Multicast protocols are still not universally supported on the Internet. Then

how do large numbers of people all watch the same video feed from a Web

server (for example) at the same time? Today, this is normally accomplished

with numerous unicast links, each running from the server to every individual

host. This works, but it does not scale well. Can a server handle 100, 1000,

or 1,000,000 simultaneous users? Many-to-many multicast applications, such as

on-line gaming and gambling sites, use multiple point-to-point meshes of links in

most cases. Even if modern server clusters could do this, could all the routers

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00018-7

© 2017 Elsevier Inc. All rights reserved.
459

http://dx.doi.org/10.1016/B978-0-12-811027-0.00018-7

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 18.1

Portion of the Illustrated Network used for the multicast examples. The RP will be router

PE5, and the ISPs have merged into a single AS for this chapter.

460 CHAPTER 18 Multicast

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

461Multicast

and links handle this traffic? Multicast uses the routers to replicate packets, not

the servers.

However, interdomain (or even intersubnet) multicasting is a problem. IP mul-

ticast is widely leveraged on localized subnets where it’s solely a question of host

support. Many-to-many applications have some fundamental scaling challenges

and multicast does not address these very well. For example, how does each host

in a shared tree of multicast traffic manage the receipt of perhaps 50 video

streams from participants?

Today, multicast is a key component of local IPv6 and IPv4 resource discov-

ery mechanisms and is not confined to enterprise applications. However, multicast

applications are used mainly on enterprise networks not intended for the general

public. There is a range of IPv4 addresses (224.0.1.0 to 224.0.1.255) for an

Internetwork Control Block (ICB). But RFC 5771 also says that this traffic MAY

be forwarded (224.0.1.1. is reserved for the Network Time Protocol (NTP)).

There are some networks in Europe that support academic multicasts, but most

ISPs build their content distribution networks (CDNs) without multicast routers and

simply discard multicast traffic unless there are special tunnels on VPNs for it.

One issue is the fact that multicast protocols are intended to be watched, lis-

tened to, or otherwise consumed by anyone interested. That’s fine if we simply

want to port free public television and radio to the Internet. But more likely, con-

tent providers want to limit access to a set of subscribers, or pay-as-you-go custo-

mers. Online video games are in a class by themselves, and corporate meetings

are unlikely to be as open as multicast groups are. For these peer-to-peer multi-

way media steams, there are protocols like Adobe’s Real-Time Media Protocol

(RTMP), which uses TCP, and Real-Time Media Flow Protocol (RTMFP), which

uses UDP. Both are now standards (RFC 7016), and offer secure connections.

Nevertheless, multicast protocols are worth studying. But keep in mind that in

the future, multicast must move beyond a world where special routers (not all

routers can handle multicast packets) use special parts of the Internet (most

famously, the MBONE, or multicast backbone) to link interested hosts to their

sources. Multicast must become not only something for enterprise networks, but

an integral part of every piece of hardware and software on the Internet.

Let’s look at a few simple multicast packets and frames on the Illustrated

Network. We don’t have any video cameras or music servers on the network to

pump out content (although it would be easy enough to add them). But we do

have the ability to use simple socket programs to generate a stream of packets to

multicast group addresses as easily as to unicast destinations. We could look at

multicast as used by OSPF or IPv6 router announcements (although these will not

travel between routing domains), but we’ll look at simple applications instead.

We’ll look at IPv4 first, and then take a quick look at IPv6 multicasting.

We’ll use the devices shown in Figure 18.1 to illustrate multicast protocols, intro-

ducing the terms used in multicast protocols as we go. We’ll explore all of the

terms in detail later in the chapter.

This chapter uses wincli2 and lxnclient on LAN2 and wincli1 on LAN1. The

router PE5 will serve as our PIM sparse-mode RP (sparse trees only send multicast

462 CHAPTER 18 Multicast

traffic to interested parties). To simplify the number of multicast protocols used,

we’ve merged the two ISPs into Best-Ace ISP for this chapter. This means we will

not need to configure the Multicast Source Discovery Protocol (MSDP), which

allows receivers in an AS to find RPs in another AS. A full investigation of MSDP

is beyond the scope of this chapter, but we will go over the basics.

Juniper Networks routers also support a complex scenario of next-generation

multicast VPNs (NG-MVPNs) over MPLS LSPs that span multiple ASs. This is

NOT an easy thing to do, but it allows truly global multicast networks for many

organizations. This configuration is far beyond the scope of not only this book,

but many books on TCP/IP.

A FIRST LOOK AT IPv4 MULTICAST
This section uses two small socket programs from the source cited in Chapter 12:

the excellent TCP/IP Sockets in C by Michael J. Donahoo and Kenneth L.

Calvert. We’ll use two programs run as MulticastReceiver and MulticastSender,

and two free Windows multicast utilities, wsend and wlisten.

Let’s start with two hosts on the same LAN. We’ll use lnxclient
(10.10.12.166) and wincli2 (10.10.12.222) for this exercise (both clients, but

there’s no heavy multicasting going on). We’ll set the Linux client to multicast

the text string HEY once every 3 seconds onto the LAN using administratively

scoped block multicast group address 239.2.2.2 (multicasts use special IP

addresses for destinations) and UDP port 22222 (multicast applications often use

UDP, and cannot use TCP). Naturally, we’ll set the multicast receiver socket pro-

gram on the Windows client to receive traffic sent to that group.

It should be noted that the multicast group addresses used here are administra-

tively scoped addresses that should only reach a limited number of hosts and not

be used on the global public Internet, much like private IP addresses. However,

we won’t discuss how the traffic to these groups is limited. This is mainly

because there are some operational disagreements about how to apply administra-

tively scoped boundaries. We are using scoped addresses primarily as an analog

for private IP addresses. We could also have used GLOP addresses (discussed in

this chapter) or addresses from the dynamic multicast address block.

The receiver socket program does not generate any special messages to say,

“Send me content addressed to group 239.2.2.2.” We know the multicast traffic is

going to be there. Later, we’ll see that a protocol called Internet Group Management

Protocol (IGMP) sends join or leave messages and knows what content is carried at

this time by group 239.2.2.2 because of the Session Announcement Protocol and

Source Description Protocol (SAP/SDP) messages it receives. In reality, multicast is

a suite of protocols—and much more is required to create a complete multicast

application. However, this little send-and-receive exercise will still reveal a lot about

multicast. Figure 18.2 shows a portion of the Wireshark capture of the packet stream,

detailing the UDP content inside the IP packet.

463A First Look at IPv4 Multicast

The Ethernet frame destination address is in a special form, starting with 01 and

ending in 02:02:02—which corresponds to the 239.2.2.2 multicast group address.

We’ll explore the rules for determining this frame address in material following.

Note that the packet is addressed to the entire group, not an individual host (as in uni-

cast). How does the network know where to send replicated packets? Two strategies

(discussed later in the chapter) are to send content everywhere and then stop if no

one says they are listening (flood-and-prune, or dense mode), or to send content only

to hosts that have indicated a desire to receive the content (sparse mode).

The figure also shows that the Windows receiver (10.10.12.222) is generating
IGMPv3 membership reports sent to multicast group address 224.0.0.22 (the

IGMP multicast group). Windows does this to keep the multicast content coming,

even though the socket sender program has no idea what it means. These mes-

sages from Windows to the IGMP group sometimes cause consternation with

Windows network administrators, who are not always familiar with multicast and

wonder where the 224.0.0.22 “server” could be.

Now let’s set our multicast group send program to span the router network

from LAN1 to LAN2. We’ll start the socket utility sending on wincli1
(10.10.11.51), using multicast group 239.1.1.1 and UDP port 11111. The lis-

tener will still be wincli2 (10.10.12.222).
This is easy enough, and Wireshark on wincli1 shows a steady stream of mul-

ticast traffic being dumped onto LAN1. However, the capture on wincli2 (which

had no problem receiving a multicast stream only moments ago) now receives

absolutely nothing. What’s wrong?

FIGURE 18.2

Multicast packet capture, showing the MAC address format used and the port in the UDP

datagram. Some IGMPv3 messages appear also.

464 CHAPTER 18 Multicast

The problem is that the routers between LAN1 and LAN2 are not running a

multicast routing protocol. The router on LAN1 at 10.10.11.1 adjacent to the

source receives every multicast packet sent by wincli1. But the destination

address of 239.1.1.1 is meaningless when considered as a unicast address. No

entry exists in the unicast routing table, and there is yet no multicast “routing

table” (more properly, table for multicast interface state) on the router network.

Before we configure multicast for use on our router network and allow multicast

traffic to travel from LAN1 to LAN2, there are many new terms and protocols to

explain�a few of which we’ve already mentioned (IGMP, SAP/SDP, how a multicast

group maps to a frame destination address, and so on.) Let’s start with the basics.

MULTICAST TERMINOLOGY
Multicast in TCP/IP has developed a reputation of being more difficult to understand

than unicast. Part of the problem is the special terminology used with multicast, and

the implication that it must be complicated and difficult to understand. But there is

nothing in multicast that is more complex than subnet masking, multicast sockets

are nearly the same as unicast sockets (except that they don’t use TCP sockets), and

many things that routing protocols do with multicast packets are now employed in

unicast as well (the reverse-path forwarding, or RFP check). Figure 18.3 shows a

general view of some of the terms commonly used in an IP multicast network.

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
RoutersPRUNE JOIN JOIN

Multicast
Source
(Group A)

Multicast
Source
(Group B)

Leafs

Root of
Multicast
Tree

Distribution
Tree(s)

Uninterested
Host

Uninterested
Host

Interested
Host

(Group A)

Interested
Host

(Group B)

Interested
Host

(Group B)

Interested
Host

(Group B)

Upstream Downstream

FIGURE 18.3

Examples of multicast terminology showing how multicast trees are “rooted” at the source.

JOINs are also sent using IGMP from receivers to local routers.

465Multicast Terminology

The key component of the multicast network is the multicast-capable router,

which replicates the packets. The routers in the IP multicast network, which has

exactly the same topology as the unicast network it is based on, use a multicast

routing protocol to build a distribution tree to connect receivers (this term is pre-

ferred to the multimedia implications of listeners, but the listener term is also

used) to sources. The distribution tree is rooted at the source. The interface on the

router leading toward the source is the upstream interface, although the less pre-

cise terms incoming or inbound interface are also used. There should be only one

upstream interface on the router receiving multicast packets. The interface on the

router leading toward the receivers is the downstream interface, although the less

precise terms outgoing or outbound interface are used as well. There can be 0 to

N2 1 downstream interfaces on a router, where N is the number of logical inter-

faces on the router. To prevent looping, the upstream interface should never

receive copies of downstream multicast packets.

Routing loops are disastrous in multicast networks because of the repeated

replication of packets. Modern multicast routing protocols need to avoid rout-

ing loops, packet by packet, much more rigorously than in unicast routing

protocols.

Each subnetwork with hosts on the router that has at least one interested

receiver is a leaf on the distribution tree. Routers can have multiple leafs or

leaves (both terms are used) on different interfaces and must send a copy of the

IP multicast packet out on each interface with a leaf. When a new leaf subnet-

work is added to the tree (that is, the interface to the host subnetwork previously

received no copies of the multicast packets), a new branch is built, the leaf is

joined to the tree, and replicated packets are now sent out on the interface.

When a branch contains no leaves because there are no interested hosts on the

router interface leading to that IP subnetwork, the branch is pruned from the dis-

tribution tree, and no multicast packets are sent out from that interface. Packets

are replicated and sent out from multiple interfaces only where the distribution

tree branches at a router, and no link ever carries a duplicate flow of packets.

Collections of hosts all receiving the same stream of IP packets, usually from

the same multicast source, are called groups. In IP multicast networks, traffic is

delivered to multicast groups based on an IP multicast address or group address.

The groups determine the location of the leaves, and the leaves determine the

branches on the multicast network. Some multicast routing protocols use a special

RP router to allow receivers to find sources efficiently.

DENSE AND SPARSE MULTICAST
Multicast addresses represent groups of receivers, and two strategies can be

employed to ensure that all receivers interested in a multicast group receive the

traffic.

466 CHAPTER 18 Multicast

DENSE-MODE MULTICAST

The assumption here is that almost all possible subnets have at least one receiver

wanting to receive the multicast traffic from a source, so the network is flooded

with traffic on all possible branches and then pruned back as branches do not

express an interest in receiving the packets—explicitly (by message) or implicitly

(timeout silence). This is the dense mode of multicast operation. LANs are

appropriate environments for dense-mode operation. In practice, although PIM-

DM is worth covering (and we’ll even configure it!) there aren’t a lot of scenarios

in which people would seriously consider it. Periodic blasting of source content is

neither a very scalable nor efficient use of resources.

SPARSE-MODE MULTICAST

The assumption here is that very few of the possible receivers want packets from

this source, so the network establishes and sends packets only on branches that

have at least one leaf indicating (by message) a desire for the traffic. This is the

sparse mode of multicast operation. WANs (like the Internet) are appropriate net-

works for sparse-mode operation. Sparse-mode multicast protocols use the special

RP router to allow receivers to find sources efficiently.

Specific networks can run whichever mode makes sense. A low-volume multi-

cast application can make effective use of dense mode, even on a WAN. A high-

volume application on a LAN might still use sparse mode for efficiency.

Some multicast routing protocols, especially older ones, support only dense-

mode operation—which makes them difficult to use efficiently on the public

Internet. Others allow sparse mode as well. If sparse-dense mode is supported, the

multicast routing protocol allows some special dense multicast groups to be used

to the RPs—at which point the router operates in sparse mode.

MULTICAST NOTATION
To avoid multicast routing loops, every multicast router must always be aware of

the interface that leads to the source of that multicast group content by the short-

est path. This is the upstream (incoming) interface, and packets should never be

forwarded back toward a multicast source. All other interfaces are potential down-

stream (outgoing) interfaces, depending on the number of branches on the distri-

bution tree.

Routers closely monitor the status of the incoming and outgoing interfaces, a

process that determines the multicast forwarding state. A router with a multicast

forwarding state for a particular multicast group is essentially “turned on” for that

group’s content. Interfaces on the router’s outgoing interface list (OIL) send cop-

ies of the group’s packets received on the incoming interface list for that group.

467Multicast Notation

The incoming and outgoing interface lists might be different for different multi-

cast groups.

The multicast forwarding state in a router is usually written in (S,G) or (�,G)
notation. These are pronounced “S comma G” and “star comma G,” respectively.

In (S,G), the S refers to the unicast IP address of the source for the multicast traf-

fic, and the G refers to the particular multicast group IP address for which S is

the source. All multicast packets sent from this source have S as the source

address and G as the destination address.

The asterisk (�) in the (�,G) notation is a wild card indicating that the source

sending to group G is unknown. Routers try to track down these sources when

they have to in order to operate more efficiently.

MULTICAST CONCEPTS
The basic terminology of multicast is complicated by the use of several related

concepts. Many of these apply to how the routers on a multicast-capable network

handle multicast packets and have little to do with hosts on LANs, but they are

important concepts nonetheless.

REVERSE-PATH FORWARDING

Unicast forwarding decisions are typically based on the destination address of the

packet arriving at a router. The unicast routing table is organized by destination

subnet and mainly set up to forward the packet toward the destination.

In multicast, the router forwards the packet away from the source to make

progress along the distribution tree and prevent routing loops. The router’s multi-

cast forwarding state runs more logically by organizing tables based on the

reverse path, from the receiver back to the root of the distribution tree. This pro-

cess is known as reverse-path forwarding (RPF).

The router adds a branch to a distribution tree depending on whether the

request for traffic from a multicast group passes the RPF check. Every multicast

packet received must pass an RPF check before it is eligible to be replicated or

forwarded on any interface.

The RPF check is essential for every router’s multicast implementation. When

a multicast packet is received on an interface, the router interprets the source

address in the multicast IP packet as the destination address for a unicast IP

packet. The source multicast address is found in the unicast routing table, and the

outgoing interface is determined. If the outgoing interface found in the unicast

routing table is the same as the interface that the multicast packet was received

on, the packet passes the RPF check. Multicast packets that fail the RPF check

are dropped because the incoming interface is not on the shortest path back to

the source.

468 CHAPTER 18 Multicast

Routers can build and maintain separate tables for RPF purposes. The router

must have some way to determine its RPF interface for the group, which is the

interface topologically closest to the root. The distribution tree should follow

the shortest-path tree topology for efficiency. The RPF check helps to construct

this tree.

THE RPF TABLE

The RPF table plays the key role in the multicast router. The RPF table is con-

sulted for every RPF check, which is performed at intervals on multicast packets

entering the multicast router. Distribution trees of all types rely on the RPF

table to form properly and the multicast forwarding state also depends on the RPF

table.

The routing table used for RPF checks can be the same routing table used to

forward unicast IP packets, or it can be a separate routing table used only for mul-

ticast RPF checks. In either case, the RPF table contains only unicast routes

because the RPF check is performed on the source address of the multicast packet

(not the multicast group destination address), and a multicast address is forbidden

from appearing in the source address field of an IP packet header. The unicast

address can be used for RPF checks because there is only one source host for a

particular stream of IP multicast content for a multicast group address, although

the same content could be available from multiple sources.

POPULATING THE RPF TABLE

If the same routing table used to forward unicast packets is also used for the RPF

checks, the routing table is populated and maintained by the traditional unicast

routing protocols such as Border Gateway Protocol (BGP), Intermediate System-

to-Intermediate System (IS-IS), OSPF, and Routing Information Protocol (RIP). If

a dedicated multicast RPF table is used, this table must be populated by some

other method. Some multicast routing protocols, such as the Distance Vector

Multicast Routing Protocol (DVMRP), essentially duplicate the operation of a

unicast routing protocol and populate a dedicated RPF table. Others, such as

Protocol Independent Multicast (PIM), do not duplicate routing protocol functions

and must rely on some other routing protocol to set up this table—which is why

PIM is protocol independent.

Some traditional routing protocols (such as BGP and IS-IS) now have exten-

sions to differentiate between different sets of routing information sent between

routers for unicast and multicast. For example, there is multiprotocol BGP

(MBGP) and multi-topology routing in IS-IS (M-ISIS). Multicast Open Shortest

Path First (MOSPF) also extends OSPF for multicast use, but goes further than

MBGP or M-ISIS and makes MOSPF into a complete multicast routing protocol

on its own. When these routing protocols are used, routes can be tagged as

469Multicast Concepts

multicast RPF routers and used by the receiving router differently than the unicast

routing information.

Using the main unicast routing table for RPF checks provides simplicity. A

dedicated routing table for RPF checks allows a network administrator to set up

separate paths and routing policies for unicast and multicast traffic, allowing the

multicast network to function more independently of the unicast network. The fol-

lowing section discusses in further detail how PIM operates, although the con-

cepts could be applied to other multicast routing protocols.

SHORTEST-PATH TREE

The distribution tree used for multicast is rooted at the source and is the shortest-

path tree (SPT) as well. Consider a set of multicast routers without any active

multicast traffic for a certain group (i.e., they have no multicast forwarding state

for that group). When a router learns that an interested receiver for that group is

on one of its directly connected subnets, the router attempts to join the tree for

that group.

To join the distribution tree, the router determines the unicast IP address of

the source for that group. This address can be a simple static configuration in the

router, or use more complex methods.

To build the SPT for that group, the router executes an RPF check on the

source address in its routing table. The RPF check produces the interface closest

to the source, which is where multicast packets from this source for this group

should flow into the router.

The router next sends a join message out on this interface using the proper

multicast protocol to inform the upstream router that it wishes to join the distribu-

tion tree for that group. This message is an (S,G) join message because both

S and G are known. The router receiving the (S,G) join message adds the inter-

face on which the message was received to its OIL for the group and performs an

RPF check on the source address. The upstream router then sends an (S,G) join

message out the RPF interface toward the source, informing the upstream router

that it also wants to join the group.

Each upstream router repeats this process, propagating joins out the RPF inter-

face—building the SPT as it goes. The process stops when the join message does

the following:

• Reaches the router directly connected to the host that is the source, or

• Reaches a router that already has multicast forwarding state for this source-

group pair.

In either case, the branch is created, each of the routers has multicast forward-

ing state for the source-group pair, and packets can flow down the distribution

tree from source to receiver. The RPF check at each router ensures that the tree is

an SPT.

470 CHAPTER 18 Multicast

SPTs are always the shortest path, but they are not necessarily short. That is,

sources and receivers tend to be on the periphery of a router network (not on the

backbone) and multicast distribution trees have a tendency to sprawl across

almost every router in the network. Because multicast traffic can overwhelm a

slow interface, and one packet can easily become a hundred or a thousand on the

opposite side of the backbone, it makes sense to provide a shared tree as a distri-

bution tree so that the multicast source could be located more centrally in the net-

work (on the backbone). This sharing of distribution trees with roots in the core

network is accomplished by a multicast rendezvous point.

RENDEZVOUS POINT AND RENDEZVOUS-POINT SHARED TREES

In a shared tree, the root of the distribution tree is a router (not a host), and is

located somewhere in the core of the network. In the primary sparse-mode multicast

routing protocol, Protocol Independent Multicast sparse mode (PIM-SM), the core

router at the root of the shared tree is the RP. Packets from the upstream source

and join messages from the downstream routers “rendezvous” at this core router.

In the RP model, other routers do not need to know the addresses of the

sources for every multicast group. All they need to know is the IP address of the

RP router. The RP router knows the sources for all multicast groups.

The RP model shifts the burden of finding sources of multicast content from

each router—the (S,G) notation—to the network—the (�,G) notation knows only

the RP. Exactly how the RP finds the unicast IP address of the source varies, but

there must be some method to determine the proper source for multicast content

for a particular group.

Consider a set of multicast routers without any active multicast traffic for a

certain group. When a router learns that an interested receiver for that group is on

one of its directly connected subnets, the router attempts to join the distribution

tree for that group back to RP (not to the actual source of the content). In some

sparse-mode protocols, the shared tree is called the rendezvous-point tree (RPT).

When the branch is created, packets can flow from the source to the RP and

from the RP to the receiver. Note that there is no guarantee that the shared tree

(RPT) is the shortest path tree to the source. Most likely it is not. However, there

are ways to “migrate” a shared tree to an SPT once the flow of packets begins. In

other words, the forwarding state can transition from (�,G) to (S,G). The forma-

tion of both types of trees depends heavily on the operation of the RPF check and

the RPF table.

PROTOCOLS FOR MULTICAST
Multicast is not a single protocol used for a specific function, like FTP. Nor is

multicast a series of separate protocols that can be used as desired between

471Protocols for Multicast

adjacent hosts and routers to perform a function, like IS-IS and OSPF. Multicast

is a series of related protocols that must be carefully coordinated across and

between an AS and often among hosts.

The family of multicast protocols is due to the complexity of source discovery

and the mechanisms used to perform this task. Most hosts can send and receive

multicast frames and packets on a LAN as easily as they handle broadcast or uni-

cast. Routers must be capable of sending copies of a single received packet out

on more than one interface (replication), and many low-end routers cannot do

this. In addition, routers must be able to use unicast routing tables for multicast

purposes, or construct special tables for multicast information (again, many low-

end routers cannot do this).

Multicast routers must be able to maintain state on each interface with regard

to multicast traffic. That is, the router must know which multicast groups have

active receivers on an outgoing interface (called downstream interfaces) and

which interface is the “closest” to the source (called upstream interface). These

interfaces vary from group to group, one group can have more than one potential

source (for redundancy purposes), and special routers might be employed for

many groups (the RPs).

MULTICAST HOSTS AND ROUTERS

Multicast tasks are very different for hosts versus routers. At this juncture, we

will extend the multicast discussion beyond IPv4 to IPv6 and hosts. General

points follow.

• Hosts must be able to join and leave multicast groups. The major protocols

here are various versions of the Internet Group Management Protocol (IGMP)

in IPv4 and Multicast Listener Discovery (MLD) in IPv6.

• Hosts (users) must know the content of multicast groups. The related Session

Announcement Protocol and Session Description Protocol (SAP/SDP, defined

in RFC 2974 and RFC 2327. In contrast to almost every other RFC in this

book, these have not been updated (nor have many other multicast RFCs) and

are the standard protocols used to describe the content and some other aspects

of multicast groups. These should not be used as a method of multicast source

discovery.

• Routers must be able to find the sources of multicast content, both in their

own multicast (routing) domain and in others. For sparse modes, this means

finding the RPs. These can be configured statically, or use protocols such as

Auto-RP, anycast RP (RFC 3446), bootstrap router (BSR), or MSDP (RFC

3618). For IPv6, embedded RP is used instead of MSDP—which is not

defined for IPv6 use. (This point actually applies to ASM, not SSM, discussed

in material following.)

• Routers must be able to prevent loops that replicate the same packet over and

over. The techniques here are not really protocols, and include the use of

scoping (limiting multicast packet hops) and RPF checks.

472 CHAPTER 18 Multicast

• Routers must provide missing multicast information when feasible. Multicast

networks can use Pragmatic General Multicast (PGM) to add some TCP

features lacking in UDP to multicast networks. However, the only assurance is

that you know you missed something. Application-specific mechanisms can

do the same thing with simple sequence numbers.

Fortunately, only a few of these protocols are often used for multicast on the

Internet. The only complication is that some of the special protocols used for

IPv4 multicasting do not work with IPv6, and thus different protocols perform the

same functions.

MULTICAST GROUP MEMBERSHIP PROTOCOLS

Multicast group membership protocols allow a router to know when a host on a

directly attached subnet, typically a LAN, wants to receive traffic from a certain

multicast group. Even if more than one host on the LAN wants to receive traffic

for that multicast group, the router has to send only one copy of each packet for

that multicast group out on that interface because of the inherent broadcast nature

of LANs. Only when the router is informed by the multicast group membership

protocol that there are no interested hosts on the subnet can the packets be with-

held and that leaf pruned from the distribution tree.

Internet Group Management Protocol for IPv4
There is only one standard IPv4 multicast group membership protocol: the

Internet Group Management Protocol (IGMP). However, IGMP has several ver-

sions that are supported by hosts and routers. There are currently three versions

of IGMP.

IGMPv1—The original protocol defined in RFC 1112. An explicit join

message is sent to the router, but a timeout is used to determine when hosts

leave a group. This process wastes processing cycles on the router, especially

on older or smaller routers.

IGMPv2—Among other features, IGMPv2 (RFC 2236) adds an explicit leave

message to the join message so that routers can more easily determine when a

group has no interested listeners on a LAN.

IGMPv3—Among other features, IGMPv3 (RFC 4604) optimizes support for

a single source of content for a multicast group or source-specific multicast

(SSM). (RFC 1112 supported both many-to-many and one-to-many multicast,

but one-to-many is considered the more viable model for the Internet at large.)

Although the various versions of IGMP are backward compatible, it is com-

mon for a router to run multiple versions of IGMP on LAN interfaces because

backward compatibility is achieved by dropping back to the most basic of all ver-

sions run on a LAN. For example, if one host is running IGMPv1, any router

attached to the LAN running IGMPv2 drops back to IGMPv1 operation—effec-

tively eliminating the IGMPv2 advantages. Running multiple IGMP versions

473Protocols for Multicast

ensures that both IGMPv1 and IGMPv2 hosts find peers for their versions on the

router.

Multicast Listener Discovery for IPv6
IPv6 does not use IGMP to manage multicast groups. Multicast groups are an

integral part of IPv6, and the Multicast Listener Discovery (MLD) protocol is an

integral part of IPv6. Some IGMP functions are assumed by ICMPv6, but IPv6

hosts perform most multicast functions with MLD. MLD comes in two versions:

MLD version 1 (RFC 2710) has basic functions, and MLDv2 (RFC 4604) sup-

ports SSM groups.

MULTICAST ROUTING PROTOCOLS

There are five major multicast routing protocols.

Distance-Vector Multicast Routing Protocol
This is the first of the multicast routing protocols and hampered by a number of

limitations that make this method unattractive for large-scale Internet use.

DVMRP is a dense-mode-only protocol that uses the flood-and-prune, or implicit

join method, to deliver traffic everywhere and then determines where uninterested

receivers are. DVMRP uses source-based distribution trees in the form (S,G).

Multicast Open Shortest Path First
This protocol extends OSPF for multicast use, but only for dense mode. However,

MOSPF has an explicit join message, and thus routers do not have to flood their

entire domain with multicast traffic from every source. MOSPF uses source-based

distribution trees in the form (S,G).

PIM Dense Mode
This is Protocol Independent Multicast operating in dense mode (PIM DM), but

the differences from PIM sparse mode are profound enough to consider the two

modes separately. PIM also supports sparse-dense mode, but there is no special

notation for that operational mode. In contrast to DVMRP and MOSPF, PIM

dense mode allows a router to use any unicast routing protocol and performs RPF

checks using the unicast routing table. PIM dense mode has an implicit join mes-

sage, so routers use the flood-and-prune method to deliver traffic everywhere and

then determine where the uninterested receivers are. PIM dense mode uses

source-based distribution trees in the form (S,G), as do all dense-mode protocols.

PIM Sparse Mode
PIM sparse mode allows a router to use any unicast routing protocol and performs

RPF checks using the unicast routing table. However, PIM sparse mode has an

explicit join message, so routers determine where the interested receivers are and

send join messages upstream to their neighbors—building trees from receivers to

474 CHAPTER 18 Multicast

RP. The Protocol Independent Multicast sparse mode uses an RP router as the ini-

tial source of multicast group traffic and therefore builds distribution trees in the

form (�,G), as do all sparse-mode protocols. However, PIM sparse mode migrates

to an (S,G) source-based tree if that path is shorter than through the RP for a par-

ticular multicast group’s traffic.

Core-Based Trees
Core-based trees (CBT) share all of the characteristics of PIM sparse mode

(sparse mode, explicit join, and shared [�,G] trees), but are said to be more effi-

cient at finding sources than PIM sparse mode. CBT is rarely encountered outside

academic discussions and the experimental RFC 2201 from September 1997.

There are no large-scale deployments of CBT, commercial or otherwise. The dif-

ferences among the five multicast routing protocols are summarized in

Table 18.1.

It is important to realize that retransmissions due to a high bit-error rate on a

link or overloaded router can make multicast as inefficient as repeated unicast.

ANY-SOURCE MULTICAST AND SSM

RFC 1112 originally described both one-to-many (for radio and television) and

many-to-many (for videoconferences and application on-line gaming) multicasts.

This model is now known as Any-Source Multicast (ASM). To support many-to-

many multicasts, the network is responsible for source discovery. So, whenever a

host expresses a desire to join a group the network must find all the sources for

that group and deliver them to the receiver.

Source discovery is especially complex with interdomain scenarios (source in

one AS, receiver/s in another). And most plans to commercialize Internet multi-

casts, such as bringing radio station and television channel multicasts directly

onto the Internet, revolve around the one-to-many model exclusively. So, the one-

to-many scenario has been essentially split off from the all-embracing RFC 1112

vision and become Source-Specific Multicast (SSM, defined in FC 3569).

Table 18.1 Major Characteristics of Multicast Routing Protocols

Multicast
Routing
Protocol

Dense
Mode

Sparse
Mode

Implicit
Join

Explicit
Join

(S,G)
SBT

(�,G)
Shared
Tree

DVMRP Yes No Yes No Yes No
MOSPF Yes No No Yes Yes No
PIM-DM Yes No Yes No Yes No
PIM-SM No Yes No Yes Yes,

maybe
Yes, initially

CBT No Yes No Yes No Yes

475Protocols for Multicast

As the name implies, SSM supports multicast content delivery from only one

specific source. In SSM, source discovery is not the responsibility of the network

but of the receivers (hosts). This eliminates much of the complexity of multicast

mechanisms required in ASM and the use of MSDP. It also eliminates some of

the scaling considerations associated with traffic on (�,G) groups.
ASM and SSM are not protocols but service models. Most of what is

described in this chapter applies to ASM (the more general model). But keep in

mind that SSM does away with many of the procedures covered in detail here

that apply to ASM, including RPs, RPTs, and MSDP. Figure 18.4 shows the cur-

rent suite of multicast protocols and how they all fit together.

MULTICAST SOURCE DISCOVERY PROTOCOL

MSDP, described in experimental RFC 3618, is a mechanism to connect multiple

PIM-SM domains (usually, each in an AS). Each PIM-SM domain can have its

own independent RPs, and these do not interact in any way (so MSDP is not

needed in SSM scenarios). The advantages of MSDP are that the RPs do not need

any other resource to find each other and that domains can have receivers only

Protocols for Source-
Specific Multicast

PIM-SM

PIM-DM PIM-DM

Sparse Mode Sparse Mode

PIM-SSM
(No RP)

OSPF

M-ISIS

RIP

DVRMPDVMRP DVMRP

Distance VectorDense ModeDense Mode

(None needed in
SMS)

Protocols for Any-Source
Multicast

Peer-RPF Flooding

Protocols for Reverse-
Path Forwarding

Path Vector

Link State

Interdomain
(AS to AS)

Intradomain (same AS)

MBGPMSDP

FIGURE 18.4

Suite of multicast protocols showing how those for ASM, SSM, and RFP checks fit

together and are used.

476 CHAPTER 18 Multicast

and get content without globally advertising group membership. In addition,

MSDP can be used with protocols other than PIM-SM.

MSDP routers in a PIM-SM domain peer with their MSDP router peers in

other domains. The peering session uses a TCP connection to exchange control

information. Each domain has one or more of these connections in its “virtual

topology.” This allows domains to discover multicast sources in other domains. If

these sources are deemed of interest to receivers in another domain, the usual

source-tree mechanism in PIM-SM is used to deliver multicast content—but now

over an interdomain distribution tree. More details about MSDP are beyond the

scope of this introductory chapter.

FRAMES AND MULTICAST

Multicasting on a LAN is a good place to start an investigation of multicasting in

general. Consider a single LAN, without routers, with a multicast source sending

to a certain group. The rest of the hosts are receivers interested in the multicast

group’s content. So, the multicast source host generates packets with its unicast

IP address as the source and the group address as the destination.

One issue comes up immediately. The packet source address obviously will be

the unicast IP address of the host originating the multicast content. This translates

to the MAC address for the source address in the frame in which the packet is

encapsulated. The packet’s destination address will be the multicast group. So far,

so good. But what should be the frame’s destination address that corresponds to

the packet’s multicast group address?

Using the LAN broadcast MAC address defeats the purpose of multicast, and

hosts could have access to many multicast groups. Broadcasting at the LAN level

makes no sense. Fortunately, there is an easy way out of this. The MAC address

has a bit that is set to 0 for unicast (the LAN term is individual address) and to a

1 to indicate that this is a multicast address. Some of these addresses are reserved

for multicast groups for specific vendors or MAC-level protocols. Internet multi-

cast applications use the range 0x01-00-5E-00-00-00 to 0x01-00-5E-FF-FF-FF.

TCP/IP multicast receivers listen for frames with one of these addresses when the

application joins a multicast group and stops listening when the application termi-

nates or the host leaves the group.

So, 24 bits are available to map IPv4 multicast addresses to MAC multicast

addresses. But all IPv4 addresses, including multicast addresses, are 32 bits long.

There are 8 bits left over. How should IPv4 multicast addresses be mapped to

MAC multicast addresses to minimize the chance of “collisions” (two different

multicast groups mapped to the same MAC multicast address)?

All IPv4 multicast addresses begin with the same four bits (1110), so we only

have to really worry about 4 bits (not 8). We shouldn’t drop the last bits of the

IPv4 address, because these are almost guaranteed to be host bits—depending on

subnet mask. But the high-order bits, the rightmost bits, are almost always net-

work bits and we’re only worried about one LAN for now.

477Protocols for Multicast

One other bit of the remaining 24 MAC address bits is reserved (an initial 0

indicates an Internet multicast address), so let’s just drop the 5 bits following the

initial 1110 in the IPv4 address and map the 23 remaining bits (one for one) into

the last 23 bits of the MAC address. This procedure is shown in Figure 18.5.

Note that this process means that there are 32 (25) IPv4 multicast addresses

that could map to the same MAC multicast addresses. For example, multicast

IPv4 addresses 224.8.7.6 and 229.136.7.6 translate to the same MAC address

(0x01-00-5E-08-07-06). This is a real concern, and because the host will accept

frames sent to both multicast groups, the IP software must reject one or the other.

This problem does not exist in IPv6, but is always a concern in IPv4.

Once the MAC address for the multicast group is determined, the operating

system essentially orders the NIC card to join or leave the multicast group and

accept frames sent to the address as well as the host’s unicast address or ignore

that multicast group’s frames. It is possible for a host to receive multicast content

from more than one group at the same time, of course. The procedure for IPv6

multicast packets inside frames is nearly identical, except for the MAC destina-

tion address 0x3333 prefix and other points outlined in the previous section.

IPv4 MULTICAST ADDRESSING

The IPv4 addresses (Class D in the classful addressing scheme) used for multicast

usage range from 224.0.0.0 to 239.255.255.255. Assignment of addresses in this

Ethernet Frame Multicast Destination Address

IPv4 Header Multicast Destination Address

Decimal:

Binary:

Hex:

Hex:

Binary:

232. 224. 202. 181

E8 - E0 - CA - B5

60 - CA - B5

Ignore Copy

0110 0000 1100 1010 10110101

� � 0 for Internet
� � 1 for other

�110 0000 1100 1010 10110101

11101000 1110 0000 1100 1010 10110101

Copy
Drop

Multicast Bit

MAC Address in Hex: 01 : 00 : B3 : 27 : FA : 8C

MAC Multicast Address: 01 : 00 : B3 : 60 : CA : B5

FIGURE 18.5

How to convert from IPv4 header multicast to Ethernet MAC multicast address formats.

478 CHAPTER 18 Multicast

range is controlled by the Internet Assigned Numbers Authority (IANA).

Multicast addresses can never be used as a source address in a packet (the source

address is always the unicast IP address of the content originator). Certain sub-

ranges within the range of addresses are reserved for specific uses.

• 224.0.0.0/24—The link-local multicast range (these packets never pass

through routers)

• 224.2.0.0/16—The SAP/SDP range

• 232.0.0.0/8—The Source-Specific Multicast (SSM) range

• 233.0.0.0/8—The AS-encoded statically assigned GLOP range defined in

RFC 3180

• 239.0.0.0/8—The administratively scoped multicast range defined in RFC

2365 (these packets may pass through a certain number of routers)

For a complete list of currently assigned IANA multicast addresses, refer to

the www.iana.org/assignments/multicast-addresses Web site. If multicast

addresses had been assigned in the same manner that unicast addresses were

allocated, the Class D address space would have been exhausted long ago.

However, IANA allocates static multicast addresses only for protocols. Routers

cannot forward packets in these ranges. Some of these addresses are outlined in

Table 18.2.

Table 18.2 Multicast Addresses Used for Various Protocols

Address Purpose Comment

224.0.0.0 Reserved base address RFC 1112
224.0.0.1 All systems of this subnet RFC 1112
224.0.0.2 All routers on this subnet
224.0.0.3 Unassigned
224.0.0.4 DVMRP routers on this subnet RFC 1075
224.0.0.5 All OSPF routers on this subnet RFC 1583
224.0.0.6 All OSPF DRs on this subnet RFC 1583
224.0.0.7 All ST (Streams protocol) routers on this subnet RFC 1190
224.0.0.8 All ST hosts on this subnet RFC 1190
224.0.0.9 All RIPv2 routers on this subnet RFC 1723
224.0.0.10 All Cisco IGRP routers on this subnet (Cisco)
224.0.0.11 All Mobile IP agents
224.0.0.12 DHCP server/relay agents RFC 1884
224.0.0.13 All PIM routers (IANA)
224.0.014-
224.0.0.21

Assigned to various routing protocols and router
features

(IANA)

224.0.0.22 IGMP (IANA)
224.0.0.23-
244.0.0.255

See www.iana.org/assignments/multicast-
addresses

(IANA)

479Protocols for Multicast

http://www.iana.org/assignments/multicast-addresses
http://www.iana.org/assignments/multicast-addresses
http://www.iana.org/assignments/multicast-addresses

A simple dynamic address allocation mechanism is used in the SAP/SDP

block to prevent multicast address exhaustion. Applications, such as the Session

Directory Tool (SDR), use this mechanism to randomly select an unused address

in this range. This dynamic allocation mechanism for global multicast addresses

is similar to the DHCP function, which dynamically assigns unicast addresses on

a LAN.

However, some applications require static multicast addresses. So, GLOP

(described in RFC 3180) provides static multicast ranges for organizations that

already have an AS number. (GLOP is not an acronym or abbreviation—it’s just

the name of the mechanism.) GLOP uses the 2-byte AS number to derive a /24

address block within the 233/8 range. It’s worth noting that there are no GLOP

addresses set aside for 4-byte AS numbers. The static multicast range is derived

from the following form:

233.[first byte of AS].[second byte of AS].0/24

For example, AS 65001 is allocated 233.253.233.0/24—and only this AS can

use it. The following is an easy way to compute this address.

1. Convert the AS number to hexadecimal (650015 0xFDE9).

2. Convert the first byte back to decimal (0xFD5 253).

3. Convert the second byte back to decimal (0xE95 233).

Addresses in the 239/8 range are defined as administratively scoped. Packets

sent to these addresses should not be forwarded by a router outside an administra-

tively defined boundary (usually a domain).

Addresses in the 232/8 range are reserved for SSM. A nice feature of SSM is

that the multicast group address no longer needs to be globally unique. The

source-group “channel,” or tuple, provides uniqueness because the receiver is

expressing interest in only one source for the group.

SSM has solved the multicast addressing allocation headache. With SSM, as

well as GLOP, administrative scoping, and SAP/SDP, IPv4 multicast address allo-

cation is sufficient until IPv6 becomes more common.

IPv6 MULTICAST ADDRESSING

In IPv6, the number of multicast (and unicast) addresses available is not an issue.

All IPv6 multicast addresses start with 1111 1111 (0xFF). As in IPv4, no IPv6

packet can have an IPv6 multicast address as a source address. There is really no

such thing as a “broadcast” in IPv6. Instead, devices must belong to certain multi-

cast groups and pay attention to packets sent to these groups. The structure of the

IPv6 multicast address is shown in Figure 18.6.

Format Prefix
This 8-bit field is simply 1111 1111 (0xFF).

480 CHAPTER 18 Multicast

Flags
As of RFC 2373, the only flag defined for this 4-bit field is Transient (T). If 0,

the multicast address is a permanently assigned well-known address allocated by

IANA. If 1, the multicast address is not permanently assigned (transient).

Scope
This 4-bit field establishes the multicast packets’ boundaries. RFC 2372 defines

several well-known scopes, including node-local (1), link-local (2), site-local (3),

organization-local (8), and global (E). Packets sent to 0xFF02:X are confined to a

single link and cannot pass through a router (this issue came up in the IGP chap-

ter with RIPng).

Group ID
The IPv6 multicast group ID is 112 bits long. Permanently assigned group IDs

are valid regardless of the scope value, whereas transient group IDs are valid only

within a particular scope. The 122 bits of the Group ID field pose a challenge to

the 48-bit MAC address (and only 23 of those bits were used in IPv4). But the

solution is much simpler than in IPv4. RFC 2373 recommends using the low-

order 32 bits of the Group ID and setting the high-order 16 bits to 0x3333. This is
shown in Figure 18.7.

Naturally, there are 80 more bits that could be used in the Group ID field. For

now, RFC 2373 recommends setting the 801 bits available for multicast group

IDs to 0 s. If there is a problem with 32 bits for multicast groups, which can be as

many as 4 billion, probably in the future the RFC group will think about extend-

ing the bits.

8 bits

1111 1111 Flags Scope Group ID

128 bits

112 bits4 bits 4 bits

FIGURE 18.6

The IPv6 multicast address format. Note the presence of the scope field.

16 bits 80 bits 32 bits

0011 0011 0011 0011 MAC Group IDMust Be All Zeroes

128 bits

FIGURE 18.7

The IPv6 multicast group addresses showing how the MAC group ID is embedded.

481Protocols for Multicast

PIM-SM

The most important multicast routing protocol for the Internet today is PIM

sparse mode, defined in RFC 2362. PIM-SM is ideal for a number of reasons,

such as its protocol-independent nature (PIM can use regular unicast routing

tables for RPF checks and other things), and it’s a nice fit with SSM (in fact,

not much else fits at all with SSM). So, we’ll look at PIM-SM in a little more

detail (also in addition, because that’s what we’ll be using on the Illustrated

Network’s routers).

If a potential receiver is interested in the content of a particular multicast

group, it sends an IGMP Join message to the local router—which must know

the location of the network RPs servicing that group. If the local router is not

currently on the distribution tree for that group, the router sends a PIM Join

message (not an IGMP message) through the network until the router

becomes a leaf on the shared tree (RPT) to the RP. Once multicast packets

are flowing to the receiver, the routers all check to see if there is a shorter

path from the source to the destination than through the RP. If there is, the

routers will transition the tree from an RPT to an SPT using PIM Join and

Prune messages (technically, they are PIM Join/Prune messages, but it is

common to distinguish them). The SPT is rooted at the designated router of

the source. All of this is done transparently to the receivers and usually works

very smoothly.

There are other reasons to transition from an RPT to an SPT, even if the SPT

is actually longer than the RPT. An RP might become quite busy, and the shortest

path might not be optimal as determined by unicast routing protocols. A lot of

multicast discussion at ISPs involves issues such as how many RPs there should

be (how many groups should each service?) and where they should be located

(near their sources? centrally?). A related issue is how routers know about RPs

(statically? Auto-RP? BSR?), but these discussions have no clear or accepted

answers.

There is only one PIM-SM feature that needs to be explained. How does traf-

fic get from the sender’s local router to the RP? The rendezvous point could cre-

ate a tree directly to every source, but if there is a lot of sources, there is a lot of

state information to maintain. It would be better if the senders’ local routers could

send the content directly to the RP.

But how? The destination address of all multicast packets is a group address

and not a unicast address. So, the source’s router (actually, the DR) encapsulates

the multicast packets inside a unicast packet sent to the RP and tunnels the packet

to the RP in this form. The RP decapsulates the multicast content and makes it

available for distribution over the RPT tree.

There is much more to PIM-SM that has not been detailed here, such as PIM-

SM for SSM (sometimes seen as PIM-SSM). But it is enough to explain the inter-

play among host receivers, IGMP (in IPv4), MLD (in IPv6), PIM itself, the RP,

and the source.

482 CHAPTER 18 Multicast

THE RESOURCE RESERVATION PROTOCOL AND PGM

A lot of books and material on multicast include long discussions of the Resource

Reservation Protocol (RSVP), and some multicast routers and hosts still use

RSVP to signal the network that the multicast packet stream they will be receiv-

ing will consume a certain amount of resources on the network. However, the

most common use of RSVP today is not with multicast but with Multiprotocol

Label Switching (MPLS)—and that’s where we’ll put RSVP.

RVSP makes sense for multicast in a restricted bandwidth environment. But

the need for RSVP was undermined (as was ATM) by the embarrassment of

bandwidth available on LANs and router backbones (the video network YouTube

today uses more bandwidth than the entire Internet had in 2000). On slow net-

works, the biggest shortcoming is that you can’t reserve bandwidth you don’t

have. If you do anyway, you’re really just performing admission control (limited

to those who are allowed to connect over the network) and hosing the other appli-

cations. Everything works better with enough bandwidth.

However, this is not to say that multicast is fine using UDP in all

cases—especially when multicast content must cross ISP boundaries, where

bandwidth on these heavily used links is often consumed by traffic. Nothing

is more annoying when receiving multicast content, voice, or video than

dropped packets causing screen freezes and unpredictable silences. So, routers

and hosts can use Pragmatic General Multicast (PGM), described in RFC

3208. PGM occupies the same place in the TCP/IP stack as TCP itself. PGM

runs on sender and receiver hosts, and on routers (which perform the PGM

router assist function).

As mentioned, the goal of PGM is not to make multicast UDP streams as reli-

able as TCP. The PGM goal is to allow senders or routers (performing router

assist functions) to supply missing multicast packets if possible (such as for

stock-ticker applications) or to assure receivers that the data is indeed missing

and not just delayed (it does this by simply sequencing multicast packets). The

issue is that you have to carry all of this state information in routers, which is not

good for scaling.

MULTICAST ROUTING PROTOCOLS

Now we can go back to the network. We’ll have to run a multicast routing proto-

col on our routers. We’ll run PIM, which is the most popular multicast protocol.

But PIM can be configured in dense “send-everywhere” mode or sparse “only if

you ask” mode. Which should we use?

Let’s consider our router configuration. Nothing is easier to configure than

dense mode. We can just configure PIM dense mode (PIM-DM) to run on every

router interface (even the LAN interfaces if we like—the PIM messages won’t

hurt anything), except for the network management interface on Juniper Networks

routers (fxp0.0). Multicast traffic is periodically flooded everywhere and pruned

483Protocols for Multicast

back as IGMP membership reports come in on local area network interfaces. This

is just an exercise for our lab network. You definitely should not try this at home.

The following is the configuration on router CE6:

set protocols pim interface all mode dense;
set protocols pim interface fxp0.0 disable;

It is not necessary to configure IGMP on the LAN interface. As long as PIM

is configured, IGMPv2 is run on all interfaces that support broadcasts (including

frame relay and ATM). Of course, if a different version of IGMP—such as

IGMPv1 or IGMPv3 (wincli runs IGMPv3, as shown in Figure 18.2)—is desired,

this must be explicitly configured.

It is more interesting and meaningful to configure the PIM sparse mode,

because that is what is used, with few exceptions, on the Internet. There are two

distinct configurations: one for the RP router and the other on all the non-RP rou-

ters. We’ll use simple static configuration to locate the RP router, but that’s not

what is typically done in the real world. The configuration on the RP router,

which is router PE5 in this example, follows:

set protocols pim rp local address 192.168.5.1;
set protocols pim rp interface all mode sparse;
set protocols pim rp interface fxp0.0 disable;

The local keyword means that the local router is the RP. The address is the

RP address that will be used in PIM messages between the routers. The configura-

tion on the non-RP router, such as P9, follows:

set protocols pim rp static address 192.168.5.1;
set protocols pim rp interface all mode sparse;
set protocols pim rp interface fxp0.0 disable;

The static keyword means that another router is the RP, located at the IP

address given. The RP address is used in PIM messages between the routers.

Once PIM is up and running on the rest of the router network (we don’t

need MSDP because the RP is known everywhere within the merged Best-

Ace ISP routing domain and this precludes interdomain ASM use anyway),

wincli2 receives multicast traffic from wincli1, as shown in Figures 18.8

and 18.9.

IPv6 MULTICAST

In contrast to IPv4, where multicast sometimes seems like an afterthought

compared to the usual unicast business of the network, IPv6 is fairly teeming

with multicast. You have to do a lot to add multicast to IPv4, but IPv6 simply

will not work without multicasting. Of course, a lot of this multicast use is

confined to single subnets. So, despite being more heavily used, IPv6

484 CHAPTER 18 Multicast

multicast is not necessarily easier to deploy (even though you don’t have to

worry about MSDP).

Figure 18.10 shows a multicast IPv6 neighbor discovery packet, which con-

tains an ICMPv6 message (an echo request). As expected, the packet is sent to

IPv6 multicast address 0xFF02::1, and the frame is sent to the address beginning

0x33:33.

FIGURE 18.9

ICMPv6 multicast packets for neighbor discovery, showing how the MAC address is

embedded in the IPv6 source address field.

FIGURE 18.8

Receiving a stream of multicast traffic from wincli1 across the router network on wincli2.

485Protocols for Multicast

QUESTIONS FOR READERS

Figure 18.10 shows some of the concepts discussed in this chapter and can be

used to help you answer the following questions.

1. Generally, it is a good idea for RPs to be centrally located on the router

network. Why does this make sense?

2. In Figure 18.10, does the rightmost host, which is interested in Group B

content, have to get it initially from the RP when the source is closer?

3. Would the RP be required if the routers were running PIM dense mode?

4. Will the leftmost router with the uninterested host constantly stream multicast

traffic onto the LAN anyway?

5. Is the uninterested host on the LAN in the middle able to listen in on Group A

and Group B traffic without using IGMP to join the groups?

Multicast
Source
(Group A)

Multicast
Host

Multicast
Routers

Multicast
Host

Uninterested
Host

Uninterested
Host

Interested
Host

(Group A)

Interested
Host

(Group B)

Interested
Host

(Group B)

Interested
Host

(Group B)

Routers Running
PIM Sparse Mode

Multicast
Host

Multicast
Source
(Group B)

RP

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

Multicast
Host

FIGURE 18.10

A group of routers running PIM sparse mode with sources and receivers.

486 CHAPTER 18 Multicast

PART

IV
IP Switching
and VPNs

The previous chapter on new applications of BGP introduced several
concepts that should be explored before moving on to exploring the
Application Layer of TCP/IP. The rise of data centers, which we saw as CLOS
networks leaf-and-spine and TOR architectures, as well as the need to make
the global public Internet more flexible for business applications, has led to
the creation of technologies that go far beyond best-effort, hop-by-hop
routing. This part, new to the Second Edition, gathers all of the MPLS- and
VPN-related material into one section.

• Chapter 19—MPLS and IP Switching
• Chapter 20—MPLS-Based Virtual Private Networks
• Chapter 21—EVPN and VXLAN

This page intentionally left blank

CHAPTER

19MPLS and IP Switching

WHAT YOU WILL LEARN

In this chapter, you will learn how various factors have led to the development of IP
switching techniques that go beyond simple next-hop routing. We’ll also compare and
contrast frame relay and ATM switched networks to illustrate the concepts behind IP
switching.

You will learn how MPLS is used to create LSPs to switch (instead of route) IP
packets through a routing domain. We’ll see how MPLS can form the basis for a type
of VPN service offering.

One of the reasons TCP/IP and the Internet have grown so popular is that this

architecture is the promising way to create a type of “universal network” well

suited for and equally at home with voice, video, and data. The Internet started as

a network exclusively for data delivery, but has proved to be remarkably

adaptable for different classes of traffic. Some say that more than half of all tele-

phone calls are currently carried for part of their journey over the Internet, and

this percentage will only go higher in the future. Why not watch an entire movie

or TV show over the Internet? Many now watch episodes they missed on the

Internet. Why not everything? As pointed out in the previous chapter, multicast

might not be used to maximum effect for this but video delivery still works.

When a service provider adds television (or video in general) to Internet

access and telephony, this is called a “triple play” opportunity for the service pro-

vider. (Adding wireless services over the Internet is sometimes called a “quadru-

ple play” or “home run,” although these terms are fading as the practice becomes

common.)

This desire for networking convergence is not new. When the telephone was

invented, there were more than 30 years’ worth of telegraph line infrastructure in

place from coast to coast and in most major cities throughout the United States.

The initial telephone services used existing telegraph links to distribute telegrams,

but this was not a satisfactory solution. The telegraph network was optimized for

the dots and dashes of Morse code, not the smooth analog waveforms of voice.

Early attempts to run voice over telegraph lines stumbled not over bandwidth, but

with the crosstalk induced by the pulses of Morse code running in adjacent wires.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00019-9

© 2017 Elsevier Inc. All rights reserved.
489

http://dx.doi.org/10.1016/B978-0-12-811027-0.00019-9

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 19.1

The routers on the Illustrated Network will be used to illustrate MPLS. Note that we are

still dealing with the merged Best-Ace ISP and a single AS.

490 CHAPTER 19 MPLS and IP Switching

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

Global Public
Internet

AS 65527

491MPLS and IP Switching

The solution was to pair and twist telephone wires and maintain adequate separa-

tion from telegraph wire bundles.

So, two separate networks grew up: telephone and telegraph. When cable TV

came along much later, the inadequate bandwidth of twisted-pair wire led to a

third major distinct network architecture—this one made of coaxial cable capable

of delivering 50 or more (compared to the handful of broadcast channels avail-

able, that was a lot) television channels at the same time.

Naturally, communications companies did not want to pay for, deploy, and

maintain three separate networks for separate services. It was much more efficient

to use one converged infrastructure for everything. Once deregulation came to the

telecommunications industry, and the same corporate entity could deliver voice as

a telephony company, video as a cable TV company, and data as an ISP, the pres-

sure to find a “universal” network architecture became intense. But the Internet

was not the only universal network intended to be used for the convergence of

voice, video, and data over the same links. Telecommunications companies also

used frame relay (FR) and asynchronous transfer mode (ATM) networks to try to

carry voice, video, and data on the same links.

Let’s see if we can “converge” these different applications onto the Illustrated

Network. This chapter will use the Illustrated Network routers exclusively. This is

shown in Figure 19.1, which also reveals something interesting when we run

trace-route from bsdclient on LAN1 to bsdserver on LAN2.

bsdclient# traceroute bsdserver

traceroute to bsdserver (10.10.12.77), 64 hops max, 44 byte packets
1 10.10.11.1 (10.10.11.1) 0.363 ms 0.306 ms 0.345 ms
2 10.0.50.1 (10.1.36.2) 0.329 ms 0.342 ms 0.346 ms
3 10.0.45.1 (10.0.45.1) 0.330 ms 0.341 ms 0.346 ms
4 10.0.24.1 (10.0.24.1) 0.332 ms 0.343 ms 0.345 ms
5 10.0.12.1 (10.0.12.1) 0.329 ms 0.342 ms 0.347 ms
6 10.0.16.2 (10.0.16.2) 0.330 ms 0.341 ms 0.346 ms
7 10.10.12.77 (10.10.12.77) 0.331 ms 0.343 ms 0.347 ms

bsdclient#

The packets travel from PE5 to P4 and then on to P2 and PE1. Why shouldn’t

they flow through P9 and P7? Well, they could, but without load balancing turned

on (and it is not) PE5 has to choose P9 or P4 as the next hop. All things being

equal, if all other metrics are the same, routers typically pick to lowest IP address.

A look at the network diagram shows this to be the case here.

There are obviously other users on the Best-Ace ISP’s network, not just those on

LAN1 and LAN2. However, it would be nice if the customer-edge (site) routers CE0

and CE6 were always seven hops away and never any more (in other words, no mat-

ter how traffic is routed there are always six routers between LAN1 and LAN2). This

is because most of the traffic flows between the two sites, as we have seen (on many

LANs, vast quantities of traffic usually flow among a handful of destinations).

492 CHAPTER 19 MPLS and IP Switching

Before the rise of the Internet, the company owning LAN1 and LAN2 would pay

a service provider (telephone company or other “common carrier”) to run a point-to-

point link between New York and Los Angeles and use it for data traffic. They might

also do the same for voice, and perhaps even for video conferences between the two

sites. The nice thing about these leased line links (links used exclusively for voice

are called tie lines) is that they make the two sites appear to be directly connected,

reducing the number of hops (and network processing delay) drastically.

But leased lines are an expensive solution (they are paid for by the mile) and

are limited in application (they only connect the two sites). What else could a

public network service provider offer as a convergence solution to make the net-

work more efficient?

We’ll take a very brief look at the ideas behind some public network attempts

at convergence (frame relay and ATM) and then see how TCP/IP itself handles

the issue. We’ll introduce Multiprotocol Label Switching (MPLS) and position

this technology as a way to make IP router networks run faster and more effi-

ciently with IP switching.

CONVERGING WHAT?
Convergence is not physical convergence through channels, which had been done

for a very long time. Consider a transport network composed of a series of fiber

optic links between SONET/SDH multiplexers. The enormous bandwidth on these

links can be (and frequently is) channelized into multiple separate paths for

voice bits, data bits, and video bits on the same physical fiber. But this is not

convergence.

In this chapter convergence means the combination of voice, video, and data

on the same physical channel. Convergence means more than just carrying chan-

nels on the same physical transport. It means combining the bits representing

voice, video, and data into one stream and carrying them all over the total band-

width on the same “unchannelized” fiber optic link. If there are voice, video, and

data channels on the link, these are now virtual channels (or logical channels) and

originate and terminate in the same equipment—not only at the physical layer,

but at some layer above the lowest.

On modern Metro Ethernet links, the convergence is done by combining the

traffic from separate VLANs on the same physical transport. The VLANs can be

established based on traffic type (voice, video, and data), customer or customer

site, or both (with an inner and outer VLAN label.) In this chapter, we’ll talk

about MPLS—which can work with VLANs or virtual channels.

FAST PACKET SWITCHING

Before there was MPLS, there was the concept of fast packet switching to speed

up packet forwarding on converged links and through Internet network nodes.

493Converging What?

Two major technologies were developed to address this new technology, and they

are worth at least a mention because they still exist in some places.

FRAME RELAY
Frame relay was an attempt to slim down the bulky X.25 public packet switching

standard protocol stack for public packet networks for the new environment of

home PCs and computers at every work location in an organization. Although it

predated modern layered concepts, X.25 essentially defined the data units at the

bottom three layers—physical interface, frame structure, and packet—as an inter-

national standard. It was mildly successful compared to the Internet, but wildly

successful for a world without the Web and satellite or cell phones. In the mid-

1980s, about the only way to communicate text to an off-shore oil platform or

ships at sea was with the familiar but terse “GA” (go ahead) greeting on a tele-

type over an X.25 connection.

The problem with X.25 packets (called PLP, Packet Layer Protocol, packets)

was that they weren’t IP packets, and so could not easily share or even interface

with the Internet, which had started to take off when the PC hit town. But IP

didn’t have a popular WAN frame defined (SLIP did not really use frames), so

the X.25 Layer 2 frame structure, High-level Data Link Control (HDLC)—also

used in ISDN—was modified to make it more useful in an IP environment popu-

lated by routers. In fact, routers, which struggled with full X.25 interfaces, could

easily add frame relay interfaces.

One of the biggest parts of X.25 dropped on the way to frame relay was error

resistance. Today, network experts have a more nuanced and sophisticated under-

standing of how this should be done instead of the heavyweight X.25 approach to

error detection and recovery.

Frame relay was once popularly known as “X.25 on steroids,” a choice of anal-

ogies that proved unfortunate for both X.25 and frame relay. But at least frame

relay switch network nodes could relay frames faster than X.25 switches could

route packets. Attempts were made to speed X.25 up prior to the frame relay

makeover, such as allowing a connection-request message to carry data, which

was then processed and a reply returned by the destination in a connection-

rejected message, thus making X.25 networks as efficient for some things as a

TCP/IP network with UDP. However, an X.25 network was still much more costly

to build and operate than anything based on the simple Internet architecture. The

optimization to X.25 that frame relay represented is shown in Figure 19.2.

Even with frame relay defined, there was still one nagging problem: Like X.25

before it, frame relay was connection oriented. Only signaling protocol messages

were connectionless, and many frame relay networks used “permanent virtual cir-

cuits” set up with a labor-intensive process comparable to configuring router

tables with hundreds of static entries in the absence of mature routing protocols.

494 CHAPTER 19 MPLS and IP Switching

Connections were a large part of the reason that X.25 network nodes were

switches and not routers. A network node that handled only frame relay frames

was still a switch, and connections were now defined by a simple identifier in the

frame relay header and called “virtual circuits.” But a connection was still a con-

nection. In the time it took a frame relay signaling message exchange to set up a

connection, IP with UDP could send a request and receive a reply. Even for bulk

data transfer, connections over frame relay had few attractions compared to TCP

for IP.

The frame relay frame itself was tailor-made for transporting IP packets over

public data networks run by large telecommunications carriers rather than pri-

vately owned routers linked by dedicated bandwidth leased by the mile from these

same carriers. The frame relay frame structure is shown in Figure 19.3.

• DLCI—The Data Link Connection Identifier is a 10-bit field that gives the

connection number.

• C/R—The Command/Response bit is inherited from X.25 and not used.

Network Layer

Data Link Layer Data Link Layer

Physical Layer Physical Layer

Layers Needed to
Route X.25 Packets

Layers Needed to
“Relay” FR Frames

Layer 3

Layer 2 Layer 2

Layer 1Layer 1

FIGURE 19.2

How X.25 packet routing relates to frame relaying. Note that frame relay has no network

layer, leaving IP free to function independently.

01111110
(7E)

01111110
(7E)

Header: Address
and Control

Payload
(information)

Trailer: Frame
Check Sequence

1 byte 2 bytes Up to
4096 bytes

2 bytes 1 byte

8 1Bits

DLCI
(6 high-order bits)

DLCI
(4 low-order bits)

C/R
E
A

F
E
C
N

B
E
C
N

D
E

E
A

FIGURE 19.3

The basic 2-byte frame relay frame and header. The DLCI field can come in larger sizes.

495Frame Relay

• EA—The Extended Address bit tells whether the byte is the last in the header

(headers in frame relay can be longer than 2 bytes).

• FECN and BECN—The Forward/Backward Explicit Congestion Notification

bits are used for flow control.

• DE—The Discard Eligible bit is used to identify frames to discard under

congested conditions.

Unlike a connectionless packet, the frame relay frame needs only a connection

identifier to allow network switch nodes to route the frame. In frame relay, this is

the DLCI. A connection by definition links two hosts, source and destination.

There is no sense of “send this to DLCI 18” or “this is from DLCI 18.” Frames

travel on DLCI 18, and this implies that connections are inherently unidirectional

(which they are, but are usually set up and released in pairs) and that the connec-

tion identifiers in each direction did not have to match (although they typically

did, just to keep network operators sane).

One of the things that complicate DLCI discussions is that unlike globally

unique IP addresses, DLCIs have local significance only. This just means that the

DLCI on a frame relay frame sent from site A on DLCI 25 could easily arrive at

site B on DLCI 38. And in between, the frame could have been passed around the

switches as DLCI 18, 44, or whatever. Site A only needs to know that the local

DLCI 25 leads to site B, and site B needs to know that DLCI 38 leads to site A,

and the entire scheme still works. But it is somewhat jarring to TCP/IP veterans.

This limits the connectivity from each site to the number of unique DLCIs

that can operate at any one time, but the DLCI header field can grow if this

becomes a problem. And frame relay connections were never supposed to be used

all of the time.

What about adding voice and video to frame relay? That was actually done,

especially with voice. Frame relay was positioned as a less expensive way of

linking an organization’s private voice switches (called private branch

exchanges, or PBXs) than with private voice circuits. Voice was not always

packetized, but at least it was “framerized” over these links. If the links had

enough bandwidth, which was not always a given, primitive videoconferencing

(but not commercial-quality video signals that anyone would pay to view) could

be used as well.

Frame relay suffered from three problems, which proved insurmountable.

It was not particularly IP friendly, so frame relay switches (which did not run nor-

mal IP routing protocols) could not react to TCP/IP network conditions the way

routers could. The router and switches remained “invisible” to each other. And in

spite of efforts to integrate voice and video onto the data network, frame relay

was first and foremost a data service and addressed voice and video delay con-

cerns by grossly overconfiguring bandwidth in almost all cases. Finally, the tele-

communications carriers (unlike the ISPs) resisted easy interconnection of the

frame relay network with those of other carriers, which forced even otherwise

eager customers to try to do everything with one carrier (an often impossible

task). It was a little like cell phones without any possibility of roaming, and in

496 CHAPTER 19 MPLS and IP Switching

ironic contrast to the carrier’s own behavior as an ISP, this closed environment

was not what customers wanted or needed.

Frame relay still exists as a service offering. However, outside of just another type

of router WAN interface, frame relay has little impact on the Internet or IP world.

ASYNCHRONOUS TRANSFER MODE

The Asynchronous Transfer Mode (ATM) was the most ambitious of all conver-

gence methods. It had to be, because what ATM essentially proposed was to

throw everything out that had come before and to “Greenfield” the entire tele-

communications structure the world over. ATM was part of an all-encompassing

vision of networking known as broadband ISDN (B-ISDN), which would support

all types of voice, video, and data applications though virtual channels (and vir-

tual connections). In this model, the Internet would yield to a global B-ISDN net-

work—and TCP/IP to ATM.

Does this support plan for converged information sound familiar? Of course it

does. It’s pretty much what the Internet and TCP/IP do today, without B-ISDN or

ATM. But when ATM was first proposed, the Internet and TCP/IP could do none

of the things that ATM was supposed to do with ease. How did ATM handle the

problems of mixing support for bulk data transfer with the needs of delay-

sensitive voice and bandwidth-hungry (and delay-sensitive) video?

ATM was the international standard for what was known as cell relay (there

were cell relay technologies other than ATM, now mostly forgotten). The cell

relay name seems to have developed out of an analogy with frame relay. Frame

relay “relayed” (switched) Layer 2 frames through network nodes instead of inde-

pendently routing Layer 3 packets. The efficiency of doing it all at a lower layer

made the frame relay node faster than a router could have been at the time.

Cell relay took it a step further, doing everything at Layer 1 (the actual bit

level). But there was no natural data unit at the physical layer, just a stream of

bits. So, they invented one 53 bytes long and called it the “cell”—apparently in

comparison to the cell in the human body—which is very small, can be generic,

and everything else is built up from them. Technically, in data protocol stacks,

cells are a “shim” layer slipped between the bits and the frames, because both bits

and frames are still needed in hardware and software at source and destination.

Cell relay (ATM) “relayed” (switched) cells through network nodes. This

could be done entirely in hardware because cells were all exactly the same size.

Imagine how fast ATM switches would be compared to slow Layer 3 routers with

two more layers to deal with! And ATM switches had no need to allocate buffers

in variable units, or to clean up fragmented memory. The structure of the 5-byte

ATM cell header is shown in Figure 19.4 (descriptions follow on next page). The

call payload is always 48 bytes long.

• GFC—The Generic Flow Control is a 4-bit field used between a customer site

and ATM switch, on the User-Network Interface (UNI). It is not present on

the Network�Network Interface (NNI) between ATM switches.

497Frame Relay

• VPI—The Virtual Path Identifier is an 8- or 12-bit field used to identify paths

between sites on the ATM network. It is larger on the NNI to accommodate

aggregation on customer paths.

• VCI—The Virtual Connection Identifier is a 16-bit field used to identify paths

between individual devices on the ATM network.

• PTI—The Payload Type Indicator is a 3-bit field used to identify one of eight

traffic types carried in the cell.

• CLP—The Cell Loss Priority bit serves the same function as the DE bit in

frame relay, but identifies cells to discard when congestion occurs.

• HEC—The Header Error Control byte not only detects bit errors in the entire

40-bit header, but can also correct single bit errors.

In contrast to frame relay, the ATM connection identifier was a two-part vir-

tual path identifier (VPI) and virtual channel identifier (VCI). Loosely, VPIs were

for connections between sites and VCIs were for connections between devices.

ATM switches could “route” cells based on the VPI, and the local ATM switch

could take care of finding the exact device for which the cell was destined.

Like frame relay DLCIs, ATM VPI/VCIs have local significance only. That

is, the VPI/VPI values change as the cells make their way from switch to switch

and depending on direction. Both frame relay and ATM switch essentially take

a data unit in on an input port, look up the header (DLCI or VPI/VCI label) in a

table, and output the data unit on the port indicated in the table—but also with a

new label value, also provided by the table.

This distinctive label-swapping is characteristic of switching technologies and

protocols. And, as we will see later, switching has come to the IP world with

MPLS, which takes the best of frame relay and ATM and applies it directly to IP

without the burden of “legacy” stacks (frame relay) or phantom applications

(ATM and B-ISDN).

The tiny 48-byte payload of the ATM cell was intentional. It made sure that

no delay-sensitive bits got stuck in a queue behind some monstrous chunk of data

GFC VPI

VCIVPI

VCI

VCI PTI CLP

HEC

8 Bits 1

UNI Cell Header

VPI

VCIVPI

VCI

VCI PTI CLP

HEC

8 Bits 1

NNI Cell Header5
octets

FIGURE 19.4

The ATM cell header. Note the larger VPI fields on the network (NNI) version of the

header.

498 CHAPTER 19 MPLS and IP Switching

a thousand times larger than the 48 voice or video bytes. Such “serialization

delay” introduced added delay and delay variation (jitter) that rendered converged

voice and video almost useless without more bandwidth than anyone could realis-

tically afford. With ATM, all data encountered was a slightly elevated delay

when data cells shared the total bandwidth with voice and video. But because few

applications did anything with data (such as a file) before the entire group of bits

was transferred intact ATM pioneers deemed this a minor inconvenience at worst.

All of this sounded too good to be true to a lot of networking people, and it

turned out that it was. The problem was not with raw voice and video, which

could be molded into any form necessary for transport across a network. The

issue was with data, which came inside IP packets and had to be broken down

into 48-byte units—each of which had a 5-byte ATM cell header, and often a

footer that limited it to only 30 bytes.

This was an enormous amount of overhead for data applications, which nor-

mally added 3 or 4 bytes to an Ethernet frame for transport across a WAN.

Naturally, no hardware existed to convert data frames to cells and back—and

software was much too slow—so this equipment had to be invented. Early results

seemed promising, although the frame-to-cell-and-back process was much more

complex and expensive than anticipated. But after ATM caught on, prices would

drop and efficiencies would be naturally discovered. Once ATM networks were

deployed, the B-ISDN applications that made the most of them would appear.

Or so it seemed.

However, by the early 1990s it turned out that making cells out of data frames

was effective as long as the bandwidth on the link used to carry both voice and

video along with the data was limited to less than that needed to carry all three at

once. In other words, if the link was limited to 50 Mbps and the voice and video

data added up to 75 Mbps, cells made sense. Otherwise, variable-length data units

worked just fine. Full-motion video was the killer at the time, with most televi-

sion signals needing about 45 Mbps (and this was not even high-definition TV).

Not only that, but it turned out that the point of diminishing ATM returns (the

link bandwidth at which it became slower and more costly to make cells than

simply send variable-length data units) was about 622 Mbps—lower than most

had anticipated.

Of course, one major legacy of the Internet bubble of the early 21st Century

was the underutilization of fiber optic links with more than 45 Mbps, and in

many cases greatly in excess of 622 Mbps. And digital video could produce stun-

ning images with less and less bandwidth as time went on. And in that world, in

many cases, ATM was left as a solution without a problem. ATM did not suffer

from lack of supporters, but it proved to be the wrong technology to carry forward

as a switching technology for IP networks.

WHY CONVERGE ON TCP/IP?

Some of the general reasons TCP/IP has dominated the networking scene have

been mentioned in earlier chapters. Specifically, none of the “new” public network

499Frame Relay

technologies were particularly TCP/IP friendly—and some seemed almost antago-

nistic. ATM cells, for instance, would be a lot more TCP/IP friendly if the payload

were 64 bytes instead of 48 bytes. At least a lot of TCP/IP traffic would fit inside

a single ATM cell intact, making processing straightforward and efficient.

At 48 bytes, everything in TCP/IP had to be broken up into at least two cells.

But the voice people wanted the cell to be 32 bytes or smaller, in order to keep

voice delays as short as possible. It may be only a coincidence that 48 bytes is

halfway between 32 and 64 bytes, but a lot of times reaching a compromise

instead of making a decision annoys both parties and leaves neither satisfied with

the result. So, ATM began as a standard by alienating the two groups (voice and

data) that were absolutely necessary to make ATM a success.

But the real blow to ATM came because a lot of TCP/IP traffic would not fit

into 64-byte frames. ACKs would fit well, but TCP/IP packet sizes tend to follow

a bimodal distribution with two distinct peaks at about 64 and between 1210 and

1550 bytes. The upper cluster is smaller and more spread out, but this represents

the vast bulk of all traffic on the Internet.

Then new architectures allowed otherwise normal IP routers to act like frame

relay and ATM switches with the addition of IP-centric MPLS. Suddenly, all of

the benefits of frame relay and ATM could be had without using unfamiliar and

special equipment (although a router upgrade might be called for).

MPLS
Rather than adding IP to fast packet switching networks, such as frame relay and

ATM, MPLS adds fast packet switching to IP router networks. We’ve already

talked about some of the differences between routing (connectionless networks)

and switching networks in Chapter 13. Table 19.1 makes the same type of com-

parisons from a different perspective.

Table 19.1 Comparing Routing and Switching on a WAN

Characteristic Routing Switching

Network node Router Switch
Traffic flow Each packet routed independently

hop by hop
Each data unit follows same path
through network

Node
coordination

Routing protocols share
information

Signaling protocols set up paths
through network

Addressing Global, unique Label, local significance
Consistency of
address

Unchanged source to destination Label is swapped at each node

QoS Challenging Associated with path

500 CHAPTER 19 MPLS and IP Switching

The difference in the way CoS is handled is the major issue when conver-

gence is concerned. Naturally, the problem is to find the voice and video pack-

ets in the midst of the data packets and make sure that delay-sensitive packets

are not fighting for bandwidth along with bulk file transfers or email. This is

challenging in IP routers because there is no fixed path set up through the net-

work to make it easy to enforce QoS at every hop along the way. But switch-

ing uses stable paths, which makes it easy to determine exactly which routers

and resources are consumed by the packet stream. QoS is also challenging

because you don’t have administrative control over the routers outside your

own domain.

MPLS AND TUNNELS
Some observers do not apply the term “tunnel” to MPLS at all. They reserve the term for

wholesale violations on normal encapsulations (packet in frame in a packet, for example). MPLS

uses a special header (sometimes called a “shim” header) between packet and frame header, a

header that is not part of the usual TCP/IP suite layers.

However, RFCs (such as RFC 2547 and 4364) apply the tunnel terminology to MPLS. MPLS

headers certainly conform to general tunnel “rules” about stack encapsulation violations. This

chapter will not dwell on “MPLS tunnel” terminology but will not avoid the term either. (This

note also applies to MPLS-based VPNs, discussed in Chapter 20.)

But QoS enforcement is not the only attraction of MPLS. There are at least

two others, and probably more. One is the ability to do traffic engineering with

MPLS, and the other is that MPLS tunnels form the basis for a certain virtual pri-

vate network (VPN) scheme called Layer 3 VPNs. There are also Layer 2 VPNs,

and we’ll look at them in more detail in Chapter 20.

MPLS uses tunnels in the generic sense: The normal flow of the layers is

altered at one point or another, typically by the insertion of an “extra” header.

This header is added at one end router and removed (and processed) at the other

end. In MPLS, routers form the endpoints of the tunnels. In MPLS, the header is

called a label and is placed between the IP header and the frame headers—mak-

ing MPLS a kind of “Layer 2 and a half” protocol.

MPLS did not start out to be the answer to everyone’s dream for convergence

or traffic engineering or anything else. MPLS addressed a simple problem faced

by every large ISP in the world, a problem shown in Figure 19.5.

MPLS was conceived as a sort of BGP “shortcut” connecting border routers

across the ISP. As shown in the figure, a packet bound for 10.10.100.0/24 enter-

ing the border router from the upstream ISP is known, thanks to the IBGP infor-

mation, to have to exit the ISP at the other border router. In practice, of course,

this will apply to many border routers and thousands of routes (usually most of

them), but the principle is the same.

Only the local packets with destinations within the ISP technically need to be

routed by the interior routers. Transit packets can be sent directly to the border

router, if possible. MPLS provides this mechanism, which works with BGP to set

501MPLS

up tunnels through the ISP between the border routers (or anywhere else the ISP

decides to use them).

The structure of the label used in MPLS is shown in Figure 19.6. In the figure,

it is shown between a Layer 2 PPP frame and the Layer 3 IP packet (which is

very common).

• Label—This 20-bit field identifies the packets included in the “flow” through

the MPLS tunnel.

Router Router

Router

Router

ISP Border
Router

Router
Router

Border
Router

Upstream
ISP

Downstream
ISP

Packet for
10.10.100.0/24

Network
10.10.100.0/24
(and many more)

FIGURE 19.5

The rationale for MPLS. The LSP forms a “shortcut” across the routing network for transit

traffic. The Border Router knows right away, thanks to BGP, that the packet for

10.10.100.0/24 must exit at the other border router. Why route it independently at every

router in between?

PPP Header MPLS Label
(32 bits) IP Packet

Label

20 bits 3 bits 1
bit

8 bits

CoS S TTL

FIGURE 19.6

The 32-bit MPLS label fields. Note the 3-bit CoS field, which is often related to the IP ToS

header. The label field is used to identify flows that should be kept together as they cross

the network.

502 CHAPTER 19 MPLS and IP Switching

• CoS—Class-of-Service is a 3-bit field used to classify the data stream into one

of eight categories.

• S—The Stack bit lets the router know if another label is stacked after the

current 32-bit label.

• TTL—The Time-to-Live is an 8-bit field used in exactly the same way as the

IP packet header TTL. This value can be copied from or into the IP packet or

used in other ways.

Certain label values and ranges have been reserved for MPLS. These are out-

lined in Table 19.2.

The MPLS architecture is defined in RFC 3031 (updated by RFC 6178 and

RFC 6790), and MPLS label stacking is defined in RFC 3032 (more than one

MPLS label can precede an IP packet: there are too many updates to this basic

RFC to list here). General traffic engineering in MPLS is described in RFC 2702

(no updates, but there are errata for the RFC), and several drafts add details and

features to these basics.

What does it mean to use traffic engineering on a router network? Consider

the Illustrated Network. We saw that traffic from LAN1 to LAN2 flows through

backbone routers P4 and P2 (reverse traffic also flows this way). But notice that

P2 and P4 also have links to and from the Internet. A lot of general Internet traf-

fic flows through routers P2 and P4 and their links, as well as LAN1 and LAN2

traffic.

So, it would make sense to “split off” the LAN1 and LAN2 traffic onto a less

utilized path through the network (for example, from PE5 to P9 to P7 to PE1).

This will ease congestion and might even be faster, even though in some config-

urations there might be more hops (for example, there might be other routers

between P9 and P7).

Table 19.2 MPLS Label Values and Their Uses

Value or Range Use

0 IPv4 Explicit Null. Must be the last label (no stacking). Receiver
removes the label and routes the IPv4 packet inside.

1 Router Alert. The IP packet inside has information for the router
itself, and the packet should not be forwarded.

2 IPv6 Explicit Null. Same as label 0, but with IPv6 inside.
3 Implicit Null. A “virtual” label that never appears in the label itself.

It is a table entry to request label removal by the downstream
router.

4�15 Reserved.
16�1023 and
10000�99999

Ranges used in Juniper Networks routers to manually
configure MPLS tunnels (not used by the signaling protocols).

1024�9999 Reserved.
100000�1048575 Used by signaling protocols.

503MPLS

WHY NOT INCLUDE CE0 AND CE6?
Why did we start the MPLS tunnels at the provider-edge routers instead of directly at the

customer edge, on the premises? Actually, as long as the (generally) smaller site routers support

the full suite of MPLS features and protocols there’s no reason the tunnel could not span LAN to

LAN.

However, MPLS traditionally begins and ends in the “provider cloud”—usually on the PE

routers, as in this chapter. This allows the customer routers to be more independent and less

costly, and allows reconfiguration of MPLS without access to the customer’s routers. Of course,

in some cases the customer might want ISP to handle MPLS management—and then the CE

routers certainly could be included on the MPLS path.

There are ways to do this with IGPs, such as OSPF and IS-IS, by adjusting the

link metrics, but these solutions are not absolute and have global effects on the

network. In contrast, an MPLS tunnel can be configured from PE5 to PE1 through

P9 and P7 and only affect the routing on PE5 and PE1 that involves LAN1 and

LAN2 traffic, exactly the effect that is desired.

BASIC MPLS TERMINOLOGY

Before looking at how MPLS would handle a packet sent from LAN1 to LAN2

over an MPLS tunnel, we should look at the special terminology involved with

MPLS. In no particular order, the important terms are:

LSP—We’ve been calling them tunnels, and they are, but in MPLS the tunnel

is called a label-switched path. The LSP is a unidirectional connection

following the same path through the network.

Ingress router—The ingress router is the start of the LSP and where the label

is pushed onto the packet.

Egress router—The egress router is the end of the LSP and where the label is

popped off the packet.

Transit or intermediate router—There must be at least one transit (sometimes

called intermediate) router between ingress and egress routers. The transit

router(s) swaps labels and replaces the incoming values with the outgoing

values.

Static LSPs—These are LSPs set up by hand, much like permanent virtual

circuits (PVCs) in FR and ATM. They are difficult to change rapidly.

Signaled LSPs—These are LSPs set up by a signaling protocol used with

MPLS (there are two) and are similar to switched-virtual circuits (SVCs)

in FR and ATM.

MPLS domain—The collection of routers within a routing domain that starts

and ends all LSPs form the MPLS domain. MPLS domains can be nested,

and can be a subset of the routing domain itself (that is, all routers do not

have to understand MPLS; only those on the LSP).

504 CHAPTER 19 MPLS and IP Switching

Push, pop, and swap—A push adds a label to an IP packet or another MPLS

label. A pop removes and processes a label from an IP packet or another

MPLS label. A swap is a pop followed by a push and replaces one label

by another (with different field values). Multiple labels can be added

(push push . . .) or removed (pop pop . . .) at the same time.

Penultimate hop popping (PHP)—Many of LSPs can terminate at the same

border router. This router must not only pop and process all the labels but

route all packets inside, plus all other packets that arrive from within the

ISP. To ease the load of this border router, the router one hop upstream

from the egress router (known as the penultimate router) can pop the label

and simply route the packet to the egress router (it must be one hop, so

the effect is the same). PHP is an optional feature of LSPs, and keep in

mind that the LSP is still considered to terminate at the egress router (not

at the penultimate).

Constrained path LSPs—These are traffic engineering (TE) LSPs set up by a

signaling protocol that must respect certain TE constraints imposed on the

network with regard to delay, security, and so on. TE is the most

intriguing aspect of MPLS.

IGP shortcuts—Usually, LSPs are used in special router tables and only

available to routes learned by BGP (transit traffic). Interior Gateway

Protocol (IGP) shortcuts allow LSPs to be installed in the main routing

table and used by traffic within the ISP itself, routes learned by OSPF or

another IGP.

SIGNALING AND MPLS

There are two signaling protocols that can be used in MPLS to automatically set

up LSPs without human intervention (other than configuring the signaling proto-

cols themselves!). The Resource Reservation Protocol (RSVP) was originally

invented to set up QoS “paths” from host to host through a router network, but it

never scaled well or worked as advertised. Today, RSVP has been defined in

RFC 3209 (again, there have been many updates) as RSVP for TE and is used as

a signaling protocol for MPLS. RSVP is used almost exclusively as RSVP-TE

(most people just say RSVP) by routers to set up LSPs (explicit-path LSPs), but

can still be used for QoS purposes (constrained-path LSPs).

The Label Distribution Protocol (LDP), defined in RFC 3212, is used exclu-

sively with MPLS but cannot be used for adding QoS to LSPs other than using

simple constraints when setting up paths (as constrained-route LDP, or CR-LDP).

It should be noted that RFC 3468 deprecates CR-LDP as it “focuses” on using

RSVP-TE for MPLS traffic engineering (however, the existence of RFC 7358

means LDP is still in use). LDP is trivial to configure compared to RSVP. This is

because LDP works directly from the tables created by the IGP (OSPF or IS-IS).

The lack of QoS support in LDP is due to the lack of any intention in the process.

The reason for the LDP paths created from the IGP table to exist is only simple

505MPLS

adjacency. In addition, LDP does not offer much if your routing platform can for-

ward packets almost as fast as it can switch labels.

A lot of TCP/IP texts spend a lot of time explaining how RSVP-TE works

(they deal with LDP less often). This is more of an artifact of the original use of

RSVP as a host-based protocol. It is enough to note that RSVP messages are

exchanged between all routers along the LSP from ingress to egress. The LSP

label values are determined, and TE constraints respected, hop by hop through the

network until the LSP is ready for traffic. The process is quick and efficient, but

there are few parameters that can be configured even on routers that change

RSVP operation significantly (such as interval timers)—and none at all on hosts.

Although not discussed in detail in this introduction to MPLS, another proto-

col is commonly used for MPLS control plane signaling, as described in RFC

4364 (with updates). BGP is a routing protocol, not a signaling protocol, but the

extensions used in multiprotocol BPG (MPBGP, or MBGP—but we’ll use

MPBGP to avoid confusion with multicast BGP as MBGP) make it well suited

for the types of path setup tasks described in this chapter. With MPBGP, it is pos-

sible to deploy BGP- and MPLS-based VPNs without the use of any other signal-

ing protocol. LSPs are established based on the routing information distributed by

MPBGP from PE to PE. MPBGP is backward compatible with “normal” BGP,

and thus use of these extensions does not require a wholesale upgrade of all rou-

ters at once.

LABEL STACKING

Of all the MPLS terms outlined in the previous section, the one that is essential

to understand is the concept of “nested” LSPs; that is, LSPs which include one or

more other LSPs along their path from ingress to egress. When this happens, there

will be more than one label in front of the IP packet for at least part of its

journey.

It is common for many large ISPs to stack three labels in front of an IP packet.

Often, the end of two LSPs is at the same router and two labels are pushed or

popped at once. The current limit is eight labels.

There are several instances where this stacking ability comes in handy.

A larger ISP can buy a smaller ISP and simply “add” their own LSPs onto (out-

side) the existing ones. In addition, when different signaling protocols are used in

core routers and border routers, these domains can be nested instead of discarding

one or the other.

The general idea of nested MPLS domains with label stacking is shown in

Figure 19.7. There are five MPLS domains, each with its own way of setting up

LSPs: static, RSVP, and LDP. The figure shows the number of labels stacked at

each point and the order they are stacked in front of the packet. All of the routers

shown (in practice, there will be many more) pop and process multiple labels.

MPLS domains can be nested for geographical, vendor, or organizational reasons

as well.

506 CHAPTER 19 MPLS and IP Switching

MPLS AND VPNs
MPLS forms the basis for many types of VPNs used on IP networks today, espe-

cially Layer 3 VPNs. LSPs are like the PVCs and SVCs that formed “virtually

private” links across a shared public network such as FR or ATM. LSPs are not

really the same as private leased-line links, but they appear to be to their users.

Of course, while the path is constrained, the MPLS-based Layer 3 VPN is

not actually doing anything special to secure the content of the tunnel or to pro-

tect its integrity. So, this “security” value is limited to constraining the path.

This reduces the places where snooping or injection can occur, but it does not

replace other Layer 3 VPN technology for security (such as IPSec, discussed in

Chapter 33).

Nevertheless, VPNs are often positioned as a security feature on router net-

works. This is because, like “private” circuits, hackers cannot hack into the mid-

dle of an LSP (VPN) just by spoofing packets. There are labels to be dealt with,

often nested labels. The ingress and egress routers are more vulnerable, but it’s

not as easy to harm VPNs or the sites they connect as it is to disrupt “straight”

router networks.

So, VPNs have a lot in common with MPLS and LSPs—except that the terms

are different! For example, the transit routers in MPLS are now provider (P) rou-

ters in VPNs. VPNs are discussed further in the security chapters.

R R R R

MPLS Domain 1

MPLS Domain 2
MPLS Domain 3

Static RSVP

RSVP

MPLS
Domain 4

LDP

MPLS
Domain 5

LDP

Two stacked labels
(MPLS2, MPLS1, IP)

Three stacked labels
(MPLS4, MPLS3,

MPLS1, IP)

Three stacked labels
(MPLS5, MPLS3,

MPLS1, IP)

FIGURE 19.7

MPLS domains, showing how the domains can be nested or chained, and how multiple

labels are used.

507MPLS and VPNs

MPLS TABLES

The tables used to push, pop, and swap labels in multiprotocol label switching are

different from the tables used to route packets. This makes sense: MPLS uses

switching, and packets are routed.

Most MPLS tables are little more than long lists of labels with two key pieces

of information attached: the output interface to the next-hop router on the LSP

and the new value of the label. Other pieces of information can be added, but this

is the absolute minimum.

What does an MPLS switching table look like? Suppose we did set up an LSP

between LAN1 and LAN2 to carry packets from PE5 to PE1 through backbone

routers P9 and P7 instead of through P4 and P2?

Figure 19.8 shows how the MPLS switching tables might be set up to switch a

packet from LAN1 to LAN2. Note that this has nothing to do with routed traffic

going back from LAN2 to LAN1! (In the real world, we would set up an LSP

going from LAN2 to LAN1 as well.)

CONFIGURING MPLS USING STATIC LSPs
Let’s build the static LSP from LAN1 to LAN2 from PE5 to P9 to P7 to PE1 that

was shown in Figure 19.8. Then we’ll show how that affects the routing

table entries and run a traceroute for packets sent from 10.10.11.0/24 (LAN1) to

10.10.12.0/24 (LAN2).

THE INGRESS ROUTER

Let’s start by configuring the LSP on PE5, the ingress router, so that packets

from LAN1’s address space get an MPLS label value of 1023 and are sent to

10.0.59.2 as a next hop on the link to P9 (so-0/0/0).

Ingress
Router

Egress
Router

Transit
Router

Transit
Router

PE5 PE1P9 P7

10.10.11/24 10.0.59/24 10.0.79/24 10.0.17/24 10.10.12/24

Label Table
Push 1023

Output on:
10.0.59/24

Output on:
10.0.79/24

Output on:
10.0.17/24

ROUTE to:
10.10.12/24

Label Table
Pop 1253

Label Table
Pop 1023
Push 1104
(swap 1104
for 1023)

Label Table
Pop 1104
Push 1253
(swap 1253
for 1104)

FIGURE 19.8

Label tables for a static LSP from PE5 (ingress) to PE1 (egress).

508 CHAPTER 19 MPLS and IP Switching

set protocols mpls static-path LAN1-to-LAN2 10.10.11.0/24 next-hop
10.0.59.2;

set protocols mpls static-path LAN1-to-LAN2 10.10.11.0/24 push 1023;
set protocols mpls static-path LAN1-to-LAN2 interface so-0/0/0;

Once the configuration is committed, the static LSP shows up as a static route

naturally (signaled LSPs are referenced by signaling a protocol, RSVP or LDP).

admin@PE5# show route table inet.0 protocol static
10.10.11.0/24 �[Static/5] 00:01:42

. to 10.0.59.2 via so-0/0/0. push 1023

THE TRANSIT ROUTERS

This is how the LSP is configured on P9, the first transit (or intermediate) router.

set protocols mpls interface so-0/0/0 label-map 1023 next-hop 10.0.79.1;
set protocols mpls interface so-0/0/0 label-map 1023 swap 1104;

Note that this table is not organized by destination, as on the PE router, but by

the interface that the MPLS data unit arrives on. There can be many labels, but

this “label map” looks for 1023, swaps it for label 1104, and forwards it to

10.0.79.1. Note that there was no need to look anything up in the main routing

table (in Juniper Networks routers, the interface addresses are held in hardware).

Transit LSPs are identified by the use of swap in the static router entry, but this

time in MPLS “label table” mpls.0.

admin@P9# show route table mpls.0 protocol static
1023 �[Static/5] 00:01:57

. to 10.0.79.1 via so-0/0/1. swap 1104

The link to P7 is so-0/0/1, as expected. The configuration on the P7, the sec-

ond transit router, is very similar.

set protocols mpls interface so-0/0/1 label-map 1104 next-hop 10.0.17.1;
set protocols mpls interface so-0/0/1 label-map 1104 swap 1253;

If we wanted to configure PHP, this is the router where we would enable it.

The statement swap 3 is the “magic word” that enables PHP. MPLS label value 3

says to the local router, “Don’t really push a 3 on the packet, but instead pop the

label and route the packet inside.” The use of the label at least makes it easier to

remember that the end of the LSP is really on PE1.

THE EGRESS ROUTER

The configuration on the egress router, PE1, is essentially the opposite of that on

the ingress router but more similar to that on a transit router.

509Configuring MPLS Using Static LSPs

set protocols mpls interface so-0/0/2 label-map 1253 next-hop 10.0.12.0/24;
set protocols mpls interface so-0/0/2 label-map 1253 pop;
admin@PE1# set protocols mpls interface so-0/0/2 label-map 1253 next-hop

10.10.12.0/24;
admin@PE1# set protocols mpls interface so-0/0/2 label-map 1253 pop;

There is no need to tell the router what label value to pop: if it got this far,

the label value is 1253. Note that the next hop is the IP address of LAN2, which

is the entire point of the exercise. When PHP is used, there is no need for a label

map for that LSP on the egress router. When PHP is not used, the egress LSPs

are identified by the use of pop in the static router entry in mpls.0.

admin@PE1# show route table mpls.0 protocol static
1253 �[Static/5] 00:02:17

. to 10.10.12.0/24 via ge-0/0/3. pop

Static LSPs are fine, but offer no protection at all against link failure. And

consider how many interfaces, labels, and other information have to be main-

tained and entered by hand. In MPLS classes, most instructors make students

suffer through a complex static LSP configuration (some of which never work

correctly) before allowing the use of RSVP-TE and LDP to “automatically” set

up LSPs anywhere or everywhere. It is a lesson that is not soon forgotten. (In

fact, dynamic LSP configuration using RVSP-TE is so simple that it is not even

used as an example in this chapter.)

TRACEROUTE AND LSPs

How do we know that our static LSP is up and running properly? A ping that works

proves nothing about the LSP because it could have been routed, not switched. Even

one that fails proves nothing except the fact that something is broken.

But traceroute is the perfect tool to see if the LSP is up and running correctly.

The following is what it looked like before we configured the LSP.

bsdclient# traceroute bsdserver
traceroute to bsdserver (10.10.12.77), 64 hops max, 44 byte packets

1 10.10.11.1 (10.10.11.1) 0.363 ms 0.306 ms 0.345 ms
2 10.0.50.1 (10.1.36.2) 0.329 ms 0.342 ms 0.346 ms
3 10.0.45.1 (10.0.45.1) 0.330 ms 0.341 ms 0.346 ms
4 10.0.24.1 (10.0.24.1) 0.332 ms 0.343 ms 0.345 ms
5 10.0.12.1 (10.0.12.1) 0.329 ms 0.342 ms 0.347 ms
6 10.0.16.2 (10.0.16.2) 0.330 ms 0.341 ms 0.346 ms
7 10.10.12.77 (10.10.12.77) 0.331 ms 0.343 ms 0.347 ms

bsdclient#

Let’s look at it now, after the LSP.

510 CHAPTER 19 MPLS and IP Switching

Only four routers have “routed” the packet. On the backbone, the packet is

switched based on the MPLS tables, and so forms one router hop. But at least we

can see that the packets are sent toward P9 (10.0.59.1) and not P4 (10.0.50.1).
The details of the path of MPLS LSPs are not visible from the hosts. Why

should they be? LSPs are tools for the service providers on our network. Only on

the routers, running a special version of traceroute, can we reveal the hop-by-hop

functioning of the LSP. When run on PE5 to trace the path to the link to CE6, tra-

ceroute “expands” the path and provides details—showing that the CE6 is still

five routers away from CE0 (and that there are still six routers and seven hops

between LAN1 and LAN2).

admin@PE5. traceroute 10.10.16.1
traceroute to 10.10.12.0 (10.10.12.0), 30 hops max, 40 byte packets
1 10.10.12.1 (10.10.12.1) 0.851 ms 0.743 ms 0.716 ms

MPLS Label=1023 CoS=0 TTL=1 S=1
2 10.0.59.1 (10.0.59.1) 0.799 ms 0.753 ms 0.721 ms

MPLS Label=1104 CoS=0 TTL=1 S=1
3 10.0.79.1 (10.0.79.1) 0.832 ms 0.769 ms 0.735 ms

MPLS Label=1253 CoS=0 TTL=1 S=1
4 10.0.17.1 (10.0.17.1) 0.854 ms 0.767 ms 0.734 ms
5 10.0.16.1 (10.0.16.1) 0.629 ms !N 0.613 ms !N 0.582 ms !N
admin@PE5.

Just to show that the LSP we set up is unidirectional, watch what happens

when we run traceroute in reverse from bsdserver on LAN2 to bsdclient on

LAN1.

bsdserver# traceroute bsdclient
traceroute to bsdclient (10.10.11.177), 64 hops max, 44 byte packets

1 10.10.12.1 (10.10.12.1) 0.361 ms 0.304 ms 0.343 ms
2 10.0.16.1 (10.1.16.1) 0.331 ms 0.344 ms 0.347 ms
3 10.0.12.2 (10.0.12.2) 0.329 ms 0.340 ms 0.345 ms
4 10.0.24.2 (10.0.24.2) 0.333 ms 0.344 ms 0.346 ms
5 10.0.45.2 (10.0.45.2) 0.329 ms 0.342 ms 0.347 ms
6 10.0.50.2 (10.0.50.2) 0.330 ms 0.341 ms 0.346 ms
7 10.10.11.177 (10.10.11.177) 0.331 ms 0.343 ms 0.347 ms

bsdclient#

Packets flow through backbone routers P2 and P4, as they did before the

MPLS LSP was set up! The “old” route is used, showing that MPLS is the basis

for traffic engineering on a router network. It should also be noted that a ping

from bsdclinet to bsdserver would show the whole MPLS LSP as one hop! This

is often a nice feature of MPLS, but can be confusing when seen for the first time

and users wonder where all the backbone routers went.

511Configuring MPLS Using Static LSPs

QUESTIONS FOR READERS

Figure 19.9 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. Does the LSP in Figure 19.9 use the shortest path in terms of number of

routers from ingress to egress?

2. What does traffic engineering mean as the term applies to MPLS?

3. Is there an LSP set up on the reverse path from egress to ingress router?

4. Which label is used on the LSP between routers A and B? Is this label added

to another, or swapped?

5. Is PHP used on the LSP? How can you tell?

Router
A

Router
B

Router
C

Router
D

ISP Egress
Router

Router
E

Router
F

Ingress
Router

Upstream
ISP

Downstream
ISP

Packet for
10.10.100.0/24

Network
10.10.100.0/24
(and many more)

1104

1253

1215

3

FIGURE 19.9

An MPLS LSP from ingress to ingress router, showing label value to path. The LSP runs

along the heavy lines through the routers designated. The label values used on each link

are also shown.

512 CHAPTER 19 MPLS and IP Switching

CHAPTER

20MPLS-Based Virtual
Private Networks

WHAT YOU WILL LEARN

In this chapter, you will learn one type of virtual private network architecture: the
MPLS-based VPN, and in particular, a Layer 2 VPN (L2VPN). We’ll also briefly look at
using PPTP over DSL for remote access, another type of arrangement that is often
considered a VPN.

You will learn how an L2VPN can make CE1 and CE2 appear to be connected by
a single LAN, creating a virtual private LAN service (VPLS) between them. We’ll also
configure a complete VPLS based on L2VPNs.

In Chapter 19 on Internet Protocol (IP) switching, we introduced the idea of

Multiprotocol Label Switching (MPLS) and configured a static label-switched path

(LSP). That chapter showed how the LSP could be used for traffic engineering

(TE) to steer transit traffic away from the least-cost hops traversed by local traffic.

This chapter builds on those concepts and explores the security provided by one

type of Virtual Private Network (VPN) Protocol, the Point-to-Point Tunneling

Protocol (PPTP), and one type of VPN architecture, the MPLS-based VPN.

This chapter creates an L2VPN supporting VPLS. It does not create what is

known as an L3VPN or BGP/MPLS IP VPN, which is actually more common.

There are a few reasons we will describe an L3VPN but not configure it. Many

introductions to VPNs start with L2VPNs before moving on the more complex

L3VPNs. In addition, there is are much more complete book written about BGP/

MPLS VPNs available. We urge all interested readers to obtain one of those

books after completing this one.

This chapter deals with more general aspects of security (and privacy) on the

Internet, as companies, individuals, and government organizations blend increas-

ingly sensitive traffic onto a single global public network. PPTP allows workers

in home offices to access remote corporate resources such as servers and files

over a public ISP’s unsecure network. MPLS-based VPNs allow ISP to offer “pri-

vate” (virtually private) networks to customers, while maintaining the global

reachabilty and universal connectivity that Internet users have come to take for

granted.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00020-5

© 2017 Elsevier Inc. All rights reserved.
513

http://dx.doi.org/10.1016/B978-0-12-811027-0.00020-5

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Wireless
in Home

Best-Ace
ISP

AS 65527

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet

FIGURE 20.1

VPNs on the Illustrated Network. MPLS-based VPNs are based on routers (not hosts),

whereas PPTP can be used with DSL.

514 CHAPTER 20 MPLS-Based Virtual Private Networks

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Global Public
Internet

515MPLS-Based Virtual Private Networks

Before we build an L2VPN for LAN1 and LAN2, let’s take a quick look at

remote access using PPTP while employing a popular adjunct device, the RSA

SecureID. That’s how we access the Illustrated Network from the comfort of our

home offices.

So, we’re really doing two types of VPN at once in this chapter (as shown

in Figure 20.1). Both the home DSL link and the routers are highlighted,

because this is where we’ll be building our VPNs (we’ll route LAN1 to LAN2

traffic away from the links to the Internet on P4 and P2). Another change is

necessary (one we’ve seen before), and this time the change will be in effect

through the end of the book. Ace and Best ISPs have merged to become Best-

Ace ISP, and the network now has only one AS number (65527). This will

simplify the configurations used in the rest of the book, starting with our

MPLS-based VPN.

PPTP FOR PRIVACY
The RSA SecurID that one is issued for remote access to the corporate network

requires one to copy the six random numbers that appear on its screen at log-in.

There’s also a four-digit static prefix that does not change, but the last six digits

change every 30 seconds. This has been challenging for some users, who cannot

copy the digits correctly and exceed their retry count (usually three). After that,

the account is locked until an administrator releases it. Newer SecurID tokens

plug right into the USB port of the computer or run on the computer itself, so no

typing is required.

Even though our home office access is using PPP over DSL, the PPTP

connection still has to send the PPP and PPTP control messages to the corporate

network device, the L2TP Access Concentrator (LAC). (We’ll talk about the

relationship between PPTP and L2TP later.) These messages indicate that a

connection request is being made with the PPP Link Control Protocol (LCP).

The packet exchange at the beginning of the connection is shown in Figure 20.2.

The actual data are sent inside packets formatted according to the generic routing

encapsulation (GRE) method, which basically adds another IP header to the

existing one.

For the first time in this book, this Wireshark capture file has been edited

to substitute the actual addresses used for “Martian” addresses for reasons of

security. The client PC is using 169.254.99.1 and the server is using

250.99.111.4.
The first GRE packet does not come until packet 20. In fact, there are many

more compressed PPP packets than those using GRE. Figure 20.3 shows this rela-

tionship in the packet sequence taken from later in the same session. We’ll talk

more about these PPP and GRE packets later in this chapter.

516 CHAPTER 20 MPLS-Based Virtual Private Networks

FIGURE 20.2

Start of a PPTP over DSL session, showing the content of the first GRE packet.

TYPES OF VPNs

A VPN is a private communications network most often used within a single orga-

nization to communicate over a public network. VPN traffic is carried over a public

network infrastructure, such as the Internet, using standard and unsecure protocols.

However, the VPN mechanisms make the network look and feel like a private net-

work composed of network nodes owned and operated by the organization and the

leased lines connecting them, which carry the organization’s traffic only.

In truth, the “private” network was never really as private as customers

thought. Carriers did a good marketing job, but in fact every customer’s bits were

freely mixed on high-bit-rate backbones, although users could not tell whether

this was the case. But when a massive microwave link was compromised in some

way, hundreds or thousands of customers’ data were at risk. Once the carriers all

became ISPs, the marketing material for private circuits was retooled to support

the use of virtual circuits over the public network.

Chapter 19, which covered MPLS, mentioned the idea of a virtual circuit (or

channel or connection) as something that is “not really a private circuit/channel/

connection, but acts just like one,” at least as far as the customer is concerned.

This chapter extends that concept into the general area of VPNs.

The chapter on MPLS introduced the idea of using MPLS LSP “tunnels” as

the basis for a VPN, because MPLS LSPs are pretty much invisible to IP hackers

on the network. This chapter elaborates on that idea.

FIGURE 20.3

PPP and GRE packets, showing GRE encapsulation of PPP in IP.

518 CHAPTER 20 MPLS-Based Virtual Private Networks

ARE MPLS LSPS TUNNELS?
Sometimes MPLS LSPs are loosely called “MPLS tunnels,” and most people will not object,

knowing that LSPs are intended. But some object strenuously, claiming that the term tunnel is

more properly reserved for different types of encapsulation than in MPLS—such as frame in

frame, packet in packet, or some others. MPLS merely adds a small “shim header” between L3

packet and L2 frame, they claim, and therefore is not a full encapsulation (some used to call it

“Layer 2.5”).

Of course, if tunneling is defined as a “violation of the normal data-packet-frame

encapsulation sequence at some endpoint devices,” MPLS LSPs are certainly tunnels. Then again,

VLAN tagging (the Layer 2 analog to MPLS labeling) is not called “VLAN tunneling,” even

though it could be.

In this chapter, we’ll use the terms MPLS LSP and VLAN tagging, while avoiding the term

tunnel.

SECURITY AND VPNs

On modern networks, a firewall of some type is used as a security device and sits

between clients and servers. The firewall can pass authentication data to an

authentication service for the local network, such as RADIUS. A trusted person

with privileged access (such as root, often only using trusted devices that are

physically secure) is allowed to access resources not available to general users,

such as the routers and the firewall itself.

We’ll talk more about firewalls in Chapter 32. For now, we’ll just mention

them and note that VPNs can use firewalls, and indeed they can be built up from

firewalls but don’t have to be. For many people, any type of VPN implies the pur-

chase and use of specialized devices that form the endpoints of the VPN. To these

users, the VPN is created by the customer; in brief, it is not offered as a service

by the ISP. The exception, of course, is MPLS-based VPNs, which we will

explore in this chapter.

VPNs do not have to be secure. An organization that uses MPLS to create the

appearance of the virtual-circuit, network-like frame relay or ATM might call the

result a VPN, but this is not really more secure than any other type of network.

Secure VPNs use encrypted tunneling protocols to add confidentiality (a counter-

sniffing notion), user and resource authentication (to prevent spoofing), and mes-

sage integrity (to detect message alteration) to achieve the levels of security and

privacy desired (or affordable).

No current network is entirely protected against hackers and some simple

Internet attacks, such as distributed denial-of-service (DDOS) attacks, are still

painfully effective. What network security seeks to do is raise the work factor for

the bad guys to the point where it takes so long to break the code that the infor-

mation is useless and it’s easier to attack another network whose administrators

are less diligent in security areas.

If this sounds too defeatist, consider the fact that Kevin Mitnick (a hacker

guru) admitted in his book, The Art of Intrusion, that most of his exploits relied

519PPTP for Privacy

on manipulating people (“social engineering”) and not frontal attacks on equip-

ment and software (“I’m with security. We have to change your password. What

is it again?”). A lot of security dollars are spent protecting users from themselves.

VPNs AND PROTOCOLS

There are several types of VPNs that can be built, and the choice of which type

to use is not trivial. Many VPN schemes have a lot to do with security. But secure

VPN technologies can be the basis for a security overlay and used to enhance

security on the network.

We’ll just talk generally about all types of VPNs, create an MPLS-based VPN

on the Illustrated Network at the end of the chapter, and consider ways to

“harden” it in the section on security. All VPNs are in some sense “trusted” more

than simple IP router networks. Secure VPN protocols include the following:

IPSec (IP security)—IPSec has been aptly described as “a piece of IPv6 that

fell into IPv4.” A mandatory part of IPv6, IPSec was rushed into the IPv4

world as an advanced security measure.

SSL—SSL can be used to tunnel the entire network stack, as in the OpenVPN

approach, or to create an SSL VPN to secure certain pieces of the network.

PPTP—A tunneling method developed by Microsoft for remote access to

network resources through a special server.

L2F (Layer 2 forwarding)—Another secure remote-access method developed

by Cisco.

L2TP (Layer 2 tunneling protocol)—A sort of “compromise” method that

includes contributions by both Cisco and Microsoft. Today, L2TP has

pretty much replaced L2F.

VPNs do not rely on one protocol or another for everything. For example, net-

works dominated by Windows software generally use VPNs that employ PPTP

and L2TP (along with IPsec) to construct a secure VPN.

We’ve already talked about SSL, and IPSec is covered (and featured) in a later

chapter. Let’s take a look at PPTP and L2TP methods, which are for securing

intermittent remote user access through dial-up links or (increasingly) from home

offices over DSL.

PPTP

PPTP was developed by Microsoft as an extension to PPP and is now defined in

RFC 2637 (with errata). It is a Layer 2 tunneling protocol, meaning that the

payload is the Layer 2 frame itself, encrypted and preceded by a small PPTP

header based on extensions to the generic routing encapsulation (GRE) header

described in RFC 2784. This frame, with header and trailer, is placed inside

another packet and sent over the network between what PPTP calls a PPTP access

concentrator (PAC) and a PPTP network server (PNS).

520 CHAPTER 20 MPLS-Based Virtual Private Networks

PPTP is a client/server protocol with the PAC as the client and the PNS as

the server. Control messages are exchanged over TCP port 1723. Encryption is

provided by underlying PPP mechanisms. Encryption keys are generated from

the authentication process, which normally uses the Challenge Handshake

Authentication Protocol (CHAP)—a three-way handshake using encrypted pass-

words (defined in RFC 1994).

In PPTP, PPP uses compressed data, which is not a form of encryption but

does present an obstacle to unsophisticated hackers who only dabble in eaves-

dropping. The GRE encapsulated data are secure. PPTP is still widely used today,

often in conjunction with some type of user authentication token such as an RSA

SecurID numerical pass-code generator. Users dial in to the PAC and log in using

the passcode, which changes every 30 seconds. Dial-in connections are usually

very secure because they can follow any path over the PSTN and use any PAC

port available. PPTP covers communication between the PAC (which might be

supporting traveling sales agents on the east coast) and the main network with the

PNS (which might be on the west coast). In addition to controlling costs, PPTP

used this way can use a VPN setup for that purpose.

Today, home workers with DSL often use PPTP to tunnel through the ISP’s

unsecure network to reach the relative security of the organization’s more protec-

tive environment. Additional security is needed to reach the PAC from the user

location. Between PAC and PNS, a VPN tunnel itself can be built using double

encryption; that is, taking the PPTP data and encrypting it once again. It all

depends on how paranoid the organization is (as the doomed Kurt Cobain noted,

just because you’re paranoid doesn’t mean they’re not out to get you).

L2TP

Cisco first used their L2F as an alternative to Microsoft’s PPTP. But eventually

both companies combined the best of both worlds to produce L2TP, a more flexi-

ble version of PPTP. L2TP is also a way to send encrypted frames between client

and server over the Internet, and again the client is a remote access point and the

server on a protected network. In L2TP, these are now the L2TP access concen-

trator (LAC) and L2TP network server (LNS).

L2TP is designed to work with more than dial-in users seeking Internet con-

nectivity. The LAC and LNS can be linked not only over the Internet but over

frame relay and ATM networks (L2TP calls them “non-IP WAN technologies”).

A special L2TP device, the LAC client, can attach to the LNS directly without

going through the dial-in LAC device. The overall architecture is shown in

Figure 20.4.

Encryption in L2TP is provided with IPSec (why always reinvent the wheel?).

There is a two-step L2TP encapsulation. An initial L2TP frame encapsulation

with PPP is used to build a new IP packet using UDP port 1701 on the server

side and an L2TP header. This step is followed by the IPSec encapsulation.

521PPTP for Privacy

Although it is technically allowed to send L2TP data without this step, it defeats

the purpose. L2TP is defined in RFC 2661 (with errata).

PPTP AND L2TP COMPARED

There are many differences between PPTP and L2TP, but the following comprise

the main ones.

• PPTP cannot support a non-IP network directly, whereas L2TP works with

any network that can provide point-to-point connectivity.

• PPTP supports only a single tunnel from client to server, whereas L2TP can

support multiple tunnels—perhaps used as part of a multilevel security and

QoS scheme.

• PPTP does not support header compression, whereas L2TP can compress its

header for efficiency purposes.

Nevertheless, PPTP remains more popular than L2TP, and organizations that

support many remote users (traveling or at home) with Windows-based laptops or

PCs generally still use PPTP. The main alternative to PPTP and L2TP to add

security to a VPN connecting an organization’s sites is IPSec. IPSec is discussed

in the next chapter.

LAC Client

Home
Gateway

LNSLAC

Remote System

Remote
Resources

Smartcard
or SecurID

Internet, Frame
Relay, ATM

PPTP Runs Here

Smartcard
or SecurID

PSTN

FIGURE 20.4

PPTP architecture, showing how PPTP runs between LAC and LNS.

522 CHAPTER 20 MPLS-Based Virtual Private Networks

TYPES OF MPLS-BASED VPNs
Now that MPLS and security protocols have been defined, let’s look at the

types of VPNs that can be built from these pieces. There are two major types

of VPN: Those that operate at Layer 3 (the same layer as the routers that

make up the network), and those that operate at Layer 2, the level of LANs

linked over the VPN.

Which is “better”? There is no easy answer, and even the question should be

framed more clearly in terms of what is meant by “better.” Better in terms of

cost, complexity (or simplicity), cryptographic sophistication, or something else

altogether?

This section describes the major characteristics of each and configures one

type on the Illustrated Network, not as an endorsement, but just as an exam-

ple. The often bewildering terminology applied to VPN types has now been

standardized in RFC 4364 (with errata) and updated by RFC 4577, RFC 4684,

and RFC 5462.

LAYER 3 VPNs

Consider an organization with two widely separated sites with LANs running the

TCP/IP protocol suite and using all of the techniques and applications we’ve

described earlier in this book. What would a totally private IP network connecting

the two sites look like? Well, the organization could contract with a carrier for a

long link connecting the sites and install customer routers at each location.

Security is provided by the isolated nature of the traffic on the leased private line

(although that isolation is rarely absolute, as has been pointed out) and restricted

access at the sites themselves. There is no Internet access, of course, unless a

separate router or port is provided for this purpose.

But many carriers have evolved beyond the stage of mere “bandwidth

mongers” and want to provide more sophisticated services as ISPs. Private lines

are usually paid for by the mile as well as by bandwidth, and the bandwidth

use for bursty IP applications is wildly erratic and thus wasted much of the

time. Private networks are designed for peak loads, such as end-of-month or

end-of-quarter frenzies, and sit idle most of the time. The PSTN is no excep-

tion, by the way, and is designed (in the United States) for the 5 days of

maximum calling volume: Mother’s Day, Christmas, New Year’s Day,

Thanksgiving, and Father’s Day. Only unpredictable major disasters can swamp

the PSTN at other times.

Adding sites can be a problem in this scenario. Organizations with many

sites can always contract floor space at some central point and install their

own routers and leased lines there in a hub configuration instead of a mesh to

cut down on point-to-point mileage costs and the number of ports required on

each router.

523Types of MPLS-Based VPNs

Of course, the isolation of the private network is always attractive to

customers. But what if the ISP can promise a network that looks like the

rented-floor-space router hub solution with leased private line connectivity? In

other words, the ISP provides a solution that looks like a private router network to

the customer—complete with what appear to be dedicated links and routers that

contain routing information for that customer and that customer only. This is, of

course, a VPN.

But what we have described is not just any type of VPN—it’s a Layer 3

VPN (L3VPN) because the virtual nature of the network is apparent at Layer 3

(the IP layer). It’s really a network of virtual routers because in reality the ISP

is selling the same router resources to hundreds and even thousands of custo-

mers if the router and links are hefty enough to handle the loads. The different

L3VPN customers cannot see each other at all, or even communicate unless

special arrangements are made (this is sometimes called an “extranet,” the

closed VPN being an “intranet”). Each can only see the information in its own

virtual routing and forwarding (VRF) tables, as if the router were divided into

many tiny logical pieces.

L3VPNs are one of the most complicated entities that can be set up on a

router network. They are built on MPLS LSPs, as might be expected, and care-

fully distribute routing information only to the VRFs that should receive it.

(There is still a “master” routing table that receives all routing information:

Someone has to run the L3VPN itself.)

Basic L3VPN connectivity is bad enough. It is much worse when multicast

capabilities must be added to the tunnels, which are essentially point-to-point con-

nections that do not easily replicate packets.

The RFCs and drafts for L3VPNs, which are numerous, use MPLS and BGP as

the foundations for these types of VPNs—also called PPVPNs (provider-

provisioned VPNs). They also introduce a distinctive architecture and terminology,

as shown in Figure 20.5. The figure shows a simple two-site arrangement, but the

same terms apply to more complicated configurations.

Customer Edge
Each site has a customer-edge (CE) router, designated CE1, CE2, . . . CEn as

needed. These routers are owned and operated by the customer and are at the

“edge” of the VPN. At least one link runs to the ISP and carries customer data to

and from the ISP’s network. The data on the link can be in plain text (the link is

generally short, point to point, and not considered a high security risk) or

encrypted with IPSec, SSL, or some other VPN protocol. The CEs still run a rout-

ing protocol, but only to gather information about other CE routers belonging to

their own L3VPN.

Provider Edge
Each customer site connects to a provider-edge (PE) router, designated PE1, PE2,

. . . PEn as necessary. These are owned and operated by the ISP and are at the

524 CHAPTER 20 MPLS-Based Virtual Private Networks

provider “edge” of the VPN. A PE router can carry traffic to and from many CE

routers, and even carry “regular” Internet traffic for other customers. These are

routers with the VRFs and run MPLS to the other PE routers and BGP to carry

customer routing information. In MPLS terms, these are the ingress and egress

routers, but a PE router on one VPN can be a transit (P) router on another.

Provider
The provider (P) routers are the MPLS transit routers that carry VPN traffic

through the provider “core” or backbone. As in MPLS, there must be at least one

P router, but there are usually quite a few, depending on the popularity of the

L3VPN service. As with PE routers, the P routers can carry general ISP traffic

that has nothing to do with VPNs. MPLS LSPs connect the PE routers through

the P routers, and BGP is used with route distinguishers to ensure that routing

updates go into the proper VRFs.

The routing tables on the CE routers are generally quite simple. They contain

just a few routes to the other CE router sites and a default for generic Internet

access, which might be through a separate router or through the VPN itself (one

tunnel leads to an Internet router “gateway”). If the Internet access (few VPNs

can afford to cut themselves off from the Internet entirely) is on another router at

the customer site, a firewall is typically used to protect this “back door” to the

VPN. Firewalls are discussed in a later chapter.

LAYER 2 VPNs

In an L3VPN, the two CE routers are still on two separate networks—just like

LAN1 and LAN2 on the Illustrated Network. CE0 and CE6 use different IP

PEs have VRF for each L3VPN

CE PE PE CEInternet

MPLS LSP

PEs use BGP to carry VRF routes

P

FIGURE 20.5

Basic MPLS-based VPN architecture and terminology. Note that we’ve been using this

terminology all along.

525Types of MPLS-Based VPNs

network addresses, such as 10.0.50.2/24 and 10.0.16.2/24, on their links to

PE5 and PE1 toward the network backbone.

LANs are Layer 2 constructs at heart. Ethernet frames only care about MAC

layer addresses, not IP addresses. Why not just build the VPN at Layer 2 and con-

nect the two CE routers into one big “virtual” LAN that seems to be as private as

both LANs would be separately? This is the idea behind an L2VPN.

Even though an L2VPN service is delivered over an ISP’s collection of routers

(just like an L3VPN), the end result is much simpler than an L3VPN. This is

because there is no need to maintain separate virtual routing information for each

customer. Both customer routers can use one IP address space (perhaps

10.99.99.0/24), and do not need to run a routing protocol between the CE

routers at all because they appear to be directly connected and at opposite ends of

the same “link.”

The L2VPN architecture still uses the CE-PE-P terminology and uses MPLS

LSPs, but the basic content of the tunnels are Ethernet frames (other “emulated”

LANs are sometimes supported). The backbone routers in an L2VPN are essentially

transformed into LAN bridges. The VPLS tables on the PE routers are now long lists

of MAC layer addresses more similar to ARP caches than to routing tables.

L2VPN service offerings have a variety of names. A popular offering from

many ISPs is some form of virtual private LAN service (VPLS). The LANs are

now virtual LANs (VLANs), and the Ethernet frames between CE and PE routers

must employ VLAN tagging to allow the ISP to tell the frames apart at Layer 2.

The PE routers are configured with a VPLS virtual port that forms the endpoint

of the MPLS tunnel (LSP) that carries the frames from one LAN to the other.

There are many other variations on the basic VPN types described here. RFC

4026 lists (in addition to L3VPNs, L2VPNs, and VPLS) seven other types of

VPN, mostly variations on the L2VPN theme.

• Virtual Private Wire Service (VPWS)

• IP-only LAN-like Service (IPLS)

• Pseudo Wire (PW)

• Transparent LAN Service (TLS)

• Virtual LAN (VLAN)

• Virtual Private Switched Network (VPSN)

Why all the interest in linking CE routers over Layer 2 through an ISP’s router

network? The trend today is to extend Ethernet’s reach and speed to incredible

distances (about 25 miles) and bandwidths (100 Gbps or more). Some see

Ethernet as the ultimate “universal” network, and one without all the risks inher-

ent in IP-based router networks. How many malicious users are busily crafting

phony Ethernet frames?

Of course, malicious users followed networking from the PSTN (where they

were first active in securing free long-distance service) onto the Internet, and

there is no reason to think they won’t follow the action anywhere else. But VPNs

and virtual LANs are at least prepared to address security issues from the start.

526 CHAPTER 20 MPLS-Based Virtual Private Networks

VPLS: AN MPLS-BASED L2VPN
To make a good configuration for VPLS, we’ll have to get a little creative with

our network. The two routers attached to LAN1 and LAN2, customer-edge routers

CE1 and CE2, will now support VLAN tagging (not difficult to do). With VPLS

configured, both LANs still use addresses 10.10.11.0/24 and 10.10.12.0/24. (In
other words, we’ll start the VPLS at the ISP, not at the customer routers—not all

users want to renumber all of their IP devices.)

But now it will look like the CE routers are directly connected with a gigabit

Ethernet LAN sharing a common IP network address. In this example, that

address is 10.99.99.0/24 (which should be distinctive enough to easily pick out).

So, this is where the “virtual LAN” comes in—on the link between CE1 and

CE2. We’ve also merged Best-Ace ISP into one AS (the number is not important)

so that we can use IBGP to distribute the routes and avoid more complex

configurations.

The simplified Illustrated Network configuration for VPLS, along with inter-

face designations and IP addresses, is shown in Figure 20.6. The figure also

shows an example of the VPLS table on router PE1. This table shows how the

MAC addresses on the interfaces to the CE routers map to MPLS labels instead

of IP addresses, as in an L3VPN.

The VPLS virtual port interfaces on PE1 and PE2 are designated with the vt-

(virtual tunnel) prefix. These are not physical interfaces on the routers, of course,

but logical interfaces that form the endpoints of the MPLS LSP connecting the

routers over the ISP core backbone. This interface is not configured directly, but

is the result of the VPLS configuration steps.

ROUTER-BY-ROUTER VPLS CONFIGURATION

Let’s look at each router individually and show the sections of the configuration

files that directly create the VPLS service between LAN1 and LAN2. Keep in

mind that there is actually much more to the complete working configuration than

just these statements.

CE0 Router
All that is needed on the CE0 router is the interface to the PE router and the

VLAN identifier and IP address associated with it. These values must match the

configuration on router CE0. (The LAN1 interface is still fe-1/3/0 and is still

using 10.10.11.1/24.)

set interfaces ge-0/0/3 vlan-tagging;
set interfaces ge-0/0/3 unit 0 vlan-id 600; # the VLAN ID must must match

throughout the configurations
set interfaces ge-0/0/3 unit 0 family inet address 10.99.99.1/24;

this address space must match the CE6 link address we use

527VPLS: an MPLS-Based L2VPN

PE5 Router
The PE router configurations are the most elaborate among the VPLS routers.

These configurations are rather lengthy, so comments are used throughout. The

PE routers need BGP, MPLS, OSPF, and RSVP to be configured properly for

the LSP to work correctly. RSVP sets up the MPLS LSPs, OSPF handles routine

routing chores, and BGP is used to carry the VPLS MAC layer information

between the PE routers.

The PE routers also need to configure VLAN tagging and VPLS encapsulation

on the interfaces (physical and logical) to the CE routers. The VLAN ID must

match as well, but no IP address is needed for this “Layer 2” interface. There is a

space between major sections of the configuration and liberal comments to help

track what is being configured.

set interfaces ge-0/0/3 vlan-tagging; #interface to CE0
set interfaces ge-0/0/3 encapsulation vlan-vpls;
set interfaces ge-0/0/3 unit 0 encapsulation vlan-vpls;

Interface

LAN1
10.10.11.0/24

LAN2
10.10.12.0/24

PE1:
192.168.1.1

VPLS
ge-0/0/3

10.0.17.1/24
so-0/0/2

10.0.59.2/24
so-0/0/0

VPLS
ge-0/0/3

PE5:
192.168.5.1

PE5 PE1
(P9/
P7)CE0 CE6

VPLS Virtual Port

MPLS LSP

ge-0/0/3

 ge-0/0/3
10.99.99.1/24

ge-0/0/3
10.99.99.2/24

so-0/0/0
10.0.59.1/24

so-0/0/2
10.0.17.2/24

vt-0/3/0:32770 bbbb bbbb bbbb

aaaa aaaa aaaa n/a n/a

800000 800002

In Label

VPLS Forwarding Table for PE5

MAC Addr Out Label

vt-0/3/0:32771vt-0/3/0:32770

FIGURE 20.6

Illustrated Network topology for the VPLS configuration. Note the “new” address space.

528 CHAPTER 20 MPLS-Based Virtual Private Networks

set interfaces ge-0/0/3 unit 0 vlan-id 600; # must match across the network
setinterfacesso-0/0/0unit0familyinetaddress10.0.59.1;#interfacetoP9
set interfaces so-0/0/0 unit 0 family mpls;
set routing-options autonomous-system 65527;
set routing-options forwarding-table export exp-to-fwd;

used to distinguish VPLS "routes"

set protocols rsvp interface all; # turn on RSVP

set protocols mpls label-switched-path PE5-to-PE1 to 192.168.1.1;
The LSP to connect VPLS routers thru loopback addresses

set protocols mpls interface all;
set protocols bgp group vpls-pe type internal;
set protocols bgp group vpls-pe local-address 192.168.5.1;
set protocols bgp group vpls-pe family l2vpn unicast;

this VPLS is an L2VPN type and only cares about unicast traffic
set protocols bgp group vpls-pe neighbor 192.168.9.1;

IBGP peer router P9
set protocols bgp group vpls-pe neighbor 192.168.7.1;

IBGP peer router P7
set protocols bgp group vpls-pe neighbor 192.168.1.1;

IBGP peer router PE1

set protocols ospf traffic-engineering;
set protocols ospf area 0.0.0.0;
set protocols ospf interface all; # run OSPF to all routers

set policy-options policy-statement exp-to-fwd term A
from community green-community;
policy to load forwarding table � the community must also match

set policy-options policy-statement exp-to-fwd term A
then install-nexthop lsp PE5-to-PE1;
makes this LSP the next hop for the VPLS

set policy-options policy-statement exp-to-fwd term A then accept;
accepts only community = green-community

set policy-options community green-community;
sets the community value on BGP routes for the VPLS

set routing-instances green instance-type vpls;
creates a special forwarding table for VPLS traffic

set routing-instances green interface fe-0/1/0.0;
set routing-instances green route-distinguisher 10.10.10.1;
set routing-instances green vrf-target target:11111:1;

this value must match the community
set routing-instances green protocols vpls site-range 10;

this starts the main VPLS configuration
set routing-instances green protocols vpls site greenPE1 site-identifier 1;

after the protocols, communities, and the rest, this is simple. . .

529VPLS: an MPLS-Based L2VPN

P ROUTER (P9)

The P routers still need the same BGP, MPLS, OSPF, and RSVP to become a

transit router between PE5 and PE1. But at least no major policies need to be

applied or tables created. The configuration shown, on P9, is mirrored by the one

on P7 (which is not shown).

set interfaces so-0/0/1 unit 0 family inet address 10.0.79.2; # interface to P7
set interfaces so-0/0/1 unit 0 family mpls; #needed for the VPN
setinterfacesso-0/0/2unit0familyinetaddress10.0.59.2;#interfacetoPE5
set interfaces so-0/0/1 unit 0 family mpls; #needed for the VPN

set protocols rsvp interface all; # turn on RSVP for signaling
set protocols mpls interface all; # turn on MPLS for packet parsing
set protocols bgp group vpls-pe type internal; # create IBGP group for VPLS
set protocols bgp group vpls-pe local-address 192.168.9.1 # P9 router address
set protocols bgp group vpls-pe family l2vpn unicast # VPLS is for unicast

traffic
set protocols bgp group vpls-pe neighbor 192.168.5.1 # IBGP peer router PE5
set protocols bgp group vpls-pe neighbor 192.168.7.1 # IBGP peer router P7
set protocols bgp group vpls-pe neighbor 192.168.1.1 # IBGP peer router PE1

set protocols ospf traffic-engineering; # needed to divert VPN packets
set protocols ospf area 0.0.0.0 interface all; # run OSPF everywhere

Note that we’ve added the P routers to the IBGP mesh. Technically, the

P routers do not need to be part of the BGP mesh for the VPN, although

the P routers might need to run BGP for other purposes (which is why we are run-

ning it here). All that is needed for the VPN is a full mesh between the PE rou-

ters. This configuration does no harm on this little network, but when PEs have

thousands of VPNs the signaling and information moved by BGP can create

resource issues. In these cases, it is advisable to have a BGP-free core (unless, of

course, BGP is needed on the P routers for other non�VPN-related purposes).

PE1 Router
The VPLS configuration on the PE1 router mirrors the configuration on

the PE5 router. It is shown because of its importance in the VPLS

configuration.

set interfaces ge-0/0/3 vlan-tagging; #interface to CE6
set interfaces ge-0/0/3 encapsulation vlan-vpls;
set interfaces ge-0/0/3 unit 0 encapsulation vlan-vpls;
set interfaces ge-0/0/3 unit 0 vlan-id 600; # must match across the network
setinterfacesso-0/0/2unit0familyinetaddress10.0.17.1;#interfacetoP7
set interfaces so-0/0/2 unit 0 family mpls;

530 CHAPTER 20 MPLS-Based Virtual Private Networks

set routing-options autonomous-system 65527;
set routing-options forwarding-table export exp-to-fwd;

used to distinguish VPLS "routes"

set protocols rsvp interface all; # turn on RSVP

set protocols mpls label-switched-path PE1-to-PE5 to 192.168.5.1;
The LSP to connect VPLS routers thru loopback addresses

set protocols mpls interface all;

set protocols bgp group vpls-pe type internal;
set protocols bgp group vpls-pe local-address 192.168.5.1;
set protocols bgp group vpls-pe family l2vpn unicast;

this VPLS is an L2VPN type and only cares about unicast traffic
set protocols bgp group vpls-pe neighbor 192.168.9.1;

IBGP peer router P9
set protocols bgp group vpls-pe neighbor 192.168.7.1;

IBGP peer router P7
set protocols bgp group vpls-pe neighbor 192.168.5.1;

IBGP peer router PE5
set protocols ospf traffic-engineering;
set protocols ospf area 0.0.0.0;
set protocols ospf interface all; # run OSPF to all routers

set policy-options policy-statement exp-to-fwd term A
from community green-community;
policy to load forwarding table � the community must also match

set policy-options policy-statement exp-to-fwd term A
then install-nexthop lsp PE5-to-PE1;
makes this LSP the next hop for the VPLS

set policy-options policy-statement exp-to-fwd term A then accept;
accepts only community = green-community

set policy-options community green-community;
sets the community value on BGP routes for the VPLS

set routing-instances green instance-type vpls; # creates a special for-
warding table for VPLS traffic
set routing-instances green interface fe-0/1/0.0;
set routing-instances green route-distinguisher 10.10.10.4;
set routing-instances green vrf-target target:11111:1;

this value must match the community
set routing-instances green protocols vpls site-range 10;

this starts the main VPLS configuration
set routing-instances green protocols vpls site greenPE1 site-
identifier 2;

after the protocols, communities, and the rest, this is simple. . .

531VPLS: an MPLS-Based L2VPN

CE6 ROUTER

Finally, the router that connects to LAN2 mirrors the configuration of the

CE0 router. (The LAN2 interface is still fe-1/3/0 and is still using

10.10.12.1/24.)

set interfaces ge-0/0/3 vlan-tagging;
set interfaces ge-0/0/3 unit 0 vlan-id 600; # the VLAN ID must must match

throughout the configurations
set interfaces ge-0/0/3 unit 0 family inet address 10.99.99.2/24;

this address space must match the CE0 link address we use

DOES IT REALLY WORK?
Complex configurations always pose challenges for verification. How do we

know this VPLS is really working? Well, one way is to see whether the PE

routers are learning MAC addresses.

admin@PE5. show system statistics vpls | match mac
6 mac route learning requests
6 mac router learnt
0 mac routers aged
0 mac router moved

There are many other commands that show VPLS information. But the most

important information is from the hosts on LAN1 and LAN2 themselves, which

now think their site routers are connected by a single Ethernet LAN instead of six

routers.

bsdclient# traceroute 10.10.12.77
traceroute to 10.10.12.77 (10.10.12.77), 64 hops max, 44 byte packets

1 10.10.11.1 (10.10.11.1) 0.419 ms 0.256 ms 0.343 ms
2 10.99.99.2 (10.99.99.2) 0.328 ms 0.294 ms 0.346 ms
3 10.10.12.77 (10.10.12.77) 0.331 ms 0.297 ms 0.346 ms

bsdclient#

The bsdclient and all the other hosts on LAN1 now think that the bsdserver
on LAN2 is only three hops away, although we know there are actually six

routers between the source and destination! The only intermediate address that

shows up is the IP address on the link address on CE6, which is where the MPLS

LSP ends.

532 CHAPTER 20 MPLS-Based Virtual Private Networks

QUESTIONS FOR READERS

Figure 20.7 shows some of the concepts discussed in this chapter and can be used

to answer the following questions.

1. How many LSPs are used to connect the two routers at the ends of the VPLS?

2. Where does the LSP connecting the site router CE0 to CE6 begin and end?

3. Why is the configuration on the PE router so complex?

4. What is the function of the VPLS virtual port?

5. What if a third site router using the 10.99.99.2/24 address space joined the

network? Could the VPLS be extended to that site as well? If so, how?

Interface

LAN1
10.10.11.0/24

LAN2
10.10.12.0/24

PE1:
192.168.1.1

VPLS
ge-0/0/3

10.0.17.1/24
so-0/0/2

10.0.59.2/24
so-0/0/0

VPLS
ge-0/0/3

PE5:
192.168.5.1

PE5 PE1
(P9/
P7)CE0 CE6

VPLS Virtual Port

MPLS LSP

ge-0/0/3

 ge-0/0/3
10.99.99.1/24

ge-0/0/3
10.99.99.2/24

so-0/0/0
10.0.59.1/24

so-0/0/2
10.0.17.2/24

vt-0/3/0:32770 bbbb bbbb bbbb

aaaa aaaa aaaa n/a n/a

800000 800002

In Label

VPLS Forwarding Table for PE5

MAC Addr Out Label

vt-0/3/0:32771vt-0/3/0:32770

FIGURE 20.7

Topology for the VPLS configuration.

533Questions for Readers

This page intentionally left blank

CHAPTER

21EVPN and VXLAN

WHAT YOU WILL LEARN

In the last chapter, we looked at how we can use MPLS to create a Layer 2 VPN
(L2VPN) for a Virtual Private LAN Service (VPLS). In this chapter, we’ll extend those
concepts and explore how Ethernet VPNs (EVPNs) and Virtual Extensible LANs
(VXLANs) expand the capabilities of Layer 2 services like a bridge-switch network
over a Layer 3 infrastructure consisting of IP routers.

We’ll start with an overview of the service EVPNs provide, and then compare
Layer 2 VPNs with EVPNs. We’ll examine the multi-protocol EVPN control plane
(MPBGP) and the types of route advertisements used. Then we’ll look at underlays
and overlays and how they can be confusing.

We’ll end with a look at how VXLANs can form the data plane for EVPNs and why
this is attractive. Finally, we’ll look at configuring some of the basics of EVPNs on our
Illustrated Network.

Let’s take a minute and review the differences between an L2VPN and an L3VPN.

In the last chapter, we saw that each type of VPN has different characteristics.

L3VPN: Layer 3 VPNs employ virtual routers with VRFs and potentially

overlapping IP address spaces. The whole looks like a collection of dedicated

routers and private links. L3VPNs are usually built on a foundation of

MPLS LSPs (as the data plane) and BGP (as a control plane for signaling

new LSPs).

L2VPN: Layer 2 VPNs are simpler because there’s no need to maintain sep-

arate routing tables for each VPN. No routing protocol is needed between the

customer edge routers because the site appears to be different ends of a direct

“link.” The LSP tunnels now carry Ethernet frames and the backbone routers

more or less behave like LAN bridges. The L2VPN tables are populated with

long lists of MAC addresses, not IP addresses, and are more like ARP caches

than routing tables.

In the MPLS chapter we configured MPLS LSPs to create a VPLS service, an

L2VPN service that could be used (for example) for data center connectivity. We

found that the customer-facing interfaces didn’t even need IP addresses (but that

made them harder to manage because they could not be pinged or run IP manage-

ment applications). Things were sorted out by VLAN IDs. VLAN IDs are

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00021-7

© 2017 Elsevier Inc. All rights reserved.
535

http://dx.doi.org/10.1016/B978-0-12-811027-0.00021-7

identifiers that we place in Ethernet headers to sort out the VPNs because we can-

not rely on Layer 3 routing tables, virtual or not, to do so.

But is an VPLS the only way to build a Layer 2 VPN? Could there not only

be a different way, but a better way? Let’s look at EVPNs and VXLANs and try

to find out. We’ll start with the basics of EVPN and then add VXLAN later in

the chapter to show how they work together.

EVPN OVERVIEW
At heart, an EVPN is a different way of building VPNs with BGP and MPLS.

EVPNs built this way are defined in RFC 7432. The RFC introduces several

terms we haven’t seen before, or puts an EVPN context on terms we’ve been

using more generally. So in this chapter, when we use these terms, we mean

specifically:

• Broadcast Domain: For Layer 2 networks that are bridged to exchange frames,

the broadcast domain is defined by the Virtual LAN (VLAN). Normally, the

VLAN has a single VLAN ID (VID), but there can be multiple VIDs where

shared VLAN learning (SVL) is used.

• Bridge table: Not for card games, but is an instance of a broadcast domain on

a MAC-level VRF (often just “MAC table” for short).

• Broadcast, Unknown, and Multicast (BUM) traffic: EVPNs must do more than

handle unicast traffic sent from a single course to a single destination. Some

traffic is broadcast (“Everyone pay attention”), unknown (“Never seen this

source or destination before”), or multicast (“If you’re interested, pay attention

to this”). Special rules are needed in EVPNs to handle BUM traffic.

• CE: Customer Edge device. This can be a host, router, or switch, as long as it

contains the features needed.

• EVI: This is an EVPN instance that spans between the Provider Edge (PE)

devices making up the EVPN.

• MAC-VRF: A virtual routing and forwarding (VRF) table containing Media

Access Control (MAC) addresses on a PE (often just called a “MAC table”).

In many cases, these MAC tables coexist with “regular” IP routing tables, and

can be provisioned statically or dynamically.

• Ethernet Segment (ES): When the links to a PE (or multiple PEs) from a

customer site device or network are a set of Ethernet links, these links form

an ES.

• Ethernet Segment Identifier (ESI): This number, which cannot be zero,

identifies an ES.

• Ethernet Tag: The Ethernet tag identifies a broadcast domain (VLAN). An

EVPN consists of one or more VLANs.

• Link Aggregation Control Protocol (LACP): The EVPN protocol that allows

multiple links to act as one.

536 CHAPTER 21 EVPN and VXLAN

• Link Aggregation Group (LAG): The result of binding multiple links together.

• PE: Provider Edge device, usually a router.

• Single-Active Mode: An EVPN can have multiple links from CE to PE. When

only a single PE among them is allowed to forward traffic to and form that ES

for a given VLAN, the ES is operating in Single Active Mode (or, more

accurately, Single-Active Redundancy Mode).

• All-Active Mode: When all PEs attached to an ES are allowed to forward

know unicast traffic to and from that ES for a given VLAN, the ES is

operating in All-Active Mode (All-Active Redundancy Mode).

Most of these concepts are shown in Figure 21.1. It’s hard to come up with a

generic picture of EVPNs because they are so versatile. It’s not unusual for peo-

ple with some EVPN experience to come across an application like EVPNs used

in a CLOS network data center with spine switches as PE devices and the role of

CE device played by leaf switches, or even TOR switches. The diagram of this

data center network looks nothing like any of the figures shown in this chapter.

When that happens, you take a deep breath, back up a step, and work it through.

It’s still EVPN, no matter how strange it looks, and still has to have an EVPN

control plane and data plane to get all the work done.

Although not shown in the figure, the PE devices in an EVPN usually imple-

ment a virtual switch instance that drives the customer-facing port and link to the

CE device. This means that there is a lot of flexibility in type of device that can

act as a CE in an EVPN (note we said above that the CE can be a “host, router,

or switch.” We’ll see later that the use of VXLAN technology even allows EVPN

tunnels to extend right into the virtual machine (VM) running on a server in a

large data center. For now, it is enough to note that EVPNs support a variety of

CE arrangements.

Now, consider the basic structure of an EVPN using BGP and based on an

MPLS core network using LSPs. These are called “BGP MPLS-based EVPNs.”

They consist of CE devices (a router or switch or host) connected to PE devices at

the edge of an MPLS core network. The PEs provide virtual Layer 2 bridged connec-

tivity between the CEs. The same provider network can support multiple EVPNs.

The PEs in this case are connected by MPLS LSPs providing typical MPLS

features such as fast reroute. However, the PEs can also be connected by a “plain”

IP infrastructure. Without MPLS LSPs to ride, some type of tunneling protocol

such as IP Generic Routing Encapsulation (GRE) or other IP tunneling method

can be used between the PEs.

Whatever tunneling method is used, the challenge of EVPNs is how to support

MAC learning between PEs. Recall that MAC addresses do not have the same

“subnet” structure as IP addresses, nor are they usually configurable, so MAC

addresses can literally appear anywhere on the network, move from place to place

easily, and thus form challenges to the MAC tables inside the PEs.

In an EVPN, MAC learning between the PEs does not use the data plane as in

traditional bridging or in VPLS. Instead, EVPNs use the control plane to learn the

537EVPN Overview

EVI 1 EVI 1

EVI 1

EVI 1

EVI 1

EVI 1

EVPN Instance (EVI)
Identifies an EVPN

Provider Edge (PE)
Core Interface

LAG
Distributes traffic

All-Active Mode
Multi-homed to two
or more active PEs

Single-Active Mode
Multi-homed to one
active PE

Data Plane Encapsulation
MPLS or VXLAN on Core

MAC/IP
MAC/IP

Customer Edge (CE)
Router/Switch or Host

Ethernet Tag
Defines Broadcast Domain
(VLAN) for the EVPN Data Plane Learning

Provisioned (Static) or Dynamic

Control Plane Learning
PEs advertise MAC addresses
And Next Hops from CEs
Using MPBGP

Designated Forwarder (DF)
Handles BUM Issues

Broadcast Unknown
Multicast (BUM)
Special handling traffic

FIGURE 21.1

EVPN Concepts Illustrated.

location of the MAC addresses in the VLAN. The advantage of control-plane

learning is that policies can be used to restrict and shape the MAC learning

process.

Fortunately, the control plane used in EVPNs is something used already in IP

VPNs: Multi-protocol BGP (BGP-MP). In an EVPN, the PEs advertise the MAC

addresses learned from the CEs connected to them, along with the MPLS label, to

the other PEs that are part of their control pane using BGP-MP. This method can

be used to load balance traffic between PE and CE, as well as load balance traffic

across the MPLS core by using multiple LSPs between the same pair of PEs. This

process also improves convergence times in some failure scenarios.

BGP adds five different Route Types for EVPNs. These are usually shortened

to something like “EVPN Type 5” in documentation, making it hard to figure out

that BGP router types are meant. The specific route type used depends on the

details of the EVPN configuration. The five types are:

1. Ethernet Auto-Discovery (AD) Route (Route Type 1): These types are

advertised for each EVI and ESI configured on an EVPN. (If a CE device is

only attached to one PE, the ESI values is set to 0.)

2. MAC/IP Advertisement Route (Route Type 2): These advertisements let the

core network learn about the MAC addresses at each end system reachable.

3. Inclusive Multicast Ethernet Tag Route (Route Type 3): This advertisement

sets the path for BUM traffic from one PE to another. There is a path for each

ESI and EVI.

4. Ethernet Segment Route (Route Type 4): When ESI is used to let a CE device

send to two or more PEs, the PE devices that are attached to the same

Ethernet Segment find each other through this route type.

5. (Optional) IP Prefix Route (Route Type 5): This allows for inter-subnet

forwarding when the PE devices are not on the same IP subnet.

In contrast to the route types and MAC learning in the core network, the

learning between CE and PE can be done in whatever way that makes the most

sense for the type of CE. So CE-PE MAC learning can be done with “regular”

data-plane learning, IEEE 802.1x, the Link Layer Discovery Protocol (LLDP),

IEEE 802.1aq, ARP, or other methods. It is up to the local administrator to

decide, based on PE or CE capabilities.

Another local decision is whether the MAC forwarding table on the PE con-

tains all MAC destination address known to the control plane, or whether the PE

implements a caching scheme. In many cases, this depends on PE capabilities. In

either case, the EVPN instance requires a route distinguisher (RD) that is unique

for each MAC-VRF table and one or more globally unique route targets (RTs).

In an EVPN, a CE attaches to the MAC table on a PE that can be configured

with one or more Ethernet tags (VLAN IDs). These tags can be unique for all

VLANs across the EVPN instances, but this is not a requirement. In this scenario,

called the “unique VLAN EVPN,” all points of attachment for a given EVPN

instance use the same VLAN ID, and no other EVPN instance is allowed to use

539EVPN Overview

this VLAN ID. This sounds complicated, but it’s not: it means that all members

of VLAN 1001 (for example) always use VLAN 1001 no matter where on the

network they are, and no other VLAN is allowed to use that number.

L2VPNs AND EVPN COMPARED

Why do we need another type of VPN? We already have L2VPNs and VPLS.

What has happened that makes EVPNs (and, as we’ll see a bit later, VXLANs)

attractive technologies to implement?

One networking need that EVPNs fulfills is for better methods of data center

interconnect (DCI). Data centers have been around for a long time, of course but,

as we have seen in an earlier chapter, only recently have they become collections

of not merely hundreds, but hundreds of thousands of servers. The movement to

cloud computing and network functions virtualization (NFV) and the widespread

use of virtual machines (VMs) required DCI to scale far beyond the capabilities

of simple leased point-to-point links from place to place.

EVPN also allows DCI solutions to provision services more efficiently, oper-

ates like a Layer 3 VPN with regard to scalability, and can deliver Layer 2 and

Layer 3 services over the same interface. L3VPNs and VPLS cannot do every-

thing that an EVPN can.

What are the main differences between EVPN and an L2VPN such as VPLS

when connecting data centers? Because VPLS is based on MPLS LSP and uses

MAC-bridging or learning in the data plane, does EVPN also need MPLS?

Consider the following aspects of EVPN compared to the VPLS L2VPN service:

One important point should be mentioned right away. MAC learning always

creates scalability issues, so EVPNs can use “plain” or Provider Backbone

EVPNs (PBB EVPNs) that differ in the number of MAC address that need to be

stored on the PEs in the core. Very large networks using MPLS often use PBB

VPNs with their PEs. In a PBB EVPN, the smaller amount of backbone MACs

(B-MACs) are discovered through BGP, the EVPN control plane. The many cus-

tomer MACs (C-MACs) are learned through MAC data forwarding, as in a typi-

cal bridged network. In the PBB EVPN scheme, MAC scaling is an issue for

BGP route reflectors, but they only need to retain B-MACs. On the PEs, whether

using a PBB EVPN or a “plain” EVPN, there are the same number of C-MACs.

There is a difference in the way the CE devices learn MAC addresses as well.

A “plain” EVPN learns MAC addresses from the forwarding plane on the local

CEs and from the BGP control plane from remote CEs. In a PBB EVPN, all CEs,

local or remote, learn these MAC addresses from the forwarding plane.

Next, in contrast to VPLS, EVPNs offer tight L2-L3 coupling. That is, an

EVPN has “hooks” into Layer 3 IP routing information, and this can be useful to

the EVPN. For example, as we’ll see later in this chapter, an EVPN can use

VXLAN encapsulation from Layer 2 as the data plane for a Layer 3 VPN. So you

can create a “Layer 2 overlay” on a “Layer 3 underlay.”

Also, EVPN offers multiple encapsulations. Over an MPLS core network,

EVPN can use the same encapsulation as VPLS (Ethernet over MPLS). In this

540 CHAPTER 21 EVPN and VXLAN

case, there are typically two labels: an inner MPLS label (or other identifier) used

for the VPN service and an outer MPLS label used for transport (except on the

penultimate hop router, which usually strips this outer header).

Over a core IP network without MPLS, like a data center IP fabric, there can

still be an MPLS label (or other type of identifier if MPLS is never to be used).

This MPLS label or other value is encapsulated using GRE or UDP into an IP

packet that is routed from one PE to the other. This is called “MPLSoGRE” or

“MPLSoUDP.” There is even something know as Network Virtualization Over

L3 (NVO3) for data center fabric encapsulations. All these encapsulations are var-

iations on possible EVPN data planes.

Finally, EVPN offers Layer 2 loop detection (essential for bridging), mechan-

isms to avoid traffic “tromboning” (sending frames or packets over a link only to

have them immediately return over the same link), and all-active multi-homing.

The rest of this chapter will take a look at each key aspect of EVPNs in detail.

We’ll look at services, then how the EVPN control plane operates, using Lauer 2

and Layer 3 in EVPNs, and then EVPN data plane possibilities., including

VXLAN. Keep in mind that this chapter is in no way a substitute for a close read-

ing of the standards. When more information on a particular feature is needed,

please refer to the EVPN RFCs and Internet drafts.

Finally, we’ll look at a simple EVPN configuration for the Illustrated Network.

EVPN SERVICES OVERVIEW

EVPNs can connect VLANs in one of three basic ways to provide VPN services.

They differ in the number of broadcast domains, mapping between VLAN ID and

EVI, and other ways. They mainly vary in the way that traffic is bundled (or not)

as it makes its way across the core network.

The characteristics of the three EVPN services are listed and compared in

Table 21.1.

Table 21.1 EVPN Services Compared

Service
Interface VLAN-Based VLAN Bundle VLAN-Aware Bundle

Broadcast
Domains

VLAN is single
domain

VLANs form multiple
domains

VLANs form multiple
domains

VLAN ID-EVI
Mapping

1:1 N:1 (and 1:N) N:1 (and 1:N)

Bridge Domains One for each EVI One for each EVI One domain for each
VLAN

VLAN
Translation

Allowed Not allowed Allowed

Ethernet Tag in
route

Set to 0 Set to 0 Set by configuration

541EVPN Overview

The three service methods are compared in Figure 21.2 with respect to VLAN

ID and EVI mapping, and number of bridge domains.

EVPN CONTROL PLANE OPERATION

Let’s take a closer look at how the EVPN’s control plane delivers many of the

features of operation we listed above. For example, exactly how does an EVPN

allow all-active multi-homing and at the same time prevent traffic from looping

and tromboning all over the place? This section is not exhaustive, but it is repre-

sentative of how an EVPN control plane works.

All-Active Multi-homing and the DF
As we’ve seen before, Layer 2 devices handle BUM traffic by flooding the frames

out on all links until the device has figured out which ports have destinations that

reply. The problem is that when CEs are multi-homed and all CEs are configured

for “all active” operation, BUM traffic can loop around and generate duplicates

on the network. This issue is shown on the left side of Figure 21.3.

The solution to this core-to-CE duplicate BUM flooding problem is with the

PEs. First, the PEs connected to multi-homed CEs find each other through auto-

discovery routes (remember, this is control plane operation). When multiple PEs

find themselves connected to the same CE, the PEs elect one of their number as a

VID 11 EVI 1 VID 12

VID 21 EVI 2 VID 22

VID 31 EVI 3 VID 32

VID 41 EVI 4 VID 42

1:1 1:1

(a) 1:1 mapping
between
VLAN ID and EVI

VID 11

EVI 1
VID 21

VID 31

VID 41

N:1 1:N

(b) N:1 mapping
between
VLAN ID and EVI

VID 11

VID 21

VID 31

VID 41

N:1 1:N
(c) N:1 mapping
between
VLAN ID and EVI
and multiple
bridge domains

Bridge Domain 1

Broadcast Domain 2
Bridge Domain 3

Bridge Domain 4

EVI 1

VID 12

VID 22

VID 32

VID 42

VID 12

VID 22

VID 32

VID 42

FIGURE 21.2

EVPN Services.

542 CHAPTER 21 EVPN and VXLAN

designated forwarder (DF) for that CE. Only the DF floods BUM traffic from the

core onto the Ethernet Segment (ES). The non-DF PE devices block BUM flood-

ing to the CE, preventing duplicates and loops. EVPN standards describe flexible

DF election methods and functionality. For example, all ESIs can have the same

DF, or each ESI can have a different DF, allowing the PEs to share the load.

Unicast traffic still uses all of the active paths (as all-active implies).

The role of DF is shown on the right side of Figure 21.3.

There is another feature of all-active multi-homing that is good to have in

EVPNs. The DF handles the issue of BUM traffic from the core to the CE. Now

the problem is with BUM traffic from the CE to the core. Without modification,

BUM traffic from an ESI is echoed and replicated back to the same ESI to the

all-active CE. This issue is shown ion the left side of Figure 21.4.

The solution is to have the PE advertise a split horizon label for each all-

active Ethernet Segment. When an ingress PE floods BUM traffic, the PE uses

the split horizon label to identify the source Ethernet Segment. Egress PEs use

this label for split horizon filtering and the egress PEs drop all packets with that

label that are heading for that Ethernet Segment.

BUM from Core to CE

Prevent duplicate BUM
flooding to all-active
CEs

DF device

Blocking BUM
flooding

FIGURE 21.3

All-Active Multi-homing and the DF.

BUM from CE to CORE

Prevent echoed BUM
flooding to all-active
CEs DF device

Blocking BUM
echoing

FIGURE 21.4

All-Active Multi-homing and Split Horizon.

543EVPN Overview

Toward the core, away from the PE devices, the split horizon is “implicit”

because the PEs know not to flood received BUM traffic back onto the core. This

solution is shown on the right side of Figure 21.4.

ARP and ND Proxy
In large networks, the Address Resolution Protocol (ARP) and Neighbor

Discovery (ND) can be scalability and security issues. They can be spoofed by

untrusted sources and can generate unknown amounts of unicast traffic, especially

when there are large data centers involved. Also, in orchestrated of provisioned

networks all MACs are known, so ARP and ND is not really needed in many

cases.

EVPNs can suppress or at least reduce unknown unicast flooding because all

active MAC and IP addresses are advertised by the PE devices. The PEs proxy

ARPs and ND based on the MAC table for the CEs. Snooping for MAC addresses

optimizes and reduces the need for unknown unicast flooding. Of course, provi-

sioning the MAC addresses eliminates this unknown unicast flooding entirely, but

is not always possible.

The role of the PE device as an ARP and ND proxy is shown in Figure 21.5.

Aliasing
Aliasing is the process of letting one network device perform a task that would

ordinarily be the responsibility of another. Aliasing is the way that EVPNs pro-

vide load-balancing to CEs that are in all-active mode, even when the MAC

address is learned by only one of the multiple PEs. The PEs advertise the ESI in

MAC routes for all-active mode. Moreover, remote PE devices can load-balance

traffic across all the PEs advertising the same ESI. The basic idea of MAC learn-

ing aliasing is shown in Figure 21.6.

Aliasing is also used to establish a backup path in single-active mode over the

standby link. The whole point of aliasing is that the PEs always know which

MAC addresses are reached over each Ethernet Segment.

MAC Provisioning
or Snooping

ARP/ND Proxy

MAC/IP

FIGURE 21.5

ARP and ND Proxy in PEs.

544 CHAPTER 21 EVPN and VXLAN

MAC Mobility
At Layer 3, IP addresses are usually configured or assigned automatically. It’s not

even unusual for users not to know the IP addresses they use. After all, http://

www.juniper.net is enough to get where you want to go. If the server hosting the

web site moves to a different subnet and requires a different IP address. . .well,
that’s what URLs are for in the first place. So IP address “mobility” is rarely as

issue at Layer 3.

But at Layer 2, MAC addresses (or “hardware addresses”) usually move with

the device. Moving a web server, a non-issue using IP addresses at Layer 3,

becomes a real issue using MAC addresses at Layer 2. Specifically, with an

EVPN, the MAC addresses can move from one ESI to another.

If local learning is used in the data plane of the EVPN, the PE device

might not know that a MAC address has moved to a new location and there-

fore won’t send a “MAC withdraw” message for that address. But, of course,

the new PE sends a new MAC route onto the network when it detects the

new MAC address locally. As a result, there are now two MAC routes for

the same MAC address floating around: the incorrect old one and the correct

new one.

What can be done for MAC mobility in EVPNs? Each MAC address is

advertised with a MAC mobility sequence number in an extended community

along with the MAC route (always remember we are talking about the EVPN

control plane with BGP in this section). Each PE device selects the MAC route

with the highest sequence number. This process also triggers a “MAC with-

draw” indication from the PE advertising the MAC route with the lower

sequence number.

The general idea behind MAC mobility is shown in Figure 21.7. It

sounds complex, but sequencing methods are used successfully in many

protocols.

MAC/IP

MAC/IP
ESI

MAC Not
Learned

MAC Learned

Devices Know MAC
Is Reachable Through
Ethernet Segment

FIGURE 21.6

PE MAC Learning Aliasing.

545EVPN Overview

http://www.juniper.net
http://www.juniper.net

Default Gateway Forwarding
As already mentioned, EVPNs tightly couple L2 and L3 capabilities. In some

cases, different IP address subnets are used on different parts of the EVPN net-

work. In this case, IP routing is required to move packets between these IP sub-

nets. This is no problem for EVPN because no separate L3VPN functionality is

needed: EVPN includes a default gateway feature.

The PE devices, as you might expect, play the role of default gateway. One or

more of the PEs is configured to become the default gateway. As usual, the

default gateway handles traffic to the default route 0.0.0.0/0 and the default ::

MAC route. These routes are advertised with the default gateway extended com-

munity in the control plane.

Local PEs reply to ARP and ND requests to find this default gateway. This

feature enables efficient L3 routing at the local PE device. It also avoids trombon-

ing the traffic across remote PEs if all the default gateways use the same MAC

address.

The idea behind the default gateway in EVPN is shown in Figure 21.8.

GW

GW GW

GW

FIGURE 21.8

Default Gateway for Inter-Subnet Forwarding.

MAC/IP
Segment #

?

FIGURE 21.7

MAC Mobility in EVPNs.

546 CHAPTER 21 EVPN and VXLAN

MAC Mass Withdrawal
All networks, Layer 2 or Layer 3, suffer from a potential inability to deliver traf-

fic after the bulk of the work has been done and the frame or packets has made

its way across a large core network only to find the last step of the journey, the

local link, is unavailable. This often happens due to a link failure between the PE

and CE device in VPNs. If only the source on the other side of the network could

have known of this failure sooner rather than later!

In EVPN, the MAC mass withdrawal feature provides rapid convergence

when a link failure affects many MAC addresses (and it usually does). Without a

mass withdrawal feature, each MAC address that is not reachable could poten-

tially generate a separate message across the network, adding stress to a core net-

work that might be congested already.

But with EVPN mass withdrawal, the affected PEs advertise two routes. The

first is the MAC/IP address and its associated ESI, and the second is for connec-

tivity to ESIs. So if a failure affects an ESI, the PE device simply withdraws the

route for that ESI.

The idea behind EVPN MAC mass withdrawal is shown in Figure 21.9.

The remote PEs remove the PE involved in the failure from the path for all

MAC addresses associated with the ESI. This procedure acts as a MAC mass

withdrawal message and speeds convergence on a topology that excludes the

failed link. There is no longer any need to wait for individual MAC addresses to

be withdrawn one by one.

LAYER 2 AND LAYER 3 AND EVPN

Before we move on and consider the characteristics of the EVPN data plane, this

is a good place to explore some of the implications of the tight coupling between

Layer 2 (Ethernet-type frames) and Layer 3 (IP packets) that is included in the

EVPN architecture.

What this mainly means is that the service provided by an EVPN can be based

on Layer 3 routers or Layer 2 switches and bridges. Both layers can lay a role in

Withdraw
ESI

Failed Link

FIGURE 21.9

MAC Mass Withdrawal.

547EVPN Overview

two major uses of EVPN: as a DCI service or as a way to overlay Layer 2 VPN

services over a Layer 3 IP network.

Let’s see how each of these services can work with EVPN.

DCI
When used for DCI, an EVPN can provide a scalable Layer or Layer 3 DCI ser-

vice for virtualized data centers (that is, data centers built as cloud computing cen-

ters with multiple VMs—more on those in a later chapter). The general idea of

using an EVPN for DCI is shown in Figure 21.10. Note that whether it is a Layer

3 IP address or Layer 2 MAC address, both are known to all network nodes.

Because the “machines” in modern data centers are virtual and not tied to a

certain physical hardware server, VMs can move around a lot. This can be chal-

lenge for some VPNs, but the MAC mobility feature of EVPN makes this process

much simpler. MAC mobility allows faster moves between data centers, while

still keeping the forwarding database (FDB) that stores the relationships between

MAC addresses and ports correct on all nodes without dealing with BUM traffic

for MAC learning.

As for Layer 3, the default IP gateway capability on each PE device optimizes

routing when required between data centers. IN fact, EVPNs integrate Layer 2

switching and Layer 3 routing in a single service, a neat trick to pull off.

Overlay VPNs over IP
EVPN allows a service provider to overlay Layer 2 VPN services on top of a

Layer 3 IP “underlay” network. This sounds very odd at first, but there are several

ways to accomplish this in EVPNs. The service provider can maintain a firm cus-

tomer demarcation at the PE device (technically, the virtual switch behind the

port that has one end of the link to the CE device) and still offer Layer 2 or

Layer 3 VPN services. This is shown in Figure 21.11.

L3 IP Address:
10.0.0.2/24
L2 MAC Address:
00:00:5e:00:53:01

L3 IP Address:
10.0.0.2/24
L2 MAC Address:
00:00:5e:00:53:01

Known Through
EVPN Across Network

IP Network

FIGURE 21.10

EVPN for Layer 2 or Layer 3 DCI.

548 CHAPTER 21 EVPN and VXLAN

Now the EVPN can provide both Layer 2 and Layer 3 services, all with a sin-

gle interface and single VLAN to the customer site. There is only one VPN tech-

nology for both layer services. There is no need for multiple VPN protocols.

Moreover, the EVPN service can be provided over almost any type of core

network. If the service provider has an MPLS core, that can be used with EVPN.

And if the service provider only has a pure IP network without MPLS, EVPN can

use that too.

However, to look more closely at EVPN and overlay VPN services, we have

to introduce a key technology we have not talked about yet: VXLAN.

VXLAN AND EVPN DATA PLANES

If we managed to get this far into a discussion of EVPNs without mentioning

VXLANs, how important can VXLANs be to EVPNs? But don’t be misled:

we’ve mainly talked about services and the control plane. The attraction of

VXLAN is as a data plane for EVPNs. It’s all well and good if the service pro-

vider already has a core MPLS network to support data plane EVPN services, but

what if it doesn’t? We’ve already seen that MPLS is not a pre-requisite for

EVPNs. If the core network does not have and does not want MPLS in the core,

VXLAN is a good alternative way to support your EVPNs.

Of course, if the core network has MPLS, it only makes sense to use it. In fact,

as we’ll see here, there are two possibilities for MPLS-based data planes: “native”

MPLS and PBB-EVPN. Let’s look at all three here, starting with VXLAN.

VXLAN EVPN Data Plane
What does VXLAN add to the basic EVPN architecture? Let’s start with what

VXLAN adds to basic IEEE 8021Q VLANs, the fields added to ordinary Ethernet

frames to distinguish frames belong to different virtual networks, either VLANs

or VPNs.

Service provider’s
IP or IP/MPLS
core network

PE

Customer
demarcation

Customer
demarcation

PE

FIGURE 21.11

Layer 2 and Layer 3 Overlay Services.

549EVPN Overview

The biggest difference in that VXLAN allows more than sixteen million

virtual networks, limited by multicast group support in network devices,

instead of the 4000 or so in VLANs, which are also limited be spanning tree

scaling considerations. There are also some differences in how the ARP caches

and MAC table sizes are determined and counted (per VM or per VXLAN

identifier). But for our purposes the scaling supplied by VXLAN over IEEE

801.2Q VLANs is the main factor that makes VXLANs so attractive in large

networks.

Now we can take a look at Figure 21.12, which shows how VXLAN works

with an EVPN.

Surely there must be something more to VXLAN that an alternative to MPLS

as the core network connecting VPNs. Well, yes and no. If there is no MPLS

present (or wanted) in the core, use VXLAN. But the really nice thing about using

VXLAN as an EVPN data plane is that VXLAN allows the EVPN to do things it

could not do before. For example, when data centers form the endpoints of the

EVPNs, VXLAN tunnels can extend not only to the server, but right to the hyper-

visor hosting the VM running the application of interest.

VXLAN can also be used as an overlay in any IP core network to provide

Ethernet services. This is the whole “layer 2 overlay on a Layer 3 underlay” con-

cept. And the EVPN still retains the ability to deliver Layer 3 service when neces-

sary. It should also be noted that VXLAN is a good alternative to MPLSoGRE.

It is always good to remember that EVPN supports even other core network

encapsulations like MPLSoUDP or Network Virtualization Over L3 (NVO3: used

for data center fabric encapsulations). But VXLAN remains a very popular EVPN

data plane and may be the most popular.

When VXLAN provides the Layer 2 overlay on top of an IP network, IP

reachability is required among the PE devices. The BGP control plane is still

used for MAC route advertisements. VXLAN can encapsulate Ethernet inside

either in IPv4 or IPv6 packets. VXLAN is UDP based, and the source port num-

ber used is a hash value of the MAC or IP address which provides a load-

balancing feature by spreading the traffic across several ports. An 8-byte VXLAN

header, detailed below, provides a VXLAN network identifier (24 bits) and flags.

MAC/IP VXLAN
data plane

PE
BGP

control plane

FIGURE 21.12

EVPN with a VXLAN Data Plane.

550 CHAPTER 21 EVPN and VXLAN

The total encapsulation to provide Layer 2 over Layer is about 50 bytes, which is

fairly small.

VXLAN is a routable data plane, naturally, and so the underlay network could

be almost any network type, and this allows use of pre-existing resiliency and

load-balancing mechanisms. So VXLAN can take advantage of equal-cost multi-

path (ECMP), the features of various IGPs, and IP Fast Reroute (IPFRR).

Another nice feature of VXLANs is that VXLAN tunnel endpoints do not

have to be housed in PE or CE devices. The tunnel endpoints can exist on data

center devices of even servers. VXLAN tunnels can be start on a CE device and

end directly at the hypervisor of a VM. All of these possibilities are illustrated in

Figure 21.13.

Although many data plane possibilities are supported in VXLANs, the

simplest VXLAN data plane uses UDP to encapsulate the VXLAN header and

Layer 2 frame for transport across the core network from one PE device to

another. Let’s look at the VXLAN headers and see what the whole looks like.

The complete set of defined nested headers are shown in Figure 21.14. The

header lengths are shown in bytes above the columns, and in bits down the left

side of the column.

The MAC frame with frame check sequence (FCS) shown in the figure flows

on what is known as a VXLAN segment. Each VXLAN segment is functional the

same as a traditional Layer 2 Ethernet domain. Working from right to left (or

from inner to outer), the original Layer 2 frame receives an 8-byte VXLAN

header. The first byte has a 1 bit in the fifth bit position while all other bits are

reserved and should be set to 0. The next 24 bits (3 bytes) are also reserved,

followed by the 24 bit (3 byte) VXLAN network identifier (VNI or VNID) for

IP Network
(IPFRR, ECMP, IGP-only)

(VM)

IP Network

IP Network

Routable
IP

Ethernet
In IP

Tunnels
Over IP

FIGURE 21.13

The Flexible VXLAN Data Plane.

551EVPN Overview

F

C

S

Outer MAC
Header

Outer IP
header

Outer UDP
header

VXLAN
header Original L2 Frame

Dest addr

Src addr

VLAN Type
0x8100

VLAN ID Tag

Ether Type
0x0800

48

48

16

16

16

14 Bytes
(4 bytes
optional)

IP Header
data

Header
checksum

Protocol
0x011

Source IP

72

32

8

16

20 Bytes

Dest IP32

UDP src port

UDP length

VXLAN
RRRR1RRR

Checksum

16

16

8

16

8 Bytes

VXLAN port16
Reserved24

VNID24

Reserved8

8 Bytes

FIGURE 21.14

Nested VXLAN headers.

the VXLAN segment. This ID provides a unique identifier for up to 16 million

VXLAN segments in a VXLAN domain. The last 8 bits are also reserved and

should be 0.

The frame with the VXLAN header next receives an outer UDP header

(“outer” to the VXLAN header, not necessarily saying there is an “inner” UDP

header). The 16-bit UDP source port value, as noted above, is derived from a

hash of the MAC or IP address of the originator. The 16-bit destination port is the

port used to receive VXLAN packets, usually well-known UDP port 4789, but

other values can be used as long as they are understood inside the network. The

usual UDP length and checksum fields complete this header.

The IP header (only IPv4 is shown) added to the UDP datagram is also a stan-

dard IP header. For IPv4, the initial fields are summarized in the figure as a group

of 72 bits (9 bytes). These fields include things like Type and Time to Live

(TTL). The 8-bit protocol field is set to 0x11 (UDP), as expected. After the

2-byte header checksum, the 4-byte source and destination IP addresses provide a

way to send the VXLAN data unit over an IPv4 core network. The source IP

address is the address associated with the source Virtual Tunnel End Point

(VTEP) of the inner VXLAN frame source. The destination IP address is the

address associated with the destination VTEP that corresponds to the original

Layer 2 frame destination.

Finally, an outer MAC header is added. The destination MAC address is the

MAC address of the Layer 3 next-hop IP address needed to reach the destination

VTEP. (In other words, as in normal routed traffic, the MAC address associated

with the local router port is used, while the destination IP address might be across

the network.) The source MAC address is associated with the VTEP of the inner

frame source address.

The next two fields (4 bytes) are optional and indicate that IEEE 802.1q

VLANs are also used on the transport network. The VLAN Type field is set to

0x8100 and this is followed by a 2-byte VLAN ID tag to identify the VLAN

to which the device belongs. Finally, the 2-byte Ethertype field is set to 0x0800.

Let’s end this section on VXLAN and EVPN data planes with a look at

how overlay VPNs over IP networks can be implemented with the VXLAN

data plane. Remember, EVPNs and VXLAN work with any IP core network

to provide flexible Layer 2 and Layer 3 VPN services. All this requires is IP

connectivity in the core, not MPLS or any other specially configured IP fea-

ture by the service provider (although MPLS is common and often desirable).

The service provider network is essentially transparent to the EVPN and, like

wise, the EVPN overlay is transparent to the service providers. As mentioned

several times, the routing and MAC/IP address advertisements within the

EVPN is handled by iBGP running between the PEs. This is shown in

Figure 21.15.

As noted in the figure, there can be multiple service providers, because VPN

routing between the endpoints can be controlled with BGP and routing policies

agreed upon by the service providers.

553EVPN Overview

VXLAN and Data Units
Let’s try to put all this together: the use of the VXLAN data plane in an EVPN

for DCI, showing how all the headers and data units come together to transport a

VLAN Ethernet frame from one data center to another across the country or

around the world and make it look like both data centers are part of the same

Layer 2 LAN. Here’s how it works, as shown in Figure 21.16. In the figure. All

MAC addresses start with 00:00:53 and this prefix is not shown to cut down on

the complexity.

The figure looks very complex, but it really isn’t. It’s just encapsulation, after

all, although the goal is to send a frame inside and packet inside a frame (all Layer

3 packets are sent across links inside Layer 2 protocol data units (PDUs), or frames.

There are six network devices in the figure that are of concern—the source

host,. TOR1 (the switch that acts as the VTEP in this case), PE1 (a router), PE2,

TOR 2 (the other VTEP), and the destination host. Their MAC and IP addresses

are shown at the top of the figure, with the source and destination addresses

shaded for emphasis. Of course, although they are far apart, they source and desti-

nation hosts share an IP subnet (in this case, 192.168.0.0/24) and their MAC

addresses are known across the network, thanks to EVPN.

The three devices on the left of the figure put the headers on and the three on

the right take the headers off. However, this does mean they are identical, especially

in terms of source and destination addresses. In all six cases, the important fields of

the nested headers shown in Figure 21.14 are shown below the network device.

On the sending side of the VXLAN unicast packet path, this is what happens:

• A source host sends an IP packet to the other host, the destination. As

expected, the source IP packet and Ethernet frame have the endpoint

addresses: the source is 192.168.0.1 and the destination is 192.168.0.2.

Service
provider

A

PE

BGP
control plane

VXLAN data plane

PE
Service

provider B

Service
provider C

CE

CEs

FIGURE 21.15

Overlay VPNs and IP Networks.

554 CHAPTER 21 EVPN and VXLAN

EVPN

Destination
IP: 192.168.0.2
MAC: 00:53:0b

VXLAN VXLAN

PE1 PE2

TOR
Switch A
(VTEP)

TOR
Switch B
(VTEP)

(All MAC addresses begin with 00:00:53)

Source
IP: 192.168.0.1
MAC: 00:53:0a

D-MAC: 00:53:0b
S-MAC: 00:53:0a

Dest IP: 192.168.0.2
Src IP: 192.168.0.1

VXLAN VNID: 1001

Dest port: 4789
Src port:(MAC hash)

D-MAC: 00:53:11
S-MAC: 00:53:aa

Dest IP: 203.0.113.2
Src IP: 172.16.0.1

TOR 1
IP: 172.16.0.1
MAC: 00:53:aa

PE1
IP: 10.0.0.1

MAC: 00:53:11

PE2
IP: 10.0.0.2

MAC: 00:53:22

TOR 2
IP: 203.0.113.2
MAC: 00:53:bb

VLAN
10

VLAN
10

D-MAC: 00:53:bb
S-MAC: 00:53:22

D-MAC: 00:53:0b
S-MAC: 00:53:0a

Dest IP: 192.168.0.2
Src IP: 192.168.0.1

VXLAN VNID: 1001

D-MAC: 00:53:0b
S-MAC: 00:53:0a

Dest IP: 192.168.0.2
Src IP: 192.168.0.1

D-MAC: 00:53:0b
S-MAC: 00:53:0a

Dest IP: 192.168.0.2
Src IP: 192.168.0.1

D-MAC: 00:53:0b
S-MAC: 00:53:0a

Dest IP: 192.168.0.2
Src IP: 192.168.0.1

VXLAN VNID: 1001

D-MAC: 00:53:0b
S-MAC: 00:53:0a

Dest IP: 192.168.0.2
Src IP: 192.168.0.1

VXLAN VNID: 1001

Dest port: 4789
Src port: (MAC hash)

Dest IP: 203.0.113.2
Src IP: 172.16.0.1

FIGURE 21.16

EVPN and VXLAN Data Units.

The endpoints can even be part of a VLAN—in this case, VLAN 10. The

packet is placed inside a frame with the source and destination MAC

addresses shown.

• The TOR switch (TOR1), the VTEP device, first adds a VXLAN VNID to the

frame. In this case, the VNID is 1001. The configuration on TOR 1 basically

says “If anything comes in for VLAN 10, look up the associated VXLAN

VNID, add it on, and then add UDP, IP, and another MAC header.” The UDP

source port is a hash on the original source MAC address and the destination

UDP port in this case is the well-known VXLAN port 4789 (this can be

changed by configuration). The source IP address on the packet is TOR 1’s IP

address (172.16.0.1) and the destination IP address is that of TOR 2

(203.0.113.2). Note that there is no requirement for TOR 1 and TOR 2 to be

part of the same IP subnet, and they can even be attached to different ISPS.

The source MAC on the frame sent to PE1 (the next hop) is that of TOR 1’s

port (00:00:53:00:53:aa), but the destination MAC is that of the port of PE1

(00:00:53:00:53:11). That, as we have seen, is how routing works.

• PE1 then routes the packet through the core network (with or without MPLS)

to TOR 2 (203.0.113.2), adjusting the frame MAC addresses as needed, but

leaving the IP packet and UDP datagram intact.

• TOR2, the other VTEP, processes the outer frame and packet and UDP

headers (it knows this is VXLAN because of the UDP destination port 4789).

It then looks up VXLAN VNIS 1001 to find out which VLAN and output port

is associated with it (in this case, VLAN 10).

• Finally, the destination receives the original MAC frame and IP packet and

contents, as if they were both on the same LAN, which in a sense they are.

No magic here: just a lot of hard work and careful, coordinated configuration.

Please note that the whole figure could be redone with a leaf and spine struc-

ture, where the VTEP role is shifted to the host VMs and the source and destina-

tion a virtual application running on the VM. But the headers still reflect the

same process.

MPLS and the PBB-EVPN Data Plane
Two more variations on the EVPN data plane should be mentioned. As has been

pointed out several times, EVPNs can use an MPLS data plane. In fact, EVPN

over MPLS was the original EVPN data plane in the base specification. The

MPLS data plane requires an IGP such as OSPF, use of RSVP-TE or LDP for sig-

naling LSPs, and BGP (naturally). No MPLS pseudowires are supported, how-

ever. The core network supports all the usual MPLS features such traffic

engineering, fast reroute, and so on. The MPLS data plane for EVPNs is shown

in Figure 21.16.

An MPLS data plane also supports Provider Backbone Bridges (PBB). There

are some differences in terminology, as shown in Figure 21.17. MPLS still runs

in the network control plane and data plane.

556 CHAPTER 21 EVPN and VXLAN

The PBB-EVPN combines IEEE 802.1ah PBB features with EVPN features.

The PEs are now PBB Backbone Edge Bridges (BEB), which now provider map-

ping between a PBB and the MAC addresses they include. The tables distributed

by BGP on the core network now become backbone MAC (B-MAC) tables, in

contrast to the MAC tables used on the customer side of the network, which

become customer MAC (C-MAC) tables. Figure 21.18.

The attraction of using EVPN in this way is that it reduces the numbers of

MACs in the EVPN by aggregating customer MACs within the backbone MACs.

This allows for improved scaling for very large networks with millions of MAC

addresses. The PEs now only advertise the B-MACs with BGP. Customer and

backbone MAC mapping is learned by the data plane, making this variation

attractive for large EVPNs.

CONFIGURING AN EVPN WITH VXLAN ON THE ILLUSTRATED
NETWORK
The basic configuration of P and PE and CE routers has served us well so far in

this book. However, once we combine configuration of BGP (the EVPN control

B-MAC

BEB
PE

BGP control
plane

MPLS
data plane

C-MAC
PBB-MAC
Mapping

FIGURE 21.18

MPLS and PBB-EVPN.

MAC/IP

PE
BGP control

plane

MPLS
data plane

FIGURE 21.17

MPLS as the Data Plane for EVPN.

557Configuring an EVPN with VXLAN on the Illustrated Network

plane), the CE routers (in this chapter, the CE routers are the VTEP devices), and

the PE routers with MPLS (our core network used MPLS in previously VPN/

VPLS examples, we create configurations that will be longer than this chapter so

far. And if we showed the configurations of all routing instances (for the bridge

domains) and routing policies for all six network devices—well, the listing takes

up more than thirty pages on its own. I urge interested readers to exam the com-

plete configurations of EVPNs with VXLAN on Juniper Networks and other ven-

dors web sites.

But that does not mean we can’t do anything productive with EVPN configu-

ration. Let’s looks at some of the more relevant pieces of the full configuration

the close this chapter. Not that BGP routing policies or MPLS configurations are

not important; it’s just that we don’t have the room to consider them in detail.

Let’s look at an EVPN with VXLAN used for DCI. A typical network scheme

might look as it does in Figure 21.19, which is a good reminder about which

pieces of the end-to-end network belong to IGP underlays and BGP overlays, or

VXLAN and EVPN on the core network.

The first thing to note about any Juniper Networks EVPN configuration

concerns the types of VPN services they provide. Remember Table 21.1 and

Figure 21.2 which showed how the three ways of VLAN-based, VLAN bundle,

and VLAN-Aware bundle differ in the number of broadcast domains, mapping

between VLAN ID and EVI, and other things they support. These methods effect

the way that traffic is bundled (or not) as it makes its way across the core

network.

The point is that Juniper Networks devices only support a single VLAN per

EVI (what we called “VLAN-based” and N:1 mapping between VLAN ID and

EVPN

PE1 PE3TOR
Switch

TOR
switch

VLAN 1
MAC 1

VLAN 2
MAC 2

VLAN 1
MAC 11

VLAN 2
MAC 22

VXLAN VXLAN

PE2 PE4

BGP control plane
learning on WAN

Data plane learning
In data center

Data plane learning
in data center

Data center interconnectData center site 1 Data center site 2

Overlay BGPUnderlay IGP Underlay IGP

EVPNVXLAN VXLAN

FIGURE 21.19

Using EVPN with VXLAN for DCI.

558 CHAPTER 21 EVPN and VXLAN

EVI with multiple bridge (broadcast) domains. In our example, let’s configure a

single VLAN per EVI on the PE routers, which Juniper Networks defines as

“instance type evpn” (the other supported type is “instance type virtual-switch”).

The basic configuration looks as follows, assuming the interface to the CE is

xe-0/0/0. The VLAN IDs, route-distinguishers, and VRF targets have to match

across configurations, but their values are not the point of this configuration

example:

user@PE1. show configuration routing-instances EVPN-1
routing-instances {

EVPN-1 {
instance-type evpn;
vlan-id 100;
interface xe-0/0/0.100;
routing-interface irb.100;
route-distinguisher 11.11.11.11:1;
vrf-target target:100:1;
protocols {

evpn;
}

}
}

If we have more than one link from the CE to PE and we want them all to carry

traffic (“all-active:), then we just set to ESI values on each link to the same value.

The basic multi-homing looks like this (also note the VLAN ID values set here):

user@PE1. show configuration interfaces xe-0/0/0
flexible-vlan-tagging;
encapsulation flexible-ethernet-services;
esi {

11:12:11:12:11:12:11:12:11:12;
all-active;

}
unit 100 {

encapsulation vlan-bridge;
vlan-id 100;
}

}

Once the configuration is complete, the multi-homing configuration automati-

cally triggers the designated forwarder election. We can which one has been

selected on either PE router, which have the IP addresses 192.68.14.1 (PE1) and

192.168.14.2 (PE2). Only the relevant output is shown below:

user@PE1. show evpn instance EVPN-1 extensive
. . .

559Configuring an EVPN with VXLAN on the Illustrated Network

Number of Ethernet segments: 1
ESI: 11:12:11:12:11:12:11:12:11:12

Status: Resolved by IFL xe-0.0.0/100
Local interface: xe-0/0/0,100, Status: Up/Forwarding
Number of remote PEs connected: 1
Remote PE MAC label Aliasing label Mode
10.0.0.2 299904 299904 all-active

Designated forwarder: 192.168.14.1
Backup forwarder: 192.168.14.2
Advertised MAC label: 299840
Advertised aliasing label: 299840
Advertised split horizon label: 299856

. . .

Only the designated forwarder sends BUM traffic received from the remote

PEs to the local CE device. The backup forwarder discards the BUM traffic it

receives instead of forwarding to the CE to prevent looping.

Do not be confused by the “aliasing” labels. Recall that the ability to load bal-

ance bridged or routed traffic destined to the Ethernet segment is known as “alias-

ing.” The label values are indices into the MAC tables.

There is much more about EVPN and VXLAN operation than is covered in

this chapter. But the basics presented here will allow for further exploration.

QUESTIONS FOR READERS
1. What is the relationship between BGP, EVPN, and VXLAN?

2. What does “BUM traffic” mean and why is the handling of this type of traffic

important in EVPNs?

3. What are three ways that a VLAN ID and EVI can map to one another?

4. Why can’t MAC layer addresses be handled the same way as IP layer

addresses are at Layer 3?

5. Virtual Tunnel End Points (VTEPs) can be housed inside a VM or a TOR

switch. What are the reasons that someone might choose one or the other?

560 CHAPTER 21 EVPN and VXLAN

PART

V
Application Level

Every host on the Internet typically runs a set of basic client�server
applications. This part of the book examines each one in detail.

• Chapter 22—Dynamic Host Configuration Protocol
• Chapter 23—The Domain Name System
• Chapter 24—File Transfer Protocol
• Chapter 25—SMTP and Email
• Chapter 26—Hypertext Transfer Protocol
• Chapter 27—Securing Sockets with SSL

This page intentionally left blank

CHAPTER

22Dynamic Host
Configuration Protocol

WHAT YOU WILL LEARN

In this chapter, you will learn how IP addresses are assigned in modern IP networks.
You will learn how the Dynamic Host Configuration Protocol (DHCP) and related
protocols, such as BOOTP, combine to allow IP addresses to be assigned to devices
dynamically instead of by hand.

You will learn how users often struggle to find printers and servers whose IP
addresses “jump around,” and you will learn means of dealing with this issue.

When TCP/IP first became popular, configuration was never trivial and often

complex. Whereas many clients needed only a handful of parameters, servers

often required long lists of values. Operating systems had quickly outgrown single

“floppies,” and most hosts now needed hard drives just to boot themselves into

existence. Routers were in a class by themselves, especially when they connected

more than two subnets—and in the days of expensive volatile memory and sec-

ondary storage (hard drives), routers usually needed to load not only their config-

uration from a special server, but often their entire operating systems.

A once-popular movement to “diskless workstations” hyped devices that put

all of their value into hefty processors while dispensing with expensive (and failure-

prone) hard drives altogether. Semiconductor memory was not only prohibitively

expensive in adequate quantities but volatile, meaning that the content did not carry

over a power failure or a shut down. How could routers and diskless workstations

find the software and configuration information they needed when they were initially

powered on?

RFC 951 addressed this situation by defining BOOTP, the bootstrap protocol,

to find servers offering the software and configuration files routers and other

devices needed on the subnet. The basic functions were extended in RFC 1542,

which described relay agents that could be used to find BOOTP servers almost

anywhere on a network. BOOTP did a good job at router software loading, but

the configuration part (notably the IP addresses) assigned by the device’s physical

address had to be laboriously maintained by the BOOTP server administrator.

So, BOOTP was updated and clarified in RFC 2131 to become DHCP, which

automated the IP address assignment process, making the entire system more

friendly and useful for host configuration. RFC 2132 described all parameters that

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00022-9

© 2017 Elsevier Inc. All rights reserved.
563

http://dx.doi.org/10.1016/B978-0-12-811027-0.00022-9

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66

DHCP
Server

DHCP
Client

LAN2: 10.10.11.51 LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 22.1

DHCP devices and configuration on the Illustrated Network showing the host used as

DHCP relay agent.

564 CHAPTER 22 Dynamic Host Configuration Protocol

BOOTP/
DHCP
Relay Agent

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

AS 65527

Global Public
Internet

DHCP
Client

565Dynamic Host Configuration Protocol

could be used with BOOTP and DHCP. The real value offered by DHCP over

BOOTP was the ability to release an address. Dynamically assigned BOOTP devices

received an address that had no upper bound on how long they could use it.

This basic RFC remains valid, but since then there have been numerous

updates. In fact, this chapter could be extended in ways that many others could

not. New RFCs detail DHCP behavior for IPv4 (DHCPv4) and IPv6 (DHCPv6),

lease queries with relay agents (RFC 6148), DHCP and mobility, and use for

other services and situations. This chapter, in the interest of brevity, will explore

the basics of DHCP.

DHCP AND ADDRESSING
So far, we’ve used static address assignment on all of the hosts on the Illustrated

Network. This is a common enough practice: Lab network testing is often hard

enough without worrying about address leases expiring, host addresses changing,

and cluttering up the LAN with DHCP chatter. But the point here is to dynami-

cally assign the host addresses on the Illustrated Network (we’ll leave the routers

alone), so that’s what we’ll do for this chapter. We’ll use the equipment as con-

figured in Figure 22.1. Note that for these application-level chapters we can go

back to two ISPs and routing domains.

We’ll use IPv4 only and set up our Linux server (lnxserver) as a DHCP

server for the IP address ranges on both LAN1 and LAN2. First, we’ll

configure Windows on LAN1 to find its address using the DHCP server.

Windows can also use DHCP for Windows Internet Name Service (WINS) server

addresses, but we’ll stick with DNS servers in this book. Naturally, as with multi-

cast, this won’t help the hosts on LAN2 find the DHCP server. So, we’ll

configure LAN2 router CE6 as a BOOTP and DHCP relay agent by sending

DHCP messages to the Linux DHCP server and sending back the replies. Finally,

we’ll configure the Windows client on LAN2 to use dynamic IP address assign-

ment and to make sure the entire configuration works.

Once again, it must be pointed out that this network exists solely for this

book. In a real situation, no one would really make clients in Los Angeles rely on

a DHCP server across the country (although it would certainly work).

Considering the amount of information that would be exposed, it would at least

be carried over some sort of encrypted path.

DHCP SERVER CONFIGURATION

Our Linux-based DHCP servers run /usr/sbin/dhcpd, the DHCP daemon, but

other distros use /etc/rc.d/init.d/dhcpd or even other locations (easy enough

to determine). The daemon uses parameters found in the /etc/dhcpd.conf file,

which can also be located at other places (note this is NOT dhcp.conf without the

“d” for daemon).

566 CHAPTER 22 Dynamic Host Configuration Protocol

There are freeware implementations of DHCP servers for Windows. These

feature the expected point-and-click GUI setup interface, and are just as useful as

their Unix-based cousins (but with all the caveats usually attached to freeware).

The following is a fairly minimal configuration file for a DHCP server. Note that

we can assign the default router address as an option for the subnet. If this option is

not present, users will have to enter their default “gateway” information manually.

[root@lnxserver admin]# /cat /etc/dhcpd.conf
dhcpd.conf
#
global options
ddns-update-style interim;
default-lease-time 600;
max-lease-time 7200;
subnet 10.10.11.0 netmask 255.255.255.0 {

range 10.10.11.200 10.10.11.210;
option routers 10.10.11.1;

}
subnet 10.10.12.0 netmask 255.255.255.0 {

range 10.10.12.210 10.10.12.220;
option routers 10.10.12.1;

}

Although we are not using DHCP to dynamically update DNS entries, and we

don’t even have a DNS server on the LAN yet, the implementation insists on hav-

ing a line in the configuration referencing dynamic DNS update “style.”

By the way, this lack of DNS is one reason many hands-on Internet services

workshops start with DNS first. But there is no requirement for this, as the order

of the chapters in this book illustrates. (We’ll add DNS in the next chapter.)

But what DNS name should be associated with a DHCP address? Typically, a

generic name such as dhcp1.example.com is associated with the DHCP address.

However, this is not appropriate for servers, and only barely tolerable for clients,

which usually have more informative names in DNS. And generally, you don’t want

to hand out changing IP addresses to routers, servers, or the DHCP server itself.

Ordinarily, we would include an option line for the DNS server’s names, but

we haven’t configured those yet on the network. Options can be global or applied

to only a subset of the network, a nice feature. We’d also usually have a host

entry for our servers so that they would get the same IPv4 addresses every time.

For testing, it’s common to override the default lease time and maximum lease

time (which are fairly high) for which a host can ask to use the address. We’ve

made them 10 minutes and an hour, respectively, here.

The most important lines are those that establish the address pool for hosts on

LAN1 (10.10.11.0) that ask for an IPv4 address. This information is set in the

subnet and range lines. We’ve made the range different from any of the IPv4

addresses used before, just so it’s easy to see if Windows is really picking up the

DHCP address.

567DHCP and Addressing

We’ve also set up an address pool for LAN2 (10.10.12.0), just to save time.

We haven’t configured the LAN2 router as a DHCP relay agent yet, but we will.

Setting up a DHCP client is much easier than setting up the server. Windows,

for example, makes it very easy to reconfigure a PC to obtain an IPv4 address

(including the default router) from the network’s DHCP server (as shown in

Figure 22.2). By the way, this is one of the few pieces of Windows that has not

changed in more than ten years.

Now let’s run the DHCP server on lnxserver and see what address the

Windows host wincli1 is assigned (only the relevant output is displayed).

PS C:\Users\walterg.ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection� 5:

Connection-specific DNS Suffix . :
Link-local IPv6 Address : fe80::20e:cff:fe3b:883c%2
IPv4 Address. : 10.10.11.200
Subnet Mask : 255.255.255.0
Default Gateway : 10.10.11.1

FIGURE 22.2

Configuring Windows to use DHCP, as is commonly done. Note that the IP address and

DNS server to be used are assigned.

568 CHAPTER 22 Dynamic Host Configuration Protocol

As expected, the address assigned is within the range specified, and is the first

address in that range.

ROUTER RELAY AGENT CONFIGURATION

The configuration stanza to make a Juniper Network router a DHCP relay agent is

under the BOOTP hierarchy level. This makes sense because DHCP relay agents are

all BOOTP relay agents as well. We’ll talk more about BOOTP later in this chapter.

The router can act as a relay agent globally or for a group of interfaces. This

just makes the CE6 router into a DHCP relay agent for the LAN2 interface. There

is no need to do anything for LAN1 on the network because the DHCP server

handles all of those hosts locally.

set forwarding-options helpers bootp description "DHCP relay agent
for lnxserver on LAN1";

set forwarding-options helpers bootp server 10.10.11.66;
set forwarding-options helpers bootp interface fe-1/3/0;

That’s all there is to it. As long as there’s a way to reach network 10.10.11/24
from LAN2 and a way to get back to 10.10.12/24 from CE0, DHCP messages

should have no problem crossing the network like any other packets.

GETTING ADDRESSES ON LAN2

Without a relay agent running on the LAN2 router, we can fire up wincli2 all we

want and it will never receive an IP address from a DHCP server. One is not pres-

ent on LAN2, and the router will not route DHCP messages unless told to.

Now that we have the relay agent running, we can check the IPv4 address on

wincli2. Note that the lowest IP address in the range is not always the first one

handed out by the DHCP server. In this case, the host asks for its “old” address

of 10.10.12.222, and the server attempts to assign the closest address it has to

that one (again, only the relevant output is displayed).

PS C:\Users\walterg.ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection� 5:

Connection-specific DNS Suffix . :
Link-local IPv6 Address : fe80::202:b3ff:fe27:fa8c%2
IPv4 Address. : 10.10.12.220
Subnet Mask : 255.255.255.0

Default Gateway : 10.10.12.1

DHCP is such an important part of LANs and the Internet today that a closer

look at the functioning of DHCP through a router relay agent is a good idea. The

complete sequence of events, captured on wincli2 as it received its DHCP

address, is shown in Figure 22.3.

569DHCP and Addressing

We’ll talk about DHCP messages and sequences in detail later in this chapter.

Note that the sequence starts with wincli2 sending a broadcast DHCP discover mes-

sage onto LAN2 with the “unknown” source address of 0.0.0.0. The host asks for

its “old” address, 10.10.12.222. The router, acting as relay agent, forwards the

request to the DHCP server (10.10.11.66, lnxserver) on LAN1, which replies to

the relay agent and wants to assign address 10.10.12.220 to wincli2. The relay

agent sends an ARP (No. 2) to see if anyone on LAN2 already has 10.10.12.220 (it

could have been assigned statically). The relay agent then offers the host this IP

address (No. 3), and the DHCP server itself (No. 4) sends a ping to check on

10.10.12.220 itself (note that there is no reply to the ping from wincli2).
It takes a while for the host to gather the information about possible multiple

DHCP servers, and there are two pairs of repeated DHCP discover messages from

“0.0.0.0” and DHCP offers from the relay agent (Nos. 5�8). In each exchange,

the host asks for its old IP address (10.10.12.222) in the DHCP discover message,

and the relay agent assigns 10.10.12.220 in the DHCP offer message.

Finally, wincli2 accepts the DHCP information and assigned address, and

sends a DHCP request message (No. 9) for configuration information for

10.10.12.220, but it is still using the 0.0.0.0 address. The relay agent replies

with a DHCP acknowledgement (No. 10), which basically contains the same

information as before.

The sequence ends with a series of gratuitous ARPs to the relay agent (Nos.

11�13) for address 10.10.12.220, the host’s new address (see the source IP

address field). This tells the DHCP relay agent that everything has worked out.

The details of one of the DHCP discover messages sent by the host (all of them

are essentially the same) are shown in Figure 22.4.

The details of one of the DHCP offer messages sent by the relay agent on

behalf of the DHCP server (all of these are essentially the same too) are shown in

Figure 22.5.

USING DHCP ON A NETWORK

As we have seen, what DHCP brings to TCP/IP for the first time is a measure

of mobility. With the proper DHCP servers available, a user could unplug a

host from one Ethernet LAN subnet, move it across the country, plug it into

FIGURE 22.3

DHCP messages sent through a router relay agent. Note the use of broadcast and the

“unknown” source IP address.

570 CHAPTER 22 Dynamic Host Configuration Protocol

another subnet, expect the configuration data to be loaded properly, and become

productive on the new subnet immediately.

Once ISPs began offering dial-up Internet access to the general public with

home PCs, the benefits of DHCP became instantly obvious. Suppose an ISP had a

FIGURE 22.4

The DHCP discover message details. Note the use of the bootstrap protocol (BOOTP) and

the numerous options.

FIGURE 22.5

The DHCP offer message details, showing the use of the “magic cookie.”

571DHCP and Addressing

pool of 254 IPv4 addresses, that is, what used to be a Class C address. But the

ISP also has 300 customers. Obviously, 254 IP addresses cannot be statically

assigned to 300 hosts. However, all of them cannot be on-line at the same time

because the ISP has only 200 dial-in modem ports (a situation that was not

uncommon before the Web took over the planet). So, DHCP quickly became the

means of choice in assigning IP addresses dynamically to a pool of users.

Organizations that employed proxy servers to protect their Internet users (or

limit Internet users) could do the same thing, and often did. In fact, any time the

pool of potential users exceeds the number of IP addresses available, DHCP is a

potential solution.

The heavy use of changing IP addresses among ISPs was one major reason

ISPs refused to support servers on the customer’s premises (asymmetric traffic

loads, especially over always-on but asymmetrical DSL links, was the other one).

Servers were typically included in DNS, to make them easy to remember, and

this required a high degree of stability of IP addresses because changes had to

propagate literally around the world. Naturally, dynamic server addresses, chang-

ing rapidly, challenged DNS procedures and capabilities. Servers could get static

IP addresses, if they could be found, and running one server process like a Web

server on an otherwise all-client host made the box into a server. The simplest

thing for an ISP to do was to ban servers on the customer’s premises, unless extra

fees for DNS “maintenance” were paid (in truth, there was little maintenance the

ISP had to do except initially). Officially, home servers were “not supported”;

since ISPs had little way of making sure that a server was present this essentially

meant, “If you call and try to open a trouble ticket on it, we won’t listen.”

When DHCP is configured on a client in many operating systems, it usually

isn’t even required to name it. Just check off or click on “obtain an IP address

automatically” and you’re in business.

BOOTP still exists, and some devices still use BOOTP alone. BOOTP is often

combined with the Trivial File Transfer Protocol (TFTP), defined in RFC 1350

(RFCs 2347, 2348, and 2349 all discuss TFTP options). And the best way to

understand why DHCP works the way it does is to begin with BOOTP.

BOOTP
Diskless workstations were expected to have only basic IP, UDP, and TFTP

capabilities at start-up, although of course they needed Ethernet and rudimentary

operating system functions as well. The original vision for BOOTP was to have

the process complete in three steps.

The BOOTP client broadcast a request for information from port UDP 68 to a

boot server listening on port 67. (BOOTP uses well-known ports for both client

and server because server replies can be broadcast, but typically are not.)

The boot server returned the client’s IP address and, as an option, the location

of a file to be downloaded (presumably, the rest of the client’s software was in

572 CHAPTER 22 Dynamic Host Configuration Protocol

this file). The client used TFTP and the boot server listening on UDP port 69 to

download the software.

RARP, discussed in Chapter 5, provides the IP address that goes with a physi-

cal address (such as the MAC address). RARP provides an IP address to a disk-

less client, but only an IP address. And RARP broadcasts never pass through a

router, whereas BOOTP requests, in proper configurations, will (this requires a

relay agent, as in DHCP).

BOOTP IMPLEMENTATION

Diskless workstations never became a popular line, and most users saw them as a

return to the “bad old days” of “dumb terminals” and considered a full-blooded

PC on the desktop as a sign of status. And soon enough the cost differential for

diskless devices as opposed to full-fledged workstations or desktops shrunk to

zero and then went negative. Applications for devices with no local storage still

exist, but there is no cost benefit associated with them.

Once almost all PCs began to ship with minimal hard disks it became more

common to split the boot server functions between two separate servers. The boot

server still listened on UDP port 67 for client broadcast requests sent on port 68,

and this was usually all PCs needed. But for truly diskless devices one or more

TFTP servers provided the files needed for further operation, usually separated by

type. This arrangement is shown in Figure 22.6.

BOOTP was very flexible. Clients could start with some or no information,

accept any boot server or pick a particular one, and use no file (a default) or a

specific download file.

Boot Server

UDP Port UDP Port UDP Port

Client
Device

Software for
Client

TFTP Server

LAN

67 68 69

IP Address and
Configuration
Information

FIGURE 22.6

BOOTP and TFTP servers, showing the ports used by the servers and client.

573BOOTP

BOOTP MESSAGES

All BOOTP requests and replies are sent as 300-byte UDP messages. These are

shown in Figure 22.7. Fields shown in bold must be filled in for a BOOTP

request, and those in italic represent optional information supplied by the client.

Opcode—This byte is set to 1 for a request and 2 for a reply.

Hardware Type—This byte is set to 1 for Ethernet, and uses the same values

as the hardware type field in an ARP message.

Hardware Address Length—This byte is set to 6 for Ethernet.

Hop Counter—The client sets this to 0, but a proxy BOOTP server (or relay

agent, described later) can use this field when the BOOTP message is sent

beyond the local Ethernet.

Transaction ID—A random 4-byte number chosen by the client and used to

match replies to their requests. Multiple servers can reply, and only the first is

accepted by the client.

Seconds Elapsed—A 2-byte field set by the client to the amount of time since

the bootstrap process began. It starts at 0 and gradually increases if the request

1 byte 1 byte1 byte

Transaction ID (used to match request and reply)

Hardware Type
Length of
Hardware
Address

Hop Counter
(initially 0)

Unused

Client IP Address (if known to Client, otherwise all 0)

Client IP Address (provided by Server in response)

Boot File Name (Client supplies generic name:“Windows”: Server
supplies full pathname to Boot file)

1 byte

2 � reply

Opcode
1� request

Seconds Elapsed since Client
Sent First Request Message

IP Address of Server
(provided by Server in response: where Client should go for Boot file)

Client Hardware Address

Relay Router IP Address

“Vendor-Specific Area”
Additional Parameters

Server Host Name (Client can optionally identify Server)

32 bits

FIGURE 22.7

Request.

574 CHAPTER 22 Dynamic Host Configuration Protocol

is not answered. A secondary server can monitor this value, and if it gets too

high will assume the primary BOOTP server is down and reply to the client.

Client IP Address—Set to all 0 bits unless the client knows its IP address, in

which case it is placed here.

“Your” Client IP Address—If the previous field is 0, the server supplies the

client’s IP address in this field.

Server IP Address—Filled in by the server.

Relay Router IP Address—If a BOOTP relay agent is used, the router fills in

the address of the port the request was received on. This allows the server to

reply to the proper relay agent.

Client Hardware Address—The same 16-byte address is in the frame source

address, but the BOOTP process has no easy access to this information (which

is three layers away) so it is placed here.

Server Hostname—The server optionally can use these 64 bytes (null

terminated) to identify itself to the client.

Boot File Name—The server optionally can use these 128 bytes (null

terminated) to identify the path to and the name of the boot file.

Vendor-Specific Area—These 64 bytes are used for BOOTP extensions,

defined in RFC 1533.

BOOTP RELAY AGENTS

BOOTP requests are broadcast, and broadcasts will not be forwarded through a

router. Yet maintaining BOOTP servers on all subnets, which are often quite

small, can be burdensome in many organizations. So, BOOTP allows the use of

relay agents, which can be hosts but are usually routers having the added capabil-

ity to forward BOOTP requests to a centrally located server.

The router BOOTP relay agent is allowed to broadcast the request onto other

subnets, using the hop count to control endless looping, but it is more common for

the relay agent to maintain a list of the IP addresses of one or more boot servers to

which to forward the requests. The way it all fits together is shown in Figure 22.8.

The relay agent receiving a BOOTP broadcast checks the Relay Router field.

If it is set to 0, the relay agent inserts the port’s IP address (if the field is non-

zero, another relay router has already processed this request). The BOOTP server

will use the address to reply to the proper relay agent.

The relay agent can send the request to one or more preconfigured BOOTP

servers. The relay agent usually replaces the broadcast IP address with the

BOOTP server’s destination address.

BOOTP “VENDOR-SPECIFIC AREA” OPTIONS

The fields in the BOOTP request and reply do not cover a lot of things client

hosts often need to know to function properly. For example, how is the subnet

mask and default router address conveyed to the client?

575BOOTP

RFC 2132 (with many updates and some errata) kept the vendor-specific pur-

pose of the field but added several optional functions that can be used to supply

needed information to a client. The “magic cookie” IPv4 address of 99.130.83.99

is used to signal clients that there is useful information in this area. This address

is still seen and often the subject of online queries from those who do not know

the history of DHCP.

Each item begins with a 1-byte Tag (for example, Tag5 1 is for the subnet

mask) and Length (subnet mask5 4 bytes) field. Tag5 0 is used to pad items to

a 32-bit boundary, and Tag5 255 is used pad out the end of the list.

Once a client has used BOOTP to obtain an IP address, subnet mask, and

default router address, it is ready to begin the software download phase if needed.

The TFTP protocol is used for this process.

TRIVIAL FILE TRANSFER PROTOCOL
Many books discuss TFTP in the context of full FTP. But TFTP is best under-

stood in the context of the BOOTP environment. In particular, TFTP differs

Client
Device

BOOTP Broadcast

LAN

LAN

Router
Performing

Relay Agent Function

w.x.y.z

Relay BOOTP
Messages to
IP Address

w.x.y.z

Server

FIGURE 22.8

BOOTP relay agent (router), showing how the relay agent forwards broadcast BOOTP

messages to a unicast IP address.

576 CHAPTER 22 Dynamic Host Configuration Protocol

greatly from usual FTP operation (FTP is discussed in Chapter 20). In contrast to

full FTP, TFTP

• Uses UDP port 69

• Uses uniformly sized 512-byte blocks of data, except for the last (If the file is

a multiple of 512 bytes, a final, empty block signals end-of-file.)

• Numbers blocks starting from 1

• Acknowledges every block

• Uses no authentication

Today, of course, the lack of authentication means that use of TFTP requires

special considerations. And it still makes more sense to use Trivial File Transfer

Protocol for BOOTP software downloads because in many cases the client and

server are on the same low-error-rate LAN.

Once a client knows where to go and what to get, a TFTP transaction starts

with a read request (RRQ) to download a file or write request (WRQ), used if the

client is going to save information back onto the TFTP server. The requests are

sent to UDP port 69 on the server, and a dynamic port is used on the client.

The server does not use port 69 throughout the process, but identifies a server

port to use for the rest of the procedure. Data transfer proceeds through an

exchange of sequenced data blocks and answering ACKs, one-for-one, echoing

the data block number. Any non�full-data block ends the exchange.

The default block size can be changed using the options at the end of the read

or write request. A size of 1468 (a 1500-byte Ethernet frame minus the 20 IP,

8 UDP, and 4 TFTP header bytes) is common. Other options include a resend

timeout value (UDP has none of its own) and the total size of the file to be trans-

ferred. This value is offered in the client write request, but is set to 0 in a read

request and sent by the server in response. A client is allowed to abort the transfer

if the file size the server wants to transfer is too large.

TFTP MESSAGES

TFTP really only has requests (RQ), data blocks (DATA), and ACKs, but these

are employed to yield a total of six message types.

• Read request (RRQ)

• Write request (WRQ)

• Data block (DATA)

• Acknowledgment (ACK)

• Error (ACK)

• Option acknowledgment (OACK)

The six operation codes are used in the Trivial File Transfer Protocol header,

shown in Figure 22.9.

The fields in RRQ and WRQ can vary in size and are thus delimited with all-

0 bytes. Oddly, there are no codes for the modes or for the strings netascii and

octet (there was also a mail mode initially).

577Trivial File Transfer Protocol

TFTP DOWNLOAD

TFTP lives up to its name. A simple TFTP transfer is shown in Figure 22.10.

In the figure, it is assumed that no options are used.

DHCP

It might seem odd to spend so much time in a chapter on DHCP discussing

BOOTP and TFTP. But much of what DHCP does and the way it accomplishes

its functions is similar to the operation of these two earlier protocols. DHCP

involves a more complex exchange of messages between client and server, but

the intention was always that servers could provide both BOOTP and DHCP func-

tions with a minimum of recoding.

DHCP was once referenced in BOOTP RFCs 1533 and 1534, but as an “exten-

sion” of BOOTP capabilities. Currently, RFC 2131 describes DHCP and distin-

guishes it from BOOTP. Not only does a DHCP server allocate addresses to clients,

but it also maintains parameters for individual clients and entire client groups, greatly

enhancing the efficiency of the entire system. In general, DHCP is designed to:

• Be a mechanism. No “policy” or ideas about IP address allocation schemes

are assumed by DHCP. However, DHCP can be the mechanism on which such

policies are built.

TFTP message inside UDP

2 bytes

2 bytes

2 bytes

2 bytes 1 byte

1 byte1 byte

N bytes

N bytes N bytes

2 bytes

2 bytes

2 bytes

2 bytes

Opcode
1 � RRQ
2 � WRQ

1 byte 1 byteN bytes

Filename

N bytes

0 0Mode

0–512 bytes

Data

Opcode
4 � ACK

Opcode
5 � Error

Opcode
6 � OACK

Error
Number

Error Message 0

0 0Option B

Opcode
3 � DATA

Block
Number

Block
Number

Option A

FIGURE 22.9

The six TFTP messages. Note that the content is extremely variable depending on opcode.

578 CHAPTER 22 Dynamic Host Configuration Protocol

• Do away with manual configuration. A user should always be able to simply

plug their devices into the network and work. (The requirement to

configure DHCP, if not the default, is beyond DHCP’s control.)

• Handle many subnets from one server. DHCP employs the BOOTP relay

agent concept, mostly implemented in routers, for this purpose.

• Allow multiple servers. For redundancy and reliability, clients and servers

must be able to deal with more than one DHCP server.

• Coexist with statically addressed hosts. As mentioned, dynamically addressed

servers are a challenge for DNS and the user in general. DHCP must allow

these hosts to function properly.

• Support BOOTP. DHCP can use BOOTP relay agents and must be able to

service BOOTP clients.

• Guarantee unique addresses. No address can ever be assigned to two clients at

the same time.

• Retain client information. The servers must retain all client parameters in case

of failures or between shutdown and start-up.

If the addresses handed out by DHCP were permanent, there would be little

difference between static assignment or the way that BOOTP operates. But the

DHCP association between client and address is called a binding, or, more

Choose a Source
Port, Then
Send Read
Request to
UDP Port 69

TFTP Reading a Remote File

Send ACK
for Block 1

Send ACK
for Block N

Send ACK
for Last Block
TERMINATE

Send ACK
for Block 2

CLIENT
TFTP Process
Running and
“Listening”
Choose Source
Port, Send Block 1

SERVER

Send
Block 2

Send
Block N

Send Block with
Less Than
512 bytes

TERMINATE

FIGURE 22.10

TFTP file transfer. Compared to full FTP, this exchange is very simple.

579Trivial File Transfer Protocol

commonly, a lease. And like any lease, it must be renewed periodically or

become available for assignment to a new client.

The pool of IP addresses handed out by the DHCP server is called a scope. A

collection of scopes gathered for administrative purposes is known as a superscope.

DHCP OPERATION

The format of the DHCP message is shown in Figure 22.11, which should

be compared to the BOOTP message in Figure 22.7. Many BOOTP clients

have no problem interacting with DHCP servers, and that was the intent

all along.

The fields are the same in form and content as those for BOOTP, with a few

exceptions. Opcode DHCP uses the same operation codes as BOOTP (15 request

and 25 reply). DHCP is indicated by the use of an Option Tag value of 53. This

allowed DHCP to use BOOTP relay agents transparently.

Flags—These 16 bits were unused in BOOTP. Only one flag is defined for

DHCP, the rightmost bit, or BROADCAST flag. All other bits must be set to

0. A tricky issue in dynamic configuration was the fact that some clients

1 byte

Opcode
1 � request Hardware Type

Transaction ID (used to match request and reply)

Flag Field
(only broadcast flag bit defined)

Client IP Address (if known to Client, otherwise all 0)

Server Host Name (Client can optionally identify Server)

File Name

Options

32 bits

Relay Router IP Address

Client IP Address (provided by Server in response)

IP Address of Server

Seconds Elapsed Since Client Sent
First Request Message

Client Hardware Address

Length of
Hardware
Address

Hop Counter
(initially 0)

1 byte 1 byte 1 byte

2 � reply

FIGURE 22.11

DHCP message format, showing similarities with the BOOTP message.

580 CHAPTER 22 Dynamic Host Configuration Protocol

discarded unicast packets until configuration was complete, and so the DHCP

messages were rejected with their addresses! The BROADCAST bit told

servers to broadcast replies to these DHCP clients.

Options—The BOOTP “vendor-specific” fields in what is now the DHCP

options field, were greatly extended to become DHCP parameters. Client ID

Option DHCP clients can be identified other than by hardware MAC address,

as in BOOTP. Some other identifier, such as a fully qualified domain name,

could be used instead. This helped if NIC cards were replaced. In practice,

those cards are very reliable and this option is not used much.

The client ID option is used for several things: It provides better logging, sup-

ports dynamic DNS, and allows for hosts with more than one network interface

(such as laptops with wired and wireless capability). Care must be taken that you

don’t produce collisions, because two hosts with the same client ID will get the

same IP address.

Once a host is configured to seek out configuration information using DHCP,

the message flow is straightforward—even with two “competing” DHCP servers

on a LAN. The usual flow of messages is shown in Figure 22.12.

DHCP, in contrast to BOOTP, uses a complex sequence of messages between

clients and servers, all tucked neatly inside the “BOOTP” options field at the end

DHCP Server 1

Determines
Configuration
Requirements

(Use
Parameters)

(Lease
Expires)

Select
Configuration
Offer

Commits to
Configuration

Discards
Lease

DHCP Server 2

Determines
Configuration
Requirements

DHCPREQUEST DHCPREQUEST

DHCPRELEASE

DHCPPACK

Collect
Replies

DHCPDISCOVER

DHCPOFFER

DHCPOFFER

DHCPDISCOVER

Begin Initialization
Client

FIGURE 22.12

Typical DHCP message flow when there are two potential DHCP servers from which to

choose.

581Trivial File Transfer Protocol

of the message. There are eight major DHCP messages types (all using either

request or reply operation codes, of course).

• DHCPDISCOVER—Used by clients to discover DHCP servers, and usually

includes a list of the parameters for which the client needs values, such as IP

addresses, subnet mask, and default router.

• DHCPOFFER—Used by servers to offer the needed values to clients.

• DHCPREQUEST—Used by a client to request a reply from one server. The

request is sent to all servers, even those not selected.

• DHCPDECLINE—Used by a client to refuse to accept one or more values

from a server, usually because they are not valid for the client.

• DHCPACK—Used for server responses and to furnish the parameters to a

client.

• DHCPNAK—Used by a server to refuse a client request. (Clients must start

over.)

• DHCPRELEASE—Used by a client to release an IP address, returning it to

the server pool.

• DHCPINFORM—Used by clients to tell servers the client has an IP address

already, but needs the values for other parameters.

DHCP MESSAGE TYPE OPTIONS

DHCP clients can request values for more than 60 different parameters from a

DHCP server. The first 49 can be used by BOOTP or DHCP, and these include

the very fundamental IP subnet mask request (Tag5 1) and default router address

(Tag5 3).

Options 50 through 61 are reserved for DHCP only. These are outlined in

Table 22.1. Tag numbers through 127 are reserved for current and future standard

options. Tags 128 through 254 are reserved for site-specific options.

DHCP AND ROUTERS
DHCP takes advantage of the BOOTP relay agent concept. In fact, router config-

uration of DHCP can be complicated because many routers mention only BOOTP

relay agents and assume administrators know they are the same.

A DHCP relay agent is usually a router, but it could also be a dual-homed

host that uses a router to reach the DHCP server. A typical configuration using a

router as a relay agent was shown in Figure 22.1.

The DHCP relay agent listens for broadcast BOOTP request messages and

sends them to the server. The relay agent then receives replies from the DHCP

server and replies to the client.

582 CHAPTER 22 Dynamic Host Configuration Protocol

DHCPv6

We haven’t done anything with DHCP in IPv6. There’s a reason for that, and it

has to do with the way IPv6 configures itself on a host.

A lot of what DHCP does in IPv4 can also be done with RARP and ICMP.

Yet DHCP is all over the place in IPv4. IPv6 includes elaborate neighbor and

router discovery protocols that allow IPv6 hosts to invent link-local IPv6

addresses and multicast groups for configuration purposes. Yet, just like IPv4

DHCP for IPv6 exists as DHCPv6. There are at least three reasons DHCPv6 con-

tinues to make sense in IPv6.

• Not all networks support the multicasts needed for IPv6 autoconfiguration,

like those consisting of point-to-point links or ATM and frame relay.

• Some small IPv6 networks might not have a router, which is required for IPv6

autoconfiguration.

• Network managers might desire more control over device configuration than

afforded by IPv6 autoconfiguration.

DHCPv6 will not be used on the Illustrated Network. There is no BOOTP sup-

port because it is not really needed in IPv6. In truth, a lot of DHCP parameters

are superfluous in IPv6. It is enough for this chapter to point out that DHCPv6

can be triggered by options in the IPv6 Router Advertisement messages, which

we first introduced in Chapter 5.

Table 22.1 DHCP Parameters Shown by Tag Value

Tag Parameter Description

50 Requested IP address Client asks for a specific IP address.
51 IP address lease time Client’s request or time granted by server.
52 Option overload The Server Host Name or Boot File Name fields are

carrying DHCP options to save space in the message.
53 DHCP message type This is how the DISCOVER, OFFER, or REQUEST

formats are determined.
54 DHCP server identifier Client tells which server was accepted.
55 Parameter request list Client’s list of needed parameters.
56 Message Used for errors. Server sends errors with DHCPNAK,

and client uses DHCPDECLINE.
57 Max. DHCP message

size
Largest DHCP message the client can accept.

58 Renewal time (T1) Client will try to renew lease after this time.
59 Rebinding time (T2) If lease renewal fails, client tries any server after this

elapsed time (T2 must be greater than T1).
60 Class identifier Vendor code describing client. Servers can reply based

on this class.
61 Client identifier Unique identifier for this client used by server to

determine parameters.

583DHCP and Routers

DHCPv6 AND ROUTER ADVERTISEMENTS

DHCPv6 and its relationship to IPv6 addressing are described in a series of

RFCs, most notably RFC 3315 (again, with many updates and some errata) and

3726 (which covers DHCPv6 and RSVP). DHCPv6 can provide stateless or state-

ful address autoconfiguration information to IPv6 hosts (RFC 7550 helpfully cov-

ers some issues with these stateful options and includes recommendations).

Stateless address autoconfiguration is used to configure both link-local and addi-

tional non�link-local addresses through the exchange of Router Solicitation and

Router Advertisement messages with routers. Stateful address autoconfiguration

is used to configure non�link-local addresses through the use of a configuration

protocol such as DHCP.

How does a host know which one it can use? We did not emphasize it then,

but our discussion of the IPv6 Router Advertisement protocol in Chapter 7 men-

tioned the M and O bit flags. The Router Advertisement message can set the

following:

Managed Address Configuration Flag, known as the M flag—When set to 1,

this bit instructs the host to use the configuration protocol to obtain a stateful

(non�link-local) address.

Other Stateful Configuration Flag, known as the O flag—When set to 1, this

bit instructs the host to use the configuration protocol to obtain more

configuration settings.

There can be four different situations.

1. Both M and O flags are 0. This is used when the local network has no

DHCPv6 infrastructure. IPv6 hosts use Router Advertisements and other

methods, such as manual configuration, to get non�link-local addresses and

other settings.

2. Both M and O flags are 1. In this case, DHCPv6 is used to obtain both

addresses and other configuration settings. This is known as the “DHCPv6

stateful” situation, and DHCPv6 is used to assign stateful addresses to the

IPv6 hosts.

3. M flag is 0, O flag is 1. DHCPv6 is not used to provide addresses, but only

other configuration settings, such as the location of DNS servers. The routers

are set to advertise non�link-local prefixes from which the IPv6 hosts can

configure stateless addresses. This is known as “DHCPv6 stateless” because

stateful addresses are not provided.

4. M flag is 1, O flag is 0. DHCPv6 is used to provide addresses, but no other

settings. This combination is allowed but unlikely, because IPv6 hosts need to

know other things, such as the addresses of the DNS servers.

Because we’re not using DHCPv6 on the Illustrated Network, we won’t detail

the DHCPv4 message formats and exchange patterns—which are different for

stateful and stateless operation.

584 CHAPTER 22 Dynamic Host Configuration Protocol

DHCPv6 OPERATION

All DHCP servers and relay agents are required to join the local All-DHCP-

Agents multicast group, and all servers must join the local All-DHCP-Servers

group. All relay agents also join the local All-DHCP-Relays group.

DHCPv6 servers and agents send to UDP port 546, and clients send to UDP

port 547. There are six message types defined for DHCPv6, and one nice feature

is that the operation code (or message type byte) comes first in the message

instead of being buried in the old BOOTP options field (as is DHCP for IPv4).

QUESTIONS FOR READERS

Opcode

Opcode

Transaction ID (used to match request and reply)

Client Hardware Address

Flag Field

Client IP Address (if known to Client, otherwise all 0)

Server Host Name (Client can optionally identify Server)

File Name

Client IP Address (provided by Server in response)

IP Address of Server

Options

Relay Router IP Address

Hardware
Type

Length of
Hw Address

Hop
Counter

Unused

Client IP Address (if known to Client, otherwise all 0)

Client IP Address (provided by Server in response)
IP Address of Server

(Server response: where Client should go for Boot file)
Relay Router IP Address

Server Host Name (Client can optionally identify Server)

Boot File Name (Client supplies generic name — “Windows”)

“Vendor-Specific Area”
Additional Parameters

Client Hardware Address

Hardware
Type

Length of
Hw Address

Transaction ID (used to match request and reply)
Seconds Elapsed Since Client
Sent First Request Message

Seconds Elapsed Since Client
Sent First Request Message

Hop
Counter

BOOTP Message
Format and Fields

DHCP Message
Format and Fields

FIGURE 22.13

The BOOTP and DHCP messages compared.

585Questions for Readers

Figure 22.13 shows some of the concepts discussed in this chapter and can be

used to help you answer the following questions.

1. The client sets the BOOTP hop count to zero initially. If that is the case, what

is the hop counter used for?

2. What is the hardware type and hardware address length for Ethernet?

3. How is the relay router IP address field used?

4. What is the client ID option in DHCP?

5. What is the “magic cookie” IP address in BOOTP?

586 CHAPTER 22 Dynamic Host Configuration Protocol

CHAPTER

23The Domain Name System

WHAT YOU WILL LEARN

In this chapter, you will learn how DNS gives the Internet a more user-friendly way to
access resources. We’ll see how names are associated with IP addresses and how
applications find this information. We will also see how the openness and necessity
of DNS makes the whole Internet more vulnerable to attack.

You will learn how DNS servers provide information about local networks, and how
this information is distributed and shared on the Internet. We’ll also use show tools
to help examine DNS.

The Domain Name System (DNS) is the distributed database used by the TCP/IP

protocol suite to translate hostnames to IP addresses (both IPv4 and IPv6) and

provide related information, such as email routing information. DNS has been

around as part of the Internet for so long that it is easy to forget that in the early

days users needed a file named /etc/hosts (no extension) unless they wanted to

type in the 32-bit IP address that went along with the hostname.

Today, the database is distributed because no single site on the Internet knows

everyone’s hostname and IP address. Of course, placing every host’s IP address

in a single text file would be impractical now, but people can still type www.juni-

per.net anywhere on the Internet and access the main Web page for the site. The

correct functioning of DNS is so ingrained in expectations that many users do not

even realize that when DNS fails typing, http://207.17.137.68 yields the same

result as the www entry. For many, when DNS disappears the Internet might as

well have vanished as well, except for some local and cached IP addresses.

Recently, the necessity of DNS and the openness of DNS servers to reply to

“all messages it receives” has caused problems. These are worth exploring before

investigating the details of DNS operation.

One day in late 2016 Internet users found they could not reach a number of

popular Web sites. These sites were clustered in the eastern and western United

States, but a few other areas like Texas were affected as well. Services such as

Spotify, Twitter, Github, PayPal, and more disappeared from the Internet. It took

a while for problem to alleviate and to track down the cause. The root cause

turned out to be a concentrated distributed denial of service (DDOS) attack on a

commercial DNS service called DynDNS, which many commercial sites used

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00023-0

© 2017 Elsevier Inc. All rights reserved.
587

http://www.juniper.net
http://www.juniper.net
http://207.17.137.68
http://dx.doi.org/10.1016/B978-0-12-811027-0.00023-0

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
“dig”
used

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
Primary
DNS server

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 23.1

DNS on the Illustrated Network, showing the hosts used as primary and secondary DNS

servers and utilities.

588 CHAPTER 23 The Domain Name System

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
Secondary
DNS server

eth0: 10.10.12.166
“nslookup”
used

LAN2: 10.10.12.52
 ::0c:3b:88:56
 l_3b:88:56)
 : fe80::20e:
 :3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3
g3

16.2

g3-0/0/3

16.1

Best ISP

AS 65527

Global Public
Internet

589The Domain Name System

because it promised automated and real-time updates to the IP addresses refer-

enced by Internet domain names. (As we’ll see, it can normally take a day or

even more for name and address change to “ripple” through the chain of DNS ser-

vers if they are updated by hand.)

This DDOS attack was like none ever seen before. Instead of thousands of

compromised zombie “bots” all running a DDOS app called Mirai (which ended

up being freely available on software source Gethub), the attack orchestrated

more than a million devices for the attack. And the devices turned out to be not

PCs or mobile phones, but DVRs and security cameras attached to the “Internet

of things” that is rapidly emerging around the world. The software inside these

devices had been compromised, and the attack was widely seen as a serious probe

as to how vulnerable the US infrastructure was to cyberattacks.

Let’s look at how DNS functions and why this leaves DNS open to all kinds

of threats. The details of DNS functioning have changed, and many users and

administrators know very little about the inner workings of DNS. Because of the

abundance of new terminology, special operations, and new types of servers, this

chapter requires us to discuss some of the basics of DNS before looking at how

DNS is employed on a network. In this chapter, we’ll use the equipment in the

roles shown in Figure 23.1. Discussion will be kept to a minimum and exploration

is maximized in this chapter.

DNS BASICS
Recall that two things are globally administered in TCP/IP: the network portion

of the IPv4 or IPv6 address and the domain name that goes along with it. The

host portion of the IP address and the further qualification of the domain name

are administered locally. It is up to the local administrator to prevent duplicates at

this level, and in large organizations this is not as easy as it sounds. (In some

cases there are valid reasons for duplicates to exist in an organization, such as

due to “split horizon” issues.) Very large organizations often depend on several

layers of administration (perhaps division, department, and so on) to dole out

blocks of addresses and domain names correctly. Along with this responsibility

goes the duty to ensure that all of the detailed host addressing and the correspond-

ing fully qualified domain names (FQDNs) is correct so that all of the clients can

find the servers they are supposed to find.

Usually each site—whether it be a company, university, or other type of

organization—maintains its own database of information and runs a server pro-

cess (typically on a dedicated system) other systems can query. You can also get

a third party (not the ISP) to manage a zone for you, and that is a service

most registrars will do for a nominal fee (if not free) with the registration of a

domain name.

At one time, connection to the Internet required an organization to provide at

least two DNS servers for the site. The goal was resilience, but because missing

590 CHAPTER 23 The Domain Name System

authoritative name servers can cause all sorts of performance issues two non-

topologically diverse name servers do not really solve anything. Now, very small

organizations (or individual users) often rely on their ISP to provide the DNS ser-

vice and point all of their hosts at these two “public” DNS servers for hostname

resolution. This arrangement poses its own set of problems, such as a recurring

ISP charge to “maintain” the database records (surely the lowest maintenance

task on the Internet) and the need to update the ISP’s database when changes to

FQDN or IP addressing take place on the local network. Dynamic IP addresses

also cause problems for DNS, as detailed later in this chapter.

THE DNS HIERARCHY

DNS servers are arranged in a hierarchical fashion. That is, the hundreds of thou-

sands of systems that are authoritative for the FQDNs in their zone are found at

the bottom of the DNS “pyramid.” For ease of maintenance, when two or more

DNS servers are involved only one of them is flagged as the primary server for

the zone, and the rest become secondary DNS servers. Both are authoritative for

the zone. ISPs typically run their own DNS servers, often for their customers,

with the actual number of systems for each ISP depending on the size of the ISP.

At the top of the pyramid is the “backbone.” There are root servers for the root

zone and others for .com, .edu, and so on.

DNS servers above the local authoritative level refer other name servers to the

systems beneath them, and when appropriate each name server will cache infor-

mation. Information provided to hosts from any but the authoritative DNS system

for the domain is considered non-authoritative, a designation not reflecting its

reliability, but rather its derived nature.

Authoritative and non-authoritative servers can be further classified into cate-

gories. Authoritative servers can be:

• Primary—The primary name server for a zone. Find its information locally in

a disk file.

• Secondary—One or more secondary name servers for the zone. They get their

information from the primary.

• Stub—A special secondary that contains only name server data and not host

data.

• Distribution—An internal (or “stealth server”) name server known only by IP

address.

Keep in mind that the primary and secondary distinction is relevant only to

the operator of the systems and not to the querier, who treats them all the same.

Non-authoritative servers (technically, only the response is non-authoritative)

can be:

• Caching—Contain no local zone information. Just caches what it learns from

other queries and responses it handles.

• Forwarder—Performs the queries for many clients. Contains a huge cache.

591DNS Basics

ROOT NAME SERVERS

The root servers that stand at the tip of the DNS pyramid deserve more explana-

tion in terms of operation and organization. Today, the root servers are the entry

points to the DNS service and rely more on caching than the passive databases

that once characterized the root server system. With the explosion of the Internet,

it made little sense to maintain records with the same “priority” for sites that are

constantly bombarded with traffic and those that are seldom visited. The current

database in a root name server is small.

The current root servers only know which name server a local DNS needs to ask

next to resolve a query. So, any query for a .com sent to a root name server produces

a list of name servers that might know the answer. The continuous caching of these

answers means that there is less need to query the root servers after the first query.

ROOT SERVER OPERATION

The root server operators are not involved in the policymaking regarding Internet

names and addresses, nor in modification of the data. They just take what is origi-

nated by one of their number (Verisign Global Registry Services) and propagate it to

the others. The operators are encouraged to explore diversity in organizational struc-

ture, locations, hardware, and software, while maintaining expected levels of physi-

cal system security and over-provisioning of capacity. They maintain their own

infrastructure for emergencies, including telephone hotlines, encrypted email, and

secure credentials. The root servers use distributed anycast where practical, making

many separate systems all over the world appear and act as one system with one IP

address. The use of anycast helps minimize the effects of denial-of-service attacks.

We haven’t talked about anycast before. In anycast, as in multicast, there is a

one-to-many association between addresses and destinations (multicast has groups)

on the network. Each destination address identifies a set of receiver endpoints, but

(in contrast to multicast) only one of them (determined to be the “nearest” or the

“best”) is chosen at any particular time to receive information from a particular

sender. For example, in contrast to a broadcast (which goes to everyone) or a multi-

cast (which goes to all interested listeners) sent onto a LAN, a message to an anycast

address goes to only one of a set of hosts and is then considered delivered. Anycast

(“send this to any one of these”) is more suited to connectionless protocols (such as

UDP) than stateful protocols (such as TCP) that have to maintain state information.

Root server operators often struggle to overcome a lot of misconceptions,

even on the part of people who should know better. Contrary to what some

believe, all Internet traffic does not flow through the root servers (nor do they

determine routes), not every DNS query goes to a root server, the “A” system is

not special, and there are many more than just 13 machines.

ROOT SERVER DETAILS

Table 23.1 shows the 13 root name servers (A through M), who operates them,

their locations, and their IP addresses (IPv4 and IPv6, where applicable). For the

592 CHAPTER 23 The Domain Name System

latest information, which changes from time to time (for example, the IPv4

address of b.root-servers.net changed in 2004), see www.root-servers.org.

Note that many of the root servers, although all grouped under a single name,

are actually many systems spread throughout the world. This is where anycast is

useful.

In the past, the willingness of DNS servers to accept updates from any source

when offered was a major security weakness. Modern DNS servers accept only

authorized and digitally signed updates, and higher level DNS servers never

accept dynamic updates from anyone. One interesting initiative is the continuing

development of DNS Security (DNSSec), although this is not without its contro-

versies and does not do much to prevent DDOS attacks.

DNS IN THEORY: NAME SERVER, DATABASE, AND RESOLVER
DNS consists of three essential components: the name server, the database of

DNS resource records, and the resolver. An application interacts with name

Table 23.1 DNS Root Servers Listed by Operator, Locations, and IP Address

Server Operator IP Addresses

a.root-servers.net Verisign 198.41.0.4
2001:503:ba3e::2:30

b.root-servers.net Information Sciences Institute (USC) 192.228.79.201
2001:500:84::b

c.root-servers.net Cogent Communications 192.33.4.12
2001:500:2::c

d.root-servers.net University of Maryland 199.7.91.13
2001:500:2d::d

e.root-servers.net NASA Ames Research Center 192.203.230.10
2001:500:a8::e

f.root-servers.net Internet Systems Consortium, Inc. 192.5.5.241
2001:500:2f::f

g.root-servers.net U.S. DoD (NIC) 192.112.36.4
2001:500:12::d0d

h.root-servers.net U.S. Army (Research Lab) 198.97.190.53
2001:500:1::53

i root-servers.net Netnod 192.36.148.17
2001:7fe::53

j.root-servers.net VeriSign, Inc. 192.56.128.30
2001:503:c27::2:30

k.root-servers.net Réseaux IP Européens-Network
Coordination Center

193.0.14.129
2001:7fd::1

l.root-servers.net ICANN 199.7.83.42
2001:500:9f::42

m.root-servers.net WIDE Project 202.12.27.33
2001:dc3::35

593DNS in Theory: Name Server, Database, and Resolver

http://www.root-servers.org

servers through a resolver. This is an application program that resides on user

workstations and sends requests for DNS information when necessary. Resolvers

must be able to find at least one name server, usually the local name server, and

local DNS servers provide authoritative answers for local systems. The resolver

must also be able to use the information returned by the local name server, if the

resource records needed are not local or cached, to pursue the query using referral

information leading to other DNS name servers on the Internet.

The resource records of the Domain Name Space are grouped and formatted

with a strict tree-structured name space. Information is associated with each type

of resource record. The sets of local information (the zones) in this structure are

distributed among all DNS servers. The name servers essentially answer resolver

queries using the information in its zones or from other zones. A resolver query

gives the name of interest and stipulates the type of information needed.

The name servers themselves maintain the structure of the Domain Name

Space and the sets of information about the hosts in the zones. Any name server

can cache anything it sees about any part of any Internet domain, but generally a

particular name server knows only about a tiny fraction of the Internet zones. But

there are pointers to other name servers that can be used to answer a resolver

query. Name servers can distribute zone information to other name servers to

provide redundancy. Finally, DNS name servers periodically refresh their zone

information, from local files (the primary) or from other name servers (the

secondaries) through a zone transfer.

Other important DNS concepts are relative name and absolute name (FQDN).

A resolver request for the IP address for the relative name Web server would pro-

duce many addresses on many networks around the world. The relative name is

part of the complete absolute name, perhaps webserver.example.com. Most resol-

vers step through an ordered list of preconfigured suffixes, append them one at a

time to the relative name, and attempt to find the IP address without the absolute

name. Absolute names always end in a dot (.).

Like all good protocols using query/response pairs, DNS uses UDP (port 53).

However, DNS also uses TCP (and port 53 there, too) for zone transfers between

name servers. These transfers can be considerable in large organizations, and

although LANs usually feature very low-error rates the risk of corrupt DNS infor-

mation more than justifies the use of TCP for the zone transfers. TCP is also used

if a response is larger than 512 bytes. And flow control is a really good reason to

use TCP for zone transfers, because they can occur over essentially arbitrary

distances.

ADDING A NEW HOST

Whenever a new host is added to a zone, the DNS administrator must add the

resource records (minimally the name and IP address of the host) to a file on the

primary name server. The primary name server is then told to read the configura-

tion files, and when the secondaries query the primary (typically every 3 hours),

594 CHAPTER 23 The Domain Name System

the secondaries find newer information on the primary and perform a zone trans-

fer. The DNS Notify feature enhances the basic zone status check and zone trans-

fer mechanisms. This lets the primary server notify the secondaries when the

database has changed. A related feature allows part of a zone to be transferred

and not the entire zone information.

How can all of the local name servers find each other? They can’t. But every

name server must be able to find and contact the root name servers on the

Internet. Their positions at the top of the DNS pyramid allow the root name ser-

vers to answer queries directly from the zone they have loaded, if with non-

authoritative information. Of course, there’s always a chance a user on one side

of the world will attempt to contact a server or Web site that has just been linked

to the Internet and has the zone information such as the IP address available only

in the local name server on the network with the Web site.

RECURSIVE AND ITERATIVE QUERIES

If DNS database information is spread throughout the Internet, and the local

name servers cannot find each other and the root name servers don’t have gigantic

databases, how can all hosts in the world find out anything at all? It is because of

the way the local DNS name server handles a query from a resolver.

DNS queries can be sent out asking for another name server to handle the

query recursively or iteratively (some texts say “non-recursively”). Most local

DNS servers function recursively by default. In fact, recursive operation maxi-

mizes the amount of information available for caching on name servers, although

iterative operation will maximize the amount of information available to a partic-

ular name server. Many local name servers use recursive queries (they can be

asked to handle a query iteratively), and higher level name servers use iterative

queries (root servers always answer queries iteratively).

Recursive DNS queries are handled by the receiving name server waiting until

it receives an answer to its own queries. Iterative queries are handled with an

immediate “I don’t know the answer, but here’s where you can look next”

response. In the recursive case, the name server “in the middle” can find and

cache the information, whereas in the iterative case, it cannot. This might sound

confusing, but we’ll look at a detailed example of how DNS usually works in the

following sections.

DELEGATION AND REFERRAL

Large organizations, or large ISPs operating the DNS servers for their customers,

often delegate part of the domain name space to a separate system. For example,

a huge bigcompany.com might have headquarters records on the main DNS but

delegate DNS chores for maintaining and housing east.bigcompany.com (on the

east coast) and west.bigcompany.com (on the west) to its two main divisions. So,

there are three DNS servers in all, perhaps called hqns.bigcompany.com, ns1.east.

595DNS in Theory: Name Server, Database, and Resolver

bigcompany.com on the east coast and ns2.west.bigcompany.com on the west

coast. There could be many LANs for which one of these name servers is authori-

tative, such as the LANs for accounting, marketing, sales, and so on.

Figure 23.2 shows the flow of DNS-related actions (solid arrows) and the

responses they invoke (dashed arrows) among the DNS name servers mentioned

in the bigcompany.com example the first time someone looks for the Web site.

The initial user resolver query to the LAN’s local name server and the eventual

response are also shown. The following is the sequence in detail.

The local user on the wincli1 Web browser (me) requests a Web page from

www.sales.west.bigcompany.com (the example is valid, but the name has been

changed). The browser invokes the local name resolver software in the PC and

passes this name to it.

The local resolver checks its cache to see if there is already an IP address

stored for this name. (If there is, the quest is over, but we’ve assumed that this is

Local Name Server
(winsrv1)

4. Cache check
5. Resolve query to root

6. Name Server for .com

7. Resolve
query to .com

6. Name Server
for bigcompany.com

9. Resolve query to
bigcompany.com

10. Name Server for
west.bigcompany.com

11. Resolve query to
west.bigcompany.com

12. IP address for
www.west.bigcompany.com

17. HTTP request sent
to resolved address

west.
bigcompany.com

Name Server

bigcompany.com
Name Server

.com
Name Server

Root Name Server

com

(root)

bigcompany

west

Accting Mkting Sales

2. Cache check

15. Cache update

13. Cache update

Cache

Cache Resolver

1. Resolution
request

USER wants:

www.sales.west.
bigcompany.com

Client (wincli1)

www.sales.west.
bigcompany.com

Web site Server

Server

3. Recursive
query

14. Requested
IP address

16. Requested
IP address

FIGURE 23.2

Example DNS query and response message flow. Messages sent to the servers are shown

as solid arrows and replies as dashed arrows.

596 CHAPTER 23 The Domain Name System

http://www.sales.west.bigcompany.com

the first time the user has asked for the Web site so it’s not cached.) The resolver

also checks to see if there is a local host table file. (Again, let’s assume there is

no static mapping for the name.)

The resolver generates a recursive query (typically) and sends it to the local

name server, which we’ve set up as ns1.booklab.englab.jnpr.net on winsrv1 using

the name server’s IP address, which it knows because the server is local (it’s

10.10.11.111). The local DNS system receives the request and checks its cache.

If present, the DNS returns a non-authoritative response to the resolver. It would

also check to see if there are zone resource records for the request name, but

because they are completely different domains there are no zone records.

The local DNS generates an iterative request containing the name sought and

sends it to a root name server. The root name server doesn’t resolve the name,

but returns the name and IP address of the name server for the .com domain. The

local DNS (which is performing the bulk of the work, we should note) now sends

an iterative request to the name server for the .com domain.

The .com name server returns the name and IP address for the name server for

the bigcompany.com domain. The local DNS then generates an iterative request to

the name server for the bigcompany.com domain. The bigcompany.com name

server looks to see if it has that information. It notices that the requested name is

in a separate zone, the west.bigcompany.com subdomain.

The local DNS next generates an iterative request to the name server for the

west.bigcompany.com domain. This name server is authoritative for the www.

sales.west.bigcompany.com information. It returns the address information for the

host to the local DNS. The local DNS system (winsrv1) caches the information.

The local DNS returns the resolution to the client’s resolver software (win-
cli1). The local resolver also caches the information. The local resolver supplies

the address information to the browser. The browser can now send an HTTP

request to the correct IP address.

It’s actually a tribute to the entire DNS server collection that all of this usually

happens very quickly. Note how using recursion on the PC maximized the amount

of DNS information available for caching and how iteration elsewhere minimized

the amount of information needing to be stored permanently.

GLUE RECORDS

There was one key step in the chain of delegation and referral in Figure 23.2 that

did not use DNS to find an IP address. Notice that the bigcompany.com name

server did not use DNS to find the IP address of the west.bigcompany.com name

server. Delegation must use an address (A) resource record to indicate the IP

addresses of name servers responsible for zones below the current level. These

are called glue records in DNS and are the answer to an interesting question

involving dynamic IP address allocation.

When DHCP first became available, many organizations configured a pool of

IP addresses to be assigned only to active users on the Internet. Many

597DNS in Theory: Name Server, Database, and Resolver

http://www.sales.west.bigcompany.com
http://www.sales.west.bigcompany.com

organizations included their DNS servers in this pool, and quickly found out that

DNS stopped working. Why? Simply, the glue records used by intermediate name

servers to find the local authoritative servers didn’t work anymore. In other

words, the headquarters can’t use DNS to find the zone resource records for dele-

gated zones! Glue records serve that purpose.

This is one main reason users whose ISPs use DHCP with dynamic IP

addresses for host configuration cannot establish their own DNS name server at

home. These users would form delegated zones from the main ISP. And without a

local DNS server, users who want to place their own server on-site need to work

with the ISP to make this happen. Without glue records, odd DNS loops to find

sub-domains occur.

In practice, dynamic DNS service providers upgrade their glue records when

your addressing changes. But this also means that the TTL on the records must be

low enough so that they flow over in short order. Ideally, they would also provide

a secondary DNS.

DNS IN PRACTICE: RESOURCE RECORDS AND MESSAGE
FORMATS
When implemented as a series of resolvers and name servers, DNS databases con-

sist of resource records (RRs) entered into a zone file and loaded onto the authori-

tative name server. Any other DNS name server can cache this information as a

non-authoritative source, and a special reverse zone file is used to enable resol-

vers to look up a host name by IP address. RRs all end in in-addr.arpa. A DNS

RR contains the following fields.

• Name—The FQDN or portion that is represented by the entry. For example,

bigcompany.com.
• TTL (Time to Live)—How long in seconds the record can be cached. Many

ISPs use 2 or even 3 days for this field (172,800 or 259,000). If no value is

entered, the default can be short (as little as 1 hour).

• Class—Today, the only class that counts is IN for Internet address. This is

usually entered only once, in the first record, and is inherited by all

subsequent records for that name.

• Record-Type—There are many record types, usually indicated by a short

abbreviation, such as A for address and NS for name server. The types fall

into four categories: zone, basic, security, and optional. A list of the more

common record types appears in Table 23.2.

• Record-Data—Depending on the type, this information varies. For a name

server, this is the domain name of the name server. For a host, this is the IP

address.

• Comments—These are optional and begin with a semicolon (;) and are never

returned with data.

598 CHAPTER 23 The Domain Name System

This is not an exhaustive list. Some defined record types are seldom used

(HINFO is supposed to mention host model and operating system) or are per-

ceived as security risks (WKS records list the “well-known services” available at

the host).

Some readers might have noticed the elaborate form of the IPv6 addresses

used on the Illustrated Network. This is because IPv6 once used something called

the binary label syntax. IPv6 addresses use the first bits (really, whole words)

of the 128-bit IPv6 address to indicate the ISP. The A6 records included a

referral field to allow a name server to refer to the ISP’s name server for the

“network” portion of the IPv6 address. The A6 record also gave the number

and value of the bits present in the A6 record itself. This prevented the

Table 23.2 Common DNS Resource Record Types and Their Uses and
Meanings

Use
Record
Type Meaning

Zone SOA Start of Authority records identify the zone and set parameters.
NS Gives an authoritative name server for the zone, and delegates

sub-domains. Not the IP address of the name server, but a text
field.

Basic A Maps the name to the IPv4 address. Each device address
requires a separate A record.

AAAA Used to allow an IPv4 name server to return an IPv6 address.
Intended as a transitional type.

A6 Now obsolete, these were used to map a name to an IPv6
address.

PTR Used to map an IP address to a host name in reverse zone
lookups.

DNAME Formerly used for redirection for reverse lookups in IPv6 DNS
servers due to longer nature of IPv6 addresses. Now obsolete.

MX Mail Exchanger records point from a name to A records that are
the mail exchanger for the name.

Security KEY The public key for the DNS name.
NXT Used for negative answers with DNSSec.
SIG The signature for an authenticated zone.

Optional CNAME Maps an alias name to a canonical (“real”) name. For example,
www.example.com and ftp.example.com might both be running
on the host server.example.com.

LOC Geographical location.
NAPTR Name Authority Pointer is used to allow regular expression

rewrites of the domain name.
RP Contact information for responsible person.
SRV Gives locations of well-known services.
TXT To add comments and information to the record.

599DNS in Practice: Resource Records and Message Formats

http://www.example.com

laborious entry of many redundant bits into the resource records. It also made

shifting service providers easier. So, a query for an A6 record might only get

the last 64 bits of an IPv6 address. A further referral query to the name server

in the A6 record is necessary for the first 64 bits. The DNAME records do the

same for the Pv6 host name. This now obsolete system was used for the IPv6

addresses.

The same DNS message format is used for queries and responses. The DNS

query message goes out with a 12-octet header and a variable number of ques-

tions. The DNS response message essentially pastes on a variable number of three

types of response fields: answer RRs, RRs identifying authoritative servers, and

RRs with additional information. Figure 23.3 shows the general format of the

DNS message.

DNS MESSAGE HEADER

The 16-bit identification field, set by the client and returned by the server, allows

for coordination of outstanding requests and responses. The 16-bit Flags field is

quite complex:

• QR—A 1-bit field where 05 query and 15 response.

• Opcode—A 4-bit field where 05 standard query. Other values are for an

inverse query (1) and a server status request (2).

• AA—A 1-bit flag that indicates that the name server is authoritative for the

zone (15 true).

• TC—A 1-bit flag meaning that the reply has been truncated. UDP limits

DNS responses to 512 octets, except when Extension Mechanism for DNS

0

Identification

Numbers of Questions Number of Answer RRs

15 16
Q
R

Op
code

A
A

T
C

R
D

R
A

R
code

12
octets

31

Number of Authority RRs Number of Additional RRs

Question(s)

Variable Number of RR Answers

Variable Number of Authority RRs

Variable Number of Additional RRs

FIGURE 23.3

DNS message format. Note that the last four fields are variable in size.

600 CHAPTER 23 The Domain Name System

(EDNS0, defined in RFC 2671) is used. EDNS0 identifies the requester’s

UDP packet size.

• RD—A 1-bit flag for “recursion desired.” If this bit is set in a query, the

receiving name server is supposed to keep trying to find the answer. If this bit

is not set, the name server returns a list of other name servers to contact

unless it can provide an authoritative answer.

• RA—A 1-bit flag for “recursion available.” Some name servers will refuse to

act recursively, and this bit is cleared in response to let other systems know

about server refusal.

• Pad—A 3-bit field that must be set to 000.

• Rcode—A 4-bit field for the return code. The most common values are for no

error (0) and a name error (3).

The next four 16-bit fields help receivers parse the four fields in the rest of

the message. In a query, the number of questions is usually 1 and the other three

fields are 0. A reply typically sets the Number of Answers field to 1 (or more),

and the other two are 0. Utilities such as tcpdump and Ethereal normally parse all

of the fields and flags. There are other ways to watch DNS in action, however.

DNSSec

As indispensable as DNS is for Internet operation, DNS was not (unfortunately)

designed to be secure. Threats to DNS fall into several distinct classes, many of

which are just well-known security threats redirected at DNS. However, a few are

specific to the particular way the DNS protocol functions. RFC 3833 documents

some of the known threats to DNS and tries to assess the extent to which

DNSSec will succeed in defending against these threats. Although this section

uses some concepts we haven’t covered yet, DNSSec is important enough to

introduce in this chapter on DNS itself.

In particular, DNSSec was designed to protect Internet DNS resolvers (the cli-

ents) from forged DNS data, which can point people looking for a particular Web

site (such as their bank) to the wrong IP address. This forged information can be

put in place by a process called DNS cache poisoning. In DNSSec, all answers to

queries are digitally signed (we’ll talk more about digital signatures and certifi-

cates in Chapters 22 and 23). The digital signature can be checked by the resolver

to see if the information is identical to the information on the authoritative DNS

server for the site. DNSSec, although designed primarily to protect IP addresses,

can be used to protect other information (such as the cryptographic certificates

stored in DNS). RFC 4367 describes how to use DNS to distribute certificates,

including those used for email, so it is possible to use DNSSec as a global infra-

structure for secure email.

However, DNSSec does not say anything about the confidentiality of data.

That is, all DNSSec responses are authenticated but not encrypted (we’ll talk

more about the differences in Chapter 29). It also really doesn’t protect against

601DNS in Practice: Resource Records and Message Formats

denial-of-service attacks directly, although DNSSec does provide some benefit

through the authentication features of the digital signature. Other methods must

be used to protect bulk data, such as a large zone transfer. Of course (per RFC

4367) DNSSec cannot prevent users from making false assumptions about domain

names, such as the idea that the organization’s name plus .com is always the com-

pany (or bank) Web site they are looking for. But at least DNSSec can authenti-

cate that the data provided by DNS is actually from the domain owner.

The current DNSSec specifications describe DNSSec-bis. The most important

are RFC 4033, RFC 4034, and RFC 4035. Many large public DNS service provi-

ders, such as Google (8.8.8.8 and 8.8.4.4) now detect name servers that support

an important extension to DNSSEC operation called edns-client-subnet (ECS)

automatically.

DNS TOOLS: NSLOOKUP, DIG, AND DRILL

The Berkeley Internet Name Domain (BIND), developed for the Unix environ-

ment, is both resolver and name server. When BIND is running as name server,

the process is named. Entire books have been written about DNS and BIND, so

this chapter can only look at a few of the things that can be explored with a few

simple DNS tools and utilities.

BIND configuration statements for a zone are in named.conf, usually found

in /etc—where the name servers to be contacted (in resolv.conf) are also

located. A “hints” file (variously named named.ca, named.root, or root.cache)

has information about the root servers and essentially “primes” the DNS cache

at start-up.

The nslookup utility program allows a user to interact with a DNS name

server directly. Options allow the user to display detailed query and response

information as needed. Originally a testing tool, nslookup functions in both inter-

active and non-interactive mode. Today, the use of nslookup is deprecated, and it

is not included in many operating system distributions. Its functionality has been

taken over by dig and host.

The Domain Internet Groper (dig) DNS query tool is more general than

nslookup, and is often used with other tools. It has a consistent output format that

is easily parsed with other programs, and is available for Windows.

Over time, dig developed a distinct “feature sprawl” that offended some who

favored clean and mean Internet tools. Drill is another tool similar to dig, but

with varying levels of detail. The examples in this chapter will use dig as well as

nslookup, if only because of the familiarity of the nslookup format.

DNS IN ACTION
Putting a functioning DNS system on the Illustrated Network will allow us to do

things such as ping winsrv1.booklab.englab.jnpr.net instead of having to know

602 CHAPTER 23 The Domain Name System

the IP address and use ping 10.10.11.111. We’ll go against common wisdom

and make a Windows system (winsrv1) our primary DNS server, and we will use

the FreeBSD server (bsdserver) as the secondary DNS for LAN1 and LAN2.

The Windows used in the first edition of this book did not support DNS natively

(some version of Windows do now), so we used a GUI-based DNS server pack-

age called SimpleDNS instead of BIND.

Once DNS is up and running, we have to ensure that all hosts know where to

find it. On lnxclient, and most Unix hosts, we just add them to the /etc/
resolv.conf file.

search booklab.englab.jnpr.net englab.jnpr.net jnpr.net
nameserver 10.10.11.111
nameserver 10.10.12.77
Now, let’s see how DNS works to find local hosts.

[root@lnxclient admin]#nslookup
Note: nslookup is deprecated and may be removed from future releases.
Consider using the 'dig' or 'host' programs instead. Run nslookup with
the '-sil[ent]' option to prevent this message from appearing.
. winsrv1
Server: 10.10.11.111
Address: 10.10.11.111#53
Name: winsrv1.booklab.englab.jnpr.net
Address: 10.10.11.111
. winscli1
Server: 10.10.11.111
Address: 10.10.11.111#53
Name: wincli1.booklab.englab.jnpr.net
Address: 10.10.11.51
. bsdserver

Server: 10.10.11.111
Address: 10.10.11.111#53
Name: bsdserver.booklab.englab.jnpr.net
Address: 10.10.12.77
.

Note the “warning” about continued use of nslookup. But it still works. Of

course, if we pause the DNS on winsrv1, we can still get a response from

bsdserver (as long as a zone transfer has taken place).

. lnxserver
Server: 10.10.12.77
Address: 10.10.12.77#53
Non-authoritative answer:
Name: lnxserver.booklab.englab.jnpr.net
Address: 10.10.11.66

603DNS in Action

Simple DNS has a nice GUI, in contrast to the text files used in most Unix

DNS versions (as shown in Figure 23.4).

The Ethereal capture in Figure 23.5 shows the utter simplicity of the DNS

message exchanges. There’s even a nice log of these messages, as shown in

Figure 23.6 (it also tracks DHCP leases when dynamic DNS is used).

Now we can finally ping on the Illustrated Network the “normal” way.

[root@lnxclient admin]# ping wincli1.booklab.englab.jnpr.net
PING wincli1.booklab.englab.jnpr.net (10.10.11.51) 56(84) bytes of data.
64 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_

seq=1 ttl=126 time=0.768 ms
64 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_

seq=2 ttl=126 time=0.283 ms
64 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_

seq=3 ttl=126 time=0.285 ms
64 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_

seq=4 ttl=126 time=0.259 ms
64 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_

seq=5 ttl=126 time=0.276 ms
64 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_

seq=6 ttl=126 time=0.244 ms
64 bytes from wincli1.booklab.englab.jnpr.net (10.10.11.51): icmp_

seq=7 ttl=126 time=0.259 ms
^C
--- wincli1.booklab.englab.jnpr.net ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 8080ms
rtt min/avg/max/mdev = 0.244/0.325/0.768/0.158 ms
[root@lnxclient admin]#

LAN1 is also running a DNS server on lnxserver, and to keep the configura-

tion very simple only functions as a non-authoritative server. The configuration is

short and sweet:

lnxserver$ cat /etc/named.conf
options {

directory "/var/named";
};
// this is a caching only name server zone configuration
zone "." {

type hint;
file "named.ca";

};
zone "0.0.127.in-addr.local";

type master;
file "named.local";

};

604 CHAPTER 23 The Domain Name System

FIGURE 23.4

DNS records on winsrv1 using a GUI. Note the various record types (the name servers in

particular).

FIGURE 23.5

DNS server reply. Note that the question field shows up as “queries.”

605DNS in Action

The two zone statements only point to the root servers on the Internet (in the

hints file named.ca) and make this server the master for its own loopback address.

These two zones appear in all name server configurations.

We should also limit the hosts from which recursion can be performed on the

caching name server. Otherwise, it might get used as a denial-of-service ampli-

fier. That section would be:

allow-recursion { 127.0.0.1;
10.10.11.0/24;
};

We’ll point to the lnxserver name server on wincli1 on LAN1 and use nslook-

up to verify that we can still find the Internet name servers. At the interactive

DNS prompt (.), we’ll set the type of query to send to ns for name servers and

we will look for “com.”

This is the root of the entire “.com” Domain Name Space (note that we ask

for com. and not .com without the ending dot). Otherwise, the system would

append a suffix and try to find com.booklab.englab.jnpr.net and return an error

(unless we did have a system named “com” on the network).

. com.
Server: lnxserver.booklab.juniper.net
Address: 192.168.27.14

FIGURE 23.6

DNS server log showing the history of queries and responses.

606 CHAPTER 23 The Domain Name System

Non-authoritative answer:
Com nameserver = f.gtld-servers.net
Com nameserver = g.gtld-servers.net
Com nameserver = h.gtld-servers.net
Com nameserver = i.gtld-servers.net
Com nameserver = j.gtld-servers.net
Com nameserver = k.gtld-servers.net
Com nameserver = l.gtld-servers.net
Com nameserver = m.gtld-servers.net
Com nameserver = a.gtld-servers.net
Com nameserver = b.gtld-servers.net
Com nameserver = c.gtld-servers.net
Com nameserver = d.gtld-servers.net
Com nameserver = e.gtld-servers.net

a.gtld-servers.net internet address5198.41.0.4
a.gtld-servers.net AAAA IPv6 address52001:503:ba3e::2:30
b.gtld-servers.net internet address5192.228.79.201
b.gtld-servers.net AAAA IPv6 address52001:500:84::b
c.gtld-servers.net internet address5192.33.44.12
c.gtld-servers.net AAAA IPv6 address52001:500:2::c
d.gtld-servers.net internet address5192.7.91.13
d.gtld-servers.net AAAA IPv6 address52001:500:2d::d
e.gtld-servers.net internet address5192.203.230.10
e.gtld-servers.net AAAA IPv6 address52001:500:a8::e
f.gtld-servers.net internet address5192.5.5.241
f.gtld-servers.net AAAA IPv6 address52001:500:2f::f
g.gtld-servers.net internet address5192.112.36.4
g.gtld-servers.net AAAA IPv6 address52001:500:12::d0d
h.gtld-servers.net internet address5198.97.190.53
h.gtld-servers.net AAAA IPv6 address52001:500:1::53
i.gtld-servers.net internet address5192.36.148.17
i.gtld-servers.net AAAA IPv6 address52001:7fe::53
j.gtld-servers.net internet address5192.58.129.30
j.gtld-servers.net AAAA IPv6 address52001:503:c27::2:30
k.gtld-servers.net internet address5193.0.14.129
k.gtld-servers.net AAAA IPv6 address52001:7fd::1
l.gtld-servers.net internet address5199.7.83.42
l.gtld-servers.net AAAA IPv6 address52001:500:9f::42
m.gtld-servers.net internet address5202.12.27.33
m.gtld-servers.net AAAA IPv6 address52001:dc3::35

There are 13 servers, A through M, on the first part of the list. But instead of

being called “root servers” these are “gltd servers.” GLTD stands for generic top-

level domains (sometimes seen as gTLD), and that’s what the traditional Internet

host name endings such as .com, .mil, .org, and so on are in DNS. There are

also ccTLDs (country code TLDs), such as .fr for France and .ca for Canada.

607DNS in Action

Note that most GTLD servers return AAAA record types, showing that the A6

and DNAME records (once so promising) are obsolete. We’re not supposed to

use nslookup (dig is not built into Windows, but can be installed as freeware).

Let’s see what dig can do, this time on the FreeBSD client.

bsdclient# dig
; ,, .. DiG 8.3 ,, ..

;; res options: init recurs defnam dnsrch
;; got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 10624
;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13
;; QUERY SECTION:
;; ., type = NS, class = IN

;; ANSWER SECTION:
. 12h46m16s IN NS d.root-servers.net.
. 12h46m16s IN NS a.root-servers.net.
. 12h46m16s IN NS h.root-servers.net.
. 12h46m16s IN NS c.root-servers.net.
. 12h46m16s IN NS g.root-servers.net.
. 12h46m16s IN NS f.root-servers.net.
. 12h46m16s IN NS b.root-servers.net.
. 12h46m16s IN NS j.root-servers.net.
. 12h46m16s IN NS k.root-servers.net.
. 12h46m16s IN NS l.root-servers.net.
. 12h46m16s IN NS m.root-servers.net.
. 12h46m16s IN NS i.root-servers.net.
. 12h46m16s IN NS e.root-servers.net.

;; ADDITIONAL SECTION:
d.root-servers.net. 12h46m16s IN A 128.8.10.90
a.root-servers.net. 12h46m16s IN A 198.41.0.4
h.root-servers.net. 12h46m16s IN A 128.63.2.53
c.root-servers.net. 12h46m16s IN A 192.33.4.12
g.root-servers.net. 12h46m16s IN A 192.112.36.4
f.root-servers.net. 12h46m16s IN A 192.5.5.241
b.root-servers.net. 12h46m16s IN A 192.228.79.201
j.root-servers.net. 12h46m16s IN A 192.58.128.30
k.root-servers.net. 12h46m16s IN A 193.0.14.129
l.root-servers.net. 12h46m16s IN A 198.32.64.12
m.root-servers.net. 12h46m16s IN A 202.12.27.33
i.root-servers.net. 12h46m16s IN A 192.36.148.17
e.root-servers.net. 12h46m16s IN A 192.203.230.10

;; Total query time: 1 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 10.10.11.66
;; WHEN: Fri Feb 22 10:10:00 2008
;; MSG SIZE sent: 17 rcvd: 449

bsdclient#

608 CHAPTER 23 The Domain Name System

That’s a lot more detailed information, and it doesn’t use an interactive

prompt. By default, dig looks for root NS records and serves up flags, TTL infor-

mation (in user-friendly units), and so on. Let’s look at a more complete

(or realistic) example and look for the IP address of the server for www.amazon.

com (perhaps so you can prepare to order more copies of this book).

bsdclient# dig www.amazon.com
; ,, .. DiG 8.3 ,, .. www.amazon.com
;; res options: init recurs defnam dnsrch
;; got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 10904
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUERY SECTION:
;; www.amazon.com, type = A, class = IN

;; ANSWER SECTION:
www.amazon.com. 1m7s IN A 207.171.175.35

;; Total query time: 95 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 10.10.11.66
;; WHEN: Fri Feb 22 10:40:17 2008
;; MSG SIZE sent: 32 rcvd: 48

dig got us an answer, but not an authoritative one (AUTHORITY: 0). To get the

authoritative answer to the Amazon Web site, and not something from cache,

we’ll have to find the Amazon name servers and ask one of them.

bsdclient# dig www.amazon.com ns
; ,, .. DiG 8.3 ,, .. www.amazon.com ns
;; res options: init recurs defnam dnsrch
;; got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 44598
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1

;; QUERY SECTION:
;; www.amazon.com, type = NS, class = IN

;; ANSWER SECTION:
www.amazon.com. 21h7m55s IN NS ns-40.amazon.com.
www.amazon.com. 21h7m55s IN NS ns-30.amazon.com.
www.amazon.com. 21h7m55s IN NS ns-20.amazon.com.
www.amazon.com. 21h7m55s IN NS ns-10.amazon.com.

;; ADDITIONAL SECTION:
ns-40.amazon.com. 21h7m55s IN A 207.171.169.7
;; Total query time: 1 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER: 10.10.11.66
;; WHEN: Fri Feb 22 10:38:37 2008
;; MSG SIZE sent: 32 rcvd: 128

609DNS in Action

http://www.amazon.com
http://www.amazon.com

Amazon has four name servers (note we found these answers cached, because

of the AUTHORITY: 0). We’ll ask ns-40 about Amazon’s Web site:

bsdclient# dig @ns-40.amazon.com www.amazon.com A
; ,, .. DiG 8.3 ,, .. @ns-40.amazon.com www.amazon.com A
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 6717
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUERY SECTION:
;; www.amazon.com, type = A, class = IN

;; AUTHORITY SECTION:
www.amazon.com. 1m7s IN A 207.171.166.48

;; Total query time: 3 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER:
204.74.101.1
;; WHEN: Fri Feb 22 10:32:52 2008
;; MSG SIZE sent: 32 rcvd: 112

Now AUTHORITY: 1 appears. It’s nice to know that Amazon’s own name server

is authoritative for itself. But let’s not get too worried about authoritative answers.

Cached information is usually just as good. In fact, look what happens when we

repeat the query.

bsdclient# dig @ns-40.amazon.com www.amazon.com A
; ,, .. DiG 8.3 ,, .. @ns-40.amazon.com www.amazon.com A
; (1 server found)
;; res options: init recurs defnam dnsrch
;; got answer:
;; -..HEADER,,- opcode: QUERY, status: NOERROR, id: 52895
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUERY SECTION:
;; www.amazon.com, type = A, class = IN

;; ANSWER SECTION:
www.amazon.com. 1m7s IN A 207.171.175.35
;; Total query time: 91 msec
;; FROM: bsdclient.booklab.englab.jnpr.net to SERVER:
207.171.169.7
;; WHEN: Fri Feb 22 10:55:29 2008
;; MSG SIZE sent: 32 rcvd: 48

Isn’t the ns-40 server still authoritative? Sure, but our earlier query just

popped that information into the local cache. Why fetch up an authoritative reply

610 CHAPTER 23 The Domain Name System

when there’s one just as good in cache? Caching can be a nuisance when trying

to “force” authoritative answers, especially across the Internet.

Dig has been criticized for feature bloat. For comparison, the host DNS utility

retains the clean and sparse Unix output philosophy.

bsdclient# host www.amazon.com
www.amazon.com has address 207.171.166.102
bsdclient#

Even at its most verbose, host is not as forthcoming as the other utilities.

bsdclient# host -v www.amazon.com ns-40.amazon.com
Using domain server:
Name: ns-40.amazon.com
Addresses: 207.171.169.7

Trying null domain
rcode = 0 (Success), ancount=1
The following answer is not verified as authentic by the server:

www.amazon.com 67 IN A 207.171.175.29

This has been by no means an exhaustive look at how DNS and DNSSEC

acts. For more information, the excellent DNS and BIND, 5th Edition by Cricket

Liu and Paul Albitz (O’Reilly Media) should be considered definitive.

QUESTIONS FOR READERS

FIGURE 23.7

A DNS server reply message parsed by Wireshark.

611Questions for Readers

Figure 23.7 shows some of the concepts discussed in this chapter and can be used

to help you answer the following questions.

1. How many questions (queries) are usually present in a DNS request?

2. Is the message in the figure a query or a response?

3. What are the host names of the client and the DNS server on the Illustrated

Network that correspond to the IP addresses in the figure?

4. The flag field value is 0x8580. Is the DNS server authoritative for the zone?

5. Based on the flag field value, is recursion desired and available?

612 CHAPTER 23 The Domain Name System

CHAPTER

24File Transfer Protocol

WHAT YOU WILL LEARN

In this chapter, you will learn how FTP provides a method to move files around the
Internet. We’ll examine various aspects of FTP as a protocol and as an application,
showing how commands translate to protocol actions, which tend to be masked when
using point-and-click GUI interfaces.

You will learn about the differences between FTP’s active and passive modes of
operation. We’ll discuss how security concerns affect the operation of FTP.

The original Internet boasted three applications: electronic mail, remote computer

access, and remote file access. Over time, not only have these three been joined

by a host of others but the original applications have evolved to keep pace with

expansion of the Internet and the environment of the modern world. As a simple

example of this trend, these applications have all moved beyond their simple com-

mands typed in at a prompt to graphical front ends. These GUIs make the applica-

tions more accessible to novices, but at the same time mask the details of protocol

operation from users. Yet in most cases the original protocols are still there,

running behind the scenes, as this look at the File Transfer Protocol (FTP) will show.

FTP transfers a copy of a file. The original file is usually still present on the

source host, available for copying over and over as remote users request it. Copying

files between two different computer systems has always been more difficult than it

seems. Today, most users are familiar with the differences between Windows file for-

mats and those used by Apple, which is why one can’t usually take a DVD or CD

from one and load it on the other. When other file systems are considered, such as

the varieties of Unix and older formats used by minicomputer and mainframe vendors

(many of which could not be copied between computer models from the same ven-

dor), it is no wonder the FTP is one of the most elaborate and robust applications in

TCP/IP (even though format conversion is much less of a concern than it used to be).

OVERVIEW
Of all the applications covered in this book, FTP is the one we’ve used most on the

Illustrated Network. Whenever we had software to install, capture files to consolidate,

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00024-2

© 2017 Elsevier Inc. All rights reserved.
613

http://dx.doi.org/10.1016/B978-0-12-811027-0.00024-2

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177

FTP
Client

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111

FTP
Server

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 24.1

FTP client and servers on the Illustrated Network use Unix-based and Windows hosts.

614 CHAPTER 24 File Transfer Protocol

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166

FTP
Client

LAN2: 10.10.12.52

FTP
Server

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

AS 65527

Global Public
Internet

615Overview

or screen images to transfer, we used FTP to move them around. Every server device

had a different FTP package installed, from the “native” FreeBSD and Linux CLI ver-

sion to a couple of different GUI FTP servers for Windows.

That said, the “experimental” nature of the Illustrated Network should be

noted. FTP is still useful for file transfers on the global public Internet (especially

a form known as anonymous FTP), but in the real world it’s better practice to use

an authenticated form of file transfer such as SFTP or SCP (discussed at the end

of this chapter). Today, of course, the highly publicized concerns about intellec-

tual property, peer-to-peer sharing of copyrighted content, and the political sensi-

tivity of data and emails stored on private servers override all considerations

about whether or not a server should allow easy FTP or not. Nevertheless, FTP is

worth exploring as a foundational protocol of the Internet, not as a current best

practice. This is one reason the chapter still uses very basic examples and older

shareware: security concerns have changed many things.

Let’s explore the basics of FTP operation in a little more detail. This chapter

makes FTP servers out of winsrv1 and winsrv2. We’ll access them from bsdcli-
ent and lnxclient, as shown in Figure 24.1.

The CLI versions of FTP depend on commands, of course. The GUI version

depends on commands as well, but these are often hidden from the user (some

show the commands executed after you click on a button or icon). This is not an

FTP tutorial, and an FTP application’s commands are not part of the FTP proto-

col, but this will give a feel for the number of things FTP can do. You can look

at the commands a client can use to tell the servers what to do in FreeBSD and

Linux. These are the FTP help command listings. The following is FreeBSD:

bsdclient# ftp
ftp.. help
Commands may be abbreviated. Commands are:

! chmod ftp ls msend proxy rhelp system
$ close get macdef newer put rmdir tenex
Account cr gate mdelete nlist pwd rstatus trace
Append debug glob mdir nmap quit runique type
Ascii delete hash mget ntrans quote send umask
Bell dir help mkdir open recv sendport user
Binary disconnect idle mls page reget site verbose
Bye edit image mode passive rename size ?
Case epsv4 lcd modtime preserve reset status
Cd exit less more progress restart struct
Cdup form lpwd mput prompt restrict sunique
ftp..

The list given by Linux is similar, but not the same. Most of the commands

appear in both lists, but 6 are unique to Linux and 11 are unique to FreeBSD.

Some are quite handy, such as the ability in FreeBSD’s FTP to preserve the

modification timestamp on downloaded files. Usually, the “extra” commands are

used to determine how files are handled before or after they are transferred. The

actual session commands are fairly consistent, and they both get the job done.

616 CHAPTER 24 File Transfer Protocol

The biggest difference in FTP application-level operation is between the “reg-

ular” use of the port command and the use of the passive (PASV) command.

Until recently, it was the server that supplied the port number assignment to use

for the data connection and then opened the connection. But in passive mode the

port number and open command used for the data connection is supplied by the

client instead of the server, mainly to satisfy firewall rules and still allow FTP to

function. We’ll talk more about this later in this chapter, because it can cause pro-

blems when firewalls are in use, which should be always.

First, let’s see if the FreeBSD or Linux versions of Unix differ in how their

FTP client implementations handle the PASV mode. In both cases, we’ll fetch the

same file from the FTP server running on winsrv1.

PORT AND PASV

In both FreeBSD and Linux, passive mode is the default. The FTP passive com-

mand is a toggle that turns the mode on and off as it is entered.

ftp. passive
Passive mode off.
ftp. passive
Passive mode on.
ftp.

The following shows a little 30,000-byte file called testfile.zip from the

CLI on FreeBSD and Linux. This example uses a plain text password, but only

for instructional purposes.

bsdclient# ftp
ftp. open 10.10.11.111
Connected to 10.10.11.111.
Name (10.10.11.111:admin): walter
Password: (not shown)
Remote system type is UNIX.
Using binary mode to transfer files.
ftp. get testfile.zip
local: testfile.zip remote: testfile.zip
227 Entering Passive Mode (10,10,11,111,7,69).
150 Opening data connection for testfile.zip.
100%
|���
���������������������������| 30642 00:00 ETA
30642 bytes received in 0.10 seconds (306.08 KB/s)
ftp.

FTP FEATURES
Most features that you get by default in some FTP applications (such as the transfer progress “tick

marks”) must be explicitly turned on in other FTP implementations.

617Overview

We like the fact that the client shows we are in passive mode and shows the port

number that will be used to open the data connection to the server. We also like the

tick mark progress bar and the statistics displayed. Let’s look at what we get in Linux:

[root @lnxclient admin]# ftp
ftp. open 10.10.11.111
Connected to 10.10.11.111.
500 'AUTH': command not understood.
500 'AUTH': command not understood.
KERBEROS_V4 rejected as an authentication type
Name (10.10.11.111:admin): walter
Password: (not shown)
Remote system type is UNIX.
Using binary mode to transfer files.
ftp. get testfile.zip
local: testfile.zip remote: testfile.zip
227 Entering Passive Mode (10,10,11,111,7,80).
150 Opening data connection for testfile.zip.
226 File sent ok
30642 bytes received in 0.0065 seconds (4.6e+03 Kbytes/s)
ftp.

Linux is more terse and tries to use Kerberos (a more secure authentication

method), going back to simple userID and password only when it has to. We are

comparing variants of the default FTP client on these systems rather than some-

thing built into the systems themselves or a high-quality FTP application.

However, we’ll look at the packet capture as well.

Let’s see what these exchanges look like when captured by Wireshark.

Figure 24.2 shows the packets from the time the user logs into the server until

that data connection is used.

FIGURE 24.2

FTP passive using FreeBSD, showing that the client initiates the data connection.

618 CHAPTER 24 File Transfer Protocol

It is reassuring to note that the client does indeed use the port expected by the

server (73 256=1792+98=1890), although the port is not in the currently accepted

range for these ports. Figure 24.3 shows the same using the Linux client.

As expected with an application as widely used and as venerable as

FTP, there are only a few differences here and there. Note that the

Windows file server identifies itself as a “Unix Type” file server. FreeBSD

tries an initial EPSV, the RFC 2428 extended passive command for IPv6,

network address translation (NAT) environments, and FTP. (We’ll talk all

about EPSV later in the chapter.) It then uses, as Linux does from the start,

the PASV command.

Linux is more in line with current client port usage conventions, using 33371

rather than FreeBSD, which still is using four-digit port numbers. In both cases, the

data transfer does not use the well-known port 20 on the server side.

FTP AND GUIS
When it comes to Windows, winsrv1 is running the FTP package Fastream and

winsrv2 is running FileZilla. We don’t recommend these packages: they were just

the first “shareware” ones we found when looking on the Web. Again, given the

history of vulnerabilities in FTP servers and the possible consequences of having

a server subverted you should not run random FTP software found on the Internet

except in tightly controlled circumstances like these.

The Fastream NETFile FTP server is also an HTTP Web server and is free for

personal use. It has a nice logging capability, which can display on-screen and

save to a file at the same time. This is shown in Figure 24.4.

FileZilla has the most impressive array of log-in variations, as shown in

Figure 24.5. We’ll say more about SSL and SSH in later chapters. SFTP solves

many of the problems running FTP with tunnels and NAT can cause.

FIGURE 24.3

FTP passive using Linux. The port numbers are more in line with current practice.

619FTP and GUIS

FIGURE 24.4

Fastream FTP logging. Note the amount of detail provided.

FIGURE 24.5

FileZilla FTP log-in variations. SFTP is part of SSH2, but is a separate protocol.

620 CHAPTER 24 File Transfer Protocol

In addition, almost all Web browsers can handle FTP as well as HTTP, the

Web protocol. This is part of the “universal client” role of the browser.

For example, if we use the Web browser on winsrv1 to “visit” the FTP server

on winsrv2 (ftp://winsrv2), we are still asked to log in (no anonymous user is

defined on winsrv2, but if it had been, no log-in screen would appear. The log-in

request is shown in Figure 24.6.

But once we log in properly, we will get a listing of the default FTP directory.

This directly, C:\NF Root, contained a series of Wireshark capture files when this

was done (as shown in Figure 24.7).

FTP BASICS

FTP was defined in RFC 959 and updated in RFC 2228, RFC 2640, RFC 2773,

RFC 3659 and several others (be careful of the errata). One major difference

between FTP and almost every other application is the fact that FTP employs not

one but two ports between client and server. One explanation is that there is

always an available control connection to quickly countermand actions that have

unintended or unexpected results. But RFC 959 simply notes that the control con-

nection essentially uses the remote access telnet protocol, leading one to believe

that the developers wanted to use something already existing.

FIGURE 24.6

FTP browser log-in screen, showing how verbose a GUI can be compared to CLI

implementations.

621FTP and GUIS

ftp://winsrv2

The FTP control connection is set up in the usual client�server fashion. That

is, an FTP server process (such as ftpd) is listening for clients’ connection

requests. The number of simultaneous clients an FTP server can accept varies and

is usually a configurable parameter, but limits well above 100 are not unusual.

The FTP server requires a log-in from the user, and in some cases servers

allow a special log-in for anonymous FTP. The user is supposed to use their email

address as a password, a primitive auditing measure. Anonymous FTP implemen-

tations used to allow users to simply press Enter and leave the anonymous pass-

word field blank, but many FTP implementations now demand at least something

at the password prompt. Some do not allow more creative substitutes for an email

address, and many FTP servers check for things such as the presence of dots and

the at sign (@) to try to enforce some semblance of honesty. In many cases, the

FTP server will accept a similar term such as guest or visitor. The point behind

anonymous FTP is that users are not required to have a valid user ID or password

on the remote system in order to be able to access files in some directories.

Of course, there are file areas on the FTP server that should only be accessed

by authenticated users of the remote system. Private IDs can be combined with

anonymous FTP to protect certain areas of the file system while allowing public

access to others. Of course, this does not stop people from trying to access files

FIGURE 24.7

Browser FTP listing, showing how a browser can act as a “universal client.”

622 CHAPTER 24 File Transfer Protocol

they had no business seeing, but if the file system permissions are set up correctly

(or at all), FTP is highly secure. However, the best way to prevent access to sensi-

tive files is not to put them on an FTP server with public access in the first place.

The well-known port of the control connection is TCP port 21. The client runs

the FTP client program and uses an ephemeral port to begin the interaction with the

server. This connection asks for the user ID and password, anonymous or not, and

is nothing more than a normal remote log-in session using the Telnet application.

Once logged in, the user is placed in a default file system directory. Navigation

outside this directory might be permitted, but usually there’s a good reason to direct

a user to this particular directory, and thus outside access should be unnecessary.

FTP COMMANDS AND REPLY CODES

Users are sometimes surprised to see that FTP employs a very rich protocol all

by itself. When run in interactive mode from the command line, FTP supplies

its own prompt (like DNS) and supplies users with return codes for everything

they type in.

The client and server have a conversation over the control connection, with

the user at the client typing simple commands and sending them to the server pro-

cess over the control connection. Some of the more common and helpful FTP

commands are outlined in Table 24.1. These are the commands users type. But

FTP sends four-character representations of these commands. For example, a get
is a RETR (retrieve) and a put is STOR (store).

Table 24.1 Common FTP Commandsa

Command Meaning

Open Create an FTP connection between the two hosts.
Close Close an FTP connection between two hosts.
Bye End the FTP session.
Get Retrieve a remote file from the remote host.
Put Store a file on the remote host.
Mget Get multiple files using wildcards (for example, mget a� fetches all files that

being with the letter “a” in the current directory).
Mput Put multiple files on the remote host using wildcards.
Glob Enable wildcard interpretation. This is usually on by default.
Ascii The file transferred is in ASCII representation (a common default).
Binary The file is in image (binary) format (sometimes the default), and is useful for

programs and formatted word processing files.
Cd Change the directory on the remote host.
Dir Get a directory listing from the remote host.
Ldir Get a directory listing from the local host.
Hash Display hash marks (dots) to show file transfer progress.

aThese commands are not part of the FTP protocol.

623FTP and GUIS

The server receives the command, takes the appropriate action (if allowed), and

returns a numeric reply code. The reply codes are translated by the FTP client into

text that can be understood easily and displayed at the prompt. The displayed text

can vary from system to system because each FTP client implementation is free to

interpret the reply codes, within reason, and display that text to the user. The mean-

ings of the first and second digits of the reply codes are outlined in Table 24.2.

The third digit adds details. For example, the reply code 500 means that there

is a syntax error and an unrecognized command has been sent to the server. The

reply code 501 means the syntax error is in the command arguments. If the reply

code generates more than one line at the client (for example, if the valid argu-

ments are listed), the reply code appears on the first line with a hyphen and is

repeated at the end of the text.

The user then can type in another command. Common FTP replies, including

the text that could be displayed with them, are:

• 125 Data connection open and transfer starting

• 200 Command okay

• 214 Help message (text follows)

• 331 User name okay, password required

• 425 Unable to open data connection

• 452 Error writing file

• 500 Command syntax error

• 501 Argument syntax error

Sessions end with the user typing bye or quit at the FTP prompt. The server

should respond with a 221 reply, usually displayed as 221 Goodbye. In some cases, the

Table 24.2 FTP Protocol Reply Codes

Reply Meaning

1xx Positive response, but preliminary. Action begun, but wait for another reply
before sending further commands.

2xx Positive completion. New commands can be sent.
3xx Positive response, but intermediate. Command accepted, but another command

is required to complete the action.
4xx Negative reply, but transient. Action did not take place, but the condition is

temporary and the same command can be used again.
5xx Negative reply, permanent. Action did not take place, and cannot be done. The

command should not be sent again in that form.
x0x Syntax error.
x1x Information.
x2x Reply refers to control or data connections.
x3x Reply refers to authenticating and accounting commands, such as login.
x4x Unspecified.
x5x File system status information.

624 CHAPTER 24 File Transfer Protocol

server simply disappears, and one client we’ve used groused in the session log You
could at least say Goodbye. But it is a sign of the robustness and stability of FTP

that such breaches of protocol seldom mean that things do not work properly overall.

One advantage of running FTP from the command line instead of from a GUI

is that the user can type in the entire array of FTP commands, which typically

number 50 or more. GUI point-and-click clients can be prettier and easier, but do

not always implement the full suite of FTP commands. (Some of the commands

are seldom used or necessary today, such as glob, but might come in handy in

certain situations.)

FTP DATA TRANSFERS

At some point in the FTP conversation between client and server port 21, the user

will use a command that will trigger a file transfer. The transfer might not be the

actual file itself, such as with get or put. Often, the user requests a file directory

listing from the present working directory on the server with the dir command,

usually to ensure that the desired file is there or to check the spelling after the

first transfer attempt has failed. These actions require the server to set up an FTP

data connection. (The control connection is just a Telnet remote access session

and is inappropriate for bulk data transfer anyway.) The FTP model of control

and data connections is shown in Figure 24.8.

Consider what happens when a user at an FTP client types in the dir command

to receive a list of the contents of the remote host’s directory. This requires the

FTP Client

User

FTP Server

FTP Server
Protocol

Data Transfer
Protocol

TCP Port

20
File

System
File

System

TCP Port

21

FTP Client Protocol

Data Transfer
Protocol

Data
Connection

Control
Connection

TCP Port

TCP Port

7894

8639

User interface,
GUI or CLI

FIGURE 24.8

FTP control and data connections, showing how both are used in an FTP application.

625FTP and GUIS

establishment of a data connection on the part of the server. The server normally

uses well-known TCP port 20 as the server end of the data connection. But how

does the client know which ephemeral port to listen on for the data?

The server sends an FTP PORT command over the control connection to the cli-

ent with this information. This tells the client which port should be used at the cli-

ent end for the data connection. So that there is no misunderstanding, the server

includes the client’s IP address as well. Thus, the command really supplies socket

information. The PORT command is sent over the control connection and is for-

matted as if it were data to appear on a Telnet terminal, including control charac-

ters such as \n (new line).

The port number is expressed as two independent numbers. The first is multi-

plied by 256 and added to the second (which must be in the range 0�255) to give

the client’s port number. So, if the PORT command ends with the numbers 14,
234 (excluding the control characters) the port number the client should use for

the data connection is 3818 (143 256=3584+234=3818).

The client issues a passive open on port 3818, and the FTP server now sends a

TCP SYN message to open the TCP session and send the dir listing as requested.

The server usually closes the data connection as soon as the transfer is complete.

The control connection process of obtaining a simple dir listing from a

remote FTP server is shown in Figure 24.9. Note that the client issues FTP com-

mands and the server replies with codes.

The activity on the data connection is shown in Figure 24.10. Although in

many cases the data connection uses well-known port 20 on the server, it does

not have to.

PASSIVE AND PORT

Using the PORT command is not the only way the port used for the FTP data

connection is determined. Today, the PORT command is considered in many

cases to be an unacceptable security risk to an organization. This is because

the PORT command requires an external FTP server to open a connection to

an internal client. It is possible for a firewall to support incoming TCP con-

nections for FTP, but with the common use of network address translation

(see Chapter 27) it is simpler to use passive. (In larger installations using

firewalls and NAT, collisions among the incoming port numbers are common

anyway.)

FTP PASSIVE
FTP supports two different methods of data connection establishment. In the normal active mode

using PORT, the server (1) initiates the data connection, then (2) the client asks for a data transfer

and (3) the client responds. In passive mode (PASV), the client tells the server that the client will
initiate the data connection and the server responds. Passive mode allows the transfer to proceed

when modern client devices are prohibited from accepting incoming data connections.

626 CHAPTER 24 File Transfer Protocol

(Starts FTP to server) (Starts ftpd)

(Password
required)

(User ID and
password okay)

(Port 3818 used
on Client)

220 with server welcome message

331 Password required for User ID

230 with user logged in message

PORT 192,168,14,27,14,232

200 PORT command successful

226 transfer complete

221 Goodbye

150 opening ASCII mode

LIST

PASS with password

USER with User ID

ACK

ACK

ACK

ACK

QUIT

Client–Server Control Connection

User Types
in User ID

User Types
in Password

User Types
in ‘dir’

User Types
in ‘quit’

(Open data connection)

(Use and close data connection)

FIGURE 24.9

FTP control connection, showing how a directory listing proceeds.

CLIENT Client–Server Data Connection

Listing Displayed

SERVER

(Active open for
data connection)

TCP SYN for new connection

TCP SYN for new connection

TCP PSH with dir listing content

TCP FIN to close connection

TCP ACK for data

TCP FIN to close connection

TCP ACK

ACK
(Get dir listing)

(Active close)

FIGURE 24.10

FTP data connection. The connection does not have to use port 20 on the server.

627FTP and GUIS

Consider the implication for a user sitting at a client host on a corporate LAN.

We haven’t talked about security in any detail, but in many cases the company

will employ a firewall between internal LANs and the external world of the

Internet. The firewall’s job is to prevent malicious hackers or their code from

attacking the hosts on the internal network.

One of the ways firewalls do this is to prevent any outside devices from estab-

lishing TCP connections to any internal client hosts on the LAN (publicly

accessed servers are typically isolated, physically and logically, from purely inter-

nal hosts). Hosts accepting outside connections are seen, from the firewall’s per-

spective, as vulnerable to any number of malicious worms or viruses. Many

inexpensive firewalls also see an external FTP server’s attempt to establish a TCP

data connection to the client as a potential hostile attack. This attempt is blocked,

and the transfer fails.

The PASV command reverses the procedure, and lets the client open the data

connection to the server. Figure 24.11 shows the major difference between a

CLIENT

(Uses server port
20 for data
connection)

Send PASV command

Control Connection
on Port 4096

Control Connection
on Port 4096

Passive FTP

Control Connection
on Port 21

Control Connection
on Port 21

Active FTP

Data Connection

Open data connection

CLIENT

Data Connection

Open data connection

SERVER

(ACK Port
command)

(Handshake for
data connection to
client port 4122)

(Tell client to use
port 2020 for data)

(Handshake for
data connection to
client port 4122)

(send or receive data)(send or receive data)

(send or receive data)

(Uses server port
2020 for data
connection)

“Use Data Port 2020”

(send or receive data)

ACK

Send PORT 4122 command

SERVER

FIGURE 24.11

FTP active and passive. Note which side opens the data connection and which ports are

used in each case.

628 CHAPTER 24 File Transfer Protocol

client using the POST and PASV commands to initiate a data transfer. In both cases,

the client uses port 4122 for the data connection. However, in active mode the

server initiates the data connection and uses well-known port 20. In passive

mode, the client initiates the data connection and listens on port 2020 instead of

20 for the connection.

However, all might still not be well. Many firewalls will not allow internal

hosts to open connections to external ports that are not well known. After all, the

malicious user could be on the local LAN and attacking someone else remotely.

So, even when PASV is used the data connection set up might still fail.

More state-of-the-art firewalls will look at more than just TCP or UDP head-

ers and can figure out that an FTP session is in progress. Many will only allow

ports from a certain preconfigured pool to be used, but there is a lot of variation

in implementation.

RFC 2428 defines the EPRT and EPSV commands to be used when IPv6

addresses and NAT is in use. Some FTP implementations use these forms of PORT
and PASS by default. Network address translation can be particularly harsh on

FTP because addresses can change. Some applications, such as FTP, send IP

address and protocol ports inside messages as data. Unless NAT can change the

addresses in the data stream to agree with its other changes, the application will

fail. We’ll talk more about NAT in a later chapter, but a full discussion of the

interplay of NAT and FTP is beyond the scope of this book.

Sometimes the FTP application tries to get into the act and imposes certain

conventions on the user. One FTP implementation insists on using PASV when it

finds that private IPv4 addresses are being used, presumably because private

addresses are only used behind a firewall or when NAT is used. This particular

form of FTP also insists that the user enter the public “WAN” address space

used, which can be problematic when a purely private TCP/IP network such as

the Illustrated Network is being used! (Needless to say, this application was not

very useful on the Illustrated Network.)

FILE TRANSFER TYPES

What about the actual files that can be transferred from server to client or from

client to server? The original FTP specification listed multiple options as to file

type, embedded control characters, structure, and transmission mode. In those

days, there were many types of computer architectures. Today, those choices usu-

ally boil down to exactly two: ascii and binary. Either one can be the imple-

mentation default, but as time goes on, pure text files using ASCII are becoming

rarer and rarer, whereas files with executable code and embedded HTML format-

ting are becoming more and more common. FTP helpfully puts in line formatting

control characters if they are missing when performing an ascii transfer.

Naturally, this renders code files completely useless (although many newer FTP-

based applications make this much less of a concern).

629FTP and GUIS

Unless there is a compelling reason to do otherwise, most FTP transfers are

better off using binary (the file is transferred as a string of bits, and FTP makes

no effort to figure out what they mean). This doesn’t mean that the transferred

file will be useful, but it has a better chance than a file of program code trans-

ferred as a text note with ascii.

WHEN THINGS GO WRONG

There is a huge benefit to keeping FTP data transfers off the control connection.

The use of two connections allows users to abort a file transfer that is unintended

or out of control (a misformed mget is usually the culprit). When the client is stor-

ing a file on a server, the use of the control connection is straightforward: The cli-

ent stops sending data and sends an ABOR command to the sender on the control

connection. The interrupt key is usually cntl-C, but others are possible depending

on operating system. The ABOR command is sent as urgent TCP data to make sure

it is handled promptly by the server.

When the server receives the ABOR command on the control connection, it

should respond with 426 (transfer aborted) and 226 (abort successful) messages.

The data transfer might continue sending data, and typically does, but the client

will not acknowledge it and ignores everything received after the user abort.

There are only a few other things that can go wrong with FTP. A common

mistake is to transfer binary files as text, and some FTP servers will warn the

user if the file extension seems to indicate this might be going to happen. Other

servers assume that users know what they are doing and simply perform the

transfer.

There are two other parameters dealing with file transfer in FTP that can be

changed and might cause problems when multiple files are transferred without

restoring the settings. One is the file-structure. A transfer can use file-structure

(the name is unfortunate) or record-structure. File-structure, the usual default,

makes no assumptions about the file at all and simply views the content as a

string of bytes. Record-structure, rarely used today, means that there is a record

format to the file and is set by sending the STRU R command to the other host.

Even when the record-structure is set for the transfer, the actual formatting of

the data depends on another setting—this one is called the transmission mode.

Modes can be stream (the typical default), block, and compressed. The three

modes combine with the file-structure to give four types of file transfer formatting.

Stream mode with file-structure—The file is set as a stream of bytes, and TCP

provides data integrity. No headers or delimiters are inserted into the data

stream, and the end of the transferred file is only indicated by closing the data

connection normally. This is the most common way in which FTP works on

the Internet today.

Stream mode with record-structure—The file is sent as a string of records,

each one delimited by a 2-byte End of Record (EOR) control code (0xFF01).

630 CHAPTER 24 File Transfer Protocol

An End of File (EOF) code, 0xFF02 (or sometimes 0xFF03), is used to indicate

the end of the file to the receiver.

Block mode—The file is sent as a series of data blocks. Each block begins

with a 3-byte header containing some descriptor flags and a 2-byte length

field giving the block byte count. Flags are used to indicate EOR, EOF, and

restart.

Compressed mode—Rarely supported today because modern compression

methods have superseded this primitive function. The file is sent after

removing repeated string of bytes. Today, files are compressed outside FTP

and sent as binary data.

Finally, many FTP server implementations routinely check the domain name

of the client to make sure it is valid before allowing the connection. Reverse

DNS, as this is called, is not a robust security feature, and at times has caused

problems as well on the network. Hackers can easily use phony IP addresses, the

theory goes, but it’s more difficult (and foolish) to map it to a public domain

name and distribute the information by registering on the public DNS. This was a

problem with some early Illustrated Network file transfers because no DNS was

running on the network at all, and even when it was no Illustrated Network

domain names were registered on the Internet. But “dumber” FTP versions

worked just fine with only IP addresses.

FTP COMMANDS
One of the things that surprises people when they examine traces of FTP activity

is that the FTP commands sent and received by client and server are not the

same as the ones entered by the user at the client. We’ve already looked at some

examples (cntl-C sends an ABORT), but maybe it’s a good idea to look at them in

more detail.

Clients and servers do not have to implement all of the FTP commands, which

are often added to. What happens if a server requires the user at the client to use

an FTP command the client implementation does not support? A thorough client

will implement the quote user command, which lets the user enter the exact for-

mal command (and any parameters) necessary to continue. The input is then sent

over the control connection exactly as entered.

The six FTP commands that control a user’s access to a remote file server are

outlined in Table 24.3. The 11 FTP commands that control a user’s file access

and management functions on the remote file server are outlined in Table 24.4.

The working directory is the current directory.

The three FTP commands that set the type, structure, and mode of the file

transfer are outlined in Table 24.5. The 10 FTP commands that actually control

the file transfer are outlined in Table 24.6. Finally, the five FTP commands out-

lined in Table 24.7 supply useful information to the user.

631FTP Commands

Table 24.3 FTP Commands for File Server Access with Meaning and
Parameters

Command Meaning Parameter(s)

USER User ID User ID
PASS User password Password itself
ACCT Provide an account for charging purposes Account ID
REIN Reinitialize to the start state None
QUIT End and log out None
ABORT Abort previous command and any file transfer None

Table 24.4 FTP Commands for Remote Server File Management with
Meaning and Parameters

Command Meaning Parameter(s)

CWD Change to another directory Directory path
CDUP Change to the parent directory None
DELE Delete a file File name
LIST List file information None, or directory name, or list

of files
MKD Make a directory Directory name
NLST List the files in a directory None for current directory, or

name
PWD Show the name of the current working

directory
None

RMD Remove a directory Directory name
RNFR Rename a file (references current name) Current file name
RNTO Rename a file (references new name) New file name
SMNT Mount a different file system File system identifier
ABORT Abort previous command and any file

transfer
None

Table 24.5 FTP Commands for Transfer Parameters, with Meaning and
Parameters

Command Meaning Parameter(s)

TYPE Identify the file type
for transfer

A (ASCII), E (EBCDIC), I (binary image),
N (nonprint), T (telnet), C (ASA)

STRU File structure F (file) or R (record)
MODE Format used for

transmission
S (stream), B (block), C (compressed)

632 CHAPTER 24 File Transfer Protocol

VARIATIONS ON A THEME

Few people use the command line interface for FTP unless they have to.

However, it is common to use the CLI for instructional purposes (as done here).

But today almost all FTP client software, and many servers, use GUI interfaces to

let users simply point and click at directories and files and effect a transfer.

Almost all still allow users to watch the interplay between mouse strokes and

FTP commands and response codes, but few pay attention to them unless things

go wrong.

Table 24.6 FTP Commands for File Transfer, with Meaning and Parameters

Command Meaning Parameter(s)

ALLO Allocate enough space for the data to come Integer number
of bytes

APPE Append a local file to the remote file File names
EPSV The extended version (RFC 2428) of the PASV command,

used for IPv6 and NAT
IP address and
port

EPRT The extended version (RFC 2428) of the PORT
command, used for IPv6 and NAT

IP address and
port

PASV Supply the network address and port number that will be
used for the data connection initiated by the client

IP address and
port

PORT Supply the network address and port number that will be
used for the data connection initiated by the server

IP address and
port

REST Identify a restart marker (followed by the transfer
command to be restarted)

Marker value

RETR Get (retrieve) a file File name(s)
STOR Put (store) a file File name(s)
STOU Create a version of the file with a unique name (store

unique)
File name

Table 24.7 FTP Commands for User Information, with Meaning and
Parameters

Command Meaning Parameter(s)

HELP Gives information about server implementation None
NOOP Request “OK” reply from server None
SITE Used in the popular WU-FTP implementation from

Washington University (used in many Linux versions) to
engage server-specific commands not in the FTP
standard

None

SYST Requests that the server identify its OS version None
STAT Request connection status and parameter information

from server
None

633FTP Commands

GUI implementations of FTP tend to be much more sophisticated than their

CLI cousins, especially when it comes to security variations. The heavy use of

security on modern networks has spawned many variations of the simple FTP

control and data connection process. Most of these variations have to do with

how the user ID and password are packaged and sent from client to server, but

some are more far-reaching than that. Many commercial FTP server implementa-

tions can be set up to function in any of the following environments:

• Simple FTP

• FTP over Secure Sockets Layer and Transport Layer Security (SSL/TLS),

using implicit encryption

• FTP over SSL/TLS using explicit encryption

• FTP over TLS directly, using explicit encryption

• FTP bypassing the firewall

We’ll have much more to say about these security variations later in this

book. There is also Secure FTP (SFTP), a feature of Secure Shell 2 (SSH2). But

this is a completely different protocol than FTP, as we’ll see in Chapter 25 (on

SSH).

A NOTE ON NFS

If TCP/IP is indeed for everything, an employee at a branch bank should be able

to use common TCP/IP applications to change a customer’s information in the

central bank’s database. However, it makes no sense at all to access the master

account file, transfer a copy of it to the branch host, update it, and then load it

back up to the central location. Not only does this method transfer masses of

information not needed, but it prevents (hopefully) anyone else from updating any

other customer record at the same time.

Many applications don’t want or need remote file transfer. They just need

remote file access, usually to a particular record or even field. This is the

idea behind the Network File System (NFS), pioneered by Sun Microsystems.

NFS allows local file systems to be accessed by remote users as if they were

local users and is a nice illustration of the power and utility of the socket

interface.

NFS is actually part of an overall system that includes an extension of the

socket concept known as remote procedure calls (RPCs). RPCs are a more sophis-

ticated way of handling basic programming subroutine (or function) calls by

allowing the subprogram (the procedure) to be called on a remote system across a

network (hence the term remote procedure call).

RPCs do not use well-known ports. RPC server processes handle RPC client

requests for server connections by dynamically mapping the server ports.

In dynamic mapping, all connection requests handled by TCP go to one server

process running at the application layer instead of several. This server process is

capable of dynamically starting up the correct port server application process and

634 CHAPTER 24 File Transfer Protocol

allowing the TCP protocol to grant the connection. The single server application

process running under dynamic mapping is known as the port mapper. These port

mappers (usually run as the rpcbind process) are very common on most Unix

implementations of TCP/IP.

Another part of the NFS is the External Data Representation (XDR) standard,

a way of defining data types in terms of standard formats. The point is to allow

remote file access between different platforms, from Unix to Windows to MACs

and even more. NFS has been a part of the overall TCP/IP standardization process

since 1998.

QUESTIONS FOR READERS

Figure 24.12 shows some of the concepts discussed in this chapter and can be

used to answer the following questions.

1. Who initiates the data connection in active and passive mode, respectively?

CLIENT

ACK

Send PORT 33167 command

(send or receive data)

(send or receive data)(send or receive data)

(send or receive data)

Send PASV command

“Use Data Port 2020”

Control Connection
on Port 4096

Control Connection
on Port 4096

Control Connection
on Port 21

Control Connection
on Port 21

Active FTP

Passive FTP

Data Connection

Open data connection

CLIENT

SERVER

SERVER

Data Connection

Open data connection

FIGURE 24.12

Simplified view of active and passive data transfer modes.1

635Questions for Readers

2. In the figure, for active mode what port will the client use on the server for

data transfer?

3. In the figure, for passive mode what port will the client use on the server for

data transfer?

4. In the figure, what port will the client use for the data connection in active

mode?

5. In the figure, what port will the client use for the data connection in passive

mode? How does the server know what it is?

636 CHAPTER 24 File Transfer Protocol

CHAPTER

25SMTP and Email

WHAT YOU WILL LEARN

In this chapter, you will learn about the major architectures used to send and
receive email on the Internet. We’ll also see the five steps needed to send an email
message.

You will learn about the protocols used with email applications, especially SMTP
and POP3. We’ll also describe MIME messages and discuss the important role of
headers in email.

The Internet and TCP/IP are known to the greatest number of people through

electronic mail (email) applications. Even those who cannot tell a router from a

switch, or a packet from a frame, can check their email and send a message. A

certain percentage of users still use the Internet mainly for email.

Email was one of the original applications the Internet was created to support

(the others being file transfer and remote computer access). Things have come a

long way since the original mail application, which is still supported on many

Unix boxes:

.mail harry
We need to talk.

The modern email explosion has produced on-line ads, do-not-contact lists,

spam, spam blockers, evil attachments, impounded attachments, machine-learning

clutter filters, and dozens of other moves and countermoves that make the email

experience at once essential and yet daunting for many. Hardly anyone uses email

except through a GUI today, and the mail user agents (MUAs)—the technical

term for email client applications—are as varied as they are powerful, allowing

users to schedule meetings, reserve conference rooms, or even request a projector

for a certain time or place.

Email is a set of related and interconnected protocols that run on clients

and servers to provide the global mesh of mailboxes and readers and

writers upon which email depends. We’ll look at several scenarios for send-

ing and receiving email, using the devices on the network shown in

Figure 25.1.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00025-4

© 2017 Elsevier Inc. All rights reserved.
637

http://dx.doi.org/10.1016/B978-0-12-811027-0.00025-4

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted Pair Wiring

bsdclient lnxserver

Email
Client

Email
Client

Email
Server

wincli1

em0: 10.10.11.177 eth0: 10.10.11.66 LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

Wireless
in Home

FIGURE 25.1

Email on the Illustrated Network, showing the Unix-based hosts used on email clients and

servers.

638 CHAPTER 25 SMTP and Email

Email
Client

Email
Server

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77 eth0: 10.10.12.166 LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

AS 65527

Global Public
Internet

639SMTP and Email

In some examples, we’ll use the Unix-based host systems as email clients and

servers. We won’t leave Windows out, however. We’ll use the email client at the

home to office to show that Windows Outlook works essentially the same as older

email systems.

ARCHITECTURES FOR EMAIL
What needs to be added to the network to create the TCP/IP email system shown

in the figure? It all depends on the overall architecture used to support email, and

these have evolved through three distinct stages, all of which are still supported

today. The final stage is the general email architecture for the Internet today, and

that’s what we will be exploring in this chapter. The three architectures are:

Single shared system—The shared system could be a mainframe or

minicomputer that users access. The email administrator creates mailboxes

(restricted access files on the local hard drive) where received messages are

stored. A special user agent (UA) program creates the messages and stores

them in the user’s mailbox.

Shared systems connected by the Internet—The second architecture takes into

account the fact that users might not share the same local system. Another piece

was added to the email architecture: the message transfer agent (MTA). The UA

still handles mailboxes and messages locally, whereas the MTA handles

communications between the two systems in the usual client/server fashion.

Email clients and servers connected by the Internet—The final step is to

realize that today most users are connected to their email servers by a LAN or

WAN (dial-up or DSL) link. Because receivers are not always present (even

on a LAN), users need the services of a message access agent (MAA) to

retrieve their email from their local email server. The architecture of this final

scenario is shown in Figure 25.2, between typical users we can call “Alice”

and “Bob.” The flow shown is from Alice to Bob, but when Bob replies to

Alice the roles of client and server (as well as MTA and MAA) are reversed.

This architecture shows two systems dedicated to managing users’ email mail-

boxes and delivering email. But how does the sender’s email system know which

device is acting as the receiver’s email system? Today, special DNS records provide

this information, but in the early days of the Internet relaying was used to deliver

email. Email was routed from email system to email system in a fashion similar to

forwarding packets. Today, most email travels over the Internet from an originator’s

email system directly to the recipient’s, minimizing complexity and delay.

But email servers are not necessary for the TCP/IP email protocol, the Simple

Mail Transfer Protocol (SMTP), to operate. We can still use the original and sim-

ple Unix built-in applications (sendmail and mail) to send and retrieve email

from (for example) bsdserver to bsdclient. It’s nice to know that even today

640 CHAPTER 25 SMTP and Email

complex GUIs and massive directories are not needed to exchange email mes-

sages from the command prompt.

bsdserver# sendmail admin@bsdclient.booklab.englab.juniper.net test-
ing to 10.10.11.177
.
bsdserver#

This email is going to the admin user on bsdclient. The text of the message is

“testing to 10.10.11.177” and the text entry ends with a single period on a line by

itself. Shown in the following is what happens at the receiver, starting with the prompt

indicating that mail has arrived (the period does not appear in the received text).

You have new mail.
bsdclient# mail
Mail version 8.1 6/6/93. Type ? for help.
"/var/mail/admin": 2 messages 1 unread

1 admin@bsdserver.engl Fri Jan 18 22:38 22/1153
U 2 admin@bsdserver.engl Fri Jan 18 22:56 22/1162
& 2

UA

Alice

MTA
Client

MAA
Client

LAN/WAN

MTA
Server

Mailboxes

MTA
Server

Email System

Internet

MTA
Client

Mailboxes

MTA
Server

LAN/WAN

UA: User Agent; MTA: Message Transfer Agent; MAA: Message Access Agent

Email System

Bob

UA

FIGURE 25.2

Email over the Internet, showing the role of client and server components.

641Architectures for Email

Message 2:
From admin@bsdserver.booklab.englab.juniper.net Fri Jan 18 22:56:47
2008
Date: Fri, 18 Jan 2008 22:50:47 -0700 (PDT)
From: Administrator,admin @bsdserver.booklab.englab.juniper.net.

To: undisclosed-recipients:;
testing to 10.10.11.177
&

In this case, the mail was delivered directly from system to system. Only the

SMTP MTA was used, with a minimal UA. Figure 25.3 shows the actual delivery of

the message text itself. (Do not be concerned about the “undisclosed-recipients:”

in the To: field. The for field in the message shows that the message is for the admin
user on bsdclient.) Note that there is a lot more information carried in the message

and displayed by the receiver than was entered by the sender. We’ll talk more about

these added email headers in detail later in this chapter.

Even when a complex GUI is used as an email front end, the same basic

sequence of about 24 packets is used by SMTP to pass a small message off any-

where in the world. However, most people don’t use the command prompt for

this purpose. Modern email is more complex.

SENDING EMAIL TODAY

Today, there are five basic steps almost everyone uses to send and receive email.

Although the procedures are absolutely symmetrical, and everyone is both sender

and receiver when it comes to email, we’ll follow a message one way from one

person to another.

FIGURE 25.3

Delivery of message using SMTP. Note the embedded control characters (starting with \)

in the message body.

642 CHAPTER 25 SMTP and Email

Email Message Composition
The user accesses a GUI email user agent (UA or sometimes MUA) to create the

message. The email message contains two major parts: the header and the body.

The header contains a series of fields that describes the message and controls how

it is delivered and processed. The body of the message contains the actual infor-

mation to be sent to the recipient. There can be multiple files accompanying the

header and simple text of the message, and these are known as attachments. Most

users do little more with the header than specify the email addresses of the

intended recipients and subject line content. The UA takes care of making sure

the entire message is in the correct standard format.

Submission of Email
When the user “sends” the newly created email, the sender’s host (in a client

role) does not need to set up a TCP connection directly to the receiver’s host (in

a server role). In fact, the user can compose a message and decide to submit it for

delivery later, manually or automatically. Even when the message leaves the sen-

der’s host, the message is sent to the local email server using SMTP, and might

sit there for a while rather than being forwarded across the Internet immediately.

This allows for more efficient use of resources on the local email server.

The server might require SMTP authentication of the user before accepting the

message (we’ll talk more about authentication later).

Delivery of Email
Once the local SMTP server has accepted the email message, the email server of

the recipient(s) must be determined. DNS is used for this purpose, and the local

email server performs a DNS query to access special Mail Exchanger (MX)

records stored on a name server to provide this information. For example, an

email sent to walter@example.com might be sent to a remote email server known

as pop3.example.com. DNS provides both the name and IP address of this server.

SMTP also supports the ability to pass email messages through a specified

sequence of SMTP servers to reach the destination. The intermediate servers are

email relay agents. Relay agents are useful when a large organization has a single

email server connected to the Internet (perhaps for ease of screening incoming

messages) and yet has departments with their own email servers on each LAN.

One way or another, the message makes its way to the destination email SMTP

server that knows exactly who walter@example.com is. If the server cannot be

contacted after a certain period of time, the mail is bounced back to the sender as

undeliverable.

Email Processing
The receiving STMP server processes the incoming message, and if all seems

well, places it into the recipient’s mailbox. The message remains until the user

retrieves it. If the recipient is unknown to the receiving server, the message is

bounced back to the sender (also as undeliverable).

643Architectures for Email

Email Access and Reading
The recipient’s email application checks in periodically with the local SMTP

server to see if any mail has arrived. This checking can be either automatic or

when specifically run. If there is mail, the user can retrieve the mail, open it, and

read it, and delete it. Usually, these are all separate steps. This step does not use

SMTP, but a special mail access method and protocol such as POP3 or IMAP4

(both are used by TCP/IP MAAs).

All five of these steps are not always necessary. Some hosts act as mail ser-

vers all on their own, and the host-local-mail-server communication steps can be

bypassed. Dial-in users often compose, send, and receive email all at once when

they send mail. But usually all five steps are needed.

Four devices are involved in the five steps. They are the sender’s client, the

sender’s local SMTP mail server, the recipient’s local SMTP mail server, and the

recipient’s client. The relationship they have with one another and the protocols

the email uses are shown in Figure 25.4. Note the symmetrical nature of the com-

ponents so that two-way communication is possible.

SENDER

SMTP Client SMTP Server SMTP Server SMTP Client

User composes
email

User reads
email

Recipient’s
Client

Recipient’s Local
SMTP Server

Sender’s Local
SMTP Server

Sender’s Client

RECIPIENT

Email Editor/
Reader

POP/IMAP
Client

POP/IMAP
Server

Local Email
Storage

Server File
System

POP/IMAP
Server

Server File
System

Email Editor/
Reader

POP/IMAP
Client

Local Email
Storage

FIGURE 25.4

Email protocols and components, showing the components used to send an email

message. Note the symmetrical nature of the sender and recipient so that the receiver

can respond.

644 CHAPTER 25 SMTP and Email

Email Protocols

There are three common protocols used to deliver email over the Internet: the

Simple Mail Transfer Protocol (SMTP), the Post Office Protocol (POP), and the

Internet Message Access Protocol (IMAP). All three use TCP, and the last two

are used for accessing electronic mailboxes. Special records stored in DNS ser-

vers play a role as well, using UDP. The current version of POP is version 3

(POP3) and the current version of IMAP is version 4 (IMAP4).

Although not a protocol, there is a series of Multipurpose Internet Mail

Extensions (just MIME, never “MIMEs”) for various types of email attachments

(not just simple text). Finally, a number of related specifications add authentica-

tion to the basic email protocols. The way the protocols fit together is shown in

Figure 25.5.

As we have seen, the original SMTP was designed as a simple host-to-host

protocol. A user on one host created a message with a program called sendmail
or mail and this text was sent directly to the destination host using SMTP as a

Mail Transfer Agent (MTA). Of course, if the remote user was not running an

email server process to accept the SMTP session, there was nothing for the sender

to do but keep trying.

Modern email systems “decouple” the sender from the receiver so that email

still goes through, even when the recipient is away for two weeks (but the

messages keep piling up, just like regular mail). In addition, unlike almost

every other TCP/IP application, email operates not from host to host but from

user to user. This means that users are not required to receive email on a partic-

ular host, nor is a particular host expected to have only one user with email

MIME
AttachmentsEmail

Client

Sender

SMTP

MX Records

POP/IMAP

SMTP
Server

DNS Email
Client

Recipient

ISP A

ISP B
SMTP
Server SMTP

FIGURE 25.5

Email protocols, showing where they fit between sender and recipient.

645Architectures for Email

capabilities. (We can even pick up email for a recipient from the sending host,

and we’ll do that later.) This user “mobility” poses special challenges for email

addressing, which is why more than just a host name is required for correct

email delivery.

The solution, of course, is to add another level to the hostname, this one iden-

tifying a particular user. So, for example, walter@example.com indicates a differ-

ent mail destination than goralski@example.com. And, in fact, the actual host on

which an email user is defined is not always added to the email address (which

would yield something like walter@bsdclient.example.com). The email proto-

cols all mesh together to make this work.

There are older email address formats—FIDOnet, UUCP, email gateways (dis-

tinguished by the use of user% notations), and so on—but these are only of histor-

ical interest today. This is not to say that the evolution of email is uninteresting,

just that the history can be given very briefly and the discussion can turn to what

is actually done with email on the Internet today.

THE EVOLUTION OF EMAIL IN BRIEF

As expected with an application that has grown from a simple way to send text

messages to an almost universal tool on the Internet, the email RFCs track a

long evolutionary path as email changed with the times. In fact, email goes

back to the days before TCP/IP and the Internet formally existed—all the way

back to ARPAnet. Two very early documents, RFCs 95 and RFC 155,

described physical mailing lists for distributing documents. Then the pioneers

realized that the network itself could be used to distribute these documents,

in the form of an electronic messaging application and associated protocols. In

1971, RFC 196 described the Mail Box Protocol for sending documents for

remote printing.

By the mid-1970s, more sophisticated methods were developed, including

some based on FTP. Today, the basic protocol for TCP/IP email is defined in

RFC 821, and RFC 822 defines the format of the basic email message. RFC

974 added interactions with DNS to email transactions, and RFC 1869 added

more capabilities as SMTP Service Extensions (ESMTP). Today, everyone still

calls it SMTP, even when ESMTP is a more accurate term. Those same RFCs

are still essentially in force today, although heavily added to in a number of

ways and currently gathered as RFC 2821 and RFC 2822 (exactly 2000 away

from the originals, an intentional numeration). RFC 2821 on SMTP still stands,

but RFC 2822 was obsoleted by RFC 5322 (update RFC 6854 added group

syntax). RFC 6532 added headers for “internationalized” email (for other

language character sets).

Email quickly grew to include various types of attachments, and modern users

are used to these. RFCs 2045 through 2048 define basic MIME (with several updates

and errata), which allows email to carry various types of email attachments. This

series replaced RFCs 1521, 1522, and 1590, which had displaced RFC 1341.

646 CHAPTER 25 SMTP and Email

Modern email protocols split the sending and retrieving task. The retrieval

protocol POP3 has evolved through five RFCs, from RFC 1081 to RFC 1939

(POP3 operation has several updates). Another method, IMAP4 (often just

IMAP), went from RFC 1730 to 2060 and then to RFC 3501 with many updates

and errata (technically now known as IMAP4rev1).

Finally, RFC 2254 extended the SMTP authentication capabilities (RFC 2254

is now superseded by RFC 4510 and RFC 4515). Most modern SMTP applica-

tions support SMTP authentication, which defines an SMTP authentication server

to advertise this function to SMTP clients. Today, the list of RFCs relating to

MIME security (S/MIME) is a lengthy one and additional drafts are added all the

time. And many RFCs address SMTP authentication.

SMTP AUTHENTICATION

How do you know that the email you send goes only to the person intended? How do

you know that the email you just got, supposedly from the president of your

company, really came from that person? SMTP authentication was introduced to

help prevent these email abuses, and others. It was based partly on ESTMP, and

most implementations support SMTP authentication today. A lot of MUAs, which of

course include the SMTP client, make it available. A server can support several

forms of authentication, and the client application should pick one to use. The client

can request a specific authentication method, but the server is free to reject its use.

SMTP authentication, which is advertised by an SMTP authentication server,

requires clients to authenticate themselves, and both parties must mutually accept

and support the chosen authentication procedure. Once successfully authenticated,

the user can receive and send email.

Unfortunately, SMTP authentication does not fit very well into the SMTP pro-

tocol, mainly because it is based on the Simple Authentication and Security Layer

(SASL) concept, which is more strictly aimed at direct client�server interactions.

And several RFCs are needed to understand how it all works, some of which

don’t even mention any SMTP extensions, although they require use of the spe-

cial ESMTP EHLO (Extended Hello) command.

The goal of SMTP authentication is to prevent username and password from

crossing the network (the Internet) in plain text. A full discussion of STMP

authentication depends on an understanding of how encryption provides authentica-

tion, topics which have not been covered yet. SMTP authentication is still evolving,

and the mechanisms, methods, and procedures used will change as time goes on.

SIMPLE MAIL TRANSFER PROTOCOL

A basic SMTP session between sender and local SMTP server is shown in

Figure 25.6.

Like FTP, SMTP uses a system of client commands with parameters and

numerical server responses, which is usually accompanied by some basic text as

647Architectures for Email

well. Oddly, if you know what you are doing, you can simply use a remote

access method to connect to the SMTP server, and simply send the keywords

and any parameters by typing them at the command prompt. The basic inter-

action between client and server when SMTP authentication is used is shown in

Figure 25.7.

The client indicates to the server that it knows the server supports ESMTP

(and wants to use it) with the SMTP EHLO command. The server offers a

number of authentication schemes, including simple log-in with password. The

client selects this option with the AUTH command. The server then uses base64

encoding (a special type of character coding) to ask the user for username

and password, one at a time. The client replies are also encoded with base64,

not encrypted. If the user types in the password incorrectly, the authentication

fails, but the user can usually try again before the server drops the connection

altogether.

The 11 basic SMTP commands are outlined in Table 25.1. A few others are

defined, but they are hardly used anymore.

SMTP reply codes resemble FTP reply codes. The first digit refers to the com-

mand status, the second classifies the reply, and the third adds details. The mean-

ings of the first two digits are outlined in Table 25.2.

Client–Server Mail ConnectionCLIENT SERVER

(Active open for
data connection)

(Composes
message with
mail program) 220 (sendmail server greeting)

HELO (identifies sending host)

MAIL (sender’s address)

250 (host okay)

250 (sender okay)

250 (recipient okay)

250 (mail accepted)

QUIT

221 (server signs off)

DATA (put server in receive mode)

354 (okay to send mail)

(email text, followed by “.”)

RCPT (recipient’s address)

FIGURE 25.6

Basic STMP email exchange between a client and a server.

648 CHAPTER 25 SMTP and Email

Table 25.1 Common SMTP Commands and Meanings

Command Meaning

HELO Identifies the sender to the receiver.
EHLO Identifies the sender with extended capabilities to the receiver.
MAIL
FROM

Identifies the originator and starts a mail transaction.

RCPT TO Identifies an individual recipient. Repeated for multiple recipients. Receiver,
if possible, checks for the validity of the recipient.

DATA Sender is ready to transmit lines of text. Maximum line length is 1000
characters, including final “new line” character or characters.

RSET Aborts current mail transaction and clears all information.
NOOP Asks for a positive reply.
QUIT Asks for a positive reply to close the connection.
VRFY Asks the receiver to validate recipient name.
EXPN Asks the receiver to confirm name in a mailing list, and for list content. For

information only (do not change recipient names).
HELP Asks for implementation details, such as commands supported.

Client–Server AuthenticationCLIENT SERVER

(Active open for
data connection)

(Composes
message with
mail program)

User Types
Wrong Password

220 (server supports ESMTP)

EHLO (identifies sending host)

AUTH login (login picked for authentication method)

250 (...Auth types offered, including “login”)

334 VXN1cm5hbWU1 (base64 “Username”)

334 UGFzc3dvcmQ6 (base64 “Password”)

(base64 password string)

535 Authentication Failure

(base64 userID)

FIGURE 25.7

SMTP authentication. Note that SMTP uses a special coding known as base64.

649Architectures for Email

MULTIPURPOSE INTERNET MAIL EXTENSIONS
MIME is a rather dry subject, but quite important, if for no other reason than that

MIME formats are also used in transfer using the protocol of the World Wide

Web, the Hypertext Transport Protocol (HTTP), which is examined in the next

chapter. So, MIME deserves at least a quick look here.

A MIME message has a set of headers and one or more “body parts.” Internet

text mail messages also have headers, of course, with fields such as To:, From:,

and Date:. MIME messages have additional introductory headers to describe the

overall format and content of the message.

MIME MEDIA TYPES

When there are multiple parts to a MIME message, one introductory header

defines a string used to mark the boundaries between parts. After the boundary

delimiter, which is chosen by the email application, there are additional headers

to describe the part of the MIME message that follows. The overall structure of

the information in each part is determined by the Content-Type MIME headers.

The type can be an image, audio, text, or even a mixture of these.

There are seven standard media types, all of which have a variety of subtypes.

Five of them are considered “discrete” (meaning that the format is consistent

throughout the part), and two are “composite,” meaning that the format changes

independently in each component. The discrete types are:

• Text

• Image

• Video

• Audio

• Application

Table 25.2 SMTP Reply Codes and Meanings

Digit and Position Meaning

1xx Positive preliminary (not currently used)
2xx Positive completion
3xx Positive intermediate result
4xx Transient negative (okay to try again)
5xx Permanent negative (“stop doing that!”)
x0x For a problem, syntax error, or unknown command
x1x Information request reply (such as to HELP)
x2x Connection reply
x3x Unspecified
x4x Unspecified
x5x Receiver status reply

650 CHAPTER 25 SMTP and Email

The composite types are:

• Multipart—Each component can have a different data type, usually discrete.

• Message—Used to “encapsulate” other information, such as a forwarded email

message.

Some of the more common subtypes used in these seven major data types are

outlined in Table 25.3.

MIME ENCODING

The data type and subtype establish the format of the content of a MIME body

part. But how should the data in each part be represented for transmission across

the Internet? MIME defines a variety of coding methods, allowing hosts and

MTAs to be as flexible as possible.

The default coding method is ASCII (as used in the United States). If another

method is used, such as for formatted documents, this must be announced in a

MIME Content-Transfer-Encoding header.

There are six major MIME encoding methods. These are listed in Table 25.4.

The quoted-printable encoding extends the usual 7-bit ASCII code set to allow

a few extra characters. Special hex characters are preceded by an=sign. So, 0x0 C
(form feed) is sent in quoted =printable as = 0 C.

Base64 encoding is common today. SMTP was originally a text-based trans-

mission system. Yet a lot of email content is sent as simple bytes, such as audio

and video, and even as executable code (much to the chagrin of network adminis-

trators). Base64 encoding converts a binary data stream to a sequence of “text”

characters. This usually results in the size of the binary file growing by about

Table 25.3 MIME Content Types and Subtypes

Type Subtypes

text plain, richtext, tab-separated-values, html, sgml
image jpeg, gif, ief, tiff, g3fax, png
video mpeg, quicktime, vnd.vivo
audio basic, 32kadpcm, vnd.vivo
application octet-stream, postscript, rtf, pdf, zip, macwriteii, msword, remote-printing,

EDI-X12, EDIFACT, dec-dx, dca-rft, activemessage, applefile, mac-
binhex40, news-message-id, mews-transmission, wordperfect5.1,
mathematica, pgp-encrypted, pgp-signature, pgp-keys, andrew-inset, slate,
set-payment, set-registration, sgml, wita, lotus-wordpro, lotus-1-2-3, lotus-
rganizer, ms-excel, powerbuilder-6

multipart mixed, alternative, digest, parallel, appledouble, header-set, form-data,
report, voice-message, signed, encrypted

message rfc822, partial, external-body, news, http, delivery-status

651Multipurpose Internet Mail Extensions

33% in terms of bytes. This is because 6 bits can indicate the numbers 0 through

63. But bytes are 8 bits, of course, at least where the Internet and TCP/IP are

concerned.

AN EXAMPLE OF A MIME MESSAGE

Consider a writer delivering a short story to an editor as an email attachment

(been there, done that). What would the MIME headers that form the

overall body of the email message look like? Well, they would resemble the

following:

Content-Type: multipart/mixed;
boundary = "--- = _NextPart_000_027HB582.0E7E0F6"

This is a message in MIME format.
--- = _NextPart 000_027HB582.0E7E0F6
Content-Type: text/plain
Please take a look at the attached short story. Thanks.
W
--- = _NextPart_000_027HB582.0E7E0F6
Content-Type: application/msword;

name = "new story.doc"
Content-Transfer-Encoding: base64
Content-Disposition: attachment;

filename = "new story.doc"
(Lots of nonsense characters form the base64 table.)
--- = _NextPart_000_027HB582.0E7E0F6

The lines in bold are the MIME headers.

USING POP3 TO ACCESS EMAIL
The original host-to-host SMTP did not allow for attachments, limited messages

to 1000 bytes, was a purely connection-oriented application, and never imagined

Table 25.4 MIME Encoding Methods and Meanings

Method Meaning

7 bit Ordinary ASCII as used in the United States.
quoted-printable Adds a few special characters and coding to ASCII text.
base64 Content is mapped into a “text” package (very common).
8 bit Similar to 7 bit, but can include 8-bit characters.
binary True binary data.
x-(name) Experimental encodings must have a name starting with “x”.

652 CHAPTER 25 SMTP and Email

a world of personal computers and intermittent email checking. STMP was built

for immediate email delivery to a specific host, sort of what we think of as instant

messaging (IM) today. Email today is often delivered to mailboxes on mail

servers, not directly to the end user, that is, users who might only have dial-up

Internet access.

These intermittent Internet users log in and access their mailbox with POP3

(commonly just called POP). POP3 does not send email: SMTP does that. But

POP3 retrieves the email, and the IMAP4 protocol maintains and controls access

to the mailbox accounts.

POP3 uses TCP port 110, and users are authenticated by userID and password.

POP3 then places a lock on the mailbox to avoid access conflicts. The POP3

server then enters transaction mode for user access to messages. POP3 features

include the ability to view a list of email messages and their sizes and to selec-

tively retrieve or delete messages, but many implementations simply dump all

waiting mail to the client. POP3 servers can be the same device as the SMTP

mail server, but this is not a requirement.

Let’s add POP3 to our network. We used the BSD hosts before, so let’s make

lnxserver (10.10.11.66) into our email server for the network. We can then

compose a fairly long (1108 bytes) message and send it to user admin1.
Figure 25.8 shows the sequence of packets used to retrieve the message from host

lnxclient (10.10.12.166).

FIGURE 25.8

A POP3 capture, highlighting how the email listing is sent to the user.

653Using POP3 to Access Email

POP3 employs a characteristic +0 K and not a code when responding normally

to a client. The series of packets shown in Figure 25.8 is boiled down to its POP3

essentials in Figure 25.9.

Note that the retrieval of the message (RETR) by the client and its deletion

from the server (DELE) are separate steps. You don’t have to delete email as you

read it, of course. The +0 K Sayonara is also part of the POP3 protocol

implementation.

HEADERS AND EMAIL
We’ve mentioned email headers already and supplied some details about MIME

headers (header extensions). Email has its own proper set of headers as well, and

Client–Server POP3 Connection
(TCP 3-way handshake and close omitted)

�OK POP3 Inxserver...(etc.)

�OK User name accepted, password please

�OK Mailbox open, 1 message

USER admin1

PASS admin11

DELE 1

QUIT

STAT

(SERVER)
port 110

Inxserver
(CLIENT)
port 2447

Inxclient

�OK 1 1108

�OK Mailbox scan listing follows\r\n1 1108...(etc.)

�OK 1108 octets

�OK Message deleted

�OK Sayonara

LIST

RETR 1

FIGURE 25.9

A POP3 connection used to fetch email, showing a more schematic view than the

capture.

654 CHAPTER 25 SMTP and Email

an Internet email message is little more than a sequence of headers and their

values, one after the other, from the start of the email message to the end.

Table 25.5 outlines the basic email header field names and groups established by

RFC 822.

Table 25.5 RFC 822 Email Header Fields and Characteristics

Field Group Field Name Appearance
Occurrences
per Message Comment

Destination To: Usually
present

1 Primary recipient list

Address
Field

Cc: Optional 1 Copy recipient

Bcc: Optional 1 “Blind” copy
Identification
Fields

Message-ID: Usually
present

1 Unique code applied
when sent

In-Reply-To: Optional,
normal for
replies

1 Provides method to
coordinate responses

References: Optional 1 Other documents or
message IDs

Informational Subject: Usually
present

1 Topic of the message

Fields Comments: Optional Unlimited Describe message
Keywords: Optional Unlimited Useful search item

Origination
Date

Date: Mandatory 1 Date and time stamp
for mail

Originator
Fields

From: Mandatory 1 Source address of
“originator”

Sender: Optional 1 If different from
“originator”

Reply-To: Optional 1 If absent, reply goes to
“from”

Resent
Fields

Resent-Date:
Resent-From:
Resent-
Sender:
Resent-To:
Resent-Cc:
Resent-Bcc:
Resent-
Message-ID:

Each time
message is
resent, this
block is
generated

Resent-Date:
and Resent-
Sender: are
mandatory; all
others optional

Special, used for
forwarding an email
message to others

Trace Fields Received:
Return-Path:

Inserted by
email system

Unlimited Used to trace the
message through the
email system

655Headers and Email

Now we have everything in place to examine the headers created when send-

ing a short email message through our email server (lnxserver) from a client

host to another user. We’ll use the admin account on lnxclient to send a message

to the admin user on lnxserver (these are not necessarily the same users: they

just share a mailbox name). Then we’ll fetch the message from the email server

mailbox using the admin account, showing that we can fetch our email almost

anywhere, even from the sending host.

We can use the same basic mail program as we did on the BSD hosts. This

time, we’ll use the �s flag to create a subject for the message. The text is simple,

and we end our message with a single dot as before.

[admin@lnxclient admin]$ mail �s "Here is another example"
admin@lnxserver.booklab.englab.juniper.net

This is text. . .
.
Cc: (enter)

Now we’ll use fetchmail to “fetch” the mail message with POP3 from the

email server (lnxserver) and bring it back to lnxclient. Note that when we run

the program and have email we get a version of the familiar “you’ve got mail”

prompt.

[admin@lnxclient admin]$ fetchmail
Enter password for admin@lnxserver.booklab.englab.juniper.net: (not
shown)
You have new mail in /var/spool/mail/admin

Usually, our complete email application would display the information and the

message. But there’s nothing magical about that. We can do the same with the

command prompt, listing the mailbox content and displaying the email message

with normal Unix commands.

[admin@lnxclient admin]$ ls �l /var/spool/mail/admin
-rw------- 1 admin mail 3122 Jan 17 16:42 /var/spool/mail/admin
[admin@lnxclient admin]$ cat /var/spool/mail/admin
From admin@lnxserver.booklab.englab.juniper.net Wed Jan 16 13:04:50 2008
Return-Path: ,admin@lnxclient.booklab.englab.juniper.net.

Received: from localhost (localhost.localdomain [127.0.0.1])
by lnxclient.booklab.englab.juniper.net (8.12.9/8.12.8) with ESMTP id
jBGL4onD026830
for ,admin@localhost.; Wed, 16 Jan 2008 13:04:50 -0800

Received: from lnxserver.booklab.englab.juniper.net
by localhost with POP3 (fetchmail-6.2.0)
for admin@localhost (single-drop); Wed, 16 Jan 2008 13:04:50 -0800 (PST)

656 CHAPTER 25 SMTP and Email

Received: from lnxclient.booklab.englab.juniper.net ([10.10.12.166])
by lnxserver.booklab.englab.juniper.net (8.12.8/8.12.8) with ESMTP id
jBGL4HFa027257
for ,admin@lnxserver.booklab.englab.juniper.net.; Wed, 16 Jan 2008
13:04:17 -0800 (PST)

Received:fromlnxclient.booklab.englab.juniper.net(localhost.localdomain
[127.0.0.1])
by lnxclient.booklab.englab.juniper.net (8.12.8/8.12.8) with ESMTP id
jBGL4HnD026820
for ,admin@lnxserver.booklab.englab.juniper.net.; Wed, 16 Jan 2008
13:04:17 -0800

Received: (from admin@localhost)
by lnxclient.booklab.englab.juniper.net (8.12.8/8.12.8/Submit) id
jBGL4HHf026818
for admin@lnxserver.booklab.englab.juniper.net; Wed, 16 Jan 2008
13:04:17 -0800

Date: Wed, 16 Jan 2008 13:04:17 -0800
From: admin@lnxclient.booklab.englab.juniper.net
Message-Id: ,200801172104.jBGL4HHf-26818 @lnxclient.booklab.englab.
juniper.net.

To: admin@lnxserver.booklab.englab.juniper.net
Subject: Here is another example
X-IMAPbase: 1134766876 8
Status: o
X-UID: 8
X-Keywords:

This is text. . .

The important fields are highlighted. Most of the other headers were added

when the email was created, of course. Most useful is the series of Received:
headers, which allows us to trace the message back to its origin. It might seem

odd that there are five receiver headers along the trace for a message that has

gone from client to email server and then back to client. But the application adds

a localhost step at each end, at the sender (admin@localhost) and receiver (from
localhost) to the message trace. The complete path of the message recorded in

the headers (from “bottom to top”) is:

1. The mail application receives the composed message from the local user.

2. The local mailbox receives the message using ESMTP.

3. The email server receives the message using ESMTP.

4. The other client retrieves the message from the email server using POP3

(fetchmail).
5. The local host transfers the message to the local mailbox using ESMTP.

6. The use of these protocols is highlighted in the headers.

657Headers and Email

HOME OFFICE EMAIL
Let’s end our email discussion by showing that Windows uses the same protocols

and headers to send and receive email over the Internet. This time, we’ll send a

message from lnxclient on the Illustrated Network to my home office host

(which uses Outlook).

Almost all email applications have an option to view the complete headers.

This output retains the original content from the first edition, and the basic

fields have not changed much. However, Outlook and all email applications

today there are a lot more headers relating to “antispam” reports and attempts

to diagnose the risk level of the content. In Outlook, these are under properties

as “Internet Headers.” Only the headers are displayed, not the message text

itself. I hope this retention of older material is not a great inconvenience to read-

ers. Feel free to explore the details of your own emails.

Microsoft Mail Internet Headers Version 2.0
Received: from beta.jnpr.net ([172.24.18.109]) by positron.jnpr.net with

Microsoft SMTPSVC(5.0.2195.6713);
Thu, 17 Jan 2008 07:37:14 -0700

Received:frommerlot.juniper.net([172.17.27.10])bybeta.jnpr.netoverTLS
secured channel with Microsoft SMTPSVC(6.0.3790.1830);
Thu, 17 Jan 2008 07:37:13 -0700

Received: from lnxclient.englab.juniper.net (lnxclient.englab.juniper.net
[10.10.12.166])
by merlot.juniper.net (8.11.3/8.11.3) with ESMTP id k9JEbDH15244
for ,walterg@juniper.net.; Thu, 17 Jan 2008 07:37:13 -0700 (PDT)
(envelope-from admin@lnxclient.englab.juniper.net)

Received: from lnxclient.englab.juniper.net (localhost.localdomain
[127.0.0.1])
by lnxclient.englab.juniper.net (8.12.8/8.12.8) with ESMTP id
k9JEacUg026193
for ,walterg@juniper.net.; Thu, 17 Jan 2008 07:36:58 -0700
Received: (from admin@localhost)
by lnxclient.englab.juniper.net (8.12.8/8.12.8/Submit) id
k9JEaSlp026191
for walterg@juniper.net; Thu, 17 Jan 2008 07:36:28 -0700

Date: Thu, 17 Jan 2008 07:36:28 -0700
From: admin@lnxclient.englab.juniper.net
Message-Id: ,200801171436.k9JEaSlp026191@lnxclient.englab.juniper.net.
To: walterg@juniper.net
Subject: here is an email example
Return-Path: admin@lnxclient.englab.juniper.net
X- OriginalArrivalTime: 17 Jan 2008 14:37:13.0230 (UTC) FILETIME=[10F80AE0:

01C6F38C]

658 CHAPTER 25 SMTP and Email

QUESTIONS FOR READERS

Figure 25.10 shows some of the concepts discussed in this chapter and can be

used to answer the following questions.

1. Which port does POP3 use?

2. Which password is provided by the user?

3. Was the email message deleted after it was retrieved?

4. How long was the message?

5. How many other messages are in the user’s mailbox?

FIGURE 25.10

POP3 session capture.

659Questions for Readers

This page intentionally left blank

CHAPTER

26Hypertext Transfer
Protocol

WHAT YOU WILL LEARN

In this chapter, you will learn about the HTTP protocol used on the Web, including
the major message types and HTTP methods. We’ll also discuss the status codes and
headers used in HTTP.

You will learn how URLs are structured and how to decipher them. We’ll also take
a brief look at the use of cookies and how they apply to the Web.

After email, the World Wide Web is probably the most common TCP/IP applica-

tion general users are familiar with. In fact, many users access their email through

their Web browser, which is a tribute to the versatility of the protocols used to

make the Web such a vital part of the Internet experience.

There is no need to repeat the history of the Web and browser, which are cov-

ered in other places. It is enough to note here that the Web browser is a type of

“universal client” that can be used to access almost any type of server, from email

to the file transfer protocol (FTP) and beyond. The unique addressing and location

scheme employed with a browser along with several related protocols combine to

make “surfing the Web” (it’s really more like fishing or trawling) an essential

part of many people’s lives around the world.

The protocol used to convey formatted Web pages to the browser is the

Hypertext Transfer Protocol (HTTP). Often confused with the Web page format-

ting standard, the Hypertext Markup Language (HTML), it is HTTP we will

investigate in this chapter. The more one learns about how the Hypertext Transfer

Protocol and the browser interact with the Web site and TCP/IP, the more

impressed people tend to become with the system as a whole. The wonder is not

that browsers sometimes freeze or open unwanted windows or let worms wiggle

into the host but that it works effectively and efficiently at all.

HTTP IN ACTION
Web browsers and Web servers are perhaps even more familiar than elec-

tronic mail, but nevertheless there are some interesting things that can be

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00026-6

© 2017 Elsevier Inc. All rights reserved.
661

http://dx.doi.org/10.1016/B978-0-12-811027-0.00026-6

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

IIS with
ASP
Installed

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 26.1

The Web servers on the Illustrated Network, also showing the major client browser hosts.

Note that we’ll be using IIS with ASP on the Windows platform and Apache with SSL on

the Unix host.

662 CHAPTER 26 Hypertext Transfer Protocol

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted Pair Wiring

bsdserver lnxclient winsvr2 wincli2

Apache Web
with SSL
Installed

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

AS 65527

Global Public
Internet

663HTTP in Action

explored with HTTP on the Illustrated Network. In this chapter, Windows

hosts will be used to maximum effect. Not that the Linux and FreeBSD hosts

could not run GUI browsers, but the “purity” of Unix is in the command line

(not the GUI).

We’ll use the popular Apache Web server software and install it on bsdserver.

To prepare for the next chapter, we’ll install Apache with the Secure Sockets

Layer (SSL) module, which we’ll look at in more detail in the next chapter. We’ll

also be using winsrv1 and the two Windows clients, wincli1 and wincli2, as

shown in Figure 26.1.

We could install Apache for Windows as well, but we don’t want to go into

full-blown server operating systems and build a complete Windows server. It

should be noted that many Unix hosts are used exclusively as Web sites or email

servers, but here we’re only exploring the basics of the protocols and applications,

not their ability or relative performance.

The Web has changed a lot since the early days of statically defined content

delivered with HTTP. Now it’s common for the Web page displayed to be built

on fly on the server, based on the user’s request. There are many ways to do this,

from good old Perl to Java and beyond, all favored and pushed by one vendor or

platform group or another.

Not too long ago, it was a torturous process to install Web services on

Windows. For example, Windows XP needed complex Integrated Information

Services (IIS) software and a few other (free) packages, notably the .NET

Framework and Software Development Kit (SDK). This made it possible for us to

build ASP Web pages on winsrv1 and access them with a browser. Installing

Apache on Linux distributions or FreeBSD was straightforward by comparison.

Today, the various differences among the many Linux distributions makes

Apache installation more complex than ever (as Web searches will show), while

Windows has gotten simpler. All Apache needs to run on Windows 10 Pro 64-bit

is Microsoft Visual C++ x86 runtime package. You download Apache (such as

Apache 2.4.16) and run the install. Then you tweak a few parameters and make

Apache a Windows service (actually, you’re turning on the HTTP daemon, httpd).

Most people go ahead and install PHP (the scripting language embedded in

HTML) and MYSQL (for an associated database) as well. These can be a bit

more complex, but the process is not tricky or confusing.

When all is said and done, you should see the “localhost” window when you

point your browser at Apache. Figure 26.2 shows how the page looks in the

browser window in wincli2.
What does a typical HTTP exchange look like between a client and a server?

Let’s capture it with Wireshark and see what we come up with. Figure 26.3 shows

and interprets the result. (It should be noted that the capture is from the First

Edition, but not much has changed.)

Not surprisingly, after the TCP handshake the content is transferred with a sin-

gle HTTP request and response pair. The entire Web page fits in one packet,

which is detailed in the figure. And once TCP acknowledges the transfer the con-

nection stays open (persistent).

664 CHAPTER 26 Hypertext Transfer Protocol

Note that the dynamic date and time content is transferred as a static string of

text. All of the magic of dynamic content takes place on the server’s “back room”

and does not involve HTTP in the least.

What about more involved content? Let’s see what the old default Apache

with SSL page looks like from wincli2 when we install it on bsdserver. This is

shown in Figure 26.4. It might be old, but the HTTP used is still HTTP 1.1.

This is the old default index.html page showing that Apache installed success-

fully. There is no “real” SSL on this page, however. There is no security or

encryption involved. What does the HTTP capture look like now? It’s captured

on wincli2 (shown in Figure 26.5).

FIGURE 26.2

How the Apache Web page looks when installed correctly.

FIGURE 26.3

Capture of the HTTP for an ASP page, showing how the protocol identifies the “make and

model” of the Web site (Microsoft IIS using ASP.NET).

665HTTP in Action

FIGURE 26.4

The old Apache HTTP “success” page that was displayed when the software was installed

correctly.

FIGURE 26.5

HTTP Apache capture of the Web page in Figure 26.4. Most of the text is transferred in

only a few packets.

666 CHAPTER 26 Hypertext Transfer Protocol

This exchange involved 21 packets, and would have been longer if the image

had not been cached on the client (a simple “Not Modified” string is all that is

needed to fetch it onto the page). Most of the text is transferred in packets 10

through 12, and then the images on the page are “filled in.” We’ll take a look at

the SSL aspects of this Web site in the next chapter.

Before getting into the nuts and bolts of HTTP, there is a related topic that

must be investigated first. This is an appreciation of the addressing system used

by browsers and Web servers to locate the required information in whatever form

it may be stored. There are three closely related systems defined for the Internet

(not just the Web). These are uniform resource identifiers (URIs), locators

(URLs), and names (URNs).

UNIFORM RESOURCES

As if it weren’t enough to have to deal with MAC addresses, IP addresses, ports,

sockets, and email addresses, there is still another layer of addresses used in TCP/

IP that has to be covered. These are “application layer” addresses, and unlike

most of the other addresses (which are really defined by the needs of the particu-

lar protocol) application layer addresses are most useful to humans.

This is not to say that the addresses we are talking about here are the same as

those used in DNS, where a simple correspondence between IP address

192.168.77.22 and the name www.example.com is established. As is fitting for the

generalized Web browser, the addresses used are “universal”—and that was one

name for them before someone figured out that they weren’t really universal quite

yet, but they were at least uniform.

So, labels were invented not only to tell the browser which host to go to and

application use but what resources the browser was expecting to find and just where

they were located. Let’s start with the general form for these labels, the URI.

URIs

The generic term for resource location labels in TCP/IP is URI. One specific form

of URI, used with the Web, is the URL. The use of URLs as an instance of URIs

has become so commonplace that most people don’t bother to distinguish the

two, but they are technically distinct.

The latest work on URIs is RFC 2396 (now about twenty years old), which

updated several older RFCs (including RFC 1738, which defines URLs). In the

RFC, a URI is simply defined as “a compact string of characters for identifying

an abstract or physical resource.” There is no mention of the Web specifically,

although it was the popularity of the Web that led to the development of uniform

resource notations in the first place.

When a user accesses http://www.example.com from a Web browser, that

string is a URI as much as a URL. So, what’s the difference between the URI and

the URL?

667HTTP in Action

URLs

RFC 1738, also not updated, defined a URL format for use on the Web (although

the RFC just says “Internet”). Newer URI rules all respect conventions that have

grown up around URLs over the years. URLs are a subset of URIs, and like

URIs, consist of two parts: a method used to access the resource, and the location

of the resource itself. Together, the parts of the URL provide a way for users to

access files, objects, programs, audio, video, and much more on the Web.

The method is labeled by a scheme, and usually refers to a TCP/IP application or

protocol, such as http or ftp. Schemes can include plus signs (+), periods (.), or
hyphens (-), but in practice they contain only letters. Methods are case insensitive, so

HTTP is the same as http (but by convention they are expressed in lowercase letters).

The locator part of the URL follows the scheme and is separated from it by a

colon and two forward slashes (://). The format or the locator depends on the

type of scheme, and if one part of the locator is left out, default values come into

play. The scheme-specific information is parsed by the received host based on the

actual scheme (method) used in the URL.

Theoretically, each scheme uses an independently defined locator. In practice,

because URLs use TCP/IP and Internet conventions many of the schemes share a

common syntax. For example, both http and ftp schemes use the DNS name or

IP address to identify the target host and expect to find the resource in a hierar-

chical directory file structure.

The most general form of URL for the Web is shown in Figure 26.6. There is

very little difference between this format and the general format of a URI, and

some of these differences are mentioned in the material that follows the figure.

The format changes a bit with method, so an FTP URL has only a type5
,typecode. field as the single ,params. field following the ,url-path..
For example, a type code of d is used to request an FTP directory listing. The

figure shows the general field for the http method.

<scheme>://<user:><password>@<host>:<port>/<url-path>?<query>#<fragment>

http
for

Web

Public Access (Local host) 80 Working
Directory

StartNot a
Query

Default value if not specified

http://myuserid:mypassword@www.example.com:8080/cgi-bin/figs.php?Ch22#Fig1

FIGURE 26.6

The fields of a complete URL, showing that the default values used in the fields are

absent.

668 CHAPTER 26 Hypertext Transfer Protocol

,scheme.—The method used to access the resource. The default method for

a Web browser is http.

,user. and ,password.—In a URI, this is the authorization field (also

called “authority”). A URL’s authorization consists of a user ID and

password separated by a colon (:). Many private Web sites require user

authorization, and if not provided in the URL the user is prompted for this

information. When absent, the user defaults to publicly available resource

access.

,host.—Called the networkpath in a URI, the host is specified in a URL

by DNS name or IP address (IPv6 works fine for servers using that address

form).

,port.—This is the TCP or UDP port that together with the host

information specifies the socket where the method appropriate to the

scheme is found. For http, the default port is 80.

,url-path.—The URI specification calls this the absolutepath. In a URL,

this is usually the directory path starting from the default directory to

where the resource is to be found. If this field is absent, the Web site has a

default directory into which the user is placed. The forward slash (/)
before the path is not technically part of the path, but forms the delimiter

and must follow the port. If the url-path ends in another slash, this means

a directory and not a “file” (but most Web sites figure out whether the

path ends at a file or directory on their own). A double dot (..) moves the

user up one level from the default directory.

,params.—These parameters control how the method is used on the

resource and are scheme specific. Each parameter has the form

,parameter. =, value. and the parameters are separated by

semicolons (;). If there are no parameters, the default action for the

resource is taken.

,query.—This URL field contains information used by the server to form

the response. Whereas parameters are scheme specific, query information

is resource specific.

,fragment.—The field is used to indicate which particular part of the

resource the user is interested in. By default, the user is presented with the

start of the entire resource.

Most of the time, a simple URL, such as ftp://ftp.example.com, works just
fine for users. But let’s look at a couple of examples of fairly complex URLs to

illustrate the use of these fields.

http://myself:mypassword@mail.example.com:32888/mymail/ShowLetter?

MsgID-5551212#1

The user myself, authenticated with mypassword, is accessing the mail.example.
com server at TCP port 32888, going to the directory /mymail, and running the

669HTTP in Action

mailto:http://myself:mypassword@mail.example.com:32888/mymail/ShowLetter?MsgID-5551212#1
mailto:http://myself:mypassword@mail.example.com:32888/mymail/ShowLetter?MsgID-5551212#1

ShowLetter program. The letter is identified to the program as MsgID-5551212, and
the first part of the message is requested (this form is typically used for a multipart

MIME message).

www.examplephotos.org:8080/cgi-bin/pix.php?WeddingPM#Reception19

The user is going to a publicly accessible part of the site called www.example-
photos.org, which is running on TCP port 8080 (a popular alternative or addition

to port 80). The resource is the PHP program pix.php in the cgi-bin directory

below the default directory, and the URL asks for a particular page of photo-

graphs to be accessed (WeddingPM) and for a particular photograph (Reception19)
to be presented.

www.sample.com/who%20are%20you%3F

File names that have embedded spaces and special characters that are the

same as URL delimiters can be a problem. This URL accesses a file named who
are you? in the default directory at the www.sample.com site. There are 21

“unsafe” URL characters that can be represented this way.

There are many other URL “rules” (as for Windows files), and quite a few

tricks. For example, if we wanted to make a Web page at www.loserexample.com
(IP address 192.168.1.1) appear as if it is located at www.nobelprizewinners.org,
we can translate the Web site’s IP address to decimal (192.168.1.1 = 0xC0A80101
= 3232235777 decimal), add some “bogus” authentication information in front of

it (which will be ignored by the Web site), and hope that no one remembers the

URL formatting rules:

http://www.nobelprizewinners.org@3232235777

A lot of evil hackers use this trick to make people think they are pointing and

clicking at a link to their bank’s Web site when they are really about to enter their

account information into the hacker’s server! Well, if that’s what a URL is for,

why is a URN needed?

URNs

URNs extend the URI and URL concept beyond the Web, beyond the Internet

even, right into the ordinary world. URIs and URLs proved so popular that the

system was extended to become URNs. URNs, first proposed in RFC 2141, would

solve a particularly vexing problem with URLs.

It may be a tautology, but a URL specifies resources by location. This can be

a problem for a couple of reasons. First, the resource (such as a freeware utility

program) could exist on many Web servers, but if it is not on the one the URL is

pointing to the familiar HTTP 404 � NOT FOUND error results. And how many times

has a Web site moved, changing name or IP address or both—leaving thousands

of pages with embedded links to the stale information? (URLs do not automati-

cally supply a helpful “You are being directed to our new site” message.)

As expected, URNs label resources by a name rather than a location. The

familiar Web URL is a little like going by address to a particular house on a par-

ticular street and asking for Joe Smith. A URN is like asking for Joe Smith,

670 CHAPTER 26 Hypertext Transfer Protocol

http://www.examplephotos.org:8080/cgi-bin/pix.php?WeddingPM#Reception19
http://www.sample.com/who%20are%20you%3F
mailto:http://www.nobelprizewinners.org@3232235777

getting an answer from a “resolver,” and going to the current address where good

old Joe is found. “Joe Smith” is an example of a URN in the human “namespace.”

Of course, if this is to work properly there can only be one Joe Smith in the

world.

Any namespace that can be used to uniquely identify any type of resource can

be used as a URN. But before you rush out to invent a URN system for automo-

biles, for example, keep in mind that designing URNs for new namespaces is not

that easy.

Each URN must be recognized by some official body or another, and must be

strictly defined by a formal language. It’s not enough to say that the URN string

will identify a car. It is necessary to define things such as the length of the string

and just what is allowed in the string and what isn’t (actually, there’s a lot more

to it than that).

For example, the International Standard Book Number (ISBN) system uniquely

identifies books published all over the world. Part of the number identifies region

of the world where the book is published, another part the publisher, yet another

part the particular book, and finally there is a checksum digit that is computed in

case someone makes a mistake writing down one of the other parts. The formal

definition of the ISBN namespace would establish the length of these fields, and

note that the ISBN must be 10 digits long and can only be made up of the digits 0

through 9, except for the last checksum digit, where the Roman numeral X is used

for the checksum 10 (10 is a valid ISBN checksum “digit”). The general format of

a URN is URN:,namespace-ID.:,resource-identifier..
Note the lack of any sense of location. The namespace ID is needed to distin-

guish a 10-digit telephone number from a 10-digit ISBN numbers (for example),

and the URN literally makes it obvious that the URN notation system is being

employed.

Work on URNs has been slow. A resource identified by URN still has a loca-

tion, and so must still provide one or more URLs (think of all the places where a

certain book might be located) to the user. A series of RFCs, from RFC 3401 to

RFC 3406 (some now have errata), defines a system of URN “resolvers” called

the Dynamic Delegation Discovery System (DDDS). For now, the Internet will

have to make do with URLs.

HTTP
HTTP started out as a very simple protocol, based on the familiar scheme of a

small set of commands issued by the client (browser) and reply codes and related

information issued by the server (Web site). As indicated by the name, the origi-

nal HTTP (and HTML) concerned itself with hypertext, the idea being to embed

active links in textual information and allow users to spontaneously follow their

instincts from page to page and site to site around the Internet and around the

671HTTP

world. There were also graphics associated with the Web almost immediately,

and this was a startling enough innovation to completely change the user percep-

tion of the Internet.

The original version of HTTP, now called HTTP 0.9, was just something peo-

ple did if they wanted their Web sites to work, and nobody bothered to write

down much about it. The people who wanted to know found out how it worked.

This was fine for a few years, but once the Web got rolling RFC 1945 in 1996

defined HTTP 1.0 (a more full-blooded protocol)—which made “old” HTTP into

HTPP 0.9. Then HTTP 1.1 came along in 1997 with RFC 2068, which was

extended in 1999 with RFC 2616. And that was pretty much it. The basic HTTP

1.1 is what we live and work with on the Internet today. HTTP 2.0 has been com-

ing for a long time now.

However, it’s always good to remember what HTTP is and isn’t. HTTP is just

a transport mechanism for Web stuff, and not only for varied content. HTTP is

flexible enough to transport Web features such as cascading style sheets (CCSs),

Java Applets, Active Server Pages (ASPs), Perl scripts, and any one of the half

dozen of so languages and programming tools that have evolved to make Web

servers more complex and paradoxically easier to configure and use.

THE EVOLUTION OF HTTP

HTTP began as a simple TCP/IP request/response language using TCP to retrieve

information from a server in a stateless manner (most TCP/IP applications are

stateless). Because the server is stateless, the server has no idea of any history of

the interaction between client and server. Therefore, any state information has to

be stored in the client. We’ll talk about cookies later, after looking at the basics

of HTTP.

With HTTP 0.9, a basic browser accessed a Web page by issuing a GET com-

mand for the page desired (indicated in the URL), accompanied by a number of

HTTP headers. This was sent over a TCP connection established between the

browser port and port 80 (the default Web port) on the server. The server

responded with the text-based Web page marked up in HTML and closed the

TCP session. The initial browser command was usually GET /index.html.

But what about the graphics and audio in the reply, if included in the Web

page? HTML is a markup language, meaning that special tags are inserted into an

ordinary text file to control the appearance of the Web page on the browser

screen. Once the initial request transfer was made in HTTP 0.9, the browser

parsed the HTML tags and opened a separate TCP connection to the server for

every element of the page. This is why the location of the graphics and associated

media files are so important in HTML: they aren’t really “there” on the page in

any sense until HTTP is used to fetch them.

Naturally, the TCP overhead involved with all of this shuttling of information

was staggering, especially on slow dial-up links and when Web pages grew to

include 30 or more elements. Some Web sites shut down as the “listen” queues

filled up, router links became saturated with TCP overhead, and browsers hung as

672 CHAPTER 26 Hypertext Transfer Protocol

frustrated users began pounding and clicking everything in sight (one old Internet

Explorer message box begged “Stop doing that!”).

Interim solutions were not particularly effective. Many solutions made use of

massive caching of Web pages on “intermediate systems” that were closer to the

perceived user pool, and many businesses used “proxy servers” (an old Internet

security mechanism pressed into service as a caching storehouse). Caching Web

pages became so common that Internet gurus felt compelled to remind everyone

that the point of TCP was that it was an end-to-end protocol and that fetching

Web pages from caches from proxy servers was not the same as the real thing

(we also mentioned this in an earlier chapter).

So, HTTP evolved to make the entire process more efficient. HTTP 1.0 created

a true messaging protocol and added support for MIME types, adapted for the Web,

and addressed some of the issues with HTTP 0.9 (but not all). In addition, vendors

had been incrementally adding features here and there haphazardly. HTTP 1.1

brought all of these changes under one specification. In particular, HTTP 1.1 added:

Persistent connections: A client can send multiple requests for related

resources in a single TCP session.

Pipelining—Persistent connections permitted clients to pipeline requests to the

server. If the browser requests images 1, 2, and 3 from the server, the

client does not have to wait for a response to the image 1 request before

requesting file 2. This allows the server to handle requests much more

efficiently.

Multiple host name support—Web sites could now run more than one Web

server per IP address and host name. Today, one Web server can handle

requests for literally hundreds of individual Web sites, all running as

“virtual hosts” on the server.

Partial resource selection—A client can ask for only part of a document of

resource.

Content negotiation—The client and server can exchange information to allow

the client to select the best format for a resource, such as MP3 or WAV

format for audio files (the formats must be available on the server, of course).

This negotiation is not the same as presenting format options to the user.

Better security—Authentication was added to HTTP interactions with RFC

2617.

Better support for caching and proxying—Rules were added to make caching

of Web pages and the operation of proxy servers more uniform.

HTTP 1.1 is the current version of HTTP. With so many millions of Web sites

in operation today, any fundamental changes to HTTP would be unthinkable.

Instead, changes to HTTP are to be made through extensions to HTTP 1.1.

Unfortunately, not everyone agrees about the best way to do this. An HTTP

extension “framework” was written as RFC 2774 in 2000 but has never moved

beyond the experimental stage.

673HTTP

HTTP MODEL

The simplest HTTP interaction is for a browser client to send a request directly to

the Web site server (running httpd) and get a response over a TCP connection

between client and server. With HTTP 1.1, the model was extended to allow for

intermediaries in the path between client and server. These devices can be prox-

ies, gateways, tunnel endpoints, and so on. Proxy servers are especially popular

for the Web, and a company frequently uses them to improve response time for

job-related queries and to provide security for the corporate LAN.

Like FTP, HTTP invites data from “untrustworthy” sources right in the front

door, and the proxy tries to screen harmful pages out. The proxy also protects IP

addresses and other types of information from leaving the site. (Some companies

feared that workers would fritter away company time and so tried to limit Web

access with proxies as well.) With an intermediary in place, the direct request/

response becomes a four-step process.

1. Browser request: HTTP client sends the request to the intermediary.

2. Intermediary request: The intermediary makes changes to the request and

forwards the request to the actual Web server.

3. Web server response: The Web site interprets the request and sends the reply

back to the intermediary.

4. Intermediary response: The intermediary device processes the reply, makes

changes, and forwards it to the client browser.

Generally, intermediaries become security devices that can perform a variety

of functions, which we will explore later in this book. It is not unusual to find

more than one intermediary on the path from HTTP client to server. In these sce-

narios, the request (and response) is created once but sent three times, usually

with slightly different information. The difference between direct interactions and

those with intermediaries is shown in Figure 26.7.

CLIENT
(Runs browser)

SERVER
(Active Web site)

Request

Intermediary 1

Request Request Request

ResponseResponseResponse

Intermediaries (proxies or caching devices) can alter fields
in a request and generate an appropriate response.

Intermediary 2

Response

FIGURE 26.7

The HTTP models of interaction, showing how intermediaries can act on a request or response.

674 CHAPTER 26 Hypertext Transfer Protocol

HTTP MESSAGES

All HTTP messages are either requests or responses. Clients almost always issue

requests, and servers almost always issue responses. Intermediaries can do both.

The HTTP generic message format is similar to a text-based email message and

is defined as a series of headers followed by an optional message body and trailer

(which consists of more “headers”). The whole is introduced by a “start line.”

,start-line.

,message-headers.

,empty-line.

[,message-body.]
[,message-trailers.]

The start line text identifies the nature of the message. HTTP headers can be

presented in any order at all, and they follow a ,header-name.:,header-
value. convention. The message body frequently carries a file (called an entity

in HTTP) found more often in responses than in requests. Special headers

describe the encoding and other characteristics of the entity.

TRAILERS AND DYNAMIC WEB PAGES
Web pages were originally statically defined in HTML and passed out to whoever

was allowed to see them. Web pages today are sometimes still created this way,

but the most sophisticated Web pages create their content dynamically, on the fly,

after a user has requested it. And for reasons of efficiency, the beginning can be

streamed toward the browser before the end of the result has been determined.

Pages that include current date and time stamps are good examples of dynamic

Web page content, but of course many are much more complex.

Dynamic Web pages, however, pose a problem for persistent TCP connec-

tions. The browser has to know when the entire Web page response has been

received. With a static Web page, the size is announced in a header at the start of

the item. But dynamic page headers cannot list the size ahead of time, because

the server does not know.

HTTP today uses chunked encoding to solve this problem. As soon as it is

known, each piece of the response gets it own size (the chunk) and is sent to the

browser. The last chunk has size 0, and can include optional “trailer” information

consisting of a series of HTTP headers.

HTTP REQUESTS AND RESPONSES

HTTP requests are a specific instance of the generic message format. They are

introduced by a “request line.”

,request-line.

,general-headers.

675Trailers and Dynamic Web Pages

,request-headers.

,entity-headers.

,empty-line.

[,message-body.]
[,message-trailers.]

An initial request from a browser to the Web site is shown in Figure 26.8.

This is from the First Edition, but flows today are still recognizable.

If the request is sent to an intermediary, such as a proxy server, the host name

would appear in the request line as the resource’s full URL: GET http://www.
example.com. The use of the general, request, and entity headers are fairly self-

explanatory. Request headers, however, can be conditional and are only filled if

certain criteria are met. Each HTTP request to a server generates a response, and

sometimes two (a preliminary response and then the full response). The format is

only slightly different from the request.

,status-line.

,general-headers.

,response-headers.

,entity-headers.

,empty-line.

[,message-body.]
[,message-trailers.]

The status line has two purposes: It tells the client what version of HTTP is in

use and summarizes the results of processing the client’s request. The results are

set as a status code and reason phrase associated with it. The structure of a typical

HTTP response, sent in response to the request shown in Figure 26.8, is shown in

Figure 26.9. Again, these are unchanged from the First Edition. The response

headers provide details for the overall status summarized in the first line of the

response.

GET.index.html HTTP/1.1
Date: Mon, 04 July 2007 19:12:45 GMT
Connection: close
Host: www.example.com
From: walterg@example.com
Accept: text/html, text/plain
User-Agent: MSIE6.0 (Windows XP)

Request line
General headers

Request
headers

Entity headers

Message body

FIGURE 26.8

The HTTP request message, showing some details of the general and request headers.

676 CHAPTER 26 Hypertext Transfer Protocol

HTTP METHODS

HTTP commands, such as GET, are not called commands at all. HTTP is an

object-oriented language, and instead of pointing out that all languages used for

programming are to one extent or another object oriented we’ll just mention that

HTTP commands are called methods. (Yes, the URI method http has other

HTTP methods beneath it.) Most HTTP messages use the first three methods

almost exclusively. The HTTP methods are:

GET—Requests a resource from a Web site by URL. Sometimes also used to

upload form data, but this is not a secure method. When the request headers

contain conditionals, this situation is often called a conditional GET. When

part of a resource is requested, this is sometimes called a partial GET.

HEAD—Formatted very much like a GET, the HEAD requests only the HTTP

headers from the server (not the target itself). Clients use this to see if the

resource is actually there before asking for a potentially monstrous file.

POST—Sends a block of data from the browser to the server, usually data from a

form the user has filled out or some other application data. The URL sent

must identify the function (program) that processes the data on the server.

PUT—Also sends data to the server, but asks the server to store the body of the

data as a resource (file), which must be named in the URL. This can be

used (with authentication) to store a file on the server, but FTP is most

often used to accomplish this and thus PUT is not often used (or allowed).

OPTIONS—Requests information about communication options available on the

Web server, with an asterisk (�) asking for details about the server itself.

Not surprisingly, this method can be a security risk.

HTTP/1.1 200 OK
Date: Mon, 04 July 2007 19:12:48 GMT
Connection: close
Server: Apache/1/3/27
Accept-Range: bytes
Content-Type: text/html
Content-Length: 170
Last-Modified: Fri, 01 July 2007 22:15:32 GMT

<html>
<head>
<title>Welcome to the Illustrated Network Site!</title>
</head>
<body>
<p> This site under construction. Check back later... </p>
</body>
</html>

Status line
General headers

Response headers

Entity headers

Message body

FIGURE 26.9

The HTTP response message, showing the headers usually included.

677Trailers and Dynamic Web Pages

DELETE—Asks the server to delete the resource, which must be named in the

URL. Not often used, for the same reasons as PUT.

TRACE—Used to debug Web applications, especially when proxy servers and

gateways are in use. The client asks for a copy of the request it sent.

CONNECT—Reserved for future use with SSL tunneling.

The initial HTTP RFC 2068 also defined PATCH, LINK, and UNLINK, but these
have been removed. However, some sources continue to list them. Most of the

HTTP methods are “safe” methods that can be repeated by impatient users without

harm. The exception is the POST method, which should only be done once or side

effects will result in inconsistent or just plain wrong information on the server.

HTTP STATUS CODES

The status codes used to provide status information to the browser are very simi-

lar to those used in FTP and email. Only the major (first) digit codes are listed in

Table 26.1.

Each status code has an associated reason phrase. The reason phrases in the

HTTP specification are “samples” that everyone copies and uses. They are

intended as aids to memory and not as a full explanation of what is wrong when

an error occurs. But a lot of browsers just display the 404 status code reason

phrase, Not Found, and deem it adequate.

It’s not necessary to list all of the HTTP status codes, but one does require addi-

tional comment. The 100 status code (reason phrase Continue) is often seen when a

client is going to use the POST (or PUT) method to store a large amount of data on the

server. The client might want to check to see whether the server can accept the data,

rather than immediately sending it all. So, the request will have a special Expect:
100-continue header in it asking the server to reply with a 100 Continue preliminary

reply if all is well. After this response is received, the client can send the data.

That’s the theory, anyway. In practice, it’s a little different. Clients usually go

ahead and send the data even if they don’t get the 100 Continue response from

the server (hey, the browser has to do something with all of that data). And ser-

vers, perhaps thinking about all those users out there holding their breaths just

waiting for 100 Continue responses before they turn blue, often send out 100

Table 26.1 HTTP Status Codes and Their Meanings1

Code Meaning

1xx Informational, such as “request received” or “continuing process”
2xx Successful reception, processing, acceptance, or completion
3xx Redirection, indicating further action is needed to complete the request
4xx Client error, such as the familiar 404, not found often, indicating syntax error
5xx Server error when the Web site fails to fulfill a valid request

678 CHAPTER 26 Hypertext Transfer Protocol

Continue preliminary responses for almost every request they get from a browser.

But it was a fine idea.

HTTP HEADERS

It is not possible or necessary to list every HTTP header. Instead, we can just a

take a look at the types of things HTTP headers do. First, some of the headers are

end-to-end and others are hop-by-hop. As might be expected, the end-to-end head-

ers are not changed as they make their way between client and server no matter

how many intermediary devices are between client and server. Hop-by-hop head-

ers, on the other hand, have information relevant to each intermediary system.

GENERAL HEADERS

General headers are not supposed to be specific to any particular message or com-

ponent. These convey information about the message itself, not about content.

They also control how the message is handled and processed. However, in prac-

tice general headers are found in one type of message and not another. Some can

have slightly different meanings in a request or response. The general headers are

outlined in Table 26.2.

Table 26.2 HTTP General Headers and Their Uses

Header Use

Cache-control These contain a directive that establishes limits on how the request or
response in cached. Only one directive can accompany a cache-control
header, but multiple cache-control headers can be used.

Connection These contain instructions that apply only to a particular connection. The
headers are hop-by-hop and cannot be retained by proxies and used
for other connections. The most common use is with the “close”
parameters (Connection: close) to override a persistent connection and
terminate the TCP session after the server response.

Date Date and time the message originated, in RFC 822 email format.
Pragma Implementation-specific directives similar to Unix programming. Often

used for cache control in older versions of HTTP.
Trailer When the response is chunked, this header is used before the data to

indicate the presence of the trailer fields.
Transfer-
encoding

Message body encoding, most often used with chunked transfers. This
applies to the entire message, not a particular entity.

Upgrade Clients can list connection protocols they support. If the server supports
another in common, it can “upgrade” the connection and inform the
client in the response.

Via Used by intermediaries to allow client and server to trace the exact path.
Warning Carries additional information about the message, usually from an

intermediary device regarding cached information.

679Trailers and Dynamic Web Pages

REQUEST HEADERS

The request headers in an HTTP request message allow clients to supply informa-

tion about themselves to the server, provide details about the request, and give

the client more control over how the server handles the request and how (or if)

the response is returned. This is the largest category of headers, and only the

briefest description can be given of each. They are listed in Table 26.3.

RESPONSE HEADERS

HTTP response headers are the opposite of request headers and appear only in

messages sent from server to browser. They expand on the information provided

Table 26.3 HTTP Request Headers and Their Uses

Header Use

Accept What media types the client will accept, including preference (q).
Accept-Charset Similar to accept, but for character sets.
Accept-Encoding Similar to accept, but for content encoding (especially compression).
Accept-Language Similar to accept, but for language tags.
Authorization Used to present authentication information (“credentials”) to the

server.
Expect Tells the server what action the client expects next, usually

“Continue.”
From Human user’s email address. Optional, and for information only.
Host Only mandatory header, used to specify DNS name/port of Web site.
If-Match Usually in GET, server responds with entity only if it matches the

value of the entity tags.
If-Modified-Since Similar to If-Match, but only if the resource has changed in the time

interval specified.
If-None-Match Similar to If-Match, but the exact opposite.
If-Range Used with Range header to check whether entity has changed and

request that part of the entity.
If-Unmodified-
Since

Opposite of If-Modified-Since.

Max-Forwards Limits the number of intermediaries. Used with TRACE and
OPTIONS. Value is decremented and when 0 must get a response.

Proxy-
Authorization

Similar to Authorization, but used to present authentication
information (“credentials”) to a proxy server.

Range Asks for part of an entity.
Referer Never corrected to “referrer,” this is used to supply the URL for the

“back” button function to the server (also has privacy implications).
TE Means “transfer encodings,” and is often used with chunking.
User-Agent Provides server with information about the client (name/version).

680 CHAPTER 26 Hypertext Transfer Protocol

in the summary status line, as outlined in Table 26.4. Many response headers are

sent only in answer to a specific type of request, or to certain headers within par-

ticular requests.

ENTITY HEADERS

Finally, entity headers describe the resource carried in the body of the HTTP mes-

sage. They usually appear in responses, but can appear in PUT and POST requests.

Table 26.4 HTTP Response Headers and Their Uses

Header Use

Accept-Ranges Tells client if server accepts partial content requests using Range
request header. Typical values are in bytes, or “none” for no support.

Age Tells the client the approximate age of the resource.
ETag Gives the entity tag for the entity in the response.
Location Gives client a new URL to use instead of one requested.
Proxy-
Authenticate

Tells client how the proxy requires authentication, both method and
parameters needed.

Retry-After Tells client to try the request again later, seconds or by date/time.
Server Server version of User-Agent request header, used for server details.
Vary Used by caching devices to make decisions.
WWW-
Authenticate

Tells client how the Web site requires authentication, both method
and parameters needed.

Table 26.5 HTTP Entity Headers and Their Uses

Header Use

Allow Lists methods that apply to this resource.
Content-
Encoding

Describes optional encoding method, usually the compression
algorithm used so that the client can decompress the entity.

Content-
Language

Specifies the human language used by the entity. It is optional and can
specify multiple languages.

Content-
Length

Size of the entity in bytes (octets). Not used in chunked transfers.

Content-
Location

Resource location as URL. Optional, but used if entity is in multiple
places.

Content-MD5 Used for message integrity checking with Message Digest 5.
Content-
Range

Used for entities that are part of the complete resource.

Content-Type Similar to MIME type and subtype, but not exactly the same.
Expires Data and time after which entity is considered stale.
Last-Modified Date and time server “believes” entity last changed.

681Trailers and Dynamic Web Pages

Many of the entity headers have the same names as the MIME types they are based

on, but with important differences. The entity headers are outlined in Table 26.5.

Use of the Last-Modified header is complicated by the fact that the server

might not know when an entity was last modified, especially if the resource is

“virtual.” For dynamic content, this header should be the same as the time the

message was generated.

COOKIES

A Web server gets a request, processes a request, and returns a response in a

completely stateless manner. Every request, even from the same client a moment

later, looks brand new to the server.

Stateless servers are the easiest to operate. If they fail, just start them up again.

No one cares where they left off. You can even transfer processing to another

host and everything runs just fine, as long as the resources are there. Stateless ser-

vers are best for simple resource-retrieval systems.

That’s how the Web started out, but unfortunately this is not how the Web is

used today. Web sites have shopping carts that remember content and billing sys-

tems that remember credit card information. They also remember log-in informa-

tion that would otherwise have to be entered every time an HTTP request was

made.

How should the state information necessary for the Web today be stored? For

better or worse, the answer today is in cookies. The term seems to have originated

in older programs that required users to supply a “magic cookie” to make the pro-

gram do something out of the ordinary (“Easter eggs” seem to be the GUI equiva-

lent). According to others, an old computer virus put the image onscreen of

Cookie Monster (of Sesame Street fame) announcing, “Want cookie!” The user

had to type the word cookie to continue. The cookie term is also used in BOOTP/

DHCP.

Cookies were initially developed by Netscape and were formalized as a Web

state management system in RFC 2965, which replaced RFC 2109. Cookies are

not actually part of HTTP, and remain an option, but few Web browsers can

afford to reject all cookies out of hand (so to speak).

The idea behind cookies as a method of server state management is simple. If

the server can’t hold state information about the user and the session, let the client

do it. When the server has a function that needs a state to be maintained over

time, the server sends a small amount of data to the client (a cookie).

Cookies are presented when the server asks for them, and are updated as the

session progresses. Cookies are just text strings and have no standard formats, in

682 CHAPTER 26 Hypertext Transfer Protocol

that only a particular server has to understand and parse them. In Windows. cook-

ies used to be stored in the cookies.txt file under the user’s Documents and

Settings directory (security is better now). Cookies just accumulate there until

users clear them out (few do). If deleted, the file is built again from scratch.

Looking at someone’s cookies is a quick and dirty way to see where the browser

(not necessarily the user) has gone recently.

Cookies, as indispensable as they are on the Web today, tend to have a some-

what unsavory reputation. They aren’t perfect: If a cookie is established to allow

access to a book-shop Web site at home, the cookie is not present on the user’s

office computer and the Web site has no idea who the user is because there is no

cookie to give to the server. A lot of users assume they’ve done something wrong,

but that’s just the way cookies work.

Most browsers can be set to screen or reject cookies, mainly because cookies

are a barely tolerated security risk to many people (many think the browser

default should be to reject all cookies instead of accepting them). In particular,

there are three big issues with cookies. Today, many Web sites warn about their

cookies use and ask that they be enabled.

Sending of sensitive information—Banks routinely store user ID and password

in a cookie. Even if it is encrypted when sent, the information could be

sitting on your computer in plain text (waiting for anyone to look at it).

User tracking abuse—Servers can set cookies for any reason, including

tracking the sites a user visits rather than storing useful parameters. This is

often seen as a violation of the right to privacy, and some Web browsers

are silent when a cookie is set.

Third-party cookies—If a Web page contains a link (perhaps to a small

image) to another Web site, the second site can set a cookie (called a

third-party cookie) on your machine even though you’ve never visited (or

intend to visit) the site. So, that must be how all those porn-site cookies

got there.

Some people regard cookies as much ado about nothing, whereas others busily

turn off all cookie support whenever they go on-line. But most people should at

least consider disabling third-party cookies, which really have no legitimate use

when it comes to HTTP state management.

683Trailers and Dynamic Web Pages

QUESTIONS FOR READERS

Figure 26.10 shows some of the concepts discussed in this chapter and can be

used to answer the following questions.

1. Which version of Apache is the server using?

2. Which ports are the client and server using?

3. Completely parse the following URL: http://www.examplebooks.com:8888/

cgi-bin/ebook.php?HTTPforChimps#page345.

4. Completely parse the following URL: ftp://ftp.freestuff.com/Is%20This%

20Really%20Free%3F.

5. What is a cookie used for? Examine your cookies.txt file.

FIGURE 26.10

The Apache server capture.

684 CHAPTER 26 Hypertext Transfer Protocol

http://www.examplebooks.com:8888/cgi-bin/ebook.php?HTTPforChimps#page345
http://www.examplebooks.com:8888/cgi-bin/ebook.php?HTTPforChimps#page345
ftp://ftp.freestuff.com/Is%20This%20Really%20Free%3F
ftp://ftp.freestuff.com/Is%20This%20Really%20Free%3F

CHAPTER

27Securing Sockets with SSL

WHAT YOU WILL LEARN

In this chapter, you will learn about the secure sockets layer (SSL) and how it is used
on Web sites. We investigate the layers and operation of the SSL protocol and discuss
the SSL’s use of certificates.

You will learn about the public key infrastructure (PKI) and how public keys are
used for encryption. We present a simple example of public key encryption and
decryption using only a pocket calculator and no advanced mathematics.

Web site security and user authentication were not much of a concern in the HTTP

chapter. But the popularity of the Web for e-commerce is based on trusting that the

transactions sent over the Internet are secure. To most users, this means two things:

Server authentication—The identity of the server is vouched for in some way

(such as a certificate), so that users have confidence that the Web site is not

run by a bunch of hackers collecting credit card or password information.

Safe passage—Data that passes back and forth between client and server

cannot be read (decrypted) by hackers sniffing odd interfaces here and there.

In this chapter, we explore the SSL, the most widely deployed security protocol

on the Web (and in the world) today. Many users notice the little lock that appears

in most Web browsers, and a large percentage of those realize that this means the

browser has deemed this site “secure,” but few bother to investigate just what that

means. The same is true of the https that appears for secure Web pages.

However, this awareness level on the part of users might change. There are

serious proposals to allow only https (HTTP with SSL) Web page access. To

some, this is a radical step, but to others, especially those who have had informa-

tion stolen, it is a rational and minimal step to securing the Internet.

SSL AND WEB SITES
In the last chapter, we configured the hosts bsdserver and winsvr1 to act as a

Web site using Apache. In this chapter, we’ll explore the security aspects of the

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00027-8

© 2017 Elsevier Inc. All rights reserved.
685

http://dx.doi.org/10.1016/B978-0-12-811027-0.00027-8

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

IIS with
ASP
Installed

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 27.1

Web sites on the Illustrated Network showing that the Apache Web server supports SSL.

686 CHAPTER 27 Securing Sockets with SSL

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted Pair Wiring

bsdserver lnxclient winsvr2 wincli2

Apache Web
with SSL
Installed

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

AS 65527

Global Public
Internet

687SSL and Web Sites

Web software. We’ll be using the same equipment as in the previous chapter, as

shown in Figure 27.1.

The Apache Web server software uses a type of SSL called OpenSSL. What hap-

pens when we use the Apache Web server with the OpenSSL module on bsdserver?
Let’s try it from wincli2 and see what happens. In the HTTP chapter, when we

accessed the default Apache Web page (index.html) at http://bsdserver.booklab.

englab.jnpr.net, the page mentioned SSL but did not display a security lock.

Security locks mean that a certificate is passed from the server to the client.

Even the bare Apache installation includes one, although it is a self-signed certifi-

cate. A site certificate must pass three major tests, and the certificate used for

testing OpenSSL with Apache is wanting in all three categories. First, the issuing

“company” does not exist. Second, the certificate could expire at odd times (there

are various procedures to renew it). Third, the name on the certificate has nothing

to do with bsdserver. In many browsers, the user can view the certificate, and

ultimately decide to proceed or essentially abort the request for the page. If we

view the certificate used for testing in Apache SSL, the reasons for the warnings

become obvious (as shown in Figure 27.2).

The testing certificate issued by the nonexistent Snake Oil CA is issued to a bogus

domain. Nevertheless, the user can choose to view the details of the certificate fields,

FIGURE 27.2

Apache SSL test certificate, which fails on all three counts.

688 CHAPTER 27 Securing Sockets with SSL

http://bsdserver.booklab.englab.jnpr.net
http://bsdserver.booklab.englab.jnpr.net

optionally store a copy of the certificate on the client, or choose to proceed (users can-

not say they have not been warned!). The biggest challenge is with the Windows 10

Edge browser, which has no way to view certificates (a “privacy” feature). To view

them, you must open the page in IE, which is simple enough, but an extra step.

The Web server doesn’t really have any secure pages, so the same page is

used for content as in the last chapter, with the exception of the https prefix

instead of http. However, the page content is sent encrypted to the client—which

is the point. The following are the fields in the Snake Oil certificate in detail (this

is from the First Edition, but still informative).

• Version—V3 (SSLv3)

• Serial Number—01

• Signature algorithm—md5RSA

• Issuer—ca@snakeoil.dom, Snake Oil CA, Snake Oil, Ltd, Snake Town, Snake

Desert, XY

• Valid From—Thursday, October 21, 1999 11:21:51 AM

• Valid To—Saturday, October 20, 2001 11:21:51 AM

• Subject—www@snakeoil.dom, www.snakeoil.dom, Webserver Team, Snake

Oil, Ltd, Snake Town, Snake Desert, XY

• Public key—RSA (1024 bits; all 128 bytes follow)

• Subject alternative name—RFC822 Name=www@snakeoil.dom

• Netscape comment—mod ssl generated custom server certificate

• Netscape Cert Type—SSL Server Authentication (40)

• Thumbprint algorithm—sha1

• Thumbprint—20 bytes displayed

The Wireshark capture of the session shows that it takes 98 packets between

client and server for an entire secure exchange. There is much more that could be

explored in SSL, but the procedures become complex very quickly. Interested

readers are referred to texts devoted to security issues. The rest of this chapter

explores in more detail what we’ve just seen.

THE LOCK

The lock in the browser used to be a lot more informative than it is in many

browsers today. Passing the mouse over the lock and pausing it in Internet

Explorer (IE) used to display a message box with text such as SSL Secured (128
Bit). This meant that the keys used for encryption and decryption are 128 bits

long, barely respectable today.

It’s harder, but not impossible, to see the certificate details. The information

should show the domain for which the certificate was issued (such as www.example.
com), which should match the Web site. The issuer of the certificate is available,

as well as the dates the certificate is valid.

Modern browsers have a built-in security feature that displays a warning mes-

sage (or outright refuses to go there) when you try to access a Web site that has a

689SSL and Web Sites

mailto:ca@snakeoil.dom
mailto:www@snakeoil.dom
http://www.snakeoil.dom
mailto:www@snakeoil.dom

certificate “problem.” The certificate could have expired, or the name on the cer-

tificate might not match the Web site.

Servers use the certificate to derive two keys, public and private. The public key

is part of the digital certificate sent to the client browser. The public key is used to

encrypt initial data sent to the server to set up session keys for the transaction. The

reason the public key is not used throughout will be examined later in this chapter.

Some people get their own personal certificates and use them to secure a lot

of what they do on the Internet, even protecting their email messages. Let’s take

a closer look at how SSL works as a protocol layer in TCP/IP.

SECURE SOCKET LAYER

The SSL protocol was invented as a way to secure Web sites, but the status of

SSL as a protocol layer allows it to be used for any client�server transactions as

long as they use TCP. SSL is the basis of a related method, Transport Layer

Security (TLS), defined in RFC4346. Both form a complete socket layer sitting

above TCP and UDP and add authentication (you are who you say you are),

integrity (messages have not been changed between client-server pairs), and

privacy (through encryption) to the Internet.

Figure 27.3 shows the relationship between SSL/TLS and the socket interface.

SSL and TLS are so closely related that they both use the same well-known port.

Many implementations of SSL support TLS. In fact, Wireshark often parses bits

as “TLS” instead of the expected “SSL” in many places.

Typical SSL implementations on the Internet only authenticate the server.

That is, SSL is used as the de facto standard way client users can be sure that

when they log on to www.mybank.com the server is really an official entity of

MyBank and not a phony Web site set up by hackers to entice users to send

account, Social Security, PIN, or other information hackers always find useful.

Application Programs

TCP

IP Layer

Network

Secure Sockets Layer/ Transport Layer Security
(Authentication, Integrity, and Privacy for Applications)

FIGURE 27.3

SSL/TLS as a “socket layer” protocol, showing how it sits on top of TCP.

690 CHAPTER 27 Securing Sockets with SSL

http://www.mybank.com

SSL used by a server is indicated by the little “lock” symbol that appears in the

lower right-hand corner of most Web browsers.

TLS 1.2 can be considered an extension of SSL 3.0 to include the client side

of the transaction. SSL is still used in the Netscape and Internet Explorer brow-

sers, and in most Web server software. Not all Web pages need to be protected

with SSL or TLS, and SSL can be used free for noncommercial use or licensed

for commercial applications.

Why would a Web server need to authenticate and protect the client?

Well, consider the liability of and bad publicity for MyBank if www.mybank.

com accepted a request on the part of a fake client user who transferred

someone’s assets to an offshore account and closed the accounts? Today,

many activities that could easily be done over the Internet require a phone

call or fax or letter with signature (or several of these!) to protect the server

from phony clients.

PRIVACY, INTEGRITY, AND AUTHENTICATION
Before exploring SSL and TLS in more depth, an introduction to the methods

they use to provide authentication, integrity, and privacy is necessary. A more

complete discussion of these methods, especially certificates and public key cryp-

tography, is presented in the chapter on IPSec.

PRIVACY

Privacy is the easiest for most to understand. Coded messages based on “conven-

tional” or “traditional” secret keys have been used since ancient times, and any-

one who has played with a “secret decoder ring” from a cereal box knows that

the point is that only the sender and receiver know the shared secret key needed

to code and decode the message. Most people also understand that such codes can

be broken (some easily, some only with difficulty) by extensive analysis of the

messages (the more text available, the better) or by simply finding out the

“secret” key (the basis of many old spy movies). The key is the weakest point of

the system: You can’t use the code to protect the key for the same code because

it is sent to other communication partners!

Today, public key (or asymmetrical) cryptography addresses the “key

exchange problem” by using two keys—either one of which can be used to

encrypt a message. One key remains private (i.e., known only to one party),

whereas the other key is made public and available to anyone. Either key, public

or private, can be used to encrypt a message—but then only the other key can be

used to decrypt the message. (That’s right, the key used for encryption can’t even

be used to “undo” the initial coding. Be careful when deleting the uncoded

691Privacy, Integrity, and Authentication

http://www.mybank.com
http://www.mybank.com

messages that the encrypted texts are based on!) A complete example of public

key encryption is given later in this chapter.

Messages encrypted with the public key can only be decrypted by the private

key, which means that the key exchange problem is solved. And if you give your

public key to someone careless, it doesn’t really matter: Anyone can learn the

public key and the method is still secure as long as your private key remains pri-

vate. Even better, we can now exchange old-fashioned shared secret keys this

way and use them for a while (the longer a secret key is used, and the more text

accumulates to analyze, the less secure the secret key). For instance, you can use

your bank’s public key to send transactions across the Internet and remain confi-

dent that only the bank can decrypt the message using its secret key.

INTEGRITY

Traditional methods of making sure that the message sent is the one received left a

lot to be desired. Witnessing documents with other signers, using public notaries,

and other methods all had problems that could be circumvented. Traditional mes-

sage integrity simply relied on the strength of the encryption method to make sure

that no one “in the middle” had changed the message in transit. It is one thing to

tell MyBank “transfer $10,000 to pay off my credit cards” and another to find out

MyBank thought you said “transfer $10,000 to Harry Hacker.” As fascinating as

your broken bank correspondence might be to read, hackers usually really want to

do some damage. Then, as soon as the wire transfer has cleared, Harry can close

his account and move on to the next victim.

Those who have been around networks know the concept of a frame checksum or

one-way hash. The checksum is a fixed number of extra bits appended to a frame

(message) to verify that no bits have been altered by errors on the network while the

frame is in transit. Even the checksum itself is included in the “protection.” The mod-

ern equivalent of the checksum hash, extended to many more bits and applied to the

message text itself (or layers of the message plus headers added), is called a message

digest. A message digest is just a big one-way hash, which means that the original

text cannot be recovered from the hash value. On the other hand, the changes made

might just yield the same hash value as the original message. Message digests under-

stand this and are mathematically designed to make sure the chances of this happen-

ing are very slim, on the order of one chance in a million or better.

An associated use of message digests is as a digital signature. After all, the

message digest hash only says that the message to MyBank arrived unaltered. It

doesn’t guarantee that the message really came from me. Anyone in the middle

knowing the message digest algorithm can simply substitute the entire message,

append the proper message digest, and sent it on to the bank.

But a digital signature involves more than just a hash on the message. A digi-

tal signature is used with public key encryption to encrypt not only the text and

hash value but other information (such as a sequence number) with my private

key. The digital signature is appended to the encrypted message and is valid only

for that message. The digital signature can be decrypted with my public key,

692 CHAPTER 27 Securing Sockets with SSL

which might sound like defeating the purpose—but the point is that only you can

create a digital signature using the message digest, and no one can change the

digest and still sign it as you have (as long as my private key remains private, of

course). No one else can use this signature later, for the same reason. Digital sig-

natures provide the receivers with nonrepudiation, meaning that MyBank can be

sure that you sent the message and that it’s really the message you sent (again, as

long as you protect your private key).

AUTHENTICATION

There is only one more concept that remains in understanding how SSL and TLS

work. This is the idea of a certificate. Thus far, we have developed a way for an

individual to send encrypted, unalterable, signed messages to MyBank at www.

mybank.com. We do this using the bank’s public key, available to anyone. (Of

course, the digital signature depends on the public key—although the certificate

concept applies here as well.) But how do you know that the public key provided

is really the bank’s key? Where does MyBank’s public key come from?

It comes from a certificate, of course. The bank provides me with a certificate

confirming the public key and the identity of the holder of the key. How do you

know the certificate is real? After all, all forms of encryption and authentication

are susceptible to the “man-in-the-middle” exploit—where someone is busily

intercepting messages between client and server and substituting their own certifi-

cates (with their own keys) to both parties. One solution would be to hardcode

the certificates into every browser, but this solution does not scale.

A more practical answer to the “man-in-the-middle” threat is that you know the

certificate is real because you got it from a certificate authority (CA). The CA is a

trusted third-party agency whose job it is to distribute certificates, usually on behalf

of commercial enterprises that pay for their services. Certificates associate a public

key with the identity of a subject (server or user), along with the public key. The CA

issuer digital signature is included, as well as a period of validity (start and end), ver-

sion and serial number of the certificate, and sometimes “extension” information.

CAs often require that certificate information be delivered in person by more than

one validated representative of the company being “certified.” This root level CA is

also covered by a certificate, but one that is self-signed. Even on the Internet, someone

has to be trusted implicitly. Other CAs can issue the certificate in a certificate chain.

Some certification users refuse to accept a certificate if the chain is too long (the lon-

ger the chain, the greater the risk that one certificate in the chain might be bad).

Before central bank regulation became common, anyone could found a bank

just by getting people to trust them with their money. Today, anyone can follow a

few rules and be a CA and issue certificates—and that is especially true for pri-

vate intranets in a large organization. Among the rules are procedures for validat-

ing, managing, and revoking certificates through certificate revocation lists

(CRLs). CRLs are needed because certificates are passed around a lot and it is

impossible to tell just by examination that a certificate is no longer valid because

things have changed or it has been compromised or abused.

693Privacy, Integrity, and Authentication

http://www.mybank.com
http://www.mybank.com

If the concepts of public key encryption, message digests, digital signatures,

and certificates still seem somewhat vague and abstract, that’s only to be

expected. These are difficult concepts that take time to assimilate. The IPSec

chapter revisits the concepts in more detail, and gives examples of how these con-

cepts all work together.

PUBLIC KEY ENCRYPTION
Public key encryption, using a private key to recover what is encrypted with a

public key, is based on complex mathematical principles. But that doesn’t mean

that the use of public key encryption is all that difficult to perform. After all,

computers do it with ease.

Let’s use something no more complex than an ordinary pocket calculator to

perform this type of encryption. Along the way, several important points about

public key encryption will be uncovered.

POCKET CALCULATOR ENCRYPTION AT THE CLIENT

The security that public key encryption provides is a consequence of the difficulty

of factoring large numbers, not the complexity of the method. You can do PKI on

any pocket calculator. The “how” is shown in the “Three Magic Numbers” side-

bar and explained in material following.

THREE MAGIC NUMBERS
1. Start with three magic numbers: Public “normalizer” N5 33, public encryption key E5 3, and

private decryption key D5 7.

2. Encrypt plain-text letter “O” (15th letter of the alphabet) from certificate N and E values.

3. Write down “O” value E times and multiply:

153 153 153 3375

4. Divide by N and compute remainder:

3375/335 102.27272. . .
0.27272. . .3 335 8.999765 9

5. Send 9, the cipher text for plain-text 15, over the network.

We have to start with three “magic” numbers, and two of them must be prime

numbers. Usually, you choose two large primes first (hundreds of digits) and

derive a third huge number called N (for “normalizer”) through a very complex

process. N is never called a key in the documentation, but N is necessary for both

encrypting and decrypting. The security comes from the fact that given a large N

and one of the keys, it is next to impossible to derive the second prime key num-

ber. In this example, N5 33, and the two primes are 3 and 7. There is no obvious

relationship between 33 and 3 and 7, although with these small numbers, a code

cracker could figure it out in a minute or two.

694 CHAPTER 27 Securing Sockets with SSL

One of the two primes becomes the public key (it doesn’t matter which), and

the other becomes the private key. Never consistently assign the smaller number

as the public key. This speeds up client encryption, but is a security risk if people

know one factor must be larger than the other. In this example, N5 33, the public

encryption key E5 3, and the private decryption key D5 7.

EXAMPLE

To encrypt the plain-text letter “O,” first convert it to a number. “O” is the 15th

letter of the alphabet; we can use that. Of course, we have to obtain the values of

the server’s N and E values. We can get those from a certificate, in that the values

of N and E must match up properly with the D that the receiver retains.

Now write down the “O” value E times and multiply, using any

suitable calculator with at least eight (8) positions. So, 153 153 155 3375. This

is not too large, so the encryption does not need N yet.

Divide by N and compute remainder. This is just 3375/335 102.27272. The

fraction is there because calculators do not give remainders directly. We can get

it by subtracting 102, leaving 0.27272. Then, 0.272723 335 8.999765 9. We

have to round a little due to the limited precision of the decimal fraction. The cli-

ent sends 9, which is the cipher text for the 15 (“O”) plain text, over the network.

AT THE SERVER
1. Get back “O” without using E, but only N5 33 and D5 7. The receiver gets cipher-text 9

over the network.

2. Write down cipher-text value D (7) times and multiply, applying “normalizer” whenever

number gets large:

93 93 93 93 93 93 95 (531,441)3 9

But 531,441/335 16,104.272 and 0.2723 335 8.9765 9.

So, (9)3 95 81.

Divide the final result by N and compute the remainder:

81/335 2.4545454. . .
0.45454543 335 14.999985 15

3. Thus, 15 plain text is the letter “O” sent securely.

POCKET CALCULATOR DECRYPTION AT THE SERVER

Thus far, the client has used the proper N and E from the server to encrypt “O” (15) as

cipher-text 9. This is what is sent on the network. The magic of PKI is being able to

get back “O” without using E, only N and D. (Because N is known to and used by

both parties, it is never called a key itself.) In this example, N5 33, E5 3, and D5 7.

The following is how to get back “P” using only N5 33 and D5 7 at the server end.

695Public Key Encryption

1. Write down the cipher-text value (9) D times and multiply. If the number gets too large for the

calculator, we can apply N to get back a more useable number.

93 93 93 93 93 93 95 (531,441)3 9

If we don’t want to risk overflowing the calculator, we can apply N at any time as

follows:

531,441/335 16,104.272 (subtract 16,104) and 0.2723 335 8.9765 9

(Again, rounding is needed to deal with the annoying decimal fractions that calculators

insist on providing.)

So, (9)3 95 81. Note how the single (9) replaces 531,441. It is just a coincidence that

this turned out to be 9 also.

2. Divide the final result by N and compute remainder:

81/335 2.4545454, so subtract 2

0.45454543 335 14.999985 15

3. Thus, the plain-text 15 is the letter “O” sent securely using PKI. That’s all there is to it! Of

course, usually it’s a number that’s encrypted—but so what? Try the number 19 for yourself.

You might have to “normalize” on the encryption side as well, but it still works.

The security in PKI is in the difficulty of finding D given the values of E and N.

This example is mathematically trivial to hackers and crackers. But try

N5 49,048,499 and E5 61. The answer is D5 2,409,781. Usually, N, E, and D are

anywhere from 140 to 156 or more digits long. To deal with text messages, strings of

letters can be thought of as numbers. So, “OK” becomes 1511. ASCII is typically used.

Digital signatures employ the same public keys as well. Either key, E or D,

can be used to encrypt or decrypt. You just need to use the other to reverse the

process (try it with “O”). So, any message encrypted with D can only be

decrypted with E (my public key). So, any text that can be decrypted with E

(and N) had to come from me as long as my private key D remains secure.

PUBLIC KEYS AND SYMMETRICAL ENCRYPTION
As has just been pointed out, public key encryption is done routinely by

computers—but it’s not an easy task, even for modern processors. Computers are

really an engineering tool and were generally scorned by mathematicians until rel-

atively recently. In fact, sometimes a mathematician will ask a computer scientist

what value of π is used in computations. Any value that contains fewer than an

infinite number of digits is incorrect, of course. At some point the loss of accu-

racy is fine for engineers, but not for “pure” mathematicians.

So, the length of the strings encrypted with public keys must be limited to

what a computer can handle. We have to admit, the first time we heard about

“128-bit encryption,” we thought it would be interesting because no programming

languages at the time supported “integers” longer than 64 bits—let alone powers

involving 128-bit numbers. Normalization helps, of course, but the computational

drain of public keys on general processors is substantial.

For this reason, SSL uses public key encryption as little as possible—typically

only to establish symmetrical keys that can be used much more efficiently with

696 CHAPTER 27 Securing Sockets with SSL

existing algorithms and processors. Naturally, the symmetrical keys are much less

secure than public key encryption, but they are changed more often and used for

shorter periods of time.

SSL AS A PROTOCOL
SSL is a protocol layer all on its own that is placed between a connection-

oriented, network layer protocol (almost always TCP) and the application layer

protocol (such as HTTP) or program. Connections are useful to provide a conve-

nient way to associate security parameters with a specific flow of packets. SSL

uses certificates for authentication, digital signatures and message digests for

integrity, and encryption for privacy. Each of the three security areas has a range

of choices allowed in order to respect local laws regarding cryptographic algo-

rithms and new technologies to be included as developed. Specific choices in

each area are negotiated when a protocol session (connection) is set up.

SSL PROTOCOL STACK

The SSL protocol stack is shown in Figure 27.4. TLS can be regarded as an

enhanced version of the SSL protocol stack, but the components are essentially

the same.

SSL usually uses Diffie-Hellman (a secure key exchange method used on

unsecure networks) to exchange the keys. The handshake procedure itself uses

three SSL protocol processes: the SSL Handshake Protocol for the overall pro-

cess, the SSL Change Cipher Spec Protocol for Cipher Suite specification and

negotiation, and the SSL Alert Protocol for error messages.

All three of these protocols use the SSL Record Protocol to encapsulate their

messages, as well as the application data flowing on the session once established.

SSL
Handshake

Protocol

SSL Change
Cipher Spec

SSL Alert
Protocol

SSL Record Protocol

TCP

IP Layer

Network

HTTP (Others...)

FIGURE 27.4

The SSL protocol stack in detail showing its relationship to HTTP and other protocols.

697SSL as a Protocol

The nice thing about the SSL Record Protocol is that it provides a way to renego-

tiate active session parameters or establish a new session using a secure path.

Initial session handshakes without a functioning and secure SSL Record Protocol

must use a NULL Cipher Suite (plain text), which is of course a risk.

SSL SESSION ESTABLISHMENT

Established SSL sessions can be reused, which is good because the SSL session

establishment process requires the exchange of many messages. Sessions are

established after a complex handshake routine between client and server. There

are many variations in the details of SSL session establishment, but Figure 27.5

shows one of the most common.

By default, SSL uses TCP port 443. Of course, a user typically just uses http://
(or nothing at all) when accessing a Web page. Rather than making users remember

to type in the port number at the end of the URL, SSL is invoked with a URL

Client Server

Client Hello

Server Hello

Establishes SSL version, session ID,
Cipher Suite, compression method,
and exchanges random values

Optionally sends server certificate
and requests client certificate

Sends client certificate to server
if requested

Change Cipher Suite if necessary
and complete handshake process

Certificate

Certificate Request

Server Hello Done

Certificate

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

FIGURE 27.5

One form of SSL session establishment. There can be others, but this form is very

common.

698 CHAPTER 27 Securing Sockets with SSL

starting with https://. This should not be confused with Web pages distinguished

by the .shtml ending, which means that the Server Side Includes (SSIs) are in use

for that page. There are four major phases to the SSL session establishment process.

1. Initial Hello exchange

2. Optional server certificate presentation and request (authentication of server to

client)

3. Presentation of client certificate if requested (authentication of client to

server)

4. Finalize Cipher Suite negotiation and finish session establishment handshake

Usually, only the server presents its certificate to the client (user). Most users

don’t have certificates to authenticate themselves to the server, but this will

change with TLS. Regarding Cipher Suite negotiation, SSL 3.0 defines 31 Cipher

Suites consisting of a key exchange method, the cipher (encryption method) to

use for data transfer, and the message digest method to use to create the SSL

Message Authentication Code (MAC). There are nine choices for the traditional

shared secret key encryption used in SSL.

• No encryption

• 40-bit key RSA Data Security, Inc. Code (RC4) stream cipher

• 128-bit key RC4 stream cipher

• 40-bit key RC2 Cipher Block Chaining (CBC)

• The venerable Data Encryption Standard (DES), DES40, and Triple DES

(3DES with 168-bit key), all with CBC

• Idea (128-bit key)

• Fortezza (96-bit key)

CBC uses a portion of the previously encrypted cipher text to encrypt the next

block of text. There are three choices of message digest.

• No message digest

• 128-bit hash Message Digest 5 (MD5)

• 160-bit hash Secure Hash Algorithm (SHA)

SSL DATA TRANSFER

All application data and SSL control data use the SSL Record Protocol for

message transfer. Details vary, but usually the SSL Record Protocol will frag-

ment the application data stream (perhaps a Web page) into record protocol

units. Each unit is typically compressed (compression adds a layer of com-

plexity to unauthorized decryption attempts), and the MAC is computed

before the entire unit is encrypted. The end result is tucked into a TCP seg-

ment and IP packet and sent on its way. This process is illustrated in

Figure 27.6.

699SSL as a Protocol

SSL IMPLEMENTATION

Few programmers write an SSL implementation from scratch. SSL is usually

implemented as a toolkit library, and patented cryptographic functions must be

licensed anyway. Public key packages are patented as well, and there are export

restrictions on cryptographic algorithms in the United States. All of these factors

combine to discourage individuals from implementing SSL (as opposed to plain

sockets) on their own.

Two public key toolkits are popular. RSARef is the RSA “reference” public

key package, including RSA encryption and Diffie-Hellman key exchange. It also

features unsupported, but free, source code and is to be used for noncommercial

applications. BSAFE3.0 (“Be-safe,” not an acronym) is the commercial version of

RSARef. The public key toolkits can be combined with any SSL toolkits,

including:

SSLRef—An example SSL 3.0 implementation from Netscape

Communications Corp.

SSLava—An SSL 3.0 toolkit from Phaos Technology written in Java.

OpenSSL—A free noncommercial implementation of SSL 3.0 (and 2.0) and

TLS 2.0) that can be used outside the United States. In the United States,

patent restrictions require use of RSARef or BSAFE3.0.

Welcome to the IIIustrated Network!

Network!Welcome to the

Application Data
(i.e., Web page)

Record Protocol Units

Compressed Unit

Create MAC (encrypt)

Encryption

TCP Packet

Compress

Fragment

Transmit

Welcome...

Welcome...

 IIIustrated

FIGURE 27.6

The SSL record protocol showing how protocol units are compressed and encrypted.

700 CHAPTER 27 Securing Sockets with SSL

SSL ISSUES AND PROBLEMS

SSL is not perfect, of course. SSL suffers from a number of limitations, most of

which can be overcome with careful planning and attention to detail. The sections

that follow discuss a representative list of SSL issues.

Computational Complexity
As we’ve seen, public key encryption is so processor intensive that we avoid it

whenever we can. And because the server must perform the SSL handshake for

every connection, OpenSSL struggles under heavy workloads. Hardware accelera-

tion with special cards helps, and load balancing among multiple servers all repre-

senting the same Web site helps as well.

Clear Private Keys
The server has to store the private key somewhere, and usually in clear form (oth-

erwise, we just move the issue to the next key, or the next, and restarts become a

real problem unless the actual key is somewhere on the system). The point is, of

course, that data might be transmitted over the network in encrypted form but it

is seldom stored on the server in an encrypted form. The physical security of the

server is essential, and a technique called perfect forward secrecy is also helpful.

We’ll meet forward secrecy again in a discussion of IPSec.

Stolen Credentials
Certificate revocation lists are fine, but if a private key or certificate is stolen it

can take a while for the organization to figure out that there is a bogus www.

example.com site out there stealing people’s money and identities. It’s better to

query the CA with a special protocol, such as the Online Certificate Status

Protocol (OCSP)—currently defined in RFC 6960.

Pseudorandom Numbers and “Entropy”
In SSL, clients and servers both have to generate random numbers and data to use

for session keys. The problem is that most computers’ pseudorandom number gen-

erators (PRNGs) are not adequate for true security because they are

predictable (one of the reasons they are pseudo random in the first place). The

seed number used as input to the PRNG must itself be as random as possible, and

many SSL implementations use seeds that do not have enough “entropy” (a mea-

sure of disorder or randomness). There are software-based workarounds for this.

Works Only with TCP
SSL only protects applications that use TCP. This is fine for HTTP, but more and

more critical data on the Internet uses UDP and not TCP. We’ve already noted

that multicast uses UDP, and VoIP does as well. These data streams need protec-

tion, but SSL cannot currently provide it.

701SSL as a Protocol

http://www.example.com
http://www.example.com

Inadequate Nonrepudiation
Suppose you purchase a product over the Internet that has a rebate. You have to

send proof that you are the person that purchased the product to the rebate “fulfill-

ment center” to receive the rebate. This is nonrepudiation in the sense that the

company cannot say to the rebate center you didn’t purchase the product.

However, SSL cannot provide this nonrepudiation. The workaround, which

involves the company and you having certificates, is relatively easy (but this will

take a while to become the standard).

When using any security method, all of the system’s “vulnerabilities” are diffi-

cult to seal. It’s just difficult to detect and patch up all cracks in a complex system.

I once worked in an organization with a coworker who was famous for “play-

ing” with the servers and their users by simply intercepting messages on the

LAN. When the organization switched to encrypted communications, I tried to

console him, thinking his hacking days were over. “That’s all right,” he told me,

“I know where the backups are. Those aren’t encrypted.”

Where are those frequent backups of the Web servers’ information? How

secure are they? Security is always a never-ending battle where one side or the

other seems to gain an advantage for a while, but never for long. Many of the

limitations of SSL are addressed in TLS 1.2.

SSL AND CERTIFICATES

Let’s take a close look at how SSL handles certificates. Ordinarily, once SSL is

installed on a server you have to generate a certificate request to one of the major

CAs (such as VeriSign). There are many types of certificates available, such as

personal (mainly for email), code signing (for downloaded programs), and Web

site (which is what we’re talking about here).

Of course, the certificate has to be distributed by a CA, which also has to be

set up. In OpenSSL, most CA operations can be done at the CLI, but this method

is not really suitable for a production environment.

No matter which SSL server software is used, they all tell you how to generate

a certificate signing request (CSR). Once this is done, the software generates a

public/private key pair. You send the public key and the CSR to the certificate-

issuing authority.

If all is in order when reviewed, including related documentation, the response

is emailed to the applicant and loaded into the server SSL software. You usually

get three things in the response:

• The CA’s certificate containing the public key

• The local certificate identifying the server

• A certificate revocation list with a list of certificates revoked by the CA

For testing purposes, it is not necessary in most cases to obtain a “real” certifi-

cate. OpenSSL, for example, includes the testing certificate from the Snake Oil

702 CHAPTER 27 Securing Sockets with SSL

CA that is functional but not intended for use (hopefully, the “snake oil” name,

used for useless tonics or medications, will be a tip-off to users).

QUESTIONS FOR READERS

Figure 27.7 shows some of the concepts discussed in this chapter and can be used

to answer the following questions.

1. Which port is used by https?

2. Which version of SSL is used at the record layer?

3. The capture says the “version” of SSL used is TLS 1.0. Why is that?

4. Which message should be sent in response to a Client Hello?

5. Is SSLv2 DES encryption with SHA supported by the client?

FIGURE 27.7

Wireshark capture of an SSL Client Hello frame. Note the list of encryption methods and

details in the cipher suite.

703Questions for Readers

This page intentionally left blank

PART

VI
Network
Management

Network management is an important aspect of networking, and the Internet
is no exception. This part of the book explores SNMP, RMON, and the MIB.

• Chapter 28—Simple Network Management Protocol
• Chapter 29—Cloud, SDN, and NFV

This page intentionally left blank

CHAPTER

28Simple Network
Management Protocol

WHAT YOU WILL LEARN

In this chapter, you will learn how SNMP is used to manage devices on a TCP/IP net-
work. We’ll explore the SNMP model with many servers (agents) and few clients
(managers).

You will learn about MIBs and the SMI tree for designating management informa-
tion. We also briefly discuss RMON (remote monitor) and private management infor-
mation bases (MIBs). We’ll also look at how network management is changing as the
Internet becomes larger and larger.

Network management, like network security, is often treated like an adjunct to

the true task of networking, which is to relentlessly shuttle bits about (that is, until

something goes wrong). Then everyone wonders why it couldn’t be easier to

figure out what went haywire. Without network management facilities, the net-

work is like driving a car without fuel-level, water-temperature, or oil-pressure

gauges. When the car slowly glides to a halt, there are few clues of even where to

start looking.

The Internet outgrew the humble go-have-a-look-at-it school of network man-

agement by the late 1980s, when it seemed like colleges and universities were

sticking routers in every other building around the campus and then finding some-

one who would not object to being placed in charge of the devices. Little did they

realize that they would be expected to ensure that the out-of-the-way device was

functional day and night, 365 days a year. They ran their portion of the Internet

on a PING and a prayer.

It’s not that management of network devices was unknown at the time, or

deemed unnecessary. Vendors always had some sort of management functions

tucked away in their software. The problem was that each vendor’s interface was

different (sometimes in the same product line), the client software expensive and

proprietary, and the network operations centers (NOCs) that existed tended to

consist of rooms full of equipment that no one knew how to operate equally well.

But knowing that network management was essential and creating a standard

for network management on the Internet were two different things. The interna-

tional standard for network management, itself a new creation at the time,

was the Common Management Information Services/Common Management

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00028-X

© 2017 Elsevier Inc. All rights reserved.
707

http://dx.doi.org/10.1016/B978-0-12-811027-0.00028-X

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted Pair Wiring

bsdclient lnxserver wincli1

SNMP client
(scli)

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

IIS with
ASP
Installed

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 28.1

SNMP on the Illustrated Network, showing the hosts used as SNMP clients and the router

with SNMP enabled.

708 CHAPTER 28 Simple Network Management Protocol

SNMP client
(scli)

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

AS 65527

Global Public
Internet

SNMP-
enabled
router

709Simple Network Management Protocol

Information Protocol (CMIS/CMIP). However, this standard (geared to the needs

of public telephony carriers) was loaded with features unnecessary to the Internet

at the time. So, Internet administrators took what they could from the ISO specifi-

cations and created SNMP fairly independently.

SNMP CAPABILITIES
The need for network management information has to be weighed against the

need for security. Yet many organizations routinely run SNMPv1 on their net-

work nodes, hubs, or routers, and seldom take advantage of the heightened secu-

rity available in many SNMPv1 implementations or consider SNMPv2.

Organizations routinely block Telnet access to their routers, yet allow SNMP

access without too much worry. (Things are slowly changing, as we’ll see at the

end of this chapter.)

Just how much information can be gathered from a router running

SNMPv1when no steps have been taken to protect information? Quite a bit,

actually.

Let’s enable SNMP on one of our routers, CE6, attached to LAN2, and use

bsdclient on LAN1 and bsdserver on LAN2 to see what we can do with

SNMP. There are many nifty GUIs available for SNMP, but we’ll use FreeBSD’s

scli application to maximize information and minimize clutter on the screen. We

won’t be interested in traffic histograms or historical data anyway. The equipment

used in this chapter is shown in Figure 28.1.

Enabling SNMPv1 on a Juniper router is very straightforward (just setting

values to the proper variables) and need not be shown. The following is the result

of our initial configuration.

admin@CE6# show snmp
name Router_CE6;
description MX80-Router;
contact WalterG;

There is much more we could have configured, and in fact this is really more

than we need. But it will allow us to ensure that it’s the right router. Now we can

run a Unix command-line management application on bsdclient called scli to

router CE6. (We haven’t put the routers in DNS, and many organizations don’t

for security purposes, so we’ll access the router by an interface IP address instead

of by name.)

bsdclient# scli 10.10.12.1
100-scli version 0.2.12 (c) 2001-2002 Juergen Schoenwaelder
100-scli trying SNMPv2c . . . good
(10.10.12.1) scli.

710 CHAPTER 28 Simple Network Management Protocol

We are now running SNMPv2 to the router. Note that scli is an interactive appli-

cation with its own. prompt, like nslookup, so we can execute all types of commands

(known through help) at this point until an exit takes us out to the shell again. Let’s

ensure that we have the right router and examine the system information.

(10.10.12.1) scli . show system info
Name: Router_CE6
Address: 10.10.12.1:161
Description: MX80-router
Contact: WalterG
Location:
Vendor: unknown (enterprises.2636)
Services: network
Current Time: 2008-02-28 20:11:36 -07:00
Agent Boot Time: 2008-02-21 20:44:12 -08:00
System Boot Time: 2008-02-21 20:43:27 -08:00
System Boot Args: /kernel
Users: 3
Processes: 61 (532 maximum)
Memory: 256 M
Interfaces: 50
Interface Swap: 2008-02-21 20:45:31 -08:00
(10.10.12.1) scli .

That’s the router all right. Note that we get a lot more information than we

entered. And some people would be very nervous about the system details that

SNMP has gathered from this router. But let’s look at SNMP in action first.

Figure 28.2 shows the SNMP messages and details. One response is of particular

FIGURE 28.2

SNMP session to router CE6.

711SNMP Capabilities

interest—the one that has the information we entered on the router. Most of the

information displayed at the start of the show command can be picked out of the

lower pane in the figure.

Let’s see what harm we can cause with SNMP by changing something.

(10.10.12.1) scli . set system contact NotMe
500 noResponse 1.00 vpm
(10.10.12.1) scli .

The noResponse tells us that our request was ignored by CE6. Most devices

will enable SNMP with read-only access unless told otherwise. Still, there’s a lot

of information available about good old router CE6, such as the following:

(10.10.12.1) scli . show interface
show interface info [10.10.12.1] [2008-02-28 20:43:38 -07:00]

INTERFACE STATUS MTU TYPE SPEED NAME DESCRIPTION

1 UUCN 1514 ethernetCsmacd 100 m fxp0 fxp0

2 UUCN 1514 ethernetCsmacd 100 m fxp1 fxp1

4 UUNN 1496 mplsTunnel 0 lsi lsi

5 UUNN 2147483647 other 0 dsc dsc

6 UUNN 2147483647 softwareLoopback 0 lo0 lo0

7 UUNN 2147483647 other 0 tap tap

8 UUNN 2147483647 tunnel 0 gre gre

9 UUNN 2147483647 tunnel 0 ipip ipip

10 UUNN 2147483647 tunnel 0 pime pime

11 UUNN 2147483647 tunnel 0 pimd pimd

12 UUNN 2147483647 tunnel 0 mtun mtun

13 UUNN 1500 propVirtual 100 m fxp0.0 fxp0.0

14 UUNN 1514 propVirtual 100 m fxp1.0 fxp1.0

16 UUNN 2147483647 softwareLoopback 0 lo0.0 lo0.0

21 UUCN 4474 sonet 155 m so-0/0/0 so-0/0/0

22 UUNN 4470 ppp 155 m so-0/0/0.0 so-0/0/0.0

23 UUCN 4474 sonet 155 m so-0/0/1 so-0/0/1

24 UUNN 4470 ppp 155 m so-0/0/1.0 so-0/0/1.0

25 UUCN 4474 sonet 155 m so-0/0/2 so-0/0/2

26 UUNN 4470 ppp 155 m so-0/0/2.0 so-0/0/2.0

27 UUCN 4474 sonet 155 m so-0/0/3 so-0/0/3

28 UUNN 4470 ppp 155 m so-0/0/3.0 so-0/0/3.0

29 UUNN 2147483647 softwareLoopback 0 lo0.16385 lo0.16385

30 UUNN 2147483647 tunnel 800 m pd-1/2/0 pd-1/2/0

31 UUNN 2147483647 tunnel 800 m pe-1/2/0 pe-1/2/0

32 UUNN 2147483647 tunnel 800 m gr-1/2/0 gr-1/2/0

33 UUNN 2147483647 tunnel 800 m ip-1/2/0 ip-1/2/0

34 UUNN 2147483647 tunnel 800 m vt-1/2/0 vt-1/2/0

712 CHAPTER 28 Simple Network Management Protocol

35 UUNN 2147483647 tunnel 800 m mt-1/2/0 mt-1/2/0

36 UUNN 0 tunnel 800 m lt-1/2/0 lt-1/2/0

37 UUCN 1514 ethernetCsmacd 100 m fe-1/3/0 fe-1/3/0

38 UDCN 1514 ethernetCsmacd 100 m fe-1/3/1 fe-1/3/1

39 UUNN 2147483647 tunnel 800 m pd-0/3/0 pd-0/3/0

40 UUNN 2147483647 tunnel 800 m pe-0/3/0 pe-0/3/0

41 UUNN 2147483647 tunnel 800 m gr-0/3/0 gr-0/3/0

42 UUNN 2147483647 tunnel 800 m ip-0/3/0 ip-0/3/0

43 UUNN 2147483647 tunnel 800 m vt-0/3/0 vt-0/3/0

44 UUNN 2147483647 tunnel 800 m mt-0/3/0 mt-0/3/0

45 UUNN 0 tunnel 800 m lt-0/3/0 lt-0/3/0

46 UDCN 1504 e1 2 m e1-0/2/0 e1-0/2/0

47 UDCN 1504 e1 2 m e1-0/2/1 e1-0/2/1

48 UDCN 1504 e1 2 m e1-0/2/2 e1-0/2/2

Byte 2969

And this is only part of it. Just imagine if someone managed to break in and

. . . but wait: All we did is use a router interface’s IP address. No breaking in was

needed. This is one of the reasons that SNMPv1 is rapidly moving to SNMPv3.

In practice, almost all SNMP implementations support SNMPv1, SNMPv2 and

variations, and SNMPv3. This chapter uses SNMPv1, but mainly to show the lim-

itations of SNMP network management in general.

What can we do to tighten things up with SNMPv1? Let’s limit SNMP

access to a single interface on the router, and a single host reachable

through the interface. The interface will be LAN2, on fe-1/3/0, not surpris-
ingly. We’ll use the LAN2 host bsdserver so that we can still use scli.
We’ll also let an administrator with root privileges on bsdserver make

changes with the set request in the SNMP community (a sort of SNMP

“password,” but it’s really not) called locallan. Almost all of this is config-

ured on the router, not the host. The scli limitation to execute a remote set
command is a function of the application. The following presents the new

router configuration.

set snmp name Router_CE6;
set snmp description MX80-router;
set snmp contact WalterG;
set snmp interface fe-1/3/0.0; # restrict SNMP to the LAN2 interface
set snmp view syscontact oid sysContact include; # let the manager change

the sysContact
set snmp community locallan view sysContact; # establish new community

string and add sysContact to view. . .
set snmp community locallan authorization read-write; # . . .and let it

be read and write access. . .
set snmp community locallan clients 10.10.12.77/32; # . . .but only from

bsdserver for the locallan community string

713SNMP Capabilities

We have to explicitly add the sysContact object ID to a “view” for the

community string locallan if we are going to allow the network manager on

bsdserver to change the value of that object. Back on bsdclient, the effects of

these changes are immediate.

(10.10.12.1) scli . show ip
500 noResponse
500 noResponse
500 noResponse
500 noResponse
500 noResponse
(10.10.12.1) scli .

But things are different once we switch to bsdclient (and remember to use

the community string locallan).

. bsdserver# scli
100-scli version 0.2.12 (c) 2001-2002 Juergen Schoenwaelder
scli . open 10.10.12.1 locallan
100-scli trying SNMPv2c . . . good
(10.10.12.1) scli . set system contact NotMe
(10.10.12.1) scli . show system
show system info [10.10.12.1] [2008-02-28 21:02:07 -07:00]

Address: 10.10.12.1:161
Contact: NotMe
(10.10.12.1) scli.

If we forget to add the object explicitly to the community on the router,

bsdserver still has access but will not be able to write to the object.

(10.10.12.1) scli.set system contact NotMe
500 noAccess @ varbind 1
(10.10.12.1) scli.

By now it should be obvious that SNMP can be a powerful network manage-

ment tool, independent of remote-access or vendor-specific management techni-

ques. However, all of this talk about objects, community strings, SNMPv1, and

v2 can be confusing. SNMP introduces a lot of terms and concepts. Let’s start at

the beginning and see just what SNMP can do and how it does it.

THE SNMP MODEL
This section takes a more detailed look at how SNMP, versions 1 and 2, works.

This chapter identifies the shortcomings of SNMPv1 that led to the creation of

SNMPv2c, and then shows what security features (and other things) SNMPv3

714 CHAPTER 28 Simple Network Management Protocol

adds to SNMP. SNMP remains a popular method of managing networks today,

not only the Internet.

All network management standards, not just SNMP, work by means of what

is known as the agent/manager model. This is not really a new term or concept.

The term “agent/manager model” is essentially the client/server model idea

extended to network management. A manager is just a management console in

the NOC running the network management software, not an actual human being.

An agent is software that runs on all manageable devices on the network. As in

the client/server model, managers “talk” and the agents “listen.” So, managers

are clients for network management purposes and agents are servers for network

management purposes. Obviously, a major difference in the agent/manager

model from traditional client/server is that in a network management situation,

there are many servers (agents) and generally only a few clients (management

consoles).

The manager running in the network management station (or any host setup

to run it) sends commands to the agent software on the managed device using a

network management protocol that both the manager and agent understand. The

agent responds and then waits (or “listens”) for a further command, and so on.

The command may be generated by the manager software periodically, without

human intervention, and the results stored in a manager console database for

future reports or reference. Alternatively, the commands may be generated by

NOC personnel using the manager console to solve outstanding network pro-

blems, perform routine testing, and so forth. In the case of a serious event, such

as major link failure, an alarm (called a trap in SNMP) is generated without

anyone asking. Most servers, hubs, routers, and even end-user devices sold

today have built-in SNMP agent software that does not usually have to be pur-

chased separately. The SNMP model of network management is shown in

Figure 28.3.

Note that network managers can both monitor the status of the device and

actually change the configuration (a dangerous capability that requires careful

considerations if it is to be allowed at all). The network management station typi-

cally keeps the historical information about the network device (devices have bet-

ter things to do), and has a number of applications whose main goal is to provide

detailed reports about the network’s performance, often in a graphical format

designed for visual impact.

In addition, all network management standards provide for a special type of

agent (known as the proxy agent) to provide the manager console with manage-

ment information about network devices that do not understand the network man-

agement protocol. Of course, the network devices must understand some type of

network management protocol or they would not be manageable at all. But the

proxy agent performs a type of gateway function to translate back and forth

between the network manager console protocol and the different network manage-

ment protocol, often proprietary, understood by the network devices accessed by

the proxy agent.

715The SNMP Model

THE MIB AND SMI

The agent software has access to the current value of various objects in the man-

aged device. The exact function and meaning of an object, and the relationship of

one object to another, is described in the MIB for the managed device. The MIB

is a crucial concept in all network management standards, not only in SNMP,

although there are many MIBs for devices used on the Internet.

The MIB is a database description of all fields (objects) that make up the total-

ity of information an agent can furnish to a manager console when requested. So,

a MIB is most often just a piece of paper that says things such as “the first field is

alphanumeric, 20 characters long, and contains the name of the vendor” and “the

fifth field is an integer and contains the number of bad packets received.” Not that

this is rendered in plain English. A special ISO “language” called ASN.1 (Abstract

Syntax Notation version 1) is used to represent all fields of the MIB database in

very terse and cryptic language that all MIB implementers understand.

THE SMI

The problem with trying to manage all possible network device agents with a sin-

gle management protocol is that there are so many different types of network

devices. Some deal with packets (routers), and some with frames (bridges). Some

are quite simple (hubs), and some are very complex (switches). The challenge is

Network Management Station

Network
Management
Application

Network
Management
Application

Network
Management
Application

SNMP Manager

SNMP Agent

Read/write configuration
Read/write status
Read statistics
Read errors

Respond to requests
Report errors
“Trap” certain events

MIB

Managed Device

Logical Database
Configuration Data

Status Parameters
Statistics

FIGURE 28.3

SNMP model, showing that an agent has access to a MIB in the managed devices.

716 CHAPTER 28 Simple Network Management Protocol

to find a way to sort out all of the possible MIB variables in a standard fashion so

that any implementation of the network manager console protocol will be able to

request the value of any particular object accessible by any agent. Fortunately,

standards organizations have all agreed on and defined a standard structure for

network management information.

The SNMP developers defined a Structure of Management Information (SMI)

tree in RFC 1155 (still in effect, but with errata noted). The same SMI is defined

in ISO 10165, where it is called the Management Information Model (MIM), and

in ITU-T X.720, X.721, and X.722.

MIB information is structured through the use of a naming tree known as the

SMI conceptual tree. Figure 28.4 shows the SMI conceptual tree with the empha-

sis on SNMP MIB definitions.

The root of the tree is unlabeled. All branches of the tree from the root have

both labels and numbers associated with them. All SNMP MIB objects are under

the branch that leads from ISO (1) to Identified Organizations (3) to the

Department of Defense (DoD) (6) to the Internet (1). At the lowest branches of

the tree are the MIB objects themselves. These are organized into MIB-I (the

original SNMP definitions) and MIB-II (extended SNMP definitions).

The system group of MIB-II is probably the most commonly used and easily

understood of all MIB objects in SNMP. The System (1) group contains seven

objects that provide a general description of the network device. The seven

objects are:

• sysDescr (1)—A description of the network device (“router,” “hub,” etc.)

DIRECTORY
1

MGMT
2

MIB-2
1

Transport
Domains

SNMP
Proxies

Module
Identities

EXP
3

PRIVATE
4

SECURITY
5

SNMPv2
6

Root
(unnamed)

ISO
1

ORG
3

DOD
6

Internet
1

FIGURE 28.4

SMI tree, showing how the names are organized.

717The SNMP Model

• sysObjectID (2)—The identifier of the device’s private MIB location, if any

(discussed more fully in material following)

• sysUpTime (3)—The time, measured in 100ths of a second, since the network

management software (not necessarily the device!) was reinitialized

• sysContact (4)—The name of the local contact person responsible for the

network device

• sysName (5)—The name of the manufacturer of the network device

• sysLocation (6)—The physical location of the network device

• sysServices (7)—The services the network device is capable of rendering

The importance of MIBs in network management should not be overlooked.

From a single console, a network manager can merely point a mouse at an icon

and with a click determine that the device is a router located at 1133 Innovation

Way in Sunnyvale, California; that the person responsible for the device is Walter

Goralski; and so on. All of this information is provided over the network, on the

fly, from the device itself (as long as it is entered and maintained on the device,

of course).

The numbers and labels referred to previously are technically called object

identifiers and object descriptors in SMI. The SMI tree is used by the network

management protocol to designate objects in the MIB. Object identifiers are

numeric, and all SNMP manageable devices commonly found on a network begin

with 1.3.6.1. . . (shown in Figure 28.4). Identifiers are used by the network man-

agement software. Object descriptors, on the other hand, are labels, and all SNMP

manageable devices also begin with ISO.ORG.DOD.INTERNET. . ., which is the exact

equivalent of the numeric string. This view of the MIB tree is shown in

Figure 28.5.

As an example of the use of object identifiers, consider the case in which a

network manager may need to change the system contact for a particular network

device. An SNMP command, in this case a get request, is used to retrieve the cur-

rent value of the sysDescr object. The SNMP message requests the current value

of the object 1.3.6.1.2.1.1.1, which is the object identifier equivalent of the

object descriptor iso.org.dod.internet.mgmt.mib-2.system.sysDescr. The

device knows to reply with the current value of the sysDescr object and no other.

If permitted, the network manager can even use the SNMP set command to

replace to current value of the sysDescr object with the name of the new local

contact for the network device (if there is a reason to change it, perhaps to reflect

an upgrade).

THE MIB

All of the MIB objects in SNMP are defined in ISO ASN.1, a presentation layer

(OSI-RM Layer 6) standard syntax. The definition of a managed object in a

network device’s agent MIB consists of the following seven fields.

718 CHAPTER 28 Simple Network Management Protocol

• Syntax—An ASN.1 data type such as integer, time ticks (hundredths of a

second), string, and so on.

• Access—If the object is read-write, read-only, not-accessible, and so on.

• Status—Objects may be mandatory, optional, obsolete, or deprecated

(replaced by newer).

• Description—An optional text string describing the object type.

• Reference—An optional cross reference to another MIB definition (e.g., a

CMIP branch).

• Index—If the object is a table, this defines how SNMP access a unique logical

row.

• Defval—An optional default value assigned to the object.

In the following are two sample MIB object definitions in ASN.1, ifMTU and

sysUpTime.

OBJECT: ifMtu {ifEntry 4}
Syntax: INTEGER
Definition: The size of the largest IP datagram that can be sent/

received on the interface, specified in octets.

1.3.6.1.2.1.1.1 iso.org.dod.internet.mgmt.mib-2.system.sysDescr

ISO.ORG.DOD.INTERNET
1.3.6.1

DIRECTORY
1.3.6.1.1

MGMT
1.3.6.1.2

MIB-2
1.3.6.1.2.1

SYSTEM
1.3.6.1.2.1.1

AT
1.3.6.1.2.1.3

ICMP
1.3.6.1.2.1.5

UDP
1.3.6.1.2.1.7

P
1.3.6.1.2.1.4

sysDescr
1.3.6.1.2.1.1.1

sysObjectID
1.3.6.1.2.1.1.2

sysUptime
1.3.6.1.2.1.1.3

INTERFACES
1.3.6.1.2.1.2

TCP
1.3.6.1.2.1.6

EGP
1.3.6.1.2.1.8

EXP
1.3.6.1.3

ENTERPRISES
1.3.6.1.4.1

Vendor
Objects

PRIVATE
1.3.6.1.4

FIGURE 28.5

MIB tree by number and name. The numeric strings can quickly become very long.

719The SNMP Model

Access: read-only.
Status: mandatory.

OBJECT: sysUpTime {system 3}
Syntax: TimeTicks
Definition: The time (in hundredths of a second) since the network

management portion of the system was last reinitialized.
Access: read-only.
Status: mandatory.

The ifMtu object is from the interface (ifEntry) group, and gives the maxi-

mum transmission unit size, a key TCP/IP parameter. The object is the fourth

entry in the group (an integer); may only be read by the network manager soft-

ware, not changed; must be in all SNMP compliant equipment that uses TCP/IP;

and gives the size in bytes of the largest IP datagram that can be sent or received

by this network device on this particular interface (port).

The sysUpTime object is the third in the system group, and gives the time the

network management agent software has been running. The units are a special

type of integer called time ticks. The object is read-only, and must be present.

MIBs are technically just pieces of paper, like a customer database data field

description. MIBs must be coded and implemented in the agent software and

installed in the network device before the network device can be managed by a

manager console. Typically, a MIB is coded by the programmers of the network

device’s software in a C-language module and compiled into an object-code mod-

ule with a special compiler known (not surprisingly) as a MIB compiler. The MIB

object-code module is then linked with the SNMP protocol model to yield the

entire executable module, which can be installed in the memory of the network

device. All of this is usually done before the network device is sold, of course.

There are exceptions to this rule, however. MIBs exist for a variety of pur-

poses and network types. For instance, a router may have both an Ethernet MIB

and a SONET/SDH MIB if the router supports both types of network connections,

and even a frame-relay MIB on the SONET/SDH port of the router. Sometimes,

though, a network device may be sold with only an Ethernet port (for example)

and then upgraded to provide SONET/SDH connectivity as well, usually through

the addition of a new interface card. In this case, the router may have included

only the Ethernet MIB because no SONET/SDH MIB was needed. When the new

SONET/SDH card is added, the SONET/SDH MIB must be added as well.

Not all modifications to network devices involve hardware. In some cases, a new

MIB may have to be installed when a new software feature is activated on the network

device. In many SNMP implementations, the extensible MIB may be activated or

installed over the network without even being present at the network device site.

RMON

One additional aspect of SNMP MIBs should be discussed, in that this concept is

extremely helpful in managing large networks. There is a potential problem with

720 CHAPTER 28 Simple Network Management Protocol

managing SNMP devices on a network over the network itself (security is another

matter). The problem is simply this: What if the link to the network device is

down? How is the status of the network device to be determined under these con-

ditions? The answer is provided by means of a special optional MIB: the RMON

MIB. RMON stands for “remote monitor,” and this MIB provides for a dial-in

port to the network device that may be used by the manager console to communi-

cate with the network device regardless of other network link availability.

RMON may also be used with leased lines to provide another benefit for large

IP networks. The larger the enterprise network, the more network devices there

are that need managing. Network managers will try to monitor network device

performance and workload to prevent congestion on the network. The problem is

that all of these SNMP messages flowing over the network back and forth to all

of the network devices can add a considerable load to a network at the worst pos-

sible time, when things are going suspiciously wrong. If RMON is configured to

run on separate leased lines to critical network devices, the SNMP messages add

no load at all to the enterprise network itself.

Unfortunately, not many organizations can afford the additional expense of

the necessary leased lines to many of these important network devices (usually

the routers). Still, RMON remains a useful option for heavily loaded or delay-

sensitive IP networks.

THE PRIVATE MIB

Standard MIB objects are designed for a wide variety of technologies and net-

work devices. These MIB objects cover a large range of possibilities, but there

are always situations and conditions that a network manager should be aware of

that are not covered by a standard MIB object. These are usually very low-level,

device-specific hardware functions, such as whether a network device’s cooling

fan has failed, whether the device has battery backup or a redundant power sup-

ply, or any of a number of other vendor hardware-implementation choices and

options.

To cover all of these vendor-specific situations, the SMI conceptual tree

includes a branch for private MIB extensions. The SMI path to the private MIB is

1.3.6.1.4.1. This leads to the enterprise branch of the SMI tree, where each ven-

dor may obtain a branch number (identifier) and label (descriptor) from the

Internet Assigned Number Authority (IANA) for the vendor’s private MIB. For

example, all IBM private MIB objects reside at 1.3.6.1.4.1.2. . . on the SMI tree

because “2” is IBM’s enterprise number. Cisco routers use 1.3.6.1.4.1.9. . .,
Hewlett-Packard has 1.3.6.1.4.1.11. . ., and so forth. More than 700 enterprise

code numbers have been assigned by the IANA, showing the wide availability of

SNMP-compliant products.

This system of private MIBs makes sense because only the manufacturer of

the network device could possibly know whether the device even has a cooling

fan, battery backup, or other hardware feature. Obviously, a network manager

would like to know if a device’s fan has failed, especially if the device is in a

721The SNMP Model

closet where it may overheat and fail after a few hours. The private MIB offers a

way of allowing this information to be accessed by the network manager.

SNMP manager software will generally have no concept of just where the pri-

vate MIB objects are and what these objects represent. Some vendors would actu-

ally “hide” their private MIB descriptions by limiting their availability, and just

what the number 2 in a private MIB field might mean (Status code? Error code?

Two minutes to failure?) often remained a mystery. In most cases, this means that

this vendor’s network device could only be completely manageable using that

vendor’s network manager software, which would have a built-in description of

this private MIB. Private MIBs are an effective way to “lock in” a company to

using only a specific vendor’s SNMP software as a network manager.

Few companies go to that extent anymore. But the problem of how any partic-

ular manager console software could know just where any vendor’s private MIB

is located and what the vendor’s private MIB means still exists. This is where the

system group sysObjectID object can be helpful. Accessing the object

1.3.6.1.2.1.1.2 (the second object in the system group: sysObjectID) from the

management console will return a string such as 1.3.6.1.4.1.999.1.1.. . . This
is, of course, the location of the private MIB objects for the vendor of the particu-

lar device. Further requests to that SMI tree location might yield the private MIB

description implemented by that vendor (1 means fan failure, 2 means fan

normal).

Manufacturers may extend private MIBs with as many objects in whatever

structure they desire. Many vendors publish (on the Internet) their private MIB

descriptions so that makers of SNMP management console software can easily

build in private MIB support without having to follow sysObjectID links.

SNMP OPERATION
All of the foregoing discussion on SMI, MIBs, and private MIBs applies equally

to any standard network management package that may be used on a network.

Granted, there are a few differences between SNMP network management termi-

nology and the others. Specifically, the SMI objects in network management pro-

tocols other than SNMP may not all necessarily start with 1.3.6.1. . . because
these are by definition TCP/IP Internet objects and the MIB in CMIP is referred

to as MIM (Management Information Model). There are other minor differences

as well, but the point is that all of the previous material and concepts apply to

network management in general.

However, this section will deal entirely with the specifics of SNMP as the

most widespread, cost-efficient, and viable network management standard for IP

networks in use today. For the remainder of this section, SNMP without qualifica-

tion means SNMPv1. SNMPv2 and SNMPv3 will always be qualified with the

version number.

722 CHAPTER 28 Simple Network Management Protocol

SNMP was invented to manage routers on the Internet, and early versions of

SNMP had few MIB objects suitable for managing other network devices. The lat-

est SNMP MIB definitions have been extended to include objects defined for most

LAN and WAN technologies, even ATM and frame relay. SNMP was initially

intended as an interim solution until ISO’s CMIP network management standard

was completed, at which time SNMP was supposed to merge with CMIP.

But SNMP has had such success independently of CMIP that this is unlikely to

happen.

SNMP is part of the TCP/IP protocol stack and is considered a standard TCP/

IP application like FTP or Telnet. Of course, SNMP is a very special type of

application, one that is seldom bundled with TCP/IP software as FTP and Telnet

are. Due to its TCP/IP origins, the original SNMP did suffer from one annoying

limitation that severely hampers the use of SNMP for managing mission-critical

networks that should not fail.

The limitation is bound up with the fact that SNMP is defined as a request�
response protocol, similar to DNS. Each message sent was expected to generate a

reply before the next request was sent. This made perfect sense for SNMP: Why

send a stream of messages to a device that has failed? And like any request�
response protocol, SNMP used speedy and connectionless UDP for its

messages.

But there is a price to be paid for connectionless speed. What if an SNMP

message is sent and no reply received? There can be at least three causes. First,

the data may have been lost by the network on the way to the destination (due to

network faults or congestion). Second, the destination network device itself may

be down or powered off. Third, the data may have been lost by the network on

the way back from the destination (for the same reasons as the first two causes).

On the other hand, connection-oriented networks and applications that first

establish a connection across the network with a remote device have a better

chance of figuring out just what is wrong if a reply to a particular message is not

received. If a device accepts a connection request, it means the device is turned

on and ready to communicate and the network between the two devices linked by

the connection is up and running. It is important to realize that this knowledge is

established even before any messages have been sent from a source to a

destination.

Obviously, toward obtaining a more robust and effective network management

protocol network, managers would rather that SNMP be connection oriented, as is

clear from the previous discussion. A lot could be found out just from establishing

a connection between a manager console and a network device’s agent. However,

SNMPv1 was a connectionless TCP/IP application, which limited its effectiveness

on many enterprise networks. The operation of the SNMPv1 protocol is shown in

Figure 28.6.

SNMP is an extremely simple protocol. There are only five types of messages

defined: GetRequest (or Get) to ask an agent to return the current value of an

object (based on the SMI tree), GetNextRequest (or GetNext) to ask an agent to

723SNMP Operation

return the current value of the very next object, GetResponse (or Response) to

return the current value of an object to the manager, SetRequest (or Set) to tell

an agent to replace the current value of an object with a new value, and Trap to

allow an agent to send a message to a manager without being asked.

The agent device accepts SNMP requests on port 161 and replies using

that port. The manager chooses a source port from a pool, often restricted to

SNMP only. Traps are sent via port 162 on the manager, also using a source port

chosen from a pool.

Traps are used to address another quirk of SNMP. Generally, agents tell the

manager console absolutely nothing without being asked. In view of this, it is nor-

mal for the SNMP manager software to periodically generate GetRequest mes-

sages to every manageable device’s agent on the network just to ensure that

everything is all right. This process is known as SNMP polling, and not only adds

traffic to the network, but means that long periods of time may elapse between

successive polls on a complex SNMP enterprise network.

Traps help to remedy this situation. These are messages sent from the agent to

the manager without waiting for a poll. There are seven generic trap types that

include such events as link failures and the fact that the agent network device is

being reinitialized, and so on. An enterprise-specific trap type is included to allow

vendors to extend traps to include other events (such as fan failure, battery

backup activated, etc.).

Network Management Station

Network
Management
Application

Network
Management
Application

Network
Management
Application

SNMP Manager Protocol

SNMP Agent Protocol

Get
Get-next
Set TrapResponse

MIB

Managed Device

Logical Database
Configuration Data

Status Parameters
Statistics

Port from Pool

Port from Pool

Port 162

Port 161

FIGURE 28.6

SNMPv1 protocol operation, showing ports for the five SNMP message types.

724 CHAPTER 28 Simple Network Management Protocol

All SNMPv1 messages consist of a message header and the actual SNMP pro-

tocol data unit (PDU). The header only contains the version number (1) and the

community string (default is public).
The PDUs contain the command specifics and their operands. The fields

are variable in length, and end with strings of variable bindings, which are

the pairs of objects and their current values the network management system

has asked to see. On the way to the managed device, these bindings are typi-

cally filled in with the zero or blanks, and naturally they come back with the

current values filled in. The structure of the SNMPv1 PDU is shown in

Figure 28.7.

• PDU Type—Specifies the PDU Type: GetRequest, GetNextRequest,
GetResponse, and SetRequest.

• Request ID—A field used to associate SNMP requests with the proper

response.

• Error Status—Only a GetResponse sets a numeric error code in this field.

Otherwise, the field is zero.

• Error Index—Associates the error code with a particular object in the

bindings. Only a GetResponse sets a numeric index in this field. Otherwise,

the field is zero.

• Variable Bindings—The data field of the Simple Network Managment

Protocol PDU. Each pair associates the object with its current value, except of

course in the GetRequest and GetNextRequest.

Traps are not included in the figure because in SNMPv1 they have a distinc-

tive (and annoying) structure all their own. In the previous discussion, at least

two limitations of SNMPv1 have been identified. First, SNMPv1 is connection-

less, which means that SNMP is much less effective than it could be. Second,

SNMP must poll devices in most cases for effective network management

because the traps are few and not very helpful.

There is a third aspect of SNMP that makes the protocol less effective than it

could be for managing large IP networks, especially portions of the Internet. This

is the fact that SNMPv1 had only rudimentary password and authentication fea-

tures and even lacked a good encryption technique.

PDU
Type

Request
ID

Error
Status

Error
Index

Object 1:
Value 1

Object 2:
Value 2

Object n:
Value n

Variable Bindings

FIGURE 28.7

SNMPv1 PDU. Variable bindings allow the response to deliver a lot of information in one

message.

725SNMP Operation

The greatest threat that network management poses to a network, ironi-

cally, comes from exploiting remote configuration capabilities, one of the

most useful things in network management. Activating additional ports on

hubs and routers, changing IP addresses, and modifying other operational

functions over the network rather than by actually having a technician present

at the network device location is a much sought-after feature of network man-

agement. But the routine practice of remote configuration is tied up with the

establishment on the network of secure network management protocols to pre-

vent hackers and other unauthorized persons from making such changes to

these devices.

SNMPv1 has only rudimentary features that can be used to try to prevent this

from happening. The SNMP protocol does include the use of a simple password

scheme, known as the community string. All SNMP messages from a management

console to an agent must include a community string field that is compared by

the agent with the community string configured at installation in the network

device. If the community strings do not match, the agent presumes that the mes-

sage is not from the legitimate network management console software and dis-

cards the message.

The problem with expecting SNMP community strings to provide adequate

password protection against unauthorized agent access is twofold. First, many

agents are simply configured to respond to the community string public, which is

essentially the SNMP default and might not be changed. Of course, hackers will

quickly determine this fact and make immediate use of this. Second, even if the

community string is altered to a more enterprise-specific string such as Example

Inc., the SNMP messages exchanged constantly on the enterprise network due to

the SNMP polling process will make no effort to hide this fact: The community

strings are not encrypted in SNMP but sent in plain text.

The problem of authentication is related to the use of passwords for network

management. All SNMPv1 agents accept any SNMP messages and commands if

the community string is correct. With an authentication scheme for network man-

agement, more should be needed for an agent to accept messages as proper com-

mands sent from a valid network management console. Matching passwords is

not enough: The message must come from the IP address of the network manage-

ment console or consoles.

SNMPv2 ENHANCEMENTS

SNMPv2 was widely anticipated in the network management community since its

initial proposals. SNMPv1 also suffered from an annoying problem with the

request�response system of polling. If one variable was not in the agent’s data-

base, the entire operation failed. In addition, as MIB grew and grew, SNMPv1

responses often exceeded the maximum size of a message (UDP doesn’t frag-

ment) and the operation failed.

726 CHAPTER 28 Simple Network Management Protocol

To address these issues, SNMPv2 added a GetBulk message to the SNMP rep-

ertoire, which allowed the device to supply as much information as it could in

response to the request. There was also a greatly expanded list of error codes

used when an SNMP request failed.

Inform allows one network management system to trap information sent by

another network management system and then get a response. In addition, the for-

mat of the Trap was changed to make it more like the other PDU type.

SNMPv2 can still run as a connectionless UDP application on IP networks.

But implementers have the option of making SNMPv2 a connection-oriented TCP

application. In addition, SNMPv2 includes very robust and standardized methods

for true passwords, authentication, and encryption.

However, the incompatibility of SNMPv2 with the original SNMPv1 message

formats and protocol details became a major drawback. Attempts to make

SNMPv2 more palatable, such as SNMPv2c, SNMPv2u, and SNMPv2�, just

made things worse. So the use of SNMPv1 remains common on the Internet, and

many networks jump directly to SNMPv3 (RFC 3418).

The lesson of SNMPv2 is worth exploring. The problem with SNMPv2 is

exactly the opposite of the simplicity of SNMPv1: SNMPv2 is very complex.

This complexity translates to implementation expense, not only in the manage-

ment console software but in the agent software installed by every vendor of

SNMP-manageable network equipment. For very simple networks, SNMPv2 is

overkill.

In addition, SNMPv2 is incompatible with SNMPv1. The message formats are

different, and there are two new message types (GetBulk and Inform). RFC 1908

recommends the use of proxy agents, or simply running both when this incompat-

ibility becomes an issue. Many Internet devices, such as routers, make use of

SNMPv1 or SNMPv2 (or both) as a configuration option.

SNMPv3

SNMPv1 had little or no security to speak of, and SNMPv2 added some security

to the basic operation of SNMP. SNMPv3 essentially makes network management

and SNMP part of the overall security framework for a network. SNMP has very

strict requirements for authentication, encryption, and privacy of information.

Discussions of SNMPv3 are best handled by texts devoted to the topic of

security.

Network Management and Telemetry
Even with the enhanced security features of SNMPv3, SNMP in general suf-

fers from the wordy, request-response, and limited trap messages that flow to

the network monitor point. It’s one thing to manage hundreds of routers, or

even thousands. But what about large corporations and service providers that

maintain data centers with hundreds of thousands of servers, along with the

TOR switches and gateway routers that go along with them—not to mention

727SNMP Operation

the global backbones that act as the glue holding all of this together. SNMP

does scale well to those heights (in fairness, few things do without drastic

changes).

So organizations with devices that need to be managed on the Internet have

turned to methods developed for modern automobiles, ships, and airplanes. An

automobile today contains more processors than existed in the world in 1950.

And the simple dashboard clock has a more powerful processor than an IBM

mainframe did in 1960. So a lot of the monitoring that goes on in automobile

today relies on telemetry, data sent automatically to a remote place when the sta-

tus of something changes, to power services such as roadside services. (It is often

a shock the first time a driver hears a remote voice telling them to pull over

because their sports car is overheating and the engine is about to seize—but a

repair crew in on the way.)

Ships and aircraft rely on telemetry to send periodic status messages without

being asked, supplying a vital audit trail when things go wrong. Today, the same

technology is being applied to routers and switches and servers with VMs. The

telemetry data can be periodic, aggressive in some cases and more relaxed in

others (this is usually configurable). The receiver can log routine messages, but

react quickly to changes in status. For example, large cloud data centers often

react to telemetry data when an MPLS LSP changes to add a new service to a

stable service chain.

The reasons are diverse, but the nice thing about emerging telemetry

management services is that they are so flexible. Because the messages are one-

way, encrypted in many cases, and their parameters cannot be easily altered, the

risk to security in minimized. This is not to say that security is not a great con-

cern, as we saw with DNS. We’ll talk more about security in the next part of

the book.

Network Management and Virtual Networks
It’s one thing to managed a collection of hardware, whether routers, switches,

or servers. But today, the challenge is how to manage collections of virtual

machines, services that can be chained from one VM to another, and the

switches and routers that try to track them as they come and go and move

from platform to platform. Automation seems to be the only real answer to

manage large cloud networks. In the next chapter, we’ll see just what the

issues are.

728 CHAPTER 28 Simple Network Management Protocol

QUESTIONS FOR READERS

Figure 28.8 shows some of the concepts discussed in this chapter and can be used

to answer the following questions.

1. Which version of SNMP is used here?

2. Which router IP address and port are responding?

3. Express the SMI tree to the sysDescr group in English instead of numbers. It

starts with “iso.org. . .”
4. The actual time ticks value of 1209176765 is interpreted. What does this

value represent?

5. Where is the response telling the management application to go for more

device-specific information?

FIGURE 28.8

Ethereal capture of an SNMP response message. Note the object identifiers.

729Questions for Readers

This page intentionally left blank

CHAPTER

29Cloud, SDN, and NFV

WHAT YOU WILL LEARN

After introducing network management but before tackling security might seem an
odd place to put an introduction to cloud concepts, software-defined networks
(SDNs), and network functions virtualization (NFV). But the whole issue of giant data
centers is how to manage such networks, and this chapter also introduces modern
methods of dealing with enormous quantities of data, virtual machines (VMs), and
the methods used for orchestration, which makes sense of it all.

The rise of VMs is something that can be explained separately and easily. The
pace of hardware development (and pricing) has outstripped software development
for some time now. So the concept of a data center bare metal server (sometimes
seen as BMS) that can run not only multiple virtualized applications but also multiple
operating systems and whole virtualized environments made sense.

In this high-level overview, we’ll see that Cloud Computing is the modern version
of distributed computing coupled with databases so large that we can’t move them to
the applications: the apps must chew on the data in the data center itself. We’ll then
see how SDN fits in, defining an SDN as a network (LAN or WAN) where the data
plane (packet transfer) and control plane (routing protocols, switching tables) are
completely separated. Then we’ll add in NFV and see that when a network function
such as a firewall is virtualized, it becomes a Virtualized Network Function (VNF) that
can run on a VM just like the cloud apps. Then we’ll see how all three concepts
(cloud, SDN, NFV), which were all developed more or less separately, have come
together and are the wave of the future in networking.

One of the most interesting things about modern networking is how new ideas

blaze into the mainstream and are written about constantly until it seems that every

networking question must have the new idea as an answer. In the early 1990s, the

big new idea was “fast packet switching,” championed by new technologies like

frame relay and asynchronous transfer mode (ATM)—full disclosure: I’ve written

books on both. More recently, it was the idea that local loop twisted pair could

carry 256 or more voice channels and be used for IP packets and not analog voice

(yes, I wrote a book about that too). Even before frame relay and ATM, it was the

revolutionary idea that Ethernet frames could be sent over twisted pair wiring and

not specialized media like coaxial cables (no, I did not write a book about that).

Sometimes a technology like digital subscriber line (DSL) sticks and we

can’t imagine networking without it. Sometimes they get adapted into other

ideas, as fast packet switching became MPLS. And sometimes people wonder

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00029-1

© 2017 Elsevier Inc. All rights reserved.
731

http://dx.doi.org/10.1016/B978-0-12-811027-0.00029-1

why they were important in the first place (the only ATM we know today is

linked to the bank).

So what will networking hands of the future think of cloud computing

(or networking), SDN, or NFV? Well, no one can be sure, but my prognosis

should be evident just from the fact that you’re reading about them here, in a

book about essential networking protocols and concepts. But before we get car-

ried away, let’s see what these technologies are for and why they created such a

stir when they appeared.

CLOUD COMPUTING AND NETWORKING DEFINED
“The cloud” is such a popular image that it might seem to have lost all precision

of meaning. And that may be true in some contexts, but there is actually a very

precise definition of just what cloud computing services are. According to the

National Institute of Standards and Technology (NIST), cloud computing has five

essential characteristics.

These are:

On-demand self-service. A customer can unilaterally (i.e., by themselves

without having to ask permission) provision computing capabilities such as

server time and network storage. These can be done automatically and without

requiring human interaction with a service provider (or an IT department, for

enterprise networks).

Wide range of network access. Almost everything, from the databases to the

applications that create and process them, are available over the network.

These resources are accessed through standard mechanisms and protocols

available on various “thin” (or skinny) or “thick” (or full-featured) client

platforms, such as mobile phones, tablets, laptops, and workstations. In this

context, a Web browser is a form of “universal client.”

Resource pooling. The service provider’s or enterprise’s computing resources

are pooled to serve multiple users through a multi-tenant model (i.e., many

users can access the same location’s resources). These different physical and

virtual resources are assigned dynamically according to demand.

Rapid elasticity. The capabilities available to users can be provisioned

elastically and released when no longer needed, in some cases automatically.

This allows rapid scaling, up or down, according to current demand. To the

customer, these capabilities available for provisioning can appear to be

unlimited and can be granted in any quantity at any time.

Measured service. Cloud computing systems control and optimize resource

use by an abstract metering capability appropriate to the type of service

used, such as storage, processing power, network bandwidth, or number of

and active user accounts. Resource usage can be monitored, controlled, and

reported, providing transparency for both the provider and consumer of the

utilized service.

732 CHAPTER 29 Cloud, SDN, and NFV

It’s not that cloud service providers such as Amazon or Microsoft or Google or

many others provide these defined capabilities out of the goodness of their hearts.

It’s that the rise of modern networking and data gathering an interpretation, espe-

cially in the post-Web explosion of plentiful DSL bandwidth to residential users,

demands these capabilities if the network service is to survive and grow.

Consider the days of the analog voice network, which were not so long ago.

The network bandwidth and switching capability was allocated in fixed units if

voice channels (4000 Hz) that could be changed only with a “truck roll” or other

form of construction service. The network was designed for peak loads, which in

the United States was the five busy days of the voice system (Mother’s Day,

Father’s Day, Christmas, New Year’s, and the day after Thanksgiving). For the

vast majority of the time, the equipment sat idle. Getting a new telephone

installed often took weeks (disconnecting one was easier) and a recently as the

1960s, telephone bills were mailed to subscribers after being typed by a clerk.

Data services were provided by essentially applying the modulator/demodulator

(modem) technology of a fax machine to the new computer (mainframe computer,

not PC) technologies appearing on the scene.

As computers grew in power and networks grew in speed, it became feasible

to shuttle data around a network so that applications could analyze it and produce

reports on trends that would help plan the business. In fact, the rise of the mini-

computer and PC made it possible to distribute the processing power accessible

on the network. A technique known as remote procedure call (RPC) allowed

applications to run on one computer and call a subroutine function on another,

and even access data that came from a database on a third. A whole body of

knowledge about distributed computing made it possible to spread tasks across

many devices and detect and compensate for duplicate results, missing results,

and mis-ordered intermediate results (you can’t compute the average until all the

values are summed).

Today, whether it is through Web sales or through statistics gathered from

new applications and computers and other end-user devices. How did they get

permission to grab all this data? Permissions are often buried deep within an end-

user license agreement (EULA), acceptance of which is usually required to use

the system or install the app.

In the old days, data sat in centralized server computer databases and was sent

to clients for processing. Even an enormous data base like the entire customer

data set of a national insurance company, or the set of USA’s Internal Revenue

Service (IRS) taxpayers, or the entire data from the US Geological Survey, all

could be held inside one room in one building.

Today, databases are still gathered into centralized facilities called data cen-

ters. However, the amount of data needed to provide valid results, even over the

fastest networks available, could never be sent anywhere except the place where

it dwells.

So, in a very real sense, cloud computing is “the application of well-

understood distributed computing concepts to amounts of data so large they can

never be sent anywhere.” So instead of sending the data to the applications, we

733Cloud Computing and Networking Defined

have to break up the applications and send them to the data. (We’ve also just

taken an informal look at how SDN and NFV fit into the whole cloud computing

picture, but we’ll be more systematic about that later in the chapter.)

One of the reasons that the cloud has appeared is that businesses which exploited

new digital processing technologies finally caught on to the needs of business cycles

that many businesses had known for years. For example, when chip makers first

began to manufacture digital watches instead of mechanical analog watches with

sweep hands, they churned out the same number month after month and wondered

why they had large unsold inventories. Only then did they realize, as the analog watch

makers had long ago, that there were only two times that people bought watches in

the United States: at Christmas and around Graduation. Once they adjusted production

cycles, the wind-up watch quickly became a thing of the past. So in a real sense, cloud

computing is the adjustment of computing resources to better reflect the busy and idle

times of a business cycle, cycles which can vary greatly from one line of business to

another (think of Halloween costumes versus Christmas decorations).

But before we look at SDN and NFV, let’s explore some of the terms that

come up with discussions of “the cloud” all the time. That is, the idea of “any-

thing as a service” (XaaS).

CLOUD COMPUTING SERVICE MODELS
What qualifies as a service? If it’s not a service, then what is it? An analogy

might help. Taxis are a service (so is Uber). Owning a car is not a service (unless

you’re an Uber driver, but let’s stop that right here). In other words, all of the

characteristics of our “cloud model” from NIST are present in our humble taxi

cab, but not in a privately owned family car or SUV.

• On-demand self-service. The essential taxi characteristic. They can be

scheduled automatically as well.

• Wide range of network access. You can hail a cab by hand, or by phone, or in

a taxi line; at the airport, in the city, and so on.

• Resource pooling. Taxis are the essence of serving “multiple users through a

multi-tenant model.” During high demand periods, cabs can also be shared.

• Rapid elasticity. Again, to the customer, taxis can seem to be in “unlimited”

supply (except in New York in the rain). But it is easier to get two cabs to

carry a big group than to buy another car.

• Measured service. Usually, distance traveled and time spent are the two

measures for the service. But the rates have to be available for everyone and

posted for all to see.

So cloud computing (distributed computing with masses of data) seems to

form a good basis for all kinds of services. Cloud service providers can offer one

or all of them. There are no formal definitions, but most cloud service providers

agree on this short list of fundamental models, shown in Figure 29.1.

734 CHAPTER 29 Cloud, SDN, and NFV

Cloud Computing providers offer services based on this fundamental model:

infrastructure as a service (IaaS), platform as a service (PaaS), and software as a

service (SaaS). In this scheme, IaaS is the most basic and each higher level model

is another layer of abstraction on top of the lower levels. Sometimes, other things

are added to the taxonomy of XaaS, such as Strategy-as-a-Service, Collaboration-

as-a-Service, Business Process-as-a-Service, and Database-as-a-Service. In 2012,

the International Telecommunication Union (ITU) added network as a service

(NaaS) and communication as a service (CaaS) to their definition of basic cloud

computing models. However, this chapter will stick to the basic listed in

Figure 29.1.

INFRASTRUCTURE as a SERVICE (IaaS)

The most basic of cloud services, providers of IaaS offer physical computers or,

more often today, VMs and other resources in an enormous data center consisting

of thousands of server racks (there are some good videos of modern data center

tours online). In a VM environment, a specialized operating system known as the

hypervisor (Xen is a good example) runs the VMs as “guests” on the hypervisor

and basic hardware platform. Working together, the VMs and hypervisors can use

Cloud Clients

Web browser, mobile app, thin client, terminal
emulator, …

SaaS

CRM, Email, virtual desktop, communication,
games, …

PaaS

Execution runtime, database, web server,
development tools, …

IaaS

Virtual machines, servers, storage, load
balancers, network, …

A
pp

lic
at

io
n

P
la

tfo
rm

In
fr

a-
st

ru
ct

ur
e

FIGURE 29.1

Cloud Computing as the basis for XaaS.

735Cloud Computing Service Models

large numbers of VMs and scale service capacity up and down according to the

customer’s needs. This is much like a business foregoing the purchase of a new

truck to rent one as needed when deliveries are very busy.

This might be a good place to point out that a VM is an entire “reproduction”

of an operating system running on the bare metal server. One VM could be

Windows, another Ubuntu Linux, and so on. The hypervisor doesn’t care. Each

VM runs the application that accesses the data stored on other specialized, storage

servers. The issue here is that the whole VM often contains parts of the guest OS

that are never needed by the application, which is often a network function or a

database query. Also, it takes time to spin up all those OS pieces to start with,

limiting the ability of VMs to come and go as workloads vary, which is one of

the main attractions of virtualized services in the first place.

So there is also the concept of a “container” that packages only the bare mini-

mum of the guest OS and runs that in a hypervisor environment (Docker is a

good example). As a result, containers can come and go quickly, although many

applications have to be “containerized” because they expect a full operating sys-

tem beneath them, which in a Docker environment they do not have.

Clouds offering IaaS often also have resources available for customers such as a

disk image library for the VMs, storage nodes for the constantly accumulating data

and intermediate data mining results, firewalls to ensure security, load balancers,

dynamic IP address pools (nice when VMs needing IP addresses come and go),

VLANs or VXLANs, and bundled software packages. Some of these ideas, such as

firewalls and load balancers, we will meet again when we consider NFV. IaaS sup-

plies these resources to meet constantly changing customer demands from large

pools of bare metal servers and other machines in very large data center. “Very

large” no exaggeration: some RFCs are intended for data centers with “hundreds of

thousands of servers” as we saw in Chapter 17.

It is important to emphasize the control that users have overall aspect of their

“infrastructure.” They choose operating systems and memory and number of

cores. They have multiple software images available to install and run, in addition

to the applications (as mentioned, slow software evolution often ties an applica-

tion to a certain OS software release). Customers are billed on a utility basis for

resources they use, resources that can be used by others at other times—like com-

paring a truck with a monthly payment that sits idle all day with a rental that is

paid for only on days it is needed.

Resource sharing like this raises all kinds of issues regarding privacy, authen-

ticity, and security. These issues are important enough to deserve their own

section later in this chapter.

PLATFORM as a SERVICE (PaaS)

After exploring IaaS, PaaS is easy to grasp. In this model, PaaS providers offer

users a computing platform, a programming language execution environment

(usually several), a database system, and web servers. Application developers and

736 CHAPTER 29 Cloud, SDN, and NFV

engineers can write, run, and troubleshoot their ideas and solutions in a cloud

platform environment without the cost of buying, maintaining, and updating their

own hardware and software.

Some PaaS providers allow the underlying computing and storage resources to

grow automatically to match the demands of the applications. There is then no

need for the user to monitor and configure additional resources manually

(and perhaps more or less by guesswork). This requires the additional of some

analytics software and a method of automation for configuration, ideas we will

meet again when we add SDN and NFV to the mix later in this chapter.

SOFTWARE as a SERVICE (SaaS)

Once the Web came to town in the early 1990s, the whole world changed.

Consider something as fundamental as software distribution. For about 10 years

before the Web, updates to customers with installed software had to be mailed

with diskettes (earlier) or CD-ROMs (later), both of which were liable to damage

in transit. After the Web, anyone with decent speed Internet access could down-

load and install the software with very little cost to the maker. The cost was

essentially zero once the initial cost of the server and network was set up. With

many networked applications, the entire cost is in the initial hardware and soft-

ware setup, and then the incremental costs are effectively zero. So the first down-

load costs a lot, but then next million are essentially free—something streaming

service providers figured out long ago.

So instead of distributing licensed copies of executable code, either through

the mail or over the Internet, companies began to offer access to the application

“in the cloud” on a subscription basis. Instead of a serial number, you had a

login ID and password. As long as the network and servers were fast enough,

the execution of either version was indistinguishable. There are even ways

around the broken-Internet-access issue: you just need to refresh your permis-

sions monthly.

SaaS providers gives users access to stable applications, along with the storage

and databases and other things needed to perform the tasks that the software was

designed to do. Why install Microsoft Office on a laptop and tablet when Office

365 lets you run the applications from both and allows access to all the data

stored in the cloud? Of course, the business model changes from a one-time sale

to a monthly fee for access and storage to your data. But maybe that’s fine, as

long as the network is working.

SaaS is sometimes called “on-demand software” because it is often priced on

a pay-per-use basis or subscription fee. With SaaS, the cloud providers install and

operate cloud-based application software and users access the software from a

cloud client, often just a normal Web browser. SaaS users usually do not have

any control over the cloud infrastructure or platforms on which their software

runs. This makes for much simpler maintenance and support, and scaling can be

handled by cloning the user’s environment onto multiple VMs while they are

737Cloud Computing Service Models

running. Load balancers—a key element of NFV efforts—keep everything hum-

ming along smoothly. All of this internal change is transparent to the SaaS user,

who still sees only a single application or program suite.

Once the basics of SaaS have been established, more and more things that

traditionally have been the responsibility of the user can be moved to the multi-

tenant (multiple customers serviced by the same physical resources) cloud envi-

ronment. Then we can move all software relating to the recruitment of new

employees to the cloud, or tasks that need to be completed by a local sales force.

Specialized services such as “desktop as a service” or “business processes as a

service” or “test environment as a service” or “communication as a service”

(voice over IP) have all been created.

SaaS often means that tasks performed in-house by an IT staff are now out-

sourced to the cloud provider. In many cases this translates to a reduction in IT

costs for the customer. IT operations, once focused on hardware and software can

now concentrate on other goals (perhaps training) or find IT positions at the new

cloud providers. For the cloud provider, the convenience of updating every user’s

software at once is balanced by the need for tight security and controlled access

when multiple customers’ data are all stored together.

Although it’s not in the figure, Network as a Service (NaaS) should be men-

tioned as well. If computing resources can be virtualized and extended to different

customers in different ways, why can’t the networking services embodied by

routers and switches be given the same treatment? At the same time, NaaS can

optimize resource allocation by considering the network and cloud computing as

parts of unified whole.

Consider, for example, queries made in China to a database that is partly in

Canada and partly in the United States. Are the network links adequate for the

load? Are the packets being routed in the most efficient fashion? Only by includ-

ing the network as part of the cloud can these issues be resolved.

NaaS providers offer services like flexible and extended VPNs, bandwidth on

demand (based on packet optical principles, it should be noted), an entire network

can be provisioned and used by a third party, an offering sometimes called a

virtual network provider (VNP).

CLOUD COMPUTING MODELS

In addition to the service models shown in Figure 29.1, cloud computing services

are deployed in one of three different models, as shown in Figure 29.2.

Cloud computing can be supported in a private cloud, a public cloud, or a

hybrid cloud. There are also variations known as community cloud and distributed

cloud that are not shown in the figure.

In a private cloud scenario, the entire cloud infrastructure is owned and oper-

ated for or by a single organization. The cloud is considered private if this is

single-use is true, even if the cloud is managed by a third party or hosted on the

premises or remotely. Creating a private cloud requires a great deal of expertise

738 CHAPTER 29 Cloud, SDN, and NFV

and expense to virtualize the whole business environment and properly capture

the details of its resource use. Self-run data centers can be a huge expense. They

also require large facilities, environmental controls, and frequent hardware and

software upgrades. Private clouds tend not to take advantage of the main attrac-

tion of clouds in the first place: you only have to pay for what you use because

during lulls in current need, those resources can be used by others (who pay for

them). This drawback can be mitigated somewhat by a kind of chargeback system

among departments or divisions or business units of a large organization, but it is

often more attractive to deploy cloud computing in some form of public cloud.

In a public cloud, the services are offered over a public network to anyone

who can pay the cost. The fees are often per-use or on a sliding subscription rate,

but the basic architecture of virtualized data centers and network connections

among them is still the same. However, public clouds require much more intense

security requirements, from ensured data separation to unauthorized access and

beyond. The ease of public network access only intensifies these concerns. The

largest public cloud service providers such as Amazon, Microsoft, and Google

offer only access over the global public Internet.

A community cloud is a cloud that shares its infrastructure among many orga-

nizations, but organizations from a specific community of interest, such as hospi-

tals. These communities have common concerns such as patient tracking or drug

purchasing that are not necessarily shared with other types of organization.

Again, the cloud can be managed locally or by a third party, and hosted on-site or

somewhere central to the group. But usually the costs are spread among fewer

users than a public cloud, but more than a private cloud (of course).

A hybrid cloud is a composite of two or more clouds—usually public and private,

but also including community clouds in some cases—that remain distinct but can be

Private/

Internal

Public/

External

“The

Cloud”

Hybrid

FIGURE 29.2

Private, public, and hybrid clouds.

739Cloud Computing Service Models

treated in most applications as one. You can also connect a traditional, nonvirtualized

service with a public cloud and call the result a hybrid. Hybrids have a way of mini-

mizing ongoing costs and still allowing scaling for peak business periods.

Hybrid clouds are very popular. A customer can choose to store sensitive client

data on its private cloud and connect to a marketing application on a public cloud

when needed. IT organizations can temporarily expand their in-house capacity by

using a public cloud when necessary. Some have called this practice “cloud burst-

ing.” Cloud bursting allows a relatively compact IT shop to support more users

than it looks like it should be able to, based on pure physical resources.

Finally, a deployment model called distributed cloud gathers resources are dif-

ferent locations but connected by a common network and dedicates some of their

capabilities for a common purpose. Here is a case where the distributed comput-

ing aspects of the cloud come to the forefront and outweigh the massive amount

of data that are stashed away in enormous data centers.

SDNs
When first considered, networks seem to be the essence of a hardware-defined

object. Devices like routers are connected by links through which bits flow from

source to destination hop-by-hop. How could software define anything about a

rigid map of devices and links?

However, consider the devices, which all run software, of course. Running

software is what network devices, nodes or hosts, do. The truth is, software

always helped to define a network. If a routing policy did not advertise routes

across a link, then the link might as well not exist from a traffic point of view. If

an enterprise LAN has the nearest Internet gateway 4 hops away and limits all cli-

ent and servers to generating packets with a hop count of 3 or fewer, then the

software has defined and limited the network to a specific domain.

What an SDN does is move the software definition of the network to the fore-

front, making the network more dependent on the software than the hardware

device and links. How can this be done? One part is creating a local network

where every device is reachable either in one hop or through a tunnel. Tunnels

are many things, but one thing they are is a way to make multiple hops through

switches or routers appear as one hop. An MPLS packet might pass through six

routers on its way from a client to a server, but to the sender and receiver, the

packet arrives in a single routing hop.

There are various types of tunnels and the packets encapsulations they require

that are supported by different SDNs.

“In the SDN architecture, the control and data planes are decoupled, network

intelligence and state are logically centralized, and the underlying network

infrastructure is abstracted from the applications.”

2 Open Networking Foundation (ONF)

740 CHAPTER 29 Cloud, SDN, and NFV

In the same white paper, the ONF called SDN “The New Norm for Networks”

listed five characteristics that SDNs possess:

1. Separation of the network control plane from the data plane.

2. A centralized controller to provide a unified view of the network.

3. Virtualization of the network functions and replacement of specialized

hardware and software with standard architectures.

4. Open interfaces between the control plane controller(s) and the data plane

devices.

5. Orchestration of all the above to make a complete and unified whole from the

user perspective.

This list introduces many concepts, which we can expand on below:

Control plane: Tells the data plane what to do with traffic. In a router, the

routing protocol and the information supplied in routing tables about links and

topology of the network are part of the control plane.

Data plane: Tells the traffic how to reach its destination. In a router or

switch, the forwarding table or flow table that determines the next hop is part

of the data plane. Any services provided, such as firewall filtering, and load

balancing, are part of the data planes services.

Controller: Instead of connecting semi-autonomous network nodes that have

independent flow tables and network views, an SDN is controlled by a central

point (which can also be redundant).

Virtualization: In an SDN, virtualization refers to the idea that almost every

function of the network, from load balancing to forwarding, can be delivered

with generalized hardware and software instead of proprietary or dedicated

equipment (more on this key concept later).

Open interfaces: The methods of changing the control and data plane are

independent of any particular vendor. This allows oversight by nonproprietary

management systems and eases the ability to do service chaining, where

programmed services are applied in sequence to the same flow.

Orchestration: This is more than just a fancy word for management of the

control and data planes. This type of management ties all of the pieces

together, so that an SDN for an ISP backbone and an SDN for a large data

center can still work together: monitoring performance, coordinating changes,

troubleshooting problems.

SDNs have attractive applications in many areas:

Data centers: These usually have virtualized routers and switches and servers

and applications (VMs) already. When network functions such as packet

inspectors and firewalls and load balancers are also virtualized, the data path

includes service chaining to make sure packets end up where they are

supposed to. We’ll talk about service chaining in the next section. All of the

paths are set up by the SDN controller, of course.

741SDNs

Wide-area network backbones: This has been an active area for SDN

research, and route servers are used to control the routers in their domain from

a central point. The route server is an eBGP-based control point that receives

BGP NLRIs and is in an AS all on its own. All the received updates arrive at

the route server and undergo filtering and policy massaging. Then the “best

paths” are calculated based on overall policies, which usually differ from the

local BGP best paths based on more restricted information. The route server

then derives a table of routes that is returned to each participated router. The

general idea of the router server is shown in Figure 29.3.

Mobility: Mobile networks can use SDN control for Deep Packet Inspection

(DPI) to determine traffic class or billing class, and for Traffic Flow Detection

(TFD), a method of dealing with streaming music and video applications.

Enterprise networks: The attraction here is the same as cloud computing.

That is, the SDN gives the customer a way to deploy services as needed and

directly, without having to call someone and ask permission.

Internet exchange points: As outlined earlier, route servers have been used

to enhance BGP policy operation at key places where ISPs interact and

exchange packets.

Home networks: Yes, SDNs can even be of use in home networks.

Monitoring and orchestration can be used to know exactly where a user is

with respect to local ISP bandwidth caps (many ISPs limit downloads and

uploads to so much per month) and measure local LAN performance.

SERVICE CHAINING
As packets flow from source to destination, they are often subjected to more than

forwarding by the data plane of a device. The additions might alter the packet

Peer AS #1
Input Filters

Peer AS #2
Input Filters

Peer AS #1
Output Filters

Peer AS #2
Output Filters

Peer AS #1

Peer AS #2

Peer AS #1

Peer AS #2

BGP
Best
Path
Calc
With
Mixed
Input

Local
RIBs

FIGURE 29.3

Route Server and SDN.

742 CHAPTER 29 Cloud, SDN, and NFV

header or content (NAT, IPSec) or the flow itself (firewalls, load balancing). We

can loosely define these additional steps as services. Services can be chained

together to provide flexibility and efficiency and other benefits.

It should be noted that service chaining is not a concept new to cloud comput-

ing or SDNs. Anyone could cable boxes together to provide a series of service

that provide NAT, load-balancing, and more to packet flow. What had changed is

the way that services are chained together to provide additional processing to a

packet flow.

In older networks, special devices or cards provided services to a flow of

packets. The services delivered were defined by the device or card, and network

administrators configured routers and switches to shunt traffic to these special

devices. The shunt could take the form of a next-hop routed mode, a transparent

bridge, or even as a “one-armed” device (packet flows encounter the service, then

return immediately to the source). In newer networks, these choices of traffic

flow alteration are preserved, but deliver services that are a sequence of software

applications running on VMs.

In an SDN, services can be chained to provide a string of software processes

that are applied to packets as they flow from source to destination.

The SDN controller takes care of chaining the services by altering the flow

tables of the effected devices. A control language such as Openflow (more on

those later) can be used to make these changes. An orchestrator such as

Openstack (more later on that too) determines which flows need to be altered to

provide the new service. Rules for applying the service may be rendered in mean-

ingful but abstract language. For example, the administrator of a tenant service in

a hybrid cloud data center might decide that “no traffic from the human resources

servers can access the accounting servers.” This abstract scheme is translated into

firewall specifics (such as “if source IP address=10.0.0/24 and destination

address=192.168.0/24, then discard”) and the correct flow tables are updated. A

new firewall service is now applied to packet flows.

It is not enough just to forward traffic from a routing instance to a particular

service VM. There must be a corresponding change to other VM devices in the

chain. In some architectures, this “feedback” alteration is called “control plane

route leaking.”

To understand why control plane route leaking is necessary, consider an air-

line that flies a route from San Francisco to Tokyo and then on to New Delhi. At

the Tokyo stop, the aircraft is serviced before taking off again. Now, if the airline

decided to add a stop at Beijing on its way from Tokyo to New Delhi, it is not

enough to tell New Delhi that the aircraft will not be arriving from Tokyo, as

before, but from Beijing, the new service stop. The air traffic controllers in

Tokyo must also be told that the aircraft will now be departing for Beijing instead

of New Delhi. All stops along the way must have to correct information. In fact,

this information must ripple all the way back to the source, or the airline will not

be able to sell tickets to the new stop at Beijing.

743Service Chaining

IMPLEMENTING SDNs
A lot of books on SDN introduce a bewildering figure at this point with layers

and layers of boxes and lines connecting them representing the protocols that are

used to connect them.

There is no “official” reference model of SDNs, at least not in the same sense

of the OSI-RM for internetworking. But that does not mean all is lost. Actually, it

means we are free to try and map all for the concepts we saw in Figure 29.4 into

a free-form layered structure. In our layered model, we can compare different

implementations of SDNs, with protocols at the bottom, closest to the actually

physical network, and orchestration and programmability on top, closest to the

abstraction of the network that these programs act on.

We’ll put the Open Source and open standard version of our model in the first

column, and then one based on the very popular VMWare implementation.

Finally, since our network in based on Juniper Networks hardware, we’ll include

the Contrail implementation (Contrail is the purchased-support version of Juniper

Network’s freely available Open Contrail software). The result is shown in

Figure 29.5.

Whole books have been written about the acronyms and terms in Figure 29.5.

Here are the major ones.

Programmability is how the derived configurations find their way to the switches,

routers, and servers. Python is a high-level programming language with wide support

and attractive GUI characteristics that make it a good choice for the interface for

SDNs. Puppet and Chef are open-source configuration management tools.

Orchestration is how all of these layers work together. Openstack is an open-

source software platform for all cloud-type applications, mainly deployed in IaaS

scenarios. VMWAre has vCloud as the equivalent and handles hypervisors and

VMs. Cloudstack is another orchestrator from the Apache Software Foundation

(ASF) by way of Citrix.

Orchestrator
(Overall Management)

Resources
Physical/Virtual

ControllerData Collection

Programmability

Protocols

Management

Orchestration

AutomationMonitoring

Analytics

FIGURE 29.4

A conceptual model of SDNs.

744 CHAPTER 29 Cloud, SDN, and NFV

Management covers more than simple monitoring of resources: it also depends

on the ability to discover network nodes and how they are connected. Openstack

includes this ability, and VMWare extends this with NDX. Open source solutions

include an API for this process.

In a sense, the controller is the heart of the SDN system. VMware has the

NSX, and open source solutions can employ several different types, such as

Floodlight (an open SDN controller based on Java and Apache licensing for

OpenFlow protocols), OpenDayLight (another OpenFlow implementation for

Linux), OESS/NOX (a controller from the Open Exchange Software Suite), and

NEC (the first programmable OpenFlow controller). Contrail includes its own

controller methods, such as the NorthStar controller for WAN SDNs based on

MPLS.

In recognition of the controller’s central role in SDN implementations, it is

common to see APIs and protocols that tell the controller what to do as “north-

bound” APIs and the protocols used to tell the network what to do are implements

by way of “southbound” APIs. Some diagrams include “eastbound” and “west-

bound” APIs for protocols that distribute commands to peer devices, but this is

not as common.

The protocols that distribute the SDN directions to the network and actually

move traffic around includes one familiar protocols such as BGP and GRE. But

Programmability

Orchestration

Protocol

Controller

Management

Python
API

Puppet
Chef

Openstack Vcloud

NSX Integration with
ND

NSX

VXLAN, OVSDB

Python
API

Puppet
Chef

Openstack

Openstack ND

XMPP GRE

Contrail System

BGP

Open
Standard

Open Source

Contrail
Solution

VMWare
Integration

Python
API

Puppet
Chef

CloudstackOpenstack

ND API

Openflow

Floodlight

OESS/
NOX

NEC

Opendaylight

FIGURE 29.5

Differing SDN implementations. ND, network discovery.

745Implementing SDNs

there is also XMPP (the Extensible Messaging and Presence Protocols based on

XML), VMWare’s use of VXLAN and the Open vSwitch Data Base (OVSDB),

and OpenFlow includes its own protocols for this purpose.

CONTRAIL: AN EXAMPLE SDN ARCHITECTURE
Because this book is based on Juniper Networks hardware and software imple-

mentations, let’s take a more detailed look at the Contrail architecture. Keep in

mind that Contrail is a complete implementation of clouds and SDNs which can

address VMs and even virtual routers and switches. The general architecture is

shown in Figure 29.6.

In the figure, the upper portion shows the components of Contrail (known as

“nodes”) and the components of the network in the lower half. Note that both

physical and virtual components of the network can be configured, inside the data

center and outside.

Contrail is implemented as a cooperating set of nodes, all running on general-

purpose x86 architecture servers. Each of the node types can be implemented as a

physically separate hardware device, or all of the nodes can be implemented as a

VM on the same device. Together, the Contrail nodes form the Contrail Controller.

Role of contrail in a virtualized environment

Orchestrator
Open Stack

High Level Abstraction

Contrail Controller
“Logically Centralized, Physically Distributed”

S
to

ra
ge

C
om

pu
te

Low Level Realization

Storage

N
et

w
or

k

Physical and
Virtual Network

Services
Contrail
vRouter

VM

VM

Server

Physical Network

(Gateway)

VM

VM

Server
Physical Network

(Fabric)

C
om

pu
te

FIGURE 29.6

General architecture of Contrail.

746 CHAPTER 29 Cloud, SDN, and NFV

All Contrail nodes of a certain type are always active. This provides for both

redundancy and horizontal scalability. This “active-active” configuration philoso-

phy makes sure that no single node becomes a bottleneck.

There are three Contrail node types:

• Configuration nodes—These nodes maintain a persistent copy of the intended

configuration state and translate the high-level data model to a lower level

model suitable for the network elements. Both models, high-level and low-

level, are kept in a “Not only SQL” (NoSQL) database.

• Control nodes—These nodes implement a logically centralized control plane

that maintains changing network state information. The control nodes interact

with each other and with network elements to make sure that the network

converges to a consistent state.

• Analytics nodes—These nodes collect, store, correlate, and analyze

information from virtual and physical network elements. The information

gathered includes logs, events, errors, and statistics.

In addition to the Contrail node types that are part of the Contrail Controller,

there are other node types included in the overall Contrail system. These addi-

tional nodes are the servers and network elements that play certain roles in the

Contrail system.

• Compute nodes—These nodes are general-purpose virtualized servers. These

servers host VMs, which can be tenant virtual networks running general

applications or service VMs running network services such as virtual load

balancing or virtual firewalls. Each compute node contains a virtual router

(vRouter) that implements the forwarding plane and the distributed portion of

the control plane.

• Gateway nodes—These nodes are the physical gateway routers or switches

that connect the tenant virtual networks to physical networks such as the

Internet, a customer Virtual Private Network (VPN), another data center, or

nonvirtualized servers.

• Service nodes—These nodes are physical network elements providing network

services such as Deep Packet Inspection (DPI), Intrusion Detection and

Prevention (IDP), Intrusion Prevention Services (IPS), WAN optimizers, and

load balancers. These services can be chained together as a mixture of virtual

services implemented as VMs on compute nodes and physical services hosted

on other service nodes.

Communications between the various node types in a Contrail system is

handled by a series of standard protocols. These include:

• REST—The Representational State Transfer (REST) protocol runs between the

Contrail Configuration Nodes and the orchestration system and associated

applications.

• IF-MAP—The Interface for Metadata Access Points (IF-MAP) protocol runs

between the Configuration Nodes and the Control Nodes.

747Contrail: An Example SDN Architecture

NFV
The third piece of our chapter survey is NFV. But before we examine NFV, let’s

talk about VMs in general.

Cloud computing allows applications to run in a virtualized environment, both

for end-user server functions and network functions needed to connect scattered

endpoints across a large data center, or even among multiple data centers.

Applications and network functions can be implemented by either VMs or

containers. What are the differences between these two types of packages and

why would someone use one type of the other?

Both VMs and containers allow the multiplexing of hardware with tens or

hundreds of VMs sharing a physical server. This not only allows rapid deploy-

ment of new services but also allows extension and migration of workloads at

times of heavy use (extension) or physical maintenance (migration).

In a cloud computing environment, it is common to employ VMs to do the

heavy work on the massive server farms that characterize big data in modern

networks. Server virtualization allows applications written for different develop-

ment environments or hardware platforms or operating systems to run on generic

hardware with an appropriate software suite.

VMs rely on a hypervisor to manage the physical environment and allocate

resources among the VMs running at any particular time. Popular hypervisors

include Zen, KVM, and VMWare’s ESXI, but there are many alternatives. The

VMs run in user space atop the hypervisor and include a full implementation of

the VM application’s operating system. So, for example, an application written in

the C++ language and complied and run on the Windows operating system can be

run on a Linux operating system with hypervisor. In this case, Window is a guest

operating system.

The hypervisor provides the guest operating system with an emulated view of

the hardware of the VMs. Among other resources such as disk space of memory,

the hypervisor provides a virtualized view of the NIC card when endpoints for

different VMs reside on different servers or hosts (a common situation). The

hypervisor manages the physical NIC card(s) and exposed only virtualized inter-

faces to the VMs.

The hypervisor also runs a virtual switch environment, which allows the VMs

at the VLAN frame layer to exchange packets inside the same box, or over a

(virtual) network.

The biggest advantage of VMs is that most applications can be easily ported

to the hypervisor environment and run well without modification. The biggest

drawback is often the resource-intense overhead of the guest operating system,

which must include a complete version of the operating system even if the func-

tion of the entire VM is to provide a simple service such as DNS.

Containers, unlike VMs, are purpose built to be run as independent tasks in a

virtual environment. Containers do not bundle an entire operating system inside

748 CHAPTER 29 Cloud, SDN, and NFV

like VMs. Containers can be coded and bundled in many ways, but there are also

ways to build standard containers that are easy to maintain and extend. Standard

containers are much more open than containers made in a haphazard fashion.

Standard Linux containers define a unit of software delivery called, naturally,

a standard container. Instead of the whole guest operating system, the standard

container encapsulates only the application itself and any dependencies required

to perform the task it is written to perform. This single runtime element can be

modified, of course, but then must be rebuilt to include any additional dependen-

cies that the extended function might need.

In place of the hypervisor, the container uses a container engine to manage the

underlying platform. And if you still want to run VMs, the container can package

up a complete hypervisor and guest OS environment as well.

Standard containers include:

1. A configuration file

2. A set of standard operations

3. An execution environment.

Containers borrow their name from the standard shipping containers that are

used to transport goods around the world. Shipping containers are standard deliv-

ery units that can be loaded, labeled, stacked, lifted, and unloaded by equipment

built specifically to handle the container. No matter what is inside, the container

can be handled in a standard fashion, and each container has its own user space

that cannot be used by other containers. Although Docker is a popular way to run

containers on a physical server, there are alternatives such as Drawbridge or

Rocket to consider.

Each container is assigned a virtual interface and container management

systems such as Docker include a virtual Ethernet bridge connecting these multi-

ple virtual interfaces and the physical NIC card. Configuration and environment

variables in the container determine which containers can talk to each other,

which can use the external network, and so on. External networking is usually

accomplished with NAT because containers often use the same network address

space, although there are other methods (Figure 29.7).

The biggest advantage of containers is that they can be spun up much faster

than VMs and use resources much more sparingly (i.e., you can run many more

containers than VMs on the same hardware) because containers do not require a

full guest operating system or boot time. Containers can load and go in millise-

conds, not tens of seconds. The biggest drawback to containers is that they have

to be written specifically to conform to some standard or common implementation

while VMs can be run in their native state.

VIRTIO AND SR-IOV

Once almost everything in a physical device has been virtualized, from memory

to disk space to processor cycles, the question is how to allow these fragmented

749NFV

and isolated VMs or containers to communicate with each other. In a virtualized

device, there are still ports, MAC addresses, and often IP addresses as well, but

their assignment and use is complicated by the “soft” and transient nature of their

existence.

Two main methods of communication in devices with “full virtualization” are

popular: virtio and single root input�output virtualization (SR-IOV). Virtio is

part of the standard libvirt library of helpful virtualization functions and is

normally included in most versions of Linux. Virtio is a software-only approach,

while SR-IOV requires specialized hardware that can add expense to even a

simple device.

Virtio included a method to bridge between individual virtual processes and the

bundled nature of virtio meant that anything than could run Linux could use virtio.

SR-IOV extends the concept of virtualized functions right down to the physical

NIC card. The single physical card is divided into partitions that correspond to the

virtual functions running at the higher layers. Communication between these virtual

functions are handled the same way that communications between devices with

individual NIC cards are frequently handled: with a bridge. SR-IOV includes a set

of standard methods for creating, deleting, enumerating, and querying the SR-IOV

NIC Switch, as well as the standard parameters than can be set.

Virtio is a virtualization standard for disk and network device drives. Only the

guest device driver (the devices driver for the virtualized functions) needs to

“know” that it is running in a virtual environment. These drivers cooperate with

the hypervisor and the virtual functions get performance benefits in return for the

added complication.

FIGURE 29.7

VM and containers.

750 CHAPTER 29 Cloud, SDN, and NFV

Virtio is architecturally similar to, but not the same as, Xen “paravirtualized”

device drivers (drivers added to a guest to make them faster when running on

Xen). VMWare’s Guest Tools are also similar to virtio (Figure 29.8).

Now, consider how SR-IOV handles communication between various VMs.

(The “single root” part of SR-IOV refers to the fact that there is really only one

“master” piece of the NIC card controlling everything, but that’s not important

for the rest of this discussion.) An SR-IOV-enabled NIC card is just a standard

Ethernet port providing the same physical bit-by-bit function of any network card.

However, the SR-IOV also provides several virtual functions, which are just

simple queues to handle input and output tasks. Each VM running on the box is

mapped to one of these NIC partitions, so the VMs themselves have direct access

to NIC hardware resources. The NIC also has a simple Layer 2 function, which

classifies frames into traffic queues. Packets are moved directly to and from the

network virtual function to the VM’s memory using direct memory access

(DMA), bypassing the hypervisor completely.

The hypervisor is still involved in the assignment of the VMs to the virtual

network functions and in the management of the physical card, but not in the

transfer of the data inside the packets. The way SR-IOV works is shown in

Figure 29.9.

Generally, SR-IOV can provide lower latency and lower CPU utilization—in

short, almost native, nonvirtual device performance. But VM migration from one

device to another becomes trickier because the VM is closely tied to resources on

one machine. Also, the forwarding state for the VM resides in the Layer 2 switch

built into the SR-IOV NIC. So forwarding is no longer quite as flexible because

the rules for this forwarding are coded into the hardware and cannot be changed

often.

VIRTIO

VM1 VM2 VMN

Hypervisor

v
N

IC

v
N

IC

v
N

IC

…

pNIC

pSwitch

vSw

Virtual
NIC

Physical NIC

Physical switch

FIGURE 29.8

The idea behind Virtio.

751NFV

NFV AND SERVICE CHAINING

After realizing that almost any hardware or software application can be virtua-

lized and run on a VM or as a container, the next step is to realize that any

network node—router, switch, or firewall—can be virtualized as well. So network

functions like firewall functions such as Intrusion Detection Systems (IDS) or

Intrusion Prevention Systems (IPS), load balancers, deep packet inspection (DPI),

and even the devices themselves, can be run as VMs or containers side-by-side

with applications. When a particular network function is made into a VM or

container, it becomes a VNF.

How does traffic from a client or server find its way through the maze of

virtual functions? Usually as a series of tunnels (such as VXLAN tunnels) or

MPLS LSPs. Both methods have attractions, and these tunnels are directed by the

SDN and a policy rule that might look like this (in Contrail):

allow any src-vn -. dest-vn svc-1, scv-2

The rule above allows all (“any”) traffic to flow from virtual network src-vn

to virtual network dst-vn and forces the flow to travel though a service chain

consisting of svc-1 followed by svc-2 (we can call these the “left” and “right”

services). This rule applies whenever a VM in virtual network scr-vn sends traffic

to any VM in virtual network dst-vn.

As an SDN controller, Contrail is concerned with traffic steering. That is,

directing the traffic flows to the correct VMs using a virtual interface (such as a

tunnel endpoint). The VMs provide network services such as firewalls, DPI, IDS,

IPS, and caching.

SR-IOV

VM1 VM2 VMN

Hypervisor

v
N

IC

v
N

IC

v
N

IC

…

pSwitch

vSw

Virtual Functions

…

L2 Sorter
Switch

Physical
Function

DMA Bypasses Hypervisor

pNIC

FIGURE 29.9

SR-IOV.

752 CHAPTER 29 Cloud, SDN, and NFV

The Contrail system creates additional routing instances for the services pro-

vided on other VMs in addition to the routing instance for tenant VMs. So traffic

is steered both:

• By manipulating the route targets for routing updates to influence to importing

and exporting of routes from one routing instance to another routing instance.

• By manipulating the next-hops or the labels of the routes as they are “leaked”

from routing instance to routing instance. Route leaking is the practice of

allowing routing information from a global routing table into a particular

routing instance, or the other way around. This forces the traffic through the

correct sequence of services on the corresponding VMs.

CLOUD NETWORKING AND TCP/IP
So far, we haven’t even mentioned configuring Cloud networks in TCP/IP. This

is mainly because there are no differences in configuring “virtual” TCP/IP and

the TCP/IP that runs of physical devices. For example, an MPLS tunnel (LSP)

from one data center to another is configured in the same way as a tunnel from

VM to VM over a network of IP underlay and EVPN overlay. This is shown in

Figure 29.10.

This is not to say that there are no differences in the way that TCP/IP operates

in a traditional client�server environment with physical devices. There are several

important modifications that have been made to TCP especially when deployed in

a large-scale data center. However, these modifications are usually transparent to

users and require little or no configuration to take advantage of these changes.

Why is TCP the main target of these efforts? Well, as we have seen, TCP is

connect-oriented, performed complicated slow-start and drastic cut-back flow

control, and can suffer from missing segments or mis-ordered or delayed content.

These limitations have been noted for a long time, but only recently have large

data centers and cloud virtualizations made TCP such an issue.

The fact is that TCP does not work very well in a large cloud data center that

must deal with enormous traffic flows and must feature very fast response times.

There is no room to discuss all the changes to TCP that have been made or have

been proposed. But let’s briefly consider just one, the use of data center TCP

(DCTCP). There are more modifications, but DCTCP is an important one and

widely in use today.

The problem is that servers in large data centers tend to aggregate TCP con-

nections to particular server racks of even particular servers. The normal strategy

of scatter�gather processes and queries ensures that at some point the replies will

all bombard some device somewhere with results. Now, TCP (and IP, for that

matter) contains the ability to indicate congestion with an Explicit Congestion

Notification (ECN) extension in the header. However, support is not universal

and is usually disabled by default.

753Cloud Networking and TCP/IP

Standard TCP congestion control, discussed in the TCP chapter, detects the

presence of congestion. But DCTCP with ECN is able to also indicate the extent

of the congestion. To understand why, consider Figure 29.11, which shows

the typical slow start, additive increase, and multiplicative decrease (50%) of the

TCP congestion algorithm.

DCTCP works by having the sender monitor the ACKs coming back from the

receiver. If, for example, one-third of the ACKs have the ECN set to indicate

Network Management System (NMS)

Route

Reflector

Route

Reflector

VM

VM

vRouterVM

VM

VM

vRouter VM

Orchestrator

Control

Node

Control

Node

Underlay
Switch

Underlay
Switch

MPLS over GRE or VXLAN

Config

Node
Analytics

Node

IBGP

IBGP

DMI

IBGP

CECE
PEPE P P

MPLS over MPLS

….
XMPP

FIGURE 29.10

“Real” network configuration management and Cloud/SDN networks.

754 CHAPTER 29 Cloud, SDN, and NFV

congestion, then the sender can drop its sending rate not by half, but by one-third,

until the ECN clears. The algorithm can cut sending by one-half, or one-tenth, or

whatever rate is indicated by the ECN ACKs.

This is not to say that DCTCP is perfect. DCTCP is not “TCP friendly” in the

sense that it is easy to make or deploy DCTCP with TCP versions that do not act

in the same way. Also, DCTCP does nothing to get rid of slow start.

A full account of the impact of cloud networking and virtualized data centers

on TCP/IP is beyond the scope of this chapter. But even such basic functions as

DNS and MPLS route computation must act differently in a world of virtualized

clouds than the world that the TCP/IP protocol suite was designed for. It is a

reflection on the flexibility on TCP/IP that it still works very well.

CLOUDS AND SECURITY
One of the reasons that this chapter on cloud networks comes at the end of the

section on network management (and the trend toward greater automation and

orchestration) and before the section on security is because of the security chal-

lenges cloud networks bring. Let’s close this chapter and section with a look at

the need for monitoring tools and services so that network administrators can

define and evaluate the security metrics established for their devices.

As you might imagine, cramming more and more data from many different

customers into huge data centers poses numerous threats and vulnerabilities that

become more and more important as the clouds grow larger. Virtualization,

TCP (extremely briefly)

0 5 10 15 20 25 30 35 40

Transmission Number

Slow Start

Additive Increase

Multiplicative
Decrease

5

10

15

20

25

Sending Rate

FIGURE 29.11

TCP flow control limitations.

755Clouds and Security

multiple tenants, and easy access from many types of devices form challenges

that never existed before in simple client�server networks. There are related

concerns about the privacy, confidentiality (not quite the same as privacy), and

integrity of the data stored in the cloud.

I used to work with a man who was up-to-date on the absolute latest in secu-

rity guidelines. I would tell him about all the steps I took to guard my passwords

and credit card information and so on when I used the Internet. And he said to

me, “Yes, but the greatest risk is intruders grabbing not your information over the

wire, but thousands stored on the server.” And of course, the data center servers

are where major hacking efforts have been concentrated.

Every technology used in the cloud has some type of known documented

vulnerability. This is not the place to list the specifics, but general vulnerabilities

are present in the VMs and VNFs themselves, as well as the APIs that run

between virtualized components.

However, no matter how complex the protocol the same three areas—avail-

ability, integrity, and confidentiality—are still paramount in the cloud. The

process is complicated because of the shared tenancy aspects of cloud computing.

A single vulnerable service running on a VM with many other tasks can expose

all of the others to exploitation.

Even in a cloud, the usual web vulnerabilities are still present, such as:

• SQL injection—A way of forming an SQL query with malicious, but legal,

statement into an entry field for server-side execution. These can, for example,

tell the server to dump the database contents to the attacker.

• Cross-site scripting (XSS)—This allows attackers to inject client-side scripts

into the Web pages viewed by others. These scripts can allow users to bypass

access controls.

• Cross-site Request Forgery (CSRF)—Also called “one-click attack” or

“session riding,” this method sends malicious commands to a user from a web

site the user trusts. (While XSS deceives the server, CSRF deceives the

client.)

There are more than just the three listed, for course. An important point to

always keep in mind is that identity and access management in cloud networks

are paramount, because, almost by definition, the owners of the data and the data

service providers are not in the same trusted domain.

IDS is an important consideration. The distributed nature of the cloud makes

it an easy and tempting target for intruders, and the massive resources available

magnify the damages that a successful intrusion can cause. So the IDS itself must

be distributed and able to monitor every node in the network.

Also, DDoS attacks can be devastating because many services can be hosted

on the same physical machine. And DDoS is still an area where service providers

still often struggle to prevent outages.

What tools does TCP/IP have to deflect these security risks? That’s the subject

of the next section of this book.

756 CHAPTER 29 Cloud, SDN, and NFV

QUESTIONS FOR READERS
1. How can networks, which consist of hardware with physical connections

among them, be considered “software defined”?

2. What is the difference between virtio and SR-IOV?

3. What is the difference between virtual machines and containers like those

used in Docker?

4. What is service chaining and how does it relate to NFV?

5. List three types of web vulnerabilities that are still present in cloud network.

757Questions for Readers

This page intentionally left blank

PART

VII
Security

Security is a major concern in networking today. This part of the book
continues the theme begun with SSL, and explores the basic aspects of
security used on the Internet today.

• Chapter 30—Secure Shell (Remote Access)
• Chapter 31—Network Address Translation
• Chapter 32—Firewalls
• Chapter 33—IP Security

This page intentionally left blank

CHAPTER

30Secure Shell
(Remote Access)

WHAT YOU WILL LEARN

In this chapter, you will learn how the secure shell (SSH) is used as a more secure
method of remote access than Telnet. We’ll talk about the SSH model, features, and
architectures.

You will learn how the SSH protocols operate and how keys are distributed. We’ll
do a simple example of Diffie-Hellman key distribution using only a pocket calculator
and no advanced mathematics.

Not too long ago, most TCP/IP books would routinely cover Telnet as the

Internet application for remote access. But today, with the focus on security the

Telnet daemon is considered just too dangerous to leave running on hosts and

routers, mainly because it is such a tempting target even when password encryp-

tion is mandated. There are ways to “enhance” Telnet with security mechanisms,

much as the control connection used for FTP (which is little more than a Telnet

session for control) has done.

This is not to say that remote access itself is not an essential Internet and

TCP/IP tool. This book could not have been written without Telnet remote access.

But more and more today, the preferred application for remote access is SSH.

Windows users should not let the use of the Unix term “shell” scare them. SSH is

not really a Unix shell, such as the Bourne shell or BASH or other Unix interfaces. It’s

really a protocol that runs, like most things, over IPv4 or IPv6. Yet the use of the word

“shell” in SSH is a good one because there is a lot more to SSH than just remote

access. Perhaps the term “secure suite” would have been better, but SSH is what it is.

USING SSH
Most people know SSH as just another way to access the remote host of a router.

For example, to access router CE0 from host bsdclient and log in as admin, we
would use the �l login option as follows:

bsdclient# ssh -l admin 10.10.11.1
admin@10.10.11.1's password: (not shown)
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC
admin@CE0.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00030-8

© 2017 Elsevier Inc. All rights reserved.
761

http://dx.doi.org/10.1016/B978-0-12-811027-0.00030-8

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted Pair Wiring

bsdclient lnxserver wincli1

SSH client
to access
router CEO

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

IIS with
ASP
Installed

winsvr1

LAN1Los Angeles
Office

Ace ISP

AS 65531

Wireless
in Home

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

SSH server
for remote
access

FIGURE 30.1

Using SSH on the Illustrated Network showing the host used as the SSH client and the

target router used as the SSH server for remote access.

762 CHAPTER 30 Secure Shell (Remote Access)

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted Pair Wiring

bsdserver lnxclient winsvr2 wincli2

Apache Web
with SSL
Installed

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Best ISP

AS 65527

Global Public
Internet

763Using SSH

You might notice a longer wait after issuing the ssh command than other

commands before being asked for the password, but if the network is fast

enough this delay is marginal. In fact, a blizzard of messaging is crisscrossing

the network between command and password requests, and even more before

the remote device prompt appears. Without some explanation, these

messages are completely opaque to users. So, let’s use bsdclient and CE0 (as

shown in Figure 30.1) to explore SSH a little before looking at the messages

in detail.

SSH BASICS

Although not technically a shell, SSH lets a user do all of the things Unix commands

such as rsh, rlogin, and rcp do. (SSH is sometimes implemented as slogin.) SSH
is an application that allows users to log on to another host over the network, execute

commands on the remote host, and move files around. But unlike the older “r com-

mands” it is intended to replace, SSH provides secure communication over unsecure

channels, strong authentication and encryption, and other security features.

The remote “r commands” were vulnerable to many different types of attacks.

Anyone without root access to the hosts or access to the packets on the network

could gain unauthorized access to the hosts in several ways. Malicious users could

also log all traffic to and from the host, including other users’ passwords. (In con-

trast, SSH never sends passwords in clear text.)

The popular X Windows GUI for Unix is also vulnerable in many ways. SSH

allows the creation of secure remote X Windows sessions that are transparent to the

user. In fact, using SSH for remote X Window clients is easier for users. Users can

still use their old rhosts and /etc/hosts files for this type of remote access, and if a

remote host does not support SSH there is a way for the session to fall back to rsh.

SSH is a traditional client/server protocol. The SSH server process waits for com-

mands (requests) from SSH clients, executes the command if allowed, and returns

the result (reply) to the client. Users are often authenticated with an encrypted key

and passphrase instead of a password, and these public key files are placed on the

remote computers users can access. The overall use of SSH is shown in Figure 30.2.

SSH consists of several client programs and a few configuration files. The

programs the user runs are ssh or slogin (both essentially the same) and scp or

sftp (also the same), depending on implementation. Secure shell keys are man-

aged with ssh-keygen, ssh-agent, and ssh-add.
There have been two major versions of SSH. SSH1 was developed by Tatu

Ylonen at the Helsinki University of Technology in Finland in 1995 after a net-

work attack. It was released as free software and source code. It also became an

Internet draft, but several issues with the original (which was not systematically

developed) were addressed as SSH2 in 1996. SSH2 has new methods and is not

compatible with SSH1. Unfortunately, users still liked a lot of the features of

SSH1 that were lacking in SSH2, and because some security is better than none,

they felt little reason to switch (licensing played a role as well).

764 CHAPTER 30 Secure Shell (Remote Access)

OpenSSH is now available as a free implementation of the SSH2 protocol,

and it is this version that has been ported to many operating systems. People still

talk about the “Ylonen SSH,” “SSH1.5,” or “OpenSSH” implementations of the

basic SSH protocol. SSH was an Internet draft status for a long time, and this

chapter describes SSH2. SSH is now defined in a series of RFCs from RFC 4250

through RFC 4256 (several other RFCs update SSH for various situations). This

group of RFCs details various aspects of SSH operation.

SSH FEATURES

SSH has excellent protection features. The major ones follow:

Secure client/server communication—All data are encrypted on the network.

Varied authentication—Users can be authenticated by password (encrypted),

the host, or a public key.

Authentication integration—SSH can be optionally integrated (and often is)

with other authentication systems such as Kerberos, PAM, PGP, and SecureID.

Security add-on—SSH can be used to add security to applications such as

NNTP, Telnet, VNC, and a lot of other TCP/IP protocols and applications.

Transparency and versatility—SSH can be transparent to the user and there

are implementations for almost all operating systems (including Windows

with OpenSSH implementations).

SSH
Client

SSH
Server

SSH
Client

SSH
Client

SSH
Client

Access
denied!

Copy file

FileSuccess!

Log-in
request

Log-in
request

Command
output

Run
command

FIGURE 30.2

SSH model. Note that a way to run commands and copy files is included in the model.

765Using SSH

On the other side of the coin, SSH protects users against:

IP spoofing—A remote host can send IP packets pretending to come from

somewhere else, such as a trusted host. Spoofers on LANs can even pretend to

be the local routers to the outside world, which SSH protects against as well.

IP source routing—This is another way for hackers to claim that a packet

came from another host.

DNS spoofing—Hackers can forge name server records supplied to a host.

Intermediate device control—This is an old favorite. A hacker can take

control of a router or host between hosts and execute many types of data

manipulation.

Clear text interception—Data or passwords sent in clear text are always

targets for hackers.

X Windows attacks—Hackers can listen to X Windows authentication

exchanges and spoof server connections.

SSH never trusts the network. Even if hackers took over the entire network,

all that can happen is that SSH is forced to disconnect. Hackers cannot decrypt,

play back, or compromise data on the connection.

This is not to say that the SSH is perfect. Like any other tool, SSH is only as

good as those setting it up and using it. For example, SSH does have an option

for encryption type (none), but this is only to be used for testing purposes. (There

is no real enforcement of this “test case” used for production networks, of

course.) And SSH does nothing to prevent someone who had gained access to the

host another way (perhaps by sitting down in front of the unprotected host itself)

from doing a lot of damage with root access. In that case, SSH is often the first

target of a local hacker with physical access to the host.

In addition, a lot of organizations with their own firewall devices are nervous

when users rely on SSH to connect to hosts. Remember, everything in the SSH

stream is encrypted, and fairly well at that. What SSH does is offer users a direct

pipeline to their internal machines right through the firewall, an invisible tunnel

into the organization.

There are ways to work around this through a SSH proxy gateway, including

the “mute shell” and “SSH-in-SSH” approaches. But nothing is ever perfect or

100% secure.

SSH ARCHITECTURE

Many SSH components interact to allow secure client�server exchanges. These

components, not all of which are distinct programs or processes, are shown in

Figure 30.3.

The following is a brief overview of the major components of SSH.

Server—The program that authenticates and authorizes SSH connections,

usually sshd.

766 CHAPTER 30 Secure Shell (Remote Access)

Client—The program run on the client (user) device, often ssh, but also scp,
sftp, and so on.

Session—The client/server connection, which can be interactive or batch. The

session begins after successful authentication to the server and ends when the

connection terminates.

Key generator—A program (usually ssh-keygen) that generates persistent
keys. (Key types are discussed later in this chapter.)

Known hosts—A database of host keys. This is the major authentication

mechanism in SSH.

Agent—A caching program for user keys to spare users the need to repeat

passphrases. The agent is only a convenience and does not disclose the keys.

The usual agent is ssh-agent, and ssh-add loads and unloads the key cache.

Signer—This program signs the host-based authentication packets used instead

of password authentication.

Random seed—Random data used by SSH components to initialize the

pseudorandom number generators (PRNG) used in SSH.

Configuration files—Settings to determine the behavior of SSH clients and servers.

SSH KEYS

Keys are a crucial part of SSH. Almost everything that SSH does involves a key,

and often more than one key. SSH keys can range from tens of bits to almost

Client Server

Known
hosts

Host key1
Host key2
Host key3

.

.

. Session
Key

Session
Key

User Account

User Key
Public/
Private

Host Key
Public/
Private

User Key
Public

Identify file or agent

Channels for:
interactive

forwarded ports
remote key agents

other. . .

Target Account

Authorization file

FIGURE 30.3

An overview of the SSH architecture. Note that a lot of space is devoted to the distribution

and use of encryption keys.

767Using SSH

2000. Keys are used as parameters for SSH algorithms such as encryption or

authentication. SSH keys are used to bind the operation to a particular user.

There are two types of SSH keys: symmetric (shared secret keys) and asym-

metric (public and private key pairs). As in all public key systems, asymmetric

keys are used to establish and exchange short-duration symmetric keys. The three

types of keys used in SSH are outlined in Table 30.1. As mentioned, user and

host keys are typically created by the ssh-keygen program.

User key—This persistent asymmetric key is used by the SSH clients to

validate the user’s identity. A single user can have multiple keys and

“identities” on a network.

Host key—This persistent asymmetric key is used by the SSH servers to

validate their identity, as well as the client if host-based authentication is

used. If the device runs a single SSH server process, the host key uniquely

identifies the device. Devices running multiple SSH servers can share a key or

use different host keys.

Session key—This transient symmetric key is generated to encrypt the data

sent between client and server. It is shared during the SSH connection setup to

use for encrypted data streams during the session. When the session ends, the

key is destroyed. There are several session keys, actually—one in each

direction and others to check integrity of communications.

SSH PROTOCOL OPERATION

This section describes the operations of SSH2 and not the older, and incompatible,

SSH1. There are four major pieces to SSH, and they are documented separately

and theoretically have nothing whatsoever to do with one another. In practice, they

all function together to provide the set of features and functions that make up SSH.

Each is still an Internet draft, but these should all become RFCs some day.

There are some other documents that extend these four protocols, but these

make up the heart of SSH. The major protocols follow:

• SSH Transport Layer Protocol (SSH-TRANS)

• SSH Authentication Protocol (SSH-AUTH)

• SSH Connection Protocol (SSH-CONN)

• SSH File Transfer Protocol (SSH-SFTP)

Table 30.1 SSH Key Name Types and Major Characteristics

Key Name Lifetime Creator Type Purpose

User key Persistent User Public Identify user to server
Host key Persistent Administrator Public Identify a server or device
Session key One session Client and server Secret Secure communications

768 CHAPTER 30 Secure Shell (Remote Access)

The relationships between the protocols, and their major functions, are shown

in Figure 30.4.

All critical parameters used in all of the protocols are negotiated. These para-

meters include the ways and algorithms used for:

• User authentication

• Server authentication

• Session key exchange

• Data integrity and privacy

• Data compression

In most categories, clients and servers are required to support one or more

methods, thereby promoting interoperability. Support is not the same as imple-

mentation, however, and specific clients and servers still have to find a “match”

to accomplish their goals.

Initial connections (including server authentication, basic encryption, and

integrity services) are established with SSH-TRANS, which is the fundamental

piece of SSH. An SSH-TRANS connection provides a single and secure data

stream operating full-duplex between client and server.

Once the SSH-TRANS connection is made, the client can use SSH-AUTH

for authentication to the server. Multiple authentication methods can be used,

Application Software (ssh, sshd, scp, sftp, sftp-server, etc.)

SSH-AUTH

SSH-TRANS

client authentication
 public key
 host-based
 password
 (many others)

algorithm negotiation
session key exchange
session ID
server authentication
privacy
integrity
data compression

TCP Layer

SSH-CONN SSH-SFTP
multiplexing
flow control
subsystems
pseudo-terminals
signal propagation
remote program execution
authentication agent forwarding
TCP port and X windows forwarding
terminal handling

remote filesystem access
file transfer

FIGURE 30.4

SSH protocols, showing how they relate to one another and the TCP transport layer.

769Using SSH

and SSH-AUTH establishes things such as the format and order of requests,

conditions of success or failure, and so on. Protocol extensions are defined to

allow the methods to be extended in the future as other authentication

methods are developed. Only one method is required in SSH-AUTH: public

key using the digital signature standard (DSS). Two more methods are

defined: password and host-based (but we’ll concentrate on public key in

this chapter).

Once authenticated, SSH clients use the SSH-CONN protocol over the “pipe”

established by SSH-TRANS. There are multiple interactive or batch (noninterac-

tive) sessions over SSH channels. The sessions include things such as X

Windows and TCP forwarding (tunneling), control signaling (such as XC) over the
connection, data compression, and related activities.

If file transfer or remote file manipulation is needed, this is provided by the

SSH-SFTP protocol. The sequence of invoking these protocols is not rigid, and

there is considerable variation in implementation, mostly in “nonstandard” or

customized environments where global client access is neither needed nor

desired.

Note that the SSH protocols only define what should happen on the net-

work. Internals such as how keys are stored on the local disk, user authoriza-

tion, and key forwarding (which most people think of as intimate parts of

SSH), are really implementation-dependent pieces that are usually completely

incompatible. The following sections describe some of the key aspects of pro-

tocol operation.

TRANSPORT LAYER PROTOCOL

Clients normally access the SSH process on the server at well-known TCP

port 22. The server announces the SSH version in a text string, and there are cer-

tain conventions built into this string. For example, SSH version “1.99” means

that the server supports both SSH1 and SSH2, and the client can choose to use

either one from then on. Of course, if the client and server are not compatible,

either can break the connection at that point.

If the connection goes forward, SSH-TRANS shifts into the binary packet

protocol—a record-oriented non-text protocol defined for SSH-TRANS. The first

activity here is key exchange, which precedes the negotiation of the basic security

properties of the SSH session.

The key exchange often employs some form of the Diffie-Hellman procedure

for key agreement, although there are others. Diffie-Hellman describes a way to

securely exchange information (such as a shared secret key) over an unsecured

network such as the Internet by using asymmetric public/private keys established

beforehand. The key exchange itself should be authenticated to guard against

“man-in-the-middle” attacks.

770 CHAPTER 30 Secure Shell (Remote Access)

POCKET CALCULATOR DIFFIE-HELLMAN
In the SSL chapter, we did an exercise in “pocket calculator public key encryption” to show that

although the mathematical theory behind the use of asymmetric public/private key encryption was

complex its use was not. We’ve mentioned Diffie-Hellman several times, and when first

popularized in 1976 Diffie-Hellman was so revolutionary some doubted it actually worked (not

mathematicians, of course!). How could secure shared secret keys possibly be sent over an

unsecure network where anyone can make copies of the packets?

Let’s show how Diffie-Hellman can be used to allow users to share a secret key and yet no

one else knows what the key is (even the “man-in-the-middle” vulnerability does not really

“crack” the key, just hijacks it). Again, we’ll use small non�real-world numbers just to make the

math easy enough to do on a pocket calculator. We’ve already shown how to raise the numbers to

a power, and to compute the modular remainder from division, so that is not repeated.

Like public key encryption, Diffie-Hellman depends on properties of prime numbers. There

are two important ones: the very large prime itself (P) and a related number (derived by formula)

called the “primitive root of P,” which is usually called Q. A large prime P will have many

primitive roots, but only one is used. For this example, let’s use P5 13 and Q5 11 (I didn’t use a

formula: There are tables on primes and primitive roots all over the Internet).

According to usual security example practice, let’s call our two correspondents Alice (A) and

Bob (B). A and B exchange these two numbers publicly over the network, without worrying if

anyone else knows them (they have no choice, because the network is by definition unsecure

anyway).

A and B each pick, independently, a random number (naturally, in reality this is done by

software without users “picking” anything). Let’s use A5 4 and B5 7 (they can even pick the

same number by chance, of course). Now each calculates A� and B� according to the following

formulas:

• A computes A� 5QA mod (P)5 114 mod (13)5 14,641 mod 135 3

• B computes B� 5QB mod (P)5 117 mod (13)5 19,487,171 mod 135 2

Now, all A and B have to do is exchange their A� and B� numbers over the network—not

caring who sees them (which they can’t help anyway). But wait, couldn’t someone easily

figure out the A and B values in the example? Yes, of course, with the small numbers used here.

But when large enough primes and well-chosen primitive roots are selected, and A and B choose

random enough numbers (one reason you don’t let A and B pick their own numbers), there are

many numbers that give the values 3 and 2.

Now A and B simply calculate the shared secret key to use:

• A’s secret key5 (B�)A mod (P)5 24 mod (13)5 16 mod 135 3

• B’s secret key5 (A�)B mod (P)5 37 mod (13)5 2187 mod 135 3

Given enough time, the shared secret key can be broken. So, the Diffie-Hellman process is

repeated constantly (at fixed intervals), recomputing new keys, sometimes every few seconds. By

the time the key is broken, a new one is in use.

The key exchange is usually repeated during a session because “stale”

keys that are used too long might allow a malicious user to break the

encryption that much faster. The more often the keys are changed the less

likely this becomes, and even if broken only that portion of the session is

compromised. Usually SSH key exchanges occur every hour or after every

gigabyte of data.

771Using SSH

The use of the “null” cipher, which means no encryption at all, is a valid

choice for SSH clients and servers, but this is only to be used for testing.

However, many SSH administrators never disable it. A favorite OpenSSH trick is

to gain root access to a host and edit the user’s configuration file (B/.ssh/config)
so that all hosts use the null cipher only. If client or server do not support “null,”

this evil trick is not possible.

Key exchange and encryption choice are followed by more security parameter

choices. Methods of integrity, server authentication, and compression (a marginal

feature still considered part of SSH security) are agreed on. Public key systems

are popular choices, but the issue is always how to verify proper ownership of the

public key, as discussed in Chapter 23, where certificates were introduced as a

way to provide server authentication. At the end of the process, methods for

cipher/integrity/compression are established for client-to-server and server-to-

client exchanges.

AUTHENTICATION PROTOCOL

SSH-AUTH is simpler than SSH-TRANS. The authentication protocol defines a

framework for these exchanges, defines a number of actual mechanisms (but only

a few of them), and allows for extensions. The three defined methods are public-

key, password, and host-based authentication.

The authentication process is framed by client requests and server responses.

The “authentication” request actually includes elements of authorization (access

rights are checked as well). A request contains:

Username, U—The claimed identity of the user. On Unix systems, this is

typically the user account. However, the interpretation context is not defined

by the protocol.

Server name, S—The user is requesting access to a “server,” which is really

the protocol to run on the SSH-TRANS connection after authentication

finishes. This is usually “ssh-connection,” which represents all services

(remote log-in, command execution, etc.) provided by the SSH-CONN

protocol.

Method name, M, and method-specific data, D—The particular authentication

method used for the request and any data needed with it. For example, if the

method is password, the data provided are the password itself.

There can be other messages exchanged, depending on the authentication

request. But ultimately the server issues an authentication response. The response

can be SUCCESS or FAILURE, and the success message has no other content. The

failure response includes

• a list of the authentication methods that can continue the process

• a “partial success” flag

772 CHAPTER 30 Secure Shell (Remote Access)

The FAILURE response can be misleading. If the partial success flag is not set

(false), the message means that the preceding authentication method has failed for

some reason (incorrect password, invalid account, and so on). However, if the

partial success flag is set (true), the message means that the method has suc-

ceeded (odd in a failure message!), but the server requires that additional methods

also succeed before access is granted. In other words, the server can require mul-

tiple successful authentication methods. OpenSSH does not support this feature.

But how does the client know which methods to start with? The client starts

with a “none” authentication request, which prompts the server to reply with a list

of the authentication methods the client can choose to continue the process.

In other words, if the server requires any authentication at all, the “none” method

fails. If not, a SUCCESS is immediate and a lot of time is saved.

THE CONNECTION PROTOCOL

Clients usually request to use “ssh-connection” after a successful authentication

exchange. Once the server starts the service, SSH uses the SSH-CONN protocol.

This is really when SSH starts to do things.

The basic SSH-CONN service is multiplexing: the creation of dynamic logical

channels over the SSH-TRANS connection. Channels are identified by numbers

and can be created and destroyed by either side of the connection. Channels are

flow controlled and have a type, which are also extensible. The defined channels

types follow:

Session—These are for the remote execution of a program. Opening a channel

does not start a program, but when started several session channels can be in

operation at once.

x11—These channels are for X Windows operations.

forwarded-tcpip—These inbound channels are for forwarded TCP ports. (Port

forwarding in SSH just means that SSH transparently encrypts and decrypts

data on a TCP port.) The server opens this channel type back to the client to

carry remotely forwarded TCP port data.

direct-tcpip—These outbound TCP channels are used to connect to a socket.

The client simply starts listening on the port indicated.

SSH-CONN defines a set of channel or global requests in addition to tradi-

tional channel operations such as open, close, send, and so on. The global

requests follow:

tcpip-forward—Used to request remote TCP port forwarding. This feature is

not yet supported by Open SSH.

cancel-tcpip-forward—Used to cancel remote TCP port forwarding.

The channel requests are more elaborate and are only summarized in the

following. Most refer to the remote side of the session channel.

773Using SSH

pty-req—Requests a pseudo-terminal for the channel (usually for interactive

applications). Includes window size and terminal mode information.

x11-req—Requests X Window forwarding.

Env—Sets an environmental variable. This can be risky, so it is carefully

controlled.

shell, exec, subsystem—Run the default shell for the account, a program, or

service. This connects the channel to the standard input and output and error

streams. A “subsystem” is used, for example, with file transfers, and the

subsystem name is SFTP in this case.

window-change—Changes the terminal window size.

xon-xoff—Uses client XS/XQ flow control.

Signal—Sends a signal (such as the Unix kill command) to the remote side.

exit-status—Returns the program’s exit status.

exit-signal—Returns the signal that terminated the program.

Although these channel requests can technically be sent from server to client,

the use of SSH as a remote access tool means that most of these requests are

issued by the client and expect the server to perform in a certain way. Clients usu-

ally ignore these requests from a server, just for security reasons.

THE FILE TRANSFER PROTOCOL

The last piece of the SSH protocol “suite” is SSH-SFTP. Oddly, SSH-SFTP does

not really implement any file transfers at all because it has no file transfer capa-

bility. What the protocol does is to use SSH to start a remote file transfer agent

and then work with it over the secure connection.

Initially, SSH used a secure version of the remote copy (rcp) Unix program to

implement secure copy (scp). As rcp ran the remote shell (rsh), so scp ran the

secure shell (SSH). But rcp was a very limited program compared to FTP. A ses-

sion only transferred a group of files in one direction, and it did not allow direc-

tory listings, browsing, or any of the other features associated with FTP.

Thus, SSH2 eventually incorporated the idea of SFTP to secure the file transfer

process. The SSH-SFTP protocol describes how this happens. Unfortunately, SFTP

isn’t just using SSH to connect to a remote FTP server. SFTP has absolutely noth-

ing to do with the FTP protocol described in an earlier chapter of this book.

SSH and FTP are not a good match, one reason being that separate connec-

tions are used in FTP for control and data transfer. FTP itself (like Telnet) can be

made more secure with SSL, but few FTP servers provide these functions. So, an

FTP server can also be an SSH server (providing files in unsecure and secure

manners)—and that’s about a close as SSH and FTP can get.

How does SSH-SFTP work? Well, there are really two ways to transfer files

over an SSH connection: with scp or with sftp (the names might be different, but

it’s the procedure that’s important).

774 CHAPTER 30 Secure Shell (Remote Access)

When a client uses scp, the transfer begins by running ssh with certain

options, such as when a forwarding agent is in use. This process in turn runs

another version on the remote host, which is, of course, running sshd. That copy

of scp is run with its own (undocumented) options, such as “to” (-t) and “from”

(-f). SSH then uses scp, now running on client and server, to transfer the file over

the secure SSH connection.

Figure 30.5 shows how SSH uses scp to transfer a file called mywebpage.html to

a server and rename it index.html. Naturally, the transfer is encrypted and secure.

SSH can even do a trick that FTP does not allow. SSH can be used for “third-

party” transfers, a capability never implemented in FTP beyond the testing phase

(for security reasons). In other words, when run locally, SSH can transfer a file

between two remote hosts (as long as the authentication succeeds).

Consequently, users can perform the Web page transfer to the server even if

the page is on their office desktop and they are sitting with a laptop at an airport

gate waiting for a flight.

scp lnxclient:mywebpage.html lnxserver:index.html

Using sftp is similar, but the syntax and options for the command are different.

This method starts an SSH subsystem, and that means that the SSH server must

be specifically configured to run the SFTP protocol. Figure 30.6 shows how the

Client

scp mywebpage.html webserver:index.html

run “ssh -x -a ...webserver scp -t index.html”

FILE SCP

ssh

mywebpage.html

Server

index.html

run “scp -t index.html”

SCP

sshd

FILE

SCP Protocol

FIGURE 30.5

Transferring files with SCP, showing how SSH is used with the file copy.

775Using SSH

same file transfer would be done with sftp (in the SSH implementation known as

Tectia, sftp is confusingly invoked with the command scp2).

The point here is that both methods will transfer the file as long as every thing

else is set up correctly. The best book on SSH—SSH: The Secure Shell, by

Daniel J. Barrett, Richard E. Silverman, and Robert G. Byrnes (O’Reilly

Media)—is about as long as this one. Interested readers are referred to this text

for more detailed information on SSH.

SSH IN ACTION
If there is one thing that was used more than FTP to produce this book, it’s SSH.

In fact, all of the file transfers used to consolidate output for these examples could

just as easily have been done with SCP or SFTP. This is especially true when rou-

ters are the remote systems: Only in special circumstances will organizations

allow or use Telnet for router access.

Let’s use SSH to contact the routers on the Illustrated Network. Naturally, the

routers have been set up ahead of time to allow administrator access from certain

hosts on LAN1 and LAN2 and are running sshd. But on the client side, we’ll run

ssh “out of the box” and see what happens.

Client

run “ssh2 -x-a ...webserver -s sftp”

FILE
SFTP/
SCP2

ssh

mywebpage.html

Server

index.html

run “sftp webserver”

SFTP
Server

sshd

FILE

SFTP Protocol

sftp webserver
sftp>put mywebpage.html index.html

or

scp2 mywebpage,html webserver:index.htm

FIGURE 30.6

A file transfer with SFTP, showing the same results as when using SCP.

776 CHAPTER 30 Secure Shell (Remote Access)

Ethereal captures are not the best way to look at SSH in action. The secure

and encrypted transfers make packet analysis difficult (and often impossible).

Fortunately, we can use the debug feature of SSH itself to analyze the exchange

in very verbose form (using the �vv option).

Let’s see if we can catch SSH-TRANS, SSH-AUTH, and SSH-CONN in

action when we access router TP2 (10.10.11.1) from bsdclient. We’ll log in

(the -l option) as admin.

bsdclient# ssh -vv -l admin 10.10.11.1
OpenSSH_3.5p1 FreeBSD-20030924, SSH protocols 1.5/2.0, OpenSSL
0x0090704f
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Rhosts Authentication disabled, originating port will not be
trusted.
debug1: ssh_connect: needpriv 0
debug1: Connecting to 10.10.11.1 [10.10.11.1] port 22.
debug1: Connection established.
debug1: identity file /root/.ssh/identity type -1
debug1: identity file /root/.ssh/id_rsa type -1
debug1: identity file /root/.ssh/id_dsa type -1
debug1: Remote protocol version 1.99, remote software version
OpenSSH_3.8
debug1: match: OpenSSH_3.8 pat OpenSSH�

debug1: Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH-2.0-OpenSSH_3.5p1 FreeBSD-20030924
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,diffie-
hellmangroup1- sha1
debug2: kex_parse_kexinit: ssh-dss,ssh-rsa
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc, arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc, arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se
debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-
ripemd160@ openssh.com,hmac-sha1-96,hmac-md5-96
debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-
ripemd160@ openssh.com,hmac-sha1-96,hmac-md5-96
debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit: first_kex_follows 0
debug2: kex_parse_kexinit: reserved 0
debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,
diffiehellman
group1-sha1

777SSH in Action

debug2: kex_parse_kexinit: ssh-rsa,ssh-dss
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,
arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se,aes128-
ctr,aes192-ctr,aes256-ctr
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se,
aes128-
ctr,aes192-ctr,aes256-ctr
debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-
ripemd160@ openssh.com,hmac-sha1-96,hmac-md5-96
debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-
ripemd160@ openssh.com,hmac-sha1-96,hmac-md5-96
debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit:
debug2: kex_parse_kexinit: first_kex_follows 0
debug2: kex_parse_kexinit: reserved 0
debug2: mac_init: found hmac-md5
debug1: kex: server-.client aes128-cbc hmac-md5 none
debug2: mac_init: found hmac-md5
debug1: kex: client-.server aes128-cbc hmac-md5 none
debug1: SSH2_MSG_KEX_DH_GEX_REQUEST sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: dh_gen_key: priv key bits set: 136/256
debug1: bits set: 1042/2049
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
debug1: Host '10.10.11.1' is known and matches the DSA host key.
debug1: Found key in /root/.ssh/known_hosts:1
debug1: bits set: 1049/2049
debug1: ssh_dss_verify: signature correct
debug1: kex_derive_keys
debug1: newkeys: mode 1
debug1: SSH2_MSG_NEWKEYS sent
debug1: waiting for SSH2_MSG_NEWKEYS
debug1: newkeys: mode 0
debug1: SSH2_MSG_NEWKEYS received
debug1: done: ssh_kex2.
debug1: send SSH2_MSG_SERVICE_REQUEST
debug1: service_accept: ssh-userauth
debug1: got SSH2_MSG_SERVICE_ACCEPT
debug1: authentications that can continue: publickey,password,
keyboardinteractive

778 CHAPTER 30 Secure Shell (Remote Access)

debug1: next auth method to try is publickey
debug1: try privkey: /root/.ssh/identity
debug1: try privkey: /root/.ssh/id_rsa
debug1: try privkey: /root/.ssh/id_dsa
debug2: we did not send a packet, disable method
debug1: next auth method to try is keyboard-interactive
debug2: userauth_kbdint
debug2: we sent a keyboard-interactive packet, wait for reply
debug1: authentications that can continue: publickey,password,
keyboardinteractive
debug2: we did not send a packet, disable method
debug1: next auth method to try is password
admin@10.10.11.1's password: (not shown)
debug2: we sent a password packet, wait for reply
debug1: ssh-userauth2 successful: method password
debug1: channel 0: new [client-session]
debug1: send channel open 0
debug1: Entering interactive session.
debug2: callback start
debug1: ssh_session2_setup: id 0
debug1: channel request 0: pty-req
debug1: channel request 0: shell
debug1: fd 3 setting TCP_NODELAY
debug2: callback done
debug1: channel 0: open confirm rwindow 0 rmax 32768
debug2: channel 0: rcvd adjust 131072
--- JUNOS 8.4R1.3 built 2007-08-06 06:58:15 UTC
admin@CE0.

The substantial output captures all three phases of SSH protocol operation (all

but SSH-SFTP). Let’s see what the major portions of this listing are saying.

Roughly speaking, the first half of the output is SSH-TRANS negotiation to

establish the methods to use for key exchange, and what to use for cipher, integrity,

and compression. The next quarter is used for SSH-AUTH to decide on a user

authentication method to be used (its password). The last quarter, after the pass-

word is entered, is SSH-CONN (setting up SSH channel 0 from router to client).

It’s not necessary to parse this line by line. Generally, the exchange starts by

parsing the version string supplied by the router and starting the negotiation. The

router announces support for SSH1 or SSH2 (version 1.99).

debug1: Remote protocol version 1.99, remote software version
OpenSSH_3.8
debug1: match: OpenSSH_3.8 pat OpenSSH�

debug1: Enabling compatibility mode for protocol 2.0

779SSH in Action

The client announces OpenSSH support as well.

debug1: Local version string SSH-2.0-OpenSSH_3.5p1 FreeBSD-20030924

Now the process shifts to binary packet mode and begins in earnest. The next

major section presents the router and client support set for key exchange, cipher,

integrity, and compression.

debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug2: kex_parse_kexinit: diffie-hellman-group-exchange-sha1,diffie-
hellman-group1-sha1
debug2: kex_parse_kexinit: ssh-dss,ssh-rsa
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se
debug2: kex_parse_kexinit: aes128-cbc,3des-cbc,blowfish-cbc,cast128-
cbc,arcfour,aes192-cbc,aes256-cbc,rijndael-cbc@lysator.liu.se
debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-
ripemd160@ openssh.com,hmac-sha1-96,hmac-md5-96
debug2: kex_parse_kexinit: hmac-md5,hmac-sha1,hmac-ripemd160,hmac-
ripemd160@ openssh.com,hmac-sha1-96,hmac-md5-96
debug2: kex_parse_kexinit: none,zlib
debug2: kex_parse_kexinit: none,zlib

The first two lines exchange the messages, which are parsed in pairs in the

following. The first pair establishes the key exchange algorithms that the client

understands (diffie-hellman-group-exchange-sha1, diffie-hellman-group1-
sha1), and the second establishes the key types (ssh-dss, ssh-rsa). The other three

pairs show that the client and server both support the same methods in the other

three categories. (It’s not unusual for servers to support methods more than cli-

ents.) A long section of back-and-forth negotiation takes place to pare down the

possibilities, and finally the client and server agree on what three methods to use

for cipher, integrity, and compression.

debug1: kex: server-.client aes128-cbc hmac-md5 none
debug1: kex: client-.server aes128-cbc hmac-md5 none

Still, in SSH-TRANS, the actual key exchange and server authentication now

begin. Fortunately, it’s really the correct router.

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: dh_gen_key: priv key bits set: 136/256
debug1: bits set: 1042/2049
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY

780 CHAPTER 30 Secure Shell (Remote Access)

debug1: Host '10.10.11.1' is known and matches the DSA host key.
debug1: Found key in /root/.ssh/known_hosts:1
debug1: bits set: 1049/2049
debug1: ssh_dss_verify: signature correct

The router is known because we’ve accessed it before (many times, in fact). If

we go somewhere we’ve never been before, we have the option to break off the

session because the server cannot be authenticated.

debug1: SSH2_MSG_KEX_DH_GEX_REQUEST sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: dh_gen_key: priv key bits set: 145/256
debug1: bits set: 1006/2049
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
debug2: no key of type 0 for host 10.10.12.1
debug2: no key of type 1 for host 10.10.12.1
The authenticity of host '10.10.12.1 (10.10.12.1)' can't be
established.

DSA key fingerprint is 51:5 f:da:41:41:9d:b1:c0:3 f:a7:d0:a8:b9:7c:99:aa.
Are you sure you want to continue connecting (yes/no)?

At last we’re finished with SSH-TRANS. Now SSH-AUTH is used to authen-

ticate the “user account” to the server. We derive some new keys for the process,

and finally (because nothing else “works”) allow the user to type in a password

for the router.

debug1: kex_derive_keys
debug1: newkeys: mode 1
debug1: SSH2_MSG_NEWKEYS sent
debug1: waiting for SSH2_MSG_NEWKEYS
debug1: newkeys: mode 0
debug1: SSH2_MSG_NEWKEYS received
debug1: done: ssh_kex2.
debug1: send SSH2_MSG_SERVICE_REQUEST
debug1: service_accept: ssh-userauth
debug1: got SSH2_MSG_SERVICE_ACCEPT
debug1: authentications that can continue: publickey,password,
keyboardinteractive
debug1: next auth method to try is publickey
debug1: try privkey: /root/.ssh/identity
debug1: try privkey: /root/.ssh/id_rsa
debug1: try privkey: /root/.ssh/id_dsa
debug2: we did not send a packet, disable method
debug1: next auth method to try is keyboard-interactive

781SSH in Action

debug2: userauth_kbdint
debug2: we sent a keyboard-interactive packet, wait for reply
debug1: authentications that can continue: publickey,password,
keyboardinteractive
debug2: we did not send a packet, disable method
debug1: next auth method to try is password
admin@10.10.11.1's password:

Although it is difficult to tell from the debug messages, there is a significant wait

after the password is typed in while SSH-CONN sets up channel 0 over the SSH-

TRANS connection. But finally we’re in an interactive session and all set to go.

debug2: we sent a password packet, wait for reply
debug1: ssh-userauth2 successful: method password
debug1: channel 0: new [client-session]
debug1: send channel open 0
debug1: Entering interactive session.
debug2: callback start
debug1: ssh_session2_setup: id 0
debug1: channel request 0: pty-req
debug1: channel request 0: shell
debug1: fd 3 setting TCP_NODELAY
debug2: callback done
debug1: channel 0: open confirm rwindow 0 rmax 32768
debug2: channel 0: rcvd adjust 131072
[. . .]
admin@CE0.

Note that SSH does not bypass the router’s own authentication method (log-in

ID and password) in any way. But it does ensure that what the user types in is not

sent in plain text over the network.

Let’s quickly show sftp in action to fetch a file called tp2 from the router.

This shows obvious similarities with FTP use, but is much more secure.

bsdclient# sftp admin@10.10.11.1
Connecting to 10.10.11.1. . .
admin@10.10.11.1’s password: (not shown)
sftp. ls
.
..
.ssh
CE0-base
mw-graceful-restart
richard-ASP-manual-SA
richard-base
tp2

782 CHAPTER 30 Secure Shell (Remote Access)

wjg-ORA-base
wjg-bgp-try
wjg-ipv6-mcast
wjg-with-ipv6
sftp. get tp2
Fetching /var/home/remote/tp2 to tp2
sftp. quit
bsdclient#

The SSH debug sequence for Linux is almost identical to the one for

FreeBSD, and also uses OpenSSH. Although not used here, OpenSSH for

Windows exists and is called PuTTY.

What does SSH look like “on the wire”? Figure 30.7 shows what Wireshark

sees at the start of SSH-TRANS, including a look at an encrypted packet.

FIGURE 30.7

SSH capture with Ethereal, showing how the packet content is encrypted and therefore

not parsed by the utility.

783SSH in Action

QUESTIONS FOR READERS

Figure 30.8 shows some of the concepts discussed in this chapter and can be used

to answer the following questions.

1. Which devices are communicating here? Is this message from the server to

the client or in the opposite direction?

2. Which ports are used on the devices? Is one the usual SSH server port?

3. Which version of SSL is used? What type of message is parsed in the figure?

4. Which two server host key algorithms are supported?

5. How many compression algorithms are supported?

FIGURE 30.8

SSH capture with Ethereal.

784 CHAPTER 30 Secure Shell (Remote Access)

CHAPTER

31Network Address
Translation

WHAT YOU WILL LEARN

In this chapter, you will learn how NAT, originally used to address the shortage of
IPv4 addresses, is now used to conceal public IPv4 addresses. We’ll talk about the
advantages and disadvantages of using NAT for this purpose.

You will learn that there are four types of NAT and find that using NAT for security
is not the best use of NAT. We’ll also configure NAT and PAT (NAPT) and see how and
where the IPv4 addresses on the Illustrated Network are translated.

A bewildering array of new NAT methods, stateful and stateless, for IPv6 to

IPv4, for carrier grade NAT to home use, have emerged recently. However, only

the basics of NAT are discussed here.

This chapter deals with a common TCP/IP practice, network address transla-

tion (NAT). NAT is used either extend the limited IPv4 address space or to con-

ceal the true IPv4 addresses of a device by using substitute IPv4 addresses in

packet headers. NAT is usually performed by customer-edge (site) routers or

hubs, and is more sophisticated today than the older methods of simply using pri-

vate RFC 1918 addresses whenever one liked.

Although often presented as a security feature, NAT (properly called “IP NAT”

because there are many types of network addresses that can be translated) was

invented in RFC 1631 to address the shortage of IPv4 addresses while the world

waited for IPv6. NAT is still not an official Internet standard, but it is a very com-

mon practice and a feature of many routers, hubs, and remote access devices.

When NAT was introduced, it was immediately embraced to address the

simple fact that IPv4 addresses were limited. Any organization that had only a

Class C address (back then) would be attracted to a way to allow more than 250 or

so devices to access the Internet at the same time.

In this chapter, we’ll be using the equipment shown in Figure 31.1. We’ll

configure the CE0 at the edge of the network router to do NAT for the clients on

LAN1 (bsdclient and wincli1). Before we configure NAT, we’ll have to

explore a few of the types of NAT we could use and then configure one of these

types for LAN1.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00031-X

© 2017 Elsevier Inc. All rights reserved.
785

http://dx.doi.org/10.1016/B978-0-12-811027-0.00031-X

CE0
 lo0: 192.169.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80::205:85ff:fe88:ccdb

P9
lo0: 192.169.9.1

PE5
lo0: 192.169.5.1

P4
 lo0: 192.169.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

TBD

Note: All links use 10.0.x.y
addressing...only the last two
octets are shown.

Ethernet LAN Switch with Twisted Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe90::20e:
cff:fe3b:9f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe90::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:99:3c
(Intel_3b:99:3c)
IPv6: fe90::20e:
cff:fe3b:993c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:97:36
(Intel_3b:97:36)
IPv6: fe90::20e:
cff:fe3b:9736

winsvr1

LAN1

Los Angeles
Office

Wireless
in Home

Best-Ace
ISP

AS 65527

Solid rules�SONET/SDH
Dashed rules�Gig Ethernet

FIGURE 31.1

NAT on the Illustrated Network showing NAT configured on CE0 for the use of two hosts on

LAN1.

786 CHAPTER 31 Network Address Translation

CE6
lo0: 192.169.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80::205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC:00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.169.7.1

PE1
 lo0: 192.169.1.1

P2
lo0: 192.169.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-
0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

g3-0/0/3

16.2

g3-0/0/3

16.1

Global Public
Internet

787Network Address Translation

USING NAT
With NAT, a network could support 500 or so hosts with private addresses, and

the NAT router could translate these to the public IP address range when the cli-

ent needed Internet access. After all, the remote server replied blindly to the

source IP address, which only needed to be routable and not private. NAT devices

could even allow ports to be part of the process (and know that a server’s reply to

10.10.11.177:30567 is different from a reply to 10.10.11.177:31420), even

though the IP addresses were the same.

Many DSL access and gateway devices (“DSL routers”) still use this “trick”

to allow multiple home computers to share a single IP address from the ISP.

Some ISPs are careful to point out that this arrangement is not supported, which

always boils down to two things: They won’t tell you how to configure it and you

can’t report a problem on it if you do configure it and it doesn’t work. Modern

NAT devices know which addresses belong to servers (and should be translated

consistently so that clients can find them, or not be translated at all) and which

are clients (and can be changed with abandon).

NAT AND IPv6
Why does this chapter only talk about NAT and IPv4? What happened to IPv6? What happened is

that RFC 4864 released in May 2007 contained more than 30 pages in which it was patiently

explained that NAT is not a security feature (as pointed out in this chapter) and should be thought

of solely as a way to extend the availability of IPv4 address space. Once the huge address space

in IPv6 is available, there is no need for NAT.

RFC 4864 points out that everything NAT does can be done in IPv6 without any additional

protocols. These native IPv6 features include the use of privacy addresses (RFC 4941), unique

local addresses (ULAs, as described in RFC 4193), the use of DHCPv6, and so on. In other

words, they are things that we have already talked about which can enable internal addressing

masking from the global network. For these reasons, as well as the limitations of space, we will

not deal with IPv6 in this chapter.

ADVANTAGES AND DISADVANTAGES OF NAT

Today, NAT still offers advantages, but these often have to be balanced against

some disadvantages, especially when coupled with current security practices. The

advantages to using NAT follow:

Address sharing—A small number of IP addresses can support a larger pool

of devices.

Ease of expansion—If the number of hosts grows beyond the public IPv4

space assigned, it’s easy to add hosts.

Local control—Administrators essentially run their own private piece of the

public Internet.

Easy ISP changeover—When host addresses are private, public ISP addresses

can be changed more easily.

788 CHAPTER 31 Network Address Translation

Mainly transparent—Usually, only a handful of devices have to know the

NAT rules for a site.

Security—Oversold, but still seen as an advantage. Hackers don’t know the

“real” client’s IP address, true, but the true targets are often servers and the

NAT “firewalls” themselves.

These NAT pluses have to be balanced against the current list of disadvantages.

Complexity—NAT adds management complexity and makes even routine

troubleshooting more difficult.

Public address sensitivity—Private addresses are favored by hackers. Some

applications and devices raise flags when presented with private addresses.

(One FTP application used for this book insisted on needing to know the

“real” public network IP address of the host before it would work properly!)

Application compatibility issues—NAT is not totally transparent. Applications

such as FTP, which embed IP addresses and port numbers in data (such as the

PASV and PORT messages), must be handled with special care by NAT routers.

Poor host accessibility—NAT makes it difficult to contact local devices from

the outside world. NAT is not a good solution for Web sites, FTP servers, or

even peer protocols (VoIP) running on a local LAN.

Performance concerns—The burden of hundreds of simultaneous Internet

access users today often degrades NAT router performance for its main task:

routing packets.

Security—Both a plus and a minus. Modern protocols such as IPSec raise

alarms when packet fields are changed between end systems. You can still

combine NAT and IPsec (carefully), but keeping NAT as a “security feature”

in addition to IPSec can be tricky.

FOUR TYPES OF NAT

NAT is still a popular thing to do on a network. There are even the following

four slightly different versions of NAT that are supported in many routers, and

most are known by a number of unofficial names.

• Unidirectional NAT (outbound or “traditional” NAT)

• Bidirectional NAT (inbound or “two-way” NAT)

• Port-based (“overloaded” NAT, or NAPT or PAT)

• Overlapping NAT (“twice NAT”)

All of these methods are a little different, but all involve use of the same

terms to describe the addresses that are translated. An address can be inside or

outside, based on whether it is used on the local LAN (inside) or on the Internet

(outside). Addresses can also be local or global, based on whether they are drawn

from the private RFC 1918 address ranges (local) or publicly registered or

obtained from an ISP (global).

NAT therefore encompasses about four address “types,” which are listed in

Table 31.1. In the table, the Martian address ranges 169.254.0.0/16 (used for

789Using NAT

IPv4 autoconfiguration) and 250.0.0./8 (experimental) are used as “public”

addresses to preserve the Illustrated Network’s policy of never using public IP

addresses as examples.

In addition, the translational mappings that NAT performs can be static or

dynamic. Static translations establish a fixed relationship between inside and out-

side addresses, whereas dynamic mappings allow this relationship to change

between one translation and another. These can be mixed, using static mapping

for servers (for example) and dynamic for clients, much like DHCP. DNS can be

used for NAT purposes as well. Let’s look at how each NAT variation uses these

address translation terms and procedures.

Unidirectional NAT
Let’s examine an example for outbound or traditional NAT that will repeat

addresses from one NAT type to the other as we show how they differ. Assume

that the LAN has 250 hosts that use private (inside local) addresses in the

10.100.100.0/24 range. These hosts use dynamic NAT to share a pool of 20

inside global addresses in the range 169.254.99.1 through 169.254.99.20.
Suppose client host 10.100.100.27 accesses the Web server at public address

250.99.111.4 using unidirectional NAT. What will the router do to the packet

addresses and what will the addresses look like at each step along the way—

inside to NAT, NAT to outside, outside to NAT, and NAT to inside? Figure 31.2

shows the four steps.

The client’s packet to the server at 250.99.111.4 has its source address chan-

ged from 10.100.100.27 (inside private) to 169.254.99.1 (outside global, which

must be a routable address). The server replies by swapping source and destina-

tion address, and the reply (matching up in the NAT device to the request) is

translated back to 10.100.100.27. No one outside the organization knows which

host “really” has address 10.100.100.27, although dynamic NAT is better at this

concealment than a static NAT mapping.

It might seem that dynamic mapping would always be the proper NAT choice.

However, a complication arises when there are two site routers (as is often the

case). If the request is sent by one NAT router and the reply received by another

NAT router, the translation tables must be the same or chaos will result. Unless

the routers constantly communicate NAT information (how?), this makes it diffi-

cult to use dynamic mapping.

Table 31.1 Address Types Used in NAT with Chapter’s Example Values

Type of
Address Example Common Use

Inside local 10.100.100.27 Client’s “native” address used as source in outbound
packets and destination inbound

Outside local 172.16.100.13 Destination address used by client
Inside global 169.254.99.1 Client’s public address, range assigned by ISP
Outside global 250.99.111.4 Source and destination address used on Internet

790 CHAPTER 31 Network Address Translation

NAT also handles adjustments other than address translation. The IP check-

sum must be changed, as well as UPD/TCP checksums. FTP embeds address and

port information in data, and these should be changed as well. Finally, ICMP

messages include initial header bytes, and even these should be changed when an

ICMP message is the reply to a request.

Traditional NAT only handles this type of outbound translation. It cannot han-

dle requests from a device on the public Internet to access a server on the private

network (LAN).

Bidirectional NAT
Let’s use the same basic scenario that we employed in the unidirectional NAT

example, but upgrade the NAT router to use inbound or two-way NAT. The

major difference is that bidirectional NAT allows requests to be initiated from the

global public Internet to hosts on the private inside LAN.

This type of NAT is more difficult to implement because, whereas inside users

generally know the public addresses of Internet devices, outside devices have no

idea what private addresses represent the device on the LAN. And even if they

did know them, private RFC 1918 addresses are not routable, so there would be

no way to get a packet there anyway. (Home DSL routers, which normally all use

NAT by default, have led to an explosion of 10.0.0.0/8 and 192.168.0.0/16
devices around the world—yet another reason some ISPs don’t like to support

home servers unless covered by the service offering.)

Static NAT mapping, one for one from local device to public address, is one

way to handle the “outside request” issue. Of course, this defeats the more-than-

public-address-space support that NAT offers, and makes any security claims

hollow. (Packets are blindly forwarded to the target anyway.)

“Inside” LAN “Outside” Internet

Host HostNAT
Device

Request

Dest: 250.99.111.4

Source: 10.100.100.27

Reply

Dest: 10.100.100.27

Source: 250.99.111.4

Reply

Dest: 169.254.99.1

Source: 250.99.111.4

10.100.100.27

Request

Dest: 250.99.111.4

Source: 169.254.99.1

4. NAT on destination 3. Server sends reply

1. Client sends request 2. NAT on source address

250.99.111.4

FIGURE 31.2

Unidirectional NAT. Note that only the LAN source address is translated, and in one direction.

791Using NAT

The other solution is to use DNS. As long as the outside request is by name and

not IP address, DNS can provide the current private global address of the host

(it must be global because it must be routable). In other words, DNS and NAT can

work together (as described in RFC 2694), which adds extensions for NAT to DNS

(called an application level gateway, or DNS_ALG in the RFC). This solution uses

dynamic NAT and is a four-step process. The outside client sends a request to DNS

to get the IP address that goes, for instance, with www.natusedhere.com.
The authoritative DNS server for the natusedhere.com domain resolves the

name into an inside local (private) address for the host, perhaps 10.100.100.27,
as before. The inside local address is now sent to the local NAT device to create

a dynamic mapping between this private address and an inside global (public and

routable) address. This mapping is used in the NAT translation table. For this

example, we’ll use 169.254.99.1, as before.
The DNS server replies not with the private (nonroutable) address, but with

the mapped address in the NAT reply (in this case, 169.254.99.1), as established
in the previous step. Once this DNS/NAT procedure is complete, the transaction

in bidirectional NAT continues (as shown in Figure 31.3).

Naturally, requests from local LAN devices are still handled as in unidirec-

tional NAT.

Port-Based NAT
In both unidirectional and bidirectional NAT, the address translation is always

one to one. Even when dynamic mapping is used, the entire inside address is

always swapped out for an outside address. But we set up our examples by saying

that 250 LAN hosts are going to share only 20 public IP addresses.

“Inside” LAN “Outside” Internet

Host Host
NAT

Device

Request

Dest: 10.100.100.27

Source: 250.99.111.4

Reply

Dest: 250.99.111.4

Source: 10.100.100.27

Reply

Dest: 250.99.111.4

Source: 169.254.99.1

10.100.100.27

Request

Dest: 169.254.99.1

Source: 250.99.111.4

3. Server sends reply 4. NAT on source

2. NAT on destination 1. Client sends request

250.99.111.4

FIGURE 31.3

Bidirectional NAT, showing the direction in reverse from the previous figure. Note the

reversal of number sequence and initiating client location.

792 CHAPTER 31 Network Address Translation

Unidirectional and bidirectional NAT handles 20 or fewer simultaneous

Internet users on the LAN. But what happens when more than 20 hosts are trying

to access the Internet all at the same time?

That’s where port-based NAT, also called overloaded NAT, comes in. Some

devices even advertise this as network/port address translation (NAPT) or port

address translation (PAT), but we’ll just call it port-based NAT.

We are now essentially translating sockets from inside to outside. With port-

based NAT, we can easily have all 250 devices with outstanding requests on the

Internet all at the same time and never come close to running out of port numbers

(which run from 0 to 65,535).

Let’s say that one host on the LAN is already using private address

10.100.100.27 and source port 17000 (perhaps the browser always uses that

source port number) to contact a Web site. No problem. Port-based NAT just

translates both IP address and port, as shown in Figure 31.4.

Port-based NAT is usually how DSL routers share a single ISP address among

four or more home PCs. Most NAT implementations today are capable of port-

based operation. However, this does not mean it’s always done when available.

Not all applications or their packets use UDP or TCP ports, and port-based NAT

cannot be done on these packets.

Overlapping NAT
This last type of NAT, also called “Twice NAT,” is quite different from the three

other types. All three previous types used private nonroutable IP addresses as a

“substitute” for global routable IP addresses. NAT routers immediately assume

that any packets drawn from the local LAN’s private IP address space are a refer-

ence to a host within the local LAN. Anything else belongs to the outside world.

“Inside” LAN “Outside” Internet

Host Host
NAT

Device

Request

Dest: 250.99.111.4: 80

Source: 10.100.100.27:17000

Reply

Dest: 10.100.100.27: 17000

Source: 250.99.111.4: 80

Reply

Dest: 169.254.99.1: 18395

Source: 250.99.111.4: 80

10.100.100.27

Request

Dest: 250.99.111.4: 80

Source: 169.254.99.1: 18395

4. NAT on dest addr and port 3. Server sends reply

1. Client sends request 2. NAT on source addr and port

250.99.111.4

FIGURE 31.4

Port-based NAT, showing translation on both address and port.

793Using NAT

But what if the inside addresses overlap entirely or in part with addresses

used in the outside world? In other words, what if there is another

10.100.100.0/24 address range on the “outside” that the local device using that

private address space must communicate with? There are three major cases

where inside addresses on a LAN might be duplicated in the outside world.

Private network to private network—NAT routers tend to use the same private

address ranges, such as 10.0.0.0/8 or 192.168.0.0/16. So, this situation
arises in DSL router configurations (such as neighbor to neighbor) all the

time. And organizations often merge and find two sites now using the same

private IP address ranges.

Reassigned addresses—Many customers get their IP address space from their

ISP. But what if they change ISPs? The ISP is certainly free to offer that

space to someone else. Instead of flash-cutting every IP address on the

network, NAT can be used for the new ISP until cut-over is complete. And

even if customers pay for their own address spaces, these can be reassigned if

the payment is not up to date.

Private IP networks going “public”—This does not occur as often, but it was

once common to have huge IP networks within an organization with no

Internet access at all. (Networks are for work, the Internet is for play, or so

the philosophy went.) So who cared what IP addresses were used on the

private network? But if a space such as 9.0.0.0/8 is used (which belonged to

IBM) something must be done when Internet connections become essential.

Thus, when a host on the local LAN sends a packet from 10.100.100.27
going to 10.100.100.10, how does it know whether the address is truly local or

not? Local frames have local MAC addresses, but “outside” packets are sent in

MAC frames that are sent to the router.

Someone has to know where the other address is or there will be no solution.

As before, DNS will coordinate with NAT to supply the answer. Overlapping

NAT translates both source and destination address.

Let’s consider a new example. Our local host is on a LAN that uses the public IP

address space 9.0.0.0/8 as a private address. Local host 9.0.0.27 needs to send to a

server that turns out to be at IBM and is also 9.0.0.2. The following is what happens.
Local client 9.0.0.27 sends a DNS request to get the address of the Web server

at www.twicenatusedhere.com. The NAT router (which must support overlapping

NAT, of course) on the local network intercepts the DNS request and uses a table to

construct a special mapping for this query. Let’s assume that it will translate

www.twicenatusedhere.com into address 172.16.32.47 (another private IP address

space). The NAT router knows the real public address of the IBM server, of course.

The NAT router returns this private address to the client, which uses it as the

destination address. The NAT router now knows that packets sent to this IP

address are for the Web server outside the LAN.

The NAT operation now functions as shown in Figure 31.5. Note the use of the

169.254.99.1 address, which is within the public IP address space of the local LAN.

794 CHAPTER 31 Network Address Translation

http://www.twicenatusedhere.com

The NAT is still useful for port-based operations where overloading makes

sense (as with home LANs and DSL) and overlapping IP address spaces.

However, NAT should never be used as a security method, if only because it

gives a false sense of security to users and network administrators.

NAT IN ACTION
What type of NAT should we configure for the Illustrated Network? This could

get tricky because we’ve been using private IP addresses as public addresses all

along. To make it clear what we’re doing, we’ll limit our NAT activities to

LAN1 and use part of the 172.16.0.0/16 private address space as a public

address space for our NAT pool (which we’ve not used much so far). Because

some applications are more sensitive to substituted addresses than others (such as

FTP), we’ll limit our NAT implementation to clients. Because the servers are

affected, we’ll use dynamic source NAT. Finally, we’ll configure the popular

port-based NAT (NAPT).

First, we have to configure a pool of addresses called NAPT-address-pool to

use for NAT on CE0. We’ll map our 10.10.11.0/24 address space to the range

from 172.16.11.0 to 172.16.11.255. We’ll set port selection to automatic so

that we don’t have to worry about the port range used. We also have to create the

“rule” that subjects’ packets arriving on the LAN1 interface to NAT.

“Inside” LAN “Outside” Internet

Host Host
NAT

Device

Request

Dest: 172.16.32.47

Source: 9.0.0.27

Reply

Dest: 9.0.0.27

Source: 172.16.32.47

Reply

Dest: 169.254.99.1

Source: 9.0.0.2

9.0.0.27

Request

Dest: 9.0.0.2

Source: 169.254.99.1

4. NAT on destination 3. Server sends reply

1. Client sends request 2. NAT on source and dest

9.0.0.2

FIGURE 31.5

Overlapping NAT showing how a large corporation can use this form with public and

private addresses.

795NAT in Action

The AS PIC is smart enough to match up returning traffic. (We apply the rule

in both the input and output direction for LAN1.) In others words, NAT is applied

in both directions for NAPT.

set services nat pool NAPT-address-pool address-range low 172.16.11.0
high 172.16.11.255; # establish to address range to use

set services nat pool NAPT-address-pool port automatic;
port translaton will be done automatically

set services nat rule SOURCE-NAT match-direction input-output;
NATP will be applied to all packets in either direction

set services nat rule SOURCE-NAT term NO-NAT-FOR-SERVERS from
source-address 10.10.11.66; # lnxserver should not be translated

set services nat rule SOURCE-NAT term NO-NAT-FOR-SERVERS from
source-address 10.10.11.111; # winsrvr1 should not be translated

set services nat rule SOURCE-NAT term NO-NAT-FOR-SERVERS then
no-translation; # this is a keyword for this action

set services nat rule SOURCE-NAT term SOURCE-NAT then translated
translation-type source dynamic; # if not a server, translate

set services nat rule SOURCE-NAT term SOURCE-NAT then translated
source-pool NATP-address-pool; # use automatic port assignments

The absence of a from clause in the term SOURCE-NAT means that the then

clause actions are applied to all packets that do not match the term NO-NAT-
FOR-SERVERS, which is what we want to do. On the older Juniper Networks

router model used on our network, NAT (and several other specialized services)

is performed by a special internal interface card called an Adaptive Service

Physical Interface Card (AS PIC). (For current NAT configurations on Juniper

Networks devices, see www.juniper.net documentation.) This architecture allows

the router to forward packets as fast as it can and off-loads any special packet

processing to this service’s interface.

Once configured, packets arriving on the LAN1 interface that are subject to

NAT are not forwarded right away but sent to the AS PIC interface, which has an

internal IP address. Once NAT has been performed, the packets are sent back into

the main part of the router for normal table lookups and forwarding.

To get the packet to the AS PIC interface (sp-0/2/0 on CE0), we give the

internal interface an IP address (just as any other interface). Then we apply the

configured NAT “service set” (which we’ll call SOURCE�NAPT) to the LAN inter-

face we want to apply NAT source address translation to. Another static “next-

hop” routing rule gets the translated packets back to the forwarding portion of

the router. (We also have to advertise a static route for the NAT address space

so that the other routers know where to send packets sent back to the

172.16.11.0/24 address space, but the complete CE0 router configuration for

NAT is not shown.) The interface to LAN1 and the AS PIC interface are config-

ured as follows.

796 CHAPTER 31 Network Address Translation

http://www.juniper.net

set interface fe-1/3/0 unit 0 family inet service input service-set
SOURCE-NAPT;

configuration of the SOURCE-NAPT service set is not shown
set interface fe-1/3/0 unit 0 family inet service output service-set

SOURCE-NAPT;
set interface fe-1/3/0 unit 0 family inet address 10.10.11.1/24;

this is a regular LAN1 interface address
set interface sp-0/2/0 unit 0 family inet address 172.16.1.1/24;

the sp- interface needs and IP address too

We’ll say a little more about the “next-hop” configuration and service sets in

Chapter 32 (on stateful firewalls). How do we know that the NAT translation is

working? Let’s use our little echo test program from the UDP chapter to send packets

from bsdclient on LAN1 at IP address 10.10.11.177 to lnxclient on LAN2 at IP

address 10.10.12.166. We’ll capture the packets on lnxclient with tethereal.

As expected, the source address has been translated to one in the 172.16.11.0/24
range.

[root@lnxclient admin]# /usr/sbin/tethereal -V
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)

Arrival Time: Feb 6, 2008 11:16:03.822845000
Time delta from previous packet: 0.000000000 seconds
Time relative to first packet: 0.000000000 seconds
Frame Number: 1
Packet Length: 60 bytes
Capture Length: 60 bytes

Ethernet II, Src: 00:0e:0c:3b:8 f:94, Dst: 00:b0:d0:45:34:64
Destination: 00:b0:d0:45:34:64 (Intel_45:34:64)
Source: 00:0e:0c:3b:8 f:94 (Intel_3b:8 f:94)
Type: IP (0x0800)
Trailer: 0000000000000000000000000000

Internet Protocol, Src Addr: 172.16.11.177 (172.16.11.177), Dst Addr:
10.10.12.166 (10.10.12.166)
Version: 4
Header length: 20 bytes

...

However, LAN1 traffic from the servers is not translated. This time, we’ll run

the echo test program from lnxserver on LAN1 at IP address 10.10.11.66 to

lnxclient on LAN2 at IP address 10.10.12.166. We’ll capture the packets on

lnxclient with tethereal. As expected, the source address has not been translated

to one in the 172.16.11.0/24 range.

[root@lnxclient admin]# /usr/sbin/tethereal -V
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)

797NAT in Action

Arrival Time: Feb 6, 2008 14:37:24.487934000
Time delta from previous packet: 0.000000000 seconds
Time relative to first packet: 0.000000000 seconds
Frame Number: 1
Packet Length: 60 bytes
Capture Length: 60 bytes

Ethernet II, Src: 00:d0:b7:1 f:fe:e6, Dst: 00:b0:d0:45:34:64
Destination: 00:b0:d0:45:34:64 (Intel_45:34:64)
Source: 00:05:85:88:cc:db (Intel_1 f:fe:e6)
Type: IP (0x0800)
Trailer: 0000000000000000000000000000

Internet Protocol, Src Addr: 10.10.11.66 (10.10.11.66), Dst Addr:
10.10.12.166 (10.10.12.166)
Version: 4
Header length: 20 bytes

...

QUESTIONS FOR READERS
The captured listing here shows some of the concepts discussed in this chapter

and can be used to answer the following questions.

[root@lnxclient admin]# /usr/sbin/tethereal -V port 7
Capturing on eth0
Frame 1 (60 bytes on wire, 60 bytes captured)

Arrival Time: Feb 6, 2008 16:43:22.458233000
Time delta from previous packet: 0.000000000 seconds
Time relative to first packet: 0.000000000 seconds
Frame Number: 1
Packet Length: 60 bytes
Capture Length: 60 bytes

Ethernet II, Src: 00:d0:b7:1 f:fe:e6, Dst: 00:b0:d0:45:34:64
Destination: 00:b0:d0:45:34:64 (Intel_45:34:64)
Source: 00:05:85:88:cc:db (Intel_1 f:fe:e6)
Type: IP (0x0800)
Trailer: 0000000000000000000000000000

Internet Protocol, Src Addr: 176.16.11.78 (176.16.11.78), Dst Addr:
10.10.12.166 (10.10.12.166)
Version: 4
Header length: 20 bytes

...

1. Which host has this capture been run on?

2. Which host is responding to the echo?

3. What is the translated address used on the LAN1 host that responded to the echo?

4. What is the host name of the device on LAN1 that responded to the echo?

5. The port numbers are not displayed in the listing. Based on the NAT

configuration on CE0, should the port number be translated as well?

798 CHAPTER 31 Network Address Translation

CHAPTER

32Firewalls

WHAT YOU WILL LEARN

In this chapter, you will learn how firewalls add security to TCP/IP networks. We’ll be
working with both kinds of router-based firewalls: packet filters and stateful inspection.

You will learn about the types of dedicated firewalls that run on purpose-built
hardware. We’ll also examine firewall architectures and the use of DMZs. And
because filtering works exactly the same with IPv6 as with IPv4, we will not have a
special section on IPv6 firewalls.

If all data traveled the Internet encrypted inside VPNs, and all hosts only sent or

received such data, the Internet would be a safer place. But the reality is messy—

very messy—and denial of service attacks, hacker raids, spyware, spam, viruses,

and worms make life interesting for everyone on-line.

Periodically, teams assemble in Las Vegas, Nevada, for the annual Defcon

“contest.” The name derives from Cold War “defense condition” levels and implies

that hackers could have broken into military computers and started WW III, a plot

device in several movies and books. Teams pay a small entry fee and compete in

local and regional contests, all culminating in the finale in Las Vegas. The idea is to

capture the secure “flags” or tokens on target systems set up for Defcon. All compe-

titors’ tokens are fair game, but, of course, you have to protect your own. (Taking

over a competing team’s network or Web server is considered a great coup.) Points

are awarded for various successful exploits, and the winner is admired by all.

A certain percentage of people learning about networks and TCP/IP seem to

indulge in some form of hacking at one time or another. It seems to be a rite of

passage, like clubbing and drug experimentation. But most slackers eventually

settle down and get real jobs, whereas a few others continue their dissolute ways.

Some even make a career of their activities, as “white” or “black” hackers, and

show up at places like Defcon. Hackers should never be judged solely on their

appearance or demeanor, but only on their actions, which usually have conse-

quences for everyone—intended or not.

This chapter takes a look at firewalls, one technique for adding security to

TCP/IP and the Internet. Firewalls can be hardware or software designed to pro-

tect individual hosts, clients, and servers or entire LANs from the one or more of

the threats previously cited. It should be noted that Juniper Networks has a whole

product line of security devices, the SRX. For current configuration requirements,

see the documentation at www.juniper.net. We’ll implement a couple of types of

firewalls on our site routers, as shown in Figure 32.1.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00032-1

© 2017 Elsevier Inc. All rights reserved.
799

http://www.juniper.net
http://dx.doi.org/10.1016/B978-0-12-811027-0.00032-1

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-
0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Best

Wireless
in Home

Firewall Filtering

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 32.1

Firewalls on the Illustrated Network, showing how the firewall filtering is performed on the

site routers.

800 CHAPTER 32 Firewalls

-Ace ISP

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Performed on Routers

AS 65527

Global Public
Internet

801Firewalls

WHAT FIREWALLS DO
Although the Illustrated Network has no dedicated firewall device (often called a

firewall appliance), there are fairly sophisticated firewall capabilities built into

our routers. So, we will configure firewall protection with two types of router-

based fire-wall rules: packet filters and stateful inspection.

A ROUTER PACKET FILTER

Let’s do something fairly simple yet effective with a firewall packet filter on the

Juniper Networks router on LAN2, CE6. Assume that malicious users on LAN1

are trying to harm bsdserver (10.10.12.77) on LAN2. We’ll have to “protect” it

from some of the hosts on LAN1.

We’ll allow remote access with Telnet (this is just an example) or SSH from

the bsdclient (10.10.11.177), and allow similar access attempts from wincli1
(10.10.11.51), but log them. (What do those Windows guys want on the Free-

BSD server?) We’ll deny and log access from lnxserver (10.10.11.66) and

winsrv1 (10.10.11.111) because security policy for the organization has decided

that users attempting remote access from servers are not allowed to do so.

The following is the firewall filter configured on CE6 and applied to the

LAN2 interface. This filters IPv4 addresses, but we could easily make another to

do the same thing for these hosts’ IPv6 addresses. It is a good idea to keep in

mind that from is more in the sense of “out of all packets,” especially when the

filter is applied on the output side of an interface. We also have to apply the filter

to the fe-1/3/0 interface, but this configuration snippet is not shown. There is a

space between the three major terms of the remote-access-control filter:

allow-bsdclient, log-wincli, and deny-servers. These names are strictly up to

the person configuring the firewall filter.

set firewall family inet filter remote-access-control term
allow-bsdclient from address 10.10.11.177/32; # bsdclient

set firewall family inet filter remote-access-control term
allow-bsdclient from protocol tcp; # telnet and ssh use tcp

set firewall family inet filter remote-access-control term
allow-bsdclient from port [ssh telnet]; # we could use numbers too

set firewall family inet filter remote-access-control term
allow-bsdclient then accept; # allow bsdclient access

set firewall family inet filter remote-access-control term

log-wincli1 from address 10.10.11.51/32; # wincli1
set firewall family inet filter remote-access-control term

log-wincli1 from protocol tcp; # telnet and ssh use tcp
set firewall family inet filter remote-access-control term

log-wincli1 from port [ssh telnet]; # we could use numbers too
set firewall family inet filter remote-access-control term

log-wincli1 then log; # log wincli1 access attempts...

802 CHAPTER 32 Firewalls

set firewall family inet filter remote-access-control term
log-wincli then accept; # ...and allow wincli1 access

set firewall family inet filter remote-access-control term
deny-servers from address 10.10.11.66/32; # lnxserver

set firewall family inet filter remote-access-control term
deny-servers from address 10.10.11.111/32; # winsrv1

set firewall family inet filter remote-access-control term
deny-servers from protocol tcp; # telnet and ssh use tcp

set firewall family inet filter remote-access-control term
deny-servers from port [ssh telnet]; # we could use numbers too

set firewall family inet filter remote-access-control term
deny-servers then log; # log server access attempts...

set firewall family inet filter remote-access-control term
deny-servers then discard; # ...and silently discard those packets

When we try to remotely log in from bsdclient or wincli1, we succeed (and

wincli1 is logged). But when we attempt access from the servers, the following

is what happens.

lnxserver# ssh 10.10.12.77

Nothing! We set the action to discard, which silently throws the packet away.

A reject action at least sends an ICMP destination unreachable message back to

the host. When we examine the firewall log on CE6, this is what we see. Action

“A” is accept, and “D” is discard. We didn’t log bsdclient, but caught the others.

(The filter name is blank because not all filter names that are configured are

available for the log.)

admin@CE6. show firewall log

Time Filter A Interface Pro Source address Destination Address
08:36:09 - A fe-1/3/0.0 TCP 10.10.11.51 10.10.12.77
08:37:24 - D fe-1/3/0.0 TCP 10.10.11.66 10.10.12.77

STATEFUL INSPECTION ON A ROUTER

Simple packet filters do not maintain a history of the streams of packets, nor do

they know anything about the relationship between sequential packets. They can-

not detect flows or more sophisticated attacks that rely on a sequence of packets

with specific bits set. This degree of intelligence requires a different type of fire-

wall, one that performs stateful inspection. (There are three types of firewall, as

we’ll see later.)

In contrast to a stateless firewall filter that inspects packets singly and in isola-

tion, stateful filters consider state information from past communications and

applications to make dynamic decisions about new communications attempts. To

do this, stateful firewall filters look at flows or conversations established

803What Firewalls Do

(normally) by five properties of TCP/IP headers: source and destination address,

source and destination port, and protocol. TCP and UDP conversations consist of

two flows: initiation and responder. However, some conversations (such as with

FTP) might consist of two control flows and many data flows.

On the older Juniper Networks router models were are using, stateful inspec-

tion is provided by a special hardware component: the Adaptive Services Physical

Interface Card (AS PIC). We’ve already used the AS PIC to implement NAT in

the previous chapter. This just adds some configuration statements to the services

(such as NAT) provided by the special internal sp- (services PIC) interface. See

www.juniper.net for current product capabilities.

Stateful firewalls do not just check a few TCP/IP header fields as packets fly

by on the router. Stateful firewalls are intelligent enough that they can recognize

a series of events as anomalies in five major categories.

1. IP packet anomalies

• Incorrect IP version

• Too-small or too-large IP header length field

• Bad header checksum

• Short IP total packet-length field

• Incorrect IP options

• Incorrect ICMP packet length

• Zero TTL field

2. IP addressing anomalies

• Broadcast or multicast packet source address

• Source IP address identical to destination address (land attack)

3. IP fragmentation anomalies

• Overlapping fragments

• Missing fragments

• Length errors

• Length smaller or larger than allowed

4. TCP anomalies

• Port 0

• Sequence number 0 and flags field set to 0

• Sequence number 0 with FIN/PSH/RST flags set

• Disallowed flag combinations [FIN with RST, SYN/(URG/FIN/RST)]

• Bad TCP checksum

5. UDP anomalies

• Port 0

• Bad header length

• Bad UDP checksum

In addition, stateful firewall filters detect the following events, which are only

detectable by following a flow of packets.

• SYN followed by SYN-ACK packets without an ACK from initiator

• SYN followed by RST packets

804 CHAPTER 32 Firewalls

http://www.juniper.net

• SYN without SYN-ACK

• Non-SYN first packet in a flow

• ICMP unreachable errors for SYN packets

• ICMP unreachable errors for UDP packets

Stateful firewall filters, like other firewall filters, are also applied to an inter-

face in the outbound or inbound direction (or both). However, the traffic on the

interface must be sent to the AS PIC in order to apply the stateful firewall filter

rules.

The AS PIC’s sp- interface must be given an IP address, just as any other

interface on the router. Traffic then makes its way to the AS PIC by using the AS

PIC’s IP address as a next hop for traffic on the interface. The next hop for traffic

leaving the AS PIC (assuming the packet has not been filtered) is the “normal”

routing table for transit traffic, inet0.
Stateful firewall filters follow the same from and then structure of other fire-

wall filters. Keep in mind that from is more in the sense of “out of all packets,”

especially when the filter is applied on the output side of an interface. When

applied to the LAN1 interface on the CE0 interface, in addition to detecting all of

the anomalies previously listed, this stateful firewall filter will allow only FTP

traffic onto the LAN unless it is from LAN2 and silently discards (rejects) and

logs all packets that do not conform to any of these rules.

set stateful-firewall rule LAN1-rule match direction input-output;
set stateful-firewall rule LAN1-rule term allow-LAN2

from address 10.10.12.0/24; # find the LAN2 IP address space
set stateful-firewall rule LAN1-rule term allow-LAN2

then accept; # ...and allow it

set stateful-firewall rule LAN1-rule term allow-FTP-HTTP
from application ftp; # find ftp flows

set stateful-firewall rule LAN1-rule term allow-FTP-HTTP
then accept; # ...and allow them

set stateful-firewall rule LAN1-rule term deny-other
then syslog; # no ‘from’ matches all packets

set stateful-firewall rule LAN1-rule term deny-other
then discard; # ...and syslogs and discards them

In the term deny-other, the lack of a from means that the term matches all

packets that have not been accepted by previous terms. The syslog statement is

the way that the stateful firewalls log events. We’ve also configured the interface

sp-1/2/0 and applied our stateful rule as stateful-svc-set (but the details are

not shown).

Now when we try to run FTP to (for example) lnxserver from bsdclient or

wincli1, we succeed. But watch what happens when we attempt to run FTP from

one of the routers (the routers all support both FTP client and server software).

admin@CE6. ftp 10.10.11.66

805What Firewalls Do

Nothing! As before, this packet is silently discarded. But the stateful firewall

filter gathers statistics on much more than simply “captured” packets.

admin@CE0. show services stateful-firewall statistics extensive
Interface: sp-1/2/0

Service set: stateful-svc-set
New flows:
Accept: 7, Discard: 1, Reject: 0

Existing flows:
Accept: 35, Discard: 0, Reject: 0

Drops:
IP option: 0, TCP SYN defense: 0
NAT ports exhausted: 0

Errors:
IP: 0, TCP: 0
UDP: 0, ICMP: 0
Non-IP packets: 0, ALG: 0

IP errors:
IP packet length inconsistencies: 0
Minimum IP header length check failures: 0
Reassembled packet exceeds maximum IP length: 0
Illegal source address: 0
Illegal destination address: 0
TTL zero errors: 0, IP protocol number 0 or 255: 0
Land attack: 0, Smurf attack: 0
Non IP packets: 0, IP option: 0
Non-IPv4 packets: 0, Bad checksum: 0
Illegal IP fragment length: 0
IP fragment overlap: 0
IP fragment reassembly timeout: 0

TCP errors:
TCP header length inconsistencies: 0
Source or destination port number is zero: 0
Illegal sequence number, flags combination: 0
SYN attack (multiple SYNs seen for the same flow): 0
First packet not SYN: 0
TCP port scan (Handshake, RST seen from server for SYN): 0
Bad SYN cookie response: 0

UDP errors:
IP data length less than minimum UDP header length (8 bytes): 0
Source or destination port is zero: 0
UDP port scan (ICMP error seen for UDP flow): 0

ICMP errors:
IP data length less than minimum ICMP header length (8 bytes): 0
ICMP error length inconsistencies: 0
Ping duplicate sequence number: 0
Ping mismatched sequence number: 0

806 CHAPTER 32 Firewalls

ALG drops:
BOOTP: 0, DCE-RPC: 0, DCE-RPC portmap: 0
DNS: 0, Exec: 0, FTP: 1
H323: 0, ICMP: 0, IIOP: 0
Login: 0, Netbios: 0, Netshow: 0
Realaudio: 0, RPC: 0, RPC portmap: 0
RTSP: 0, Shell: 0
SNMP: 0, Sqlnet: 0, TFTP: 0
Traceroute: 0

In the last section, ALG drops stands for application-level gateway drops, and

we find the dropped FTP flow we attempted from the CE6 router. This shows the

power and scope of stateful firewall filters.

TYPES OF FIREWALLS
Whether implemented as application software or as a special combination of hard-

ware and software, firewalls are categorized as one of three major types, all of

which have variations. Software firewalls can be loaded onto each host, but this

only protects the individual host. Other software-based firewalls can be loaded onto

a generic platform (Windows or Unix based) and used in conjunction with routers

to protect the entire site. Alternatively, routers can be configured with policies (sim-

ilar to routing policies), but designed to protect the networks attached to the router.

Most effective are very sophisticated packages of specialized hardware and

state-of-the-art software, such as Juniper Networks Security Products. These dedi-

cated devices are often called appliances, and operate much faster and scale

much better than their general-purpose relatives. Software is updated frequently,

as often as every few weeks, to ensure that customers have the latest capabilities

for the effort to secure a site.

The three major types of firewall are the packet filter, application proxy, and

stateful inspection. We’ve seen examples of packet filters and stateful firewalls,

but each type has distinctive properties that should be described in some detail.

PACKET FILTERS

Packet filters are the oldest and most basic form of firewall. Packet filters estab-

lish site security access rules (or policies) that examine the TCP/IP header of

each packet and decide if it should be allowed to pass through the firewall.

Policies can differ for inbound and outbound packets, and usually do. Many of

the fields of the IP, TCP, or UDP header can be examined, but there is no concept

of a session or flow of packets in this type of firewall.

Even basic DSL routers do a good job of implementing packet filters. For

home networks, this might be adequate. But packet filters do not know much

807Types of Firewalls

about the application that the packet represents or look at the value of the TCP

flags. Packet filters cannot dynamically create access rules that allow responses

which are associated with specific requests, for example.

APPLICATION PROXY

An application proxy is one of the most secure firewall types that can be

deployed. The proxy sits between the protected network and the rest of the world.

Every packet sent outbound is intercepted by the proxy, which initiates its own

request and processes the response. If benign, the response is relayed back to the

user. Thus, clients and servers never interact directly and the entire content of the

packet can be inspected byte by byte if necessary. Even tricky applications such

as Java code can be checked in a Java sandbox to assess effects before passing

the applet on to a host.

Yet many organizations do anticipate employing application proxies today, and

many that once did have abandoned them. Why? Well, proxies do not scale well and

must handle twice the number of connections (“inside” and “outside”) as all

simultaneous users on the protected network. The obvious solution to all

network load-related issues—multiple proxies—do not work well because there is

no way to guarantee that a response is handled by the same proxy that handled the

request.

The proxy also has trouble with proprietary or customized TCP/IP

applications, where threats are not obvious or even well defined. But for

limited use, such as protecting a Web site, an application proxy is a very

attractive solution.

STATEFUL INSPECTION

A stateful inspection firewall is the choice for network protection today. Stateful

inspection is really a very sophisticated version of a packet filter. All packets can

be filtered, and almost every field and flag of the header at the IP and TCP layers

can be inspected in a policy.

Moreover, this form of firewall understands the concept of the state of the ses-

sion. So, when a client accesses a Web server, the firewall recognizes the

response and can associate all of the packets sent in reply. This is a dynamic or

reflexive firewall operation, and all reputable firewall products use this approach.

Of course, there are TCP/IP protocols, such as UDP or ICMP (and connection-

less protocols in general), that have no defined “state” associated with them.

Firewall vendors are free to be creative with how they handle these protocols, but

the results have been remarkably consistent.

Many stateful inspection firewalls employ a form of application proxy for

certain applications. For example, if the firewall is set to do URL filtering, an

application proxy function can be coupled with this. This approach is often

808 CHAPTER 32 Firewalls

used with email today because many attachments are malicious either by

accident or on purpose. However, as with any application proxy, this solution is

difficult to scale or generalize (email attachment scanning is typically done

apart from the firewall).

Today, some firewalls can also perform deep inspection of packet flows.

These rules dig deep into the content of the packet, beyond the IP and TCP/UDP

headers, and perform application-level scanning. If a firewall allows access to

port 80 because there is a Web server on site, hackers will quickly find out that

these packets pass right through the firewall. These firewalls not only protect

Web sites, but can find email worms quickly and create regular expression

(regex) rules to keep them from spreading. The general architecture of a stateful

inspection firewall implemented as specialized hardware and software (an

appliance) is shown in Figure 32.2.

An example of this architecture is the firewall product from Juniper Networks

Security Products. It had been developed from the start with performance in

mind, and runs an integrated security application to provide VPN, firewall,

denial-of-service countermeasures, and traffic management.

The operating system is a specialized real-time OS that can preallocate

memory to speed up task execution and help maintain a given rate of service.

And in contrast to packages built on an open-source Unix-based OS no one can

review the source code looking for vulnerabilities. The OS is not distributed as

widely as popular proprietary packages, and can support routing and virtual

device multiplication—along with central management and high availability.

(Larger firewalls pretty much have to support virtual devices, so this is really

Integrated Security Application

Security-Specific Real-time OS

RISC CPU Memory ASICs Interfaces

VPNs Firewall
Denial of Service Protection

Traffic Management

High Availability
Central Management

Purpose-Built Hardware Platform

Routing
Virtual Devices

FIGURE 32.2

Firewall appliance general architecture, showing how special hardware and software is used.

809Types of Firewalls

making a virtue out of a necessity.) The hardware is RISC based, with very fast

memory (SDRAM) and ASICs—all designed to keep up with the interfaces’

traffic flows.

DMZ

The biggest question facing firewall deployment is how to place the device to

best protect publicly accessible servers. Cost and number of firewalls are related

to decisions made in this area.

The answer to this location question usually involves the construction of a net-

work DMZ (“demilitarized zone,” another term like many others in the security

field borrowed from the military). The DMZ is most useful when site protection

is not absolute—that is, when it is not possible to deny all probes into the site

from outside on the Internet (such as when a Web server or FTP server is avail-

able for general use). Without this requirement, the position of the firewall is

almost always simply behind the router (as shown in Figure 32.3).

Even without a DMZ, it is possible to protect servers that require general Internet

access. However, this protection is usually placed on the server itself, which then

becomes a bastion host, which is still an untrusted host from the viewpoint of the

internal network. A bastion host and firewall are shown in Figure 32.4.

It might sound odd that the bastion host, which might be the public Web

server for the organization, needs a firewall to protect the internal network from

the bastion host itself. But this is absolutely essential, and the bastion host should

Internet
(or untrusted

network)
Router

Firewall

Protected
Resources

FIGURE 32.3

A single firewall positioned between router and LAN.

Internet
(or untrusted

network)

Bastion host
(untrusted)

Router

Firewall

Protected
Resources

FIGURE 32.4

A firewall with bastion host between router and firewall (and therefore untrusted).

810 CHAPTER 32 Firewalls

never be considered part of the internal network. Otherwise, if this host were

compromised, the entire internal network would be at risk. For this reason, the

bastion host in this configuration is not a good candidate for an e-commerce Web

site or the endpoint of a VPN.

The DMZ concept has the ability to offer multiple types of protection—all in

a flexible, scalable, and robust package. (DMZs can be designed with failover

capabilities as well.) DMZs can be constructed with one or two firewalls, and two

are better for security purposes.

With one firewall, the bastion host is reached only through the firewall itself,

usually on a separate interface. The firewall can screen outside traffic (a

“screened subnet”), perhaps allowing only access to port 80 for a Web server.

Nothing is allowed in, of course, except in reply to an internal query (and even

that is typically allowed only from specific hosts or on certain ports). This

arrangement is shown in Figure 32.5.

The dual-firewall DMZ is the most sophisticated arrangement. There are both

inner and outer firewalls, and the LAN between them is a true DMZ. Multiple

Internet
(or untrusted

network)
Router

Firewall

Bastion host
(untrusted)
on screened

subnet

Protected
Resources

FIGURE 32.5

Firewall with bastion host and DMZ. Note the bastion host relation to the firewall.

Internet
(or untrusted

network)
Router

Inner and Outer
Firewalls

Bastion host
(untrusted)

on DMZ

Protected
Resources

FIGURE 32.6

Dual firewalls with DMZ, showing how the bastion host is positioned on the DMZ.

811Types of Firewalls

servers, such as an anonymous FTP download server and a public Web server,

can be protected in many ways. These devices can still be bastion hosts, but the

protection on the DMZ servers themselves can be minimal because they all have

the full protection of a firewall in whatever direction the traffic comes from or

goes to. The dual-firewall DMZ is shown in Figure 32.6. The characteristics of

these four basic firewall positions are compared in Table 32.1.

Security is so important for network today that readers are encouraged to

continue with more specialized texts for specialized devices. But any security is

better than none.

QUESTIONS FOR READERS
The filter listing that follows shows some of the concepts discussed in this chapter

and can be used to answer the following questions.

set firewall family inet filter TEST term A from address 10.10.11.0/24;
set firewall family inet filter TEST term A from address 10.10.12.0/24;
set firewall family inet filter TEST term A from protocol [udp tcp];
set firewall family inet filter TEST term A from port [20 21 22];
set firewall family inet filter TEST term A then log;
set firewall family inet filter TEST term A then reject;

1. In the listing, which IP address will be selected out of all packets seen by the

filter?

2. Which transport layer protocols will be selected by the filter?

3. Which applications are selected based on the port numbers given?

4. Will a log be kept of the selected packets?

5. Will the sender receive any notice that the packets have been blocked by a

firewall filter?

Table 32.1 Advantages and Disadvantages of the Basic Firewall Designs

Type Advantages Disadvantages Good for. . .

Single firewall Inexpensive, easy to
configure and maintain

Low security level,
difficult to scale

Home or small
office, no servers

Single firewall
and bastion
host

Lower cost than most
alternatives

Bastion host
vulnerable, difficult to
scale

Small business with
static content

Single firewall
with
screened
subnet

Protects both local
network and bastion
host to some extent

Single point of failure,
uses public addresses
in some cases

Networks that need
protected access to
bastion host

Dual firewall
and DMZ

Best control and very
robust, scales nicely

More hardware and
software, more work

Larger organizations

812 CHAPTER 32 Firewalls

CHAPTER

33IP Security

WHAT YOU WILL LEARN

In this chapter, you will learn how IPSec adds another level of security to a TCP/IP
network by adding IPSec to the MPLS-based VPN that we built in Chapter 20. We’ll
investigate the IPSec architecture and how its features are usually implemented.

You will learn about security associations and how authentication and encapsula-
tion work in IPSec. We’ll briefly mention the Internet key exchange (IKE) as a secure
way to move keys around the network.

IPSec has been called a piece of IPv6 that was pressed into service for IPv4,

mostly out of desperation after businesses began to use the Internet for more than

amusement. The formats for IPv4 and IPv6 IPSec are different, given the differ-

ence in header and address formats, but they are still very similar. Optional in

IPv4, support for IPSec is mandatory in IPv6. IPSec is part of a public key infra-

structure (PKI) architecture based on several things that we’ve talked about

before: public key encryption, secure key exchange for the Internet (IKE), and

several related concepts and protocols.

There are several key concepts in IPSec, as with anything else in TCP/IP.

We’ll talk about IPSec modes first, followed by security associations (SAs) and a

closely related concept, the security parameter index (SPI). Then we’ll focus on

the three main “protocols” that make up IPSec: the authentication header (AH),

the encapsulating security payload (ESP), and the IKE.

IPSec consists of two main “core protocols”—AH and ESP—although it is

often pointed out that they are not really protocols at all because they cannot

function on their own. AH allows a receiver to verify that the claimed originator

of the message actually did send it, and that none of the data has been altered

while in transit. It also prevents captured messages from being used again in the

future (e.g., when a hacker cannot read the password but knows that this packet

will log in the user when sent). This is called a replay attack.

ESP encrypts the payload of the message itself. It might sound odd that

authentication and encryption are separate processes in IPSec, and in practice

both are normally used together. Separating the processes allows them to evolve

independently, however, so advances in encryption do not require changes in

authentication (and vice versa).

We’ll add IPSec to the MPLS-based VPN we created in the VPN chapter,

as shown in Figure 33.1. We’ll still use that same configuration on the routers,

but add to it.

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00033-3

© 2017 Elsevier Inc. All rights reserved.
813

http://dx.doi.org/10.1016/B978-0-12-811027-0.00033-3

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Best-

Wireless
in Home

Solid rules � SONET/SDH
Dashed rules � Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

IPSec Added to
Onsite Routers

FIGURE 33.1

IPSec on the Illustrated Network, showing how IPSec adds security to the site routers

connected by the MPLS-based VPN.

814 CHAPTER 33 IP Security

Ace ISP

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

MPLS-Based VPN
CEO and CE6

AS 65527

Global Public
Internet

815IP Security

IPSEC IN ACTION
As with NAT and stateful firewalls, the implementation of IPSec on the older model

Juniper Networks routers used on the Illustrated Network depends on a special

“internal interface” supported by an adaptive services physical interface card (AS

PIC). All of the routers have these PICs, so we can build IPSec onto the configura-

tion used for the MPLS-based VPN that we built for VPLS in Chapter 20.

Our goal here will be to add an IPSec tunnel using ESP between the CE0 and CE6
routers attached to LAN1 and LAN2, and at the same time preserve the VPLS VPN

between routers PE5 at LAN1 and PE1 at LAN2. The packets flowing between

LAN1 and LAN2 on the links between routers PE5 and PE1 will be encapsulated

and encrypted (with IPSec), and then encapsulated again (for VPLS). Is this

paranoia? Perhaps. But the idea is to raise the hacker work factor on these packets

high enough so that the hackers give up and move on to less protected traffic.

We could configure manual SAs on each router and configure IKE to carry

this information over the network, but such a procedure is overly complex for this

chapter. We have to configure the SAs anyway, so we’ll just (securely)

configure manual SAs on routers CE0 and CE6 to run IPSec with ESP in tunnel

mode between them, thereby dispensing with IKE. The VPLS is still there, but

transparent to IPSec. The network topology appears as shown in Figure 33.2.

IPSec Tunnel

IPSec Internal Ports

MPLS LSP

VPLS Virtual Port

sp-1/2/0 sp-1/2/0

vt-0/3/0:32770 vt-0/3/0:32771

VPLS
ge-0/0/3

VPLS
ge-0/0/3

10.0.59.2/24
so-0/0/0

10.0.17.1/24
so-0/0/2

ge-0/0/3
10.99.99.1/24

so-0/0/0
10.0.59.1/24

so-0/0/2
10.0.17.2/24

ge-0/0/3
10.99.99.2/24

PE5:
192.168.5.1

PE1:
192.168.1.1

LAN1
10.10.11.0/24

LAN2
10.10.12.0/24

CEO PE5 P9/P7 PE1 CE6

FIGURE 33.2

IPSec topology, showing how it relates to the MPLS LSP and VPLS.

816 CHAPTER 33 IP Security

Then we’ll show that the IPSec is up and running. (We could show some gar-

bled Ethereal captures between the routers showing that IPSec encryption is in

use, but these are not very enlightening.) Again, we’ll show the configuration on

each router, with comments.

CE0

This router has normal interface configurations, naturally. But we’ll define a

bidirectional manual SA in a “rule” called rule-manual-SA-BiESP and reference it to
a “service set” associated with the interface. We’ll use ESP, and a value of 261 for

the SPI. We’ll talk more about security algorithms later, but we’ll also use HMAC-

SHA1-96 for authentication, DES-CBC for encryption, a 20-bit ASCII authentication

key for SHA-1, and an 8-bit ASCII key for DES-CBC authentication.

To get traffic onto the PIC and the IPSec tunnel, we have to match the

LAN traffic with our IPSec VPN selector rule. Fortunately, this rule is already

referenced in the service set from the VPN configuration. We’ll also use a

firewall filter to count the packets entering the IPSec tunnel.

set interfaces ge-0/0/3 vlan-tagging;
set interfaces ge-0/0/3 unit 0 vlan-id 600;
set interfaces ge-0/0/3 unit 0 family inet

service input service-set service-set-manual-BiESP;

set interfaces ge-0/0/3 vlan-tagging unit 0 family inet
service output service-set service-set-manual-BiESP;
applies the BiESP service set to input and output traffic

set interfaces ge-0/0/3 unit 0 family inet address 10.99.99.1/24;
set interface sp-1/2/0 unit 0 family inet filter input ipsec-tunnel;

configure the internal IPSec tunnel interface

set firewall filter ipsec-tunnel term 1 then count ipsec-tunnel;
set firewall filter ipsec-tunnel term 1 then accept;

configure a filter to count and process traffic

set services service-set service-set-manual-BiESP interface-service
service-interface sp-1/2/0;
defines the main IPSec tunnel service set applied above

Set services service-set service-set-manual-BiESP ipsec-vpn-options
local-gateway 10.99.99.1; # the local IPSec tunnel addr

set services service-set service-set-manual-BiESP ipsec-vpn-rules
rule-manual-SA-BiESP; # references the IPSec rule defined below

set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
from source address 10.10.11.0/24; # find LAN1 traffic for IPSec

set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
then remote-gateway 10.99.99.2; # far-end IPSec tunnel address

set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
then manual direction bidirectional protocol esp; # use ESP for IPSec

817IPSEC in Action

set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
then manual direction bidirectional spi 261; # the SPI is 261

set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
then manual direction bidirectional authentication algorithm hmac-
sha1-96;

set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
then manual direction bidirectional authentication key ascii-text
"9v.s8xd24Zk.5bs.5QFAtM8XNVYLGifT3goT369OBxNdw2ajHmFnCZUnCtuEh";
the authentication key was entered as 'juniperjuniperjunipe'
(20 chars)

set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
then manual direction bidirectional encryption algorithm des-cbc;

set services ipsec-vpn rule rule-manual-SA-BiESP term term-manual-SA-BiESP
then manual direction bidirectional encryption key ascii-text
"$9$3LJW/A0EclLxdBlxdbsJZn/CpOR"; # entered as juniperj (8 characters)

set services ipsec-vpn rule rule-manual-SA-BiESP match-direction output;}

We need a manual SA key entry because this example is not using IKE. Note

that although we type the key in plain text, the result is always displayed in

encrypted form.

CE6

We can use exactly the same configuration on router CE6 by just swapping the

local and remote gateway addresses on the ge-0/0/3 interface and under ipsec-
vpn-options and ipsec-vpn, so that 10.99.99.1 and 10.99.99.2 are swapped,

and changing the fe-1/3/0 address to 10.10.12.1. So, in the interest of brevity,

we won’t show the CE6 listing.

How do we know that the IPSec VPN tunnel is working? Everything works as

before, but that proves nothing. How do we know that traffic between LAN1 and

LAN2 is now encrypted? An Ethereal trace can verify that, and we can display

the value of the traffic counter (as long as it is non-zero) on the firewall filter we

set up on the CE routers.

admin@CE6. show firewall filter ipsec-tunnel
Filter: ipsec-tunnel
Counters:

Name Bytes Packets
ipsec-tunnel 252 3

These counts reflect three pings that were sent from LAN1 to LAN2 over the

IPSec tunnel. Other commands can be used to give parameters and details of the

SA itself, but the latter just repeats information stored in the configuration file.

Let’s see what the major portions of the configuration listing are accomplish-

ing. To do that, we’ll have to consider some concepts used in IPSec.

818 CHAPTER 33 IP Security

INTRODUCTION TO IPSec
There are three IPSec support components in addition to the transport services pro-

vided by AH and ESP. One of these components is a set of encryption and hashing

algorithms, most of which we’ve met already in the SSL and SSH chapters. AH and

ESP are generic and do not mandate the use of any specific mechanism. IPSec end-

points on a secure path negotiate the ones they will use, as does SSH. For example,

two common hashing methods are Message Digest 5 (MD5) and Secure Hash

Algorithm 1 (SHA-1), and the endpoints decide which to use with IPSec.

Other important support pieces are the security policies and the SAs that

embody them. The flexibility allowed in IPSec still has to be managed, and security

relationships between IPSec devices are tracked by the SA and its security policy.

Finally, an IPSec key exchange framework and mechanism (IKE) is defined

so that endpoints can share the keys they need to decrypt data. A way to securely

send SA information is provided as well. In summary, IPSec provides the follow-

ing protection services at the IP layer itself:

• Authentication of message integrity to detect changes of the content on the

network

• Encryption of data for privacy

• Protection against some forms of attacks, such as replay attacks

• Negotiation of security methods and keys used between devices

• Differing security modes, called transport and tunnel, for flexibility

IPSec RFCs

When it comes to RFCs, aspects of IPSec were originally covered in a collection

of RFCs that defined the architecture, services, and protocols used in IPSec. Since

then, several of the key aspect RFCs have been updated, while others have

remained unaltered. The current RFCs in force are listed in Table 33.1.

IPSec IMPLEMENTATION

Okay, IPSec is wonderful and we all should have it and use it. But how? Where?

There are two places (at least) and three ways that IPSec can be implemented on

a network.

First, IPSec can be implemented host to host or end to end. Every host has

IPSec capabilities, and no packets enter or leave the hosts with encryption and

authentication. This seems like an obvious choice; however, the fact is that there

are many hosts and, as with “personal” firewalls, this can be a maintenance and

management nightmare. And because most data are stored on servers in “plain

text” formats, all of this work is often in vain if there is a way into the server

itself.

819Introduction to IPSec

IPSec can also be implemented from router to router, and this approach makes

a lot of sense. There are few routers compared to hosts, and perhaps offsite pack-

ets are the only ones that really need protection. On the local LAN, the network

risks are lower (or should be!), and more damage is caused by users leaving them-

selves logged in and leaving their work locations for breaks or lunch than sniffing

“on the wire.” When used in combination, IPSec VPNs are a formidable barrier

to attacks originating on the Internet. (This is not to say that site security can be

ignored when IPSec and VPNs are used between routers, but it certainly can

be different.)

Ideally, in a host or a router, IPSec would be integrated into the architecture of

the device. Where IPv6 is concerned, this is exactly the case. But IPSec is still an

IPv4 “addon” and so can be implemented in hosts and routers in different ways

that mainly concern where in the network the actual IPSec protection actually

kicks in.

There are two common ways to look at IPSec architecture in IPv4. These are

sometimes called “bump in the stack” (BITS) and “bump in the wire” (BITW).

In the BITS architecture, IPSec bits are a separate layer between the IP layer

and the frames. IPSec “intercepts” the IP packets inbound and outbound and pro-

cesses them. The nice thing about this approach is that it can be easily added to

(and upgraded on) IPv4 hosts.

The BITW technique is common when IPSec is implemented site to site by

routers, and devices located next to routers. This architecture is shown in

Figure 33.3.

Table 33.1 IPSec RFCs with Title and Purpose

RFC Name Purpose

4301 Security Architecture for the Internet
Protocol (RFC 2401 is obsolete; RFCs
6040 and 7619 update RFC 4301)

Main document, describes
architecture and how components
fit together

2402 IP Authentication Header AH “protocol” for integrity
2403 The Use of HMAC-MD5-96 within ESP

and AH
Describes a popular algorithm for
use in AH and ESP

2404 The Use of HMAC-SHA-1-96 within ESP
and AH

Describes another popular
algorithm for use in AH and ESP

2406 IP Encapsulating Security Payload The ESP “protocol” for privacy
4306 Internet Security Association and Key

Management Protocol (ISAKMP) (RFC
2406 is obsolete)

Defines ISAKMP methods for key
exchange and negotiating SAs

4306 The Internet Key Exchange (IKE) (RFC 2409
is now obsolete; RFC 4306 covers both
RFC 2406 and 2409 content)

Describes IKE as ISAKMP method

2412 The OAKLEY Key Determination Protocol Describes a generic protocol for
key exchange, which is used in
IKE

820 CHAPTER 33 IP Security

The IPSec “device” can be implemented in router software or as a separate

appliance. The secure packets can be sent over a VPN or simply routed through

the Internet, although a VPN adds another layer of protection to the data stream.

The two approaches are similar, but have a different impact on each of the two

IPSec modes.

IPSec TRANSPORT AND TUNNEL MODE

IPSec modes define the changes IPSec can make to a packet when it is processed

for delivery. Modes in turn affect SAs, so the difference is not trivial by any

means.

Transport mode—In this mode, the packet is handled as a unit from the

transport layer (TCP/UDP). The segment is processed by AH/ESP and the

appropriate header added along with a “normal” IP header before being

passed down to the frame layer. The main point is that in transport mode, the

IP header itself is not part of the AH/ESP process.

Tunnel mode—In this mode, IPSec performs its magic on an entire IP packet

(original header included). The IPSec headers are placed in front of the

encrypted IP packet and then a new IP header is placed in front of the entire

construction. A nice feature is that the original IP address is encrypted and the

new address can be seen as a form of NAT.

Transport mode is feasible only for host-to-host IPSec operation because only

hosts have easy access to the transport layer segments. On the other hand, router

implementations make use of tunnel mode because routers handle entire IP pack-

ets, tunnels are a familiar concept in the router world, and this form of IPSec

works well with VPNs. (Some equipment vendors say that tunnel mode is “better”

than transport mode, but that is really making a virtue out of necessity.)

Router
IPSec IPSec

Secure IP Packets

Network 1 Network 2

Internet Router

FIGURE 33.3

IPSec and routers, showing how separate devices can be used to apply IPSec to a

network.

821Introduction to IPSec

SECURITY ASSOCIATIONS AND MORE
An IPSec device negotiates the precise methods and manages keys used for pack-

ets sent and received. Here comes a packet from somewhere else. So how will we

decrypt it? What is its precise structure (mode)? The same issues come up with

outbound packets. How do we know what was negotiated (or possible) for the

partner at the other end of the secure path? This is turning out to be much more

difficult in practice than in theory. We need help to keep it all straight. The fol-

lowing material describes how it’s done in IPSec.

SECURITY POLICIES

Security policies are general rules that tell IPSec how it can process packets. The

security policy can also allow packets to pass untouched or link to places where

yet more detail is provided. Security policies are stored in the device’s security

policy database (SPD).

SAs—This is a set of security information describing a particular type of

secure path between one specific device and another. It is a type of

“contractual agreement” that defines the security mechanisms used between

the two endpoints. SAs are unidirectional, so there is one for each direction

(inbound and outbound). So, there are at least four (and often eight!) SAs that

apply to communications between a pair of devices. The SAs are kept in the

device’s security association database (SAD).

Selectors—Which packets does a given SA apply to? The rule sets are called

selectors. A selector might be configured that applies a certain SA to a packet

from a particular range of source IP addresses, or that is going to a certain

destination network. SAs don’t have names, however. SAs are indexed by

number, and the number is really a representation (a “triple”) of three

parameters and not just the SPI.

Security parameter index—The SPI is a 32-bit number picked to uniquely

identify an SA for a connected device. The SPI is placed in the AH or ESP

headers and links the packet to a particular SA. Once the receiver knows some

general information about the packet content, the SPI provides a clue to the

rest of it.

IP destination address—The IP address of the device at the “other end” of the

SA path.

Security protocol identifier—Tells whether this SA is for AH or ESP. If both

are used, they need separate SAs.

The nice thing about using this combination is that any one of the parameters

can change to form a “new” entity based on existing pieces. But it can still be

confusing.

822 CHAPTER 33 IP Security

AUTHENTICATION HEADER

AH authenticates by associating a header with a piece of data. The scope of the

operation, and the exact placement of the header, depends on the IP version (IPv4

or IPv6) and mode (transport or tunnel). As with many other authentication

schemes, AH relies on a hash operation similar in concept to the CRC used on

frames. The specific hash (called an integrity check value [ICV]) used is stored in

the SA and is known only to source and destination. The AH provides authentica-

tion, but not privacy. No direct content encryption is used in the AH operation.

AH authentication is simpler for IPv6 than for IPv4 because it was designed

for IPv6. In IPv6, the AH is inserted as an extension header using the usual rules

for extension header linking. The AH value of 51 is inserted into the IPv6 Next

Header field. In transport mode, the AH is in the main IP header and precedes

any destination options and follows an ESP header (if present). In tunnel mode,

the AH is an extension header in the new IP packet header. These differences are

shown in Figure 33.4, with routing (43) and destination option (60) headers in use

with a TCP segment.

Next Hdr
43

IPv6 Hdr

Next Hdr
60

Routing Ext
Hdr (43)

Next Hdr
6

TCP
Hdr (6)

TCP Segment

Dest Opt
Hdr (60) IP Data

IP Data

Next Hdr
43

IPv6 Hdr

Next Hdr
51

Routing Ext
Hdr (43)

TCP
Hdr (6)

TCP Segment
Next Hdr

60

Auth Hdr
(51)

Next Hdr
6

Dest Opt
Hdr (60)

Original IPv6 Packet

IPv6 AH Packet (transport mode)

Authenticated Fields

IPv6 AH Packet (tunnel mode)

Authenticated Fields

IP Data

Next Hdr
51

New IPv6
Hdr

Next Hdr
41

Auth Hdr
(51)

TCP
Hdr (6)

TCP SegmentNext Hdr
43

IPv6 Hdr
(41)

Next Hdr
60

Routing Ext
Hdr (43)

Next Hdr
6

Dest Opt
Hdr (60)

Original IPv6 Packet

FIGURE 33.4

IPv6 AH packet formats, showing how the various fields and headers relate to one

another.

823Security Associations and More

In IPv4, the AH has to follow the IPv4 header one way or the other (as shown

in Figure 33.5). The fields of the AH itself are described next and shown in

Figure 33.6.

Next Header—This 1-byte field gives the protocol number of the next header

after the AH, not the protocol number of the current one.

Payload Length—This 1-byte field measures the length of the AH itself, not

really the “payload.” It is expressed in 32-bit units, minus 2 for consistency

with other IPv6 header calculations.

Reserved—These 2 bytes must be set to all zeros.

Security Parameter Index (SPI)—A 32-bit number that combines with the

destination address and type (AH in this case) to identify the SA used for this

packet.

Sequence Number—A 32-bit counter that starts at zero when the SA is formed

and increments with each packet sent using that SA. This prevents replay

attacks with captured packets.

Authentication Data—This is the ICV hash and varies in size depending on

hashing algorithm used. It must end on a 32-bit (IPv4) or 64-bit (IPv6)

boundary, and so is padded with zeros as needed.

Protocol
51

IPv4 Hdr

Next Hdr
6

TCP
Hdr (6)

TCP Segment

Auth Hdr
(51) IP Data

Protocol
6

IPv4 Hdr

TCP
Hdr (6)

TCP Segment

IP Data

Original IPv4 Packet

IPv4 AH Packet (transport mode)

Authenticated Fields

IPv4 AH Packet (tunnel mode)

Authenticated Fields

IP Data

Next Hdr
51

New IPv4
Hdr

Next Hdr
4

Auth Hdr
(51)

TCP
Hdr (6)

TCP SegmentProtocol
6

IPv4 Hdr

Original IPv4 Packet

FIGURE 33.5

IPv4 AH packet formats showing how the various fields and headers relate to one another.

824 CHAPTER 33 IP Security

ENCAPSULATING SECURITY PAYLOAD

ESP encrypts data and adds a header and trailer to the result. ESP has its own

optional authentication scheme, and can be used in conjunction with AH or not.

Unlike the AH “unit,” ESP is split up into three distinct pieces. The ESP header

precedes the encrypted data, and its placement depends on whether IPv6 or IPv4

is used and on mode. The ESP trailer follows the encrypted data because some

encryption algorithms require that any needed padding follow the encryption. The

ESP authentication data with ICV is optional (and redundant when AH is used),

so its separation makes sense. It authenticates the ESP header and trailer (and so

cannot appear in them). This field follows everything else.

Placing the ESP headers is different in IPv6 and IPv4, but similar to AH. The

trick is finding the ESP trailer because there is no field in the ESP header to give

length to or location of the ESP trailer. If it sounds difficult to figure out where

the trailer is, that’s one of the points. But it can be done, given the correct SA,

and the ESP trailer does have a next header field to “point back” to the front

of the data. Figure 33.7 might make this clearer for IPv6. In transport mode,

the ESP trailer value of 60 “points” (it’s really in no sense a pointer) to the

Destination Options field (value 60) and from there to the TCP header

(IP protocol value 6). In tunnel mode, the ESP trailer next header value is 41 and

indicates that an IPv6 header comes next.

32 bits

Authentication Data
(integrity check value)

Sequence Number

Security Parameter Index

Next Header Payload Length Reserved (all zeroes)

1 byte 1 byte 1 byte 1 byte

FIGURE 33.6

IPSec AH fields.

825Security Associations and More

Figure 33.8 shows the same process for IPv4. In this case, the ESP trailer next

header value is 6 for transport mode (TCP header comes next). The value is 4 in

tunnel mode, to indicate that an Ipv4 packet is between the ESP header and trailer.

How it all fits together in ESP is shown in Figure 33.9. Note that several fields

are only authenticated and not encrypted.

SPI—This 32-bit number is part of the ESP header and is used with

destination address and type (ESP, in this case) to be used for this packet.

Sequence Number—This 32-bit number is part of the ESP header and is

initialized to zero when the SA is formed and incremented to prevent replay

attacks (the same is true in AH).

Payload Data—This is the encrypted data itself and varies in size. Sometimes

it contains an initialization vector, depending on encryption method.

Padding—This field, from 0 to 255 bytes long, is part of the ESP trailer and

is used to align the data as needed.

Next Hdr
43

IPv6 Hdr

Next Hdr
60

Routing Ext
Hdr (43)

Next Hdr
6

TCP
Hdr (6)

TCP Segment

Dest Opt
Hdr (60) IP Data

Encrypted Fields

Authenticated Fields

Original IPv6 Packet

Original IPv6 Packet

IPv6 ESP Packet (transport mode)

IP Data

TCP
Hdr (6)

TCP Segment
Next Hdr

6

Dest Opt
Hdr (60)

Next Hdr
60

ESP Trlr

ESP
Auth
Data

ESP
Hdr
(50)

ESP
Hdr
(50)

Next Hdr
43

IPv6 Hdr
(41)

Next
Hdr
50

New
IPv6
Hdr

Next
Hdr
41

ESP
Trlr

ESP
Auth
Data

Next Hdr
50

Routing Ext
Hdr (43)

IP Data

TCP
Hdr (6)

TCP Segment
Next Hdr

43

IPv6 Hdr
(41)

Next Hdr
60

Routing Ext
Hdr (43)

Next Hdr
6

Dest Opt
Hdr (60)

Encrypted Fields

Authenticated Fields

IPv6 ESP Packet (tunnel mode)

FIGURE 33.7

IPv6 ESP packet formats, showing how the various fields and headers relate to one another.

826 CHAPTER 33 IP Security

Protocol
6

IPv4 Hdr

TCP
Hdr (6)

TCP Segment

IP Data

TCP
Hdr (6)

TCP Segment

IP Data

Original IPv4 Packet

Original IPv4 Packet

Next Hdr
6

ESP Trlr

ESP
Auth
Data

ESP
Hdr
(50)

Protocol
50

IPv4 Hdr

Next Hdr
4

ESP Trlr

ESP
Auth
Data

ESP
Hdr
(50)

Protocol
50

IPv4 Hdr
IP Data

TCP
Hdr (6)

TCP Segment
Protocol

6

IPv4 Hdr

Encrypted Fields

Authenticated Fields

IPv4 ESP Packet (tunnel mode)

Encrypted Fields

Authenticated Fields

IPv4 ESP Packet (transport mode)

FIGURE 33.8

IPv4 ESP packet formats, showing how the various fields and headers relate to one another.

32 bits

Sequence Number

Security Parameter Index

1 byte 1 byte 1 byte 1 byte

Padding

ESP Authentication Data

Pad Length Next Header

ESP Payload Data

A
ut

he
nt

ic
at

ed

E
nc

ry
pt

ed

FIGURE 33.9

IPSec ESP fields, showing which fields are authenticated and encrypted.

827Security Associations and More

Pad Length—This 1-byte field is part of the ESP trailer and gives the length

of the padding.

Next Header—This 1-byte field is part of the ESP trailer and often “points” to

the TCP header (6).

ESP Authentication Data—A variable-length ICV (authentication is optional).

INTERNET KEY EXCHANGE

Our journey through IPSec is almost complete. We’ve found a way for the end-

points to decide what the formats of the IPSec packets are (the SAs). But what

about the keys? Like SSH, IPSec depends on shared secret keys for encryption

and decryption. Obviously, the entire method is as secure as the steps taken to

secure the keys. That’s what IKE is for.

IPSec was actually used before IKE was implemented. So how did the keys

get into the SAs and the SAs get everywhere they were needed? An “off-Net”

method had to be used. Large organizations used to fly everyone who needed

them to a central location and simply hand them out (in sealed envelopes,

of course). Smaller organizations used FedEx or some other delivery service.

Usually multiple keys, often a great many, were distributed this way, and they

changed on a basis known only to those who had to change them.

This method of manual SA definition is still valid and widely used.

Sometimes security personnel fly around the country configuring the SAs locally

on each router. Few trust “secure” remote access methods for this sensitive task

because many millions in financial resources might be at risk. For example, IPSec

might have to protect corporate payroll records sent to the banks for employee

direct deposit.

IKE is one of the most baffling protocols to understand and explain without a

fairly deep knowledge of mathematics and cryptography. Some pieces are not that

bad: Diffie-Hellman is the obvious choice for shared secret key exchange,

although it says nothing about private/public key distribution. But other compo-

nents are far beyond the abilities of generalists to understand, let alone know how

to explain easily. And there are those who say that you don’t really understand

something until you can explain it in simple terms to someone else. If that is true,

I have yet to find anyone who really understands IKE.

IKE allows IPSec devices to simply send their SAs securely over the Internet

to each other. In other words, IKE populates the SAD so that both ends know

what to do to send and receive with IPSec. IKE combines (and adds to) the func-

tions of three other protocols.

ISAKMP—The Internet Security Association and Key Management Protocol is

a general framework protocol for exchanging SAs and key information by

negotiation and in phases. Many different methods can be used.

828 CHAPTER 33 IP Security

OAKLEY—This extends ISAKMP by describing a specific mechanism for key

exchange through different defined “modes.” Most of IKE’s key exchange is

directly based on OAKLEY.

SKEME—This defines a key exchange process different from that of

OAKLEY. IKE uses some SKEME features, such as public key encryption

methods and the “fast rekeying” feature.

IKE takes ISAKMP and adds the details of OAKLEY and SKEME to perform

its magic. IKE has the two ISAKMP phases.

Phase 1—The first stage is a “setup” process in which two devices agree on

how they will exchange further information securely. This creates an SA for

IKE itself, although it’s called an ISAKMP SA. This special bidirectional SA

is used for Phase 2.

Phase 2—Now the ISAKMP SA is used to create the other SAs for the two

devices. This is where the parameters such as secret keys are negotiated and

shared.

Why two phases? Phase 1 typically uses public key encryption and is slow,

but technically only has to be done once. Phase 2 is faster and can conjure differ-

ent but very secure secret keys every hour or every 10 minutes (or more fre-

quently for very sensitive transactions).

QUESTIONS FOR READERS

Protocol
17

IPv4 Hdr

UDP
Hdr
(17)

IP Data

Original IPv4 Packet

Original IPv4 Packet

Next Hdr
4

ESP Trlr

ESP
Auth
Data

ESP
Hdr
(50)

Protocol
50

IPv4 Hdr
IP Data

UDP
Hdr
(17)

UDP Datagram
Protocol

17

IPv4 Hdr

Encrypted Fields

Authenticated Fields

UDP Datagram

FIGURE 33.10

IPSec ESP used with an IPv4 packet.

829Questions for Readers

Figure 33.10 shows some of the concepts discussed in this chapter and can be

used to answer the following questions.

1. Which IPSec ESP mode is used in the figure—transport or tunnel?

2. Which IP protocol is being tunneled?

3. What does the ESP trailer next header value of 4 indicate?

4. Could NAT also be used with IPSec to substitute the IPv4 addresses and

encrypt them?

5. Is the SPI field encrypted? Is it authenticated?

830 CHAPTER 33 IP Security

PART

VIII
Media

The Internet is not just for data anymore. This part of the book examines
how voice communication has transitioned to the Internet.

• Chapter 34—Voice over Internet Protocol

This page intentionally left blank

CHAPTER

34Voice over Internet
Protocol

WHAT YOU WILL LEARN

In this chapter, you will learn how VoIP is becoming more and more popular as an
alternative to the traditional public switched telephone network (PSTN). We’ll look at
one form of “softphone” that lets users make “voice” calls (voice is really many
things) over an Internet connection to their PC.

You will learn about the protocols used in VoIP, especially for the “data” (RTP and
RTCP) and for signaling (H.323 and SIP). We’ll put it all together and look at a com-
plete architecture for carrying media other than data on the Internet.

In November 2006, when a person in Cardiff, Wales, made a local telephone call,

no part of the British Telecom (BT) PSTN was involved. Only the “last mile” of

the circuit was the same: no telephone central office, voice switches, or channel-

ized trunks were used to carry the voice call. Instead, the calls were handled by

multiservice access nodes (MSANs) and carried with IP protocols over the same

type of network that handles BT’s Internet traffic.

There are conflicting reports as to when the PSTN will be replaced with an IP

network, perhaps using MPLS to both secure and provide QoS for the calls—or it

might have happened already. Many countries use IP voice on their backbones

such as Telecom Italia.

It’s old news that many people, both around the world and in the United

States, use the Internet to talk over the telephone. Not many of these custo-

mers know it, however, because various factors combine to make the use of

voice over IP (VoIP) technology a sensitive subject. There are those who

intentionally use the Internet for voice calls, and many software packages

(such as those from Vonage and Avaya) are available. But not many people

know that a percentage of calls (perhaps the majority) made over the PSTN

are carried for part of their journey over the Internet using VoIP. The cellular

telephone network is converging on IP protocols even faster than the landline

network.

The exact percentage of PSTN traffic using VoIP is very difficult to pin down

because some telephony carriers are relatively open about this fact and others are

The Illustrated Network. DOI: http://dx.doi.org/10.1016/B978-0-12-811027-0.00034-5

© 2017 Elsevier Inc. All rights reserved.
833

http://dx.doi.org/10.1016/B978-0-12-811027-0.00034-5

CE0
 lo0: 192.168.0.1

fe-1/3/0: 10.10.11.1
MAC: 00:05:85:88:cc:db
(Juniper_88:cc:db)
IPv6: fe80:205:85ff:fe88:ccdb

P9
lo0: 192.168.9.1

PE5
lo0: 192.168.5.1

P4
 lo0: 192.168.4.1

so-0/0/1
79.2

so-0/0/1
24.2

so-0/0/0

47.1

so-0/0/229.2
so-0/0/3

49.2

so-0/0/3
49.1

so-
0/0

/0

59
.2

so-0/0/245.1

so-0/0/245.2

so-
0/0

/0

59
.1

ge
-0

/0
/3

50
.2

ge
-0

/0
/3

50
.1

DSL Link

Ethernet LAN Switch with Twisted-Pair Wiring

bsdclient lnxserver wincli1

em0: 10.10.11.177
MAC: 00:0e:0c:3b:8f:94
(Intel_3b:8f:94)
IPv6: fe80::20e:
cff:fe3b:8f94

eth0: 10.10.11.66
MAC: 00:d0:b7:1f:fe:e6
(Intel_1f:fe:e6)
IPv6: fe80::2d0:
b7ff:fe1f:fee6

LAN2: 10.10.11.51
MAC: 00:0e:0c:3b:88:3c
(Intel_3b:88:3c)
IPv6: fe80::20e:
cff:fe3b:883c

LAN2: 10.10.11.111
MAC: 00:0e:0c:3b:87:36
(Intel_3b:87:36)
IPv6: fe80::20e:
cff:fe3b:8736

winsvr1

LAN1

Los Angeles
Office

Ace ISP

AS 65459

Wireless
in Home

Solid rules SONET/SDH
Dashed rules Gig Ethernet
Note: All links use 10.0.x.y
addressing...only the last
two octets are shown.

FIGURE 34.1

VoIP setup on the Illustrated Network showing the host using an Internet telephony

package.

834 CHAPTER 34 Voice over Internet Protocol

CE6
lo0: 192.168.6.1

fe-1/3/0: 10.10.12.1
MAC: 0:05:85:8b:bc:db
(Juniper_8b:bc:db)
IPv6: fe80:205:85ff:fe8b:bcdb

Ethernet LAN Switch with Twisted-Pair Wiring

bsdserver lnxclient winsvr2 wincli2

eth0: 10.10.12.77
MAC: 00:0e:0c:3b:87:32
(Intel_3b:87:32)
IPv6: fe80::20e:
cff:fe3b:8732

eth0: 10.10.12.166
MAC: 00:b0:d0:45:34:64
(Dell_45:34:64)
IPv6: fe80::2b0:
d0ff:fe45:3464

LAN2: 10.10.12.52
MAC: 00:0e:0c:3b:88:56
(Intel_3b:88:56)
IPv6: fe80::20e:
cff:fe3b:8856

LAN2: 10.10.12.222
MAC: 00:02:b3:27:fa:8c

IPv6: fe80::202:
b3ff:fe27:fa8c

LAN2

New York
Office

P7
lo0: 192.168.7.1

PE1
 lo0: 192.168.1.1

P2
lo0: 192.168.2.1

so-0/0/1
79.1

so-0/0/1
24.1

so-0/0/0

47.2

so-0/0/229.1

so-0/0/3
27.2

so-0/0/3
27.1

so-0/0/217.2

so-0/0/217.1

so-
0/0/0

12.2

so-
0/0/0

12.1

ge-0/0/3

16.2

ge-0/0/3

16.1

Best ISP Avaya
Server
(172.24.45.78)

AS 65527

Global Public
Internet

835Voice over Internet Protocol

not, and all are as wary of their competitors as they ever were. The use of VoIP

is also controversial because not too long ago the voice quality of such calls was

(might as well admit it) horrible.

This chapter concerns voice, not audio, a distinction often glossed over by

users but never by engineers. Voice is concerned primarily with comprehension

of the spoken word, that is, of what is said rather than how it “sounds.” Audio is

generally a stereo representation of more than just speech. Think of audio as a

motion picture soundtrack. The telephone system is “tuned” to the frequencies

used in human speech, not music or special effects explosions. And that makes all

the difference.

VoIP IN ACTION
It’s a little too much to expect seeing a full-blown VoIP server and gateway on

the Illustrated Network. Nevertheless, we can “borrow” an Avaya IP Softphone

server for our network and install the client software on wincli2
(10.10.112.222). Then we can use the VoIP software to place a call to a desk

phone and capture the exchange of signaling and voice packets. This is shown in

Figure 34.1.

Naturally, the server can place the call anywhere in the world, but having a

conversation with a telephone in a local cubicle makes it easier to complete the

call, talk, hang up, and so on. Figure 34.2 shows the main screen for an older ver-

sion of the Avaya VoIP software. It doesn’t look much like a phone, although the

newer versions certainly do, from the “screen” to the keypad.

Before you can make a call, you have to log in to the server. A simple log-in

ID and password is used, and then the screen shown in Figure 34.3 appears in the

older software version used. It shows the extension the computer is acting as, its

FIGURE 34.2

Avaya IP Softphone client interface. Note that this is not very “phone-like.”

836 CHAPTER 34 Voice over Internet Protocol

IP address (this capture is not from wincli2, so the addresses have been changed

to the private range), the VoIP server’s IP address, and the gateway “VoIP”

address. The call status is also shown, and this screen was captured while the call

was in progress.

The first thing that becomes obvious when capturing VoIP sessions is the bliz-

zard of packets presented. The actual session, from “dialing” through conversa-

tion to “hangup”, lasted less than 30 seconds, and the log-in process, registration,

and call setup took only a few seconds of that time. Yet in this 30-second win-

dow, some 756 packets passed back and forth from the VoIP client to server.

Most of them were small packets using the Real-Time Protocol (RTP), which

carries 20 bytes of voice coded at 8 Kbps (the G.729 standard). A portion of the

conversation between client and gateway is shown in Figure 34.4. (The gateway

address 172.24.45.65 is now accessed from wincli2, and therefore different

from that shown in Figure 34.3.)

In addition to the TCP packets (which are used to set up the connection to

the server), and the RTP packets carrying the voice bits (and the RTCP packets

with status information), there are other control packets that serve to remind us

that we are not in the data world anymore. The voice world uses a unique

language, and an often obscure one at that. This VoIP implementation speaks

H.323, a signaling protocol family for voice. The main signaling protocols seen

during the call follow.

FIGURE 34.3

Avaya log-on screen with a call in progress.

837VoIP in Action

H.225.0 RAS packets—These are the registration, admission, and status

packets used to register the VoIP host on the VoIP server and allow it to

use the system to make calls.

H.225.0 CS packets—The call status packets trace the progress of the call. (Is

the other phone ringing? Did someone answer?)

Q.931 signaling packets—These are not strictly H.323 signaling packets.

Q.931 is the “normal” signaling method with packets used on the PSTN.

These are passed from the VoIP client to the server by this VoIP

implementation.

Some packets of each type are shown in Figure 34.5, which only shows the

expanded upper pane of a full Ethereal capture window. Signaling protocols in

VoIP, as opposed to the voice “data” itself, use TCP for its sequencing and

resending features.

We’ve done little more than scratch the surface of VoIP, but it is enough to

show that VoIP is acceptable and commercially viable today. Let’s see why, and

explore some of the architectures and protocols in a little more detail.

THE ATTRACTION OF VoIP

In a very short period of time, we’ve transitioned from a world where data rode

on links optimized for voice by masquerading as sound (that’s what a modem is

for) to a world where voice rides on links optimized for data (unchannelized) by

FIGURE 34.4

RTP packets carrying 20 bytes of voice, shown highlighted in the bottom pane.

838 CHAPTER 34 Voice over Internet Protocol

masquerading as data packets. VoIP is a grand scheme to make this process as

easy as possible.

The trick is to have the voice packets preserve the quality-of-service para-

meters that regulated telephone companies always have to keep an eye on (or

their next request for a rate increase might be rejected, and some companies have

even been forced to send customers rebates due to poor voice service). In the dis-

cussion that follows in this chapter, it will be a good thing to remember that

when engineers say “voice” they really mean four things (and no, one of them is

not audio).

WHAT IS “VOICE”?

The PSTN can carry one of four types of “voice” traffic.

1. Two people talking—This is what most people think of when they say

“voice.”

2. Fax—Fax machines use low-speed modems to make digital representations of

images look like sound. And fax traffic is still important because of several

social factors (faxes have higher legal standing than email, for one thing) and

the fact that many languages are still not particularly email and keyboard

friendly.

3. Modem data—Not everyone is on DSL, and a good percentage of users

around the world still use analog modems to push perhaps 30 to 50 Kbps back

and forth to their ISP.

FIGURE 34.5

H.225 and Q.931 signaling packets. Note the presence of TCP packets for signaling.

839VoIP in Action

4. Touch tone—Officially, these are the dual-tone multifrequency (DTMF)

sounds you hear when you press buttons on a telephone keypad. The familiar

beeps are analog (sound) representations of the numbers (digits) pressed.

There are also some economic factors pertinent to VoIP, and VoIP is one rea-

son that premium long-distance telephone calls (which used to cost many dollars

per minute) are seldom an issue in anyone’s budget. (You used to ask before mak-

ing a long-distance call from someone else’s phone, and people rushed out of the

shower dripping wet to take a long-distance call because the rates were higher ini-

tially.) The use of VoIP as a PSTN bypass method has become less attractive, but

the goal of convergence remains strong.

VoIP is also attractive to carriers if what is often called in the United States

“toll-quality voice” can be delivered at a reduced bit rate as a stream of TCP/IP

packets. Bandwidth savings directly translates into network savings, which is

something anyone can understand.

THE PROBLEM OF DELAY

Voice quality is tied to more than just bit rate. Two key parameters in assessing

voice quality are latency (delay) and jitter (delay variation). Voice is much more

sensitive to the values of these two network parameters, much more so than the

most rigid interactive data requirements. This is because data are usually not pro-

cessed until the “whole” of something has arrived, and it makes no difference if

the first packets that represent a file arrive faster than the last few packets (this is

the jitter). And as long as the delay remains below a certain timeout threshold the

application will work fine (this is the overall delay).

Delay and latency are often used interchangeably, and they will be here. End-

to-end network delays consist of two components: serial delay and nodal proces-

sing delay.

Nodal processing delay is the amount of time it takes for the bits that enter

a network node (end node or intermediate node alike) to emerge. End nodes

can measure this between application and link, and intermediate nodes as link-

to-link delays. Today’s routers operate in many cases at “line speeds,” but this

is a relatively recent development. Early routers operated at much too leisurely

a pace to route voice packets at anywhere near the pace required for telephony

services (that’s what circuit-switched voice switches were for), which basically

had to span the globe in about one-quarter of a second. And this had to include

the serial delay.

Nodal processing delay also occurs when the analog voice is first digitized.

The algorithm used to digitize voice might be complex, adding delay to the entire

process. And the more bits needed to be gathered into a packet (bigger packets

mean fewer packets than can get lost), the higher the nodal processing delay. This

initial delay is often called the packetization delay, but it is just another form of

nodal delay.

840 CHAPTER 34 Voice over Internet Protocol

Serial delay is simply an acknowledgment of the fact that bits are sent on a

link one by one, so it takes a certain amount of time to send a given number of

bits at a given bit rate. If the serial delay is too high for a given application,

there are only two ways to lower it: put fewer bits in a packet or raise the link

bit rate. Of course, you can do both. You can put fewer bits in voice packet by

lowering the bit rate of the voice inside (or sending more packets—it’s a

tradeoff).

Jitter is the variation of the end-to-end delay across the network. As the delay

varies, bits arrive either early or late at the destination. If they arrive too quickly,

bits might overflow a buffer. If they arrive too late, silence results. Gaps in the

conversation occur either way. And even less extreme jitter can distort the analog

voice that results from the bits. To smooth out arriving voice, a “jitter buffer” is

used to add the delay necessary to make the voice sound like it all arrives with

the same delay.

The delay issues in VoIP are shown in Figure 34.6. Naturally, the same pro-

cess works in the other direction.

Just like overall delay, and apart from jitter buffers, jitter can be handled in

a couple of ways. Delay variations usually result from nodal processing load

Analog-to-Digital
Conversion (64 Kbps)

Speech Direction

Serial Link Transmission
Delays

Encoding below 64
Kbps, Packetization
(processing delay)

VoIP

Internet

Jitter
Buffer

Buffer Makes
Delays Seem

Stable

End-to-end delay
Processing delay(s)
Transmission delays

Decoding to
64 Kbps

Digital-to-Analog
Conversion

VoIP EncoderA/D

Decoder D/A

FIGURE 34.6

VoIP processing and transmission delays. Note that the jitter buffer compensates for

differences in delays during different parts of the call.

841VoIP in Action

variations and buffer queue depth. In other words, when the node is busy,

things slow down. This effect can be minimized by splitting off the voice for

special handling, getting faster network nodes, or by increasing link bandwidth.

(Note that constant appearance of “increased link bandwidth” as a solution to

networking problems, a fact that has slowed development of alternative solu-

tions to many issues.)

The key to VoIP is not so much digitizing voice at a low bit rate, but rather

TCP/IP and the Internet carrying packetized voice with acceptable latency and jit-

ter as perceived by the humans using it. (Related issues, such as replacing silence

with “comfort noise” and detecting “voice activation,” are beyond the scope of

this chapter.)

PACKETIZED VOICE

Voice on the PSTN is usually a streaming bidirectional connection at a fixed 64

Kbps. Once digitized, there was little incentive to play around with voice too

much because any reduction in bit rate was offset by a loss in voice quality.

Regulated carriers had to maintain certain voice quality levels or risk customers

not having to pay for the call. However, if the “slope” of the decline of voice

could be leveled so that quality at 16 Kbps or even 8 Kbps was not that much dif-

ferent than at 64 kbps, more calls could be carried over the same facilities. Not

only that, but any bandwidth not used for carrying voice calls could be used for

data (packets).

However, low-bit-rate voice with acceptable quality—something achieved

with modern digital signal processing (DSP) chips—is not the same as packetized

voice. Using “spare” voice bandwidth for data was the idea behind ISDN

and eventually DSL. But the voice stayed on the voice channel and the data

stayed on the data channel. Only by truly packetizing voice can voice and data be

combined in an efficient manner.

A “voice” service really consists of two major components: content—which

can take on four different meanings (as we have seen)—and signaling. This sig-

naling is not the same as touch tones, although the intent is similar. This signaling

is already packetized, and is how the number you dial and other information

(such as the number you dialed from) makes its way through the voice signaling

network.

This signaling network is as packetized as TCP/IP, uses special network nodes

(which still route), and is known as Signaling System 7 (SS7). The real issue in

VoIP is not so much how to packetize the voice content (gather bits and stick a

header on them and send them out) but how the SS7 signaling packets relate to

the Internet and TCP/IP.

The main stumbling block to universal VoIP service today is not so much that

there are many ways to packetize voice content (there are options in many other

TCP/IP protocols) but that there are many ways (and many architectures) to carry

842 CHAPTER 34 Voice over Internet Protocol

voice signaling information in a TCP/IP environment. These VoIP protocol con-

troversies are important enough for a detailed look.

PROTOCOLS FOR VoIP
Voice, like audio and video, is a “real-time” application. And, as in multicast

TCP is a poor choice for voice connections over the Internet. This sounds odd

because voice is as connection oriented as TCP and requires handshaking over-

head to complete a “call.” (Humans handshake with a ring and a vocalized shared

“Hello.”)

The problem is not just TCP overhead, it’s the fact that TCP will always

resend missing data units. That’s what it’s for. However, the meaningful resend-

ing of voice bits is impossible in VoIP given the real-time nature of voice. So,

UDP (which blithely accepts lost data units with a shrug) is used in VoIP—just as

in multicast.

But TCP headers contain a number of fields that are very helpful for end-to-

end communications, which are fields lost in UDP, such as a sequence number to

detect lost voice packets. So we’ll have to take what fields we need from TCP

and stick them inside (after) the UDP header. This new header will have to have

a name and a place in the TCP/IP protocol stack. We’ll call it the RTP and use it

for the transport of digitized voice inside our IP packets.

Signaling, however, is another matter. We might want to keep TCP for that

because resending lost signaling packets is actually a good idea (calls that are not

completed do not generate revenue for metered service or friends in the user com-

munity). In addition, the delays for signaling in regulated voice services are much

less stringent than the delays for voice packets, which make TCP connection

overhead tolerable. So, in some cases (especially over a WAN), TCP is

acceptable for voice signaling.

But what form should TCP/IP voice signaling packets take? How should

voice-capable TCP/IP devices find each other by IP address? How are VoIP calls

handed off to (or received from) the PSTN network with SS7? Where are the

voice gateways? Who runs the gateways—the customer or the service provider?

In other words, what is the overall architecture of the TCP/IP voice-signaling

network?

Unfortunately, we live in a world where there are competing answers to all of

these signaling questions. Let’s start by looking at RTP and then examining the

major differences between the various systems of VoIP signaling.

RTP FOR VoIP TRANSPORT

RTP grew out of efforts to improve the Streams 2 (ST2) protocol defined in RFC

1819. ST2 was known as IPv5 and is why IPv4 evolved into IPv6. RTP was

843Protocols for VoIP

originally defined in RFC 1889 and deliberately left open-ended to allow room

for the protocol to evolve. The current RTP specification is RFC 3550, along with

many updates (some covering “leap seconds” and multiple clock rates) and some

errata.

RTP is really a framework using application layer framing and was initially

aimed at audio (and video) multicast sessions. However, two-way phone calls are

just special cases of audio multicast, so RTP is a good fit for VoIP.

RTP can replace TCP for many applications, but in VoIP it is used with UDP.

The RTP architecture also includes another protocol, the Real-Time Control

Protocol (RTCP), which uses IP directly to monitor the job RTP is doing in terms

of delay and voice quality.

A range of unprivileged IP port numbers (1024 to 65535) are usually used for

RTP and RTCP, and they can even use other transport protocols. The overall RTP

architecture is shown in Figure 34.7.

There are many audio and video codecs supported by RTP, but not all of them

are needed for VoIP (especially video codecs, naturally). In addition, the RTP

architecture establishes devices called mixers (to mix multiple sources for confer-

ences) and translators (to compensate for low and high bit-rate links and LANs).

These functions can be implemented in some type of “voice and audio server” on

a LAN, but are not used in VoIP.

The structure of the basic RTP header is shown in Figure 34.8. Only the fields

that apply to two-party calls (point to point) are fully described.

Audio

Audio Codecs

Video

RTCP

RTP

UDP

IPv4 or IPv6

Data Link (frame)

Physical Media (LAN)

Video Codecs

FIGURE 34.7

RTP and RTCP protocol stack showing how these protocols use UDP instead of TCP.

844 CHAPTER 34 Voice over Internet Protocol

V (version)—This 2-bit field gives the current version of RTP (which is 2).

Pad (padding)—This 2-bit field aligns the packet to a specific boundary. The

actual padding byte count is given in the last byte of the RTP data.

E (extension)—This 1-bit field extends the length of the RTP header, mostly

for experimental purposes, and is almost always set to zero.

M (marker)—This 1-bit field is used in the first packet sent after a period of

silence.

Payload type—This 7-bit field is used to define 128 types of RTP payloads.

Some are static and can only be used for the defined type, but newer ones

are dynamic and are assigned by the control protocol (such as SIP).

Sequence number—This 16-bit field increases by one for each RTP packet

sent and should be initially a random number. Receivers can use this field

to detect missing or out-of-sequence packets.

Timestamp—This 32-bit field is most useful for video (all bits from the same

frame have the same timestamp), but it is used for the voice sampling rate

as well.

The count field gives the number of 32-bit “contributors” to a conference. For

multiparty calls, the synchronization source identifier (SSRC) and a series of con-

tributing source identifiers (CSRC) matching the count are not used. The VoIP

RTP header adds 8 bytes to the voice stream. The format of the payload in the

RTP data field is determined by the values in the categories listed in Table 34.1.

V

H
e
a
d
e
r

E M Payload Type Sequence Number

Timestamp

32 bits

Payload

RTP header for VoIP is 8 bytes long

Synchronization Source Identifier (SSRC)

Contributing Source Identifier(s) (CSRC, matches count)

Pad

1 byte 1 byte 1 byte 1 byte

Count

FIGURE 34.8

RTP header fields, which preserve some aspects of TCP fields.

845Protocols for VoIP

There is also an optional header extension field that contains a profile-specific

identifier 16 bits long, and a 16-bit length indicator giving the length of the exten-

sion in 32-bit units (not including the 32 bits of the extension header itself).

RTP is a pure transport mechanism. Feedback on quality and immediate net-

work conditions is provided by the receiver to the sender with RTCP. RTCP

doesn’t say what senders should do with this information, such as the revelation

that a router is becoming overloaded and dropping more packets than it is send-

ing, but at least the ability to detect problems is there.

RTP generates periodic “reports” about the RTP session. There are five RTCP

message types.

1. Sender report—Contains transmission and reception statistics from conference

participants that are active senders.

2. Receiver report—Reception statistics from conference participants that are not

active senders.

3. Source description—Items relating to the source, including the canonical DNS

name.

4. Bye—Used to end a session.

5. Application specific—Contains any information that the applications agree to

share.

The possible payload formats that can be used to carry voice bits following

the RTP header are complex, seemingly fiendishly so. These are defined in RFC

4733 (with updates). Fortunately, they are usually of interest only to telephony

engineers.

SIGNALING

I first encountered VoIP around the same time I encountered the Web, in the early

1990s. It was in a university setting, where the absolute utility and cost effective-

ness of things are not as rigid as in the business world. In the fluid environment

of an educational institution, many things happen because they are instructive,

groundbreaking, and just, well, cool.

Table 34.1 RTP Payload Formats and Their Meanings

Type Meaning

0�34 Static assignment referencing RFC 3551 and updates (most popular bit rates
and formats are here)

35�71 Unassigned
72�76 Reserved
77�95 Unassigned
96�127 Dynamic assignment (under the control of a call control protocol)

846 CHAPTER 34 Voice over Internet Protocol

A graduate student of mine was in the lab one day, busily chattering into a micro-

phone hooked up to a PC and intently listening to the garbled voice coming out of

the PC’s speakers. Much of the conversation consisted of “What?” and “Huh?”

When I asked, he informed me that he was talking over the Internet to an old

friend in a similar lab at RPI in Troy, New York, about 150 miles north of us—

and in those days usually an expensive long-distance call away (especially for

graduate students). I asked him how the friend in Troy knew to be in the lab at

the right time to answer his PC. “Oh,” my student said, “I called his dorm room

from your office and told him to go there.”

Things have come a long way since the early 1990s. The trouble back then

was that the world of Internet telephony was a closed world, limited to Internet-

attached devices. There were no signaling gateways to translate phone numbers to

IP addresses and back, and so no way to enable calls with one end on the Internet

and the other end in the PSTN to complete calls.

This is not to say that there were not VoIP gateways. There were. But these

used proprietary protocols for the most part and only connected to their cousin

devices from the same vendor. So, there was a need to create standard signaling

protocols for VoIP.

Today, the issue seems to be not a lack of proposed standard protocols for

VoIP but their proliferation. There are three general protocol stacks that can be

used for VoIP. These are shown in Figure 34.9.

Note that the third stack combines two methods known as the Multimedia

Gateway Control Protocol (MGCP) and Megaco/H.248 into a single stack. The

two are similar enough to allow this.

However, things are not as bad as they might seem at first. All three of the

signaling protocols could have a role in the “converged” VoIP architecture of

Internet and PSTN. Before we see how this is possible, let’s take a look at each

of the protocols in turn.

H.323, THE INTERNATIONAL STANDARD

The H.323 signaling protocol framework is the international telephony standard

for all telephony signaling over the packet network (not just the Internet). When

work on H.323 began, the packet network most commonly mentioned for H.323

was X.25, then ATM, and not the Internet. In a sense, H.323 doesn’t care—it’s

just an umbrella term for what needs to be done.

Like RTP, H.323 was designed for audio and video conferencing, not just

point-to-point voice conversations. A LAN with devices that support H.323 capa-

bilities (H.323 terminals, which have many different subtypes) also has an H.323

multipoint control unit (MCU) for conference coordination. The LAN includes an

H.323 gateway to send bits to other H.323 zones and an H.323 gatekeeper. The

gatekeeper is optional and is needed only if the terminals are so underpowered

they cannot generate or understand H.323 messages on their own. (Most can,

847Protocols for VoIP

although H.323 is not trivial.) The H.323 gateway is essentially a router, but with

the ability to support packetized voice to PSTN connections (and the terminals

are computers, of course).

The main H.323 signaling protocols used with VoIP are H.225 RAS

(Registration, Admission, and Status), which is used to register the VoIP device

with the gatekeeper, and H.255 CS (call status), which is used to track the prog-

ress of the call. The structure of a typical H.323 zone is shown in Figure 34.10.

H.323 signaling uses both UDP and TCP when run on an IP network, and uses

RTP and RTCP for transport. Components that are not strictly needed for VoIP

are shown in italics.

H.323 supports not only audio and video conferencing but also data confer-

encing, where users can all see the same information on their PCs and changed

data are updated across the network. Cursors are usually distinguished by distinc-

tive colors.

The trouble with H.323 was that it is complete overkill for VoIP. Data and

video support are not needed for VoIP, and some wondered why H.323 was

needed in VoIP at all given its telephony roots and the hefty amount of power

needed to run it. Maybe the Internet people could come up with something better.

H.225
RAS

H.225
Call

Status

H.245
Control

UDP TCP

IP

Data Link

Physical Media

H.323 Signaling Stack SIP Signaling Stack

UDP TCP

SIP

IP

Data Link

Physical Media

MGCP
Megaco/H.248

UDP

IP

Data Link

Physical Media

MGCP, Megaco/H.248
Signaling Stack

FIGURE 34.9

Three VoIP signaling architectures.

848 CHAPTER 34 Voice over Internet Protocol

SIP, THE INTERNET STANDARD

The Session Initiation Protocol (SIP), defined in RFC 3261 and updates, some of

which add encryption and key exchange to RTP, is the official Internet signaling

protocol for IP networks. Each session can also include audio and video confer-

encing, but right now SIP is mainly used for simple voice over the Internet. SIP

is a text-based protocol similar to HTTP and SMTP, uses multicast Session

Description Protocol (SDP) for the characteristics of the media, and is technically

independent of any particular packet protocol.

Both H.323 and SIP define mechanisms for the formal processes of call sig-

naling, call routing (the path the voice bits will follow), capabilities exchange

(the bit rate that should be used), and supplementary services (such as collect call-

ing). However, SIP attempts to perform these functions in a more streamlined

fashion than H.323.

VoIP combines the worlds of the telephony carriers (H.323) and the Internet

(SIP). Not surprisingly, both telephony carriers and Internet people see their way

as the best way for a unified signaling protocol suitable for both environments.

The SIP architecture is client�server in nature, as expected, but with adapta-

tion for the peer-to-peer nature of telephony. The main SIP components are the

user agent (the “endpoint” device), the “intermediate servers” (which can be

proxy servers or redirect servers), and the registrar.

Proxy servers forward SIP requests from the user agent to the next SIP server

or user agent and retain accounting and billing information. User agents can be

clients (UACs) when they send SIP requests, and servers (UASs) when they

H.323
Gatekeeper

H.323
Terminal

(user)

H.323
Terminal

(user)

H.323
Terminal

(user)

H.323
Multipoint

Control Unit

H.323
Gateway

Internet, PSTN, LAN, or B-ISDN

FIGURE 34.10

H.323 zone components. (Optional components are shown in italic.)

849Protocols for VoIP

receive them. SIP redirect servers respond to client requests and tell the UACs

the requested server’s address.

The SIP registrar stores information about user agents, such as their location.

This information is not maintained or accessed by SIP, but by a separate “location

service” that is still part of the SIP framework. SIP is flexible enough to support

stateless requests or to remember them, and is not tied to any one directory

method to locate SIP users and components.

The general SIP architecture is shown in Figure 34.11. The only piece that is

missing is the registrar, which takes the SIP register request information and uses

it to update the information stored in the location server. The figure shows the

sequence of SIP requests and responses to establish a session (call). The details of

each step are beyond the scope of this chapter, but the point is that a lot of mes-

sages are required to complete the call. Once the called party is found and alerted

in Step 8, however, the call is quickly completed from proxy to proxy and back

to the calling party.

There are six basic types of SIP requests.

1. Invite—Start a session

2. ACK—Confirms that the client has received a final response to an invitation

3. Options—Provides capabilities information, such as voice bit rates supported

4. BYE—Release a call

5. Cancel—Cancel a pending request

6. Register—Sends information about a user’s location to the SIP registrar server.

SIP Redirect
Server

SIP
Proxy

12 11

74

5, 6

10

9
8

1

2

SIP User
Agent

(calling party)

SIP User
Agent

(calling party)

SIP
Proxy

SIP
Proxy

Location
Server

Request Response Non-SIP

IP Network

FIGURE 34.11

SIP session initiation steps.

850 CHAPTER 34 Voice over Internet Protocol

SIP responses follow the familiar three-digit codes used in many other TCP/IP

protocols. The major response categories in SIP follow:

• 1xx Provisional, used for searching, ringing, queuing, and so on

• 2xx Success

• 3xx Redirection, forwarding

• 4xx Server failure

• 5xx Global failure.

SIP even allows PSTN signaling messages (packets) to use the Internet to set

up calls that use the PSTN on both ends, so telephony carriers can send calls

directly over the Internet. This version of SIP is called SIP-T (SIP for Telephony).

MGCP AND MEGACO/H.248

It is one thing to describe a network of media gateways leading to the PSTN (as

in H.323), or a series of servers that relay call setup packets across the Internet,

as in SIP. But these elements do not function independently, despite the fact that

H323 Media gateways and SIP proxy servers are on the customer premises and

on LANs. If VoIP must handle the most general situations with endpoints any-

where on the Internet or PSTN, some type of overall control protocol must be

developed.

That’s what the Media Gateway Control Protocol (MGCP) is for. Despite the

H.323 terminology, MGCP was defined in RFC 2705 as a way to control VoIP

gateways from “external call control elements.” In other words, MGCP allows the

service providers (telephony carriers or ISPs) to control the VoIP aspects of

the customer’s network, whether it uses H.323 or SIP. These control points are

known as call agents, and MGCP only defines how a call agent talks to the media

gateway—not how the call agents talk to each other. Call agent communication

uses H.323 or SIP, so this is not a limitation.

The terminology for all of these signaling protocols is starting to get confus-

ing. Let’s back up and see what we’ve got so far.

Media gateways—The H.323 component that handles all voice bits sent to and

from the “zone” (usually a LAN).

Proxy servers—The SIP components that handle requests for SIP-capable user

agents on the LAN.

Call agents—The MGCP components that control the media gateways and

can do so over the Internet link itself.

But wait, didn’t SIP have a media gateway? No, SIP defines a signaling

framework that can tell you where the gateway is, but doesn’t include that device

in its framework. If you think about it, it all makes sense and all of the pieces are

needed to make VoIP as useful as possible.

The biggest clash is between parts of H.323 and SIP. You don’t need to have

both running on the “terminals” or “user agents,” no matter which terminology

851Protocols for VoIP

you use. However, many vendors are hedging their bets and supporting both

H.323 and SIP right now. The funny thing is that they usually don’t support

MGCP.

How’s that? Well, MGCP was modified into something called Megaco to

make it more palatable to the telephone carriers. Megaco was standardized as

H.248, so the result often appears as Megaco/H.248. The architecture of Megaco/

H.248 is very similar to that of MGCP.

PUTTING IT ALL TOGETHER
How do H.323, SIP, and Megaco/H.248 relate to one another today? Well,

they all have a place in a VoIP network that can place or take calls to and

from the PSTN and handle IP transport of what appear to customers to be

PSTN calls. Figure 34.12 shows the overall architecture of such a converged

VoIP network.

We’ve seen ISDN and SS7 signaling before, and channel-associated signaling

(CAS) is used on aggregate circuits with many voice channels. Pulse code

modulation (PCM) is a common way to carry the voice bits on the PSTN.

Therefore, the “upper” path through the figure describes the signaling, and the

“lower” path shows the “media” channel using RTP and RTCP over the Internet

(or private IP network).

Media
Gateway
Control

(call agent)

Media
Gateway
Control

(call agent)

Media
Gateway

Media
Gateway

PSTN PSTN

SIP, H.323

MGCP,
Megaco/H.248

MGCP,
Megaco/H.248

Voice(media)
using RTP, RTCPSS7, ISDN,

CAS SS7, ISDN,
CAS

PCM Voice PCM Voice

VoiceSignaling

FIGURE 34.12

VoIP converged network architecture showing how VoIP protocols can work together.

852 CHAPTER 34 Voice over Internet Protocol

QUESTIONS FOR READERS

Figure 34.13 shows some of the concepts discussed in this chapter and can be

used to answer the following questions.

1. What are the four types of “voice” carried by VoIP?

2. In the figure, is wincli2 sending (talking) or receiving (listening)?

3. Which UDP port is the client using for the call?

4. Which international standard protocol is used to set up the stream?

5. Which voice coding standard is used for the “data” in the voice packet?

FIGURE 34.13

Frame 282 using RTP captured from a VoIP call.

853Questions for Readers

This page intentionally left blank

List of Acronyms

AA Authoritative Answer

AAAA IPv6 DNS record

ABR Area Border Router

ACD Automatic Call Distribution

ACELP Algebraic-Code-Excited Linear Prediction

ACK Acknowledgment

AD Active Directory, Auto-Discovery

ADM Add-Drop Multiplexer

ADPCM Adaptive Differential Pulse Code Modulation

ADSL Asymmetric Digital Subscriber Loop

AF Address Family

AFI Address Family Identifier (RIP); Authority and Format Identifier

(IS-IS)

AfriNIC African Network Information Center

AH Authentication Header

AIX Advanced Interactive Executive (IBM’s Unix)

AMI Alternate Mark Inversion

ANS Advanced Network Service

ANSI American National Standards Institute

AOL America On-Line

API Application Program Interface

APNIC Asian Pacific Network Information Center

APPC Advanced Program-to-Program Communications

APPN Advanced Peer-to-Peer Networking

ARIN American Registry for Internet Numbers

ARP Address Resolution Protocol

ARPA Advanced Research Projects Agency

AS Autonomous System

ASBR Autonomous System Boundary Router

ASCII American Standard Code for Information Interchange (IA-5)

ASF Apache Software Foundation

ASIC Application Specific Integrated Circuit

ASM Any Source Multicast

ASN.1 Abstract Syntax Notation 1

ASP Active Server Page

AT Advanced Technology

ATM Asynchronous Transfer Mode

ATT Attach segment

AUI Attachment Unit Interface

AUP Acceptable Use Policy

AUX Auxiliary

BBN Bolt, Baranek, and Newman, Inc.

BBS Bulletin Board System

BCH Bose-Chauduri-Hocquenghem

855

BDR Backup Designated Router

BEB Backbone Edge Bridges

BECN Backward Explicit Congestion Notification

BER Bit Error Rate

BGP Border Gateway Protocol

BGP-LS BGP for distributing IGP Link State information

BGP-MP BGP for Multiprotocol

BGP-TE BGP for Traffic Engineering

BIND Berkeley Internet Name Domain

BIOS Basic Input/Output System

B-ISDN Broadband Integrated Services Digital Network

BITNET Because It’s Time Network

BITS Bump in the Stack

BITW Bump in the Wire

B-MAC Backbone MAC

BMS Bare Metal Server

BOOTP Bootstrap Protocol

BPSK Binary Phase Shift Keying

BRI Basic Rate Interface

BSD Berkeley Systems (or Software) Distribution

BUM Broadcast, Unknown, Multicast

CA Certificate Authority

CaaS Communications as a Service

CABS Carrier Access Billing System

CAR Committed Access Rate

CAS Channel Associated Signaling

CBC Cipher Block Chaining

CBGP Confederation Border Gateway Protocol

CBT Core-Based Tree

CCITT Consultative Committee on International Telegraphy and Telephony

(French original)

CCS Common Channel Signaling

CD Call Disconnect; Collision Detection

CDMA Code Division Multiple Access

CDR Call Detail Record

CE Customer Edge

CED Called Station Identification

CELP Code Excited Linear Prediction

CERN European Council for Nuclear Research

CGI Common Gateway Interface

CHAP Challenge Handshake Authentication Protocol

CIA Central Intelligence Agency

CIDR Classless Interdomain Routing

CIP Connector Interface Panel

CIR Committed Information Rate

CIX Commercial Internet Exchange

CLEC Competitive Local Exchange Carrier

CLI Command Line Interface

856 List of Acronyms

CLNP Connectionless Network Protocol

CLNS Connectionless Network Service

CLP Cell Loss Priority

CLV Code/Length/Value

C-MAC Customer MAC

CMIP Common Management Information Protocol

CMIS Common Management Information Services

CMOT Common Management Information Services and Protocol Over TCP/IP

CNAME Canonical Name

CNG Calling Number

CO Central Office

CoS Class of Service

CPU Central Processing Unit

CRC Cyclical Redundancy Check

CRL Certificate Revocation List

CRM Customer Relationship Management

CS Call Status

CSLIP Compressed Serial Line Interface Protocol

CSMA Carrier Sense Multiple Access

CSNP Complete Sequence Number PDU

CSPF Constrained Shortest Path First

CSR Certificate Signing Request

CSRC Contributing Source Identifier

CSRF Cross-site Request Forgery

CSU Channel Service Unit

CTI Computer Telephony Integration

CWDM Coarse Wavelength Division Multiplexing

DAM Diagnostic Acceptability Measure

DARPA Defense Advanced Research Project Agency

DC Direct Current; Demand Circuit; Data Center

DCA Defense Communication Agency

DCE Data Circuit-terminating Equipment; Distributed Computing

Environment

DCI Data Center Interconnect

DCTCP Data Center TCP

DD Database Description

DDDS Dynamic Delegation Discovery System

DDN Defense Data Network

DDOS Distributed Denial of Service

DE Discard Eligible

DES Data Encryption Standard

DF Don’t Fragment; Designated Forwarder

DHAAD Dynamic Home Agent Address Discovery

DHCP Dynamic Host Configuration Protocol

DIS Designated Intermediate System

DIX Digital, Intel, and Xerox Ethernet

DMA Direct Memory Access

DNA Digital Network Architecture

857List of Acronyms

DLCI Data Link Connection Identifier

DLL Dynamic Link Library

DLP Data Link Protocol

DM Delta Modulation

DM Dense Mode

DME Distributed Management Environment

DMZ Demilitarized Zone

DNS Domain Name System

DNSSEC Domain Name System Security

DoD Department of Defense

DOS Disk Operating System; Denial of Service

DPCM Differential Pulse Code Modulation

DPI Deep Packet Inspection

DR Designated Router

DRAM Dynamic Random Access Memory

DRT Diagnostic Rhyme Test

DS Digital Signal

DSAP Destination Service Access Point

DSL Digital Subscriber Line

DSP Digital Signal Processor

DSU Digital Service Unit

DTE Data Terminal Equipment

DTMF Dual Tone Multifrequency

DVMRP Distance Vector Multicast Routing Protocol

DWDM Dense Wavelength Division Multiplexing

EA External Attributes; Extended Address

EBGP External Border Gateway Protocol

ECC Error Correction Code

ECM Error Correction Mode

ECMP Equal Cost Multipath

ECN Explicit Congestion Notification

EFEC Enhanced Forward Error Correction

EGP Exterior Gateway Protocol

EIGRP Enhanced Interior Gateway Routing Protocol

EIR Excess Information Rate

EoF End of File

EoR End of Record

ES End System; Ethernet Segment

ESI Ethernet Segment Identifier

ESMTP Extensions to Simple Mail Transfer Protocol

ESF Extended Superframe Format

ESP Encapsulating Security Payload

EUI Extended Unique Identifier

EULA End-User License Agreement

EVI Ethernet VPN Instance

EVPN Ethernet Virtual Private Network

EXEC Executive (mode)

FA Foreign Agent

858 List of Acronyms

FAQ Frequently Asked Questions

FCC Federal Communication Commission

FCS Frame Check Sequence

FBD Forwarding Database

FDDI Fiber Distributed Data Interface

FDM Frequency Division Multiplexing

FE Fast Ethernet

FEB Forwarding Engine Board

FEC Forward Error Correction, Fast EtherChannel

FECN Forward Explicit Congestion Notification

FEIP Fast Ethernet Interface Processor

FIN Final segment

FIX Federal Internet Exchange

FM Frequency Modulation

FPC Flexible PIC Concentrator

FQDN Fully Qualified Domain Name

FRAD Frame Relay Access Device

FT Forwarding Table

FTAM File Transfer, Access, and Management

FTP File Transfer Protocol

GBE Gigabit Ethernet

GE Gigabit Ethernet

GEO Geosynchronous Earth Orbit

GFC Generic Flow Control

GFEC Generic Forward Error Correction

GGP Gateway-to-Gateway Protocol

GIF Graphics Interchange Format

GIP Gateway Interface Protocol

GLP Gateway Location Protocol

GPS Global Positioning System

GRE Generic Routing Encapsulation

GSM Global System for Mobile

GSTN Global Switched Telephone Network

GTLD Generic Top Level Domain

GUI Graphical User Interface

HA Home Agent

HDLC High-Level Datalink Control

HEC Header Error Control

HF High Frequency

HG-FEC High Gain Forward Error Correction

HMAC Hashed Message Authentication Check

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IA Implementation Agreement; International Alphabet (ASCII is IA.5);

Inter-Area

IaaS Infrastructure as a Service

IAB Internet Activities Board; Internet Architecture Board

IANA Internet Assigned Numbers Authority

859List of Acronyms

ICANN Internet Corporation for Assigned Names and Numbers

ICMP Internet Control Message Protocol

ICV Integrity Check Value

ID Identifier

IDNS Internationalization of the Domain Name Space

IDP Intrusion Detection and Prevention

IDRP Inter-domain Routing Protocol

IEEE Institute of Electrical and Electronics Engineers

IEN Internet Engineering Notes

IESG Internet Engineering Steering Group

IETF Internet Engineering Task Force

IF-MAP Interface for Metadata Access Points

IGMP Internet Group Management Protocol

IGP Interior Gateway Protocol

IGRP Interior Gateway Routing Protocol

IKE Internet Key Exchange

ILEC Incumbent Local Exchange Carrier

IMAP Internet Mail Access Program

IMP Interface Message Processor

IN Intelligent Network

InARP Inverse Address Resolution Protocol

IOS Internetwork Operating System

IP Internet Protocol

IPLS IP-only LAN-like Service

IPS Intrusion Prevention Services

IPSec IP Security

IRC Internet Relay Chat

IRR Internet Routing Registry

IRS Internal Revenue Service (United States)

IRTF Internet Research Task Force

IS Information Systems

ISAKMP Internet Security Association and Key Management Protocol

ISATAP Intra-site Automatic Tunnel Addressing Protocol

ISBN International Standard Book Number

ISDN Integrated Services Digital Network

IS-IS Intermediate System to Intermediate System

ISN Initial Sequence Number

ISO International Organization for Standardization (ISO means “equal”)

ISP Internet Service Provider

IT Information Technology

ITU International Telecommunication Union

ITSP Internet Telephony Service Provider

ITU International Telecommunications Union

IVR Interactive Voice Response

JPEG Joint Photographic Experts’ Group

KB Kilobyte

L2F Layer 2 Forwarding

L2TP Layer 2 Tunneling Protocol

860 List of Acronyms

L2VPN Layer 2 Virtual Private Network

L3VPN Layer 3 Virtual Private Network

LAC L2TP Access Concentrator

LACP Link Aggregation Control Protocol

LAG Link Aggregation Group

LAN Local Area Network

LAPB Link Access Procedure Balanced

LAPD Link Access Procedure on the D-channel

LATA Local Access and Transport Area

LCD Liquid Crystal Diode

LCP Link Control Protocol

LDAP Lightweight Directory Access Protocol

LDP Label Distribution Protocol

LDPC Low Density Parity Check

LEC Local Exchange Carrier

LLC Logical Link Control

LLDP Link Layer Discovery Protocol

LNS L2TP Network Server

LOC Location

LPC Linear Predictive Coding

LS Link State

LSA Link State Advertisement

LSB Least Significant Bit (Byte)

LSP Label Switched Path; Link State PDU

MAC Media Access Control

MAC-VRF Media Access Control Virtual Routing and Forwarding

MAN Metropolitan Area Network

MAU Media Access Unit

MB Megabytes

MBGP Multiprotocol Border Gateway Protocol

MBONE Multicast Backbone

MC Multipoint Controller; Multicast

MCS Miscellaneous Control System

MCU Multipoint Control Unit

MD5 Message Digest 5

MED Multi-Exit Discriminator

MF More Fragments

MGCP Multimedia Gateway Control Protocol

MIB Management Information Base

MIME Multipurpose Internet Mail Extensions

M-ISIS Multicast IS-IS

MLD Multicast Listener Discovery

MN Mobile Node

MOSPF Multicast OSPF

MPBGP Multiprotocol BGP (sometimes)

MPLS Multiprotocol Label Switching

MPLSoGRE Multiprotocol Label Switching Over Generic Routing Encapsulation

MPLSoUDP Multiprotocol Label Switching Over User Datagram Protocol

861List of Acronyms

MSDP Multicast Source Discovery Protocol

MSS Maximum Segment Size

MTA Mail Transfer Agent

MTU Maximum Transmission Unit

MUA Mail User Agent

MX Mail Exchange

NaaS Network as a Service

NAP Network Access Point

NAPT Network Address Port Translation

NAT Network Address Translation

NBMA Non-Broadcast, Multi-Access

NCP Network Control Protocol

NCSA National Center for Supercomputing Applications

ND Neighbor Discovery

NDP Neighbor Discovery Protocol

NET Network Entity Title

NFS Network File System

NFV Network Functions Virtualization

NIC Network Interface Card; Network Information Center

NID Network Intrusion Detection

NIST National Institute of Standards and Technology

NLA Next Level Aggregator

NLRI Network Layer Reachability Information

NOC Network Operations Center

NoSQL Not only Structured Query Language

NSAP Network Service Attachment Point

NSF National Science Foundation

NSP Network Service Provider

NSSA Not-So-Stubby-Area

NVO3 Network Virtualization Over (Layer) 3

NVRAM Non-Volatile Random Access Memory

NVT Network Virtual Terminal

OACK Option Acknowledgment

OAM&P Operations, Administration, Maintenance & Provisioning

OC Optical Carrier

ODU Optical Data Unit

OESS Open Exchange Software Suite

OFDM Orthogonal Frequency Division Multiplexing

OL OverLoad

ONC Open Network Computing

ONF Open Networking Foundation

ORR Optimal Route Reflection

OSI Open Systems Interconnection

OSI-RM Open Systems Interconnection Reference Model

OSPF Open Shortest Path First

OTN Optical Transport Network

OUI Organizationally Unique Identifier

OVSDB Open vSwitch Data Base

862 List of Acronyms

P Provider

PaaS Platform as a Service

PAC PPTP Access Concentrator

PAM Pulse Amplitude Modulation

PARC Palo Alto Research Center

PAT Port Address Translation

PBB Provider Backbone

PC Personal Computer

PCG PFE Clock Generator

PCI Peripheral Component Interconnect

PCM Pulse Code Modulation

PD Packet Director

PDA Personal Digital Assistant

PDU Protocol Data Unit

PE Provider Edge

PFE Packet Forwarding Engine

PGM Pretty Good Multicast

PHP Penultimate Hop Popping

PIC Physical Interface Card

PIM Protocol Independent Multicast

PKI Public Key Infrastructure

PLCP Physical Layer Convergence Protocol

PLI Payload Length Indicator

PLP Packet Layer Protocol

PNS PPTP Network Server

POP Point of Presence/Post Office Protocol

POS Packet over SONET/SDH

PPDU Physical Protocol Data Unit

PPP Point-to-Point Protocol

PPPoE PPP over Ethernet

PPTP Point-to-Point Tunneling Protocol

PSDU Physical Layer Service Data Unit

PSH Push

PSNP Partial Sequence Number PDU

PSTN Public Switched Telephone Network

PTI Payload Type Indicator

PTR Pointer

PW Pseudo-Wire

QoS Quality of Service

QR Query Response

RA Routing Arbiter/Recursion Available (DNS)

RADIUS Remote Access Dial-In User Service

RAM Random Access Memory

RARP Reverse Address Resolution Protocol

RAS Registration, Admission, and Status

RD Recursion Desired

RE Routing Engine or Regular Expression

REST Representational State Transfer

863List of Acronyms

RFC Request for Comment

RIB Routing Information Base

RIP Routing Information Protocol

RIPE NCC Reséaux IP Européens Network Coordination Center

RISC Reduced Instruction Set Computing

ROMMON Read-Only Memory Monitor

RMON Remote Monitor

RP Rendezvous Point (PIM)/Responsible Person (DNS)

RPC Remote Procedure Call

RPF Reverse Oath Forwarding

RPT Rendezvous Point Tree

RQ Request

RR Route Reflector (BGP)/Resource Records (DNS)

RRQ Read Request

RS Reed-Solomon

RST Reset

RSVP Resource Reservation Protocol

RT Routing Table

RTBH Remotely Triggered Black Hole

RTCP Real-Time Control Protocol

RTMP Routing Table Maintenance Protocol

RTP Real-time Protocol or Reliable Transport Protocol (Cisco)

RTT Round Trip Time

SA Security Association

SaaS Software as a Service

SAFI Subsequent Address Family Identifier

SAP Service Access Point/Session Announcement Protocol

SASL Simple Authentication and Security Layer

SCB System Control Board (M40)

scp secure copy

SD-FEC Soft Decision Forward Error Correction

SDH Synchronous Digital Hierarchy

SDK Software Development Kit

SDLC Synchronous Data Link Control

SDN Software Defined Network

SDP Session Description Protocol

SDU Service Data Unit

SECDED Single Error Correction Double Error Detection

SFM Switching and Forwarding Module (M160)

SFTP Secure File Transfer Protocol

SGML Standard Generalized Markup Language

SHA Secure Hash Algorithm

SIG Signature

SIP Session Initiation Protocol

SKA Sender Keeps All

SKIP Simple Key Management for Internet Protocols

SLIP Serial Line Interface Protocol

SM Sparse Mode

864 List of Acronyms

SMDS Switched Multimegabit Data Services

SMI Structure of Management Information

S/MIME Multipurpose Internet Mail Extensions Security

SMTP Simple Mail Transfer Protocol

SNA Systems Network Architecture

SNAP Sub-Network Access Protocol

SNMP Simple Network Management Protocol

SNP Sequence Number PDU

SNPA Subnetwork Point of Attachment

SOHO Small Office/Home Office

SONET Synchronous Optical Network

SPF Shortest Path First

SPI Security Parameter Index

SPT Shortest Path tree

SQL Structured Query Language

SR-IOV Single Root Input-Output Virtualization

SRV Services

SS7 Signaling System 7

SSAP Source Service Access Point

SSB System Switching Board (M20)

SSH Secure Shell

SSM Source-Specific Multicast

SSRC Synchronization Source Identifier

STP Signaling Transfer Point

SVL Shared VLAN Learning

SYN Synchronize

TACACS1 Terminal Access Controller Access Control Systems Plus

TC Truncated

TCP Transmission Control Protocol

TE Traffic Engineering

TFTP Trivial File Transfer Protocol

TFD Traffic Flow Detection

TGZ tar and gzip

TLA Top Level Aggregator

TLI Transport Layer Interface

TLV Type/Length/Value

TLS Transparent LAN Service

TOR Top of Rack

ToS Type of Service

TPC Turbo Product Codes

TRILL Transparent Connection of Lots of Links (RFC6325)

TTL Time To Live

TTY Teletype

TXT Text

UA User Agent

UAC User Agent Client

UAS User Agent Server

UCW Uncorrected Words

865List of Acronyms

UDP User Datagram Protocol

UI Unnumbered Information

UIUC University of Illinois Urbana/Champaign

URG Urgent

URI Uniform Resource Identifier

URL Universal (or Uniform) Resource Locator

URN Uniform Resource Name

UTP Unshielded Twisted Pair

VCI Virtual Channel Identifier

VID VLAN Identifier

VLAN Virtual Local Area Network

VLSM Variable-Length Subnet Masking

VM Virtual Machine

VNF Virtualized Network Function

VNI or VNID VXLAN Network Identifier

VNP Virtual Network Provider

VoIP Voice over IP

VPI Virtual Path Identifier

VPLS Virtual Private LAN Service

VPN Virtual Private Network

VPSN Virtual Private Switched Network

VPWS Virtual Private Wire Service

VRF Virtual Routing and Forwarding table

VTEP Virtual Tunnel End Point

VTY Virtual Teletype

VXLAN Virtual Extensible Local Area Network

WAN Wide Area Network

WDM Wavelength Division Multiplexing

WEP Wired Equivalent Privacy

WiFi Wireless Fiber/Wireless Fidelity

WRQ Write Request

XaaS Anything (“X”) as a Service

XDR External Data Representation

XML eXtensible Markup Language

XMPP Extensible Messaging and Presence Protocols

XOR Exclusive OR

XSS Cross Site Scripting

866 List of Acronyms

Bibliography

BOOKS
Comer, Douglas E., The Internet Book, 4th ed., Pearson/Prentice Hall, 2007.

Comer, Douglas E., Internetworking with TCP/IP, Volume I: Principles, Protocols, and

Architectures, 5th ed., Prentice Hall, 2006.

Comer, Douglas E., and David L. Stevens, Internetworking with TCP/IP, Volume II:

Design, Implementation, and Internals, Prentice Hall, 1991.

Comer, Douglas E., and David L. Stevens, Internetworking with TCP/IP, Volume III:

Client�Server Programming and Applications, Prentice Hall, 1993.

Costales, Bryan, and Eric Allman, Sendmail, 3rd ed., O’Reilly, 2002.

Donahoo, Michael J., and Kenneth L. Calvert, TCP/IP Sockets in C: A Practical Guide for

Programmers, Morgan Kaufmann, 2001.

Doraswamy, Naganand, and Dan Harkins, IPSec, Prentice Hall PTR, 1999.

Doyle, Jeff, OSPF and IS�IS, Addison-Wesley, 2006.

Doyle, Jeff, Routing TCP/IP, Volume I, Cisco Press, Macmillan, 1998.

Doyle, Jeff, and Jennifer DeHaven Carroll, Routing TCP/IP, Volume II, Cisco Press,

Macmillan, 2001.

Forouzan, Behrouz A., TCP/IP Protocol Suite, 3rd ed., McGraw-Hill, 2006.

Goralski, Walter, Juniper and Cisco Routing, Wiley, 2002.

Goralski, Walter, ADSL and DSL Technologies, 2nd ed., McGraw-Hill, 2000.

Goralski, Walter, Introduction to ATM Networking, McGraw-Hill, 1995.

Goralski, Walter, SONET/SDH, 3rd ed., McGraw-Hill/Osborne, 2002.

Gredler, Hannes, and Walter Goralski, The Complete IS�IS Routing Protocol, Springer,

2005.

Greene, Barry Raveendran, and Philip, Smith, Cisco ISP Essentials, Cisco Press, 2002.

Hall, Eric A., Internet Core Protocols, O’Reilly, 2000.

Huston, Geoff, ISP Survival Guide, Wiley, 1999.

Kozierok, Charles M., The TCP/IP Guide, No Starch Press, 2005.

Kumar, Vineet, and Markku Korpi, and Senthil Sengodan, IP Telephony with H.323,

Wiley, 2001.

Kurose, James F., and Keith W. Ross, Computer Networking: A Top-Down Approach

Featuring the Internet, 3rd ed., Pearson Addison-Wesley, 2005.

Loshin, Pete, Big Book of Border Gateway Protocol (BGP) RFCs, Morgan Kaufmann,

2000.

Lui, Cricket, and Paul Albitz, DNS and BIND, 5th ed., O’Reilly, 2006.

Mishra, Charit, Mastering Wireshark, Packt Publishing, Birmingham-Mumbai, 2016.

Naugle, Matthew, Illustrated TCP/IP: A Graphic Guide to the Protocol Suite, Wiley, 1999.

Nemeth, Evi, Garth Snyder, Scott Seebass, Trent R. Hein, et al., UNIX System

Administration Handbook, Prentice Hall PTR, 2001.

Perlman, Radia, Interconnections, 2nd ed., Addison-Wesley, 2000.

Pullen, J. Mark, Understanding Internet Protocols through Hands-On Programming,

Wiley, 2000.

Rhoton, John, Programmer’s Guide to Internet Mail, Digital Press, 2000.

867

Ruvalcaba, Zak, Build Your Own ASP.NET Website Using C# and VB.NET, Sitepoint,

Victoria, Australia, 2004.

Shah, Stave, and Soyinka Wale, Linux Administration: A Beginner’s Guide, 4th ed.,

McGraw-Hill/ Osborne, 2005.

Stallings, William, SNMP, SNMPv2, and CMIP, Addison-Wesley, 1993.

Stevens, W. Richard, TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, 1994.

Stevens, W. Richard, TCP/IP Illustrated, Volume 2: The Implementation, Addison-Wesley,

1995.

Stevens, W. Richard, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP,

and the UNIX Domain Protocols, Addison-Wesley, 1996.

Stewart, John W. III, BGP4, Addison-Wesley 1999.

Tanenbaum, Andrew S., Computer Networks, 4th ed., Prentice Hall PTR, 2003.

Wood, David, Programming Internet Email, O’Reilly, 1999.

Zeltserman, David, A Practical Guide to SNMPv3 and Network Management, Prentice

Hall, 1999.

RFCS AND INTERNET DRAFTS
All RFCs can be obtained from www.ietf.org/rfc.html

Internet drafts are available at www.ietf.org/ID.html

An interesting archive of expired drafts can be found at www.watersprings.org/pub/id/

index-all.html

RELATED STANDARDS DOCUMENTS
American National Standards Institute, Inc. (ANSI): www.ansi.org; 11 West 42nd Street,

New York, NY 10036

ITU-T (AND CCITT) RECOMMENDATIONS
International Telecommunication Union General Secretariat, Sales Section: www.itu.int;

Place des Nations, CH1211, Gweneva 20, Switzerland; 141 22 730 5285

ETSI, ISO, AND IEEE DOCUMENTS
ETSI Infocentre—Interprets ITU-T standards for application in the European telecommuni-

cations environment. The website for downloads or purchase on paper or CD-ROM:

www.etsi.org; 06921 Sophia Antipolis, Cedex, France; 133(0)4 92 42 22

American National Standards Institute, Inc.: www.ansi.org; 1430 Broadway, New York,

NY 10018

IEEE Standards Publications: www.ieee.org; (800) 678-IEEE or (908) 981-1393

868 Bibliography

http://www.ietf.org/rfc.html
http://www.ietf.org/ID.html
http://www.watersprings.org/pub/id/index-all.html
http://www.watersprings.org/pub/id/index-all.html
http://www.ansi.org
http://www.itu.int
http://www.etsi.org
http://www.ansi.org
http://www.ieee.org

Index

Note: Page numbers followed by “f,” “t,” and “b” refer to figures, tables and boxes, respectively.

6to4 tunnels, 286

10Base2, 86

10G-base-er (extended range), 86

100BaseT, 86

Ethernet LANs, 63

A
Abrupt close, 320

Access charges, 368

Access control, 33�34

Access points (APs), 99

Active open, 56

Active Service Pages (ASP), 664, 672

installation, 664

Adaptive Service Physical Interface Card

(AS PIC), 796

interface, 796

internal interface supported by, 816

traffic match-up, 796

Add-drop multiplexers (ADMs), 107

Address Family Identifier (AFI), 439

Address resolution, 37

ICMPv6, 184�185

IPv6, 184�185, 185f, 191�194

Neighbor Discovery, 194f

Address Resolution Protocol (ARP), 51, 58, 175,

197, 544. See also ARP cache; ARP

messages

arriving request, 182�183

ATM (ATMARP), 178

example operation, 187�188

exchange example, 189f

host to host, 178

host to router, 178

Illustrated Network, 176f

InARP, 178, 191

IPv6 and, 191�194

LANs and, 178�185

layers and, 175b

Proxy, 189�190

RARP, 178, 190

request and reply process, 188

results, 175�178

router to host, 179

router to router, 179

scenarios illustration, 179f

tables, 178

variations, 188�191

WANs and, 190�191

Windows XP reply capture, 182

Administratively scoped addresses, 463

AfriNIC (African Network Information Center),

169

Agent/manager model, 715

Agents

object values, 714

proxy, 715

SNMP message/command acceptance, 726

software, 715, 720

SSH, 767

AH. See Authentication header (AH)

Aliasing, 544, 560

All-active multi-homing, 542�544

Alternate host address message, 233

American National Standards Institute (ANSI), 17

American Standard Code for Information

Interchange (ASCII), 17

Anonymous FTP, 622

Anycast

addresses, 146

one-to-many relationship, 592

Any-Source Multicast (ASM), 475

Apache Web server software, 664, 665f

capture, 666f, 684f

OpenSSL, 688

SSL test certificate, 688f

“success” page, 666f

APNIC (Asian Pacific Network Information

Center), 168

Application layer, 30, 41�42, 60. See also TCP/IP

layers

interface, 52

tasks, 41

Application programming interfaces (APIs), 52

Applications

layers and, 331�334

multicast, 462�463

TCP/IP, 11, 41, 43�44

UDP, 59�60

869

Applied Micro Circuits Corporation (AMCC), 133

ARIN (American Registry for Internet Numbers),

168

ARP cache, 175�178, 188. See also Address

Resolution Protocol (ARP)

entry deletion, 183

Linux display of, 183

Windows XP display of, 184

ARP messages, 185�187. See also Address

Resolution Protocol (ARP)

fields illustration, 186

Hardware Size field, 186

Operation field, 187

Protocol Size field, 187

Sender’s Ethernet Address field, 187

Sender’s IP Address field, 187

Target’s Ethernet Address field, 187

Target’s IP Address field, 187

Type of Hardware field, 186

Type of Protocol field, 186

uses, 195f

ASN.1 (Abstract Syntax Notation version 1), 716

Asymmetric DSL (ADSL), 95t

Asynchronous transfer mode (ATM), 18, 71, 110,

492, 497�499, 731

ATMARP, 178

cell header, 497�498

cell relay, 497

connection identifier, 498

as international standard, 497

logical links, 89

switches, 500

VCI, 191

VPI, 191

Attributes, BGP, 423�425. See also Border

Gateway Protocol (BGP)

AGGREGATOR, 424

AS_PATH, 423�424

ATOMIC_AGGREGATE, 424

CLUSTER_LIST, 424�425

COMMUNITY, 424

discretionary, 423

list of, 423t

LOCAL_PREF, 424

mandatory, 423

MULTI_EXIT_DISC, 424

NEXT_HOP, 424

nontransitive, 423�425

ORIGIN, 423

ORIGINATOR_ID, 424�425

transitive, 423�425

type format, 428f

Authentication, 693�694

RIPv2, 391�392

servers, 100, 685

SMTP, 647

SSH, 765

SSH-AUTH, 772

user, 685

Authentication header (AH), 813, 823�824

Authentication Data field, 824

fields, 824

ICV, 823

Next Header field, 824

packet formats, 823f

Payload Length field, 824

Reserved field, 824

Sequence Number field, 824

SPI field, 824

Authoritative servers, 591

Automatic IP addressing, 142b

Automatic tunneling, 285

Autonomous system numbers (ASNs),

378b

Autonomous systems (ASs), 363�364

border routers (ASBRs), 364, 398, 399f, 400,

432

multihomed, 419

RIPng and, 375

router connectivity, 363�364

Auxiliary port, 279

Avaya VoIP software, 836

B
Backbone MACs (B-MACs), 540

Backbone routers, 276, 365

architecture, 276�277

running RIPng, 381

Backdoor links, 399�400

Backup Designated Router (BDR), 401

Bandwidth

in protocol evolution, 3�6

QOS, 357

Bare metal programming, 337

Bare metal server (BMS), 731

Base64 encoding, 648

Beacon frames, 99

Berkeley Internet Name Domain (BIND), 602

Best match, 282

BGP/MPLS IP VPN, 513

BGP-TE

default credibility values for, 453�454

Bidirectional NAT, 791�792. See also Network

address translation (NAT)

DNS procedure, 792

illustrated, 792f

static mapping, 791

870 Index

Binary packet protocol, 770

Bindings, 175�178

Bit error rate (BER) statistics, 107, 112

Bit synchronization, 32

Blades, 274

BOOTP, 563, 572�576. See also Dynamic Host

Configuration Protocol (DHCP)

client broadcast, 572

DHCP message comparison, 585f

flexibility, 573

implementation, 573

messages, 574�575

relay agents, 569, 575

requests, 573

servers, 563, 573f

vendor-specific area options, 575�576

Bootstrap programs, 276

Border Gateway Protocol (BGP), 367�368, 409

applications, 432

ASNs, 447

attributes, 423�425

birth of, 417�418

AS border routers (ASBRs), 432

BGP-LS, configuring, 455�457

configuring, 412�414

default behavior, 413

and denial-of-service (DDoS), 436�439

distributing link-state information with,

450�455

EBGP, 412, 419�421

expanded uses for, 431

extended communities, 417�418, 440

and flow specification, 435�441

IBGP, 412, 419�421

Identifier, 420

Illustrated Network, 410f

import policy, 415

Internet and, 416�417

Keepalive messages, 426

limitations, 451

MBGP, 422, 469�470, 506

message header, 426f

message types, 426

MPLS-based EVPNs, 537

Multihop, 422

next hops, 420

NLRI, 412

Notification messages, 426, 429

Open messages, 426�427

optimal route reflection (ORR), 432�435

as path vector protocol, 418�419

route advertisement, 419

router reflector (RR), 432

routing policies, 414�416, 425

as routing protocol, 409�416

scaling, 425

session growth, 425

speakers, 419

synchronizing, 421

types of, 421�422

universally reachable address level, 419

Update messages, 426�429

in very large data center, 441�449

Border routers, 366�367

AS, 398

EGP, 417

Bose�Chauduri�Hocquenghem (BCH) codes,

124�125

Branches, 466

Bridges, 63�64

connecting TCP/IP hosts, 64

illustrated use, 69f

operation, 61

as protocol independent devices, 65

spanning tree, 64

Broadband ISDN (B-ISDN), 497

Broadcast, Unknown, and Multicast (BUM) traffic,

536

Broadcast domains, 58, 62, 146

collision and, 62

Broadcast/multicast addresses, 146

Broadcasts, VLANs for cutting down, 67�68

Bsdclient, 532

Burst errors and interleaving, 123�124

Bus/broadcast topology, 32

C
Call agents, 851

Captive portal, 99�100

Carrier-sense multiple access with collision

avoidance (CSMA/CA), 100

Carrier-sense multiple access with collision

detection (CSMA/CD), 86, 100

Cascading style sheets (CSSs), 672

CE6 router, 532

Cell relay, 497

Certificate authorities (CAs), 693

Certificate revocation lists (CRLs), 693

Certificate singing request (CSR), 702

Certificates

Apache SSL test, 688f

Details tab, 689�690

fields, 689

private key, 690

public key, 690

self-signed, 693

site, 688

871Index

Certificates (Continued)

SSL and, 702�703

tests, 688

viewing, 688

Chained headers, 154�155

Challenge Handshake Authentication Protocol

(CHAP), 521

Channel-associated signaling (CAS), 852

Checksum, 294, 296

Chunked encoding, 675

Cipher Block Chaining (CBC), 699

Cipher Suites, 697, 699

Class of service (CoS), 357�358

Classful IPv4 addresses, 143�144, 148f. See also

IPv4 addresses

concepts, 149

default masks and, 158t

illustrated, 148

Classless interdomain routing (CIDR), 147,

162�166

address grouping under, 163t

aggregation, 165

contiguous IP addresses, 162

in operation, 165f

prefixes and addressing, 164t, 165

RFC, 162

Classless IP addresses, 149�150

Clear text encryption, 766

Clients, 7�8

BOOTP broadcast, 572�576

DNS, 567

email, 637

FTP, 334, 617, 622, 633

SSH, 766

VoIP, 836

Client�server model, 55

application implementation, 56

peer-to-peer model versus,, 55b

TCP/IP layers and, 55�57

CLOS networks, 441�444

folded, 444f

ports and stages in, 442

Cloud bursting, 740

Cloud computing and networking, defined,

732�734

Cloud computing service models

as basis for XaaS, 735f

infrastructure as a service (IAAS), 735�736

measured service, 734

models, 738�740

NFV, 748�753

on-demand self-service, 734

platform as a service (PaaS), 736�737

rapid elasticity, 734

resource pooling, 734

SDNs, 740�742

and security, 755�756

service chaining, 742�743

software as a service (SaaS), 737�738

and TCP/IP, 753�755

VLANs, 736

VXLANs, 736

wide range of network access, 734

Cloud concepts, 731

Cluster ID, 432

COBOL, 337

Collocation facilities, 364�365

Command-line interface (CLI), 8, 12�13

Common Management Information Services/

Common Management Information

Protocol (CMIS/CMIP), 707�710

Communications

layers, 23

layers summary, 45f

termination of, 16

Community cloud, 739

Community strings, 726

Confederation BGP, 422

Confederations, 367

Configuration

BGP groups, 413

for DHCP use, 569

multipoint, 32

physical layer, 31�32

point-to-point, 32

SSH files, 767

Configured tunneling, 284

Congestion control, 305

TCP, 322�323

UDP, 305

Connection control, 40

ConnectionLess Network Protocol (CLNP)

packets, 403

Connectionless networks, 355�358

comparison, 355t

QOS, 356�358

Connection-oriented networks, 355�358

comparison, 355t

QOS, 356�358

Connections, 307, 354

closing, 319�320

control, 621, 626

data, 625�626

data transfer, 317�319

establishment, 316�317

FTP, 622, 625�626

maximum segment size (MSS), 314

on-demand, 307

872 Index

permanent, 307

procedures, 315

three-way handshake, 314

Console port, 279

Constrained path LSPs, 505

Constrained shortest path first (CSPF), 457

Content distribution networks (CDNs), 462

Contrail, 746�747

analytics nodes, 747

architecture, 746f

compute nodes, 747

configuration nodes, 747

control nodes, 747

gateway nodes, 747

node types, 747

service nodes, 747

standard protocols, 747�748

Contributing source identifiers (CSRC), 845

Control connection, FTP

in directory listing, 625

FTP model, 625f

setup, 622

Control plane route leaking, 743

Convergence, 493�494

desire for, 489

on Metro Ethernet links, 493

on TCP/IP, 499�500

Cookies, 672, 682�683

issues, 683

screening/rejecting, 683

third-party, 683

as Web state management, 682�683

in Windows, 682�683

Core-based trees (CBT), 475

Cortina Systems, 133

CPU chips, 274

Cross-site Request Forgery (CSRF), 756

Cross-site scripting (XSS), 756

CS packets, 838

Customer Edge device, 536

Customer edge routers, 47

Customer MACs (C-MACs), 540

Customer-edge (CE) routers, 9, 524

CE0, 816

CE6, 819

Cyclic redundancy check (CRC), 103

Cyclical codes, 125

Cyclical redundancy check (CRC), 33

Cyclical redundancy check (CRC-16), 132

D
Data center, 324�326

BGP in, 441�449

as CLOS networks, 441�444

example, 447f, 450f

layer 2 and layer 3 in, 444�445

re-using ASNs, 448f

Data center interconnect (DCI), 548

EVPN with VXLAN for, 558f

Data connection, FTP, 625. See also File Transfer

Protocol (FTP)

active mode, 626�628

activity on, 626

FTP model, 625f

illustrated, 627f

passive mode, 626�628

Data Encryption Standard (DES), 699

Data Link Connection Identifier (DLCI), 191,

495�496, 495f

Data link layer, 30, 32�35, 84�85. See also TCP/

IP layers

forwarding, 35

frames and, 84

functions, 33

illustrated, 33f

Data rate, 32

Data transfer

connections, 317�319

FTP, 625�626

SSL, 699

TCP, 317�319

Data-center-wide Layer Lan, 444�445

Datagram sockets, 336

Datagrams, 55�56, 197, 289. See also User

Datagram Protocol (UDP)

conversion errors, 235

De facto standards, 17

De jure standards, 16�17

Dead routers, 245

Decryption, 695�696

Deep inspection, 809

Default gateways, 264

Delayed duplicate, 319

Demultiplexing, 331

Denial-of-service (DDoS)

attack, 437, 437f

BGP and, 436�439

Dense wavelength division multiplexing (DWDM),

107�108

Dense-mode multicast, 467

Designated forwarder (DF), 542�544

Designated intermediate system (DIS), 406

Designated Router (DR), 401

Destination hosts, 260�261

DHCPv6, 583. See also Dynamic Host

Configuration Protocol (DHCP)

operation, 585

873Index

DHCPv6 (Continued)

reasons for use, 583

router advertisements and, 584

servers, 585

Dialog controllers, 42

Differentiate Services Code Point

(DSCP), 201

Diffie-Hellman, 770�771

pocket calculator, 770�771

SSL use, 697

Digital signature standard (DSS), 769�770

Digital signatures, 692, 696

Digital subscriber line (DSL), 7�8, 731�732

access multiplexer DSLAM, 79, 92�94

ADSL, 95t

encapsulation, 92�93

evolution of, 89�94

forms of, 93�94

HDSL, 95t

as ISDN extension, 93

ISDN (IDSL), 95t

link setup screen, 80f

links, 7, 79�81

Lite (G.Lite), 95t

modulation techniques, 94

PPP and, 85, 90�91

protocol stacks, 93

router log table, 81t

routers, 79, 359b, 793

symmetric (SDSL), 95t

types of, 95t

VDSL, 95t

xDSL, 93

Dijkstra algorithm, 396

Direct delivery, 256

MAC addresses and, 257f

packets on LANs, 260�261

Windows and, 257

without routing, 260�261

Distance vector, 450

Distance Vector Multicast Routing Protocol

(DVMRP), 474

Distance-vector protocol, 384

Distance-vector routing, 385�387

consequences, 387�388

split horizon, 388

triggered updates, 388

Distributed coordination function

(DCF), 100

Distributed denial-of-service (DDOS) attacks, 519,

587�590

Distribution trees, 466. See also Multicast

branches, 466

leaves, 466

DIX Ethernet, 86

DMZ, 810�812. See also Firewalls

dual firewalls with, 810�812

multiple protection types, 811

servers, 810

uses, 810�812

DNS and BIND (Liu), 611

DNSSec, 593, 601�602. See also Domain Name

System (DNS)

design, 601

encryption and, 601�602

specifications, 602

Domain Internet Groper (dig), 602, 609

feature bloat, 611

Domain Name Space

resource records, 593�594

root, 606

Domain Name System (DNS), 60, 271, 587

in action, 602�611

authoritative servers, 591

basics, 590�593

BIND, 602

cache poisoning, 601

clients, 567

concepts, 592�593

correct functioning, 587

delegation, 595�597

dig, 602, 609

entry update, 567

glue records, 597�598

hierarchy, 591

hosts, adding, 594�595

Illustrated Network, 588f

iterative queries, 595

local, 595

message format, 600

message header, 600�601

name servers, 593�598

nonauthoritative servers, 591

nslookup utility, 602, 606

in practice, 598�602

public, 631

query message, 599�600

records, 605f

recursive queries, 595

referral, 595�597

resolver, 595

resource records (RRs), 598�602

response message, 600

Security (DNSSec), 593, 601�602

server log and reply, 605f

servers, 567, 591

service providers, 598

spoofing, 766

874 Index

theory, 592�593

tools, 602

Dotted decimal notation, 149b

Downstream interface, 466, 472

DRAM, as working storage, 275

DSL. See Digital subscriber line (DSL)

Dual protocol stacks, 282

Duplex mode, 32

Dynamic Delegation Discovery System (DDDS), 671

Dynamic Host Configuration Protocol (DHCP),

79, 151, 239�240, 264, 563. See also

DHCPv6

addresses on LAN2, 569�570

addressing and, 566�572

BOOTP message comparison, 585f

BOOTP relay agent use, 578�580

design functions, 578�579

DHCPACK messages, 582

DHCPDECLINE messages, 582

DHCPDISCOVER messages, 582

DHCPINFORM messages, 582

DHCPNAK messages, 582

DHCPOFFER messages, 582

DHCPRELEASE messages, 582

DHCPREQUEST messages, 582

discover message details, 570, 571f

with dynamic IP addresses, 598

flags field, 580�581

host direction to, 245

Illustrated Network, 564f

message types, 581�582

messages, 569�570, 580f, 581f

multicast, 297

network use, 570�572

offer message details, 570, 571f

operation, 580�582

options field, 581

relay agent, 569

routers and, 582�585

sequence of messages, 581�582

server configuration, 566�569

servers, 585

Windows configuration for, 569

Dynamic IP address assignment, 151

Dynamic link libraries (DLLs), 340�341

Dynamic ports, 294, 302�303

Dynamic Web pages, 675�683

E
eBGP, 445�446

in data center, 446t

ECN Congestion Explicit (ECT-CE), 201

Edge routers, 359b, 364

Egress routers, 504, 509�510

Electronic Industries Association (EIA), 18

Email, 637

access and reading, 644�646

architectures, 640�649

clients, 637

delivery of, 642

evolution, 646�647

headers and, 654�657

home office, 658

Illustrated Network, 638f

Internet illustration, 641f

MAA, 640

Mailboxes, 640

message composition, 643

MTA, 640, 645

POP3 access, 652�654

processing, 643

protocols, 645�646

sending, 642�646

submission of, 643

Embedded RP, 472

Encapsulating security payload (ESP), 813,

825�828

ESP Authentication Data field, 828

Fields, 826�828

header, 825�828

IPv4 packet formats, 827f

IPv6 packet formats, 825

Next Header field, 828

Pad Length field, 828

Padding field, 826�827

Payload Data field, 826

Sequence Number field, 826

SPI field, 826

Encapsulation, 25, 28�29

DSL, 92�93

flow, 29

sequence, 283�284

wireless LANs, 83

Encoding

base64, 648

chunked, 675

MIME, 651�652

Encryption, 696

public key, 694�696

End systems, 6, 26�27

End-to-end headers, 679

End-to-end protocols, 673

End-user license agreement (EULA), 733

Enhanced IGRP (EIGRP), 385, 395�403

as hybrid routing protocol, 395

as IGRP redesign, 395

Enterprise-specific trap type, 724

875Index

Entities, 15

Ephemeral ports, 310

Equal-cost multipath (ECMP) schemes, 446, 449

Error control, 41

Error correction, 16

packet optical networks and, 108�110

Error detection, 15

Error messages, 208, 231. See also ICMP

messages

all-0 unused byte, 230

ICMP destination unreachable codes, 232t

ICMPv6, 241

list of, 231

Ethereal, 13, 74

capture summary, 50�51

graphical interface, 75f

protocol hierarchy statistics, 50�51

Ethernet, 71, 85

DIX, 86

evolution, 85�89

frame structure, 86�87

frames, 74, 76, 79

interface, manual configuration, 360

LAN switches, 9, 33�34

links, 73f

MIB, 720

traffic display, 74�76

transparent bridging, 63

Ethernet II, 86�87

Ethernet Segment (ES), 536, 542�543

Ethernet Segment Identifier (ESI), 536

Ethernet tag, 536

Ethernet VPNs (EVPNs), 535�557, 542f

comparison with L2VPNS, 540�541

configuring with VXLAN on, 557�560

control plane operation, 542�547

Address Resolution Protocol (ARP), 544

aliasing, 544

all-active multi-homing and DF, 542�544

default gateway forwarding, 546

MAC mass withdrawal, 547

MAC mobility, 545

Neighbor Discovery (ND), 544

data planes, 549�557

encapsulations, 540�541

Illustrated Network, 538f

LAYER 2 and LAYER 3 and, 547�549

DCI, 548

overlay VPNs over IP, 548�549

services, 541�542

and VXLAN data units, 555f

Exclusive-or (XOR) operation, 117, 121�122, 125

“double XOR” operation, 118

Experimental RFCs, 19�20

Explicit-Congestion-Notification Capable

Transport (ECT), 201

Extensible MIB, 720

Extension Headers, 215

Exterior BGP (EBGP), 412, 419�421. See also

Border Gateway Protocol (BGP)

NLRI, 423

sessions, 420

Exterior Gateway Protocol (EGP), 416

border routers, 417

Internet and, 416�417

External Data Representation (XDR) standard, 635

F
Fast packet switching, 493�494

Fastream NETfile FTP server, 619

Federal Communications Commission (FCC),

18�19

File transfer

Ethereal capture, 13

FTP commands for, 633

FTP for, 616, 629

with GUI, 11f

to routers, 10�11

types, 629�630

for user information, 633t

File Transfer Protocol (FTP), 10, 43, 60, 613, 789

active mode, 613, 626

anonymous, 622

application-level operation, 617

basics, 621�623

block mode, 631

CLI, 616, 633

client implementations, 617

client process, 334

client programs, 623

client software, 633

commands, 623�625, 631�635

commercial implementations, 634

compressed mode, 631

control connection, 622�623, 625f, 627f

conversation, 623

data connection, 625, 625f, 627f

data transfers, 625�626

features, 617

file transfer types, 629�630

file-structure, 629

FreeBSD, 616

GUI implementations, 634

GUIs and, 619�631

Illustrated Network, 614f

Linux and, 617

model, 625

876 Index

passive command, 617

passive mode, 613, 617, 626

passive with FreeBSD, 618f

passive with Linux, 619f

ports, 621

record-structure, 630

remote access for, 11

reply codes, 623�625

RFCs, 621

servers, 334�335, 622�623

sessions, 326, 623

sockets applied to, 335f

SONET, 32

SSH and, 774�776

stream mode with file-structure, 630

stream mode with record-structure, 630�631

TCP and, 326�329

TFTP comparison, 576�582

three-way handshake, 326

transmission mode, 630�631

Web browsers and, 621

FileZilla, 620f

Firewalls, 799

appliance general architecture, 809f

appliances, 802, 807

application proxy, 808

dedicated, 799

design advantages/disadvantages, 812t

DMZ, 810�812

functions, 802�807

hardware, 799, 807

ICMP messages and, 226�227

Illustrated Network, 800f

packet filters, 802�803, 807�808

as router packet filter, 802�803

software, 799, 807

stateful inspection, 803�810

types of, 807�808

Five Golden Hours, 325

Flow caching, 155

Flow control, 40�41, 304�305

confusion, 305

implementation, 320�321

TCP, 320�323

UDP, 304�305

Forward error correction, packet optical networks

and, 111

Forward error correction (FEC), 107�108, 116

FEC area, 130

FEC Status Indicator (FSI), 129

for Juniper Networks 10G interfaces, 134t, 135t

modern FEC operation, 124�126

and Optical Transport Network (OTN),

129�132

research and development, 132�133

and SONET/SDH, 126�129, 128f

Forwarding, 247, 267

hardware-based, 273

Illustrated Network, 268f

Linux, 273b

reverse-path, 468�469

software-based, 273

Forwarding database (FDB), 548

Forwarding tables, 247�250, 247b, 276�277, 360b

location, 278

longest match, 280

lookups, 280�282

Fragmentation, 37, 200b

example, 209�213

fields, 207, 211

IPv4 and, 204�208

IPv6 and, 216�218

path MTU determination and, 208

as processor intensive, 207

reassembly and, 207

Fragmentation Header fields, 218

Frame addressing, 83

Frame check sequence (FCS), 132

Frame relay, 71, 191, 492, 494�500

frames, 495

problems, 496�497

today, 496

as X.25 on steroids, 494

Frame tagging, 67�68

VLAN, 67�68

Frames, 74

beacon, 99

Ethernet, 74, 76, 79

filtering, 64

flooding, 64

forwarding, 63

frame relay, 495

hop-by-hop forwarding, 34�35

IEEE 802.3, 86�87

link layer and, 84, 236

multicast and, 477�478

PPP, 92, 92f

SONET, 32, 96

T1, 32

types, 84

FreeBSD

flags, 253

FTP, 616, 618f

routing tables and, 359�360

servers, 602�603

FTP.File Transfer Protocol (FTP)

FTP commands, 623�625, 631�635. See also File

Transfer Protocol (FTP)

877Index

FTP commands (Continued)

client implementation, 631

for file server access, 632t

for file transfer, 633t

for remote server file management, 632t

for transfer parameters, 632t

Full-duplex mode, 32

Fully qualified domain names (FQDNs), 590

G
Gateways, 7�8, 253, 359b. See also Routers

default, 264

residential, 79

Generic Framing Procedure (GFP) frame,

131�132, 132f

Generic Routing Encapsulation (GRE)

interfaces, 271�272

tunnels, 286

Generic routing encapsulation (GRE) header,

520

Generic routing encapsulation (GRE) method, 516,

518f

Generic top-level domains (GLTD), 607

Gigabit Ethernet (GE), 62, 86

frames, 88f

links, 7�8, 68

Glue records, 597�598

Graphical user interface (GUI), 12�13

example use, 12�13

file transfer with, 11f

FTP and, 619�631

Groups, multicast, 467

H
H.323 standard, 851

signaling stack, 847

support, 851

zone components, 851

Half-duplex mode, 32

Hamming, Richard, 115

Hamming code, 113�115

in action, 117�121

implementation, 121�123

method, 115�117

Hamming distance, 113�115, 114f

correction and detection and, 115f

and error correction capabilities, 115t

Handshaking, 15

Hard-decision FECs, 133

Hardware addresses, 147�148

Hardware firewalls, 799, 807

Hardware-based fabric, 277

Hardware-based forwarding, 273. See also

Forwarding

routers, 277f

switching fabric, 277, 277f

Header error control (HEC) field, 125�126

Headers. See also IPv4 packet headers; IPv6

packet headers; TCP headers

chained, 154�155

end-to-end, 679

hop-by-hop, 679

pseudo, 296, 298�299, 298f, 306f, 327�328

UDP, 297�298

Headers, email

added after email creation, 657�658

characteristics, 654�657

fields, 654�657

message path, 657�658

Headers, HTTP, 679. See also Hypertext Transfer

Protocol (HTTP)

entity headers, 681�682

general, 679

Last-Modified, 682

request, 680

response headers, 680�681

Hidden terminal problem, 100

High-gain FEC (HG-FEC), 132�133

High-level Data Link Control (HDLC), 494

High-speed DSL (HDSL), 95t

Home office email, 658

Hop-by-hop forwarding, 34�35

Hop-by-hop headers, 679

Host utility, 602

Hosts, 6

addresses, 151

bridges connecting, 64

dead, 245

destination, 260�261

Linux, 254

multicast, 472�473

NICs, 263

routing tables, 252�256, 358�363

source, 260

in TCP/IP networks, 14

Windows, 254

Host-to-host tunnels, 284, 284f

Host-to-router tunnels, 284, 284f

Hybrid clouds, 739�740, 739f

Hypertext Markup Language (HTML), 661, 672

Hypertext Transfer Protocol (HTTP), 43, 60, 650,

661

Apache capture, 666f

caching/proxying support, 673

capture, 665f

chunked encoding, 675

878 Index

commands, 677�678

content negotiation, 673

end-to-end headers, 679

entity headers, 681�682

evolution of, 672�673

exchange, 664

general headers, 679

generic message format, 675

headers, 675, 679

hop-by-hop headers, 679

HTTP 0.9, 672

HTTP 1.0, 672

HTTP 1.1, 673

Illustrated Network, 662f

methods, 677�678

model, 674

multiple host name support, 673

partial resource selection, 673

persistent connections, 673

pipelining, 673

request headers, 680

request message, 677f

requests, 675�676

response headers, 680�681

response message, 676

responses, 675�676

security, 673

status codes, 678�679

I
iBGP, 445�446

ICMP, 270

ICMP messages, 58, 791. See also Internet Control

Message Protocol (ICMP)

alternate host address, 233

Checksum field, 229

Code field, 229

codes, 229�235

Destination Unreachable, 230�231

Echo reply, 228f

Echo request, 225�226

error, 208, 229�231

fields, 228�229

firewalls and, 226�227

format, 227�235

format illustration, 229f

IPv4 packets carrying, 226

must be sent, 235�236

must not be sent, 236

in path MTU discovery, 239�240

presence of, 236

query, 231�233

router advertisement, 233

sending, 235�236

solicitation, 233

suite, 231

traceroute, 233�235

Type field, 228�229

types, 229�235

ICMPv4, 241

ICMPv6, 184�185, 228f, 241�245

autoconfiguration, 243�244

changes, 241�245

Destination Unreachable message, 241

Echo Request and Reply messages, 243

error messages, 241

message formats, 241

messages, 241�242

multicast packets, 485

neighbor discovery, 243�244

Neighbor Solicitation messages, 245

Packet Too Big message, 241�242

Parameter Problem message, 243

Time Exceeded message, 243

IEEE 802.3, 86

compliant-hardware, 89

CSMA/CD frame, 87

IEEE 802.3ae, 86

MAU, 86

IEEE 802.11, 97�104

CRC frame, 103

duration byte, 102

frame, 102�104

frame control, 102�103

frame structure, 102f

IBSS, 97�98

MAC addresses, 103

MAC layer protocol, 100�102

MAU, 86

payload field, 103

sequence control field, 103

SSID, 99

variations, 86

Wi-Fi, 99�100

IGPs. See Interior gateway protocols (IGPs)

Illustrated Network, 7�15

ARP, 176f

BGP, 410f

configuring EVPN with VXLAN on, 557�560

connections, 73f, 74�84

DHCP, 564f

DNS, 588f

DSL link display, 79�81

email, 638f

Ethernet VPNs (EVPNs), 538f

firewalls, 800f

forwarding, 268f

879Index

Illustrated Network (Continued)

frames and link layer, 84

FTP, 614f

ICMP, 222f

internetworking, 48f

IP addressing, 139�146

IPSec, 814f

IPv4/IPv6 headers, 198f

MPLS, 490f

multicast, 460f

NAT, 786f

protocol stacks, 50�51

routers, 9, 376f

routing, 248f

routing tables, 352f

SNMP, 708f

sockets, 332f

SONET link display, 76�79

SSH, 762f

SSL, 686f

TCP, 308f

UDP, 290f

VoIP, 834f

Web servers, 662f

Web sites, 686f

wireless link display, 81�84

In-band management, 279

Independent basic service set (IBSS), 97�98

Indirect delivery, 263

packet destination address, 263

router and, 262�265

Informational RFCs, 20

Infrastructure as a service (IAAS), 735�736

Ingress routers, 504, 508�509

Initial sequence number (ISN), 310�311

Institute of Electrical and Electronics Engineers

(IEEE). See IEEE 802.3; IEEE 802.11

Integrated Information Services (IIS), 664

Integrated Services Digital Network (ISDN), 89

DSL as extension, 93

Integrity, 692�693

Integrity check value (ICV), 823

Inter-Domain Routing Protocol (IDRP), 409

Interface addresses, 245

Interface for Metadata Access Points (IF-MAP)

protocol, 747

Interfaces, 28

application layer, 52

GRE, 271�272

routers, 264�265

TCP/IP application, 11

Interior BGP (IBGP), 412, 419�421. See also

Border Gateway Protocol (BGP)

full mesh, 421

need for, 419f

peers, 420

sessions, 420

uses, 419, 419f

Interior gateway protocols (IGPs), 372, 375,

434�435

bootstrapping themselves, 384

characteristics, 407f

in data center, 446t

next hops, 420

shortcuts, 505

types of, 384�385

Interior Gateway Routing Protocol (IGRP),

385

Enhanced (EIGRP), 385, 395�403

RIP improvement, 395

Interleaving, burst errors and, 123�124

Interleaving and error correction, 125f

Interleaving method, 123

Intermediate device control, 766

Intermediate System�Intermediate System (IS-IS),

375, 384

areas, 405

attraction, 404

backbone area, 404

DIS, 406

IPv6, 406�407

as link-state protocol, 384

LSP handling, 406

metrics, 406

M-ISIS, 469�470

network addresses, 405

network types, 406

OSPF and, 404

OSPF differences, 405�406

OSPF similarities, 405

route leaking, 405

routers, 404

Intermediate systems, 6

as TCP/IP device category, 26�27

Internal representation conversion, 42

International Standards Organization (ISO), 18

International Telecommunications

Union�Telecommunications sector (ITU-

T), 18�19

International Telecommunications Union (ITU),

108

Internet, 431

administration, 21�23

autonomous system and, 363�364

backbone routers, 276

connectivity check, 226

drafts, 19�21

standards, 19

880 Index

today, 364�367

zones, 594

Internet Architecture Board (IAB), 21

Internet Assigned Numbers Authority (IANA),

478�479

Internet Control Message Protocol (ICMP), 221.

See also ICMP messages

Destination Unreachable codes, 232t

Destination Unreachable errors, 231

Illustrated Network, 222f

IP packets, 197

packets, 225

ping and, 224�227

round-trip time, 224

sequence numbers, 224

time-exceeded errors, 231

Internet Corporation for Assigned Names and

Numbers (ICANN), 22�23

Internet Engineering Task Force (IETF), 19

working groups, 22

Internet exchange points (IXPs), 364

linking, 366�367

running of, 364�365

Internet Group Management Protocol (IGMP),

473�474

backward compatibility, 473�474

messages, 236

multicast group, 463�464

versions, 473

Internet key exchange (IKE), 813, 816, 828�829

ISAKMP, 828

OAKLEY, 829

protocols, 828�829

SKEME, 829

Internet Message Access Protocol (IMAP), 645

Internet Network Information Center (InterNIC),

23

Internet Research Task Force (IRTF), 22

Internet Security Association and Key

Management Protocol (ISAKMP), 828

Internet service providers (ISPs), 324

chained, 365�366

grid-net, 368

peer selection, 371�373

peering arrangements, 365�366, 369, 373f

Internet Society (ISOC), 21

Internetworking, 47

Illustrated Network, 48f

Interoperability, 16

Intra-site Automatic Tunnel Addressing Protocol

(ISATAP) tunnels, 286

Inverse ARP (InARP), 178, 191

IP addressing, 36, 139�146

anycast, 146

assignment, 168�170

automatic, 142b

broadcast/multicast, 146

duplicate, 245

dynamic assignment, 151

host, 151

Illustrated Network, 139�146

packet headers and, 200�201

private, 150

public, 150

static assignment, 151

unicast, 146

IP Fast Reroute (IPFRR), 551

IP layer, 57�58, 197

IP mapping, 45

IP packets, 495�496

IP source routing, 766

IP spoofing, 766

IP-only LAN-like Service (IPLS), 526

IPSec, 813

in action, 816�818

AH, 813

BITS, 820

BITW, 820

endpoints, 819

ESP, 813

IKE, 813, 819

Illustrated Network, 814f

implementation, 819�821

introduction to, 819�821

RFCs, 819

routers and, 820

SPI, 235

support components, 819

topology, 816

transport mode, 821

tunnel mode, 821

tunnels, 816

IPv4, 287

addresses, 785

browsers, 282

dual protocol stacks, 282

ESP packet formats, 827f

fragmentation and, 204�208

fragmentation example, 209�213

limitations, 211

multicast, 463�465

Options, 211

ping and, 224�227

routing tables, 251

tunnels, 285�286

UDP pseudo-header, 298f

IPv4 addresses, 47�50, 147�153

ARP, 58

881Index

IPv4 addresses (Continued)

classful, 143�144, 148�149

classless, 149

dotted decimal notation, 149b

formats, 153, 173f

illustrated, 148f

Linux assignment, 139

multicast, 477�480

overview, 139

private, 150, 152

protocol field, 51

public, 150�151

ranges, 170�172, 171t

special forms, 153t

subnetting and, 157�166

understanding, 152�153

IPv4 packet headers, 202�204

fields, 200, 201f

Flags field, 203

Fragment Offset field, 203

Header Checksum field, 204

Header Length field, 202

Identification field, 203

illustrated, 201

Illustrated Network, 198f

IPv6 header comparison, 214�216

multicast, converting, 478f

Options field, 204

Padding field, 204

Protocol field, 203

Source and Destination Address field, 204

ToS field, 202

Total Packet Length field, 203

TTL field, 203

Version field, 202

Wireshark interpretation of fields, 200�201

IPv4-compatible IPv6 address, 287

IPv4-mapped IPv6 address, 287

IPv6

AH packet formats, 823f

ARP and, 191�194

core routers, 170

dual protocol stacks, 282

ESP packet formats, 828

fragmentation and, 216�218

Fragmentation Header fields, 218

FTP passive command and, 619

IS-IS for, 406�407

multicast, 484�485

multicast groups, 192b

NAT and, 786f

OSPFv3 for, 402�403

ping and, 227

router announcements, 462

routers, 244

routing tables, 251, 362

transition to, 282, 287

tunnel-addressing format, 285, 285f

tunnels, 285f

UDP pseudo-header, 298, 299f

IPv6 addresses, 154�157

address allocation, 169f

address discovery options, 155

address resolution, 184, 194f

address type, 156

address types and notation, 155�156

assignment, 168�170

chained headers, 154�155

details, 166�172

features, 154�155

flow caching, 155

formats, 167, 173f

future of, 139

header compression and extension, 155

hexadecimal notation for, 149, 155

interface, 245

LAN interface, 143

link-local, 7, 157, 167

local use, 166

multicast, 245, 480�481

multicast, format, 481f

neighbor discovery and address resolution, 194f

prefix masks, 168

prefixes, 156�157

private, 157

provider based, 166

provider independent, 156�157, 166

ranges, 170�172, 172t

routable, 379

router-assigned prefixes, 142

routing, 166

site-local, 157

size increase, 154

ULA-L, 168

unique local-unicast, 157

use of, 154

Wireshark capture and display, 184

IPv6 packet headers, 211�213

64-bit units, 215

changes, 214�216

Extension Headers, 215

Flow Label field, 213, 215

Hop Limit field, 213

illustrated, 213f

Illustrated Network, 198f

IPv4 header comparison, 214�216

Next Header field, 213

Payload Length field, 213�214

882 Index

Traffic Class field, 212

Version field, 212

IPv6-only address, 287

ISDN DSL (IDSL), 95t

ISPs. See Internet service providers (ISPs)

J
Java Applets, 672

Java sandbox, 808

Jitter, 840�841

Juniper Network routers, 267, 271�272, 276�277,

439�440, 746

DHCP relay agent, 569

enabling SNMP on, 710

implementation details, 454�455

stateful inspection, 804

Juniper Networks line cards, 133, 134t, 135t

Junos OS, 455

K
Keepalive message, BGP, 426�427

Keepalive packets, 78�79

Kerberos, 618

Key exchange, 770�771, 779

L
Label Distribution Protocol (LDP), 505�506

Label stacking, 503, 506

Label switched paths (LSPs), 504

constrained, 505

nested, 506

path details, 511

signaled, 504

static, 504, 508�511

traceroute and, 510�511

traffic engineering, 505

VPNs and, 507�508

Label tables, 508f

LACNIC (Latin American and Caribbean Network

Information Center), 169

LANs, 273

Latency, 840

Layer 2 VPNs (L2VPNs), 513, 525�526, 535.

See also Virtual private networks (VPNs)

Layer 3 VPNs (L3VPNs), 501, 523�525, 535.

See also Virtual private networks (VPNs)

customer edge, 524

provider, 525

provider edge, 524�525

Layers, 23�25. See also specific layers

applications and, 331�334

ARP and, 175b

combining, 25

encapsulation, 28�29

IP, 57�58, 197

protocol, 25

simple networking and, 23�24

TCP/IP, 14, 25�44

“Leaf and spine” topology, 325

Linear block codes, 125

Link Aggregation Control Protocol (LACP),

536

Link Aggregation Group (LAG), 537

Link Control Protocol (LCP), 91, 516

Link states, 396

Link-local IPv6 addresses, 7, 142

Links

backdoor, 399�400

broken, 387

DSL, 79�81

external, 378b

internal, 378b

SONET, 76�79

wireless, 81�84

Link-state advertisements (LSAs), 396, 405

Link-state information

distributing, with BGP, 450�455

Link-state protocols, 450

implementing BGP for, 452�454

Linux

ARP cache display, 183

BSD style, 184

flags, 254

FTP and, 618

FTP passive using, 619f

hosts, 254

IP forwarding, 273b

IPv4 address assignment, 143

Kerberos, 618

routing tables and, 360�361

sockets on, 341�347

Listeners, 466

Load balancing, 381�382

Local area networks (LANs), 7

100BaseT Ethernet, 63

ARP and, 178�185

IEEE 802.11 and, 97�104

individual address, 477

linking, 47

multicasting on, 477�478

segmentation, 47, 61�63, 86

subnetting, 160f

switches, 65

virtual, 47, 58, 66�68

wireless, 83

883Index

Longest match, 280

Loopback interface, 153

L2TP (Layer 2 tunneling protocol), 521�522

L2TP access concentrator (LAC), 516, 521

L2TP network server (LNS), 521

M
MAC addresses, 58, 75, 87�89

all-zero, 181

destination host, 261

direct delivery and, 257f

frame IP and, 259t

interplay, 103

NICs, 263

wireless LAN frame, 87�88, 103

Mail user agents (MUAs), 637

Mailboxes, 640

Major components, 7

Management information bases (MIBs), 707,

718�720

access field, 719

coding/implementing, 720

compiler, 720

as database description, 716

defval field, 719

description field, 719

Ethernet, 720

extensible, 720

fields, 718�719

index field, 719

information structure, 717

MIB-II, 717

naming tree, 717

object-code module, 720

objects, 718�719

private, 721�722

reference field, 719

sample object definitions, 719

SONET/SDH, 720

status field, 719

syntax field, 719

trees, 719f

variables, 725

Management tasks, 10

Managers, 715

console database, 715

“Man-in-the-middle” threat, 693

Manually configured tunnels, 286

Maximum segment size (MSS), 314

Maximum Transmission Units (MTUs), 142

default sizes, 204

fragmentation and, 206�208

frame size, 265

minimum size, 207�208

path, 239�240

path determination, 208

small size, 205, 207�208

typical sizes, 207t

MBONE, 462

Media Access Control (MAC), 33�34, 536.

See also MAC addresses

with frame check sequence (FCS), 551�553

IEEE 802.11 layer protocol, 100�102

mass withdrawal, 547

mobility, 545

Media gateways, 851

Megaco/H.248, 847, 851�852

Memory

DRAM, 275

nonvolatile, 274

packet, 275

RAM and ROM, 274�276

routers, 273, 275f

volatile, 274

Message access agent (MAA), 640

Message delimiters, 15

Message digest, 692

Message formats, 15

Message transfer agent (MTA), 640, 645

Methods, HTTP, 677�678

Metrics

IS-IS, 406

netstat command and, 253�254

OSPF, 397

RIP, 386

RIPv1, 389

routing tables, 251

Windows output, 256

Mobile IP, 235

Mobility, in protocol evolution, 3�6

Models, 738�740

MPLS. See Multiprotocol label switching

(MPLS)

MPLSoGRE, 541

Multicast, 297, 459

administratively scoped addresses, 463

applications, 462�463

concepts, 468�471

dense-mode, 467

in DHCP, 297

downstream interface, 466

frames and, 477�478

groups, 192b, 467

hosts, 472�473

IGMP group, 464

Illustrated Network, 460f

IPv4, 463�465

884 Index

IPv6, 484�485

on LANs, 477�478

notation, 467�468

one-to-many operation, 459

packet capture, 464f

PGM, 473

rendezvous point (RP) model, 471

rendezvous-point tree (RPT), 471

reverse-path forwarding, 468�469

RIP use, 380

RIPv2, 382, 392�393

routers, 466, 472�473

routing loops and, 466

RPF table, 469

shortest-path tree (SPT), 470�471

sparse-mode, 467

TCP/IP, 465

terminology, 465�466

upstream interface, 466

Multicast addresses, 478�481

IPv4, 478�480

IPv6, 480�481

for protocols, 479t

ranges, 478�480

source addresses and, 478�479

Multicast Listener Discovery (MLD), 472, 474

Multicast Open Shortest Path First (MOSPF),

469�470, 474

Multicast protocols, 471�485

ASM, 475�476

CBT, 475

characteristics, 475t

DVMRP, 474

group membership, 473�474

IGMP, 473�474

MLD, 472, 474

MOSPF, 474

MSDP, 476�477

PGM, 483

PIM DM, 474

PIM SM, 474�475

routing, 466, 474�475, 483�484

SSM, 475�476

suite, 463

support, 459�462

Multicast Source Discovery Protocol (MSDP),

462�463, 476�477

Multihomed, 419

Multihop BGP, 422

Multimedia, in protocol evolution, 3

Multimedia Gateway Control Protocol (MGCP),

847, 851�852

Multiplexing, 11, 331

need for, 331

ports, 300f

SSH-CONN, 772

Multipoint configuration, 32

Multiprotocol BGP (MBGP), 422, 469�470, 506

backward compatibility, 506

extensions, 506

Multiprotocol label switching (MPLS), 417�418,

500�506, 541

32-bit label fields, 502f

architecture, 503

as BGP shortcut, 501

as data plane for EVPN, 557f

domains, 504, 506

egress router, 504, 509�510

Illustrated Network, 490f

ingress router, 504, 508

label stacking, 503, 506

label values, 503t

LSPs, 535�536

management, 504

and PBB-EVPN, 557f

rationale, 502f

reconfiguration, 504

signaling and, 505�506

static LSPs and, 508�511

tables, 508

terminology, 504�505

traffic engineering, 501

transit router, 504, 509

tunnels and, 501b

VPNs and, 507�508

Multiprotocol Label Switching (MPLS)-based

virtual private networks, 523�526

layer 2 VPNs, 525�526

layer 3 VPNs, 523�525

MPLS LSPs, 519b

Multipurpose Internet Mail Extensions (MIME),

645, 650�652

composite types, 651

discrete types, 650�651

encoding, 651�652

entity headers and, 681t

media types, 650�651

message, 650

message example, 652

security (S/MIME), 647

Multitasking, non-preemptive, 340�341

Multitasking, Windows, 341

N
Name servers, 595

application interaction, 593�594

referral queries to, 599�600

885Index

Negotiation of parameters, 15

Neighbor discovery

ICMPv6 functions, 243�244

routers and, 244

Neighbor Discovery (ND), 544

Neighbor Discovery Protocol, 192�193

address resolution, 193�194

Neighbor Advertisement message, 193�194

Neighbor Solicitation message, 192

Router Advertisement message, 193

Router Solicitation message, 193

Neighbor routers, 382�383

Nested MPLS domains, 506

NetBIOS, 340

netstat command

lp option, 294

metrics and, 253b

�nr option, 253b, 255

nr option, 359

�r option, 252

Network address translation (NAT), 629, 785

in action, 795�798

address types, 790t

advantages, 788�789

bidirectional, 791�792

device, 145

FTP passive command and, 619

Illustrated Network, 786f

IPv6, 168, 788b

overlapping, 793�795

port-based, 792�793

private address translation, 152

translation, 797

translational mappings, 790

types of, 789�795

unidirectional, 790�791

using, 788�795

Network File System (NFS), 60, 634

XDR standard, 635

Network functions virtualization (NFV), 6,

731�732, 748�753

and service chaining, 752�753

Virtio and SR-IOV, 749�751

Network interface cards (NICs), 263

Network intrusion detection (NID), 317

Network layer, 30, 36�38. See also TCP/IP

layers

fragmentation, 37

illustrated, 36f

MTUs and, 206�208

routing, 354�355

routing tables, 37

source-to-destination delivery, 37

switching, 354�355

Network layer reachability information (NLRI),

412, 434�435, 440

Network Management Protocol, 714

Network operations centers (NOCs), 371, 707

Network processor engines (NPEs), 274

Network Service Attachment Point (NSAP)

addresses, 156

Network Tine Protocol (NTP), 462

Network Virtual Terminal (NVT), 43

Networking

first explorations in, 14�15

layers and, 23�24

visions, 90b

Networks

addresses, 36

connectionless, 355�358

connection-oriented, 355�358

host boundary, 147

illustrated, 4f

link technologies, 71

private, 71

public, 71

remote device access, 8�10

router access, 279

Next hop, 264

BGP, 420

determination, 280

identification, RIPv2, 391�392

IGP, 420

RIPng, 394f

self, 420

Nodal processing delay, 840

Nonauthoritative servers, 591

Non-broadcast multiaccess (NBMA), 190�191

Nonrepudiation, 692�693, 702

Nonvolatile RAM (NVRAM), 274�276

startup-config, 275�276

NoSQL, 325�326

Notification message, BGP, 426, 429

Not-so-stubby areas (NSSAs), 405

Nslookup utility, 602, 606

NULL Cipher Suite, 697�698

O
OAKLEY, 829

On-demand connections, 307

One-way hash, 692

Online Certificate Status Protocol (OCSP), 701

Open message, BGP, 426�427

Open Shortest Path First (OSPF), 267�270, 384,

397�400

area types, 399

backbone area, 398

886 Index

BDR, 401

classless addressing, 397

DR, 401

equal-cost multipaths, 397

functions, 397�398

internal/external routes, 397

IS-IS and, 404

IS-IS differences, 405�406

IS-IS similarities, 405

as link-state routing protocol, 384, 395

metrics, 397

MOSPF, 469�470, 474

non-backbone, non-stub area, 400�401

not-so-stubby area, 401

OSPFv1, 396

OSPFv3, 375, 402�403

packets, 401�402

reliable flooding, 396

router hierarchies, 397

router types, 399�400

security, 398

stub area, 400�401

ToS routing, 398

total stub area, 400

Open Standard Interconnection (OSI) reference

model, 26b

OpenSSH, 765

OpenSSL, 688, 700. See also Secure socket layer

(SSL)

testing certificate, 688, 702�703

Optical data unit (ODU), 131

Optical transport network, packet optical networks

and, 110�111

Optical Transport Network (OTN), 108, 111

asynchronous timing, 130

forward error correction (FEC), 130

forward error correction (FEC) and, 129�132

frame structure, 131f

Illustrated Network, 133�135

management, 130

protocol transparency, 130

and SONET/SDH line rates, 130t

Optical Transport Unit (OTU) levels, 129, 131

Optimal route reflection (ORR), 432�435

consideration, 434�435

regular, 433�434

Optimized route reflection, 434f

Outgoing interface list (OIL), 467�468

Overflows, 304�305

Overlapping NAT, 793�795. See also Network

address translation (NAT)

cases, 794

illustrated, 795f

Overlay VPNs

over IP, 548�549

P
P router (P9), 530�531

PE1 router, 530�531

Packet filters, 802�803, 807�808. See also

Firewalls

implementation, 807�808

Packet headers, 197

addresses and, 200�201

Extension Headers, 215

fields, 200, 201f

IPv4, 202�204

IPv6, 211�213

Packet memory, 275

Packet optical networks

and error correction, 108�110

and forward error correction, 111

and optical transport network,

110�111

Packet over SONET/SDH (POS), 96

Packetization delay, 840

Packetized voice, 842�843

Packets

ARP, 185�187

arriving, 209�210

CLNP, 403

CS, 838

forwarding, 267

fragmentation, 200b, 209

ICMP, 225

IS-IS, 403

keepalive, 78�79

OSPF, 401�402

processing, 273

on PVCs, 354

RAS, 838

reassembly, 207, 209

RIPv1, 388�389

RIPv2, 389�393

RTP, 837�838

signaling, 838

on SVCs, 354

tunneling, 267

X.25, 494

Passive open, 56

Path MTU

discovery, 239�240

plateaus, 240t

seed or probe size, 240

size, tuning, 239

Path Vector Protocol, 418�419

Payload, 25

Payload length identifier (PLI),

132

PBB-EVPN data plane, 556�557

PE routers, 434�435

887Index

Peering, 365�366, 369

candidates, 372f

public points, 370�371

Peer-to-peer models, 55b

Peer-to-peer multiway media steams, 462

Peer-to-Peer Protocol process, 27�28

Penultimate hop popping (PHP), 505

Permanent connections, 307

Permanent virtual circuits (PVCs), 89, 354, 356,

504

packets on, 354

Physical connections, 15

Physical layer, 31�32. See also TCP/IP

layers

bit synchronization, 32

configuration, 32

contents, 31

data rate, 32

illustrated, 31f

mode, 31�32

RFCs and, 84b

specification, 31

topology, 32

Ping, 224, 236�237

in checking connectivity, 226

ICMP and, 224�227

ICMP requests and replies, 225f

implementations, 226, 236�237

IPv4 and, 224�227

IPv6 and, 227

PID identifier, 237

quirks, 237

Platform as a service (PaaS), 736�737

Pocket calculator encryption, 694�696

at client, 694�695

Diffie-Hellman, 770�771

at server, 695�696

Point coordination function (PCF), 100

Points of presence (POP), 364�365

Point-to-point links, 32

Point-to-Point Protocol (PPP), 78�79

DSL and, 90�91

frames, 92, 92f

framing for packets, 91�92

Link Control Protocol (LCP), 91

Network Control Protocol (NCP), 91

Point-to-Point Tunneling Protocol (PPTP), 513,

516�522, 517f

architecture, 522f

and L2TP (Layer 2 tunneling protocol)

compared, 522

PPTP access concentrator (PAC), 520

PPTP network server (PNS), 520

Virtual Private Networks (VPNs), 518�520

Policy routing, 363

Polling, SNMP, 723, 726

Polynomial codes, 125

Pop, 505

POP3, 652�654. See also Email

capture, 652�654, 659f

connection, 653

TCP port, 653

Port address translation (PAT), 793

Port addresses, 11

Port mapper, 634�635

Port-based NAT, 792�793

Ports

auxiliary, 279

console, 279

dynamic, 294, 302�303

dynamically mapping, 634�635

echo, 295

FTP, 621

input, 273

LAN switch, 65

multiplexing and distribution, 300f

numbers, 52, 300�304

output, 273

persistent, 301

registered, 302

UDP, 290f, 292�296

well-known, 301�303

PPVPNs (provider-provisioned VPNs),

524

Pragmatic General Multicast (PGM), 473, 483

goals, 483

Privacy, 690

Private clouds, 738�739, 739f

Private IP addresses, 150. See also IP addressing

IPV4, 152

IPv6, 157

translation, 152

Private keys, 690

clear, 701

decryption with, 691

primes, 694

Private MIB, 721�722

Private networks, 71

Private ports, 302�303

Process addressing, 40

Process-to-process delivery, 38, 41f

Protocol data units (PDUs), 28, 197

Protocol Independent Multicast dense mode

(PIM DM), 474, 483�484

Protocol Independent Multicast sparse mode

(PIM SM), 474�475, 482

Protocol stacks

DSL, 93

888 Index

dual, 282

Illustrated Network, 50�51

RTP, 846

SSL, 697�698

TCP/IP, 723

Protocols, 15�21, 28. See also specific protocols

bandwidth and mobility, 3�6

email, 645�646

end-to-end, 673

interfaces and, 28

layers, 25

multicast, 459�463, 471�485

multimedia use, 3

new, 6

security, 6

specifications, 15�16

standards versus,, 15�16

trends, 3�6

tunneling, 90

for VoIP, 843�852

Provider Backbone Bridges (PBB), 556

Provider Backbone EVPNs (PBB EVPNs), 540

Provider edge (PE) routers, 432

Provider (P) routers, 9, 525

Provider-edge (PE) routers, 9, 524�525, 537

Proxy agents, 715

Proxy ARP, 189�190

Proxy servers, 851

Pseudo Wire (PW), 526

Pseudo-header, 298

illustrated, 298f, 299f

IPv4, 298f

IPv6, 298, 299f

presence, 299

TCP, 327�328

UDP, 299, 306f

Pseudorandom number generators (PRNGs), 701

Public clouds, 739, 739f

Public IP addresses, 150. See also IP addressing

obtaining, 151

voice traffic types, 839�840

Public key encryption, 694�696. See also

Encryption

example, 695

pocket calculator, at client, 694�695

pocket calculator, at server, 695�696

security, 694�696

SSL use, 697�703

Public key infrastructure (PKI), 685, 696

Public keys, 690

association, 694

digital signatures, 696

message encryption, 691�692

primes, 695

with symmetrical encryption, 696�697

toolkits, 700�701

Public networks, 71

Public switched telephone network (PSTN), 18,

37, 441

traffic percentage, 839�840

VoIP and, 833

Pulse amplitude modulation (PAM), 107

Pulse code modulation (PCM), 852

Push, 505

PuTTY, 783

Q
Quadruple play, 489

Quality of service (QoS), 201, 351

bandwidth, 357

connectionless networks, 356�358

connection-oriented networks, 356�358

consistency, 358

jitter, 357�358

methodology, 356

parameter list, 357t, 358

parameters, 58, 356�358

security, 358

Queries

iterative, 595

recursive, 595

Query messages, 231�233. See also Internet

Control Message Protocol (ICMP)

DNS, 600

list of, 231�233, 234t

R
RADIUS, 519

RAM

nonvolatile, 274�276

as working storage, 275

Random seeds, 767

Raw sockets, 336. See also Sockets

threat, 338�339

Unix-based access, 339

Windows and, 338

Real-Time Media Flow Protocol (RTMFP), 462

Real-Time Media Protocol (RTMP), 462

Real-Time Protocol (RTP), 60, 837

application layer framing, 844

architecture, 844

header, 845

header fields, 845f

packets, 837�838

payload formats, 846t

protocol stack, 847

889Index

Real-Time Protocol (RTP) (Continued)

reports, 846

as transport mechanism, 846

for VoIP transport, 843�846

Reassembly, 207, 209

Recursive queries, 595

Reed�Solomon (RS) codes, 116�117, 124�125

Regional Internet Registries (RIRs), 168�169

Registered ports, 302

“Regular” route reflection, 434�435

Relay agents, 569

BOOTP, 569, 575

DHCP, 569

Reliable flooding, 396

Remote access, 8�10

for FTP, 10

securing, 10

Remote procedure calls (RPCs), 634, 733

Remotely triggered black hole (RTBH), 437�438,

438f

Rendezvous point (RP)

embedded, 472

model, 471

Rendezvous-point tree (RPT), 471

Repeater operation, 61

Representational State Transfer (REST) protocol,

747

Requests for comments (RFCs), 19

CIDR, 162

Elective, 20

experimental, 19�20

FTP, 621

informational, 20

IPSec, 819

Limited Use, 20

maturity levels, 19

Not Recommended, 20

physical layers and, 84b

Recommended, 20

Required, 20

requirement levels, 20

TCP, 313�314

Resource records (RRs), 598�602

Class field, 598

Comments field, 598

Name field, 598

Record-Data field, 598

Record-Type field, 598

TTL field, 598

types, 598

Resource Reservation Protocol (RSVP), 483, 505

Reverse ARP (RARP), 178, 190, 573

Reverse-path forwarding (RPF), 468�469

check, 468

table, 468

table, populating, 469�470

Ring topology, 32

RIPE NCC (Reseaux IP European Network

Coordination Center), 168

RIPng, 375, 381�382, 393�395. See also Routing

Information Protocol (RIP)

configuring, 375�378, 380

for IPv6 packet fields, 394f

multicast addresses, 380

next hop, 394f

updates, 395

RIPv1, 385, 388�389. See also Routing

Information Protocol (RIP)

limitations, 389

metrics, 389

packets, 388�389

subnet masks, 389

update timer, 388�389

wasted space, 389

RIPv2, 385, 389�393. See also Routing

Information Protocol (RIP)

authentication, 391�392

limitations, 393

multicasting, 382, 392�393

next hop identification, 391�392

packet format, 389�393

subnet masks, 391

RMON (remote monitor), 707, 720�721

ROM, 276

ROM monitor (ROMMON), 276

Root level certificate authorities, 693

Root servers, 592. See also Domain name

system (DNS)

details, 592�593

list, 592

operation, 592

operators, 592

Round-trip times, 237

Route leaking, 405

Route reflection

generic use of, 433f

Router advertisement, 244

DHCPv6 and, 584

in host direction to DHCP server, 245

message, 233

Router architectures, 273�276

basic, 274�276

hardware-based, 273, 277, 277f

network processor engines (NPEs),

274

software-based, 273�274, 275f

Router reflector (RR), 432�434

Router-assigned prefixes, 142

890 Index

Router-based networks. See Connectionless

networks

Router-by-router VPLS configuration,

527�529

CE0 router, 527

PE5 router, 528�529

Routers, 7�8, 34, 37�38, 64�65, 79, 252

access, 279

auxiliary port, 279

backbone, 276

border, 366�367, 398, 417

CE, 9, 47, 817�818

console port, 279

CPU chips, 274

dead, 245

delay, 68

DHCP and, 584

DSL, 79, 81, 359b

edge, 359b, 364

egress, 504, 509�510

file transfer to, 10�11

function, 250

Illustrated Network, 9, 376f

illustrated use, 69f

in-band management, 279

indirect delivery and, 262�265

ingress, 504, 508

interfaces, 264�265

Internet core, 158

IPSec and, 820

IPv6, 244

IS-IS, 404

Juniper Networks, 267, 271�272, 276

loopback interface, 251

memory, 274

MSDP, 477

multicast, 466, 472�473

neighbor, 382�383

neighbor discovery and, 244

network access, 279

as network nodes, 354�355, 364

NICs, 263

NVRAM, 274

operation, 61

packet filter, 802�803

packet-handling, 271

provider, 9

provider edge, 9, 799

Proxy ARP and, 190

self-booting, 274

stateful inspection, 803�807

steps, 273

in TCP/IP networks, 14

transit (intermediate), 504, 509

Router-to-host tunnels, 284, 284f

Router-to-router tunnels, 284, 284f

Routing, 37, 247

direct delivery, 256�265

distance vector, 385�387

domains, 367, 373f, 383

engines, 276�277

Illustrated Network, 248f

indirect delivery, 259, 262�265

information exchange, 367�368

with IP addresses, 259

loops, 466

network layer, 354�355

policy, 363

switching comparison, 500t

ToS, 398

at wire speeds, 273

Routing Information Base (RIB), 432

Routing Information Protocol (RIP), 375, 384, 450

backbone routers running, 381

as Bellman�Ford routing protocol, 385�386

broken links, 387

configuring, 380

as distance-vector protocol, 384�387

enabling, 379

flooding updates, 386

information flow, 380

links, 378b

metric, 386

multicast addresses, 380

RIPng, 393�395

RIPv1, 385, 388�389

RIPv2, 385, 389�393

split horizon, 388

triggered updates, 388

Routing policies, 351, 363b

BGP, 414�416, 425

example illustration, 368f

framework, 367

function of, 363b

IGPs and, 372

roles of, 367�368

Routing protocols, 351, 363b. See also specific

protocols

ASs and, 363b

multicast, 466, 474�475, 483�484

Routing tables, 247�250

asterisk (�), 251, 270
Cisco-like display, 270

default route, 251

defined, 37, 250, 360b

for each IP network, 158

entries, 359b

FreeBSD and, 359�360

891Index

Routing tables (Continued)

host, 252�256, 358�363

Illustrated Network, 352f

information display, 361

IPv4, 251

IPv6, 251, 271, 362

Linux and, 360�361

metric entries, 251

route preference, 251

Windows and, 361�363

RSA Data Security Code (RC4), 699

RSARef, 700�701

RTP. See Real-Time Protocol (RTP)

Running-config, 275

S
Safe passage, 685

Scaling, BGP, 425

Scatter-gather communication, 326

SDNs, 740�742

applications, 741�742

architecture, 746�747

concepts, 741

implementing, 744�746

route server and, 742f

Secret keys, 691

Secure shell (SSH), 279, 761

in action, 776�783

agents, 767

architecture, 766�767

authentication, 764�765

basics, 764�765

clients, 764, 766

as client�server protocol, 764

configuration files, 767

Ethereal capture, 784f

features, 765�766

FTP and, 774�776

host key, 767

Illustrated Network, 762f

key generator, 767

keys, 767�768

known hosts, 767

model illustration, 765f

OpenSSH, 765

protocol operation, 768�770

protocol relationships, 768�770

proxy gateway, 766

random seeds, 767

as remote access application, 761

secure client�server communication, 765

security add-on, 765

servers, 766

session key, 768

sessions, 767

signer, 767

as slogin implementation, 764

SSH1 and SSH2, 764

SSH-AUTH, 768�770, 772

SSH-CONN, 768, 770, 773

SSH-SFTP, 768, 770, 776�783

SSH-TRANS, 768�770

transparency, 765

user key, 767

using, 761

versatility, 765

Secure socket layer (SSL), 664, 685

Alert Protocol, 697

Change Cipher Spec Protocol, 697

clear private keys, 701

computational complexity, 701

data transfer, 699

Diffie-Hellman, 697

Handshake Protocol, 697

Illustrated Network and, 686f

implementations, 690�691, 700

issues and problems, 701�702

MAC, 699

nonrepudiation, 702

OpenSSL, 688

page, loading, 689

as protocol, 697�703

protocol stack, 697

pseudorandom numbers, 701

public key encryption, 696�697

Record Protocol, 697, 700f

session establishment, 698�699

stolen credentials, 701

TCP limitation, 701

TCP port, 698�699

TLS relationship, 690

as toolkit library, 700

Web sites and, 685�691

Security

areas, 697

PKI, 696

protocol, 6

public key encryption, 694

remote access, 10

VLANs for, 67

Web site, 685

Security and cloud computing, 755�756

Security association database (SAD), 822

Security associations (SAs), 813, 822

Security parameter index (SPI), 813, 822

AH, 824

security policy, 822

892 Index

Security policy database (SPD), 822

Segmentation, 61�63

Segments, 56, 314

handling, 40

lost, 318, 318f

request�response pair, 316

Selectors, 822

Self-signed certificates, 693

Sender keeps all (SKA), 369�370

Sending ICMP messages, 235�236

Serial delay, 840

Servers, 7�8. See also Clients; Client�server model

authentication, 100, 685

authoritative, 591

BOOTP, 563, 573f

DHCP, 566�569, 585

DHCPv6, 585

DMZ, 810�812

DNS, 567, 591, 593�598

FreeBSD, 602�603

FTP, 334�335, 622�623

GLTD, 607

identity, 685

name, 593�598

nonauthoritative, 591

pocket calculator decryption at, 695�696

proxy, 851

root, 592

SMTP, 645

socket, 346�347

SSH, 766

TFTP, 573f

VoIP, 849

Web, 661�665

Service chaining, 742�743

Service data unit (SDU), 28

Services, 28

Session Announcement Protocol and Source

Description Protocol (SAP/SDP) messages,

463

Session Initiation Protocol (SIP), 849�851

registrar, 849

request types, 850�851

responses, 851

sequence of requests/responses, 850

session initiation steps, 850

signaling stack, 848f

Session support, 42

Settlements, 368�369

Shannon, Claude, 115

Shared secret key, 691

Shortest-path tree (SPT), 470�471

building, 470

size, 471

Short-inter-frame spacing (SIFS), 102

Signaled LSPs, 504

Signaling, 843, 847

H.323 stack, 851

MGCP stack, 851

MPLS and, 505�506

packets, 838, 842

protocols, 307

SIP stack, 851

Signers, 767

Simple Key Management for Internet Protocols

(SKIP), 235

Simple Mail Transfer Protocol (SMTP), 60,

640�641, 645, 647�649

authentication, 647, 649f

basic mail exchange, 648f

commands, 649t

mail servers, 645

message delivery with, 642f

as MTA, 645

packet sequence, 642

reply codes, 648, 650t

Service Extensions (ESMTP), 646

Simple Message Transfer Protocol (SMTP), 43

Simple Network Management Protocol (SNMP),

60, 279, 707

agent software, 715

agent/manager model, 715

capabilities, 710�714

community, 713

community strings, 726

as connectionless, 725

enabling, 710

Illustrated Network, 708f

manager software, 721

messages, 723

messages and details, 711�712

MIB, 716

model, 714�722

model illustration, 715

as network management tool, 714

operation, 722�728

PDU structure, 725

polling, 724, 726

private MIB, 721�722

read-only access, 712

requests, 724

RMON, 720�721

router management, 723

in security framework, 727

sessions, 711f

SMI, 716�718

SNMPv1, 710, 726�727

SNMPv1 PDU, 725

893Index

Simple Network Management Protocol (SNMP)

(Continued)

SNMPv1 protocol operation, 723

SNMPv2, 711

SNMPv2 enhancements, 726�727

SNMPv3, 727�728

in TCP/IP protocol stack, 723

traps, 725

Simplex mode, 32

Single bit errors and burst errors, 111�124

better Hamming code method, 115�117

burst errors and interleaving, 123�124

Hamming code implementation, 121�123

Hamming code in action, 117�121

Hamming distance and Hamming codes,

113�115

Site certificates, 688

SKEME, 829

Sliding window, TCP, 322f

SNMPv1, 727

SNMPv3, 727�728

network management and telemetry, 727�728

network management and virtual networks, 728

Socket interface, 334�337

isolation, 337�338

reasons for, 334

simplicity, 337

Windows, 340�347

Sockets, 52, 304, 331

client�server TCP stream, 347f

colon (:), 304

concept applied to FTP, 335f

datagram, 336

dot (.), 304

Illustrated Network, 332f

libraries, 335�336

on Linux, 341�347

listening, displaying, 294

power of, 347

as programmer’s identifier, 334�336

raw, 336, 338�339

server, 346�347

stream, 336

types, 336f

UDP, 290f, 292�296

uses, 335�336

for Windows, 341

Soft-decision FEC codes, 133�134

Software as a service (SaaS), 737�738

Software defined networks (SDNs), 6, 732

Software firewalls, 799, 807

Software-based forwarding, 273

Software-defined networks (SDNs), 731

Solicitation message, 233

SONET/SDH

forward error correction (FEC) and, 126�129,

128f

Source routing, 392

Source Specific Multicast (SSM), 475�476

Spanning tree bridges, 64

Sparse-mode multicast, 467

Split horizon, 388

SQL injection, 756

SSH. See Secure shell (SSH)

SSH-AUTH, 768�770, 772

request, 772

use of, 779

SSH-CONN, 768, 770, 773. See also Secure shell

(SSH)

channel requests, 773

channel types, 773

multiplexing, 773

SSH-SFTP, 768, 770, 776�783

file transfer with, 776f

syntax and options, 776�783

SSH-TRANS, 768�770. See also Secure shell (SSH)

binary packet protocol, 770

key exchange, 770, 779

negotiation, 779

SSL. See Secure socket layer (SSL)

SSLava, 700

SSLRef, 700

Staircase code, 132�133

Standards, 16�19. See also specific standards

data communication, 16

de facto, 17

de jure, 16�17

draft, 19

Internet, 19

interoperability and, 16

proposed, 19

protocols versus,, 15�16

TCP/IP protocol suite, 17

Star topology, 32

State variables, 42

Stateful inspection, 803�810. See also Firewalls

anomaly categories, 804

deep, 809

as dynamic/reflexive firewall, 808�810

flows, 803

interface application, 805

Juniper Networks router, 804

from and then structure, 805

Static IP address assignment, 151

Static LSPs, 504. See also Label switched paths

(LSPs)

link failure and, 510

MPLS configuration with, 508�511

894 Index

Stream sockets, 336

Structure of Management Information (SMI) tree,

716�718

illustrated, 717f

Network Management Protocol use, 718

objects, 723�724

root, 717

Subconfederations, 367

Subnet masks, 158�159

default, 159t

forms, 159

RIPv1, 389

RIPv2, 391�392

use of, 159t

Subnetting, 147, 157�166

address masks, 158

basics, 158�162

LANs, 160f

Subsequent AFI (SAFI), 439

Supernetting, 147

Swap, 505

Switched networks. See Connection-oriented

networks

Switched virtual circuits (SVCs), 354, 504

packets on, 354

Switches, 37�38, 354. See also Routers

ATM, 503�504

LAN, 9, 34, 65

Symmetric DSL (SDSL), 95t

Symmetrical encryption, 696�697

Synchronization source identifier (SSRC), 845

Synchronous Digital Hierarchy (SDH). See also

Synchronous Optical Network/Synchronous

Digital Hierarchy (SONET/SDH)

SONET frame structure differences, 77b

Synchronous optical network (SONET)

evolution of, 94�97

frames, 32

links, displaying, 76�79

point-to-point, 7�8

SDH frame structure differences, 77b

standard, 77b

transmission-frame payload area, 96

Synchronous Optical Network/Synchronous Digital

Hierarchy (SONET/SDH), 71, 274

frames, 96

high-speed WAN links, 95t

links, 73f

MIB, 720

Packet over (POS), 96

Systems, 6

AS, 363�364

end, 6, 26�27

intermediate, 6, 26�27

T
TCP headers, 310�312, 314, 843. See also

Transmission Control Protocol (TCP)

ACK field, 311, 316�317, 319

Acknowledgment Number field, 311

Checksum field, 312

Destination Port field, 310

ECN flags, 311

field illustration, 311f

FIN field, 311, 317

Header Length field, 311

Options field, 312

PSH field, 311

Reserved field, 311

RST field, 311

Sequence Number field, 310�311

Source Port field, 310

SYN field, 311, 315�317

URG field, 311

Urgent Pointer field, 312

Window Size field, 311

TCP/IP, 661, 667, 672

and cloud computing, 753�755

convergence on, 499�500

encapsulation flow, 29

implementations, 84

model, 25

multicast, 465

networks, 14

number of packets exchanged, 13

protocol stack, 723

voice signaling packets, 843

Windows and, 340�341

TCP/IP applications, 43�44

in applications layer, 41

illustrated, 44f

interfaces, 11

TCP/IP layers, 14, 26�28, 30�44

application, 30, 41

contents, 25

data link, 30, 32�35, 84�85

illustrated, 27f, 44f

interface, 27

network, 30, 36�38

overview, 30�31

physical, 31�32

transport, 30, 38�41

TCP/IP protocol suite, 3, 25�29, 45

detail, 57, 57f

device categories, 26�27

flexibility, 27

illustrated, 45

open, 25�26

895Index

TCP/IP protocol suite (Continued)

peer protocol, 55

standards, 17

TCP/IP Sockets in C, 341�342, 463

TCP/UDP, 435, 440

Telnet, 60

Termination of communications, 16

Tethereal MAC addresses, 260

Third-party cookies, 683

Three-way handshake, 314. See also Transmission

Control Protocol (TCP)

capture, 326

FTP, 327f

functions, 316�317

Token ring, 86

Top of rack (TOR) switches, 443�444, 556

Topology

bus/broadcast, 32

IPSec, 816

ring, 32

star, 32

TOR-Leaf-Spine model, 444�445

Traceroute, 237�238

implementations, 238

LSPs and, 510�511

message, 233�235

on Unix-based systems, 238

Traffic Engineering Database (TED), 452

Transit exchanges. See Internet exchange points

(IXPs)

Transit fees, 369

Transit (intermediate) routers, 504

Transmission Control Protocol (TCP), 56, 289,

307. See also TCP header

as byte-sequencing protocol, 321

client�server connections, 308f

client�server interaction, 315f

complexity, 323

congestion control, 322�323

as connection-oriented layer, 56

connections, 307, 310, 314�320

control bits, 312t

data center, 324�326

data transfer, 317�319

data units, 56

echo using, 328f

flow control, 320�323

FTP and, 326�329

functions and mechanisms, 59

Illustrated Network, 308f

ISN, 316�317

lost segment handling, 318f

mechanisms, 313�314

NID, 317

on-demand connections, 307

option types, 312t

overhead, 672�673

performance algorithms, 323�324

permanent connections, 307

pseudo-header, 327�328

registered ports, 303

reliability, 56, 59

RFCs, 313�314

RTT, 317�318

segments, 314

sessions, 328

sliding window, 322f

stream service calls, 336�337

three-way handshake, 314, 316

transactions and, 314b

as virtual circuit service, 313

well-known ports, 301t

windows, 321�322

Transmission framing, 31

Transparent bridging, 63�64

Transparent LAN Service (TLS), 526

Transport layer, 30, 38�41, 59�60. See also TCP/

IP layers

connectionless, 40

connection-oriented, 40

error control, 41

flow control, 40�41

functions, 40�41

illustrated, 40f

process addressing, 40

process-to-process delivery, 38, 41f

protocol packages, 39

segment handling, 40

segmentation, 39

TCP, 56, 59

UDP, 56, 59�60

Transport Layer Interface (TLI), 339

Transport Layer Security (TLS), 690

SSL relationship, 690

TLS 1.2, 691, 702

Traps, 725

Triggered updates, 388

TRILL (Transparent Connection of Lots of Links),

444�445

Triple DES (3DES), 699

Triple play, 489

Trivial File Transfer Protocol (TFTP), 572�573,

576�582

download, 578

file transfer, 577

FTP comparison, 576�582

header, 577

messages, 577, 578f

896 Index

operation codes, 577

servers, 573f

transactions, 577

TTL, 270�271

Tunneling, 267, 283�285

6to4 tunnels, 286

automatic, 285

configured, 284

GRE tunnels, 286

host-to-host, 284, 284f

host-to-router, 284, 284f

IPv4-compatible tunnels, 286

IPv6 addressing formats, 285f

ISATAP tunnels, 286

manually configured tunnels, 286

mechanisms, 285�286

in mixed IPv4/IPv6 network, 284

occurrence, 283

protocols, 90

router-to-host, 284, 284f

router-to-router, 284, 284f

types illustration, 284f

Twice NAT, 793. See also Overlapping NAT

Type of Service (ToS) routing, 398

U
Ultra-FEC method, 133

Unicast addresses, 146

Unidirectional NAT, 790�791

Uniform resource identifiers (URIs), 667

Uniform resource locators (URLs), 668�670

accesses, 670

fields, 668�669, 668f

locator part, 668

rules, 670

Uniform resource names (URNs), 670�671

namespace, 671

notation, 671

resource identification by, 671

Unique local-unicast addresses, 157

Universally reachable address level, 419

Unix

raw sockets access, 339

TLI, 339

traceroute and, 238

Update Message, BGP, 426�429

Upstream interface, 466, 472

User authentication, 685

User Datagram Protocol (UDP), 51, 56, 59�60,

289, 296�297. See also Datagrams

actions, 305f

applications, 59�60

checksum, 294, 296

congestion control, 305

as connectionless transport layer, 56

data unit, 56, 289

flow control, 304�305

Illustrated Network, 290f

operation, 289, 304

overflows, 304�305

popularity, 289

port numbers, 300�304

ports, 290f, 292�296

pseudo-header, 298�299, 299f

registered ports, 303

for short transactions, 60

sockets, 290f, 292�296, 304

as stateless, 295�296

traffic, 296

use of, 292

well-known ports, 301

User Datagram Protocol header, 297�298

Checksum field, 298�299

Destination Port field, 297

illustrated, 297f

Length field, 297�298

Source Port field, 297

User tracking abuse, 683

V
Variable bindings, 725

Variable-length subnet masking (VLSM), 147, 162

use of, 165

Very-high-speed DSL (VDSL), 95t

Virtual circuits, 190�191, 354, 495

Virtual extensible LANs (VXLANs), 535, 736

data planes, 549�557, 550f

and data units, 554�556

nested VXLAN headers, 552f

Virtual LANs (VLANs), 47, 58, 66�67, 493, 526,

536, 736. See also Layer 2 VPNs

(L2VPNs)

frame tagging, 67�68

identifier, 67

in LAN switch, 66, 68

reasons for, 67�68

space, increasing, 67

tagging, 67�68

VLAN ID (VID), 536, 539�540

Virtual machines (VMs), 537, 731

Virtual network provider (VNP), 738

Virtual path identifiers (VPIs), 191

Virtual private LAN service (VPLS), 526�532,

533f

CE6 router, 532

Illustrated Network topology, 528f

897Index

Virtual private LAN service (VPLS) (Continued)

P router (P9), 530�531

router-by-router VPLS configuration, 527�529

virtual port, 527

Virtual private networks (VPNs), 501, 523�526

Illustrated Network, 514f

layer 2 VPNs, 525�526

layer 3 VPNs, 501, 507, 523�525

LSPs and, 507

MPLS-based, 507

security and, 519�520

types of, 518�519

Virtual private networks (VPNs) and protocols,

520

IPSec (IP security), 520

L2F (Layer 2 forwarding), 520

L2TP (Layer 2 tunneling protocol), 520

Point-to-Point Tunneling Protocol (PPTP), 520

SSL, 520

Virtual Private Switched Network (VPSN), 526

Virtual Private Wire Service (VPWS), 526

Virtual routing and forwarding (VRF) tables, 524,

536

Virtualization, increased, 6

Virtualized Network Function (VNF), 731

Viterbi decoders, 132�133

Voice over IP (VoIP), 833

in action, 836�843

address, 836�837

attraction of, 838�839

Avaya software, 836

clients, 836

converged network architecture, 852

delays, 840�842

Illustrated Network, 834f

jitter, 840�841

network architecture, 852f

packetized voice, 842�843

protocols for, 843�852

as PSTN bypass method, 840

PSTN traffic percentage, 833�836

RTP for, 843�846

servers, 836

sessions, 837

signaling architectures, 847

signaling protocols, 838

W
Wavelength division multiplexing (WDM),

107�108

Web browsers

built-in security, 689�690

FTP and, 621

screening/rejecting cookies, 683

secure lock, 685, 689�690

Web pages

defined in HTML, 675

dynamic, 675

secure, 690

Web servers

Apache software, 664

Illustrated Network, 662f

stateless, 682

Web sites

Illustrated Network, 686f

security, 685

SSL and, 685�691

user authentication, 685

Well-known ports, 301�303. See also Ports

statistically mapping, 331�334

TCP, 301

UDP, 301

use of, 301

Wide area networks (WANs), 34�35

ARPs and, 190�191

routing and switching comparison, 500t

Wide-area network backbones, 742

Wi-Fi, 99�100

captive portal, 99�100

jungle, 99

Windowing, 59

Windows, Microsoft

ARP cache display, 184

ARP reply capture, 182f

configuration for DHCP use, 569

cookies in, 682�683

DHCP servers for, 566

direct delivery and, 256

FTP utility, 326

hosts, 254

metrics, 256

multitasking capabilities, 341

raw sockets and, 338

routing tables and, 361�363

socket interface, 340�347

sockets for, 341

TCP/IP and, 340�341

Windows, TCP, 321�322

Windows for Workgroups (WFW), 340

WinSock, 339

DLL, 341

interface, 341

Wire speeds, 273

Wireless LANs. See also Local area networks

(LANs)

architectures, 98f

encapsulation, 83

898 Index

frame addressing, 83

hidden terminal problem, 100, 101f

Wi-Fi, 99�100

Wireless links

data frames and packets on, 83

displaying, 81�84

Wireshark

IPv6 traffic display, 184

X
X.25, 494. See also Frame relay

network nodes, 495

packet routing, 495f

packets, 494

X Windows attacks, 766

899Index

	Front Cover
	The Illustrated Network
	Copyright Page
	Contents
	About the Author
	Foreword
	Preface
	Audience
	What Is Unique About This Book?
	An Audience Note for the Second Edition
	What You Won’t Find in This Book
	And One More Thing Before I Go
	Oh, One More Thing

	The Illustrated Network
	Using This Book
	Source Code

	Acknowledgments
	Technical Reviewers

	I. Networking Basics
	1 Protocols and Layers
	The Illustrated Network
	Remote Access to Network Devices
	File Transfer to a Router
	CLI and GUI
	Wireshark and Packet Capture
	First Explorations in Networking

	Protocols
	Standards and Organizations
	Institute of Electrical and Electronics Engineers
	American National Standards Institute
	Electronic Industries Association
	ISO, or International Standards Organization
	International Telecommunications Union–Telecommunication Standards Sector

	Request for Comment and the Internet Engineering Task Force

	Internet Administration
	Layers
	Simple Networking
	Protocol Layers

	The TCP/IP Protocol Suite
	The TCP/IP Layers
	Protocols and Interfaces
	Encapsulation

	The Layers of TCP/IP
	The Physical Layer
	The Data Link Layer
	The Network Layer
	The Transport Layer
	The Application Layer
	Session Support
	Internal Representation Conversion
	Applications in TCP/IP

	The TCP/IP Protocol Suite
	Questions for Readers

	2 TCP/IP Protocols and Devices
	Protocol Stacks on the Illustrated Network
	Layers, Protocols, Ports, and Sockets
	The TCP/IP Protocol Stack
	The Client–Server Model
	TCP/IP Layers and Client–Server
	The IP Layer
	The Transport Layer
	Transmission Control Protocol
	User Datagram Protocol

	The Application Layer
	Bridges, Routers, and Switches
	Segmenting LANs
	Bridges
	Routers
	LAN Switches
	Virtual LANs
	VLAN Frame Tagging

	Questions for Readers

	3 Network Link Technologies
	Illustrated Network Connections
	Displaying Ethernet Traffic
	Displaying SONET Links
	Displaying DSL Links
	Displaying Wireless Links
	Frames and the Link Layer

	The Data Link Layer
	The Evolution of Ethernet
	Ethernet II and IEEE 802.3 Frames
	MAC Addresses

	The Evolution of DSL
	PPP and DSL
	PPP Framing for Packets
	DSL Encapsulation
	Forms of DSL

	The Evolution of SONET
	A Note about Network Errors
	Packet over SONET/SDH

	Wireless LANs and IEEE 802.11
	Wi-Fi
	IEEE 802.11 MAC Layer Protocol
	The IEEE 802.11 Frame

	Questions for Readers

	4 Packet Optical Networks and Forward Error Correction
	Packet Optical Networks and Error Correction
	Packet Optical Networks and the Optical Transport Network
	Standards for Packet Optical Networks and Forward Error Correction
	Handling Single Bit Errors and Burst Errors
	Hamming Distance and Hamming Codes
	A Better Hamming Code Method
	Hamming Code in Action
	Hamming Code Implementation
	Burst Errors and Interleaving

	Modern FEC Operation
	FEC and SONET/SDH
	FEC and OTN
	The OTN Frame and FEC
	Generic Framing Procedure

	FEC Research and Development
	OTN for the Illustrated Network
	Questions for Readers

	II. Core Protocols
	5 IPv4 and IPv6 Addressing
	IP Addressing
	The Network/Host Boundary
	The IPv4 Address
	Private IPv4 Addresses
	Understanding IPv4 Addresses

	The IPv6 Address
	Features of IPv6 Addressing
	IPv6 Address Types and Notation
	IPv6 Address Prefixes

	Subnetting and Supernetting
	Subnetting in IPv4
	Subnetting Basics
	CIDR and VLSM

	IPv6 Addressing Details
	IP Address Assignment
	Complete IPv4 and IPv6 Address Ranges

	Questions for Readers

	6 Address Resolution Protocol
	ARP and LANs
	ARP Packets
	Example ARP Operation
	ARP Variations
	Proxy ARP
	Reverse ARP
	ARPs on WANs

	ARP and IPv6
	Neighbor Discovery Protocol
	ND Address Resolution

	Questions for Readers

	7 IPv4 and IPv6 Headers
	Packet Headers and Addresses
	The IPv4 Packet Header
	Fragmentation and IPv4
	Fragmentation and MTU

	Fragmentation and Reassembly
	Path MTU Determination

	A Fragmentation Example
	Limitations of IPv4
	The IPv6 Header Structure

	IPv4 and IPv6 Headers Compared
	IPv6 Header Changes

	IPv6 and Fragmentation
	Questions for Readers

	8 Internet Control Message Protocol
	ICMP and Ping
	The ICMP Message Format
	ICMP Message Fields
	ICMP Types and Codes
	ICMP Error Messages
	ICMP Query Messages
	Other ICMP Messages

	Sending ICMP Messages
	When ICMP Must Be Sent
	When ICMP Must Not Be Sent

	Ping
	Traceroute
	Path MTU
	ICMPv6
	Basic ICMPv6 Messages
	Destination Unreachable
	Packet Too Big

	Time Exceeded
	Parameter Problem
	Echo Request and Reply

	Neighbor Discovery and Autoconfiguration
	Routers and Neighbor Discovery
	Interface Addresses
	Neighbor Solicitation and Advertisement

	Questions for Readers

	9 Routing
	Routers and Routing Tables
	Hosts and Routing Tables
	Direct and Indirect Delivery
	Routing
	Direct Delivery without Routing
	Indirect Delivery and the Router

	Questions for Readers

	10 Forwarding IP Packets
	Router Architectures
	Basic Router Architectures

	Another Router Architecture
	Router Access
	The Console Port
	The Auxiliary Port
	The Network

	Forwarding Table Lookups
	Dual Stacks, Tunneling, and IPv6
	Dual Protocol Stacks
	Tunneling

	Tunneling Mechanisms
	Transition Considerations
	Questions for Readers

	11 User Datagram Protocol
	UDP Ports and Sockets
	What UDP Is For
	The UDP Header
	IPv4 and IPv6 Notes
	Port Numbers
	Well-Known Ports
	The Socket

	UDP Operation
	UDP Overflows
	Questions for Readers

	12 Transmission Control Protocol
	TCP and Connections
	The TCP Header
	TCP Mechanisms
	Connections and the Three-Way Handshake
	Connection Establishment
	Data Transfer
	Closing the Connection

	Flow Control
	TCP Windows
	Flow Control and Congestion Control

	Performance Algorithms
	TCP Behaving Badly?
	TCP and FTP
	Questions for Readers

	13 Multiplexing and Sockets
	Layers and Applications
	The Socket Interface
	Socket Libraries
	TCP Stream Service Calls

	The Socket Interface: Good or Bad?
	The “Threat” of Raw Sockets
	Socket Libraries

	The Windows Socket Interface
	TCP/IP and Windows
	Sockets for Windows
	Sockets on Linux

	Questions for Readers

	III. Routing and Routing Protocols
	14 Routing and Peering
	Network Layer Routing and Switching
	Connection-Oriented and Connectionless Networks
	Quality of Service

	Host Routing Tables
	Routing Tables and FreeBSD
	Routing Tables and RedHat Linux
	Routing and Windows

	The Internet and the Autonomous System
	The Internet Today
	The Role of Routing Policies
	Peering
	Picking a Peer
	Questions for Readers

	15 IGPs: RIP, OSPF, and IS-IS
	Interior Routing Protocols
	The Three Major IGPs
	Routing Information Protocol
	Distance-Vector Routing
	Broken Links
	Distance-Vector Consequences
	Split Horizon
	Triggered Updates

	RIPv1
	RIPv1 Limitations

	RIPv2
	Authentication
	Subnet Masks
	Next Hop Identification
	Multicasting

	RIPng for IPv6

	A Note on IGRP and EIGRP
	Open Shortest Path First
	Link States and Shortest Paths
	What OSPF Can Do
	Better Routing Metrics for Links
	Equal-Cost Multipaths
	Router Hierarchies
	Internal and External Routes
	Classless Addressing
	Security
	ToS Routing

	OSPF Router Types and Areas
	Non-backbone, Non-stub Areas
	Stub Area
	Total Stub Area
	Not-So-Stubby Area

	OSPF Designated Router and Backup Designated Router
	OSPF Packets
	OSPFv3 for IPv6

	Intermediate System-Intermediate System
	The IS-IS Attraction
	IS-IS and OSPF
	Similarities of OSPF and IS-IS
	Differences between OSPF and IS-IS
	IS-IS for IPv6

	Questions for Readers

	16 Border Gateway Protocol
	BGP as a Routing Protocol
	Configuring BGP
	The Power of Routing Policy

	BGP and the Internet
	EGP and the Early Internet
	The Birth of BGP

	BGP as a Path-Vector Protocol
	IBPG and EBGP
	IGP Next Hops and BGP Next Hops
	BGP and the IGP

	Other Types of BGP
	BGP Attributes
	BGP and Routing Policy
	BGP Scaling

	BGP Message Types
	BGP Message Formats
	The Open Message
	The Update Message

	The Notification Message
	Questions for Readers

	17 Expanded Uses for BGP
	Introduction
	Optimal Route Reflection (ORR)
	“Regular” Route Reflection
	ORR Considered

	BGP and Flow Specification
	BGP and DDoS
	BGP Flow Spec Details

	BGP in the Very Large Data Center
	Data Centers as CLOS Networks
	Layer 2 and Layer 3 in a Folded CLOS Network Data Center
	Use iBGP or eBGP?
	Let Data Center Use eBGP, Not an IGP
	Example of BGP Use in the Data Center

	Distributing Link-State Information with BGP
	The IGP Limitations
	The BGP Solution
	Implementing BGP for Link-State Protocols
	Juniper Network’s Implementation Details
	Summary of Supported and Unsupported Features

	Configuring BGP-LS on the Illustrated Network
	Questions for Readers

	18 Multicast
	A First Look at IPv4 Multicast
	Multicast Terminology
	Dense and Sparse Multicast
	Dense-Mode Multicast
	Sparse-Mode Multicast

	Multicast Notation
	Multicast Concepts
	Reverse-Path Forwarding
	The RPF Table
	Populating the RPF Table
	Shortest-Path Tree
	Rendezvous Point and Rendezvous-Point Shared Trees

	Protocols for Multicast
	Multicast Hosts and Routers
	Multicast Group Membership Protocols
	Internet Group Management Protocol for IPv4
	Multicast Listener Discovery for IPv6

	Multicast Routing Protocols
	Distance-Vector Multicast Routing Protocol
	Multicast Open Shortest Path First
	PIM Dense Mode
	PIM Sparse Mode
	Core-Based Trees

	Any-Source Multicast and SSM
	Multicast Source Discovery Protocol
	Frames and Multicast
	IPv4 Multicast Addressing
	IPv6 Multicast Addressing
	Format Prefix
	Flags
	Scope
	Group ID

	PIM-SM
	The Resource Reservation Protocol and PGM
	Multicast Routing Protocols
	IPv6 Multicast

	Questions for Readers

	IV. IP Switching and VPNs
	19 MPLS and IP Switching
	Converging What?
	Fast Packet Switching

	Frame Relay
	Asynchronous Transfer Mode
	Why Converge on TCP/IP?

	MPLS
	Basic MPLS Terminology
	Signaling and MPLS
	Label Stacking

	MPLS and VPNs
	MPLS Tables

	Configuring MPLS Using Static LSPs
	The Ingress Router
	The Transit Routers
	The Egress Router
	Traceroute and LSPs

	Questions for Readers

	20 MPLS-Based Virtual Private Networks
	PPTP for Privacy
	Types of VPNs
	Security and VPNs
	VPNs and Protocols
	PPTP
	L2TP
	PPTP and L2TP Compared

	Types of MPLS-Based VPNS
	Layer 3 VPNs
	Customer Edge
	Provider Edge
	Provider

	Layer 2 VPNs

	VPLS: an MPLS-Based L2VPN
	Router-by-Router VPLS Configuration
	CE0 Router
	PE5 Router

	P Router (P9)
	PE1 Router

	CE6 Router

	Does it Really Work?
	Questions for Readers

	21 EVPN and VXLAN
	EVPN Overview
	L2VPNs and EVPN Compared
	EVPN Services Overview
	EVPN Control Plane Operation
	All-Active Multi-homing and the DF
	ARP and ND Proxy
	Aliasing
	MAC Mobility
	Default Gateway Forwarding
	MAC Mass Withdrawal

	Layer 2 and Layer 3 and EVPN
	DCI
	Overlay VPNs over IP

	VXLAN and EVPN Data Planes
	VXLAN EVPN Data Plane
	VXLAN and Data Units
	MPLS and the PBB-EVPN Data Plane

	Configuring an EVPN with VXLAN on the Illustrated Network
	Questions for Readers

	V. Application Level
	22 Dynamic Host Configuration Protocol
	DHCP and Addressing
	DHCP Server Configuration
	Router Relay Agent Configuration
	Getting Addresses on LAN2
	Using DHCP on a Network

	BOOTP
	BOOTP Implementation
	BOOTP Messages
	BOOTP Relay Agents
	BOOTP “Vendor-Specific Area” Options

	Trivial File Transfer Protocol
	TFTP Messages
	TFTP Download
	DHCP
	DHCP Operation
	DHCP Message Type Options

	DHCP and Routers
	DHCPv6
	DHCPv6 and Router Advertisements
	DHCPv6 Operation

	Questions for Readers

	23 The Domain Name System
	DNS Basics
	The DNS Hierarchy
	Root Name Servers
	Root Server Operation
	Root Server Details

	DNS in Theory: Name Server, Database, and Resolver
	Adding a New Host
	Recursive and Iterative Queries
	Delegation and Referral
	Glue Records

	DNS in Practice: Resource Records and Message Formats
	DNS Message Header
	DNSSec
	DNS Tools: nslookup, dig, and drill

	DNS in Action
	Questions for Readers

	24 File Transfer Protocol
	Overview
	PORT and PASV

	FTP and GUIS
	FTP Basics
	FTP Commands and Reply Codes
	FTP Data Transfers
	Passive and Port
	File Transfer Types
	When Things Go Wrong

	FTP Commands
	Variations on a Theme
	A Note on NFS

	Questions for Readers

	25 SMTP and Email
	Architectures for Email
	Sending Email Today
	Email Message Composition
	Submission of Email
	Delivery of Email
	Email Processing
	Email Access and Reading
	Email Protocols

	The Evolution of Email in Brief
	SMTP Authentication
	Simple Mail Transfer Protocol

	Multipurpose Internet Mail Extensions
	MIME Media Types
	MIME Encoding
	An Example of a MIME Message

	Using POP3 to Access Email
	Headers and Email
	Home Office Email
	Questions for Readers

	26 Hypertext Transfer Protocol
	HTTP in Action
	Uniform Resources
	URIs
	URLs
	URNs

	HTTP
	The Evolution of HTTP
	HTTP Model
	HTTP Messages

	Trailers and Dynamic Web Pages
	HTTP Requests and Responses
	HTTP Methods
	HTTP Status Codes
	HTTP Headers
	General Headers
	Request Headers
	Response Headers
	Entity Headers
	Cookies

	Questions for Readers

	27 Securing Sockets with SSL
	SSL and Web Sites
	The Lock
	Secure Socket Layer

	Privacy, Integrity, and Authentication
	Privacy
	Integrity
	Authentication

	Public Key Encryption
	Pocket Calculator Encryption at the Client
	Example
	Pocket Calculator Decryption at the Server

	Public Keys and Symmetrical Encryption
	SSL as a Protocol
	SSL Protocol Stack
	SSL Session Establishment
	SSL Data Transfer
	SSL Implementation
	SSL Issues and Problems
	Computational Complexity
	Clear Private Keys
	Stolen Credentials
	Pseudorandom Numbers and “Entropy”
	Works Only with TCP
	Inadequate Nonrepudiation

	SSL and Certificates

	Questions for Readers

	VI. Network Management
	28 Simple Network Management Protocol
	SNMP Capabilities
	The SNMP Model
	The MIB and SMI
	The SMI
	The MIB
	RMON
	The Private MIB

	SNMP Operation
	SNMPv2 Enhancements
	SNMPv3
	Network Management and Telemetry
	Network Management and Virtual Networks

	Questions for Readers

	29 Cloud, SDN, and NFV
	Cloud Computing and Networking Defined
	Cloud Computing Service Models
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)
	Cloud Computing Models

	SDNs
	Service Chaining
	Implementing SDNs
	Contrail: An Example SDN Architecture
	NFV
	Virtio and SR-IOV
	NFV and Service Chaining

	Cloud Networking and TCP/IP
	Clouds and Security
	Questions for Readers

	VII. Security
	30 Secure Shell (Remote Access)
	Using SSH
	SSH Basics
	SSH Features
	SSH Architecture
	SSH Keys
	SSH Protocol Operation
	Transport Layer Protocol
	Authentication Protocol
	The Connection Protocol
	The File Transfer Protocol

	SSH in Action
	Questions For Readers

	31 Network Address Translation
	Using NAT
	Advantages and Disadvantages of NAT
	Four Types of NAT
	Unidirectional NAT
	Bidirectional NAT
	Port-Based NAT
	Overlapping NAT

	NAT in Action
	Questions For Readers

	32 Firewalls
	What Firewalls Do
	A Router Packet Filter
	Stateful Inspection on a Router

	Types of Firewalls
	Packet Filters
	Application Proxy
	Stateful Inspection
	DMZ

	Questions for Readers

	33 IP Security
	IPSEC in Action
	CE0
	CE6

	Introduction to IPSec
	IPSec RFCs
	IPSec Implementation
	IPSec Transport and Tunnel Mode

	Security Associations and More
	Security Policies
	Authentication Header
	Encapsulating Security Payload
	Internet Key Exchange

	Questions for Readers

	VIII. Media
	34 Voice over Internet Protocol
	VoIP in Action
	The Attraction of VoIP
	What Is “Voice”?
	The Problem of Delay
	Packetized Voice

	Protocols for VoIP
	RTP for VoIP Transport
	Signaling
	H.323, the International Standard
	SIP, the Internet Standard
	MGCP and Megaco/H.248

	Putting It All Together
	Questions for Readers

	List of Acronyms
	Bibliography
	Books
	RFCs and Internet Drafts
	Related Standards Documents
	ITU-T (and CCITT) Recommendations
	ETSI, ISO, and IEEE Documents

	Index
	Back Cover

