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Preface

The main part of the book was written in Spring 2016 when the author
taught Power Systems II, a graduate course at University of South Florida,
Tampa Florida. The course was designed to focus on control and dynamics
of power systems. Bergen and Vittal’s book, Power System Analysis, was
adopted as the textbook. Dynamics and control, especially in the area of
power systems applications where rotating magnetic fields are involved, is a
formidable subject to students. Hence, a set of class notes was developed in
that semester to offer a tutorial approach of learning. Many examples and
codes were developed to facilitate understanding and hands-on training. A
highlight of this textbook is its many tutorial examples.

The first version of Bergen and Vittal’s book was written in 1981 by
Professor Bergen. Thirty-six years have passed since then. This classic
textbook has been highly recognized and helped to educate a generation of
power systems engineers. Professor Bergen passed away in July 2014. As
a power systems engineer, this author would like to contribute to the field
by reinterpreting the classics of power system control and dynamics. This
textbook is also a tribute to Professor Bergen.

There will be several things different from the classic textbook.

The generator model derivation is very sophisticated in Bergen and Vit-
tal (2009). In Bergen and Vittal (2009), Park’s transformation was employed
to derive generator models. The alternative of Park’s transformation is space
vector and complex vector transformation, a concept used much more often
in machines and power electronics after the 1980s. The space vector concept
makes Park’s transformation straightforward. In this textbook, the author
will explain synchronous generator dynamics, the most formidable dynamics
in power systems, using space vector concepts.

In the 1980s, power electronics and microgrids were yet to be developed.
This field is well developed in the 21st century. Many techniques used in
power systems for power sharing, e.g., droop control, can also be found
in power electronic converter coordination. This part is now related and

ix
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put into the textbook to help readers understand converter control and
coordination. This is another highlight of the textbook.

Advanced controls such as networked control (consensus control) were
developed after 2000. Many classic engineering implementations follow the
advanced control framework. It is appealing to find them and interpret the
intuitive engineering design with concepts and ideas from networked con-
trol. In this textbook, inter-area oscillations are explained using consensus
control.

Professor Bergen’s book has steady-state analysis and dynamics all to-
gether. This textbook focuses on dynamics and control only. This author
would also like to have a better flow to focus on power system control. Start-
ing from the beginning, the ordinary differential equation, the building block
of dynamics and control, is explained using examples. Dynamic simulation
and linear system analysis are conducted for the examples. With the fun-
damental concept of dynamics built, readers can then pursue the learning
tasks related to power system control and dynamic stability with ease.

The flow of the text is to treat frequency or voltage control as control
problems. For control problems, first we discuss the plant model and its
related steady-state and dynamic responses. The plant model should be
identified with the inputs and outputs specified. In the frequency control
case, it is obvious that the output of the plant model should be frequency.
The inputs are from a generator’s mechanical system inputs. After setting
up the plant model, we then think about how to design feedback controls
to realize control objectives. After the control design is conducted, we then
employ dynamic simulation to verify controller performance.

The author is grateful to have the opportunity to write and publish this
book through the CRC press. The author would like to acknowledge the
University of South Florida Electrical Engineering Department for provid-
ing a great environment for conducting research and teaching. The author
wishes to acknowledge her family for their encouragement.

The book was developed from the author’s class notes of Power Systems
II for Spring 2016. Minyue Ma, a Ph.D. student, was the teaching assis-
tant for that course and helped work out examples and homework prob-
lems for the class. A few students in the class, e.g., Abdullah Alassaf,
highly complimented the class notes, which encouraged the author to con-
tact the CRC press for publication. Yin Li, a Ph.D. student, built the
MATLABr/Simulink models used in Chapter 6 Frequency and voltage con-
trol in microgrids. Yangkun Xu, another Ph.D. student drew many figures
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for Chapter 3 and Chapter 5. Graduate students at the USF Power Systems
Smart Grid Lab reviewed the book during the holiday season in December
2016. The author wishes to acknowledge Minyue Ma and Yin Li as reviewers.
The author also wishes to acknowledge Yi Yang from Eaton Cooperation as
a reviewer.

MATLABr is a registered trademark of The MathWorks, Inc. For prod-
uct information please contact:
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

mailto:info@mathworks.com
http://www.mathworks.com


Chapter 1

Introduction

1.1 Why a new textbook?

A traditional power system dynamics and control book covers synchronous
generator models (steady-state and dynamics), generator voltage control,
power system frequency control, and power system transient stability. A
typical textbook is Bergen and Vittal’s book Power Systems Analysis (Chap-
ters 6, 7, 8, 11, and 14). With today’s smart grid industry, the following
aspects need to be added in teaching and in textbooks.

1. How to carry out demonstration for power system dynamics and
control.

To address this task, dynamic simulation of ordinary differential equation-
based models and further programming implementation in software environ-
ment such as MATLABr or Python should be covered. This part is usually
not found in a traditional textbook. Rather, students have to go to another
course or read another book on computing to learn how to conduct vali-
dation and demonstration. In this text, tutorial examples on programming
and dynamic simulation will be provided and students can quickly manage
to conduct validation through coding or MATLAB/Simulink.

2. How to carry out control design.

Classic control methods such as the root locus method are repeatedly
used in Bergen and Vittal (2009). In the 1980s, MATLAB and its control
toolbox were not yet popular. Therefore, Bergen and Vittal (2009) did not
present examples related to MATLAB codes. This textbook will provide
MATLAB examples for control design problems.

3. How to better explain rotating machines.

Generator model derivation is the most sophisticated part in Bergen

1



2 CHAPTER 1. INTRODUCTION

and Vittal (2009). In Bergen and Vittal (2009), Park’s transformation was
employed to derive generator models. The alternative to Park’s transfor-
mation is space vector and complex vector transformation, a concept used
much more often in machines and power electronics after the 1980s. The
space vector concept makes Park’s transformation straightforward. In this
textbook, the author will explain synchronous generator dynamics, the most
formidable dynamics in power systems, using the space vector concept.

4. How are microgrids controlled?

In the traditional power system dynamics and control books, the focus
is on synchronous generators. With the current industry where renewable
energy, power electronics converters and microgrids arise, the related system-
level dynamics and control should be covered. For example, when frequency
control is discussed, it is very natural to extend the applications from large-
scale power systems to microgrids where droop control is also used. Coverage
on microgrid control is a highlight of this textbook.

In short, the aim of this textbook is to provide more insights using
programming examples, state-of-the-art control design tools, and advanced
control concepts to explain traditional power system dynamics and control.
In addition, microgrid control will be covered as extended applications.

While reading this textbook, readers will get the chance of training in
programming and control design. They will gain knowledge on dynamics
and control in both synchronous generator-based power systems and power
electronic converter enabled microgrids.

1.2 Structure of this book

The book is organized in eight chapters. The book has two main parts:
control (frequency and voltage control) and dynamics (large-signal stability
and small-signal stability). Before control problems are introduced, the
validation tool: dynamic simulation, is examined in Chapter 2. Along with
dynamic simulation, linear system analysis tools such as Bode plots, are also
introduced.

There are four chapters related to control: Chapters 3-6. Frequency con-
trol and power sharing of synchronous generators are examined in Chapter 3.
Electromechanical dynamics of a synchronous generator is considered while
electromagnetic dynamics are not considered in Chapter 3. This treatment
makes analysis concise with only critical dynamics included. After frequency
control, voltage control is to be examined. To better explain voltage control,
a detailed examination of a synchronous generator’s model with electromag-
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netic dynamics is required. Therefore, Chapter 4 focuses on the derivation of
synchronous generator models using the space vector concept. Both steady-
state and dynamic models are presented in Chapter 4. Chapter 5 presents
voltage control of synchronous generator.

Chapter 6 covers converter control and power sharing among convert-
ers in a microgrid. The materials presented in Chapter 6 have never been
found in any textbook on power system control and dynamics. Chapter 6
first presents a single voltage source converter’s control. Depending on its
operation mode, a converter can either work in PQ control mode for grid-
connected operation or in VF control mode for autonomous operation. With
the fundamental control covered, droop control for power sharing among
converters is then presented. This chapter gives many examples on control
design and simulation-based validation.

Part II of the book focuses on dynamics. Two chapters are included.
Chapter 7 focuses on large-signal stability. An example is transient stability
of a synchronous generator. Chapter 8 focuses on small-signal stability.
Three engineering problems are used as examples in this chapter: small-
signal model derivation of a single-machine infinite-bus (SMIB) system for
stability analysis, inter-area oscillation explanation using networked control
theory, and torsional interactions in a synchronous generator. For each
problem, linear system models are derived and linear system analyses are
conducted.

This book provides many examples and tutorials to facilitate learning.
Through the study of this book, readers can master the skill of linear system
analysis and simulation-based validation. What’s more, this book builds a
bridge between traditional synchronous generator-based large-scale power
system control and converter-based microgrid control.
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Chapter 2

Dynamic Simulation

2.1 Introduction

In this chapter, we will describe how to build validation testbeds for control
and dynamic analysis using dynamic simulation or time-domain simulation.
Take a simple RL circuit example shown in Figure 2.1. We would like to
know the current i(t). The voltage source vs = VDC is assumed as known,
e.g., 5 V. Initially, the circuit is open. Assume that at t0, the switch turns
on. We first establish an ordinary differential equation (ODE) to describe
the circuit model.

VDC = Ri(t) + L
di(t)

dt
(2.1)

R                    L

vs                       
i                       +

–

Figure 2.1: An RL circuit.

For a simple system described by (2.1), we can find a closed-form ex-
pression for i(t) using the ODE solving techniques from calculus.

7



8 CHAPTER 2. DYNAMIC SIMULATION

The solution i(t) of (2.1) consists of two components i1(t) and i2(t):

i(t) = i1(t) + i2(t), (2.2)

where i1(t) is the forced component or the steady-state response, which is
a special solution that satisfies (2.1), and i2(t) is the transient component
which satisfies the homogeneous equation

0 = Ri2(t) + L
di2(t)

dt
. (2.3)

For i1(t), we may guess a solution. For example, by comparing the left
side of (2.1), VDC , with the right side of the equation, Ri+ di

dt , we guess that
i1(t) is a constant with its derivative as zero. Then the right side becomes
Ri1. Therefore, we have:

i1 =
VDC
R

. (2.4)

For i2, the general form for the first-order homogeneous ODE isKes(t−t0),
where K and s are constants. Replacing i2(t) with Kes(t−t0) in (2.3), we
have:

0 = K(R+ Ls)es(t−t0). (2.5)

To make the right side zero, we must have:

s = −R
L
.

Using the initial condition, we may find K. First, we find the expression
for i(t):

i(t) =
VDC
R

+Ke−
R
L

(t−t0). (2.6)

At t = t+0 (+ stands for the moment right after the switch is turned on),
we know that current is kept at 0 since the circuit has an inductor and the
current through an inductor cannot have a sudden change. Therefore,

0 =
VDC
R

+K =⇒ K = −VDC
R

. (2.7)

The final expression of i(t) is as follows.

i(t) =
VDC
R

(
1− e−(t−t0)/τ

)
, t ≥ t+0 (2.8)
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where τ = L
R .

τ is named as time constant. When t = t0 + τ ,

i(t0 + τ) = (1− e−1)i(∞) = 0.63× i(∞),

where i(∞) is the steady-state value of the current and i(∞) = VDC
R . A

time constant indicates how fast the system responds. It is an important
measure of system dynamics. Another measure is bandwidth, which will be
mentioned in Chapter 3. High bandwidth indicates a fast response.

Alternatively, we can obtain the closed-form expression through the
Laplace transform. In the Laplace domain, (2.1) is expressed as:

VDC
s

= RI(s) + L(sI(s)− i(t+0 )) (2.9)

where I(s) = L(i(t)) is the Laplace-domain expression of the current.
At t+0 , the current is 0. This is due to the fact that initially the circuit

is open and there is no current. Further, there is an inductor. Current
through an inductor cannot jump even when the switch turns on. Therefore,
i(t+0 ) = 0.

Based on (2.9), we have the current’s expression as:

I(s) =
VDC

s(R+ Ls)
(2.10a)

=
VDC
R

(
1

s
− 1

s+R/L

)
(2.10b)

An inverse Laplace transform will lead to the time-domain expression as
follows.

i(t) =
VDC
R

(
1− e−(t−t0)/τ

)
, t ≥ t+0 (2.11)

where τ = L/R.
The expressions of i(t) derived based on calculus and Laplace transform

are the same.
For a complicated system model, it is not easy to find closed-form time-

domain expressions for the desired variables. Instead, numerical integration
will be conducted to find the values of ODE variables over time.

In Section 2.2, an overview of numerical integration methods will be
introduced. This section is followed by an example on RLC circuit sim-
ulation in Section 2.3. In Section 2.4, dynamic model building and sim-
ulation in MATLAB/Simulink is explained and demonstrated. In Section
2.5, MATLAB commands that can conduct dynamic simulation for linear
time-invariant (LTI) systems are given.
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2.2 Numerical integration methods

Numerical integration methods are usually covered in textbooks on numer-
ical methods, e.g., Crow (2015); Chapra and Canale (2012). Chapter 5
of Crow (2015) gives a detailed treatment on numerical integration meth-
ods, including accuracy analysis and numerical stability analysis. This text-
book focuses on applications and hands-on training. Numerical integration
methods will be introduced along with codes and MATLABr commands.
Three methods will be discussed in this section: the Forward–Euler method,
Runge–Kutta method, and Trapezoidal method.

2.2.1 Forward–Euler method

Give a set of differential equations

dx

dt
= f(x), (2.12)

where x ∈ Rn and f is a mapping f : Rn ⇒ Rn. The objective of numerical
integration is to find x(t1), x(t2), · · · , x(T ) in the time interval of t0 ∼ T for
a given initial condition x(t0).

If we select a constant step size h, then

t1 = t0 + h

... =
...

tk = tk−1 + h = t0 + kh

... =
...

tN = tN−1 + h = t0 +Nh

We aim to find xk, k = 1, · · · , N , where N = (T − t0)/h, and xk is the
approximated value of x(tk).

Based on Taylor’s series, x(tk+1) can be expressed by x(tk) and the
derivatives of x evaluated at tk.

x(tk+1) = x(tk) + ẋ(tk)h+O(h2)

≈ x(tk) + ẋ(tk)h

= x(tk) + f(x(tk))h

where O(·) stands for high-order terms.
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Replacing x(tk) by its approximated value xk, we have:

xk+1 = xk + f(xk)h. (2.13)

(2.13) is the Forward Euler method. The accuracy of the method is
evaluated by x(tk+1)−xk+1. If we assume that the error between x(tk) and
xk can be ignored, we can find that

x(tk+1)− xk+1 = O(h2) (2.14)

Therefore, the Euler method has an accuracy of O(h2).
For the RL circuit example, we can quickly write a Python code to

conduct the simulation.

import math,pylab

# define the dynamic equation to compute di/dt # R*i + L. di/dt = v

def fun_didt(R, L, v, i):

di_dt = (v-R*i)/L;

return di_dt

# Use trapezoidal method to conduct numerical integration

# step 1, initial condition

# voltage is a dc voltage. for all time being, voltage is 5V.

step_size = 0.01

n_steps = 1000

v = 5.0

R = 0.1

L = 0.1

i_data =[]

v_data =[]

i = 0

for k in range(n_steps):

v_data.append(5.0)

i_data.append(i)

# compute current

i = i + fun_didt(R, L, v, i)*step_size;

tt = [k*step_size for k in range(n_steps)]

pylab.plot(tt, i_data)

pylab.xlabel(’time (sec)’);

pylab.show()

First, a function fun didt is defined. This function computes the deriva-
tive of current for given source voltage, current and known parameters (R
and L). The simulation step h is 0.01 seconds and total 1000 steps will be
computed using numerical integration. The DC voltage is 5 V. The resis-
tance is 0.1 Ω. The inductance is 0.1 H. Two lists i data and v data are
used to store current and voltage computed at every step. Initial current is
set to be 0.
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The iteration is carried out for 1000 steps and at every step, the com-
puted current and voltage are appended to the two lists, respectively. At
every step, fun didt is called and Forward–Euler is carried out to compute
the current at the next step.

Finally, pylab is used to make plots. The dynamic simulation result from
the above Python code is shown in Figure 2.2.

Figure 2.2: Time-domain response of the circuit current using For-
ward–Euler method.

In MATLAB, ode1 is the integration solver using the Euler method.

2.2.2 Runge–Kutta method

The Euler method is not popular due to its low accuracy. In the Runge–Kutta
method, the second-order term is preserved and approximated using numeri-
cal computation. The following fourth-order Runge–Kutta has the accuracy
of O(h5). The MATLAB ODE solver for Runge–Kutta is ode4.

xk+1 =
1

6
(k1 + 2k2 + 2k3 + k4) (2.15a)

k1 = f(xk) (2.15b)

k2 = f(xk +
h

2
k1) (2.15c)

k3 = f(xk +
h

2
k2) (2.15d)

k4 = f(xk + hk3) (2.15e)
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2.2.3 Trapezoidal method

The Trapezoidal method has the accuracy of O(h3) and has been adopted in
Power System Toolbox Chow and Cheung (1992), a free MATLAB toolbox
for power system dynamic simulation developed by J. Chow in the early
1990s.

In the Forward–Euler method, the derivative of x at the period of [tk, tk+1]
is assumed to be f(x(tk)). In the Trapezoidal method, the derivative f(x) is
approximated by a line connecting f(x(tk)) and f(x(tk+1)) as shown in Fig-
ure 2.3. Therefore, we will use the trapezoidal area to replace the integration
of f(x) from tk to tk+1.

tk tk+1

hk

t

f(x)f(x(tk+1))

f(x(tk))

Figure 2.3: Trapezoidal method.

xk+1 = xk +

∫ tk+1

tk

f(x)dt

≈ xk +
h

2
(f(xk) + f(xk+1))

(2.16)

Note the Trapezoidal method requires the state derivative f(x) be eval-
uated at tk+1. The Forward–Euler method is first applied to give an es-
timation of xk+1, notated as x̃k+1, as shown in (2.17a). Afterwards, the
Trapezoidal method is applied to find the state at step k + 1 as shown in
(2.17b).

x̃k+1 = xk + hf(xk) (2.17a)

xk+1 = xk +
h

2
(f(xk) + f(x̃k+1)) (2.17b)

Table 2.1 gives a comparison of the three methods for numerical integra-
tion results of the RL circuit. The values presented are xk − x(tk), where
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x(tk) is computed using the analytical close-form in (2.8). It can be seen
that the 4th order Runge–Kutta method (RK4) gives the most accurate re-
sult, while the Trapezoidal method’s accuracy is much higher than that of
the Forward–Euler method.

Table 2.1: Comparison of the errors of the three methods

Time Euler RK4 Trapezoidal

0.01 −2.49e−03 4.16e−11 8.31e−06
0.02 −4.93e−03 8.24e−11 2.88e−05
0.03 −7.33e−03 1.22e−10 6.13e−05
0.04 −9.67e−03 1.61e−10 1.00e−04
0.05 −1.20e−02 1.99e−10 1.60e−04
0.06 −1.42e−02 2.37e−10 2.20e−04
0.07 −1.64e−02 2.74e−10 3.04e−04
0.08 −1.85e−02 3.10e−10 3.92e−04
0.09 −2.07e−02 3.46e−10 4.89e−04

Table 2.1 was generated by the following Python code.

import math,pylab

# define the dynamic equation to compute di/dt

# R*i + L. di/dt = v

def fun_didt(R, L, v, i):

di_dt = (v-R*i)/L;

return di_dt

step_size = 0.01; n_steps = 10;

v = 5.0; R = 0.1; L = 0.1;

i_data =[]; i_Eu = [];i_RK = []; i_Tr = []; v_data =[];

i1 = 0; i2 = 0; i3 = 0;

for k in range(n_steps):

v_data.append(5.0)

i_data.append(5.0/R*(1-math.exp(-R*step_size*k/L)))

i_Eu.append(i1)

i_RK.append(i2)

i_Tr.append(i3)

# Euler

i1 = i1 + fun_didt(R, L, v, i1)*step_size;

# Trapzoidal

i3 = i3 + 0.5*(fun_didt(R, L, v, i1)+ fun_didt(R, L, v, i3))*step_size;

# RK4

k1 = fun_didt(R, L, v, i2)

k2 = fun_didt(R, L, v, i2 + 0.5*step_size*k1)

k3 = fun_didt(R, L, v, i2 + 0.5*step_size*k2)
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k4 = fun_didt(R, L, v, i2 + step_size*k3)

i2 = i2 + step_size/6*(k1+2*k2+2*k3+k4)

# print a table

for k in range(n_steps):

print step_size*k,i_data[k]-i_Eu[k],i_data[k]-i_RK[k],i_data[k]-i_Tr[k]

2.3 Dynamic simulation for an RLC circuit

In this section, dynamic simulation is carried out using Python programming
and MATLAB’s numerical integration solver such as ode45.

The RLC circuit is shown in Figure 2.4. The state-space model of the

R                    L

vs                       
i                       +

–

Figure 2.4: An RLC circuit.

RLC circuit is first derived. We are only interested in differential equations.
Therefore, no integral should appear in the model. For the RLC circuit,
the derivative of the line current i is proportionally related to the voltage
drop across the inductor vL; the derivative of the capacitor voltage vC is
proportionally related to the current through the capacitor i. Therefore,
we can write the two first-order differential equations and further apply
Kirchhoff’s voltage law (KVL) to write the loop voltage equation.

L
di

dt
= vL (2.18a)

C
dvC
dt

= i (2.18b)

− vs +Ri+ vL + vC = 0 (2.18c)

The two variables i and vC are called state variables. The above model
is termed as dynamic algebraic equations (DAEs). We will get rid of the



16 CHAPTER 2. DYNAMIC SIMULATION

algebraic equation and have a set of ODEs.

L
di

dt
= vs −Ri− vC (2.19a)

C
dvC
dt

= i (2.19b)

Note that in the above equations, the derivatives of the state variables are
expressed by themselves along with a given input vs.

A general expression for the above system is as follows.

ẋ = f(x, u) (2.20)

where u is input and x is the vector of the state variables.
For the RLC circuit, x = [i, vC ]T and u = vs. This is a linear system

and we can write the following linear state-space model.

ẋ =

[−R
L

−1
L

1
C 0

]
︸ ︷︷ ︸

A

x+

[
1
L
0

]
︸︷︷︸
B

vs︸︷︷︸
u

(2.21)

Further let us define the output of the model y as the same as x. Then
we have this equation:

y = Cx+Du (2.22)

where C = I is an identity matrix and D = [0, 0]T .
If we are only interested in having the current as the output, then

y =
[
1 0

]
x (2.23)

For a nonlinear continuous system with state variables constant at a
steady-state, a linear model can be derived by evaluating the model at a
steady-state operating condition x0 and u0 (f(x0, u0) = 0) using small per-
turbation.

∆ẋ =
d(x0 + ∆x)

dt
= f(x0 + ∆x, u0 + ∆u)

≈ f(x0, u0) +
∂f

∂x

∣∣∣∣
x0,u0

∆x+
∂f

∂u

∣∣∣∣
x0,u0

∆u

=
∂f

∂x

∣∣∣∣
x0,u0

∆x+
∂f

∂u

∣∣∣∣
x0,u0

∆u

(2.24)
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2.3.1 Trapezoidal method-based simulation in Python

The following Python code is developed to simulate the RLC circuit. Note
that a function to compute the derivatives dx/dt is first defined. The inputs
to the function include the RLC parameters, the state variable vector x and
the source voltage vs. The main routine carries out trapezoidal numerical
integration. At each step k, the derivatives dx/dt are computed by calling
the function. Based on the derivative, the next step’s state is estimated
using Forward–Euler method. Based on this estimation, the derivative at
step k+ 1 is computed. Using the two derivatives, the k+ 1 step state xk+1

is then computed.

import math,pylab

# define the dynamic equation to compute di/dt

# R*i + L. di/dt +vc = v # c

dvc/dt = i def fun_dxdt(R, L, C, vs, x):

dx_dt = [-R/L*x[0]-x[1]/L+vs/L, x[0]/C]

return dx_dt

# Trapezoidal method to conduct numerical integration

# step 1, initial condition

# voltage is a dc voltage. for all time being, voltage is 1V.

step_size = 0.001

n_steps = 1000

v = 1

R = 0.1

L = 0.01

C =0.001

x_data =[]

v_data =[]

x = [0, 0]

x1 =[0, 0]

x2 =[0, 0]

for k in range(n_steps):

v_data.append(v)

x_data.append(x[:])

x = x2

# compute current

dx_dt = fun_dxdt(R, L, C, v, x)

for i in range(2):

x1[i] = x[i] + dx_dt[i]*step_size

dx_dt_est = fun_didt(R, L, C, v, x1)

for i in range(2):

x2[i] = x[i] + 0.5*(dx_dt[i]+dx_dt_est[i])*step_size

tt = [k*step_size for k in range(n_steps)]

pylab.plot(tt, x_data)

pylab.xlabel(’time (sec)’);
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pylab.show()

Figure 2.5 shows the simulation results from the Python code.

Figure 2.5: RLC circuit simulation results.

2.3.2 MATLABr ODE solver-based dynamic simulation

MATLAB’s ODE solvers provide a convenient approach to conduct numer-
ical integration. We only need to define f(x, u) and then call the solver.

In an m-file named fun RLC.m, define a function as fun RLC to compute
f(x, u). To use ODE solvers, we first define u. Here we set u = 1 to initiate
a step response.

function xdot = fun_RLC(t,x,par)

xdot = [ -par.R/par.L, -1/par.L;1/par.C, 0]*x + [1/par.L; 0];

The main file calls the ODE solver.

par.R = 0.1; par.L = 0.01; par.C = 0.001;

[t,y]=ode45(@(t,x) fun_RLC(t,x,par),[0 1],[0 0]);

plot(t,y);

Note that the ODE solvers require the function name that computes the
state vector derivative. The second and third inputs of the ode45 function
are time span and initial state variables. The simulation results obtained
are the same as those shown in Figure 2.5.
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2.4 MATLAB/Simulink-based dynamic simulation

MATLAB/Simulink offers a graphic user interface (GUI) for model building.
Once a model is built, numerical integration can be carried out automati-
cally after clicking a run button. In Simulink, we do not need to write the
steps of the Trapezoidal method as presented in section 2.3.1. Nor do we
need to explicitly call the ODE solvers. ODE solvers are specified in the con-
figuration dialog box in Simulink setup. We present two types of dynamic
model building techniques. The first is based on an integrator. This tech-
nique is more aligned to our understanding of differential equations where
derivatives and states are separated by an integrator. The alternative ap-
proach is S-function. In an S-function block, we aggregate the entire system
into one block with inputs and outputs.

2.4.1 Integrator-based model building

The critical step of the model building procedure is to identify the state
variable vector x and compute its derivative ẋ = f(x, u) from the input
variable vector u and itself x. Then the state and its derivative will be
linked by an integrator. With initial state x(0) set in the integrator, this
model is ready to run.

Figure 2.6: Integrator-based dynamic model building in Simulink.

Figure 2.6 shows the building blocks for a dynamic model that can be
expressed as ẋ = f(x, u). Note that an integrator is used. Input of the
integrator should be f(x, u) while the output of the integrator is x. f(x, u)
is computed using a MATLAB embedded function. The input of the function
is a vector consisting of the voltage source vs and the state variables x. vs
and x are concatenated to generate a single vector. Inside the function
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fcn RLC, vs and x are separated. Note that the function has another input
par, which is a structure that contains the values of R, L, and C.

function x_dot = fcn_RLC(u, par)

%#codegen

vs = u(1);

x = u(2:end);

A = [ -par.R/par.L, -1/par.L;

1/par.C, 0];

B = [ 1/par.L; 0];

x_dot = A*x+B*vs;

return

Figure 2.7: Set an input of the MATLAB embedded function as a parameter.

As shown in Figure 2.7, MATLAB treats par as another input. In order
to treat par as a given parameter, we need to edit the data and set par as
a parameter.

One more important thing is to set the initial values of the integrator
correctly, especially the size of x(0). In this example, x(0) should be a vector
consisting of the initial current value and the initial voltage value. Therefore
the initial vector is set as [0; 0] or zeros(2,1) as shown in Figure 2.8.

In the simulation stage, we can configure MATLAB/Simulink’s configu-
ration dialog box to set the simulation period, numerical integration method,
and step size.
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Figure 2.8: Set x(0) appropriately.

2.4.2 S-function-based model building

In the S-function approach, the entire system is defined in one block as shown
in Figure 2.9. An S-function has a fixed template to define the dimension
of the system, initial state, state derivative, etc. For this RLC example, we
use a continuous system template.

Figure 2.9: Model building in Simulink using S-function.

The S-function has three scenarios to consider: (i) initialization; (ii)
derivative calculation; and (iii) output definition. The initial state vector
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setting, dimensions of the input, output and state, are all set in the first
task, which is realized by a function mdlInitializeSizes. The second task,
derivative calculation, is realized by the function mdlDerivatives. The third
task, output definition, is realized using another function mdlOutputs. The
code of the S-function is shown as follows.

function [sys,x0,str,ts,simStateCompliance] = fun_RLC_s(t,x,u,flag)

switch flag,

% Initialization %

case 0,

[sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;

% Derivatives %

case 1,

sys=mdlDerivatives(t,x,u);

% Outputs %

case 3,

sys=mdlOutputs(t,x,u);

% other cases related to discrete systems

case {2,4,9}

sys=[];

otherwise

DAStudio.error(’Simulink:blocks:unhandledFlag’, num2str(flag));

end

function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 2; % x is a vector of 2.

sizes.NumDiscStates = 0;

sizes.NumOutputs = 2;

sizes.NumInputs = 1;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

% initialize the initial conditions

x0 = [0;0];

str = [];

% initialize the array of sample times%

ts = [0 0];

simStateCompliance = ’UnknownSimState’;

% case 1: derivative

function sys=mdlDerivatives(t,x,u)

par.R = 0.1;

par.L = 0.01;

par.C = 0.001;

A = [ -par.R/par.L, -1/par.L;

1/par.C, 0];
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B = [ 1/par.L; 0];

x_dot = A*x+B*u;

sys = x_dot;

% case 3: output

function sys=mdlOutputs(t,x,u)

sys = x;

2.5 MATLAB commands for linear system simu-
lation

The simulation methods discussed in Section 2.4 apply to a general dynamic
system. For linear systems, we may use MATLAB commands to conduct
simulation directly. MATLAB’s control toolbox offers many functions re-
lated to linear time invariant (LTI) system analysis and simulation. A few
lines of commands can help us build an LTI model and conduct time-domain
simulations. This saves us from the coding tasks.

Using the RLC circuit example, we will build an LTI model using the
transfer function or state-space.

2.5.1 Define the linear models

The first step is to define the LTI model of the RLC circuit. The model has
been derived in Section 2.2 and is in the form of the following equation.

ẋ = Ax+Bu

y = Cx+Du
(2.25)

This state-space model can be defined in MATLAB by one line if A, B,
C, and D have been defined.

sys1 = ss(A,B,C,D)

The transfer function of the model can also be found.

sys2 = tf(sys1)

Sys2 will be in the form of a Laplace transfer function.
Another approach is to define the model in the frequency domain. Let us

examine the impedance model of each element. Impedance model is a term
used to describe the ratio of incremental voltage and incremental current
in the frequency domain ∆V (s)

∆I(s) . Impedance modeling technique is a widely
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used modeling technique in power electronic converter analysis. For R, the
impedance model is R. For an inductor, the impedance model is Ls and for
a capacitor, the impedance model is 1

Cs .

Therefore, we can find the incremental current expression by Ohm’s law.
The transfer function from ∆V (s) to ∆I(s) is as follows.

∆I(s)

∆V (s)
=

1

R+ Ls+ 1/(Cs)
(2.26)

For a linear system, we usually ignore ∆ when expressing the transfer
function. Further, we may ignore (s).

I

Vs
=

1

R+ Ls+ 1/(Cs)
(2.27a)

VC
Vs

=
I × 1

Cs

Vs
(2.27b)

VL
Vs

= sL
I

Vs
(2.27c)

The above transfer functions define the input/output relationships of the
current, the capacitor voltage, and the inductor voltage versus the input
voltage. They can be expressed using the Laplace operator s in MATLAB.

s = tf(’s’);

sys2 = 1/(R+ L*s + 1/(C*s));

sys3 = sys2 *1/(C*s);

sys4 = L*s*sys2;

The second line defines the input/out relationship of the source voltage
and the current. The third line defines the input/output relationship of
the source voltage and the capacitor voltage. The fourth line defines the
input/output relationship between the source voltage and the inductor volt-
age.

2.5.2 Time-domain responses

With the model defined, we can carry out time-domain simulation using
MATLAB commands.

Example 1: please give the time-domain response of the current i(t)
when the source voltage is subject to a step response.

Solution: Step response can be found using the MATLAB command
step. The codes are shown below.
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R = 0.1; L = 0.01; C = 0.001;

s = tf(’s’);

sys2 = 1/(R+ L*s + 1/(C*s));

step(sys2);

Example 2: please give the time-domain response of the current i(t)
when the source voltage changes from 0 to a sinusoidal voltage with 6 Hz
frequency.

Solution: Generally, we can use lsim to conduct simulation for any given
input u. The codes are shown below.

T = 0:0.001:1.2;

u = cos(37.7*T);

lsim(sys2, u, T);

Figure 2.10 shows the plots given by the two commands step and lsim.
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Figure 2.10: Step response and sinusoidal input response.

2.5.3 Linear system analysis

With a single-input-single-output (SISO) system, we can also carry out lin-
ear system analysis using the MATLAB command bode to obtain Bode plots,
pole to find the system poles, zero to find the system zeros, and pzmap to
find the poles and zeros in the real-imaginary space.

Figure 2.11 was generated by the following code.

R1 = 0.1; R2 = 0.001;R3 = 1;

L = 0.01;C = 0.001;

s = tf(’s’);

% current
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Figure 2.11: Bode plots of I/Vs and Vc/Vs.

G1 = 1/(R1+ L*s + 1/(C*s));

G2 = 1/(R2+ L*s + 1/(C*s));

G3 = 1/(R3+ L*s + 1/(C*s));

figure(1);

bode(G1,G2,G3);

grid;

% capacitor voltage

figure(2);

h = bodeplot(G1/(C*s), G2/(C*s), G3/(C*s));

grid;

% Change units to Hz and make phase plot invisible

setoptions(h,’FreqUnits’,’Hz’,’PhaseVisible’,’off’);

The Bode plots of the magnitude in Figure 2.11 show that there is a
peak at 500 Hz. This indicates that there are oscillations with 500 Hz.
With a smaller resistance, the peak is more obvious. A higher peak in the
Bode plot indicates less damping of the oscillation at 500 Hz. Examining
the time-domain simulation plots in Figure 2.5 and Figure 2.10, we can find
that the frequency of the oscillations is indeed about 500 Hz.

2.6 Summary

In this chapter, dynamic simulation, the main tool for control validation,
is introduced. Throughout this chapter, an RLC example is demonstrated
for simulation in Python and MATLAB/Simulink. Further, linear system
dynamic simulation commands in MATLAB are introduced. With linear
systems, analysis (e.g., Bode plots) can be conducted. The indication from
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linear system analysis can be verified by the time-domain simulation results.
Throughout this textbook, linear system analysis is the main analytical

tool that will be used for control design and stability analysis, while dy-
namic simulation is the validation tool that will be used for both linear and
nonlinear systems.

Exercises

1. A voltage source is serving an RLC series connected circuit. Let R =
0.01Ω, L = 0.01 H, C = 0.001 F. The compensation degree of the system
is Xc/XL, approximately 70.36%. Find its current response for a step re-
sponse of the voltage source, and a sinusoidal 60 Hz input (amplitude 1 V)
of the voltage source. Use Laplace transformation to find the current in the
Laplace domain and current in the time domain.

2. Use MATLAB linear system analysis tools to define a linear system for
the above RLC circuit. Treat the voltage source as the input while the
current is the output. Give a set of Bode plots of the system by varying
R. Notate the plot properly. Use MATLAB function step to examine the
dynamic response of the current with a step response of the voltage source.
Use MATLAB function lsim to examine the dynamic response of the cur-
rent with a sinusoidal input.

3. For the above RLC circuit, build a two-order state-space model. The
state variables are the current and the voltage across the capacitor. Use
MATLAB function ode to simulate the dynamic response of the current for
a step response and a sinusoidal input.
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Chapter 3

Frequency Control

3.1 Important facts

Before we dive into the topic of frequency control, several facts are stated
as follows.

• For synchronous machines, frequency is speed. The values of elec-
tricity frequency and the speed are the same in per unit. If a machine
is running at the nominal speed, say 3600 revolutions per minute (rpm)
for a 2-pole machine, the corresponding stator electricity frequency is
60 Hz. This mechanism is determined by Faraday’s law (change of
the flux linkage linked to a circuit induces voltage or electromotive
force (EMF): dλ

dt = v). If the flux linkage linked to the stator circuits
is sinusoidal and has a frequency ω, then the voltage induced will be
sinusoidal and has a frequency ω.

When the rotor of an ac machine is rotating at 3600 rpm, and the
rotor circuit has a constant excitation current iF , the effect is to set
up a rotating magnetic field (flux) with a rotating speed at 3600 rmp.
This rotating magnetic field will cause a stator circuit to encompass
a flux linkage in the form of λ̂ cos(2π60t + θ0), where θ0 is the initial
rotor position. In turn, the induced voltage in the stator circuit will
have a frequency at 60 Hz.

The details will be covered in Chapter 4 Synchronous Generator Mod-
els where electromagnetic fields will be examined.

• The second fact is frequencies at different locations in an elec-
tric system (all components are connected) are the same at
steady-state. If there is a load change, generators will react towards

29
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the change by adjusting speeds. In the end, all speeds should be
the same in per unit. This is due to the electric system’s intercon-
nected condition. As long as this system is working, voltage phasors
everywhere are related. For any two buses i and j, the two voltages
vi(t) and vj(t) should have the same frequency and their angles may
be different but their difference is kept constant at steady-state, i.e.,
vi(t) = Vi cos(ω0t+ θi), vj(t) = cos(ω0t+ θj), and θi − θj = constant.
θi and θj may be time varying.

This chapter deals with frequency control of power systems with syn-
chronous generators as the main components. For any control problem, the
design procedure consists of understanding of the control objectives, figuring
out the plant model, the inputs and outputs of the controller, the controller
design, and finally validation of the controller’s performance.

Therefore, this chapter is organized to fit the control design procedure.
Section 3.2 presents the plant model. Section 3.3 presents the first con-
trol objective, steady-state frequency deviation reduction, and the design
methods. Section 3.4 presents the second control objective, steady-state fre-
quency deviation elimination, and the design methods. Automatic genera-
tion control (AGC) is covered in this section. Section 3.5 presents validation
results using time-domain simulation. Section 3.6 provides more examples
related to frequency control analysis. MATLAB codes are provided to help
readers improve their skills of conducting linear system analysis.

3.2 Plant model: Swing equations

In this section, the plant model for frequency control will be examined.
We will start from Newton’s second law for a rotating mass to derive the
swing equation for a synchronous generator. Assumptions are then made to
simplify the equation. Further, linearized equation for small-signal pertur-
bations are derived.

With the swing equation given, we then proceed to examine two systems
for their frequency responses when they are subject to a load change or
mechanical power change.

3.2.1 Newton’s Law for a rotating mass

The swing equation comes from Newton’s second law for a rotating mass.
In the case of a synchronous generator, the rotating mass refers to the rotor.
Newton’s Law states that the acceleration speed is proportional to the net
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torque:

J
dω

dt
= Tm − Te (3.1)

where J is the inertia of the rotor with units as kilogram meter squared
(kg.m2) or Joules second2 (J.s2). ω is the rotating speed in rad/s, and
torques are in standard unit Newton.meter (N.m). Tm is the mechanical
torque generated by the prime mover, while Te is the electromagnetic torque
generated by the electromagnetic field.

For power system engineers, power is used more often than torque.
Therefore, the above equation will be written in terms of the mechanical
power Pm and the electric power generated by the electromagnetic field Pe.

Note that Pm = Tmωm where ωm is the mechanical speed, and Pe =
Te

2
P ωe, where ωe is the electricity frequency in the stator circuit and P is

the poles of the machine. For two-pole machines, Pe = Teωe.
For a two-pole synchronous generator, the mechanical speed ωm and

the stator’s electricity frequency ωe are the same. Therefore, we use ω to
represent both the rotating speed and the electricity frequency. The swing
equation in (3.1) becomes:

J
dω

dt
=
Pm
ω
− Pe

ω
. (3.2)

Note that this equation is applicable for synchronous machines only. In
the case of induction machines, Tm = Pm/ωm, and Te = Pe/ωe, where ωm is
the rotating speed and ωe is the electric frequency in the stator circuits. For
induction machines, the rotating speed and the electric frequency are not
equal. The electric frequency ωe equals the rotating speed of the rotating
magnetic field of a 2-pole machine. The speed of the field is the sum of
the mechanical speed ωm and the rotor circuit current frequency ωr: ωe =
ωm + ωr.

If we consider friction in the mechanical system and the friction torque
is proportional to the speed, then the above equations will be modified as
follows.

J
dω

dt
= Tm − Te − kω (3.3)

Jω
dω

dt
= Pm − Pe − kω2 (3.4)

where k is the coefficient related to friction.
(3.4) is nonlinear in terms of ω. Both Jω dωdt and kω2 are nonlinear. Tay-

lor’s expansion is frequently used to obtain a linear expression. In order
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to obtain a linear expression, an initial condition or a steady-state oper-
ating condition should be assumed. In dynamics and control, the initial
steady-state condition and final steady-state condition after transients are
all termed as equilibrium points.

3.2.2 Swing equation at near nominal speed

If the generator is working at nominal condition with a speed ω0, we can
linearize the above equation through Taylor’s expansion evaluated at the
nominal condition. The linearized model is applicable for small-signal dy-
namics at near nominal conditions.

ω
dω

dt
= (ω0 + ∆ω)


�
�
�7

0
dω0

dt
+
d∆ω

dt

 = ω0
d∆ω

dt
+ ∆ω

d∆ω

dt
(3.5a)

≈ ω0
d∆ω

dt
(3.5b)

= ω0
dω

dt
(3.5c)

Note that dω0
dt = 0 since ω0 is constant, ∆ω d∆ω

dt contains the product of two
small deviations and will be ignored.

For the term kω2, linearization is carried out by the general linearizing
procedure. For a function f(x), its small deviation evaluated at x0 is

∆f ≈ ∂f

∂x

∣∣∣∣
x0

∆x. (3.6)

Therefore

kω2 = kω2
0 + ∆(kω2) ≈ kω2

0 + 2kω0∆ω. (3.7)

where ∆ω = ω − ω0.

The Newton’s law applicable for conditions near nominal operating point
is now represented by

Jω0
dω

dt
= P̃m − Pe − 2kω0∆ω (3.8)

where P̃m = Pm − kω2
0.
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3.2.3 Swing equation in per unit

The above equation uses physical units. For example, ω is in rad/s, power is
in Watts. For power system engineers, power is preferred to be expressed in
per unit value. Therefore, both the left-hand side (LHS) and the right-hand
side (RHS) of (3.8) will be divided by the power base of the system Sb. This
yields

Jω0

Sb

dω

dt
= P̃ pum − P pue −

2kω0

Sb
∆ω. (3.9)

Further, if we use ωpu (ωpu = ω
ω0

), then the above equation becomes

Jω2
0

Sb

dωpu

dt
= P̃ pum − P pue −

2kω2
0

Sb
∆ωpu (3.10)

by replacing ω = ω0ω
pu and ∆ω = ω0∆ωpu.

Define

H ,
Jω2

0

2Sb
. (3.11)

H is the ratio of the kinetic energy at the nominal speed of the rotor versus
the power base. H has a unit in seconds.

Hereafter, we will ignore the superscript pu. The Newton’s law becomes:

2H
dω

dt
= P̃m − Pe −D1∆ω. (3.12)

where D1 =
2kω2

0
Sb

, ω, P̃m and Pe are in pu. Note that at the steady-state

nominal condition when ω = ω0, P̃m = Pe.

3.2.4 Small-signal swing equation

Considering small perturbations from an initial nominal condition notated
by the subscript “0”, we have:

ω = ω0 + ∆ω, (3.13)

P̃m = P̃m0 + ∆Pm, (3.14)

Pm = Pm0 + ∆Pm, (3.15)

Pe = Pe0 + ∆Pe, (3.16)

where P̃m0 = Pm0 − kω2
0 = Pe0.
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Then we have the following relationship according to (3.12).

LHS = 2H
d∆ω

dt
(3.17)

RHS = P̃m0 − Pe0︸ ︷︷ ︸
=0

+∆Pm −∆Pe −D1∆ω = ∆Pm −∆Pe −D1∆ω (3.18)

The linearized swing equation is presented as follows.

2H
d∆ω

dt
= ∆Pm −∆Pe −D1∆ω. (3.19)

In the Laplace domain, (3.19) becomes (3.21).

(2Hs+D1)∆ω = ∆Pm −∆Pe. (3.20)

With the swing equation given, we now investigate frequency responses
for two scenarios. In the first scenario, a load is served by a single generator.
In the second scenario, a generator is connected to a strong grid.

3.2.5 A stand-alone generator serving a load

For a stand-alone system with a generator serving a load with real power
consumption notated as PL, we may use (3.19) to investigate the frequency
response of the system when it is subjected to a load increase.

Ignore all power losses in the electric system and assume that the me-
chanical power changes very slowly. For the time scale investigated, e.g., 10
seconds, the mechanical power does not vary, i.e., ∆Pm = 0. Now consider
a step response due to ∆PL. First, we need to understand that Pe = PL for
this system.

(3.19) becomes

2H
d∆ω

dt
= −∆PL −D1∆ω. (3.21)

Steady-state response

The steady-state response of ∆ω can be found by making the derivative of
the speed deviation (∆ω̇) equal zero. (3.21) becomes:

−∆PL −D1∆ω = 0. (3.22)

If ∆PL = 1, then at steady-state, the speed deviation is − 1
D1

.
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The steady-state frequency deviation value can also be found from the
transfer function. From (3.21), the transfer function from the load ∆PL to
the speed ∆ω is as follows.

∆ω

∆PL
= − 1

2Hs+D1
(3.23)

The time-domain steady-state response can be found by using the final
value theorem:

lim
t→∞

f(t) = lim
s→0

sF (s) (3.24)

where f(t) is a time-domain function while F (s) is its Laplace transform.
We find:

∆ω(t→∞) = lim
s→0

s∆ω(s) = lim
s→0

(
− 1

2Hs+D1

)
s∆PL (3.25)

If ∆PL = 1/s for a step response, then we only need to examine the value
of the transfer function in (3.23) at s = 0.

Based on this evaluation, we can also find that the steady-state frequency
deviation is − 1

D1
.

This indicates that an increase in load will cause a decrease in frequency.
Moreover, D1 is very small, which indicates a big decrease in frequency.
Hence there is a need to develop control to reduce the steady-state frequency
deviation. This is the task of primary frequency control or droop control.

Dynamic response

The dynamic response of ∆ω(t) can be found through solving the first order
differential equation in (3.21). In short, for ∆PL = 1,

∆ω(t) = − 1

D1

(
1− e−

D1
2H

t
)
. (3.26)

The dynamic response can also be evaluated from the Laplace transform.

∆ω(s) = − 1

2Hs+D1
∆PL(s) = − 1

2Hs+D1

1

s

= − 1

D1

(
1

s
− 1

s+D1/(2H)

) (3.27)

Inverse Laplace transformation indicates the time-domain expression of
∆ω(t) as follows.

∆ω(t) = − 1

D1

(
1− e−

D1
2H

t
)

(3.28)
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3.2.6 Single-machine infinite-bus (SMIB) system

We now proceed to build a model for a SMIB system. A generator is con-
nected to an infinite bus through a transmission line. The infinite bus refers
to a large grid. This grid has infinitive inertia. The grid is represented by
a voltage source with constant voltage magnitude and constant frequency.
Change in load will not affect its frequency due to the infinitive inertia
(J →∞ and ω̇ = 0 ). The voltage phasor of the infinite bus is V∞∠0. The
transmission line is represented by a pure reactance XL.

Assuming the generator is represented by the simplest model as a voltage
source (E∠δ) behind a reactance Xs and all electromagnetic dynamics are
ignored, the electric power sending from the generator to the infinite bus is

Pe =
EV∞
X

sin(δ) (3.29)

where X = Xs+XL is the total reactance, including the generator synchro-
nizing reactance and line reactance.

E is the root mean square (RMS) value of the internal voltage propor-
tional to the excitation current iF on the rotor. δ is related to the rotor
position θ in the following setup.

θ = ωt+ θ0

= ω0t+ δ +
π

2

(3.30)

where θ0 is the initial rotor position relative to a static reference.
The fact that the angle between the internal voltage’s space vector and

the synchronous reference frame is δ is explained in detail in Chapter 4. In
this chapter, we will give a brief explanation.

δ is the position of the rotor’s quadrature-axis (q-axis, at the position of
θ − π

2 ) relative to a rotating reference frame (at the position of ω0t). This
rotating reference frame has a constant nominal speed ω0 and hence it is
called a synchronous rotating reference frame. If the machine is rotating at
the speed ω, and assuming that the direct axis (d-axis) is the rotor axis (the
direction of the field generated by the excitation current iF ) while the q-axis
is 900 lagging the d-axis in space, then the q-axis’ position relative to the
static reference is θ − π

2 = ωt+ θ0 − π
2 .

As such we have

δ = θ − π

2
− ω0t = (ω − ω0)t+ θ0 −

π

2
(3.31)

δ̇ = ω − ω0, (3.32)
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where δ is in radian (rad) while ω is in rad/s.

The dq-axes, θ, and δ are shown in Figure 3.1 for illustration.

a'
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q

Rotor axis
d-axis

Rotor

Stator

q-axis

Static reference-axis,
A-axis

B-axis

C-axis

ww
d +w 0t

Figure 3.1: Illustration for dq-axes, θ and δ.

If we use per unit value for ω, we have

δ̇ = ω0(ω − 1). (3.33)

where δ is in rad while ω is in per unit.

Note that for an angle, the physical unit is used. Nominal angle and
normalized angle seem to have little meaning. Similarly, for time t, the unit
is in seconds. Anderson and Fouad (2008) adopted a per unit value for t and
that formulation becomes obsolete because it is very difficult to imagine a
normalized time.

The small-signal model of (3.33) can be expressed in terms of ∆δ and
∆ω:

∆δ̇ = ω0∆ω. (3.34)
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The swing equations for a SMIB system are the following set.

dδ

dt
= ω0(ω − 1)

2H
dω

dt
= P̃m − Pe −D1∆ω,

(3.35)

where Pe = EV∞
X sin(δ).

Linearized model

The above swing equation set can be linearized at an equilibrium point or
initial condition (ω0, δ0, Pm0, Pe0).

d∆δ

dt
= ω0∆ω (3.36a)

2H
d∆ω

dt
= ∆Pm −∆Pe −D1∆ω. (3.36b)

Applying a small perturbation for Pe using (3.6), we have

∆Pe =
EV∞
X

cos(δ0)︸ ︷︷ ︸
T

∆δ. (3.37)

Replacing ∆ω by ∆δ̇/ω0 in (3.36b), we can obtain a second-order differential
equation, with a single variable ∆δ.

2H

ω0
∆δ̈ +

D1

ω0
∆δ̇ + T∆δ = ∆Pm. (3.38)

In Bergen and Vittal (2009), two new parameters are defined:

M ,
2H

ω0
(3.39)

D ,
D1

ω0
. (3.40)

The final second-order single-variable differential equation is

M∆δ̈ +D∆δ̇ + T∆δ = ∆Pm. (3.41)

In the Laplace domain, (3.41) becomes

(Ms2 +Ds+ T )∆δ = ∆Pm. (3.42)
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Steady-state frequency deviation and rotor angle deviation

Based on the swing equations (3.35), the steady-state value of the speed
should be ω(t → ∞) = 1 since δ̇ = 0 at steady-state. The steady-state
angle should meet the requirement of Pm − kω2

0 = Pe = EV∞
X sin δ. If the

generator’s prime mover increases its output Pm, then we should see an
increase in the rotor angle δ.

If the increase is not significant, we can still use the linearized model
to investigate ∆δ. According to ∆Pm = ∆Pe = T∆δ at steady-state, we
should have ∆δ = ∆Pm

T .
The transfer functions from ∆Pm to ∆δ and ∆ω are:

∆δ

∆Pm
=

1

Ms2 +Ds+ T
(3.43)

∆ω

∆Pm
=

s

ω0(Ms2 +Ds+ T )
(3.44)

If we substitute s by zero, we can find that the values of the two transfer
functions are 1/T and 0. This is to say, if the mechanical power has a
step response, the final angle will have 1/T increase in radus, while the
frequency deviation will be zero, or the frequency will return to nominal
after dynamics.

Remarks: The above investigation of a SMIB system shows that for
a system with a strong grid, there are no frequency control issues. The
SMIB frequency response case also confirms the second fact presented in the
beginning of the chapter: at steady-state, frequency or speed everywhere is
the same. Since the infinite bus keeps a nominal frequency, the generator’s
speed will be nominal at steady-state.

In cases related to real-world power system modeling, we should use
infinite bus with discretion. To investigate the effect of frequency control,
infinite bus should not be used to model a generator or a grid. This way of
modeling enables realistic frequency response investigation.

In microgrids, power electronic converters are employed as the interfaces
between distributed energy resources and the grid. Converters become the
main control devices. Microgrids have two operating modes: grid-connected
and autonomous. In the grid-connected mode, a microgrid is connected to
a strong grid. While in the autonomous mode, a microgrid is a stand-alone
system. In grid-connected mode, a converter does not need to provide a
constant frequency since the grid will support the frequency. In the grid-
connected mode, converters are usually set in PQ control mode. For exam-
ple, a battery’s charging or discharging power level will be set when it is
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plugged into a utility grid.
In the autonomous mode, e.g., a battery serving a load, the converter

should consider frequency control. There has to be a way to regulate fre-
quency like synchronous generators. Unlike synchronous generators, where
frequency control is realized through turbine-governors, power electronic
converters realize frequency control through converter control and modu-
lation. The advantage is that converters can do control much faster while
turbine-governors have slower responses. This could also be considered as a
disadvantage that microgrids without conventional synchronous generators
suffer significant frequency change due to lack of inertia.

Frequency and voltage control in microgrids will be addressed in Chapter
6.

3.3 How to reduce frequency deviation

From the previous analysis of a stand-alone system, we find that the steady-
state frequency deviation is −∆PL/D1. D1 is related to damping and is
small, e.g., 1 pu. Hence, for 0.1 unit load change, the frequency change will
be 0.1 pu or 6 Hz. In real-world, frequency deviation is to be kept within
a tight range from the nominal 60 Hz. The lower frequency limit is set
at 59.5 Hz according to North American Electric Reliability Corporation
(NERC)’s operating guidelines North American Electric Reliability Corpo-
ration (2011). Small steady-state frequency deviation is achieved through
primary frequency control.

3.3.1 Primary frequency control and its effect

Naturally, we can think of reducing frequency deviation by increasing D1.
However, D1 is related to the friction of the mechanical system and it is also
not energy efficient to increase friction. So we can use feedback control to
achieve the similar effect. If the final closed-loop system in (3.23) becomes
∆ω

∆PL
= − 1

2Hs+D1+k , where k is a pure gain, then the steady-state frequency
deviation becomes 1/(D1 + k). k can be set to achieve a small frequency
deviation.

Simply, if we assume ∆Pm is the control point, by introducing a feedback
from ∆ω with a gain k, the closed-loop feedback system transfer function
from ∆PL to ∆ω is

∆ω

∆PL
=

Forward gain

1 + Loop gain
=
−1/(2Hs+D1)

1 + k/(2Hs+D1)
=

−1

2Hs+D1 + k
(3.45)
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where “Forward gain” means the transfer function block from ∆PL to ∆ω
when the feedback loop is not considered.

We can see from the above equation that our mission of decreasing
steady-state frequency deviation is accomplished.

In reality, we cannot directly treat ∆Pm as the control point. Instead, the
mechanical power is produced after the turbine. The turbine is controlled by
a governor mainly through a valve. If the valve is opened wider, more steam
comes to blow the turbine and more mechanical power will be generated.
The turbine and the governor can be modeled by a first-order system each
respectively. The total transfer function is 1

Tgs+1
1

Tts+1 , where Tg is the time
constant for a governor and Tt is the time constant of the turbine. The input
to the block is a power reference Pc, the output is the mechanical power.

The power reference Pc is adjustable. Therefore Pc will be the control
point. The frequency deviation is measured and amplified with a gain. This
output will be used to modify the input into the governor as Pc − k∆ω.
Starting here, we will use the regulation parameter R as 1/k. We will show
that R works better when droop lines are plotted.

The block diagram consisting of the swing equation, turbine-governor
block, and the droop control is presented in Figure 3.2.

Figure 3.2: Block diagram of primary frequency (droop) control, turbine-
governor and swing equation.

At steady-state, the relationship of Pm and ∆ω is

Pm = Pc −
1

R
∆ω (3.46)

Pc will be changed by the secondary frequency control. If the secondary
frequency control is not enabled, Pc is treated as a constant. Therefore, we
have:

∆Pm = − 1

R
∆ω =⇒ ∆ω = −R∆Pm. (3.47)
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If we ignore the friction D1 = 0, then the swing equation block becomes
an integrator block. The input to the block should be 0, i.e., ∆PL = ∆Pm =
− 1
R∆ω. The final frequency deviation is

∆ω = −R∆PL. (3.48)

This is the reason R instead of k is used, since we can quickly determine
the physical meaning of R: with 1 pu load change, R unit frequency change
will occur.

Regulation parameter R The unit of R is thus the unit of frequency
divided by the unit of power. Therefore, R can be defined as 3 Hz per 100
MW or 5% pu with Sb = 100 MW. The meaning of the latter is given a 1 pu
power change; the frequency change will be 5% pu or 5%pu× 60Hz/pu = 3
Hz.

Per unit is used for R most frequently. For generators, the power base
is usually its own power rating. For example, a 1000 MW generator has a
regulation parameter R1 = 5% pu, and an 100 MW generator has a regula-
tion parameter R2 = 5% pu. They are referring to 1000 MW and 100 MW
respectively. For the first generator, a change of 1000 MW will cause a 3
Hz frequency change. A change of 100 MW will cause a 0.3 Hz change. For
the second one, the 100 MW change will cause a 3 Hz change. In the same
power base of Sb = 100MW , then R1 = 0.5% pu and R2 = 5% pu.

Does mechanical power increase the same amount as the load in-
crease? If we consider friction, these two are not exactly the same. Eval-
uating the control block diagram in Figure 3.2 at steady-state by replacing
s with j0, i.e.:

∆Pm −∆PL = D1∆ω = −D1R∆Pm (3.49)

⇒(1 +D1R)∆Pm = ∆PL. (3.50)

Let D1 = 1, and R = 0.05, then 1.05∆Pm = ∆PL.

Example Compute the approximate frequency drop after a generator of
1000 MW tripped in a big grid. This grid is assumed to have 1000 big
generators each at 1000 MW and the droop regulation parameters are all
5% based on each generator’s nominal power.

Solution: When one generator is tripped, the power imbalance is 1000
MW with more load than generation. Choosing the power base as 1000
MW, we should be able to compute the system’s frequency deviation.
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Ignoring the frictions of generators, then

∆PL =
999∑
i=1

∆Pm =
999∑
i=1

−1

Ri
∆ω.

Therefore,

∆ω = − ∆PL∑999
i=1 1/Ri

= −1/(999× 20) in pu (3.51)

= −60/(999× 20) in Hz ≈ −0.003Hz (3.52)

In a real-world system such as the Eastern Interconnection, 59.997 Hz fre-
quency indicates a significant power imbalance. If the system consists of 100
generators, the frequency deviation is approximately −0.03 Hz. This fact
indicates that with more generators interconnected, frequency deviation can
be reduced. This is one reason why the grid tends to be large-scale. In ad-
dition to the steady-state frequency deviation, dynamic frequency change
can also be significantly reduced. For a system that has N generators, for
a load change, each generator will share an average of 1/N power change.
Examine the swing equation and replace ω̇ as ∆ω

∆t . We have:

2H
∆ω

∆t
≈ 2H

dω

dt
= Pm − Pe = −∆PL

N
. (3.53)

Here we assume ∆t is very small and during that time scale, Pm is kept
constant. The electric power from each generator shares the load increase.
Therefore, Pm − Pe = Pm0 − (Pe0 + ∆PL

N ) = −∆PL
N .

Therefore, with more generators connected, the rate of frequency change
can be reduced. This will be reflected in the reduction of maximum fre-
quency deviation during the dynamics. For small systems, we tend to see
big frequency excursion, while for big systems, frequency excursion during
dynamics and steady-state will be insignificant. And this is the advantage
of a big system.

3.3.2 Power sharing among multiple generators

Consider a system with n generators serving a load. First, let’s set up the
relationship between the frequency deviation versus the electric power Pe.
At steady state, the following relationship should be true by making the
speed dynamics dω

dt = 0.

0 = ∆Pmi −∆Pei −D1i∆ωi, , i = 1, · · · , n (3.54)
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This fact is very important: for a connected system, frequency or speed at
steady-state should be the same everywhere. Therefore, the above relation-
ship becomes:

0 = ∆Pmi −∆Pei −D1i∆ω. (3.55)

by replacing ωi with ω, the system frequency.
This tells us that the generator electric power increase is contributed by

two elements: increase in the mechanical power ∆Pm, and the reduction
of friction or the release of friction energy due to reduced speed −D1∆ω.
Further, substituting ∆Pm using − 1

R∆ω, we have

0 = − 1

Ri
∆ω −∆Pei −D1i∆ω = −

(
1

Ri
+D1i

)
︸ ︷︷ ︸

βi

∆ω −∆Pei. (3.56)

Therefore, each generator’s electric output change will be

∆Pei = −βi∆ω. (3.57)

Since all generators’ output will contribute to the load, we have

∆PL =
∑
i

∆Pei = −
∑
i

βi∆ω (3.58)

=⇒ ∆ω = − ∆PL∑
i βi

(3.59)

=⇒ ∆Pej =
βj∑
i βi

∆PL (3.60)

=⇒ ∆Pmj =
1/Rj∑
i βi

∆PL (3.61)

=⇒ ∆Pe1 : ∆Pe2 : · · · : ∆Pen = β1 : β2 : · · · : βn (3.62)

=⇒ ∆Pm1 : ∆Pm2 : · · · : ∆Pmn =
1

R1
:

1

R2
: · · · : 1

Rn
. (3.63)

Figure 3.3 shows three generators with different droops. It can be seen
that a shallow slope results in more power sharing.

3.3.3 Reactive power sharing

The concept of droop has been widely used for power sharing among genera-
tors and reactive power compensation devices. Droop control has also been
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Figure 3.3: Effect of droop regulation parameters. R1 > R2 > R3 and
∆Pm1 < ∆Pm2 < ∆Pm3.

applied for power sharing among distributed energy resources in microgrids
through power electronic converter control Chandorkar et al. (1993); Li and
Kao (2009).

For reactive power sharing among Static Compensators (STATCOMs),
V-I droop is adopted Hingorani and Gyugyi (2000). Each STATCOM is
going to produce pure reactive power to the grid. And they are connected
to the same system bus with voltage V̄s. The objective of Q sharing is to be
able to let each STATCOM contribute a certain share. Since the system bus
for each STATCOM is the same, the Q injection to the grid is completely
dependent on the currents provided. When the system bus suffers a drop
∆Vs, it is expected that each STATCOM will increase its current and Q
injection. Therefore, the relationship or droop control between ∆Vs and
∆Ii is as follows.

∆Vs = −Ki∆Ii (3.64)

The contribution of ∆Qi = ∆(Vs × Ii) ≈ Vs0∆Ii, assuming the voltage
change is very small so a linear term ∆VsIi0 is ignored.

∆Q1 : ∆Q2 : · · · : ∆Qn = ∆I1 : ∆I2 : · · · : ∆In =
1

K1
:

1

K2
: · · · : 1

Kn
.

(3.65)

The droop control is realized through control blocks. Each STATCOM is in
the voltage control mode to control the system voltage Vs. The order of the
voltage control V ∗s should be generated through droop control:

V ∗s = Vs0 −KiIi (3.66)

where subscript 0 refers to the voltage setting.
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3.4 How to eliminate frequency deviation

With droop control, the system will have a reduced steady-state frequency
deviation. The next discussion is on how to eliminate the steady-state fre-
quency deviation after a load change. The terminology in power systems
is secondary frequency control and automatic generation control (AGC). In
control, this is same as how to track a reference signal. The reference signal
is the nominal frequency while the measurement is the system frequency.
Tracking can be realized through feedback control.

3.4.1 How to track a signal

DC signal tracking

To track a DC signal, we can simply use an integrator, as shown in Figure
3.4. The error e = r − y is sent to an integrator to generate the control
action u. Suppose the plant model is simplified as a gain 1/β. The output
y is related to the error and the reference as

y

e
=

y

r − y
=

k

βs
(3.67)

y

r
=

k/(βs)

1 + k/(βs)
=

1

1 + βs
k

(3.68)

where k is the gain of the integral control. The steady-state gain from r to
y is 1, i.e., at steady-state, y = r.

+

- s
kr u

β
1

y

Figure 3.4: Use integral control to track DC signals.

Integral control is a widely used in control applications to track DC
signals. In AGC, integral control is used. In power electronic converters,
integral control is used to track current references, voltage references and
power references.
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Dynamic perspective From the closed-loop transfer function from r to
y (3.68), it can be observed that the time constant of the system is β/k.
Therefore, a large k indicates a faster response. k, as a gain, has a limit.
In Figure 3.4, the plant model is a simplified model with a pure gain. In
reality, the plant model also has dynamics. When k is too large, interactions
with the plant dynamics may cause undesired performance, even instability.
Below is an example where the plant is a first order system 1

1+τs . The
closed-loop system transfer function is

y

r
=

k
s

1
1+τs

1 + k
s

1
1+τs

=
1

s(1+τs)
k + 1

=
1

1 + s/k + τs2/k
(3.69)

When k assumes a large number, the system will have poor damping. Figure
3.5 is the step response of a system with τ = 1 and k = 100. The poles of
the system are −0.5± j10. The damping ratio is defined as σ

ω where σ and
ω are the real part and imaginary part of a pair of complex conjugate poles
or eigenvalues −σ ± jω.

For the above system, the damping ratio is 5%. This is due to a large gain
of the integrator since the polynomial in the denominator can be written as
τ
k

(
s2 + s/τ + k/τ

)
. The poles of the system or the roots for this polynomial

are

s = − 1

2τ
± j
√
k

τ
= σ ± jω.

The poles decide the dynamic response of the closed-loop system. A large
gain k results in a large resonance frequency ω and hence a small damping
ratio. In general, a closed-loop system transfer function from the error to
the reference signal can be expressed as

e

r
=

1

1 + L(s)
(3.70)

where L(s) is the loop gain, which is the transfer function from the beginning
of the loop to the end of the loop, with the loop disconnected.

To make y track r when r is a DC signal is to make e go to zero for DC
input. This translates to make e go to zero when s = j0.

Examine when L(s) has an integrator and can be expressed as

L(s) =
1

s
G(s) (3.71)

where G(s) has a nonzero steady-state gain.
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Figure 3.5: Step response for 1/(1 + 0.01s+ 0.01s2).

For this scenario, we can be sure that the loop gain has an infinite gain
when s = j0. In turn, the transfer function from r to e will have a zero gain
for DC signals (or when s = j0). That is, y can track r when r is a DC
signal.

When the reference signal is not a DC signal, integral control may not
work. For example for a ramp signal t with a Laplacian expression as 1/s2,
a double integrator should be used to track the signal Aström and Murray
(2010).

Sinusoidal signal tracking

Most of the time, in power systems, we would like to track ac signals. For
example, how to maintain a 60 Hz current waveform with the desired magni-
tude, frequency and phase angle? An open-loop control, e.g., the sinusoidal
pulse width modulation (PWM) switching, can realize the objective. Here
the discussion is limited to feedback control.

Making three-phase currents track reference ac signals has been seen in
power electronic converter control Yazdani and Iravani (2010). There are
two approaches to get a desired current waveform through feedback control.
The first is to convert the abc signals to signals viewed from a rotating
reference frame called dq-reference frame. In dq, the sinusoidal currents
are all constants at steady-state. With DC signals, tracking is easy. We can
again rely on integral control or proportional integral (PI) control. Examples
on dq-based converter control can be found in Chapter 6.

The second approach is to directly track an ac signal at 60 Hz. This
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type of control is called resonant control. With proportional block added,
the control has a name of proportional resonant (PR) control. We will
explain resonant control using the analogy of DC signal tracking.

To track a DC signal, we would like the loop gain, go to infinity when
s = j0. Then the error between the reference and the output will be zero.
To track an ac signal of certain frequency ω, then the loop gain should go
to infinity when s = jω. Therefore, a resonant controller 1

s−jω will fulfill

the task. 1
s−jω is not a realistic controller. s

s2+ω2 will also make the gain
at s = jω goes to infinity. A practical resonant controller will have some
damping and the transfer function will be

C(s) =
ks

s2 + 2αωs+ ω2
(3.72)
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Figure 3.6: Tracking a 60 Hz signal. Plant model P (s) = 0.5, controller
C(s) = 100s/(s2 + 7.54s+ 3772).

Figure 3.6 shows the reference signal and the output signal. The plant
model is represented by a constant 0.5. A resonant controller is employed.
The linear system is simulated using MATLAB command lsim. Figure 3.6
was generated by the following code.

s = tf(’s’);

k = 200;

a = 0.01;

w = 2*pi*60;

P = 0.5;

C = k*s/(s^2+ 2*a*w*s +w^2);
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G = feedback(P*C,1);

t =0:0.001:0.1;

u = sin(377*t);

lsim(G,u,t);

3.4.2 Secondary frequency control

Secondary frequency control applies every two minutes. The system first
sees frequency deviation, then secondary frequency control brings the system
frequency back to nominal. As a control problem, this problem is to make
the frequency track a nominal frequency ω∗. Naturally, integral control can
be applied. The controller output should be Pc, the power setting of the
governor. The block diagram of a generator serving a load is presented in
Figure 3.7. Figure 3.7 is a control block diagram with a more realistic flavor.

ω 
+

-
1

1
2Hs D+

ω*

1
R

Δω 

TG
Pm

PL

+

-+
P*

PcK
s

–

+

-

Figure 3.7: Block diagram of secondary frequency control.

For linear system analysis, we use a small-signal model as Figure 3.8.

Figure 3.8: Block diagram of secondary frequency control for small-signal
analysis.
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Steady-state analysis

From the control block diagram in Figure 3.7, it can be seen that at steady-
state, Pm = Pc − 1

R∆ω. In addition, with secondary frequency control, the
input to the integrator will be 0 at steady-state. Therefore, at steady-state,
Pm = Pc.

Figure 3.9: Effect of secondary frequency control.

The effect of the secondary frequency control can be explained using
Figure 3.9. Initially the system is operating at the nominal condition and the

setting of the reference power is P
(1)
c . When the system has a load increase,

with only primary frequency control, the system will see a frequency drop.
The frequency is now ω at steady-state. The corresponding mechanical

power output is P
(2)
m . Pc will not change. With secondary frequency control

enacted, the system’s frequency will be brought back to nominal. However,

the mechanical power should be kept at P
(2)
m . This is achieved by moving

the droop line upward to (2). Then at P
(2)
m , the system frequency becomes

nominal. At nominal frequency, the reference power and the mechanical

power are the same. Therefore, in Figure 3.9, P
(2)
m is shown as P

(2)
c . The

effect of the secondary frequency control is to increase the reference power

from P
(1)
c to P

(2)
c .

The steady-state gain to be examined is the one from ∆ω∗ to ∆ω. A
simplified way to examine the gain is to first obtain the steady state gain
from ∆Pc to ∆ω. The steady-state gain is 1

D1+1/R or approximately R as
shown in Figure 3.10.
Second, examine the closed-loop system in Figure 3.10. The transfer func-

tion is now:

∆ω

∆ω∗
=

RK/s

1 +RK/s
=

1

1 + s/(RK)
(3.73)
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Figure 3.10: Simplified block diagram of secondary frequency control for
steady-state computation. Except for the integrator, all other s = j0.

Obviously, the steady-state gain is 1. Therefore, ω can track ω∗.
The transfer function from ∆PL to ∆ω is as follows.

∆ω

∆PL
=

−R
1 +RK/s

(3.74)

When s = j0, the gain is zero. This means that even if there is a load
change, the frequency will stay at nominal. The above analysis is based on
simplified steady-state gain. One can find the complete closed-loop transfer
function and substitute s = j0 to find the same result.

How to select the integral control gain k

Based on the close-loop system of the simplified model (3.73), to ensure
stability of the closed-loop system, the poles of the system should be located
in the left half plane. The pole is −RK. Therefore K > 0.

A major principle of control design is for different functions/loops to
have different bandwidths. Bandwidth is defined as the frequency at which
a transfer function’s magnitude becomes −3 dB if its steady-state gain is 1.
Consider a first-order system G(s) = 1

τs+1 . Then

|G(jω)| =
∣∣∣∣ 1

jωτ + 1

∣∣∣∣ .
When ω = 1/τ , |G(jω)| = 1√

2
= 20 log10

1√
2

dB = −3 dB.
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In this case, the closed-loop system with integral control approximately
has a bandwidth of RK. This bandwidth should be much lower than the
bandwidth of the plant that the design is based on. The plant includes
the droop control. If we assume the turbine-governor block is 1, the close-
loop system from ∆Pc to ∆ω has a transfer function of 1

2Hs+1/R assuming

1/R� D1. Therefore, the bandwidth is approximately 1/(2HR).

Use H = 5, R = 0.05, the two bandwidths are 2 rad/s for the inner loop,
and 0.05K for the outer loop. To be much lower than 2 rad/s, K = 1 results
in a reasonable bandwidth of 0.05 rad/s. We will expect the time for the
integral control to bring the frequency back to 60 Hz is approximately in
the order of several units of 20 seconds.

Stability analysis

In this section of Frequency Control, we will discuss a little bit of stability
analysis. Stability issues can be met during control design. Very frequently,
a large gain can make a system unstable. As an example, let us examine the
single generator serving a load case where the integral control gain should
have a limit. In Figure 3.16, the gain is chosen to be 1. If the gain is 3, the
system becomes unstable, see Figure 3.11.
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Figure 3.11: A system becomes unstable due to a large integral control gain.

System stability or instability can be identified using many stability cri-
teria, e.g., Routh–Hurwitz (if the system’s characteristic function and the
polynomial’s coefficients are given), system eigenvalues (if the system state-
space model system matrix is given or transfer function is given), root loci
(if the open-loop transfer function is given), Nyquist stability criterion and
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Bode plots developed from Nyquist criterion (if the open loop transfer func-
tion is given).

For engineering analysis, root loci and Bode plots are frequently used.
Though both can be implemented when the loop gain is known, they do
have some subtle differences. Using root loci, we can exactly tell the limit
of the gain. While using Bode plots, we have to come up with a loop gain
corresponding to certain gain, and check the gain margin at −180 degrees.
Bergen and Vittal (2009) adopts root loci frequently to check stability.

For the system in Figure 3.8, opening the secondary frequency control
loop, the loop gain transfer function is as follows.

L1(s) =
K

s

1
TT s+1

1
Tss+1

1
2Hs+D1

1 + 1
R

1
2Hs+D1

1
TT s+1

1
Tss+1

=
K

s ((TT s+ 1)(Tss+ 1)(2Hs+D1) + 1/R)

= KL(s)

(3.75)
The root loci plot is generated by calling a MATLAB function rlocus and
is shown in Figure 3.12. Root loci show the closed-loop system poles with
a varying gain. When the gain is K → 0, the closed-loop system poles and
the open-loop system poles are the same. When the gain is K → ∞, the
closed-loop system’s poles will approach to the open-loop system’s zeros or
infinity. This can be explained by examining the following two closed-loop
transfer functions:

G1 =
L

1 +KL
(3.76a)

G2 =
1

1 +KL
. (3.76b)

When k → 0, G1 ≈ L. Hence, G1’s poles are L’s poles.

When k →∞, G2 =
1
KL
1
KL

+1
≈ 1

KL . Hence, G2’s poles are L’s zeros.

It can be seen that the limit for k is 2.7. That is why when the gain is
chosen to be 3, this system ends up with instability.

For the root locus method, readers can refer classic control texts, e.g.,
Dorf and Bishop (1998). For the above loop gain L(s), there are 4 poles (a
pair of complex conjugate poles and two poles on the real axis). There is no
zero.

The four poles are: 0, −2.192, −0.054± j0.6167.
For negative feedback systems, root loci are located on the real axis as

long as the total number of real poles on the right of the root loci position
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Figure 3.12: Root loci plot for 1
s((TT s+1)(Tss+1)(2Hs+D1)+1/R) .

is odd. In this case, the two poles on the real axis are 0 and −2.192. The
real axis between 0 and −2.192 are root loci.

There should be n−m asymptotes, where n is the number of poles and
m is the number of zeros. The angle of the asymptotes with respect to the
real-axis is (2k+1)180◦/(n−m), where k is an integer number. In this case,
there will be four asymptotes and the angles are ±45◦ and ±135◦.

The asymptote centroid or the center of the four asymptotes can be
computed using poles and zeros:

s0 =

∑
pi −

∑
zi

n−m
center-of-gravity rule, (3.77)

where pi are the poles and zi are the zeros, n is the number of the poles and
m is the number of zeros.

In this case, s0 = −0.575.

Tt = 5; Ts = 0.5; H = 5; D1 = 1; R = 0.05;

s = tf(’s’);

L = 1/s*1/(1/R +(Tt*s+1)*(Ts*s+1)*(2*H*s+D1));

rlocus(L);

Note that here we assume a negative feedback system and L is the
loop gain of the negative feedback system when we open the loop. If the
closed-loop system is a positive feedback loop system, then we should adopt
rlocus(−L) to plot the root loci for a positive feedback system.
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3.4.3 Bring tie-line power flow schedule back to the original

When there are many areas connected together, tie-line power flow schedules
are preferred to be constant as scheduled. Keeping tie-line power flow sched-
ule constant is the same as requiring each area to take care of its own load
change. Naturally, this task can also be realized through integral control.

Area control error (ACE)

The combined signal to the integral control used for AGC is k∆ω + ∆Ptie.
Any k will take the frequency back to nominal and the tie-line schedule back
to the schedule one. The next question is: Can we make this signal reflect
the power imbalance in each area so we can immediately know which area is
short of generation and which area has no change in power? All computation
is based on steady-state variables after droop control but before AGC is
applied.

How do we make the control signal, a combination of frequency deviation
and tie-line deviation reflect power imbalance?

The derivation below shows that the ACE signal can be expressed by
∆Pm and ∆PL of an area.

k∆ω + ∆Ptie = −kR∆Pm + ∆Pe −∆PL

= −kR∆Pm + βR∆Pm −∆PL

= (β − k)R∆Pm −∆PL. (3.78)

Here we used the relationship between ∆Pe and ∆Pm: ∆Pe = βR∆Pm.
Therefore, when k = β, the signal becomes −∆PL. This signal is defined as
Area Control Error (ACE).

ACE = β∆ω + ∆Ptie (3.79)

When the system is only equipped with primary frequency control and the
system is at the steady-state,

ACE = −∆PL. (3.80)

ACE reflects the power imbalance in each area. Figure 3.13 shows the
control block diagram with ACE control.

Example of ACE

For a three-area system, if Area 1 has a load increase, the entire system
will experience a frequency increase due to the primary frequency control
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Figure 3.13: Automatic generator control and ACE.

installed on the generators. Suppose that each generator is 100 MW with
5% droop. The load increase in Area 1 is 100 MW. Compute ACEs for three
Areas.

Answer: The the frequency drop is 1 Hz since

∆ω =
−∆PL∑ 1

Ri

= − 1
1

0.05 + 1
0.05 + 1

0.05

pu =
−1

60
pu = −1Hz.

Area 1 mechanical power will have −1
0.05 ×

−1
60 = 1

3 pu increase. Assume
the friction is ignored and Pm = Pe. Since there is a load increase of 1 pu,
the tie-line flow will decrease by 2

3 pu (∆Ptie,1 = ∆Pe1 −∆PL1). The ACE
signal is β1∆ω + ∆Ptie,1 = 20× −1

60 −
2
3 = −1 pu.

On the other hand, for Area 2, the mechanical power will have 1
3 pu

increase. Since there is no load change, this change is shifted to the tie-line
flow change completely. Therefore, ∆Ptie,2 = 1

3 . ACE2 = 20× −1
60 + 1

3 = 0.
Similarly, we can find ACE3 = 0.

This example shows that an ACE signal reflects the power imbalance.

3.5 Validation of Frequency Control Design

3.5.1 A single generator serving a load

To validate the control effect in Figure 3.8, we can build models in MAT-
LAB/Simulink for a system with a single generator serving a load, shown in
Figure 3.14. To validate the control effect of ACE in Figure 3.13, a more so-
phisticated block diagram representing multi-areas and tie-line flow should
be built. The MATLAB/Simulink block diagram of Figure 3.8 is shown in
Figure 3.15.
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Pe

PL

Figure 3.14: A single generator serving a load.

Figure 3.15: Simulink screen shot. H = 5, R = 0.05, D1 = 1, k = 0.5.

The Simulink model has two step responses from the load. At 10 seconds,
the load has a 0.2 pu increase. At 200 seconds, another 0.2 pu increase
happened. A switch is employed to enable the secondary frequency control
only after 100 seconds.

The simulation results in Figure 3.16 show that from 10–100 seconds,
droop control works and the frequency achieves steady state. The frequency
deviation is ∆ω = −∆PL/(1/R + D1) = −0.2/21. The mechanical power

∆Pm in turn will have an increase of 1/R
1/R+D1

∆PL = 20
21 × 0.2, slightly less

than ∆PL.

At 100 seconds, the secondary frequency control starts to work and brings
the frequency back to nominal. The frequency deviation will become 0 at
steady-state. Note that the steady-state mechanical power ∆Pm will be the
same as the load: ∆Pm = ∆PL = 0.2 pu. The power order ∆Pc will be
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changed to match the load: ∆Pc = ∆PL = 0.2 pu. Note that the steady-
state has not been reached at 200 seconds in Figure 3.16.

At 200 seconds, there is another load increase. Both droop control and
secondary frequency control work together and the frequency achieves nom-
inal after dynamic transients. Both ∆Pc and ∆Pm will match ∆PL and are
now 0.4 pu: ∆Pc = ∆Pm = ∆PL = 0.4 pu.
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Figure 3.16: Simulation plots. At t = 10 s, the load has a 0.2 pu increase.
At t = 100s, secondary frequency control is enabled. At t = 200 s, another
0.2pu increase in load occurs.

3.5.2 Two generators serving a load

Using the example system shown in Figure 3.17, we try to show the dynamic
response of the system due to an increase in load and how generators share
the load increase with droop control and further with secondary frequency
control.

Steady-state power sharing among generators can be found based on
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PL

1 1E ∠d
jX1

jX2
2 2E ∠d

Figure 3.17: Two generators serving a load.

droop parameters:

∆Pe,i =
βi∑
i βi

∆PL. (3.81)

Therefore, if the two generators are having the same droop parameters,
they will each share 50% of the load increase. However, what is the initial
response of each generator? This is an interesting question. At the mo-
ment when a load has a sudden change, how does each generator share the
load change? This is determined by circuit characteristics. Dynamic model
building is important to let us understand the process.

It is not vital to express each generator’s Pei by PL and the rotor angles
δ. With this expression, we can have small-signal model of ∆Pe related to
∆PL and ∆δ.

+

jX1

jX2 PL

jX1

jX2
2
2eP

2
1eP

1
1eP1

2eP

Figure 3.18: The system with two generators serving a load is decomposed
into two systems.

Superposition is a straightforward way to obtain the expression of Pei.
We will have two circuits, one with the two voltage sources but without the
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load while the other is with the load but the voltage sources are zero as
shown in Figure 3.18.

Note that load can be treated as a current injection or voltage source.
So the above superposition is accurate. Therefore, the electric power from
each generator has two components.

Pe1 = P 1
e1 + P 2

e1 =
E1E2

X1 +X2
sin(δ1 − δ2) +

X2

X1 +X2
PL (3.82)

Pe2 = P 1
e2 + P 2

e2 =
E1E2

X1 +X2
sin(δ2 − δ1) +

X1

X1 +X2
PL (3.83)

The linearized expressions are as follows.

∆Pe1 =
E1E2

X1 +X2
cos(δ0

1 − δ0
2)(∆δ1 −∆δ2) +

X2

X1 +X2
∆PL (3.84)

∆Pe2 =
E1E2

X1 +X2
cos(δ0

2 − δ0
1)(∆δ1 −∆δ2) +

X1

X1 +X2
∆PL (3.85)

If we define a T and let T , E1E2
X1+X2

cos(δ0
1 − δ0

2). Then

∆Pe1 =T (∆δ1 −∆δ2) +
X2

X1 +X2
∆PL (3.86)

∆Pe2 = −T (∆δ1 −∆δ2) +
X1

X1 +X2
∆PL (3.87)

The above analysis answers the question regarding initial response of
each generator’s power sharing. Since rotor angles cannot change from t−0
to t+0 , then at the moment of load increase, each generator will share the
load increase inversely proportional to its reactance, or ∆Pe1

∆Pe2
= X2

X1
.

Simulink blocks The screen shot simulink blocks are shown in Figure
3.19. Note that in this case, we will add an integrator for each generator to
obtain ∆δ (in radian). Three case studies are conducted.

1. Case 1: R1 = 0.05, R2 = 0.1,K1 = K2 = 1. The simulation results
are shown in Figure 3.20. This case shows that Gen 1 shares more
power due to a less R for primary frequency response. However, after
secondary frequency control, the power sharing is the same since the
gains of the integral control are the same.

2. Case 2: R1 = 0.05, R2 = 0.1,K1 = 1,K2 = 0.5. The simulation results
are shown in Figure 3.21. In Case 2, Gen 1 (Green line) shares more
after the secondary frequency control since a greater integral control
gain is used.
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Figure 3.19: Simulink blocks for the system of two generators serving a load.
H = 5, D1 = 1, T = 1.

3. Case 3: R1 = 0.05, R2 = 0.1,K1 = 0.5,K2 = 1. The simulation results
are shown in Figure 3.22. In Case 3, Gen 2 (red line) shares more after
the secondary frequency control since a greater integral control gain is
used.

The dynamic simulation results give a detail insightful look at the system
behavior. There are a couple of things to be noticed.

• The rotor angles can keep reducing. This is due to the fact that with-
out a secondary frequency control, frequency can be kept below 60 Hz
for a period of time. During that period, the angles keep reducing.
Therefore, behavior of angles is usually not used for stability judge-
ment. In this case study, the system is obviously stable. The reason
is that the linearized system with two rotor angles and two speeds as
state variables always has an eigenvalue as 0. Instead, the rotor an-
gle difference will be used to examine stability. Figure 3.23 shows the
dynamic behavior of the rotor angle difference and each generator’s
electric power output.

Note that at the moment of the load change, each generator shares the
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(a) Case 1: Rotor angle and speed.
R1 = 0.05, R2 = 0.1, k1 = k2 = 1.
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(b) Case 1: ∆Pm and ∆Pc. R1 =
0.05, R2 = 0.1, k1 = k2 = 1.

Figure 3.20: Case 1 simulation results for the system of two generators
serving a load.
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(a) Case 2: Rotor angle and speed.
R1 = 0.05, R2 = 0.1, k1 = 1, k2 = 0.5.
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(b) Case 2: ∆Pm and ∆Pc. R1 =
0.05, R2 = 0.1, k1 = 1, k2 = 0.5.

Figure 3.21: Case 2 simulation results for the system of two generators
serving a load.

same amount of load change since X1 = X2. After a moment, the two
generators swing against each other. When one generator has power
increased, the other has power decreased. This is due to the component
in ∆Pe1 is T (∆δ1 −∆δ2) while in ∆Pe2, it is −T (∆δ1 −∆δ2).

• The second observation is that the integral gain determines the power
sharing after secondary frequency control. This fact is usually not
mentioned in textbooks. In real-world implementation, each area has
only one integrator to conduct secondary frequency control. The out-
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(a) Case 3: Rotor angle and speed.
R1 = 0.05, R2 = 0.1, k1 = 0.5, k2 = 1.

50 100 150 200 250 300

−0.1

0

0.1

0.2

0.3

Time (s)

∆
 P

m

50 100 150 200 250 300
0

0.2

0.4

0.6

Time (s)

∆
 P

c

(b) Case 3: ∆Pm and ∆Pc. R1 =
0.05, R2 = 0.1, k1 = 0.5,= k2 = 1.

Figure 3.22: Case 3 simulation results for the system of two generators
serving a load.
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Figure 3.23: Case 1 rotor angle difference and electric power outputs for the
system of two generators serving a load.

put of the integrator is then allocated to each generator through a
participation factor. The effect is the same as having a different inte-
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gral control gain. We can tune the gains of the secondary frequency
control to let expensive generators share less and let cheap generators
share more. The theoretic foundation of such sharing can be obtained
through iterative solving of the Lagrangian relaxed economic dispatch
problem. For more details, check the author’s recent publication Miao
and Fan (2017).

A few simulation tricks Note that in simulation figures, the frequencies
seem not smooth. A close examination shows a lot of oscillations. This
is mainly due to simulation numerical error. Simulation can be improved
by limiting the simulation step size to be 0.01 seconds. This step size is
applicable for electromechanical dynamics. For electromagnetic dynamics,
the system bandwidth is much higher and a smaller step size will be desired.

3.5.3 Two areas connected through a tie-line

1 1E ∠     d 2 2E ∠     d
jX1 jXL

PL1 PL2

jX2

Figure 3.24: Two-area system.

Whether it is Bergen’s book Bergen and Vittal (2009) or Kundur’s book
Kundur et al. (1994), a two-area system connected with a tie-line shown in
Figure 3.24 is used for an ACE explanation. The treatment of the modeling
is usually as follows. The tie-line power flow is P12 = E1E2

XL
sin(δ1− δ2). And

Gen 1’s exporting power is PL1 + P12.

In this text, using the superposition principle, an accurate expression of
Pei will be obtained. In addition, with certain assumptions, Pei expression
will be united with the expression widely adopted in other texts.

The system shown in Figure 3.24 is the superposition of three circuits as
shown in Figure 3.25. The expression of Pei can be found in (3.88).
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jX1 jXL jX2

jX1 jXL jX2

jX1 jXL jX2

1
1eP 1

2eP

2
1eP 2

2eP

+

PL1

PL2

3
1eP

3
2eP

+

1 1E ∠     d 2 2E ∠     d

Figure 3.25: The two-area system can be viewed as the superposition of
three circuits.

Pe1 = P 1
e1 + P 2

e1 + P 3
e1

=
E1E2

X1 +X2 +XL
sin(δ1 − δ2) +

X2 +XL

X1 +X2 +XL
PL1 +

X1

X1 +X2 +XL
PL2

Pe2 = P 1
e2 + P 2

e2 + P 3
e2

= − E1E2

X1 +X2 +XL
sin(δ1 − δ2) +

X2

X1 +X2 +XL
PL1 +

X1 +XL

X1 +X2 +XL
PL2

If we assume that compared to the line reactance, the other two reactances
due to synchronizing reactance and transformer reactance can be ignored,
then we have the following.

Pe1 =
E1E2

X
sin(δ1 − δ2) + PL1

Pe2 = −E1E2

X
sin(δ1 − δ2) + PL2

(3.88)

where X is the total reactance of the radial system. The linearized model
of Pei now becomes:

∆Pe1 = T (∆δ1 −∆δ2) + ∆PL1

∆Pe2 = −T (∆δ1 −∆δ2) + ∆PL2
(3.89)

where T = E1E2
X cos(δ0

1 − δ0
2).
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Simulink blocks The Simulink blocks are shown in Figure 3.26. Note
the input to the integral control is now ACE, a combination of frequency
deviation and the tie-line flow deviation.

Figure 3.26: Simulink blocks for the two-area system. H1 = H2 = 5, D1,1 =
D2,1 = 1, T1 = T2 = 1, R1 = 0.05, R2 = 0.1. Each integral control’s gain is
1/(1/Ri +D1,i) = 1/21.

The dynamic event is as follows.

• From 0–100 seconds, the system is equipped with only droop control.
At 100 seconds, Area 1’s AGC is turned on. At 300 seconds, Area 2’s
AGC is turned on.

• At 10 seconds, Area 1 has a load increase of 0.2 pu.

• At 210 seconds, Area 2 has a load increase of 0.2 pu.

Examine the dynamic responses shown in Figure 3.27 for different time
periods.

• 0–100 seconds, there is only droop control. Therefore, with a load
increase in Area 1, generators in both areas respond and share the load
increase. The tie-line flow now has a deviation. If we observe ACEs
for two areas, we can also observe that Area 1 has an ACE = −0.2 pu,
while Area 2’s ACE is zero. ACE indicates the load change in each
area. Since Area 1 has a load increase of 0.2 pu, ACE1 = −0.2pu.
Area 2 has no change in load, therefore, ACE2 = 0.
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Figure 3.27: Simulation results. (1) δ. (2) ω. (3) Pm. The stair plot shows
total load. (4) Pc. (5) Tie-line power flow. (6) Pe. (7) ACEs for the two
areas.
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• 100–210 seconds. Starting from 100 seconds, Area 1’s AGC starts to
work. This brings ACE1 back to zero. The entire system’s frequency
is brought back to zero too. In addition, the tie-line flow is brought
back to the scheduled value. For this to happen, we can see it is due
to Area 1 generator’s action. Its mechanical power, power order and
electric power output all follow Area 1’s load increase. This makes sure
that the tie-line flow returns to the scheduled value. For the generator
in Area 2, since Area 1 has taken care of the load increase, it will have
its mechanical power, power order and electric power output all be
zero. That is, Area 2 no longer shares any responsibility for the load
increase.

• 210–300 seconds. Starting from 210 seconds, Area 2 has a load increase
of 0.2 pu. Area 1’s ACE can still be zero even if there is frequency de-
viation. For Area 2, since there is no AGC, the system will experience
a frequency deviation. This time period is very interesting to observe.
We will conduct a brief analysis for this scenario.

At steady-state, there is ACE control in Area 1, therefore:

β1∆ω + ∆Ptie,1 = 0.

Note that the tie-line power comes from Gen 1’s electric power with the
load increase in Load 1 subtracted: ∆Ptie,1 = ∆Pe1−∆PL1. Therefore,
we find that

∆Pe1 = −β1∆ω + ∆PL1.

For Area 2, since there is no ACE control, its electric power and the
frequency deviation relationship is

∆Pe2 = −β2∆ω.

Note that the total electric power should meet the load:

∆Pe1 + ∆Pe2 = ∆PL1 + ∆PL2.

We can find the frequency deviation:

∆ω = − ∆PL2

β1 + β2
.

• 300 seconds afterward. Starting from 300 seconds, Area 2’s AGC is
enabled. Now the entire system frequency is brought back to zero. Also
the tie-line flow deviation is brought back to zero. Both generators’
power orders are changed to share the load increase. Each shares 0.2
pu since the final sharing should be exactly each area’s load change.
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AGC control improvement Note the tie-line has oscillations and the
ACE signals also have fast oscillations. Indeed, for ACE signals, we’d like
them to only reflect the DC values. Therefore, a low-pass filter is applied
before the ACE signals are sent to the integrator. The load changes are
modified to be ∆PL1 = 0.2 pu and ∆PL2 = 0.3 pu. The next set of simula-
tion results in Figure 3.28 will show better ACE signals and the final power
sharing as 0.2 pu and 0.3 pu.

3.6 More examples of frequency control

3.6.1 Example 1: Step response of reference power ∆Pc

This example comes from Bergen’s book in the exercise section of frequency
control. This example will give a clear idea on the mechanism of secondary
frequency control. In a nutshell, the secondary frequency control’s job is to
make sure that the power order ∆Pc matches the load ∆PL. With this task
done, the system frequency will be back to nominal. Through this example,
we will show how to use MATLAB’s transfer function matrix to examine
step responses or linear system responses.

The system is shown in Figure 3.29 and treated as a two-input one-output
system, or a general multi-input multi-output (MIMO) system. We can
write the s-domain frequency expression using the superposition principle:
consider one input at a time and find the summation of the effects.

∆ω(s) =
1

1 + 1
s+1

10
1+10s

1
R

(
−10

1 + 10s
∆PL +

1

s+ 1

10

1 + 10s
∆Pc

)
(3.90)

Note the entire system has a loop gain and two forward gains. They are

Loop gain :
1

s+ 1

10

1 + 10s

1

R
;

∆PL → ∆ω :
−10

1 + 10s
;

∆Pc → ∆ω :
1

s+ 1

10

1 + 10s
. (3.91)

The overall input/output relationship can be expressed using a ma-
trix/vector format:

∆ω(s) =
1

1 + 1
s+1

10
1+10s

1
R

[ −10
1+10s

1
s+1

10
1+10s

]
︸ ︷︷ ︸

G(s)

[
∆PL
∆Pc

]
(3.92)
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Figure 3.28: Two-area system simulation results for Case 2, ACE signals
passed through a filter 1/(5s+ 1) to the integral control.
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Figure 3.29: Example 1.

G(s) is the transfer function matrix.

MATLAB function “step” examines the step responses of the system if
each input signal is given a step increase.

s=tf(’s’);

Ds = 1+1/(s+1)*10/(10*s+1)*20;

G = 1/Ds*[10/(1+10*s), 1/(s+1)*10/(1+10*s)];

step(G);

Two step responses are given from the above code and are shown in
Figure 3.30(a). The first step response shows that if ∆PL jumps from 0 to
1, the speed ∆ω will settle at −0.05 pu. The second step response shows
that if ∆Pc jumps from 0 to 1, the speed ∆ω will settle at 0.05 pu.

We can reason that if we apply the two step changes consecutively (first
the load is increased by 1 pu, then the reference power is increased by 1
pu), the frequency will settle at the nominal. In other words, the frequency
deviation will be 0. This experiment shows that the mechanism of secondary
frequency control of bringing frequency back to nominal relies on making
∆Pc = ∆PL.

The consecutive step change can be simulated using MATLAB function
“lsim”, which examines dynamic response for given input signals. The fol-
lowing MATLAB code defines an input signal with two step responses. At
t = 1 second, the first input u1 or ∆PL jumps from 0 to 1. At t = 10 second,
the second input or ∆Pc jumps from zero to 1.

for i=1:2000

t(i)=0.01*(i-1);

if (t(i)<1) u(i,:) =zeros(1,2);

else if(t(i)<10)

u(i,1) = 1; u(i,2) = 0;

else

u(i,1) = 1; u(i,2) = 1;

end

end
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end

lsim(G,u,t);

The simulation result is presented in Figure 3.30(b). It can be observed that
with a load increase, the frequency will drop. Then with an increase in the
reference power, the frequency will be brought back to the nominal.
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Figure 3.30: Example 1 step responses (a) and lsim simulation (b).

3.6.2 Example 2: Power sharing after secondary frequency
control

Case 1: Why is the power sharing according to the integral con-
trol gain? The power sharing among generators with secondary frequency
control should be according to the integral control gains: k1 : k2 : ... : kn
based on the simulation study results.

This phenomenon can also be comprehended intuitively. Since the fre-
quencies at steady-state or quasi steady-state are the same everywhere, then
their integrals over a time period should be the same. Therefore, for integral
control with a gain, the outputs of the integral controls are dependent on the
gains. Since the integral control outputs are the power orders, therefore the
generators will follow these orders and share power according to the integral
gains.

The assumption that frequency everywhere is the same is the key. How-
ever, we do observe in simulation that speeds have differences. Will the
differences invalidate the assumption? To better understand the issue, an
accurate derivation of power sharing based on transfer function analysis and
circuit analysis is given as follows.
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Method 1 First, let’s establish the relationship between the power order
∆Pc, ∆PL and the rotor angles. We should have the following equations if
we ignore the dynamics of the turbine governors.

∆Pc1 − T (∆δ1 −∆δ2) = PF1∆PL

∆Pc2 + T (∆δ1 −∆δ2) = (1− PF1)∆PL (3.93)

where PF1 notates the percentage of the load power sharing of Gen 1. Gen
2’s sharing is thus 1− PF1.

Next we have the following relationship after examining the control block
diagrams.

∆Pci = ki∆ωi/s (3.94)

ω0∆ωi/s = ∆δi (3.95)

Therefore

∆δ1 = ω0∆Pc1/k1 (3.96)

∆δ2 = ω0∆Pc2/k2 (3.97)

Substituting ∆δi by the above equations in (3.93), we have:

∆Pc1 − Tω0

(
∆Pc1
k1
− ∆Pc2

k2

)
= PF1∆PL

∆Pc2 + Tω0

(
∆Pc1
k1
− ∆Pc2

k2

)
= (1− PF1)∆PL (3.98)

At steady-state, ∆Pc2 = ∆PL −∆Pc1.

∆Pc1 − Tω0

(
∆Pc1
k1
− ∆PL −∆Pc1

k2

)
= PF1∆PL

(3.99)

Finally, we should have

∆Pc1 =
PF1∆PL − Tω0∆PL/k2

1− Tω0( 1
k1

+ 1
k2

)
(3.100)

=
Tω0k1 − PF1k1k2

(k1 + k2)Tω0 − k1k2
∆PL (3.101)

Choose T = 1. k1 and k2 are in the range of 0.1–1 to have a desired
bandwidth and to be separated from the primary frequency response. Note
also ω0 = 377 rad/s. Therefore, k1k2 � Tω0k1 and k1k2 � Tω0(k1 + k2).

With this condition, we have

∆Pc =
k1

k1 + k2
∆PL (3.102)
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Method 2 The second method uses the relationship of ∆Pei = ∆Pci at
steady-state. In addition, at any time (dynamic or steady-state)

∆Pci =

(
1

Ri
+
ki
s

)
∆ω.

Therefore

∆Pc1
∆Pc2

=
1
R1

+ k1
s

1
R2

+ k2
s

=
k1 + s/R1

k2 + s/R2
(3.103)

At steady-state, the ratio becomes k1/k2.

Case 2: One generator is with secondary frequency control, the
other is without. In that case, let’s examine what is the steady-state
frequency deviation and each generator’s power ∆Pei.

First of all, at steady-state, the input of an integral control has to be
zero. Therefore, ∆ω1 = 0. The system is an interconnected system. For
an interconnected system, at steady state, frequencies everywhere are the
same. Therefore, ∆ωss = 0 or the system’s frequency will be brought back
to nominal by Gen 1.

Second, what are the power sharing? For Gen 2, since there is no sec-
ondary frequency control, ∆Pc2 = 0. There should be no power order
change. The only influencing factor for mechanical power change is from the
droop control. Since the frequency deviation is zero, ∆Pm2 = −∆ω/R = 0.

Therefore, Gen 1 takes care of all the load increase.

∆Pe1 = ∆PL = ∆Pm1 −D1,1∆ω = ∆Pc1 −∆ω/R1 −D1,1∆ω = ∆Pc1
(3.104)

The power order of Gen 1 will be increased to compensate for the load
change.

3.6.3 Example 3: What if some areas have no ACE control?

Let’s look at the two-area system and assume that Area 1 is with ACE
control while Area 2 is without ACE. Now consider two scenarios one by
one: 1) in the first scenario, area 1 load has an increase, ∆PL1 = 1; 2) in
the second scenario, area 2 has an increase, ∆PL2 = 1. What will happen to
the steady-state frequency ωss? Will it be 60 Hz? How about power sharing
among the two generators in the two areas?
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Scenario 1: ∆PL1 = 1

Based on fact that the integral control’s input should be zero at steady-state,
Area 1’s ACE signal should be zero. Therefore

ACE1 = 0 = ∆P12 + β1∆ω = ∆Pe1 −∆PL1 + β1∆ω. (3.105)

From the above equation, we find:

∆Pe1 = −β1∆ω + ∆PL1. (3.106)

Area 2 has no ACE control. Hence Gen 2’s power change is due to droop
and damping only:

∆Pe2 = −β2∆ω. (3.107)

The load change will be compensated by the two generators’ electric
power.

∆PL1 = ∆Pe1 + ∆Pe2 = −(β1 + β2)∆ω + ∆PL1 (3.108)

To make the above equation true, ∆ω = 0. Area 1 takes care of the
entire load change. Area 2 does nothing.

∆Pe1 = ∆PL1 (3.109)

∆Pe2 = 0 (3.110)

The system will have nominal frequency at steady-state if Area 1 has a
load increase.

Scenario 2: ∆PL2 = 1

Based on fact that the integral control’s input should be zero at steady-state,
Area 1’s ACE signal should be zero. Therefore

ACE1 = 0 = ∆P12 + β1∆ω = ∆Pe1 + β1∆ω. (3.111)

From the above equation, we find:

∆Pe1 = −β1∆ω. (3.112)

Area 2 has no ACE control. Hence Gen 2’s power change is due to droop
and damping only:

∆Pe2 = −β2∆ω. (3.113)
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The load change will be compensated by the two generators’ electric
power.

∆PL2 = ∆Pe1 + ∆Pe2 = −(β1 + β2)∆ω (3.114)

To make that happen, ∆ω = − ∆PL2
β1+β2

. Area 1 and Area 2 share based on
droop and damping, or β.

∆Pe1 =
β1

β1 + β2
∆PL2 (3.115)

∆Pe2 =
β2

β1 + β2
∆PL2 (3.116)

The system will experience a frequency drop if Area 2 has a load increase.
The entire system works as if there is no AGC control installed if one area
is not equipped with ACE control yet it suffers load change.

3.6.4 Example 4: Effect of the droop in system stability

When secondary frequency control is enabled, droop seems useless. At a
steady-state nominal frequency condition, droop contributes zero power. So
shall we take out droop?

The answer is no. If we take out droop, the system will be unstable.
Oscillations will start. Figure 3.31 shows the root loci of the system when the
droop is not in place. The closed-loop system is opened at the X place. The
closed-loop system will be treated as a negative feedback system. Therefore,
the transfer function of the open-loop system is

1

s+ 1

10

10s+ 1

K

s
.

There are three poles: 0, −1, −0.1. The root loci sketch shows that two of

+
1

1s +
10

10 1s +

K
s

–

X X X
-1 -0.1

X
0

Figure 3.31: Root loci when the system has no droop control.

the closed-loop system poles will move away from 0 and −0.1 to the RHP
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when the gain K increases. For the above system, K should be less than
0.11 for the system to be stable.

This example shows that for a generator without droop control, in order
for the system to be stable, the gain of the integral control has to be reduced
dramatically. This will slow down the secondary frequency control.

The effect of droop control is explained in two steps. First, we do not
consider the integral frequency control and examine the effect of droop con-
trol on the system without integral control. For the closed-loop system in
Figure 3.32, the system is decoupled at X position. The open-loop system
has a transfer function 1

s+1
10

10s+1
1
R . Root loci sketch for 1

s+1
10

10s+1 is also
shown in Figure 3.32. We can see that the closed-loop system with droop
control will have two complex conjugated poles. If R = 0.05, then 1/R = 20
and the closed-loop poles will be located at −0.5500± j4.4494.

The closed-loop system’s transfer function is 10
10
R

+(s+1)(10s+1)
.

+
1

1s +
10

10 1s +

1
R

-

ΔPc

X
X X
-1 -0.1 0

X

X

Figure 3.32: System with droop only.

Finally we consider the integral control. The system is shown in Figure
3.33. Open the system at X position. The root loci sketch is shown in
Figure 3.33. For this system, if R = 0.05, the maximum K is 22 based on
the root loci.

X
0

X

X

ΔPc

X K
s

–

10
10 ( 1)(10 1)s s
R
+ + +

Δω 

Figure 3.33: Droop control enhances system stability.

Remarks: The system with droop is more stable. The integral control
gain can be much larger. Without droop, the integral control gain has to be
small for the system to be stable.

Next we will examine why a large gain K for the integral control can
cause instability. This can be easily shown in Figure 3.33 that a large gain K
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will cause the closed-loop system poles to move to RHP. Here an alternative
approach is used for the explanation. The integral control and the droop
control will be aggregated as K

s + 1
R as shown in Figure 3.34. The effect is to

introduce a zero and a pole at the original point for the open-loop system.
The newly introduced zero will attract the pole at 0, while the rest of the
two closed-loop system poles will be located within −0.1 and 1.0.

X X
-1 -0.1

X
0

X X
-1 -0.1 0

ΔPL

+

-
1

1s +
10

10 1s +
Δω 

1K
s R
+

-
X

1 1 ( )1 K s s KRK R R
s R s s

K=1, R=0.05.  a zero at -0.05

X
-0.05

With zero No zero

+ +
==+

Figure 3.34: Droop control enhances system stability.

A large K causes the zero −KR to move to the left. The original point
of the asymptotes is related to the poles and zeros as following:

s0 =

∑
pi −

∑
zi

n−m
center-of-gravity rule. (3.117)

where pi are the poles and zi are the zeros, n is the number of the poles and
m is the number of zeros.

A large gain will make the s0 move toward the RHP. The root loci of
an example system with different integral control gain K is shown in Figure
3.35. The crosses show the positions of the closed-loop system poles when
the gain of the loop gain 1

s
10

10s+1
s+kR
s is at 20 (since 1/R = 20). Figure 3.35

shows that a large K causes system instability. When K = 1 and K = 10,
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the system has closed-loop poles located at the LHP. When K = 100, the
system has poles that are located in the RHP.

s=tf(’s’);

k=[1,10,100];

for i=1:3;

P(i) = 1/s/(s+1)/(s+0.1)*(s+k(i)*0.05);

end

for i=1:3

figure(i);

rlocus(P(i)); hold on;

x= rlocus(P(i), 20);

plot(real(x), imag(x),’b+’);

end
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Figure 3.35: Effect of K. K = 1,K = 10,K = 100. A large K will cause
system instability.

3.6.5 Example 5: Why does long distance transmission in-
duce more oscillations?

In simulation results shown in Figure 3.27, the two-area system connected
with long-distance tie-lines shows more oscillations in tie-line power flow and
electric power compared to the simulation results of the system where two
generators serve a single load. We can examine the electric power expressions
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for these two cases. In the long-distance case:

Pe1 =
E1E2

X
sin(δ1 − δ2) + PL1 (3.118a)

Pe2 = −E1E2

X
sin(δ1 − δ2) + PL2 (3.118b)

In the two-generator serving one load case:

Pe1 = P 1
e1 + P 2

e1 =
E1E2

X1 +X2
sin(δ1 − δ2) +

1

2
PL (3.119a)

Pe2 = P 1
e2 + P 2

e2 =
E1E2

X1 +X2
sin(δ2 − δ1) +

1

2
PL (3.119b)

For the two-generator serving a load case, examine the dynamics of
∆(δ1 − δ2) while assuming ∆Pm = 0:

d

dt
∆(δ1 − δ2) = ω0(∆ω1 −∆ω2)

d

dt
∆(ω1 − ω2) = −

(
T

2H1
+

T

2H2

)
∆δ12 −

(
∆PL
4H1

− ∆PL
4H2

)
− D1,1∆ω1

2H1
− D1,2∆ω2

2H2

(3.120)
where T = E1E2

X1+X2
cos(δ0

2 − δ0
1).

If H1 = H2, then for the rotor angle difference dynamics, the effect of
∆PL can be ignored. On the other hand, if H1 does not equal H2, ∆PL is
enforced. This will cause oscillations. The effect is sort of like a long-distance
connection. That is the reason for two generators with very different sizes,
we do not put them on the same bus to serve a load.

For the two-area system with a long-distance tie-line, Load 1 and Load
2 effects are always enforced if ∆PL1 6= ∆PL2:

d

dt
∆(δ1 − δ2) = ω0(∆ω1 −∆ω2)

d

dt
∆(ω1 − ω2) = −

(
T

2H1
+

T

2H2

)
∆δ12 −

(
∆PL1

2H1
− ∆PL2

2H2

)
− D1,1∆ω1

2H1
− D1,2∆ω2

2H2

(3.121)
where T = E1E2

X cos(δ0
2 − δ0

1).

Therefore, we observe more oscillations in generators’ electric power for
the two-area with tie-line case (Figure 3.27) compared with that for the
two-generator serving a load case (Figure 3.23). Note that in both cases, we
assume that the two generators in the system have the same inertia H, and
damping D1.
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Exercises

1. Use parameters in Example 1 Figure 3.29. For a single generator load
serving system, derive the linear system model and build the model in MAT-
LAB/Simulink. Find the droop to make ∆ω = −0.2 for ∆PL = 0.1.

• Find the bandwidth of the system with only primary frequency control.

• Provide the dynamic simulation of the system frequency due to a step
response of load increase 0.1.

• Specify ∆Pc to bring ∆ω back to zero.

• Design the secondary frequency control to bring the system frequency
back to nominal when load varies. Choose a gain of the integration
block to make the frequency return to nominal in less than 100 seconds.
Find the value of ∆Pc at steady-state and see if this value matches your
previous calculation. Provide the dynamic responses of ∆ω and ∆Pc.

• Increasing the gain of the integration block will lead to instability.
Find the marginal value of the gain. Designate an analysis procedure
to analytically find the marginal gain. Hint: you can use root loci
method.

2. Use the parameters in Example 3. In MATLAB/Simulink, build the
linearized model for a two-area interconnection system. Each area consists
of a generator with a load. A load change of 100 MW occurs in Area 1.

• Demonstrate the ACE steady-state values, steady-state frequency in
Hz, change in tie-line flow in MW for each area through time-domain
simulation for the system with primary frequency control only. Ob-
serve if the values match the calculation.

• Design secondary frequency control for each area and demonstrate that
the frequency and tie-line power flow will go back to nominal. Please
present simulation results.



Chapter 4

Synchronous Generator
Models

In this chapter, steady-state models and dynamic models of a synchronous
generator will be presented. For a round-rotor generator, the steady-state
model can be represented by a voltage source behind a synchronous reac-
tance. For a salient generator, such a simple circuit representation is not
possible. Instead, a phasor diagram is used more popularly to represent the
relationship among terminal voltage, internal voltage, and current.

The electromagnetic dynamics of a synchronous generator are related to
the voltage and flux linkage of a circuit, which can be expressed by Faraday’s
Law. The dynamic models of a synchronous generator are expressed in the
rotor reference frame, or dq-reference frame. This reference frame is rotating
at the nominal speed at steady-state. Modeling a synchronous generator
in the dq-reference frame is a very important technique. The conversion
of variables from the abc frame to the dq frame is the well-known Park’s
transformation. Park’s 1929 paper Park (1929) was voted the second most
influential paper in power engineering in the 20th century in 2000 Heydt
et al. (2000), second only to the first influential paper by Fortescue in 1918
on symmetrical component theory Fortescue (1918).

Park’s transformation has been applied in the analysis of synchronous
or asynchronous machines. Through the transformation, stator variables
are expressed in the rotor reference frame. The main advantage is that the
related linear differential equations with time varying inductances become
linear differential equations with time invariant coefficients.

The treatment of Park’s transformation in classic texts, e.g., Bergen
and Vittal (2009), Krause (1986), relies on a transformation matrix P in

83



84 CHAPTER 4. SYNCHRONOUS GENERATOR MODELS

real domain (idq0 = Piabc). In this text, the space vector concept will be
introduced and applied in reference frame conversion. The introduction of
space vector concept will lead to a straightforward procedure on steady-state
and dynamic model derivation.

4.1 Generator steady-state circuit model

The steady-state circuit model of a generator is derived based on the su-
perposition principle. First, we consider rotor flux only. Then we consider
stator current effect only (armature reaction). The two effects will then be
combined to derive the circuit model, and further phasor diagram and power
expressions.

4.1.1 Internal voltage due to the rotor excitation current

A cross section of a two-pole synchronous generator with a salient rotor is
shown in Figure 4.1.

a'

ia

.
a

ia

Rotor axis

Rotor

Stator gd

A-axis

B-axis
C-axis

d

l

r

gq

a a

q

Figure 4.1: Synchronous generator cross section and the Gaussian surface.
θ is the rotor position relative to the reference axis.

The rotor circuit is excited by a DC excitation voltage vF and the current
iF . The rotor is rotating at ω speed. This DC current along with the motion
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will produce flux as a traveling waveform in the air gap. If we use Ampere’s
Law, we should be able to find the field strength and flux density in the air
gap. ∮

Γ
Hdl = NF iF (4.1)

where H is the magnetic field strength, Γ is the flux link path, and NF is
the number of rotor windings. The air gap magnetic permeability is much
less than that in the rotor and stator. Therefore, if we separate the path
into two portions (air gap Γ1 and non air gap Γ2), we have:

NF iF =

∫
Γ1

B

µ0
dl +

∫
Γ2

B

µ
dl

≈
∫

Γ1

B

µ0
dl since µ� µ0

= 2gd
B

µ0

(4.2)

where B is the flux density, gd is the air gap distance at the rotor flux line.
For a round rotor, the air gap distance is uniform. For a salient rotor, the
air gap distance is not uniform. However, even for a salient rotor, gd is a
fixed distance since it is the air gap distance at the rotor flux line.

The above relationship has an assumption that the magnetic field is
linear, therefore,

µH = B. (4.3)

The magnitude of the flux density in the air gap can be found as

B =
µ0

2gd
NF iF .

In the air gap, the flux density will be the same and have the same
direction (going out from the rotor from −π

2 to π
2 based on the rotor position,

going into the rotor for the rest π position. See Figure 4.2). We will define
going out as the positive direction for the flux lines while going in as the
negative direction.

The amplitude of the fundamental waveform for a square waveform with
a magnitude of 1 is 4

π (see Figure 4.2). Therefore the amplitude of the
fundamental component of the flux density is

B̂ =
4

π

µ0

2gd
NF iF . (4.4)
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Figure 4.2: Flux density in the air gap and the fundamental waveform of
the flux density. The position is relative to the rotor axis.

We now present the second assumption. Machines are designed to have
a sinusoidal flux distribution in the air gap. Therefore, in the air gap, at a
random position notated by α angle from the reference axis, the flux density
is expressed as

BF (α) = B̂ cos(α− θ) =
4

π

µ0

2gd
NF iF cos(α− θ), (4.5)

where θ is the rotor flux position or rotor position. Subscript F is used to
notate rotor flux since in the next sections, other fluxes will be introduced.

We now consider the stator’s phase A coil and study the flux linkage
linked λaa′ due to the rotor flux BF . To find λaa′ , we have to compute the
entire flux that is encompassed by coil aa′ in the air gap Gaussian space.
Since the density is different everywhere, integration is used.

First, check a trip of Gaussian surface that corresponds to a small angle
dα. The surface area is rldα. The corresponding flux density is B̂ cos(α−θ).
Next we find the integration from −π/2 to π/2.

φaa′ =

∫ π/2

−π/2
B̂ cos(α− θ)rldα

= 2rlB̂ cos θ

(4.6)

The flux linkage linked to aa′ is Nφaa′ with N as the number of windings
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of phase a.
λaa′ = 2NrlB̂ cos θ

= 2Nrl
4

π

µ0

2gd
NF︸ ︷︷ ︸

MF

iF cos θ = MF iF cos θ (4.7)

where MF is defined as above and is called mutual inductance.
Similarly, if we want to find out the flux linkages linked to coils bb′ and

cc′, then the integration should be in the range of [2π
3 −

π
2 ,

2π
3 + π

2 ], and
[4π

3 −
π
2 ,

4π
3 + π

2 ] based on the allocation of stator coils. Note that stator
coils are allocated so that phase bb′ will have a reference axis ahead of that
of phase aa′ by 120 degree, phase cc′ ahead of phase bb′ 120 degree.

λbb′ = N

∫ 2π
3

+π
2

2π
3
−π

2

B̂ cos(α− θ)rldα

= 2NrlB̂ cos

(
θ − 2π

3

) (4.8)

λcc′ = N

∫ 4π
3

+π
2

4π
3
−π

2

B̂ cos(α− θ)rldα

= 2NrlB̂ cos

(
θ +

2π

3

) (4.9)

Based on Faraday’s Law, a varying flux linkage induces EMF or voltage,
e.g., ea′a =

dλaa′
dt . In addition, instead of using ea′a, we will use eaa′ as the

voltage by treating the generator as a voltage source with currents flowing
out of the generator. Hence we have

eaa′ = −dλaa
′

dt
= θ̇MF iF sin θ = ωMF iF cos

(
θ − π

2

)
. (4.10)

Considering the nominal condition when the speed is nominal ω0 and
θ = ω0t+ θ0, we have the internal voltage eaa′ and its corresponding phasor
Ea as

eaa′ = −dλaa
′

dt
= θ̇MF iF sin θ = ωMF iF cos

(
ω0t+ θ0 −

π

2

)
,

Ea =
ωMF iF√

2
ej(θ0−

π
2

).
(4.11)

Define δ = θ0 − π
2 , then

Ea =
ωMF iF√

2
ejδ (4.12)
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θ0 is the initial position of the rotor axis (d-axis) relative to the reference
axis (static) and δ is the initial position of the quadratic-axis (q-axis) relative
to the reference axis.

4.1.2 Armature reaction of a round rotor generator

In this subsection, the rotor flux is not in the picture. We will only consider
three-phase stator currents ia, ib, ic and their combined effect in generating
a flux and an EMF.

The currents are balanced three-phase currents.

ia = Im cos(θa)

ib = Im cos

(
θa −

2π

3

)
ic = Im cos

(
θa +

2π

3

) (4.13)

Assume the air gap is uniform. For phase a current ia, using the same
technique adopted in flux density calculation due to rotor current iF , we
can compute the flux density anywhere in the air gap. Further, we can
extend the flux density expression due to ib and ic.

Ba(α) =
4

π

µ0

2g
Nia cosα

Bb(α) =
4

π

µ0

2g
Nib cos

(
α− 2π

3

)
Bc(α) =

4

π

µ0

2g
Nic cos

(
α+

2π

3

) (4.14)

where α is a place in the air gap relative to the reference a-axis.

The above expression shows that in the air gap, Ba will be maximum or
minimum at zero degree (a-axis), while Bb will be maximum or minimum
at 1200 (b-axis), while Bc will be maximum or minimum at −1200 (c-axis).
Currents are time varying. Therefore, the magnitude of the flux density is
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also time varying. The combined flux density is

Bar(α) = Ba(α) +Bb(α) +Bc(α)

=
4

π

µ0

2g
NIm

(
cos θa cosα+ cos

(
θa −

2π

3

)
cos

(
α− 2π

3

)
+ cos

(
θa +

2π

3

)
cos

(
α+

2π

3

))
=

4

π

µ0

2g
N

3

2
Im cos(α− θa)

(4.15)

Subscript ar notates armature reaction.
If we compare this expression with the flux density generated by iF

shown as below

BF (α) =
4

π

µ0

2gd
NF iF cos(α− θ), (4.16)

we may realize that the effect of three-phase balanced stator currents (ia, ib, ic)
in a uniform air gap of a round-rotor generator) is the same as a DC ro-
tor current 3

2Im on a rotor with a rotating speed the same as the electric
frequency.

Remarks: Rotating magnetic field is the most important concept in ac
machine. It can be formed by a DC rotor current with the rotor rotating or
three-phase balanced stator currents with static stators.

For Bar, using the similar technique in the previous subsection to find
flux linkage linked to stator coil aa′, we have:

λar = 2Nrl
4

π

µ0

2g
N

3

2︸ ︷︷ ︸
Ls1

Im cos(θa)

= Ls1ia

(4.17)

The induced EMF var can be expressed as follows:

var = −dλar
dt

= −Ls1
dia
dt
. (4.18)

4.1.3 Round-rotor generator circuit, phasor diagram, power
and torque

Adding the rotor flux and armature reaction together, we can find the total
flux linkage linked to aa′ due to the air gap flux:

λag = MF iF cos θ︸ ︷︷ ︸
λaa′

+Ls1ia︸ ︷︷ ︸
λar

. (4.19)
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where λaa′ is the flux linkage due to the rotor current and λar is the flux
linkage due to the stator currents or armature reaction.

The corresponding air gap voltage vag is

vag = −dλag
dt

= ωMF iF sin θ − Ls1
dia
dt

(4.20)

If we consider the nominal condition and steady-state expression, then
the flux linkages are expressed as follows.

λaa′(t) = MF iF cos(ω0t+ δ + π/2)

λar(t) = Ls1Im cos(ω0t+ θa0)

λag(t) = λaa(t) + λar(t)

(4.21)

The voltage induced by the total air gap flux linkage is as follows.

vag(t) = ω0MF iF sin θ + ω0Ls1Im sin θa

= ω0MF iF sin(ω0t+ θ0) + ω0Ls1Im sin(ω0t+ θa0)

= ω0MF iF cos(ω0t+ θ0 − π/2) + ω0Ls1Im cos(ω0t+ θa0 − π/2).
(4.22)

The phasor relation for the flux linkages is expressed as:

λag = λaa′ + λar =
MF iF√

2
ej(δ+π/2) + Ls1Ia

= j
Ea
ω0

+ Ls1Ia.

(4.23)

The phasor relationship for the voltage and currents is expressed as:

V ag =
ω0MF iF√

2
ej(θ0−π/2) +Xs1

Im√
2
ej(θa−π/2)

= Eae
jδ − jXs1

Im√
2
ejθa

= Ea − jXs1Ia.

(4.24)

where Xs1 = ω0Ls1.
If we consider the stator resistance and leakage reactance, then we have

the following expression.

Ea = V a + (r + jXls + jXs1)Ia = V a + (r + jXs)Ia (4.25)

where Xs is called synchronous reactance.
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Figure 4.3: Round-rotor generator circuit model and phasor diagram.

The circuit model and phasor diagram of a round-rotor generator is
shown in Figure 4.3. We start to introduce dq axes. The dq axes have been
briefly mentioned in Chapter 3 and illustrated in Fig 3.1. The rotor axis
shown in Figure 4.1 is called direct axis or d-axis. The quadrature axis or
q-axis lags the d-axis by 90 degrees. In the phasor diagram, we also use q-
axis to notate the direction of the internal voltage and use d-axis to notate
the rotor flux phasor’s direction.

Given the terminal voltage and current phasors, we can find the internal
voltage Ea and its phase angle δ. The active power delivered by the generator
can be easily found with r ignored.

Pa =
EaVa
Xs

sin δ (4.26)

if we assume that the phase angle of the terminal voltage is zero va(t) =√
2Va cos(ω0t). Then δ is the angle difference between the two voltage pha-

sors Ea and V a.
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4.1.4 Lentz’s Law example

Lentz’s Law states that if an original flux induces EMF and this EMF
may generate related current, then the current will generate a flux that
will weaken the original flux. This is best explained by the terminal bus
short circuit example.

When a generator’s terminal bus is short circuited, if we ignore the
resistance, we will have the current phasor, armature flux linkage phasor,
and rotor flux phasor all referring to the q-axis as

Ea = Ea, (4.27)

λaa′ = j
Ea
ω
, (4.28)

Ia =
Ea
jXs

= −j Ea
Xs

, (4.29)

λar = LsIa = −jLs
Ea
Xs

= −jEa
ω
. (4.30)

Therefore, the armature flux cancels the rotor flux. The total air gap flux
is zero.

4.2 Space vector concept

In this section, we start to examine the concept of space vector, which has
been widely used in ac machine and power electronics. As readers can sense,
this concept comes from the rotating magnetic field. Based on the analysis
conducted in the previous section, we have two important findings.

1. A rotating magnetomotive force (MMF) and further a rotating mag-
netic field are formed due to a constant DC excitation current iF on
the rotor. This constant current will produce a sinusoidal magnetic
field in the air gap with constant magnitude. In addition, the rotor
is rotating at speed ω. Hence this magnetic field is rotating, or, a
rotating magnetic field with constant magnitude.

2. Balanced three-phase stator currents can also form a rotating MMF
and further a rotating magnetic field. If the electric frequency is ω,
the rotating magnetic field is rotating with a speed at ω.
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Examine the physics of MMF: at any place in the air gap (notated as α
angle from the reference axis), the MMF is expressed as

Fa(α) = Nia cosα

Fb(α) = Nib cos

(
α− 2π

3

)
Fc(α) = Nic cos

(
α+

2π

3

)
where α is the general angle in the air gap referring to the a-axis, F is the
MMF.

We can see from the above equations that Fa is maximum when α = 0.
Accordingly, Fb is maximum when α = 2π

3 ; Fc is maximum when α = 4π
3 .

Consider the currents ia, ib, and ic as balanced three-phase.

ia(t) = Im cos θa = Im cos(ωet+ θa)

ib(t) = Im cos(θa −
2π

3
) = Im cos

(
ωet+ θa −

2π

3

)
ic(t) = Im cos(θa +

2π

3
) = Im cos

(
ωet+ θa +

2π

3

) (4.31)

where ωe notates the electricity frequency.
Then we have

F (α, t) = NIm

[
cos(ωet+ θa) cosα+ cos

(
ωet+ θa −

2π

3

)
cos

(
α− 2π

3

)
+ cos

(
ωet+ θa +

2π

3

)
cos

(
α+

2π

3

)]
=

3

2
NIm cos

(
α− ωet− θa

)
(4.32)

For the above MMF, if we only consider its maximum in the 2D dimen-
sion of the air gap, then we find that

F̂ (t) =
3

2
NIm (4.33)

when α = ωet+ θa.
We now introduce a phasor (or a space vector) to notate the magnitude

and the angle of the MMF as:

−→
F (t) = F̂ ej(ωet+θa) =

3

2
NIme

j(ωet+θa) (4.34)
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This MMF space vector comes from the following expression:

−→
F (t) =

[
ej0ia(t) + ej

2π
3 ib(t) + ej

4π
3 ic(t)

]
(4.35)

The general space vector of a three-phase variables fa(t), fb(t), fc(t) is
defined as:

−−→
f(t) =

2

3

[
ej0fa(t) + ej

2π
3 fb(t) + ej

4π
3 fc(t)

]
(4.36)

Note that the coefficient 2/3 is used.
If fa(t), fb(t), fc(t) are a balanced three-phase set with an amplitude as

fm, then the end result is

−−→
f(t) =

2

3

[
ej0fa(t) + ej

2π
3 fb(t) + ej

4π
3 fc(t)

]
= fme

jθa This is the analytic form of fa

(4.37)

In other words, the real part of the space vector is the signal of phase a.
Note that the analytic form of a signal is a complex-valued function that

has no negative frequency components Gabor (1946). If fa(t) = fm cos(θa),
then its Hilbert transform can be defined as f ′a(t) = fm sin(θa). The analytic
signal is

fa(t) + jf ′a(T ) = fm(cos(θa) + j sin(θa) = fme
jθa .

4.2.1 Example

When t = t1, 
ia(t1) = 1

ib(t1) = −0.5
ic(t1) = −0.5

(4.38)

find the air gap MMF due to the three-phase stator currents at the moment
of t1: F (α, t1).
Solution: There are two approaches to solve this problem.

1) Substituting ωet + θa = 0 and Im = 1 in (4.31) and (4.32), we have
F (α, t1) = 3

2N cosα.
2) Using the phasor diagram in Figure 4.4 to plot the answer. First, at

a-axis, we plot
−→
F a(t1) in the same direction of a-axis and with a magnitude

of N where N is the number of the windings. Next, at the opposite of the

b-axis, we plot
−→
F b(t1) with a magnitude of 0.5N . At the opposite of the

c-axis, we plot
−→
F c(t1) with a magnitude of 0.5N . The sum of the three

vectors is 1.5N at the direction of a-axis. Therefore F (α, t1) = 1.5N cosα.
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Figure 4.4: Space Vector diagram.

4.2.2 Advantages of space vector technique

Why is space vector so important? With space vectors, we can conduct
decomposition and have a much better understanding regarding the anal-
ysis of machines with salient rotors. Like phasors, space vectors translate
sinusoidal waveforms into vectors. Decomposition becomes very easy.

For example, we would like to decompose the MMF formed by the stator
currents into two MMFs, one aligned with the d-axis and the other aligned
with the q-axis.

We will first notate the MMF as
−→
Fs = 3

2NIme
jθa , the position of the

d-axis is ejθ, and the position of the q-axis is ej(θ−
π
2

).
Let’s use the d-axis or q-axis as the reference instead. Then the MMF

space vector should be written based on d-axis or q-axis respectively.
The MMF space vector is expressed as follows.

−→
Fs =

3

2
NIme

jθa static reference (4.39)

This space vector should be
−→
Fse
−jθ if it is expressed based on the d-axis:

F s1 =
3

2
NIme

j(θa−θ) =
3

2
NIm cos(θa − θ)︸ ︷︷ ︸

Fsd

+j
3

2
NIm sin(θa − θ)︸ ︷︷ ︸

−Fsq

(4.40)

The MMF space vector should be
−→
Fse
−j(θ−π/2) if it is expressed based on

the q-axis since the q-axis position relative to the static reference is θ−π/2.

F s2 =
3

2
NIme

j(θa−θ+π
2

) = −3

2
NIm sin(θa − θ)︸ ︷︷ ︸

Fsq

+j
3

2
NIm cos(θa − θ)︸ ︷︷ ︸

Fsd

(4.41)
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We start to use F for notation. F is a static vector at steady-state since
the electric frequency and the rotor speed are the same for synchronous
generators and further at steady-state the current magnitude is constant.
θa − θ is a constant. F is termed as complex vector.

We shall have:
−→
Fs = Fs1e

jθ (4.42)

= Fs2e
j(θ−π

2
) = −3

2
NIm sin(θa − θ)ej(θ−

π
2

)︸ ︷︷ ︸
−→
Fsq

+
3

2
NIm cos(θa − θ)ejθ︸ ︷︷ ︸

−−→
Fsd

(4.43)

Thus we have shown that a space vector can be easily decomposed into
two space vectors orthogonal with each other.

−→
Fs =

−→
Fds +

−→
Fqs (4.44)

= (Fsd − jFsq)ejθ (4.45)

= (Fsq + jFsd)e
j(θ−π

2
) (4.46)

4.2.3 Relationship of space vector, complex vector, αβ and
Park’s transformation

The definition of a space vector can be written in the matrix/vector format
as:

−→
i =

2

3

[
ej0 ej

2π
3 e−j

2π
3

]iaib
ic

 (4.47)

We now consider two reference frames, the first αβ, and the second dq
reference frame. The αβ-frame is a static frame with the β-axis leads the
α-axis 90◦:

−→
i = iα + jiβ. Hence in the αβ reference frame:[

iα
iβ

]
=

2

3

[
1 cos 2π

3 cos 2π
3

0 sin 2π
3 − sin 2π

3

]iaib
ic

 (4.48)

In the dq reference frame, the reference axis is the d-axis, the space vector−→
i in dq-frame becomes a new vector. We call this vector a complex vector

and notate it as Idq = id − jiq.

Idq = e−jθ
−→
i =

2

3

[
e−jθ e−j(θ−

2π
3

) e−j(θ+
2π
3

)
]iaib

ic

 (4.49)
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[
id
iq

]
=

2

3

[
cos θ cos(θ − 2π

3 ) cos(θ + 2π
3 )

sin θ sin(θ − 2π
3 ) sin(θ + 2π

3 )

]iaib
ic

 (4.50)

For balanced three-phase currents with phase a current expressed as
Im cos(θa), we can find id, iq using the space vector concept. First the space
vector for the current is Ime

jθa . We now view this space vector from the
point of the rotor. The rotor’s position is θ. Therefore, the complex vector
in the dq frame is

Idq = Ime
jθae−jθ.

This gives id and iq as

id = Im cos(θ − θa),
iq = Im sin(θ − θa).

(4.51)

id is the current space vector’s projection on the d-axis while iq is the current
space vector’s projection on the q-axis.

To make the transformation matrix in (4.50) a square matrix, we add the
zero sequence component where i0 = 1

3(ia + ib + ic). Then the dq0 variables
have the following relationship with the abc variables.idiq

i0

 =
2

3

cos θ cos(θ − 2π
3 ) cos(θ + 2π

3 )
sin θ sin(θ − 2π

3 ) sin(θ + 2π
3 )

1
2

1
2

1
2


︸ ︷︷ ︸

T1

iaib
ic

 (4.52)

Textbooks on ac machines, e.g., Krause (1986), use this type of trans-

formation. Bergen and Vittal (2009) uses a scaling factor k =
√

3
2 for the

transformation matrix. Examine T1,

T1T
T
1 =

4

9

3
2 0 0
0 3

2 0
0 0 3

2

 =
2

3
I (4.53)

Adding a scaling factor will make the transformation matrix an orthogonal
or unitary matrix, that is

kT1︸︷︷︸
T2

kT T1 = I (4.54)
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Bergen and Vittal (2009) uses T2 as the transformation matrix.i′di′q
i′0

 =

√
2

3

cos θ cos(θ − 2π
3 ) cos(θ + 2π

3 )
sin θ sin(θ − 2π

3 ) sin(θ + 2π
3 )

1
2

1
2

1
2


︸ ︷︷ ︸

T2

iaib
ic

 (4.55)

Here we notate the variables based on T2 transformations with ′. The above
transformation is called Park’s transformation. In a nutshell, the stator
related variables or space vectors are now viewed in the rotor’s point of view
after Park’s transformation. In this text, complex vectors are adopted since
they lead to simpler expressions.

Idq = e−jθ
−→
i (4.56)

vdq = e−jθ−→v (4.57)

λdq = e−jθ
−→
λ (4.58)

Note only the current related space vector has a corresponding physical
meaning related to MMF or flux. The rest has no physical meaning.

4.3 Synchronous generators with salient rotors

4.3.1 Armature reaction of a salient rotor generator

Compared to a round-rotor generator, the flux space vector formed in the
air gap due to a salient-rotor generator’s stator currents does not have a
constant magnitude. This is due to the saliency of the rotor. At different
rotor positions, the paths of flux lines will encounter different air gap dis-
tances. Chapter 7 of Bergen and Vittal (2009) gives an example to show
the inductance of a static winding is a function of the rotor position. The
three-phase circuits inductance matrix is also a function of rotor position θ.
When Park’s transformation is applied, the resulting dq-based flux linkages
and currents are related with constant inductances.

With space vector decomposition technique, a simpler explanation can
be offered.

Let’s first decompose the MMF generated by the three-phase currents

into two MMFs: one aligned with the d-axis (
−→
F sd) and the other aligned

with the q-axis (
−→
F sq).

Based on the two MMFs, we can find the corresponding magnetic field
density. If we examine the two paths of the flux lines, the air gap distances
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are fixed for these two MMFs regardless of rotor position: the air gap dis-
tance of d-axis flux lines is gd, while the air gap distance for q-axis flux lines
is gq, and gd < gq. Therefore, the d-axis flux density should be stronger com-
pared to the q-axis flux density if they are generated by the MMFs with the
same magnitudes, or the reluctance of the q-axis magnetic circuit is higher
than that of the d-axis. This eventually will lead to a greater flux linkage
due to d-axis MMF, which means the related inductance Ld is greater than
Lq, also Xd > Xq.

We should be able to find the expressions of
−−→
Bsd and

−→
Bsq after a few

steps. The first step is to find the amplitudes of the flux density, using
Ampere’s Law and considering only the air gap path. We have the following
relationship.

2gd
B̂sd
µ0

= Fsd =
3

2
NIm cos(θ − θa) =

3

2
Nid

2gq
B̂sq
µ0

= Fsq =
3

2
NIm sin(θ − θa) =

3

2
Niq

(4.59)

Fsd and Fsq can be viewed as the MMF space vector’s projection on the
d-axis and q-axis. Figure 4.5 presents the decomposition geometry.

d-axis

q-axis

1.5NImejq a

a

Fsq

Fsd
q – q

Figure 4.5: Stator MMF decomposition.
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Then the space vectors of the flux density can be found.

−−→
Bsd =

4

π

µ0

2gd
Fsd︸ ︷︷ ︸

Bsd

ejθ (4.60)

−→
Bsq =

4

π

µ0

2gq
Fsq︸ ︷︷ ︸

Bsq

ej(θ−
π
2

) (4.61)

Consider the Gaussian space encompassed by the stator aa′ winding
(Figure 4.1). We will find the respective flux linkages:

λad = 2NlrBsd cos(θ) = 2Nlr
4

π

µ0

2gd
Fsd cos(θ)

= 2Nlr
4

π

µ0

2gd

3

2
N︸ ︷︷ ︸

Ld1

id cos(θ)︸ ︷︷ ︸
iad

λaq = 2NlrBsq cos
(
θ − π

2

)
= 2Nlr

4

π

µ0

2gq
Fsq cos(θ − π

2
)

= 2Nlr
4

π

µ0

2gq

3

2
N︸ ︷︷ ︸

Lq1

iq cos
(
θ − π

2

)
︸ ︷︷ ︸

iaq

(4.62)

The total flux linkage linked to aa’ is

λaa′ = λad + λaq = Ld1iad + Lq1iaq (4.63)

For round-rotor generators, gd = gq, therefore, Ld1 = Lq1 = Ls1. Hence

λaa′ = λad + λaq = Ls1(iad + iaq) = Ls1ia (4.64)

Including the stator leakage, then

λad = Ldiad

λaq = Lqiaq
(4.65)

Ld and Lq are defined by including the leakage inductance Lls.

Ld = Ld1 + Lls

Lq = Lq1 + Lls
(4.66)
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4.3.2 Salient generator phasor diagram, power and torque

Voltage and current phasor diagram

For salient rotor generators, the open-circuit voltage is the same as that of
a round-rotor generator. After we obtain the open-circuit voltage due to iF
and the flux linkages due to the armature reaction, we will now have the
total flux linkage linked to stator phase a coil aa′.

λag = λaF + λad + λaq (4.67)

where λaF is the flux linkage due to iF and

λaF = 2Nrl
4

π

µ0

2gd
NF︸ ︷︷ ︸

MF

iF cos(θ) (4.68)

If the number of winding turns on the rotor and the stator are the same
(NF = N), then we know that Ld1 = 3

2MF .

λag = λaF + λad + λaq

= MF iF cos(θ) + Ld1iad + Lq1iaq

= (MF iF + Ld1id) cos(θ) + Lq1iq cos
(
θ − π

2

) (4.69)

Including the leakage, we now have

λa = (MF iF + Ldid) cos θ + Lqiq sin θ (4.70)

The space vector of the stator flux linkage can be expressed as:

−→
λ = [(MF iF + Ldid)− jLqiq] ejθ (4.71)

Define the d-axis flux linkage magnitude as λd and q-axis flux linkage mag-
nitude as λq. We have:

−→
λ = (λd − jλq)ejθ. (4.72)

Then:
λd = MF iF + Ldid

λq = Lqiq
(4.73)
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Based on the Faraday’s Law, we can find the induced electromotive force
(EMF) or the air gap voltage vag.

vag = −dλag
dt

= ω (MF iF + Ld1id) sin θ − ωLq1iq cos θ

= ω (MF iF + Ld1id) cos
(
ωt+ θ0 −

π

2

)
− ωLq1iq cos(ωt+ θ0)

=
√

2

ωMF iF√
2︸ ︷︷ ︸

Ea

+ωLd1
Im√

2
cos(θ − θa)︸ ︷︷ ︸
Iad

 cos
(
ωt+ θ0 −

π

2

)
︸ ︷︷ ︸

q−axis

−
√

2ωLq1
Im√

2
sin(θ − θa)︸ ︷︷ ︸
Iaq

cos(ωt+ θ0)︸ ︷︷ ︸
d−axis

(4.74)

where ω is the speed.
We will now start to use phasors to express (4.74). At steady-state, the

speed is at nominal ω = ω0.

V ag = Ea +Xd1Iad − jXq1Iaq based on q-axis (4.75)

Further, if we consider

Iad = jIad, (4.76)

Iaq = Iaq (4.77)

based on q-axis, then (4.75) becomes

V ag = Ea − jXd1(jIad)− jXq1Iaq

= Ea − jXd1Iad − jXq1Iaq
(4.78)

Or

Ea = V ag + jXd1Iad + jXq1Iaq (4.79)

Considering the stator resistance r and leakage reactance Xls, then we
will have the terminal voltage V a and V ag relationship.

V ag = V a + (r + jXls)Ia

= V a + rIa + jXls(Iad + Iaq)
(4.80)
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Therefore,

Ea = V a + rIa + j(Xd1 +Xls)Iad + j(Xq1 +Xls)Iaq (4.81a)

= V a + rIa + jXqIad + jXqIaq + j(Xd −Xq)Iad (4.81b)

= V a + rIa + jXqIa + j(Xd −Xq)Iad (4.81c)

We can make (4.81) be based on the q-axis; then the above equation
becomes:

Ea = V ae
−jδ + rIae

−jδ + jXdjIad + jXqIaq

= V ae
−jδ + rIae

−jδ + jXdjIad − jXqjIad + jXq (jIad + Iaq)︸ ︷︷ ︸
Iae−jδ

= (V a + (r + jXq)Ia)e
−jδ − (Xd −Xq)Iad

(4.82)

The above relationship makes sure that

V ′ = V a + (r + jXq)Ia = V ′ejδ (4.83)

Note that the phasor V ′ must be located at the q-axis since based on (4.82),
V ′e−jδ must have real value.

Therefore, given the terminal voltage and current phasors, we can use
the above relationship to find the δ first. Then the current phasor will be
decomposed into Iad and Iaq. Further Ea will be found.

The phasor diagrams are shown in Figure 4.6.

Va

Ia
rIa

jXdIad

Iad

Iaq

jXqIaq

Ea

d-axis q-axis

VaIa

rIa

jXdIad

Iad

Iaq

jXqIaq

Ea

d-axis q-axis

V’

jXqIa

j(Xd-Xq)Iad

δ δ

δa

Figure 4.6: Phasor diagrams.
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Further, for q-axis and d-axis respectively, we have the following rela-
tionship by separating the real and imaginary components of (4.81).{

Ea = Va cos δ + rIa cos(δa − δ)−XdIad

0 = −Va sin δ + rIa sin(δa − δ) +XqIaq
(4.84)

where θ = ωt+ θ0 = ωt+ δ + π
2 , θa = ωt+ δa.

If we ignore r, we can find Iad and Iaq more easily:

Iaq =
Va sin δ

Xq
(4.85)

Iad =
−Ea + Va cos δ

Xd
(4.86)

Example: Short circuit analysis

Based on the phasor diagram, it can be easily found what is the short-
circuit current when Va = 0. In that case, the component contributed to Ea
is completely dependent on jXdIad. Also since Va = 0, the projection of V a

to the d-axis is zero. Therefore Va sin δ = 0, which also means jXqIaq = 0
or the q-axis current Iaq = 0.

∴ Ia = Iad =
Ea
Xd

(4.87)

Comparing the above short circuit analysis with that of the round rotor
case, we find that it follows Lentz’s Law as well. The induced flux should
weaken the original flux. Therefore, the armature flux should be opposite
to the rotor flux. Hence, the current should have only d-axis current. And
the current is 90◦ lag Ea. The phasor diagram is shown in Figure 4.7.
Power
Two points of view are given to explain the power expression.

Circuit point of view Given Ea, Va, and the angle between them δ, we
should be able to compute the complex power sent out from the generator.

Sa = V aI
∗
a (4.88)

= Vae
−jδ(Iaq − jIad) if we use Ea’s direction are the reference (4.89)

= Va

(
(Iaq + jIad)e

jδ
)∗

if we use V a’s direction are the reference

(4.90)
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=Ia

Ea

d-axis

q-axis

jXd Iad

λaa'

λar

Iad

Figure 4.7: Phasor diagram when Va = 0.

Either way, we will end up with

Sa = Va(cos δ − j sin δ))(Iaq − jIad). (4.91)

The real power from phase a should be

Pa = Va cos δIaq − Va sin δIad

=
EaVa
Xd

sin δ +

(
1

Xq
− 1

Xd

)
V 2
a

2
sin(2δ)

(4.92)

The reactive power from phase a should be

Qa = −Va cos δIad + Va sin δIaq)

=
EaV∞
Xd

cos δ − V 2
a

(
(cos δ)2

Xd
+

(sin δ)2

Xq

)
(4.93)

(4.92) shows that there are two components to generate torque or power.
The first component is due to the rotor excitation. The second component
is due to the saliency of the generator rotor. If the rotor is round, the second
component is zero. This equation indicates that it is possible to generate
torque or power without rotor excitation. In real-world applications, these
types of machines are called reluctance machines.

Torque

Torque or power is produced on the windings with current flow inside a
magnetic field. The basic relationship of force F , current I and magnetic
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field B is as follows:

−→
F =

−→
I ×
−→
Bl (4.94)

where l is the length of a winding. The direction of the force can be found
using either the right-hand rule or the left-hand rule.

Right-hand rule: curl fingers from current direction to the flux direction.
The force direction is the thumb’s direction.

Left-hand rule: fingers point to the current direction while letting the
palm face the flux lines. The thumb’s direction is the force direction.

Figure 4.8 shows two examples to indicate the directions of the forces.

I

F

B

I

F=BIl

B

Figure 4.8: Force direction.

Next we show an example to find the torque in Figure 4.9. Note that the
MMF direction generated by the current is α angle ahead of B. Note that
the flux is decomposed into two elements, one aligned with the MMF (B1),
the other quadratic to the MMF (B2). B2 and I will not generate torque.

Assume that the default direction of torque is clockwise, i.e., when the
MMF is leading the flux, torque will be positive. Otherwise, torque will be
negative.

Then the torque computation is as follows.

T = F ·D = B1IlD = BIlD sinα (4.95)

where α is angle of the MMF relative to the flux direction.
The above expression can also be obtained if we decompose the MMF

or current into two components, one aligned with the flux line direction or
the d-axis, notated as the Id, and the other aligned with the q-axis, which
lags the d-axis by 90◦, notated as Iq. Then Id = I cosα and Iq = −I sinα
as shown in Figure 4.9. Iq will interact with B to generate torque while Id
will not interact with B to generate torque.

T = −BIql ·D = BIlD sinα. (4.96)
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F1

B1

F2

B2 F2

α

B1=Bsinα

B2=Bcosα

B

α
I

I

B

F1

MMF

D

l

Id

B (MMF2)

F2F2

B 

q-axis

F1

F1

α
 

I

B(d-axis)

Icosα 

 -I sinα q-axis

Iq

Iq

Id

Figure 4.9: Torque generation. Note that the flux is decomposed into two
elements, one aligned with the MMF (B1), the other quadratic to the MMF
(B2). B2 and I will not generate torque.

The negative sign is added since q-axis lags B by 90◦ and the generated
torque is counterclockwise should Iq and B are all positive.

If we consider that there are N windings, then the torque should be

T = F ·D = NlDB1I (4.97)

Remarks: Torque is generated by the interactions of MMF and flux.

Round-rotor generator This principle is now extended to the rotating
magnetic field. First we examine the round-rotor generator case. The rotor

circuit will generate a magnetic field notated by
−→
BF while the stator current

forms a MMF
−→
F s = 3

2NIme
jθa .

When these two vectors are aligned with each other, no torque will be

generated. This can also be corroborated by the fact that when
−→
E a is

90 degree lagging or leading the current space vector, there is no power
to be generated. To compute the torque, we can either decompose the

rotor flux
−→
BF into two components or decompose the stator MMF into

two components, one aligned with the d-axis and the other aligned with
the q-axis. Only the q-axis stator MMF will interact with the rotor flux to
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generate torque.

−→
F qs = Fs sin(θ − θa)ej(θ−

π
2

)

Te = 2rlBFFqs

= 2rlNBF
3

2
N Im sin(θ − θa)︸ ︷︷ ︸

iq

=
3

2
MF iF iq (4.98)

Te is positive when the rotor flux leads the stator MMF. This is also a
condition when a rotating ac machine is working as a generator.

The definitions of iad and iaq are given in the previous section: iad is
the component of the phase a current ia that will generate a space vector
aligned with d-axis, while iaq is the component that will generate a space
vector aligned with q-axis. 

ia = iaq + iad

ib = ibq + ibd

ic = icq + icd

(4.99)

Two space vectors will be generated:

−→
iq =

2

3

(
iaqe

j0 + ibqe
j 2π

3 + icqe
−j 2π

3

)
= iqe

j(θ−π
2

) (4.100)

−→
id =

2

3

(
iade

j0 + ibde
j 2π

3 + icde
−j 2π

3

)
= ide

jθ (4.101)

Taking the real parts of the above two space vectors, we have the follow-
ing two components of the stator current in phase a:

iaq = iq sin θ = Im sin(θ − θa) sin θ =
√

2Iaq sin θ,

iad = id cos θ = Im cos(θ − θa) cos θ =
√

2Iad cos θ.
(4.102)

It is easy to see the relationship of the space vector amplitudes versus the
RMS values of phasor components.

iq =
√

2Iaq = Im sin(θ − θa)
id =

√
2Iad = Im cos(θ − θa)

(4.103)

From the above torque equation (4.98), we will find the power expression
and further compare the expression with the one derived from the Thevenin
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circuit in Figure 4.3.

P3φ = ωTe =
3

2
ωMF iF iq =

3

2

√
2Ea
√

2Iaq = 3EaIaq (4.104)

Based on the phasor diagram for the salient rotor generator, the projection
of the terminal voltage vector on d-axis is canceled by the q-axis current
times Xq. For a round rotor, replace Xq by Xs. So we have

Va sin δ = IaqXs (4.105)

Therefore,

P3φ = 3
EaVa
Xs

. (4.106)

This is the expression derived based on the Thevenin circuit when r is ig-
nored.

Salient generator In the salient generator case, the q-axis stator MMF
component will interact with the total flux due to rotor current and the
d-axis stator MMF and generate torque while the d-axis stator MMF com-
ponent will interact with the q-axis stator MMF. The two stator MMF
components are shown as follows.

−→
F qs = Fs sin(θ − θa)ej(θ−

π
2

) =
3

2
N Im sin(θ − θa)︸ ︷︷ ︸

iq

ej(θ−
π
2

)

−→
F ds = Fs cos(θ − θa)ejθ =

3

2
N Im cos(θ − θa)︸ ︷︷ ︸

id

ejθ
(4.107)

Torque will be generated.

Te = 2rlBdFqs − 2rlBqFds

= 2rl(BF +Bsd)
3

2
Niq − 2rlBsq

3

2
Nid

= 2rl
4

π

µ0

2gd

(
NF iF +

3

2
Nid

)
3

2
Niq − 2rl

4

π

µ0

2gq

3

2
Niq

3

2
Nid

=
3

2
(MF iF + Ldid)iq −

3

2
Lqiqid

(4.108)

Since
λd = MF iF + Ldid,

λq = Lqiq,
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we now have the torque expression as

Te =
3

2
(λdiq − λqid) (4.109)

If the machine has P
2 pole pairs, then the torque expression becomes

Te =
3

2

P

2
(λdiq − λqid). (4.110)

In the above expressions, λd represents the total d-axis flux in the air
gap linked to the stator circuits whose currents will generate an MMF in d-
axis direction; λq represents the total q-axis flux in the air gap linked to the
stator circuits whose currents generate a rotating MMF in q-axis direction
with constant magnitude.

The stator circuits thus can be viewed as two fictitious rotor circuits: the
d-axis circuit generates d-axis MMF

−→
Fds and the DC current in the circuit

is 3
2 id; the q-axis circuit generates q-axis MMF

−→
Fqs and the DC current in

the circuit is 3
2 iq.

The expression in (4.109) is used in electric machinery books often, e.g.,
Krause (1986). This expression is applicable to any rotating machine: syn-
chronous or induction.

P3φ = ωTe =
3

2
ωMF iF︸ ︷︷ ︸
√

2Ea

iq︸︷︷︸
√

2Iaq

+
3

2
(ωLd − ωLq)iqid

= 3EaIaq + 3(Xd −Xq)IadIaq

(4.111)

We can replace Iaq with Va sin δ
Xq

and replace Iad with Va cos δ−Ea
Xd

. The
power expression becomes:

P3φ = 3

(
EaVa sin δ

Xd
+

(
1

Xq
− 1

Xd

)
V 2
a

2
sin(2δ)

)
(4.112)

4.4 Generator model based on space vector

The main dynamic is Faraday’s Law for electromagnetism. We have both
rotor circuit and stator circuits to examine. For the rotor circuit, considering
the resistance, the excitation voltage has the following relationship with the
excitation current iF and the flux linkage linked to the rotor circuit λF .

vf = rf iF +
dλF
dt

(4.113)
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The expression of λF has not been discussed in the previous sections since
we focus mainly on the stator circuits for steady-state analysis.

In the air gap, there are three fluxes: BF due to the rotor, Bsd and Bsq
due to the stator currents. For rotor circuit windings, the q-axis flux will
not result in any flux linkages since the rotor current’s MMF is 90 degrees
from the q-axis flux. Only the d-axis flux will generate flux linkage on the
rotor circuit. Therefore

λF = NFDl(BF +Bsd) = NFDl
4

π

µ0

2gd

(
NF iF +N

3

2
id

)
= LF iF +MF

3

2
id

(4.114)

where D is the distance between the rotor wires. For round rotor D = 2r.
If NF = N and ignoring the leakage, then LF = MF .

Next, we examine the stator circuits. The ultimate objective is to express
the stator dynamics from the viewpoint of the rotor. Then both rotor and
stator dynamics are viewed from the rotor’s point. Since the space vector is
the combination of the abc variables, the dynamics of space vectors are the
same as the dynamics expressed in the abc-frame. Hence we have:

−→v = −r−→i − d
−→
λ

dt
(4.115)

where
−→
λ is the space vector associated with the flux linkages associated

with the stator’s abc circuits. We will now express the above relationship
by complex vectors.

V dqe
jθ = −rIdqejθ −

dλdqe
jθ

dt

= −rIdqejθ − jθ̇λdqejθ −
dλdq
dt

ejθ
(4.116)

Get rid of ejθ at the both sides:

V dq = −rIdq − jθ̇λdq −
dλdq
dt

(4.117)

Separate the real and imaginary components:

vd = −rid − θ̇λq −
dλd
dt

vq = −riq + θ̇λd −
dλq
dt

.

(4.118)
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The task left to us is to define λd and λq adequately. From our previous
analysis on stator flux linkage using space vector decomposition, we know
that

λd = MF iF + Ldid,

λq = Lqiq.
(4.119)

The d-axis flux linkage is generated due to the rotor flux and d-axis armature
flux, which is also related to d-axis stator current; the q-axis flux linkage is
due to the q-axis armature flux only.

For a generator with only a rotor excitation circuit, the following is the
complete dynamic model related to electromagnetic dynamics.

rotor: vf = rf iF +
dλF
dt

(4.120a)

stator: vd = −rid − θ̇λq −
dλd
dt

(4.120b)

vq = −riq + θ̇λd −
dλq
dt

(4.120c)

where: λF = LF iF +MF
3

2
id (4.120d)

λd = MF iF + Ldid (4.120e)

λq = Lqiq (4.120f)

With the derived dynamic model, Bergen and Vittal (2009) presents two
interesting applications: voltage buildup and short-circuit. The first appli-
cation helps readers understand the time-constant T ′d0 and the second appli-
cation helps readers understand the transient reactance X ′d that is used in
fault analysis. In the first example, we will adopt the space vector concept
and relationship between a space vector and its corresponding time-domain
signal to quickly find the time-domain expression of the terminal voltage.
In the second example, we show how to find closed-form expressions using
MATLAB symbolic toolbox.

4.4.1 Application 1: Voltage Buildup

A generator rotates at nominal speed ω0 and the stator is open-circuited
and the initial iF = 0. The excitation voltage has a step response. Find the
stator phase a voltage’s time-domain expression.

Solution: The stator open circuit indicates that all stator currents are
zero id = iq = 0. Hence, the dynamic model in (4.120) in this case becomes
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the following.

λF = LF iF (4.121a)

λd = MF iF (4.121b)

λq = 0 (4.121c)

rotor: vf = rF iF +
dλF
dt

= rF iF + LF
diF
dt

(4.121d)

stator: vd = −dλd
dt

= −MF
diF
dt

(4.121e)

vq = θ̇λd = ω0MF iF (4.121f)

From (4.121d), we can find out the time-domain expression of iF , then we
can find the expressions of vd and vq, further va(t).

iF =
vF
rF

(1− e−(rF /LF )t)

vd = −MF vF
LF

e−(rF /LF )t

vq =
ω0MF vF

rF
(1− e−(rF /LF )t)

With the expression of vd and vq, we can find the complex vector and the
space vector of the stator voltage:

V dq = vd − jvq = −MF vF
LF

e−(rF /LF )t − j ω0MF vF
rF

(1− e−(rF /LF )t) (4.122)

−→v = V dqe
jθ = (vd − jvq)(cos θ + j sin θ) (4.123)

The phase a voltage is the real part of the space vector:

va(t) = vd cos θ + vq sin θ (4.124)

Compare vd and vq in (4.122), since 1
LF
� ω0

rF
, vd can be ignored and vq is

dominant.

va(t) ≈ vq sin θ =
ω0MF vF

rF
(1− e−t/T ′d0) sin θ (4.125)

where T ′d0 = LF /rF is called the d-axis transient open-circuit time constant.
The typical value is in the range of 2–9 seconds.
At steady-state,

va(t) ≈ vq sin θ =
ω0MF vF

rF
sin θ (4.126)

=
√

2Ea sin θ (4.127)
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4.4.2 Application 2: Short-Circuit

The initial condition is open-circuit at the stator side. The rotor is rotating
at the nominal speed and the excitation voltage v0

F is kept constant. At
t = 0+, the stator is connected to the ground. Ask for the time-domain
expression of ia.

Solution: For this case, a short-circuit indicates that the stator voltage
is zero vd = vq = 0. Thus, the dynamic model is expressed as follows.

rotor: vF = rF iF +
dλF
dt

(4.128a)

stator: 0 = −rid − θ̇λq −
dλd
dt

(4.128b)

0 = −riq + θ̇λd −
dλq
dt

(4.128c)

where: λF = LF iF +MF
3

2
id (4.128d)

λd = MF iF + Ldid (4.128e)

λq = Lqiq (4.128f)

Replacing the flux linkages by currents and conducting the Laplace trans-
formation (the initial stator currents are zero), we have:

vF = rF iF + LF (siF − i0F ) +
3

2
sMF id (4.129a)

0 = −rid − ω0Lqiq −MF (siF − i0F )− sLdid (4.129b)

0 = −riq + ω0(MF iF + Ldid)− sLqiq (4.129c)

In the matrix-vector format, we now haverF + sLF 1.5sMF 0
−sMF −(r + sLd) −ω0Lq
ω0MF ω0Ld −(r + sLq)

iFid
iq

 =

v0
F + LF i

0
F

−MF i
0
F

0

 =

(rF + LF )i0F
−MF i

0
F

0


(4.130)

The current expressions can be found by Cramer’s rule or using the MAT-
LAB symbolic toolbox.

syms s LF MF Ld Lq iF w0

A =[ s*LF, 1.5*s*MF, 0;

-s*MF, -s*Ld, -w0*Lq;

w0*MF, w0*Ld, -s*Lq];

b = [LF*iF; -MF*iF; 0];
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i = inv(A)*b;

pretty(i)

Below is the answer given by the MATLAB symbolic toolbox assuming
r = rF = 0.

iF (s) =
(3M2

F − 2LFLd)s
2 − 2LFLdω

2
0

∆
i0F (4.131)

id(s) =
2LFMFω

2
0

∆
i0F (4.132)

iq(s) =
ω0MF

Lq(s2 + ω2
0)
i0F (4.133)

where ∆ = s(s2 + ω2
0)(3M2

F − 2LFLd).

We now define L′d = Ld − 3
2
M2
F

LF
. Then

∆ = s(s2 + ω2
0)LFL

′
d

iF (s) =

(
Ld
L′d

1

s
−
(
Ld
L′d
− 1

)
s

s2 + ω2
0

)
i0F

id(s) = −
MF i

0
F

L′d

ω2
0

s(s2 + ω2
0)

= −
MF i

0
F

L′d

(
1

s
− s

s2 + ω2
0

)
iq(s) =

MF i
0
F

Lq

ω0

s2 + ω2
0

The time-domain expressions are:

iF (t) =

(
Ld
L′d
−
(
Ld
L′d
− 1

)
cosω0t

)
i0F

id(t) = −MF

L′d
(1− cosω0t)i

0
F =

√
2Ea
X ′d

(cosω0t− 1)

iq(s) =
MF i

0
F

Lq
sinω0t =

√
2Ea
Xq

sinω0t

The time-domain expression of ia(t) can be easily found based on id(t)
and iq(t).

ia(t) = id cos θ + iq sin θ

=

√
2Ea
X ′d

(cosω0t− 1) cos
(
ω0t+

π

2
+ δ
)

+

√
2Ea
Xq

sin(ω0t) sin
(
ω0t+

π

2
+ δ
)

=

√
2Ea
X ′d

sin(ω0t+ δ)− Ea√
2

[
1

X ′d
+

1

Xq

]
sin δ − Ea√

2

[
1

X ′d
− 1

Xq

]
sin(2ω0t+ δ)

(4.134)
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The above expression shows that ia(t) has three components: a DC
component, a fundamental frequency component, and a second harmonic
component. For the fundamental frequency component, the RMS value is
Ea/X

′
d.

4.5 Simplified dynamic model: flux decay model

Consider rotor dynamics only. The 3rd order electromagnetic dynamic
model is now written as follows.

rotor: vF = rF iF +
dλF
dt

(4.135a)

stator: vd = −rid − θ̇λq = −rid − ωλq (4.135b)

vq = −riq + θ̇λd = −riq + ωλd (4.135c)

where: λF = LF iF +MF
3

2
id (4.135d)

λd = MF iF + Ldid (4.135e)

λq = Lqiq (4.135f)

Note that the stator expressions are equivalent to the phasor diagram ex-
pression. vd =

√
2Vad and vq =

√
2Vaq, id =

√
2Iad and iq =

√
2Iaq. The

above relationship is the relationship between variables after Park’s trans-
formation and the phasors assume that ω = ω0.

Using Efd to replace vF , for the rotor flux dynamics, we should have:

rotor: Efd =
ωMF√

2rF
vF =

ωMF√
2
iF +

ωMF√
2

LF
rF

1

LF

dλF
dt

(4.136a)

⇒: Efd = Ea + T ′d0

dE′a
dt

(4.136b)

where: E′a =
ωMF√

2

λF
LF

, T ′d0 =
LF
rF

(4.136c)

Efd and E′a are introduced. Efd can be viewed as the stator voltage corre-
sponding to the rotor circuit voltage vf while E′a can be viewed as the stator
voltage corresponding to the rotor flux λF . At steady-state, Efd = Ea.

Ea, E
′
a relationship

We now proceed to examine the relationship between Ea and E′a. Ea
is related to iF while E′a is related to λF . Therefore, the rotor flux linkage
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λF ’s expression is listed as follows.

λF = LF iF +
3

2
MF id (4.137a)

⇒ ωMF√
2LF

λF =
ωMF√

2
iF +

ωMF√
2LF

3

2
MF id (4.137b)

⇒ E′a = Ea +
3

2

ωM2
F

LF
Iad = Ea + (Xd −X ′d)Iad (4.137c)

⇒ E′a = Ea +
ω(kMF )2

LF
j(−jIad) aligned to the q-axis (4.137d)

= Ea − j
ω(kMF )2

LF
Iad (4.137e)

= Ea − j(Xd −X ′d)Iad (4.137f)

Note that X ′d is defined as X ′d = Xd − ω(kMF )2

LF
, k =

√
3
2 .

The above set of equations gives the relationship between E′a and Ea.
In addition, a phasor diagram is also given. Based on (4.137f), we have the

following relationship of E
′
a, current Ia and the terminal voltage V a.

E
′
a = Ea − j(Xd −X ′d)Iad (4.138a)

= V a + rIa + jXdIad + jXqIaq − j(Xd −X ′d)Iad (4.138b)

= V a + rIa + jX ′dIad + jXqIaq (4.138c)

The phasor diagram that shows the relationship among Ea, E
′
a, V a and

Ia is presented in Figure 4.10.
The active power expression in terms of E′a can also be found.

Pa = Va cos δIaq − Va sin δIad

=
E′aVa
X ′d

sin δ +

(
1

Xq
− 1

X ′d

)
V 2
a

2
sin(2δ)

(4.139)

where δ is the angle between q-axis and the terminal voltage.
The flux decay model will be used to develop the plan model when the

generator’s automatic voltage regulator (AVR) is designed in Chapter 5.

Exercises

1. A round-rotor generator (Xs = 1.0, r = 0.1) is synchronized to a bus
whose voltage is 1∠0◦. At synchronization iF = 1000A (actual). The gen-
erator is then adjusted until SG = 0.8 + j0.6. (SG is the power supplied to
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Va

Ia
rIa

j(Xd – X’d ) Iad

Iad

Iaq

jXqIaq

Ea

d-axis

δ

δa

E’a

jX’dIad

Figure 4.10: Phasor diagram.

the generator bus.).

1.1) Find iF and the generator efficiency (assuming no generator loss except
I2R).

1.2) With the same iF , what is the maximum active power the generator
can deliver.

2. Consider a salient-pole generator delivering power through a short trans-
mission line to an infinite bus. V∞ = 1∠0◦, Ea = 1.4. The active power
delivered to the infinite bus is 0.6. We are given the generator reactances
Xd = 1.6 and Xq = 1.0 and the line reactance XL = 0.4. Neglect resistances
and find Ea and Ia.

3. For a set of balanced three-phase currents (with amplitude Im, frequency
ω, initial phase a angle 0), that is,

ia = Im cos(ωt)

ib = Im cos(ωt− 2π
3 )

ic = Im cos(ωt+ 2π
3 )

(4.140)
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3.1) Find its space vectors at t = 0, ωt = 2π
3 , and ωt = 4π

3 .

If these are the stator currents for a generator, and assume the number
of windings for each phase is N , the air gap permeability is µ0, the
length of the generator shaft is l, the radius from the center of the
rotor to the air gap is r and the rotor is a round rotor (or the air gap
has a uniform gap distance g, g � r).

3.2) Find the total MMF generated by the currents at a random place
(α angle from the reference axis) in the air gap and a random time
(F (α, t)).

3.3) Find the magnetic flux density at angle α in the air gap B(α, t).

3.4) Find the total flux linkage linked to stator winding bb′ (λbb′(t)), and
its corresponding EMF ebb′(t).

4. For a salient rotor, the air gap distances are gd and gq for the d-axis
and the q-axis. Decompose the above current space vector into d-axis and
q-axis, assuming the rotor axis position is θ. Find

4.1)
−→
i ,
−→
id and

−→
iq .

4.2) MMF:
−→
Fd,
−→
Fq

4.3) Flux density:
−→
Bd,
−→
Bq

4.4) λd(t) and λq(t).

5. A synchronous generator in the steady-state is delivering power to an
infinite bus. θ = ω0t + π

2 + δ, δ = π
4 , λq = λd = 1√

3ω0
, iq = 1√

3
, id = − 1√

3
,

r = 0, Xd = ω0Ld = 1, ω0kMF = 1, T ′d0 = 1 sec.
5.1) Find the torque (Te. (b) Find va(t), ia(t), and iF .
5.2) At t = 0, the generator is suddenly disconnected from the infinite bus.
Assume that vF =constant, iD = iQ = 0 (ignore damping circuits on the
rotor). Sketch iF (t). Hint: use the fact that flux cannot jump to find iF (0+).

6. Prove that a synchronous generator can be represented by a Thevenin

equivalent: a voltage source E′a behind an inductance L′d = Ld− (kMF )2

LF
if rF

is ignored. Remarks: This problem shows the magnetic field is viewed from
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stator side as voltage source with E′a as magnitude behind an inductance.
When rF is ignored, λF achieves steady-state with no time.

7. The shaft of a synchronous machine is clamped or “blocked” and is
thus not free to turn. A set of positive-sequence voltage is applied to the
motor terminals. Assume that (1)V a = Vae

j0◦ , (2) θ(t) = π
2 , (3)iF = 0,

(4)damping circuits not existing.

7.1) Find id and iq in the steady-state.

7.2) Find an expression for the average torque Te,av. Remarks: Torque con-
tains a sinusoidal expression. Sinusoidal component does not generate
energy. Therefore, only the DC component is sought.

7.3) Suppose that r = 0. What is Te,av?

8. a SMIB system and assume that Xd = 1.15, Xq = 0.6, X ′d = 0.15, XL =
0.2, r = 0, T ′d0 = 2 sec. The generator is in steady-state with Efd = 1and
E′a = 1∠15◦. Then at t = 0, Efd is changed to a new constant value:
Efd = 2. Assume that the rotation is still uniform. Find E′a(t) for t ≥ 0.

9. In MATLAB or Simulink, build a dynamic simulation model of a syn-
chronous generator model with electromagnetic dynamics ONLY. This gen-
erator is connected to an infinitive bus. The initial condition is: V̄∞ = 1∠0o,
Īa = 1∠0◦, Electromechanical dynamics can be ignored, i.e., you can assume
the rotor speed is constant at ω0 = 377 rad/s and you don’t need to put
the swing dynamics into the model. You can opt to have just one-order
dynamics (only rotor flux dynamics) or you can opt to have a third-order
dynamic model by considering the dynamics of both rotor flux and qd stator
flux linkages. You can even build a fifth-order dynamic model by consider-
ing the dynamics of rotor excitation circuit flux, D winding flux, Q winding
flux, stator qd flux.

The parameters of the machine are given as follows:
kMF can be found based on the relationship between L′d, Ld, LF and MF .

9.1) Find the steady-state internal voltage Ēa, stator currents id, iq, various
flux linkages λd, λq, λF , as well as the rotor position θ against the
stationary reference frame, and the position of q-axis relative to the
phasor reference frame (rotating at ω0 and at t=0, the phasor reference
frame is aligned with the stationary reference frame).
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Xd 1 Ld 1/ω0

Xq 0.8 Lq 0.8/ω0

X ′d 0.2 L′d 0.2/ω0

Xline 0.5
rF 0.5/ω0 Lf 1/ω0

9.2) Show that the model has flat run for 1 second. Give a plot to show
E′a(t) for 1 second or three subplots horizontally to show λd, λq and
λF for 1 second.

9.3) Show the system dynamic response E′a(t) or flux linkages for a step
change (10% increase) in Efd or vF . Show the dynamic response of
the terminal voltage RMS magnitude Va(t). Plot the flat run (9.2) and
the following dynamic responses in one plot.

Remarks: This exercise gives you an opportunity to learn dynamic
model building. It includes two essential steps: initialization or flat run and
dynamics due to differential equations. Initialization helps to calibrate the
initial state variable values x(0).
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Chapter 5

Voltage Control

5.1 Introduction

The objective of voltage control is to have the root mean square (RMS)
value of the terminal voltage of a generator (Va) tracking a reference. As we
have discussed from the electromagnetic model of a synchronous generator,
the rotor excitation voltage vF is treated as the input to the synchronous
generator model. If we know the plant model Va

vF
(if the relationship is

nonlinear, we need to obtain the linearized model ∆Va
∆vF

), we can then design
the feedback control and test the controller accordingly. In the real world,
design has to be carried out in multiple stages. Starting from the simplest
plant model, we then add layers of complexity to see how those features
will influence our design. In this particular case, we may need the following
stages of model complexity for design.

1. Ignore all dynamics, only consider the steady-state relationship of vF
to Va. At this stage, we examine two scenarios with the first as the
simplest and the second with more complexity.

• First scenario: stator side is open.

• Second scenario: stator side is not open. We will consider a case
of a single-machine infinite-bus (SMIB) system.

This stage of plant model investigation helps to determine whether
negative feedback or positive feedback will be employed.

2. Ignore electromechanical (EM) dynamics, only consider electromag-
netic (EMT) dynamics. This includes multiple sub-stages.

123



124 CHAPTER 5. VOLTAGE CONTROL

• Consider only rotor flux dynamics. This model is termed “flux
decay model.”

• Consider rotor flux dynamics and stator flux dynamics for a gen-
erator with only an excitation circuit on the rotor. The three-
order EMT model derived in Chapter 4 adopts the same assump-
tion and can be used.

• Consider rotor flux dynamics (linked to the rotor excitation cir-
cuit), rotor damping circuit dynamics (linked to D and Q damp-
ing circuits), and stator flux dynamics. In this case, the dynamic
model will have five orders. There will be five state variables, λF ,
λD, λQ, λd, λq. This model is a sophisticated model and is the
base of the subtransient model.

3. Final stage: include both EM and EMT dynamics.

As we can see, the plant model can be very sophisticated. It is not
possible and not necessary to include all dynamics. In the design stage, there
is a compromise of plant model complexity and design simplicity. If a plant
model becomes too complicated, insights may get lost. In addition, dynamics
with very high bandwidth is not necessary to be included for control design
at low bandwidth ranges. Therefore, a detailed comprehensive nonlinear
model is only used in the validation or simulation stage.

In the generator voltage control design presented in Bergen and Vittal
(2009), the modeling stops at the stage when the dynamics include both
swing equation and rotor flux decay. In this book, the design also stops
after including swing dynamics and rotor flux decay dynamics.

This chapter has four sections. Section 5.2 presents the simplest plant
models represented by gains only. This investigation helps us to make a
decision whether negative or positive feedback control should be adopted.
Section 5.3 presents the plant models with rotor flux dynamics only. Elec-
tromechanical dynamics represented by swing equations are ignored. Section
5.4 examines voltage control design based on the plant models derived from
Section 5.3. Finally Section 5.5 presents control design when both rotor flux
dynamics and electromechanical dynamics are considered.

5.2 Plant model: No dynamics included

Through the phasor diagram or circuit analysis presented in Chapter 4, we
should set up a concept that the terminal voltage Va is influenced by the
generator’s internal voltage Ea, and Ea is proportional to the rotor excitation
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current iF . The rotor excitation circuit voltage vF can adjust iF . Therefore,
vF can influence Va. In this section, we seek the steady-state gain of Va

vF
.

5.2.1 Scenario 1: Stator open-circuit

When the stator side is open, the stator currents are zero. Therefore, we
can see that

Va = Ea.

The steady-state value of the internal voltage Ea is related to the ex-
citation current iF . Further at steady-state, the excitation current can be
found from the rotor circuit voltage vF : iF = vF

rF
, where rF is the resistance

in the rotor circuit winding. Hence,

Ea =
ωMF√

2
iF =

ωMF√
2

vF
rF
. (5.1)

Here, we would like to introduce a variable Efd:

Efd =
ωMF√

2

vF
rF
. (5.2)

Efd will be used to replace vF . Efd can be viewed as the equivalent stator
voltage due to the excitation voltage vF .

According to (5.1), at steady-state, Efd = Ea.

The plant model becomes

Va
vF

=
ωMF√

2rF
, (5.3)

or
Va
Efd

= 1. (5.4)

5.2.2 Scenario 2: A SMIB system

In a more general case, stator currents are not zero. For the SMIB case,
the grid voltage V∞ is assumed to be constant. We will consider the grid
voltage as the equivalent generator’s terminal voltage while the equivalent
generator’s dq-axis reactances include the transmission line reactance.

Based on circuit analysis, we should be able to find dq-axis currents Iad
and Iaq, if Ea (or Efd), V∞ and δ (the angle δ between the q-axis of the
generator and the reference synchronous rotating reference frame) are given.
Further, based on the currents, we should be able to find Va.
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First, let us review the relationship of the dq-axis currents versus Ea and
V∞. A phasor diagram suited for the SMIB system is developed and shown
in Figure 5.1. This phasor diagram is developed from the generator phasor
diagram in Figure 4.10 presented in Chapter 4.

V∞

E’a

j(X’d+XL)Iad

j(Xd-X’d)Iad

Ea

j(Xq+XL)Iaq

Iad

Iaq

Ia

δ 

Figure 5.1: Phasor diagram.

Iad =
V∞ cos δ − Ea

X̃d

Iaq =
V∞ sin δ

X̃q

(5.5)

where X̃d = Xd + XL, X̃q = Xq + XL, and XL is the reactance of the
transmission line.

With that we should be able to find V a.

V a = V∞e
j0 + jXL(Iaq + jIad)e

jδ (5.6)
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We can decompose V a into dq components.

Vaq = V∞ cos δ + (jXL)(jIad) = V∞ cos δ −XLIad

= V∞ cos δ − XL

X̃d

(V∞ cos δ − Ea)

=
Xd

X̃d

V∞ cos δ +
XL

X̃d

Ea

Vad = −V∞ sin δ +XLIaq = −V∞ sin δ +
XL

X̃q

V∞ sin δ

= −Xq

X̃q

V∞ sin δ

(5.7)

Va can be found based on

Va =
√
V 2
aq + V 2

ad. (5.8)

The above analysis shows that Va can be expressed by Ea using a non-
linear function. For classical control design, linear plant models are desired.
Therefore, small perturbation is applied to arrive at a linear model. The
linear relationship of Va with respect to Ea can be found as follows.

∆Va
∆Ea

=
1√

V 2
aq0 + V 2

ad0

(
Vaq0

∂Vaq
∂Ea

+ Vad0
∂Vad
∂Ea

)

=
Vaq0XL

Va0X̃d

(5.9)

Vaq0 is the initial terminal voltage V a0’s projection on the q-axis. Normally,
the angle between the q-axis and the terminal voltage space vector is less
than 90◦. Therefore, Vaq0 is greater than zero.

Since at steady-state, Efd = Ea, therefore, ∆Va
∆Efd

=
Vaq0XL

Va0X̃d
.

The above two scenarios show that the gain from Efd to Va is always
positive. This plant model shows that a negative feedback control is justified.

In a negative feedback control system shown in Figure 5.2, error signals
e will be generated by subtracting the measurements y from the reference
values r. The plant G is a pure gain. k is also a pure gain.

If the terminal voltage is below its reference value, this error will be
positive: e > 0. The error e will be passed to a controller, e.g., an amplifier.
The output of the controller is the input of the plant u and u > 0 since
e > 0. Since the plant is a pure gain, its output or measurements y > 0 if
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k
+

-

r u G

y

e

Figure 5.2: Negative feedback control: e = 1
1+kGr and y = kG

1+kGr.

u > 0. Therefore, an increasing positive error will result in an increase in
the output of the plant y until y = kG

1+kGr. In the voltage control case, the
terminal voltage will be increased if the measurement is reduced and the
error is increased. Negative feedback control achieves the goal of increasing
the terminal voltage in this case.

5.3 Plant model: Rotor flux dynamics only

The rotor flux dynamic is derived in Chapter 4.5 and is shown as follows.

Efd = Ea + T ′d0

dE′a
dt

, (5.10)

where Ea is the internal voltage, E′a is the stator voltage corresponding to
the rotor flux linkage λF , Efd is the stator voltage corresponding to the
rotor voltage vF , and T ′d0 is notated as stator open-circuit time constant. 2
seconds is a typical value.

5.3.1 Stator open-circuit

For the stator open-circuit case, stator currents are zero. Therefore, Va =
Ea. In addition, the stator voltage corresponding to the rotor flux λF no-
tated as E′a is the same as the internal voltage Ea.

E′a =
ωMF√

2

λF
LF

=
ωMF√

2
iF = Ea,

since λF = LF iF + 3
2MF id and id = 0. λF is due to iF only.

Therefore, Ea can be replaced by E′a in (5.10):

Efd = E′a + T ′d0

dE′a
dt

. (5.11)
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The transfer function from Efd to E′a is as follows.

∆E′a
∆Efd

=
1

T ′d0s+ 1
(5.12)

Since Va = Ea = E′a, the transfer function from Efd to Va is

∆Va
∆Efd

=
1

T ′d0s+ 1
. (5.13)

5.3.2 SMIB case

In this case, the rotor flux dynamics equation includes E′a and Ea. We need
to express Ea as E′a to have a first-order ODE. From that ODE, we will
set up a transfer function from Efd to E′a. Then, based on the algebraic
relationship between E′a and Va, we finally can arrive at the transfer function
from Efd to Va.

Note in both steps, circuit analysis or phasor diagram analysis of the
stator circuit help us find the algebraic relationships. Let us set out to
analyze E′a. As E′a is related λF , and λF = LF iF + 3

2MF id, we can find the
relationship between E′a, Ea and the current id. In addition, for a SMIB

case, Iad = V∞ cos δ−E′a
X̃′d

.

Based on the phasor diagram in Figure 5.1, we can find:

Ea = E′a + (X̃d − X̃ ′d)Iad

= E′a + (X̃d − X̃ ′d)
V∞ cos δ − E′a

X̃ ′d

=
X̃d

X̃ ′d
E′a +

(
X̃d

X̃ ′d
− 1

)
V∞ cos δ

(5.14)

The small-perturbation model of the above relationship becomes:

∆Ea =
X̃d

X̃ ′d
∆E′a +

(
X̃d

X̃ ′d
− 1

)
(−V∞ sin δ)∆δ

=
1

K3
∆E′a −

(
1

K3
− 1

)
V∞ sin δ∆δ

=
1

K3
∆E′a +K4∆δ

(5.15)

where K3 ,
X̃′d
X̃d

and K4 , 1− 1
K3
V∞ sin δ.
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The rotor flux decay dynamics becomes

T ′d0

d∆E′a
dt

= −∆Ea + ∆Efd = − 1

K3
∆E′a −K4∆δ + ∆Efd (5.16)

=⇒(K3T
′
d0s+ 1)∆E′a = K3(−K4∆δ + ∆Efd) (5.17)

If we ignore the electromechanical dynamics by assuming ∆δ = 0, then
the transfer function from Efd to E′a is

∆E′a
∆Efd

=
K3

K3T ′d0s+ 1
(5.18)

With the electromechanical dynamics,

∆E′a =
K3

K3T ′d0s+ 1
(∆Efd −K4∆δ) (5.19)

From E′a to Va
The terminal voltage V a can be found from the phasor diagram.

E
′
a = V∞ + jX̃

′
dIad + jX̃qIaq (5.20)

Substituting Iad = jIade
jδ and Iaq = Iaqe

jδ, we have the following equation
based on the infinite bus reference frame.

E
′
ae
jδ = V∞ + jX̃

′
djIade

jδ + jX̃qIaqe
jδ (5.21)

After multiplication by e−jδ, we have the following equation now with the
q-axis as the reference.

E
′
a = V∞ cos δ − jV∞ sin δ − X̃ ′dIad + jX̃qIaq. (5.22)

From the above equation, by equating real and imaginary parts, we have:

Iad =
V∞ cos δ − E′a

X̃
′
d

, (5.23)

Iaq =
V∞ sin δ

X̃q

. (5.24)

Let us now find Va. The terminal voltage phasor can be expressed as
follows.

V a = V∞ + jXLIa (5.25)
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Substituting V a = (Vaq+jVad)e
jδ and Ia = (Iaq+jIad)e

jδ, then multiplying
by e−jδ at both sides, we should have the following equation.

Vaq + jVad = V∞ cos δ − jV∞ sin δ + jXL(Iaq + jIad)

= V∞ cos δ −XLIad + j(XLIaq − V∞ sin δ) (5.26)

Now using (5.23) and (5.24) to substitute Iad and Iaq in (5.26), we have:

Vaq =
XL

X̃
′
d

E
′
a +

(
1− XL

X̃
′
d

)
V∞ cos δ (5.27)

Vad =

(
XL

X̃q

− 1

)
V∞ sin δ (5.28)

The RMS value can be found as

Va =
√
V 2
aq + V 2

ad. (5.29)

Va can be expressed by E
′
a and δ in a nonlinear function.

Applying small perturbation, a linear expression is obtained as follows.

∆Va =
∂Va
∂δ

∆δ +
∂Va
∂E′a

∆E
′
a (5.30)

The partial derivative of Va with respect to δ is defined as K5 and the
expression is as follows.

K5 =
∂Va
∂δ

=
1√

V 2
aq + V 2

ad

(
Vq
∂Vq
∂δ

+ Vd
∂Vd
∂δ

)

=
V∞
Va0

[
Vaq0

(
XL

X̃
′
d

− 1

)
sin δ0 + Vad0

(
XL

X̃q

− 1

)
cos δ0

]

= −V∞
Va0

(
Vq0X

′
d

X̃
′
d

sin δ0 +
Vd0Xq

X̃q

cos δ0

)
(5.31)

Similarly, we can find K6 = ∂Va
∂E′a

as follows.

K6 =
∂Va
∂E′a

=
1√

V 2
q0 + V 2

d0

(Vq0
∂Vq
∂E′a

+ Vd0
∂Vd
∂E′a

)

=
Vq0XL

Va0X̃
′
d

(5.32)
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The small perturbation of Va can be expressed as a linear function related
to ∆δ and ∆E′a.

∆Va = K5∆δ +K6∆E′a (5.33)

Ignoring ∆δ, the transfer function from Efd to Va can be written as

∆Va
∆Efd

=
∆E′a
∆Efd

∆Va
∆E′a

=
K3K6

K3T ′d0s+ 1
(5.34)

The examination of the two scenarios shows that when the rotor flux
dynamics are considered, the plant model becomes a first-order model. In
the next section, we will show voltage control design based on the first-order
plant models.

5.4 Voltage control design: Part I

In this section, the design is based on a generator with the stator side open.
The electromechanical dynamics are ignored. This is same as the assumption
that the generator is rotating at the nominal speed. The plant model is a
first-order model: 1

T ′d0s+1
.

+
-

V* Va e Efd 1
1'

doT s +K

Figure 5.3: A simple feedback design of voltage controller.

The simplest design is shown in Figure 5.3 where the RMS of the terminal
voltage is measured and compared with the reference voltage V ∗. The error
is then amplified by K times and Efd is changed based on the output of the
error. Instead of using integral control to bring the error to zero at steady-
state, for voltage control, zero steady-state error is not a keen objective.
Instead, a fast response is desired.

For the system in Figure 5.3, the closed-loop transfer function from V ∗

to the error e is expressed as:

e

V ∗
=

1

1 + K
T ′d0s+1

=
T ′d0s+ 1

T ′d0s+K + 1
. (5.35)
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The closed-loop transfer function from V ∗ to the terminal voltage Va is
expressed as

Va
V ∗

=

K
T ′d0s+1

1 + K
T ′d0s+1

=
K

T ′d0s+K + 1
. (5.36)

Therefore, at steady-state, Va = K
K+1V

∗, e = 1
K+1V

∗. The bandwidth

of the system is K+1
T ′d0

. For K = 1000, T ′d0 = 1, the bandwidth is 1000

rad/s, which indicates a 0.001 second time constant. Therefore, given a step
response in V ∗, it takes about 0.001 seconds for Va to rise to 63% of its final
steady-state value. A large gain K is desired to have a small error e as well
as a fast response.

For this design model, we have not considered the dynamics of the exci-
tation circuit, delay caused by actuator, and the amplifier dynamics. Con-
sidering those dynamics renders a more sophisticated model. In turn, those
dynamics will pose limits on the gain.

5.4.1 Feedback control and the gain limit

Now we will consider the exciter, amplifier, and measurement unit’s delay
or dynamics. The block diagram is shown in Figure 5.4.

+
V* Va

-
1

E

E

K
T s +

1
1RT s +

1
A

A

K
T s +

1
T’d0s+1

Figure 5.4: Voltage control block diagram considering dynamics of the ex-
citer, amplifier and measurement unit.

The dynamics of an exciter can be expressed as KE
TEs+1 . A typical value

of TE = 0.8 seconds and KE = 1. The amplifier can be expressed as KA
TAs+1 .

The typical values are: TA = 0.05 seconds. The measurement block is
represented by 1

TRs+1 . The typical value: TR = 0.06 seconds.

The excitation block introduces an open-loop pole at − 1
Te

= −1.25; the

amplifier introduces an open-loop pole at − 1
TA

= −20; and the measurement

block introduces an open-loop pole close to − 1
TR

= −16.67. Finally given
T ′d0 = 5, we have the fourth pole at −0.2 due to the generator.
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Note that for this system, based on root locus analysis, there is a limit
for the gain KA. For this particular problem, KA should be less than 57 as
shown in the root loci in Figure 5.5.
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Figure 5.5: Root loci for the loop gain 1
(1+TAs)(1+TEs)(1+T ′d0s)(1+TRs)

, where

TA = 0.05, TE = 0.8, T ′d0 = 5 and TR = 0.06.

In order to have a small steady-state error between the voltage mea-
surement and the voltage reference, we would like to have a large gain KA.
KA = 400 is common in practice. The next topic is how to improve stability
and increase the gain limit.

5.4.2 How to improve stability: Rate feedback

In order to have a small steady-state tracking error, a large KA is preferred.
In order to achieve stability with a large KA, the control technique of rate
feedback is employed. The rate feedback block is added and shown in Figure
5.6. The rate of Efd: sEfd will be used as a feedback signal to a proportional
block with gain KF . In control design, a pure derivative s is difficult to be
realized exactly. The transfer function to realize derivative is s

TF s+1 .
This part was discussed very briefly in Bergen and Vittal (2009). The

book claims that “rate feedback” is a common practice in feedback control to
enhance stability. In fact, we have seen rate feedback before. In frequency
control, with and without droop control, the secondary frequency control
gain limit are very different. With droop, then the gain can be large. With-
out droop, the gain has to be small. Compared to the integral frequency
control, droop is a rate feedback. Later on, we will again show that a Power
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Figure 5.6: Block diagram including a rate feedback.

System Stabilizer (PSS) implements the concept of rate feedback to enhance
damping.

What is the effect of rate feedback on root loci? Rate feedback introduces
open-loop zeros to alter root locus paths. Zeros are used to attract poles
that are close to the right half plane (RHP).

Shown in Figure 5.7, the open loop transfer function is re-examined for
the system in Figure 5.6.
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Figure 5.7: Effect of a rate feedback.

It can be seen that the effect of the rate feedback is to add a negative
feedback of the derivative of Efd. Equivalently, this is similar to adding
three zeros (two complex conjugate, one at real-axis) and one pole on the
loop gain of the open-loop system.

If KF = 0.1, TF = 0.35 and TR = 0.06, the transfer function of 1
TRs+1 +
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KF s(5s+1)
TF s+1 becomes

0.03s3 + 0.506s2 + 0.45s+ 1

(1 + 0.35s)(1 + 0.06s))
=

(s+ 16.06)(s+ 0.4023± j1.38)

(s+ 2.86)(s+ 16.67)
(5.37)

Except that −16.67 is the pole related to the measurement unit, the rate
feedback introduces three zeros and one pole as shown in Figure 5.7. The
two zeros can attract the two poles that are close to RHP.

With rate feedback, the root loci for the loop gain are now shown in
Figure 5.8. It can be seen that the gain of the amplifier KA can be increased
to 1000.
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Figure 5.8: Root loci for the system in Figure 5.7 with rate feedback.

5.5 Voltage control design: Part II

5.5.1 Block diagram approach

In this section, the electromechanical dynamics are included. For this dis-
cussion, the SMIB case is considered as an example. For an open-circuit
operating scenario, there is no power generated from the generator. With
zero power, the rotating speed will be kept constant. Hence the electro-
magnetic and electromechanical are decoupled. However, when a generator
sends power, the electromechanical dynamics is coupled with electromag-
netic dynamics. As we can see from the previous section, ∆Ea, ∆Va all
have something to do with ∆δ.

In addition, the swing dynamics need to be re-examined. In frequency
control discussed in Chapter 3, the generator model is assumed as a classical
generator model with the internal voltage Ea constant. This is no longer
the case when electromagnetic dynamics are considered. Here we have to
rewrite the power expression in terms of ∆δ and ∆E′a. In frequency control
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discussion, there is no ∆E′a included (rotor flux dynamics not considered or
electromagnetic not considered).

The power has been expressed by E′a and δ in a nonlinear expression.
Linearizing the expression will give us the linear model.

∆Pe = K2∆E′a + T∆δ (5.38)

where K2 = ∂Pe
∂E′a

and T = ∂Pe
∂δ .

The final system block diagram of a SMIB with automatic voltage reg-
ulator (AVR) is shown in Figure 5.9.

1
2Hs+D1

K2
K3

1+K3T’dosΔEfd

+

-

K4

ΔE’a

Δδ+
-

K5

K6

Δve

+

+

ΔV*
+

ΔVa

-
KA

ω0
s

T

Δω

-

ΔPm=0

ΔPe

Figure 5.9: Block diagram of a SMIB system. The generator is equipped
with AVR.

Note that the model of the voltage controller and the exciter are sim-
plified to be a gain KA only. The transfer function from ∆Efd to ∆Va can
be found by examining the block diagram and through the usage of block
manipulation. Interested readers can derive the transfer function manually.

5.5.2 State-space modeling approach

The transfer function can also be derived based on a state-space model. This
approach is a systematic approach. First we will express the plant model
as a state-space model ẋ = Ax+ Bu and y = CX +Du. Then we find the
transfer function Y (s)/U(s) = C(sI −A)−1B +D .

ẋ =

 ∆δ̇
∆ω̇

∆Ė′a

 =

 0 ω0 0
−T
2H

−D1
2H

−K2
2H

−K4
T ′d0

0 −1
K3T ′d0


 ∆δ

∆ω
∆E′a

+

 0
0
1
T ′d0

∆Efd (5.39a)

y = ∆Va = K5∆δ +K6∆E′a =
[
K5 0 K6

]
x (5.39b)
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The transfer function from ∆Efd to ∆Va is now found as follows.

∆Va
∆Efd

=
[
K5 0 K6

]  s −ω0 0
T

2H s+ D1
2H

K2
2H

K4
T ′d0

0 s+ 1
K3T ′d0


−1  0

0
1
T ′d0

 (5.40a)

= K3(2HK6s2+D1K6s+ω0(K6T−K2K5))
2HK3T ′d0s

3+(2H+D1K3T ′d0)s2+(D1+K3TT ′d0ω0)s+(T+K2K3K4)ω0

(5.40b)

MATLAB codes to obtain the system model are shown as follows. The
state-space model can be built using MATLAB function ss once A, B, C,
D matrices are given as follows.

H = 3; D= 0;

T=1.01; K3=0.36; K4 = 1.47; K5 = -0.097; K6 = 0.417; K2 = 1;

w0 = 377; Td0 =2;

A =[0, w0, 0; -T/(2*H), -D/(2*H), -K2/(2*H); -K4/Td0, 0, -1/(K3*Td0)];

B =[0; 0; 1/Td0];

C = [K5, 0, K6];

G = ss(A,B, C, 0);

rlocus(G)

Root loci of the above system are shown in Figure 5.10. It can be seen
from Figure 5.10 that if we design a feedback controller with Va as the
feedback signal, the gain KA of the AVR cannot exceed 15.3. This exam-
ple shows a more serious limitation on the gain of AVR: electromechanical
dynamics. In real-world, power system stabilizers (PSSs) are used to im-
prove the system stability. The limit of the gain can be relaxed after the
installation of PSS.

5.5.3 Power system stabilizer

To improve the system stability, we examine again Figure 5.10. If we can
move the two complex conjugate zeros to the left, the root loci can be kept
at the left half plane (LHP). Therefore, the problem boils down to how to
change the zero positions.

Since the transfer function is expressed as C(sI−A)−1B when D matrix
is zero, zeros can be changed by adjusting C matrix, i.e., the output signals.
In this case, let us try to change the output signal to be

∆Va − k∆ω =
[
K5 −k K6

]  ∆δ
∆ω
∆E′a

 .
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Figure 5.10: Root loci of the transfer functions in (5.40b).

The open-loop transfer function will have its zero positions changed. The
additional signal added to V ∗ is k∆ω. And this auxiliary control is named
the power system stabilizer (PSS). The PSS output signal will be added to
the reference voltage signal as shown in Figure 5.11.

+
V*

PSS

Va
-

+

PSS output

Figure 5.11: PSS implementation.

The transfer function is now changed as the following.

G1 = K3(2HK6s2+(DK6+kK2)s+ω0(K6T−K2K5))
2HK3T ′d0s

3+(2H+DK3T ′d0)s2+(D+K3TT ′d0ω0)s+(T+K2K3K4)ω0

(5.41)
Note that the denominator does not change. However, the numerator has
an additional item related to s. This change makes the open-loop system
zeros move to the left. Letting k = 10, we find the root loci of G1 in Figure
5.12. Figure 5.12 shows that the gain of the feedback voltage controller can
now go infinity.

The above procedure is again explained by two approaches. In Approach
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Figure 5.12: Root loci of the transfer functions in (5.41).

1, we examine how zeros can be changed. In Approach 2, we examine how
to change the loop gain pole positions by adding a rate feedback.

Approach 1 Figure 5.13 presents the plant model from ∆Efd to ∆Va
without PSS installed. Note that we can move the component of ∆Va related
to ∆E′a (K6∆E′a) forward to start at ∆δ. This is acceptable as long as
we assume ∆Pm = 0. Therefore, K6∆E′a is equivalent to −K6

K2
(Ms2 +

Ds + T )∆δ. We then combine one feedback loop into a transfer function
∆δ

∆Efd
= −GFδ. The pole zero maps for the two series connected blocks are

presented in Figure 5.13.

Next, we consider moving zeros to LHP to enhance stability. This is
done by adding the rate of the rotor angle in a forward block as shown in
Figure 5.14. This forward block is PSS.

So the output y is now a combined signal with ∆Va and the output of
the PSS. The zeros of the system have been pushed to the left if we have
the added component as −ks∆δ. The negative sign is due to the negative
coefficient of the highest order of ∆Va

∆δ : −K6
K2
M . In order to move the zeros

to the left, −ks is used to have the damping D increased. The new damping
is now D + kK2

K6
.

Approach 2 In the second approach, we again use the concept of rate
feedback to first move the open-loop poles to left. This is done by adding a
rate feedback at ∆δ shown in Figure 5.15. The rate feedback is added to the
input reference signal instead of subtracted from the reference signal. This is
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Figure 5.13: Plant model considering electromechanical dynamics.

Figure 5.14: Move zero to LHP.

due to the plant transfer function ∆δ
∆Efd

= −GFδ has a negative steady-state

gain −K2K3
T−K2K3K4

.
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ΔV* ΔEfd
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Δδ
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sk

X

-GFδ

ΔVa

Figure 5.15: Rate feedback as PSS.

The effect of the rate feedback is illustrated in Figure 5.16. Note that
the open-loop poles are moved to the left. The root loci will no longer pass
the imaginary axis, which indicates enhanced stability.

X

X

X

X

X

X

a

fd

V
E

∆
∆

Without PSS With PSS

Figure 5.16: Effect of PSS.

Figure 5.17 shows the positions of the open-loop poles with and without
rate feedback. A numerical case study is used to plot the root loci for the
open-loop system sGFδ. The resulting root loci indicate the closed-loop
system pole position. This closed-loop system is ∆δ

∆V ∗ with rate feedback
considered shown in Figure 5.15. GFδ itself has only three poles. The open-
loop zero shown in Figure 5.17 is introduced due to the rate feedback. It can
be seen that for the closed-loop system, the two complex conjugate closed-
loop system poles are moved to left. The new positions are notated as ∗
when KA = 400.

A numerical case study on root loci for the loop gain from ∆Efd to ∆Va
with rate feedback or PSS integrated are shown in Figure 5.18. This figure
is a numerical example of the root loci illustration presented in Figure 5.16.
This figure shows that with PSS (k = 10/ω0), KA can be very large and the
system is still stable.
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Figure 5.17: With rate feedback, closed-loop poles moved to the left for the
system ∆δ

∆V ∗ . The loop gain used to plot root loci is sGFδ.
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Figure 5.18: Root loci for ∆Va
∆Efd

in Figure 5.14.

5.5.4 Linear model simulation results

In this subsection, time-domain simulation will be conducted in MATLAB/Simulink.
The small-signal models will be built in Simulink. Figure 5.19 presents the
MATLAB/Simulink blocks for two systems, one without PSS and one with
PSS. The subsystem block shown in Figure 5.19 is presented in Figure 5.20.

Figure 5.21 presents the comparison of Va when the rate feedback in the
voltage control is ignored. For a system without PSS, it is unstable.
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Figure 5.19: Simulink blocks. The first system has no PSS. The second
system has PSS installed and the input signal to the PSS is the speed. The
transfer function for the PSS is 20

0.05s+1 .

Figure 5.20: Simulink blocks for the system ∆Va
∆Efd

.

Finally, we examine the systems with voltage control rate feedback added.
For the nominal system, the two show little difference. However, when power
transfer increases T is reduced to 1/3 of its original value, the effect of PSS
on stability is shown in Figure 5.22.

5.6 Summary

This chapter discusses generators’ automatic voltage control and PSS design.
The control design presented in this chapter demonstrates how to choose
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Figure 5.21: Step responses of ∆Va for a voltage reference change. Both
systems have no exciter voltage rate feedback.
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Figure 5.22: Step responses of ∆Va for a voltage reference change for systems
with exciter voltage rate feedback with heavy power transfer level.

negative feedback or positive feedback, when to use pure gain feedback, and
how to improve stability using rate feedback. The application is voltage
control through a generator’s excitation voltage. The main analysis tool
used in this chapter is the root locos method while the main validation tool
is time-domain simulation.
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Exercises

1 For a SMIB system, the transmission line reactance XL = 0.5 pu and the
generator parameters are as follows. Xd = 1.0, Xq = 0.6. The grid voltage
is 1 pu and the generator sends out unity power factor power. Pe = 0.5
pu. Using these parameters, write codes to compute K1 to K6 for a given
δ. Examine the power transfer level’s impact (varying δ from -60 degrees to
+60 degrees with 5 degrees as the step size: −π

3 : π
18 : π3 .) on Ki.

• Give a figure with five subplots to show a varying delta’s influence on
Ki (except K3). K1 is the same as T .

• Remark the effect of K5 on stability. Show that heavy power transfer
leads to negative K5 and further stability issue by giving two root
locus plots (one for K5 > 0 and the other for K5 < 0).

2. In MATLAB/Simulink, build a linearized model as shown in Figure 5.19.

• Compare the system dynamic performance due to a step response from
∆Vref (use 10% change) with and without PSS.

• Use the MATLAB rlocus function to validate Figure 5.18. Please write
the transfer function of the loop gain to which rlocus will be applied.

• Use the MATLAB function linmod to obtain the state-space model
and the system matrix A. Eigenvalues of A are the poles of the closed-
loop system. You can also find the closed-loop transfer function by
manual derivation. Identify the closed-loop eigenvalues for the system
with and without PSS. Compare your eigenvalues and linear system
simulation results and state if they corroborate with each other.



Chapter 6

Frequency and Voltage
Control in Microgrids

In this chapter, frequency and voltage control through voltage source con-
verters (VSCs) in a microgrid will be discussed. VSC is the key element in
a microgrid to interface distributed energy sources. The fundamental con-
trol structure of a VSC will be presented first. Then coordination among
converters for real power and reactive power sharing will be presented. An
alternative name for coordination is primary frequency control and primary
voltage control.

In this chapter, we will examine two parallel VSCs, in either grid-connected
mode or autonomous mode.

VSC’s control and modulation are separately designed. The most popu-
lar modulation scheme is called pulse width modulation (PWM). Inputs to
the PWM are the reference voltages while the outputs of the PWM are the
switching sequences for VSC’s gates. Though the three-phase voltages are
discrete signals due to the implementation of the switching sequences, FFT
analysis will show that the discrete waveform consists of the fundamental
waveform (same as the reference voltage) and high-frequency components
at the range of the switching frequency (about 1kHz). With a small L filter,
the high frequency components can be filtered out. Therefore, the output
voltage of a VSC can be viewed as sinusoidal. The details regarding switch-
ing and PWM can be found in Power Electronic books Mohan and Undeland
(2007).

In this chapter, a VSC is viewed as a controllable voltage source with
its abc three-phase voltages controllable. The VSC controls will adjust the
three-phase voltage.

147
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6.1 Control of a voltage source converter (VSC)

Cascaded control structure is popularly used for VSC control. The inner
loop realizes current control and the outer loop realizes power control or
voltage/frequency control. The reason to have an inner current control is
that VSCs are sensitive to large currents. With current control, VSCs can
be protected against overcurrents. The inner loop control and the outer
loop control are usually designed separately due to their distinct bandwidth
requirements. The inner current controls require a fast response and a high
bandwidth, e.g., 200 rad/s. The outer controls require a much slower re-
sponse and a lower bandwidth, e.g., 5 rad/s.

In the following paragraph, the dq-frame based VSC control structure
will be explained. Interested readers can refer to Yazdani and Iravani (2010)
for a thorough coverage on a single VSC’s control, including both dq-frame
based control and αβ-frame based control.

6.1.1 Design of inner current controller

The inner current controls for the vector control should be designed to be
much faster than the outer control loops. The converter voltage in abc frame
is notated as v and the current is notated as i. The voltage at the point of
the common coupling (PCC) is notated as v1. An RL circuit is considered
between the converter and the PCC as shown in Figure 6.1.

Therefore:

L
d
−→
i

dt
+R
−→
i = −→v −−→v 1. (6.1)

where −→. is the space vector.

converter grid

PCCR                 L+

-

VDC R                 L

R                 L

va

vb

vc

Figure 6.1: A circuit diagram of a converter connected to a grid.

The dq-reference frame is now utilized. It is assumed that the d-axis is
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aligned with the space vector of the PCC voltage.

L
d(id + jiq)

dt
+ jωL(id + jiq) +R(id + jiq)

= vd + jvq − (v1d + jv1q). (6.2)

where ω is the grid’s frequency, v1q = 0 since the PCC voltage is aligned
with the d-axis.

Separating equation (6.2) into dq-axes, the plant model for the current
control design is derived:

L
did
dt

+Rid = vd − v1d + ωLiq︸ ︷︷ ︸
ud

(6.3)

L
diq
dt

+Riq = vq − v1q − ωLid︸ ︷︷ ︸
uq

(6.4)

The plant model for the current controller is assumed as 1/(R + sL)
for both d and q axes. The inputs are ud and uq while the outputs are id
and iq. The feedback controls are designed for the dq-axis currents to track
the reference signals. In addition, to generate the dq components of the
converter voltage, the cross coupling and feed-forward voltage terms should
be added after ud and uq are obtained from the controllers.

A simplified inner current control block is illustrated in Figure 6.2. The

id
*

id

+

-

ud

Figure 6.2: Simplified block diagram for inner loop control.

loop gain of system is represented by:

l(s) =
Kp

sL

(
s+ Ki

Kp

s+ R
L

)
. (6.5)

As mentioned in Yazdani and Iravani (2010), the plant pole is fairly close
to the origin. Therefore, this plant pole is canceled by the compensator’s
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zero (KiKp = R
L ) and the loop gain becomes:

l(s) =
Kp

sL
(6.6)

The closed-loop transfer function can be represented as:

GInner(s) =
l(s)

1 + l(s)
=

1

τs+ 1
(6.7)

where τ = L
Kp

and Ki = R
τ .

If R = 0.02 Ω and L = 0.04 H, the inner loop with Ki = 50, Kp = 100
will lead to a bandwidth around 2500 rad/s (τ = 0.4 ms).

6.1.2 Phase-Locked Loop (PLL)

With the inner current controller, ud and uq will be produced. The converter
dq-axis reference voltage v∗d and v∗q can then be computed as

v∗d = ud + v1d − ωLiq
v∗q = uq + v1q + ωLid

(6.8)

Note that the generation of v∗d and v∗q requires the feedforward units (v1d and
v1q) from the PCC voltage and the cross coupling terms (−ωLiq in d-axis
and ωLid in the q-axis).

Further, since the inputs of the PWM of a VSC are abc voltages, the
dq-axis voltages need to be converted to vabc. Note that the dq-reference
frame is based on the space vector of the PCC voltage and the d-axis is
aligned with the PCC voltage space vector.

Therefore, the space vector of the converter voltage will be

−→v = (vd + jvq)e
jθ (6.9)

where θ is the PCC voltage space vector’s angle relative to the static refer-
ence frame.

va, vb, and vc can be found from the space vector.

va = <(−→v ) = vd cos θ − vq sin θ

vb = <(−→v e−j
2π
3 ) = vd cos

(
θ − 2π

3

)
− vq sin

(
θ − 2π

3

)
vc = <(−→v ej

2π
3 ) = vd cos

(
θ +

2π

3

)
− vq sin

(
θ +

2π

3

) (6.10)
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vd

vq PI
θPLL

vabc
ω

PI ω θPLL+

-

θ
(a)

(b)

Figure 6.3: (a) Block diagram for a PLL. (b) Linearized block diagram for
a PLL. The inputs of a PLL are three-phase voltages vabc. The outputs of
a PLL includes voltage magnitude vd, frequency ω and angle θPLL.

The angle for the space vector −→v1 will be obtained by a PLL. Figure 6.3
presents the control diagram for a simple PLL.

The inputs to a PLL are three-phase voltages. For the application of
a grid-connected VSC, the voltages are the PCC voltages v1a, v1b and v1c.
The voltages will be converted to dq-axis voltages based on an angle θPLL.
A feedback loop equipped with integral controls now tries to make the q-axis
voltage zero. This way, the input voltage’s space vector is now aligned to
the d-axis of a reference frame based on θPLL.

PLL is designed to have a bandwidth at 100 Hz. To conduct the design,
we again first sought the linearized control blocks.

Using the space vector concept, we can show that the first block abc to
dq is in fact the following input-output relationship:

vd + jvq = −→v e−jθPLL = v̂ejθe−jθPLL = v̂ej(θ−θPLL) (6.11)

Therefore {
vd = v̂ cos(θ − θPLL)

vq = v̂ sin(θ − θPLL)
(6.12)

Assuming that θ − θPLL ≈ 0, v̂ is constant, the linearized model of vq
can now be expressed as

vq = −v̂(θ − θPLL) (6.13)
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Assuming that v̂ ≈ 1, the closed-loop system in Figure 6.3(b) is expressed
as

θPLL
θ

=
Kps+Ki

s2 +Kps+Ki
. (6.14)

If Kp � Ki, then the system’s bandwidth is
√
Ki. To obtain a 100 Hz

bandwidth, we will select the parameters as follows: Ki = (2π × 100)2 =
3.95×105. To have a 10% damping ratio, we will select Kp = 2×0.1×

√
Ki =

125.66.

The Bode plot of the closed-loop system is shown in Figure 6.4. The
Bode plot confirms that the peak occurs at 100 Hz. The bandwidth is
approximately at 100 Hz.
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Figure 6.4: Bode diagram of the system of (6.14).

A Simulink model is built and shown in Figure 6.5. The simulation
results are shown in Figure 6.6.

The abc/dq block is built based on the following. vd and vq can be found
from vabc. The space vector −→v will be expressed by va, vb, and vc.

vd + jvq = −→v e−jθPLL

=
(
va + vbe

j 2π
3 + vce

−j 2π
3

)
e−jθPLL

(6.15)
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Figure 6.5: Simulink block diagram of a PLL test system.

Therefore,
vd =

2

3

(
va cos(θPLL) + vb cos

(
θPLL −

2π

3

)
+ vc cos

(
θPLL +

2π

3

))
vq = −2

3

(
va sin(θPLL) + vb sin

(
θPLL −

2π

3

)
+ vc sin

(
θPLL +

2π

3

))
(6.16)
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Figure 6.6: Simulation results of Figure 6.5. At t = 0.1s, the frequency of
the input signal increases from 188.5 rad/s to 377 rad/s.

The simulation results show that when there is a change of frequency in
the input signals, the PLL is able to correctly identify the frequency within
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0.05 seconds. The output angle of the PLL is able to track the input signal’s
angle.

The overall current control structure with a PLL is shown in Figure 6.7,
which includes inner current control, a PLL, and outer PQ control. This
type of control is suitable for grid integration. The interfaced distributed
energy resource (DER) generates or absorbs scheduled power.
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ud
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*

vb
*

vc
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P
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Q

-

θ PLL

PLL ωv1abc

Figure 6.7: A VSC control structure. The control consists of inner current
controls and outer power controls. PI stands for proportional integral control
while PLL stands for phase-locked loop.

6.1.3 Validation of current control and PLL

After the design of the current controllers and a PLL, a MATLAB/Simulink
model is built to validate their performance. The validation testbed consists
of the plant model (the RL circuit), the PLL, and the current controllers.
The testbed is shown in Figure 6.8.

The three embedded MATLAB functions used in Simulink are to convert
vdq to vabc, compute iabc given the converter voltage vabc and the grid voltage
v1abc, and converter iabc to idq. For each abc/dq or dq/abc conversion block,
the PCC voltage angle has to be used as the input. The angle of the PCC
voltage is measured by the PLL block. The inputs of the PLL block are the
abc voltages of the grid.

The codes of the three blocks are shown as follows.
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Current 
controller

RL circuit model in the abc frame PLL

Figure 6.8: Simulation test bed to validate the performance of a system with
current controllers and PLL. R = 0.02Ω, L = 0.04 H. Current controller:
Kp = 50, Ki = 100. PLL: Kp = 125.66, Ki = 3.95× 105.

Convert vdq to vabc given the inputs as vabc and θPLL.

function vabc = fcn(u)

%#codegen

dq = u(1:2);

theta = u(3);

A =[cos(theta), -sin(theta);

cos(theta-2*pi/3), -sin(theta-2*pi/3);

cos(theta+2*pi/3), -sin(theta+2*pi/3)];

vabc = A*dq;

Compute diabc
dt given the inputs as v1abc, vabc. R and L are treated as pa-

rameters.

function d_iabc = fcn_vabc2iabc(u, R, L)

%#codegen

v1a = u(1); v1b = u(2); v1c = u(3);

va = u(4); vb = u(5); vc = u(6);

ia = u(7); ib = u(8); ic = u(9);

d_iabc = 1/L*[va- v1a - R*ia; vb-v1b-R*ib; vc-v1c-R*ic];

Compute idq given iabc and θPLL.

function y = fcn_abc2dq(u)

%#codegen
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abc = u(1:3); theta = u(4);

A =2/3*[cos(theta), cos(theta-2*pi/3), cos(theta+2*pi/3);

-sin(theta), -sin(theta-2*pi/3), -sin(theta+2*pi/3)];

y = A*abc;

Note that the reference dq-axis currents are given as constants. All initial
values of integrators are set as zero. Figure 6.9 shows simulation results for
this testbed.
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Figure 6.9: Simulation tests of the current control blocks and PLL.

It can be seen that within 0.03 seconds, the dq-currents reach steady-
state values (the reference values).

6.1.4 Design of outer PQ or PV control

Compared to the inner current controller, the outer loop is designed to be
very slow to reflect the dynamic changes. The simplified block diagram of
the outer control loop is illustrated in Figure 6.10. As the d-axis of the
dq reference frame is aligned with the PCC voltage, the per unit real and
reactive powers can be expressed as P = V1id and Q = V1iq, where V1 is the
magnitude of the per-phase voltage.

V1

P*

P

+

-

id
*=id

Figure 6.10: Simplified block diagram for outer loop control.
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A closed-loop simplified transfer function is represented as:

Gouter(s) =

(
kp + ki

s

)
V1

1 +
(
kp + ki

s

)
V1

=

kp
ki
s+ 1(

1
V1ki

+
kp
ki

)
s+ 1

(6.17)

This is a first-order transfer function to the form of as+1
τs+1 , where τ is the

time constant (τ =
(

1
V1ki

+
kp
ki

)
) and the system bandwidth can be found as

1/τ . In this study, the outer loop gains are designed so that the bandwidth
of the outer loop with kp = 0.1 and ki = 5 is 4.5 rad/s. This bandwidth is
300 times slower than the inner control bandwidth.

AC Voltage Control Ac voltage control is often used to replace Q con-
trol. The objective of the ac voltage control is to maintain the PCC bus
voltage to a reference value. To validate the design, the PCC and the grid
should be connected through a line. If the PCC voltage is the grid volt-
age, there will be no need to control the PCC voltage. The ac voltage PI
controller is designed based on ∆Q = V1∆iq, where V1 is the PCC voltage.
Furthermore, the PCC voltage change ∆V1 is proportional to ∆Q. Hence,
the plant model is derived as:

∆V1 ≈
∆Q

Ssc
=

V1

Ssc
∆iq (6.18)

where Ssc notates the short-circuit capacity.

jX

-jXc

+

-

- +ΔV
Vt

+

- Vt

I

I

jXI
V

V

Figure 6.11: Effect of shunt reactive power compensation.

The voltage variation and the reactive power injection relationship is
illustrated in Figure 6.11 and explained briefly here.
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If a system can be represented by a Thevenin equivalent circuit with
a voltage V behind a reactance X, then the short-circuit capacity can be
found by shorting the two terminals: Ssc = |S| = V × V

X . Assuming that
V ≈ 1 pu, then we have Ssc = 1

X where X is also in pu.

If we consider a shunt capacitor with reactance Xc (reactive power sup-
ported at the nominal voltage is Q = 1

Xc
) is connected to the terminal. Then

the voltage increase will be:

∆V = V t − V = −jXI

= −jX V t

−jXc

≈ X

Xc
V assume that the votlage variation is small

=
Q

Ssc

(6.19)

The transfer function of the closed-loop system can be found as:

∆V1

∆V ref
1

=
kp + ki

s

1 +
(
kp + ki

s

)
1
Ssc

=

kp
ki
s+ 1

kp+SCR
ki

s+ 1
Ssc (6.20)

with the assumption that V1 is approximately 1 pu. Therefore, the time
constant and the bandwidth are as follows:

τ =
kp + Ssc

ki
(6.21)

ωbw = 1/τ (6.22)

For kp = 0.01, ki = 100 and Ssc = 1, the bandwidth is 100 rad/s. For
Ssc = 2, the bandwidth is 50 rad/s.

Validation of PQ Control

The testbed shown in Figure 6.8 will be modified to include a PQ controller.
Figure 6.12 shows the simulation results. At t = 0.25 s, the reference power
P ∗ changes from 0 to 0.1 pu. At t = 1 s, the reference reactive power
Q∗ changes from 0 to 0.1 pu. Figure 6.12 shows that the PQ controller
can make the converter’s output real power and reactive power track the
reference values. A larger integral gain ki results in a faster response.
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Figure 6.12: Simulation tests of the PQ control blocks. PQ controller: kp =
0.1.

6.1.5 Design of VF control

For autonomous operation, a converter can be operated in the VF control
mode. The objective is to (i) maintain the PCC voltage at a reference value,
and (ii) maintain the system frequency at a reference value. For a system of
a VSC serving a load is shown in Figure 6.13, the PCC voltage is the load
voltage or the capacitor voltage e.

Three-
phase

 DC/AC 
Converter

VDC

i

V/F
Control 
Loop

i
e

PWM

z
L R

z

z
C

iLVt

iL

e

Figure 6.13: An autonomous microgrid with a VSC serving a load.

The voltage to be controlled is the capacitor voltage. In both V F and
PQ control modes, the inner current control loops will always be there.
Therefore, in PQ control mode, the outer PQ control determines the refer-
ence currents. Here in the V F mode, the outer V F control determines the
reference currents as well. We will first set up the plant model. Since the
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controller’s inputs are the capacitor voltages and its outputs are reference
currents, the plant model should have the current as the input and the ca-
pacitor voltage as the output. For simplicity, we again use the assumption
that the dynamics of the inner loop is much faster than the dynamics of
the outer loop; therefore, we can consider i∗d ≈ id and i∗q ≈ iq from the
perspective of the outer loop.

The dynamics of the capacitor can be described in the abc frame as well
as in the dq frame.

C
de

dt
= i− iL, abc frame

C
d(ed + jeq)

dt
+ jωC(ed + jeq) = (id + jiq)− (iLd + jiLq), dq frame

Separating the real and imaginary elements of the equation in the dq-
frame, we have equations in d-axis and q-axis.

C
ded
dt
− ωCeq = id − iLd (6.23)

C
deq
dt

+ ωCed = iq − iLq (6.24)

The plant models suitable for linear control system design are the fol-
lowing:

ed
ud

=
eq
uq

=
1

Cs
(6.25)

where

ud = id − iLd + ωCeq (6.26)

uq = iq − iLq − ωCed (6.27)

Based on the simple first-order plant model, we can design PI controllers
to track the reference voltage values e∗d and e∗q . The outputs of the PI
controllers are ud and uq. We will find the reference currents i∗d and i∗q using
the following relationships.

i∗d ≈ id = ud + iLd − ωCeq (6.28)

i∗q ≈ iq = uq + iLq + ωCed (6.29)

The frequency of the three-phase abc voltage vtabc can be fixed at the
nominal. This is done by feeding the dq/abc conversion block an angle ω0t
where ω0 is the nominal frequency.

The complete VF control block diagram is shown in Figure 6.14.
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Figure 6.14: VF control.

Validation of the VF control

A MATLAB/Simulink model for the system shown in Figure 6.13 is built
to validate V F control performance. The Simulink block diagram is shown
in Figure 6.15. This block diagram consists of mainly two parts: the circuit
dynamics and the controls. Outputs of the circuit dynamics blocks are
measurements, such as converter currents id, iq, load currents iLd and iLq.
These measurements will be used in the control blocks.

Outputs of the control blocks are the converter voltage vd and vq. In
addition, dq/abc and abc/dq transformation blocks are necessary if we model
the circuit dynamics in the abc frame.

The circuit dynamics are modeled in the abc frame. There are three state
variables for each phase, the capacitor voltage ek, the converter current ik,
and the load current iLk, where k = a, b, c. The differential equations related
to these state variables are shown as follows. The load is assumed to be an
RL load and the load resistance is RL while the load inductance is LL.

C dek
dt = ik − iLk

Ldikdt = vtk − ek −Rik
LL

diLk
dt = ek −RLiLk

(6.30)

In a MATLAB/Simulink block diagram, the state variables are the vector
outputs from the integrator. The block feeding the integrator computes the
derivatives of the state variables. This block has inputs from two sources:



162 CHAPTER 6. CONTROL IN MICROGRIDS

V
F 

co
nt

ro
lle

r

C
irc

ui
t d

yn
am

ic
s 

in
 th

e 
ab

c 
fr

am
e

C
ap

ac
ito

r v
ol

ta
ge

Lo
ad

 c
ur

re
nt

C
on

ve
rte

r c
ur

re
nt

F
ig

u
re

6.
15

:
A

si
n

gl
e

V
S

C
se

rv
in

g
lo

ad
sy

st
em

w
it

h
V
F

co
n
tr

ol
.

N
ot

e
th

at
th

e
an

gl
e

in
p

u
t

to
th

e
d

q
/a

b
c

b
lo

ck
is

g
en

er
a
te

d
fr

o
m

a
co

n
st

an
t

fr
eq

u
en

cy
in

te
gr

at
ed

ov
er

ti
m

e.
T

h
er

ef
or

e,
θ

=
ω

0
t.

T
h

e
p

ar
am

et
er

s
ar

e
as

fo
ll

ow
s.

R
=

0.
0
2,
L

=
0.

04
,
R
L

=
3
,
L
L

=
0.

0
1.

C
u

rr
en

t
P

I
co

n
tr

ol
le

rs
:

50
+

10
0
/s

.
V

ol
ta

ge
P

I
co

n
tr

ol
le

rs
:

8
+

10
/s

.



6.2. POWER SHARING METHODS 163

vabc from the converter control block, iabc and iLabc from the output of the
integrator. The code of this block is shown as follows.

function d_iabc = fcn_vabc2iabc(u)

%#codegen

vta = u(1); vtb = u(2); vtc = u(3);

ea = u(4); eb = u(5); ec = u(6);

ia = u(7); ib = u(8); ic = u(9);

ila=u(10); ilb=u(11); ilc=u(12);

R = 0.02; L = 0.04; Rl=3; Ll=0.01; C=0.001;

de=1/C*[(ia-ila);(ib-ilb);(ic-ilc)];

di=1/L*[vta-ea-R*ia;vtb-eb-R*ib;vtc-ec-R*ic];

dil=1/Ll*[ea-Rl*ila;eb-Rl*ilb;ec-Rl*ilc];

d_iabc = [de;di;dil];

Step responses of the dq-axis voltages are tested. Here, e∗d is changed at
t = 0.05 s while e∗q is changed at t = 0.1 s, the simulation results are shown
in Figure 6.16. The two voltages can track their references very well.
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Figure 6.16: Step responses of the V F controller.

6.2 Power sharing methods

6.2.1 P–f and Q–E droops

In this section, power sharing methods among converters will be discussed.
Droop controls that are applied in synchronous generators and reactive
power sharing again find applications in converters.
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The droop control equations are as follows.

ω = ω∗ −m(P − P ∗) (6.31)

E = E∗ − n(Q−Q∗) (6.32)

where ω∗ and E∗ are the frequency and magnitude of the output voltage at
this condition: P = P ∗ and Q = Q∗.

However, implementation of droop control depends on the converter con-
trol structure. Section 6.1 shows two types of converter controls: PQ or VF.
For each type, the implementation of droop control is different. Figure 6.17
presents the droop control implementation in PQ mode and VF mode.
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Figure 6.17: Two types of droop implementation.

Example of power sharing among two parallel converters in PQ
control mode

In this example, we examine a system with two VSCs serving a load shown
in Figure 6.18.
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Figure 6.18: Two VSCs serving a resistive load. R = 0.02, L = 0.04,
RL = 1.5 before 0.6 seconds and RL = 1.2 after 0.6 seconds.

The VSCs are all in PQ control mode. On top of the PQ control, P–f
and Q–E droops are applied. The voltage measurement used in the Q–E
droop is the PCC voltage while the frequency measurement used in the P–f
droop is the PCC voltage frequency. A PLL is used to obtain the PCC
voltage as well as its frequency.

The MATLAB/Simulink model is shown in Figure 6.19.

Note that at the initial condition, each VSC shares half of the real power
0.5 unit while the reactive power to the load are all zeros since the load is
resistive. The droop coefficients m1 : m2 = n1 : n2 = 1 : 2, which indicates
when there is a load change, VSC2 will take 2/3 of the share while the VSC1
will take 1/3 of the share.

The PCC voltage is kept at 1 pu. The decrease of the load resistance
from 1.5 pu to 1.2 pu makes the real power consumption increase from 1 pu
to 1.25 pu. For the 0.25 pu load change, 0.167 pu will be generated by VSC2
while 0.083 pu will be generated by VSC1. Hence the steady-state value of
P2 will be 0.667 pu while P2 will be 0.583 pu. The simulation results are
presented in Figure 6.20. Note that due to the load increase, the system
frequency will be reduced. ∆ω can be found from the droop coefficients.
Since ∆PL = (m1 + m2)∆ω, therefore, ∆ω = 0.25

0.04+0.08 = 2.08 rad/s. This
result can be confirmed by the simulation result of ω.
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Figure 6.20: Simulation results for a load change at t = 0.6 s.

6.2.2 V–I droop

V –I droop is more aligned to the droop design in STATCOM for reactive
power sharing. For converters interfacing distributed energy resources, not
only reactive power sharing but also real power sharing should be designed.
V –I droop has the capability for both real power and reactive power sharing.
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Figure 6.21: Two DERs support one load through parallel VSCs.

Assume that the two converters (including the RLC filter) are connected
to the PCC bus through an RL impedance Rk + jXk, k = 1, 2 (Figure 6.21.
The complex power injected to the load or the grid through the PCC bus
is notated as Sk, k = 1, 2. Let the d-axis be aligned with the PCC voltage
space vector (vd = |−→v PCC |). Then the complex power expression is

Sk =
3

2
vd(iLdk − jiLqk) =

3

2
(vdiLdk − jvdiLqk) (6.33)
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Therefore,

Pk =
3

2
vdiLdk (6.34a)

Qk = −3

2
vdiLqk. (6.34b)

Therefore, the d-axis current sharing determines the real power sharing
while the q-axis current sharing determines the reactive power sharing. At
steady-state, the converter voltage, PCC voltage and the current have the
following relationship.[

Rk −Xk

Xk Rk

] [
iLdk
iLqk

]
=

[
Ekd
Ekq

]
−
[
vd
0

]
(6.35)

If we apply the V –I droop and assume the droop coefficients are mk for the
d-axis and nk for the q-axis, then we have the following relationship.[

Ekd
Ekq

]
−
[
vd
0

]
=

[
E0

0

]
−
[
mk 0
0 nk

] [
iLdk
iLqk

]
−
[
vd
0

]
(6.36)

=⇒
[
Rk +mk −Xk

Xk Rk + nk

] [
iLdk
iLqk

]
=

[
E0

0

]
−
[
vd
0

]
(6.37)

If we assume that mk � Rk, nk � Rk, mk � Xk, and nk � Xk, then we
have the following relationship:

m1iLd1 = m2iLd2 (6.38a)

n1iLq1 = n2iLq2 (6.38b)

Therefore, the real power sharing is proportional to 1/mk and the reactive
power sharing is proportional to 1/nk. The assumptions are mk � Rk,
nk � Rk, mk � Xk, and nk � Xk. If we have a resistive network or
Rk � Xk, then the real power sharing is according to 1/(Rk +mk) and the
reactive power sharing is according to 1/(Rk + nk).

If the droop coefficients mk and nk are comparable with Rk or Xk, then
we cannot obtain accurate real/reactive power sharing. On the other hand,
large droop coefficients may lead to converter voltages drop below the range
during heavy load conditions.

The control block diagram for the V –I droop is shown in Figure 6.22.
Note that the droop is added on top of a V F controller.

For the system shown in Figure 6.21, the circuit dynamics and the con-
trols are built in a MATLAB/Simulink model. The dynamic event checked
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Figure 6.22: Control block diagram for V-I droop.

is a step change in the nominal PCC voltage E0. The simulation results are
shown in Figure 6.23. The parameters adopted are: m1 : m2 = 0.2 : 0.4 and
n1 : n2 = 1.5 : 3.0. VSC1 is expected to share twice as much as VSC2 on
active power. Since the load is resistive, the reactive power is very small for
both VSCs. The simulation results in Figure 6.23 confirm the expectation.
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Figure 6.23: Simulation results for a step change in E0.
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Part II: Dynamics
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Chapter 7

Large-Signal Stability

7.1 Introduction

In Part I, control design is based on linearized system models. The underly-
ing assumption is that for small-signal disturbances, e.g., a small change in
an automatic voltage regulator’s voltage reference, we can use linear system
analysis to conduct control design as well as stability analysis.

This is not the case with large-signal disturbances, for example, when a
power grid is subject to a three-phase fault. Can we determine if the system
will remain stable after the fault is cleared? This type of stability cannot
be analyzed using linear system models and linear system analysis tools.

For large-signal disturbances, time-domain simulation is suitable to be
used to examine the system behavior. For a simple system, we can also rely
on Lyapunov stability theory to examine large-signal stability.

In the rest of this chapter, the Lyapunov stability criterion will be pre-
sented first. Then a SMIB system’s large-signal stability, or transient sta-
bility will be examined by the equal-area method, which is based on the
Lyapunov stability criterion. Analysis results are then validated by time-
domain simulation results.

7.2 Lyapunov stability criterion

The Lyapunov stability theorem states that if the dynamics of a system can
be described as

ẋ = f(x) (7.1)

173
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where x ∈ Rn and f : Rn → Rn, then the system is stable if and only of there
is a value function V (x) ≥ 0 where V : Rn → R for all x on the dynamic
trajectory, and its derivative is less than or equal to zero V̇ (x) ≤ 0.

Example: Use the Lyapunov stability theorem to tell if the following
system is stable or not.

ẋ1 = −x1 + g(x2)

ẋ2 = −x2 + h(x1)
(7.2)

where

|g(u)| ≤ |u|/2
|h(u)| ≤ |u|/2

Solution We can assume a value function V (x) = 1
2(x2

1 +x2
2). V (x) ≥ 0

for all x. Next the derivative of V (x) is evaluated.

V̇ (x) = x1ẋ1 + x2ẋ2 = x1(−x1 + g(x2)) + x2(−x2 + h(x1))

= −x2
1 − x2

2 + x1g(x2) + x2h(x1)

≤ −x2
1 − x2

2 + |x1||g(x2)|+ |x2||h(x1)|

≤ −x2
1 − x2

2 + |x1|
|x2|
2

+ |x2|
|x1|
2

= −x2
1 − x2

2 + |x1x2|

≤ −1

2
(x2

1 + x2
2) = −V (x) (7.3)

V̇ (x) ≤ 0 for any x. Therefore, the above system is a stable system.
For a linear time invariant (LTI) system, the system dynamics can be

described as

ẋ = Ax. (7.4)

where A ∈ Rn×n and x ∈ Rn.
Assume that a value function V (x) = xTPx, where P ∈ Rn×n is a

positive semi-definite (PSD) matrix, i.e., P is symmetric P T = P and every
eigenvalue of P is greater than or equal to zero. We will notate it as P � 0.
Then V (x) ≥ 0 for any x.

The above statement can be proved using eigenvalue decomposition. For
P , we can decompose it to be P = V −1ΛV where Λ is a diagonal matrix with
diagonal elements λi ≥ 0 (i = 1, · · · , n) and V is the eigenvector matrix. V
is orthogo-normal, i.e., V T = V −1.

V (x) = xTV TΛV x = x̃TΛx̃ =

n∑
i=1

λix̃
2
i ≥ 0 (7.5)
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where x̃ = V x.

V̇ (x) = xTPẋ+ ẋTPx = xT (PA+ATP )x (7.6)

If the linear system is stable, then V̇ (x) ≤ 0. This is equivalent to saying
PA+ATP � 0.

7.2.1 Stability or instability

The Lyapunov stability theorem states that the system is stable if V (x) ≥ 0
while V̇ (x) ≤ 0 for all x on the trajectory. The system is unstable if V (x) < 0
while V̇ (x) ≤ 0 for any x on the trajectory.

7.3 Equal-area method

We will use the Lyapunov stability theorem to judge if a SMIB power system
is stable or not.

The dynamic equations for the system is described as follows.

δ̇ = ω0(ω − 1) (7.7a)

ω̇ =
1

2H
(Pm − Pe −D1(ω − 1)) (7.7b)

We would like to construct a value function V (δ, ω) and make sure its
time derivative is less than or equal to zero for all δ, ω. If we pick

V̇ (δ, ω) = −D1ω
2
0(ω − 1)2

= −D1δ̇
2, (7.8)

then V̇ (δ, ω) ≤ 0 for all (δ, ω). To judge if the system is stable or not, we
just need to examine if V (δ, ω) ≥ 0 for all (δ, ω) or V (δ, ω) < 0 for any (δ, ω)
in the trajectory.
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V (δ, ω) =

∫ t

t0

V̇ (δ, ω)dt =

∫ t

t0

−D1(δ̇)2dt

= −
∫ δ

δ0

D1δ̇dδ (Replace D1δ̇ or ω0D1(ω − 1) using (7.7b) )

= −
∫ δ

δ0

[ω0(Pm − Pe)− 2Hω0ω̇] dδ

= −ω0

∫ δ

δ0

(Pm − Pe)dδ +

∫ δ

δ0

2H
dδ̇

dt
dδ

= −ω0

∫ δ

δ0

(Pm − Pe)dδ +

∫ δ

δ0

2Hδ̇dδ̇

= ω0

∫ δ

δ0

(Pe − Pm)dδ + H(δ̇2)
∣∣∣δ
δ0

(7.9)

Note at the initial condition, δ̇ = 0 when δ = δ0. At a certain trajectory
point when the speed reaches 1 pu or δ̇ = 0, we only need to judge if∫ δ
δ0

(Pe − Pm)dδ < 0. If so, then the system is unstable. This trajectory
point corresponds to a maximum angle δmax or a minimum angle δmin.

Therefore, equal area method computes∫ δmax

δ0

(Pe − Pm)dδ

if the rotor angle δ is increasing.

Example 1: For a SMIB system, the generator terminal bus is subjected
to a three-phase to ground fault at t0. the initial rotor angle is δ0. The fault
is cleared at t1 = t0 +∆t and at t1, the rotor angle is δ1. Judge if the system
will be stable or not. Assume that the mechanical power is kept constant.
If the system is stable, what is the maximum δmax?
Solution: We will examine

∫ δmax

δ0
(Pe − Pm)dδ. This expression can be

separated into two components:∫ δmax

δ0

(Pe − Pm)dδ = −
∫ δ1

δ0

(Pm − Pe)dδ︸ ︷︷ ︸
A1

+

∫ δmax

δ1

(Pe − Pm)dδ︸ ︷︷ ︸
A2

. (7.10)

From t0 to t1, the short circuit fault is occurring and the terminal voltage
of the generator is 0. In turn, the real power output from the generator
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Pe = 0. Therefore, from t0 to t1, the net power imposed on the generator
will cause the generator to accelerate. A1 is called acceleration area. A2 is
called deceleration area since after t1, the electric power Pe will be restored
and Pe > Pm.

A1 = Pm(δ1 − δ0)

The maximum of δmax can be is π − δ0. Since if δ > δmax, Pe < Pm and
the generator will accelerate. The accelerating area will be more than A1.
Therefore, the maximum A2 is expressed as follows:

A2 =

∫ π−δ0

δ1

(
EV∞
X

sin(δ)− Pm
)
dδ

If A2 ≥ A1, the system is stable. Otherwise, the system is not stable.
Figure 7.1 shows the two areas.
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Figure 7.1: Example 1.

If the system is stable, given δ0 and δ1, we can find δmax using the
following equation.

A1 = Pm(δ1 − δ0) = A2 =

∫ δmax

δ1

(
EV∞
X

sin(δ)− Pm
)
dδ (7.11)
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Example 2: For a SMIB system, the generator terminal bus is subject to
a three-phase to ground fault at t0. The initial rotor angle is δ0. The fault
is cleared at t1 = t0 + ∆t. What is the maximum of ∆t (or critical clearing
time) to make the system stable?

The critical clearing time can be found by first making A1 = A2 and
finding δ1. Further we will express δ1 in terms of ∆t.

During the period from t0 to t1, Pe = 0. Hence the swing equation
becomes

δ̈ =
ω0

2H
Pm

if the mechanical friction is ignored (D1 = 0).
The time-domain expression of δ1 becomes

δ1 = δ0 +
ω0

2H
Pm(∆t)2

For a system with H = 5 s, D1 = 0, Pm = 1 and Pe = 2 sin δ, the initial
rotor angle δ0 (= 0.5236 rad) can be computed by considering the initial
operation point as an equilibrium point.

0 = δ̇ = ω0(ω − 1) ⇒ ω = 1

0 = ω̇ =
1

2H
(Pm − Pe −D1(ω − 1)) =

1

2H
(1− 2 sin δ)

(7.12)

The computed critical angle δ1 = 1.3886 rad by solving (7.11) and the
corresponding critical clearing time is ∆t = 0.2142 s.

Example 3: If the system is stable, we can further find the minimum rotor
angle δmin.

The minimum angle can be found again using the equal-area method.
The starting point is the maximum rotor angle. Solving the following equa-
tion

0 =

∫ δmin

δmax

(
EV∞
X

sin(δ)− Pm
)
dδ

will lead to δmin. Figure 7.2 shows the two areas.

7.3.1 Time-domain simulation results

Time-domain simulation is conducted to validate the analysis results from
equal-area criteria.

The following code generates the time-domain data related to the swing
equation state variable vector x = [δ, ω]T and the generator output power
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Figure 7.2: Example 3.

Pe. Note that the numerical integration method used is the trapezoidal
method introduced in Chapter 2.

The input to the function is the critical clearing time tcr, time step h,
and the end time T end.

function [x, Pe]=SMIB_sim(tcr,h, T_end)

omega_0= 377;

parameter.H =5;

parameter.D1 =0;

delta0 = pi/6;

E = 1; V=1; X=0.5;

parameter.E = E;

parameter.V = V;

parameter.X = X;

parameter.Pm = E*V/X*sin(delta0);

parameter.tcr =tcr;

x(:,1) = [delta0; 1];

i=1;

for t=0:h:T_end

i= i+1;

[dotx, Pe(i)] = SMIB(x(:,i-1), t, parameter);

x1 = x(:,i-1) +dotx*h;

[dotx1, Pe(i)] = SMIB(x1, t, parameter);

x(:,i) = x(:,i-1) +(dotx+dotx1)/2*h;

end

return
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This function calls another function SMIB to compute ẋ and Pe at every
step. The code for SMIB is listed as follows.

function [x_dot, Pe] = SMIB(x, t, parameter)

t0 = 1;

x_dot = zeros(2,1);

delta = x(1); omega = x(2);

omega_0= 377;

H = parameter.H;

D1 = parameter.D1;

Pm = parameter.Pm;

tcr = parameter.tcr;

E = parameter.E;

V = parameter.V;

X = parameter.X;

if (t>t0 && t<t0+tcr)

Pe = 0;

else

Pe = E*V/X*sin(delta);

end

x_dot(1) = omega_0*(omega-1);

x_dot(2) = 1/(2*H)*(Pm - Pe -D1*(omega-1));

Results from time-domain simulation for a SMIB system subject to a
three-phase ground fault at the generator bus are presented in Figures
7.3–7.5.

The following code is used to generate those figures.

clear; clc;

T_end = 3; h = 0.0002; T=0:h:T_end; n = length(T);

[x, Pe]= SMIB_sim(0.2140,h, T_end); x2 = x; Pe2 = Pe;

[x, Pe]= SMIB_sim(0.2142,h, T_end); x3 = x; Pe3 = Pe;

[x, Pe]= SMIB_sim(0.2145,h, T_end); x4 = x; Pe4 = Pe;

figure

plot(T, [x2(1,1:n);x3(1,1:n); x4(1,1:n)],’LineWidth’,2);

ylabel(’\delta’); grid on; xlabel(’Time (s)’); xlim([0.9,2.2]);

figure;

plot(T, [x2(2,1:n);x3(2,1:n); x4(2,1:n)],’LineWidth’,2);

ylabel(’\omega’); grid on; xlabel(’Time (s)’);xlim([0.9,2.2]);

figure;

plot(T, [Pe2(1:n);Pe3(1:n);Pe4(1:n)],’LineWidth’,2);

ylabel(’P_eomega’); grid on; xlabel(’Time (s)’); xlim([0.9,2.2]);

The simulation results validate the equal-area method analysis. It can
be found that the critical clearing time is indeed 0.2142 s.
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Figure 7.3: Time-domain simulation results: δ (rad).
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Figure 7.4: Time-domain simulation results: ω (pu).

A longer time frame is used when the clearing time is 0.2142 s. Figure
7.6 shows the simulation results for 2 seconds after the fault.

Note that at the critical clearing time, based on the equal-area method,
δmax should be π − δ0 = 5

6π = 2.618 rad. The simulation results show the
maximum angle is 2.5711 rad. The error is due to numerical integration
error. If we reduce the time step, this error can be reduced. For example, if
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Figure 7.6: Time-domain simulation results with clearing time as 0.2142
seconds.

the time step is reduced to 10−5 seconds, then δmax = 2.595 rad.
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Exercises

1. Use the SMIB system parameter presented in the time-domain simulation
example in Section 7.4. For that SMIB system, if the fault clearing time is
0.2 seconds, the initial rotor angle is 30◦, Pe = 2 sin δ, please compute the
rotor angle at the moment when the fault is cleared δ1, the maximum rotor
angle that can be achieved δ2, and the minimum rotor angle that can be
achieved δmin. Validate your analysis by examining the simulation results.

2. Modify the dynamic simulation code to include rotor flux dynamics or
E′a dynamics. Assume that Xd = Xq = 0.3 while the line reactance is 0.2,
X ′d = 0.15, Ea(0) = 1, T ′d0 = 2 seconds. Carry out the same dynamic
simulation for three-phase fault and clearing.
2.1 Find the critical clearing time.
2.2 If the fault clearing time is 0.2 seconds, find from simulation the rotor
angle at the moment when the fault is cleared δ1, the maximum rotor angle
that can be achieved δ2, and the minimum rotor angle that can be achieved
δmin.

Compare the values you obtain in Problem 2 with those you find from
simulation of Problem 1. The only difference is the inclusion of rotor flux
dynamics. Comment if the modeling complexity changes the values.
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Chapter 8

Small-Signal Stability

In this chapter, three example problems are presented on small-signal sta-
bility. Small-signal stability, is related to operating conditions, e.g., power
transfer level. Small-signal stability influences power transfer capability of a
system. In the first example, we will use small-signal stability to investigate
the power transfer capability for a SMIB system with and without PSS.

In the second example, inter-area oscillations will be investigated using
networked control system theory, specifically homogeneous system static
output feedback stability criterion.

In the third example, we will investigate torsional interaction phenomenon
between a generator’s turbine and a series compensated network. Using
frequency-domain models and linear system analysis tools such as the root
locus method, we can show that torsional interactions occur when the series
compensation degree increases.

All the above stability (instability) issues are related to operating con-
ditions, e.g., power transfer level and compensation degree. They can all be
studied using small-signal (linear) model and linear system stability analysis
tools.

8.1 SMIB system stability

The SMIB system is shown in Figure 8.1. To investigate power transfer’s
effect on stability, the electromechanical dynamics or swing equations should
be included in the model. The generator’s electromagnetic dynamics will
be represented by the rotor flux dynamics only. The stator electromagnetic
dynamics can be ignored, which renders phasor representation of the system
circuit. Automatic voltage regulator (AVR) will be included in the base

185
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model. As a comparison, a model with the addition of a PSS will also be
developed.

V∞
jXL

E’a

Figure 8.1: A generator connected to an infinite bus.

The block diagram of the small-signal model for the base model has been
derived in Chapter 5. Here we show the block diagram of the system with
AVR and PSS included in Figure 8.2. The AVR is simplified as a gain.
This type of PSS is designed to amplify the derivative of the rotor speed
deviation. This type of PSS appears in Bergen and Vittal (2009). Derivative
of a signal is usually realized with delay. Therefore, the transfer function is
γs

1+τs , where τ is a small time constant, e.g., 0.05 s.

1
2Hs+D1

K2
K3

1+K3T’dos
ΔEfd +

-

K4

ΔE’a

ΔPm=0

Δδ+
-

K5

k6

+

+

ΔVref
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ΔVa-
KA

ω0
s

T

Δω

+ -
ΔVpss

ω0
γs

1+τs
PSS

AVR

γs
1+τs

s

Figure 8.2: Block diagram of small-signal system with AVR and PSS in-
cluded. The dotted blocks represent an alternative way of PSS representa-
tion.

The PSS block can also be represented by the dotted blocks with the
rotor angle ∆δ as input and ∆Vpss as the output. Such representation will
simplify block aggregation for transfer function derivation.

Note that given the block diagram, it is feasible to obtain the closed-loop
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transfer function and examine stability by checking if the closed-loop system
poles are all at LHP.

8.1.1 Computing initial state variables

The important thing to notice is that T (also notated as K1, K2, K3, K5

and K6) are related to the system operating conditions. K3 (=
X′d+XL
Xd+XL

) is
only related to the machine and network parameters. If the power transfer
level varies, T , K2, K4, K5 and K6 will vary. The expressions of T , K2, K4,
K5 and K6 are derived and listed as follows.

Power can be expressed by E′a and δ as follows.

Pe =
E′aV∞

X̃ ′d

sin(δ) +
V 2
∞
2

(
1

X̃q

− 1

X̃ ′d

)
sin(2δ) (8.1)

Linearize the nonlinear equation by assuming small disturbances in δ
and E′a. We will have

∆Pe =
∂Pe
∂E′a︸︷︷︸
K2

∆E′a +
∂Pe
∂δ︸︷︷︸
T

∆δ. (8.2)

Therefore, T , K2 can be found from the partial derivatives. The expres-
sions of K4, K5 and K6 have been given in Chapter 5 and are copied here.

T ,
E′a0V∞

X̃ ′d

cos δ + V 2
∞

(
1

X̃q

− 1

X̃ ′d

)
cos(2δ) (8.3a)

K2 ,
V∞

X̃ ′d

sin δ (8.3b)

K4 ,

(
1− X̃d

X̃ ′d

)
V∞ sin δ (8.3c)

K5 , −V∞
Va0

(
Vq0X

′
d

X̃
′
d

sin δ0 +
Vd0Xq

X̃q

cos δ0

)
(8.3d)

K6 ,
Vq0XL

Va0X̃
′
d

(8.3e)

Analysis of the expressions in (8.3) shows that they are all dependent
on the initial rotor angle δ. T is also dependent on the initial voltage E′a.
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K5 and K6 are dependent on the initial RMS value of the terminal voltage
Va as well as its dq-axis components. These values related to the terminal
voltage, Va, Vad, and Vaq, can be determined once V∞, E′a and δ are known.

Note that, E′a and δ are the state variables of system dynamics. There-
fore, given the initial state variables at an equilibrium point, we should be
able to find the linearized model at this operating point.

Further, usual operating conditions of a generator are defined by its
power output Pe and Qe. From Pe and Qe, E

′
a and δ need to be found.

Approach 1

Note that Pe and Qe can both be expressed by E′a and δ. Using the complex
power computation concept, we can find Pe and Qe.

The complex power injected to the grid can be written based on the
q-axis as

S = V∞e
−jδI∗a = V∞(cos δ − j sin δ)(Iaq − jIad) (8.4)

Separating the real and imaginary components, we have Pe and Qe ex-
pressions in terms of the dq-axis currents.

Pe =V∞(cos δIaq − sin δIad) (8.5a)

Qe = −V∞(cos δIad + sin δIaq) (8.5b)

Further, based on the phasor-diagram shown in Figure 8.3, the dq-axis
components of the current can be found as (8.6).

V∞

E’a

j(X’d+XL)Iad

j(Xd-X’d)Iad

Ea

j(Xq+XL)Iaq

Iad

Iaq

Ia

δ 

Figure 8.3: Phasor diagram.
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Iad =
V∞ cos δ − E′a

X̃ ′d

(8.6a)

Iaq =
V∞ sin δ

X̃q

(8.6b)

Therefore Pe and Qe can be expressed in terms of E′a and δ.

Pe =
E′aV∞

X̃ ′d

sin δ +
V 2
∞
2

(
1

X̃q

− 1

X̃ ′d

)
sin(2δ) (8.7a)

Qe =
E′aV∞

X̃ ′d

cos δ − V 2
∞

(
(cos δ)2

X̃ ′d

+
(sin δ)2

X̃q

)
(8.7b)

Given Pe, Qe, finding E′a and δ is a problem of solving nonlinear algebraic
equations. Newton–Raphson is a commonly used method for this purpose.
In power systems, the Newton–Raphson method is used to solve load flow
problems Bergen and Vittal (2009).

To find the solution x∗ that can make f(x) = 0 (where x ∈ Rn and
f : Rn −→ Rn), the iterative procedure of the Newton–Raphson method is
written as follows.

xk+1 = xk −
(
∂f

∂x

)−1
∣∣∣∣∣
xk

f(xk) (8.8)

For this specific problem, the iterative procedure is written as follows.

[
δ
E′a

]k+1

=

[
δ
E′a

]k
− J−1

k


E′ka V∞

X̃′d
sin δk + V 2

∞
2

(
1

X̃q
− 1

X̃′d

)
sin(2δk)− Pe

E′ka V∞

X̃′d
cos δk − V 2

∞

(
(cos δk)2

X̃′d
+ (sin δk)2

X̃q

)
−Qe


(8.9)

where

Jk =


E′ka V∞

X̃′d
cos δk + V 2

∞

(
1

X̃q
− 1

X̃′d

)
cos(2δk) V∞

X̃′d
sin δk

−E′ka V∞

X̃′d
sin δk +

(
1

X̃′d
− 1

X̃q

)
V 2
∞ sin(2δk) V∞

X̃′d
cos δk

 (8.10)

This algorithm is tested for an example with varying Pe and Qe. The
iterative results are shown in Figure 8.4.
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Figure 8.4: Iterative results for the Newton–Raphson algorithm. First row:

Qe = 0. Second row: Pe = 0. Other parameters: X̃ ′d = 0.5, X̃q = 0.5.

Below is the code to compute E′a and δ for a given operating condi-
tion of a generator defined by Pe and Qe. Initial values of E′a and δ are
first assumed. The Jacobian matrix is then evaluated. The iteration stops
when the convergence criterion is met or the maximum iteration number is
reached.

function [Ea1, delta] = fun_PQ2DeltaEa1(Pe, Qe, V, xd1, xq, iter_max)

% give delta and Ea_prime initial values.

x = [0; 1]; i=1;err =1;

while(i<iter_max && err > 1e-5)

delta = x(1);

Ea1 = x(2);

% evalute f(x)

fx=[Ea1*V*sin(delta)/xd1+V^2/2*(1/xq-1/xd1)*sin(2*delta)-Pe;

Ea1*V*cos(delta)/xd1-V^2*((cos(delta))^2/xd1+(sin(delta))^2/xq)-Qe];

% error

err = max(abs(fx));

data(:,i) = [x; fx; err];

% evalute J(x)

J = zeros(2,2);
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J(1,1) = Ea1*V*cos(delta)/xd1+V^2*(1/xq-1/xd1)*cos(2*delta);

J(1,2) = V*sin(delta)/xd1;

J(2,1) = -Ea1*V*sin(delta)/xd1+V^2*(1/xd1-1/xq)*sin(2*delta);

J(2,2) = V*cos(delta)/xd1;

% update x

dx = - inv(J)*fx;

x = x + dx;

i= i+1;

end

Approach 2

Approach 1 requires an iterative procedure to solve a nonlinear algebraic
equation. To initialize a generator’s state variables, there is a direct ap-
proach. Given terminal voltage and terminal current, applying phasor dia-
gram can lead to E′a and δ. Iteration is not needed. If the terminal voltage,
real power and reactive power are given, then the terminal current is also
given.

For the SMIB system, if the complex power to the grid is given, then
the terminal current is given as

Ia =
Pe − jQe
V∞

= Iae
jθa . (8.11)

We can first find the rotor’s position relative to the infinity bus voltage’s
space vector by computing an intermediate voltage phasor V ′.

V
′
= V∞e

j0 + j(XL +Xq)Ia = V ′ejδ. (8.12)

The angle of V
′

is the rotor angle δ. The current is then decomposed
into dq-axis components:

Iaq = Ia cos(θa − δ)
Isd = Ia sin(θa − δ)

(8.13)

Finally, we can find E′a from the phasor diagram in Figure 8.3:

E′a = V∞ cos δ − (X ′d +XL)Iad (8.14)

8.1.2 Computation of the linearized model parameters

With the state variables E′a and δ at the initial operating condition known,
we then compute all parameters related to the operating condition and the
linear model. Below is the code to compute T , K2, K4, K5, K6 for a given
operating condition of a generator defined by E′a and δ.
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function K = compute_K_SMIB(Ea1, delta, Xd, Xd1, Xq, XL)

Vinf=1;

Xdz=Xd+XL; Xqz=Xq+XL; Xdprimez=Xd1+XL;

Iad=(Vinf*cos(delta)-Ea1)./Xdprimez;

Iaq=(Vinf*sin(delta))./Xqz;

Vaq=Vinf*cos(delta)-XL*Iad Vad=XL*Iaq-Vinf*sin(delta);

Va=(Vad.^2+Vaq.^2).^(1/2);

T=Ea1*Vinf/Xdprimez.*cos(delta)+Vinf^2*(1/Xqz-1/Xdprimez)*cos(2*delta);

K2=Vinf/Xdprimez*sin(delta);

K3=Xdprimez/Xdz;

K4=(1/K3-1)*Vinf*sin(delta);

K5=-Vinf./Va.*(Vaq*Xd1/Xdprimez.*sin(delta)+Vad*Xq/Xqz.*cos(delta));

K6=Vaq*XL./(Va*Xdprimez);

K = [T;K2; K4; K5; K6];

Using the above codes, for a given set of Pe and Qe, the corresponding
coefficients (T and Ks) can be found. Figure 8.5 presents the T and Ks for
a varying Pe at three scenarios: leading power factor, unity power factor,
and lagging power factor. It is shown from Figure 8.5 that K5 changes sign
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Figure 8.5: T and Ks for a varying Pe. Left: Qe = −0.5; Middle: Qe = 0;
Right: Qe = 0.5.

when the active power demand from the generator becomes heavy.
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8.1.3 Linearized model without PSS

In this subsection, PSS is not considered. Stability analysis will be carried
for a system shown in Figure 8.6. ∆Pm is the input, ∆δ is the output, and
∆Vref is normally zero.

K2
K3

1+K3T’dosΔEfd

+

-

K4

ΔE’a

Δδ +
-

K5

K6

+

+

ΔVref

+

ΔVa

-
KA

ΔPm=0

1
Ms2+Ds+T

Figure 8.6: Block diagram of a linearized system without PSS.

There are two assumptions which are made to simplify the model. It is
assumed that the voltage control system is very fast, so the time constant
of the control loop is zero; the exciter is also assumed to be a pure gain 1.

Figure 8.6 will be aggregated into a single loop system. Then the closed-
loop transfer function will be derived. First, the loop will be decoupled at
the point before the block of K2. For the open-loop system, we will compute
the transfer function from ∆δ to ∆E′a. Then we close the loop and compute
the closed-loop transfer function by considering the feedforward block from
∆E′a to ∆δ. The feedforward transfer function is notated as −k2TEM where
TEM = 1/(Ms2 +Ds+ T ).

∆E′a =
K3

T ′doK3s+ 1
[−K4∆δ −KA(K5∆δ +K6∆E′a)]

∆E′a
∆δ

=
−K3(K4 +KAK5)

T ′doK3s+K3KAK6 + 1

= − 1

K2

a

bs+ c
(8.15)

where a = K2K3(K4 +KAK5), b = K3Tdo, c = K3KAK6 + 1.
The block diagram in Figure 8.6 becomes Figure 8.7. Root loci of the

open-loop transfer function a
bs+c

−1
Ms2+Ds+T

are plotted for two scenarios.
When K4 +KAK5 > 0 or a > 0, the closed-loop system is in fact a positive-
feedback system since the steady-state gain of the open-loop system is −aT <
0. When the system has a heavy power transfer, K5 will be less than 0 and
a < 0. In this scenario, the system is a negative-feedback system. It can
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be seen that when a < 0, the system may suffer oscillations since the two
complex conjugate poles related to the electromechanical dynamics move to
the RHP.

a
K2(bs+c)

+

-

ΔE’a Δδ -K2
Ms2+Ds+T

0

X

X

X

X

X

X

a > 0 a < 0

Figure 8.7: Single-loop block diagram of linearized system without PSS and
the open-loop gain’s root loci.

The closed-loop transfer function is derived as follows.

Tcl(s) =
−K2

1
Ms2++Ds+T

1 +K2
1

Ms2++Ds+T

(
− 1
K2

a
bs+c

)
=

−K2(bs+ c)

(Ms2 + +Ds+ T )(bs+ c)− a

=
−K2(bs+ c)

Mbs3 + (Db+Mc)s2 + (Tb+Dc)s+ Tc− a
(8.16)

Based on Tcl(s), there are three poles and one zero. Stability of the
closed-loop system is determined by the poles of Tcl(s) or the roots of the
denominator polynomial. This polynomial is also called a characteristic
equation. If all the poles are located in LHP, then the system is stable.
Therefore, stability can be checked by computing the roots of the denom-
inator polynomial. In addition, we can rely on the root locus method by
plotting root loci of the open-loop gain.

We can also directly check the coefficients of the denominator polynomial
to determine stability, applying Routh–Hurwitz stability criterion.
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The Routh–Hurwitz criterion is a sufficient and necessary condition for
stability. Given a characteristic equation

ans
n + an−1s

n−1 + · · ·+ a1s+ a0 = 0, (8.17)

an array will be arranged as follows Dorf and Bishop (1998):

sn an an−2 an−4 · · ·
sn−1 an−1 an−3 an−5 · · ·
sn−2 bn−1 bn−3 bn−5 · · ·
sn−3 cn−1 cn−3 cn−5 · · ·
· · · ·
· · · ·
s0 hn−1

where

bn−1 =
−1

an−1

∣∣∣∣ an an−2

an−1 an−3

∣∣∣∣
bn−3 =

−1

an−1

∣∣∣∣ an an−4

an−1 an−5

∣∣∣∣
cn−1 =

−1

bn−1

∣∣∣∣ an an−3

bn−1 bn−3

∣∣∣∣
and so on.

The Routh–Hurwitz criterion: The number of roots of the characteristic
equation with positive real parts is equal to the number of the changes in
sign of the first column of the Routh array. If the first column coefficients
are all greater than 0 or if the first column coefficients are all less than 0,
the system has 0 number of roots with positive real parts and the system is
stable.

The Routh array for Mbs3 + (Db+Mc)s2 + (Tb+Dc)s+ Tc− a = 0 is
as follows.

s3 Mb Tb+Dc 0
s2 Db+Mc Tc− a 0

s1 Tb+Dc− (Mb)(Tc−a)
Db+Mc 0

s0 Tc− a

We can see the stability is determined by the first column coefficients.
Those coefficients, Mb, Db+Mc, Tb+Dc− (Mb)(Tc−a)

Db+Mc , and Tc− a should
all be greater than zero to guarantee stability. Note that K5 can be negative
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when the power demand is heavy and a is dependent on K5. It can be seen
that a heavy power demand may cause the coefficient Tb+Dc− (Mb)(Tc−a)

Db+Mc
to be negative. Thus the system will be unstable. Further, the sign of
the first column coefficients will change twice: from DB + MC > 0 to
Tb + Dc − (Mb)(Tc−a)

Db+Mc < 0, then to Tc − a > 0. The system will have two
poles with positive real part.

8.1.4 Linearized model with PSS

A PSS is added to stabilize the system. Using a similar technique to derive
the closed-loop transfer function of system, first, we break the loop at the
point before the block at K2. The feedback transfer function from ∆δ to
∆E′a can be found.

∆E′a =
K3

T ′doK3s+ 1

[
KA

(
γs2

τs+ 1
∆δ −K5∆δ −K6∆E′a

)]
− K3

T ′doK3s+ 1
K4∆δ

⇒ ∆E′a
∆δ

=
K3keγs

2 − τK3(K5KA +K4)s−K3(K5KA +K4)

τT ′doK3s2 + (τK3K6KA + τ + T ′doK3)s+K3K6KA + 1

⇒ ∆E′a
∆δ

=
1

K2

fs2 − τas− a
τbs2 + es+ c

(8.18)

where γ and τ are the coefficients of PSS, e = τk3k6ke + τ + T ′dok3 and
f = k3keγk2. The closed-loop transfer function is written as:

Tcl(s) =
−K2

1
Ms2+Ds+T

1 + 1
Ms2+Ds+T

fs2−τas−a
τbs2+es+c

=
τbs2 + es+ c

(Ms2 +Ds+ T )(τbs2 + es+ c) + fs2 − τas− a
(8.19)

Stability will be determined by the denominator

Mτbs4 +(Me+Dτb)s3 +(Mc+De+Tτb+f)s2 +(Dc+Te−τa)s+(Tc−a).

The Routh array is shown as follows.

s4 Mτbs Mc+De+ Tτb+ f Tc− a 0
s3 Me+Dτb Dc+ Te− τa 0 0
s2 Kr2 Tc− a 0
s1 Kr1 0
s0 Tc− a
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where

Kr2 = Mc+De+ Tτb+ f − (Mτb)(Dc+ Te− τa)

Me+Dτb
,

Kr1 = Dc+ Te− τa− (Me+Dτb)(Tc− a)

Kr2
.

Based on the calculation, Kr2 and Kr1 are always larger than 0.
This shows that with PSS, the system will be stable.

8.2 Inter-area oscillations

Inter-area oscillations are defined as a group of generators swinging against
other group(s) of generators. This type of oscillations is the root cause of
1996’s blackout in the western system Kosterev et al. (1999). Small-signal
stability analysis is a standard approach for inter-area oscillations.

The conventional approach is to build the state-space model of the entire
system consisting of multiple generators Rogers (2012). Eigenvalue and
participation factor analysis are then carried out to identify the related
states to an oscillation mode Rogers (2012).

8.2.1 Consensus control

Recent advances in consensus control of multi-agents over a network pro-
vide a different approach to shed insights. In this section, results from the
author’s paper Fan (2017) are summarized.

The main stability criterion used in Fan (2017) is applicable for ho-
mogeneous system consensus control through static output feedback Heng-
ster– Movric et al. (2015). The homogeneous subsystems are defined as
follows.

ẋi = Axi +Bui (8.20)

yi = Cxi (8.21)

where i = 1, · · · , n.
The entire system consists of n subsystems. Each subsystem is identical.

Input of each subsystem ui is expressed as follows.

ui =

n∑
j 6=i

aij(yj − yi) (8.22)

where aij > 0.
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In the form of vectors, we have

u = Ly (8.23)

where L is called a Laplacian matrix .

Lij =

{
−aij , i 6= j, i, j are connected through a link

0, i 6= j, i, j are not connected
(8.24)

Lii =
∑
j

aij , i 6= j (8.25)

The entire system can be written as

ẋ = (I ⊗A+ L⊗BC)x. (8.26)

where ⊗ notates Kroneck product.
Research in Hengster– Movric et al. (2015) gives the stability criterion

for the above system. The system (I ⊗A+ L⊗BC) is Hurwitz if and only
if all the matrices A+λiBC are Hurwitz, where λi are the eigenvalues of L.

This stability criterion will be adopted for power system inter-area os-
cillation analysis. To apply the analysis technique, the power system will
be converted to a networked control problem with homogenous systems and
static output feedback.

Example The above stability criterion will be explained using a three-
battery control example. Assume that each battery’s power order is con-
trolled through an integral control. We will design the input to the integral
control. Also assume that the power control dynamics is fast so that power
order and the power measurement are equivalent. The objective of the con-
sensus control is for the three batteries achieve the same energy level and
power output level.

First, the system dynamic model is introduced.

Ė1 = −P1

Ṗ1 = U1

Ė2 = −P2

Ṗ2 = U2

Ė3 = −P3

Ṗ3 = U3

(8.27)

where Ei notates the energy level in ith battery, Pi notates the power level
in ith battery and Ui is the integral control’s input. In addition, we should
keep the total power output constant at any time to meet the load demand.
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Therefore, the control objectives are:

d(P1 + P2 + P3)

dt
= ΣUi = 0, at any time (8.28)

E1 = E2 = E3, P1 = P2 = P3, at final steady-state (8.29)

Assume that the communication graph of the batteries is as Figure 8.8.

2

1 3

Figure 8.8: Communication topology for the three batteries.

The graph Laplacian is written as follows.

L =

 1 −1 0
−1 2 −1
0 −1 1

 (8.30)

Note that the input of the integral control will be zero when t → ∞.
Therefore, we will use the difference of energy levels and the difference of
power levels as the input to the integral control. Further, based on the
communication topology, the inputs are chosen as follows.

U1 = K1E(E1 − E2) +K1P (P1 − P2)

U2 = K2E(E2 − E1) +K2P (P2 − P1) +K ′2E(E2 − E3) +K ′2P (P2 − P3)

U3 = K3E(E3 − E2) +K3P (P3 − P2)
(8.31)

U1 + U2 + U3 = 0 should be satisfied at any time. We can make K1E =
K2E , K1P = K2P , K ′2E = K3E , and K ′2P = K3P . We will introduce KE ,
KP , K ′E and K ′P . Then:

U1

U2

U3

 =

KE KP 0 0
KE KP K ′E K ′P
0 0 K ′E K ′P



E1 − E2

P1 − P2

E3 − E2

P3 − P2

 (8.32)
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If we let K ′E = KE and K ′P = KP , then

U1

U2

U3

 =

KE KP 0 0
KE KP KE KP

0 0 KE KP



E1 − E2

P1 − P2

E3 − E2

P3 − P2


=

KE 0
KE KE

0 KE

[E1 − E2

E3 − E2

]
+

KP 0
KP KP

0 KP

[P1 − P2

P3 − P2

]
(8.33)

=⇒ U = KE · L ·

E1

E2

E3

+KP · L ·

P1

P2

P3



=

 KE KP −KE −KP 0 0
−KE −KP 2KE 2KP −KE −KP

0 0 −KE −KP KE KP




E1

P1

E2

P2

E3

P3

 (8.34)

= (L⊗
[
KE KP

]︸ ︷︷ ︸
K

)x (8.35)

where x = [E,P ]T . ⊗ stands for Kroneck product.

A Kroneck product is defined as the following:

A⊗B =

A11B A12B · · · A1nB
...

...
...

...
Am1B Am2B · · · AmnB

 (8.36)

For each agent, the state-space model is as follows.

ẋi = Axi +BUi,

A =

[
0 −1
0 0

]
, B =

[
0
1

]
(8.37)

Then the entire interconnected system has the following state-space
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model.

ẋ =

A 0 0
0 A 0
0 0 A




E1

P1

E2

P2

E3

P3

+

B 0 0
0 B 0
0 0 B

U1

U2

U3

 (8.38)

=

A 0 0
0 A 0
0 0 A

+

 BK −BK 0
−BK 2BK −BK

0 −BK BK

x (8.39)

=

A+BK −BK 0
−BK A+ 2BK −BK

0 −BK A+BK

x (8.40)

= (In ⊗A+ L⊗BK)X (8.41)

The dynamics of the above system (with homogeneous agents) has been
analyzed in Fax and Murray (2004). In short, the dynamics (or eigenvalues)
of the above system can be found from the following systems:

A+ λiBK (8.42)

where λi is the eigenvalue of the Laplacian matrix L. In our case,

λ = {0, 1, 3}. (8.43)

The eigenvalues of the system matrix in (8.41) will be computed and
compared with the eigenvalues computed from three matrices in (8.42). Ta-
ble 8.1 shows that the eigenvalues computed from both ways are exactly
the same. Using (8.42) has the advantage in computing, where small-size
matrices are dealt with.

8.2.2 Power system viewed as a networked control problem

Consider a system with n generators. For every generator in the power
system, a classic model is assumed. The dynamics of each subsystem is
expressed in a state-space model, where δ notates rotor angle in rad, ω
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Table 8.1: Eigenvalues comparison

In ⊗A+ L⊗BK A+ λiBK λi
0.7913 + j0.0000 0.7913 + j0.0000 3
−3.7913 + j0.0000 −3.7913 + j0.0000 3
−1.6180 + j0.0000 −1.6180 + j0.0000 1

0.6180 + j0.0000 0.6180 + j0.0000 1
0.0000 + j0.0000 0.0000 + j0.0000 0
0.0000− j0.0000 0.0000 + j0.0000 0

notates speed in pu, and PD notates area load in pu.[
∆̇δi

˙∆ωi

]
︸ ︷︷ ︸

ẋi

=

[
0 ω0

0 −Di
Hi

]
︸ ︷︷ ︸

Ai

[
∆δi
∆ωi

]
︸ ︷︷ ︸

xi

+

[
0
−1
2Hi

]
︸ ︷︷ ︸
Bi

∆Ptie,i︸ ︷︷ ︸
ui

+

[
0
−1
2Hi

]
∆PD,i︸ ︷︷ ︸
di

∆δi︸︷︷︸
yi

=
[
1 0

]︸ ︷︷ ︸
C

[
∆δi
∆ωi

]
(8.44)

If we treat the total tie-line flow Ptie,i as the system’s input ui, and the
rotor angle ∆δi as the output yi, then the entire system can be viewed as
a consensus or synchronizing control over a network. The input ui has the
following structure.

ui =
∑
j

∆Pij =
n∑
j 6=i

Tij(∆δi −∆δj) =
n∑
j 6=i

Tij(yi − yj)

where Pij is the tie-line flow on the line between bus i and bus j and Tij =
∂Pij
∂δij

.

1 3

2 4

Figure 8.9: A four-bus network.

For a network shown in Figure 8.9, we will have the input vector u as
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the following.
u1

u2

u3

u4

 =


T12 + T13 −T12 −T13 0
−T12 T12 + T24 0 −T24

−T13 0 T13 + T34 −T34

0 −T24 −T34 T24 + T34


︸ ︷︷ ︸

L


y1

y2

y3

y4

 (8.45)

Note that L is a weighted graph Laplacian matrix. If every generator has
the same parameters, then we have homogeneous systems and Ai = A,Bi =
B. Therefore

ẋ = (I ⊗A+ L⊗BC)x+ (I ⊗B)d (8.46)

8.2.3 Case study

Gen 1

Gen 2

Gen 3

Gen 4

Load 1
 (9.76 pu)

Load 2
 (17.65 pu)

Area 1 Area 2

Figure 8.10: Two-area four-machine test system.

The two-area four-machine power system used for inter-area oscillations
is shown in Figure 8.10. If the tie-lines are very long, the power grid con-
nection of the system can be converted to the connection in Figure 8.9.
Therefore, we can adopt the graph Laplacian matrix L in (8.45) for stability
analysis.

If we assume that the system symmetric and T13 = T24, T12 = T34, then
the eigenvalues of L are:[

λ1 λ2 λ3 λ4

]
=
[
0 2T13 2T12 2(T13 + T12)

]
(8.47)

It can be seen that λ2, the second smallest eigenvalue of the Laplacian
matrix is related to T13. For simplicity of analysis, assume that the line is
lossless. Then

P13 =
E1E3

X13
sin(δ1 − δ3) (8.48)

T13 =
E1E3

X13
cos(δ1 − δ3) (8.49)
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A longer line corresponds to a greater line reactance X13, in turn a
smaller λ2. A heavier power transfer corresponds to a greater angle differ-
ence δ1 − δ3 and also a smaller T13 or λ2.

On the other hand, the other two eigenvalues λ3 and λ4 are dominant
by T12 as T12 is much greater than T13 due to the close connection between
Gen 1 and Gen 2.

The system eigenvalues are determined by the following matrices’ eigen-
values:

A− λiBC =

[
0 ω0
−λi
2H

−D
2H

]
(8.50)

In turn, the system eigenvalues are also determined by the following
polynomials.

s2 +
D

2H
s+

λiω0

2H
= 0 (8.51)

s ≈ −
√

2

4

1√
λiHω0

± j
√
λiω0

2H
(8.52)

Observing (8.52), we can see that for a small λi, the oscillation mode’s
frequency is low, while for a large λi, the oscillation mode’s frequency will
be large. This indicates that the low frequency inter-area oscillation corre-
sponds to the oscillation mode associated to λ2, while the local oscillation
modes are associated to the other Laplacian matrix eigenvalues.

Table 8.2 lists the eigenvalues computed by Power System Toolbox using
the conventional overall system analysis approach versus the eigenvalues
computed using small-scale matrices in (8.50) at a typical operation case
(case 1) and the same operation case with one of the tie-lines tripped (case
2). The comparison shows that the proposed small-scale matrix eigenvalue
calculation can capture the system dynamics adequately.

8.3 Subsynchronous resonances

In this section, subsynchronous resonances (SSR) are presented. SSRs are
related to series compensated electric networks. The type of resonances is
due to the interaction of the mechanical oscillation mode of a synchronous
generator’s rotor shaft and the LC resonance mode.

Torsional interaction of synchronous generators can result in rotor shaft
fracture. Such incidents happened in 1970s in U.S. at the Mohave power
plant of the Southern California Edison Company Walker et al. (1975). The
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Table 8.2: Eigenvalues computed by PST and the proposed method for two
cases

case 1 case 2

PST proposed λi(L) PST proposed λi(L)

−0.0111 −0.0000 0.0000 .0126 .0000 −0.00
0.0111 −0.0077 −.0126 −.0077

−.00± j3.53 −.0038± j3.60 4.0221 −.00± j2.04 −.0038± j2.15 1.43

.00± j7.51 −.0038± j7.50 17.48 .00± j7.49 −.0038± j7.40 16.99

−.00± j7.57 −.0038± j8.55 22.68 −.00± j7.52 −.0038± j8.14 20.59

resonances were mitigated by reducing the compensation level of the electric
network and installing a torsional relay.

SSRs can be studied using linear system analysis. In the literature,
torsional interactions were studies using state-space models and eigenvalue,
participation factor analysis (see Chapter 15 in Kundur et al. (1994)). In
this text, frequency-domain based analysis is adopted for its simplicity and
the ability of shedding insights. First we build transfer functions block by
block. Then we study the structure of the system using those blocks. And
finally we can adopt classic control analysis tools, e.g., root loci or Bode
plots, to study the impact of parameters.

8.3.1 Small-signal model for the mechanical system

Oscillatory torsional modes cannot be adequately modeled using a single
mass to represent the rotor shaft. In this simple example, a two-mass rotor
is modeled to demonstrate torsional interaction. The purpose of this exam-
ple is to demonstrate the interaction of rotor torsional modes and the LC
resonance modes. The parameters used are for demonstration only and are
not aligned with any real system.

Pm PeP12

Figure 8.11: Two-mass rotor shaft.

If we assume that the mechanical system has two masses as shown in
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Figure 8.11, then the overall block diagram for the two-mass system is shown
in Figure 8.12.

Figure 8.12: Two-mass rotor shaft block diagram.

∆δ1 =
1

2H1s+D1

ω0

s
(K12(∆δ2 −∆δ1)−∆Pe) (8.53a)

∆δ2 =
1

2H2s+D2

ω0

s
(∆Pm −K12(∆δ2 −∆δ1)) (8.53b)

where Hi and Di are the inertia and damping coefficient related to ith mass
in the rotor. P12 is the power related to the angle displacement of the two
rotor masses, ∆P12 = K12(∆δ2 −∆δ1)), K12 is a coefficient.

Adding the two equations after multiplying (2H1s + D1) to both sides
of (8.53a) and multiplying (2H2s+D2) to both sides of (8.53b) leads to

(2H1s+D1)∆δ1 + (2H2s+D2)∆δ2 =
ω0

s
(∆Pm −∆Pe).

Therefore the expression of ∆δ2 can be expressed in terms of ∆δ1, ∆Pm
and ∆Pe.

∆δ2 =
1

2H2s+D2

(ω0

s
(∆Pm −∆Pe)− (2H1s+D1)

)
. (8.54)

Substituting ∆δ2 by (8.54) in (8.53a) leads to the transfer function ma-
trix from [∆Pm,∆Pe]

T to ∆δ2.
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∆δ1 =
[
G1 −G2

] [∆Pm
∆Pe

]
(8.55)

where G1 =
ω0K12

D(s)

G2 =
ω0K12 + s(2H2s+D2))

D(s)

D(s)= s
(
s (2H1s+D1)(2H2s+D2)

ω0
+K12(2H1s+D1 + 2H2s+D2)

)
The poles and zeros of G2 are shown in Figure 8.13. As a comparison,

the transfer function for a one-mass mechanical system ω0
s(2H1s+D1) has two

poles on the real-axis: 0, and − D1
2H1

. We can see that compared to the one-
mass system, the two-mass system introduced a pair of additional complex
conjugate poles and a pair of complex conjugate zeros.

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
-100
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100
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Real Axis (seconds-1)

sdnoces( six
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mI
-1

)

x

x

x x

Additional poles and zeros 
due to two masses

Figure 8.13: Poles and zeros of G2.

8.3.2 Small-signal model for complex power for an RLC cir-
cuit

The above paragraph gives the transfer function related ∆Pe to ∆δ1 in the
mechanical system. The subscript 1 will be dropped for δ1 in the following
paragraphs. Next, we seek the relationship from ∆δ to ∆Pe of the electric
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network. The transfer function is notated as J . The closed-loop system is
shown as Figure 8.14.

G1

G2

J

∆Pm

∆Pe ∆d +

-

Figure 8.14: System block diagram.

If we know J , we can judge system stability using the loop gain JG2.
The closed-loop system poles are located at the root loci when the gain is
1. J will be found by examining the complex power expression for the RLC
circuit in Figure 8.15.

Figure 8.15: An RLC circuit.

In the synchronous rotating reference frame, the complex vectors of the
generator internal voltage and the grid voltage are as follows.

Ē = E∠δ, V̄∞ = V∞∠0 (8.56)

where V∞ is assumed to be constant.

The electromagnetic dynamics of the line will not be ignored. Therefore,
in Laplace domain, the current and voltage relationship in the dq reference
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frame is

Ī(s) =
Ē(s)− V̄∞(s)

R+ (s+ jω1)L+ 1
(s+jω1)C

(8.57)

∆Ī(s) =
∆Ē(s)

R+ (s+ jω1)L+ 1
(s+jω1)C

(8.58)

Note that the line impedance model in abc reference frame is R+ sL+ 1
sC ,

while in a synchronous reference frame it becomes R+(s+jω1)L+ 1
(s+jω1)C ,

where ω1 is the fundamental component’s frequency.
We replace s of a transfer function based on the static reference frame

by s + jω1. The resulting transfer function is based on the synchronous
reference frame rotating at ω1. This relationship is explained as follows.

A space vector and a complex vector based on the synchronous reference
frame have the following relationship:

−→
f (t) = F (t)ej(ω1t+θ0), (8.59)

where θ0 is the initial angle between the rotating reference frame and the
static reference frame when t = 0.

In a frequency domain, then the relationship between their corresponding
Laplace transforms is:

−→
f (s) = F (s− jω1). (8.60)

This is the same as:

−→
f (s+ jω1) = F (s). (8.61)

Therefore, if we know a transfer function’s expression in the static frame,
to find its expression in a rotating reference frame, we just need to replace
s by s+ jω where ω is the rotating reference frame’s speed.

Since the complex power from the generator can be expressed as S =
ĒĪ∗, its small-signal expression will be:

∆S = Ē∆Ī∗ + Ī∗∆Ē (8.62)

The above derivation is not trivial. Small-signal expression has the fol-
lowing basic assumption. At steady-state, the values of the variables should
be constant. If instantaneous voltages and currents are used, e.g., vabc and
iabc, we can not derive small-signal expressions for ∆vabc or ∆iabc since at
steady-state the voltages and currents are periodic.
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Therefore, it is critical to express the complex power by voltages and
currents in the dq reference frame. At steady-state, voltages and currents in
dq reference frames are constants.

Substituting ∆Ī(s) in the above equation by (8.58), also considering that
∆Ē = Eejδj∆δ = jĒ∆δ, we have

∆Ē∗ = −jĒ∗∆δ (8.63)

∆S = Ē
∆Ē∗

Z∗
+ ∆ĒĪ∗ (8.64)

=

(
−jE

2

Z∗
+ jĒĪ∗

)
∆δ (8.65)

=

(
−jE

2

Z∗
+ j(Pe + jQe)

)
∆δ (8.66)

where Z = R+ (s+ jω1)L+ 1
(s+jω1)C .

Let G = 1
Z∗ = GR + jGI , we then have

∆S = [−jE2(GR + jGI) + j(Pe + jQe)]∆δ (8.67)

∆Pe = (GIE
2 −Qe)∆δ (8.68)

We find the transfer function from ∆δ to ∆Pe due to the electric network
J as the following.

J = GIE
2 −Qe (8.69)

where

GI =
ω1C(s2 + ω2

1)(L2(s2 + ω2
1)− 1)

(C(R+ sL)(s2 + ω2
1) + s)2 + ω2

1(1− LC(s2 + ω2
1))2

(8.70)

If Qe = 0 and E = 1, then J = GI . J has two pairs of complex conjugate
poles and one pair of complex conjugate zeros.

8.3.3 Stability analysis

It is obvious that the poles and zeros are dependent on the value of C or the
series compensation degree. Figure 8.16 shows the poles and zeros related
to J as well as the poles and zeros related to G2. With the compensation
degree increasing, the poles and zeros of J move closer to the original point.

Figure 8.16 shows the root loci of the loop gain JG2. It can be seen
that when the compensation degree is 80%, the closed-loop system loses
stability since when the gain is 0.526, two root loci move to the RHP. This
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Figure 8.16: Torsional interaction due to a high series compensation. The
root loci of JG2 are plotted. It can be seen that when the compensation
degree is 80%, the closed-loop system loses stability since when the gain is
0.526, two root loci move to the right-half-plane.

indicates instability at 80% compensation degree. If the mechanical system
is modeled by a one-mass system, instability will not happen. Thus, this
instability is termed the torsional interaction of the mechanical system with
the RLC circuit.

Step responses of 1/(1 +JG2) at three compensation levels are shown in
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Figure 8.17. It can be seen that at 20% and 70%, the system is stable, while
at the 80% compensation level, the system loses stability. The oscillation
frequency is about 2 Hz. The close-loop system roots can be found when
k = 1 from the root loci plot in Fig 8.16. The corresponding roots are
0.812 ± j12. The imaginary part corresponds to an oscillation frequency
of 12

2π = 1.91 Hz. The analysis based on root loci corroborates the linear
system simulation results.
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Figure 8.17: Torsional interaction at 80% compensation degree.
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