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Progress in Theoretical Chemistry and Physics
A series reporting advances in theoretical molecular and material
sciences, including theoretical, mathematical and computational

chemistry, physical chemistry and chemicalphysics

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment: theory is
used to interpret experimental results and may suggest new experiments; experiment
helps to test theoretical predictions and may lead to improved theories. Theoretical
Chemistry (including Physical Chemistry and Chemical Physics) provides the concep-
tual and technical background and apparatus for the rationalisation of phenomena in the
chemical sciences. It is, therefore, a wide ranging subject, reflecting the diversity of
molecular and related species and processes arising in chemical systems. The book
series Progress in Theoretical Chemistry and Physics aims to report advances in
methods and applications in this extended domain. It will comprise monographs as well
as collections of papers on particular themes, which may arise from proceedings of
symposia or invited papers on specific topics as well as initiatives from authors or
translations.

The basic theories of physics – classical mechanics and electromagnetism, relativity
theory, quantum mechanics, statistical mechanics, quantum electrodynamics – support
the theoretical apparatus which is used in molecular sciences. Quantum mechanics
plays a particular role in theoretical chemistry, providing the basis for the valence
theories which allow to interpret the structure of molecules and for the spectroscopic
models employed in the determination of structural information from spectral patterns.
Indeed, Quantum Chemistry often appears synonymous with Theoretical Chemistry: it
will, therefore, constitute a major part of this book series. However, the scope of the
series will also include other areas of theoretical chemistry, such as mathematical
chemistry (which involves the use of algebra and topology in the analysis of molecular
structures and reactions); molecular mechanics, molecular dynamics and chemical
thermodynamics, which play an important role in rationalizing the geometric and
electronic structures of molecular assemblies and polymers, clusters and crystals;
surface, interface, solvent and solid-state effects; excited-state dynamics, reactive
collisions, and chemical reactions.

Recent decades have seen the emergence of a novel approach to scientific research,
based on the exploitation of fast electronic digital computers. Computation provides a
method of investigation which transcends the traditional division between theory and
experiment. Computer-assisted simulation and design may afford a solution to complex
problems which would otherwise be intractable to theoretical analysis, and may also
provide a viable alternative to difficult or costly laboratory experiments. Though
stemming from Theoretical Chemistry, Computational Chemistry is a field of research
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in its own right, which can help to test theoretical predictions and may also suggest
improved theories. 

The field of theoretical molecular sciences ranges from fundamental physical
questions relevant to the molecular concept, through the statics and dynamics of
isolated molecules, aggregates and materials, molecular properties and interactions, and 
the role of molecules in the biological sciences. Therefore, it involves the physical basis
for geometric and electronic structure, states of aggregation, physical and chemical 
transformations, thermodynamic and kinetic properties, as well as unusual properties 
such as extreme flexibility or strong relativistic or quantum-field effects, extreme 
conditions such as intense radiation fields or interaction with the continuum, and the 
specificity of biochemical reactions. 

Theoretical chemistry has an applied branch – a part of molecular engineering, 
which involves the investigation of structure–property relationships aiming at the 
design, synthesis and application of molecules and materials endowed with specific 
functions, now in demand in such areas as molecular electronics, drug design or genetic
engineering. Relevant properties include conductivity (normal, semi- and supra-),
magnetism (ferro- or ferri-), optoelectronic effects (involving nonlinear response), 
photochromism and photoreactivity, radiation and thermal resistance, molecular recog-
nition and information processing, and biological and pharmaceutical activities, as well 
as properties favouring self-assembling mechanisms and combination properties needed 
in multifunctional systems. 

Progress in Theoretical Chemistry and Physics is made at different rates in these 
various research fields. The aim of this book series is to provide timely and in-depth
coverage of selected topics and broad-ranging yet detailed analysis of contemporary 
theories and their applications. The series will be of primary interest to those whose 
research is directly concerned with the development and application of theoretical 
approaches in the chemical sciences. It will provide up-to-date reports on theoretical 
methods for the chemist, thermodynamician or spectroscopist, the atomic, molecular or 
cluster physicist, and the biochemist or molecular biologist who wish to employ 
techniques developed in theoretical, mathematical or computational chemistry in their 
research programmes. It is also intended to provide the graduate student with a readily 
accessible documentation on various branches of theoretical chemistry, physical chem-
istry and chemical physics. 
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Preface

This book is meant to provide a window on the rapidly growing body of 
theoretical studies of condensed phase chemistry. A brief perusal of physical 
chemistry journals in the early to mid 1980’s will find a large number of theoret-
ical papers devoted to 3-body gas phase chemical reaction dynamics. The recent 
history of theoretical chemistry has seen an explosion of progress in the develop-
ment of methods to study similar properties of systems with Avogadro’s number 
of particles. While the physical properties of condensed phase systems have long 
been principle targets of statistical mechanics, microscopic dynamic theories that 
start from detailed interaction potentials and build to first principles predictions 
of properties are now maturing at an extraordinary rate. The techniques in use
range from classical studies of new Generalized Langevin Equations, semiclas-
sical studies for non-adiabatic chemical reactions in condensed phase, mixed 
quantum classical studies of biological systems, to fully quantum studies of mod-
els of condensed phase environments. These techniques have become sufficiently 
sophisticated, that theoretical prediction of behavior in actual condensed phase 
environments is now possible. and in some cases, theory is driving development 
in experiment. 

The authors and chapters in this book have been chosen to represent a wide 
variety in the current approaches to the theoretical chemistry of condensed phase

versity of the work always seems to frustrate entirely consistent grouping. The
final choice begins the book with the more methodological chapters, and pro-
ceeds to greater emphasis on application to actual chemical systems as the book
progresses. Almost all the chapters, however, make reference to both basic theo-
retical developments, and to application to real life systems. It has been exactly 
this close interaction between methodology development and application which 
has characterized progress in this field and made its evolution so exciting.

New York, June 2000 

Steven D Schwartz 

xi

systems.  I have attempted a number of groupings of the chapters, but the di-
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Chapter 1

CLASSICAL AND QUANTUM RATE THEORY FOR CONDENSED
PHASES

Eli Pollak

Chemical Physics Department, 
Weizmann Institute of Science, 
76100, Rehovot, Israel
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2. The Hamiltonian representation of the GLE 

3. The parabolic barrier GLE

III. Variational rate theory 

1. The rate constant 

2. The reactive flux method

3. The Rayleigh quotient method 
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IV. Turnover theory 

1. Classical mechanics 

2. Semiclassical turnover theory. 

3. Turnover theory for activated surface diffusion. 

V. Quantum rate theory 

1. Real time methods 
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3. Centroid transition state theory 

4. Quantum transition state theory 

5. Semiclassical rate theory 

1
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@ 2000 Kluwer Academic Publishers. Printed in the Netherlands. 



2 E. Pollak

I. INTRODUCTION

Rate processes1 are ubiquitous in chemistry, and include a large variety of 
physical phenomena which havemotivated the writing of textbooks,1–4 reviews5–7

and special journal issues.8,9 The phenomena include among others, bimolecular 
exchange reactions,10,11 unimolecular isomerizations,12,13 electron transfer pro-
cesses,14 molecular rotation in solids,15 and surface and bulk diffusion of atoms 
and molecules.16,17 Experimental advances have succeeded in recent years in 
providing new insight into the dynamics of these varied processes. Picosecond18

and femtosecond19 spectroscopy allows probing of rate processes in real time. 
Field ion20–22 and scanning tunneling microscopy23,24 are giving intimate pic-
tures of particle diffusion on surfaces. Isomerization rate constants have been 
determined for a variety of solvents over large ranges of solvent pressure.12,25–28

The availability of high speed computers has led to significant advances in the 
theory of activated rate processes. It is routinely possible to run relatively large 
molecular dynamics programs to obtain information on the classical dynamics 
of reactions in condensed phases.5,29,30 Sampling techniques are continuously 
being improved to facilitate computations of increasing accuracy on ever larger 
systems.31,32 It is also becoming possible to obtain quantum thermodynamic 
information for rather large scale simulations.33,34 Sophisticated semiclassical 
approaches have been extended and developed to enable the simulation of electron 
transfer and nonadiabatic processes in solution.35,36 Very recently it has become 
possible to obtain numerically exact quantum dynamics for model dissipative 
systems.37,38

These experimental and numerical developments have posed a challenge to 
the theorist. Given the complexity of the phenomena involved, is it still possible 
to present a theory which provides the necessary concepts and insight needed for 
understanding rate processes in condensed phases? Although classical molecular 
dynamics computations are almost routine, real time quantum molecular dynam-
ics are still largely computationally inaccessible. Are there alternatives? Do we 
understand quantum effects in rate theory? These are the topics of this review 
article.

The standard ‘language’ used to describe rate phenomena in condensed phases 
has evolved from Kramers’ one dimensional model of a particle moving on a one 
dimensional potential, feeling a random and a related friction force.39 In Section 
II, we will review the classical Generalized Langevin Equation (GLE) underlying 
Kramers model and its application to condensed phase systems. The GLE has an 
equivalent Hamiltonian representation in terms of a particle which is bilinearly 
coupled to a harmonic bath.40 The Hamiltonian representation, also reviewed in 
Section II is the basis for a quantum representation of rate processes in condensed 
phases.41 It has also been very useful in obtaining solutions to the classical GLE. 
Variational estimates for the classical reaction rate are described in Section III. 
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These include the Rayleigh quotient method42–45 and variational transition state 
theory (VTST).46–49 The so called PGH turnover theory50 and its semiclassical 
analog,7,51 which presents an explicit expression for the rate of reaction for almost 
arbitrary values of the friction function is reviewed in Section IV. Quantum rate 
theories are discussed in Section V and the review ends with a Discussion of 
some open questions and problems. 

II. THE GLE AS A PARADIGM OF CONDENSED PHASE 
SYSTEMS

II.1 THE GLE 

In Kramers’39 classical one dimensional model, a particle (with mass m) is 
subjected to a potential force, a frictional force and a related random force. The 
classical equation of motion of the particle is the Generalized Langevin Equation 
(GLE):

(1)

The standard interpretation of this equation is that the particle is moving on the
potential of mean force w( q), where q is the ‘reaction coordinate’. In a numerical
simulation, where the full interaction potential is V( q , x ), ( x denotes all the ‘bath’
degrees of freedom) it is not too difficult to compute the potential of mean force,
defined as: 

(2)

The Tr operation denotes a classical integration over all coordinates. A part from 
the mean potential, the particle also feels a random force 
which is due to all the bath degrees of freedom. This random force has zero 
mean, and one can compute its autocorrelation function. The mapping of the true 
dynamics onto the GLE is then completed by assuming that the random force 
ξ(t) is Gaussian and its autocorrelation function is

where b ≡ 1

Numerical algorithms for solving the GLE are readily available. Only recently, 
Hershkovitz has developed a fast and efficient 4th order Runge-Kutta algorithm.52

Memory friction does not present any special problem, especially when expanded 
in terms of exponentials, since then the GLE can be represented as a finite set of 
memory-less coupled Langevin equations.53–57 Alternatively (see also the next 
subsection), one can represent the GLE in terms of its Hamiltonian equivalent 
and use a suitable discretization such that the problem becomes equivalent to that 
of motion of the reaction coordinate coupled to a finite discrete bath of harmonic 
oscillators.38,58
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The dynamics of the GLE has been compared to the numerically exact molec-
ular dynamics of realistic systems by a number of authors.59–61 In most cases, one 
finds that the GLE gives a reasonable representation, although ambiguities exist. 
For example, as described above, the random force is computed at a ‘clamped’ 
value of the reaction coordinate q. Changing the value of q would lead in prin-
ciple to a different ‘random force’ and thus a different GLE representation of 
the dynamics. Usually, the clamped value is chosen to be the barrier tog of the 
potential of mean force.59,60 Since the dynamics of rate processes is usually 
determined by the vicinity of the barrier top7,39 and since the ‘random force’ 
does not vary too rapidly with a change in q, the resulting dynamics of the GLE 
provides a ‘good’ model for the exact dynamics. 

The GLE may be generalized to include space and time dependent friction and 
then this coordinate dependence is naturally included. Such a generalization has 
been considered by a number of author57,62–68 and most recently by Antoniou and 
Swhwartz69 who found in a numerical simulation of proton transfer that the space 
dependence of the friction can lead to considerable changes in the magnitude 
of the rate of reaction. The GLE can also be generalized to include irreversible 
effects in the form of an additional irreversible time dependence of the random 
force.70, 71 

A further generalization is to write down a multi-dimensional GLE, in which 
the system is described in terms of a finite number of degrees of freedom, each 
of which feels a frictional and random force. For example, an atom diffusing on 
a surface, moves in three degrees of freedom, two in the plane of the surface and 
a third which is perpendicular to the surface. Each of these degrees of freedom 
feels a phonon friction. Multi-dimensional generalizations and considerations 
may be found in Refs. 72–82. 

II.2 THE HAMILTONIAN REPRESENTATION OF THE GLE 

As shown by Zwanzig40 the GLE, Eq. 1, may be derived from a Hamiltonian 
in which the reaction coordinate q is coupled bilinearly to a harmonic bath: 

(3)

The j-th harmonic bath mode is characterized by the mass mj, coordinate xj ,
momentum pxj and frequency ωj. The exact equation of motion for each of the
bath oscillators is mjxj

..
+ mjω2

j xj = cj q and has the form of a forced harmonic
oscillator equation of motion. It may be solved in terms of the time dependence 
of the reaction coordinate and the initial value of the oscillator coordinate and
momentum. This solution is then placed into the exact equation of motion for the 
reaction coordinate and after an integration by parts, one obtains a GLE whose 
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form is identical to that of Eq. 1 with the following identification: 

and

(4)

(5)

The continuum limit of the Hamiltonian representation is obtained as follows. 
One notes that if the friction function γ(t) appearing in the GLE is a periodic
function with period τ then Eq. 4 is just the cosine Fourier expansion of the
friction function. The frequencies ωj are integer multiples of the fundamental
frequency 2π

τ and the coefficients cj are the Fourier expansion coefficients. In
practice, the friction function γ(t) appearing in the GLE is a decaying function. It 
may be used to construct the periodic function
nτ)θ[(n+ 1)τ–t] where θ(x) is the Heaviside function. When the period τ goes
to ∞ one regains the continuum limit. In a numerical discretization of the GLE
care must be taken not to extend the dynamics beyond the chosen value of the
period t. Beyond this time, one is following the dynamics of a system which is 
different from the continuum GLE. 

For analytic purposes, it is useful to define a spectral density of the bath modes 
coupled to the reaction coordinate in a given frequency range: 

(6)

The friction function (Eq. 4) is then the cosine Fourier transform of the spectral 
density.

II.3 THE PARABOLIC BARRIER GLE

If the potential of mean force is parabolic (w (q) = - 1_
2
mω‡2q2) then the GLE 

(Eq. 1) may be solved using Laplace transforms. Denoting the Laplace transform 
of a function f(t) as (s) ≡ ∫∞

0 dte _st f(t), taking the Laplace transform of the 
GLE and averaging over realizations of the random force (whose mean is 0) one
finds that the time dependence of the mean position and velocity is determined 
by the roots of the Kramers-Grote-Hynes equation39,83

= w‡2 (7)

We will denote the positive solution of this equation as λ‡. As shown in Refs.
39,83,84 one may consider the parabolic barrier problem in terms of a Fokker-
Planck equation, whose solution is known analytically. One may then obtain 
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the time dependent probability distribution, and estimate the mean first passage 
time84 to obtain the rate. The phase space structure of the parabolic barrier 
problem has been considered in some detail in Ref. 85 and reviewed in Ref. 86. 

A complementary approach to the parabolic barrier problem is obtained by 
considering the Hamiltonian equivalent representation of the GLE. If the potential 
is parabolic, then the Hamiltonian may be diagonalized49,87,88 using a normal
mode transformation.89 One rewrites the Hamiltonian using mass weighted 
coordinates q An orthogonal transformation matrix U88

diagonalizes the parabolic barrier Hamiltonian such that it has one single negative 
eigenvalue – λ‡2

and positive eigenvalues λ2
j; j = 1, ..., N, ... with associated

coordinates and momenta ρ, pρ, y j , pyj ; j = 1, ... , N, .. .:

(8)

There is a one to one correspondence between the unperturbed frequencies 
ω‡ , ωj;j = 1, ..., N, ... appearing in the Hamiltonian equivalent of the GLE 
(Eq. 3) and the normal mode frequencies. The diagonalization of the potential
has been carried out explicitly in Refs. 88,90,91. One finds that the unstable 
mode frequency λ‡ is the positive solution of the Kramers-Grote Hynes (KGH) 
equation (7). This identifies the solution of the KGH equation as a physical 
barrier frequency. 

The normal mode transformation implies that q = u00p + Σj uj0yj and that
p = u00q + Σj uojx j. One can show,50,88 that the matrix element u00 may be 
expressed in terms of the Laplace transform of the time dependent friction and 
the barrier frequency λ‡:

(9)

The spectral density of the normal modes I(λ)51 is defined in analogy to the

It
is related to the spectral density J(ω):
spectral density J(ω) (cf. Eq. 6) as I(λ)

(10)

The dynamics of the normal mode Hamiltonian is trivial, each stable mode 
evolves separately as a harmonic oscillator while the unstable mode evolves as a 
parabolic barrier. To find the time dependence of any function in the system phase 
space (q,pq) all one needs to do is rewrite the system phase space variables in
terms of the normal modes and then average over the relevant thermal distribution. 
The continuum limit is introduced through use of the spectral density of the 
normal modes. The relationship between this microscopic view of the evolution 
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of a dissipative parabolic barrier and the solution via a Fokker-Planck equation 
for the time evolution of the probability density in phase space has been worked 
out in Ref. 92 and reviewed in some detail in Ref. 49. 

III. VARIATIONAL RATE THEORY 

III.1 THE RATE CONSTANT 

The “chemist’s view” of a reaction is phenomenological. One assumes the 
existence of reactants, labeled a and products labeled b. The time evolution of 
normalized reactant (na) and product (nb) populations, na(t) + nb(t) = 1, is 
described by the coupled set of master equations: 

(11)

where the rates Γa and Γb are the decay rates for the reactant and product channels
respectively. Detailed balance implies that the forward and backward rates are 
related as In a typical experiment, one follows the time 
evolution of the population of reactants and products and describes it in terms of 
the rate constants Γa , Γb . It is then the job of the theorist to predict or explain
these rate constants. 

In a realistic simulation, one initiates trajectories from the reactant well, which 
are thermally distributed and follows the evolution in time of the population. If the 
phenomenological master equations are correct, then one may readily extract the 
rate constants from this time evolution. This procedure has been implemented 
successfully for example, in Refs. 93,94. Alternatively, one can compute the 
mean first passage time for all trajectories initiated at reactants and thus obtain 
the rate, cf. Ref. 95. 

If the dynamics is described in terms of a GLE, then one can adapt a more for-
mal approach to the problem. By expanding the time dependent friction in a series 
of exponentials, one may rewrite the dynamics in terms of a multi-dimensional
Fokker-Planck equation for the evolution of the probability distribution function 
in phase space. This Fokker-Planck equation has a ‘trivial’ stationary solution, 
the equilibrium distribution, associated with a zero eigenvalue. Assuming that 
the spectrum of eigenvalues of the Fokker-Planck equation is discrete and that 
there is a ‘large’ separation between the lowest nonzero eigenvalue and all other 
eigenvalues, then at long times the distribution function will relax to equilibrium 
exponentially, with a rate which is equivalent to this lowest nonzero eigenvalue. 
Instead of following the time dependent evolution, one then may solve directly, 
as also described below, for this lowest nonzero eigenvalue. 

Will these two different approaches give the same result? Usually yes, or in 
more rigorous terms, differences between them will be of the order of e–βV‡
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where     is the energy difference between the relevant well and the barrier to 
reaction. If the temperature is sufficiently low, or equivalently the reduced barrier
height sufficiently large (βV‡ >≈ 5) then the differences are negligible. For lower
barriers, ambiguities arise and one must treat the system with care. For example,
in the Fokker-Planck equation one may put reflecting boundary conditions or
absorbing boundary conditions. The difference between the two shows up as
exponentially small terms of the order of e_βV‡

.    If the reduced barrier height
is sufficiently low, one gets noticeable differences and the decision as to which
boundary condition to use, is dependent the specifics of the problem being
studied. A careful analysis of the relationship between the phenomenological
rate constant and the lowest nonzero eigenvalue of the Fokker-Planck equation
has been give in Ref. 96.

From a practical point of view, integrating trajectories for times which are of the
order of eβV‡ is very expensive. When the reduced barrier height is sufficiently 
large, then solution of the Fokker-Planck equation also becomes numerically very
difficult. It is for this reason, that the reactive flux method, described below has
become an invaluable computational tool.

III.2 THE REACTIVE FLUX METHOD

The major advantage of the reactive flux method is that it enables one to initiate
trajectories at the barrier top. instead of at reactants or products. Computer time
is not wasted by waiting for the particle to escape from the well to the barrier. The
method is based on the validity of Onsager’s regression hypothesis,97 98 which
assures that fluctuations about the equilibrium state decay on the average with the
same rate as macroscopic deviations from equilibrium. It is sufficient to know the 
decay rate of equilibrium correlation functions. There isn’t any need to determine
the decay rate of the macroscopic population as in the previous subsection.

The relevant correlation function in our case is related to population fluctu-
ations. Reactants, labeled a, are defined by the region q < q‡ and products, 
labeled b, are defined by the region q > q‡ Following the discussion in Ref.
7, one defines the characteristic function of reactants θa (q) =θ (q‡ - q) and 
products θb (q) = θ(q - q‡) where is the Heaviside function. At equilibrium
〈θa〉 ≡ θa,eq and similarly 〈θb〉 ≡ θb,eq.

After a short induction time, the correlation of the fluctuation in population 
δθi ≡ θi,eq, i = a, b decays with the same rate as the population itself,
such that (for t > t′ ):

, i = a,b. (12)=
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Taking the time deravitive of Eq.12 with respect to t and setting t′ = 0 finds 
that the reactive flux obeys:

(13)

Due to the high barrier, it is safe to assume that the induction time is much shorter
(by a factor of e-βv‡ ) than the reaction time (1/Γ)  so that the time dependence 
on the right hand side of Eq. 13 may be ignored. Then, noting that the derivative
of a step function is a Dirac delta function, and using detailed balance one finds
the desired formula:

(14)

In this central result the choice of the point q (0) is arbitrary. This means that at
time t = 0 one can initiate trajectories anywhere and after a short induction time
the reactive flux will reach a plateau value, which relaxes exponentially, but at
a very slow rate, It is this independence on the initial location which makes the
reactive flux method an important numerical tool.

In the very short time limit, q (t) will be in the reactants region if its velocity at
time t = 0 is negative. Therefore the zero time limit of the reactive flux expression 
is just the one dimensional transition state theory estimate for the rate. This means
that if one wants to study corrections to TST, all one needs to do numerically is
compute the transmission coefficient K defined as the ratio of the numerator of Eq.
14 and its zero time limit. The reactive flux transmission coefficient is then just
the plateau value of the average of a unidirectional thermal flux. Numerically it
may be actually easier to compute the transmission coefficient than the magnitude
of the one dimensional TST rate. Further refinements of the reactive flux method
have been devised recently in Refs. 31,32 these allow for even more efficient
determination of the reaction rate.

To summarize, the reactive flux method is a great help but it is predicated on
a time scale separation, which results from the fact that the reaction   time (1/Γ) 
is very long compared to all other times. This time scale separation is valid,
only if the reduced barrier height is large. In this limit, the reactive flux method, 
the population decay method and the lowest nonzero eigenvalue of the Fokker-
Planck equation all give the same result up to exponentially small corrections
of the order of e-βv‡ For small reduced barriers, there may be noticeable 
differences99 between the different definitions and as already mentioned each
case must be handled with care. 

III.3 THE RAYLEIGH QUOTIENT METHOD 

If the dynamics may be represented in terms of a GLE then usually, it can 
also be represented in terms of a multi-dimensional Fokker-Planck equation. As 
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already mentioned, if the reduced barrier is large enough, then the phenomeno-
logical rate is also given by the lowest nonzero eigenvalue of the Fokker-Planck
operator. The Rayleigh quotient method provides a variational route for deter- 
mining this eigenvalue. Since detailed balance is obeyed, the zero eigenvalue 
of the Fokker-Planck operator L is associated with the equilibrium distribution, 
such that LPeq = 0. The equilibrium distribution is invariant under time reversal
(denoted by a tilde). The time reversed distribution is obtained by reversing the
signs of all momenta. 

It is also useful to define the transformed operator L* whose operation on a 
function f is L*f This operator coincides with the time reversed
backward operator, further details on these relationships may be found in Refs. 
43,44. L* operates in the Hilbert space of phase space functions which have
finite second moments with respect to the equilibrium distribution. The scalar
product of two functions in this space is defined as (f, g) = 〈fg〉eq. It is the 
phase space integrated product of the two functions, weighted by the equilibrium 
distribution Peq. The operator L* is not Hermitian, its spectrum is in principle 
complex, contained in the left half of the complex plane.

The Rayleigh quotient with respect to a function h is defined as: 

(15)

If h is an eigenfunction, then µ is an eigenvalue. Importantly, just as in the 
usual Ritz method for Hermitian operators, one finds that iff is an approximate 
eigenfunction such that the exact eigenfunction is h = f +δf  then the error in 
the estimate of the eigenvalue obtained by inserting f into the Rayleigh quotient, 
will be second order in δf It is this variational property that makes the Rayleigh 
quotient method useful. Only, if the operator L* is Hermitian, will the Rayleigh 
quotient give also an upper bound to the lowest nonzero eigenvalue. 

As shown by Talkner43 there is a direct connection between the Rayleigh 
quotient method and the reactive flux method. Two conditions must be met. 
The first is that phase space regions of products must be absorbing. In different 
terms, the trial function must decay to zero in the products region. The second
condition is that the reduced barrier height βV‡ >>  1. As already mentioned 
above, differences between the two methods will be of the order e-βV‡

 .
A useful trial variational function is the eigenfunction of the operator L* for 

the parabolic barrier which has the form of an error function. The variational 
parameters are the location of the barrier top and the barrier frequency. The 
parabolic barrier potential corresponds to an infinite barrier height. The derivation 
of finite barrier corrections for cubic and quartic potentials may be found in Refs. 
44,45,100. Finite barrier corrections for two dimensional systems have been 
derived with the aid of the Rayleigh quotient in Ref. 101. Thus far though, the 
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Rayleigh quotient method has been used only in the spatial diffusion limited
regime but not in the energy diffusion limited regime (see the next Section).

III.4 VARIATIONAL TRANSITION STATE THEORY

The fundamental idea underlying classical transition state theory (TST) is due
to Wigner.102 Inspection of the reactive flux expression for the rate (Eq. 15)
shows that an upper bound to the reactive flux may be obtained by replacing
the dynamical factor θi[q(t)] with the condition that the velocity is positive. As 
explained by Wigner, considering only those trajectories with positive velocity,
leads at most to over-counting the reactive flux, since a trajectory which crosses
the dividing surface in the direction of products may return to the dividing
surface. More formally, the product q. (0)θ [q a (t )]≤ q. (0) θ( q (0) ) . If the velocity 
is negative, then the inequality is obvious. If the velocity is positive, then 

.

θ[qa(t)] ≤ 1. Therefore, the TST expression gives an upper bound to the 
reactive flux estimate for the rate.

In a scattering system, the reactive flux is invariant with respect to variation
of the dividing surface, as long as the dividing surface has the property that all
reactive trajectories must cross it. Therefore, one may vary the dividing surface
so as to get a minimal upper bound, this is known as variational TST (VTST).
Reviews of classical VTST may be found in Refs. 46-49,103,104, But when 
applying VTST to condensed phase systems one immediately faces the problem
of defining what is meant by ‘reactive trajectories’. Consider a typical double 
well potential system. Intuitively, a reactive trajectory is one that is initiated in
the reactants well and ends up in the products well. But of course, over an infinite
time period, any trajectory will visit the reactant and product well an infinite
number of times. In contrast to a scattering system, one cannot divide the phase
space into disjoint groups of reactive and unreactive trajectories.

The saving aspect is again a time scale separation. The time a trajectory spends
in a well before escaping is of the order of eβV‡.  If the reduced barrier height is 
sufficiently large, this is a very long time compared to the time a particle spends
when traversing between the two wells. For these shorter times, one can label
trajectories as reactive by the condition that they start out in the reactant well and
end up in the product well. The dividing surface must then have the property
that all these trajectories must cross it. When these conditions hold, the TST
method provides a variational upper bound to the numerator in the reactive flux.
Under the same conditions, a change in the dividing surface will at most lead
to negligible variations in the denominator of Eq. 15 which are of the order of
e-βV‡

. For practical purposes, VTST is thus applicable also to condensed phase 
systems.
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The TST expression102-106 for the escape rate is given by

(16)

The Dirac delta function δ(f) localizes the integration onto the dividing surface 
f = 0. The gradient of the dividing surface is in the full phase space, p is the
generalized velocity vector in phase space with components xj, ) =
1,. . . , N}, and θ(y) is the unit step function which restricts the flux to be in one 
direction only. The term .p is proportional to the velocity perpendicular to the
dividing surface. The numerator is the unidirectional flux and the denominator
is the partition function of reactants.

The choice for the transition state implicit in Kramers’ original paper,39 is the
barrier top along the system coordinate q. The dividing surface takes the form
f = q - q‡ and the rate expression reduces to the so called “one dimensional” 
result

(17)

where the barrier of the potential of mean force w(q) is located at q = q‡.
Kramers,39 Grote and Hynes83 and Hänggi and Mojtabai84 showed that if one

assumes that the spatial diffusion across the top of the barrier is the rate limiting
step, then by approximating the barrier as being parabolic with frequency ω‡,
one finds (see also Eq. 7) that the rate is given by the expression

(18)

The same result may be derived87 from the Hamiltonian equivalent representation 
for the parabolic barrier (see Eq. Since motion is separable along the 
generalized reaction coordinate ρ, TST will be exact (in the parabolic barrier
limit) if one chooses the dividing surface f = p - p‡. Inserting this choice 
into the TST expression for the rate,87 also leads to Eq. 18, thus showing that 
Kramers’ result in the spatial diffusion limited regime is identical to TST albeit, 
using the unstable collective mode for the dividing surface. The prefactor in Eq.
18, is not of dynamical origin but is derived from the equilibrium distribution.

The parabolic barrier result is suggestive. It shows that the best dividing surface
may be considered as a collective mode which is a linear combination of the
system coordinate and all bath modes. A natural generalization of the parabolic 
barrier result would be to choose the dividing surface as a linear combination of 
allcoordinates but to optimize the coefficients even in the presence ofnonlinearity
in the potential of mean force and a space dependent coupling. Such a general
dividing surface is by definition a planar dividing surface in the configuration

8).
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space of the system and the bath since it defines a hyperplane. The general
form of a planar dividing surface is given by f = ao q + aj x j , where the 
coefficients are normalized according to ao2 + a 2

j = 1.
One may now define a potential of mean force w[f] along the generalized

coordinate f as:

(19)

where the length scale Lf is defined as: Lf ≡ ∫dfe −βw[f] and the averaging is
over all coordinates, with the thermal weighting e-βV where the potential V is 
the sum of all potential terms of the Hamiltonian, Eq. 3.

Because the generalized coordinate f is a linear combination of all bath modes
and the potential is quadratic in the bath variables one can express the potential
of mean force w[f] in terms of a single quadrature over the system coordinate

(20)

The collective frequency, A, and the collective coupling parameter, C are given, 
by = and C = + . The TST expression for the rate 
using the planar dividing surface reduces to the result: 

(21)

Optimal planar dividing surface VTST is thus reduced to finding the maximum
of the free energy w[f].

The free energy w[f] must now be varied with respect to the location f as well
as with respect to the transformation coefficients {ao, aj; j = 1,. . . , N}. The
details are given in Ref. 107 and have been reviewed in Ref. 49. The final result 
is that the frequency A and collective coupling parameter C are expressed in
the continuum limit as functions of a generalized barrier frequency λ. One then
remains with a minimization problem for the free energy as a function of two 
variables - the location f and λ. Details on the numerical minimization may be
found in Refs. 68,93. For a parabolic barrier one readily finds that the minimum
is such that f = 0 and that λ = λ‡. In other words, in the parabolic barrier 
limit, optimal planar VTST reduces to the well known Kramers-Grote-Hynes
expression for the rate. 

Optimal planar dividing surface VTST has been used to study the effects of 
exponential time dependent friction in Ref. 93. The major interesting result was 
the prediction of a memory suppression of the rate of reaction which occurs when 
the memory time and the inverse damping time ( 1-γ  ) are of the same order. When 

q:107
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this happens, the time it takes the particle to diffuse over the barrier is similar 
to the memory time and the particle ’feels’ the nonlinearity in the potential of 
mean force. This leads to substantial reduction of the rate relative to the parabolic 
barrier estimate. 

A study of the effects of space and time dependent friction was presented in 
Ref. 68. One finds a substantial reduction of the rate relative to the parabolic 
barrier estimate when the friction is stronger in the well than at the barrier. In all
cases, the effects become smaller as the reduced barrier height becomes larger. 
Comparison with molecular dynamics simulations shows that the optimal planar 
dividing surface estimate for the rate is usually quite accurate. 

A planar dividing surface might seem to lead to divergences in the case of 
a cubic potential of mean force. This question has been dealt with at length in 
Ref. 108. By introducing a kink into the planar dividing surface one can remove 
the divergence. In practice, if the reduced barrier height is sufficiently large 
βV‡ >≈5), the kink has hardly any effect on the location of the barrier or the 
generalized barrier frequency λ. 

A second difficulty has to do with the fact, that strictly speaking, the maximum 
of the free energy is ∞ and this limit is reached when the generalized barrier 
frequency λ = 0.99 In this case, though, the planar surface f is no longer a 
dividing surface, as it is perpendicular to the reaction coordinate q and so does 
not divide between reactive trajectories. In practice, the VTST flux as a function 
of the generalized barrier frequency λ becomes large when λ is large, reaches a 
minimum for some smaller value of λ then increases, reaching a maximum and 
then goes to 0 when λ → 0. As long as the barrier height is sufficiently large 
(βV‡ >≈ 5), the minimum is well defined, and there isn’t any special problem. For 
smaller barrier heights, one may reach a situation in which the only minimum of
the function is found at λ = 0 and in this case, one can no longer use a planar 
dividing surface.99

This does not mean that VTST fails when the barrier is small. The concept 
of a planar dividing surface may lose its meaning, but it is possible to generalize 
VTST using curved dividing surfaces.47, 109, 110 Instead of reducing the problem 
to a single degree of freedom, one may define two degrees of freedom, a col-
lective reaction coordinate and a collective bath mode, both of which are linear 
combinations of all degrees of freedom, but such that the two collective modes 
are perpendicular to each other. One constructs a free energy surface which is 
the mean potential at each point in the configuration space of the two collective 
modes. VTST is then reduced to finding the dividing surface that minimizes the 
flux in this two degrees of freedom system. The solution to this minimization 
problem is a classical trajectory with infinite period which divides the config-
uration space between reactants and products.47,109, 110 This minimization may 
be used also for low barriers and is guaranteed to bound the exact reactive flux 
from above. In Ref. 110 it has been applied to a quartic double well system 
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at βV‡ = 1. Differences between this VTST estimate and the Kramers-Grote-
Hynes factor were not very big. 

Drozdov and Tucker have recently criticized the VTST method111 claiming
that it does not bound the ‘exact’ rate constant. Their argument was that the 
reactive flux method in the low barrier limit, is not identical to the lowest nonzero 
eigenvalue of the corresponding Fokker-Planck operator, hence an upper bound 
to the reactive flux is not an upper bound to the ‘true’ rate. As already discussed 
above, when the barrier is low, the definition of ‘the’ rate becomes problematic. 
All that can be said is that VTST bounds the reactive flux. Whenever the reactive 
flux method fails, VTST will not succeed either. 

VTST is a formalism which enables one to obtain estimates for the rate in 
the presence of non parabolic potentials. It has been used for the cusped barrier 
problem112 and most recently for estimating the rate in bridged systems, where the 
distance between the reactant and product wells is very large.94 There are other 
methods for studying such nonlinear systems. Calef and Wolynes113 suggested
a heuristic method, which generalizes the Kramers-Grote-Hynes expression by 
fitting a temperature dependent barrier frequency so that the partition function of 
the associated parabolic well best mimics the partition function of the inverted 
potential in the barrier region. This procedure is very convenient, since in many 
cases, it leads to simple analytical expressions for the rate, as for example in the 
bridged system.94 Its disadvantage is that it is in reality only an interpolation 
formula, correct in the limit of strong friction and it reduces to the TST expression 
when friction is weak. Berezhkovskii et al114 suggested a different approximate 
solution and applied it to cusp shaped and quartic barriers. Drozdov, improved 
this approximation, so that it also agrees with the parabolic barrier limit.115

VTST has also been applied to systems with two degrees of freedom coupled 
to a dissipative bath.116 Previous results of Berezhkovskii and Zitserman which 
predicted strong deviations from the Kramers-Grote-Hynes expression in the 
presence of anisotropic friction for the two degrees of freedom117-120 were well 
accounted for. Subsequent numerically exact solution of the Fokker-Planck
equation121 further verified these results. 

The main advantage of the VTST method is that it can be applied also to 
realistic simulations of reactions in condensed phases.122 The optimal planar 
coordinate is determined by the matrix of the thermally averaged second deriva-
tives of the potential at the barrier top. VTST has been applied to various models 
of the Cl-+CH3Cl SN2 exchange reaction in water,123,124 a system which was
previously studied extensively by Wilson, Hynes and coworkers.10,11 Excellent
agreement was found between the VTST predictions for the rate constant and the 
numerically exact results based on the reactive flux method. The VTST method 
also allows one to determine the dynamical source of the friction and its range, 
since it identifies a collective mode which has varying contributions from differ-
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ent modes of the composite system and bath. The VTST method for determining
the friction is similar to the local normal modes method developed subsequently 
by Stratt and coworkers. 125

IV. TURNOVER THEORY 

IV.1 CLASSICAL MECHANICS 

When the coupling between the system and the bath is weak, the rate limit-
ing step becomes the diffusion of energy from the thermal bath to the system. 
Transition state theory, using a dividing surface in configuration space grossly
overestimates the rate since it assumes that reactive trajectories are thermally dis-
tributed. In the energy diffusion limited regime, the exchange of energy between 
the particle and the bath is slow, and once the particle has sufficient energy to 
react it does so. The population of reactive particles with energy above the top 
of the barrier is severely depleted relative to the canonical distribution. In this
limit, one must consider the dynamics, a thermal equilibrium theory such as TST
is insufficient (even if one chooses a dividing surface in energy space126,127).

Kramers solved the problem in the underdamped limit but could not find a
uniform formula valid for all damping strengths. In a deep analysis of the Fokker-
Planck equation in phase space, valid when the friction is Ohmic = γ),
Mel’nikov and Meshkov128-129 derived a uniform expression for the rate leading
from the energy diffusion limited expression to the TST expression for the rate
Eq.  17). The Kramers-Grote-Hynes expression for the rate (Eq. 18) is valid 
in the spatial diffusion limited regime and reduces to the same TST expression
when the damping becomes weak. Mel’nikov and Meshkov therefore argued that 
a uniform theory, valid for all friction strengths is obtained by multiplying their
expression with the prefactor (λ‡ / w‡) of the Kramers-Grote-Hynes expression. 
Pollak, Grabert and Hänggi (PGH)50 provided a uniform solution for the rate 
also in the presence of memory friction, and showed why the uniform expression 
really is a product of three terms - a depopulation factor for the energy diffusion 
limited regime, the TST rate expression and the Kramers-Grote-Hynes factor
which accounts for the spatial diffusion limited regime. In the underdamped
limit, the Mel’nikov Meshkov and PGH theories are identical. But even for 
Ohmic friction they are different away from this limit. In the following, we will 
briefly outline the ideas underlying PGH theory and compare whenever necessary 
with the Mel’nikov-Meshkov approach. 

The main difference between the two approaches is that PGH consider the
dynamics in the normal modes coordinate system. At any value of the damping,
if the particle reaches the parabolic barrier with positive momentum in the unstable 
mode p, it will immediately cross it. The same is not true when considering the 
dynamics in the system coordinate for which the motion is not separable even 
in the barrier region, as done by Mel’nikov and Meshkov. In PGH theory the 
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energy diffusion limited regime is not characterized by a small damping constant 
( γ

w-<< 1), but by a weak coupling between the unstable normal mode ρ and the 
other stable modes. 

The potential of mean force may always be written as: 

(22)

where w1(q) is designated as the nonlinearity of the potential of mean force and 
we assumed that the barrier is located at q = 0. The exact equation of motion for
the unstable mode is:

(23)

where we used the notation u iσ ≡  ujoyj and + = 1 (see also Eq. 
9). If uI = 0, the motion of the unstable mode is decoupled from the rest of the 
stable modes. In this limit, the escape rate would be zero since the particle cannot 
escape from the well without receiving the necessary energy from its surrounding. 
The small parameter which identifies the energy diffusion limited regime is thus

For Ohmic friction, since = (1 + it is clear that in the limit 
that g 0; 1 so that 0. In other words, the weak damping limit,
identified as 0 is a special case of the energy diffusion limited regime, 
identified as << 1. In the presence of memory friction, there exist limits such
that uI→ 0 but λ‡ ≠ w‡.50 Claims to the contrary not withstanding,130 using
uI as the perturbation parameter leads therefore to a more general theory for the 
depopulation factor than any theory based on the weak damping limit which is
defined by a small damping constant, defined as ◊(0).

The energy E of the unstable mode is defined as: E = - +
wI(uoop).  When the particle is in the close vicinity of the barrier one may 
ignore the nonlinear part of the potential wI . If the energy E > 0 the particle will 
cross the barrier, if E < 0 it will be reflected. Following Kramers we imagine
injecting particles at a constant rate near the bottom of the well and removing 
them when they reach the adjacent well or the continuum. The system will 
approach a steady state probability W with a constant flux across the barrier. If
the barrier height is sufficiently large with respect to kBT then close to the bottom 
of the well the probability W will be identical to the thermal distribution.

For E < 0, let f(E)dEdt denote the probability to find the system within the 
time interval dt, with a mode energy between E and E + dE at the barrier of the ρ
mode. For a thermal distribution W, near the barrier top feq(E) = 
The rate of transitions out of the well is by definition 

(24)

since all particles reaching the barrier with positive energy in the unstable mode
escape. This is not true for the system coordinate q where the coupling with
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the bath can cause the particle to recross the barrier and is a major difference 
between PGH theory and the Mel’nikov Meshkov approach. The distribution f (E)
is determined by the conditional probability P(E|E′)dE that a system leaving the 
barrier region with energy E′ in the p mode returns to the barrier with an energy 
between E and E + dE. In the steady state,51 one will find that the distribution of
particles f(E) at energy E is related to the distribution at energy E′ by the relation 

(25)

The boundary condition for this integral equation is that deep in the well, equilib-
rium is maintained. If the barrier height is large with respect to kBT, this allows 
one to replace the lower limit of the integration by - ∞.

The dynamics of the energy diffusion process is in the probability kernel. As 
in the theory of Mel’nikov and Meshkov, if the barrier height is large relative
to kBT, the rate determining process occurs only at energies in the vicinity of
the barrier top and so only the structure of the energy kernel around the barrier 
top is important. As detailed in Refs. 49,50 the ensuing probability kernel is a 
Gaussian:

(26)

The important quantity here, is ∆ which is the average energy lost by the unstable 
p mode as it traverses from the barrier to the well and back. The equation of 
motion for the unperturbed unstable mode is + p) = 0 and this defines the
trajectory p(t) which at time ∞  is initiated at the barrier top, moves to the well, 
reaches a turning point and then comes back to the barrier top at the time + ∞.
The force exerted by the unstable mode on the bath comes from the nonlinearity
F(t) ≡ −w1[uoop(t)]. The average energy loss ∆ , to first order in uI is then 
found to be (see also Eq. 10):

′

(27)

For many one dimensional potentials, the infinite period trajectory is known 
analytically so that also the Fourier transformed force is known analytically. 
Finding the energy loss reduces then to a single quadrature. 

At this point, one may solve the integral equation, a detailed description of the 
solution method may be found in Refs. 51,128, here we summarize the result. 
The rate may be factorized into a product of three factors: 

(28)
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The TST rate GTST has already been defined above (Eq. 17), the Kramers-Grote-
Hynes spatial diffusion factor is defined in Eqs. 7 and 18. The depopulation
factor g is found to be:

(29)

When the energy loss is small in comparison to kBT the depopulation factor 
reduces to g ~ bD and one recovers Kramers’ estimate for the rate in the energy
diffusion limit. When the energy loss is large compared to kBT the depopulation
factor approaches unity exponentially fast, g ~ 1-

√
 2 e−β∆ 4  Eq. 28 gives 

an expression which covers all possible damping strengths and thus provides a
uniform solution for the Kramers turnover problem. The result given in Eq. 29 is
correct for a single well potential. For a double well potential in which the energy
loss in each of the two wells is Da , D b, one must revise the integral equation to 
take into consideration the flux returning from each one of the wells. As shown
by Mel’nikov,128, 129 the depopulation factor becomes:

(30)

PGH theory has its limitations.

(a) First order perturbation theory, u2
I << 1.

(b) The energy loss is mainly determined by the dynamics at the barrier energy.
(c) A large reduced barrier height V‡ >> kBT.

When the ‘small’ parameter uI is of the order of unity, the energy loss will typ-
ically become large too. Since the depopulation factor becomes exponentially
insensitive to the energy loss when it is large, it will often be the case,50 that even 
though condition (a) does not hold, the rate expression remains quite accurate.
In the presence of memory friction it may happen that the bottleneck for the
energy diffusion process is at energies substantially lower than the barrier height.
as demonstrated recently by Tucker and coworkers.131,132 In this case PGH
theory must be substantially modified, see for example the discussion in Ref.
127. Finite barrier corrections to the depopulation factor have been discussed
by Mel’nikov.133 In the presence of memory friction, even when the perturba-
tion parameter is small it may happen that the effective barrier for the unstable
mode motion will become very small and this will again cause a breakdown of
PGH theory. This deficiency may be corrected by using a curvilinear reaction
coordinate, as suggested by Reese and Tucker.134

The solution of the integral equation (25) may be also used to obtain infor-
mation on the distribution f (E) of particles hitting the barrier.129 One finds for 
example, that in the underdamped limit, the average energy is <<

The derivation depends on three central 
conditions:

πβ∆ −

 

−−
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in agreement with earlier predictions of Büttiker et al.135 In this limit, reactive 
trajectories with substantial energy above the barrier get depleted and their dis-
tribution is very different from the thermal distribution. More details about the 
distribution may be found in Ref. 136. 

PGH theory has been extended. It can be used in conjunction with VTST 
and optimized planar dividing surfaces,93 in which case, the energy loss is to 
be computed along the coordinate perpendicular to the optimal planar dividing 
surface. In the same vein it has been generalized to include the case of space and 

time dependent friction.68, 137 

In many cases, when the damping is weak there is hardly any difference 
between the unstable mode and the system coordinate, while in the moderate 
damping limit, the depopulation factor rapidly approaches unity. Therefore, 
if the memory time in the friction is not too long , one can replace the more 
complicated (but more accurate) PGH perturbation theory, with a simpler theory 
in which the small parameter is taken to be for each of the bath modes. In 

such a theory, the average energy loss has the much simpler form: 
j

(31)

The expressions for the depopulation factor as given in Eqs. 29 and 30 for the 
single and double well potential cases respectively, remain unchanged. This 
version of the turnover theory for space and time dependent friction has been 
tested successfully against numerical simulation data, in Refs. 68,137. 

Away from very weak damping, the PGH estimate for the energy loss as given 
in Eq. 27 typically gives lower energy losses than the Mel’nikov estimate (Eq.
31). This is caused by the fact that in PGH one is evaluating the energy loss 
from the unstable normal mode which is already affected by the medium. The 
differences show up in the intermediate turnover region, where typically the PGH 
estimate for the rate is lower than the Mel’nikov-Meshkov estimate. Numerical 
simulations indicate that the PGH estimate is in fact more accurate.95

The turnover theory has also been generalized to systems with more than one 
dimension in which the Hamiltonian describing the dynamics of the particle in 
the absence of friction has more than one degree of freedom. The existence 
of two (or more) system modes leads to a much richer physics than in the one 
dimensional case. In the weak damping limit, a critical parameter is the extent 
of coupling between the two modes. If the coupling is stronger than the coupling 
of each mode to the bath, then there will be efficient energy transfer between
the modes and the spectator mode will be able to ‘feed’ energy into the reaction 
coordinate. In such a case, one would expect the two dimensional rate to be 
larger than the one dimensional.138-141 If the intramode coupling is weaker than
the coupling to the baths then one would expect the multi-dimensional dynamics 
to reduce to an effective one dimensional case.140 A complete turnover theory 
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should be able to reduce correctly to all these limits and provide solutions also 
for intermediate regimes. 

The extension of Kramers energy diffusion result to the multi-dimensional
case, when the coupling between the two modes is ‘strong’ was given by 
Matkowsky, Schuss and coworkers, 142, 143 Borkovec and Berne139, 140 and Nitzan.6

The multi-dimensional solution in the spatial diffusion was given by Langer72 for
Ohmic friction and by Nitzan6,141 and Grote and Hynes138 for memory friction. 
In the moderate and strong damping regimes, a critical parameter is the friction 
anisotropy, the ratio of damping strengths in the two modes. Berezhkovskii and 
Zitserman1 17-120 hav e shown that depending on the coupling between the modes 
and the friction anisotropy, one can obtain regimes in which the ‘standard’ Langer 
solution, which is based on a parabolic expansion around the saddle point of the 
multi-dimensional potential energy surface fails. A turnover theory which deals 
uniformly with all these cases has been proposed by Hershkovitz and Pollak77,80

and reviewed in Ref. 49. 

IV.2 SEMICLASSICAL TURNOVER THEORY. 

There are two main ingredients that go into the semiclassical turnover theory, 
which differ from the classical limit.51 In the latter case, a particle which has 
energy E ≥ 0 crosses the barrier while if the energy is lower it is reflected. In a 
semiclassical theory, at any energy E there is a transmission probability T(E) for
the particle to be transmitted through the barrier. The second difference is that the 
bath, which is harmonic, may be treated as a quantum mechanical bath. Within 
first order perturbation theory, the equations of motion for the bath are those of a 
forced oscillator, and so their formally exact quantum solution is known. 

These differences imply that the classical expression for the escape rate Eq. 
24 is replaced by its semiclassical version: 

The integral equation (25) is also modified: 

(32)

(33)

where R(E) = 1 – T(E) is the reflection coefficient. The quantization of the bath
of stable normal modes affects the probability kernel P(E|E´), which is no longer 
Gaussian (see also Eq. 38 below). Although the energy loss remains the same 
as given in Eq. 27, the variance is larger than the classical variance and higher 
order cumulants do not vanish. 

If one uses for the transmission coefficient, the parabolic barrier result 

(34)
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then the solution of the integral equation can be obtained in closed form. The 
resulting expression for the rate is valid only for temperatures such that <
2π, that is for temperatures above the crossover temperature144-148 that separates
between tunneling dominated reaction at low temperatures and activated barrier 
crossing above it. The derivation follows the same path as the solution of the 
classical equation. Details are provided in Ref. 51. The resulting expression for 
the rate now becomes a product of four factors: 

(35)

The quantum thermodynamic factor X is the quantum correction to the Kramers-
Grote-Hynes classical result in the spatial diffusion limited regime, derived by 
Wolynes:149

(36)

where wn, = 2πn
h- β  are the Matsubara frequencies and ωa is the harmonic fre-

quency of the reactants well in the potential of mean force w( q). 
The quantum depopulation factor also differs from the classical and takes the 

form:

(37)

where the Fourier transformed quantum probability kernel is given by the exp 
sion:

:38)

where is the Fourier transform of the force as given in Eq. 27. 
This semiclassical turnover theory differs significantly from the semiclassical 

turnover theory suggested by Mel’nikov,129 who considered the motion along the 
system coordinate, and quantized the original bath modes and did not consider 
the bath of stable normal modes. In addition, Mel’nikov considered only Ohmic 
friction. The turnover theory was tested by Topaler and Makri,38 who compared 
it to exact quantum mechanical computations for a double well potential. Re-
markably, the results of the semiclassical turnover theory were in quantitative 
agreement with the quantum mechanical results. 

The expressions presented above are restricted since we used the parabolic 
barrier transmission probabilities. Extension of the theory to temperatures below 
the crossover temperature may be found in Ref. 136. More sophisticated quantum 
rate theories will be discussed in Section V. 
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TURNOVER THEORY FOR ACTIVATED SURFACE 
DIFFUSION.
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IV.3

Activated diffusion occurs in a variety of different physical contexts, including 
surface diffusion of atoms and molecules,22,24 the current voltage characteristics 
of superconducting devices150 or the rotation of molecules in solids or on sur-
faces.151 Experiments on diffusion on metal surfaces have shown in recent years 
that there is a finite probability that a diffusing atom will hop over more than one 
adjacent site before being retrapped.22,24 The activation energy for multiple hops 
has been found to be larger than the activation energy for single hops.24 There is 
thus experimental impetus for working out a turnover theory for surface diffusion. 
Long hops were observed in a variety of numerical simulations.152-157 The ex-
perimental observations have revived interest in the classical theory of activated 
rate processes,79,81, 156,158-161 and the escape dynamics of a particle moving on 
an infinite periodic potential. 

Activated surface diffusion may be modeled by a one dimensional GLE in 
which the potential of mean force w(q) is a periodic potential, with alternating
barriers and wells. The distance between adjacent wells (the lattice length) is 
denoted lo This problem is richer than the escape problem in a single or a double 
well potential discussed above. Here, beyond the rate of escape from a well ( G),
the particle has a probability Pj of hopping a distance jlo before being retrapped. 
The turnover theory gives explicit expressions for these probabilities as a function 
of the damping strength. From these quantities one obtains the mean squared 
hopping length = and thus the diffusion coefficient which is 
D = .156,162

As in the single and double well case, the starting point for the evaluation of 
the escape rate is an equation for the stationary flux of particles exiting each well 
at either barrier.163 The number of particles per unit energy and per unit time 
hitting the right (left) barrier of the j-th well with positive (negative) velocity 
is denoted by (f +

j ) (f -j ) For simplicity, the transmission probability through the 
barrier is taken as the parabolic barrier result (see Eq. 34) although one may also 
use anharmonic transmission probabilities, as done for example in Ref. 136. The 
reflection symmetry of the potential and the boundary conditions about the 0-th 
well implies that = 

As the particle traverses from one barrier to the next it changes its energy. 
The conditional probability kernel P(E|E´) that the particle changes its energy
from E´ to E is determined by the energy loss parameter d ≡ bD and a quantum 
parameter a ≡   The quantum kernel is as in Eq. 38. The main difference 
between the double and single well cases and the periodic potential arises in the 
steady state equation for the fluxes: 

(39)
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The boundary conditions for the fluxes are: 

(40)

where djo is the Kronecker ‘d’ function, and C is the equilibrium ratio of partition
functions around the barrier and the bottom of the well: (C=2ω

ω
o
‡ sin (π

a )Ξe
see also Eq. 36. 

the difference between the incoming and outgoing fluxes of the j-th well: 
The number of particles per unit time, trapped in the j-th well (Gj), is given by

(41)

The rate of escape G from the 0-th well is G = –Go. The probability of being
trapped at the j-th well is Pj =

The periodicity of the potential implies that one can solve the integral equations 
by Fourier transforms, the details may be found in Ref. 163. The result for the 
partial rates is: 

(42)

where Gsd = ΓTST Ξ λ‡

w‡ is the rate of escape from the 0-th well in the spatial 
diffusion limited regime. The expression for the diffusion coefficient simplifies
considerably because of the infinite summation:

(43)

where Dsd is the diffusion coefficient in the spatial diffusion limit and 
is independent of the energy loss d . The ‘depopulation factor’ gQ is as given in 

Eqs. 42 and 43 provide a uniform expression for the partial rates, the decay 
rate and the diffusion coefficient in terms of the energy loss d , the quantum 
parameter a and the rate expression in the spatial diffusion limit. The mean 
squared traversal distance may be obtained directly from the ratio of the diffusion 
coefficient to the escape rate. 

From an experimental point of view, a quantity of major interest is the hopping 
probability distribution Pj. A major source of friction for surface diffusion of
metal atoms on metal surfaces is phonon friction. As shown in Refs. 164-167,
the typical phonon friction is expected to be Ohmic (although there are claims 

Eq. 37. 

- -βV‡
),

-
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that it is superohmic168,169) and rather weak.167 Since the timescale in which 
metal atom diffusion is measured is typically seconds, the reduced barrier height
for diffusion is usually rather large bV‡ ≥ 15 . Therefore the characteristic 
reduced energy loss found for such systems is 3 ≤ δ ≤ 10 . In this limit of 
weak damping but moderate to large energy loss, the expressions for the hopping
distribution simplify considerably82 and in the classical limit (a → ∞) they 
become exponential in the energy loss d:82,170

(44)

This result has a simple physical interpretation. When the energy loss is large, the 
distribution of escaping particles is thermal. 129 Therefore the fraction of particles 
that start at a barrier top and make it to the adjacent barrier top is given by (the 
barrier energy is 0): 

(45)

where the classical Gaussian probability kernel (Eq. 26) was used. The general-
ization to longer hogs is evident. 

In this exponential hopping limit, the activation energy for a hop length of
(j + 1)lo is larger by kBTδ/4 than the activation energy for a hop whose length 
is jlo. This result is in good agreement with experimental observation for the 
diffusion of Pt on the Pt( 110)-(1 x2) missing row reconstructed surface.24 For this
system, the reduced energy loss varies from 5.8 to 7.4 over the temperature range 
studied experimentally (300-380 K). The absolute magnitude of the energy loss
is estimated to be 0.19 eV leading to an added activation energy of ~ .05 eV for 
double jumps as compared to single jumps. A somewhat different interpretation 
of the added activation energy has been suggested in Ref. 171. 

The exponential hopping limit can be worked out in the presence of tunnel-
ing,172 one then has to add the transmission factor into Eq. 45. The result is that 
the quantum double hopping probability is reduced by the factor cot( < 1 
showing that tunneling and above barrier reflection tend to reduce the multiple 
hopping probability. This reduction, first discovered in Ref. 163 leads to an in-
teresting inverse isotope effect. The diffusion coefficient has two contributions, 
one is the escape rate Γ, the other is the mean squared hopping length 〈l2〉. The 
former is always increased due to tunneling. The latter is always decreased due 
to tunneling and above barrier reflection. The reduction is much larger for weak 
damping ( d << 1) than for strong damping ( d >> 1). The net result is that when 
the energy loss is small, the quantum diffusion coefficient is smaller than the 
classical but for large energy losses, it is larger.

In a typical experiment,22,24,173 one measures the time dependence of the 
spatial probability distribution of the initially localized particle. At long times 
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the evolution is universal, controlled by the diffusion equation and the shape of the 
distribution is Gaussian. At the early stage however, the shape of the distribution 
is sensitive to the hopping distribution. The time dependent distribution is a 
function of only three parameters, the energy loss d, the rate Gsd and the quantum 
parameter a. In contrast to the procedures used by the experimentalists,174-176

where they assume that each Gj is an independent parameter, in the classical limit, 
one should fit the complete time dependent distribution using only d and Gsd as the 
two experimental parameters. All measured time dependent distributions have 
been shown to be described accurately using this two parameter theory. 82, 167,177 

Finally, it should be mentioned that the power of the turnover theory for multiwell 
systems reviewed here has not been yet fully appreciated by the community. For 
example, in Ref.,178

 the authors claim that ’the Mel’nikov method is generally not 
valid in the multiwell case’. These authors use the Onsager-Machlup formalism, 
valid for very weak noise, in which the escape dynamics is described in terms 
of optimal paths for which the friction along the path is minimized.179 This
approach, is of interest in itself, and has not yet been applied systematically to the 
periodic potential problem. However, the Mel’nikov formalism can be applied 
to finite multiwell problems, where for each specific potential one must modify
the integral equation (see Eqs. 25 and 39) according to the structure of the wells
and barriers of the problem at hand.

V. QUANTUM RATE THEORY

V.1 REAL TIME METHODS

A major unsolved problem in theoretical chemistry today is obtaining quantum 
reaction rates in large systems. Large, meaning anywhere between four atoms 
and infinity. The advent of fast computers allows for simulations of force fields 
for systems of ever increasing size. The use of classical mechanics as a tool 
for studying the dynamics is by now a standard procedure. However, the Monte 
Carlo methods which are essential for obtaining numerically exact quantum rates 
have thus far largely eluded the quantum dynamicist. The averaging over a large
number of oscillatory terms, even with today’s computers, does not converge. 
The impressive state of the art computations on dissipative system37,38, 180-185 

remain limited and are not readily generalized to large ‘realistic’ systems.186
 

One way of overcoming these problems is by treating the dissipation approxi-
mately, Whether one uses the Lindblad form187-189 or second order perturbation 
theory,190-193 one can write down quantum dissipative equations of motion which 
are linear in the density. If the system is limited to two or three degrees of freedom, 
one can integrate the resulting equations of motion exactly. This methodology 
has been developed extensively by Kosloff, Tannor and their coworkers194-196

and is today perhaps the most practical tool for understanding the effects of dis-
sipation on quantum processes. The major disadvantage of this methodology is 
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its approximate and phenomenological character, especially when the damping 
is moderate or strong.197

A different way, developed extensively by Schwartz and his coworkers,198, 199 is
to use approximate quantum propagators, based on expansions of the exponential 
operators. These approximations have been tested for a number of systems, 
including comparison with the numerically exact results of Ref. 38 for the rate in 
a double well potential, with satisfying results. 199

Much effort has been expended in recent years in developing semiclassical real 
time methods,200-206 which are based on initial value representations, following 
Herman and Kluk.207 The advantage of the semiclassical approach is that one 
averages only over classical trajectories, however one is still faced with two 
problems. One is that it is necessary to average over amplitudes with varying 
phases and convergence is slow. The second one is that each amplitude is 
weighted by a prefactor which depends on the monodromy matrix. The prefactor 
is prohibitively expensive to compute in large systems. Progress has been made on 
both fronts. Makri and later Miller and their coworkers186,208-212 take advantage 
of the forward-backward time symmetry of quantum thermal correlation functions 
to reduce the oscillations. Most recently Shao and Makri210 have suggested ways 
of computing semiclassical correlation functions without the prefactor. 

In contrast to the difficulties in computing real time quantum properties, the 
numerical computation of quantum thermodynamic properties is a well advanced 
field.213-216 Efficient quantum Monte Carlo methods have been developed for 
computing partition functions and thermodynamic averages for systems with 
many degrees of freedom. It is therefore an old dream of dynamicists to use ther-
modynamic quantities, for computing dynamical properties. A straightforward 
route would seem to be numerical analytical continuation, going from the inverse 
temperature to real time b → it. This route has been studied, using for example 
Pade approximants217 and the upshot of much work is that for short times of
the order of hb,- one could obtain reasonably accurate quantum dynamics, but if 
longer times are important, one runs into difficulties.

A second analytic continuation methodology which is becoming increasingly 
popular is based on the inverse Laplace transform. The idea is to compute imag-
inary time correlation functions and by Laplace inversion obtain the real time 
correlation function. This route has been tested extensively in recent years with 
some success.218,219 Especially noteworthy is a very recent paper by Rabani 
and Berne220 in which the quantum reactive flux expression for the rate is ex-
pressed as an inverse Laplace transform of an imaginary time flux flux correlation 
function, The main stumbling block though is the Laplace inversion. Whether 
one uses maximum entropy techniques221,222 or singular value decomposition 
methods,223-225 the bottleneck is the sensitivity of any of the methods to noise. 
Since presumably the imaginary time signal comes from quantum Monte Carlo 
computations, it is inherently noisy and it is difficult to reduce the noise suffi-
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ciently to obtain accurate dynamical information. An additional problem is that 
when quantum effects are really important, such as in the deep tunneling region, 
it turns out that the computation of the imaginary time correlation functions does 
not converge very easily either.220

Progress has been recently made in constructing an iterative inverse Laplace 
transform method which is not exponentially sensitive to noise.226,227 This
Short Time Inverse Laplace Transform (STILT) method is based on rewriting the 
Bromwich inversion formula as: 

(46)

where b) = Eq. 46 is exact for any b for which the Laplace 
transform does not diverge. The STILT formula is obtained by expanding b+it)
with respect to the time variable t up to second order: 

(47)

where we used the notation ln(n) b) In b). Inserting the Gaussian 
short time approximation into Eq. 46 gives a Gaussian approximation for the 
function f (E).

The exact inversion formula does not specify though the value of the Laplace 
transform variable b . For each b we thus obtain a different Gaussian approx-
imation to the original function f (E). Consider the function For a 
given value of b it might have a maximum at some value of E, say E b . In the 
vicinity of the maximum a Gaussian approximation may not be bad. But for a 
different value of b , the maximum will shift, and the Gaussian approximation 
will be valid but albeit using the changed value of b . In other words, the short 
time approximation is considerably improved by allowing the Laplace parameter 
b to become a function of the original variable E. One would want to choose 
this dependence such that the maximum of the Gaussian follows the maximum 
of the original function. b (E) is therefore determined by the ‘stationary phase’
condition E + In´ b ) = 0. The STILT formula is then: 

(48)

This approximate inversion formula is quite accurate for bell shaped or mono-
tonically increasing functions f (E). It can be substantially improved by iteration. 
One Laplace transforms the function f 1 [E) and then applies STILT to the differ-
ence function b ) - ( b ). The iterated inversion formula is exact for the class 
of functions As shown in Ref. 227 it is stable with respect to noise. It 
has been applied successfully for obtaining quantum densities of states in Ref. 
226.
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V.2 QUANTUM THERMODYNAMIC RATE THEORIES.

V.2.1 Centroid transition state theory. A third methodology, is to con-
struct approximate theories for dynamical properties, which make use of only
thermodynamic quantities. In analogy with classical TST, Gillan, Voth and
coworkers228-232 have formulated and studied a quantum TST which is based on
the centroid potential of mean force wc (q):

(49)

The quantum mechanical Tr operation is represented as a path integral over all
closed paths q(τ) whose time (τ) average is centered at the point q such that 
q = q = 1

hb ∫hβ
ο d t q ( t ). The centroid potential of mean force is thus obtain 

from a restricted summation over all paths whose zero-th Fourier mode in a
Fourier expansion of the path integral is given by q. Deep tunneling reflects
itself as a significant lowering of the barrier of the centroid potential of mean
force.233,234

Centroid TST is obtained using the classical formula as given in Eq. 18 ex-
cept that one substitutes the classical potential of mean force with the quantum
mechanical centroid potential of mean force. The analog of the spatial diffusion
limited regime in the presence of dissipation can be obtained by introducing a
variational centroid TST. For example, Schenter et al235 included the optimal
planar dividing surface VTST method described in Section III.D above, within
the centroid TST method for GLE’s. Comparison with numerically exact com-
putations on a model system with two degrees of freedom showed that except for
the case of a slow bath mode, the variational centroid method is quantitative. The
same methodology was then generalized in Ref. 236 to arbitrary solute solvent
interactions.

Further improvement of the centroid method came with the introduction of
centroid dynamics.237,238 Here the fundamental idea is to construct a centroid
Hamiltonian in the full phase space of the system and the bath. The Boltzman
factor is then the one obtained from this centroid Hamiltonian while seal time
dynamics is obtained by running classical trajectories. This method has been
applied to realistic systems239-243 and recently derived from first principles.244
The main advantage of the centroid methodology is that thermodynamic quantum
effects can be computed numerically exactly as it is not too difficult to converge
numerically the computation of the centroid potential.

V.2.2 Quantum transition state theory. The centroid method is one way 
of formulating a quantum TST. Other ways have also been devised. For example
Hansen and Andersen245 have suggested a quantum thermodynamic theory which
is based on an extrapolation to long time of the short time quantum flux flux 
correlation function. By construction, the method gives the correct parabolic

--
-
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barrier limit, It has been recently applied successfully to the 3D D+H2 reaction
by Thompson246 but only at temperatures for which tunneling is not too important. 
Computations on an asymmetric one dimensional Eckart barrier showed that the
method can give unphysical results if the asymmetry is too big.

A central challenge is to formulate a variational quantum TST. Such a theory
should have the following properties:
a: The quantum TST expression is derived from first principles.
b: The evaluation of the rate is based on knowledge of the matrix elements of the
thermal density matrix No real time propagation is necessary. 
c: The expression is a leading term in an expansion of the rate in terms of a ‘small
parameter’ and reduces to known results in known limits.
d: The theory is variational, allowing for optimization by variation of a dividing
surface.
e: The theory gives an upper bound to the exact rate.

Variational upper bounds to the quantum rate have been found.247-251 The
trouble is that they are not very good. Typically, in the deep tunneling regime,
where the transmission factor T << 1 the best upper bound derived to date goes 
as ~ T.

The history of quantum transition state theory spans more than half of the
twentieth century. Perhaps the most inspired (and oldest) guess was Wigner’s
expression for the thermal rate.252 Wigner suggested that the quantum rate 
be computed as a product of the Wigner phase space representation253 of the
thermal density operator and the classical flux operator. This approximation
gives the correct leading order expansion term in h- for the rate and has been 
used by Miller254 to derive a semiclassical transition state theory which led to
the concept of the instanton. It has also served as a source of inspiration for
other approximate theories. For example, instead of using Wigner’s distribution
function, Chapman et al255 suggested using a semiclassical partition function.
This idea was implemented by Sagnella et al.256 Though useful and instructive, 
Wigner’s expression which is a wonderful guess, was never derived from first
principles. Miller106 proposed a variational thermodynamic quantum expression
based on the Weyl correspondence rule and classical rate theory. But it too, is not
derived (property a), there is no ‘small expansion parameter’ (property c), and
the theory does not give an upper bound to the rate (property e).

As described below, it is possible to construct a theory which satisfies condi-
tions a-d and at least thus far it has been found empirically to bound the exact
quantum rate from above. This Quantum Transition State Theory (QTST) is
predicated on the exact quantum expression for the reactive flux, derived by
Miller, Schwartz and Tromp:257

(50)
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is the step function operator which is unity on the product side ( q > 0) and is
zero on the reactant side (q < 0). ( b, q ds) is the symmetrized quantum thermal
flux operator at the dividing surface defined by q ds :

(51)

Obtaining the exact rate (which is independent of q ds), necessitates a real time
propagation. A numerically exact solution is feasible for systems with a few
degrees of freedom,258-263 but as already discussed above, there is still a way to 
go before one can rigorously implement the time evolution in a liquid.

The region of the potential surface which determines the outcome of the
reaction, is a strip localized in the vicinity of the saddle point to reaction.264 The
time propagation must be carried out long enough to determine those parts of
the wave packet that end up on the reactant or the product side. Voth, Chandler
and Miller265 therefore suggested replacing the exact time propagation needed
to determine the rate in Eq. 5 1, with an approximation based on a parabolic
barrier truncation of the propagator and exact evaluation of the quantum density
and flux operators. They obtained good agreement with exact results for a
symmetric Eckart barrier, but negative unphysical results for the asymmetric case
at low temperatures, perhaps because they didn't use the symmetrized form of 
the thermal flux operator.

QTST is predicated on this approach. The exact expression 50 is seen to be
a quantum mechanical trace of a product of two operators. It is well known,
that such a trace can be recast exactly as a phase space integration of the product
of the Wigner representations253 of the two operators. The Wigner phase space
representation of the projection operator lim  (t) for the parabolic barrier
potential is h(p + mw ‡q). Computing the Wigner phase space representation
of the symmetrized thermal flux operator involves only imaginary time matrix
elements. As shown by Pollak and Liao,266 the QTST expression for the rate is 
then:

(52)

This derived expression satisfies conditions a-d mentioned above and based on
numerical computation266-269 seems to bound the exact result from above. It is
similar but not identical to Wigner’s original guess. The quantum phase space
function which appears in Eq. 52 is that of the symmetrized thermal flux operator,
instead of the quantum density.

QTST was applied to symmetric and asymmetric Eckart barriers in Ref. 266.
Variational QTST was tested on the asymmetric Eckart barrier in Ref. 267. QTST
is derived by rewriting the potential as a sum of a parabolic barrier term and a
nonlinearity, as in Eq. 22. Therefore, it is a leading term for an expansion of the
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exact rate expression, where the nonlinearity w1 (q) is the small parameter. The 
first order correction was also studied in Ref. 267. It was seen that this leads to
a replacement of the step function about the classical separatrix with an integral
of an Airy function, localized about the classical separatrix. The semiclassical
limit of QTST was studied in Ref. 270. Application to a model system of a
symmetric Eckart barrier coupled bilinearly to a single harmonic bath mode was
presented in Ref. 268. QTST was found to be as accurate as the centroid based
approximation, with the added advantage that for all parameters studied, QTST
bounded the numerically exact results from above. Application to the collinear
hydrogen exchange reaction269 also gave numerical upper bounds to the exact
rate. The theory correctly accounted for the famous ’corner cutting’ found in the
deep tunneling regime of this model system.

Further refinements of QTST may be obtained by replacing the parabolic
barrier projection operator with the classical projection operator. Pollak and
Eckhardt270 showed that this approximation is identical to the semiclassical limit 
of the quantum projection operator. This Mixed Quantum CLassical rate The-
ory (MQCLT) was originally proposed in Ref. 266 and implemented in Ref.
267. Subsequently, Miller and coworkers271 used the same theory to study the
dissipative double well problem and justified it with what they termed as the
linearization approximation.21 1,271,272 MQCLT may be also thought of as the
leading term in an 2 expansion of the projection operator.267 The first order
correction term was also studied in Ref. 267. The main disadvantage of MQCLT
is that as the dimensionality of the system increases, one needs to carry out a
multi-dimensional Fourier transform to obtain the thermal flux operator in the
full phase space of the system and this becomes as difficult as computing the
numerically exact projection operator.273 QTST does not suffer from this defi-
ciency, since the parabolic barrier projection operator is restricted to one degree
of freedom, one only needs the phase space projection of the symmetrized ther-
mal flux operator in this degree of freedom. This necessitates a one dimensional
Fourier transform for which there is no real difficulty.

One of the interesting outcomes of all these studies is the phase space picture
of the symmetrized thermal flux operator. At high temperatures, when tunneling
is negligible, the flux operator is localized around the barrier with a positive
(negative) peak when the momentum is positive (negative). As the temperature
is lowered, each of these peaks subdivides into alternating positive and negative
lobes. The net reactive flux is then an integral over these alternating positive
and negative contributions, restricted by the projection operator. Even though
one is using a thermodynamic quantity, the alternating positive and negative
contributions make it increasingly more difficult to obtain the net flux.

Both QTST and MQCLT can be extended to deal with dissipative systems,
whose classical dynamics is described by a GLE.274 The main difficulty is that 
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the system coordinate (q) which is coupled bilinearly to a continuum of harmonic
bath modes, is not the unstable mode (p) at the saddlepoint. The parabolic barrier
projection operator must be taken along the unstable mode. As a result, it is not
trivial to integrate out the bath modes when evaluating the symmetrized thermal
flux. However, by a linear transformation of the coordinate system and using 
some tricks given in Ref. 80, one can integrate out the bath modes. The resulting 
influence functional does not cause any undue difficulty. Using similar tricks, 
one can also define an MQCLT for the dissipative problem. Here one recasts the 
one dimensional GLE into a coupled set of GLE’s, one for the unstable mode p,
the other for the collective bath mode σ (see Eq. 23). The classical projection
operator is then obtained for the stochastic trajectories of the two coupled GLE’s, 
the symmetrized flux operator is computed numerically exactly, by integrating 
out the rest of the modes in the usual way.274

V.3 SEMICLASSICAL RATE THEORY 

The semiclassical theory of rates has along history.7,41, 129,275,276 Here, we will 
just review briefly the final product, a unified theory for the rate in a dissipative 
system, at all temperatures and for arbitrary damping. Two major routes have 
been used to derive the semiclassical theory. One is based on the so called ‘ImF’ 
method,277 whereby, one derives a semiclassical limit for the imaginary part of 
the free energy. This route has the drawback that the semiclassical limit is treated 
differently for temperatures above and below the crossover temperature.41,278

A second approach, has as its starting point a semiclassical TST proposed 
by Miller,254 whereby the microcanonical rate constant is given by an adiabatic 
semiclassical theory, in which the modes perpendicular to the reaction coordinate 
are harmonic and the tunneling is given by the uniform semiclassical microcanon-
ical expression. Thermal averaging of this expression, taking suitable limits, has 
been shown by Hänggi and Hontscha to give a theory that reduces to the low 
and high temperature ImF results and the crossover between them is smooth and 
natural.275,279 In this way, the artificial treatment of the high and low temperature 
regions has been removed. This theory is also incomplete, its starting point is a 
rather heuristic semiclassical expression of Miller, which has not been derived in 
any systematic way from first principles. 

Pollak and Eckhardt have shown270 that the QTST expression for the rate (Eq. 
52) may be analyzed within a semiclassical context. The result is though not very 
good at very low temperatures, it does not reduce to the low temperature ImF 
result, The most recent and ‘best’ result thus far is the recent theory of Ankerhold 
and Grabert,280 who study in detail the semiclassical limit of the time evolution 
of the density matrix and extract from it the semiclassical rate. Application to the 
symmetric one dimensional Eckart barrier gives very good results. It remains to 
be seen how their theory works for asymmetric and dissipative systems. 
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VI. DISCUSSION

In retrospect, one may say that the theory of activated rate processes has
matured during the past twenty years. At this point, theory precedes experiment.
For example, although the energy diffusion limited regime is well understood as is 
the full Kramers turnover, there isn't a single chemical system to date where one 
can say with any certainty that the Kramers turnover has really been observed.281

Even in the spatial diffusion limited regime, it is not at all clear that the Kramers-
Grote-Hynes transmission factor really is important. There are papers which use 
it to explain experimental data such as fractional power dependence of the rate on 
viscocity.282-285 However, numerical simulations indicate that the transmission 
factor is usually of the order of unity.10, 11,123,124 The characteristic frictional 
forces one finds in liquids are weak and one is usually in the region where the 
simple TST theory accounts for almost everything, provided that one chooses a 
‘reasonable’ reaction coordinate.

This does not mean though that everything is well understood. For example, 
our studies of the stilbene system show that the barrier of the potential of mean 
force for this system depends strongly on the pressure.123,124 Can one come up 
with a ‘simple’ theory for this pressure dependence? Is this specific to the stilbene 
system or is this a general result? There is a large body of experimental data on 
unimolecular isomerization reactions in liquids which has not yet been addressed 
in depth by theorists.12,25 One should expect to see during the coming years 
some serious molecular dynamics studies of these reactions in varying solvents 
and under different temperature and pressure conditions. 

It seems that the Kramers turnover theory is ideally suited for understanding 
surface diffusion. Thus far though, it has only been applied to metal atom diffu-
sion on metal surfaces, where the classical limit is appropriate. A thorough study 
of its applicability to hydrogen atom diffusion , where tunneling is important,286

has not yet been undertaken. In most cases, one would suspect that the one 
dimensional theory reviewed here would not be sufficient and except for special 
surface geometries, one would have to take into account at least the coupling 
between the two degrees of freedom parallel to the surface. Even the classical 
multi-dimensional Kramers theory is not yet fully matured,77,80,82 so there is 
quite some way to go in developing the quantum theory. 

A fundamental assumption in the turnover theory, is that the escape rate 
is independent of the initial conditions. This is the case if the barrier height 
is sufficiently large. Any trajectory will spend a long time in a well before 
escaping and therefore there is no appreciable memory of the initial condition. 
The situation is altered in a system with many degrees of freedom, such that
the number of degrees of freedom (N) is larger than the reduced barrier height 
V‡/kBT.287 In this case, the average thermal energy of the molecule is larger
than the barrier height and interesting state specific phenomena may occur. It
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is this property which underlies the recently discovered effect of vibrational 
cooling found for the isomerization of the thermal trans-stilbene molecule in the 
electronically excited S 1 state.288 Here, the photo-excitation process leads to an 
initial vibrational energy distribution which is cold when compared to the thermal
distribution. If the surrounding medium manages to rethermalize the molecule 
prior to reaction, then one will observe isomerization at the thermal rate. If 
isomerization is fast relative to energy transfer, the rate will be as expected for 
the cold molecule, that is it will be much slower. It is for this reason that the 
isomerization rate of the isolated trans-stilbene molecule is much slower289 than
in the liquid phase.290 This theory was corroborated by experimental observation 
of a parabolic like dependence of the trans-stilbene isomerization rate on the 
photo-excitation frequency.28

One of the exciting new directions is the control of activated rate processes 
using external fields. Addition of an external field opens the way for a wide vari-
ety of new phenomena such as stochastic resonance,291 resonance activation,292

directed transport,293 control of the hopping distribution in surface diffusion170

and more. Even the addition of a constant force to the problem leads to interesting 
additional phenomena such as the locked to running transition, which remains 
a topic of ongoing research.294 Quantum mechanics in the presence of external 
fields may differ significantly from the classical.295

In summary, one may expect that activated rate processes in Chemistry, Physics 
and Biology will continue to be a source of new challenges, in which the contact 
between experiment and theory will be coming closer. 
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Abstract The theoretical basis for the quantum time evolution of path integral centroid 
variables is described, as well as the motivation for using these variables
to study condensed phase quantum dynamics. The equilibrium centroid 
distribution is shown to be a well-defined distribution function in the canonical 
ensemble. A quantum mechanical quasi-density operator (QDO) can then be 
associated with each value of the distribution so that, upon the application 
of rigorous quantum mechanics, it can be used to provide an exact definition 
of both static and dynamical centroid variables. Various properties of the 
dynamical centroid variables can thus be defined and explored. Importantly, 
this perspective shows that the centroid constraint on the imaginary time paths 
introduces a non-stationarity in the equilibrium ensemble. This, in turn, can 
be proven to yield information on the correlations of spontaneous dynamical 
fluctuations. This exact formalism also leads to a derivation of Centroid
Molecular Dynamics, as well as the basis for systematic improvements of 
that theory. 

I. INTRODUCTION

The Feynman path integral formalism1-4 in quantum mechanics has proven to 
be an important vehicle for studying the quantum properties of condensed matter, 
both conceptually and in computational studies. Various classical-like concepts 
may be more easily introduced and, in the case of equilibrium properties,5,6 the
formalism provides a powerful computer simulation tool. 

Feynman first suggested1,2 that the path centroid may be the most classical-
like variable in an equilibrium quantum system, thus providing the basis for the 
formulation of a classical-like equilibrium density function. The path centroid 
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variable, denoted here by the symbol xo, is the imaginary time average of a 
particular closed Feynman path x(t) which, in turn, is simply the zero-frequency
Fourier mode of that path, i.e., 

(1)

Feynman noted that the quantum mechanical “centroid density,” pc (xc), can be
defined for the path centroid variable which is the path integral over all paths 
having their centroids fixed at the point in space xc. Specifically, the formal 
imaginary time path integral expression for the centroid density is given by 

(2)

In this equation, Dx(t) and S [x(t)] are, respectively, the position space path
measure and the Euclidean time action. The centroid density also formally 
defines a classical-like effective potential, i.e.,7,8

(3)

so that the quantum partition function is given by the integration over the centroid 
positions. It should be noted that a one-dimensional notation is adopted through-
out this article. Moreover, the centroid density equation above is written as a 
proportionality since the normalization chosen below in subsequent equations is 
slightly different than in our other work (except Refs. 9,10). It should also be 
appreciated that the centroid density is distinctly different from the coordinate 
(or particle) density ρ(x) = 〈x | exp(– b H)| x〉. The particle density function is 
the diagonal element of equilibrium density matrix in the coordinate representa-
tion, while the centroid density does not have a similar physical interpretation. 
However, the integration over either density yields the quantum partition function. 

Following Feynman’s original work, several authors pursued extensions of the 
effective potential idea to construct variational approximations for the quantum 
partition function (see, e.g., Refs. 7,8). The importance of the path centroid 
variable in quantum activated rate processes was also explored and revealed,11, 12 

which gave rise to path integral quantum transition state theory12 and even more 
general approaches. 13, 14 The Centroid Molecular Dynamics (CMD) method15, 16 

for quantum dynamics simulation was also formulated. In the CMD method, the 
position centroid evolves classically on the effective centroid potential. Various 
analysis15, 16 and numerical tests for realistic systems17 have shown that CMD 
captures the main quantum effects for several processes in condensed matter such 
as transport phenomena. 

Until recently, however, a true dynamical understanding of the centroid vari-
able has remained elusive, including the explicit motivation for employing these 
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variables in a dynamical context outside of the equilibrium path integral formal-
ism. Also not until recently has an exact definition of centroid time evolution 
been used to derive the CMD method, although some of the early justifications 
employed analytic arguments.15 Thus, systematic improvements and/or gener-
alizations of the CMD method were difficult to develop. A focus of the present 
review is to describe primarily our recent advances in centroid theory9 in which 
the time evolution of centroid variables are both rigorously defined and dynam-
ically motivated. The outgrowth of the CMD approximation from this exact 
formalism is also described.10 In should be noted that a preliminary version of 
this work appeared in Ref. 18, but the full analysis was presented in Refs. 9,10. 
Similar work appears to have been published later by other authors in Ref. 19. 

This review is organized as follows: In Sec. II., the explicit form of the 
centroid distribution is derived, while Sec. III. then builds on this formalism to 
define dynamical centroid variables. Section IV. contains a derviation of the 
CMD approximation based on the exact formalism, while Sec. V. provides some 
illustrative applications of CMD. Section VI. contains concluding remarks. 

II. THE CENTROID DISTRIBUTION FUNCTION 

II.1 BACKGROUND 

For a classical system at equilibrium, the canonical partition function is written 
as

(4)

where b = 1 /kBT and H(x, p) is the classical Hamiltonian. The integrand is the
classical canonical distribution function, which gives the equilibrium probability
for the system to have the given values of position and momentum. A classical 
system at equilibrium is completely specified by these variables so the classical 
partition function given by Eq. (4) contains all equilibrium information. 

The quantum version of the partition function is obtained by replacing the 
phase space integral and the classical Boltzmann distribution with the trace op- 
eration of the quantum Boltzmann operator, giving the usual expression 

(5)

This expression contains all the equilibrium information for the quantum ensem-
ble as is in the classical case. 

One possible definition of a classical-like quantum density is given by 

(6)

For example, the classical-like phase space trace of this distribution function over 
the scalars x and p gives the quantum partition function in Eq. (5). However, in 
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the path integral formaIism,1-4 one can show that the above equation is equivalent 
to the phase space centroid density.15,16,20 Since all three operators,  and 

appear within the same exponential (in contrast to the Wigner distribution,
for example), one might assert that the resulting density ρqm (x, p) should behave
more classically. This perspective is supported by the fact that the centroid
density is always positive definite.1,4,8, 16 

The positive definiteness of the centroid distribution of Eq. (6) suggests that 
effectively some sort of “smearing” of the underlying quantum mechanical infor-
mation has been involved. Although this has resulted in the desirable property of
positivity, the lost information makes it impossible for the resulting distribution
to specify the quantum system completely. One thus needs auxiliary quantities 
to recover the full information. One can indeed find this missing information and
therefore construct a complete formal framework.

11.2 THE CENTROID VARIABLE AND DISTRIBUTION
FUNCTIONS

We first assume a separable Hamiltonian of the following standard form: 

(7)

Application of the Trotter factorization3,4,21 for the exponential operator appear-
ing in Eq. (6) leads to the expression 

(8)

By representing the operator containing the potential energy in position state 
space and the one containing the kinetic energy in momentum space, one obtains 
the following phase space discretized path integral representation: 

where ∈ = β/P. Insertion of this expression into the integrand of Eq. (6) and the
use of the explicit expression for the momentum eigenstate leads to the following 
identity,
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where

(1 1) 

(12)

According to Eq. (10), is a phase space path integral repre-
sentation for the operator where all the paths run from x´ to x″,
but their centroids are constrained to the values of xc and pc.15,20 Integration over
the diagonal element, which corresponds to the trace operation, leads to the usual
definition of the phase space centroid density multiplied by 2πh.-  In this review 
and in Refs. 9,10 this multiplicative factor is included in the definition of the
centroid distribution function, pc (xc, pc). Equation (6) thus becomes equivalent
to

(13)

(14)

and Eq. (5) can be rewritten as 

where the subscript ‘qm’ has been omitted because there is no longer a need to
distinguish the classical and quantum cases. Note that the factor of (2πh)–1- has
been grouped with the centroid variable differentials, so that the centroid distri-
bution function has an alternative normalization to that in our earlier work.15, 16 

Equation (10) can be simplified to give in the P → ∞ limit

where
(15)

(16)

Combining Eqs. (1 3), (1 5), and (1 6), the centroid distribution function can be 
written as 

(17)
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with

(1 8) 

where xo is given by Eq. (11) with the cyclic condition, xp+1 = x1, i.e., the usual
centroid variable for cyclic paths. Equation (18) is the usual position centroid 
density aside from the free particle normalization factor. 

III. EXACT FORMULATION OF CENTROID DYNAMICS 

III.1 QUASI-DENSITY OPERATOR 

For an arbitrary canonical density operator, the phase space centroid distri-
bution function is uniquely defined. However, this function does not directly 
contain any dynamical information from the quantum ensemble because such 
information has been lost in the course of the trace operation. The lost informa-
tion may be recovered by associating to each value of the centroid distribution 
function the following normalized operator: 

(19)

where Eqs. (15) and (17) have been used. This operator is Hermitian and has 
nonnegative diagonal elements in position state space, yielding some of the 
necessary conditions for a density operator.22 However, the condition of positive 
definiteness is not guaranteed for the above operator in general. Thus, it cannot 
be termed a genuine density operator and is therefore considered to be a “quasi-
density operator” (QDO).

Integration of the operator of Eq. (10) over xc and pc results in the following
important identity: 

(20)

This expression suggests that the canonical ensemble can be considered to be an 
incoherent mixture of the QDO’s, each with different position and momentum 
centroids, and the latter having a probability density given by pc (xc, pc) / Z. 
Each QDO can then be interpreted as a representation of a thermally mixed state 
localized around (xc,pc), with its width being defined by the temperature and 
the system Hamiltonian.
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III.2 EQUILIBRIUM CENTROID VARIABLES 

For any physical observable corresponding to the operator one can define 
a Corresponding centroid variable as 

(21)

which is interpreted as an average of the given physical observable over the state 
represented by the QDO. Since c(xc,pc) is a function of xc and pc, Ac is
likewise a function of xc and pc. The average of the centroid variable Ac over
the phase space centroid density can then be shown to be identical to the usual
canonical equilibrium average of the given operator as follows: 

(22)

where the second equality is a consequence of the linearity of the trace operation 
and the third equality comes from the relation in Eq. (20). 

When the physical observables of interest are position and momentum, the cor-
responding centroid variables are equal to the position and momentum centroids, 
i.e.,

(23)

(24)

In this way, the position and momentum centroids are seen to be the average 
position and momentum of the state represented by the QDO c (xc, pc).

The explicit expressions for two additional physical observables will prove to 
be useful later. The first one is the centroid force, given by 

(25)

where the second equality can be shown from Eqs. (16) and (18). The centroid 
potential of mean force is defined as 

so the centroid force of Eq. (25) can be expressed as 

(26)

(27)
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where Vcm(xc) is the usual effective centroid potential. 
The second quantity of interest is the centroid Hamiltonian, 

where Tc is the centroid kinetic energy given by

and Vc is the centroid potential energy given by 

(28)

(29)

(30)

This latter quantity may be different in general from Vcm. While Vc can be easily
expressed in a path integral form, the expression for Tc is more complicated and 
is detailed in Ref. 9. It should be again noted that in earlier literature the effective 
centroid potential Vcm(xc) has been denoted by Vc(xc) (see Sec. IV.). However,
the notation used here and in Refs. 9,10 allows for a distinction between the two
effective potentials. 

III.3 GENERALIZATION TO TREAT BOSE-EINSTEIN AND 
FERMI-DIRAC STATISTICS 

In the case that exchange interactions becomes important, the formalism may 
be appropriately extended by generalizing Eq. (10) to give the following sym-
metrized version in discretized notation,9

| (31) 

where d is the dimensionality of the total system, is the permutation operator 
of identical particles, and M–1 is the inverse mass matrix. The case of (+1)Π

corresponds to Bose-Einsten statistics and the case of (–1 )Π to Fermi-Dirac
statistics. The centroid distribution resulting from Eq. (31) is positive for bosons, 
but it can be negative for fermions.23

III.4 DYNAMICAL CENTROID VARIABLES 

It is first important to provide an explicit argument for casting centroid vari-
ables in a dynamical context. To do this, one can manipulate a simple proof of the 
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stationarity of the canonical ensemble, Consider, for example, the Heisenberg 
position operator (t). The equilibrium average of this operator is given by 

(32)

where the canonical ensemble is seen to be stationary because the Boltzmann 
operator commutes with the time evolution Operator. However, by using the 
identity from Eq. (20), one can re-express Eq. (32) in terms of the QDO such that 

or

where the QDO is now time-dependent such that 

(33)

(34)

(35)

with the cyclic invariance of the trace being used in going from Eq. (33) to Eq. 

(34).
Equation (34) is now written in a classical-like form as 

(36)

where xc (t) is a scalar centroid “trajectory”, given formally by the expression

(37)

The interpretation of the above expressions is rather remarkable. The centroid 
constraints in the Boltzmann operator, which appear in the definition of the QDO 
from Eqs. (19) and (20), cause the canonical ensemble to become non-stationary.
Equally important is the fact that the non-stationary QDO, when traced with 
the operator (or as in Eq. (37), defines a dynamically evolving centroid 
trajectory. The average over the initial conditions of such trajectories according 
to the centroid distribution [ cf. Eq. (36) ] recovers the stationary canonical
average of the operator (or However, centroid trajectories for individual
sets of initial conditions are in fact dynamical objects and, as will be shown in the 
next section, contain important information on the dynamics of the spontaneous 
fluctuations in the canonical ensemble. 
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The time-dependent QDO can be shown to obey the following quantum Liou-
ville equation: 

(38)

Accordingly, a generalized dynamical centroid variable at time t can be defined 
as

(39)

The average of this centroid variable over the centroid distribution can be calcu-
lated in the same way as the zero time case of Eq. (22). The time derivative of 
the dynamical centroid variable is given by 

(40)

where the fact that does not have any explicit time dependence has been used 
and the last equality results from the cyclic invariance of the trace operation. 
A generalization of this analysis is given in Ref. 9 which shows that centroid 
variables can also be used to study inherently nonequilibrium situations. 

As special cases of Eq. (40), the dynamical laws for the position and momen-
tum centroids are given by 

(41)

(42)

where Fc (t) is given by inserting the force operator into Eq. (39). Equations (41) 
and (42) are the centroid generalizations of Ehrenfest’s theorem.24 Although
these equations have classical forms, the time dependent centroid force is not a 
function of the position centroid at time t only, but it can be determined by the 
diagonal position space elements of the exact time dependent QDO at time t. 
The exception to this rule is when the potentials are quadratic. In this case, the 
time dependent centroid force is given by a linear function of the time dependent 
position centroid and the above equations are closed. 

The time dependent centroid Hamiltonian may be similarly defined as 

(43)

According to Eq. (40), the time derivative of this is zero because the Hamiltonian 
which evolves the QDO commutes with itself. In other words, 

(44)
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for arbitrary time t. In the classical limit, this centroid Hamiltonian goes to 
the classical Hamiltonian as do the centroid position and momentum and the 
dynamical centroid trajectory equations above. 

III.5 DYNAMICAL FLUCTUATIONS AND TIME 
CORRELATION FUNCTIONS 

A centroid trajectory for a given set of initial centroid conditions must contain 
some degree of dynamical information due to the nonstationarity of the ensemble 
created by the centroid constraints. It is therefore important to explore the 
correlations in time of these trajectories. In the centroid dynamics perspective, a 
general quantum time correlation function can be expressed as 

(45)

where Eq. (20) and the cyclic invariance of the trace operation have been used. 
For general operators Eq. (45) cannot be expressed in terms of the time 

dependent centroid variables defined in the previous section because the time 
evolution of c(xc,pc) is different from c(xc,pc), A general result can be
derived, however, in the case that is linear in position and momentum. In 
particular, one can show that 

(46)

where the first equality can be derived using Eq. (16) and the second equality is 
given by discretizing the integration over λ and going through the usual path inte-
gral limit via the Trotter factorization. A similar identity holds for the momentum 
centroid, Therefore, for linear operators of the form: 

the following identity holds: 

(47)

(48)
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Multiplying the above identity by the general time dependent operator, AH
∧

(t) =
and then taking the trace of the resulting expression, one obtains the 

following important identity: 

(49)

which is the usual Kubo-transformed equilibrium time correlation function25

from quantum linear response theory. This important identity shows that as long 
as the operator is linear in the position and momentum operators the quantum 
time correlation function can be obtained in a classical-like fashion through the 
exact time evolution of the centroid variables. 

The important step of identifying the explicit dynamical motivation for em-
ploying centroid variables has thus been accomplished. It has proven possible to 
formally define their time evolution (“trajectories”) and to establish that the time 
correlations of these trajectories are exactly related to the Kubo-transformed time 
correlation function in the case that the operator is a linear function of position 
and momentum. (Note that may be a general operator.) The generalization of 
this concept to the case of nonlinear operators has also recently been accom-
plished,26 but this topic is more complicated so the reader is left to study that 
work if so desired. Furthermore, by a generalization of linear response theory it 
is also possible to extract certain observables such as rate constants even if the 
operator is linear. 

IV. THE CENTROID MOLECULAR DYNAMICS 
APPROXIMATION

The CMD method is equivalent to the following compact approximation for 
the time dependent QDO: 10

(50)

with the calculation of the phase space centroid trajectories, xc(t) and pc(t),
given by the generalized Ehrenfest’s relations for the centroid variables. In this 
case, the approximate QDO of Eq. (50) closes the dynamical equations as follows: 

(51)

(52)

where xc(t), pc(t), and Fcmd(t) also depend on xc and pc, the position and
momentum centroids at time zero, but these relations are not shown explicitly. 
These abbreviations will be used for all the time dependent centroid variables 
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considered hereafter unless stated otherwise. The expression Fcmd (t ) represents 
the CMD approximation for the time dependent centroid force. 

Equation (52) shows that in CMD the approximate centroid force is determined 
for the instantaneous centroid position xc (t) by the same functional form as for
the zero time centroid force. Equation defines the zero time centroid force to be 
the negative gradient of the centroid potential of mean force, i.e, 

(53)

Thus, the CMD method is isomorphic to classical time evolution of the phase 
space centroids on the quantum centroid potential of mean force, Vcmd. It should 
be noted that in the harmonic, classical, and free particle limits, the CMD rep-
resentation for the QDO [Eq. (50)] is also exact. Furthermore, it should also be 
noted that the approximation in Eq. (50) does not rely on any kind of mean field 
approximation.

The approximation embodied in Eq. (50) deserves further explanation. It 
assumes that the QDO at a later time t has the same mathematical form as 
it does at time t = 0, except that the centroids of the physical particles have
moved according to the dynamical CMD equations in Eqs. (51) and (52). Such 
an approximation can be argued to be reasonable in either of two cases. The 
first is when the fluctuations about the centroid are independent of the centroid 
location; this is the case of the harmonic oscillator for which CMD is known to 
be exact.15 More generally speaking, this should also be the case for condensed 
phase systems in which linear response theory is a good approximation (i.e., the 
quantum fluctuations about the centroid motion are independent of its motion -
they respond linearly). Linear response is often an excellent approximation for 
systems which are, in fact, very far from the actual harmonic limit. The second 
case for which the approximation embodied in Eq. (50) should be accurate is when 
the system exhibits strong regression behavior (i.e., decorrelation of spontaneous 
fluctuations), In such instances, one would expect the form of the QDO as it 
evolves in time to remain close to its equilibrium form at t = 0 even if the
particles (centroids) have moved. Interestingly, as the system approaches the 
classical limit, the fluctuations about the centroids in the QDO will always shrink 
to zero so they cannot deviate from their t = 0 value. This is why CMD is very
accurate in the nearly classical limit, but the system need not be in that limit to 
remain a good approximation. Furthermore, one can also understand why tests 
of CMD for low dimensional systems which exhibit no regression behavior do 
not allow a significant strength of the method to be operational. 

A second important property of CMD is that it will produce the exact equi-
librium average of a dynamical variable A if the system is ergodic. That is, the 



60 G.Voth

following relationship holds

where

(54)

(55)

This property may not be possessed by many other approximate methods based
on, e.g., mean field or semiclassical approaches. Also, in low dimensional
systems, the above property is not true for CMD, so to apply CMD to such
systems is not consistent with spirit of the method (though perhaps still useful
for testing purposes).

On the negative side, the exact time dependent centroid Hamiltonian in Eq.
(44) is a constant of motion and the CMD method does not satisfy this condition
in general except for quadratic potentials.

V. SOME APPLICATIONS OF CENTROID MOLECULAR
DYNAMICS

There has been extensive development of algorithms for carrying out CMD
simulations in realistic systems,18,27,28 as well as a number of non-trivial appli-
cations of the methodology (see, e.g., Ref. 17). In this section, a few illustrative
applications will be described. The interested reader is referred to the above
citations for more details on CMD algorithms and applications.

V.1 STUDIES ON SIMPLE SYSTEMS

Tests of CMD on simple one-dimensional systems can be carried out by
calculating the symmetrized position correlation function:

(56)

In the perspective of the centroid time evolution, this correlation function cannot
be calculated directly but is obtained through the following relation between the
Fourier transforms:

(57)

where (ω) is the Fourier transform of the Kubo-transformed position corre-
lation function, 15,25 The relationship between the latter function and the exact
centroid time correlation function, which is calculated approximately by CMD,
was established in Ref. 9 as described earlier.

The centroid distribution function and the effective potential for the CMD
simulation can be obtained through the path integral simulation method,5,6 but
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this introduces additional statistical errors. For the low-dimensional benchmark 
results described here, the numerical matrix multiplication (NMM) method29,30

was used. For the details of this procedure, the reader is referred to Ref. 10. 
Natural units were used in these simulations, where m = h- = kB = 1. The

sampling of the initial position and momentum centroids were made through the 
Nosé-Hoover chain dynamics (NHC)31 on the effective potential of Vcm, More 
details of these calculations can again be found in Ref. 10.

Results for two types of model systems are shown here, each at the two dif-
ferent inverse temperatures of b = 1 and b = 8. For each model system, the
approximate correlation functions were compared with an exact quantum corre-
lation function obtained by numerical solution of the Schrödinger equation on a 
grid and with classical MD. As noted earlier, testing the CMD method against 
exact results for simple one-dimensional non-dissipative systems is problemati-
cal, but the results are still useful to help us to better understand the limitations 
of the method under certain circumstances. 

V.1.1
ied was the anharmonic single well potential: 

Single well potential with weak anharmonicity. The first model stud-

(58)

Figure 1 compares the exact, CMD, and classial correlation functions. For 
the case of b = 1, all the results overlap during the time shown except for the
classical result. At longer times which are not shown in the figure, the CMD 
result will eventually deviate from the exact one through dephasing.

For the case of b = 8, the quantum effects of the dynamics become more
evident. The CMD method gives the correct short time behavior, but there is
a small frequency shift. However, the classical result is much worse at this 
temperature.

V.1.2
the purely quartic potential: 

Quartic potential. The second model potential studied is given by 

(59)

No harmonic term is present in this potential, so it represents a good test case 
as to whether the CMD method can reproduce inherently nonlinear oscillations. 
Along these lines, Krilov and Berne32 have independently explored the accuracy 
of CMD for hard potentials in low dimensional systems and also as a basis for 
improving the accuracy of other numerical approaches.33

Figure 2 shows the various time correlation functions compared to the exact 
result. For b = 1, the CMD method exhibits similar behavior to the classical
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one, with none of the correct coherent behavior existing after about t = 10.
The dephasing in these one-dimensional potentials is a result of simple ensem-
ble dephasing - a well known behavior of one-dimensional nonlinear classical
systems.

Interestingly, for the lower temperature case of b = 8, the CMD method
is in much better agreement with the exact result. In contrast, the classical
result does not show any low temperature coherent behavior. The more accurate
low temperature CMD result also suggests that CMD should not be labeled
a “ quasiclassical ” method because the results actually improve in the more
quantum limit for this system. The improvement of these results over the higher
temperature case can be understood through an examination of the effective
centroid potential. The degree of nonlinearity in the centroid potential is less at
low temperature, so the correlation function dephases less.

V.2 QUANTUM WATER 

One of the first applications of CMD to a realistic and important system was
to study the quantum dynamical effects in water.34 It was found that, even at
300 K, the quantum effects are remarkably large. This finding, in turn, led us to
have to reparameterize the flexible water model (called the “SPC/F2” model) in
order to obtain good agreement with a variety of experimental properties for the
neat liquid. An example of the large quantum effects in water can be seen in Fig.
3 in which the mean-spared displacement correlation function, 〈|x(t) - x(0)|2〉
is plotted. (These are new results which are better converged than those in Ref.
34.) Shown are the quantum CMD and the classical MD results for the SPC/F2

model. The mean-squared displacement for the quantized version of the model
is 4.0 x 10–9 m2s–1, while the classical value is 4.0 x 10–9m2s–1. The error in
these numbers is about 15%. These results suggest that quantum effects increase
the diffusivity of liquid water by a factor of two.

V.3 HYDRATED PROTON TRANSPORT IN WATER 

A second important application of CMD has been to study the dynamics of the 
hydrated proton.35 This study involved extensive CMD simulations to determine 
the proton transport rate in on our Multi-State Empirical Valence Bond (MS-EVB)
model for the hydrated proton.35,36 Shown in Fig. 4 are results for the population 
correlation function, 〈n(t)n(0)〉, for the Eigen cation, H3O+, in liquid water. 
Also shown is the correlation function for D3O+ in heavy water. It should be
noted that the population correlation function is expected to decay exponentially 
at long times, the rate of which reflects the excess proton transport rate. The
straight line fits (dotted lines) to the semi-log plots of the correlation functions 
give this rate, For the normal water case, the CMD simulation35 using the MS-
EVB model yields excellent agreement with the experimental proton hopping 
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rate of 0.69 ps–1 . Furthermore, the calculated kinetic isotope effect of a factor of
2.1 is also in good agreement with the factor of 1.4-1.6 measured experimentally
(there is some uncertainty in both numbers). In general, this CMD simulation 
serves to highlight the power and generality of the method in its application to 
realistic systems. 

VI. CONCLUDING REMARKS 

In this review, the exact formulation of centroid dynamics has been presented. 
An important new aspect of this theory is the association of the exact QDO, 
given by Eq. (19), to each value of the centroid distribution function. Each 
QDO represents a non-positive definite mixed state, which is governed by the 
dynamical quantum Liouville equation. A centroid variable is then seen to be 
the expectation value of a physical observable for a given QDO. Time evolution 
of the centroid variable is therefore a manifestation of the time evolution of the 
nonequilibrium distribution for the QDO corresponding to a given set of initial 
centroid constraints. A generalized Ehrenfest’s theorem, Eqs. (41) and (42), 
for the centroid position, momentum, and force in turn exists. For the dynam-
ically evolving centroid variable, a relation between the classical-like centroid 
correlation function and the Kubo transformed time correlation function is also 
exactly derived. This set of rigorous results have then provided both the formal 
basis for deriving and improving approximate methods such as CMD, as well 
as an explicit dynamical rationale for employing dynamical centroid variables to 
study many-body quantum systems. In the strongly quantum regime where the 
indistinguishability of particles results in significant exchange interactions, the 
appropriate symmetrization should be made to reflect the underlying quantum 
statistics.

A significant advantage of the centroid formulation lies in the fact that the 
centroid distribution function can be readily evaluated for realistic systems using 
imaginary time path integral simulations. Furthermore, the centroid formalism 
in essence folds the thermal averaging into the nonstationary distribution which 
is then dynamically propagated, thus helping to address the phase oscillation 
problem. Therefore, when spontaneous dynamical fluctuations in the canonical 
ensemble are of interest, a centroid dynamics formulation such as CMD has 
proven to be particularly advantageous as is evidenced by the applications re-
viewed and cited in the present work. Most importantly, the new perspective on 
exact centroid dynamics has yielded both a better understanding and a derivation 
of CMD, as well as shed light on several possible avenues to improve and gener-
alize the method. In a parallel fashion, significant new applications of CMD to a 
multitude of realistic systems are certain to be forthcoming. 
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Figure 1 Position time correlation functions for the weakly anharmonic potential at two 
different temperatures of b = 1 and b = 8. Shown are the exact (dots), CMD (solid line),
and classical MD (dashed line) results.
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Figure 2 Position time correlation functions for the quartic potential at two different
temperatures of b = 1 and b = 8. Shown are the exact (dots), CMD (solid line), and
classical MD (dashed line) results.
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Figure 3
Shown are the qaumtum CMD (solid line) and classical MD (dashed line) results.

Mean-squared displacement correlation function for liquid water at 300 K.

Figure 4 Semi-log plot of the population correlation function for an Eigen cation in liquid 
water at 300 K. Shown are the water (solid line) and heavy water (dot-dashed line) results,
and the best fit (dotted line) to each. 
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PROTON TRANSFER IN CONDENSED PHASES: 
BEYOND THE QUANTUM KRAMERS PARADIGM 
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Abstract This chapter will describe recent advances in the study of quantum particle 
transfer in condensed phase. In the Introduction we will discuss some con-
cepts and results from the classical theory of reaction rates. The starting point 
for our quantum theory is the generalized Langevin equation and the equiv-
alent formulation due to Zwanzig that allows for a natural extension to the 
quantum case. We also show how one can perform calculations for realistic 
systems using a MD simulation as input. This forms the basis of our quantum 
Kramers calculations. In the second section we discuss a method that we have 
developed for the solution of quantum many-particle Hamiltonians. We then 
discuss whether the Hamiltonians that are based on the quantum Kramers 
problem are appropriate models for realistic proton transfer problems. In the 
final three sections we describe some cases when the GLE-quantum Kramers 
framework is not sufficient: symmetric coupling to a solvent oscillation. 
position dependent friction and strong dependence on low-frequency modes 
of the solvent. In each case we describe physical/chemical examples when 
such complexities are present, and approaches one may use to overcome the 
challenges these problems present. 

I. Generalized Langevin equation. Zwanzig’s Hamiltonian. 

II. Evaluation of quantum rates for multi-dimensional systems. 

III. Beyond the Langevin equation/quantum Kramers paradigm: 

1. Rate-promoting vibrations. 

2. Position-dependent friction. 

3. Slow environment modes. 
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I. INTRODUCTION

D. Antoniouand S. D. Schwartz 

A common approach for the study of activated barrier crossing reactions is 
the transition state theory (TST), in which the transfer rate over the activation
barrier V is given by (ωR/2π)e –βV, where ωR (the oscillation frequency of the 
reaction coordinate at the reactant well) is an attempt frequency1 to overcome the
activation barrier. For reactions in solution a multi-dimensional version2 of TST
is used, in which the transfer rate is given by

(1)

where Z≠, ZR are the partition functions when the reaction coordinate is at the
transition state and reactant well respectively. A subtle point of the multi-dimensi-
onal TST result Eq. (1) is that the effect of the bath is not only to provide thermal
energy, but also to modify the attempt frequency from the bare value wR to the 
coupled eigenfrequency kBTZ≠/ZR. In other words, the pre-Arrhenius factor in
Eq. (1) includes (to some extent) the dynamics of the environment, which is one
reason why the multi-dimensional TST is a successful theory.

An alternative view of the same physical process is to model the interaction
of the reaction coordinate with the environment as a stochastic process through
the generalized Langevin equation (GLE)

(2)

where V(s) is the potential along the reaction coordinate s, F(t) is the fluctuating 
force of the environment and γ(t) is the dynamical friction which obeys the
fluctuation-dissipation theorem3

(3)

Here, is the Liouville operator and the operator projects3 onto the orthogonal
complement of There are arguments4,5 that suggest that it is a good approx-
imation to calculate (0) by “clamping” the reaction coordinate at the
transition state. 

It is generally accepted that the GLE is an accurate description for a large 
number of reactions.4 In order to understand the subtleties of the GLE we will 
briefly mention three important results.

A cornerstone of condensed phase reaction theory is the Kramers-Grote-Hynes
theory.2 In a seminal paper6 Kramers solved the Fokker-Plank equation in two 
limiting cases, for high and low friction, by assuming Markovian dynamics 
γ(t) ~ δ(t). He found that the rate is a non-monotonic function of the friction 
(“Kramers’ turnover”.) Further progress was made by Grote and Hynes7,8 who
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included memory effects in their Langevin equation study which they solved in 
the high-friction limit. They found a transfer rate equal to the TST rate times the 
Grote-Hynes coefficient 

(4)

where ωb is the inverted parabolic barrier frequency and  is the frequency 
of the unstable2 mode at the transition state obtained from the solution of the 
integral equation 

where

(5)

(6)

is the Laplace transform of the dynamical friction. The case of Markovian 
dynamics corresponds to γ(t) = 2ηδ(t), or equivalently = 2η. Many 
experimental studies have confirmed the validity of Grote-Hynes theory as an 
accurate description of activated reactions in solution. 

Another critical result, which provided a more microscopic view of the 
Langevin equation, was the proof by Zwanzig9 that when the dynamics of a 
system obeying the classical Hamiltonian 

(7)

is integrated in the bath coordinates, then the GLE Eq. (2) is obtained with a
dynamical friction equal to 

(8)

It is important to notice that the solution of the GLE depends only on γ(t) and
not on the particular set of parameters ck, mk, ωk that generate it through Eq.
(8). In order to make this result more intelligible we should emphasize that the
modes k in the Zwanzig Hamiltonian Eq. (7) do not (except in the crystalline 
case) refer to actual modes of the system; rather, they represent a hypothetical
environment10 that generates the correct dynamical friction γ (t) through Eq. (8), 
such that when entered in the GLE Eq. (2) it provides an accurate description of
the dynamics. 

The third result was the establishment of a connection between the TST and
GLE viewpoints by Pollak.11 He solved for the normal modes of the Hamiltonian 
Eq. (7) and then used the result in a calculation of the reaction rate through the 
multi-dimensional TST. Surprisingly, he recovered the Kramers-Grote-Hynes
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result. This means that the Grote-Hynes theory is a transition state theory  for the 
hypothetical environment of Eq. (7). 

These results suggest a computational strategy for the study of reactions in
condensed phases. One starts from some realistic intermolecular potentials and 
performs a molecular-dynamics-Kramers-Grote-Hynes scheme that consists of 
the following steps.12 First, we fix the proton at the transition state and run a
MD simulation. The friction kernel γ(t) is calculated and along with Eqs. (7,8) 
enables the calculation of the Grote-Hynes rate. This scheme has also been used
as a means of obtaining input for quantum calculations as welI.13,14

We are now at the point where a quantum theory ofcondensed phase reactions
may be developed. The Zwanzig Hamiltonian Eq. (7) has a natural quantum
analog that consists in treating the Hamiltonian quantum-mechanically. In the
rest of this paper we shall call this quantum analog the quantum Kramers problem. 

II. CALCULATION OF QUANTUM TRANSFER RATES 

D. Antoniou and S. D. Sckwartz 

The quantum version of the Hamiltonian Eq. (7) has been studied for decades 
in both Physics and Chemistry1 in the 2-level limit. If the potential energy
surface (PES) is represented as a quartic double well, then the energy eigenvalues 
are doublets separated by, roughly, the well frequency. When the mass of the 
transferred particle is small (e.g. electron), or the barrier is very high, or the 
temperature is low, then only the lowest doublet is occupied: this is the 2-level
limit of the Zwanzig Hamiltonian. 

In the 2-level limit a perturbative approach has been used in two famous 
problems: the Marcus model in chemistry and the “small polaron” model in 
physics. Both models describe hopping of an electron that drags the polarization 
cloud that it is formed because of its electrostatic coupling to the environment. 
This environment is the solvent in the Marcus model and the crystal vibrations 
(phonons) in the small polaron problem. The details of the coupling and of the 
polarization are different in these problems, but the Hamiltonian formulation is 
very similar.15

If one assumes Markovian hopping, then in the nonadiabatic limit one can 
solve the small polaron problem using Fermi’s golden rule to obtain a transfer 
rate that has the following form: 16

(9)

where ∆ is the tunneling matrix element between the initial and final stages and f
is a function of the temperature T, the coupling strength c of the electron to the
environment and of parameters of the bath.

A variation of the small polaron problem is the spin-boson Hamiltonian,
which also belongs to the 2-level limit and is now known to have very rich
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dynamical behavior17 captured when solved beyond Fermi’s golden rule, in the
non-interacting blip approximation. 

Charge transfer in solution is different than in crystalline environments since 
the solvent dynamics is slow and anharmonicities are important. The standard 
theory that describes nonadiabatic tunneling in solution is the Marcus-Levich-
Dogonadze model,15,18, 19 which is closely related to the small-polaron problem. 
Let's assume that the PES can be modeled by a double well and that tunneling
proceeds from the ground state. The coupling to the solvent environment mod-
ulates the asymmetry of the PES. The probability for tunneling is largest when 
the PES is almost symmetric, i.e. when the tunneling splitting is maximum. A 
1-dimensional coordinate p is used to describe the configuration of the solvent 
coordinates. Let's call p‡ the solvent configuration that symmetrizes the PES
along the reaction coordinate. When p reaches the value p‡, the particle tunnels
instantaneously. For this idea to make sense, the dynamics of the charged en-
vironment must be slow compared to the tunneling time. After the proton has 
tunneled, subsequent motion of the polar groups asymmetrizes the potential and 
traps the proton in the product well. The solvent atoms are described by classical
dynamics and the reaction barrier is related to the reorganization energy Er of the
medium. The reaction rate is given by 

(10)

where ∈ is the exothermicity of the reaction. Similarly to the crystalline case Eq. 
(9), the rate has an Arrhenius form and the activation energy is independent of
the height of the potential barrier along the reaction coordinate (the barrier height 
does affect the pre-Arrhenius factor.) 

The goal of studying the quantum Zwanzig Hamiltonian is to generalize these
results to the case when excitations to higher doublets are possible. This detail
changes the problem completely since there is no small parameter for a perturba-
tive approach. 

limit using Markovian dynamics and assuming a parabolic barrier. The quantum
rate has the following form:20,21

An earlier approach20 was to solve the quantum problem in the high-temperature

(11)

The factor λo/ωb is the classical (Grote-Hynes) correction to the TST result Eq. 
(4). The quantum enhancement factor X is equal to

(12)
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Here Ω = 2πkBT, ωo is the frequency at the bottom of the reactant well, ωb is 
the frequency at the top of the barrier and is the Laplace transform Eq. (6) of 
the friction function. 

One exact formulation for the quantum rate is the Miller-Schwartz-Tromp rate 
formula.22 In this formulation the quantum rate is given by an integration of the 
correlation function 

D. Antoniou and S. D. Schwartz 

(1 3) 

where k is the transfer rate, ZR is the partition function for the reactants and
tc ≡ t – iβ/2 is a complex time. We should emphasize that Eq. (13) is exact and 
not a linear response theory result like other correlation function formalisms.23

The flux-flux correlation function Cf is given (for a symmetric PES) by

(14)

where Hq is the bath Hamiltonian, q is a N-dimensional coordinate that describes 
the bath. For the Zwanzig Hamiltonian Eq. (7) it is f = ciqis. We shall
follow convention and call the s subsystem the “system” and the q subsystem the
“bath”. The interaction of the reaction coordinate with the bath destroys phase 
coherence of the s wavefunction, and as a result the correlation function decays 
to zero after some time which is a new time scale for the transfer problem. 

In the last few years we have witnessed the successful development of sev-
eral methods for the numerical solution of multi-dimensional quantum Hamil-
tonians: Monte Carlo methods24 centroid methods,25 mixed quantum-classical
methods,26,27 and recently a revival of semiclassical methods.28–30 We have de-
veloped another approach to this problem, the exponential resummation of the 
evolution operator.31–33 The rest of this Section will explain briefly this method.

The adiabatic approximation in the operator context is written as

(15)

To improve upon this approximation, we make a Taylor expansion of the left-
hand side of Eq. (15) and then make a resummation to infinite order with respect 
to commutators [f, Hs] of the fast subsystem s and to first order with respect to 
commutators [f, Hq] of the slow subsystem q. The result is31

(16)

This approximation has a philosophical and mathematical resemblance to
the linked-cluster expansion16 that has been applied successfully to the small
polaron problem. The linked-cluster expansion is an exponential resummation of 
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the matrix element of the evolution operator with respect to the electron-phonon
coupling constant. Of course, in the present problem there is no small parameter 
and we resum the evolution operator itself, but it is very interesting that the 
success of the linked cluster expansion is due to the fact that it describes correctly 
the dynamics at long times16 which is exactly the motivation behind resumming 
to infinite order for the fast subsystem in Eq. (16). 

Using Eq. (16) the correlation function Eq. (14) can be rewritten as 

In Eq. (17) the matrix element 〈q´|exp{–i(Hq + f)t}|q〉 is formally equivalent 
to that of a harmonic oscillator in an electric field, a problem whose analytic 
solution is well known.34 This fact enables the reduction of themulti-dimensional
integrations over q in Eq. (17) to a product of 1-dimensional integrations. 

The results of the integrations depend on the spectral density, which is defined
as the cosine Fourier transform of the dynamical friction Eq. (8):

(18)

To make further progress, it is standard practice to take this definition of the 
spectral density and replace it by a continuous form based on physical intuition. 
A form that is often used for the spectral density is a product of ohmic dissipation 
ηω (which corresponds to Markovian dynamics) times an exponential cutoff 
(which reflects the fact that frequencies of the normal modes of a finite system 
have an upper cutoff): 

(19)

After a lengthy calculation33 the correlation function for the Kramers problem
Eq. (1 7) can be shown to be equal to 

(20)

In this equation J(ω) is the spectral density of the bath,  is the correlation 
function for the uncoupled 1-dimensional problem, B1 and B2 are functions that 
depend on the characteristics of the bath and on the barrier frequency ωb (the 
detailed forms of these functions are given elsewhere33) and

(21)
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We now return to the subtle question of when and why the adiabatic approxi-
mation Eq. (15) fails. It can be shown that if Eq. (16) were limited to the adiabatic 
approximation, in other words if only the first two propagators were included, 

(22)

then we obtain a quantum transmission coefficient (defined as the ratio of the 
exact rate to the TST rate) that rises linearly35 with the effective friction η. This
demonstrates why the adiabatic approximation is unable to accurately reflect the 
dynamics for the condensed phase system in the 2-level limit: it is known that 
in that limit the transmission coefficient decays rapidly with friction36 and even 
though there is a turnover, it happens at exponentially small friction. Thus, the 
operator adiabatic approximation is accurate for only a tiny range of the friction. 

The correct way to employ the adiabatic approximation for the Hamiltonian 
Eq. (7) is to group the quadratic counterterm with the subsystem “s” (we will 
give below a physical justification for this grouping): 

(23)

Then both the exponential operators in Eq. (15) which contribute to the adiabatic 
rate are dependent on the coupling. If the potential energy surface has a double 
well form, the effect of the first term will be to lower the barrier, which will result 
in greater transmission over the barrier and in lower tunneling, so the total effect 
will be to cause a fall off in the transmission coefficient. We have shown35 that
this grouping gives numerical results that agree with those of other workers24 for
some model problems and that it is the appropriate form to use at low temperature 
and high barrier. 

In order to understand the physical idea behind the grouping Eq. (23) we will 
begin (for clarity of presentation) with the 2-dimensional case, when there is only 
one bath oscillator q with frequency ω. In that case the PES has the following 
structure:

(24)

Two trajectories that join the minima and have special significance37 are the
minimum energy path q = cs/mω2 and the sudden tunneling trajectory q =
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fixed. As we shall see in the next Section, the former is relevant when the 
environment is faster than the motion of the reaction coordinate and the latter when 
the environment is sluggish. If q represents a solvent mode, obviously the latter 
limit is relevant. Tunneling is exponentially small unless the PES is symmetric 
which is realized when q = 0. To summarize: for a reaction in solution, in the
2-level limit the dominant path is the sudden trajectory q = 0 along which the
PES is symmetric; since the PES has the form V(s) + 1–

2
mω2 (q - cs/mω2)2,

the barrier along this sudden trajectory is equal to 

(25)

When we generalize Eq. (25) to a multi-dimensional bath, we recover the first 
term in Eq. (23). 

An important detail is that the centers of the reactant/product wells of the
effective potential along q = 0 given by Eq. (25), lie not on so but on some
points s1 that satisfy s1 < so. Using the potential Eq. (23) for the calculation
of the rate introduces to the activation energy a term equal to the energy differ-
ence between the true minimum (s, q) = (–so, –cso/mω2) and the minimum
(s, q) = (–s1, -cs1/mw2) along the sudden trajectory Q = 0:

(26)

This energy is the “Marcus activation energy” needed for symmetrizing the 
potential energy surface. Unlike the Marcus’ theory result Eq. (1 0), this activation 
energy Ea is not equal to Er/4 but smaller: the reason is that in the Zwanzig
Hamiltonian the transfer distance along the symmetrized PES Eq. (25) is shorter
than the transfer distance for the uncoupled potential V(s).

A lot of progress has been made in solving the quantum Zwanzig Hamiltonian 
and understanding its physical behavior in different regimes of the parameter
space. Undoubtedly there are many open questions, but in the rest of this paper 
we will address a different question: is the quantum Zwanzig Hamiltonian the 
appropriate model for realistic proton systems? 
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III. RATE PROMOTING VIBRATIONS 
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Figure 1 
becomes shorter, tunneling is enhanced. 

Double proton transfer in benzoic acid dimers. When the O–O bond length

The effect we will describe in this Section is physically similar to what in 
the past was called “fluctuational barrier preparation”,37 where proton transfer 
between two heavy atoms is facilitated by an oscillation that brings these heavy 
atoms closer so that it lowers the potential energy barrier (see Figure 1). 

The Hamiltonian that captures this physical effect has the following form: 

(27)

This Hamiltonian describes a reaction coordinate s in a symmetric double well 
as4 – bs2 that is coupled to a harmonic oscillator Q. The coupling is symmetric 
for the reaction coordinate and has the form cs2Q, which would reduce the barrier 
height of a quartic double well. The origin of the Q oscillations is taken to be at 
Q = 0 when the reaction coordinate is at so (centers of the the reactant/product
wells), which explains the presence of the term -cs 2

0Q. This potential has 2 
minima at (s, Q) = (±so,0) and one saddle point at (s, Q) = (0, +cs2o /MΩ2)

This Hamiltonian has been studied by Benderskii and coworkers in a series of
papers using instanton techniques.38–40 We will mention some of their conclu-
sions. One has to distinguish between two physical pictures: 

a) the fast-flip limit (also called in the literature41 the “sudden approximation”, 
or “comer-cutting”, or “large curvature”, or “frozen bath” approximation) where 
the reaction coordinate follows the minimum energy path, but before it reaches 
the saddle point it tunnels along the s coordinate in a time that is short compared 
to the timescale of the Q vibration. 

b) the slow-flip limit (also known as the “adiabatic” or the “small curvature” 
approximation) in which the Q vibration adiabatically follows the s coordinate 
and tunneling takes place along the minimum energy path ( i.e. at the saddle 
point).

We can make the above discussion more quantitative by introducing the pa-
rameter B ≡ Ω c2/2aM 2 and the dimensionless frequency 38–40

(28)
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where ωb is the inverted barrier frequency. Then the two limits
mentioned above correspond to 

(fast flip/corner cutting) 

(slow flip/adiabatic). (29)

In most cases B << 1, so that the conditions Eq. (29) are equivalent to v << 1 (or
>> 1). Before we proceed, we should point out that if B ~ 1, then the slow-flip
condition may be satisfied even if v is small provided that the coupling c is 
large enough. This is called the “strong fluctuation” limit37 and is relevant to the
transfer of heavy particles. 

Benderskii and coworkers wrote the classical action for the Hamiltonian (29)
by expanding42 the propagation kernel in imaginary time exp(–Ω |t|) in power
series in the fast-flip limit, or by replacing itby a d-function in time in the slow-flip
limit.

The instanton method takes into account only the dynamics of the lowest 
energy doublet. This is a valid description at low temperature or for high barriers. 
What happens when excitations to higher states in the double well are possible? 
And more importantly, the equivalent of this question in the condensed phase 
case, what is the effect of a symmetrically coupled vibration on the quantum 
Kramers problem? The new physical feature introduced in the quantum Kramers 
problem is that in addition to the two frequencies shown in Eq. (28) there is a
new time scale: the decay time of the flux-flux correlation function, as discussed 
in the previous Section after Eq. (14). We expect that this new time scale makes 
the distinction between the corner cutting and the adiabatic limit in Eq. (29) to 
be of less relevance to the dynamics of reactions in condensed phases compared 
to the gas phase case. 

The study of proton transfer in solution with coupling to a “rate promoting” 
vibration in the sense we discussed above, was pioneered by Borgis and Hanes.43

They used a Marcus-like model with the important addition that the tunneling 
matrix element between the reactant and product states is written as 

(30)

where Q is the interatomic distance of the heavy atoms between which the proton 
hops, Qo is the equilibrium value of this distance and Do is the tunneling splitting 
in the absence of the rate promoting vibration. For a quartic double well it can 
be shown that 

(31)

where V is the barrier height and D is the transfer distance. Eq. (31) suggests that 
for a quartic double well a ~ (Vm)1/2. In this picture, Q is the rate promoting 
vibration. A typical value of the parameter a for proton transfer is a ~ 30 Å–1,
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which means that the rate (that is proportional to D2 in Marcus’ theory) is very
sensitive to variations of Q. In contrast, for electron transfer it is a ~ 1 Å–1 and
the effects of the Q oscillation are not important. Borgis and Hynes solved for 
the coupled dynamics of the proton, the Q oscillation and a phenomenological 1-
dimensional solvent using a perturbation theory approach. Recently,44 they have 
used a curve-crossing formulation to study their Hamiltonian and they reproduced 
their earlier results. They found the following result for the reaction rate when 
the substrate mode is thermally excited (W is the frequency of the substrate mode
that modulates the barrier height, MQ is the reduced mass of the normal mode
and dGp‡ is the activation energy of Marcus’ theory):

D. Antoniou and S. D. Schwartz 

(32)

Note the interesting temperature dependence of the rate. Since Eq. (31) implies 
that aD > aH, the rate equation Eq. (32) suggests that the rate promoting vibration
will reduce the KIE. Hynes and co-workers have extended their theory to the case 
of biased PES .45

An alternative but related approach has been taken by Silbey and Suarez in 
their study46 of hydrogen hopping in solids. Instead of a Marcus model they 
used the spin-boson Hamiltonian17 with a tunneling splitting that has the form 
Eq. (30). The environment as described in the spin-boson Hamiltonian has not 
only slow dynamics (as in the Marcus model), but fast modes as well. 

We have generalised47 these results to the case when the reduction of the 
Zwanzig Hamiltonian to a 2-level system is not appropriate. We started with the 
Hamiltonian

(33)

which describes a particle in a double well that is coupled to a bath of harmonic 
oscillators through the coupling functions ciqifi(s). In the case of bilinear 
coupling, fi(s) = s and Eq. (33) describes the usual quantum Kramers problem.

Let's now assume that one of the harmonic modes [e.g. the (N + 1 )-th mode 
in Eq. (33)] is symmetrically coupled to the reaction coordinate, while all the 
others are coupled antisymmetrically. Then, Eq. (33) can be rewritten as

(34)

where H2d is given by Eq. (27). As we mentioned earlier, the effect of the 
symmetrically coupled oscillation is to change the height of the barrier of the 
double well, while the effect of the antisymmetrically coupled oscillations is 
to induce asymmetry fluctuations to the double well. We will assume that the 
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Q vibration is not directly coupled to the bath of harmonic oscillators. This 
assumption is similar to the approach employed by Silbey and Suarez who used 
a tunneling splitting that depends on the oscillating transfer distance Q in their 
spin-boson Hamiltonian. Borgis and Hynes, too, have made this assumption in
the context of Marcus’ theory.

After this assumption is made, it is possible to calculate the quantum rate for 
the Hamiltonian Eq. (34) by making the substitution 

(35)

in Eq. (14) and mutatis mutandis proceed as in Section II. The signature of the 
effect we are discussing is a primary kinetic isotope effect (KIE) that is smaller 
than we would expect for a 1-dimensional PES, since the rate promoting vibration 
permits alarge transfer rate for the heavier isotope as well. A series of experiments 
by Klinman and coworkers48–50 has established that the proton transfer in some 
enzymatic reactions has a strong quantum character. An interesting aspect of these 
experiments is that they exhibit puzzling KIE behavior similar to that outlined 
above. Another system that has such KIE behavior is the double proton transfer 
in benzoic acid dimer crystals, which we have studied51 with our formalism. We 
now describe this calculation in some detail. 

For the bath we assumed that the protons are coupled to acoustic phonons of 
the crystal, which means that the spectral density has a low-frequency branch 
proportional to w3. The bath frequency cutoff (which in a crystal is the Debye 
frequency) is known52 from experiments and is equal to ωc = 80 cm–1. For the 
friction we have used a value52 g = 0.8. For the potential energy surface we used
a quartic double well with barrier height equal to 8.1 kcal/mol. Finally, for the 
rate promoting vibration, we used a vibrational frequency of the O–O bond53,54

equal to W = 120 cm–1. We should mention that the results depend only on 
the ratio c2/(ΜΩ2), therefore there is effectively only one fitting parameter. 
For this value of W, the dimensionless frequency v in Eq. (28) is equal to 0.13, 
which means that in a pure two-dimensional problem we would be in the fast-flip
(corner-cutting) limit. The mass of the Q vibration is not known (since the heavy 
atoms are coupled to the rest of the crystal), so we set53,54 MQ = 100 mH which
is a reasonable value since it is equal to the mass of several C atoms. The coupling 
c of the reaction coordinate to the Q vibration is not known. We chose a value 
c = .08 a.u. which in the two-dimensional problem (without the presence of 
the bath) would lead to a 90% reduction of the barrier height at the saddle point 
compared to the height of the static barrier. This reduction is not as large as it 
appears to be at first sight, since for this value of the frequency W corresponds to 
a dimensionless frequency v defined in Eq. (28) such that the instanton trajectory 
in the two-dimensional potential is close to the static barrier and not to the saddle 
point. Using these parameters we have calculated the activation energies for H 
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and D transfer. In Table I we show the results of our calculations for temperature 
T = 300° K. 
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Table I Activation energies for H and D transfer Three values are shown: the ac-
tivation energies calculated using a one- and two-dimensional Kramers problem and the 
experimental55 values.

E1d E2d experiment

H 3.39 1.51 1.44 kcal/mol 
D 5.21 3.14 3.01 kcal/mol 

The remarkable agreement with experiment shown in Table I is undoubtedly 
fortuitous, but is a strong indication that our model makes predictions that are 
consistent with the experimental findings. 

IV. POSITION-DEPENDENT FRICTION 

A lot of attention has focused recently on the problem of Langevin equation 
with spatially dependent friction.56–62 There have been two approaches to the 
problem.

The first60 is a variational approach that maps the position-dependent problem 
to an effective parabolic barrier transfer problem, with an effective friction that 
is position-independent. This approach leads to a result for the rate that can be 
interpreted as a Grote-Hynes coefficient with a position-dependent friction. 

The second approach61 starts from the modified Langevin equation Eq. (37) 
and uses the equivalence of the Kramers theory to the multi-dimensional TST. 
It has been established59,61 by numerical comparison that there is agreement 
between the two approaches. 

A critical assumption in Eq. (2) is that the friction kernel g(t) is independent 
of the position s. However, it is now known from numerical simulations12,63,64

that for some reactions in solution this assumption is violated. 
In this work we shall follow the Langevin equation approach and in the spirit 

of Zwanzig' s work we shall start from the following Hamiltonian: 

(36)

The position-dependent part of the friction is manifest in the spatial dependence 
of the coupling function g (s). The usual quantum Kramers problem is recovered 
when g(s) = s. An implicit assumption in Eq. (36) is that the functional form of
the coupling g(s) is the same for all modes k. 
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Carmeli and Nitzan have shown56 that the dynamics of the Hamiltonian Eq. 
(36) is equivalent to that of the effective Langevin equation 

(37)

where F(t) is the random force when the reaction coordinate is clamped on the 
transition state. Eq. (37) shows that the effective friction kernel is not only 
nonlocal in time, but also depends on a time-correlated product of derivatives 
of the coupling function. As we mentioned in the Introduction, the molecular 
dynamics simulations of the GLE are performed by “clamping” the reaction 
coordinate on some position along the reaction path. In that case, dg/ds is
independent of time and Eq. (37) has the form of a GLE with random force 

(38)

and a friction kernel that satisfies the following fluctuation-dissipation theorem: 

(39)

where the subscript s≠ means that the average is taken with the reaction coordinate 
clamped on the transition state.

It is convenient to introduce a new function

(40)

whose physical meaning will be clear shortly. G(s) obeys the boundary condition 

(41)

The bilinear coupling case (i.e. position-independent friction) corresponds to 
G (s) = 1, or equivalently, to g s=s≠. The position-dependent friction Eq. (39) 
can then be rewritten as 

(42)

which shows that G (s) is the reaction coordinate-dependent part of the friction. 
We should point out that Eq. (42) indicates that the function G(s) can be 

obtained from the value of the friction kernel at t = 0. This is a consequence 
of the fact that the friction kernel is calculated in the “clamping” approximation. 
In any case, Eq. (42) allows for the calculation of G(s) without the numerical 
difficulties that plague the long-time tail of molecular dynamics simulations. 
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One can invert Eq. (40) and write 

(43)

Of course, the function G (s) does not contain any new information in addition 
to g(s). The reason that two physically equivalent quantities have been intro-
duced, is that there are two approaches to the dynamics of charge transfer, as 
explained earlier: either one starts from the GLE (when γ s (t) is the observable
and G(s) is the fundamental quantity) or one starts from the Hamiltonian Eq.
(36), when the coupling g(s) is the fundamental quantity. The work of Voth
and collaborators58–61 gives a strong indication that these two approaches are 
equivalent, as in the case of the position-independent friction. 

Once the function g(s) is known, one can make the following modification to
the molecular-dynamics-Kramers-Grote-Hynes scheme we outlined at the end of 
the Introduction. 

1) Fix the proton at some position s and run a MD simulation. The friction 
kernel is calculated from the force-force correlation function. 

2) The previous step is repeated for several values of s. 
3) The friction kernel gs(t) is calculated and with the help of Eqs. (42)–(43) 

the coupling γ(s) is obtained. Then one solves for the Hamiltonian Eq. (36) to
obtain the effective Grote-Hynes rate. 

We have examined65 the proton transfer reaction AH–B A– –H+B in liquid 
methyl chloride, where the AH–B complex corresponds to phenol-amine. The 
intermolecular and the complex-solvent potentials have a Lennard-Jones and a 
Coulomb component as described in detail in the original papers.65–68 There
have been other quantum studies of this system. Azzouz and Borgis67 performed
two calculations: one based on centroid theory and another on the Landau-Zener
theory. The two methods gave similar results. Hammes-Schiffer and Tully68

used a mixed quantum-classical method and predicted a rate that is one order 
of magnitude larger and a kinetic isotope effect that is one order of magnitude 
smaller than the Azzouz-Borgis results. 

In an earlier work66 we performed a quantum calculation using the exponential 
resummation technique and found results that agreed qualitatively with those of 
Azzouz and Borgis. When we allowed for a position-dependent friction, we 
obtained a function g(s) that is plotted in Fig. 2. The results for the quantum
rate are presented in Tables II and 111. The column g(s) = s refers to the
position-independent case, as calculated in our earlier work66 on this system. 
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Figure 2 The coupling function g (s) defined in Eq. (36). The deviation from a straight 
line is the deviation from bilinear coupling. The positions of the transition state, the reactant 
and product wells are also shown by the dashed vertical lines. 

TableII Comparison of the ratio k/kZPE of the quantum rate k over kZPE, which is the TST
result corrected for zero-point energy in the reactant well. Also shown are the Landail-Zener
and centroid calculations 67 and the molecular dynamics with quantum transition result.68

present method present method Borgis Borgis Tully 
with full g(s) with g(s) = s (LZ) (centroid) (MDQT)

9965 1150 907 1221 9080 

Table III 
the same as in Table II. 

present method present method Borgis Borgis Tully 

Cornparison of the H/D kinetic isotope effects. The methods of calculation are 

with full g(s) with g(s) = s (LZ) (centroid) (MDQT)

37 83 40 46 3.9 

V. EFFECT OF LOW-FREQUENCY MODES OF THE
ENVIRONMENT

A final physical effect is that of low frequency variations of the spectral density. 
It is important to investigate these effects because the low-frequency part of the 
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spectral density is calculated via long time molecular dynamics, where noise 
affects the accuracy of the results. In addition, Leggett and co-workers have 
shown17 that the form of the spectral density at low frequencies can profoundly
affect the transfer rate. For example, when the exponent s in J(ω) ≈ hωs

changes from s = 1 to s > 1, the survival probability changes from exponential
decaying to underdamped oscillations. This example shows that one should be 
alert to the behavior of the spectral density at low frequencies. 

For this reason, the following experimental work is of great interest. The 
Fleming group measured69 spectral densities for the solvation of the dye labeled 
IR144 in ethylene glycol at 297º and 397º K. Their results showed significant 
variation at low (less than 3 cm–1) frequencies. In order to test the effect of such 
variability on reaction rates, we constructed70 a number of spectral densities for 
use in rate calculations. All of the following calculations used a PES of a quartic 
double well form with barrier height 6.3 kcal/mol and inverted barrier frequency 
500 cm–1 . We proceeded in 3 steps. 

1) First, we included a spiked low frequency component to the spectral density 
(as found in the experimental results) and constructed the spectral densities as a 
sum of two ohmic densities with exponential cutoffs: 
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(44)

For this form of the spectral density we found only a small effect on the rate. 
2) Second, we studied two spectral densities, both ohmic with exponential 

cutoff, shown in Fig. 3: the cutoff for the first case was 50 cm–1 while for the other 
was 60 cm–1 . The reorganization energy in the two cases (proportional to the 
integral of J(ω)/ω) is different by about 15%. In a standard Marcus picture, this 
15% change in activation energy would be expected to yield a rather different rate, 
but in fact our quantum rate calculations show that the transmission coefficients 
for the two spectral densities are almost indistinguishable for a variety of reduced 
viscosities. The results are shown below in Table IV. We have included a 
calculation of the transmission coefficient at very high reduced viscosity, in order 
to determine if the variations in spectral density affect the rate at higher coupling 
strength.

Table IV
the dissipative environment for step 2. 

Exact quantum transmission coefficients for several values of the coupling to 

h = 0.9 h = 1.5 h = 2.5 h = 4.5

wc = 50 cm–1 3.52 2.95 2.28 1.37 
wc = 60 cm–1 3.43 2.88 2.20 1.34 
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Figure 3 (a) Spectral densities for step 2: ohmic with exponential cutoff ωc. (b) Spectral
densities for step 3. The difference from step 2 is that the integrals of the spectral density 
over frequency have been normalized. 

3) Third, we examined the same two spectral densities as in the second step, 
with the only difference being that now the higher cutoff case has been normalized 
so that the reorganization energies are equal. This normalization enhances the
low-frequency branch of the spectral density as can be seen in Fig. 3. In this

Table V
dissipative environment, for step 3. 

Exact quantum transmission coefficients for several values the coupling to the 

h = 0.9 h = 1.5 h = 2.5 h = 4.5

wc = 50 cm–1 3.52 2.95 2.28 1.37
wc = 60 cm–1 3.71 3.35 2.60 1.70

case the results, shown in Table V, are strikingly different: the highest effect is 
seen at the highest coupling strength. Because the high frequency variation in the
spectral density seems to have essentially no effect on the promotion of rate over
the TST result, it is clear that the variations presented in Table V are entirely due
to the difference in the low frequency (less than 5 cm–1) part.

This is critical for two reasons when considering the recent Fleming group 
results. First, they were not able to measure the high frequency components of
the spectral density with definitive accuracy. Our results show that this does not
matter. Second, they find some level of variation at low frequencies. Our results
show that this might matter. The low frequency “blips” they see and we modeled 
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have limited effect, but the low frequency shift of the third step does have a large 
effect.

VI. CONCLUSIONS 

D. Antoniou and S. D. Schwartz 

In this chapter we have presented a review of some of the recent methods we 
have employed for the calculation of quantum mechanical rate constants. All 
these methods are quantum generalizations of the basis of condensed phase rate 
theory: the Kramers theory. We have shown how the Zwanzig Hamiltonian 
formulation of the Generalized Langevin Equation allows a rigorous evolution 
operator approach to the problem of rate determination through the flux auto-
correlation function formalism. This approach involves the calculation of clas-
sical molecular dynamics information as a starting point, and we have shown 
in a variety of cases when calculations of classical spectral densities in a single 
position for a single reaction coordinate coupled bilinearly to a harmonic bath are 
not sufficient to obtain accurate prediction of chemical rates. As these and other 
approaches described in this volume become standard, we expect the calculation 
of condensed phase dynamics to become as common as the currently available 
methods for the gas phase. 
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Abstract A new approach to understanding nonstationary processes has recently been 
developed through the use of the so-called irreversible generalized Langevin 
equation (iGLE). The iGLE model can accommodate nonstationary changes 
in temperature and the friction strength of the environment. These changes 
may be coupled to macroscopic averages of the environment as induced by the 
collective motion of many equivalent tagged particles. As these environments 
may not be identical, the WiGLE model has also been developed, and it 
accounts for heterogeneous environments, each of which is coupled to a set 
of w neighbors. Possible applications of these models include the chemical 
reaction dynamics of thermosetting polymers and living polymers, and the 
folding dynamics of proteins. 
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I. INTRODUCTION 

R. Hernandez and F. Somer 

Tracking reactions and or correlated events occurring in a high-dimensional
environment is deceptively simple.1–7 Ignoring the environment, the chosen 
mode under observation — e.g., the reacting pair of molecules or the relative 
displacement from some origin of a chosen molecule— can be recast in terms 
of an effective particle moving along a reaction coordinate. Through repeated 
—experimental or numerical— measurements of this effective particle’s motion, 
any dynamical average may be obtained. The deceptive part of this simplicity is 

that the experimental system or the numerical simulation must somehow include 
the dynamics of the environment. The aim in the development of nonstationary 
stochastic dynamics is the construction of projected equations of motion which 
effectively allow one to ignore the environment even in extreme cases when the 
environment is undergoing nonequilibrium changes. 

To begin, suppose that there exists a particle, P, whose nontrivial dynamics 
is on a time scale τp. (In describing the dynamics as nontrivial, we mean 
that there is an appreciable change in the given particle’s non-averaged phase-
space points.) Suppose further that the solute particle is moving within an 
environment of solvent particles whose nontrivial dynamics is on a time scale 
τe << τp, where the inequality is a result of mass separation, size separation, or 
some other mechanism. The motion of P can then be described as Brownian
motion in which P is in some effective (averaged) uniform environment.1,8–11

If τe is somewhat larger, then there may arise an effective time scale τr > τe,
with τp <-  τr such that the environment has some “memory” of the particle’s 
previous history and therefore responds accordingly. This is the regime of the
generalized Langevin equation (GLE) with colored friction.2,3,6,7,12–21 In all 
these cases, the environment is sufficiently large that the particle is unable to affect 
the environment’s equilibrium properties. Likewise, the environment is non-
interacting with the rest of the universe such that its properties are independent 
of the absolute time. All of these systems, therefore, describe the dynamics of a 
stochastic particle in a stationary —albeit possibly colored— environment. 

Now suppose that the particle —solute— and environment —solvent— are in 
turn coupled to a much larger universe whose interesting dynamics is on some 
time scale τu (greater than τp and τe) through direct interactions between the 
environment and the universe. In this extended case, the dynamics of P over 
time scales proportional to τp will nonetheless be effectively that of the above-
mentioned stationary stochastic dynamics. (This short-lived equilibrium has 
been referred to as the quasi-equilibrium condition.22,23) However, after τu has
elapsed, the change in the universe will affect the solvent and thereby change its 
quasi-equilibrium properties. Such a change will affect the subsequent dynamics
of P. This cycle will persist over long times, and leads to a nonstationary stochastic 
dynamics describing the motion of P. 
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There is an additional layer of complexity that increases the coupling further. 
As described above, the universe is external to the solute/solvent system. Perhaps 
the universe represents some collective normal mode(s) of the solute/solvent sys-
tem, whose response is separable (or approximately so) from the local solvation 
of the solvent to the solute. In particular, this occurs when the solute/solvent 
system contains a large number of solute particles whose properties change as 
a function of their individual dynamics. In the limit of high enough solute con-
centrations, the collective (macroscopic) change of these solutes thus leads to a 
change in the solvation for each of them individually. 

What these considerations lead to is the need for the inclusion of general classes 
of nonstationary friction within the framework of stochastic dynamics vis-a-vis
the GLE. The need for such a nonstationary framework has been recognized for 
some time.24–27 In recent work,22,23,28–30 we have further generalized the GLE 
to the nonstationary friction regime. The general class of these new models has 
been dubbed the irreversible generalized Langevin equation (iGLE), with the 
term “irreversible” included to make explicit reference to the irreversibility in the 
universe that is leading to the nonstationarity in the environmental response. The 
theoretical framework ofthe iGLE will be discussed in Section II. This discussion
also provides a connection to the GLE with space-dependent friction31–33 that now 
emerges as a subset of nonstationary stochastic models described by generalized 
multiplicative noise terms. The most general class of nonstationary stochastic 
models would also permit a change in the solvent response time in an absolute 
sense, but this generalization is in progress. 

There are several physical problems in which the generality of the iGLE 
beyond that of the GLE is necessary to describe the dynamics. For example, 
consider a bath that is undergoing a smooth isothermal contraction. Such a 
change would lead to increased solvent friction, and would change the dynamics 
of the chosen (reaction) coordinate to which it is coupled. A more complex and 
exciting class of problems arises if the friction in the iGLE represents events that 
are occurring throughout the fluid, and consequently the properties of the fluid 
(i.e., the environment or the solvent bath) change as a result of the motion of 
the chosen coordinate. An application of this reaction-induced — viz. chemistry-
induced— irreversibility in the solvent has also been undertaken.23 It models 
polymerization in the thermosetting regime, in which the fluid undergoes a rather 
dramatic chemistry-induced phase transition from liquid to glass/melt, and is 
described in Section III. One other possibility currently under investigation is the 
use of the iGLE to describe protein folding. Some discussion of this possibility 
is described in Section IV. 
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II. NONSTATIONARY STOCHASTIC MODELS

II.1 PRELIMINARIES WITH STATIONARY STOCHASTIC

R. Hernandez and E Somer 

DYNAMICS

A large class of reduced-dimensional stochastic equations may be written in 
the form, 

(1)

where v(t)[= R(t)] is the velocity of the effective particle with position at R(t),
.

and mass-weighted coordinates are used throughout. This effective particle is 
subject to several forces: (i) the uniform force F(t)[= –∇V(R(t))] due to the
potential of mean force (PMF) that results from the projection of all the bath 
particles, (ii) the frictional force that results from the environment’s memory — 
the friction kernel γ(t, t )́— of the particle’s velocity at earlier times, and (iii) the
random force ξ(t) that results from the projection of the fluctuating force due to 
the bath modes. To complete the specification of Eq. (1), one needs a connection 
between the memory friction g and the random force ξ.

In emphasizing the need for satisfying the equipartition theorem, the lin-
ear response theory provides a connection for stationary processes through the 
fluctuation-dissipation theorem, 

(2)

where the subscript in γo is used to emphasize it’s stationarity. The well-known
Brownian motion8,9 results from this perspective in the local limit that 

(3)

where d is the Dirac d function. The friction term now reduces to –γo(0)v(t)
with which Eq. (1) is known as the Langevin equation.10 Unfortunately, even
this simplification does not completely specify the problem as only the second 
moment of the now-uncorrelated friction ξ(t) is specified by Eq. (2). This
is usually resolved by making the further assumption —consistent with linear 
response theory and the central limit theorem— that the higher-order cumulants
are zero, and thus ξ(t) is taken as Gaussian noise, i.e., ξ(t) is a representative of
a Gaussian distribution with width specified by Eq. (2). 

As the separation in the time scales between the particle and the bath becomes 
less severe, the assumption that γo is local breaks down, though it may still be
stationary. This results in a frequency-weighted spectral density, 

(4)
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that is no longer constant over the frequency domain. The spectrum is therefore 
not white, and the noise that results from it is called colored. Formally, the 
fluctuation-dissipation theorem still provides a connection between the colored 
random forces and the friction kernel in this so-called generalized Langevin equa-
tion (GLE). In numerical simulations, there is still the difficulty of constructing 
the random forces such that they satisfy this connection. In practice this is usually 
solved by taking ξ to be the result of some auxiliary random process for which
γo is well known. For example, the Langevin equation in the velocity v´ of some
auxiliary particle with friction γG [= 2γo(0)kBT/τ] and Gaussian noise leads to
a v( t) that is exponentially correlated,34–37

(5a)

(5b)

Use of this v´(t) as the friction ξ(t) in the generalized Langevin equation provides
a complete specification of a nonlocal stationary stochastic dynamics with the 
exponential friction γo.

These constructions are evidently phenomenological in that they rely on con-
sistency between the stochastic forces and their correlations. A more rigorous 
construction of these terms is therefore desirable. This has led to the use of the 
Mori projections4,6,38 of large-dimensional Hamiltonian systems. In particular, 
the projection of the Hamiltonian,5,39–43

(6)

results in a GLE with the connections described above in the limit that N → ∞
(The symbols in the Hamiltonian H are as follows: pR is the momentum asso-
ciated with the position R of the chosen particle as before, pxj is the momentum
associated with the position xj of the jth harmonic bath mode with frequency
ωj, cj are the bilinear coupling constants between the chosen particle and the
jth bath mode, and the seemingly redundant parameter, g´, controls the overall
coupling between the particle and the bath.) The mechanical potential U (R) is not
the potential of mean force (PMF), V(R), because the projection of the solvent
harmonic bath renormalizes the forces acting on R.20,40,44,45 To be precise, the
stationary friction kernel may be written as 

(7)

One additional advantage of this connection is that it permits the use of Hamilto-
nian methods to calculate various dynamical quantities. See the chapter by Pollak 
in this book for further details. However, it is not generally possible to provide 
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the full-dimensional Hamiltonian whose projection results in a given stationary 
γo(t – t′), let alone a nonstationary one. Nonetheless such phenomenological 
descriptions may be useful in describing systems of interest, and as such most of
this chapter will deemphasize the projection methods. 

R. Hernandez and F. Somer

II.2 MULTIPLICATIVE NOISE & SPACE-DEPENDENT
FRICTION

A further complication that has been much studied in the literature is that
of multiplicative noise46,47 in which the random force in stochastic differential 
equations like Eq. (1) is modified by a modulating term, i.e.,

(8)

where ξ´(t) is a stationary random force obeying the fluctuation-dissipation
relation, Eq. (2), for some friction γo, and the implicit and/or explicit time-
dependence in g must be specified in some way. Within the framework of the 
generalized Langevin equation, the multiplicative noise term further requires a
connection between γo and g ( t , t )́, such that the equations have a proper physical
interpretation.48

case which in the present notation leads to the connection, 
In the 1980’s, a series of stimulating papers31–33,41 explored the space-dependent

(9)

The physical interpretation of this well-posed problem is that it represents the 
motion of a particle in a non-uniform medium whose instantaneous response is 
modulated by g2(R(t)) at each time t. It was also shown that the Hamiltonian of
Eq. (6), with g´ taken such that

(10)

in the (N → ∞)-limit projects to the GLE with space-dependent friction. Thus 
the GLE with space-dependent friction can be formally viewed as a nonstationary 
stochastic equation of motion in which each trajectory is experiencing a unique 
nonstationary friction vis-a-vis its trajectory-parameterized environment. 

II.3 iGLE FORMALISM

In recent work, we have further pursued forms of g ( ·) which manifest nonsta-
tionary effects directly in t, and other mixed-representations.22,23,28–30 The first
of these representations is the so-called iGLE dynamics that may be characterized 
by the stochastic differential equation, 

(11)



where, as in Eq. (1), F(t) (≡ –∆RV(R(t))) is the external force, v (= q. ) is 
the velocity, and R is the mass-weighted position. The random force ξo (t) due
to the solvent is related to the stationary friction kernel γo(t, t′) through the 
fluctuation-dissipation theorem,49

(12)

The function g(t) characterizes the irreversible change in the solvent response
and is required to go to a constant at infinite time, so that the iGLE will go to an
equilibrium GLE at long time.

By construction, the generalized force ξ(t) (≡ g(t)ξo(t)) in Eq. (11) satisfies 
a nonstationary version of the fluctuation-dissipation relation, 

(13a)

(13b)

We have shown that the iGLE, interpreted as a nonstationary (“irreversible”) 
GLE, satisfies the correct equilibrium behavior in quasi-equilibrium limits as 
well as more generally in illustrative models.22

The unfamiliar structure of the iGLE may lead one to wonder if there ex-
ists a large mechanical system that it mimics, and if so, what precisely such a 
system would look like. One approach toward the resolution of this problem 
has been undertaken through the construction of a nonconservative mechanical 
system whose projection onto the chosen coordinate is the iGLE.28 Perhaps not 
surprisingly, the mechanical system is precisely that of Eq. (6) with g′ now set 

In those cases where g is representative of a change in the solvent response due
to outside forces, we have thus far explored the iGLE with constant and biased 
potentials. The form of g has been taken as a switching function that changes the 
solvent from a lower to higher effective friction constant, γo.22 This has resulted
in a demonstration that the iGLE dynamics does satisfy equipartition well beyond 
the equilibrium limit. Two general classes of barrier potentials are also of interest: 
potentials in which there exists one bound region ( e.g., cubic polynomials), and 
double-well potentials ( e.g., quartic polynomials). The former class models 
dissociation, while the latter models chemical rearrangements. Through the use 
of stochastic dynamics simulations of the iGLE, one may obtain both a better 
understanding of the behavior of these systems as well as benchmark results for 
testing extensions of reaction-rate theory applicable to the irreversibly driven 
solvent regime of the iGLE. 

A version of this formalism which includes explicit and direct dependence 
on space and time in g is the obvious next development. But a more exciting 
development has come from the perspective that the time dependence in g arises
from a change in the collective behavior of the environment.23 As stated in

tog ( t ) .
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the introduction this could arise from the behavior of some collective normal 
mode(s) which indirectly affects the chosen particle P through its effect on P’s 
environment. Letting be the observable that represents the projection of these 
collective normal modes, then at first order we posit that the the mean field 
behavior of g is related to the mean behavior of through a power law with 
exponent

R. Hernandez and F.Somer

(14)

where the angle brackets correspond to averages over the ensemble at time 
0. Continuing further, if the behavior of 〈Â〉 is correlated to the behavior of
〈R(t)〉 through some non-exponential physical process, we can further claim the 
existence of a dominant power law relation between them. Thus, we obtain the 
phenomenological scaling law, 

(15)

This relation provides a simple closure to the iGLE in which the microscopic 
dynamics is connected to the macroscopic behavior. Because of this closure, the 
microscopic dynamics are said to depend self-consistently on the macroscopic 
(averaged) trajectory. Formally, this construction is well-defined in the sense that 
if the true 〈R(t)〉 is known a priori, then the system of equations return to that of 
the iGLE with a known g(t). In practice, the simulations are performed either by 
iteration of 〈R(t)〉 in which a new trajectory is calculated at each step and 〈R(t)〉
is revised for the next step, propagation of a large number of trajectories with 
〈R(t)〉 calculated on-the-fly, or some combination thereof. 

The self-consistent scenarios of the iGLE thus provide for an additional com-
plexity in the response of the environment. Even at the modestly simple level 
of such inclusion through the use of the scaling law of Eq. (15) the complexity 
must be accounted for by determining the scaling exponent ζ for a given physical 
problem. In Sec. III., this class of scaling laws will be used to explore the reac-
tion dynamics of polymers in the dense limit in which the growing polymers play 
a significant role in each others’ solvation, and thereby affect their subsequent 
reactivity.

II.4 WiGLE FORMALISM 

Although the iGLE with the nonstationarity of Eq. (15) is formally correct, it 
is nonetheless too strict. The underlying assumption is that the environment is 
homogeneous at a given time t, and hence the solvation of the environment to
each stochastic particle is exactly the same and characterized by g(t). However,
in many cases, each of the particles will be in a unique environment, and can each 
be characterized by its own iGLE,

(16)
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where the n subscript specifies the quantities with respect to the nth particle, and 
we nowdefine the frictionkernel as:

(17a)

(17b)

where ξo(t) satisfies the fluctuation-dissipation theorem for stationary random
forces as before, i.e.,

(18)

In an argument similar to the scaling argument at the end of Sec. II.3, we now 
claim that each particle is solvated heterogeneously by an environment whose
response is dictated not by the average behavior of all the particles, but rather
by the w neighbors which are in the local region that characterize the solvation
environment of the nth particle. The nonstationarity is therefore included through 
theterm,

(1 9a) 

(1 9b) 

where Sw, n (' n) is the set of labels of the w + 1 realizations in the local
environment of the nth chosen coordinate (i.e. the particle, itself, plus its w
tagged neighbors). This phenomenological set of stochastic equations has been
called the iGLE of degree w, or WiGLE.

The WiGLE model satisfies two interesting limits with respect to w. In the
w → ∞ limit, the different averages gn(t) all go uniformly to the same average
(|R(t)|)ζ. Thisisprecisely aniGLEwithself-consistent friction. In the w → 0
limit, the “averages” gn(t) each reduce to Rn(t)ζ. That is a power law of the
particle position, and is simply the case of space-dependent friction that was
discussed in Sec. II.2. In between these limits, the WiGLE model can include a
physically interpretable mixing of the nonstationarity in time and space which is 
not available with the iGLE. 

Unfortunately, the problem of determining the heterogeneity has been hidden 
in the determination of the neighbor sets, Sw,n. In principle, the neighbor sets
are not static. To properly account for this, one would need to solve the full-
dimensional dynamics and keep track of Sw,n(t) for the stochastic —reduced-
dimensional— dynamics. But that would be self-defeating because the motiva-
tion for doing the stochastic dynamics is the avoidance of the full-dimensional
calculation. Furthermore, in analogy with the use of random matrix theory for the 
calculation of energy levels,50–52 it may be the case that the detailed sets are not 
as critical as the average structure of the sets. To this end, Fig. 1 illustrates two 
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Figure 1 A matrix representation of two possible coupling schemes in the WiGLE for-
malism. The rows correspond to n, the index of a particular realization of the ensemble, 
and the columns correspond to the index of the other realization of the ensemble which may 
or may not be in the set Sw,n, depending on whether the matrix element is full or empty, 
respectively. The matrix on the left (a) corresponds to the banded coupling case, in which 
a given particle is coupled to the nearest w particles (for a specified ordering) through the 
friction. The matrix on the right (b) corresponds to the block-diagonal case, in which a given 
particle is always coupled to a prespecified set of w particles. 

different limits for the representation of the coupling in the fixed sets, Sw, n. In
both cases, suppose that there exists an ordering of the particles. In the banded-
coupling case (a), a given set consists of the particle and the w/2 neighbors to
its left and right. Physically this corresponds to a stack of (d – 1)-dimensional
particles in a d-dimensional space whose interaction with its neighbors dies off 
at w/2. In the matrix representation of Fig. 1, it appears as a banded matrix. In
the block-diagonal-coupling case (b), a given set consists of a fixed set of (w + 1 )
particles. Physically this corresponds to a system that can be separated into 
regions in which the (w + 1 ) particles are strongly affecting the solvation of the
given region. In the matrix representation of Fig. 1, it appears as ablock-diagonal
matrix. Although not shown here, many of the dynamical observables for these 
two rather different cases30 are similar for the same w. An alternate coupling 
scheme that would include an effective dynamics would be that in which the sets 
Sw,n are random matrices with binary entries that are correlated in time. This
and other alternate coupling schemes are presently being studied. Nonetheless, 
the preliminary assessment is that the WiGLE model provides the possibility of
studying stochastic nonstationary dynamics in heterogeneous environments with 
only one additional parameter w necessary to characterize the heterogeneity. 
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Figure 2 
contrast to the instantaneous friction for the z = 0 and z = 1 as a function of 〈R〉.

The double-well potential with minima at R = 1 and R = 2 is displayed in 

II.5 ILLUSTRATION WITH A DOUBLE-WELL POTENTIAL 

In previous work, the iGLE and WiGLE models have been illustrated through 
the use of free-particle, biased, and biased-washboard potentials.22,23,30 Rather
than repeat these calculations, in this section we illustrate the dramatic role that 
the asymmetry in the nonstationary friction can play in the dynamics of the 
symmetric double-well potential. The specific question to be explored is whether 
the equilibrium position of the double-well particles is affected by the asymmetry 
in the nonstationary friction. 

The explicit form of the double-well potential of mean force displayed in 
Fig. 2 is that of three merged harmonic potentials as in Straub et al. 37 The
normed frequencies of the three parabolas are chosen to be equal, the minima 
are set at R = 1 and R = 2, and the barrier height is 2 at R = 1.5. (Note that for 
simplicity, the parameters and observables are reported in dimensionless units 
throughout.) The stationary part of the response function is taken to be that of 
Eq. (5a), with γo(0) = 8.0 x 103 and t = 0.714. The calculations are performed
at a temperature, kBT = 1.0, that is sufficiently smaller than the barrier height 
that the dynamics must involve significant energy activation in order to cross
between the wells, The time steps in the numerical integration of the stochastic 
equations are ∆tξ = 2.5 x 1 0–4 for the auxiliary equation with Gaussian noise, 
and ∆ t = 2.5 x 10–3 for the iGLE.

Two different test cases for the form of the nonstationarity in Eq. (15) are 
explored. If z = 0, then g(t) = 1 for all t, and the system reduces to the 
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stationary GLE with a constant instantaneous friction γ(t, t) that is represented
as the straight line in Fig. 2. If z = 1, then the nonstationary instantaneous
friction γ(t, t) is quadratic in 〈R(t)〉 as is illustrated in Fig. 2. The (ζ = 1)
choice also serves to complement the (ζ = 2) choice that has been used in our
prior work. The lower value of z slows down the relaxation times, but it does
not change the qualitative conclusions concerning the nonstationary effects. A
systematic study of the role of z is presently in preparation. All the simulations
involve averages of N = 1020 realizations of the iGLE. The nonzero z case was
simulated using block-diagonal WiGLE dynamics with w = 16.

In Fig. 4, the mean-square velocity for the various simulations are displayed in 
order to show that equipartition was in fact satisfied throughout the dynamics. For 
each of the two z cases, the average position of the double-well particle is plotted 
as a function of time for two sets of initial conditions. The initial conditions are 
the left and right wells with Rn(0) equal to 1 and 2, respectively. In all cases,
the velocities vn (0) are chosen from a Maxwell-Boltzmann distribution. Not
surprisingly, the average position is 0 for the stationary case with z = 0 as can
be argued by symmetry. However, the average position for the z = 1 is clearly
shifted toward the left well. This is a direct consequence of the asymmetry in the
friction kernel which affects the competition between the forward and backward
rates across the double-well barrier. Further work to obtain these rates from the
simulations as well as analytic theories is in progress. Nonetheless, these results 
are a clear illustration that the nonstationarity in the iGLE and WiGLE models can
lead to dramatic and observable differences not just in time-dependent properties,
but also in equilibrium properties.

II.6 NONSTATIONARITY IN TEMPERATURE 

R. Hernandez and E Somer 

Thus far, the nonstationarity in the environment has included a change in 
the environmental response assuming isothermal conditions. However, in many 
cases— such as in chemical reactions under temperature-ramping conditions— 
the effective temperature of the solvation environment may also change in a 
nonstationary fashion. If the change is slow enough, then an adiabatic treatment 
of the GLE or iGLE should suffice. However, such changes may not always be 
adiabatic, and so a generalization of the iGLE in which the temperature is allowed 
to change irreversibly has also been constructed.29

As before, the iGLE may be written as: 

where the friction kernel is now defined as: 

(20)

(21)
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Figure 3 The mean-square velocity for two different cases of the double-well problem
are displayed above. In the top panel, z = 0 corresponds to a stationary environment.
In the bottom panel, z = 1 corresponds to selfconsistent heterogeneous nonstationary
environments of degree w = 16 vis-a-vis the WiGLE model.

Figure 4 The average position of a stochastic particle in a double well is displayed 
as a function of time for the two different environments of Fig. 3 and for two different 
nonequilibrated initial conditions corresponding to localization at each of the wells. 
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(22)

(23)

where ξo (t) satisfies the fluctuation-dissipation theorem for stationary random
forces ξo (t) at the reference temperature To, i.e.,

(24)

and θ(t) is some specified temperature ramp in the solvating bath. 
If θ(t) = To for all t, the formalism reduces to the iGLE. Otherwise, by

construction, a nonstationary and non-isothermal version of the fluctuation-
dissipation relation (FDR) may now be written,

(25)

This is to be contrasted with the adiabatic method which forces a version of the 
FDR which is not symmetric in the two times, 

(26)

Numerical simulations of these stochastic equations under fast temperature ramp-
ing conditions indicate that the correlations in the random forces obtained by way
of the adiabatic method do not satisfy the equipartition theorem whereas the pro-
posed iGLE version does.29 Thus though this new version is phenomenological,
it is consistent with the physical interpretation that θ(t) specifies the effective
temperature of the nonstationary solvent.

III. APPLICATION TO POLYMERSYSTEMS

III.1 BACKGROUND

The understanding of the polymer-length distribution in equilibrium poly-
merization has been a topic of longstanding interest.53–59 In particular, living 
polymerization60–62 —that is, addition polymerization in which the active sites 
remain unterminated or active— has been a focus of the statistical models because 
the sequence distribution equilibrates at long times. Tobolsky and Eisenberg63

first treated equilibrium polymerization using mechanistic master equations. De 
Gennes64 and des Cloiseaux65 used renormalization group theory in interpret-
ing continuum models of polymerization as a phase transition between small and 
high polymers, This interpretation was further validated by Wheeler and Pfeuty,66

who showed that Scott’s generalization67 of the Tobolsky and Eisenberg model 
is equivalent to an Ising spin magnet in the limit that the spin vector dimension 
goes to 0. Several groups68–72 have studied equilibrium distributions and phase 
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diagrams of living polymers by exploiting the isomorphism between continuum 
and lattice models. 

Under the typical conditions of these equilibrium polymerizations the environ-
mental response is predominantly stationary. However, nonstationary response 
may be seen in thermosetting and solid-state polymerizations.73 Thermoset-
ting reactions play an important role in reaction-injected molding74,75 and have 
been the subject of large-scale finite-element calculations with semi-empirical
kinetic and visco-elastic equations.76 Because of the self-similarity of polymer 
growth, macroscopic kinetic equations provide a reasonably accurate reaction 
mechanism. But as the material undergoes a vulcanization transition as a result 
of further cross-linking, the reaction rates which are inputs to such calculations 
change and lead to a different dynamics. The nonstationarity in themoset-
ting polymerization is clearly due to cross-linking reactions whose description 
would require a treatment of the branching. Nonetheless, it does suggest that 
straight-chain polymerization reactions of highly concentrated (or dense) poly-
mer solutions could undergo similar changes in the environmental response as 
the presence of longer polymers induce macroscopic phase transitions. 

Similarly, though kinetic models have been used to study solid-state polymer-
ization (SSP) with some success,77–79 they leave out two important processes. (i)
The microscopic environments —cages— “solvating” the reactive chain ends are 
changing with temperature and with increasing extent of reaction. During SSP, 
the oligomers first undergo a phase transition from semi-crystalline to amorphous 
and continue polymerization within this heterogeneous environment. Through-
out this process, the viscosity is changing, and must therefore Bead to different 
reaction environments (cages). Thus, though the microscopic elongation reaction 
in the vacuum may be independent of molecular weight, the average environment 
of the cage —the potential of mean force— for polymerization will differ as the 
population of the molecular-weight distribution shifts toward higher polymers. 
(ii) The diffusion of the side products away from the reaction sites as well as the 
diffusion of the reactants toward each other has been included in the kinetic mod-
els only in an averaged sense. However, as the viscosity changes for the reasons 
explained above, these diffusion processes will also be affected time-dependently.

Thus a theory is needed that can describe chain polymerization in increasingly 
viscous environments.22 O’Shaughnessy and coworkers80,81 have constructed 
a Fokker-Planck master equation to describe the growth of the sequence distri-
bution as a function of the extent of polymerization. Their results exhibit the 
autoacceleration of polymer lengths — e.g. , the Trommsdorff effect82— that is 
characteristic of free-radical polymerization. The natural complement to this 
master equation is a stochastic model describing the dynamics of each member 
of the ensemble of growing polymers. In the remainder of this section, we de-
scribe the use of the iGLE as an appropriate stochastic model for the overall chain 
lengthening of a polymer ensemble.22
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Figure 5 Phenomenological representations of the polymer PMF are displayed in terms 
of the effective polymer-length reaction coordinate. The dashed curve corresponds to a 
growth in which there is no structure in the potential other than a soft core that prevents 
the polymer length from becoming negative but otherwise has a constant enthalpic force 
leading to growth. The solid curve introduces a series of wells with minima corresponding 
to the polymer lengths that are proportional to the average monomer-monomer distance, 
and barriers in between. These are self-similar from minimum to minimum because the 
polymerization is self-similar with respect to the polymer length. 

III.2 iGLE POLYMER MODEL 

There are two primary associations that must be made between the polymer 
systems and the iGLE: (i) the construction of the potential of mean force (PMF), 
and (ii) characterization of the nonstationary friction kernel by way of g(t).

We have shown that a PMF characteristic of polymer growth can be written as 

(27)

where R is a position coordinate corresponding not to the size of the polymer 
but roughly to its contour length.23 R should be interpreted as the effective 
global reaction path coordinate for the chain polymerization. V is the potential 
interaction between the n-mers represented by the 3n-dimensional vector, r ≡
, . , where denotes the position of the ith monomer. Q´ is the
partition function of the monomer. The choice of Q´ sets the zero of free energy 
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to be at R near l, where l is the average monomer length. Notice that the sum
over the space Wn (which is the space of all phantom polymer chains with n
monomer units) in addition to the d-function constraint distinguishes this PMF
from the usual polymer PMF83–85 that characterizes the polymer size in a constant 
n ensemble. 

In the work thus far, we have emphasized polymerization reactions which 
quench due to diffusion-limited mechanisms. This would be the operative 
quenching mechanism in dense polymerizations in which the elongating poly-
mers lead to highly viscous regimes in a matter similar to that of thermosetting 
polymers; albeit, the latter undergo vulcanization due to cross-linking, not to 
elongation. In these dense polymerizations, the friction can presumably be writ-
ten in the scaling form of Eq. (15) i.e.,

(28)

where z is now a scaling exponent characteristic of the particular monomer 
system. This choice of g(t) completely specifies the dynamics of the iGLE in 
Eq. (11). g(t) will behave like a switching function as long as 〈R(t)〉 quenches 
at long time. The latter must be true because eventually the growth of 〈R(t)〉 will 
lead to a large enough friction that the solvent response will quench as we have
shown.23

This phenomenological treatment, however, can be extended to include other
quenching mechanisms. For example, living polymers are known to quench when
the monomers are reacted to completion. In the context of the iGLE, a friction 
kernel that would simulate such a mechanism is the addition of the term,

(29)

where N is the total number of initial monomers, A is the number of activated 
monomers, is the effective number of monomers in a polymer of contour length 
R, and P (R; t) is the normalized probability distribution of a polymers of a given
R at time t. The positive exponent, ζc, serves to characterize the change in the 
diffusion rate of the scavenging polymers as the monomers are added. In the case
of dense living polymerization, both of the mechanisms would be competitive as 
may be characterized through the combined form, 

(30)

Another additional chemical complication can arise from the presence of quench-
ing reagents which deactivate the reactive polymers. This kinetic quenching 
mechanism may also be included in the formalism through the addition of an 
additional differential equation. A more thorough treatment of these extensions 
and their applications to polymerization reactions is currently in progress. 
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Figure 6 The extent of conversion is displayed as a function of time for several effective 
barrier heights in the polymer PMF: (a) no barrier, i.e., the constant force or biased poterttial
case, (b) 4kBT, (c) 6kBT, and (d) 8kBT.

III.3 ILLUSTRATION OF DENSE POLYMERIZATION 

In order to illustrate the use of the iGLE and WiGLE models for polymer-
ization reactions, we23,30 have studied several phenomenological forms of the 
polymer PMF of Fig. 5. In the studies to date, the nonstationary frictions have 
always included the form of Eq. (28) and as such are applicable only to dense 
polymerizations. This class would certainly include solid-state polymerization 
(SSP) as long as none of the other quenching mechanisms discussed above were 
also operative, and the assumptions of the separation of time scales in the en-
vironmental motion are satisfied. In SSP, the heterogeneity in the environment 
would further require the use of the WiGLE dynamics with the possible inclusion 
of a time dependence in the w parameter.

In the present illustration, the polymer PMF is written as a series of merged 
harmonic potentials in analogy to the double-well potential of Straub et al. 37
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Specifically, it may be written in the form, 

(31)

where n is determined implicitly according to the region which is satisfied by 
R. The phenomenological parameters determining the polymer PMF are the 
monomer size l, the driving force to growth, fb( ∆E/l), and the barrier height

to growth. The first case of Eq. (31) corresponds to the well regions, while
the second case corresponds to the barrier regions. The relative position of the
transition state and the frequency are specified by

(32a)

(32b)

As in the earlier illustration in Sec. II.5, the units will be assumed to be dimen-
sionless; e.g., l is taken as l thereby setting the effective unit of distance. In each 
of the polymer iGLE simulations, (N = 100) effective polymers are monitored
at the temperature, kBT = 2.0. The stationary part of the response function is
taken to be that of Eq. (5a) with γo(0) = 1.0 and t = 10, and the nonstationary 
exponent in Eq. (28) is taken to be z = 2. The time steps in the numerical
integration of the stochastic equations are ∆ tξ = .0007 for the auxiliary equation
with Gaussian noise, and ∆τ = .007 for the WiGLE. In the present simulations,
the exothermicity is held constant at fb = 1 and the barrier height in the
forward direction is taken to be either 4kB T, 6kB T, or 8kB T.

In earlier work,23 it was shown that the iGLE dynamics for the polymer PMF 
satisfies equipartition. The nonstationary effects through Eq. (28) are on a time 
scale that is much longer than the solvent relaxation time in a manner which 
satisfies the separation of time scales argued in the introduction. Nonetheless, 
the growth of the effective polymers from an initial configuration of activated 
monomers is clearly visible in the time-dependent average of the polymers, 
〈R(t)〉. Moreover, because the length of each of the polymers is known at a given 
time t, the distribution of polymer lengths can also be obtained. Because of the
separation of time scales, these polymers are in a quasi-equilibrium regime which
should locally satisfy the conditions for the Flory distribution53 of polymers of a 
size n, 

(33)
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where p is the extent of conversion. In previous work, it was shown that each 
of the iGLE distributions were in agreement with a Flory distribution within 
the numerical error. Thus the extent of conversion may be ‘backed out’ of 
this calculation, and is shown in Fig. 6 for four cases of the barrier height. 
The qualitative features of this plot are all in agreement with what is known 
to occur in polymerization reactions. For low enough barrier heights (such as 
with a 4kBT barrier), the long-time result is indistinguishable with the barrierless
polymerization. The higher the barrier height, the slower the system polymerizes.
For large enough barrier heights, the long-time result is quenched at lower extents
of conversion. It even displays the Trommsdorff effect82 in which for high enough 
barriers there exists an auto-acceleration at the initial polymerization times. Thus 
the iGLE model for polymerization is capable of reproducing the rich structure of 
polymerization correctly. Present work is being performed to obtain quantitative 
results by obtaining precise parametrizations of the polymer PMF and scaling 
exponents for specific polymerizing systems. 

IV. APPLICATION TO PROTEIN FOLDING 

IV.1 STATIONARY MODELS 

R. Hernandez and F. Somer 

There has recently been a strong and directed effort toward understanding 
the statistical mechanics of reduced-dimensional models for protein folding.86–95

The main idea pursued in these models is the projection of the energy landscape 
onto a potential of mean force that depends on a reduced dimensional coordinate 
space characteristic of the folding transition —and typically chosen to be the 
fraction of native contacts Q. In projecting out the intra- and inter-molecular
degrees of freedom of the solvated protein, one obtains frictional and random 
forces that are connected through the fluctuation-dissipation relation. This leads 
to a stochastic equation of motion —the the generalized Langevin equation (GLE) 
of Eq. (1)— with respect to a continuous position variable R which represents 
the order parameter along the folding direction, and in which the friction kernel 
γ(t, t́ ) represents the stationary —and possibly local— response of the solvent
from the past at t´ to the present at t. The problem is completely specified
once the friction kernel and the PMF with respect to the folding order parameter
are obtained. The PMF may be obtained either directly by ensemble averages 
of the correlation function specifying the order parameter, or indirectly, as in 
Ref. 95, through a projection of the many-body propagator of the probability 
distribution onto a 1-dimensional such propagator. Meanwhile, the stationary 
—but colored— frictional kernel is obtained through a spectral analysis of the 
coupling modes. (Note also that this picture may include the projection of the 
solvent in so far as it is represented in the friction kernel.) The rate of such 
a system is well understood through the Kramers rate theory and its various 
extensions.7,21,96,97 Thus a simple and direct picture of the folding dynamics 
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has emerged, and it corresponds to a directed folding event that is affected by 
diffusional and random forces. 

IV.2 NONSTATIONARY MODELS 

Unfortunately, there is a problem with the approach of the previous section. 
As the protein folds, the projected orthogonal modes explore ever more restricted 
subspaces of the manifold, and consequently their spectral profile changes. This 
corresponds to a time-dependent — i.e., nonstationary— change in the friction 
kernel that is self-consistently coupled to the folding coordinate.94 Assuming that 
the initial folding conditions are spatial diffusion-limited — i.e., the moderate to 
high friction typically seen in solution— this would be seen phenomenologically 
as an increasing rate as the protein folds. A slowing down of the rate could occur 
toward the end of the dynamics if the friction where to reduce below the Kramers 
turnover into the energy-diffusion limited regime. Moreover, space-dependent
friction may not be sufficient to characterize the change in the response as there 
may also be an additional time scale due to solvent reorganization. As such, these 
models should be addressed with nonstationary frictions. 

The irreversible Generalized Langevin Equation (iGLE) described in Sec. II. 
is capable of modeling some of the nonstationary folding dynamics motivated 
in this section.22,23,28–30 Such an application is the subject of present work, but 
it has been mentioned here in order to further motivate the reader to assess the 
ubiquity of nonstationary phenomenon in physical problems. 

V. CONCLUDING REMARKS 

This chapter summarizes an ongoing effort toward understanding the nature of 
chemical reactions and isomerizations in environments which are, in turn, driven 
irreversibly by forces at longer length and/or time scales. The iGLE has been 
shown to describe such changes that directly affect the frictional response of the 
environment while still maintaining constant temperature. It may also include 
temperature changes,30 thereby allowing for the characterization of rates in the 
presence of temperature ramps. 

The iGLE also presents a novel approach for studying the reaction dynamics 
of polymers in which the chemistry is driven by a macroscopic force that is 
representative of the macroscopic polymerization process itself. The model
relies on a redefined potential of mean force depending on a coordinate R which
corresponds locally to the reaction-path coordinate between an n-mer and an 
(n + 1 )-mer for R ≈ nl. The reaction is quenched not by a kinetic termination 
step, but through an 〈R(t)〉-dependent friction kernel which effects a turnover 
from energy-diffusion-limited to spatial-diffusion-limited dynamics. The iGLE 
model for polymerization has been shown to exhibit the anticipated qualitative 
dynamical behavior: It is an activated process, it is autocatalytic, and it quenches 
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at finite polymer lengths. In particular, we have shown that in the equilibrium 
limit, it reproduces the Flory distribution55 of polymer lengths.23 Moreover, it 
provides a non-equilibrium time-dependent distribution of polymer lengths for 
step and chain polymerizations that can be characterized by a limited number of 
parameters: barrier heights in the forward and backward direction, local friction 
(viz. viscosity), and the scaling of the friction with polymer length. 

A second possible application of nonstationary stochastic dynamics is toward 
the understanding of the dynamics in protein folding. Such an application has 
been described and is currently being pursued in this laboratory. 

A major limitation of the dissipative mechanisms involving multiplicative 
noise —and by extension the iGLE and WiGLE models— is that they involve 
equilibrium changes only in the strength of the response with respect to the 
instantaneous friction kernel. They do not involve a change in the response time 
of the solvent at equilibrium limits. Presumably the response time also changes 
in some systems, and the inclusion of this variation is a necessary component 
of the minimal class of models for nonstationary stochastic dynamics. How this 
should be included, however, is an open problem which awaits an answer. 
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Chapter 5 

ORBITAL-FREE KINETIC-ENERGY DENSITY 
FUNCTIONALTHEORY

Yan Alexander Wang and Emily A. Carter

Department of Chemistry and Biochemistry
Box 951569
University of California, Los Angeles
LosAngeles, California 90095-1569, USA

Abstract In the beginning of quantum mechanical Density-Functional Theory (DFT),
there was theThomas-Fermi (TF) model, which uses the electron density p(r)
(a function ofonly 3 coordinates) as the only physical variable. Calculations
with this model were inexpensive but yielded poor numerical results due
to a lack of understanding of exchange-correlation effects and the kinetic-
energy density functional. Many years later, Hohenberg and Kohn (HK) 
established the formal foundation for DFT; Kohn and Sham (KS) devised a 
practical implementation and brought DFT into mainstream calculations of 
electronic structure. Although the KS formulation allows exact evaluation of
the KS kinetic energy (Ts [p]), the one-electron orbitals introduced by the KS
scheme inevitably encumber the formulation in three ways: (i) 3N (vs. 3)
degrees of freedom, (ii) orbital orthonormalization, and (iii) Brillouin-zone
(k-point) sampling in condensed phases. Given the accuracy of DFT with 
present exchange-correlation density functionals, it is logical to conclude 
that the last frontier in DFT is a better representation of the kinetic energy 
solely in terms of the density. If this is true, KS orbitals will be completely 
eliminated from DFT formulation, and the density can be solved directly from 
the TF-HK equation. This is certainly superior to the KS scheme because all 
energy terms can be computed in momentum space with an effectively linear 
scaling,O(MlnM), where M is the integration grid size. This work reviews
major ideas in the design of such optimal orbital-free kinetic-energy density 
functionals and their applications. 
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List of Abbreviations and Acronyms 

ADA Average-Density Approximation 
AFWVA Average Fermi Wave-VectorApproach
AWF averaging weight function 
CGE Conventional Gradient Expansion 
CLQL correct large-q limit
DD density -dependent
DFT Density-Functional Theory 
DI density -independent
DM1 first-order reduced densitymatrix
EDF energy density functional 
EEDF electronic energy density functional 
FEG free-electron gas 
FFT fast Fourier transformation 
FWV Fermi wave-vector
GGA Generalized-Gradient Approximation 
GS ground state 
HF Hartree-Fock
HG Hartree gas 
HK Hohenberg-Kohn
HKUEDF
HOMO highest occupied molecular orbital 
HREDF
KEDF kinetic-energy density functional 
KS Kohn-Sham
LDA Local-Density Approximation 
LPS local pseudopotential 
LR linear response 
NLDA Nonlocal Density Approximation 
NLPS nonlocal pseudopotential 
OB orbital-based
OF orbital-free
PCF pair-correlation function 
QR
RPA
SADA Semilocal Average-Density Approximation 
SLDA Semilocal-Density Approximation 
SNDA Simplified Nonlocal Density Approximation 
TBFWV two-body Fermi wave-vector
TF Thomas-Fermi
TF-HK Thomas-Fermi-Hohenberg-Kohn
TFλvW Thomas-Fermi- λ -van Weizsäcker
WAD weighted-average density 
WADA Weighted-Average-Density Approximation 
WDA Weighted-Density Approximation
XC exchange-correlation
XCEDF exchange-correlation energy density functional
XCH exchange-correlation hole 
XEDF exchange energy density functional 
vW von Weizsäcker 
vWλTF von Weizsäcker-λ  -Thomas-Fermi

HK universal energy density functional 

Hartree repulsion energy density functional 

quadratic response 
Random Phase Approximation 
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I. INTRODUCTION 

Calculations of ground state (GS) properties of fermionic systems have a long
history. While many strategies focused on calculating a many-body wavefunction,
other approaches sought to solve directly for the physical observable, namely, 
the electron density. Such are the techniques of Density-Functional Theory
(DFT). Historically, DFT1–28 began with the Thomas-Fermi (TF) model,29–31 with
considerable contributions from Dirac,32 Wigner,33 von Weizsäcker,34 Slater35, 36

and Gáspár.37 The Thomas-Fermi-Dirac-von Weizsäcker model1,2, 38–40 and the
Xαmethod36,37,41 are the two major achievements before the “modern age.” Not
until some ten years later, Hohenberg and Kohn42 laid the formal foundation for 
DFT; Kohn and Sham43 then devised a practical implementation of DFT (in the 
similar spirit of the Xαmethod). The theoretical foundation of DFT was further
strengthened by Percus,44 Levy,45 Lieb,46 Englisch and Englisch.47,48

For the GS, the two Hohenberg-Kohn (HK) theorems42 legitimize the density
ρ(r) (a function of only 3 coordinates) as the basic variational variable; hence,
all terms in the GS electronic energy of a quantum system are functionals of the
density:

(1)

where Ee[p], T[p], Vne[p], and Eee[p] are the total electronic, total kinectic, nuclear-
electron attraction, and total inter-electron repulsion energy density functionals 
(EDF’s), respectively. The sum (T[p]+Eee [p]) is normally called the HK universal
energy density functional (HKUEDF). However, the existence of the HK theo-
rems does not provide much information about how to construct the electronic 
energy density functional (EEDF) solely in terms of the density explicitly, with-
out relying on an orbital or wavefunction picture*. For an isolated many-electron
quantum system, Vne [ρ] has a simple analytical OF expression, 

(2)

where vext (r) is the local nuclear-electron Coulomb attraction potential (one form
of the so-called external potential). The other two terms in Eq. (1), however, do
not have analytical OF expressions directly in terms of the density. 

The Kohn-Sham (KS) scheme43 introduces a single-determinant wavefunction 
in terms of the KS orbitals and partitions the HKUEDF into three main pieces: 

(3)

where Ts[p], J[p], and Exc[p] are the KS kinetic, inter-electron Coulomb repul-
sion (also called the Hartree repulsion), and exchange-correlation (XC) EDF’s, 

*Hereafter, we will use “orbital-free” (OF) to describe any physical entity that does not rely on an orbital
or wavefunction picture and use “orbital-based” (OB) for the opposite. 
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respectively. The Hartree repulsion energy density functional (HREDF) has its 
classical OF appearance, 

(4)

Because of different scaling properties, the exchange-correlation energy density 
functional (XCEDF) can be further decomposed into separate exchange and 
correlation components,49–51

(5)

where Ex[p] and Ec [p] are the exchange and correlation EDF’s, respectively
Within the KS scheme, the KS kinetic-energy density functional (KEDF) car 
be evaluated exactly through the KS orbitals, but the exact OF expression of 
the XCEDF remains unknown. Fortunately, the absolute value of the XCEDF 
is much smaller than that of the KS KEDF or the HREDF, and even crude OF 
approximations of the XCEDF are generally fine in practice.3–28 In contrast, the 
situation is not so fortunate for the KEDF because its value is nearly the same 
as the total energy (the electronic energy plus the nuclear-nuclear Coulomb re- 
pulsion energy); crude OF approximations of the KEDF do not bring satisfactory 
results.1-28

After more than seventy years of intense study,1–28 a thorough understanding 
of the OF-KEDF remains as elusive as before. Of course, formally, one can easily 
write kinetic energy in the following well-known expression:

(6)

for a given first-order reduced density matrix (DM1),52–57 λ(r,r´). In conven-
tional OB methods,58–40 the DM1 has a spectral resolution: 

where {γi} are the occupation numbers of the orbitals {Φi(r)}, and {Φi(r)} can
be canonical KS orbitals,43 canonical Hartree-Fock (HF) orbitals,58–62 the more 
general Löwdin natural orbital,52–57,63,64 or even the Dyson orbitals.65–70 If
the orbitals are spin orbitals, the occupation numbers will lie between 0 and 1; 
otherwise, the occupation numbers range between 0 and 2.52–57 The latter is 
usually called the spin-compensated case. When the occupation numbers are 
either 0 or 1 and the spin orbitals are mutually orthogonal, the DM1 has the 
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useful idempotency property†,

(8)

The spin-compensated version of Eq. (8) has a prefactor of 2, due to the double 
occupancy of occupied orbitals, 

(9)

Such orbitals are solutions of the following one-particle Schrödinger-like equa-
tions

(10)

whose effective potential operator ◊eff(r ;[p]) is generally a complicated func-
tional of the density, which is the diagonal element of the DM1 

(1 1) 

For the GS, the HK theorems42 guarantee that Eq. (10) of different exact theories
all deliver the same GS density in spite of distinct mathematical structures of 

◊eff (r; [p]) within different theoretical approaches58–60 (i.e. local vs. nonlocal 
operators). The reason is simple: the density is one-to-one mapped on to the GS
wavefunction, regardless of how the exact wavefunction and the exact density are 
calculated.

However, the major obstacle lies in the fundamental quest: how to express 
the DM1 in terms of a given density without solving Eq. (10) for orbitals. If
this can be done, all terms in the HKUEDF will be accurately approximated. 
Consequently, the GS energy and density of a system with a fixed number of 
electrons can be obtained via solving a single Thomas-Fermi-Hohenberg-Kohn
(TF-HK) equation:42

(12)

where the density is the sole variational variable and µ is the Lagrange multiplier 
needed to keep the density normalized to the number of electrons in the system, N. 

†It is clear that electrons are interacting with one another through the exchange hole or the exchange- 
correlation hole (see Section V), even within the quasi-independent-particle models, i.e., the HF method 
in the former and the KS method in the latter. We feel that the idempotency property cannot simply 
arise from a non-interacting or independent-particle nature. It is then more appropriate to use the term 
“idempotent” than “non-interacting” to characterize any entity that originates from the idempotency 
property.
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The KS (local) effective potential has three components: the external potential, 
the Hartree potential, and the XC potential, 
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which are just functional derivatives of corresponding EDF’s:

(13)

(14)

(15)

(16)

Obviously, the OF-DFT approach based on Eq. (12) has many advantages 
over the OB approaches. First, the degrees of freedom is reduced from 3N to 
3. Second, without any orbital dependence, the complication and cost associated 
with orbital manipulation, including orbital orthonormalization and orbital local-
ization (for linear-scaling implementations), are avoided. Third, for metals, the 
need for Brillouin-zone (k-point) sampling of the wavefunction71–80 is completely
eliminated. Fourth, the utilization of the fast Fourier transformation (FFT)81,82 in
solving Eq. (12) is essentially linear-scaling with respect to system size‡, while 
the cost in exactly solving Eq. (10) scales at least O(N3), because of the ma-
trix diagonalization step. Although OB linear-scaling O(N ) density-functional
methods83–96 do exist, they are still much more complicated to implement and 
computationally more intensive than the OF-DFT approach.97 In addition, these 
OB linear-scaling density-functional methods rely on orbital localization, which 
limits such techniques to non-metallic systems.96

All these positive features will be realized only if one knows all functionals in 
Eq. (1) solely in terms of the density. The accuracy of recent XCEDF’s accounts 
for the popularity enjoyed by DFT via the KS scheme. Comparing to such high-
quality XCEDF’s, OF-KEDF's are still lacking accuracy and transferability for all 
kinds of systems in diverse scenarios, even after over seventy years of research. 
For this very reason, it has been widely recognized that the OF-KEDF is the 
most difficult component in the EEDF to be represented approximately.3–5 Only
very recently, better designed OF-KEDF’s98–111 have begun to appear, along with 
highly efficient numerical implementations97,104–112 for large-scale condensed-
phase simulations.97,104–125 We set our task in this review to provide readers a 

‡The computational cost of an FFT scales essentially linearly O(MlnM) with respect to the integration
grid size M. 
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clear picture of past advances and possible routes to be taken in the future. It is 
our hope that more studies on OF-KEDF's along these lines will soon revive the 
OF scheme97–141 based on Eq. (12) as the preferred method of implementation of 
DFT.

In this review, atomic units will be used throughout unless otherwise noted. 
The most relevant atomic units for this review are the Hartree unit for energy and 
the Bohr unit for length. One Hartree is about 27.211 electron volts and equals 2 
Rydbergs; one Bohr is about 0.52918 Angstroms. More details can be found in 
Ref. [58], p. 41-43, or Ref. [59], p. xiv-xv,

II. THE THOMAS-FERMI MODEL AND EXTENSIONS 

The TF model marks the true origin of DFT, although its simplicity goes 
hand-in-hand with many defects. Most notably, it produces no binding for 
any system,142–145 and is only exact for the free-electron gas (FEG). Numerical 
results based on this model are quite poor in general: the self-consistent density 
of Eq. (12) exhibits no shell structure for atomic species and falls off algebraically 
instead of exponentially. Although the Conventional Gradient Expansion (CGE) 
does improve the energy if a good density is used for the calculation, it does not 
remedy any defects of the original TF model, if Eq. (12) is solved self-consistently.
Time has produced a vast number of gapers on this subject; interested readers are 
advised to consult other review articles and books for details.1–7,38–40 Here, we 
only provide a brief summary to gain some physical understanding and lay the 
foundation for later sections. 

II.1 THE THOMAS-FERMI MODEL 

The TF model expresses the DM1 in terms of the plane wave basis of the FEG, 

(17)

where the prefactor of 2 comes from the Pauli exclusion principle146,147 that
allows two electrons per plane wave. When the number of electrons becomes 
large, the summation in Eq. (17) can be replaced by an integration and an analytic 
expression can then be obtained for the DM1, 

(18)

where yo is a natural variable50 for a FEG with a Fermi wave-vector (FWV)
kF=(3π2p0)

1-
3 and an uniform density po,

(19)
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For later convenience, let us define a new variable β(r) =p
1-
3 (r), and βo =p0

1-
3 .
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Multiplying and dividing Eq. (18) by k3
F we can rewrite it in a simpler form: 

(20)

where j1 is the spherical Bessel function.81 Direct insertion of Eq. (20) into 
Eq. (6) yields 

(21)

where CTF is the TF constant, 3_
10 (3π2 )

2_
3 . Clearly, Eq. (21) is different from the 

TF functional for general systems, 

(22)

Going from Eq. (21) to Eq. (22), one has to replace po with p(r) in Eq. (20) for
general systems, 

(23)

with a local FWV kF(r) = (3π2 )
1_
3 β (r) and y = kF(r) |r – ŕ |. Then, the TF 

functional naturally follows. 
However, one should ask whether the ansatz Eq. (23) is a valid one, and 

exactly how good is the TF approximation. It is certain that for systems other 
than the FEG, the idempotency property in Eq. (9) satisfied by any idempotent 
DM1 will no longer be true for Eq. (23). Hence, the TF functional is actually 
not an approximation for the Ts functional, the KS idempotent KEDF. Further, 
Eq. (23) has the wrong asymptotic behavior for isolated finite systems as both r
and r´ become large, where the exact DM1 goes like the product of the highest
occupied molecular orbital (HOMO) of Eq. (10) at two different points r and
r ,́ 66,148-153

(24)

Inserting Eq. (24) into Eq. (6) yields the von Weizsäcker (vW) functional:34

(25)

which is considerably different from the TF functional. In fact, at those regions 
where the density can be accurately described by a single orbital, the DM1 has 
the asymptotic form and the KEDF reduces to the vW functional. Therefore, the 
TF ansatz should actually be thought of as merely a simple extension that reduces 
to the exact form at the FEG limit. 
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II.2 THE CONVENTIONAL GRADIENT EXPANSION AND 
GENERALIZED-GRADIENT APPROXIMATION 

Dissatisfied with the TF model, researchers thought that including gradients 
of the density might allow the model to adjust to the local environment (i.e., 
deviations from the FEG limit) and might even remedy its defects. A great deal 
of effort was put into this strategy.3–5,154–188 The highest order gradient expansion 
with an analytic form is the sixth,157

With the definition of natural variables:50

the integrands have a very compact form 

where {f2i} are analytic functions of the natural variables:

(26)

(27)

(28)

(29)

(30)

(31)

(32)

As one can see from above equations, the derivation quickly gets prohibitively 
involved that no analytic expression is available beyond sixth order. Nonetheless, 
a careful inspection of the detailed derivation reveals that f2i has a more definite
form171

(33)
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where {a, b, c, d} are non-negative integers, are expansion coefficients,
and ξ0 is defined as 1. This immediately reveals that for any isolated, localized
system whose density decays exponentially§,63,66, 189-202 T2i is divergent for all 
orders sixth and higher (2i ≥ 6), because every term in Eq. (28) is unbounded 
asymptotically
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(34)

One can further show that the corresponding potential, the functional deriva-

tive δT2i/δp, is divergent for all orders fourth and higher (2i ≥ 4) under the 
same condition. More generally, the same conclusion will hold for those re-
gions where the density falls off exponentially (e.g., areas close to any nuclear 
centers). The consequence of such a property is that if the CGE is used for the 
OF-KEDF, the density from the self-consistent solution of Eq. (12) always de-
cays algebraically, 4, 172, 173 where it should have exponential behavior.63,66, l89–202 

Moreover, it will be shown in later sections that the CGE derivation has its flaws: 
the linear response (LR) of the CGE up to infinite order is wrong even at the 
FEG limit. As a result, the self-consistent solution based on the CGE will not 
produce any shell structure for atomic species,4,172–174 regardless of the order of 
expansion.

Due to its simplicity, the second-order CGE154–156, 174 

(35)

has been the most used and has stimulated the development of the so-called
TFlvW mode1,3–5,40,173-188

(36)

where l is some constant. After careful numerical fits, l = 1_
5 has been found 

to be the optimal choice.3–5,40, 173–178 In general, aside from some intellectual
value, the CGE is of little practical use for a full solution of the TF-HK equation, 
let alone the difficulty in accurately evaluating those high-order gradients of the 
density and complicated expressions of higher-order integrands. 

Simultaneous with success of the Generalized-Gradient Approximation (GGA) 
for the XCEDF’s,203–242 similar efforts were being invested in analogous forms 
for the OF-KEDF's. Instead of going to higher and higher orders of gradients of 
the density, the GGA tries to capture most of those higher-order effects utilizing 
some proper functions of lower-order gradients, while retaining the form shown 
in Eq. (28), 

(37)

§As r → ∞, both p(r) and ∇mp(r) decay exponentially. Therefore,
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Such GGA OF-KEDF’s are abundant in the literature,243–249 but none of them 
delivers satisfactory results if Eq. (12) is solved variationally. The problem 
remains that they exhibit the wrong LR behavior (as discussed Section IV). On a 
deeper level, one recognizes that the XCEDF has a much smaller value compared 
with the total inter-electron repulsion energy or the total energy, while the value 
of the KEDF is of the same magnitude as the total energy, due to virial theorem. 
Therefore, a successful scheme for the XCEDF might not be expected to work 
for the KEDF, which needs a much higher accuracy. A corollary to this insight 
indicates that any successful treatment of the KEDF will most likely be more 
than sufficient for the XCEDF. We discuss this aspect more in Section V. 

Figure 1 
is from Ref. [244]. 

Comparing the kinetic-energy potentials for H atom. The TD K GGA OF-KEDF

We conclude this section by providing a comparison in Figures 1-5 of the 
kinetic-energy potentials of the CGE and several “better” GGA OF-KEDF’s,
using accurate densities for H, He, Be, Ne, and Ar atoms. For many-electron
atoms, highly accurate densities (from atomic configuration interaction calcu-
lations)250–253 are fed into the OF-KEDF’s. Accurate potentials are obtained 
via a two-step procedure: the exact (r; [p]) is obtained for a given accurate
density,253–272 and then the kinetic-energy potential is computed via Eq. (12) 

(38)

where µ is taken to be the negative of the first ionization potential.201,202,250–252

Figures 1–5 clearly shows that for general many-electron systems, the quality 
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Figure 2 
is from Ref. [245]. 

Comparing the kinetic-energy potentials for He atom. The TLG GGA OF-KEDF

Figure 3 Comparing the kinetic-energy potentials for Be atom. The TOYL and TLLP GGA
OF-KDEF's are from Refs. [246] and[247], respectively. The TCGE(2nd) and TOYL curves
are almost on top of each other. 

of CGE and GGA OF-KEDF’s potentials are rather poor, and sometimes the 
potential even exhibits unphysical asymptotic behavior (see Figure 1). As stated 
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Figure 4 
OF-KEDF’s are from Refs. [248] and [249], respectively.

Comparing the kinetic-energy potentials for Ne atom. The TT and TP GGA

Figure 5 Comparing the kinetic-energy potentials for Ar atom.

above, the potential of the fourth-order CGE OF-KEDF diverges both near and
far away from the nucleus (see Figures 1 and 2). Various GGA OF-KEDF’s243–249

do not improve the description of the potential, sometimes even worsening the 
agreement (see Figure 4). In fact, the potentials of various GGA OF-KEDF’s are 
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very similar to those of the second-order CGE and the TF functionals. It is also 
amazing to see very little difference between the second-order CGE and the TF 
functionals at the potential level. The potential of the vW functional, however, 
departs from the exact potential significantly, except for the regions very close 
to and far away from the nuclear core, where only one orbital dominates the 
contribution to the density (see Figure 5). These figures further suggest that the 
local truncation of the CGE273,274 is not a significant improvement over the TF 
functional at the potential level because the CGE at various orders still cannot 

reproduce the exact kinetic-energy potential well. Such numerical comparisons 
demonstrate that the conventional wisdom in density functional design has its 
shortcomings: frequently only the energy value is fitted, while the physical 
content of the potential is seldom considered carefully.236–239 Given the objective 
of the variational solution to the TF-HK equation, the importance of the accuracy 
of the kinetic-energy potential of any OF-KEDF cannot be overstated. 

III.
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THE VON WEIZSÄCKER MODEL AND EXTENSIONS 

The vW model looks at the OF-KEDF problem from a different angle. As 
already shown in Eqs. (24) and (25), the vW functional is the exact OF-KEDF for 
systems or regions of single orbital nature, such as the nuclear core and asymptotic 
regions of localized systems, one-electron systems, idempotent two-electron GS 
systems, and of course, all bosonic systems. However, it is completely wrong at
the FEG limit, where the gradient of the density is zero everywhere and the TF 
functional is correct. Nonetheless, the vW functional offers a potentially good 
starting point for further approximation if the system is far away from the FEG 
limit (i.e. atoms, molecules, and realistic surfaces). Originally, the vW model was 
derived34 after introducing modified plane waves of a certain form to account for 
inhomogeneity of the density, but we will present a general approach5,98,275–280

that naturally unifies the TF and vW models together and plants the seed for 
further improvement in later sections. 

III.1 THE ORIGIN OF THE VON WEIZSÄCKER MODEL 

Looking at Eqs. (20) and (23), one realizes that there are many other choices 
that reduce to the exact FEG limit. For example, taking Eq. (24) into account, 
one can introduce a much more general ansatz for the DM1, 

(39)

(40)

(41)
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where g(y2) is an analytic function of the two-body natural variable y2,50 and
ζF(r, r´) is a two-body Fermi wave-vector (TBFWV). The specific functional 
forms of g(y2) and ζF are not important at present, as long as they both are
symmetric analytic functions of r and r ,́ and satisfy the following constraints:

From Eqs. (40) and (41), one can further show that 

Based on Eqs. (6) and (39)–(46), one can derive exactly 

where the vW functional appears naturally. Further manipulation yields 

where a is some constant, and G[g] is a functional of g(y2),

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

If g(y2) is chosen such that G[g] = 1, Tx[p] will become the TF functional. It
is straightforward to show that the simple choice g(y2) = 3j1(y2)/y2 satisfies
this condition.5,98,279–280 In general, however, the value of G[g] depends on the 
specific form of g(y2). Nonetheless, it is desirable to enforce G[g] = 1, so that
the general OF-KEDF model 

(53)

exactly recovers the TF functional at the FEG limit and the vW functional at the 
asymptotic region of localized systems. Unfortunately, numerical tests show that 
this simple model greatly overestimates the kinetic energy.3–5, 148, 179,281–283 



132

III.2

Y. A. Wang and E. A. Curter

EXTENSIONS OF THE VON WEIZSÄCKER MODEL 

Since the above simple derivation unifies the TF model and the vW model in 
a coherent approach, researchers were quite encouraged to try other extensions 
based on Eq. (53) to improve its accuracy.3–5 There are two simple ways to 
accomplish this: replacing G[g] by a function of electron number N and nuclear 
charge Z,283–292

(54)

(55)

(56)

or introducing a local prefactor for the TF functional,280

The first proposed form of G(N , Z) was

with the optimized empirical parameters A = 1.41 2 for neutral atoms only and 
A = 1.332 for atoms and ions.283 A later version of G (N, Z) was 290,291

(57)

with the optimized empirical parameters A1 = 1.314 and A2 = 0.0021 .291 The
first factor in Eq. (57) allows Eq. (54) to recover the right limit (the vW functional)
for one-electron systems (with the correct spin-polarization) and idempotent two-
electron GS’s. However, there are other ways to enforce the right limit, yet retain
similarity to Eqs. (56). For example, one might replace the first factor in Eq. (57)
by (1 -δ1N –δ2N), where δij is the Kronecker delta function.

Both Eqs. (54) and (55) can yield remarkably accurate results if G is fitted
to the target systems, though nontransferability remains to be the key problem.
For instance, highly accurate local behavior of the density, including the shell
structure of atomic species, can be achieved for the Iocal extension shown in
Eq. (55), but the resulting system-dependent G(r) is not transferable.280 Simi-
larly, Eq. (54) can give accurate results for the energy if good densities are used, 
but it again cannot reproduce the shell structure nor accurate energies if Eq. (12) 
is variationally solved.292

Imperfect though they are, the impact of these functionals on later, more refined
developments cannot be overstated. To this end, some general observations can
be made. Eq. (53) certainly lacks flexibility, since once g(y2) is chosen, G[g] will
have a fixed value for all systems. Eq. (54) is better due to the global dependence 
of G(N, Z) on specific system parameters. Eq. (55) is the best among these three, 
since it accounts for the local behavior of the OF-KEDF.
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IV. CORRECT RESPONSE BEHAVIOR

It has long been established in the molecular physics community that the atomic
shell structure is the barometer to measure the quality of any OF-KEDF.3–5 In
solid state physics, the corresponding physical standard is the oscillations in 
the density, including both the short-range (near-neighbor) oscillations and the 
asymptotic Friedel oscillations for metals.293–301 The Friedel oscillations are 
caused by the occupation of orbitals at the Fermi surface.302,303 It is also well 
understood that the correct LR behavior is the key to predicting such oscillations: 
the overall shape and the weak logarithmic singularity of the LR function are 
responsible for the short-range and asymptotic oscillations, respectively.301, 304 

In this section, we review the derivation of the LR function (for there are some 
mistakes with the derivation in Ref. [301]) and the strategy for incorporating it 
into the design of better OF-KEDF’s. 

IV.1 LINEAR-RESPONSE THEORY 

In terms of LR theory,293–301 a small change in the potential causes a first-order
change in the density, 

where X(r – r') is the real-space LR function

(58)

(59)

After Fourier transformation, Eq. (58) can be written in momentum space as¶

(60)

where (q) is the momentum-space LR function. Moreover, from Eq. (59) and
the chain rule for functional derivatives, one has 

Taking the Fourier transform of the resulting equation yields 

(61)

(62)

where denotes the Fourier transform. 

¶Hereafter, the Fourier transform of a red-space function f(r) will share the same symbol but with a 
tilde, f(q).-
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Different pieces in Eq. (12) can be chosen to be the above perturbation po-
tential, resulting in different LR functions,293–301 which are closely related to the 
second functional derivatives of corresponding EDF’s. For example, the (static) 
external LR function of only the nuclear-electron attraction potential is given by 

(63)

(64)

(65)

(66)

The Hartree LR function of only the Hartree repulsion potential is given by 

(67)

(68)

The LR function within the Random Phase Approximation (RPA) for a Hartree 
gas (HG) without XC is given by 

(69)

(70)

(71)

Then, the total LR function of the entire KS effective potential is given by 

(72)

(73)

(74)

In Eq. (73), the second functional derivative of the EEDF is zero due to the 
TF-HK equation. Accurate numerical values of various LR functions for nearly 
FEG’s can be found in Refs. [305] and [306]. 
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IV.2 THE LINDHARD FUNCTION 

For a nearly FEG, an analytic expression for the total LR function is already 
available, due to Lindhard.307 For completeness, we provide a concise derivation 
below.

We start from the FEG limit, where the density ρo is uniform, orbitals {Φk(r)}
are simple plane waves, 

(75)

and the zeroth-order Hamiltonian is just the summation of all the kinetic-energy
operators,

(76)

where index i runs over all electrons in the system. Now, let us introduce a weak 
perturbation potential v(r) into this system, so that to first order the orbitals can
be written accurately as 

(77)

where the coupling element Vk´k is given by first-order perturbation theory as

(78)

Introducing a new variable q = k–k´ and replacing the summation by an integra-
tion, one rewrites Eq. (77) as 

(79)

Then, the first-order change in the density due to the first-order change in the 
potential is 

or in momentum space, 

(80)

(81)
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where fk is the occupancy of (Φk(r). At zero Kelvin, fk is a step function; 
otherwise, it is the Fermi-Dirac distribution function. Comparing Eqs. (60) and
(81), one immediately has
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(82)

In Eq. (82), setting fk = 2, replacing the summation by an integration, and doing
some algebra, one finally obtains the Lindhard function307

(83)

where η = q/(2kF) is a dimensionless momentum. This finishes the derivation
of the LR function at the FEG limit¶. Therefore, the FEG limit of Eq. (73) is

(84)

(85)

Extension to finite temperature T can be made by using the Fermi-Dirac
distribution function for fk in Eq. (82)

(86)

where kB is the Boltzmann constant. More generally, higher-order response
functions can be obtained if the perturbation theory is carried out to higher
orders, but the derivation quickly becomes tediously involved.42,43, 108–1 10,308–310

A few comments need to be made here. First, it turns out that the restriction
q ≠ 0 in the integration of Eq. (80) is not a problem at all because the Lindhard 
function is analytic for q = 0. Second, there is a weak logarithmic singularity
at η = 1 or q = 2kF where the slope of the Lindhard function is divergent. This
singularity can be attributed to the pole of the denominator of Eq. (82), and is 

¶Careful readers might notice that in Ref. [301], there is a sign error in Eq. (6.38). Ourderivation should
be the correct version. 
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closely related to the step function behavior of fk at the Fermi surface at zero
Kelvin. In fact, the singularity persists even at finite temperature, as one can 
easily see this from Eq. (86). It can be further shown that from Eq. (86), the 
asymptotic Friedel oscillations in the density at a finite low temperature T are of 
the following form**96,311,312

(87)

where c is some positive constant. Moreover, the overall shape of the LR 
function is the key for a good description of the short-range oscillations in the 
density.301,304 Therefore, the fine details of the LR function are essential to 
reproduce any correct physics. Third, the utilization of the step-function form of
fk dictates that the Lindhard function is only valid for idempotent DM1 ’s, because
the occupancy is either 0 or 2. Fourth, for later reference, one can rewrite the
Lindhard function in terms of a polynomial expansion301,304

(88)

Taking the inverses of Eq. (88), one can also rewrite FLind(η) in terms of a
polynomial expansion 

(89)

Here the expansion coefficients {an} and {bn} satisfy the same recurrence relation
(c is either a or b)

(90)

The first few coefficients are shown in Table I. Finally, it should be clear that none 
of those potential pieces in Eq. (12) are included in the zeroth-order Hamiltonian 

o in Eq. (76) and the entire KS effective potential is treated as the perturbation.

**Apparently, the correct decay prefactor is proportional to r–3, rather than to r–2 as “proved” in 
Refs, [311] and [313]. The r–2 decay prefactor is obtained without taking into account the correct LR 
behavior.
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Table I 
and bn =

n

First few coefficients of the polynomial expansion of FLind(η). Here an =

1 1 3 1 5
2 8 45 8 175

3 104 945 8 315

4 1048 14175 12728 1010625

5 24536 467775 551416 65690625

6 24735544 638512875 41587384 68975 15625 

7 2262184 76621545 2671830232 586288828 125 

8 1024971464 44405668125 

9 3592514217256 194896477400625 185527734659128 64330541666015625 

10 481989460497736 32157918771103125 1601650275310046776 6732191185348535156251

15330117543304 4288702777734375

Therefore, it is not relevant to talk about the XC effects on the Lindhard function
unless, of course, one starts from some Hamiltonian that includes exchange and/or 
correlation, like the HF Hamiltonian or the KS Hamiltonian. If the latter step is 
taken, simple plane waves cannot be used as the zeroth-order orbitals any more. 
Nonetheless, the Lindhard function is ideal for our purpose because it is a “pure” 
kinetic model [see Eq. (84)]. 

IV.3 COMPARISON OF VARIOUS KINETIC-ENERGY
DENSITY FUNCTIONALS 

With Eq. (84) in hand, we can easily assess the quality of various OF-KEDF’s
mentioned in previous sections, by comparing their momentum-space LR func-
tions with the Lindhard function. For instance, the momentum-space LR function 
of the TF functional is just the constant prefactor in Eq. (83), 

(91)

which is only correct at q = 0, the FEG limit. For convenience, the TF LR
function is usually used to renormalize the momentum-space LR function of a 
given model K for the OF-KEDF,

(92)

It is straightforward to work out the momentum-space LR functions for any given 
model OF-KEDF’s. Table II shows some of the results. 
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Table II The momentum-space LR functions of some model OF-KEDF’s at the FEG limit, 
in terms of FK (η) via Eq. (92), where η = q/(2kF). The recurrence relation for expansion
coefficients {an} is given in Eq. (90), and the first ten coefficients are shown in Table I

Model Ts [p] F K (η)

TTF[p] 1

TvW[p] 3η2

TTF[p] + λTvW[p]

TvW[p] + λ        TTF[p]

Tm
CGE [p] Σ m

n = o aηη

Exact FLind (h)

1 + 3λη2

3η2 + λ 
2ν

Table II clearly indicates that none of the previously mentioned OF-KEDF’s
has the correct LR behavior at the FEG limit. Even more interestingly, the TF 
functional is supposed to be exact at the FEG limit, but its LR function has no 
momentum dependence. At first glance, one would think that there is some 
inconsistency involved. In fact, there is no conflict because the TF functional is 
only the zeroth-order perturbation result, while the Lindhard function is the first-
order result. A similar “paradox” exists for the asymptotic Friedel oscillations in 
Eq. (87). 

More specifically, the weak logarithmic singularity at h = 1 divides the Lind-
hard function [see Eqs. (88) and (89)] into two branches: the low-momentum
(η < 1) branch with the TF LR function as the leading term, and the high-
momentum (η > 1) branch with the vW LR function as the leading term. By
itself, the vW LR function is completely wrong at low momentum: becoming 
divergent at h = 0. Combinations of the TF and vW functionals, either the TFλvW
model [see Eq. (36)] or the vWλTF model [see Eq. (54)], cannot reproduce the 
overall shape of the Lindhard function. As a side note, it is desirable to keep l
positive so that the resulting LR function will not have a singularity. However, it 
is clear that both Eqs. (56) and (57) are not always semipositive definite for all 
positive real N, and thus should be used with caution. To aid our understanding,
we plots the renormalized LR functions at the FEG limit in Figures 6 and 7. 

It is also intriguing to notice that the complicated CGE (or the GGA) is not
doing much better either. In fact, if one carries out the CGE derivation to infinite 
order, one only gets the low-momentum branch of the Lindhard function right, 
because the weak logarithmic singularity of the exact LR function was never 
taken into account properly in the CGE derivation. Moreover, the LR function of 
the higher-order CGE converges to the Lindhard function very slowly and decays 
to zero very quickly, as clearly shown in Figure 7. It should be understood that 
the CGE is correct up to all orders in perturbation theory, not like any finite 
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Figure 6
various model OF-KEDF’s at the FEG limit.

Comparing the Lindhard function with the momentum-space LR functions of

Figure 7 
CGE OF-KEDF’s (up to infinite order) at the FEG limit. 

Comparing the Lindhard function with the momentum-space LRfunctions of the 

response theory, but its mishandling of the weak logarithmic singularity and the
complexity in its derivation lend to its highly impractical nature. Similar to the
second-order, low-momentum CGE, one can easily see from Eq. (89) and Table
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II that the second-order, high-momentum CGE, which will be referred as the 
correct large-q limit (CLQL)107 in later sections, is given by

(93)

We believe that the CLQL is the right OF-KEDF for rapidly varying density 
regions. However, one should not attempt to use the CLQL generally, because 
its LR function 1/(3η2– 3_

5 ) has a pole at η = 1/
In summary, all exercises so far seem to lead nowhere: simple-minded exten-

sions based on the TF and vW functionals hit a dead end. A more innovative 
path has to be taken. Fortunately, there are such paths, mainly fueled by the ad-
vances in the design of the XCEDF’s, namely the Average-Density Approxima-
tion (ADA)314–316 and the Weighted-Density Approximation (WDA).98,260,315–318

Before we go any further, it is instructive to point out that almost all schemes 
(except for the CGE) discussed in this review, as well as by others, are unani-
mously based upon Eq. (20). In retrospect, this is not surprising, once one knows 
that Eq. (20) is just the zeroth-order term in the semiclassical expansion (in orders 
of h- , the Planck constant divided by 2π) of the DM1 168

(94)

(95)

(96)

where jo and j1 are the spherical Bessel functions.81 Clearly, the overwhelming 
complexity of Eq. (96) precludes any efforts to more general OF-KEDF’s based 
upon Eq. (94). Therefore, in the following, we will only concentrate on ideas 
that manipulate Eq. (95) to more general approximations. 

V. NONLOCAL DENSITY APPROXIMATIONS 

Before introducing the Nonlocal Density Approximations (NLDA’s) for the 
OF-KEDF,98–111 we would like to briefly outline the essence of the ADA and the 
WDA for the XCEDF98,260,314–318 to aid our understanding later.
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V.1 THE ESSENCE OF THE AVERAGE- AND
WEIGHTED-DENSITY APPROXIMATIONS 

In the language of the adiabatic connection formulation,319–323 the XCEDF 
can be exactly written as 

(97)

(98)

(99)

where -pxc (r, r )́ and hxc (r, r )́ are the coupling-constant-(λ 
−

)-averaged exchange-
correlation hole (XCH) and pair-correlation function (PCF), respectively. The
PCF is symmetric in its variables 

the averaged XCH satisfies the sum rule 

One can further split the XC effects into separate exchange and correlation 
contributions:

( 1 00) 

(101)

which satisfy different sum rules 

( 102) 

(103)

(1 04) 

(105)

(Interested readers should consult Refs. [50] and [51] for a concise, yet full 
description about the details of the adiabatic connection formulation. For brevity, 
we will not repeat them here.) The benefits of such a formulation are clear: 
the XCEDF has a quasi-Coulombic interaction form, where the pseudocharge 
-pxc(r,r´) and the PCF hλ (r, r´) carry all the information about XC effects. 
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Various approximations are built around the XCH and the PCF. For example,
the well-known, widely-used Local-Density Approximation (LDA)3–10,42,43, 324–326 

assumes

(106)

which satisfies the sum rule required by Eq. (101) 

(107)

Similar to the generalization of the DM1 from Eqs. (20) to (23), one can think 
of the LDA is a generalization again of the FEG formula, i.e., replacing po with

ρ(r)inp xc
– FEG (r,r′) ,324–326

(1 08) 

Unlike the poor performance of the LDA counterpart for the OF-KEDF, the LDA
for the XCEDF actually does quite well most of the time, despite that Eq. (106)
has the wrong density prefactor: ρ(r) should be ρ(r´) as in Eq. (98). Its success 
is attributable to Eq. (107) (which allows a systematic cancellation of errors) and 
the recipe shown in Eq. (108) (which provides a reasonable approximation for 
the spherically averaged XCH).316

In light of the success of the LDA, the ADA314–316 closely follows the LDA 
and proposes 

where the weighted-average density (WAD) is given by 

(109)

(1 10) 

The peculiar recursion in Eq. (110) is mainly due to a lack of understanding of 
the TBFWV and due to the convenience of the automatic fulfillment of the sum 
rule for the XCH, 

(111)

The averaging weight function (AWF) w(p– ADA (r), |r – r´|) is determined by 
enforcing the correct LR of the ADA XCEDF at the FEG limit,305,306

(1 12) 
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where Eqs. (66) and (74) are employed. In comparison, the LR function of the 
LDA XCEDF is only exact at q = 0 and has no momentum dependence,306,327,328

while the LR functions of the GGA XCDEF’s are also exact at q = 0 and have
momentum dependence.327,328 More interestingly, the LDA does a better job in 
reproducing the correct LR behavior than the GGA does, especially for the region
of q ≤ 2kF.306,327,328 This is the third reason for the success of the LDA XCEDF. 
Unfortunately, the LDA OF-KEDF does not enjoy similar success, because its
LR function resembles the Lindhard function poorly (see Figure 6).

Since both the LDA and the ADA ignore the strict form of Eq. (98), the
WDA98,260,315–318 offers an alternative to obey it exactly, 
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(1 13) 

where the effective density p-WDA (r) is determined pointwise by enforcing the 
sum rule 

(1 14) 

Interestingly, numerical tests show that both the WDA and the ADA are gener-
ally superior to the LDA, but the ADA is the best98,136–141,260,314–318,329–345 among
the three. These results come with no surprise because all three approximations
honor the sum rule of the XCH, but only the ADA complies with the right LR 
behavior at the FEG limit. It has been shown that the WDA XCEDF generally
does not have the correct LR behavior,328 which might be the cause of its poor
performance, especially for the correlation energy. Nonetheless, by preserving 
the exact form of the XCH, the WDA should capture more of the anisotropic 
nature of the exact XCH, while the LDA and the ADA are spherically symmetric 
around r. Furthermore, since the PCF’s of both the ADA and the WDA have the
same form as that of the LDA, they inevitably fail the symmetric requirement of 
Eq. (100). A simple symmetrization can fix this problem,50

(115)

but it destroys the automatic fulfillment of the sum rules in Eqs. (107) and (111) 
for the LDA and the ADA, and puts a heavier burden for the WDA to satisfy its 
own sum rule in Eq. (114). 

It is also important to discuss the effect of the symmetrization on the XC 
potential, δEWDA/δp.xc For the exact XCEDF, the symmetric nature of the PCF
directly leads to a two-term summation for the XC potential, 

(1 16) 

(1 17) 
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(118)

At large distance from a neutral atom, v2(r) goes to – 1_
2r and v1(r) decays 

exponentially.315,316,341,342 If a symmetric ansatz for the PCF is employed, 
the WDA XC potential will be symmetric automatically, just like the exact
case above. Additionally, a symmetric XC potential has the exact asymptotic
behavior (– 1_

r ) and the spurious self-interaction effect in the HREDF J[ρ] is
mostly removed.315,316,342 Unfortunately, because of the nonsymmetric nature 
of the ansatz for the PCF in Eq. (113), the XC potential within the present WDA 
framework has three terms instead, 

(119)

(1 20) 

(121)

( 1 22) 

Asymptotically, both v 1
WDA (r) and v 3

WDA (r) decay exponentially and v 2
WDA (r)

goes to – 1_
2r

.315,316,341,342 The inequality between v 2
WDA (r) and v 3

WDA (r) makes 
Eq. (119) differ from the exact form in Eq. (116). Although an ad hoc symmetriza-
tion can restore the exact form for the XC potentiaI 331–333

(123)

the corresponding XCEDF is unknown. For the sake of the internal self-
consistency between the XCEDF and the XC potential, introducing a symmetric 
TBFWV [see Eq. (41)] seems to be the more elegant approach. 

On the practical side, neither the ADA nor the WDA was widely applied in 
general to many-electron, realistic systems, due to their complicated functional 
forms.98,136–141,260,314–318,329–345 Only very recently did efficient implementa-

tions of the WDA become available.338–342 Even today, the ADA is still a 
“museum artifact,” which has been applied only io spherical atomic species and 
the spherical jellium model.314–316,346 The main obstacle lies in Eq. (110), where
in addition to the recursion problem, one needs to do the integration over all space 
of r´ for every point r, yielding a numerical cost scaling quadratically, O( M2),
with respect to the integration grid size M. A straightforward application of the
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FFT cannot be used to finesse this integration, because of the density dependence 
of the AWF, w(p–ADA (r), |r – r´|).

What does all of the above analysis teach us? First and above ail, the correct 
LR behavior at the FEG limit is vital for design of a good EDF. Second, proper 
sum rules should be satisfied to build in systematic error cancellation. Third, the 
introduction of a weight function releases the constraints on the original formulas 
at the FEG limit, allows any nonlocal effects to be modeled, and somewhat more 
importantly, provides a new degree of freedom so that other restrictions can be 
simultaneously satisfied. Fourth, any recursion should be avoided to permit more 
efficient implementation.99,346 This in turn calls for a better understanding of the 
TBFWV. Finally, the O(M2) numerical barrier must be overcome so that any 
general application will be possible.338–342
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V.2 THE CLASSICAL WEIGHTED-DENSITY
APPROXIMATION

In the lineage of the methodology developed above, the ADA and the WDA 
are nonlocal extensions of the LDA formulation. In this sense, the TF model 
discussed in Section II.1 is the LDA counterpart for the OF-KEDF. however, the 
vW model discussed in Section III.1 is somewhat different, because the ansatz in 
Eq. (39) departs from the LDA ansatz in Eq. (23). For later convenience, we name 
the strategy in Section III.1 the Semilocal-Density Approximation (SLDA). In the 
following, through a detailed analysis of the exchange energy density functional 
(XEDF) and the OF-KEDF,98 we shall see the classical WDA is actually closely 
related to the SLDA. 

Right from the birth of the WDA, a joint approach to the XEDF and the OF-
KEDF was presented.98 It is not surprising because both are related to the DM1. 
For closed-shell systems, the XEDF has a simple analytic forms58–60

(124)

After an inspection of Eqs. (97), (98), and (124), one can then readily write the 
exchange hole and the exchange PCF as 

The fulfillment of the sum rule in Eq. (104) is simply given by 

(125)

(126)

(127)
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It is clear that Eq. (127) is less restrictive than the enforcement of the idempotency 
property in Eq. (9), because the right-hand side of Eq. (127) is the density, not 
the full DM1. Now, following the general LDA scheme and employing Eqs. (20) 
and (23), one has the LDA exchange PCF, 

and the celebrated Dirac LDA XEDF,32

where CD is the Dirac constant, 3_
4

( 3_
π )

1_
3 . Invoking the WDA yields 

where the effective variables are given by 

(128)

(129)

(1 30) 

(131)

(132)

(133)

(134)

Comparing Eqs. (126) and (130) immediately reveals the WDA ansatz for the 
DM1:

(135)

(136)

It is striking that Eq. (135) closely resembles Eq. (39); hence, the classical WDA 
is actually a generalized SLDA [of course, the element of the TBFWV of Eqs. (40) 
and (41) is missing]. Similarto the derivation shown in Eqs. (46)–(53), the WDA 
OF-KEDF can be easily derived from Eq. (1 35),98

(137)
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It is important to note that the effective density p– WDA (r) must be everywhere
semipositive definite so that all effective quantities are then properly defined. 
Within the WDA, the explicit enforcement of the sum rule [see Eq. (127)] 
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(138)

might just ensure this because all papers on the WDA have not reported a single 
onetheless, more thorough studies 

should definitely clarify this issue.
Ignoring the correlation component in Eq. (12), one can solve the exchange-

only TF-HK equation within the WDA. Numerical results are in favor of this ap-
proach in terms ofenergy, but the density still exhibits no shell structure for lighter
atomic species (Z ≤ 30).136–140 In addition, because the WDA ansatz of Eq. (135) 
is a generalization of the single-orbital form in Eq. (24), the WDA greatly im-
proves the description of the density both near and far away from nuclear centers, 
as the nuclear cusp condition57,347–349 and asymptotic decay63,66, 189–202 are better 
modeled over the LDA. 136–140 Specifically for idempotent two-electron GS sys-
tems, the fulfillment of the sum rule for the exchange hole [see Eq. (138)] yields 
a null effective density ρ–WDA

(r) and hence exactly cancels the self-interacting
effects from the HREDF and reduces the WDA OF-KEDF to the correct limit: 
the vW functional.98

However, studies on the WDA are far from finished yet; many important 
questions can be asked. For example, we still do not know whether it is the WDA 
XEDF or the WDA OF-KEDF that causes the appearance of the shell structure 
in heavier atoms (Z > 30). Nor do we know the reason why the shell structure 
is not evident for lighter atomic species. How does the ad hoc symmetrization
scheme331–333 [see Eq. (1 23)] effect the LR behavior? How does the individual 
WDA XEDF compare with the exact HF exchange if the KS and the HF equations 
are solved? Similarly, how good is the WDA OF-KEDF by itself if the TF-HK
equation is solved with the LDA XCEDF instead of the WDA XCEDF? 

On the other hand, the WDA has two quite severe defects. First, the correct 
LR behavior has not been taken into account. Second, a consistent, efficient 
symmetrization scheme for the exchange PCF at both the energy and potential 
levels is still lacking. In fact, one can symmetrize the exchange PCF in Eq. (1 30) 
by introducing a symmetric TBFWV in Eq. (132), 

violation so far.98,136–141,260,315–318,329–345 N

(139)

(140)

which still delivers the same expression as Eq. (137) for the OF-KEDF. Strangely, 
there has yet to appear a study on this coherent symmetrization scheme. 
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V.3 THE SEMILOCAL AVERAGE-DENSITY
APPROXIMATIONS

As all numerical results indicate that the WDA is heading into the right direc-
tion, incorporating the correct LR behavior99–104,314,346 becomes the next logical 
step. The ADA immediately comes into mind, but proper modifications have to be 
made. The Semilocal Average-Density Approximation (SADA)99–104 constitutes
the first step towards this goal. 

If a joint approach is taken for both the XEDF and the OF-KEDF, the ADA 
ansatz for the DM1 has the LDA form: 

(141)

which inherits all the weak points of the LDA, outlined in Section II. To overcome 
this dilemma, one can simply preserve the WDA ansatz shown in Eq. (135), but 
replace all WDA effective entities by its SADA counterparts, 

( 142) 

To avoid the recursion problem in Eq. (110), the SADA further simplifies the
definition for the WAD,99–104,346

(143)

where the TBFWV symmetrizes the AWF†† and consequently the kinetic-energy
potential, δT s

SADA/δp. Analogous to the TBFWV symmetrization scheme in 
Eqs. (139) and (140), one obtains all the corresponding SADA entities,

(144)

(145)

(1 46) 

(147)

††Earlier papers on the SADA99,100,346 did not introduce the TBFWV in the AWF, but instead used 
p(r), very much similar to the nonsymmetric ADA AWF in Eq. (110).
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where the averaged variables are given by 

The kinetic-energy potential of Eq. (147) is then readily given by 

(148)

(149)

(1 50) 

(151)

(152)

(153)

(1 54) 

where w(r, r )́ is the AWF shown in Eq. (143).
It should be clear that the three TBFWV’s introduced in Eqs. (139), (143),

and (148) need not to be identical; proper functional forms have to be chosen
individually. It is also curious to note that the final forms of the OF-KEDF
within the WDA and the SADA, Eqs. (137) and (147), are indifferent to the 
symmetrization ofthe exchange PCF or the DM1 and only depend on the relevant
average or effective density. In fact, the functional form for g(y2) in Eq. (39)
has little influence over the final form of the OF-KEDF. Hence, other functional
forms can also be considered.260,318,350–352 Yet, there is currently no systematic, 
coherent, and consistent scheme to fix the functional forms for the TBFWV and
g (y2) in conjunction with the simultaneous enforcement of the idempotency 
property for the DM1 and the correct LR behavior. 

Unlike the WDA that enforces the idempotency property for its DM1 ansatz, 
the SADA trades the idempotency requirement for the correct LR behavior of the 
OF-KEDF: 99–104

(155)
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for a given form of the TBFWV in Eq. (143),50,101–103,1 11 

(156)

Eq. (155) yields a universal second-order differential equation for the AWF for 
every fixed value of q,101

( 157) 

where ´(η) and "(η) are the first and the second derivatives of (η) with
respect to η, respectively. Note that v is explicitly involved in the determination
of the AWF If Eq. (156) is replaced by the FEG FWV kF, all terms involving
derivatives in the left-hand side of Eq. (157) will be removed, yielding the density-
independent (DI) AWF This universal differential equation can be numerically 
solved via standard techniques.82 Figure 8 compares one such density-dependent
(DD) AWF in momentum space for v = 1_

2
102,103 with its DI counterpart; there 

is a sizable effect of the density dependence on the AWE (The discussion and 
comparison of the SNDA results in Figure 8 are provided in Section V.4.) 

Figure 8 The DD and DIAWF’s in momentum spacefor the FEG. The parameter v of the
SADA OF-KEDF with the DD AWF is 1/2, while the three parameters { K, v) ofthe SNDA
OF-KEDF with the DD AWF are {5/6 ±        6,2.7}. See Ref. [111] for details. 

Unfortunately, no direct numerical comparison is available for us to assess the 
quality of this trade-off from the WDA to the SADA. Nonetheless, we believe 
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that by itself, the SADA OF-KEDF should be better than the WDA one because 
of the correct LR behavior, but this might only be true for a nearly FEG, which 
should approximately satisfy the idempotency property of the FEG DM1 . For 
other highly inhomogeneous systems, the WDA OF-KEDF might eventually win 
over the SADA one. 

It is also fascinating to discuss the origin of the atomic shell structure within 
the WDA and the SADA. Recall from Section V.2, shell structure appears for 
heavier atomic species (Z > 30) within the exchange-only WDA treatment. 136–140

The SADA without the proper symmetrization of the AWF in Eq. (143) behaves 
very much the same101 (even only with the LDA XCEDF). This implies that the 
WDA effectively captures most of the overall shape of the correct LR function 
even without any explicit enforcement, and that enforcing the correct LR behavior 
for the OF-KEDF alone, the SADA is able to remedy the defects of the LDA 
XCEDF. This is certainly encouraging for both the WDA and the SADA. On the 
other hand, the SADA with a proper symmetrization of the AWF in Eq. (143) 
is able to produce shell structure for all atomic species,101 because the kinetic-
energy potential is properly symmetrized this time. This further emphasizes the 
importance of the symmetrization on the potential level. 

At this point, one might wonder whether there is a better scheme that con-
currently enforces the exact idempotency property for the DM1 and the correct 
LR behavior. The answer is yes; we have started to look into this possibility. 
Two driving forces are behind this idea. First, numerical results show that the 
empirically optimal v value – 1_

2
101,102 is good for the energy but bad for the 

density; a universal v value for all systems seems to be unphysical. Second, the
specific form of the TBFWV in Eq. (156) can be justified, but the natural variable
argument50 actually allows more general forms for the TBFWV as long as they 
satisfy‡‡
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(158)

Introduction of the AWF within the ADA and the SADA allows for an extra degree 
of freedom so that the correct LR behavior can be exactly obeyed. Then, the 
explicit enforcement of the idempotency property on the DM1 should in principle 
determine an unique functional form for the TBFWV of the AWE We have started 
to work on this idea; numerical results will be published elsewhere. For later 
reference, we call this scheme the Weighted-Average-Density Approximation 
(WADA) . 

Similar to the requirement of the semipositivity on the WDA effective density
p–WDA (r), the WAD p–SADA (r) must be everywhere semipositive definite as well

‡‡The rather complicated Feynman-path-integral-like local averaging scheme due to Wang and Teter108

is consistent with the natural variable argument. 
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so that all average quantities are properly defined. Unfortunately, this condition 
is not generally satisfied in Eq. (143).99 It is unclear to us how Eq. (151) can 
be evaluated for a negative p– SADA (r). Some measures must be taken by the 
authors who developed the SADA for the OF-KEDF to rescue the situation, but 
no details have been given on this matter.99–103 If by any chance, the absolute 
value of p–SADA (r) is always used in Eq. (151), then the kinetic-energy potential
and pertinent quantities should be adjusted to this change accordingly; otherwise, 
the entire SADA formulation lacks internal self-consistency.

However, there have been some attempts to deal with this problem in gen-
eral.100,101,104 Inspection of Eqs. (134) and (151) immediately reveals that the 
problemisdueto thefractional power ( 1_

3
) raised on the effective density p–WDA(r)

and the WAD p–SADA(r). To preserve the integrity of the formulation, one can di-
rectly use β

–WDA (r) and β
–SADA (r) instead, making no reference to their density 

counterparts. Of course, this is subject to suitable TBFWV’s ζ
– FWDA (r, r´) and 

ζ
–FADA

(r, r'). For simple symmetrization purposes, the arithmetic mean [i.e.,
setting v = 1 in Eq. (156)] might be both physically and numerically meaningful. 
Consequently, the core equation of the SADA, Eq. (143), should be changed 
to100,104

and consequently, the second term of Eq. (147) becomes100,104

One can then straightforwardly derive the potential of Eq. (160):

(1 59) 

(1 60) 

(161)

where w(r, r )́ is the AWF in Eq. (159). This idea goes beyond the conventional
sense of averaging: from averaging the density to averaging the local FWV, 
which differs from β(r) by a constant prefactor of (3π2)

1_
3 . For later reference,

we call this idea the Average Fermi Wave-Vector Approach (AFWVA). Some 
primary studies on such an idea have been reported,100,101,104 but the AFWVA is 
not totally free of potential problems. For an asymptotically decaying density, 
the first integral in Eq. (161) might be divergent because the denominator has the 
decaying density.101 More studies should be carried out to see whether a suitable 
choice of the TBFWV can overcome this problem. 
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V.4 SIMPLIFIED NONLOCAL DENSITY APPROXIMATIONS 

Y. A. Wang and E. A. Carter 

So far, we have been mainly following the most logical route: from an ansatz 
for the DM1 to its resulting OF-KEDF. However, if the DM1 and the XEDF or 
more general XCEDF are not our major interests, is there any simpler way to 
approximate the OF-KEDF? This is indeed a legitimate question. First, numerous 
numerical tests show that the WDA and the ADA only improve the description 
of the XCEDF marginally; it is very hard to further refine the systematic error 
cancellation built in the LDA for the XCEDF.3,4,98, 136–141,260,315–318,329–342 For

a large number of practical applications, the LDA for the XCEDF is more or 
less sufficient.3–10 Second, the SADA OF-KEDF with the DD AWF is able to
reproduce shell structure for all atomic species; this is achieved just with the 
LDA XCEDF and without explicit enforcement of the idempotency property. 101

Especially for nearly FEG systems, such as extended metallic materials, where the 
SLDA OF-DM1 formula for the FEG [see Eq. (39)] will approximately satisfy the 
exact idempotency property, the SADA OF-KEDF alone will be a highly accurate 
model. Additionally, due to the nature of the metallic band structure, a very fine 
mesh for the Brillouin-zone (k-point) sampling71–80 is needed to converge the 
KS calculations. Numerically, this is quite expensive because one needs to 
calculate the wavefunction for all symmetrically unique k points, increasing the
computational cost greatly. Therefore, the OF-DFT approach based on the TF-
HK equation with a highly accurate approximation for the OF-KEDF alone might 
be sufficient for general practical purposes, and is certainly better for metallic 
systems.

To accomplish this, let us go back to Section III.1 and pay close attention to
Eqs. (49) and (50). Both Eqs. (137) and (147) are generalizations of Eq. (53)
along the SLDA path,

(162)

On the other hand, the double integration form in Eqs. (48)–(50) suggests the 
following Simplified Nonlocal Density Approximation (SNDA),105–111

(163)

( 164) 

where K} are positive parameters, and the TBFWV can take the form shown in 
Eq. (156). The potential of TX

SNDA [p] takes a much simpler form than Eq. (154), 

(165)
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where w(r,r´) is the AWF shown in Eq. (164). Again, this kinetic-energy
potential has a possible divergence problem if one of the two positive parameters 

K} is smaller than 1. 
A direct comparison between Eqs. (162) and (163) immediately suggests that

the SNDA effectively takes the whole piece β2 (r) to a weighted average

(1 66) 

This averaging is considerably different from those of the WDA, the SADA, 
and even the AFWVA. It has been said before that the averaging employed by 
the WDA and the SADA still preserves or requires the semipositivity of the 
final average density [see Eqs. (134) and (151)]. The AFWVA goes one step 
further [see Eq. (159)] and allows negative average FWV’s in the formulation, 
but still maintains the semipositivity of the square of the average FWV as used 
in Eqs. (137) and (147). The SNDA is much more drastic and permits even a 
negative average square of the FWV. In doing so, the link between the DM1 and 
the OF-KEDF is obscured, because the effective local FWV from any negative 
average square of the FWV is imaginary, if a simple square root operation is 
taken. Nonetheless, if the DM1 is not our concern, the SNDA should be an 
efficient solution to the OF-KEDF problem. 

After enforcing the correct LR at the FEG limit as done in Eq. (155), one 
obtains the following universal second-order differential equation for every fixed 
value of q,111

(1 67) 

which is considerably simpler than Eq. (157). Moreover, the simple form of
Eq. (167) allows a power series solution for the inhomogeneous part and an
analytic solution for the homogeneous part so that the AWF can be calculated up
to arbitrary accuracy. This in turn further permits us to do a careful analysis of
the limits of the SNDA OF-KEDF for q → 0 and q → ∞ limits.111 This involves 
Fourier transforming the exact solution of Eq. (167) and substituting the resultant 
expression into Eq. (164). The results are, at the q → 0 limit (corresponding to 
slowly varying densities), 

(168)

(169)
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and at the q → ∞ limit (corresponding to rapidly varying densities), 
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(1 70) 

(171)

where ds = ρ(r)/po – 1. For a nearly FEG, |δσ| << 1. It is clear that the 
first two terms of Eqs. (168) and (170) closely resemble the second-order CGE
[Eq. (35)] and the CLQL [Eq. (93)], respectively. However, there is no single 
set of K,v} that simultaneously removes all spurious δσ terms in Eqs. (168) 
and (170), and makes them reduce to the second-order CGE and the CLQL,
respectively. Numerical tests strongly suggest that the fulfillment of the CLQL 
is more important than the correct behavior at the q → 0 limit (the second-
order CGE).107 Therefore, the parameters K} are chosen such that Eq. (170) is
identical to the CLQL.111 This leads to the following two equations: 

whose solution is symmetrically displacedaround 5_
6

(1 72) 

(173)

We can then use the remaining parameter v to fine-tune the behavior around the 
q → 0 limit so that the effect of the spurious ds terms and the leading terms in 
Eq. (168) can be well-balanced. We have found that v = 2.7 is the optimal value
at least for A1 metal surfaces and bulk phases.111 Interestingly, without going
through the above analysis, Eq. (50) already suggests that + K = 5_

3 because
this particular choice leaves most of the density dependence out of the AWF 
For comparison, we plot both the DD and DI AWF’s of the SNDA in Figure 
8. Again, we find a sizable effect of the density dependence on the AWF It is 
also interesting to note that the AWF’s of the SNDA and the SADA behave very 
similarly to each other. 

VI. NUMERICAL IMPLEMENTATIONS 

Having laid the theoretical foundation for the OF-KEDF’s, we now face three 
technical issues in their numerical implementation: how to solve the TF-HK
equation efficiently, how to generate suitable local pseudopotentials (LPS’s), and 
most importantly, how to make the entire OF-DFT scheme linear-scaling with 
respect to the system size. We will address these topics in turn. 
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VI.1 VARIATIONAL OPTIMIZATION OF THE 
THOMAS-FERMI-HOHENBERG-KOHN EQUATION 

Given the total electronic energy in Eq. (1), one can write down a general 
density functional Π[ρ] for a system with a fixed number of electrons N, 

(174)

where µ is a Lagrange multiplier. Π[p] will be minimized with respect to ρ(r),
to determine the GS of the system. However, it has been found106,125,126 that
the positivity of ρ(r) is not guaranteed in general if ρ(r) is used directly as 
the generalized coordinate in conventional optimization algorithms82 like the 
steepest-descent or conjugate-gradient methods. To circumvent this problem, 
one can work with a new variational variable ϕ(r)

(175)

to ensure a positive ρ(r) during the entire minimization process.97,111, 124–126

On the other hand, because ϕ(r) has a richer structure than ρ(r) in momen-
tum space,97 more plane waves and a finer Fourier grid are needed to represent
ϕ(r) well. This is an inevitable trade-off. If ϕ(r) can be thought of as a 
quasi-orbital,125,126 we can utilize the same numerical technique as in the imple- 
mentations of the KS scheme: just using a Fourier grid twice as dense in each
spatial direction as the grid required for ρ(r).353 In other words, the maximum
integer multiple of the basic momentum vector along one particular direction is
given by 

(176)

where Ecut is the plane-wave cutoff in Rydbergs, and Li is the dimension of the
simulation box along this direction. 

Aside from the numerical stability consideration, one can actually rationalize 
the j (r)-formulation. Starting from the following identity,

(177)

(178)

and utilizing Eq. (153), 

one can easily rewrite the TF-HK equation in a fully equivalent quasi-orbital form 

(179)
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closely resembling the equation of the conventional  -formulation,
202,354–360
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(180)

However, this j (r)-formulation is more general than the     (r)-formulation,
because ϕ(r) behaves truly like an orbital, with positive and negative regions, 
while is everywhere semipositive. It is also interesting to notice that
Eq. (177) closely resembles Eqs. (47), (137), (147), (162), and (163).

Based on a first-order differential equation with a fictitious time t

the steepest-descent approach is the simplest scheme82,353,361,362

(181)

(182)

(1 83) 

where D is the step size, µ2 = 2µ, and δΠ[p]/δϕn(r) is the steepest-descent
vector at the nth iteration. To obtain the value for µ2, one takes the square of 
both sides of Eq. (182), integrates over all space, enforces the same normalization
for the density at different iterations, and derives a quadratic equation for µ2:97 

Solving this equation yields97

(1 84) 

(185)

(186)

(187)

(1 88) 
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At convergence, the density is stationary for the TF-HK equation; hence, from 

Eq. (1 83), 

(1 89) 

(190)

Thus, the equality between both sides of Eq. (188) only permits the “+” solution,

(191)

To keep µ2 always real during the entire iteration process, the maximum step size
is given by97

(1 92) 

where the generalized Schwarz inequality81 guarantees the right-hand side to be
real.

This scheme is concurrent for both the density and µ2: at every iteration step,
one first tests whether ∆ is less than the maximum value allowed according to
Eq. (192), then calculates µ2 according to Eq. (191), and propagates the density
to the next step. It is important to know97 that no extra density normalization 
effort is needed because the density is always normalized by choosing the value
for µ2 according to Eq. (191). Numerical tests show that the steepest-descent
scheme still has an instability problem and the convergence radius for A is quite
small. 111

To overcome these problems, we have formulated the energy minimization
in terms of a damped second-order equation of motion361,362 for the generalized 
coordinate j(r) with a damping or friction coefficient Q,

which yields 

(193)

(194)

(195)

(196)
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Using similar procedures to those shown above, one can easily work out the
formula for µ2 that automatically ensures the normalization of the density at
every iteration, 

Y. A. Wang and E. A. Carter 

(197)

(198)

(199)

The maximum ∆ can be computed by enforcing the real solution for µ2:

(200)

but it proves to be a very costly exercise because of the complicated structure
of zn(r) in Eq. (195). One can, however, tackle this problem through a much
simpler path outlined below. 

We first observe that the damping factor Ω normally has a small value and
after some iterations, two consecutive j(r) will not differ too much. Then, one
has approximately 

(201 1 

Substituting Eq. (201) into Eq. (200), one has something very similar to Eq. (192): 

which yields directly 

(202)

(203)

where ∆ 1
max is defined in Eq. (192). We have found that this scheme is not 

only easy to implement, but also offers greater stability even when ∆ becomes
much larger than that of the simple steepest-descent method. We have also found 
that minimization algorithms based on the conjugate-gradient method actually 
converge faster, but require very accurate line minimizations that can be difficult 
to implement. 
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VI.2 GENERATION OF LOCAL PSEUDOPOTENTIALS 

16 1 

Since the OF-DFT scheme is purely based on the density, only LPS’s (pseu- 
dopotentials that depend only on r)363–369 can be used to calculate the Vne term in 
Eq. (2). More general nonlocal pseudopotentials (NLPS’s) that depend on both r
and r´ require either the DM1 or the full wavefunction for the calculation of Vne.
We therefore will concentrate on how to construct high-quality LPS’s.369 Before
that, however, it is pedagogical to briefly outline the essence of the conventional
OB NLPS theory.370–372

Let us start from any general set of one-particle Schrödinger-like equations
like Eq. (10),

(204)

where {Φi(r)], and { ∈i} are a one-particle Hamiltonian and its associated
eigen-orbitals and eigen-orbital energies, respectively. For practical purposes, 
the orbitals are classified into two groups: valence orbitals {Φv

i (r)} (those with
high orbital energies) and core orbitals {Φ i

c (r)}(those with low orbital energies).
Of course, the criterion on how high is “high” and how low is “low” depends 
on the nature of the system and problems under investigation; we just assume 
that such a partition is permissible and meaningful. Then, we introduce a set 
of valence pseudo-orbitals {Ψ i

v(r)} such that the exact valence orbitals can be
expressed as 

(205)

where Nc is the number of the core orbitals. (This expansion projects the 
exact core orbitals out of the valence pseudo-orbitals, to make a meaningful 
partitioning.) Substituting Eq. (205) into Eq. (204) for the valence orbitals, we 
obtain

(206)

where the orbital-dependent pseudo-Hamiltonian i
ps

relates to the exact Hamil-
tonian via an orbital-dependent nonlocal operator nloc :

(207)

The NLPS is simply the sum of nloc and the external potential vext(r) in

(208)
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It is clear from Eq. (207) that the pseudization only turns on for the valence 
orbitals and has a null effect on the core orbitals. More interestingly, the exact 
orbital energies are not altered. Similar to Eq. (7), one can define the valence 
pseudo-density in terms of the valence pseudo-orbitals:

(209)

where Nv and γ i
v are the number of the valence orbitals and the occupation

numbers of the valence orbitals, respectively. It is important to notice that in this 
formal NLPS theory, the exact GS wavefunction is still one-to-one mapped on to 
the GS valence pseudo-density for a given valence-core partitioning, because the 
NLPS’s are uniquely defined via Eqs. (207) and (208), in which all the exact enti-
ties are functionals of the exact GS density. Various numerical implementations
are readily available to construct such NLPS’s.370–386

Having read the above, one might wonder about the origin of the LPS. His-
torically, earlier LPS’s were designed from empirical fitting of experimental
data;363–367 later, more refined, ab initio schemes required the reproduction of the 
valence orbital energies.368 However, theoretically speaking, only NLPS’s will
be able to exactly reproduce the same orbital energies. Therefore, it is natural to
conclude that the theoretical foundation for LPS’s has to be built according to a
very different blueprint from that of the NLPS’s. On the other hand, the solution 
seems already to be self-evident if one thinks a little bit deeper. The conventional 
NLPS theory concentrates mostly on the reproduction of the exact orbital energies 
and further requires the atomic pseudo-orbitals and atomic pseudo-density to re-
produce the exact ones in the valence region.370–372 Since often only the valence 
density is of greatest concern to chemistry and condensed matter physics, one 
can just pay attention to the weakest condition for pseudopotentials: the pseudo-
density should reproduce the exact density in the valence region. Furthermore, 
because there are already an abundant number of high-quality NLPS’s,370–386

one can just instead devise a LPS scheme to reproduce the same pseudo-density
from a NLPS calculation. This proves to be a logically meaningful theoretical
foundation for LPS’s. 

The first level of sophistication369 is quite simple: for a suitable LPS, the 
solution of the TF-HK equation should yield the same NLPS pseudo-density

(r) for a given model XCEDF,

(2 10) 

However, one has to additionally choose a model for the QF-KEDF to make this 
work. Consequently, the resulting LPS will have some contribution from the 
difference between the exact KEDF and the model OF-KEDF. This is less than 
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optimal and can be avoided if and only if the OF-KEDF is not involved in any
way. We therefore need a scheme that relates the pseudo-density directly to a 
LPS. In fact, there are already many mature schemes to obtain the effective local 
potential from a given input density.253–272 We can just employ one such scheme 
and obtain the exact LPS for an input NLPS pseudo-density within a given model
XCEDF. This scheme makes no reference to any approximation of the OF-KEDF
or the response function, and one only needs to perform one KS-like calculation. 
More importantly, this scheme allows LPS’s to be calculated within the same
realistic environment of systems under investigation. Therefore, transferability
will not be a problem, if NLPS’s are chosen carefully for the target systems. 

In the literature, there are some attempt125–134 to directly use NLPS’s with the 
OF-DlT scheme via Eq. (1 SO), but the following argument proves such practice
is not sound. First, NLPS’s will introduce a phase to the quasi-orbital, hence it 
is Eq. (179), not Eq. (1 SO), that should be used in the first place. Second, even if 
one accepts the utilization of NLPS’s, Eq. (179) cannot be derived with NLPS’s. 
In general, for a NLPS (r,r )́, one needs the DM1 to calculate the Vne

term,

which is very different from the LPS case, 

(21 1) 

(212)

With Eq. (211), one cannot derive Eq. (1 SO) [nor Eq. (179)] without the assump-
tion

(213)

which is certainly not true in general. On the other hand, this calls for research 
into highly accurate OF approximations to the DM1 so that conventional NLPS’s 
can be readily applied even in the OF-DFT scheme,387 just like the OB KS
scheme. More studies along the lines discussed in Section V ought to be done to
pursue this goal. 

VI.3 EVALUATION OF THE DENSITY-DEPENDENT
AVERAGING WEIGHT FUNCTION 

Having gone thus far with the OF-KEDF’s, one ultimately faces the most diffi-
cult problem: how to make the entire OF-DFT scheme, especially the evaluation
of the DD AWF, linear-scaling with respect to the system size. This is a general 
numerical bottleneck of all the NLDA’s, as discussed in Section V: the presence 
of DD terms inside the AWF in Eq. (164) makes a straightforward application of 
the FFT impossible. However, one can use a Taylor series expansion81 to factor 
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out the density dependence in the AWF, because the DD AWF is not a functional, 
but some analytic function, of the density. For example, the DD AWF in real 
space can be written as (up to second order),111

Y. A. Wang and E. A. Carter 

(214)

where σ(r) = p(r) – p*, and k*
F = (3π2p*)

1_
3 are the deviation from, and the 

FWV magnitude of, a reference uniform density ρ*. It is clear that the density
dependence is absorbed into simple powers of σ(r), and that all the partial
differentials are functions of p*, which can be evaluated via an FFT,111

(21 5) 

(216)

(217)

where η* = q/(2k*
F ), and ′ ″(η*, p*) and (η*,p*) are the first and the second 

derivatives of (η*, p*) with respect to η*, respectively. Figure 9 shows one such 
AWFand its derivatives inmomentum space for K,v}={ 5_

6 ± 2.7}.
For maximum numerical efficiency, all derivative terms of the AWF are kept 

in momentum space so that one FFT is saved for each of their evaluations. For 
example, during the evaluation of the following general double integral, the first 
FFT can be avoided: 

(21 8) 
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Figure 9
parameters K,v} of the SNDA OF-KEDF are {5/6 ± 2.7}.

The DD AWF and its derivatives in momentum space for the FEG. The three 

where V is the volume of the simulation cell, and f1 (r) and f2(r) are some
functions of the density. Now, the computational cost has been reduced from
scaling quadratically with grid size99–103 to scaling essentially linearly with the 
system size, O(MlnM). The current scheme is only three times as expensive as
the conventional one based on the LR theory with the DI AWF.105–108 By contrast, 
the OF-KEDF’s based on quadratic response (QR) theory108–110 are over ten times 
as expensive as the OF-KEDF’s based on LR theory with the DI AWF.105–108

For bulk solids, the natural choice for ρ* is obviously ρo. However, this
scheme is only valid for a nearly FEG, where p(r) does not differ too much from
po. For other systems like atoms, molecules, and realistic surfaces, this scheme
might suffer severely because po is no longer well-defined and p(r) can have
large oscillations and decays to zero asymptotically. On the other hand, if p*
is carefully chosen to treat high-density regions satisfactorily, the breakdown in 
those regions where p(r) is small and far below p* might not be so severe because
the error made in the second-order Taylor series expansion of Eq. (214) might be 
suppressed by the smallness of p(r) in these regions. We have demonstrated the
success of such an approach for realistic surfaces.111 Ideally, one would like to 
eliminate the reference uniform density p* from the construction of the DD AWF
completely, yet still maintaining the O ( MlnM) scaling. We have successfully
developed such a general O( MlnM) scheme; the details of which will be reported
later.388
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There is a subtle point worth mentioning. There is a limitation for the SNDA
OF-KEDF’s with the TBFWV in the form of Eq. (156), because their potentials
[Eq. (165)] are divergent for any asymptotically decaying density if one of the 
two positive parameters K} is smaller than 1. Unfortunately, numerical tests 
show that those OF-KEDF’s with K} larger than 1 perform rather poorly.107, 111 

Hence, the self-consistent density of the TF-HK equation with the SNDA OF-
KEDF’s will actually approach a finite small constant asymptotically, if one of 

K} is smaller than 1.97,388 In comparison, the SADA OF-KEDF does not have 
this problem as long as the ratio ρ(r)/β

–SADA
(r) in Eq. (154) does not diverge 

anywhere. Numerical tests99–103 suggest that this conclusion might be true, but 
more thorough studies need to be done to further clarify this point. Certainly,
it would be highly desirable to examine different choices for the form of the
TBFWV. Nonetheless, the present SNDA can still be widely used for condensed-
phase calculations so long as the vacuum size is not too big; otherwise, the much
more complicated and costly SADA should be employed. In any case, the linear-
scaling numerical procedure discussed above can be easily applied to all forms

Now, in the TF-HK equation, all the potential terms can be set up by conven-
tional plane-wave-basis techniques353,371,372,389 with essentially linear scaling. 
However, for very large systems with more than 5000 nuclei, the computational 
cost associated with the nuclear-nuclear Coulomb repulsion energy becomes the 
major bottleneck.116 In this case, linear-scaling Ewald summation techniques 
should be utilized.390–413

VII. APPLICATIONS AND FUTURE PROSPECTS

of NLDA OF-KEDF’s. 

Due to its favorable linear scaling, the OF-DFT scheme based on the TF-
HK equation has been used somewhat,1–7,38–40, 172–174 but the poor quality of the 
OF-KEDF’s had shunned away further interest, especially after the success of
the KS formulation. As better, high-quality NLDA OF-KEDF’s were invented,
the OF-DFT scheme is gradually regaining its popularity.97–141 However, the 
lack of linear-scaling implementations of the NLDA OF-KEDF’s with the DD 
AWF had confined their applications only to spherical atomic species and spher-
ical jellium models.98–103 136–141 Nonetheless, the NLDA OF-KEDF’s with the 
DI AWF permit linear-scaling implementations via direct use of the FFT [see 
Eq. (218)]; hence, bulk solids and liquids entered into the OF-DFT application 
realm.97, 104, 106–123 Very recently, a linear-scaling implementation of the NLDA 
OF-KEDF’s with the DD AWF emerged,111 and a scheme to treat highly in-
homogeneous systems like realistic surfaces was tested with semiquantitative
success.111 An immediate application to the study of the metal-insulator transi-
tion in a 2-dimensional array of metal nanocrystal quantum dots (with 498 Al
atoms per simulation cell) further magnifies its promise.97
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With present workstation computational resources, systems of thousands of 
atoms can be studied.116–118 So far, the largest system studied dynamically by 
the OF-DFT scheme had 6714 Na atoms,106 spanning 1.5 picoseconds. Such a 
size is inconceivable for the present OB ab initio and DFT methods. In fact, 
the OF-DFT scheme is purely restricted by the grid size, not by the number of 
electrons, and certainly has clear advantages over the OB methods. With the help 
of linear-scaling Ewald summation techniques,390–413 even significantly larger 
systems can be modeled dynamically within the DFT description using current 
computational power. 

Rather than repeating here the details of various applications, we feel that it 
would be more useful to pinpoint a few issues (“holy grails”) of future signifi-
cance.

First of all, the “golden holy grail” is a highly accurate OF procedure to
approximate the DM1. If this can be done, not only will the KEDF and the 
XEDF be modeled accurately, but also the conventional NLPS’s370–386 could
then be directly used in the OF-DFT calculations.387

Once the “golden holy grail” has been achieved, the “silver holy grail” would
then be to use a pure OF-DFT scheme to predict every GS property other than 
those requiring detailed OB descriptions. In particular, non-HOMO orbital en-
ergies (or a band structure) and all orbitals of many-electron systems cannot be 
obtained from an OF-DFT calculation. For example, the OF-DFT study of the 
metal-insulator transition in a 2-dimensional array of metal nanocrystal quantum 
dots was aided by tight-binding calculations, using the self-consistent OF-DFT
density as input, to estimate the band gap as a function of particle separation.97

Is it possible, in principle, to access the information about at least the band gap 
directly from an OF description? The answer is actually yes! There is a Bong 
history of studying the asymptotic decay behavior of the DM1 in condensed 
phases94–96,31 1,312,414–428 and the latest results312 show that for weak-binding in-
sulating systems, the DM1 decays exponentially and the decay length is directly
proportional to the band gap Egap,

(219)

where c is some positive constant. For tight-binding insulating systems, the 
results are mixed96,312,428 but are closely related to the strength of the external 
potentials or pseudopotentials used.312 If the external potentials or pseudopoten-
tials are chosen carefully, an exponential decay behavior can still be observed.312

On the other hand, for metallic systems at zero Kelvin, the DM1 decays alge-
braically like the Friedel oscillations, as shown in Eq. (87).96,311,312 Therefore,
from the asymptotic decay behavior of a highly accurate OF approximation for the 
DM1, one can access the band gap information directly, distinguishing between 
insulators and metals. 
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Finally, the “bronze holy grail” is the WADA that concurrently enforces the 
correct LR behavior at the FEG limit and the exact idempotency property for any 
OF approximation of the DM1. Of course, the correct LR behavior is critical for 
any EDF to outperform its LDA counterpart. However, one should not push the 
limit too far with regard to higher-order response behaviors. Past numerical tests 
have shown that the SNDA OF-KEDF’s with the DD AWF based on LR theory 
and the ones with the DI AWF based on QR theory perform indistinguishably from 
one another for bulk solids (metals and insulators alike).108–111,388 Hence, the 
requirement for EDF’s to have correct higher-order response behaviors at the FEG 
limit can be waived. From another perspective, realistic systems are normally not 
very close to the FEG limit, and correct higher-order response behaviors at the 
FEG limit will not enhance the performance of EDF’s much. Ideally, one should 
enforce the exact response behavior within a realistic environment of the systems 
under investigation, but it is very difficult to do, if not impossible. The NLDA 
with the DD AWF based on LR theory is the most logical compromise between 
theoretical rigor and numerical efficiency. Furthermore, for a nearly FEG (like 
any metallic system), the exact idempotency property of the SLDA OF-DM1 of 
the FEG [see Eq. (39)] should be approximately satisfied automatically, but for 
insulating systems, explicit enforcement of the exact idempotency property is 
required. This incidentally bestows us another way to distinguish metals from 
insulators: testing how well the exact idempotency property of the SLDA OF-
DM1 is satisfied.388 Such an approach is considerably simpler than the one just 
mentioned above, since the analysis of the asymptotic decay behavior of the 
DM1 is avoided, permitting a fast on-the-fly assessment of the metal-insulator
transition during the course of an OF-DIT molecular dynamics simulation, 

We believe that in the near future, all three “holy grails” listed above will be 
achieved, and the OF approach will become the preferred method of implementa-
tion of DFT. We hope this review draws the attention of the theoretical chemistry 
and physics communities to make this come to pass. 
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Chapter 6

SEMICLASSICAL SURFACE HOPPING METHODS 
FOR NONADIABATIC TRANSITIONS IN CONDENSED 
PHASES

Michael F. Herman 

Department of Chemistry, 
Tulane University, 
New Orleans, LA 70118, USA 

Abstract A semiclassical surface hopping method for the evaluation of rates and time
dependent probabilities for transitions between quantum states of a molecule 
in a condensed phase system is discussed. The surface hopping procedure, 
which includes all semiclassical phases and prefactors, has been previously 
shown to provide accurate results for time dependent quantum wavefunctions
in model problems. It is shown how this semiclassical nonadiabatic 
propagator can be cast in the HK propagator from. The semiclassical 
propagator is employed in the propagation of the density for condensed phase 
systems, and expressions are derived for the transition probability between 
different quantum states in these systems. It is argued that the semiclassical 
propagation of the density need only be considered for short times in most 
condensed phase system undergoing quantum transitions, even if the transition 
rate is slow. This need for only short time propagation of the density arises 
due to phase decoherence effects and loss of correlation in the interstate 
coupling. It is shown how the transition probability expression can often be 
numerically simplified by employing short time approximations for this short 
time density propagation. Results are presented from calculations of 
vibrational relaxation rates in condensed system. These calculations 
investigate when the short time approximations are valid. 
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I. INTRODUCTION 

Processes involving transitions between quantum states of a molecule in a 
condensed phase are of interest in many physical systems. The photodissociation of 
molecules in liquids is one such process. The relaxation of excited state vibrational 
populations is another. As the sophistication and time resolution of physical 
experiments probing these processes have improved, the ability to accurately model 
these time dependent processes has become of greater importance. In most cases, 
the large number of degrees of freedom needed to model the condensed phase system 
andtheneedforextensiveconfigurational averagingprecludes acompletely quantum
treatment of the process, while the quantum nature of the transition often raises
questions about a completely classical treatment. Semiclassical treatments1–4

 of the 
dynamics offer a middle ground between purely quantum and purely classical 
approaches. Semiclassical treatments evaluate approximate quantumenergies, wave-
functions, transition amplitudes, etc., using information obtained from classical 
trajectories. These trajectories evolve on a potential surface, which includes the 
quantum energy of the part of the system that is undergoing the quantum transition. 
There are several approaches,4– 69 which have been devised for performing
semiclassical calculations for systems with more than one important quantum state 
(i.e., more than one important potential surface). These include methods that use an 
averaged energy surface,5–19 methods involving the analytical extension of the 
potential surfaces and trajectories into the complex plane,22–25 and surface hopping 
methods.26–67 The recently presented mapping approach of Thoss and Stock,68–69

which is similar to the earlier classical electron model of Miller and coworkers,14–18

offers another potentially very useful approach. This method replaces the quantum 
state energies and the couplings between the states with canonically conjugate 
variables, which can be treated on the same footing as the remaining variables in the 
system.

In this work, we focus on surface hopping semiclassical methods. Many 
different surface hopping approaches that have been developed Since simulations 
ofcondensed phase systems generally employ a large number of degrees of freedom, 
there is often a trade-offthat must be made between computational efficiency and the 
level of approximation in the method, which may affect its accuracy. The particular 
surface hopping method43–49 discussed in Section I I .A and II.B is derived directly 
from the time dependent Schrodinger equation (TDSE) and includes all phase factors 
and semiclassical prefactors. It can be shown to satisfy the TDSE to the same order 
in (i.e., first order) as the standard single surface semiclassical methods, and it 
includes all orders in the coupling between the quantum states. Results for model 
problems48 indicate that this surface hopping method is capable of providing highly 
accurate transition probabilities. as long as the region of strong interaction is 
classically allowed. 

The main numerical difficulty in implementing this surface hopping method for 
condensed phase problems is that the semiclassical prefactor involves the derivatives 
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of the phase space point at time t with respect to changes in the initial phase space 
point for the hopping trajectory, and the evaluation ofthis prefactor is prohibitive for
large dimensional systems. The evolution of the system density using the surface 
hopping procedure is discussed in Section II.C. It is argued that the density need 
only be propagated for very short times in order to evaluate the transition rate for 
most problems of interest. If this is the case, then short time approximations, which 
alleviate the numerical difficulties posed by the prefactor calculation, should be 
valid. This results in a computationally very appealing procedure for the evaluation 
of condensed phase transition rates. The results from calculations, which apply this 
surface hopping method for the evaluation of time dependent vibrational transition 
probabilities, and which test the approximations made, are described in Section III. 
A summary is provided in Section IV. 

II. SEMICLASSICAL SURFACE-HOPPING METHODS FOR 
NONADIABATIC PROBLEMS 

A. Defining the Problem 

We are interested in condensed phase systems in which one or more molecules 
undergo quantum transitions. Our work has largely centered on vibrational 
transitions, but the formalism that we discuss here is equally applicable to electronic 
transitions. To describe these processes, we divide the systems coordinates into two 
subsets. It is generally useful to treat the degrees of freedom that are undergoing the 
quantum transition as the fast degrees of freedom. These could be the vibrational 
coordinates of the molecules undergoing vibrational relaxation, or they could be the 
electronic coordinates of the molecules undergoing electronic transitions. The 
remaining coordinates form the slow variable subset. In the vibrational relaxation 
problem, the rotational and translational degrees of freedom usually form the slow 
variable set. For problems involving electronic transitions, the vibrational. 
rotational, and translational coordinates typically form the slow variable subset. In 
this work, we denote the slow variable coordinates and momenta by the vectors r and
p, respectively. We employ state labels to denote the fast variable quantum states 
throughout, and any explicit reference to the fast variable coordinates, rf, is
suppressed to simplify the notation. 

The adiabatic representation is employed throughout most of this chapter. This 
representation is obtained by defining the Hamiltonian for the fast variable subsystem 
as Hf = H - Ts, where H is the Hamiltonian for the complete system and Ts is the 
kinetic energy operator for the slow coordinates. This gives Hff = Tf + V, where Tf is
the fast variable kinetic energy and V is the potential energy for the entire system. 
The fast variable quantum states in the adiabatic representation are obtained by 
solving the corresponding time independent Schrodinger equation 
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(1)

The r dependence of the Ej
f (r) and ψ j

f (r) arises from the r dependence of the
potential energy, V. The fast variable quantum state wavefunctions, yj

f (r), also
depend on the fast variable coordinates, rf, but this is not explicitly shown.

The adiabatic approximation ignores the action of the slow variable kinetic 
energy operator, Ts, on the ψ j

f(r). When this approximation is made, then the
wavefunction for the entire system can be written as a product of fast and slow
factors, Ψ = ψj

f ψ s, and the wavefunction for the slow variable subsystem satisfies

the slow variable Schrodinger equation 

(2)

where E is the total energy of the system. As can be seen from Eq.(2), the fast 
variable quantum energy, Ejff (r), acts as the potential energy for the slow variable 
subsystem. For this reason, we use the notation Vj(r) for Ej

f(r) below.
Transitions can occur between different adiabatic states for the fast variable 

subsystem, since the adiabatic approximation ignores the action of Ts on the Yjf. The 
ignored terms act as the coupling between the different fast variable states. Ts

involves derivatives with respect to slow variable coordinates. In the discussion 
below, the coupling between the fast variable states is given43, 48 by the nonadiabatic
coupling vector

(3)

where ∇ is the gradient with respect to r , and < ... > indicates integration over the 
fast variable coordinates. 

Sometimes it is useful to employ a diabatic representations5,6,70 for the fast
variable quantum states, rather than the adiabatic representation. In this work we 
define a diabatic representation as one for which <ψj

d |∇ψi
d > = 0, where the 

superscript d indicates the fast variable states in the diabatic representation, There 
are off-diagonal matrix elements of the fast variable Hamiltonian, Vij(r) = < ψi

d| Hf

|ψj
d>, in this representation. In contrast, the off-diagonal elements of Hf are all zero 

in the adiabatic representation, since the ψj
f are eigenfunction of Hf in this case. 

B. The Surface-Hopping Propagator 

The semiclassical propagator for a single surface problem has the form 

(4)

with the prefactor A given by 
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(5)

where d is the dimensionality of the (slow variable) coordinate space and S(ro,rt,t)
is the classical action71 for a trajectory that travels from ro to rt in time t. The
summation in Eq. (4) is over all trajectories, which travel from ro to rt in time t. The 
action has the properties71 that ∂S/∂ro = - po, ∂S/∂rt = pt, ∂S/∂t = -E, where po and
pt are, respectively, the initial and final momenta and E is the energy for the 
trajectory. The semiclassical approximation is a small approximation. When this 
propagator is substituted into the time dependent Schrodinger equation (TDSE), and
the resulting terms are arranged in orders of h- , then all terms that are order h- 0 and h-1

cancel,46,48 leaving only terms which are order  Since the semiclassical 
approximation ignores the terms, we say that the propagator in Eq. (4) satisfies 
the TDSE through order

This single surface semiclassical propagator can be extended to multi-surface
problems by replacing the summation in Eq. (4) with summations and integrations 
over hopping trajectories.46 48 It is sufficient to consider only hopping trajectories 
that conserve energy at each hop. The surface hopping propagator corresponding to 
a system initially in quantum state ψi

f and ending in quantum state ψf
f at time t can 

be expressed as 

(6)

where Kif
n(ro,rt,t) includes all contributions from n-hop trajectories. The n = 0

contribution is simply the single surface propagator, Eq. (4), and is nonzero only if 
i = j. The n = 1 terms can be expressed as 46,48

(7)

where the t1 is the time at which the hop occurs, S is the classical action for a single
hop trajectory which starts at ro in state ψif and ends at rt in state ψf

f in time t, and A 
is the semiclassical prefactor given by Eq. (5). While not explicitly shown in Eq. 
(7), the contributions of all such trajectories must be summed, if there is more than 
one. The function ξif (t1), which is the amplitude associated with the hop at t1, is 
defined in detail below. 

The general kth order term in the expansion is given analogously 46,48
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(8)

where t1 through tk are the times for the k hops and the summation is over all 
intermediate states for trajectories corresponding to state ψi

f before the first hop and 
state ψf

f after the kth hop. Eq.(8) includes contributions from all k hop trajectories 

which start at ro in state ψ i f and end at rt in state ψ f f in time t.
We have restricted the hopping trajectories to conserve energy at the hopping 

points. However, this condition alone does not completely specify post-hop
momentum at the hopping point. A more complete specification of the hopping 
trajectory is obtained by requiring that there is only a change in the component of the 
momentum which is parallel to the nonadiabatic coupling vector, 44–46, 48 It has 
been shown48 that unphysical singularities arise in the hopping amplitude, ξif(t1), if 
a choice other than this is made for the direction of the momentum change 
accompanying a hop. Coker 61 has provided an alterative justification of this choice 
for the direction of the momentum change upon hopping. Recently, Ben-Nun and 
Martinez67 have considered more general surface hopping expansions, in which the 
position of the trajectory can change discontinuously at the hopping point, as well 
as the momentum. The condition that the momentum change is parallel to only 
defines the magnitude of the component of the post-hop momentum, not its sign. 
In general, trajectories corresponding to both signs can contribute the 
propagator,43 46 48 although trajectories which have the same sign of p· before and 
after the hop generally provide the larger contribution. 

Since the prefactor A(ro,rt,t) contains derivative ofthe action, it is also necessary
to define how these derivatives should be taken for hopping trajectories. It can be 
shown that S(ro,rt,t) retains the properties of the action, that ∂S/∂ro= - po, ∂S/∂rt =
pt, ∂S/∂t= -E, if and only if the derivatives are defined such that the change in the
position of each hopping point along the trajectory, corresponding to a change in ro,
rt, or t, is perpendicular to the direction of at the hopping point.48 Therefore, this
definition for hopping point changes is assumed throughout this work, when taking 
derivatives with respect to ro, rt, or t.

The transition amplitude, ξif (t1), is given by44–46 48

(9)

where pilη = |pi·eη|, pflη = |pf·eη|, eη = is a unit vector in the ηif direction,ηif
is the magnitude of sg is the sign of pi· and dr1η /dt1 = eη · dr1/dt1. The 
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derivative, drl /dtl, is taken such that the change in the hopping point, r1 ,
accompanying a change in the hopping time, t,, results in a new hopping trajectory
that starts at ro, and ends at rt in time t. The ± sign in Eq. (9) is chosen to be plus
(minus) for the case where the component of momentum has the same (opposite) 
sign before and after the hop. 

This semiclassical surface hopping propagator has been numerically tested and 
compared with results from quantum propagation for model problems, and it has 
been found to provide highly accurate results for problems in which the region of 
significant interstate coupling is classically allowed.48 Results are given in Table I 
from numerical calculations for a simple model system,48 in which the adiabatic 
potential surfaces and coupling are evaluated from the r-dependent diabatic 
Hamiltonian matrix H11 = 3 exp(-2r), H22 = H11 + ∆, and H12 = 0.1 [ 1- tanh(r-3)]. The 
particle mass and are set to unity. Only first order terms are included in the 
semiclassical calculations for this weak coupling model, and hopping  trajectories, for 
which p · changes sign in the hop, are neglected. The initial wavefunction is a
Gaussian wavepacket on the upper surface with an average position of 10 and an
average momentum of -4. The results show excellent agreement between the
semiclassical transition probability, Psc , and the time dependent quantum transition
probability, PQ , for this problem. 

The derivative in Eq.(9), dr1η/dt1, and the entire surface hopping propagator, Eq.
(6), are difficult to evaluate numerically for multidimensional problems, because of 

Table I Comparison of quantum and semiclassical transition probabilities for two surface 
model problem. 

t D PQ Psc 

1 1 0.407x 1 0-4 0.454x1 0-4

2 1 0.564x 10-2 0.5 13x 10-2

4 1 0.169x10-1 0.173x 10-1

6 1 0.2 5 8x 1 0-1 0.26 1 x10-1

8 1 0.269x10-1 0.272x10-1

1 4 0.239x10-5 0.26 1 x 1 0-5

2 4 0.246x10-3 0.25 0x 1 0-3

4 4 0.246x10-3 0.249x10-3

6 4 0.502x10-3 0.500x10-3

8 4 0.505x 1 0-3 0.503x10-3

1 16 0.456x 1 0-7 0.472x 1 0-7

2 16 0.620x10-6 0.638x10-6

4 16 0. 1 03 x 1 0-5 0.933x10-6

6 16 0.994x 1 0-6 0.993 x 1 0-6

8 16 0.98 5 x 1 0-6 0.992x10-6
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the required root search for trajectories that start at ro and end at rt in time t. In 
actual calculations, this root search can be avoided by converting to an initial value 
representation (IVR)72, derived from Eq.(6). The HK propagator formulation73–77 of
the single surface propagator is an IVR, which is widely employed for numerical 
problems.78–83 This method evaluates K(ro ,rt,t) as an integration over the initial 
positions and momenta of a set of Gaussian wavepackets, which travel along 
classical trajectories with constant width. The HK propagator is derived73–75 from the 
single surface propagator, Eq.(4). The same derivation holds for multi-state
problems, if the surface-hopping form the propagator, Kif (ro,rt,t), is employed. In
the HK-IVR form of the surface hopping propagator. the derivative for the kth hop,
drkh/dtk, [corresponding to dr1η/dt1 in Eq. (9)] is evaluated at constant ro, po, and all
previous hopping times, tj, for j < k. In this case, the same trajectory just proceeds 
dtk longer before hopping, giving the simple expression drkη/dtk = paη(tk)/m, where 
pa(tk) is the momentum before the hop at the hopping point.

If the initial state of the system is described by ψif ψos(ro), where ψo
s(ro) is the 

initial wavefunction for the slow variable subsystem at t = 0, then the k-hop
contribution to the component of the system in fast variable state ψf

f at time t is given 

by

(10)

where g(r;rt,pt) = (γ/π)1/4exp[-γ(r - rt)
2+ (i/h- )pt · (r - rt)] is a Gaussian wavepacket 

with average position rt, average momentum pt, and for which the corresponding
density has a width of (4γ)-1/2 in each coordinate. The summation in Eq.( 10) is over 
all possible sequences of k- 1 intermediate states, and tl is the time of the  hop. 
The total contribution to the wavefunction for the fast variable quantum state ψf

f at
time t is obtained by summing over all k. The HK prefactor is given by73–75

(1 1) 

and <ro,po|ψo
s> = is the overlap of the initial wavefunction with

the Gaussian g(r;ro ,po).
The prefactor for the HK propagator contains the derivatives ∂rt /∂ro , ∂rt/∂po,

∂pt/∂ro , and ∂pt/∂po. These derivative are evaluated for hopping trajectories, as 
discussed above, such that the changes in the hopping points, accompanying changes 
in the initial phase space point for the trajectory, always occur in a direction 
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perpendicular to where ψa
f and ψb

f are the states of the system before and after
the hop, respectively. 

Given the success of the HK propagator for the evaluation of single surface 
problems,78–85 we expect this multi-surface generalization to be very useful for many 
state problems. One way to organize the calculations based on Eqs. (9)-( 11), would 
be to perform the summations over all numbers of hops and all possible times for 
these hops using a Monte Carlo algorithm, which employs the magnitude of the 
hopping amplitude, ξab(t), when deciding whether to hop at each time during a 
trajectory. This is an actively pursued area of research in our group at this time. 

Before leaving this section, it is worthwhile to note a couple of numerical tricks 
that are useful when applying these surface hopping procedures to curve crossing 
problems. The nonadiabatic coupling can become very large near an avoided 
crossing seam in these problems. It is numerically efficient to sum trajectories, 
which hop any number of times during a small time interval between the two surfaces 
involved in the avoided crossing.42 This summation can be performed, if the phases 
for all these trajectories ending on the same surface are approximated as the same. 
All trajectories ending on the same surface as the zero hop trajectory are treated as 
having the same phase as the zero hop trajectory, and all trajectories ending on the 
same surface as the single hop trajectory are approximated as having the same phase 
as the single hop trajectory that hops at the mid-point in the time interval. The 
trajectory summations42 result in replacing the transition amplitude, ξab, with sin(ξab),
and by multiplying the zero hop term by a factor of cos(ξab) for this time interval. 
This can significantly decrease the numerical effort involved in these calculations.

We have also recently shown how the surface hopping propagator can be 
generalized for any representation for the fast variable quantum states, rather then 
just using the adiabatic representation.49,50 The flexibility in the choice of the 
representation can then be utilized to significantly reduce the integrated strength of 
the coupling in avoided crossing regions. This can reduce the importance of 
trajectories with large numbers of hops in calculations employing these surface 
hopping methods.49,50

C. Surface Hopping Method for Time Dependent Transition Probabilities 

The time dependent transition probability is an object of obvious interest for 
problems involving nonadiabatic transitions in condensed phases. These can be 
evaluated by first projecting the initial density of the entire system p(0) onto ψi

f, the 
selected initial quantum state for the fast variable subsystem, giving the projected 
density ρi0(ra,rb) = <ra|i><i| ρ(0) |i><i|rb>, where <r|i>=ψi

f(r). This projected density 
could be the density for the system with a solvent molecule in an excited electronic 
or vibrational state, and the rest of the variables describing the system having a 
canonical ensemble distribution. This density can then be propagated forward in 
time. using semiclassical surface hopping propagators. The propagated density can 
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have components in all fast variable quantum states {ψj
f} due to the nonadiabatic 

interactions. The time dependent transition probability is obtained by projecting this 
density onto the particular final state of interest, ψf

f. This transition probability is 
given by86–88

(12)

where Qi = ∫ dr ρi0(r,r). Since it takes two propagators to propagate a density, the 
calculation of the transition probability requires the integration over all possible pairs
of hopping trajectories. One of the trajectories in the pair begins at ra on surface 
Vi(r) and ends at rt on surface Vf(r) at time t, while the other begins at rb on surface
Vi(r) and also ends at rt on surface Vf(r) at time t.

At this point, we assume that the initial state density is well described by a
canonical density in the slow variable coordinates. If this is the case, then it can be
shown that the propagation of the density before the time of the first hop for either 
of the propagators does not alter the density.88 Furthermore, performing the 
integration over the final position rt for the pair of trajectories by stationary phase 
yields the condition that the final momentum for both trajectories at rt must be the 
same.87, 88 Thus, the trajectories are identical for all times after the last hop. This 
stationary phase integration also allows the two propagators to be expressed as a 
single propagator. Once this is done, the two trajectories are combined into a single 
trajectory, which runs from t1, the time of the first hop in either of the two original 
trajectories, to the time of the last hop for either of the two trajectories, t1 + τ. The 
combined trajectory is then run backwards from this point at time t1+ τ back to time 
t1. Each branch of this combined trajectory is on surface Vi before the hop at t1 and 
on surface Vf after the hop at t1 + τ. The total propagator is obtained by summing 
over all possible sequences of hops and integrating over all possible hopping times
for both branches of the combined trajectory.88 This type of combined forward- 
backward propagation is also found in the recent work of several other research
groups.89–96

The resulting expression is especially simple in the weak coupling case. In this
case, the two propagators in Eq. (12) can be approximated by their first order (i.e, 
single hop) terms. (The zeroth order term makes no contribution of Kif as long as i 
≠  f.) In this weak coupling limit, the expression for Pif (t) can be expressed as88

(13)
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where the Van-Vleck form of the surface hopping propagator, Eqs. (6)-(8), has been 
employed. In Eq.( 13), t is the time between the hops for the two trajectories. S and 
A are the action and the prefactor for the trajectory that trajectory that begins at r1a 

on Vi with momentum p1ai. This trajectory immediately hops to surface Vf and
travels for time t on Vf . It then hops to surface Vi and travels (backwards in time) 
for time -τ on surface Vi, ending at r1b. The hopping point at the end of the first leg 
of the trajectory is rτ, and the momentum before this hop is p1bf. Since the integrand 
depends only on the time between the first and last hop, and not on t1, the integration 
over the time of the first hop, t1, is easily performed, yielding the t - t factor in Eq.
( 13).88

An important feature of Eq.(13), and its higher order generalization, is than the 
trajectory must only be propagated (in each direction in time) for time t. This is a 
very short time for many problems, even if the time for the relaxation of the fast 
variable quantum state is very long. The combined trajectory can be thought of as 
having two branches both traveling from their initial point for time t and ending at 
the point rτ. These branches travel on different potential surfaces for times between 
t1 and t1 + t. Unless Vi and Vf (and any other intermediate surfaces in the higher order
terms) are nearly identical for all r of interest, these two branches will rapidly
become very different as a function of t. The canonical density, ρi(r1a,r1b,β) is very
small, if theinitial points for the two branches of thetrajectories, r1a and r1b, are not
very close, except at very low temperatures. In addition, the contributions to S from 
the two branches, Sa and Sb, become quite different, and the action for the combined 
trajectory, S = Sa-Sb, rapidly becomes large as τ grows. This leads to nearly complete 
phase cancellation when the integrations over r1a and r1b in Eq. (13) are performed
except for very small t.

Consider the example of condensed phase transitions between vibrational states, 
which have energies that are significantly different compared with kBT. The
momentum on the initial surface before a hop and the final surface momentum after 
the hop are considerably different for typical values of the initial momentum sampled 
from a canonical distribution. This causes the two branches of the combined
trajectory to quickly diverge, and action for the combined trajectory to grow rapidly. 
The result is that the integrand converges very quickly as a function of t, particularly
after the r1a and r1b integrations have been performed.

For another condensed phase example, consider a curve crossing problem 
between an initial excited electronic state of a solvent molecule and some other, 
possibly dissociative, electronic state of this molecule. In this case, the region of 
strong coupling is localized around the seam where the surfaces nearly cross. The 
time taken to cross the strong coupling region is generally rather short. The system 
may cross this seam many times. However, in a condensed phase system the 
integrations over r1a and r1b in Eq. (13) result in essentially total phase space
cancellation between hopping contributions from different crossings of the seam. 
Thus, the significant contributions to the t integration occur only for t less than or 
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equal to the time that it takes, on average, for the system to cross the localized strong 
coupling region. 

Thus, we generally expect only very small values of t to contribute significantly 
to the transition probability. Population
relaxation between degenerate or nearly degenerate vibrational states is an example 
of this, since the pre-hop and post-hop momenta are nearly the same and the two 
branches of the combined trajectory can separate quite slowly in this case.97,98

The semiclassical prefactor for the combined trajectory in Eq. (13) poses a 
significant numerical problem for condensed phase systems, since it involves the 
derivatives of each component of the final momentum with respect to changes in 
each component of the initial position. The system position and momentum vectors 
are generally of quite high dimensionality for simulations of condensed phase 
system, and the calculation of all of these derivatives is a numerically prohibitive 
task (although it is possibly tractable for simulations of relaxation processes taking 
place in small clusters). However, the evaluation of this transition probability can 
be made numerically very feasible, within reasonable approximations, for problems 
where only small values of t contribute to the transition probability Approximating
the value of r for both branches of the combined trajectory through a second order
in time expansion is equivalent to approximating the forces, -∇V as constants for
all In this approximation the dynamics are separable. Suppose we define the 
coordinate system at each point so that the direction parallel to the is one of the 
coordinates. Since there is no momentum change at the hopping point in any of the 
directions perpendicular to direction, the difference in the jth component of r1a -
r1b as a function of τ is given by (r1a - r1b)j = (∇Va - ∇Vb)jτ2/2 for all components 
except the direction. (The potential surfaces for the two branches of the 
combined trajectory, Va and Vb, are defined to be the V for the state that the branch 
is in at each time along the trajectory.) Thus, there is one allowed value for (r1a- r1b)j 

in this approximation for a given set of hopping times and sequence of quantum 
states. This corresponds to the stationary phase integration over rt, which was 
performed in obtaining Eq.(13), producing a δ-function in (r1a - r1b)j. The trivial
integration over the δ-function in these components leaves the one dimensional r1a -
r1b integration in the  direction, as well as integrations over (r1a + r1b)/2 and t. As
a result, only the component of the prefactor needs to be evaluated in this
approximation. This contribution to the prefactor is quite easily obtained in this 
constant force approximation. 

There are some exceptions to this. 

If the high temperature approximation is employed for ρi (r1a, r1b, β),

(14)

then this analysis gives a factor of exp[-m(r1a - r1b)j
2/2h- 2 β] for each component

perpendicular to as well as an overall multiplicative factor of exp{-β[Vi(r1a) +
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Vi(r1b)]/2}. (In these expressions, a single mass, m, is employed. This is easily
modified to account for different masses by employing mass weighted coordinates.) 
Ifthe Fourier transform form of the high temperature density function is used for the
hif component of r1a - r1b, then the integration over this component of r1a - r1b can be
converted into an integration over the momentum in this direction, and the resulting 
one dimensional momentum integration is over a Maxwell-Boltzmann momentum
distribution.88

 After performing the dh = r1aη- r1bη integration by stationary phase, 
the final expression, within the high temperature and small t approximations, is

(15)

where the k is the total number of hops and Zi = ∫  dr exp[-βVi(r)]. The indices α
and ζ are the fast variable quantum states ofthe system before and after the hop,
respectively, and r is the hopping point for the hop. In Eq.(15), the subscripts a
and b denote the two branches of thecombined trajectory. The variable sj can have
values of + 1 or -1, indicating whether the jth hop is in the a or b branch of the
trajectory, with the restriction on the summation over the σj’s that there must be at
least one hop in each branch. The quantities Viab = [Vi(r1a) + Vi(r1b)]/2, and piabη =
(piaη + pibη)/2 are the average of the initial state potential and the h component ofthe
initial state momentum evaluated at the first hopping time. The piabη integration
arises from the use of the Fourier transform form of the high temperature canonical 
density. The factor F in Eq. ( 15) is given by

and the phase j is given by88

(16)

(17)

The exponential factor in Eq. (16) accounts for contribution from the high 
termperature canonical density function for all coordinates except the one in the 
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direction. The coordinate in the direction is denoted by the index h. The second 
factor in Eq. ( 16) is the propagator prefactor for the direction, while the last factor
arises from the stationary phase integration over δh. If the assumption is made that
only very small values of dh contribute significantly, then these two factors should 
approximately cancel.88

When numerically implementing Eq. (15), the integration over t can usually 
be performed using a standard finite step method. In a strong coupling case, where
higher than second order terms may be important, it is probably useful to use a
Monte Carlo procedure to decide whether or not to have a hop during each time 
interval within the τ integration (in addition to the hops at time t1 and t1 + τ), as is 
discussed in Section II.B. Furthermore, multi-hop trajectories can be summed during
each time interval, as is also discussed in Section II.B.

Eq.( 13) and Eq.( 15) can be split into two terms, one from the t term in the t - t
factor, and the other from the τ  term. Since the τ integration is expected to converge 
very rapidly, the transition probability has the form88

(18)

for t longer that the convergence time for the t integrations for these two terms. 
where kif and C are the values for the terms (after t has been pulled outside the 
integrations for the first term) in the limit in which the upper limit of the t integration
has been set to infinity. Thus, after a very short initial time in which quantum phase 
coherence is important, the transition probability becomes a linear function of time. 
The slope, kif, is just the rate constant for this process. The expression for the rate 
constant is given by Eq. ( 13) or Eq. (15) with the (t - τ)factor removed.

Pif (t) can be calculated from the rate equation dPif /dt = kifPii for time longer than 
the time for which the t integration in Eq. (13) or Eq. (16) converges. If ψf

f and ψf
f

are the only important quantum states, then Pii = 1 -Pif. If other states must also be
considered at longer times, then the rate constants for transitions involving these 
states must also be calculated using the formalism described here, and then the long 
time transition probabilities can be evaluated from the appropriate master equation. 

III. NUMERICAL CALCULATTONS OF VIBRATIONAL POPULATION 
RELAXATION

As discussed above, the evaluation of the condensed phase probability for 
transitions between the vibrational states of a solute molecule is a problem in the 
weak coupling regime for which the short τ approximation should be valid. We have 
performed calculations of the probability for the transition from the first excited 
vibrational state to the ground vibrational state of Br2 in a dense Ar fluid employing 
a forward-backward surface hopping method similar to the one described in the
previous section.99, 100 The simulation system contains one Br2 molecule and 107 Ar
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atoms in a box with periodic boundary conditions. A Morse potential was employed 
for the Br2 vibration, and Lennard-Jones (LJ) potentials were employed for the 
interactions between each pair of Ar atoms and for the interaction of each Br atom 
in the molecule with each Ar atom. Details of the simulations can be found 
elsewhere.87,99

One goal in performing these calculations is to gain insight into the sensitivity 
of the relaxation rate to the various features of the physical system. This was 
accomplished by varying the parameters defining the physical system. Some of these 
results99, 100 are summarized in Table II. The results show that the relaxation rate for 
this system is more sensitive to the mass of the solvent atoms than to the mass of the 
diatomic. This result may reflect the fact that the solvent atoms are considerably 
lighter than the diatomic for this system. Lighter solvent mass corresponds to 
"higher frequency solvent phonon modes”, which would be expected to provide 
better accepting modes for the energy of the comparatively high frequency vibration. 
Not surprisingly, the vibrational relaxation rate is quite sensitive to the vibrational 
frequency ofthe diatomic, and it is also fairly sensitive to the strength ofthe LJ Br-
Ar interaction. Interestingly, softening the 6-12 LJ potential to a 6-9 interaction 
significantly decreases the relaxation rate, although altering it to a 6- 15 potential has 
little effect. This would suggest that the relaxation rate is quite sensitive to the 
repulsive part of the potential for this system. 

In order to test the small t assumptions in our calculations of condensed phase 
vibrational transition probabilities and rates, we have performed model 
calculations,88, 101 102 for a colinear system with one molecule moving between two 
solvent particles. The positions of the solvent particles are held fixed. The center 
of mass position of the solute molecule is the only slow variable coordinate in the 
system. This allows for the comparison of surface hopping calculations based on 
small t approximations with calculations without these approximations. In the 
model calculations discussed here, and in the calculations from many particle 
simulations reported in Table II, the approxiinations made for each trajectory are that 
the nonadiabatic coupling is constant, that the slopes of the initial and final 

Table II 1 →0 vibrational relaxation rate for modified Br2 in Ar systems 

System (change from standard system) 

Br2 in Ar (standard system) 
Solvent mass divided by 2 
Diatomic mass divided by 2 (fixed reduced mass) 
Diatomic frequency multiplied by 2 
LJ ∈doubled for Br-Ar interaction
6-12 Br-Ar potential changed to 6-9 potential 
6- 12 Br-Ar potential changed to 6- 15 potential 

rate (ps -1)

0.3 7x 1 0-2

0.99x 1 0-2

0.49x10-2

0.024x10-2

0.6 1 x 1 0-2

0.072x10-2

0.37x 1 0-2
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vibrational states are constant, and that these slopes are equal. These are actually 
more severe approximations than those employed in obtaining Eq. (15), since the 
magnitude of the nonadiabatic coupling is not assumed to be constant in that 
derivation (only the direction), and the slopes of the initial and final potential 
surfaces are not assumed to be the same. Time dependent transition probabilities for 
a colinear system. for which the interactions roughly mimic a CO2 molecule in a
dense Ar fluid, are shown in Figure 1 .102 The three curves correspond to transitions
between the first excited state of the symmetric stretch and the ground vibrational 
state, between the first excited state of the asymmetric stretch and the ground state, 
and between the first excited states of the asymmetric and symmetric stretches. The 
calculations based on the short t approximation and the full calculations are almost 
identical in each case. Slight oscillations are noticeable as very short times. These 
features are quantum effects due to phase interference in the transition probability 
expression. Similar calculations have also been perfonned for a colinear model 
system with potentials appropriate for a Br2 in Ar system.88,101 In this case the 
quantum interference effects are more pronounced and persist for slightly longer, 

Figure 1 Vibrational transition probabilities for colinear CO2 in Ar model plotted versus 
time (ps). The label a is for the symmetric stretch to ground state transition, the label b is for 
the asymmetric stretch to ground state transition, and the label c is for the asymmetric stretch 
to symmetric stretch transition. The dotted curves employ short time approximations, and the 
solid curves do not. 
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due to the smaller energy difference between the initial and final vibrational states 
compared with the CO2 systems. The small t approximations still yield a rate for the 
transition between the first excited vibrational state and the ground state, which is in 
good agreement with the full calculations, although the agreement is not quite as 
good as it is for the CO2 system.

On might expect that the small t approximation would break down, if the energy 
separation between the initial and final states is very small. In order to test this, 
similar model calculations have been carried out for a system with interactions 
chosen to model a KrF2 in Ar system.102 This is a system with low frequency 
vibrations. Furthermore, the symmetric and asymmetric stretch vibrational 
frequencies are very close, since this triatomic has two light atoms attached weakly 
to a comparatively heavy atom. In this case, the small τ approximations result in
errors in the transition rates that are quite large (20-50%) forthe transitions from the
first excited states of the symmetric and asymmetric stretches to the vibrational 
ground state. The approximation completely fails for the transition between the first
excited asymmetric and symmetric stretch states, which are very close in energy, in 
agreement with our expectations.

We have also preformed calculations for the resonant transfer of one quantum
of vibrational energy within a two dimensional cluster of Br2 molecules.97 In
addition to the bond potential for each Br2 and the LJ interactions between 
nonbonded Br atoms, a harmonic potential binding the center of mass of each
molecule to the origin is added to keep the cluster from breaking up. The bond
coordinates of the molecules make up the fast variable subsystem, while the center 
of mass coordinates and rotational angles of the molecules form the slow variable 
subsystem. The quantum states of the fast variable system are evaluated for a fixed
value of the slow variable coordinate vector by expanding the potential energy 
through quadratic order in the fast variable coordinates, about the point where all 
vibrational coordinates are set to the equilibrium bond length for the isolated 
molecule. The vibrational energies and states of the system with one quantum of 
vibrational energy are obtained by diagonalizing, Hf , the Hamiltonian matrix for the
vibrational subsystem. Hff is evaluated in a vibrational basis set. Each basis function 
is the product of a harmonic oscillator wavefunction for each molecule, with one 
molecule in its first excited state and the remaining molecules in their vibrational 
ground state. The slow coordinate dependent vibrational states for the cluster are 
obtainedby diagonalizing the NxN Hf matrix at each point in every solvent trajectory
for an N molecule cluster. Thus, these calculations are performed in a fast variable 
state representation that is adiabatic with regard to the slow coordinates, but which 
is diabatic in the sense that the vibrational basis states would be stationary states of 
the fast variable subsystem if the off-diagonal elements of Hf are ignored. The
interactions between the molecules result in slight energy differences between the 
different cluster vibrational states, which gives rise to phase differences between 
trajectories with the cluster in different vibrational states. A change in the cluster 
vibrational state is allowed for each small time step in the calculation. To simplify 
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the calculations, we ignore the momentum change for the slow variable trajectory 
upon changes in vibrational states. Previous calculations have suggested that this is 
a reasonable approximation for resonant transfer calculations.98 Complete details of 
the calculations can be found elsewhere.97

Results for the time dependent probability that the vibrational quantum remains 
on the same molecule for a 20 molecule cluster are shown in Figure 2.97 There is an 
early time nonlinear region in the probability, after which the decay in the probability 
is linear. The rate constant for the transition can be obtained from the slope of the 

linear region. When performing these resonant transfer calculations, we also 
evaluated the average of the cosine of the phase, which corresponds to the real part 
of the exp(iϕ/h- ) in Eq. (15), and Cij(t) = <Hij(0)Hij(t)>/<Hij(0)2>.  Cij(t) is the 
normalized average of the two diabatic coupling factors Hij (evaluated at the two 
hopping times), which would appear in a second order expression for the transition
probability in place of the ξif factors. These calculations show that <cosϕ>decays
significantly more slowly than Cij(t) in these clusters.97 This indicates that the 

Figure 2 Probability that the quantum of vibrational excitation is on the same molecule at
time t that it was on at time zero for a cluster of 20 Br2 molecules. Time is in picoseconds. 
The two solid curves are results from two different runs, with the difference rejecting the 
statistical uncertainly in the calculations. The dotted straight line is drawn to indicate the 
region of linear time dependence. 
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changes in the coupling strength play a crucial role in causing the system to cross 
over from the nonlinear early time behavior to the linear rate constant behavior 
regime in this quasidegenerate quantum transition. This result is in contrast to what 
is found in case of population relaxation between vibrational states with relatively 
large energy differences, where the loss of phase coherence results in this crossover. 
In the nonresonant case, treating the coupling strength as a constant in the evaluation 
of the t integration in Eqs. (13) or (15) does not seem to introduce significant errors 
in the calculations, as can be seen in Figure 1. 

IV. SUMMARY 

This chapter has discussed a surface hopping procedure for the semiclassical 
evaluation of quantum transitions in condensed phase systems. This semiclassical 
approach has been found to provide highly accurate results for quantum transitions, 
when employed for the propagation of the time dependent wavefunction for model 
problems.48 This surface hopping propagator has also been converted from the Van-
Vleck form, which requires the solution of a boundary value problem for the required 
hopping trajectories, to the HK propagator73–75 form, which is an IVR and does not 
involve the solution of a boundary value problem. Surface hopping expressions for 
the propagation of the system density have also been presented. During the 
discussion of the density propagation in Section II.C, it is argued that only short time 
hopping trajectories should be needed for an accurate calculation of transition 
probabilities for most problems of interest. This is a very important point, since it 
allows for the implementation of short time approximations for the propagation. The 
transition probability expression simplifies greatly within these short time 
approximations. In particular, the multidimensional semiclassical prefactor is 
replaced with its one dimensional equivalent in this case, making the implementation 
of method numerically tractable for large dimensional condensed phase systems. 

The results presented from vibrational relaxation calculations87 88 97–102 show that 
the method is numerically very feasible and that the short time approximations are 
well justified as long as the energy difference between the initial and final quantum 
states is not too small. It is also found that the crossover from the early time 
quantum regime to the rate constant regime can be due to either phase decoherence 
or due to the loss of correlation in the coupling between the states, or to a 
combination of these factors. The methodology described in Section II.C has been 
formulated to account for both of these mechanisms. 
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Chapter 7 

MECHANISTIC STUDIES OF SOLVATION DYNAMICS IN 
LIQUIDS

Branka M. Ladanyi 
Department of Chemistry 
Colorado State University 
Fort Collins, CO 80523, USA 

Abstract This chapter deals with several aspects of theory and computer simulation 
of solvation dynamics (SD), the solvent response to a change in solute-
solvent interactions brought about by a solute electronic transition. The 
chapter starts with an overview of recent progress in SD research and with 
the basic assumptions that are used as a starting point in most SD theories 
and simulations. Instantaneous normal mode and time-domain methods of 
analysis of the solvation response applicable within the linear response 
approximation are then presented. Their use in uncovering several aspects 
of the molecular mechanism of SD, including the relative contributions of 
different molecular degrees of freedom, the collective nature of the re-
sponse, the dependence of the response on the range and symmetry of the 
perturbation in solute-solvent interactions and the resemblance between 
SD and other experimentally-accessible solvent dynamics, is illustrated. It 
is shown how the results of this analysis can be used to develop approxi-
mations to SD in terms of single-solvent-molecule and pure solvent dy-
namics. Several causes of breakdown of the linear response approxima-
tion, relevant to SD in real systems, are discussed. Analysis of molecular
dynamics simulation data on SD in benzene-acetonitrile mixtures is used 
to illustrate how to uncover the molecular mechanisms leading to nonlin-
ear response and to show that significant nonlinearities can arise even for 
modest changes in the solute dipole. 

I. INTRODUCTION 
The central question in liquid-phase chemistry is: How do solvents affect the 

rate, mechanism and outcome of chemical reactions? Understanding solvation 
dynamics (SD), i.e., the rate of solvent reorganization in response to a perturba-
tion in solute-solvent interactions, is an essential step in answering this central 
question. SD is most often measured by monitoring the time-evolution in the 
Stokes shift in the fluorescence of a probe molecule. In this experiment, the sol-
ute-solvent interactions are perturbed by solute electronic excitation, S0 → S1 ,
which occurs essentially instantaneously on the time scale relevant to nuclear 
motions. Large solvatochromic shifts are found whenever the S0 → S1 electronic
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transition causes a large change in solute-solvent electrostatic interactions, as is 
the case for chromophores that undergo a large change in their dipole moments 
upon electronic excitation in highly polar solvents.1 Thus SD has so far been 
most useful in accounting for the dynamic solvent effects in charge-transfer reac-
tions.2–8 However, SD has also been observed in solvents lacking permanent di-
poles and for solutes in which the S0 → S1 transition does not create a large 
change in the chromophore dipole moment.9–11 For such systems, perturbations 
in nonelectrostatic solute-solvent interactions can play an important role in SD.12

Theory and MD simulations have been applied to SD in apolar systems13–15 and
in systems in which electrostatic interactions contribute, even though the solvent 
has no permanent dipole.16–19

Although experimental data on solvation dynamics started to become avail-
able in the 1970’s, much of the research activity aimed towards theoretical and 
computational modelling of this phenomenon arose in response to more recent 
experimental studies which have made it possible to detect SD on the subpico-
second time scale. Ultrafast spectroscopic techniques can access most of the dy-
namic solvation response in common small-molecule solvents such as water, ace-
tonitrile, and lower alcohols. Since modelling SD in such solvents is practical 
using molecular dynamics (MD) computer simulation, a number of simulation 
studies of SD have been carried out. As a result of this, several key aspects of 
SD in liquids were uncovered and a great deal of information on the underlying 
molecular mechanisms has become available. This work stimulated the devel-
opment of new theoretical models of SD that go beyond simple continuum di-
electric theory to account for nondiffusive20–22 and translational dynamics,23,24

intermolecular structure,23–29 and the polyatomic nature of the chromophores.30–32

It also spurred further experimental developments such as those leading to the 
detection of the inertial component of the solvation response,33–36 whose impor-
tance had previously been discovered via MD simulation.37–43 As a result of this 
combination of experimental, computational and theoretical developments, much 
progress has been made towards constructing a molecular picture of SD in liq-
uids.

At this stage, very good agreement between experimental and computer simu-
lation results exists for a number of solute-solvent systems,34,44–47 and improve-
ments in the theoretical description of SD as well as in experimental methods 
continue to be made. Several review articles have described recent progress in 
this field.23,33,48–50 This chapter will contain my perspective on two aspects of the 
theory and simulation of SD to which my coworkers and I have contributed. One 
aspect is the design and implementaton of theoretical and simulation methods 
aimed at uncovering the molecular mechanisms contributing to SD. The goal of 
this work has been to answer questions such as: What are the relative contribu-
tions of molecular rotational and translational dynamics to SD? How collective 
is the solvent response? How does SD depend on the range and symmetry of the 
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perturbation in solute-solvent interactions? To what extent ts SD predictable 
from pure solvent dynamics? The other aspect that we have investigates is the 
range of validity of the linear response approximation (LRA) in describing SD. 
This approximation, which relates the nonequilibrium response of a perturbed 
system to equilibrium fluctuations in the unperturbed system is often invoked in 
the theoretical description of spectroscopically-observable dynamics in liquids.51

In the case of SD, where the perturbation arises not from a spatially-uniform ex-
ternal field, but from a change in solvent interactions with a dissolved chromo-
phore, the LRA can break down under experimentally-relevant conditions which 
arise whenever the solute-induced perturbation leads to a large change in the lo-
cal solvent environment. This can happen when the solute electronic excitation 
leads to creation and destruction of solute-solvent hydrogen bonds,40,52–56

changes in the composition of the first solvation shell in mixed solvent,46,57,58

and in other situations.59,60 Several important causes of the LRA breakdown will 
be discussed and our work on SD in mixtures61 used to demonstrate how the 
sources of nonlinearity can be identified. 

The rest of this chapter is organized as follows: In the next section I describe 
the basics of the theoretical description of SD, including the approximations that 
are often used to simplify its representation. Sec. III will deal with the analysis 
of the molecular origin of SD under the conditions when the LRA is valid. In 
Sec. IV, the breakdown of the LRA is discussed and its causes analyzed. The 
chapter will be concluded in Sec. V. 

II. THE BASICS OF SOLVATION DYNAMICS 
In a typical SD experiment, a chromophore (usually a large fused-ring mole-

cule such as coumarin 153) is electronically excited and its fluorescence spec-
trum recorded at a set of time intervals after excitation. As the time progresses, 
the spectrum shifts towards lower frequencies, its shape changes slightly, and its 
intensity decreases due to the finite fluorescence lifetime.49 Good SD chromo-
phores are relatively rigid, so most of the changes in the fluorescence spectrum 
can be ascribed to changes in the solvent environment rather than changes in the 
molecular geometry. Furthermore, their fluorescence lifetime has to be long 
compared to the solvation time scale. In supercooled liquids and glasses, the 
solvation time scale can become quite long and one then employs phosphores-
cence rather than fluorescence spectroscopy to monitor it.62,63 SD in such sys-
tems is beyond the scope of this chapter. 

Since the change in the shape of the fluorescence spectrum is typically small, 
SD experiments are usually quantified just in terms of the shift of the band 
maximum.49 The normalized SD response is given by 

(1)



210 B. M. Ladanyi

where vmax(t) is the frequency of the band maximum at time t. The chromo-
phore is electronically excited at t = 0 and t = ∞ corresponds to a time long
enough to reach the steady-state solvatochromic shift.

The goal of theory and computer simulation is to predict S(t) and relate it to
solvent and solute properties. In order to accomplish this, it is necessary to de-
termine how the presence of the solvent affects the S0 → S1 electronic transition
energy. The usual assumption is that the chromophore undergoes a Franck-
Condon transition, i.e., that the transition occurs essentially instantaneously on 
the time scale of nuclear motions. The time-evolution of the fluorescence Stokes 
shift is then due the solvent effects on the vertical energy gap between the S0 and
S1 solute states. In most models for SD, the time-evolution of the solute elec-
tronic structure in response to the changes in solvent environment is not taken
into account and one focuses on the portion DE of the energy gap due to nuclear
coordinates.

where V0  and V1  are internuclear potentials for the S0 and S1 solute states. 
In order to express S(t) in terms of DE , one relates it to vmax(t) by 

(2)

(3 ) 
where vel is the electronic transition frequency for the isolated solute and the 
overbar denotes an average over different microscopic solvent environments cor-
responding to the macroscopic experimental conditions: the solvent in equilib-
rium with the ground-state chromophore, with the perturbation corresponding to
V0  →V1  turnedonat t= 0 .

Eq. (1) can now be expressed as 

(4)

In this form it is convenient for computational and theoretical modelling. 

the solute-solvent potential 
In general, DE includes changes in the solute intramolecular potential and in 

(5)

However, the chromophores used in SD experiments undergo small changes 
in the solute intramolecular potential. Furthermore, since they are large polya-
tomics with many intramolecular vibrational modes, vibrational energy relaxation 
is expected to be very rapid. Thus, DE @ ∆Einter. In all theories and in most
simulations of SD, with a few exceptions,39,41,64 the intramolecular contribution 
to DE is neglected. 

Fig. 1 represents schematically the usual physical interpretation of polar SD: 
The solute undergoes vertical electronic excitation and the dynamic fluorescence 
Stokes shift arises from the reorganization of the solvent molecules. In the case 
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of common small-molecule solvents, the main reorganization mechanisms are 
reorientation of solvent dipoles and translational motions giving rise to changes 
in the local density. 

Figure 1. A schematic representation of solvation dynamics in response to electronic 
excitation that changes the charge distribution of a dissolved chromophore.

In order to construct a model for DE , one has to specify how the intermo-
lecular potential has changed as a result of the solute S0 → S1 electronic transi-
tion. A few MD studies of SD in polarizable solute-solvent systems have been 
carried out.45,65,66 In most cases, however, it is assumed that the intermolecular 
potential is pairwise-additive. DE is then represented as 

(6)

where D w0j is the change in the potential between the chromophore (molecule 0) 
and the jth solvent molecule. 

In the case of polar SD, the main change in solute properties is in its charge 
distribution. If the charge distributions of the solute and solvent molecules are 
represented as sets of partial charges, as is usually done in computer simulation
studies of SD, D w0j is a sum of Coulombic interactions 

(7)

where Dqa is the change in the partial charge of solute site a arising from the S0 

→ S1 electronic transition, qβ is the partial charge on the solvent site b and
r0α,jβ is the distance between the solute site a and site b on the jth solvent 
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molecule. In theoretical treatments of polar SD, a simplified representation of 
∆w0j in terms of interactions of the lowest-order electrical multipoles is often

A frequently-used approximation in modeling SD and other dynamical 
processes in liquids is that of linear response: 51 When applied to SD it 
corresponds to assuming that nonequilibrium response of the system to the 
perturbation DE turned on at t = 0 can be approximated in terms of equilibrium
fluctuations of DE in the absence of the perturbation, i.e., for the system con-
taining the solvent and the ground-state (subscript 0) chromophore: 

used.25,26,61,68

where

(8)

(9)

is the time correlation function (TCF) of δ∆E = δ∆E0 = ∆E – 〈∆E〉0 , with the 
equilibrium ensemble average 〈…〉 evaluated in the presence of the ground state 
chromophore.

The validity of the LRA implies not only that Eq. (8) holds, but also that the 
solvation TCFs for the ground and excited (subscript 1) state chromophores are
approximately equal to each other 

(10)

How well the LRA describes SD depends both on the type of perturbation in in-
termolecular interactions and on the strength and range of interactions within the 
solvent. Its breakdown has been observed in simulation studies of reasonably 
realistic solute-solvent systems, so it has to be used with caution. When the LRA 
valid, it can be very useful in analyzing the SD mechanism, given that much 
more is known about the properties of TCFs51,69 than about nonlinear response 
functions.

Acetonitrile, a highly polar nonprotic solvent, seems to be the best real-life
example of a system for which the LRA holds for a wide range of DE 's. Fig. 2 
depicts a comparison of the nonlinear and linear responses for SD for the C153 
chromophore in room-temperature liquids acetonitrile and CO2.

61 In the case of 
the acetonitrile solvent, S(t) is in excellent agreement with both C0(t) and C1(t) .
(The comparison with C0(t) using the same model parameters was reported pre-
viously by Kumar and Maroncelli.45) A similar level of agreement between S(t)
and its LRA counterparts is found for several other model solutes and types elec-
trostatic perturbation in this solvent.42,45 The LRA is not quite as good for SD in 
C0(t) where S(t) agrees well with C0(t) at short times and with the more slowly 
decaying C1 (t) at longer times.
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Figure 2. MD simulation results for SD in response to electronic excitation of C153 in 
room-temperature acetonitrile (left panel) and CO2 liquids. The solvent models and
thermodynamic states are as in Ref. 19 and the solute model parameters are from Ref 45.
Nonequilibrium solvent response, S(t), and linear response approximations to it for the
solute in the ground, C0(t), and excited, C1 (t), electronic states are shown.

III. SOLVATION MECHANISMS WITHIN THE LINEAR 
RESPONSE APPROXIMATION 

Within this section, it will be assumed that the LRA holds in the forms of 
both Eqs. (8) and (10). Thus no distinction will be made between C0(t) and 
C1 (t) and the subscript denoting the solute electronic state will be dropped. The
dynamical variable DE that describes the solvation response is collective, de-
pendent on the relative distances and orientations of the solute and of all N sol-
vent molecules in the system. In order to unravel how different types of dynam-
ics contribute to the time correlation of a collective variable such as dDE , it is
useful to introduce the corresponding velocity time correlation, which in this case 
is the 'solvation velocity' TCF,70–72

(1 1) 

where the dot overscript denotes a time derivative. G(t) is related to the solvation
TCF C(t) by

(12)

The above equation shows that C(t) is governed by static correlations contained
in 〈(δ∆E)2〉 and dynamical correlations contained in G(t). I will discuss here the 
roles of both types of correlations, starting with the dynamical ones. 

Analysis of G(t) provides insight into the solvent motions that are most im-
portant in SD and also provides a basis for constructing approximations to C(t) in
terms of simplified models of solvent dynamics. The two approaches that have 
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been used to carry out this analysis are the instantaneous normal mode (INM) 
theory of the short-time dynamics in liquids and the Steele theory of collective 
TCFS.73 In the INM theory, one exploits the relation between G(t) and the solva-
tion ‘influence’ spectrum, psolv(ω) , 70 focusing on the decomposition of the latter 
into subspectra arising from different molecular processes. 16,71,74 In the Steele
theory, the starting point is the decomposition of G(t) itself according to contri-
butions of velocities of different molecules and degrees of freedom. I will start
with a brief overview of the INM approach to short-time SD, given that this ap-
proach has been discussed in recent review articles,50,74 and will then cover in

greater detail the application of Steele theory to SD.17–19,72

A. INM Solvation Influence Spectrum 

INMs are obtained by diagonalizing the Hessian matrix generated by expand-
ing the system potential energy to quadratic order in mass-weighted coordinates. 
74,75 Given that the expansion is carried out at a set of configurations representa-
tive of the liquid state, the system is not likely to be at a local minimum and some
of the mode eigenvalues are negative, corresponding to imaginary frequencies.
Because of this, a straightforward application of the INM approach is applicable
only to short-time dynamics,70,74,76,77 although the properties of the imaginary 
mode density of states and eigenvectors can be used to approximately model 
long-time diffusive relaxation.75,78

In the linearly-coupled version of the INM theory, which corresponds to the
expansion of the dynamical variable of interest to linear order in INMs,74 G(t) is
related by Fourier transformation to the solvation influence spectrum, 
psolv (ω) 70,71

(13)

The above equation is exact at short times and in practice provides a good ap-
proximation to most of the nondiffusive portion of C(t) for electrostatic SD in of
highly polar liquids such as acetonitrile and water.71,79 The spectrum itself is 
given by 

(14)

where qα is the coordinate, ωα the frequency, and cα = ∂∆E/∂qα the influence 
coefficient of mode a . The number of modes is equal the number of molecules 
times the number of active degrees of freedom per molecule. For example, for N
rigid linear molecules, the number of modes is 5N. psolv (ω) measures how much
the modes in a given frequency range influence SD. Because of the presence of 
the influence coefficients, cα , the INM spectrum of a given dynamical variable
can differ greatly from the INM density of states.16,71,74 In the case of SD, – cα is
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the component of the force along qα resulting from the change DE in the solute-
solvent interaction. 

Using projection operators constructed from mode eigenvectors, 16,71,74

psolv(ω) (or the influence spectrum for another dynamical variable of interest) 
can be decomposed into subspectra arising from a a variety of molecular proc-
esses. The projection operator is given by

and the influence spectrum 

(15)

where the prime indicates that the sum is restricted to an interesting subset of 
molecules (j) or degrees of freedom (µ). Uα,j is the jµth element of the eigenvec-
tor of mode a and superscript T denotes a transpose.

For example, a projection operator into center-of-mass translation restricts
to the molecular center-of-mass coordinates x, y, and z, and a projection operator
into rotation restricts it to molecular rotational coordinates. In the case of SD it is 
useful to construct projection operators measuring the influence of solvent mole-
cules according to their location relative to the solute by restricting j to, e.g., the
closest molecule. all the molecules within the first solvation shell, etc.. Once we 
have chosen a particular projection operator, Pαβ

(i) , we can find the projected por-
tion of the influence coefficient 

(16)

(17)

If two projections, (1) and (2), divide all active system degrees of freedom into 
two mutually exclusive categories, 

(18)

where superscripts (1), (2) and (cross) correspond, respectively, to the (1,1), (2,2)
and (1,2) + (2,1) projections. 

An early application of this type of analysis was to decompose ρsolv(ω) into
its rotational, translational and their cross-correlation subspectra.71 It was shown 
through this decomposition that electrostatic solvation spectra for dipole and 
charge perturbations are dominated by rotational dynamics.71,79 More generally, 
it was shown how the range and symmetry of DE and molecular properties such
as masses and moments of inertia are related to the relative contributions of rota-
tional and translational degrees of freedom to SD.16 INM analysis has also 
proved useful in comparing the molecular mechanisms contributing to short-time
dynamics observed in different experiments,15,18,72 such as SD, optical Kerr ef-
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fect (OKE), and vibrational energy relaxation. An example of this is shown in 
Fig. 3 which depicts a comparison of the electrostatic ρsolv(ω) and the polariza-
bility anisotropy influence spectrum ρpol (ω) , measured in OKE, of acetonitrile,
both decomposed into rotational, translational and cross-correlation subspectra.72

Actually, the figure depicts the normalized spectra, ,

A = solv, pol . The striking similarity in the spectra and their components is evi-
dent, justifying the use of OKE data to model SD in this liquid.80 It should be 
noted that the two experiments have very different dynamical origins in some 
liquids81 such as, for example, water, where SD is strongly dominated by rota-
tional dynamics,79 whereas OKE probes mainly translational motions due to the 
very small molecular polarizability anisotropy.82

Figure 3. Comparison of normalized INM influence spectra for SD (left panel) and OKE 
(right panel) in room-temperature acetonitrile . The SD spectrum is for a perturbation in 
the partial charges of a dipolar diatom in with Br2-like nonelectrostatic potential 
parameters. Both spectra are decomposed into rotational, translational and rot.-trans.
cross correlation components. The imagina ry-requency portions of the spectra are 
plotted along the negative real axis. The SD results are from Ref. 71 and the OKE results 
from Ref. 72.

The dependence of the SD mechanism on the form of DE can be investigated 
via the comparison of the corresponding influence spectra.16,18 This is illustrated 
in Fig. 4 where ρsolv (ω) for electrostatic dipolar-symmetry and Lennard-Jones
(LJ) DE 's are shown. In addition of the total solvation spectra, the subspectra 
corresponding to the solute and the solvent molecule that has the strongest influ-
ence on the solute as measured by the square of its influence coefficient cj 

(19)

where mjµ is the mass associated with coordinate µ of the jth molecule.
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As can be seen from the figure, these subspectra represent strikingly different 
portions of the total ρsolv(ω) in the two cases. Most of the LJ solvation spec-
trum, including all of its high-frequency portion, is due to the solute interaction 
with a single solvent molecule. By contrast, only a modest portion, amounting 
to about 22% when integrated over all frequencies, of the electrostatic ρsolv(ω)
can be ascribed to this most influential solvent molecule.18 These differences 
reflect the more collective, long-ranged nature of electrostatic interactions. In the 
LJ case, the high-frequency portion of ρsolv(ω) is due mainly to short-range re-
pulsion which is strongly dominated by the solvent molecule closest to the solute.
Given that the short-range LJ repulsion is quickly varying, the linear INM theory 
is less successful in approximating the corresponding short-time SD than it is for 
electrostatic or dispersion solvation. Higher order terms in the INM expansion 
are needed and an approximate way for including them to all orders has been
proposed, with very encouraging results.83

Figure 4. A comparison of SD influence spectra for a dipolar diatom in liquid
acetonitrile. The left panel depicts the spectrum corresponding to a change in the solute-
solvent LJ energy and the right panel to a change in electrostatic energy. The gray lines 
depict the subspectra due to the solute ant the solvent molecule with the largest influence 
coefficient. The results are from Ref 18.

B. Time-Domain Analysis of the Solvation Velocity TCF 

A considerable amount of mechanistic information is accessible through a di-
rect, time-domain, method first proposed by Steele73 as a general approach to 
analyzing and approximating collective TCFs. The approach has been applied to 
SD 17–19,72 and to other observable relaxation processes in liquids.72,84,85 It is 
based on the fact that the time derivative of the dynamical variable such as
DE that is a function of molecular coordinates can be written as 

(20)
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where ∆Fjµ= -∂∆E/ ∂rjµis the component of the change in the force on the co-
ordinate µ of molecule j and r

.
jµ is the corresponding velocity component.

Given that ∆Fjµ and r.jµ can be evaluated separately from MD simulation, it is 
possible to identify contributions to G(t) from different molecules and degrees of 
freedom. For example, in the case of rigid molecules DE

.
can be separated into

contributions from rotational and translational molecular motions, 
∆E

.
=∆E

.
trans+ ∆E

.
rot with

(21)

For linear and quasi-linear, such as a 3-site model for acetonitrile, molecules, 
only two angles instead of three listed above are needed to specify the molecular 
orientation. Eq. (21) gives 

(22)

Eq. (20) can also be used to identify the contributions of single-particle dy-
namics to G(t). They are obtained by constructing autocorrelations of

giving,

G(t) is a sum of single-molecule and pair velocity correlations,

(23)

(24)

(25)

We can determine the importance of dynamical pair correlations by compar-
ing G(t) with Gs(t) . Because velocities of different molecules and for different 
degrees of freedom are uncorrelated at t = 0,

(26)

The absence of rotational-translational cross-correlations is reflected in the INM
ρsolv(ω). According to (13) it leads to

which can be verified by visual inspection of Fig. 3. 
We can use Eq. (22) to investigate the relative contributions of rotation and 

translation to SD over the entire time scale relevant to G(t). This has been espe-
cially instructive in providing insights into the way that the contributions of these
modes of motion change with the range and symmetry of DE . This is illustrated
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in Fig. 5, in which G(t)'s for DE corresponding to charge (m = 0) and octopole
(m = 3) perturbations in a benzene-like solute dissolved in acetonitrile are pre-
sented. These results, taken from Ref. 19, show that rotational dynamics strongly 
dominates the solvent response in the case of charge creation, but that rotation
and translation are roughly equally important for the octopolar ∆E . Examina-
tion of the results for intermediate m's (dipolar and quadrupolar perturbations)
showed a steady increase in the relative importance of Gtrans (t) with increasing 
m. The same trend has been observed in a nondipolar solvent CO2. It is a reflec-
tion of the fact that, as the leading multipolar order of the perturbation in solute 
charge distribution increases, DE becomes a more quickly varying function of
the solute-solvent center-of-mass distances, enhancing the relative importance of 
the center-of-mass components of the forces DFjµ in Eq. (21).

Figure 5. Decomposition of the solvation velocity TCF into rotational, translational and
their cross-correlation components. The left panel results are for a perturbation that 
creates a charge in one of the carbon sites of a benzene-like solute in acetonitrile solvent.
The right panel is for DE corresponding to a creation of an octopole by turning on 
alternating charges on all the carbon sites of this solute.  These results are from Ref 19.

The relative importance of dynamical intermolecular correlations also varies 
with the range and symmetry of DE as well as with the solvent polarity. As one 
might expect, for Perturbations in the solute charge distribution, dynamical corre-
lations in a given solvent are stronger for lower m values which correspond to 
longer-ranged DE .17,19 They are weaker in nondipolar solvents lacking long-
ranged solvent-solvent electrostatic forces. 17,19 This is illustrated in Fig. 6, 
where G(t) and Gs(t) in acetonitrile and CO2 solvents are compared. Note that 
these solvent molecules are otherwise quite similar in terms of shape (if we con-
sider the CH3 group in CH3CN to be a single interaction site), mass, and moment
of inertia. Further analysis indicates that differences between G(t) and Gs(t) can 
be ascribed mainly to rotational correlations, i.e., to Gp

rot (t) arising from cou-
pling of solvent dipolar torques. 19
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Figure 6. Solvation velocity TCFs full line) and their single-molecule components
(dashed Iine) for C153 in acetonitrile (left panel) and CO2 (right panel) solvents. The
system paremeters are as in Fig. 2. 

C. The Role of Static Correlations in Solvation Dynamics and Approxima-
tions to C(t)

A surprising aspect of SD is how rapidly C(t) in highly polar solvents decays
relative to other relaxation processes such as reorientation of solvent dipoles.
This very rapid time scale cannot be ascribed to dynamical solvent-solvent corre-
lations, which, as illustrated in Fig. 6, are modest even for the longest ranged 
∆E . Thus the key to understanding the reasons for the rapid decay of C(t) is in
examining how solvent-solvent correlations contribute to it and to what extent 
their contributions can be accounted for in terms of static correlations measured
by 〈(δ∆E)2〉, Eq. (32).17,19 The initial curvature of C(t), which characterizes its 
short-time Gaussian-like behavior is often characterized in terms of the solvation
frequency ωsolv ,20,86

(27)

It is evident from the above equation and Eq. (26) that only static intermolecular 
correlations contribute to ωsolv and therefore to the short-time decay of C(t)

Identifying solvent-pair contributions to C(t) is straightforward for pairwise-
additive potentials such as the site-site Coulombic form of Eq. (7). For such po-
tentials,

(28)

(29)

where the single-solvent-molecule term is given by 
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and Csp(t) corresponds to the sum over pairs of solvent molecules j ≠ k. When
the solute molecule is stationary, a reasonable approximation in the case of 
chromophores much larger than the solvent molecules,

(30)

This implies that Csp(t) then has a vanishing initial curvature and that the initial
decay of C(t) measured by ωsolv is due to solely to single-solvent-molecule dy-
namics.

Figure 7. 
Csp(t) components for C153 in acetonitrile (left) and CO2 (right) liquids.
–Csp(t), the negative of thepair component, is shown.

The solvation TCF and its single-solvent-molecule, Css(t) and solvent-pair
Note that 

Fig. 7 displays the behavior of Css(t) and Csp(t) calculated for the ground-
state C153 in acetonitrile and CO2 solvents. As can be seen from this figure, in
both solvents Csp(t) is negative so it partially cancels the positive Css(t). How-
ever, there is a large difference in the relative importance of solvent-pair correla-
tions in polar and nondipolar solvents. In acetonitrile, Css(t) and Csp(t) have
similar magnitudes and the rapid decay of C(t) is a consequence of near-
cancellation of their slowly decaying portions. In CO2, Css (t) clearly dominates
over the much smaller Csp(t) and the decay rate of C(t) does not differ greatly
from the decay rate of Css(t) .

Applying this analysis to electrostatic perturbations in the solute charge dis-
tribution corresponding to different orders in the leading multipole indicates that
the extent of cancellation decreases with increasing m, but in acetonitrile it re-
mains large, even for m = 3.19

A convenient measure of the the relative importance static correlations is the 
initial value of Css (t) :
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(31)

a number considerably larger than one for typical electrostatic perturbations in 
highly polar solvents, as can be seen from Fig. 7 as well as from the SD examples 
considered in Refs. 17 and 19. For C153 in acetonitrile and CO2 the αs values are
8.96 and 1.26 respectively.

The fact that the rapid decay of C(t) in highly polar solvents is due mainly to
static solvent-solvent correlations can be used to develop approximations to SD

based on the neglect of dynamical correlations 19.  Applying the Steele theory,73

the first step in this development is to replace the exact Eq. (32) for C(t) with the
first term in its cumulant expansion87

similarly,

(32)

(33)

Figure 8. The solvation TCF, C(t), its normalized single-solvent molecule component,
Css(t)/αs ,and the approximate solvation TCF obtained by raising Css(t)/αs to the power
αs = Css (0). The results for C153 in acetonitrile and CO2 are shown in the left and right
panels respectively.

Approximating now G(τ) @ Gs(τ) in Eq. (32) leads to the following approximate
form of C(t):

(34)
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Thus the collective solvent response is related to the single solvent molecule dy-
namic response and αs , which measures the strength of static solvent-solvent
correlations contributing to SD. This approximation is illustrated in Fig. 8 for
C153 in acetonitrile and CO2. It works well in both systems, but its success is
more remarkable in the case of acetonitrile in view of the large value of α s for 
this case. However, the approximation of Eq. (34) is not perfect. A large αs

value usually indicates that dynamical correlations are not completely negligible.
This is certainly true for C153 in acetonitrile, as can be seen from Fig. 6. These
correlations give rise to longer-time librational features in C(t) that cannot be
reproduced by this approximation. 

An important goal of SD theory has been to relate it to pure solvent dynamics. 
One way of doing this is to build on the approximations described above, using 
the general approach proposed by Steele.73 It focuses on Gs (t) , which, using Eq.
(23), can be written as 

(35)

and makes the following approximations: The forces DFjµ and the correspond-
ing velocities r.jµ are uncorrelated, there are no correlations between velocities
for different degrees of freedom and the forces are slowly varying relative to the 
velocities, so their time-evolution can be neglected. This leads to 

(36)

If we further assume that the solute motion can be neglected and that the solvent 
velocity autocorrelations are independent of the presence of the solute, we get in 
the case of (quasi)linear solvent molecules 

(37)

where y trans (t) and y rot (t) are the normalized translational and rotational veloc-
ity autocorrelations for the pure solvent. This further approximation can be tested 
by comparing the time-evolution of Gs

rot (t)  and Gs
trans (t) to y trans (t) and 

yrot(t) . This comparison is illustrated in Fig. 9, again for C153 in acetonitrile
and CO2. We see that it is very good in the former, especially for the dominant 
rotational component (Grot(0) /G(0) = 0.852), but poor in the latter case for 
which the assumption of the separation of time scales between the time-evolution
of forces and velocities is clearly incorrect. More extensive investigations for 
different forms of electrostatic DE showed that Eq. (37) is a good approxima-
tion to Gs(t) in room-temperature acetonitrile, but not in CO2.19 However, even
for acetonitrile, this approximation does not hold in the case of LJ solvation, 
given the much faster variation of the corresponding forces.18
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Figure 9. Normalized rotational (top) and translational (bottom) components of the 
solvation velocity TCFs for C153 in acetonitrile (left) and CO2 (right). Also shown are
the pure solvent rotational and translational velocity autocorrelations, yrot (t) and ytrans (t).

Generally, Eq. (37) can be expected to be reasonable for electrostatic SD in 
highly polar liquids. Support for this expectation is provided by the work of 
Maroncelli et al.21 who related C(t) to the time correlation of a unit vector along
the dipole moment of a solvent molecule and found that the resulting TCF pre-
dicted quite well the behavior of C(t) for a charge creation perturbation in polar
liquids.

The Maroncelli et al.21 result can easily be obtained from Eqs. (34) and (37). 
It corresponds to neglecting the center-of-mass translational velocity component 
of Eq. (37), which is reasonable for low-order multipolar perturbations (see Fig.
4) in the solute charge distribution,

(38)

and then using a first order cumulant approximation to the single-molecule orien-
tational TCF88

(39)
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where Pl is the Legendre polynomial of order j a unit vector along the bond
of the jth solvent molecule and I is its moment of inertia. Eq. (38) is simply the 
cumulant form of Eq. (39) raised to a power al

(40)

This form of the equation is valid for linear molecules and symmetric rotors (for
which I corresponds to reorientation of the symmetry axis) and can be used for 
nondipolar solvents. A somewhat more complicated expression would hold in 
the absence of axial symmetry. 21 Maroncelli et al. 21 estimated the value α1 for
DE corresponding to a charge shift of a spherical ion in a continuum model of a 
polar solvent of dielectric constant e and showed that it increases with increasing
solvent polarity and works well when α1 is significantly larger than one. 

Before leaving SD applications of the LRA, it is worth stressing that a differ-
ent approach has often been taken in relating the electrostatic C(t) to pure solvent
dynamics. In this approach, the connection is made to solvent dielectric relaxa-
tion. Early theories made the connection through the longitudinal dielectric re-
laxation time,49 while more recent ones use as input the dielectric dispersion

e (ω ) 20,25,26,32 or its generalization to finite wavevectors,  e(k, ω) .23,24,29,68,89

Only the former quantity is experimentally accessible, but the longitudinal com-
ponent of the latter depends on the TCF of solvent charge density fluctuations, 
Y qq(k,t) ,90 a quantity that one would naturally associate with the solvent re-
sponse to electrostatic perturbations. Indeed, the k-dependence of Yqq (k, t) re-
sembles closely the leading multipolar order (m) in the solute charge distribution
perturbation dependence of C(t),45,91–97 , even for nondipolar liquids, 97 so further 
work on the development of SD theories which incorporate Yqq (k, t) as input
seems a promising avenue of research. 

IV. NONLINEAR SOLVATION RESPONSE 
Given that perturbations in the solute properties that give rise to SD are

highly localized, their effect on the nearby solvent molecules can be large and
nonlinearities can occur for a physically realistic range of DE 's. Although large
enough perturbations will always lead to nonlinear response, the interesting cases
correspond to the types and sizes of perturbation that can actually occur in SD 
experiments. For these, it is not always the overall size of DE(0)–∆E(∞), the
steady-state solvatochromic shift, that determines the extent of nonlinearity. For
example, for C153 the shift is about three times larger in acetonitrile than in
CO2,98 but the response in CO2 is less linear, as Fig. 2 illustrates. The reason for
this is that a larger fraction of the shift in CO2 comes from solute interactions
with molecules in the first solvation shell,17 which is strongly perturbed by the 
chromophore electronic transition. The relative strength of the Perturbation of 
this shell is also larger in CO2, given that the cohesive forces between solvent
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molecules are weaker. Thus, in nonprotic solvents, one would expect stronger 
deviations from linear response when the change in solute-solvent interactions is 
large relative to attractive forces among solvent molecules. Several general ob-
sewations on the situations that lead to large deviations from LRA can be stated: 
• There is a significant change in the quickly-varying portion of the solute-

solvent interaction. Examples of this are changes in the solute size that occur 
in electron solvation59,99,100 and changes in the solute molecular repulsive 
core size and shape that can occur in solvation that has a significant nonelec-
trostatic component, as has recently been demonstrated by Aherne et al. in 

their investigations of SD in water.60

Specific solute-solvent interactions, such as hydrogen bonds, undergo a sig-
nificant change in the course of SD. This was first observed by Fonseca and 
Ladanyi in the case of SD in methanol40,53 and has since then been seen in a 
number of other simulation studies.52,54–56

The local density of solvent molecules changes substantially. This has been 
observed for SD in supercritical water79 and can be expected to be an impor-
tant mechanism of nonlinear response in other supercritical solvents at tem-
peratures close to critical and at moderate densities. 

• Local concentration of solvent molecules changes substantially. This can
occur in liquid mixtures when the solute ground and excited states are prefer-
entially solvated by different solvent components. It has been observed in 
simulations of SD in water-dimethyl sulfoxide (DMSO)57,58, water-
methanol58 and n-hexane-methanol mixtures,46 as well as in our work in pro-
gress on SD in benzene-acetonitrile mixtures.101

In what follows, I will use our preliminary results on SD in benzene-
acetonitrile mixtures101 to illustrate how one can determine the source of devia-
tions from the LRA by analyzing MD simulation data. In this case we have
simulated the solvation response following dipole creation in a benzene-like sol-
ute. Specifically, the solute in its ground state is one of the benzene molecules in 
the mixture. In the excited state, the partial charges on two C atoms at para posi-
tions relative to each other are changed by e/2 and -e/2, respectively. The excited
state solute thus acquires a dipole of 6.7 D, somewhat smaller than the dipole 
change in C153, which is estimated at 9 D.45 In benzene-rich mixtures, but not in
pure benzene, we find that S(t) exhibits a slowly-decaying component, which
does not contribute to C0(t) , but does appear in C1(t) . Fig. 10 illustrates this for
the mixture with the acetonitrile mole fraction xac = 0.25 . The right panel of the
figure depicts the decomposition of S(t) into contributions from the two solvent
components:

•

•

(41)
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Figure 10. Solvation dynamics in response to a change ofpartial charges in C1 and C4
sites of a benzene-like solute by e/2 and -e/2, creating a 6.9 D dipole, in a room-
temperature benzene-acetonitrile mixture with the acetonitrile mole fraction, xac = 0 .25
The left panel depicts the comparison of S(t) and its LRA counterparts. The right panel
depicts a decomposition of S(t) into the responses from the two solvent components.

We see that after a rapid initial decay the components evolve slowly in time and 
that Sbe(t) falls to a negative value and stays negative over much of the interval
depicted. Study of the time evolution of the solvent structure around the solute 
can help explain the behavior of S(t) and of its components. We have examined
solute-solvent pair correlations involving the solute C sites that change their par-
tial charges. Fig. 11 shows some of these results, specifically the pair correla-
tions g+N(r) and g+C (r) for the solute site that increases its charge by e/2 with 
an acetonitrile N site and a benzene C site, respectively. 

Since this solute site is negatively charged in the ground state, neither g+N (r)
nor g+C (r) initially have peaks at the site contact distance. After the positive 
charge is turned on, both pair correlations develop peaks at contact. In the case 
of the acetonitrile N site, the peak grows steadily, resulting eventually in a large 
concentration enhancement of this solvent component in the vicinity of the sol-
ute. The time-evolution of g+C (r) is more complicated: Due to site-site elec-
trostatic attraction, the first peak in g+C(r) grows during about the first 6 ps and
then slowly decreases as acetonitrile from more distant solvation shells moves in 
to displace benzene. Thus, during much of the time interval shown in Fig. 11,
the solute is 'oversolvated' by benzene. This is reflected in the negative Sbe(t)
and in the increase in benzene concentration in the first solvation shell, followed
by a slow decrease. The time scale of concentration changes is related to the rate 
of translational diffusion. It becomes an important solvation mechanism when 
the solvent component that preferentially solvates the excited state solute is pre-
sent at sufficiently low concentration that achieving the equilibrium solvation 
structure requires bringing distant solvent molecules into the solute vicinity. 

In addition to the sources of nonlinearity in SD already discussed, it appears 
that solvent complexity can also lead to nonlinear response. Because of the diffi-
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culties in carrying out MD simulations of liquids that relax over several time 
scales, few investigations of this type have been carried out. In their simulations 
of SD in polyethers, Olender and Nitzan102 found nonlinear response to a charge 
jump in a monatomic solute. The nonlinearities appeared to be related in part to 
the fact that inertial solvent response plays a smaller role in these liquids than in 
simpler ones such as acetonitrile and to the related fact that torsional degrees of 
freedom, absent from simple solvents, participate in SD. Such connections be-
tween solvent complexity and nonlinearity in its response might have important 
implications for reaction dynamics in biological systems. 

Figure 11. The time-evolution of the solvation structure around the benzene-like solute 
site whose charge increases by e/2. The left panel depicts the pair correlation of this site 
with the N site of acetonitrile and the right panel the pair correlation with the C site of 
benzene. The equilibrium pair correlations for the ground (t = 0) arid excited (t = ∞) solute 
states are also shown. The curves depicting the pair correlations for t > 0 are vertically
offset from each other by 0.5.

V. SUMMARY AND CONCLUSIONS 
In this chapter I have presented the basics of SD and described several ap-

proaches that can be used to uncover the molecular mechanisms contributing to 
SD both within the LRA and when the response is nonlinear. Within the LRA, I 
discussed INM and time-domain methods for analyzing the solvation TCF and 
the related 'solvation velocity' time correlation, G(t). The methods were illus-
trated by showing how they can determine the relative contributions to SD from 
different molecules, types of molecular motion, and correlations among solvent 
molecules. I also discussed how they can be used relate SD to other observable 
dynamics in liquids and to explore the similarities and differences between SD in 
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polar and nondipolar liquids. An important result of this analysis is the finding 
that intermolecular correlations, especially static ones, play a key role in electro-
static SD in polar liquids and give rise to a much faster decay of C(t) than of its
single-solvent-molecule component. The initial inertial decay of the solvation
response and its overall time scale can be predicted quite well on the basis of an 
approximation which takes into account only static intermolecular correlations. 
Because electrostatic forces and torques in highly polar liquids are slowly vary-
ing relative to molecular velocities, SD in these systems can be further approxi-
mated in terms of pure solvent, mainly orientational, dynamics. Although the 
methods of analysis and approximation discussed here have so far been applied 
to SD in liquids of relatively simple rigid molecules, they can be extended to liq-
uids of molecules with torsional and vibrational degrees of freedom as well as to 
heterogeneous systems. Our work in progress103 includes the study of SD in one 
such system, the aqueous phase of reverse micelles, for which experiments indi-
cate significantly different solvent response than in bulk water104–106 and simula-
tions show reduced water mobility in the vicinity of the interface.107

I have also discussed several experimentally-relevant situations for which 
computer simulations have predicted a breakdown of the LRA and have illus-
trated how MD data can be analysed to determine the molecular mechanisms 
leading to nonlinear solvation response. The example was that of a mixture di-
lute in the component that preferentially solvates the excited state solute. In such
cases, even a modest change in solute dipole can lead to nonlinearities due to 
large changes in local solvent concentration.46,101 New experimental techniques 
which allow monitoring of the time-evolution of the stimulated emission36,108 in
addition to fluorescence should make it easier to directly observe this and other 
types of nonlinearities in solvation response.
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Abstract Heterogeneous chemical reactions at the surface of ice and other stratospheric
aerosols are now appreciated to play a critical role in atmospheric ozone 
depletion. A brief summary of our theoretical work on the reaction of chlorine
nitrate and hydrogen chloride on ice is given to highlight the characteristics 
of such heterogeneous mechanisms and to emphasize the special challenges 
involved in the realistic theoretical treatment of such reactions. 

I. INTRODUCTION 

The discovery of the Ozone Hole in the Antarctic stratosphere has led to 
the realization that previously unsuspected heterogeneous chemical reactions 
occuring on the surface of ice and other stratospheric cloud particles play a critical 
role in atmospheric ozone depletion — not only in the Antarctic stratosphere, 
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but also in the Arctic and elsewhere; some recent reviews are given in refs.1–3, 
which provide a detailed overview for the interested reader. 

In this contribution, we briefly recount some of our theoretical work addressed 
to providing a molecular level understanding of these reactions. We focus here 
on one central reaction, that of hydrochloric acid (HC1) and chlorine nitrate 
(ClONO2) to produce, in one chemical step, the products nitric acid (HNO3) and
molecular chlorine, on ice: 

R. Bianco and J. T. Hynes 

HCl + ClONO2 →ice Cl2 + HNO3 (1)

This is probably the key heterogeneous reaction for Antarctic stratospheric ozone 
depletion, and serves as a useful focus for the discussion of the theoretical 
challenges that must be addressed in dealing with fairly complex chemistry in a 
complex environment, challenges enlivened — as will be seen below — by the 
evident chemical involvement of the ice surface environment. 

The outline of the remainder of this contribution is as follows. In Sec. II., we 
describe our theoretical work on reaction (1), in the scenario4,5 that a hydronium 
ion (H3O

+) produced via the acid ionization of HC1 at the ice surface6 is directly 
involved in the reaction. We note there in passing some features in common 
with our work on the C1ON02 hydrolysis7,8 and nitrogen pentoxide (N2O5).5

Section III. is devoted to a discussion of reaction (1) in the scenario where that 
ion plays no such direct role. While definitive results are not given there, this 
reaction scenario serves as an especially instructive example of some of the 
difficulties associated with the theoretical treatment of heterogeneous reactions. 
Section IV. concludes with a brief discussion of other environmentally important 
heterogeneous reactions that await the onslaught of modern theoretical chemistry. 

In the following, we will focus only on the highlights of the topics discussed, 
including those of interest to the theoretically inclined; further details and dis-
cussion may be found in the original references.4–8

II. HCl + CIONO2 → Cl2 + HNO3 ON ICE

A complete high level electronic structure calculation of reaction (1) on an 
ice surface is currently impossible. Accordingly, in considering the appropriate 
strategy and which finite model cluster system to adopt to study the title reaction 
or other heterogeneous reactions — which are decidedly complex by traditional 
vacuum electronic structure calculation standards — it is important to exploit all 
available experimental information. 

Reaction (1) is known to proceed relatively rapidly on the surface of ice 
under acidic conditions,9–12 and one such acidic condition could be realized 
via ionic dissociation of HCl, i.e. a proton transfer from molecular HCl to a
coordinated water molecule to form a Cl–H3O+ contact ion pair (CIP) in the 
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presence of ClONO2. The presence of the CIP would be consistent with previous 
theoretical work6 supporting HC1 ionization at an ice surface13 and also with some 
experimental result9,14 indicating that hydrated protons would tend to remain 
near the surface of ice rather than transfer into the bulk. In our first study of 
this reaction,4 summarized below, we thus examined reaction (1) in the presence

of this CIP; an alternate possibility is discussed in Sec.III.. The GAMESS17

program was used for the quantum chemical calculations.

Figure 1 H2OH+·C1–·C1ONO2·(H2O)8 reactant complex

The size and arrangement of the reactants-water cluster selected for detailed 
calculations has to be informed by various considerations. Our initial strategy 
drew from our experience with the modelling of the C1ONO2 hydrolysis on ice,7

where the cyclic arrangement of a minimal (H2O)2.ClONO2.H2O model reaction 
system (MRS) was found necessary to comply with the structural requirements 
for the demonstrated18 nucleophilic attack, which was anticipated in ref.7 to 
involve a proton transfer. By analogy, and taking into account the dissociation of 
HC1, the H2OH+·Cl–·ClONO2·H2O cyclic MRS was the obvious choice. The 
stabilization of the CIP, however, required three extra water molecules hydrogen-
bonded to Cl– (two) and H3O+ (one). Exploratory structure optimizations on 
this H2OH+·C1–· ClONO2·(H2O)4 cluster revealed the migration of the waters 
solvating C1– on to the water solvating H3O+, thus indicating the need for further 
water molecules to help stabilize the structure of the reactant complex. The MRS 
was thus expanded to the H2OH+·Cl–·C1ONO2·(H2O)8, shown in Fig. 1, with 
the water network mimicking the local structure of the basal plane face of an ice 
crystal.4
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The geometry optimization of the H3O+·Cl–·ClONO2·(H2O)8 reactant com-
plex (RC) is the first stringent test of the adequacy of the selected model system,
since the CIP structure must result naturally (as it did) from the optimization 
of the neutral HCl·ClONO2·(H2O)9 complex. This is one reason why the role 
of key solvating waters must be foreseen. The cycle involving ClONO2, the 
Cl–H3O+ CIP and two other water molecules is highlighted in Fig.1. The entire 
RC is consistent with CIONO2 situated on an ice lattice in which HCl is ionized.6

The CIP is fully coordinated, as are all the hydrogens on the next water in the 
ring. CIONO2 is coordinated to C1– . The calculated character of the CIONO2

charge distribution argues very strongly against a view12,21 of CIONO2 on ice as 
ionized; this lack of ionization of the ClONO2 molecule is consistent not only 
with our previous work on the CIONO2 hydrolysis,7 but also with an extensive
variety of computational and experimental results.22

To calculate the reaction barrier, we first found the HF transition state of the 
reaction, and then verified that its derived reaction path connected the reactants 
to the products. The search for the transition state of this class of systems is 
rather delicate due to the multitude of hydrogen bonds present and the possible 
proton transfers involved, and is accomplished in several stages: i) starting from
the reactant complex optimized structure, the transition state region is accessed 
via a minimum energy path calculated along the nucleophilic attack coordinate 
by decreasing the Cl—Cl distance and optimizing the remaining internal coordi-
nates; ii) an unconstrained saddle point optimization is launched; iii) the intrinsic
reaction coordinate (IRC) path19 is calculated at the HF/3-21G* level, and iv)
subsequently the energies are re-calculated at the MP2/6-3 1 +g* level, without
reoptimizing the structures along the path. The last two steps iii and iv, corre-
sponding to the IRCMax method,20 are imposed by the considerable size of the 
model reaction system size and the expensive calculation of the IRC path. The 
critical assumption of the IRCMax method (verified for radical reactions20) is 
that the HF and MP2 structures along the reaction path coincide. 

The calculation of a MP2//HF reaction path for such a complex system involves 
a considerable effort, and one might be tempted to dispense with it and simply 
calculate the reaction barrier as the difference between the MP2 energies of 
the reactant complex and transition state at the HF-optimized corresponding 
structures. Such a procedure can, however, yield an incorrect reaction barrier 
estimate. The construction of the entire path is necessary not only to give a clear 
picture of the reaction mechanism, but also for an important technical reason: the 
MP2 minima (reactants and products) and maximum (transition state) can occur 
at different geometries than their HF counterparts and thus, without knowledge 
of the path, one could easily misassign the activation energy. 

The MP2//HF reaction path energy profile calculated with the procedures 
described above is shown in Fig.2. The barrier height is 6.4 kcal/mol (including 
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zero point energy correction).4 The details of the reaction mechanism are now 
reviewed.

Figure 2 
action path. Energy referred to reactant complex. 

Characteristics of the HC1·C1ONO2 ·(H2O)9 → C12+ NO3
– ·H3O

+·(H2O)8 re-

The analysis of the transition state (TS) region requires an understanding of 
the complex interplay among the variations in charge distribution and structure, 
and it was found advisable to follow these variations explicitly. In order to un-
derstand the TS characteristics, it proved to be most useful to discuss the reaction 
system evolution starting from the reactant complex. The initial portion of the 
reaction path is characterized by the weakening of the hydrogen bonds to C1– and
the concomitant strengthening of those to the nitrate group (cf. Fig.1), without 
appreciable change in the charge distribution of the C1– …C1δ+…ONOδ

2
– sub-

system. These solvation/desolvation features are consistent with those expected 
either for a proton transfer23 and/or an SN2 nucleophilic attack,24 and persist up 
to the transition state region and beyond. 

The proton transfer (PT) of H19 from O20 to O14 — shown in terms of the two 
OH distances involved in the portion of Fig.2 labelled “PT” — is the dominant
feature of the transition state, displayed in Fig.3. However, a view of the TS
solely in terms of proton transfer would be oversimplified. In fact, in addition
to the solvation aspects highlighted above, signatures of a nucleophilic attack
are very strong, typified by the charge shifting from the attacking chloride to the
leaving nitrate group — shown in the bottom panel of Fig.2 — and the associated
compression of the forming C12 bond and breaking of the C1– ONO2 bond, with
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the C1-C1 and C1–O distances involved labelled ‘‘SN2’’ in the middle panel of 
Fig. 2. 
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Figure 3 Transition state 

The coupling of PT and nucleophilic attack is stressed by the proximity of 
their initiation and completion in Fig.2. An electronic aspect of that coupling is 
the following: the occurrence of the proton transfer in the TS region influences
both the C1– nucleophile — by weakening its hydrogen bonds and thus making
its electrons available for attack — and the nitrate group —by further engaging
its electron density via H3O+-strengthened hydrogen bonds, thus weakening its 
nucleophilicity towards C1δ+.

In summary, these results portrayed an intermediate situation where the PT is
coupled to the SN2 geometry change and charge shifting features. It should now 
be apparent that a study limited to the RC and the TS and lacking a reaction path 
analysis would have missed most of the important mechanistic features discussed 
herein.

The formation of molecular C12 (polarized and coordinated to both the water 
lattice and the NO–

3 anion) and of the H3O+NO3 CIP characterize the post-TS
region together with further lattice adjustments to optimize the solvation of the 
CIP and to prepare for the release of the neutral C12.

Further examination of the mechanistic details of the C12 dissociation from 
ice was precluded by our inability to realistically render, within our selected 
model reaction system, the drastic structural rearrangements involved in the 
desorption of C12 from real ice. This last aspect is an instructive example of a 
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case where, even with a fairly large cluster system, the environmental response 
to a drastic change in electrostatic character, such as that associated with the 
production and desorption of the neutral C12 molecule, can pose difficulties. 
Furthermore, rearrangements can occur in a finite cluster system that would be 
precluded by the constraints present in an actual ice surface. A larger water lattice, 
sensibly constrained, is necessary to clarify these issues.25 Nonetheless, the 
exothermicity of the reaction could reasonably be estimated to be -11.4 kcal/mol4

by removing the C12 molecule and optimizing the structure of the remaining 
NO –

3 ·H3O+·(H2O)8 cluster starting from an educated structural guess. The 
results of ref.4 are certainly consistent with the observed “prompt” appearance 
of C12 on a time scale of ms at 180-200 K;11 tighter experimental bounds on the 
reaction rate are clearly of interest here. 

The modelling just described of the direct HC1 + C1ONO2 reaction on an 
ice lattice to produce molecular chlorine and ionized nitric acid portrayed a 
relatively facile coupled proton transfer/SN2 mechanism, evidently supported 
in subsequent calculations.26 These results also reinforced the idea of an ionic 
pathway involving ionized HC1,9–12,21 as opposed to molecular HC1. 

Given the key role of proton transfer, a quantum proton motion treatment6 is
required for a more accurate estimate of the activation energy. In that context, the 
investigation of H/D kinetic isotope effects would provide a direct probe of the 
present mechanism: the desorption energy for C12 is presumably low and it would 
not mask a quantum motion-influenced reaction barrier, still the rate-determining
step. This is different from the CION02 hydrolysis, where the HOC1 desorption 
energy far exceeds the reaction barrier and thus would mask any H/D kinetic
isotope effect.27

The calculated mechanism shares with a previous prediction of the C1ONO2

hydrolysis7 a crucial feature of proton transfer within a cyclic water network 
containing the reactants, such that the ice lattice is an active participant in the
reaction; this striking and characteristic feature would have been missed if the 
electronic degrees of freedom of the water chain molecules had not been in-
cluded/addressed. However, whereas in the HC1 + C1ONO2 reaction the PT 
strongly contributes to the desolvation of the attacking C1- and, at the same time, 
engages the electron density of NO–

3 by generating a CIP, in the C1ONO2 hydrol-
ysis the PT plays the single (key) role of generating a strong OH– nucleophile to 
attack C1δ+, without directly influencing C1ONO2’s charge distribution.

Finally, the idea of the coupling between nucleophilic attack and proton trans-
fer in the reactions just discussed provides an interpretive framework for another 
important atmospheric reaction, namely the hydrolysis of dinitrogen pentoxide 
N2O5, thought to play an important role in mid-latitude global ozone deple-
tion.28,29 Indeed a related mechanism was suggested in ref.5 for the low acidity 
condition hydrolysis. 
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III.
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C1– + CIONO2 → C12 + NO–
3 ON ICE

In Sec.II., the reaction (1) was modelled by assuming the presence of an 
C1– H3O+ CIP. There is another possible scenario — which certainly cannot be 
dismissed — where the proton in the H3O+C1– CIP has transferred away from 
the C1ONO2 reaction site. In this scenario, the proton is not involved, such that 
the ice surface reaction would proceed as the direct nucleophilic substitution30

C1– + C1ONO2 →ice C12 + NO–
3 (1)

In ref.30 it was shown that (1) is fast in the gas phase, with no detectable 
barrier. However, it was also noted that the well-known liquid state solvation 
effects on SN2 barrier heights31 — favoring charge-localized reactant and product 
complexes over more charge-delocalized transition states — might significantly 
disfavor (1) (although application of a dielectric continuum model to extremal
points along the gas phase reaction path failed30 to support the existence of a
solvation-induced reaction barrier). It is also conceivable that the occurrence of 
the reaction at the surface instead of in the bulk might reduce the magnitude of
unfavorable solvent effects compared to typical bulk solution values. A molecular 
level description is clearly required to clarify the issue. 

Further considerations also indicate that it is difficult to a priori predict whether 
(1) or the (1) mechanism of Sec.II. is more favored. In a simple solvation view of 
the proton transfer vis à vis the SN2 portion of the process in the (1) mechanism 
discussed in Sec.II., the hydronium ion's presence in the environment could 
raise the SN2 activation barrier — compared to its absence in (1) — via simple 
electrostatic influence, disfavoring a charge-delocalized situation in the C1–C1–
ONO2 portion of the reaction system. Conversely, in a molecular perspective,
the proton and its associated hydrogen-bonded network have important assisting 
electronic effects on (1) which would be absent in the proton-free (1). In the 
latter, for example, while the chloride ion remains hydrogen-bonded to at least 
three lattice waters (thus involving desolvation motions preceeding the transition 
state), the nitrate group, unhindered by a nearby hydronium ion (as in (1)), would 
retain its full nucleophilicity towards the C1δ+ center — a situation which argues
against a low barrier. Clearly a detailed theoretical calculation is necessary to 
shed light on the reaction. 

In line with the modelling of (1) presented in Sec.II., we have attempted 
the modelling of (1) in a similar fashion, via the C1–·C1ONO2·(H2O)9 cluster.
The same techniques and strategies successfully used for (1) failed, however, 
to yield a fully characterized transition state. The transition state region was 
accessed, as signalled by the gradient and by the exploration of the (supposed) 
TS neighborhood towards reactants and products, but the diagonalization of the 
Hessian matrix yielded more than one imaginary frequency, none of which could 
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be cleanly assigned as representative of the nucleophilic attack. The lack of the 
accurate identification of the transition state did not prevent, however, an estimate 
of the reaction barrier, calculated to be about 1 kcal/mol. 

Our failed — at least insofar as precise transition state characterization is 
concerned — attempt was nonetheless instructive: i) contrary to what found in 
ref.30, the surface version of reaction (1) does show a barrier, although small, 
thus Supporting the view that both desolvation of the C1- ion and weak hydrogen 
bonding to the nitrate group contribute to the barrier; ii) reaction (1) appears
to be faster than (1), if it is verified that the proton has transferred away from
the adsorption site. Concerning the latter point, as noted in Sec.II., there is 
experimental support for the view that such a transport does not occur.9, 14 On the 
other hand, there is other experimental support15,16 for the view that it does, so 
that it seems fair to say that the situation remains ambiguous from an experimental 
viewpoint.

Further calculations to assess (1) vs. (1) on ice are clearly necessary and 
are underway for a C1– ·C1ONO2·(H2O)9 core reaction system embedded in a 
supporting water lattice4 (a large lattice is necessary to balance the net negative 
charge of the C1–·C1ONO2 reaction subsystem). 

Finally, as suggested in ref.4, experimental examination of the existence (or 
not) of an H/D kinetic isotope effect for the direct HC1 + C1ONO2 reaction
could be useful in helping to resolve the mechanistic issue here: the mechanism 
discussed in Sec.II. involves proton transfer, while it should not be involved in 
(1). Complicating and extraneous H/D exchange issues in the water lattice could 
be avoided by examination of DC1 + C1ONO2 on D2O ice.

IV. CONCLUDING REMARKS 

We hope that it has been made clear, even within the confines of the brief 
account given in the preceeding sections, that heterogeneous reactions relevant to 
the atmosphere — above and beyond their obvious interest in an environmental 
chemistry context — provide an exciting and novel direction for theoretical 
chemistry attention. Indeed, this arena is one of quite wide scope. Even if one 
restricts consideration to heterogeneous reactions relevant for ozone depletion in 
the atmosphere, an outstanding challenge remains to deal with such reactions on 
stratospheric sulfate aerosols (SSAs) -supercooled liquid concentrated aqueous 
sulfuric acid particles. For example, the hydrolysis of nitrogen pentoxide (N2O5)
on SSAs is of central importance in the midlatitude stratosphere (see e.g. ref.29). 
Further, it is now believed that these aerosols — or even more complex ones 
involving e.g. HNO3 — play a key role in both the Antarctic and the Arctic;3

thus, for example, reaction (1) on such particles is believed to be important.3,32

Since not even the microscopic structure of the surfaces of such aerosols is 
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yet known, theoretical chemistry has the opportunity to help to answer many 
questions here. 
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Chapter 9 

SIMULATION OF CHEMICAL REACTIONS IN
SOLUTION USING AN AB INITIO MOLECULAR
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Abstract A mixed molecular orbital and valence bond (MOVB) method has 
been developed and applied to chemical reactions. In the MOVB 
method, a diabatic or valence bond (VB) state is defined with a 
block-localized wave function (BLW). Consequently, the adiabatic 
state can be described by the superposition of a set of critical 
adiabatic states. Test cases indicate the method is a viable 
alternative to the empirical valence bond (EVB) approach for 
defining solvent reaction coordinate in the combined quantum 
mechanical and molecular mechanical (QM/MM) simulations 
employing explicit molecular orbital methods. 
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I. INTRODUCTION 

Combined quantum mechanical and molecular mechanical (QM/MM) 
methods provide an important tool for studying chemical reactions in solution
and in enzymes. (1-6) In this approach, a large molecular system is partitioned 
into a small region that is treated explicitly by quantum mechanics (QM), and a 
larger part that contains the remainder of the system and is represented by 
molecular mechanics (MM). The QM region typically consists of functional 

groups that are directly involved in bond-forming and bond-breaking during a 
chemical reaction, but the influence of the electric field due the surrounding 
environment is included in the QM calculation.(3, 4) Combined QM/MM 
methods have been applied to a wide range of problems of chemical and 
biological interest, including chemical reactions in solution and enzymes and 
solvent effects on electronic excited states.(5-13) There is continuous interest in 
developing novel approaches and in making interesting applications of combined 
QM/MM methods. In this chapter, we discuss a mixed molecular orbital and 
valence bond (MOVB) method, which combines and extends many features of 
the existing hybrid QM/MM techniques. 

Combined QM/MM methods can be roughly grouped into two categories. 
The first involves explicit optimization of the molecular wave function of the 
QM region, and determination of the total energy by computing the expectation 
value of the effective Hamiltonian of the system. Methods that employ molecular 
orbital theory and density functional theory in hybrid QM/MM calculations 
belong to this category. The second general approach is to make an implicit
treatment of the molecular wave function for the QM region, but the potential 
energy surface is determined by empirical, analytical functions on the basis of 
quantum mechanical formalisms. The empirical valence bond (EVB) model and 
the MMVB (molecular mechanics with valence bond) method that have been 
extensively used by Warshel, Robb and their coworkers are examples of this type 
of applications. 

Although the traditional approach of transition structure determination and 
reaction path following is perfectly suited for gas phase reactions, which can also 
provide major insight into the mechanism of condensed phase reactions, (14-16)
it is also important to specifically consider the fluctuation and collective solvent 
motions accompanying the chemical transformation in solution.( 17, 18) One 
approach that has been used to address this problem is the use of an energy-gap
reaction coordinate, Xs:

XS = εR – εP (1)

where εR and εp are, respectively, energies of the reactant and product valence
bond states. Since εR and εp include solute-solvent interaction terms, the change
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in XS thus reflects the collective motions of the solvent along the reaction 
path.( 17) The energy-gap reaction coordinate has been successfully applied to 
numerous chemical reactions in context of the empirical valence bond (EVB) 
method.(19-23) Voth and others have further extended the simple EVB ideas to 
model proton transfer reactions in aqueous systems using multistate EVB 
configurations.(24, 25) Recent development of efficient algorithms for general 
parametrization using ab initio energy and Hessian results makes this approach 
even more attractive.(21, 26, 27) Nevertheless, it is of interest to develop a 
more systematic and ab initio approach that can be used to define the diabatic 
reactant and ground states in combined QM/MM simulations, employing 
explicit electronic structure methods. 

In this article, we present an ab initio approach, suitable for condensed phase 
simulations, that combines Hartree-Fock molecular orbital theory and modern 
valence bond theory which is termed as MOVB to describe the potential energy 
surface (PES) for reactive systems. We first provide a brief review of the block-
localized wave function (BLW) method that is used to define diabatic electronic 
states. Then, the MOVB model is presented in association with combined 
QM/MM simulations. The method is demonstrated by model proton transfer 
reactions in the gas phase and solution as well as a model SN2 reaction in water. 

II. METHODS 

A key assumption of the MOVB method is that the electronic structure of a 
molecular system can be described by a linear combination of a set of critical 
valence bond states, corresponding to the traditional Lewis resonance structures. 
In fact, there are two issues that are of interest in condensed phase simulations. 
The first is concerned with a general approach to describe the potential energy 
surface for chemical reactions, whereas the second issue deals with development 
of a practical procedure that can be used to enforce the solvent coordinate to 
orient along the entire reaction path during the computer simulation. Although ab 
initio VB method can in principle be used directly, these computations arc very 
time-consuming. Our aim is to develop an efficient algorithm to approximate the 
full VB approach such that the PES can be adequately represented at a reasonable 
computational cost. To achieve this goal, we use a block-localized wave function 
(BLW) method to define the localized VB-like state. The BLW method was 
introduced previously and has been applied to electronic structural problems of 
organic compounds.(28, 29) In this article, we describe the use of the MOVB 
method as a computational tool to represent solvent reaction coordinate, making 
use of an energy-gap definition as is done in the EVB approach. However, it is 
important to emphasize the distinction between EVB and MOVB in that explicit 
electronic wave functions are used in determination of the VB matrix elements in 
MOVB, whereas empirical potential functions, assumed to follow certain 
analytical forms, are employed in the EVB calculation. 
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A. The Block-Localized Wave Function Method

It is prerequisite to define localized, diabatic state wave functions, 
representing specific Lewis resonance configurations, in a VB-like method. 
Although this can in principle be done using an orbital localization technique, the 
difficulty is that these localization methods not only include orthorgonalization 
tails, but also include delocalization tails, which make contribution to the 
electronic delocalization effect and are not appropriate to describe diabatic 
potential energy surfaces. We have proposed to construct the localized diabatic 
state, or Lewis resonance structure, using a strictly block-localized wave function 
(BLW) method, which was developed recently for the study of electronic 
delocalization within a molecule.(28-3 1) 

To construct localized wave functions, we assume that the total electrons and 
primitive basis functions can be partitioned into k subgroups, corresponding to a 
specific form of the Lewis resonance, or VB configuration. For simplicity, we 
consider only closed-shell systems within each subgroup. Unlike the standard 
Hartree-Fock (HF) theory, molecular orbitals in the BLW method are linear 
combinations of primitive basis orbitals that are restricted in each individual 
subgroup. Consequently, by construction, the charge density of the entire 
molecular system is localized according to the electron and orbital partition. This 
is made possible by taking advantage of the rather localized features of Gaussian 
basis functions, even when a large basis set with diffuse functions such as aug- 
cc-pVTZ is used.(32) 

Let na and ma be the number of electrons and primitive orbitals in the ath

subgroup. The molecular orbitals in this subgroup { j a
i , i = 1, . . . } are linear

combinations of those primitive orbitals, {Xµ, µ = 1, . . ., ma}, that are located on 
atoms within that group. 

(2)

where ca

primitive atomic oribtals, M, in the QM region are: 

are orbital coefficients, and the total number of electrons, N, andjµ

(3)

The molecular wave function for resonance state r is:
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(4)

where is an antisymmetrizing operator, and F r
a is a successive product of the

occupied molecular orbitals in the ath subgroup. 

(5 ) 

where a and b are electronic spin orbitals, and na is the number of electrons in 
subgroup a. It is important to note that molecular orbitals in eq 5 satisfy the 
following orthonormal constraints: 

(6)

where wij is the overlap integral between two molecular orbitals i and j. Clearly, 
molecular orbitals within each fragment are orthogonal, whereas orbitals in 
different subgroups are non-orthogonal, a feature of the valence bond theory.(33-

36)
The energy of the localized wave function (diagonal terms of the 

Hamiltonian) is determined as the expectation value of the Hamiltonian H, which
is given as follows: 

(7)

where, hµv and Fµv are elements of the usual one-electron and Fock matrix, and
dµv is an element of the density matrix, D (eq 9).(28,37)

D = C(C + SC)–1 C + (8)

where C is the molecular orbital coefficient matrix, S is the overlap matrix of the
basis functions, { X a

µ ;a = 1,2;µ = l,...,ma }, with ma being the number of primitive

basis orbitals in subgroup a. The coefficient matrix for the occupied MOs of the 
BLW wave function has the following form: 
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(9)

where the element Cª is an na/2 x ma matrix, whose elements are defined in eq 2. 
The MOs in eq 5 are typically optimized using a reorthogonalization 

technique that has been described by Gianinetti et a1.,(30) though they can also 
be obtained using a Jacobi rotation method that sequentially and iteratively 
optimizes each individual orbital.(28, 37) 

B. The Molecular Orbital-Valence Bond Method 

The electronic wave function of a molecular system is a linear combination of 
the localized VB states, Yr:

(10)

where each Yr[R, X] represents a specific diabatic, VB state, and Q [R, X] is the
adiabatic ground or excited state wave function. To emphasize the fact that the 
diabatic and adiabatic ground state (as well as excited states) wave functions 
depend on the geometry of the reactive system R and the solute-solvent reaction 
coordinate X, these variables are explicitly indicated in eq 10. The coefficients
{ar} in eq 10 are determined variationally analogous to multi-configuration self- 
consistent field (MCSCF) calculations by solving the eigenvalue problem

Ha = OaE (11)

where H is the Hamiltonian matrix, whose elements are defined as Hst =

<Ψs| H |Ψt>, a is the state coefficient matrix, and O is the overlap matrix of
nonorthogonal state functions. Evaluation of these matrix elements is 
straightforward for a given basis set since a number of algorithms have been 
proposed for solving this problem. Löwdin first described a method on the basis 
of the Jacobi ratio theorem,(38) whereas Amos and Hall, (39) and King et a1.(40)
developed a bi-orthogonalization procedure for evaluation of matrix elements of
non-orthogonal determinant wave functions. In our implementation, we follow
Löwdin's Jacobi ratio strategy.(4 1) 

The effective QM/MM Hamiltonian of the system, in which the reactant part 
is treated quantum-mechanically and the solvent classically, is given as 
follows:(3, 42)
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(12)H = H 0
qm + qm/mm + mm

where 0 is the electronic Hamiltonian for the isolated reactant, is the

interaction term between the reactant and solvent, and mm is the solvent- 

solvent interaction energy. Since QM/MM methods have been documented and 
described in several articles,( 1, 3-5) we only note that the QM/MM interaction 
term contains two empirical parameters per atom type for the van der Waals
interaction between QM and MM atoms. Parametrization procedures for 
obtaining these parameters have been described previously.(43). 

Since the effective Hamiltonian in eq 12 consists of solute-solvent (or 
QM/MM) one-electron terms, both diagonal, Hss, and off-diagonal, Hst, matrix
elements in the MOVB Hamiltonian explicitly include solvent effects in the 
calculation. This is in contrast to Warshel’s EVB approach,(19, 20) in which the 
solvent contribution is only incorporated into the diagonal elements, whereas the 
off-diagonal elements are assumed to be independent of solvent effects. It has 
been argued that in many cases, the solvent dependence of the off-diagonal 
matrix elements is not negligible in studying chemical reactions in solution using 
a VB approach.(22) Our ab initio MOVB approach provides a means by which 
this problem can be quantitatively assessed in condensed phase simulations by 
comparison with studies that exclude the solvation term in Hst.

The total potential energy of the localized, VB-like configuration in solution is 
thus computed by solving the secular equation by diagonalizing the Hamiltonian 
matrix, H, to yield 

qm qm / mm 

Eg (X) = a + (O–1/2HO1/2)a+ EMM (13)

where EMM is the interaction energy of solvent molecules, a is the coefficient 
matrix, whose elements are defined in eq 10. It is important to point out that the 

Hamiltonian is the standard QM/MM effective Hamiltonian. Thus, the effect 
of solvation is directly incorporated into eq 12. 

III. FREE ENERGY SIMULATION METHOD 

To evaluate solvent effects, statistical mechanical Monte Carlo simulations 
have been carried out. An important quantity to be computed is the potential of 
mean force, or free energy profile, as a function of the reaction coordinate, X, for 
a chemical reaction in solution using free energy perturbation method.(44) A 
straightforward approach is to determine free energy differences for incremental 
changes of certain geometrical variables that characteristically reflect the 
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chemical process in going from the reactants to the final products.(45) For 
example, the distinguished reaction coordinate may be defined by some
characteristic geometry variables, specifying the position of the migrating proton
in [H3N…H...NH3]+, XR = 1/2[R1 - R2] (Figure 1), or the difference between the 
two chlorine-carbon distances in the C1– + CH3C1 reaction. This "geometric
mapping" approach, which is akin to studying gas phase reactions through 
reaction path calculations, has been successfully applied to numerous organic 
reactions in solution.(46) 

J. Gao and Y. Mo 

Figure 1 Schematic representation of the geometrical parameters for the [H3N-
H-NH3]+ ion. The reaction coordinate for the proton transfer is defined as X R =
1/2[R1 - R2].

On the other hand, much has been discussed on the importance of including 
solvent coordinates in the definition of reaction path in solution.(47) A recent 
simulation study of the proton transfer in [HO…H…OH]– in water indicates that
there is considerable difference in the qualitative appearance of the free energy 
profile and the height of the predicted free energy barrier if the solvent reaction 
coordinate is explicitly taken into account.(47) One viable approach to describe 
the solvent coordinate is to define the reaction coordinate as the difference 
between the energies of the reactant and product diabatic state in solution (eq 
1).(17) Here, the solvent degrees of freedom are adequately included in the 
definition of the reaction path because the change in solute-solvent interaction 
energy reflects the collective motions of the solvent molecules as the reaction 
proceeds(17, 20, 47) Indeed, eq 1 has been successfully utilized, especially in 
the work of Warshel and others. Note that XS is negative when the system is in
the reactant state because the solvent configurations strongly disfavor the product
state leading to large positive values in E2(Ψ2). XS is positive when the system is
in the product state because E1(Ψ1) will be positive and E2(Ψ2) will be negative.
Therefore, XS can be conveniently used to monitor the progress of the chemical 
reaction in the solvent reaction coordinate. Clearly, there is no single reactant 
structure that defines the transition state, rather, an ensemble of transition states 
will be obtained from the simulation, which may contain solute geometries 
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closely resembling the reactant or product structure in a solvent configuration 
suitable for the transition state.(48-50)

In practice, the potential of mean force as a function of XS is determined by a 
coupled free energy perturbation and umbrella sampling technique.(20, 23, 24, 
41, 51) The computational procedure follows two steps, although they are 
performed during the same simulation. The first is to use a reference potential 
ERP to enforce the orientation polarization of the solvent system to spend a 
computationally meaningful amount of time along the entire reaction path, 
particularly in the transition state region. A convenient choice of the reference 
potential, which is called mapping potential in Warshel’s work, is a linear 
combination of the reactant and product diabatic potential energy: 

(14)

where l is a coupling parameter that varies from 0, corresponding to the reactant 
state ε1, to the product state, ε2. Thus, a series of free energy perturbation
calculations are executed by moving the variable l from 0 to 1 to “drive” the 
reaction from the reactant state to the product state.(44) However, the free 
energy change obtained using the reference potential, ERP, does not correspond to 
the adiabatic ground state potential surface. The true ground state potential of 
mean force is derived from the second step of the computation via an umbrella 
sampling procedure,(52) which projects the ERP potential on to the adiabatic 
potential energy surface Eg(XS):

(15)

where ∆GRP(λ) is the free energy change obtained in the first step using the
reference potential, Eg(XS) is the adiabatic ground state potential energy at XS(λ),
and p[XS(λ)] is the normalized distribution of configuration that has a value of
XS during the simulation carried out using ERP(λ).

In eq 15, the ground state potential Eg can be either the MOVB adiabatic 
potential energy or other ab initio values, e.g., the HF, MP2, or DFT energy. 
Consequently, the present method is not limited to the MOVB potential energy 
surface. In the present study, we choose to use both the MOVB and the Hartree-
Fock energy as the ground state potential to compare the performance of the 
method. In this regard, the MOVB method can be simply utilized to derive the 
necessary diabatic state potential energy surfaces to define the solvent reaction 
coordinate (eq 1). Consequently, a smaller basis set can be used to save 
computational costs in configuration sampling in ab initio simulations. A higher 
level of theory, or a larger basis set can be used to obtain the ground state energy 
Eg(XS).
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IV. COMPUTATIONAL DETAILS 

A. MOVB Calculations 

We illustrate the MOVB method by a number of specific examples, including 
proton transfer reaction between ammonium ion and ammonia, [H3N...H…NH3]+ ,
in water, an SN2 reaction between C1– and CH3C1, and a multi-state approach for 
an excess proton in water clusters. In the present study, nuclear quantum 
mechanical tunneling effects are not specifically considered. Our focus is to 
demonstrate that the MOVB method can yield reasonable results for the ground 
state potential energy surface of the proton transfer and SN2 reaction both in the 
gas phase and in solution. In addition, the method can be generalized in multi-
state calculations. Secondly, we illustrate that the diabatic potential energy 
function of the MOVB method can be effectively used as a mapping potential to 
describe the solvent reaction coordinate. 

In all calculations, standard Gaussian basis functions are used to construct the 
wave function for each specific diabatic state. For comparisons purposes, basis 
sets ranging from 3-21G to aug-cc-pVTZ have been used. Specific details on the 
choice and definition of diabatic states are given below for each individual case. 

B. Monte Carlo Simulation 

Statistical mechanical Monte Carlo simulations have been carried out for 
systems consisting of reactant molecules plus 510 to 750 water molecules in a 
periodic cell. Standard procedures are used, including Metropolis sampling and 
the isothermal-isobaric ensemble (NPT) at 25 °C and 1 atm. To facilitate the 
statistics near the solute molecule, the Owicki-Scheraga preferential sampling 
technique is adopted with 1/(r2 + C) weighting, where C = 150 Spherical 
cutoff distances between 9.5 to 10 are used to evaluate intermolecular 
interactions based on heavy atom separations. For solute moves. all internal 
geometric parameters including bond lengths, bond angles and dihedral angles 
are varied, except that the N-H-N atoms in the [H3N...H...NH3]+ system, and the 
C1-C-C1 angle in the SN2 reaction are restricted to be linear. The dynamics and 
the actual proton transfer pathway are not fully explored here.(53, 54) All 
simulations were maintained with an acceptance rate of ca. 45% by using ranges 
of ± 0.15 and 15° for translation and rotation moves of both the solute and 
solvent molecules. For the internal degrees of freedom, the bond distances are 
restricted to be ±0.002 to ±0.005 bond angles are ±5°, and the maximum 
allowed change in dihedral angle is 15°. The range of the central proton has a 
translation range of 0.03 for the proton transfer reaction, and 0.05 for the Cl- 
C stretching distance in the second reaction. A series of Monte Carlo free energy 



Molecular Orbital-Valence Bond Model 257

simulations are executed, each consisting of 2 x 106 configurations of 
equilibration and 3-4 x 106 configurations of averaging. All simulations are 
performed using a Monte Carlo program developed in our laboratory, which 
utilizes a locally modified version of the GAMESS program for electronic 
structure calculations. These simulations were carried out using an Origin 2000 
system at the Center for Computational Research at SUNY, Buffalo, and 
computers at the Minnesota Supercomputing Institute. 

V. RESULTS AND DISCUSSIONS 

A. H(H2O)N
+ Clusters

Recently, Schmitt and Voth described a multistate empirical valence bond 
(MS-EVB) model for proton transport in water.(24, 55) The approach extends 
the two-state EVB method for a dimeric structure H5O2+ to multistate in the 
effective valence bond treatment. For example, a total of four states in the Eigen 
cation H9O4+ are included in the description of the ground-state potential energy
surface by recognizing that the central hydronium ion can donate a proton to each 
of the three water molecules in the first solvation shell. As in EVB, the matrix 
element for each diabatic state and off-diagonal elements in the MS-EVB method 
are modelled by a sum of molecular mechanics intramolecular and 
intermolecular interaction terms. What is different from previous EVB 
approaches is that special emphasis was made in the representation of the 
“exchange charge distribution” in the off-diagonal terms. Thus, a set of 
exchange charges is assigned to each atom in the Zundel complex, H5O2

+ to
mimic transition dipole moments in the moment expansion of exchange 
electrostatic potential. Inclusion of these exchange (or transition) charges was 
shown to lead to qualitatively different results in modelling proton transport in 
water,(55) in comparison with a similar approach that excluded such explicit off-
diagonal solute-solvent interactions.(25) 

Similarly, we have carried out MOVB calculations of the H(H2O)N+ clusters,
where N = 2, 3, and 4 using the 3-21G and 6-31G(d) basis set. Monte Carlo 
simulated annealing calculations of 10,000 steps were first performed using the 
3-21G basis set to locate the global minimum for these complexes, which are 
compared with HF/3-21G optimizations. Subsequently. binding energies of 
H(H2O)N

+ clusters from separated water and hydronium ion species were
determined using MOVB/6-3 1G(d) at the MP2/6-3 1G(d) optimised geometries. 
In the MS-EVB model, Schmitt and Voth used two EVB states to describe each 
Zundel-like structure (H5O2+), corresponding to the proton “attached” to each 
water molecule.(24, 55) Parameterization of the off-diagonal matrix element was 
sufficient to obtain good agreement with high-level ab initio results both in 
binding energy and proton-transfer barrier height. However, in the present ab 
initio MOVB, we found that a two-state VB model is not adequate and inclusion 
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of a third, “ionic” structure, specifying a bare proton situated between two 
neutral water molecules, is essential. Thus, in our calculation, we used 3, 5, and 
7 states for the H5O2+, H7O3+, and H9O4+ cluster, respectively, as opposed to 2, 3,
and 4 configurations in the MS-EVB model. We also note that electrostatic 
interactions, i.e., exchange charge components, in the off-diagonal terms are 
naturally included in our computation because all matrix elements are determined 
explicitly at the ab initio level. 

Optimized structures for the three complexes are shown in Figure 2, which 
depicts the optimised O-O and O-H distances using MOVB/3-21G. Binding 
energies computed at MOVB/6-3 1G(d)//MP2/6-3 1G(d) are listed in Table I, 
along with HF/6-31G(d), MP2/cc-pVTZ+(56), and MS-EVB results.(24)
Overall, the computed bond distances are in good agreement between MOVB/3-
21G and HF/3-21G optimizations. For H5O2+ the optimised O-O and O-H
distances are 2.4 and 1.2 from both levels of theory, which is also in accord 
with MS-EVB predictions and high-level ab initio results(24) The binding 
energy is very sensitive to the basis function used, and thus, is determined using 
a larger basis set with polarizable functions. A value of –31.0 kcal/mol was 
obtained using MOVB/6-3 1G(d), which is about 2-3 kcal/mol smaller than 
results from various other methods listed in Table 1. We also estimated the 
binding energy using only two valence-bond states. Without parameterization of 
the off-diagonal matrix element, as is done in the essentially effective VB 
approach of MS-EVB, we found that the binding energy for the Zundel ion is – 
17.0 kcal/mol, too weak to be useful for condensed phase simulations. 
Furthermore, we have estimated the barrier height for the proton transfer reaction 
between two water molecules using the 6-31G(d) basis set, with the O-O 
separation fixed at 2.5 and 2.8 The computed barriers are 2.3 and 13.4 
kcal/mol using 3 VB states, but they are 7.5 and 20.8 kcal/mol with 2 VB states. 
This may be compared with the corresponding HF/6-31G(d) values of 2.3 and 
13.4 kcal/mol, respectively. Clearly, inclusion of the “ionic” state is necessary in 
formal treatment of the protonated water clusters. The corresponding barriers 
were predicted to be 0.2 and 9.5 kcal/mol using MS-EVB, and the QCISD(T)/cc-
pVTZ results are 0.4 and 8.4 kcal/mol(55) Deviation in computed activation 
barrier between the HF level and QCISD(T) results from the difference in 
optimal geometry at the two levels and of course electron correlation effects. 
Nevertheless, it is clear some readjustments of the small basis off-diagonal terms 
in MOVB are needed to obtain quantitative agreement with high-level ab initio 
results that include electron correlations. 

For the other two ions, the computed geometries and binding energies from 
MOVB are also in reasonable agreement with MS-EVB results. The subsequent 
reduction of binding energies for attachment of water molecules to the 
hydronium ion changes from –31.0 for the Zundel structure to –22.2 kcal/mol for 
the Eigen geometry. This trend is in accord with the MS-EVB prediction. The 
total binding energy for H9O4+ is estimated to be –76.6 kcal/mol from MOVB/6-
31G(d) calculations, which is consistent with the MP2/cc-pVTZ+ value of–77.4

J. Gao and Y. Mo 
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kcal/mol. The overall agreement in total binding energy, geometry, and trend of 
interaction energy between the MOVB model and MS-EVB as well as ab initio 
results suggest that the MOVB model is a reasonable ab initio alternative to the 
traditional EVB method. Importantly, it may be employed to examine specific 
properties that lack experimental data for verification in the EVB approach, 
including the importance of the off-diagonal exchange charge distribution in the 
study of solvation effects.(55)

Figure 2. HF and MOVB optimal geometries from the simulated annealing with 

the 3-21G basis set. 

(a) H5O2
+(C2)

(b) H7O3
+(C2v)

(c) H9O4
+(C3)
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Table I Combined binding energies (kcal/mol) for H(H2O)N
+ clusters, where N

= 2, 3, and 4. The value in parentheses is computed using 2 valence bond states 
for H5O2

+.

Species MOVB MS) HF/6-31G(d) MP2/cc-pVTZ(56)
l

EVB(55)
H5O2

+ -31.0(-17.0) -33.8 -32.3 -34.4

H7O3
+ -54.4 -57.1 -56.4

H9O4
+ -76.6 -79.6 -78.9 -77.4

B. Solvent Effects on the Proton Transfer Reaction of [H3N...H...NH3]+

The proton transfer reaction between ammonium ion and ammonia, 
[H3N...H...NH3]+, has been studied previously,(53, 54, 57) which provide an 
interesting case for validation of the MOVB model. We use three resonance 
configurations are to describe the proton transfer reaction in [H3N...H...NH3]

+:

(16)

where each Φ indicates a product of the molecular orbitals expanded over basis
functions located on atoms in the fragment specified in parentheses. We note
that only configuration coefficients (eq 10) are variationally optimized, though it 
is possible to simultaneously optimize orbital coefficients in these calculations. 

The diabatic and MOVB adiabatic potential energy profiles for the proton 
transfer reaction of NH4

+ + NH3 → NH3 + NH4
+ in the gas phase are depicted

in Figure 3. The geometries used in the MOVB calculations are taken from the
corresponding HF optimization as a function of the proton position, X, from the
center of the two nitrogen atoms (fixed at 2.7 The potential energy profiles
for the two diabatic VB states intersect at X = 0 corresponding to the
transition structure (Figure 1). The energy at the crossing point of the two 
diabatic states, E1 and E2, is 19.4 kcal/mol above the minimum configuration (XR

= ±0.65 using the 3-21G basis set, and 28.4 and 26.4 kcaumol, respectively,
using the 6-31G(d) and cc-pVTZ basis set. The potential energy surface for the 
ionic state, Ψ3 = [H3N:, H+, :NH3], has a minimum at X= 0

The adiabatic MOVB ground state potential surface is significantly lower in 
energy than the diabatic surfaces. The computed barrier for the proton transfer is 
1.2 kcal/mol at the MOVB(3)/3-21G level, which may be compared with the 
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Hartree-Fock value of 1.1 kcal/mol using the 3-21G basis set. In this notation, 
MOVB(3)/3-21G, the number in parentheses specifies the number of 
configurations employed in the MOVB calculation. 

Figure 3. Computed potential energy curves for the diabatic and adiabatic state 
in the [H3N-H-NH3]+ system in the gas phase using 6-31G(d) basis set. The HF 
and MOVB energy profiles are overlapping. 

Solvent effects on the proton transfer reaction in the ammonium-ammonia
system is shown in Figures 4, which illustrates the potential of mean force (pmf) 
for the proton transfer reaction in aqueous solution. The free energy changes 
were obtained by two methods. First, a solvent reaction coordinate XS = E1 – E2,
was used in the Monte Carlo sampling with the use of HF and MOVB ground 
state potential energy to determine the potential of mean force (eq 15). For 
comparison, the potential of mean force was also determined using a geometrical 
mapping procedure (Figure 4, dashed curve). The effect of solvation on the 
predicted barrier height is significant from both HF and MOVB pmf’s. 
Importantly, the HF and MOVB results are in excellent agreement. At the HF 
level, the computed activation free energy ∆G‡ is 3.3 kcal/mol, representing an 
increase of 2.2 kcal/mol over the gas phase process. Similarly, the MOVB
activation energy is determined to be 3.4 kcal/mol, in accord with the HF 
prediction. Large solvent effects on the activation barrier for the proton transfer 
between NH4

+ and NH3 in water have been found previously.(54, 57) In a 
separate combined QM/MM AMI/TIP3P Monte Carlo simulation study, the 
barrier height was estimated to increase by about 2.5 kcal/mol at an N-N
separation of 2.7 .(54) 
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Figure 4. Comparison of computed potentials of mean force from the energy 
mapping (solid curve) and geometrical mapping (dash curve). The N-N distance 
was fixed at 2.7 in all simulations. 

It is of interest to compare the predicted activation energy obtained by the 
geometrical mapping procedure in Monte Carlo simulations at the combined 
QM-MM HF/3-21G-TIP3P level. Here, we found the predicted AG‡ of 3.5
kcal/mol using the geometrical mapping procedure to be in good accord with the
result obtained from a different sampling procedure that include solvent
coordinates. This finding is in contrast to a recent study of the proton transfer of 
[HO...H...OH]- system, where significant difference in the predicted activation
barrier was noted between geometrical and energy mapping procedures.(47) In 
that case, the barrier height (20 kcal/mol) is much greater than that of the present 
system, which results in greater dependence of the computed reaction profile on 
the solvent reaction coordinate.(47) 

C. The SN2 Reaction of C1– + CH3C1 in Water

Another prototype system for testing computation method is the SN2 reaction 
of C1- + CH3C1, which has been extensively studied previously by a variety of 
theoretical methods. (45, 58-63) In this system, there are four electrons and three 
orbitals that directly participate in bond forming and breaking during the 
chemical reaction. 
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C1– + CH3C1 → C1CH3 + C1– (17)

The valence bond (VB) wave function for this process can thus be 
represented by a linear combination of six Slater determinants corresponding to 
the VB configurations resulting from this active space. In practice, however, this 
is not necessary because three determinants, which have very high energies, do 
not make significant contributions.(51) Consequently, we only need to use three 
configurations in the VB calculation.(5 1) These VB configurations are listed 
below:

(18)

Here, Ψ1 and Ψ2 correspond to the reactant and product state, respectively, and
Ψ3 is a zwitterionic state having two chloride anions separated by a carbocation.

The gas-phase reaction profile determined using MOVB/6-3 1G(d) is shown 
in Figure 5, which is compared with results obtained from HF/6-31G(d), and ab
initio valence bond theory (VBSCF). The numbers in parentheses specify the 
number of VB configurations used in the computation, while VBSCF indicates 
simultaneous optimization of both orbital and configurational coefficients. The 
term VBCI is used to distinguish calculations that only optimize configuration 
coefficients (eq 10). In Figure 5, the reaction coordinate XR is the difference 
between the two C-C1 distances, i.e., XR = Rr(C-C1’) – Rp(C1-C), where C-C1’ is
the carbon and leaving group distance and C1-C is the nucleophile and carbon 
distance. The double well potential for an SN2 reaction is clearly characterized
by the MOVB method with a binding energy –9.7 kcal/mol for the ion-dipole
complex.(64, 65) This may be compared with values of –10.3 kcal/mol from 
HF/6-31G(d), –10.5 kcal/mol from the G2(+) model,(66) –10.0 from ab initio VB,
and –9.4 kcal/mol from a three configuration VBCI calculation. The 
experimental binding energy is –8.6 kcal/mol.(67-69) The barrier height relative 
to the infinitely separated species is 2.5 kcal/mol from experiment and about 3-4
kcal/mol from theory. The MOVE and VBCI calculations, which are analogous 
in that variationally determined VB configurations are used in configuration 
interaction calculations without further optimizing the orbital coefficients, 
overestimate the barrier height by about 4-5 kcal/mol comparing with 
experiment.(67-69)

The chloride exchange reaction in water is modeled in Monte Carlo 
simulations using the same approach as that described for the proton transfer 
reaction between ammonium ion and ammonia. The potential of mean force for 
the SN2 reaction of C1– + CH3C1 → C1CH3 + C1– obtained with the HF/6-31G(d)
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potential energy as Eg (eq 15), is shown in Figure 6.(41, 51) The computed 
activation free energy in Figure 6 is 26.0 ± 1.0 kcal/mol, which is in excellent
agreement with the experimental value (26.6 kcal/mol) and with previous
theoretical results. As noted previously, HF/6-3 1 G(d) calculations perform 
extremely well for the C1– + CH3C1 system, and have been used by 
Chandrasekhar et al. and later by Hwang et al. to fit empirical potential functions 
for condensed phase simulations.(51, 58) Thus, the good agreement between 
MOVB-QM/MM calculations and experiments is not surprising. The striking 
finding of the large solvent effects, which increase the barrier height by more 
than 20 kcal/mol is reproduced in the present ab initio MOVB calculation.(70) 
The origin of the solvent effects can be readily attributed to differential 
stabilization between the ground state, which is charge localized and more 
stabilized, and the transition state, which is more charge-dispersed and poorly 
solvated.(51, 58) The general agreement among various simulation techniques
demonstrate that the C1– + CH3C1 SN2 reaction in water can be adequately treated
by the MOVB approach, using HF ground state energy. 

J. Gao and Y. Mo 

Figure 5. Energy profile of the chloride exchange reaction in the gaseous phase 
at various levels. 

In closing, we note that if the MOVB potential energy is directly used for the 
Eg term in eq 15, the predicted MOVB activation energy is significantly higher
than the HF ground state value, by about 10 kcal/mol. Of course, about 4
kcal/mol in this difference originates directly from the gas phase result, where the 
MOVB model overestimates the barrier height in comparison with experiment.
Solvent effects on the electronic coupling term are responsible for the rest of the 
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energy difference. Clearly, the present results indicate that it is important to 
optimize each VB state in the presence and restrictions of all other states in a full 
SCF calculation. 

Figure 6. Energy profile of the chloride exchange reaction in the aqueous

solution from the Monte Carlo simulation. 

VI. CONCLUSIONS 

We have described a mixed molecular orbital and valence bond (MOVB) 
model for describing the potential energy surface of reactive systems, and
presented an application of the method to model proton transfer and SN2
reactions in aqueous solution. The MOVB model is based on a block-localized
wave function (BLW) method to define diabatic electronic state functions. Then, 
a configuration interaction Hamiltonian is constructed using these diabatic VB 
state as basis functions. The method has been applied to three representative 
systems, including protonated water clusters, a proton transfer reaction between 
ammonium ion and ammonia in water, and an SN2 reaction in water. The 
computed geometrical and energetic results for these systems are in accord with 
previous experimental and theoretical studies. These studies show that the 
MOVB model can be adequately used as a mapping potential to derive solvent 
reaction coordinates for condensed phase processes. The present approach has 
the advantage of including explicit solvation contributions in the off-diagonal VB 
matrix terms. Although the general features and qualitative trends of the 
potential energy surface for these systems are reasonable from MOVB 
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calculations, its accuracy can be further improved by optimization of both orbital 
and configuration coefficients. The MOVB model is particularly powerful when 
it is used as a solvent mapping potential in combination with ab initio Hartree-
Fock or density functional ground state potential energy surface in hybrid 
QM/MM simulations. 
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Chapter 10 

METHODS FOR FINDING SADDLE POINTS 
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University of Washington, 
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Abstract The problem of finding minimum energy paths and, in particular, saddle points 
on high dimensional potential energy surfaces is discussed. Several differ-
ent methods are reviewed and their efficiency compared on a test problem 
involving conformational transitions in an island of adatoms on a crystal sur-
face. The focus is entirely on methods that only require the potential energy 
and its first derivative with respect to the atom coordinates. Such methods 
can be applied, for example, in plane wave based Density Functional Theory 
calculations, and the computational effort typically scales well with system 
size. When the final state of the transition is known, both the initial and final 
coordinates of the atoms can be used as boundary conditions in the search. 
Methods of this type include the Nudged Elastic Band, Ridge, Conjugate 
Peak Refinement, Drag method and the method of Dewar, Healy and Stewart. 
When only the initial state is known, the problem is more challenging and the
search for the saddle point represents also a search for the optimal transition 
mechanism. We discuss a recently proposed method that can be used in such
cases, the Dimer method. 

I. INTRODUCTION

A common and important problem in theoretical chemistry and in condensed 
matter physics is the calculation of the rate of transitions, for example chemical 
reactions or diffusion events. In either case, the configuration of atoms is changed 
in some way during the transition. The interaction between the atoms can be 
obtained from an (approximate) solution of the Schrödinger equation describing 
the electrons, or from an otherwise determined potential energy function. Most 
often, it is sufficient to treat the motion of the atoms using classical mechanics, 
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but the transitions of interest are typically many orders of magnitude slower 
than vibrations of the atoms, so a direct simulation of the classical dynamics 
is not useful. This ‘rare event’ problem is best illustrated by an example. We 
will be describing below a study of configurational changes in a Pt island on 
a Pt(111) surface, relevant to the diffusion of the island over the surface. The 
approximate interaction potential predicts that the easiest configurational change 
has an activation energy barrier of 0.6 eV. This is a typical activation energy 
for diffusion on surfaces. Such an event occurs many times per second at room 

temperature and is, therefore, active on a typical laboratory time scale. But,
there are on the order of 1010 vibrational periods in between such events. A 
direct classical dynamics simulation which necessarily has to faithfully track 
all this vibrational motion would take on the order of 105 years of computer 
calculations on the fastest present day computer before a single diffusion event 
can be expected to occur! It is clear that meaningful studies of these kinds of 
events cannot be carried out by simply simulating the classical dynamics of the 
atoms. It is essential to carry out the simulations on a much longer timescale. 
This time scale problem is one of the most important challenges in computational 
chemistry, materials science and condensed matter physics. 

The time scale problem is devastating for direct dynamical simulations, but 
makes it possible to obtain accurate estimates of transition rates using purely 
statistical methods, namely Transition State Theory (TST). 1–5 Apart from the 
Born-Oppenheimer approximation, TST relies on two basic assumptions: (a) the 
rate is slow enough that a Boltzmann distribution is established and maintained 
in the reactant state, and (b) a dividing surface of dimensionality D –1 where D is 
the number degrees of freedom in the system can be identified such that a reacting
trajectory going from the initial state to the final state only crosses the dividing 
surface once. The dividing surface must, therefore, represent a bottleneck for the 
transition. The TST expression for the rate constant can be written as 
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where 〈|v|〉 is the average speed, Q‡ is the configurational integral for the transition 
state dividing surface, and QR is the configurational integral for the initial state.
The bottleneck can be of purely entropic origin, but most often in crystal growth 
problems it is due to a potential energy barrier between the two local minima 
corresponding to the initial and final states. It can be shown that TST always
overestimates the rate of escape from a given initial state2,3 (a diffusion constant 
can be underestimated if multiple hops are not included in the analysis6). This 
leads to a variational principle which can be used to find the optimal dividing 
surface.3,7 The TST rate estimate gives an approximation for the rate of escape 
from the initial state, irrespective of the final state. The possible final states can be 
determined by short time simulations of the dynamics starting from the dividing 
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surface. This can also give an estimate of the correction to transition state theory 
due to approximation (b), the so called dynamical corrections.8,9

Since atoms in crystals are usually tightly packed and the relevant temperatures 
are low compared with the melting temperature. the harmonic approximation to 
TST (hTST) can typically be used in studies of diffusion and reactions in crystals.9

This greatly simplifies the problem of estimating the rates. The search for the 
optimal transition state then becomes a search for the lowest few saddle points at 
the edge of the potential energy basin corresponding to the initial state. The rate 
constant for transition through the region around each one of the saddle points 
can be obtained from the energy and frequency of normal modes at the saddle 
point and the initial state.10,11

Here, E‡ is the energy of the saddle point, Einit is the local potential energy 
minimum corresponding to the initial state, and the vi are the corresponding
normal mode frequencies. The symbol ‡ refers to the saddle point. The most
challenging part in this calculation is the search for the relevant saddle points.
Again, the mechanism of the transition is reflected in the saddle point. The 
reaction coordinate at the saddle point is the direction of the unstable mode (the 
normal mode with negative eigenvalue). After a saddle point has been found, one 
can follow the gradient of the energy downhill, both forward and backward, and 
map out the Minimum Energy Path (MEP), thereby establishing what initial and 
final state the saddle point corresponds to. The identification of saddle points ends 
up being one of the most challenging tasks in theoretical studies of transitions in 
condensed matter. 

The MEP is frequently used to define a ‘reaction coordinate’12 for transitions. 
It can be an important concept €or building in anharmonic effects, or even quantum 
corrections.5 The MEP may have one or more minima in between the endpoints 
corresponding to stable intermediate configurations. The MEP will then have 
two or more maxima, each one corresponding to a saddle point. Assuming a 
Boltzmann population is reached for the intermediate (meta)stable configurations, 
the overall rate is determined by the highest energy saddle point. It is, therefore, 
not sufficient to find a saddle point, but rather one needs to find the highest saddle
point along the MEP, in order to get an accurate estimate of the rate from hTST. 

For systems where one or more atoms need to be treated quantum mechanically, 
a quantum mechanical extension of TST, so called RAW-QTST, can be used.13,14

Zero point energy and tunneling are then taken into account by using Feynman 
Path Integrals.15 Since RAW-QTST is a purely statistical theory analogous to 
classical TST, the path integrals are statistical (involve only imaginary time) and 
are easy to sample in computer simulations even for large systems. The definition 
of the transition state needs to be extended to higher dimensions, but otherwise 
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the RAW-QTST calculation for quantum systems is quite similar to the TST 
calculations for classical systems. A central problem is finding a good reaction 
coordinate and a good transition state surface. In a harmonic approximation 
to RAW-QTST, the central problem becomes the identification of saddle points 
on an effective potential energy surface with higher dimensionality than the 
regular potential energy surface.13,14 The saddle points are often referred to
as ‘instantons’ and the harmonic approximation to RAW-QTST is the so called 
Instanton Theory.16–18 Any method that can be used to locate saddle points 
efficiently in high dimension, can, therefore, also be useful for calculating rates 
in quantum systems. 

Many different methods have been presented for finding MEPs and saddle 
points,19,20 Since a first order saddle point is a maximum in one direction and 
a minimum in all other directions, methods for finding saddle points invariably 
involve some kind of maximization of one degree of freedom and minimization 
in other degrees of freedom. The critical issue is to find a good and inexpensive 
estimate of which degree of freedom should be maximized. Below, we give an 
overview of several commonly used methods in studies of transitions in condensed 
matter. We then compare their performance on the surface island test problem. 

II. THE DRAG METHOD 
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The simplest and perhaps the most intuitive method of all is what we will 
refer to as the Drag method. It actually has many names because it keeps being 
reinvented. One degree of freedom, the drag coordinate, is chosen and is held 
fixed while all other D-1 degrees of freedom are relaxed, i.e. the energy of 
the system minimized in a D-1 dimensional hyperplane. In small, stepwise 
increments, the drag coordinate is increased and the system is dragged from 
reactants to products. The maximum energy obtained is taken to be the saddle 
point energy. Sometimes, a guess for a good reaction coordinate is used as the 
choice for the drag coordinate. This could be the distance between two atoms, 
for example, atoms that start out forming a bond which ends up being broken. In 
the absence of such an intuitive choice, the drag coordinate can be simply chosen 
to be the straight line interpolation between the initial and final state. This is a 
less biased way and all coordinates of the system then contribute in principle to 
the drag coordinate. We will follow this second approach, which is illustrated in 
figure 1. We have implemented the Drag method in such a way that the force 
acting on the system is inverted along the drag coordinate and the velocity Verlet 
algorithm21 with a projected velocity is used to simulate the dynamics of the 
system. The velocity projection is carried out at each time step and ensures 
that only the component of the velocity parallel to the force is included in the 
dynamics. When the force and projected velocity point in the opposite direction 
(indicating that the system has gone over the energy ridge). the velocity is zeroed. 
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This projected velocity Verlet algorithm has been found to be an efficient and 
simple minimization algorithm for many of the methods discussed here. 

The problem with the Drag method is that both the intuitive, assumed reaction 
coordinate and the unbiased straight line interpolation can turn out to be bad 
reaction coordinates. They may be effective in distinguishing between reactants 
and products, but a reaction coordinate must do more than that. A good reaction 
coordinate should give the direction of the unstable normal mode at the saddle 
point. Only then does a minimization in all other degrees of freedom bring the 
system to the saddle point. Figure 1 shows a simple case where the drag method 
fails. As the drag coordinate is incremented, starting from the initial state, R, the
system climbs up close to the slowest ascent path. After climbing high above 
the saddle point energy, the energy contours eventually stop confining the system 
in this energy valley and the system abruptly snaps into an adjacent valley (the 
product valley in the case of figure 1). The system is never confined to the vicinity 
of the saddle point because the direction of the drag coordinate is at a large angle 
to the direction of the unstable normal mode at the saddle point. While there 
certainly are cases where the drag method works, there are also many examples 
where it does not work.22,23 The method failed, for example, on half the saddle 
points in the surface island test problem described below. What seems to be 
a more intuitive reaction coordinate, such as the distance between two atoms, 
can also fail, for example if adjacent atoms also get displaced in going from the 
initial to final states. As the two atoms get dragged apart, the adjacent atoms can 
snap from one position to another, never visiting the saddle point configuration. 
As we will demonstrate below, much more reliable methods exist which are not 
significantly more involved to implement or costly to use. 

III. THE NEB METHOD 

In the Nudged Elastic Band (NEB) method20,24,25 a string of replicas (or 
‘images’) of the system are created and connected together with springs in such a 
way as to form a discrete representation of a path from the reactant configuration,
R, to the product configuration, P. Initially, the images may be generated along
the straight line interpolation between R and P. An optimization algorithm is
then applied to relax the images down towards the MEP. The NEB and the CPR 
method are unique among the methods discussed here in that they not only give 
an estimate of the saddle point, but also give a more global view of the energy 
landscape, for example, showing whether more than one saddle point is found 
along the MEP. 

The string of images can be denoted by [R0, R1, R2,. . . , RN] where the
endpoints are fixed and given by the initial and final states, R0 = R and RN = P,
but N – 1 intermediate images are adjusted by the optimization algorithm. The
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most straightforward approach would be to construct an object function 

G. Henkelman, G. Jóhannesson and H. Jónsson 

(1)

and minimize with respect to the intermediate images, R1 , . . . , RN. This mimics
an elastic band made up of N – 1 beads and N springs with spring constant
k. The band is strung between the two fixed endpoints. The problem with this 
formulation is that the elastic band tends to cut corners and gets pulled off the

MEP by the spring forces in regions where the MEP is curved. Also, the images
tend to slide down towards the endpoints, giving lowest resolution in the region 
of the saddle point, where it is most needed.20 Both the corner-cutting and the 
sliding-down problems can be solved easily with a force projection. This is what 
is referred to as ‘nudging’. The reason for corner-cutting is the component of 
the spring force perpendicular to the path, while the reason for the down-sliding
is the parallel component of the true force coming from the interaction between
atoms in the system. Given an estimate of the unit tangent to the path at each 
image (which will be discussed later), the force on each image should only 
contain the parallel component of the spring force, and perpendicular component 
of the true force 

(2)

where ∇E(Ri) is the gradient of the energy with respect to the atomic coordinates
in the system at image i, and Fs

i is the spring force acting on image i. The
perpendicular component of the gradient is obtained by subtracting out the parallel 
component

(3)

In order to ensure equal spacing of the images (when the same spring constant, 
k, is used for all the springs), even in regions of high curvature where the angle
between Ri – Ri–1 and Ri+1 – Ri deviates significantly from 0°, the spring
force should be evaluated as

(4)

III.1 ESTIMATE OF THE TANGENT 

We now discuss the estimate of the tangent to the path. In the original 
formulation of the NEB method, the tangent at an image i was estimated from 
the two adjacent images along the path, Ri+1 and Ri–1. The simplest estimate
is to use the normalized line segment between the two 
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but a slightly better way is to bisect the two unit vectors 

(5)

(6)

and then normalize = τ/|τ|. This latter way of defining the tangent ensures the 
images are equispaced even in regions of large curvature. 

These estimates of the tangent have, however, turned out to be problematic in 
some cases.26 When the energy of the system changes rapidly along the path, 
but the restoring force on the images perpendicular to the path is weak, as when 
covalent bonds are broken and formed, the paths can get ‘kinky’ and convergence 
to the MEP may never be reached. One way to aleviate the problem is to introduce 
a switching function that introduces a small part of the perpendicular component 
of the spring force.20 This, however, can introduce corner-cutting and lead to 
an overestimate of the saddle point energy. The kinkiness can be eliminated by 
using a better estimate of the tangent.26 The tangent of the path at an image i is 
defined by the vector between the image and the neighboring image with higher 
energy. That is 

where

(7)

(8)

and Ei = E(Ri). If both of the adjacent images are either lower in energy, or both 
are higher in energy than image i, the tangent is taken to be a weighted average
of the vectors to the two neighboring images. The weight is determined from 
the energy. The weighted average only plays a role at extrema along the MEP
and it serves to smoothly switch between the two possible tangents τ +

i and τ –
i .

Otherwise, there is an abrupt change in the tangent as one image becomes higher 
in energy than another and this could lead to convergence problems. If image i 
is at a minimum Ei+1 > Ei < Ei–1 or at a maximum Ei+1 < Ei > Ei–1, the
tangent estimate becomes

(9)

where



216 G. Henkelman, G. Jóhannesson and H. Jónsson 

and
(10)

Finally, the tangent vector needs to be normalized. With this modified tangent, 
the elastic band is well behaved and converges rigorously to the MEP if sufficient 
number of images are included. 

III.2 MINIMIZATION OF THE FORCE 

The implementation of the NEB method in a classical dynamics program is 
quite simple. First, the energy and gradient need to be evaluated for each image 
in the elastic band using some description of the energetics of the system (a first 
principles calculation or an empirical or semi-empirical force field). Then, for 
each image, the coordinates and energy of the two adjacent images are required 
in order to estimate the local tangent to the path. project out the perpendicular
component of the gradient and add the parallel component of the spring force.
The computation of ∇V for the various images of the system can be done in
parallel on a cluster of computers, for example with a separate node handling
each one of the images. Each node then only needs to receive coordinates and 
energy of adjacent images to evaluate the spring force and to carry out the force 
projections. Various techniques can be used for the minimization. We have used 
projected velocity Verlet algorithm described above (see the section on Drag 
method).

To start the NEB calculation, an initial guess is required. We have found a 
simple linear interpolation between the initial and final point adequate in many 
cases. When multiple MEPs are present, the optimization leads to convergence 
to the MEP closest to the initial guess, as illustrated in figure 2. In order to find 
the optimal MEP in such a situation, some sampling of the various MEPs needs 
to be carried out, for example a simulated annealing procedure, or an algorithm 
which drives the system from one MEP to another, analogous to the search for a 
global minimum on a potential energy surface with many local minima.27

It is important to eliminate overall translation and rotation of the system during 
the optimization of the path. A method for constraining the center of mass and 
the orientation of the system has been described, for example, by reference 37. 
Often, it is sufficient to fix six degrees of freedom in each image of the system, for 
example by fixing one of the atoms (zeroing all forces acting on one of the atoms 
in the system), constraining another atom to only move along a line (zeroing, for 
example, the x and y components of the force), and constraining a third atom to 
move only in a plane (zeroing, for example, the x component of the force). 
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III.3 INTERPOLATION BETWEEN IMAGES 

In order to obtain an estimate of the saddle point and to sketch the MEP, it 
is important to interpolate between the images of the converged elastic band. In 
addition to the energy of the images, the force along the band provides important 
information and should be incorporated into the interpolation. By including the 
force, the presence of intermediate local minima can often be extracted from 
bands with as few as three images. The interpolation can be done with a cubic 
polynomial fit to each segment [Ri , Ri+1 ] in which the four parameters of the 
cubic function can be chosen to enforce continuity in energy and force at both 
ends, Writing the polynomial as aix3 + bix2 + cix + di, the parameters are26

(1 1) 

where Ei and Ei+ 1 are the values of the energy at the endpoints, and Fi and Fi+ 1 

are the values of the force along the path. This type of interpolation is usually 
quite smooth even though the second derivative is not forced to be continuous. 
A possible improvement is to generate a quintic polynomial interpolation so that 
the second derivatives can also be matched (and set to zero at the end points for a 
natural spline). This higher order polynomial can, however, add artificial wiggles 
in the path.26

III.4 APPLICATIONS OF THE NEB METHOD 

The NEB method has been applied successfully to a wide range of problems, 
for example studies of diffusion processes at metal surfaces,28 multiple atom 
exchange processes observed in sputter deposition simulations,29 dissociative
adsorption of a molecule on a surface,25 diffusion of rigid water molecules on an 
ice Ih surface,30 contact formation between metal tip and a surface,31 cross-slip
of screw dislocations in a metal (a simulation requiring over 100,000 atoms in 
the system, and a total of over 2,000,000 atoms in the MEP calculation),32 and
diffusion processes at and near semiconductor surfaces (using a plane wave based 
Density Functional Theory method to calculate the atomic forces).33 In the last 
two applications the calculation was carried out on a cluster of workstations with 
the force on each image calculated on a separate node. 

III.5 OTHER CHAIN-OF-STATES METHODS 

The NEB method is an example of what has been called a chain-of-states
method.34 The common feature is that several images of the system are connected 
together to trace out a path of some sort. The simple object function for a chain 
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(equation 1 ) is mathematically analogous to a Feynman path integral15 for an off-
diagonal element of a density matrix describing a quantum particle, which was 
used, for example, by Kuki and Wolynes to study electron tunneling in proteins.35

Several chain-of-states methods have been formulated for finding transition paths 
that are optimal in one way or another.36–43 The NEB method is the only one that 
converges to the MEP without having to use second derivatives of the energy. 
Elber and Karplus36 formulated an object function which is essentially similar to 
equation 1 although more complex. Czerminski and Elber presented an improved 
method with the Self-penalty Walk algorithm (SPW)37 where a repulsion between 

images was added to the object function to prevent aggregation of images and 
crossings of the path with itself in regions near minima. Ulitsky and Elber,38 and
Choi and Elber presented a quite different algorithm, the Locally Updated Planes 
(LUP).39 There, the optimization of the chain-of-states involves estimating a local 
tangent using equation 5 and then minimizing the energy of each image, i, within 
the hyperplane with normal qi, i.e. relaxing the system according to 
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(1 2) 

After every M steps (where M is on the order of 10) in the relaxation, the local 
tangents are updated. Since there is no interaction between the images (such 
as the spring force in the NEB), the LUP algorithm gives an uneven distribution 
of images along the path, and can even give a discontinuous path when two or 
more MEPs lie between the given initial and final states.39 Also, the images 
do not converge rigorously to the MEP, but slide down slowly to the endpoint 
minima because of kinks that form spontaneously on the path and fluctuate as 
the minimization is carried out. Choi and Elber point out that it is important to
start with a good initial guess to the MEP to minimize these problems. The NEB 
method is closely related to both the LUP method and the Elber-Karplus method. 
The NEB method incorporates the strong points of both of these approaches. 

Smart43 modified the Elber-Karplus-Czerminski formulation to get better con-
vergence to the saddle point. The object function in his formulation involves a 
very high power (on the order of 100 to 1000) of the energy of the images to 
increase the weight of the highest energy image along the path. 

Sevick, Bell and Theodorou40 proposed a chain of states method for finding 
the MEP, but their optimization method, which includes explicit constraints for 
rigidly fixing the distance between images, requires evaluation of the matrix of 
second derivatives of the potential and is, therefore, not as applicable to large 
systems and complex interactions. 

Chain-of-states methods have also been used for finding classical dynamical 
paths.41,42 Gillilan and Wilson42 suggested using an object function similar to 
equation 1 for finding saddle points, but this suffers from the comer-cutting and 
down-sliding problems discussed above. 
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IV. THE CI-NEB METHOD 

Recently, a modification of the NEB method has been developed, the Climbing 
Image - NEB.44 There, one of the images, the one that turns out to have the highest 
energy after one, or possibly a few relaxation steps, is made to move uphill in 
energy along the elastic band. This is accomplished by zeroing the spring force 
on this one image completely and including only the inverted parallel component 
of the true force 

(13)

The climbing image is dragged uphill, analogous to the drag method, but the 
essential difference is that the drag direction is determined by the location of the 
adjacent images in the band, not just R and P (unless the band only consists of 
one movable image). The tangent to the path is also weighted by the energy of 
the adjacent images as explained above. This turns out to be important in the 
surface island test problem. 

Figure 2 shows the result of a CI-NEB calculations for the two dimensional 
test problem. Three movable images are included between the end points, and 
a straight line interpolation between R and P is used as a starting guess. The 
central image becomes the climbing image since it has the highest energy ini-
tially. Simultaneously, as the climbing image is pushed uphill, the other two 
images relax subject to the force projections of the nudging algorithm. After 
convergence is reached, a crude representation of the MEP has been obtained and 
one of the images is sitting at the saddle point to within the prescribed tolerance. 
An important aspect of the algorithm is that all movable images are adjusted 
simultaneously, and since only the position of adjacent images are needed for 
each step, the algorithm again parallelizes just as efficiently as the regular NEB. 

V. THE CPR METHOD 

For the conjugate peak refinement method,45 (CPR), a set of images is gener-
ated, one at a time, between the initial and final configurations, R and P. After the
images are optimized, a line between the images constitutes a path that lies close 
to (but not at) the MEP. The maxima along the path will be at saddle points. Each
point along the path is generated in a cycle of line maximizations and conjugate 
gradient minimizations. This is illustrated in figure 3. In the first cycle, the max-
imum along the vector P – R is found, y1. Then, a minimization is carried out
along the direction of each of the conjugate vectors (a total of D –1 dimensions)
to give a new point x1.

In the second cycle the maximum along an estimated tangent to the R –x1 – P
path is found. The tangent is estimated using equation 6. This new maximum 
is denoted y2 in figure 3. The energy is then minimized along each of the 
conjugate vectors to give a new point that could potentially get incorporated into



280

the path, etc. The rules for deciding whether a new point gets added to the path 
permanently are quite complicated and will not be given here. The cycle of 
maximization along the tangent and then conjugate gradient line minimizations 
is repeated until a maximum along the path has a smaller gradient than the given 
tolerance for saddle points. 

A detailed implementation of the CPR method, the TRAVEL algorithm, has 
been described by Fischer,46 providing values for all relevant parameters. We 
have used standard algorithms from reference 47 for bracketing energy extrema 
and the line-optimizations.

We did not use the algorithm to generate a full path but stopped as soon as a 
point was found that satisfied our criterion for a saddle point (the magnitude of 
the gradient of the energy being less than a given tolerance). 

VI. THE RIDGE METHOD 

G. Henkelman, G. Jóhannesson and H. Jónsson 

The Ridge method of Ionova and Carter48 involves advancing two images of 
the system, one on each side of the potential energy ridge, down towards the 
saddle point. The pair of images is moved in cycles of ‘side steps’ and ‘downhill 
steps’ in the following way. First. a straight line interpolation between products, 
P, and reactants, R, is formed and the maximum of energy along this line is found.
The method is illustrated in figure 4, where the maximum is found at point a. We
used the routine DBRENT from reference 47 to carry out the line maximizations, 
which makes use of the force, and typically takes a couple of force evaluations to 
converge to within 0.01 of the maximum. Then, two replicas of the system are 
created on the line, one on each side of the maximum, x0́ and x1́ (see figure 4). 

The magnitude of the displacement of the two images from the maximum 
needs to be chosen. This ‘sidestep’ distance is typically chosen to be 0.1 in 
the first cycle. The force is now evaluated at the two images and they are moved 
in the direction of the force a certain distance, the ‘downhill-step’. This generates 
points x″0 and x″1 . The downhill distance is typically chosen to be 0.1 in the first
cycle. This completes the first cycle. Then, a new cycle is started by maximizing 
along the line [x″0 , x″1 ] to obtain the point b, etc.

The side-step and downhill-step of the images need to gradually decrease as 
the images get closer to the saddle point. It is possible that the energy of a point 
(in the sequence a, b, c, . . .) is higher than at the previous point. In such cases the
downhill displacement is reduced by a half. Also, if the ratio of the side-step to 
downhill-step distance becomes larger than a certain, chosen ratio, the side step 
distance is also decreased by a half. This ratio is typically chosen to be some 
number in the range between 1 and 10. We found that the algorithm worked 
best for a ratio of 1.2 in the test cases we carried out. As the two images move 
and the size of the sidestep to downhill-step is decreased, the sequence of points 
a, b, c, . . . should lead to a saddle point.
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If the two images are almost equally displaced from the top of the energy 
ridge and the ridge is straight, it can be sufficient to evaluate the force only at 
the central point, rather than at the two images, thereby saving a factor of two 
in the number of force evaluations. This is implemented in such a way that if a 
new point in the sequence a, b, c, . . . is close to the center of the two images (not
within 30% of either image), then the force in the next cycle is only evaluated at 
the central point and applied to both images in the downhill-step.

It turns out that most of the force evaluations are needed when the two images 
are rather close to the saddle point. Ionova and Carter 48 have discussed possible 
ways to improve the performance of the method in this final stage of the search. 

VII. THE DHS METHOD 

Dewar, Healy and Stewart49 (DHS) have proposed a method which also in-
volves two images of the system. First, the endpoints R and P are joined by a 
line segment. The two images are then systematically drawn toward each other 
until the distance between them is smaller than a given tolerance for finding the 
saddle point. 

There are two steps in each cycle. First, the energy of both images is calculated. 
The one at lower energy is then pulled towards the one at higher energy along 
the line segment, typically about 5% of the way. Second, the energy of the 
lower energy image is minimized keeping the distance between the two fixed. 
An application of the method to the two-dimensional test problem is shown in
figure 5. In the first cycle, the image at P is higher in energy than the one at R,
so the latter is brought in towards P by 5% and the allowed to relax with a fixed 
distance constraint. This repeats several times, causing the image that starts at R
to climb up the potential energy valley leading up from R. Eventually, the image
at P becomes lower in energy. The five cycles following that are shown with 
solid lines in figure 5. Remarkably, the pair of images end up moving past the 
local maximum and converge on the saddle point on the other side. 

The method can locate the neighboring region of the saddle point quite quickly, 
but does not converge close to the saddle point efficiently. If the images are pulled 
towards each other too quickly, the probability of both images ending on the same 
side of the ridge is increased. Eventually, as the pair of images gets close enough 
to the saddle point, such a slip over the ridge is bound to occur and both images 
will then settle into one of the minima R or P.

We chose to use a velocity Verlet type algorithm21 for the minimization of the
position of the lower energy image. At each step only the force perpendicular to 
the line segment connecting the two images was included. The velocity parallel 
to the force was included in the dynamics until the two pointed in the opposite 
direction, at which point the velocity was zeroed. This is the same kind of 
minimization algorithm we use with the Drag, NEB and CI-NEB methods. 
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VIII. THE DIMER METHOD 

G. Henkelman, G. Jóhannesson and H. Jónsson 

When the final state of a transition is not known, the search for the saddle 
point is more challenging. A climb up from the initial state to the saddle point 
is more difficult than might at first appear. It is not sufficient to just follow 
the direction of slowest ascent – the two-dimensional test problem illustrated in 
figures 1 to 5 is an example of that. Several methods have been developed where 
information from second derivatives is built in to guide the climb.50–55 These
methods have become widely used in studies of small molecules and clusters. 
Their disadvantage is that they require the second derivatives of the energy with 

respect to all the atomic coordinates, i.e. the full Hessian matrix, and then the 
matrix needs to be diagonalized to find the normal modes, an operation that scales 
as D3. The evaluation of second derivatives is often very costly, for example in 
plane wave based Density Functional Theory calculations. Also, in large systems 
where empirical potentials are used, the D3 scaling becomes a problem. For 
example, in a very interesting recent study of relaxation processes in Lennard-
Jones glasses, a practical limit was reached at a couple of hundred atoms,56 while
system size effects can be present in such systems even when up to 1000 atoms 
are included.57

A new method for finding saddle points was recently presented which has the 
essential qualities of the mode following methods, but only requires first deriva-
tives of the energy and no diagonalization.58 It can therefore be applied to plane 
wave DFT calculations and it can be applied to large systems with several hun-
dred atoms, as illustrated below. The method involves two replicas of the system, 
a ‘dimer’, as illustrated in figure 6. The dimer is used to transform the force in 
such a way that optimization leads to convergence to a saddle point rather than a 
minimum. The force acting on the center of the dimer (obtained by interpolating 
the force on the two images) gets modified by inverting the component in the 
direction of the dimer. Before translating the dimer, the energy is minimized 
with respect to orientation. As pointed out by Voter,59 this gives the direction of 
the lowest frequency normal mode. This effective force will take the dimer to 
a saddle point when an optimization scheme is applied, for example conjugate 
gradients or the velocity Verlet algorithm with velocity damping. A detailed 
algorithm for finding the optimal orientation in an efficient way is described in 
reference 58. In a test problem involving AI adatom diffusion on the Al(100) 
surface, the Dimer method was found to converge preferably on the lowest saddle 
points (75% of the time the method converged on one of the lowest four saddle 
points) and the computational effort was found to increase only weakly as the 
number of degrees of freedom in the system was increased.58

Figure 7 shows a Dimer calculation for the two-dimensional test problem. The 
initial configurations for the dimer searches were taken from the extrema of a 
short high temperature molecular dynamics trajectory (shown as a dashed line). 
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The three initial points are different enough that the dimer searches converge 
to separate saddle points. In general the strategy for the Dimer method is to 
try many different initial configurations around a minimum, in order to find the 
saddle points that lead out of that minimum basin. 

IX. CONFIGURATIONAL CHANGE IN AN ISLAND ON 
FCC(111)

As a test problem for comparing the various methods described above, we 
have chosen a heptamer island on the (111) surface of an FCC crystal. Partly, this 
choice is made because it is relatively easy to visualize the saddle point config-
urations and partly because there is great interest in the atomic scale mechanism 
of island diffusion on surfaces (see for example reference 60). The interaction 
potential is chosen to be a simple function to make it easy for others to verify and 
extend our results. The atoms interact via a pairwise additive Morse potential 

(14)

with parameters chosen to reproduce diffusion barriers on Pt surfaces61 (A =
0.7102 eV, a = 1.6047 Å –1 , r0 = 2.8970 Å). The potential was cut and shifted 
at 9.5Å. While exchange processes are not well reproduced with such a simple 
potential, the predicted activation energy for hop diffusion processes is quite 
similar to the predictions of more complex potential functions and in some cases 
in quite good agreement with experimental measurements.28,61

The surface is simulated with a 6 layer slab, each layer containing 56 atoms. 
The minimum energy lattice constant for the FCC solid is used, 2.7441 2Å. The 
bottom three layers in the slab are held fixed. A total of 7 + 168 = 175 atoms are 
allowed to move during the saddle point searches. This is 525 degrees of freedom. 
The displacements mainly involve some of the island atoms, but relaxation of the 
substrate atoms can also be important. 

The initial configuration of the island is a compact heptamer as shown in figure 
8. The question is how the island diffuses. We have focused on the initial stage 
of such a configurational transition, i.e. saddle points that are at the boundary 
of the potential basin corresponding to the compact heptamer state. A total of 
13 processes were found with saddle point energy less than or equal to 1.51 3 eV. 
The lowest energy processes correspond to uniform translation of the island from 
FCC sites to HCP sites. There are two slightly different directions for the island 
to hop, and thus two slightly different saddle points, of energy 0.601 eV and 
0.620 eV (see figure 8). The next three low energy saddle points, processes 3 to 
5, correspond to a pair of edge atoms shifting to adjacent FCC sites. The three 
processes are quite similar, just three slightly inequivalent directions. Process 
6 and 7 are quite interesting. Here, a pair of atoms is again shifted, but now 
only to the nearby HCP sites. The other 5 atoms in the cluster are also shifted 
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to adjacent HCP sites but in the opposite direction. The final state has all island 
atoms sitting at HCP sites. Processes 8 and 9 involve a concerted move of three 
edge atoms. Process 10 and 11 involve an edge dimer where one of the atoms 
moves in a direction away from the island while the other one takes its place. This 
is a significantly higher energy final state, because of the low coordination of one 
of the displaced atoms. Finally, processes 12 and 13 involve the displacement 
of just one atom away from the island, again resulting in low coordination in the 
final state. 

One common feature of processes 3 to 13 is that the final state is higher in 
energy than the initial state. The saddle point is typically late, i.e. close to the 
final state. 

X. RESULTS

G. Henkelman, G. Jóhannesson and H. Jónsson 

The results of the calculations are given in tables 1 and 2. The number of 
force evaluations needed to reach a saddle point is given. We use this unit of 
computational effort because the evaluation of the force dominates the effort at 
each step, even with empirical potentials. We are particularly interested in plane 
wave based DFT calculations where the evaluation of just the energy and not 
the force presents insignificant savings. The computational effort is, therefore, 
simply characterized by the number of force evaluations. Table 1 gives the 
results obtained with convergence tolerance of 0.01 eV/Å in the magnitude of 
the force, i.e. the saddle point searches were stopped when the magnitude of the 
force on each degree of freedom had dropped below this value. This tolerance 
is small enough to get the saddle point energy to within 0.01 eV. To illustrate 
how fast the various methods home in on the saddle points, the number of force 
evaluations needed to satisfy a tighter tolerance, 0.001 eV/Å is given in table 2 
for comparison. In most cases, the saddle point energy obtained is different by 
less than 0.001 eV as the tolerance is reduced, but in some cases the difference is 
on the order of 0.01 eV. 

The results show that the drag method fails for 7 out of the 13 processes. This 
is because the MEP has large curvature and the direction of the unstable normal 
mode at the saddle point is quite different from the direction of the vector P-R.
The drag method should, therefore, not be used. When the drag method works, 
however, it is very efficient. 

The CI-NEB method with three movable images, CI-NEB(3), is highly reli-
able, gets all the saddle points, and is less than three times more expensive than 
the drag method. Since it is easy to paralellize the CI-NEB with one image per 
node, the number of force evaluations per node, and therefore the elapsed time 
until the calculation finishes on a three node cluster, would actually be just about 
the same or even less for CI-NEB(3) than for Drag. 
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It is interesting to push the elastic band method to the extreme and reduce 
the number of images to one. This is essentially the same as the Drag method 
except the direction of the drag is different. If the tangent in the CI-NEB were 
estimated using equation 5, then the two methods would be identical. The fact 
that CI-NEB uses an estimate of the tangent, equations 7 and 9, where the weight 
of the adjacent points is a function of the energy, makes the CI-NEB(1) converge 
in these cases while the Drag method diverges. The saddle point is closer to 
the higher energy final state, and the tangent of the path is biased more towards 
the line segment to the final state than to the initial state. It is interesting that 
CI-NEB(1) is so successful in these test problems, but it cannot be expected to 
work in all cases. 

The Ridge method is significantly more expensive than CI-NEB(3), a factor 
of 2.7 for the larger tolerance and a factor of 3.3 for the smaller tolerance. 
The method has relatively hard time converging rigorously on the saddle point, 
i.e. it uses a large number of force evaluations towards the end of the search. 
There are several parameters in the Ridge method that need to be chosen and 
the performance depends quite strongly on the choice of these parameters. We 
optimized for one of the saddle point searches and then used the same parameter 
set for all of them (the parameters are given in the discussion of the method 
above).

The CPR method is the most difficult method to implement, because of the 
complex rules for adding or rejecting points on the path. It is also the least 
efficient of the methods tested. It does, however, converge quickly to the saddle
point once it is close, as is evident from comparing table 1 and 2. This is probably 
because of the use of the conjugate gradient minimization which is quite efficient. 

The DHS method of Dewar and coworkers is easy to implement and it does 
quite well. It is the second best method at the larger tolerance. But, as the 
Ridge method, it has hard time converging on the saddle point. A significant 
improvement in the timing might occur if a switch to a different method, for 
example the CI-NEB(1), is made once the two images are in the region of the 
saddle (for example, when the force has dropped to 0.1 eV/Å).

The Dimer method can be started from any point on the potential energy 
surface. While the method is designed to work without any knowledge of the
final state, it is possible to make use of the final state in cases where it is known. 
Tables 1 and 2 are timings for the Dimer method where a line maximization 
along the P – R line is first carried out, and then the Dimer search is started
from the maximum. The dimer method is highly efficient, each saddle point
search involves fewer force evaluations than CI-NEB(3). The advantage of 
CI-NEB(3) is that it gives some picture of the whole MEP in addition to the 
saddle point, as discussed below. The unique quality of the Dimer method is 
its ability to climb up the potential surface starting from the minimum. Results 
of 50 such runs are shown in figure 9. Here, the starting points were generated 
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by random displacements of the atoms about the initial state minimum with 
maximum amplitude of 0.1 The tighter tolerance, 0.001 eV/Å was used in 
these runs. It is surprising that the average number of force evaluations is not 
that much larger than when the search was started from the maximum along 
P – R (590 force evaluations vs. 528). Of course, if one is only interested in a 
particular final state, the dimer method started from the minimum may converge 
on the ‘wrong’ saddle point and then needs to be repeated a few times. 

For comparison, we have included in tables 1 and 2 the timings for a simpler 
algorithm, ART,27 a method which is mainly used to help equilibrate systems 
by finding final states rather than saddle points (and has proven to be highly 
successful in simulations of amorphous materials,62 for example). The method 
is analogous to the drag method except no reference is made to the final state, 
the drag coordinate is taken to be the direction from the initial state to the current 
location. The force was inverted along the drag coordinate and velocity Verlet 
algorithm with velocity projections used to home in on the saddle point. The 
method is very efficient and takes somewhat fewer iterations than the dimer 
method, but similar to the drag method, it does not find about half the saddle 
points.

XI. DISCUSSION 

G. Henkelman, G. Jóhannesson and H. Jónsson 

It is important to point out that all the timings given above are for a search of 
a single saddle point. In order to verify that the saddle point found is indeed the 
highest saddle point on the MEP for the process of interest, a calculation of the 
MEP needs to be carried out. Given the saddle point, it is rather straightforward to 
slide down along the MEP. One stable method is to displace the system downward 
and then minimize the energy with a fixed distance to the previous point higher 
up along the path. The CI-NEB(3) method provides three points along the MEP 
and with the interpolation where forces are included this is typically enough to 
see whether the path has more than one saddle point. The CI-NEB(3) timings in 
table 1 and 2 are, therefore, the total number of force evaluations needed to get 
both the saddle point energy and to get a reasonable idea of what the MEP looks 
like. If it is evident that additional saddle points are present, additional images 
can be introduced starting from the best estimate from the interpolation. The 
Ridge, CPR and DHS methods would all need to be followed by a calculation 
of the MEP starting from the saddle point. This would typically add a couple of 
hundred force evaluations to the numbers given for the Drag, Ridge, CPR and 
DHS methods in table 1 and 2. 

XII. SUMMARY 

An overview has been given of several methods used to find saddle points 
on energy surfaces when only the energy and first derivatives with respect to 
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atomic positions are available. Finding saddle points is the most challenging task 
when estimating rates of transitions within harmonic Transition State Theory.
The high dimensionality of condensed matter systems makes this non-trivial.
Several commonly used methods have been applied to a test problem involving 
configurational changes in an island on a crystal surface where the final state of 
the transition is known. The CI-NEB method turned out to be the most efficient 
method. In addition to the saddle point, it gives an idea of the shape of the whole 
MEP. This is necessary to determine whether more than one saddle points are 
present, and then which one is highest. When the final state is not known, the 
Dimer method can be used to climb up the potential energy surface starting from 
the initial state. The average number of force evaluations for a Dimer to converge 
on a saddle point is similar to a CI-NEB calculation with three movable images 
in the test problem studied here. 

It is our hope that the test problem presented will continue to be a useful 
standard for comparing methods for finding saddle points. Clearly, other test 
problems with different qualities should also be added. To make it easier for others
to use this test problem, we have made configurations and other supplementary
information available on the web at:
http://www-theory.chem.washington.edu/ ~hannes/paperProgrInThChem
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Appendix: The two-dimensional test problem 

This model includes a LEPS63 potential contribution which mimics a reaction 
involving three atoms confined to motion along a line. Only one bond can be 
formed, either between atoms A and B or between atoms B and C. The potential 
function has the form 

where the Q functions represent Coulomb interactions between the electron 
clouds and the nuclei and the J functions represent the quantum mechanical 
exchange interactions. The form of these functions is 
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and

The parameters were chosen to be a = 0.05, b = 0.80, c = 0.05, dAB = 4.746.
dBC = 4.746, dAC = 3.445. and for all three pairs we use r0 = 0.742 and

In order to reduce the number of variables, the location of the end point atoms 
A and C is fixed and only atom B is allowed to move. A ‘condensed phase 
environment’ is represented by adding a harmonic oscillator degree of freedom 

coupled to atom B. This can be interpreted as a fourth atom which is coupled in 
a harmonic way to atom B 

a = 1.942.

(A.2)

where rAC = 3.742, kc = 0.2025. and c = 1.154. This type of model has
frequently been used as a simple representation of an activated process coupled 
to a medium, such as a chemical reaction in a liquid or in a solid matrix. 

In order to create two saddle points rather than just one, a Gaussian function 
is added to V(rAB, x) to give

(A.3)

where the Gaussian function is G(a, b) = exp(–0.5((a/0.1)2 + (b/0.35)2)). A
contour plot of this 2D potential surface is given in figures 1 to 5. 
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Table I 
in the force. 

Number of force evaluations needed to reach saddle point to 0.01 eV/ tolerance

saddle Drag CI-NEB(3) CI-NEB(1) Ridge CPR DHS Dimer ART 

47 81 25 189 241 232 83
37 75 25 288 240 230 70

285 177 1369 1277 788 246
276 179 1129 1464 785 23 6 
333 151 1165 1443 736 250 
654 204 1369 2412 2434
735 206 1245 2426 2057

146 300 163 772 776 526 380
149 351 179 781 748 483 386

363 115 734 1551 736
282 126 869 2612 706

156 294 48 884 718 521
153 333 105 913 686 478

Average 115 336 131 901 1276 824 283 236
Std 56 184 64 368 810 662 149 125 

1
2
3 -
4 -
5 -
6 -
7 -
8
9
10 -
11 -
12
13

80
76

43 9 
94

354
449 -
430 -
262
281
510 -
214 -
186 -
304 -
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Table II 
tolerance in the force. 

Number of force evaluations needed to reach saddle point to 0.001 eV/Å

saddle Drag CI-NEB(3) CI-NEB(1) Ridge CPR DHS Dimer ART 

1 3 24 372 122 3441 653 795 328 332 
2 70 192 45 288 433 290 244 146 
3 - 597 327 2382 1610 1295 746 336
4 - 585 246 2047 1729 1296 546 366
5 - 675 314 2112 1695 1258 570 377
6 - 999 274 2187 2821 4310 704 -
7 - 978 271 2144 2720 4076 588 -
8 323 573 309 4090 1197 1320 559 742 
9 338 855 446 1995 1268 1342 553 754 
10 - 648 174 1610 1739 1468 816 -
11 - 447 237 1859 2793 1474 308 -
12 299 687 150 1861 1038 1160 386 -
13 293 738 230 1901 969 1097 562 -

Average 275 642 242 2147 1590 1629 532 436
Std 102 228 103 890 788 1182 173 227
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Figure 1 The ‘drag ’ method. A drag coordinate is defined by interpolating from R to P
with a straight line (dashed line). Startingfrom R, the drag coordinate is increased stepwise
and held fixed while relaxing all other degrees of freedom in the system. In a two-dimensional
system, the relaxation is along a line perpendicular to the P – R vector. The solid lines show
the first and last relaxation line in the drag calculation. The final location of the system after 
relaxation is shown withfilled circles. As the drag coordinate is increased, the system climbs
up the potential surface close to the slowest ascent path, reaching a potential larger than the 
saddle point, and then, eventually, slipping over to the product well. In this simple test case, 
the drag method cannot locate the saddle point. 
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Figure 2 The Climbing Image Nudged Elastic Band method, CI-NEB. An elastic band is
formed with three movable images of the system connected by springs and placed between 
the fixed endpoints, R and P. The calculation is started by placing the three images along
a straight line interpolation. The images are then relaxed keeping only the the component 
of the spring force parallel to the path and the component of the true force perpendicular to 
the path. The image with the highest energy is also forced to move uphill along the parallel 
component of the true force to the saddle point. 
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Figure 3 The conjugate peak refinement (CPR) method. Points along a path connecting 
R and P are generated, one point at a time through a cycle of maximization and then 
minimization. First, the maximum along the vector P – R isfound, y1. Then, a minimization
is carried out along a conjugate vector (small dashed line) to give location x1 on the path. In 
the second cycle (shown in inset) the maximum along an estimated tangent to the R – x1 – P
path (solid line in inset) is found, y2, and then energy is minimized along a conjugate vector
(small dashed line in inset) to give a fourth point along the path, etc. 
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Figure 4 The Ridge method. A pair of images on each side of the potential energy ridge 
is moved towards the saddle point. First, the maximum along the vector P – R is found, 
point a in the inset. Then the two images an formed on each side of the maximum, points
x 0́ and x 0́ , and are displaced downhill along the gradient to points x″0 and x″1 . This cycle
of maximization between the two images, and the downhill move of the two images along 
the gradient is repeated, with smaller and smaller displacements until the saddle point is 
reached.
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Figure 5 The method of Dewar, Healy and Stewart (DHS). Initially, a pair of images is 
created at R and P. In each cycle, the lower energy image is pulled towards the higher
energy one and then allowed to relax keeping the distance between the two fixed. Eventually, 
the two images straddle the energy ridge near the saddle point.
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Figure 6 The calculation of the effective force in the Dimer method. A pair of images, 
spaced apart by a small distance, on the order of 0.1Å is rotated to minimize the energy. 
This gives the direction of the lowest frequency normal mode. The component of the force in 
the direction of the dimer is then inverted and the minimization of this effective force leads 
to convergence to a saddle point. No reference is made to the final state. 
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Figure 7 Application of the dimer method to a two-dimensional test problem. Three 
different starting points are generated in the reactant region by taking extrema along a high 
temperature dynamical trajectory. From each one of these, the dimer is first translated only 
in the direction of the lowest mode, but once the dimer is out of the convex region a full 
optimization of the effective force is carried out at each step (thus the kink in two of the
paths). Each one of the three starting points leads to a different saddle point in this case.
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Figure 8 On-top view of the surface and the seven atom island used to test the various 
saddle point search methods. The shading indicates the height of the atonis. The initial 
state is shown on top. The saddle point configutration and the final state of the 13 transitions 
are also shown, with the energy of the saddle point (in eV) indicated to the left. The first 
two transitions correspond to a uniform translation of the intact island. Transitions 3-5
correspond to a pair of atoms sliding to adjacent FCC sites. In transitions 6 and 7 the pair 
of atoms slides to the adjacent HCP sites and the remaining 5 atom slide in the opposite 
direction to HCP sites. In transitions 8 and 9, a row of three edge atoms slides into adjacent 
FCC sites. In transitions 10 and 11 a pair of edge atom moves in such a way that one of the 
atoms is displaced away from the island while the other atom takes its place. In transitions 
12 and 13 a single atom gets displaced. 
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Figure 9 The frequency at which the various saddle points for the surface island transi-
tions (illustrated in figure 8) are found with the Dimer method. The lowest saddle points are 
found with the highest frequency. Also shown are the number of iterations required to go 
from the intial state to the saddle point to within a force tolerance of 0.001 eV/Å For the 
more practical 0.01 eV/Å tolerance, the average number of force evaluations was a little 
under 300. The error bars show the standard deviation. 
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