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Progress in Theoretical Chemistry and Physics

A series reporting advances in theoretical molecular and material
sciences, including theoretical, mathematical and computational
chemistry, physical chemistry and chemical physics

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment: theory is
used to interpret experimental results and may suggest new experiments; experiment
helps to test theoretical predictions and may lead to improved theories. Theoretical
Chemistry (including Physical Chemistry and Chemical Physics) provides the concep-
tual and technical background and apparatus for the rationalisation of phenomena in the
chemical sciences. It is, therefore, a wide ranging subject, reflecting the diversity of
molecular and related species and processes arising in chemical systems. The book
series Progress in Theoretical Chemistry and Physics aims to report advances in
methods and applications in this extended domain. It will comprise monographs as well
as collections of papers on particular themes, which may arise from proceedings of
symposia or invited papers on specific topics as well as initiatives from authors or
translations.

The basic theories of physics — classical mechanics and electromagnetism, relativity
theory, quantum mechanics, statistical mechanics, quantum electrodynamics — support
the theoretical apparatus which is used in molecular sciences. Quantum mechanics
plays a particular role in theoretical chemistry, providing the basis for the valence
theories which allow to interpret the structure of molecules and for the spectroscopic
models employed in the determination of structural information from spectral patterns.
Indeed, Quantum Chemistry often appears synonymous with Theoretical Chemistry: it
will, therefore, constitute a major part of this book series. However, the scope of the
series will also include other areas of theoretical chemistry, such as mathematical
chemistry (which involves the use of algebra and topology in the analysis of molecular
structures and reactions); molecular mechanics, molecular dynamics and chemical
thermodynamics, which play an important role in rationalizing the geometric and
electronic structures of molecular assemblies and polymers, clusters and crystals;
surface, interface, solvent and solid-state effects; excited-state dynamics, reactive
collisions, and chemical reactions.

Recent decades have seen the emergence of a novel approach to scientific research,
based on the exploitation of fast electronic digital computers. Computation provides a
method of investigation which transcends the traditional division between theory and
experiment. Computer-assisted simulation and design may afford a solution to complex
problems which would otherwise be intractable to theoretical analysis, and may also
provide a viable alternative to difficult or costly laboratory experiments. Though
stemming from Theoretical Chemistry, Computational Chemistry is a field of research
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in its own right, which can help to test theoretical predictions and may also suggest
improved theories.

The field of theoretical molecular sciences ranges from fundamental physical
questions relevant to the molecular concept, through the statics and dynamics of
isolated molecules, aggregates and materials, molecular properties and interactions, and
the role of molecules in the biological sciences. Therefore, it involves the physical basis
for geometric and electronic structure, states of aggregation, physical and chemical
transformations, thermodynamic and Kinetic properties, as well as unusual properties
such as extreme flexibility or strong relativistic or quantum-field effects, extreme
conditions such as intense radiation fields or interaction with the continuum, and the
specificity of biochemical reactions.

Theoretical chemistry has an applied branch — a part of molecular engineering,
which involves the investigation of structure—property relationships aiming at the
design, synthesis and application of molecules and materials endowed with specific
functions, now in demand in such areas as molecular electronics, drug design or genetic
engineering. Relevant properties include conductivity (normal, semi- and supra-),
magnetism (ferro- or ferri-), optoelectronic effects (involving nonlinear response),
photochromism and photoreactivity, radiation and thermal resistance, molecular recog-
nition and information processing, and biological and pharmaceutical activities, as well
as properties favouring self-assembling mechanisms and combination properties needed
in multifunctional systems.

Progress in Theoretical Chemistry and Physics is made at different rates in these
various research fields. The aim of this book series is to provide timely and in-depth
coverage of selected topics and broad-ranging yet detailed analysis of contemporary
theories and their applications. The series will be of primary interest to those whose
research is directly concerned with the development and application of theoretical
approaches in the chemical sciences. It will provide up-to-date reports on theoretical
methods for the chemist, thermodynamician or spectroscopist, the atomic, molecular or
cluster physicist, and the biochemist or molecular biologist who wish to employ
techniques developed in theoretical, mathematical or computational chemistry in their
research programmes. It is also intended to provide the graduate student with a readily
accessible documentation on various branches of theoretical chemistry, physical chem-
istry and chemical physics.



Contents

Preface

1

Classical and quantum rate theory for condensed phases

Eli Pollak
l.

1.
1I.
V.
V.
VI.

2

Introduction

The GLE as a paradigm of condensed phase systems
Variational rate theory

Turnover theory

Quantum rate theory

Discussion

Feynman path centroid dynamics
Gregory A. Voth

l.
1.
11,
V.
V.
VL.

3

Introduction

The centroid distribution function

Exact formulation of centroid dynamics

The centroid molecular dynamics approximation
Some applications of centroid molecular dynamics
Concluding remarks

Proton transfer in condensed phases: beyond the quantum
Kramers paradigm
Dimitri Antoniou and Steven D. Schwartz

I
1.
1.
V.
V.
VI.

Introduction

Calculation of quantum transfer rates

Rate promoting vibrations

Position-dependent friction

Effect of low-frequency modes of the environment
Conclusions

vii

Xi

~N w N

16
26
34

47

47
49
52
58
60
63

69

70
72
78
82
85
88



viii  THEORETICAL METHODS IN CONDENSED PHASE CHEMISTRY

4
Nonstationary stochastic dynamics and applications to
chemical physics

Rigoberto Hernandez and Frank L. Somer, Jr.
I Introduction
Il.. Nonstationary - stochastic models
1. Application to polymer systems
V. Application to protein folding
V. Concluding remarks

5
Orbital-free kinetic-energy density functional theory
Yan A. Wang and Emily A. Carter

I Introduction

I1. The Thomas-Fermi model and extensions
1. The von Weizséacker model and extensions

V. Correct response behavior

V. Nonlocal density approximations
VI. Numerical implementations

VII.  Applications and future prospects

6

Semiclassical surface hopping methods for nonadiabatic
transitions in condensed phases

Michael F. Herman
I Introduction
n Semiclassical surface-hopping methods for nonadiabatic problems
1. Numerical calculations of vibrational population relaxation
[\ Summary

Mechanistic studies of solvation dynamics in liquids
Branka M. Ladanyi
I Introduction
1. The basics of solvation dynamics
1. Solvation dynamics within the linear response approximation
[\ Nonlinear solvation response
V. Summary

8

Theoretical chemistry of heterogeneous reactions of atmospheric
importance: the HCI+CIONO, reaction on ice.

Roberto Bianco and James T. Hynes
l. Introduction

. HCI+ CIONO, — Cl, + HNO;3 onice

1l Cl + CIONO2 — Cl, + NO3 on ice
\A Concluding remarks

91

92
94
104
110
111

117

119
123
130
133
141
156
166

185

186
187
198
203

207

207
209
213
225
229

235

235
236
242
243



Contents

9
Simulation of chamical reactions in solution using an ab initio
molecular orbital-valence bond model
Jiali Gao and Yirong Mo
I Introduction
Il Methods
. Free energy simulation method
IV.  Computational details
V. Results and discussion

10
Methods for finding saddle points and minimum energy
paths
Graeme Henkelman, Gisli Johannesson and Hannes Jonsson
l. Introduction
1. The Drag method
1. The NEB method
V. The CI-NEB method
V. The CPR method
VI. The Ridge method
VIl.  The DHS method
VIII.  The Dimer method
IX. Configurational change in an island on FCC(111)

X. Results
XI. Discussion
X1l Summary

Appendix: The two-dimensional test problem

Index

iX

247

248
249
253
256
257

269

269
272
273
279
279
280
281
282
283
284
286
286
287

303



This page intentionally left blank.



Preface

This book is meant to provide a window on the rapidly growing body of
theoretical studies of condensed phase chemistry. A brief perusal of physical
chemistry journals in the early to mid 1980’s will find a large number of theoret-
ical papers devoted to 3-body gas phase chemical reaction dynamics. The recent
history of theoretical chemistry has seen an explosion of progress in the develop-
ment of methods to study similar properties of systems with Avogadro’s number
of particles. While the physical properties of condensed phase systems have long
been principle targets of statistical mechanics, microscopic dynamic theories that
start from detailed interaction potentials and build to first principles predictions
of properties are now maturing at an extraordinary rate. The techniques in use
range from classical studies of new Generalized Langevin Equations, semiclas-
sical studies for non-adiabatic chemical reactions in condensed phase, mixed
quantum classical studies of biological systems, to fully quantum studies of mod-
els of condensed phase environments. These techniques have become sufficiently
sophisticated, that theoretical prediction of behavior in actual condensed phase
environments is now possible. and in some cases, theory is driving development
in experiment.

The authors and chapters in this book have been chosen to represent a wide
variety in the current approaches to the theoretical chemistry of condensed phase
systems. | have attempted a number of groupings of the chapters, but the di-
versity of the work always seems to frustrate entirely consistent grouping. The
final choice begins the book with the more methodological chapters, and pro-
ceeds to greater emphasis on application to actual chemical systems as the book
progresses. Almost all the chapters, however, make reference to both basic theo-
retical developments, and to application to real life systems. It has been exactly
this close interaction between methodology development and application which
has characterized progress in this field and made its evolution so exciting.

New York, June 2000

Steven D Schwartz

Xi
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Chapter 1

CLASSICAL AND QUANTUM RATE THEORY FOR CONDENSED
PHASES

Eli Pollak

Chemical Physics Department,
Weizmann Institute of Science,
76100, Rehovot, Israel
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2 E. Pollak

. INTRODUCTION

Rate processes! are ubiquitous in chemistry, and include a large variety of
physical phenomena which havemotivated the writing of textbooks,14 reviews>’
and special journal issues.8® The phenomena include among others, bimolecular
exchange reactions, 1011 unimolecular isomerizations,1213 electron transfer pro-
cesses,14 molecular rotation in solids,® and surface and bulk diffusion of atoms
and molecules.1617 Experimental advances have succeeded in recent years in
providing new insight into the dynamics of these varied processes. Picosecond®
and femtosecond™® spectroscopy allows probing of rate processes in real time.
Field ion?-22 and scanning tunneling microscopy?324 are giving intimate pic-
tures of particle diffusion on surfaces. Isomerization rate constants have been
determined for a variety of solvents over large ranges of solvent pressure.1225-28

The availability of high speed computers has led to significant advances in the
theory of activated rate processes. It is routinely possible to run relatively large
molecular dynamics programs to obtain information on the classical dynamics
of reactions in condensed phases.>230 Sampling techniques are continuously
being improved to facilitate computations of increasing accuracy on ever larger
systems.31:32 |t is also becoming possible to obtain quantum thermodynamic
information for rather large scale simulations.3334 Sophisticated semiclassical
approaches have been extended and developed to enable the simulation of electron
transfer and nonadiabatic processes in solution.3538 Very recently it has become
possible to obtain numerically exact quantum dynamics for model dissipative
systems 3738

These experimental and numerical developments have posed a challenge to
the theorist. Given the complexity of the phenomena involved, is it still possible
to present a theory which provides the necessary concepts and insight needed for
understanding rate processes in condensed phases? Although classical molecular
dynamics computations are almost routine, real time quantum molecular dynam-
ics are still largely computationally inaccessible. Are there alternatives? Do we
understand quantum effects in rate theory? These are the topics of this review
article.

The standard ‘language’ used to describe rate phenomena in condensed phases
has evolved from Kramers’ one dimensional model of a particle moving on a one
dimensional potential, feeling a random and a related friction force.3® In Section
11, we will review the classical Generalized Langevin Equation (GLE) underlying
Kramers model and its application to condensed phase systems. The GLE has an
equivalent Hamiltonian representation in terms of a particle which is bilinearly
coupled to a harmonic bath.4% The Hamiltonian representation, also reviewed in
Section |1 is the basis for a quantum representation of rate processes in condensed
phases.41 It has also been very useful in obtaining solutions to the classical GLE.
Variational estimates for the classical reaction rate are described in Section I11.
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These include the Rayleigh quotient method**™® and variational transition state

theory (VTST).46-49 The so called PGH turnover theory®® and its semiclassical
analog,”>1 which presents an explicit expression for the rate of reaction for almost
arbitrary values of the friction function is reviewed in Section V. Quantum rate
theories are discussed in Section V and the review ends with a Discussion of
some open questions and problems.

1. THEGLE AS APARADIGM OF CONDENSED PHASE

SYSTEMS
1.1 THE GLE
In Kramers™®® classical one dimensional model, a particle (with mass m) is

subjected to a potential force, a frictional force and a related random force. The
classical equation of motion of the particle is the Generalized Langevin Equation
(GLE):
t
md+£1%)ﬂ+mj dt'y(t —t")g{t’) = &(t). 1)
q

The standard interpretation of this equation is that the particle is moving on the
potential of mean force w( q), where q is the ‘reaction coordinate’. In a numerical
simulation, where the full interaction potential is V(q, x), (x denotes all the ‘bath’
degrees of freedom) it is not too difficult to compute the potential of mean force,
defined as:

] — x 7
w(a) = —zIn (Tre PY("¥5(q — q")). @

The Tr operation denotes a classical integration over all coordinates. Apart from
the mean potential, the particle also feels a random force ¢ = Qyé—‘;l—] — dv;—(q‘”
which is due to all the bath degrees of freedom. This random force has zero
mean, and one can compute its autocorrelation function. The mapping of the true
dynamics onto the GLE is then completed by assuming that the random force
E(t) is Gaussian and its autocorrelation function is (£(t)&(t')) = %y(t —t’)
where B = 1.

Numerical algorithms for solving the GLE are readily available. Only recently,
Hershkovitz has developed a fast and efficient 4th order Runge-Kutta algorithm.>2
Memory friction does not present any special problem, especially when expanded
in terms of exponentials, since then the GLE can be represented as a finite set of
memory-less coupled Langevin equations.>3-57 Alternatively (see also the next
subsection), one can represent the GLE in terms of its Hamiltonian equivalent
and use a suitable discretization such that the problem becomes equivalent to that
of motion of the reaction coordinate coupled to a finite discrete bath of harmonic
oscillators,38:58
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The dynamics of the GLE has been compared to the numerically exact molec-
ular dynamics of realistic systems by a number of authors.5%-61 In most cases, one
finds that the GLE gives a reasonable representation, although ambiguities exist.
For example, as described above, the random force is computed at a ‘clamped’
value of the reaction coordinate g. Changing the value of q would lead in prin-
ciple to a different ‘random force’ and thus a different GLE representation of
the dynamics. Usually, the clamped value is chosen to be the barrier tog of the
potential of mean force.560 Since the dynamics of rate processes is usually
determined by the vicinity of the barrier top”*® and since the ‘random force’
does not vary too rapidly with a change in ¢, the resulting dynamics of the GLE
provides a ‘good” model for the exact dynamics.

The GLE may be generalized to include space and time dependent friction and
then this coordinate dependence is naturally included. Such a generalization has
been considered by a number of author>7:62-68 and most recently by Antoniou and
Swhwartz8% who found in a numerical simulation of proton transfer that the space
dependence of the friction can lead to considerable changes in the magnitude
of the rate of reaction. The GLE can also be generalized to include irreversible
effects in the form of an additional irreversible time dependence of the random
force.70.71

A further generalization is to write down a multi-dimensional GLE, in which
the system is described in terms of a finite number of degrees of freedom, each
of which feels a frictional and random force. For example, an atom diffusing on
a surface, moves in three degrees of freedom, two in the plane of the surface and
a third which is perpendicular to the surface. Each of these degrees of freedom
feels a phonon friction. Multi-dimensional generalizations and considerations
may be found in Refs. 72-82.

1.2 THE HAMILTONIAN REPRESENTATION OF THE GLE

As shown by Zwanzig#0 the GLE, Eq. 1, may be derived from a Hamiltonian
in which the reaction coordinate q is coupled bilinearly to a harmonic bath:

T 2 G4 2
H:%pq +Z px,+ m,(wx, mjwj)]. ?)

The j-th harmonic bath mode is characterized by the mass mj, coordinate x;,
momentum py; and frequency wj. The exact equation of motion for each of the
bath oscillators is mj%j + mj(ojzxj = ¢;q and has the form of a forced harmonic
oscillator equation of motion. It may be solved in terms of the time dependence
of the reaction coordinate and the initial value of the oscillator coordinate and
momentum. This solution is then placed into the exact equation of motion for the
reaction coordinate and after an integration by parts, one obtains a GLE whose
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form is identical to that of Eq. 1 with the following identification:
2

_ ) .
() = Z_ i’ cos(wjt) @)
and
.q(0 x{0)
E(t) = ; ¢; (Ix;(0) — ;—1?—&%] cos(w;t) + I%n:—(w—)) sin(w;t)). (5)

The continuum limit of the Hamiltonian representation is obtained as follows.
One notes that if the friction function y(t) appearing in the GLE is a periodic
function with period tthen Eq. 4 is just the cosine Fourier expansion of the
friction function. The frequencies w; are integer multiples of the fundamental
frequency 21—" and the coefficients c; are the Fourier expansion coefficients. In
practice, the friction function y(t) appearing in the GLE is a decaying function. It
may be used to construct the periodic function y(t;t) = > > y(t—nT)6(t—
nt)0[(n+ 1)t—t] where 0(x) is the Heaviside function. When the period t goes
to e one regains the continuum limit. In a numerical discretization of the GLE
care must be taken not to extend the dynamics beyond the chosen value of the
period t. Beyond this time, one is following the dynamics of a system which is
different from the continuum GLE.

For analytic purposes, it is useful to define a spectral density of the bath modes
coupled to the reaction coordinate in a given frequency range:

c?
J(w) =7 Z s Bl — @) = 8+ ;)L ©®)

The friction function (Eq. 4) is then the cosine Fourier transform of the spectral
density.

1.3 THE PARABOLIC BARRIER GLE

If the potential of mean force is parabolic (w(q) = - %mwﬂqz) then the GLE
(Eg. 1) may be solved using Laplace transforms. Denoting the Laplace transform
of a function f(t) as f(s) = JS" dte-'f(t), taking the Laplace transform of the
GLE and averaging over realizations of the random force (whose mean is 0) one
finds that the time dependence of the mean position and velocity is determined
by the roots of the Kramers-Grote-Hynes equation39:83

2+ s9(s) = wh @

We will denote the positive solution of this equation as X. As shown in Refs.
39,8384 one may consider the parabolic barrier problem in terms of a Fokker-
Planck equation, whose solution is known analytically. One may then obtain
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the time dependent probability distribution, and estimate the mean first passage
time® to obtain the rate. The phase space structure of the parabolic barrier
problem has been considered in some detail in Ref. 85 and reviewed in Ref. 86.

A complementary approach to the parabolic barrier problem is obtained by
considering the Hamiltonian equivalent representation of the GLE. If the potential
is parabolic, then the Hamiltonian may be diagonalized*®®":88 using a normal
mode transformation.82 One rewrites the Hamiltonian using mass weighted
coordinates g — +/md,x; — /T;x;. An orthogonal transformation matrix use
diagonalizes the parabolic barrier Hamiltonian such that it has one single negative
eigenvalue ~3 and positive eigenvalues A% j = 1, .., N, .. with associated
coordinates and momenta p pp, Y j, Py;3J = 1, .., N, ...

I s 2 12 2 2.2
sz[po"_;puj_?\ e +;}‘iyi]‘ ®)

There is a one to one correspondence between the unperturbed frequencies
o*, o) =1, ..., N, ... appearing in the Hamiltonian equivalent of the GLE
(Eg. 3) and the normal mode frequencies. The diagonalization of the potential
has been carried out explicitly in Refs. 88,90,91. One finds that the unstable
mode frequency A* is the positive solution of the Kramers-Grote Hynes (KGH)
equation (7). This identifies the solution of the KGH equation as a physical
barrier frequency.

The normal mode transformation implies that g = ugop + X Ujoyj and that
P = Ugog + Zj Ujxj. One can show,50:88 that the matrix element ugy may be
expressed in terms of the Laplace transform of the time dependent friction and
the barrier frequency A*:

19T | 99(s) -
ugo = (1+ o s =) ©)
The spectral density of the normal modes I(A)51 is defined in analogy to the
2

spectral density J(o) (cf. Eq. 6) as IM)= 5 35 u)\—”:’[é(k— A=A+ N It
is related to the spectral density J(w):

J(A)

1 = (Wi + AIm9(ir) + A2)2 + J2(A)

(10)

The dynamics of the normal mode Hamiltonian is trivial, each stable mode
evolves separately as a harmonic oscillator while the unstable mode evolves as a
parabolic barrier. To find the time dependence of any function in the system phase
space (g,pq) all one needs to do is rewrite the system phase space variables in
terms of the normal modes and then average over the relevant thermal distribution.
The continuum limit is introduced through use of the spectral density of the
normal modes. The relationship between this microscopic view of the evolution
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of a dissipative parabolic barrier and the solution via a Fokker-Planck equation
for the time evolution of the probability density in phase space has been worked
out in Ref. 92 and reviewed in some detail in Ref. 49.

Il. VARIATIONALRATE THEORY
1.1 THERATE CONSTANT

The “chemist’s view” of a reaction is phenomenological. One assumes the
existence of reactants, labeled a and products labeled b. The time evolution of
normalized reactant (ny) and product (n,) populations, na(t) + np(t) = 1, is
described by the coupled set of master equations:

ha[t) = - ana(t)+rbnb(t)
My (t) = rana(t) - Ianb (t) (11)

where the rates I, and I'y are the decay rates for the reactant and product channels
respectively. Detailed balance implies that the forward and backward rates are
related as e PEaT, = e PEeT,. In a typical experiment, one follows the time
evolution of the population of reactants and products and describes it in terms of
the rate constants T3, T,. It is then the job of the theorist to predict or explain
these rate constants.

In a realistic simulation, one initiates trajectories from the reactant well, which
are thermally distributed and follows the evolution in time of the population. If the
phenomenological master equations are correct, then one may readily extract the
rate constants from this time evolution. This procedure has been implemented
successfully for example, in Refs. 93,94. Alternatively, one can compute the
mean first passage time for all trajectories initiated at reactants and thus obtain
the rate, cf. Ref. 95.

If the dynamics is described in terms of a GLE, then one can adapt a more for-
mal approach to the problem. By expanding the time dependent friction in a series
of exponentials, one may rewrite the dynamics in terms of a multi-dimensional
Fokker-Planck equation for the evolution of the probability distribution function
in phase space. This Fokker-Planck equation has a ‘trivial’ stationary solution,
the equilibrium distribution, associated with a zero eigenvalue. Assuming that
the spectrum of eigenvalues of the Fokker-Planck equation is discrete and that
there is a ‘large’ separation between the lowest nonzero eigenvalue and all other
eigenvalues, then at long times the distribution function will relax to equilibrium
exponentially, with a rate which is equivalent to this lowest nonzero eigenvalue.
Instead of following the time dependent evolution, one then may solve directly,
as also described below, for this lowest nonzero eigenvalue.

Will these two different approaches give the same result? Usually yes, or in
more rigorous terms, differences between them will be of the order of e‘BV1
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where V1 is the energy difference between the relevant well and the barrier to
reaction. If the temperature is sufficiently low, or equivalently the reduced barrier
height sufficiently large ([3Vqt 25) then the differences are negligible. For lower
barriers, ambiguities arise and one must treat the system with care. For example,
in the Fokker-Planck equation one may put reflecting boundary conditions or
absorbing boundary conditions. The difference between the two shows up as
exponentially small terms of the order of e—BY" I the reduced barrier height
is sufficiently low, one gets noticeable differences and the decision as to which
boundary condition to use, is dependent the specifics of the problem being
studied. A careful analysis of the relationship between the phenomenological
rate constant and the lowest nonzero eigenvalue of the Fokker-Planck equation
has been give in Ref. 96.

From a practical point of view, integrating trajectories for times which are of the
order of eBV* is very expensive. When the reduced barrier height is sufficiently
large, then solution of the Fokker-Planck equation also becomes numerically very
difficult. It is for this reason, that the reactive flux method, described below has
become an invaluable computational tool.

1.2 THE REACTIVE FLUX METHOD

The major advantage of the reactive flux method is that it enables one to initiate
trajectories at the barrier top. instead of at reactants or products. Computer time
is not wasted by waiting for the particle to escape from the well to the barrier. The
method is based on the validity of Onsager’s regression hypothesis,* * which
assures that fluctuations about the equilibrium state decay on the average with the
same rate as macroscopic deviations from equilibrium. It is sufficient to know the
decay rate of equilibrium correlation functions. There isn’t any need to determine
the decay rate of the macroscopic population as in the previous subsection.

The relevant correlation function in our case is related to population fluctu-
ations. Reactants, labeled a, are defined by the region q < g¥ and products,
labeled b, are defined by the region g > g* Following the discussion in Ref.
7, one defines the characteristic function of reactants 6a (q) =6 (g* — g) and
products 8b (q) = 8(q — q*) where is the Heaviside function. At equilibrium
(0a) = 0Baeqand similarly (6p) = 6peq.

After a short induction time, the correlation of the fluctuation in population
30i = 0ieq, I = a, b decays with the same rate as the population itself,
such that (for t > t):

(80;[q(1)180:[q(t")]) = e (TatTe) (t—t")

(66%) , i=ab. (12)
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Taking the time deravitive of Eq.12 with respect to t and setting t" = 0 finds
that the reactive flux obeys:

(68:[q(0)16:[q(t)])

(667)
Due to the high barrier, it is safe to assume that the induction time is much shorter
(by a factor of e™BV#) than the reaction time (1/T") so that the time dependence
on the right hand side of Eq. 13 may be ignored. Then, noting that the derivative

of a step function is a Dirac delta function, and using detailed balance one finds
the desired formula:

=—(Tq+ TpeMetVt {=qb (13)

(6[q(0)1g(0)8:[q(t)]) .
T ey e a4
In this central result the choice of the point g (0) is arbitrary. This means that at
time t = 0 one can initiate trajectories anywhere and after a short induction time
the reactive flux will reach a plateau value, which relaxes exponentially, but at
a very slow rate, It is this independence on the initial location which makes the
reactive flux method an important numerical tool.

In the very short time limit, g (t) will be in the reactants region if its velocity at
time t = 0 is negative. Therefore the zero time limit of the reactive flux expression
isjust the one dimensional transition state theory estimate for the rate. This means
that if one wants to study corrections to TST, all one needs to do numerically is
compute the transmission coefficient k defined as the ratio of the numerator of Eq.
14 and its zero time limit. The reactive flux transmission coefficient is then just
the plateau value of the average of a unidirectional thermal flux. Numerically it
may be actually easier to compute the transmission coefficient than the magnitude
of the one dimensional TST rate. Further refinements of the reactive flux method
have been devised recently in Refs. 31,32 these allow for even more efficient
determination of the reaction rate.

To summarize, the reactive flux method is a great help but it is predicated on
a time scale separation, which results from the fact that the reaction time (1/T)
is very long compared to all other times. This time scale separation is valid,
only if the reduced barrier height is large. In this limit, the reactive flux method,
the population decay method and the lowest nonzero eigenvalue of the Fokker-
Planck equation all give the same result up to exponentially small corrections
of the order of e™BV* For small reduced barriers, there may be noticeable
differences® between the different definitions and as already mentioned each
case must be handled with care.

1.3 THE RAYLEIGH QUOTIENT METHOD

If the dynamics may be represented in terms of a GLE then usually, it can
also be represented in terms of a multi-dimensional Fokker-Planck equation. As
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already mentioned, if the reduced barrier is large enough, then the phenomeno-
logical rate is also given by the lowest nonzero eigenvalue of the Fokker-Planck
operator. The Rayleigh quotient method provides a variational route for deter-
mining this eigenvalue. Since detailed balance is obeyed, the zero eigenvalue
of the Fokker-Planck operator L is associated with the equilibrium distribution,
such that LP,, = 0. The equilibrium distribution is invariant under time reversal
(denoted by atilde). The time reversed distribution is obtained by reversing the
signs of all momenta.

It is also useful to define the transformed operator L* whose operation on a
function f is L*f = P;q‘ L(Peqf). This operator coincides with the time reversed
backward operator, further details on these relationships may be found in Refs.
43,44, L* operates in the Hilbert space of phase space functions which have
finite second moments with respect to the equilibrium distribution. The scalar
product of two functions in this space is defined as (f, g) = (fgy,. It is the
phase space integrated product of the two functions, weighted by the equilibrium
distribution P, The operator L* is not Hermitian, its spectrum is in principle
complex, contained in the left half of the complex plane.

The Rayleigh quotient with respect to a function h is defined as:

ulh] = “(‘]f:)‘). (15)

If h is an eigenfunction, then p is an eigenvalue. Importantly, just as in the
usual Ritz method for Hermitian operators, one finds that iff is an approximate
eigenfunction such that the exact eigenfunction is h = f +8f then the error in
the estimate of the eigenvalue obtained by inserting f into the Rayleigh quotient,
will be second order in &f It is this variational property that makes the Rayleigh
quotient method useful. Only, if the operator L* is Hermitian, will the Rayleigh
quotient give also an upper bound to the lowest nonzero eigenvalue.

As shown by Talkner® there is a direct connection between the Rayleigh
quotient method and the reactive flux method. Two conditions must be met.
The first is that phase space regions of products must be absorbing. In different
terms, the trial function must decay to zero in the products region. The second
condition is that the reduced barrier height BVi > 1. As already mentioned
above, differences between the two methods will be of the order e BV

A useful trial variational function is the eigenfunction of the operator L* for
the parabolic barrier which has the form of an error function. The variational
parameters are the location of the barrier top and the barrier frequency. The
parabolic barrier potential corresponds to an infinite barrier height. The derivation
of finite barrier corrections for cubic and quartic potentials may be found in Refs.
44,45,100. Finite barrier corrections for two dimensional systems have been
derived with the aid of the Rayleigh quotient in Ref. 101. Thus far though, the
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Rayleigh quotient method has been used only in the spatial diffusion limited
regime but not in the energy diffusion limited regime (see the next Section).

1.4 VARIATIONAL TRANSITION STATE THEORY

The fundamental idea underlying classical transition state theory (TST) is due
to Wigner.2% Inspection of the reactive flux expression for the rate (Eq. 15)
shows that an upper bound to the reactive flux may be obtained by replacing
the dynamical factor 6;[q(t)] with the condition that the velocity is positive. As
explained by Wigner, considering only those trajectories with positive velocity,
leads at most to over-counting the reactive flux, since a trajectory which crosses
the dividing surface in the direction of products may return to the dividing
surface. More formally, the product ¢ (0)6 [qa (t)]I< §(0) 6( g (0) ) . If the velocity
is negative, then the inequality is obvious. If the velocity is positive, then
0[g,(t)] < 1. Therefore, the TST expression gives an upper bound to the
reactive flux estimate for the rate.

In a scattering system, the reactive flux is invariant with respect to variation
of the dividing surface, as long as the dividing surface has the property that all
reactive trajectories must cross it. Therefore, one may vary the dividing surface
S0 as to get a minimal upper bound, this is known as variational TST (VTST).
Reviews of classical VTST may be found in Refs. 46-49,103,104, But when
applying VTST to condensed phase systems one immediately faces the problem
of defining what is meant by ‘reactive trajectories’. Consider a typical double
well potential system. Intuitively, a reactive trajectory is one that is initiated in
the reactants well and ends up in the products well. But of course, over an infinite
time period, any trajectory will visit the reactant and product well an infinite
number of times. In contrast to a scattering system, one cannot divide the phase
space into disjoint groups of reactive and unreactive trajectories.

The saving aspect is again a time scale separation. The time atrajectory spends
in a well before escaping is of the order of eBV+ If the reduced barrier height is
sufficiently large, this is a very long time compared to the time a particle spends
when traversing between the two wells. For these shorter times, one can label
trajectories as reactive by the condition that they start out in the reactant well and
end up in the product well. The dividing surface must then have the property
that all these trajectories must cross it. When these conditions hold, the TST
method provides a variational upper bound to the numerator in the reactive flux.
Under the same conditions, a change in the dividing surface will at most lead
to negligible variations in the denominator of Eq. 15 which are of the order of
e BV". For practical purposes, VTST is thus applicable also to condensed phase
systems.
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The TST expression®*® for the escape rate is given by

r_ {dpqdall, dp, dx,5(f)(Vf - p)8(Vf - ple FH 16
[ dpqdq H) dp,dx,8(—f)e~PH . (16)

The Dirac delta function &(f) localizes the integration onto the dividing surface
f = 0. The gradient ofthe dividing surface (Vf)is in the full phase space, p is the
generalized velocity vector in phase space with components {4, Dq; Xj, Py ) =
1,..., N}, and 6(y) is the unit step function which restricts the flux to be in one
direction only. The term vf ‘p is proportional to the velocity perpendicular to the
dividing surface. The numerator is the unidirectional flux and the denominator
is the partition function of reactants.

The choice for the transition state implicit in Kramers® original paper,% is the
barrier top along the system coordinate q. The dividing surface takes the form
f =g — g* and the rate expression reduces to the so called “one dimensional”
result

e~ Bwla*) Wq

_ (2np)+ ~Pa—pvi
frst = (B) 2 T e pvat@ ~2m ¢ 1n

where the barrier of the potential of mean force w(q) is located at q = g*.

Kramers,® Grote and Hynes® and H&nggi and Mojtabai® showed that if one
assumes that the spatial diffusion across the top of the barrier is the rate limiting
step, then by approximating the barrier as being parabolic with frequency ®®,
one finds (see also Eq. 7) that the rate is given by the expression

Af
Mo = C—U“irTST~ (18)

The same result may be derived® from the Hamiltonian equivalent representation
for the parabolic barrier (see Eq. 8). Since motion is separable along the
generalized reaction coordinate p, TST will be exact (in the parabolic barrier
limit) if one chooses the dividing surface f = p — p*. Inserting this choice
into the TST expression for the rate,®” also leads to Eq. 18, thus showing that
Kramers’ result in the spatial diffusion limited regime is identical to TST albeit,
using the unstable collective mode for the dividing surface. The prefactor in Eg.
18, is not of dynamical origin but is derived from the equilibrium distribution.
The parabolic barrier result is suggestive. It shows thatthe best dividing surface
may be considered as a collective mode which is a linear combination of the
system coordinate and all bath modes. A natural generalization of the parabolic
barrier result would be to choose the dividing surface as a linear combination of
allcoordinates but to optimize the coefficients even in the presence of nonlinearity
in the potential of mean force and a space dependent coupling. Such a general
dividing surface is by definition a planar dividing surface in the configuration
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space of the system and the bath since it defines a hyperplane. The general
form of a planar dividing surface is given by f = ao q +Z]anj , Where the
coefficients are normalized according to a2 + Z)aj2 =1

One may now define a potential of mean force w[f] along the generalized
coordinate f as:

wlf] = —kgTln <Lf - (8lf —aoq—)_ a)xJDCoord) (19)
)

where the length scale L; is defined as: L; = Jdfe 17l and the averaging is
over all coordinates, with the thermal weighting e -BY where the potential V is
the sum of all potential terms of the Hamiltonian, Eq. 3.

Because the generalized coordinate f is a linear combination of all bath modes
and the potential is quadratic in the bath variables one can express the potential

of mean force w[f] in terms of a single quadrature over the system coordinate
q:107

1
2\ ¥ (o
o Bwlf] _ (52/; ) J dgel~BLEAZ (aC—N +w(a)]) (20)

The collective frequency, A, and the collective coupling parameter, C are given,

byA™2 =3 -—f and C =ap +) <z . TheTSTexpressionfortherate
using the planar d|V|d|ng surface reduces to 'the result:

F[f] = rTSTe—-{i[w[f]—w(qi]]' (21)

Optimal planar dividing surface VTST is thus reduced to finding the maximum
of the free energy wif].

The free energy w[f] must now be varied with respect to the location f as well
as with respect to the transformation coefficients {ao, a;j = 1,...,N}. The
details are given in Ref. 107 and have been reviewed in Ref. 49. The final result
is that the frequency A and collective coupling parameter C are expressed in
the continuum limit as functions of a generalized barrier frequency A One then
remains with a minimization problem for the free energy as a function of two
variables - the location f and A Details on the numerical minimization may be
found in Refs. 68,93. For a parabolic barrier one readily finds that the minimum
is such that f = 0 and that A = A*. In other words, in the parabolic barrier
limit, optimal planar VTST reduces to the well known Kramers-Grote-Hynes
expression for the rate.

Optimal planar dividing surface VTST has been used to study the effects of
exponential time dependent friction in Ref. 93. The major interesting result was
the prediction of amemory suppression of the rate of reaction which occurs when
the memory time and the inverse damping time (%) are of the same order. When
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this happens, the time it takes the particle to diffuse over the barrier is similar
to the memory time and the particle *feels’ the nonlinearity in the potential of
mean force. This leads to substantial reduction ofthe rate relative to the parabolic
barrier estimate.

A study of the effects of space and time dependent friction was presented in
Ref. 68. One finds a substantial reduction of the rate relative to the parabolic
barrier estimate when the friction is stronger in the well than at the barrier. In all
cases, the effects become smaller as the reduced barrier height becomes larger.
Comparison with molecular dynamics simulations shows that the optimal planar
dividing surface estimate for the rate is usually quite accurate.

A planar dividing surface might seem to lead to divergences in the case of
a cubic potential of mean force. This question has been dealt with at length in
Ref. 108. By introducing a kink into the planar dividing surface one can remove
the divergence. In practice, if the reduced barrier height is sufficiently large
[.’)V:c 25), the kink has hardly any effect on the location of the barrier or the
generalized barrier frequency A.

A second difficulty has to do with the fact, that strictly speaking, the maximum
of the free energy is « and this limit is reached when the generalized barrier
frequency A = 0.%° In this case, though, the planar surface f is no longer a
dividing surface, as it is perpendicular to the reaction coordinate q and so does
not divide between reactive trajectories. In practice, the VTST flux as a function
of the generalized barrier frequency A becomes large when A is large, reaches a
minimum for some smaller value of A then increases, reaching a maximum and
then goes to 0 when A — 0. As long as the barrier height is sufficiently large
(BV* 25), the minimum is well defined, and there isn’t any special problem. For
smaller barrier heights, one may reach a situation in which the only minimum of
the function is found at A = 0 and in this case, one can no longer use a planar
dividing surface.®®

This does not mean that VTST fails when the barrier is small. The concept
of a planar dividing surface may lose its meaning, but it is possible to generalize
VTST using curved dividing surfaces.* ' Instead of reducing the problem
to a single degree of freedom, one may define two degrees of freedom, a col-
lective reaction coordinate and a collective bath mode, both of which are linear
combinations of all degrees of freedom, but such that the two collective modes
are perpendicular to each other. One constructs a free energy surface which is
the mean potential at each point in the configuration space of the two collective
modes. VTST is then reduced to finding the dividing surface that minimizes the
flux in this two degrees of freedom system. The solution to this minimization
problem is a classical trajectory with infinite period which divides the config-
uration space between reactants and products.**° This minimization may
be used also for low barriers and is guaranteed to bound the exact reactive flux
from above. In Ref. 110 it has been applied to a quartic double well system
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at BV* = 1. Differences between this VTST estimate and the Kramers-Grote-
Hynes factor were not very big.

Drozdov and Tucker have recently criticized the VTST method™ claiming
that it does not bound the ‘exact’ rate constant. Their argument was that the
reactive flux method in the low barrier limit, is not identical to the lowest nonzero
eigenvalue of the corresponding Fokker-Planck operator, hence an upper bound
to the reactive flux is not an upper bound to the ‘true’ rate. As already discussed
above, when the barrier is low, the definition of ‘the’ rate becomes problematic.
All that can be said is that VTST bounds the reactive flux. Whenever the reactive
flux method fails, VTST will not succeed either.

VTST is a formalism which enables one to obtain estimates for the rate in
the presence of non parabolic potentials. It has been used for the cusped barrier
problem™ and most recently for estimating the rate in bridged systems, where the
distance between the reactant and product wells is very large.** There are other
methods for studying such nonlinear systems. Calef and Wolynes™ suggested
a heuristic method, which generalizes the Kramers-Grote-Hynes expression by
fitting a temperature dependent barrier frequency so that the partition function of
the associated parabolic well best mimics the partition function of the inverted
potential in the barrier region. This procedure is very convenient, since in many
cases, it leads to simple analytical expressions for the rate, as for example in the
bridged system.®* Its disadvantage is that it is in reality only an interpolation
formula, correct in the limit of strong friction and it reduces to the TST expression
when friction is weak. Berezhkovskii et al** suggested a different approximate
solution and applied it to cusp shaped and quartic barriers. Drozdov, improved
this approximation, so that it also agrees with the parabolic barrier limit.:

VTST has also been applied to systems with two degrees of freedom coupled
to a dissipative bath.s Previous results of Berezhkovskii and Zitserman which
predicted strong deviations from the Kramers-Grote-Hynes expression in the
presence of anisotropic friction for the two degrees of freedom™"** were well
accounted for. Subsequent numerically exact solution of the Fokker-Planck
equation” further verified these results.

The main advantage of the VTST method is that it can be applied also to
realistic simulations of reactions in condensed phases.!?> The optimal planar
coordinate is determined by the matrix of the thermally averaged second deriva-
tives of the potential at the barrier top. VTST has been applied to various models
of the CI™+CH3Cl Sn2 exchange reaction in water,”** a system which was
previously studied extensively by Wilson, Hynes and coworkers.”** Excellent
agreement was found between the VTST predictions for the rate constant and the
numerically exact results based on the reactive flux method. The VTST method
also allows one to determine the dynamical source of the friction and its range,
since it identifies a collective mode which has varying contributions from differ-
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ent modes of the composite system and bath. The VTST method for determining
the friction is similar to the local normal modes method developed subsequently
by Stratt and coworkers. 12°

\VA TURNOVER THEORY
V.1 CLASSICAL MECHANICS

When the coupling between the system and the bath is weak, the rate limit-
ing step becomes the diffusion of energy from the thermal bath to the system.
Transition state theory, using a dividing surface in configuration space grossly
overestimates the rate since it assumes that reactive trajectories are thermally dis-
tributed. In the energy diffusion limited regime, the exchange of energy between
the particle and the bath is slow, and once the particle has sufficient energy to
react it does so. The population of reactive particles with energy above the top
of the barrier is severely depleted relative to the canonical distribution. In this
limit, one must consider the dynamics, a thermal equilibrium theory such as TST
is insufficient (even if one chooses a dividing surface in energy space'?127),

Kramers solved the problem in the underdamped limit but could not find a
uniform formula valid for all damping strengths. In adeep analysis of the Fokker-
Planck equation in phase space, valid when the friction is Ohmic (9(s) = 7),
Mel’nikov and Meshkov128-129 derived a uniform expression for the rate leading
from the energy diffusion limited expression to the TST expression for the rate
Eq. 17). The Kramers-Grote-Hynes expression for the rate (Eq. 18) is valid
in the spatial diffusion limited regime and reduces to the same TST expression
when the damping becomes weak. Mel’nikov and Meshkov therefore argued that
a uniform theory, valid for all friction strengths is obtained by multiplying their
expression with the prefactor (75F / W*) of the Kramers-Grote-Hynes expression.
Pollak, Grabert and Hanggi (PGH)® provided a uniform solution for the rate
also in the presence of memory friction, and showed why the uniform expression
really is a product of three terms - a depopulation factor for the energy diffusion
limited regime, the TST rate expression and the Kramers-Grote-Hynes factor
which accounts for the spatial diffusion limited regime. In the underdamped
limit, the Mel’nikov Meshkov and PGH theories are identical. But even for
Ohmic friction they are different away from this limit. In the following, we will
briefly outline the ideas underlying PGH theory and compare whenever necessary
with the Mel’nikov-Meshkov approach.

The main difference between the two approaches is that PGH consider the
dynamics in the normal modes coordinate system. At any value of the damping,
if the particle reaches the parabolic barrier with positive momentum in the unstable
mode p, it will immediately cross it. The same is not true when considering the
dynamics in the system coordinate for which the motion is not separable even
in the barrier region, as done by Mel’nikov and Meshkov. In PGH theory the
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energy diffusion limited regime is not characterized by a small damping constant
(% < 1), but by a weak coupling between the unstable normal mode p and the
other stable modes.

The potential of mean force may always be written as:

1

w(a) =w(0) — 3w ¢ +-wi(a) 22)

where wy(q) is designated as the nonlinearity of the potential of mean force and
we assumed that the barrier is located at g = 0. The exact equation of motion for
the unstable mode is:

5 — A p = —wgow] (uoop + u10)
1 (Moo p +U10). (23)

where we used the notation uic =} ; ujoy; and ud,+ u? =1 (see also Eq.
9). If u; = 0, the motion of the unstable mode is decoupled from the rest of the
stable modes. In this limit, the escape rate would be zero since the particle cannot
escape from the well without receiving the necessary energy from its surrounding.
The small parameter which identifies the energy diffusion limited regime is thus
ur. For - Ohmic friction, sinceug, = (1 +5%)~"', itis clear that in the limit
thatg — 0; u3, — 1 sothatu; — 0. In other words, the weak damping limit,
identified as -z — 0 is a special case of the energy diffusion limited regime,
identified asu; < 1. In the presence of memory friction, there exist limits such
that u,— 0 but A¥ # w*50 Claims to the contrary not withstanding,™ using
u, as the perturbation parameter leads therefore to a more general theory for the
depopulation factor than any theory based on the weak damping limit which is
defined by a small damping constant, defined as ¢(0).

The energy E of the unstable mode is defined as: E =3p? - ‘Z?\izpz +
wi(Uoop). When the particle is in the close vicinity of the barrier one may
ignore the nonlinear part of the potential w;, . If the energy E > 0 the particle will
cross the barrier, if E < 0 it will be reflected. Following Kramers we imagine
injecting particles at a constant rate near the bottom of the well and removing
them when they reach the adjacent well or the continuum. The system will
approach a steady state probability W with a constant flux across the barrier. If
the barrier height is sufficiently large with respect to ksT then close to the bottom
of the well the probability W will be identical to the thermal distribution.

For E <0, let f(E)dEdt denote the probability to find the system within the
time interval dt, with a mode energy between E and E + dE at the barrier of the p
mode. For a thermal distribution W, near the barrier top feq(E) = [%;_ Q—ie*f“.
The rate of transitions out of the well is by definition

M= L dEf(E) (24)

since all particles reaching the barrier with positive energy in the unstable mode
escape. This is not true for the system coordinate g where the coupling with
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the bath can cause the particle to recross the barrier and is a major difference
between PGH theory and the Mel’nikov Meshkov approach. The distribution f (E)
is determined by the conditional probability P(E|E")dE that a system leaving the
barrier region with energy E’ in the p mode returns to the barrier with an energy
between E and E + dE. In the steady state,> one will find that the distribution of
particles f(E) at energy E is related to the distribution at energy E’ by the relation

0
£(E) :J ] dE/P(EJE/)F(E"). (25)

The boundary condition for this integral equation is that deep in the well, equilib-
rium is maintained. If the barrier height is large with respect to kgT, this allows
one to replace the lower limit of the integration by — oo.

The dynamics of the energy diffusion process is in the probability kernel. As
in the theory of Mel’nikov and Meshkov, if the barrier height is large relative
to ksT, the rate determining process occurs only at energies in the vicinity of
the barrier top and so only the structure of the energy kernel around the barrier
top is important. As detailed in Refs. 49,50 the ensuing probability kernel is a

Gaussian:
% E _ EI A 2
P(EE’) = (%) exp (‘E(“T+“)‘> . (26)

The important quantity here, is A which is the average energy lost by the unstable
p mode as it traverses from the barrier to the well and back. The equation of
motion for the unperturbed unstable mode is § + V’(p) = 0 and this defines the
trajectory p(t) which at time —eo is initiated at the barrier top, moves to the well,
reaches a turning point and then comes back to the barrier top at the time + <o,
The force exerted by the unstable mode on the bath comes from the nonlinearity
F(t) = —w{[ugop(t)]. The average energy loss A, to first order in u, is then
found to be (see also Eq. 10):

[e9)

A= j_m DAL FO) = j ML), 27)

—0C

For many one dimensional potentials, the infinite period trajectory is known
analytically so that also the Fourier transformed force F(A) is known analytically.
Finding the energy loss reduces then to a single quadrature.

At this point, one may solve the integral equation, a detailed description of the
solution method may be found in Refs. 51,128, here we summarize the result.
The rate may be factorized into a product of three factors:

Al
I'=Trst¥ . (28)
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The TST rate Isr has already been defined above (Eq. 17), the Kramers-Grote-
Hynes spatial diffusion factor is defined in Egs. 7 and 18. The depopulation
factor v is found to be:

T=Y(A)= —
(A) exp( N X X2+1z

2 (29)

1 Jm In[1 — e-BA(X”%)])
When the energy loss is small in comparison to keT the depopulation factor
reduces to y ~ BA and one recovers Kramers’ estimate for the rate in the energy
diffusion limit. When the energy loss is large compared to kBT the depopulation
factor approaches unity exponentially fast, y ~ 1—%Ae‘ 7 EQ. 28 gives
an expression which covers all possible damping strengphs and thus provides a
uniform solution for the Kramers turnover problem. The result given in Eq. 29 is
correct for a single well potential. For a double well potential in which the energy
loss in each of the two wells is A,, Ap, one must revise the integral equation to
take into consideration the flux returning from each one of the wells. As shown
by Mel’nikov,"®* the depopulation factor becomes:

Y(Aq)Y(4p)

T VB A (@)

PGH theory has its limitations. The derivation depends on three central
conditions:

(a) First order perturbation theory, uf < 1.

(b) The energy loss is mainly determined by the dynamics at the barrier energy.

(c) A large reduced barrier height v* > kgT.
When the ‘small’ parameter v, is of the order of unity, the energy loss will typ-
ically become large too. Since the depopulation factor becomes exponentially
insensitive to the energy loss when it is large, it will often be the case,™ that even
though condition (a) does not hold, the rate expression remains quite accurate.
In the presence of memory friction it may happen that the bottleneck for the
energy diffusion process is at energies substantially lower than the barrier height.
as demonstrated recently by Tucker and coworkers.®*** In this case PGH
theory must be substantially modified, see for example the discussion in Ref.
127. Finite barrier corrections to the depopulation factor have been discussed
by Mel’nikov.* In the presence of memory friction, even when the perturba-
tion parameter is small it may happen that the effective barrier for the unstable
mode motion will become very small and this will again cause a breakdown of
PGH theory. This deficiency may be corrected by using a curvilinear reaction
coordinate, as suggested by Reese and Tucker.”™

The solution of the integral equation (25) may be also used to obtain infor-
mation on the distribution f (E) of particles hitting the barrier.?® One finds for
example, that in the underdamped limit, the average energy is VA < kgT
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in agreement with earlier predictions of Blttiker et al."* In this limit, reactive
trajectories with substantial energy above the barrier get depleted and their dis-
tribution is very different from the thermal distribution. More details about the
distribution may be found in Ref. 136.

PGH theory has been extended. It can be used in conjunction with VTST
and optimized planar dividing surfaces,®® in which case, the energy loss is to
be computed along the coordinate perpendicular to the optimal planar dividing
surface. In the same vein it has been generalized to include the case of space and
time dependent friction.® **

In many cases, when the damping is weak there is hardly any difference
between the unstable mode and the system coordinate, while in the moderate
damping limit, the depopulation factor rapidly approaches unity. Therefore,
if the memory time in the friction is not too long , one can replace the more
complicated (but more accurate) PGH perturbation theory, with a simpler theory
in which the small parameter is taken to be Z—i'f for each of the bath modes. In

such a theory, the average energy loss has the r%uch simpler form:

1(* [* ' )
A=2J j dtdt’g(t)y(t—t")a(t’), (31)

-0 v —00
The expressions for the depopulation factor as given in Egs. 29 and 30 for the
single and double well potential cases respectively, remain unchanged. This
version of the turnover theory for space and time dependent friction has been
tested successfully against numerical simulation data, in Refs. 68,137.

Away from very weak damping, the PGH estimate for the energy loss as given
in Eq. 27 typically gives lower energy losses than the Mel’nikov estimate (Eq.
31). This is caused by the fact that in PGH one is evaluating the energy loss
from the unstable normal mode which is already affected by the medium. The
differences show up in the intermediate turnover region, where typically the PGH
estimate for the rate is lower than the Mel’nikov-Meshkov estimate. Numerical
simulations indicate that the PGH estimate is in fact more accurate.%

The turnover theory has also been generalized to systems with more than one
dimension in which the Hamiltonian describing the dynamics of the particle in
the absence of friction has more than one degree of freedom. The existence
of two (or more) system modes leads to a much richer physics than in the one
dimensional case. In the weak damping limit, a critical parameter is the extent
of coupling between the two modes. If the coupling is stronger than the coupling
of each mode to the bath, then there will be efficient energy transfer between
the modes and the spectator mode will be able to ‘feed’ energy into the reaction
coordinate. In such a case, one would expect the two dimensional rate to be
larger than the one dimensional.**** If the intramode coupling is weaker than
the coupling to the baths then one would expect the multi-dimensional dynamics
to reduce to an effective one dimensional case.*® A complete turnover theory
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should be able to reduce correctly to all these limits and provide solutions also
for intermediate regimes.

The extension of Kramers energy diffusion result to the multi-dimensional
case, when the coupling between the two modes is ‘strong’ was given by
Matkowsky, Schuss and coworkers, 2 Borkovec and Berne™ ** and Nitzan.®
The multi-dimensional solution in the spatial diffusion was given by Langer’ for
Ohmic friction and by Nitzan®* and Grote and Hynes= for memory friction.
In the moderate and strong damping regimes, a critical parameter is the friction
anisotropy, the ratio of damping strengths in the two modes. Berezhkovskii and
Zitserman1 "** have shown that depending on the coupling between the modes
and the friction anisotropy, one can obtain regimes in which the “‘standard’ Langer
solution, which is based on a parabolic expansion around the saddle point of the
multi-dimensional potential energy surface fails. A turnover theory which deals
uniformly with all these cases has been proposed by Hershkovitz and Pollak’™*
and reviewed in Ref. 49.

V.2 SEMICLASSICAL TURNOVER THEORY.

There are two main ingredients that go into the semiclassical turnover theory,
which differ from the classical limit> In the latter case, a particle which has
energy E > 0 crosses the barrier while if the energy is lower it is reflected. In a
semiclassical theory, at any energy E there is a transmission probability T(E) for
the particle to be transmitted through the barrier. The second difference is that the
bath, which is harmonic, may be treated as a quantum mechanical bath. Within
first order perturbation theory, the equations of motion for the bath are those of a
forced oscillator, and so their formally exact quantum solution is known.

These differences imply that the classical expression for the escape rate Eq.
24 is replaced by its semiclassical version:

= J dET(E)f(E). (32)
The integral equation (25) is also modified:
f(E) = J dE'P(E[E)R(ENF(E"). (33)

where R(E) = 1 — T(E) is the reflection coefficient. The quantization of the bath
of stable normal modes affects the probability kernel P(E|E"), which is no longer
Gaussian (see also Eq. 38 below). Although the energy loss remains the same
as given in Eq. 27, the variance is larger than the classical variance and higher
order cumulants do not vanish.

If one uses for the transmission coefficient, the parabolic barrier result

2nE

T(E) = [+ expl ) (34)
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then the solution of the integral equation can be obtained in closed form. The
resulting expression for the rate is valid only for temperatures such that ABAF <
2w, that is for temperatures above the crossover temperature**** that separates
between tunneling dominated reaction at low temperatures and activated barrier
crossing above it. The derivation follows the same path as the solution of the
classical equation. Details are provided in Ref. 51. The resulting expression for
the rate now becomes a product of four factors:
A

Tq = rTSTE:YQ~ (35)
The quantum thermodynamic factor Z is the quantum correction to the Kramers-
Grote-Hynes classical result in the spatial diffusion limited regime, derived by
Wolynes:**

Q]
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where wn, :% are the Matsubara frequencies and w, is the harmonic fre-
quency of the reactants well in the potential of mean force w(q).

The quantum depopulation factor also differs from the classical and takes the
form:

ABAE o In[1 — P(x —1/2)]
Yqo = exp ( 5 sin(ABAT/2) Jim dxcosh(xhﬁ?\i) —cos(hBAi/Z)) (37)

where the Fourier transformed quantum probability kernel is given by the exp
sion:

1 r’ I(A)F(A)2[cosh(ABA/2) — cos(x/BA]

“hPx-tDl =77 ] A sinh(1ipA/2) -38)

—00

where F(A) is the Fourier transform of the force as given in Eq. 27.

This semiclassical turnover theory differs significantly from the semiclassical
turnover theory suggested by Mel’nikov,” who considered the motion along the
system coordinate, and quantized the original bath modes and did not consider
the bath of stable normal modes. In addition, Mel’nikov considered only Ohmic
friction. The turnover theory was tested by Topaler and Makri,® who compared
it to exact quantum mechanical computations for a double well potential. Re-
markably, the results of the semiclassical turnover theory were in quantitative
agreement with the quantum mechanical results.

The expressions presented above are restricted since we used the parabolic
barrier transmission probabilities. Extension of the theory to temperatures below
the crossover temperature may be found in Ref. 136. More sophisticated quantum
rate theories will be discussed in Section V.
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V.3 TURNOVER THEORY FOR ACTIVATED SURFACE
DIFFUSION.

Activated diffusion occurs in a variety of different physical contexts, including
surface diffusion of atoms and molecules,?* the current voltage characteristics
of superconducting devices™ or the rotation of molecules in solids or on sur-
faces.™ Experiments on diffusion on metal surfaces have shown in recent years
that there is a finite probability that a diffusing atom will hop over more than one
adjacent site before being retrapped.?* The activation energy for multiple hops
has been found to be larger than the activation energy for single hops.?* There is
thus experimental impetus for working out a turnover theory for surface diffusion.
Long hops were observed in a variety of numerical simulations.***" The ex-
perimental observations have revived interest in the classical theory of activated
rate processes,® =1t and the escape dynamics of a particle moving on
an infinite periodic potential.

Activated surface diffusion may be modeled by a one dimensional GLE in
which the potential of mean force w(q) is a periodic potential, with alternating
barriers and wells. The distance between adjacent wells (the lattice length) is
denoted lo This problem is richer than the escape problem in a single or a double
well potential discussed above. Here, beyond the rate of escape from a well (I'),
the particle has a probability Pj of hopping a distance jlo before being retrapped.
The turnover theory gives explicit expressions for these probabilities as a function
of the damping strength. From these quantities one obtains the mean squared
hopping length (1%) = 322, P;j?13 and thus the diffusion coefficient which is
D= lF(lz .156,162

2

As in the single and double well case, the starting point for the evaluation of
the escape rate is an equation for the stationary flux of particles exiting each well
at either barrier.*®* The number of particles per unit energy and per unit time
hitting the right (left) barrier of the j-th well with positive (negative) velocity
is denoted by (f;") (fj™) For simplicity, the transmission probability through the
barrier is taken as the parabolic barrier result (see Eq. 34) although one may also
use anharmonic transmission probabilities, as done for example in Ref. 136. The
reflection symmetry of the potential and the boundary conditions about the 0-th
well implies that £} (E) = fZ;(E).

As the particle traverses from one barrier to the next it changes its energy.
The conditional probability kernel P(E|E") that the particle changes its energy
from E” to E is determined by the energy loss parameter & = A and a quantum
parameter a = 5123% The quantum kernel is as in Eq. 38. The main difference
between the double and single well cases and the periodic potential arises in the
steady state equation for the fluxes:

i (E) = J_ dE'P(E[E")R(E)f; (E') + T(ENF, (EN)]. (39)
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The boundary conditions for the fluxes are:

fF(E) = 8jo5——=e PF,  E— —oo (40)
where Jj, is the Kronecker *5” function, and C is the equilibrium ratio of panltlgn
functions around the barrier and the bottom of the well: (C=2¢? sin(Z)Ze V9,
see also Eq. 36.

The number of particles per unit time, trapped in the j-th well (I}), is given by
the difference between the incoming and outgoing fluxes of the j-th well:

o0
= | CETEI, (€)+ 0 (8) ~ 1 (E) — 1 (B @1
-0

The rate of escape I from the 0-th well is ' = —I'o. The probability of being
trapped at the j-th well is Pj%:.

The periodicity of the potential implies that one can solve the integral equations
by Fourier transforms, the details may be found in Ref. 163. The result for the
partial rates is:

2
N = —sd%JO dksinz(‘z‘)cos(jk)
sin(Z) [ In[G(t — % k)]
X expl a Jﬁmdrfcosh(%ﬁ)—cos(%)}' (42)

r . .
where I'yy = FTSTE% is the rate of escape from the 0-th well in the spatial
diffusion limited regime. The expression for the diffusion coefficient simplifies
considerably because of the infinite summation:

=Yg expl

D g sin(Z) % In[1 + P(t -5

g JVOO dt ] (43)
where Dsd = }_lzl“sdis the diffusion coefficient in the spatial diffusion limit and
is independent of the energy loss &. The ‘depopulation factor’ YqQ is as given in
Eq. 37.

Egs. 42 and 43 provide a uniform expression for the partial rates, the decay
rate and the diffusion coefficient in terms of the energy loss &, the quantum
parameter a and the rate expression in the spatial diffusion limit. The mean
squared traversal distance may be obtained directly from the ratio of the diffusion
coefficient to the escape rate.

From an experimental point of view, a quantity of major interest is the hopping
probability distribution P;. A major source of friction for surface diffusion of
metal atoms on metal surfaces is phonon friction. As shown in Refs. 164-167,
the typical phonon friction is expected to be Ohmic (although there are claims
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that it is superohmic’®) and rather weak.® Since the timescale in which
metal atom diffusion is measured is typically seconds, the reduced barrier height
for diffusion is usually rather large BVIt > 15. Therefore the characteristic
reduced energy loss found for such systems is 3 < & < 10. In this limit of
weak damping but moderate to large energy loss, the expressions for the hopping
distribution simplify considerablys: and in the classical limit (a — o) they
become exponential in the energy loss &:%"°

j—3/2

Piv1 =P_(41) =~
P (j+1) \/7?5
This result has a simple physical interpretation. When the energy loss is large, the
distribution of escaping particles is thermal. *® Therefore the fraction of particles

that start at a barrier top and make it to the adjacent barrier top is given by (the
barrier energy is 0):

CRE A P (44)

© % B’ Ve, 2
F2i ~L dEJo dE'P(EJE/Je PE :erfc(—z—) ~ \/—7—1—36 4 85> 1, (45)
where the classical Gaussian probability kernel (Eq. 26) was used. The general-
ization to longer hogs is evident.

In this exponential hopping limit, the activation energy for a hop length of
(j + Do is larger by kgTd/4 than the activation energy for a hop whose length
is jlo. This result is in good agreement with experimental observation for the
diffusion of Pt on the Pt(110)-( 1 x2) missing row reconstructed surface.2* For this
system, the reduced energy loss varies from 5.8 to 7.4 over the temperature range
studied experimentally (300-380 K). The absolute magnitude of the energy loss
is estimated to be 0.19 eV leading to an added activation energy of ~ .05 eV for
double jumps as compared to single jumps. A somewhat different interpretation
of the added activation energy has been suggested in Ref. 171.

The exponential hopping limit can be worked out in the presence of tunnel-
ing,}"2 one then has to add the transmission factor into Eq. 45. The result is that
the quantum double hopping probability is reduced by the factor Z-cot( 7z)< 1
showing that tunneling and above barrier reflection tend to reduce the multiple
hopping probability. This reduction, first discovered in Ref. 163 leads to an in-
teresting inverse isotope effect. The diffusion coefficient has two contributions,
one is the escape rate T, the other is the mean squared hopping length (I*). The
former is always increased due to tunneling. The latter is always decreased due
to tunneling and above barrier reflection. The reduction is much larger for weak
damping ( 8 << 1) than for strong damping ( 6 >> 1). The net result is that when
the energy loss is small, the quantum diffusion coefficient is smaller than the
classical but for large energy losses, it is larger.

In a typical experiment?*'* one measures the time dependence of the
spatial probability distribution of the initially localized particle. At long times
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the evolution is universal, controlled by the diffusion equation and the shape of the
distribution is Gaussian. At the early stage however, the shape of the distribution
is sensitive to the hopping distribution. The time dependent distribution is a
function of only three parameters, the energy loss 3, the rate I'sq and the quantum
parameter a. In contrast to the procedures used by the experimentalists,t+7
where they assume that each I is an independent parameter, in the classical limit,
one should fit the complete time dependent distribution using only & and T'sq as the
two experimental parameters. All measured time dependent distributions have
been shown to be described accurately using this two parameter theory.® "7
Finally, it should be mentioned that the power of the turnover theory for multiwell
systems reviewed here has not been yet fully appreciated by the community. For
example, in Ref.,"®the authors claim that the Mel’nikov method is generally not
valid in the multiwell case’. These authors use the Onsager-Machlup formalism,
valid for very weak noise, in which the escape dynamics is described in terms
of optimal paths for which the friction along the path is minimized."® This
approach, is of interest in itself, and has not yet been applied systematically to the
periodic potential problem. However, the Mel’nikov formalism can be applied
to finite multiwell problems, where for each specific potential one must modify
the integral equation (see Egs. 25 and 39) according to the structure of the wells
and barriers of the problem at hand.

V. QUANTUM RATE THEORY
V.1 REAL TIME METHODS

A major unsolved problem in theoretical chemistry today is obtaining quantum
reaction rates in large systems. Large, meaning anywhere between four atoms
and infinity. The advent of fast computers allows for simulations of force fields
for systems of ever increasing size. The use of classical mechanics as a tool
for studying the dynamics is by now a standard procedure. However, the Monte
Carlo methods which are essential for obtaining numerically exact quantum rates
have thus far largely eluded the quantum dynamicist. The averaging over a large
number of oscillatory terms, even with today’s computers, does not converge.
The impressive state of the art computations on dissipative system? 118
remain limited and are not readily generalized to large ‘realistic’ systems.:

One way of overcoming these problems is by treating the dissipation approxi-
mately, Whether one uses the Lindblad form'*® or second order perturbation
theory,**** one can write down quantum dissipative equations of motion which
are linear in the density. If the system is limited to two or three degrees of freedom,
one can integrate the resulting equations of motion exactly. This methodology
has been developed extensively by Kosloff, Tannor and their coworkersies
and is today perhaps the most practical tool for understanding the effects of dis-
sipation on quantum processes. The major disadvantage of this methodology is
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its approximate and phenomenological character, especially when the damping
is moderate or strong.197

A different way, developed extensively by Schwartz and his coworkers,**® ** is
to use approximate quantum propagators, based on expansions of the exponential
operators. These approximations have been tested for a number of systems,
including comparison with the numerically exact results of Ref. 38 for the rate in
a double well potential, with satisfying results. **

Much effort has been expended in recent years in developing semiclassical real
time methods,”**® which are based on initial value representations, following
Herman and Kluk* The advantage of the semiclassical approach is that one
averages only over classical trajectories, however one is still faced with two
problems. One is that it is necessary to average over amplitudes with varying
phases and convergence is slow. The second one is that each amplitude is
weighted by a prefactor which depends on the monodromy matrix. The prefactor
is prohibitively expensive to compute in large systems. Progress has been made on
both fronts. Makri and later Miller and their coworkers'®****? take advantage
of the forward-backward time symmetry of quantum thermal correlation functions
to reduce the oscillations. Most recently Shao and Makri**° have suggested ways
of computing semiclassical correlation functions without the prefactor.

In contrast to the difficulties in computing real time quantum properties, the
numerical computation of quantum thermodynamic properties is a well advanced
field.?*** Efficient quantum Monte Carlo methods have been developed for
computing partition functions and thermodynamic averages for systems with
many degrees of freedom. It is therefore an old dream of dynamicists to use ther-
modynamic quantities, for computing dynamical properties. A straightforward
route would seem to be numerical analytical continuation, going from the inverse
temperature to real time B — it. This route has been studied, using for example
Pade approximants®” and the upshot of much work is that for short times of
the order of 4B, one could obtain reasonably accurate quantum dynamics, but if
longer times are important, one runs into difficulties.

A second analytic continuation methodology which is becoming increasingly
popular is based on the inverse Laplace transform. The idea is to compute imag-
inary time correlation functions and by Laplace inversion obtain the real time
correlation function. This route has been tested extensively in recent years with
some success.™*° Especially noteworthy is a very recent paper by Rabani
and Berne?2® in which the quantum reactive flux expression for the rate is ex-
pressed as an inverse Laplace transform of an imaginary time flux flux correlation
function, The main stumbling block though is the Laplace inversion. Whether
one uses maximum entropy techniques®®? or singular value decomposition
methods,?*?* the bottleneck is the sensitivity of any of the methods to noise.
Since presumably the imaginary time signal comes from quantum Monte Carlo
computations, it is inherently noisy and it is difficult to reduce the noise suffi-
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ciently to obtain accurate dynamical information. An additional problem is that
when quantum effects are really important, such as in the deep tunneling region,
it turns out that the computation of the imaginary time correlation functions does
not converge very easily either.””

Progress has been recently made in constructing an iterative inverse Laplace
transform method which is not exponentially sensitive to noise.?**" This
Short Time Inverse Laplace Transform (STILT) method is based on rewriting the
Bromwich inversion formula as:

BE (o
f(E]———ez—ﬂJ dtelBH(p + it) (46)

—

where f(B) = [3° dEe~PEf(E). Eq. 46 is exact for any B for which the Laplace

transform does not diverge. The STILT formula is obtained by expandingf( B+it)
with respect to the time variable t up to second order:

?((5+it)g%‘(meitln’?(ﬁ)—%tzln“?(s) @)

where we used the notation In® f(p) = %;—‘;}In f(B). Inserting the Gaussian
short time approximation into Eq. 46 gives a Gaussian approximation for the
function f(E).

The exact inversion formula does not specify though the value of the Laplace
transform variable B. For each B we thus obtain a different Gaussian approx-
imation to the original function f (E). Consider the function e #®f(E). For a
given value of B it might have a maximum at some value of E, say Ef. In the
vicinity of the maximum a Gaussian approximation may not be bad. But for a
different value of B, the maximum will shift, and the Gaussian approximation
will be valid but albeit using the changed value of . In other words, the short
time approximation is considerably improved by allowing the Laplace parameter
B to become a function of the original variable E. One would want to choose
this dependence such that the maximum of the Gaussian follows the maximum
of the original function. B (E) is therefore determined by the ‘stationary phase’
condition E + In” f(B) = 0. The STILT formula is then:

_ ePEEAB(E)]

T (48)
/2 In” f1B(E)]

This approximate inversion formula is quite accurate for bell shaped or mono-
tonically increasing functions f(E). It can be substantially improved by iteration.
One Laplace transforms the function f, [E) and then applies STILT to the differ-
ence function f(B) - f1(B). The iterated inversion formula is exact for the class
of functions E™e~*E. As shown in Ref. 227 it is stable with respect to noise. It
has been applied successfully for obtaining quantum densities of states in Ref.
226.

f1(E)
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V.2 QUANTUM THERMODYNAMIC RATE THEORIES.

V.21  Centroid transition state theory. A third methodology, is to con-
struct approximate theories for dynamical properties, which make use of only
thermodynamic quantities. In analogy with classical TST, Gillan, Voth and
coworkers??8-232 have formulated and studied a quantum TST which is based on
the centroid potential of mean force w¢ (q):

wela) =~ In (Tr5(q ~q)eP). (49)

The quantum mechanical Tr operation is represented as a path integral over all
closed paths g(t) whose time (t) average is centered at the point q such that
g=q= ﬁ Jgﬁ d t q (1 ). The centroid potential of mean force is thus obtain
from a restricted summation over all paths whose zero-th Fourier mode in a
Fourier expansion of the path integral is given by q. Deep tunneling reflects
itself as a significant lowering of the barrier of the centroid potential of mean
force.233,234

Centroid TST is obtained using the classical formula as given in Eq. 18 ex-
cept that one substitutes the classical potential of mean force with the quantum
mechanical centroid potential of mean force. The analog of the spatial diffusion
limited regime in the presence of dissipation can be obtained by introducing a
variational centroid TST. For example, Schenter et al?®® included the optimal
planar dividing surface VTST method described in Section I11.D above, within
the centroid TST method for GLE’s. Comparison with numerically exact com-
putations on a model system with two degrees of freedom showed that except for
the case of a slow bath mode, the variational centroid method is quantitative. The
same methodology was then generalized in Ref. 236 to arbitrary solute solvent
interactions.

Further improvement of the centroid method came with the introduction of
centroid dynamics.237238 Here the fundamental idea is to construct a centroid
Hamiltonian in the full phase space of the system and the bath. The Boltzman
factor is then the one obtained from this centroid Hamiltonian while seal time
dynamics is obtained by running classical trajectories. This method has been
applied to realistic systems?**2® and recently derived from first principles.244
The main advantage of the centroid methodology is that thermodynamic quantum
effects can be computed numerically exactly as it is not too difficult to converge
numerically the computation of the centroid potential.

V.2.2 Quantumtransition state theory. The centroid method is one way
of formulating a quantum TST. Other ways have also been devised. For example
Hansen and Andersen?4> have suggested a quantum thermodynamic theory which
is based on an extrapolation to long time of the short time quantum flux flux
correlation function. By construction, the method gives the correct parabolic
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barrier limit, It has been recently applied successfully to the 3D D+H, reaction
by Thompson246 but only at temperatures for which tunneling is not too important.
Computations on an asymmetric one dimensional Eckart barrier showed that the
method can give unphysical results if the asymmetry is too big.

A central challenge is to formulate a variational quantum TST. Such a theory
should have the following properties:

a: The quantum TST expression is derived from first principles.

b: The evaluation of the rate is based on knowledge of the matrix elements of the
thermal density matrix (zle—ﬁ‘qlz'). No real time propagation is necessary.

c: The expression is a leading term in an expansion of the rate in terms of a ‘small
parameter’ and reduces to known results in known limits.

d: The theory is variational, allowing for optimization by variation of a dividing
surface.

e: The theory gives an upper bound to the exact rate.

Variational upper bounds to the quantum rate have been found.247-251 The
trouble is that they are not very good. Typically, in the deep tunneling regime,
where the transmission factor T < 1 the best upper bound derived to date goes
as~vVT>T.

The history of quantum transition state theory spans more than half of the
twentieth century. Perhaps the most inspired (and oldest) guess was Wigner’s
expression for the thermal rate.252 Wigner suggested that the quantum rate
be computed as a product of the Wigner phase space representation? of the
thermal density operator and the classical flux operator. This approximation
gives the correct leading order expansion term in & for the rate and has been
used by Miller® to derive a semiclassical transition state theory which led to
the concept of the instanton. It has also served as a source of inspiration for
other approximate theories. For example, instead of using Wigner’s distribution
function, Chapman et al®® suggested using a semiclassical partition function.
This idea was implemented by Sagnella et al.2¢ Though useful and instructive,
Wigner’s expression which is a wonderful guess, was never derived from first
principles. Millerl®% proposed a variational thermodynamic quantum expression
based on the Weyl correspondence rule and classical rate theory. But it too, is not
derived (property a), there is no ‘small expansion parameter’ (property c), and
the theory does not give an upper bound to the rate (property e).

As described below, it is possible to construct a theory which satisfies condi-
tions a-d and at least thus far it has been found empirically to bound the exact
quantum rate from above. This Quantum Transition State Theory (QTST) is
predicated on the exact quantum expression for the reactive flux, derived by
Miller, Schwartz and Tromp:257

K(T) = Q:(T)™" lim TriF(3, qas )Rt} A(t) = &R/ R/A. (50)
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R is the step function operator which is unity on the product side ( g > 0) and is
zero on the reactant side (q < 0). ?( B, qgs) is the symmetrized quantum thermal
flux operator at the dividing surface defined by q:

5 1
F(B,das) = e F2 5 [98(a ~ das) + 8(@ — qas)Ble P2 (s

Obtaining the exact rate (which is independent of qg4s), necessitates a real time
propagation. A numerically exact solution is feasible for systems with a few
degrees of freedom,258-263 put as already discussed above, there is still a way to
go before one can rigorously implement the time evolution in a liquid.

The region of the potential surface which determines the outcome of the
reaction, is a strip localized in the vicinity of the saddle point to reaction.284 The
time propagation must be carried out long enough to determine those parts of
the wave packet that end up on the reactant or the product side. VVoth, Chandler
and Miller? therefore suggested replacing the exact time propagation needed
to determine the rate in Eq. 5 1, with an approximation based on a parabolic
barrier truncation of the propagator and exact evaluation of the quantum density
and flux operators. They obtained good agreement with exact results for a
symmetric Eckart barrier, but negative unphysical results for the asymmetric case
at low temperatures, perhaps because they didn't use the symmetrized form of
the thermal flux operator.

QTST s predicated on this approach. The exact expression 50 is seen to be
a quantum mechanical trace of a product of two operators. It is well known,
that such a trace can be recast exactly as a phase space integration of the product
of the Wigner representations?>3 of the two operators. The Wigner phase space
representation of the projection operator lim,_ ., A(t) for the parabolic barrier
potential is h(p + mw*g). Computing the Wigner phase space representation
of the symmetrized thermal flux operator involves only imaginary time matrix
elements. As shown by Pollak and Liao,2%6 the QTST expression for the rate is
then:

o0

karst(T) = Q. (T) " f dpdghlp + mw'alow (F(B, das)ip, q).  (52)
—00

This derived expression satisfies conditions a-d mentioned above and based on

numerical computation266-269 seems to bound the exact result from above. It is

similar but not identical to Wigner’s original guess. The quantum phase space

function which appears in Eq. 52 is that of the symmetrized thermal flux operator,

instead of the quantum density.

QTST was applied to symmetric and asymmetric Eckart barriers in Ref. 266.
Variational QTST was tested on the asymmetric Eckart barrier in Ref. 267. QTST
is derived by rewriting the potential as a sum of a parabolic barrier term and a
nonlinearity, as in Eq. 22. Therefore, it is a leading term for an expansion of the
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exact rate expression, where the nonlinearity wy (q) is the small parameter. The
first order correction was also studied in Ref. 267. It was seen that this leads to
a replacement of the step function about the classical separatrix with an integral
of an Airy function, localized about the classical separatrix. The semiclassical
limit of QTST was studied in Ref. 270. Application to a model system of a
symmetric Eckart barrier coupled bilinearly to a single harmonic bath mode was
presented in Ref. 268. QTST was found to be as accurate as the centroid based
approximation, with the added advantage that for all parameters studied, QTST
bounded the numerically exact results from above. Application to the collinear
hydrogen exchange reaction2® also gave numerical upper bounds to the exact
rate. The theory correctly accounted for the famous ’corner cutting’ found in the
deep tunneling regime of this model system.

Further refinements of QTST may be obtained by replacing the parabolic
barrier projection operator with the classical projection operator. Pollak and
Eckhardt?7® showed that this approximation is identical to the semiclassical limit
of the quantum projection operator. This Mixed Quantum CLassical rate The-
ory (MQCLT) was originally proposed in Ref. 266 and implemented in Ref.
267. Subsequently, Miller and coworkers?’? used the same theory to study the
dissipative double well problem and justified it with what they termed as the
linearization approximation.2! 1271272 MQCLT may be also thought of as the
leading term in an %2 expansion of the projection operator.®’” The first order
correction term was also studied in Ref. 267. The main disadvantage of MQCLT
is that as the dimensionality of the system increases, one needs to carry out a
multi-dimensional Fourier transform to obtain the thermal flux operator in the
full phase space of the system and this becomes as difficult as computing the
numerically exact projection operator.2 QTST does not suffer from this defi-
ciency, since the parabolic barrier projection operator is restricted to one degree
of freedom, one only needs the phase space projection of the symmetrized ther-
mal flux operator in this degree of freedom. This necessitates a one dimensional
Fourier transform for which there is no real difficulty.

One of the interesting outcomes of all these studies is the phase space picture
of the symmetrized thermal flux operator. At high temperatures, when tunneling
is negligible, the flux operator is localized around the barrier with a positive
(negative) peak when the momentum is positive (negative). As the temperature
is lowered, each of these peaks subdivides into alternating positive and negative
lobes. The net reactive flux is then an integral over these alternating positive
and negative contributions, restricted by the projection operator. Even though
one is using a thermodynamic quantity, the alternating positive and negative
contributions make it increasingly more difficult to obtain the net flux.

Both QTST and MQCLT can be extended to deal with dissipative systems,
whose classical dynamics is described by a GLE.2”# The main difficulty is that
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the system coordinate (q) which is coupled bilinearly to a continuum of harmonic
bath modes, is not the unstable mode (p) at the saddle point. The parabolic barrier
projection operator must be taken along the unstable mode. As aresult, it is not
trivial to integrate out the bath modes when evaluating the symmetrized thermal
flux. However, by a linear transformation of the coordinate system and using
some tricks given in Ref. 80, one can integrate out the bath modes. The resulting
influence functional does not cause any undue difficulty. Using similar tricks,
one can also define an MQCLT for the dissipative problem. Here one recasts the
one dimensional GLE into a coupled set of GLE’s, one for the unstable mode p,
the other for the collective bath mode ¢ (see Eq. 23). The classical projection
operator is then obtained for the stochastic trajectories ofthe two coupled GLE’s,
the symmetrized flux operator is computed numerically exactly, by integrating
out the rest of the modes in the usual way.?’

V.3 SEMICLASSICAL RATE THEORY

The semiclassical theory of rates has along history.”* #27?% Here, we will
just review briefly the final product, a unified theory for the rate in a dissipative
system, at all temperatures and for arbitrary damping. Two major routes have
been used to derive the semiclassical theory. One is based on the so called ‘ImF’
method,?’” whereby, one derives a semiclassical limit for the imaginary part of
the free energy. This route has the drawback thatthe semiclassical limit is treated
differently for temperatures above and below the crossover temperature.*?®

A second approach, has as its starting point a semiclassical TST proposed
by Miller,” whereby the microcanonical rate constant is given by an adiabatic
semiclassical theory, in which the modes perpendicularto the reaction coordinate
are harmonic and the tunneling is given by the uniform semiclassical microcanon-
ical expression. Thermal averaging of thisexpression, taking suitable limits, has
been shown by Héanggi and Hontscha to give a theory that reduces to the low
and high temperature ImF results and the crossover between them is smooth and
natural.”>*® In this way, the artificial treatment of the high and low temperature
regions has been removed. This theory is also incomplete, its starting point is a
rather heuristic semiclassical expression of Miller, which has not been derived in
any systematic way from first principles.

Pollak and Eckhardt have shown?270 that the QTST expression for the rate (Eq.
52) may be analyzed within a semiclassical context. The result is though not very
good at very low temperatures, it does not reduce to the low temperature ImF
result, The mostrecentand “best’ resultthus far is the recent theory of Ankerhold
and Grabert,® who study in detail the semiclassical limit of the time evolution
of the density matrix and extract from it the semiclassical rate. Application to the
symmetric one dimensional Eckart barrier gives very good results. It remains to
be seen how their theory works for asymmetric and dissipative systems.
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VI. DISCUSSION

In retrospect, one may say that the theory of activated rate processes has
matured during the past twenty years. Atthis point, theory precedes experiment.
Forexample, although the energy diffusion limited regime is well understood as is
the full Kramers turnover, there isn't a single chemical system to date where one
can say with any certainty that the Kramers turnover has really been observed.?%
Even in the spatial diffusion limited regime, itis not at all clear that the Kramers-
Grote-Hynes transmission factor really is important. There are papers which use
itto explain experimental data such as fractional power dependence of the rate on
viscocity.?*#* However, numerical simulations indicate that the transmission
factor is usually of the order of unity.*®*'** The characteristic frictional
forces one finds in liquids are weak and one is usually in the region where the
simple TST theory accounts for almost everything, provided that one chooses a
‘reasonable’ reaction coordinate.

This does not mean though that everything is well understood. For example,
our studies of the stilbene system show that the barrier of the potential of mean
force for this system depends strongly on the pressure.”*'* Can one come up
with a ‘simple’ theory for this pressure dependence? Is this specific to the stilbene
system or is this a general result? There is a large body of experimental data on
unimolecularisomerization reactions in liquids which has not yet been addressed
in depth by theorists.>® One should expect to see during the coming years
some serious molecular dynamics studies of these reactions in varying solvents
and under different temperature and pressure conditions.

It seems that the Kramers turnover theory is ideally suited for understanding
surface diffusion. Thus far though, it has only been applied to metal atom diffu-
sion on metal surfaces, where the classical limitis appropriate. A thorough study
ofits applicability to hydrogen atom diffusion , where tunneling is important,28
has not yet been undertaken. In most cases, one would suspect that the one
dimensional theory reviewed here would not be sufficient and except for special
surface geometries, one would have to take into account at least the coupling
between the two degrees of freedom parallel to the surface. Even the classical
multi-dimensional Kramers theory is not yet fully matured,””®® so there is
quite some way to go in developing the quantum theory.

A fundamental assumption in the turnover theory, is that the escape rate
is independent of the initial conditions. This is the case if the barrier height
is sufficiently large. Any trajectory will spend a long time in a well before
escaping and therefore there is no appreciable memory of the initial condition.
The situation is altered in a system with many degrees of freedom, such that
the number of degrees of freedom (N) is larger than the reduced barrier height
V#ksT.* In this case, the average thermal energy of the molecule is larger
than the barrier height and interesting state specific phenomena may occur. [t
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is this property which underlies the recently discovered effect of vibrational
cooling found for the isomerization of the thermal trans-stilbene molecule in the
electronically excited S, state.288 Here, the photo-excitation process leads to an
initial vibrational energy distribution which is cold when compared to the thermal
distribution. If the surrounding medium manages to rethermalize the molecule
prior to reaction, then one will observe isomerization at the thermal rate. If
isomerization is fast relative to energy transfer, the rate will be as expected for
the cold molecule, that is it will be much slower. It is for this reason that the
isomerization rate of the isolated trans-stilbene molecule is much slower* than
in the liquid phase.2%° This theory was corroborated by experimental observation
of a parabolic like dependence of the trans-stilbene isomerization rate on the
photo-excitation frequency.?®

One of the exciting new directions is the control of activated rate processes
using external fields. Addition of an external field opens the way for a wide vari-
ety of new phenomena such as stochastic resonance,” resonance activation,”
directed transport,22 control of the hopping distribution in surface diffusion?°
and more. Even the addition ofa constant force to the problem leads to interesting
additional phenomena such as the locked to running transition, which remains
a topic of ongoing research.?** Quantum mechanics in the presence of external
fields may differ significantly from the classical.2%

In summary, one may expectthatactivated rate processes in Chemistry, Physics
and Biology will continue to be a source of new challenges, in which the contact
between experiment and theory will be coming closer.
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Abstract

The theoretical basis for the quantum time evolution of path integral centroid

variables is described, as well as the motivation for using these variables
to study condensed phase quantum dynamics. The equilibrium centroid
distribution is shown to be a well-defined distribution function in the canonical

ensemble. A quantum mechanical quasi-density operator (QDO) can then be
associated with each value of the distribution so that, upon the application
of rigorous quantum mechanics, it can be used to provide an exact definition
of both static and dynamical centroid variables. Various properties of the
dynamical centroid variables can thus be defined and explored. Importantly,
this perspective shows that the centroid constraint on the imaginary time paths
introduces a non-stationarity in the equilibrium ensemble. This, in turn, can
be proven to yield information on the correlations of spontaneous dynamical
fluctuations. This exact formalism also leads to a derivation of Centroid
Molecular Dynamics, as well as the basis for systematic improvements of
that theory.

l. INTRODUCTION

The Feynman path integral formalism** in quantum mechanics has proven to
be an important vehicle for studying the quantum properties of condensed matter,
both conceptually and in computational studies. Various classical-like concepts
may be more easily introduced and, in the case of equilibrium properties,*® the
formalism provides a powerful computer simulation tool.

Feynman first suggested’? that the path centroid may be the most classical-
like variable in an equilibrium quantum system, thus providing the basis for the
formulation of a classical-like equilibrium density function. The path centroid
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variable, denoted here by the symbol xo, is the imaginary time average of a
particular closed Feynman path x(t) which, in turn, is simply the zero-frequency
Fourier mode of that path, i.e.,

1 ("
Xg = B Jo drx(t) . (1)
Feynman noted that the quantum mechanical “centroid density,” pc (xc), can be
defined for the path centroid variable which is the path integral over all paths
having their centroids fixed at the point in space xc. Specifically, the formal
imaginary time path integral expression for the centroid density is given by

pelxe) J---JDX(T]S(XC—XO) exp{=SIx(t)l/A} . @

In this equation, Dx(x) and S[x(t)] are, respectively, the position space path
measure and the Euclidean time action. The centroid density also formally
defines a classical-like effective potential, i.e.,”®

Vem(xe) = — kgT Infpc(xc)] + const. (3)

so that the quantum partition function is given by the integration over the centroid
positions. It should be noted that a one-dimensional notation is adopted through-
out this article. Moreover, the centroid density equation above is written as a
proportionality since the normalization chosen below in subsequent equations is
slightly different than in our other work (except Refs. 9,10). It should also be
appreciated that the centroid density is distinctly different from the coordinate
(or particle) density p(x) = (x|exp(-p H)|x). The particle density function is
the diagonal element of equilibrium density matrix in the coordinate representa-
tion, while the centroid density does not have a similar physical interpretation.
However, the integration overeitherdensity yields the quantum partition function.

FollowingFeynman’s original work, several authors pursued extensions of the
effective potential idea to construct variational approximations for the quantum
partition function (see, e.g., Refs. 7,8). The importance of the path centroid
variable in quantum activated rate processes was also explored and revealed,™ **
which gave rise to path integral quantum transition state theory* and even more
general approaches.** The Centroid Molecular Dynamics (CMD) method™ *®
for quantum dynamics simulation was also formulated. Inthe CMD method, the
position centroid evolves classically on the effective centroid potential. Various
analysis®™ ** and numerical tests for realistic systems"” have shown that CMD
captures the main quantum effects for several processes in condensed matter such
as transport phenomena.

Until recently, however, a true dynamical understanding of the centroid vari-
able has remained elusive, including the explicit motivation for employing these
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variables in a dynamical context outside of the equilibrium path integral formal-
ism. Also not until recently has an exact definition of centroid time evolution
been used to derive the CMD method, although some of the early justifications
employed analytic arguments.”® Thus, systematic improvements and/or gener-
alizations of the CMD method were difficult to develop. A focus of the present
review is to describe primarily our recent advances in centroid theory® in which
the time evolution of centroid variables are both rigorously defined and dynam-
ically motivated. The outgrowth of the CMD approximation from this exact
formalism is also described.” In should be noted that a preliminary version of
this work appeared in Ref. 18, but the full analysis was presented in Refs. 9,10.
Similar work appears to have been published later by other authors in Ref. 19.
This review is organized as follows: In Sec. Il., the explicit form of the
centroid distribution is derived, while Sec. Il1. then builds on this formalism to
define dynamical centroid variables. Section IV. contains a derviation of the
CMD approximation based on the exact formalism, while Sec. V. provides some
illustrative applications of CMD. Section V1. contains concluding remarks.

1. THE CENTROID DISTRIBUTION FUNCTION
1.1 BACKGROUND

For a classical system at equilibrium, the canonical partition function is written

dxdp H
Z — l?’ (X,P)

where B = 1/kgT and H(x, p) is the classical Hamiltonian. The integrand is the
classical canonical distribution function, which gives the equilibrium probability
for the system to have the given values of position and momentum. A classical
system at equilibrium is completely specified by these variables so the classical
partition function given by Eq. (4) contains all equilibrium information.

The quantum version of the partition function is obtained by replacing the
phase space integral and the classical Boltzmann distribution with the trace op-
eration of the quantum Boltzmann operator, giving the usual expression

T = T PR ©)

This expression contains all the equilibrium information for the quantum ensem-
ble as is in the classical case.
One possible definition of a classical-like quantum density is given by

h (o.9) o0 . B . _ B
pqm(x,p)ﬂr{ﬂj dcj_ dn et(x-xiHinP=p) ‘3“} )

Forexample, the classical-like phase space trace ofthis distribution function over
the scalars x and p gives the quantum partition function in Eq. (5). However, in
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the path integral formalism,1-4 one can show that the above equation is equivalent
to the phase space centroid density.15,16,20 Since all three operators, &, f, and
A, appear within the same exponential (in contrast to the Wigner distribution,
for example), one might assert that the resulting density pgm (x, p) should behave

more classically. This perspective is supported by the fact that the centroid
density is always positive definite.****

The positive definiteness of the centroid distribution of Eq. (6) suggests that
effectively some sort of “smearing” of the underlying quantum mechanical infor-
mation has been involved. Although this has resulted in the desirable property of
positivity, the lost information makes it impossible for the resulting distribution
to specify the quantum system completely. One thus needs auxiliary quantities
to recover the full information. One can indeed find this missing information and
therefore construct acomplete formal framework.

112 THE CENTROID VARIABLE AND DISTRIBUTION
FUNCTIONS

We first assume a separable Hamiltonian of the following standard form:

2
ﬂ(sz,ﬁ):‘HV:Z%M?(sz) . @)

Application of the Trotter factorization®** for the exponential operator appear-
ing in Eq. (6) leads to the expression

- (8)

By representing the operator containing the potential energy in position state
space and the one containing the kinetic energy in momentum space, one obtains
the following phase space discretized path integral representation:

etRHNP—BR _ iy del ---de,,H Jdm ---Jd‘pplxﬁ

P—oo

GLCRHNP—BA _ [ (e—mv—icsz)me—(ﬁ?—ima)/PeA(av—icsz)m)P

P—oo

=

{e~eka1/z+im/sz e~ EPE/2Mm D /P o—eV(xk 1)/24+10xi11/2P
1
Xilpic) {Prlxic+1)} (¢, | )

/\?IT‘

X

where € = 3/P. Insertion of this expression into the integrand of Eq. (6) and the
use of the explicitexpression for the momentum eigenstate leads to the following
identity,

B[ o o B
®lxe,pe) = ﬂjvm dCJ dn etl(&—xe)+in(P-pe) BA

—00
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. AP .
= ‘Jl_)ﬂgo (ﬁ) th “'de‘m J dps '--Jdpp 8(xo —xc)8(po —pe)

x [x1) H{ —eV{xx)/2 ~€vk/2m —eV{xk 1 )/Zei(Xk—m+x)vk/h} (x, ., (10)

where
1 /1 1
Xy = E zX]+X2+"'+XP+§XP+I > (11)
1
o = it (12)

According to Eq. (10), {x'|®(x¢,pc)Ix”) is a phase space path integral repre-
sentation for the operator 27th exp{—ﬁﬂ}, where all the paths run from x” to x”,
but their centroids are constrained to the values of xc and pc.*% Integration over
the diagonal element, which corresponds to the trace operation, leads to the usual
definition of the phase space centroid density multiplied by 2w/. In this review
and in Refs. 9,10 this multiplicative factor is included in the definition of the
centroid distribution function, pc (xc, pc). Equation (6) thus becomes equivalent
to

Pelxc,Pe) =Tr{@(xc,pc)} (13)

and Eq. (5) can be rewritten as

dx.dp.
Z:J'J' ZCTCh/ pC(XCpr) 3 (14)

where the subscript ‘gm’ has been omitted because there is no longer a need to

distinguish the classical and quantum cases. Note that the factor of (2m)™ has

been grouped with the centroid variable differentials, so that the centroid distri-

bution function has an alternative normalization to that in our earlier work.15 16
Equation (10) can be simplified to give in the P — oo limit

2
(<10, pe)’ >—exp{ i (ve= G = )) ](X’l@(XC)IX”) ,
(15)
where
, . 22 B x(BR)=x"
(IpxeI) =y T L(O)=X'DX(T)5(Xc—Xo) exp{—Six(1))/A} . (16)

Combining Egs. (13), (15), and (16), the centroid distribution function can be
written as

2
PclXe,Pe) = evﬁpc/Zmpc(xc) an
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with

2mh2p

m Jx(O):x(sh)

pelxe) Dx(7) 8(xc —xo) exp{=Slx(t)I/i}, (18)

where xo is given by Eq. (11) with the cyclic condition, xp+1 = x1, i.e., the usual

centroid variable for cyclic paths. Equation (18) is the usual position centroid
density aside from the free particle normalization factor.

1. EXACT FORMULATION OF CENTROID DYNAMICS
.1 QUASI-DENSITY OPERATOR

For an arbitrary canonical density operator, the phase space centroid distri-
bution function is uniquely defined. However, this function does not directly
contain any dynamical information from the quantum ensemble because such
information has been lost in the course of the trace operation. The lost informa-
tion may be recovered by associating to each value of the centroid distribution
function the following normalized operator:

Belxe,pe) = Qlxe,pe)/peXe,Pe)

eiPe 'R (x/j(x )x")
=JdX/J dx//|xl>{e_m(x/_xﬂ)l/zﬁﬁZ pelxc) <X”] (19)

where Egs. (15) and (17) have been used. This operator is Hermitian and has
nonnegative diagonal elements in position state space, yielding some of the
necessary conditions for a density operator.??> However, the condition of positive
definiteness is not guaranteed for the above operator in general. Thus, it cannot
be termed a genuine density operator and is therefore considered to be a “quasi-
density operator” (QDO).

Integration of the operator of Eq. (10) over xc and p¢ results in the following
important identity:

] — dx- d XesPe) 2
e ‘m=” 2;;° pe Zp ) 8ee e - (20)

This expression suggests that the canonical ensemble can be considered to be an
incoherent mixture of the QDO’s, each with different position and momentum
centroids, and the latter having a probability density given by pc(xc, pc)/ Z.
Each QDO can then be interpreted as a representation of a thermally mixed state
localized around (x¢,pc), with its width being defined by the temperature and
the system Hamiltonian.
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1.2 EQUILIBRIUM CENTROID VARIABLES

For any physical observable corresponding to the operator A, one can define
a Corresponding centroid variable as

Ac = TI'{/SC(XC,DC]A} ’ (21)

which is interpreted as an average of the given physical observable over the state
represented by the QDO. Since 3c(xc,pc) is a function of xc and pe, Ac is
likewise a function of xc and pc. The average of the centroid variable Ac over
the phase space centroid density can then be shown to be identical to the usual
canonical equilibrium average of the given operator as follows:

1 dx.d
<Ac>c = ZJJ 2;;c Pc(xc»pc)Ac

1 dx.d N a
_ zTr{” e P pc(xc,chsc(xc,pc)A}

= lz-Tr{e‘ﬁﬂA}E (7\\) , (22)

where the second equality is a consequence of the linearity of the trace operation
and the third equality comes from the relation in Eq. (20).

When the physical observables of interest are position and momentum, the cor-
responding centroid variables are equal to the position and momentum centroids,
ie.,

Xe = Tr{/SC(XCspC)Q} s (23)

pe = Tr{8c (xe, pc)P) - (24)
In this way, the position and momentum centroids are seen to be the average
position and momentum of the state represented by the QDO 8 (Xe, Po)-

The explicit expressions for two additional physical observables will prove to
be useful later. The first one is the centroid force, given by

Fo = Tr{gc(xc»pc)F(Q)}
c 1 d
- n{&drg) e . @)

where the second equality can be shown from Egs. (16) and (18). The centroid
potential of mean force is defined as

1
Vem(xc) = — B In{pc(xc)} (26)
so the centroid force of Eq. (25) can be expressed as
d
Fe(xe) = = =—Vem(xc) 27)

dx.
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where Vem(xc) is the usual effective centroid potential.
The second quantity of interest is the centroid Hamiltonian,

He = Tr{Bc(xe, pc ) A} = Te + Ve (28)
where T¢ is the centroid kinetic energy given by
N p2
Te = Tr{0c(xc, Pe)5—1} (29)
and V¢ is the centroid potential energy given by
Ve =Tr{8c (xc, pe)VR)} . (30)

This latter quantity may be different in general from Vem. While V. can be easily
expressed in a path integral form, the expression for T is more complicated and
is detailed in Ref. 9. It should be again noted that in earlier literature the effective
centroid potential Vem(xc) has been denoted by Vc(xc) (see Sec. IV.). However,
the notation used here and in Refs. 9,10 allows for a distinction between the two
effective potentials.

1.3 GENERALIZATION TO TREAT BOSE-EINSTEIN AND
FERMI-DIRAC STATISTICS

In the case that exchange interactions becomes important, the formalism may

be appropriately extended by generalizing Eq. (10) to give the following sym-
metrized version in discretized notation,®

1\ (P-1d
otxe,pe) = Jim 3 (217 (77
n
xjdm ---jdxm jdm --'jdpp (%0 — xe)5(po — pe) (lix))

H {e—ev(xk)/Ze—€Pk'M_“Pk/ze—ev(xkn /2 ot (X =Xk 11 )'Pk/ﬁ} <XP+1 1(31)
k=1

where d is the dimensionality of the total system, 1 is the permutation operator
of identical particles, and M is the inverse mass matrix. The case of (+1)!1
corresponds to Bose-Einsten statistics and the case of (-1 )“ to Fermi-Dirac
statistics. The centroid distribution resulting from Eq. (31) is positive for bosons,
but it can be negative for fermions.2

1.4 DYNAMICAL CENTROID VARIABLES

It is first important to provide an explicit argument for casting centroid vari-
ables in adynamical context. To do this, one can manipulate a simple proof of the
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stationarity of the canonical ensemble, Consider, for example, the Heisenberg
position operator %(t). The equilibrium average of this operator is given by

(&(1) = -]Z-Tr{e-ﬁ’*eim/ﬁsze-m*/ﬁ}
_ ] —iAt/h,~BA iAt/h) _ ] ~BAL) _
= zTr{e e Ple 52} = zTr{e 52} =(®) , (32)

where the canonical ensemble is seen to be stationary because the Boltzmann
operator commutes with the time evolution Operator. However, by using the
identity from Eq. (20), one can re-express Eq. (32) in terms of the QDO such that

<Q(t)> — (2> =JJ‘ dxcdpe pelXe,Pe) Tr {&;(xc,pc)emt/hﬁe”m‘/h} ’

2mth Z
(33)
or bed ( )
X Xe, PN
(Q(t)>=<5?>=” Zcﬂ;c Be Epc Tr {8c(tixe, pe)®} ,  (34)
where the QDO is now time-dependent such that
Beltyxe, pe) = eV, (xc, pe)et Pt/ (35)

with the cyclic invariance of the trace being used in going from Eq. (33) to Eq.
(34).
Equation (34) is now written in a classical-like form as

_ _ dxcdpe pelxe,Pe)
@ity = @) = | [ Tpope EePd gy (@)
where x¢ (t) is a scalar centroid “trajectory”, given formally by the expression

xc(t) =Tr {/gc(t;xmpc)'?} . 37

The interpretation of the above expressions is rather remarkable. The centroid
constraints in the Boltzmann operator, which appear in the definition of the QDO
from Egs. (19) and (20), cause the canonical ensemble to become non-stationary.
Equally important is the fact that the non-stationary QDO, when traced with
the operator ® (or P) as in Eq. (37), defines a dynamically evolving centroid
trajectory. The average over the initial conditions of such trajectories according
to the centroid distribution [ cf. Eq. (36) ] recovers the stationary canonical
average of the operator % (or $). However, centroid trajectories for individual
sets of initial conditions are in fact dynamical objects and, as will be shown in the
next section, contain important information on the dynamics of the spontaneous
fluctuations in the canonical ensemble.
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The time-dependent QDO can be shown to obey the following quantum Liou-
ville equation:

d . i N
'd;éc(tixc»pc) =7 [ﬂ,éc(txcfpc)] . (38)

Accordingly, a generalized dynamical centroid variable at time t can be defined
as

Ac(t) = Tr{bc (e, pe)A} (39)

The average of this centroid variable over the centroid distribution can be calcu-

lated in the same way as the zero time case of Eq. (22). The time derivative of
the dynamical centroid variable is given by

d

d/\ A
aAc(t] =Tr {a;&c(t;xc»pc)A}

=_%Tr{[ﬂ,/8c(t;xc>pc)] ;‘\‘} = ihTr {8°(t;xc’pC) [ﬂ,//&]} (40)

where the fact that A does not have any explicit time dependence has been used
and the last equality results from the cyclic invariance of the trace operation.
A generalization of this analysis is given in Ref. 9 which shows that centroid
variables can also be used to study inherently nonequilibrium situations.

As special cases of Eq. (40), the dynamical laws for the position and momen-
tum centroids are given by

dx.(t) _ Pelt)

ad = m (41)
dpc(t)

o = et (42)

where F¢ (t) is given by inserting the force operator into Eq. (39). Equations (41)
and (42) are the centroid generalizations of Ehrenfest’s theorem.24  Although
these equations have classical forms, the time dependent centroid force is not a
function of the position centroid at time t only, but it can be determined by the
diagonal position space elements of the exact time dependent QDO at time t.
The exception to this rule is when the potentials are quadratic. In this case, the
time dependent centroid force is given by a linear function of the time dependent
position centroid and the above equations are closed.
The time dependent centroid Hamiltonian may be similarly defined as

Hc(t) =Tr{gc(t;xc,pc)ﬂ} . (43)

According to Eq. (40), the time derivative of this is zero because the Hamiltonian
which evolves the QDO commutes with itself. In other words,

He(t) = He(0) (44)
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for arbitrary time t. In the classical limit, this centroid Hamiltonian goes to
the classical Hamiltonian as do the centroid position and momentum and the
dynamical centroid trajectory equations above.

1.5 DYNAMICAL FLUCTUATIONS AND TIME
CORRELATION FUNCTIONS

A centroid trajectory for a given set of initial centroid conditions must contain
some degree of dynamical information due to the nonstationarity of the ensemble
created by the centroid constraints. It is therefore important to explore the
correlations in time of these trajectories. In the centroid dynamics perspective, a
general quantum time correlation function can be expressed as

BO)A®R) = %Tr{e—ﬁﬂﬁeiﬂt/nge-mt/h}
1 dx.d , ~ . A
- Z Jj ch;c pC(XC’pC) Tr{e_lﬂt/héc(xmpc)gelgt/h}\} (45)

where Eq. (20) and the cyclic invariance of the trace operation have been used.

For general operators B, Eq. (45) cannot be expressed in terms of the time
dependent centroid variables defined in the previous section because the time
evolution of S‘C(xc,pc)ﬁ is different from 3, c(xc,pe), A general result can be
derived, however, in the case that B is linear in position and momentum. In
particular, one can show that

dx.d
”—ﬁ:ﬁ Xe ®(xc,Pe)

x(Bh)=x"
= dex’dx” [x") {J Dx (1) %o exp{—S[x('r)]/h}} (x"|

x(0)=x"'

1B
=BL etz e (46)

where the first equality can be derived using Eg. (16) and the second equality is
given by discretizing the integration over A and going through the usual path inte-
gral limit via the Trotter factorization. A similar identity holds for the momentum
centroid, Therefore, for linear operators of the form:

B=Bo+Bi1R+B2f , “7)

the following identity holds:

dxcd 1 (P -
JJ );;;cpc(xcmc)gc(xc»pc)sc=BL dre (P Mﬂ@g M - (48)
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Multiplying the above identity by the general time dependent operator, Ai(t) =
Rt Re~tAtand then taking the trace of the resulting expression, one obtains the
following important identity:

1 dx.d
Z JJ % Pe(Xe,Pe)BeAc(t)

_ llJB D Tr{e__(g—)\)ﬂﬁ e—AHeiﬂt/hAe—iﬂt/h} , (49)
ZB Jo

which is the usual Kubo-transformed equilibrium time correlation function?
from quantum linear response theory. This important identity shows that as long
as the operator B is linear in the position and momentum operators the quantum
time correlation function can be obtained in a classical-like fashion through the
exact time evolution of the centroid variables.

The important step of identifying the explicit dynamical motivation for em-
ploying centroid variables has thus been accomplished. It has proven possible to
formally define their time evolution (“trajectories”) and to establish that the time
correlations ofthese trajectories are exactly related to the Kubo-transformed time
correlation function in the case that the operator B is a linear function of position
and momentum. (Note that A may be a general operator.) The generalization of
this concept to the case of nonlinear operators B has also recently been accom-
plished, but this topic is more complicated so the reader is left to study that
work if so desired. Furthermore, by a generalization of linear response theory it
is also possible to extract certain observables such as rate constants even if the
operator Bis linear.

V. THE CENTROID MOLECULAR DYNAMICS
APPROXIMATION

The CMD method is equivalent to the following compact approximation for
the time dependent QDO: *°

3c(t;xc,pc) zgc(xc(t),pc(t)) » (50)

with the calculation of the phase space centroid trajectories, x¢(t) and pc(t),
given by the generalized Ehrenfest’s relations for the centroid variables. In this
case, the approximate QDO of Eq.(50) closes the dynamical equations as follows:

mie(t) = pe(t) & Tr {Be(xe 1), pe ()5} 51)
Pel(t) ® Fema(t) = Tr {SC(XC(t),pc(t))?} =Felxc(t)) . (52)

where x¢(t), pe(t), and Fng(t) also depend on xc and pc, the position and
momentum centroids at time zero, but these relations are not shown explicitly.
These abbreviations will be used for all the time dependent centroid variables
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considered hereafter unless stated otherwise. The expression Femg (t) represents
the CMD approximation for the time dependent centroid force.

Equation (52) shows that in CMD the approximate centroid force is determined
for the instantaneous centroid position x. (t) by the same functional form as for
the zero time centroid force. Equation defines the zero time centroid force to be
the negative gradient of the centroid potential of mean force, i.e,

Vema(xe) = Vem(xe) = —% I pelxe) - 53)

Thus, the CMD method is isomorphic to classical time evolution of the phase
space centroids on the quantum centroid potential of mean force, Vemg. 1t should
be noted that in the harmonic, classical, and free particle limits, the CMD rep-
resentation for the QDO [Eq. (50)] is also exact. Furthermore, it should also be
noted that the approximation in Eq. (50) does not rely on any kind of mean field
approximation.

The approximation embodied in Eq. (50) deserves further explanation. It
assumes that the QDO at a later time t has the same mathematical form as
it does at time t = 0, except that the centroids of the physical particles have
moved according to the dynamical CMD equations in Egs. (51) and (52). Such
an approximation can be argued to be reasonable in either of two cases. The
first is when the fluctuations about the centroid are independent of the centroid
location; this is the case of the harmonic oscillator for which CMD is known to
be exact.® More generally speaking, this should also be the case for condensed
phase systems in which linear response theory is a good approximation (i.e., the
quantum fluctuations about the centroid motion are independent of its motion -
they respond linearly). Linear response is often an excellent approximation for
systems which are, in fact, very far from the actual harmonic limit. The second
case for which the approximation embodied in Eq. (50) should be accurate is when
the system exhibits strong regression behavior (i.e., decorrelation of spontaneous
fluctuations), In such instances, one would expect the form of the QDO as it
evolves in time to remain close to its equilibrium form att = 0 even if the
particles (centroids) have moved. Interestingly, as the system approaches the
classical limit, the fluctuations about the centroids in the QDO will always shrink
to zero so they cannot deviate from their t = 0 value. This is why CMD is very
accurate in the nearly classical limit, but the system need not be in that limit to
remain a good approximation. Furthermore, one can also understand why tests
of CMD for low dimensional systems which exhibit rno regression behavior do
not allow a significant strength of the method to be operational.

A second important property of CMD is that it will produce the exact equi-
librium average of a dynamical variable A if the system is ergodic. That is, the
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following relationship holds

1 T
Jim 3 [ aeace = @) (54)
where
Ac(t)=Tr {/Sc (xc(t)>pc(t))'ﬁ\} . (55)

This property may not be possessed by many other approximate methods based
on, e.g., mean field or semiclassical approaches. Also, in low dimensional
systems, the above property is not true for CMD, so to apply CMD to such
systems is not consistent with spirit of the method (though perhaps still useful
for testing purposes).

On the negative side, the exact time dependent centroid Hamiltonian in Eq.
(44) is a constant of motion and the CMD method does not satisfy this condition
in general except for quadratic potentials.

V. SOME APPLICATIONS OF CENTROID MOLECULAR
DYNAMICS

There has been extensive development of algorithms for carrying out CMD
simulations in realistic systems,'827.28 as well as a number of non-trivial appli-
cations of the methodology (see, e.g., Ref. 17). In this section, a few illustrative
applications will be described. The interested reader is referred to the above
citations for more details on CMD algorithms and applications.

V.1 STUDIES ON SIMPLE SYSTEMS

Tests of CMD on simple one-dimensional systems can be carried out by
calculating the symmetrized position correlation function:

1 . . . X
Conlt) = ZTr {e—ﬁr-‘t (Qetﬂt/ﬁQe—lﬂt/h 4 elﬂt/hge—lﬂt/hﬁ) /2} . (56)

In the perspective of the centroid time evolution, this correlation function cannot
be calculated directly but is obtained through the following relation between the
Fourier transforms:

Crnlw) = BhTwcoth (B—g‘ﬁ) & (w) 57)
where CZ, () is the Fourier transform of the Kubo-transformed position corre-
lation function, 2 The relationship between the latter function and the exact
centroid time correlation function, which is calculated approximately by CMD,
was established in Ref. 9 as described earlier.

The centroid distribution function and the effective potential for the CMD

simulation can be obtained through the path integral simulation method,>® but
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this introduces additional statistical errors. For the low-dimensional benchmark
results described here, the numerical matrix multiplication (NMM) method®*
was used. For the details of this procedure, the reader is referred to Ref. 10.

Natural units were used in these simulations, wherem = i = kg = 1. The
sampling of the initial position and momentum centroids were made through the
Nosé-Hoover chain dynamics (NHC)3! on the effective potential of Vem, More
details of these calculations can again be found in Ref. 10.

Results for two types of model systems are shown here, each at the two dif-
ferent inverse temperatures of B = 1 and B = 8. For each model system, the
approximate correlation functions were compared with an exact quantum corre-
lation function obtained by numerical solution of the Schrédinger equation on a
grid and with classical MD. As noted earlier, testing the CMD method against
exact results for simple one-dimensional non-dissipative systems is problemati-
cal, but the results are still useful to help us to better understand the limitations
of the method under certain circumstances.

V.1.1  Single well potential with weak anharmonicity.  The first model stud-
ied was the anharmonic single well potential:
1

_.1 2 3 1 4
V(X)—‘EX +T6X +ﬁ6x . (58)

Figure 1 compares the exact, CMD, and classial correlation functions. For
the case of B = 1, all the results overlap during the time shown except for the
classical result. At longer times which are not shown in the figure, the CMD
result will eventually deviate from the exact one through dephasing.

For the case of B = 8, the quantum effects of the dynamics become more
evident. The CMD method gives the correct short time behavior, but there is
a small frequency shift. However, the classical result is much worse at this
temperature.

V.1.2  Quartic potential. The second model potential studied is given by
the purely quartic potential:

V(x) = %x“ . (59)

No harmonic term is present in this potential, so it represents a good test case
as to whether the CMD method can reproduce inherently nonlinear oscillations.
Along these lines, Krilov and Berne32 have independently explored the accuracy
of CMD for hard potentials in low dimensional systems and also as a basis for
improving the accuracy of other numerical approaches.®

Figure 2 shows the various time correlation functions compared to the exact
result. For B = 1, the CMD method exhibits similar behavior to the classical
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one, with none of the correct coherent behavior existing after about t = 10.
The dephasing in these one-dimensional potentials is a result of simple ensem-
ble dephasing - a well known behavior of one-dimensional nonlinear classical
systems.

Interestingly, for the lower temperature case of B = 8, the CMD method
is in much better agreement with the exact result. In contrast, the classical
result does not show any low temperature coherent behavior. The more accurate
low temperature CMD result also suggests that CMD should not be labeled
a “ quasiclassical ” method because the results actually improve in the more
quantum limit for this system. The improvement of these results over the higher
temperature case can be understood through an examination of the effective
centroid potential. The degree of nonlinearity in the centroid potential is less at
low temperature, so the correlation function dephases less.

V.2 QUANTUM WATER

One of the first applications of CMD to a realistic and important system was
to study the quantum dynamical effects in water.3* It was found that, even at
300 K, the quantum effects are remarkably large. This finding, in turn, led us to
have to reparameterize the flexible water model (called the “SPC/F,” model) in
order to obtain good agreement with a variety of experimental properties for the
neat liquid. An example of the large quantum effects in water can be seen in Fig.
3 in which the mean-spared displacement correlation function, {|x(t) - x(0)|2)
is plotted. (These are new results which are better converged than those in Ref.
34.) Shown are the quantum CMD and the classical MD results for the SPC/F,
model. The mean-squared displacement for the quantized version of the model
is 4.0 x 10° m2s-t, while the classical value is 4.0 x 10°mz2s-1, The error in
these numbers is about 15%. These results suggest that quantum effects increase
the diffusivity of liquid water by a factor of two.

V.3 HYDRATED PROTON TRANSPORT IN WATER

A second important application of CMD has been to study the dynamics ofthe
hydrated proton.3® This study involved extensive CMD simulations to determine
the proton transport rate in on our Multi-State Empirical VValence Bond (MS-EVB)
model for the hydrated proton.z2 Shown in Fig. 4 are results for the population
correlation function, {n(t)n(0)), for the Eigen cation, H;O", in liquid water.
Also shown is the correlation function for D;O* in heavy water. It should be
noted that the population correlation function is expected to decay exponentially
at long times, the rate of which reflects the excess proton transport rate. The
straight line fits (dotted lines) to the semi-log plots of the correlation functions
give this rate, For the normal water case, the CMD simulation3® using the MS-
EVB model yields excellent agreement with the experimental proton hopping
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rate of 0.69 ps- Furthermore, the calculated kinetic isotope effect of a factor of
2.1 is also in good agreement with the factor of 1.4-1.6 measured experimentally
(there is some uncertainty in both numbers). In general, this CMD simulation
serves to highlight the power and generality of the method in its application to
realistic systems.

VI. CONCLUDING REMARKS

In this review, the exact formulation of centroid dynamics has been presented.
An important new aspect of this theory is the association of the exact QDO,
given by Eq. (19), to each value of the centroid distribution function. Each
QDO represents a non-positive definite mixed state, which is governed by the
dynamical quantum Liouville equation. A centroid variable is then seen to be
the expectation value of a physical observable for a given QDO. Time evolution
of the centroid variable is therefore a manifestation of the time evolution of the
nonequilibrium distribution for the QDO corresponding to a given set of initial
centroid constraints. A generalized Ehrenfest’s theorem, Eqgs. (41) and (42),
for the centroid position, momentum, and force in turn exists. For the dynam-
ically evolving centroid variable, a relation between the classical-like centroid
correlation function and the Kubo transformed time correlation function is also
exactly derived. This set of rigorous results have then provided both the formal
basis for deriving and improving approximate methods such as CMD, as well
as an explicit dynamical rationale for employing dynamical centroid variables to
study many-body quantum systems. In the strongly quantum regime where the
indistinguishability of particles results in significant exchange interactions, the
appropriate symmetrization should be made to reflect the underlying quantum
statistics.

A significant advantage of the centroid formulation lies in the fact that the
centroid distribution function can be readily evaluated for realistic systems using
imaginary time path integral simulations. Furthermore, the centroid formalism
in essence folds the thermal averaging into the nonstationary distribution which
is then dynamically propagated, thus helping to address the phase oscillation
problem. Therefore, when spontaneous dynamical fluctuations in the canonical
ensemble are of interest, a centroid dynamics formulation such as CMD has
proven to be particularly advantageous as is evidenced by the applications re-
viewed and cited in the present work. Most importantly, the new perspective on
exact centroid dynamics has yielded both a better understanding and a derivation
of CMD, as well as shed light on several possible avenues to improve and gener-
alize the method. In a parallel fashion, significant new applications of CMD to a
multitude of realistic systems are certain to be forthcoming.
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Figure 1  Position time correlation functions for the weakly anharmonic potential at two

different temperatures of B = 1 and B = 8. Shown are the exact (dots), CMD (solid line),
and classical MD (dashed line) resullts.
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Figure 2 Position time correlation functions for the quartic potential at two different

temperatures of B = 1 and B = 8. Shown are the exact (dots), CMD (solid line), and
classical MD (dashed line) results.
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Figure 3  Mean-squared displacement correlation function for liquid water at 300 K.
Shown are the gaumtum CMD (solid line) and classical MD (dashed line) results.

15 T r

—— CMD
~—~ Classical

oy
o

(4]

<Ir(0)-r(®)I>> (bohr?)

0 0.5 1 15 2
time (ps)

Figure 4  Semi-log plot of the population correlation function for an Eigen cation in liquid
water at 300 K. Shown are the water (solid line) and heavy water (dot-dashed line) results,
and the best fit (dotted line) to each.
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Chapter 3

PROTON TRANSFER IN CONDENSED PHASES:
BEYOND THE QUANTUM KRAMERS PARADIGM

Dimitri Antoniou and Steven D. Schwartz

Department of Biophysics,

Albert Einstein College of Medicine,
1300 Morris Park Ave.,

Bronx, New York 10461, USA

Abstract This chapter will describe recent advances in the study of quantum particle
transfer in condensed phase. In the Introduction we will discuss some con-
cepts and results from the classical theory of reaction rates. The starting point
for our quantum theory is the generalized Langevin equation and the equiv-
alent formulation due to Zwanzig that allows for a natural extension to the
quantum case. We also show how one can perform calculations for realistic
systems using aMD simulation as input. This forms the basis of our quantum
Kramers calculations. Inthe second section we discuss a method that we have
developed for the solution of quantum many-particle Hamiltonians. Wethen
discuss whether the Hamiltonians that are based on the quantum Kramers
problem are appropriate models for realistic proton transfer problems. In the
final three sections we describe some cases when the GLE-quantum Kramers
framework is not sufficient: symmetric coupling to a solvent oscillation.
position dependent friction and strong dependence on low-frequency modes
of the solvent. In each case we describe physical/chemical examples when
such complexities are present, and approaches one may use to overcome the
challenges these problems present.

I. Generalized Langevin equation. Zwanzig’s Hamiltonian.
Il. Evaluation of quantum rates for multi-dimensional systems.
111. Beyond the Langevin equation/quantum Kramers paradigm:
1. Rate-promoting vibrations.
2. Position-dependent friction.
3. Slow environment modes.
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1 INTRODUCTION

A common approach for the study of activated barrier crossing reactions is
the transition state theory (TST), in which the transfer rate over the activation
barrier V is given by (wr/21)e BV, where wr (the oscillation frequency of the
reaction coordinate at the reactant well) is an attempt frequency* to overcome the
activation barrier. For reactions in solution a multi-dimensional version? of TST
is used, in which the transfer rate is given by

Ly _gv
kTST:kBTZe BV, 1)

where Zx, Zg are the partition functions when the reaction coordinate is at the
transition state and reactantwell respectively. A subtle pointof the multi-dimensi-
onal TST result Eq. (1) is that the effect of the bath is not only to provide thermal
energy, but also to modify the attempt frequency from the bare value wr to the
coupled eigenfrequency ksTZ#Zg. In other words, the pre-Arrhenius factor in
Eg. (1) includes (to some extent) the dynamics of the environment, which is one
reason why the multi-dimensional TST is a successful theory.

An alternative view of the same physical process is to model the interaction
of the reaction coordinate with the environment as a stochastic process through
the generalized Langevin equation (GLE)

t
mgz_erJ dt’y(t —t)s + F(t), (2)
0s 0
where V(s) is the potential along the reaction coordinate s, F(t) is the fluctuating
force of the environment and y(t) is the dynamical friction which obeys the
fluctuation-dissipationtheorem?

1

= mww)e—i%m». @A)

v(t)
Here, T is the Liouville operator and the operator Q projects® onto the orthogonal
complement of $.There are arguments#® that suggest that it is a good approx-
imation to calculate e—1QTtF (0) by “clamping” the reaction coordinate at the
transition state.

It is generally accepted that the GLE is an accurate description for a large
number of reactions. In order to understand the subtleties of the GLE we will
briefly mention three important results.

A cornerstone of condensed phase reaction theory is the Kramers-Grote-Hynes
theory.2 In a seminal paper® Kramers solved the Fokker-Plank equation in two
limiting cases, for high and low friction, by assuming Markovian dynamics
v(t) ~ &(t). He found that the rate is a non-monotonic function of the friction
(“Kramers’ turnover™.) Further progress was made by Grote and Hynes”#who
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included memory effects in their Langevin equation study which they solved in
the high-friction limit. They found a transfer rate equal to the TST rate times the
Grote-Hynes coefficient

N

KGH = wp ' (4)

where wp is the inverted parabolic barrier frequency and )\ff is the frequency
of the unstable? mode at the transition state obtained from the solution of the
integral equation

}\(’f Wy
o 00 ®
where -
) = L ate N by (1), ©)

is the Laplace transform of the dynamical friction. The case of Markovian
dynamics corresponds to y(t) = 2nd(t), or equivalently ?(7\3&): 2n. Many
experimental studies have confirmed the validity of Grote-Hynes theory as an
accurate description of activated reactions in solution.

Another critical result, which provided a more microscopic view of the
Langevin equation, was the proof by Zwanzig® that when the dynamics of a
system obeying the classical Hamiltonian

PZ
H= o2+ V(s)+ )
k

2m

P +lm wy? oG8 ’
Tmyg 2Tk dr T ; @)

is integrated in the bath coordinates, then the GLE Eq. (2) is obtained with a
dynamical friction equal to

C

() = ; to? cos{wit). ®)
It is important to notice that the solution of the GLE depends only on y(t) and
not on the particular set of parameters ck, mk, ok that generate it through Eq.
(8). In order to make this result more intelligible we should emphasize that the
modes k in the Zwanzig Hamiltonian Eq. (7) do not (except in the crystalline
case) refer to actual modes of the system; rather, they represent a hypothetical
environmentthat generates the correct dynamical friction vy (t) through Eqg. (8),
such that when entered in the GLE Eq. (2) it provides an accurate description of
the dynamics.

The third result was the establishment of a connection between the TST and
GLE viewpoints by Pollak.** He solved for the normal modes of the Hamiltonian
Eq. (7) and then used the result in a calculation of the reaction rate through the
multi-dimensional TST. Surprisingly, he recovered the Kramers-Grote-Hynes
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result. This means that the Grote-Hynes theory is a transition state theory for the
hypothetical environment of Eq. (7).

These results suggest a computational strategy for the study of reactions in
condensed phases. One starts from some realistic intermolecular potentials and
performs a molecular-dynamics-Kramers-Grote-Hynes scheme that consists of
the following steps.*? First, we fix the proton at the transition state and run a
MD simulation. The friction kernel y(t) is calculated and along with Egs. (7,8)
enables the calculation of the Grote-Hynes rate. This scheme has also been used
as a means of obtaining input for quantum calculations as well.***

We are now at the point where a quantum theory of condensed phase reactions
may be developed. The Zwanzig Hamiltonian Eqg. (7) has a natural quantum
analog that consists in treating the Hamiltonian quantum-mechanically. In the
rest of this paper we shall call this quantum analog the quantum Kramers problem.

1. CALCULATION OF QUANTUM TRANSFER RATES

The quantum version of the Hamiltonian Eq. (7) has been studied for decades
in both Physics and Chemistry® in the 2-level limit. If the potential energy
surface (PES) is represented as a quartic double well, then the energy eigenvalues
are doublets separated by, roughly, the well frequency. When the mass of the
transferred particle is small (e.g. electron), or the barrier is very high, or the
temperature is low, then only the lowest doublet is occupied: this is the 2-level
limit of the Zwanzig Hamiltonian.

In the 2-level limit a perturbative approach has been used in two famous
problems: the Marcus model in chemistry and the “small polaron” model in
physics. Both models describe hopping of an electron that drags the polarization
cloud that it is formed because of its electrostatic coupling to the environment.
This environment is the solvent in the Marcus model and the crystal vibrations
(phonons) in the small polaron problem. The details of the coupling and of the
polarization are different in these problems, but the Hamiltonian formulation is
very similar.”®

If one assumes Markovian hopping, then in the nonadiabatic limit one can
solve the small polaron problem using Fermi’s golden rule to obtain a transfer
rate that has the following form:

k = AZ e—Bf(T, coupling, bath) ,

©9)

where A is the tunneling matrix element between the initial and final stages and f
is a function of the temperature T, the coupling strength ¢ of the electron to the
environment and of parameters of the bath.

A variation of the small polaron problem is the spin-boson Hamiltonian,
which also belongs to the 2-level limit and is how known to have very rich
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dynamical behavior'” captured when solved beyond Fermi’s golden rule, in the
non-interacting blip approximation.

Charge transfer in solution is different than in crystalline environments since
the solvent dynamics is slow and anharmonicities are important. The standard
theory that describes nonadiabatic tunneling in solution is the Marcus-Levich-
Dogonadze model,'>18 9 which is closely related to the small-polaron problem.
Let's assume that the PES can be modeled by a double well and that tunneling
proceeds from the ground state. The coupling to the solvent environment mod-
ulates the asymmetry of the PES. The probability for tunneling is largest when
the PES is almost symmetric, i.e. when the tunneling splitting is maximum. A
1-dimensional coordinate p is used to describe the configuration of the solvent
coordinates. Let's call p* the solvent configuration that symmetrizes the PES
along the reaction coordinate. When p reaches the value p*, the particle tunnels
instantaneously. For this idea to make sense, the dynamics of the charged en-
vironment must be slow compared to the tunneling time. After the proton has
tunneled, subsequent motion of the polar groups asymmetrizes the potential and
traps the proton in the product well. The solvent atoms are described by classical
dynamics and the reaction barrier is related to the reorganization energy E; of the
medium. The reaction rate is given by

k ~ AZe B(Ecte)? /4 ’ (10)
where e is the exothermicity of the reaction. Similarly to the crystalline case Eq.
(9), the rate has an Arrhenius form and the activation energy is independent of
the height of the potential barrier along the reaction coordinate (the barrier height
does affect the pre-Arrhenius factor.)

The goal of studying the quantum Zwanzig Hamiltonian is to generalize these
results to the case when excitations to higher doublets are possible. This detail
changes the problem completely since there is no small parameter for a perturba-
tive approach.

An earlier approach®was to solve the quantum problem in the high-temperature
limit using Markovian dynamics and assuming a parabolic barrier. The quantum
rate has the following form:202

_=Wo Mo gy
i Wt a
The factor Ao/mb is the classical (Grote-Hynes) correction to the TST result Eq.
(4). The quantum enhancement factor = is equal to

[']

0 202
H w? +n20?% + n0P(MQ) 12)

—wb + 1202 + nOYMAQ)
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Here Q = 2rtksT, oo is the frequency at the bottom of the reactant well, @y is
the frequency at the top of the barrier and % is the Laplace transform Eq. (6) of
the friction function.

One exact formulation for the quantum rate is the Miller-Schwartz-Tromp rate
formula.?2 In this formulation the quantum rate is given by an integration of the
correlation function

1 —+o0
k= — dt Ce(t
=], e, (13
where k is the transfer rate, Zr is the partition function for the reactants and
te= t—ip/2 is a complex time. We should emphasize that Eq. (13) is exact and

not a linear response theory result like other correlation function formalisms.2
The flux-flux correlation function Cs is given (for a symmetric PES) by

c ——L—Jd Jd |2
€= gmz | 99 %9 | 35as

where Hgq is the bath Hamiltonian, q is a N-dimensional coordinate that describes
the bath. For the Zwanzig Hamiltonian Eq. (7) itis f = Z{\':, cigis. We shall
follow convention and call the s subsystem the **system” and the ¢ subsystem the
“bath”. The interaction of the reaction coordinate with the bath destroys phase
coherence of the s wavefunction, and as a result the correlation function decays
to zero after some time which is a new time scale for the transfer problem.

In the last few years we have witnessed the successful development of sev-
eral methods for the numerical solution of multi-dimensional quantum Hamil-
tonians: Monte Carlo methods?* centroid methods,> mixed quantum-classical
methods,?2” and recently a revival of semiclassical methods.®%° We have de-
veloped another approach to this problem, the exponential resummation of the
evolution operator.3-¢ The rest of this Section will explain briefly this method.

The adiabatic approximation in the operator context is written as

. 2
<S!ql|e~1(Hs+Hq+f)tc|Sq>‘ 11 , (14)

s=s’=0

e—tHt = p—i(HotHa+)t o p—iH t—i(Hq+f)t

e it (15)

To improve upon this approximation, we make a Taylor expansion of the left-
hand side of Eq. (15) and then make a resummation to infinite order with respect
to commutators [f, Hs] of the fast subsystem s and to first order with respect to
commutators [f, Hq] of the slow subsystem g. The result is%

e—i(Hs+Hq+f)t ~ e—iHste—i(Hq +f)te+1(Hs+f)te—1Hst . (16)

This approximation has a philosophical and mathematical resemblance to
the linked-cluster expansion?® that has been applied successfully to the small
polaron problem. The linked-cluster expansion is an exponential resummation of
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the matrix element of the evolution operator with respect to the electron-phonon
coupling constant. Of course, in the present problem there is no small parameter
and we resum the evolution operator itself, but it is very interesting that the
success of the linked cluster expansion is due to the fact that it describes correctly
the dynamics at long times'® which is exactly the motivation behind resumming
to infinite order for the fast subsystem in Eq. (16).

Using Eq. (16) the correlation function Eq. (14) can be rewritten as

C = —1—Jd Jd’———az
£ = gz %)% 55

% <ql|e—i(Hq+f)t|q><sa'e+i(Hs+f)t]sﬁ><Sﬁle-iHst|S>

J dsg J dsp (s'le™Hst]s )

2
} (17)
s=s'=0

In Eq. (17) the matrix element {q|exp{—i(Hq + f)t}|q) is formally equivalent
to that of a harmonic oscillator in an electric field, a problem whose analytic
solution is well known.3* This fact enables the reduction of the multi-dimensional
integrations over g in Eqg. (17) to a product of 1-dimensional integrations.

The results of the integrations depend on the spectral density, which is defined
as the cosine Fourier transform of the dynamical friction Eq. (8):

2

Jw) = g; 8w — ) (18)
To make further progress, it is standard practice to take this definition of the

spectral density and replace it by a continuous form based on physical intuition.

A form that is often used for the spectral density is a product of ohmic dissipation

no (which corresponds to Markovian dynamics) times an exponential cutoff

(which reflects the fact that frequencies of the normal modes of a finite system

have an upper cutoff):

—w/we. .

J(w) =nwe (19)

After a lengthy calculation® the correlation function for the Kramers problem
Eq. (17) can be shown to be equal to

(5.9)

Co = C4B1 Zoun — | * 4o 1()Ba (@) Zoan. 20)
0

In this equation J(w) is the spectral density of the bath, C% is the correlation
function for the uncoupled 1-dimensional problem, B1 and B> are functions that
depend on the characteristics of the bath and on the barrier frequency y (the
detailed forms of these functions are given elsewhere®) and

0 1 . —iHgt, =0 2
K7 {s = Ole s =0} . (21)

T 4m2



76 D. Antoniou and S. D. Schwartz

We now return to the subtle question of when and why the adiabatic approxi-
mation Eq. (15) fails. It can be shown that if Eqg. (16) were limited to the adiabatic
approximation, in other words if only the first two propagators were included,

1 20 00 aZ , .
Ce(t) = mj qu dq’ {66 (s'lexp(—iHstc)ls)

2
X HqL’IeXp[ﬂ( (I )) tellay) ] (22
s=s'=0

then we obtain a quantum transmission coefficient (defined as the ratio of the
exact rate to the TST rate) that rises linearly= with the effective friction n. This
demonstrates why the adiabatic approximation is unable to accurately reflect the
dynamics for the condensed phase system in the 2-level limit: it is known that
in that limit the transmission coefficient decays rapidly with friction®® and even
though there is a turnover, it happens at exponentially small friction. Thus, the
operator adiabatic approximation is accurate for only atiny range of the friction.

The correct way to employ the adiabatic approximation for the Hamiltonian
Eq. (7) is to group the quadratic counterterm with the subsystem “s” (we will
give below a physical justification for this grouping):

H = i +V, (s)JrZ“““‘—CiSZ
N 2m, 0 - 2my w2

S

+Z<‘—+ SMwk i ~CkSQk> (23)

Then both the exponential operators in Eq. (15) which contribute to the adiabatic
rate are dependent on the coupling. If the potential energy surface has a double
well form, the effect of the first term will be to lower the barrier, which will result
in greater transmission over the barrier and in lower tunneling, so the total effect
will be to cause a fall off in the transmission coefficient. We have shown3® that
this grouping gives numerical results that agree with those of other workers2* for
some model problems and that it is the appropriate form to use at low temperature
and high barrier.

In order to understand the physical idea behind the grouping Eq. (23) we will
begin (for clarity of presentation) with the 2-dimensional case, when there is only
one bath oscillator g with frequency ®. In that case the PES has the following
structure:

minima: (s,q) = ($so‘:}:ni:2 ), saddle point: (s,q) = (0,0) (24)

Two trajectories that join the minima and have special significance® are the
minimum energy path g = cs/mw2 and the sudden tunneling trajectory q =
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fixed. As we shall see in the next Section, the former is relevant when the
environment is faster than the motion ofthe reaction coordinate and the latter when
the environment is sluggish. If g represents a solvent mode, obviously the latter
limit is relevant. Tunneling is exponentially small unless the PES is symmetric
which is realized when g = 0. To summarize: for a reaction in solution, in the
2-level limit the dominant path is the sudden trajectory q = 0 along which the
PES is symmetric; since the PES has the form V(s) + %mm2 (q - cs/mw?)?,
the barrier along this sudden trajectory is equal to

c2s?

V(s)+ Tl (25)
When we generalize Eq. (25) to a multi-dimensional bath, we recover the first
termin Eq. (23).

An important detail is that the centers of the reactant/product wells of the
effective potential along q =0 given by Eqg. (25), lie not on Fso but on some
points Fs1 that satisfy s1 < so. Using the potential Eq. (23) for the calculation
of the rate introduces to the activation energy a term equal to the energy differ-
ence between the true minimum (s, @) = (=So, —CSo/m®?) and the minimum
(s, g) = (-s1, -css/mw?) along the sudden trajectory Q = 0:

Bzl =-61,0=0]Els=-s0.0=—(-2;)]. (o)

mw?2

This energy is the “Marcus activation energy” needed for symmetrizing the
potential energy surface. Unlike the Marcus’ theory result Eg. (10), this activation
energy Ea is not equal to Er/4 but smaller: the reason is that in the Zwanzig
Hamiltonian the transfer distance along the symmetrized PES Eq. (25) is shorter
than the transfer distance for the uncoupled potential V(s).

A lot of progress has been made in solving the quantum Zwanzig Hamiltonian
and understanding its physical behavior in different regimes of the parameter
space. Undoubtedly there are many open questions, but in the rest of this paper
we will address a different question: is the quantum Zwanzig Hamiltonian the
appropriate model for realistic proton systems?
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1. RATE PROMOTING VIBRATIONS

Figurel Doubleproton transfer in benzoic acid dimers. When the O-O bond length
becomes shorter, tunneling is enhanced.

The effect we will describe in this Section is physically similar to what in
the past was called “fluctuational barrier preparation”,” where proton transfer
between two heavy atoms is facilitated by an oscillation that brings these heavy
atoms closer so that it lowers the potential energy barrier (see Figure 1).

The Hamiltonian that captures this physical effect has the following form:

1 1. .
Hyy = zmé2+as4—bsz+§MQ2
1MQ2 2 2 2 Czsg
+ 3 Q°+cQ(s —So)+m~ 27

This Hamiltonian describes a reaction coordinate s in a symmetric double well
as* — bs? that is coupled to a harmonic oscillator Q. The coupling is symmetric
for the reaction coordinate and has the form cs?Q, which would reduce the barrier
height of a quartic double well. The origin of the Q oscillations is taken to be at
Q = 0 when the reaction coordinate is at ¥so (centers of the the reactant/product
wells), which explains the presence of the term —cs3Q. This potential has 2
minima at (s, Q) = (£S0,0) and one saddle point at (s, Q) = (0, +cs20/MQ?)

This Hamiltonian has been studied by Benderskii and coworkers in a series of
papers using instanton techniques.®* We will mention some of their conclu-
sions. One has to distinguish between two physical pictures:

a) the fast-flip limit (also called in the literature* the “sudden approximation”,
or “comer-cutting”, or “large curvature”, or “frozen bath” approximation) where
the reaction coordinate follows the minimum energy path, but before it reaches
the saddle point it tunnels along the s coordinate in a time that is short compared
to the timescale of the Q vibration.

b) the slow-flip limit (also known as the “adiabatic™ or the “small curvature”
approximation) in which the Q vibration adiabatically follows the s coordinate
and tunneling takes place along the minimum energy path (i.e. at the saddle
point).

We can make the above discussion more quantitative by introducing the pa-
rameter B = ¢%/2aMQ? and the dimensionless frequency **

Q

vzzw—b, (28)
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where b = /2b/m is the inverted barrier frequency. Then the two limits
mentioned above correspond to

v € V1-B (fast flip/corner cutting)
v > VIi-B (slow flip/adiabatic). (29)

In most cases B < 1, so that the conditions Eq. (29) are equivalenttov << 1 (or
> 1). Before we proceed, we should point out that if B ~ 1, then the slow-flip
condition may be satisfied even if v is small provided that the coupling ¢ is
large enough. This is called the “strong fluctuation” limit>” and is relevant to the
transfer of heavy particles.

Benderskii and coworkers wrote the classical action for the Hamiltonian (29)
by expanding® the propagation kernel in imaginary time exp(—Q|t|) in power
series inthe fast-flip limit, orby replacing itby a 5-function in time in the slow-flip
limit.

The instanton method takes into account only the dynamics of the lowest
energy doublet. This is a valid description at low temperature or for high barriers.
What happens when excitations to higher states in the double well are possible?
And more importantly, the equivalent of this question in the condensed phase
case, what is the effect of a symmetrically coupled vibration on the quantum
Kramers problem? The new physical feature introduced in the quantum Kramers
problem is that in addition to the two frequencies shown in Eq. (28) there is a
new time scale: the decay time of the flux-flux correlation function, as discussed
in the previous Section after Eq. (14). We expect that this new time scale makes
the distinction between the corner cutting and the adiabatic limit in Eq. (29) to
be of less relevance to the dynamics of reactions in condensed phases compared
to the gas phase case.

The study of proton transfer in solution with coupling to a “rate promoting”
vibration in the sense we discussed above, was pioneered by Borgis and Hanes.®
They used a Marcus-like model with the important addition that the tunneling
matrix element between the reactant and product states is written as

ANAOe_‘x(Q’QoJ, (30)

where Q is the interatomic distance of the heavy atoms between which the proton
hops, Qo is the equilibrium value of this distance and Ao is the tunneling splitting
in the absence of the rate promoting vibration. For a quartic double well it can
be shown that

Ao N e—V”Zm]/ZD ’ (31)
where V is the barrier height and D is the transfer distance. Eq. (31) suggests that
for a quartic double well o ~ (Vm)*2. In this picture, Q is the rate promoting
vibration. A typical value of the parameter a for proton transfer is o ~ 30 A,
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which means that the rate (that is proportional to A® in Marcus’ theory) is very
sensitive to variations of Q. In contrast, for electron transfer it is o ~ 1 A* and
the effects of the Q oscillation are not important. Borgis and Hynes solved for
the coupled dynamics of the proton, the Q oscillation and a phenomenological 1-
dimensional solvent using a perturbation theory approach. Recently,* they have
used a curve-crossing formulation to study their Hamiltonian and they reproduced
their earlier results. They found the following result for the reaction rate when
the substrate mode is thermally excited (€ is the frequency of the substrate mode
that modulates the barrier height, Mg is the reduced mass of the normal mode
and 8Gp* is the activation energy of Marcus’ theory):
K~ A e PG +at/(BMoQ?) (32)

Note the interesting temperature dependence of the rate. Since Eq. (31) implies
that ap > an, the rate equation Eq. (32) suggests that the rate promoting vibration
will reduce the KIE. Hynes and co-workers have extended their theory to the case
of biased PES .*®

An alternative but related approach has been taken by Silbey and Suarez in
their study* of hydrogen hopping in solids. Instead of a Marcus model they
used the spin-boson Hamiltonian'” with a tunneling splitting that has the form
Eq. (30). The environment as described in the spin-boson Hamiltonian has not
only slow dynamics (as in the Marcus model), but fast modes as well.

We have generalised” these results to the case when the reduction of the
Zwanzig Hamiltonian to a 2-level system is not appropriate. We started with the
Hamiltonian

1 .2 4 2 el p.2 1 2 cifi(s) 2
H:ims + as” —bs +Z 2“+zmiwi dGi——— v (33)
i=1

mi mw?

which describes a particle in a double well that is coupled to a bath of harmonic
oscillators through the coupling functions cigifi(s). In the case of bilinear
coupling, fi(s) = s and Eq. (33) describes the usual quantum Kramers problem.

Let's now assume that one of the harmonic modes [e.g. the (N + 1 )-th mode
in Eq. (33)] is symmetrically coupled to the reaction coordinate, while all the
others are coupled antisymmetrically. Then, Eq. (33) can be rewritten as

N 2 . 2
_ pE 1 2 &S
H_HZd(s,Q)+;[2mi +gmiet (- 25) ] (34)

where Hyq is given by Eq. (27). As we mentioned earlier, the effect of the
symmetrically coupled oscillation is to change the height of the barrier of the
double well, while the effect of the antisymmetrically coupled oscillations is
to induce asymmetry fluctuations to the double well. We will assume that the
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Q vibration is not directly coupled to the bath of harmonic oscillators. This
assumption is similar to the approach employed by Silbey and Suarez who used
a tunneling splitting that depends on the oscillating transfer distance Q in their
spin-boson Hamiltonian. Borgis and Hynes, too, have made this assumption in
the context of Marcus’ theory.

After this assumption is made, it is possible to calculate the quantum rate for
the Hamiltonian Eq. (34) by making the substitution

Hs — H, + Ho +c(s? —s3)Q (35)

in Eq. (14) and mutatis mutandis proceed as in Section Il. The signature of the
effect we are discussing is a primary kinetic isotope effect (KIE) that is smaller
than we would expect for a 1-dimensional PES, since the rate promoting vibration
permits alarge transfer rate for the heavier isotope as well. A series ofexperiments
by Klinman and coworkers®* has established that the proton transfer in some
enzymatic reactions has a strong quantum character. An interesting aspect of these
experiments is that they exhibit puzzling KIE behavior similar to that outlined
above. Another system that has such KIE behavior is the double proton transfer
in benzoic acid dimer crystals, which we have studied™ with our formalism. We
now describe this calculation in some detail.

For the bath we assumed that the protons are coupled to acoustic phonons of
the crystal, which means that the spectral density has a low-frequency branch
proportional to w®. The bath frequency cutoff (which in a crystal is the Debye
frequency) is known52 from experiments and is equal to o = 80 cm=. For the
friction we have used a value® y = 0.8. For the potential energy surface we used
a quartic double well with barrier height equal to 8.1 kcal/mol. Finally, for the
rate promoting vibration, we used a vibrational frequency of the O-O bond®3:54
equal to Q = 120 cm™. We should mention that the results depend only on
the ratio c%(MQ?), therefore there is effectively only one fitting parameter.
For this value of Q, the dimensionless frequency v in Eq. (28) is equal to 0.13,
which means that in a pure two-dimensional problem we would be in the fast-flip
(corner-cutting) limit. The mass of the Q vibration is not known (since the heavy
atoms are coupled to the rest of the crystal), so we set®>** Mo = 100 my which
is areasonable value since it is equal to the mass of several C atoms. The coupling
c of the reaction coordinate to the Q vibration is not known. We chose a value
¢ = .08 a.u. which in the two-dimensional problem (without the presence of
the bath) would lead to a 90% reduction of the barrier height at the saddle point
compared to the height of the static barrier. This reduction is not as large as it
appears to be at first sight, since for this value of the frequency Q corresponds to
a dimensionless frequency v defined in Eq. (28) such that the instanton trajectory
in the two-dimensional potential is close to the static barrier and not to the saddle
point. Using these parameters we have calculated the activation energies for H
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and D transfer. In Table | we show the results of our calculations for temperature
T =300° K.

Table |  Activation energies for H and D transfer Three values are shown: the ac-
tivation energies calculated using a one- and two-dimensional Kramers problem and the
experimental” values.

E1d E2d experiment
H 3.39 151 1.44 kcal/mol
D 5.21 3.14 3.01 kcal/mol

The remarkable agreement with experiment shown in Table | is undoubtedly
fortuitous, but is a strong indication that our model makes predictions that are
consistent with the experimental findings.

V. POSITION-DEPENDENT FRICTION

A lot of attention has focused recently on the problem of Langevin equation
with spatially dependent friction.**® There have been two approaches to the
problem.

The first® is a variational approach that maps the position-dependent problem
to an effective parabolic barrier transfer problem, with an effective friction that
is position-independent. This approach leads to a result for the rate that can be
interpreted as a Grote-Hynes coefficient with a position-dependent friction.

The second approach® starts from the modified Langevin equation Eq. (37)
and uses the equivalence of the Kramers theory to the multi-dimensional TST.
It has been established®® by numerical comparison that there is agreement
between the two approaches.

A critical assumption in Eq. (2) is that the friction kernel y(t) is independent
of the position s. However, it is now known from numerical simulations'®
that for some reactions in solution this assumption is violated.

In this work we shall follow the Langevin equation approach and in the spirit
of Zwanzig' s work we shall start from the following Hamiltonian:

125 Pt 1 2 ckgls) \?
H= T +V(s)+ ; {m + FMWK™ LAk — =5 ) - (36)

MWy

The position-dependent part of the friction is manifest in the spatial dependence
of the coupling function g (s). The usual quantum Kramers problem is recovered
when g(s) =s. An implicit assumption in Eq. (36) is that the functional form of
the coupling g(s) is the same for all modes k.
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Carmeli and Nitzan have shown®® that the dynamics of the Hamiltonian Eq.
(36) is equivalent to that of the effective Langevin equation

oV Jt dg(s(t)] dg[s(t")] dg[s(t)}
0s

.oV ) e, dgls(t)]
ms = +odt = T Yt —t")s + s Ft), @37)

where F(t) is the random force when the reaction coordinate is clamped on the
transition state. Eq. (37) shows that the effective friction kernel is not only
nonlocal in time, but also depends on a time-correlated product of derivatives
of the coupling function. As we mentioned in the Introduction, the molecular
dynamics simulations of the GLE are performed by “clamping” the reaction
coordinate on some position along the reaction path. In that case, dg/ds is
independent of time and Eq. (37) has the form of a GLE with random force

d
PE(t), (38)

and a friction kernel that satisfies the following fluctuation-dissipation theorem:

(ﬂ—J—CEZGMHw
Vs = keT \ ds s7 (39)

where the subscript s* means that the average is taken with the reaction coordinate
clamped on the transition state.
It is convenient to introduce a new function

2
G(s) = <%§> ] (40)

whose physical meaning will be clear shortly. G(s) obeys the boundary condition

Jlim G(s)=1. (41)
The bilinear coupling case (i.e. position-independent friction) corresponds to
G (s) = 1, or equivalently, to ¥s=s*. The position-dependent friction Eq. (39)
can then be rewritten as

dg2
velt) = () verlt) = Slover (0 @)

which shows that G (s) is the reaction coordinate-dependent part of the friction.
We should point out that Eq. (42) indicates that the function G(s) can be
obtained from the value of the friction kernel at t = 0. This is a consequence
of the fact that the friction kernel is calculated in the “clamping” approximation.
In any case, Eq. (42) allows for the calculation of G(s) without the numerical
difficulties that plague the long-time tail of molecular dynamics simulations.
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One can invert Eq. (40) and write

a(s) =J ds’\/G(s’). (43)

s#

Of course, the function G (s) does not contain any new information in addition
to g(s). The reason that two physically equivalent quantities have been intro-
duced, is that there are two approaches to the dynamics of charge transfer, as
explained earlier: either one starts from the GLE (when v, (t) is the observable
and G(s) is the fundamental quantity) or one starts from the Hamiltonian Eq.
(36), when the coupling g(s) is the fundamental quantity. The work of Voth
and collaborators®* gives a strong indication that these two approaches are
equivalent, as in the case of the position-independent friction.

Once the function g(s) is known, one can make the following modification to
the molecular-dynamics-Kramers-Grote-Hynes scheme we outlined at the end of
the Introduction.

1) Fix the proton at some position s and run a MD simulation. The friction
kernel is calculated from the force-force correlation function.

2) The previous step is repeated for several values of s.

3) The friction kernel gs(t) is calculated and with the help of Egs. (42)—(43)
the coupling y(s) is obtained. Then one solves for the Hamiltonian Eq. (36) to
obtain the effective Grote-Hynes rate.

We have examined® the proton transfer reaction AH-B = A~ -H+*B in liquid
methyl chloride, where the AH-B complex corresponds to phenol-amine. The
intermolecular and the complex-solvent potentials have a Lennard-Jones and a
Coulomb component as described in detail in the original papers.** There
have been other quantum studies of this system. Azzouz and Borgis®” performed
two calculations: one based on centroid theory and another on the Landau-Zener
theory. The two methods gave similar results. Hammes-Schiffer and Tully®
used a mixed quantum-classical method and predicted a rate that is one order
of magnitude larger and a kinetic isotope effect that is one order of magnitude
smaller than the Azzouz-Borgis results.

In an earlier work®® we performed a quantum calculation using the exponential
resummation technique and found results that agreed qualitatively with those of
Azzouz and Borgis. When we allowed for a position-dependent friction, we
obtained a function g(s) that is plotted in Fig. 2. The results for the quantum
rate are presented in Tables Il and 111. The column g(s) = s refers to the
position-independent case, as calculated in our earlier work®® on this system.
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Figure2  The coupling function g () defined in Eq. (36). The deviation from a straight
line is the deviation from bilinear coupling. The positions of the transition state, the reactant
and product wells are also shown by the dashed vertical lines.

2 Il U T | 1
. I .

" i | |
| | I
1 I ]
I | I

1 L 1 : | J
i i g
i | I
: i | |
; i i |
| | i
or : ! |
\ : |
— 1 1 !
w 1 I .
=34 . | ;
I I .

i g ! g |

=i | ; 1 1 -
1 I 1
| | |
I i 1
I ! |
! ' :
s ) | |
I I I
I I I
I . I
: i i
i + 1

3 : 0 i i : J

-0.6 -0.3 0 0.3 0.6

s (A)

Table Il Comparison of the ratio Klkzpg of the quantum rate K over Kzpg, which is the TST
result corrected for zero-point energy in the reactant well. Also shown are the Landail-Zener
and centroid calculations® and the molecular dynamics with quantum transition result.®

present method present method Borgis Borgis Tully
with full g(s) with g(s) = s (LZ) (centroid) (MDQT)
9965 1150 907 1221 9080

Table 1l Cornparison of the H/D kinetic isotope effects. The methods of calculation are
the same as in Table II.

present method present method Borgis Borgis Tully
with full g(s) with g(s) = s (LZ) (centroid) (MDQT)
37 83 40 46 3.9

V. EFFECT OF LOW-FREQUENCY MODES OF THE
ENVIRONMENT

A final physical effect is that of low frequency variations of the spectral density.
It is important to investigate these effects because the low-frequency part of the
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spectral density is calculated via long time molecular dynamics, where noise
affects the accuracy of the results. In addition, Leggett and co-workers have
shown17 that the form of the spectral density at low frequencies can profoundly
affect the transfer rate. For example, when the exponent s in J(®) = no®
changes from s = 1 to s > 1, the survival probability changes from exponential
decaying to underdamped oscillations. This example shows that one should be
alert to the behavior of the spectral density at low frequencies.

For this reason, the following experimental work is of great interest. The
Fleming group measured®® spectral densities for the solvation of the dye labeled
IR144 in ethylene glycol at 297° and 397° K. Their results showed significant
variation at low (less than 3 cm-) frequencies. In order to test the effect of such
variability on reaction rates, we constructed” a number of spectral densities for
use in rate calculations. All of the following calculations used a PES of a quartic
double well form with barrier height 6.3 kcal/mol and inverted barrier frequency
500 cm™ . We proceeded in 3 steps.

1) First, we included a spiked low frequency component to the spectral density
(as found in the experimental results) and constructed the spectral densities as a
sum of two ohmic densities with exponential cutoffs:

J(w) =nw [e'“’/“’° + fe_‘“/“’d] . (44)

For this form of the spectral density we found only a small effect on the rate.

2) Second, we studied two spectral densities, both ohmic with exponential
cutoff, shown in Fig. 3: the cutoff for the first case was 50 cm™ while for the other
was 60 cm™ . The reorganization energy in the two cases (proportional to the
integral of J(w)/w) is different by about 15%. In a standard Marcus picture, this
15% change in activation energy would be expected to yield arather different rate,
but in fact our quantum rate calculations show that the transmission coefficients
for the two spectral densities are almost indistinguishable for a variety of reduced
viscosities. The results are shown below in Table IV. We have included a
calculation of the transmission coefficient at very high reduced viscosity, in order
to determine if the variations in spectral density affect the rate at higher coupling
strength.

Table IV  Exact quantum transmission coefficients for several values of the coupling to
the dissipative environment for step 2.

n=0.9 n=15 n=25 n=45

we = 50 cm? 3.52 2.95 2.28 1.37
we = 60 cm? 3.43 2.88 2.20 1.34
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Figure 3 (a) Spectral densities for step 2: ohmic with exponential cutoff &c. (b) Spectral
densities for step 3. The difference from step 2 is that the integrals of the spectral density
over fiequency have been normalized.
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3) Third, we examined the same two spectral densities as in the second step,
with the only difference being that now the higher cutoff case has been normalized
S0 that the reorganization energies are equal. This normalization enhances the
low-frequency branch of the spectral density as can be seen in Fig. 3. In this

TableV  Exact quantum transmission coefficients for several values the coupling to the
dissipative environment, for step 3.

n=0.9 n=15 n=25 n=4.5
we =50 cm™ 3.52 2.95 2.28 1.37
we = 60 cm™? 371 3.35 2.60 1.70

case the results, shown in Table V, are strikingly different: the highest effect is
seen at the highest coupling strength. Because the high frequency variation in the
spectral density seems to have essentially no effect on the promotion of rate over
the TST result, it is clear that the variations presented in Table V are entirely due
to the difference in the low frequency (less than 5 cm™) part.

This is critical for two reasons when considering the recent Fleming group
results. First, they were not able to measure the high frequency components of
the spectral density with definitive accuracy. Our results show that this does not
matter. Second, they find some level of variation at low frequencies. Our results
show that this might matter. The low frequency “blips” they see and we modeled
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have limited effect, but the low frequency shift of the third step does have a large
effect.

VI. CONCLUSIONS

In this chapter we have presented a review of some of the recent methods we
have employed for the calculation of quantum mechanical rate constants. All
these methods are quantum generalizations of the basis of condensed phase rate
theory: the Kramers theory. We have shown how the Zwanzig Hamiltonian
formulation of the Generalized Langevin Equation allows a rigorous evolution
operator approach to the problem of rate determination through the flux auto-
correlation function formalism. This approach involves the calculation of clas-
sical molecular dynamics information as a starting point, and we have shown
in a variety of cases when calculations of classical spectral densities in a single
position for a single reaction coordinate coupled bilinearly to a harmonic bath are
not sufficient to obtain accurate prediction of chemical rates. As these and other
approaches described in this volume become standard, we expect the calculation
of condensed phase dynamics to become as common as the currently available
methods for the gas phase.
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Abstract

Keywords:

A new approach to understanding nonstationary processes has recently been
developed through the use of the so-called irreversible generalized Langevin
equation (iGLE). The iGLE model can accommodate nonstationary changes
in temperature and the friction strength of the environment. These changes
may be coupled to macroscopic averages of the environment as induced by the
collective motion of many equivalent tagged particles. As these environments
may not be identical, the WiGLE model has also been developed, and it
accounts for heterogeneous environments, each of which is coupled to a set
of w neighbors. Possible applications of these models include the chemical
reaction dynamics of thermosetting polymers and living polymers, and the
folding dynamics of proteins.

stochastic dynamics, generalized Langevin equation, nonstationary and col-
ored friction
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I.  INTRODUCTION

Tracking reactions and or correlated events occurring in a high-dimensional
environment is deceptively simple.” Ignoring the environment, the chosen
mode under observation —e.g., the reacting pair of molecules or the relative
displacement from some origin of a chosen molecule— can be recast in terms
of an effective particle moving along a reaction coordinate. Through repeated
—experimental or numerical— measurements of this effective particle’s motion,
any dynamical average may be obtained. The deceptive part of this simplicity is
that the experimental system or the numerical simulation must somehow include
the dynamics of the environment. The aim in the development of nonstationary
stochastic dynamics is the construction of projected equations of motion which
effectively allow one to ignore the environment even in extreme cases when the
environment is undergoing nonequilibrium changes.

To begin, suppose that there exists a particle, P, whose nontrivial dynamics
is on a time scale tp. (In describing the dynamics as nontrivial, we mean
that there is an appreciable change in the given particle’s non-averaged phase-
space points.) Suppose further that the solute particle is moving within an
environment of solvent particles whose nontrivial dynamics is on a time scale
Te << Tp, Where the inequality is a result of mass separation, size separation, or
some other mechanism. The motion of P can then be described as Brownian
motion in which P is in some effective (averaged) uniform environment.*®*
If te is somewhat larger, then there may arise an effective time scale tr > T,
with < 7rsuch that the environment has some “memory” of the particle’s
previous history and therefore responds accordingly. This is the regime of the
generalized Langevin equation (GLE) with colored friction.?*¢"*2* |n all
these cases, the environment is sufficiently large that the particle is unable to affect
the environment’s equilibrium properties. Likewise, the environment is non-
interacting with the rest of the universe such that its properties are independent
of the absolute time. All of these systems, therefore, describe the dynamics of a
stochastic particle in a stationary —albeit possibly colored— environment.

Now suppose that the particle —solute— and environment —solvent— are in
turn coupled to a much larger universe whose interesting dynamics is on some
time scale Ty (greater than tp and te) through direct interactions between the
environment and the universe. In this extended case, the dynamics of P over
time scales proportional to 1 will nonetheless be effectively that of the above-
mentioned stationary stochastic dynamics. (This short-lived equilibrium has
been referred to as the quasi-equilibrium condition.?%) However, after 1, has
elapsed, the change in the universe will affect the solvent and thereby change its
quasi-equilibrium properties. Such a change will affect the subsequent dynamics
of P. This cycle will persist over long times, and leads to a nonstationary stochastic
dynamics describing the motion of P.
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There is an additional layer of complexity that increases the coupling further.
As described above, the universe is external to the solute/solvent system. Perhaps
the universe represents some collective normal mode(s) of the solute/solvent sys-
tem, whose response is separable (or approximately so) from the local solvation
of the solvent to the solute. In particular, this occurs when the solute/solvent
system contains a large number of solute particles whose properties change as
a function of their individual dynamics. In the limit of high enough solute con-
centrations, the collective (macroscopic) change of these solutes thus leads to a
change in the solvation for each of them individually.

What these considerations lead to is the need for the inclusion of general classes
of nonstationary friction within the framework of stochastic dynamics vis-a-vis
the GLE. The need for such a nonstationary framework has been recognized for
some time.** In recent work,?*?*% we have further generalized the GLE
to the nonstationary friction regime. The general class of these new models has
been dubbed the irreversible generalized Langevin equation (iGLE), with the
term “irreversible” included to make explicit reference to the irreversibility in the
universe that is leading to the nonstationarity in the environmental response. The
theoretical framework ofthe iGLE will be discussed in Section Il. This discussion
also provides aconnection to the GLE with space-dependent friction®* that now
emerges as a subset of nonstationary stochastic models described by generalized
multiplicative noise terms. The most general class of nonstationary stochastic
models would also permit a change in the solvent response time in an absolute
sense, but this generalization is in progress.

There are several physical problems in which the generality of the iGLE
beyond that of the GLE is necessary to describe the dynamics. For example,
consider a bath that is undergoing a smooth isothermal contraction. Such a
change would lead to increased solvent friction, and would change the dynamics
of the chosen (reaction) coordinate to which it is coupled. A more complex and
exciting class of problems arises if the friction in the iGLE represents events that
are occurring throughout the fluid, and consequently the properties of the fluid
(i.e., the environment or the solvent bath) change as a result of the motion of
the chosen coordinate. An application of this reaction-induced —viz. chemistry-
induced— irreversibility in the solvent has also been undertaken.? It models
polymerization in the thermosetting regime, in which the fluid undergoes a rather
dramatic chemistry-induced phase transition from liquid to glass/melt, and is
described in Section I11. One other possibility currently under investigation is the
use of the iGLE to describe protein folding. Some discussion of this possibility
is described in Section IV.
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1. NONSTATIONARY STOCHASTIC MODELS

1.1 PRELIMINARIES WITH STATIONARY STOCHASTIC
DYNAMICS

A large class of reduced-dimensional stochastic equations may be written in
the form,

\',:—J dt'y(t, t")v(t") + &(t) + F(t), @

where v(t)[= R(t)] is the velocity of the effective particle with position at R(t),
and mass-weighted coordinates are used throughout. This effective particle is
subject to several forces: (i) the uniform force F(t)[= -V V(R(t))] due to the
potential of mean force (PMF) that results from the projection of all the bath
particles, (ii) the frictional force that results from the environment’s memory —
the friction kernel y(t, t )— of the particle’s velocity at earlier times, and (i) the
random force &(t) that results from the projection of the fluctuating force due to
the bath modes. To complete the specification of Eq. (1), one needs a connection
between the memory friction g and the random force &.

In emphasizing the need for satisfying the equipartition theorem, the lin-
ear response theory provides a connection for stationary processes through the
fluctuation-dissipation theorem,

(E(t) - &(t") = kpTyo(t —t'), )

where the subscript inyo is used to emphasize it’s stationarity. The well-known
Brownian motion®® results from this perspective in the local limit that

Yolt—t') =2v0(0)3(t —t'), ®)

where § is the Dirac & function. The friction term now reduces to —yo(0)v(t)
with which Eq. (1) is known as the Langevin equation.”® Unfortunately, even
this simplification does not completely specify the problem as only the second
moment of the now-uncorrelated friction &(t) is specified by Eq. (2). This
is usually resolved by making the further assumption —consistent with linear
response theory and the central limit theorem— that the higher-order cumulants
are zero, and thus &(t) is taken as Gaussian noise, i.e., (t) is a representative of
a Gaussian distribution with width specified by Eg. (2).

As the separation in the time scales between the particle and the bath becomes
less severe, the assumption that yo is local breaks down, though it may still be
stationary. This results in a frequency-weighted spectral density,

]—(—:))—] = JdtyO(t)cos[wt) , 4
0
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that is no longer constant over the frequency domain. The spectrum is therefore
not white, and the noise that results from it is called colored. Formally, the
fluctuation-dissipation theorem still provides a connection between the colored
random forces and the friction kernel in this so-called generalized Langevin equa-
tion (GLE). In numerical simulations, there is still the difficulty of constructing
the random forces such that they satisfy this connection. In practice this is usually
solved by taking & to be the result of some auxiliary random process for which
Yo is well known. For example, the Langevin equation in the velocity v’ of some
auxiliary particle with friction yc [= 2y0(0)ksT/1q and Gaussian noise leads to
av(t) that is exponentially correlated,**

WEV(E)) = keTyo(0)e ltt/T (5a)
kBT’Yo(t—t/) . (5b)

Il

Use of this v'(t) as the friction &(t) in the generalized Langevin equation provides
a complete specification of a nonlocal stationary stochastic dynamics with the
exponential friction yo.

These constructions are evidently phenomenological in that they rely on con-
sistency between the stochastic forces and their correlations. A more rigorous
construction of these terms is therefore desirable. This has led to the use of the
Mori projections*®* of large-dimensional Hamiltonian systems. In particular,
the projection of the Hamiltonian,>*

N
M=k +UR + Y [302 + 1w —w o'R?| . ()
j

results in a GLE with the connections described above in the limit that N —
(The symbols in the Hamiltonian H are as follows: pr is the momentum asso-
ciated with the position R of the chosen particle as before, p,; is the momentum
associated with the position xj of the j" harmonic bath mode with frequency
wj, Cj are the bilinear coupling constants between the chosen particle and the
j" bath mode, and the seemingly redundant parameter, g, controls the overall
coupling between the particle and the bath.) The mechanical potential U (R) is not
the potential of mean force (PMF), V(R), because the projection of the solvent
harmonic bath renormalizes the forces acting on R**“* To be precise, the
stationary friction kernel may be written as

N 2
v(t) = g Z w—’zcos(w]-t) . @

j j
One additional advantage of this connection is that it permits the use of Hamilto-

nian methods to calculate various dynamical quantities. See the chapter by Pollak
in this book for further details. However, it is not generally possible to provide
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the full-dimensional Hamiltonian whose projection results in a given stationary
Yo(t — t), let alone a nonstationary one. Nonetheless such phenomenological
descriptions may be useful in describing systems of interest, and as such most of
this chapter will deemphasize the projection methods.

1.2 MULTIPLICATIVENOISE & SPACE-DEPENDENT
FRICTION

A further complication that has been much studied in the literature is that
of multiplicative noise®* in which the random force in stochastic differential
equations like Eq. (1) is modified by a modulating term, i.e.,

E(t) = g(R,vt)E'(t) ©)

where &'(t) is a stationary random force obeying the fluctuation-dissipation
relation, Eqg. (2), for some friction yo, and the implicit and/or explicit time-
dependence in g must be specified in some way. Within the framework of the
generalized Langevin equation, the multiplicative noise term further requires a
connection between yo andy (t, t”), such that the equations have a proper physical
interpretation.”

In the 1980’s, a series of stimulating papers®**“ explored the space-dependent
case which in the present notation leads to the connection,

y(t,t) = g(R(t))gR(tDvo(t — ') . )

The physical interpretation of this well-posed problem is that it represents the
motion of a particle in a non-uniform medium whose instantaneous response is
modulated by g2(R(t)) at each time t. It was also shown that the Hamiltonian of
Eq. (6), with g” taken such that

g(R(t)) = Vg'(R(t)) (10)

in the (N — oo)-limit projects to the GLE with space-dependent friction. Thus
the GLE with space-dependent friction can be formally viewed as a nonstationary
stochastic equation of motion in which each trajectory is experiencing a unique
nonstationary friction vis-a-vis its trajectory-parameterized environment.

1.3 iIGLE FORMALISM

In recent work, we have further pursued forms of g (-) which manifest nonsta-
tionary effects directly in t, and other mixed-representations.??*?*% The first
of these representations is the so-called iGLE dynamics that may be characterized
by the stochastic differential equation,

t
v(t) = —J dt’ g(t)g(tVvolt —t'W(t) + a(t)&e(t) + F(t),  (10)
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where, as in Eqg. (1), F(t) (= -ArRV(R(t))) is the external force, v(= q) is
the velocity, and R is the mass-weighted position. The random force o (t) due
to the solvent is related to the stationary friction kernel yo(t, t) through the
fluctuation-dissipation theorem,*

(Eo(t) - &o(t)) =kpTyolt —t'). (12)

The function g(t) characterizes the irreversible change in the solvent response
and is required to go to a constant at infinite time, so that the iGLE will go to an
equilibrium GLE at long time.

By construction, the generalized force &(t) (= g(t)&o(t)) in Eq. (11) satisfies
a nonstationary version of the fluctuation-dissipation relation,

vt,t) = g(t)g(t)yolt —t") (13a)
= (&(t)-&(t") . (13b)

We have shown that the iGLE, interpreted as a nonstationary (“irreversible”)
GLE, satisfies the correct equilibrium behavior in quasi-equilibrium limits as
well as more generally in illustrative models.?

The unfamiliar structure of the iGLE may lead one to wonder if there ex-
ists a large mechanical system that it mimics, and if so, what precisely such a
system would look like. One approach toward the resolution of this problem
has been undertaken through the construction of a nonconservative mechanical
system whose projection onto the chosen coordinate is the iGLE.?® Perhaps not
surprisingly, the mechanical system is precisely that of Eq. (6) with g’ now set
tog(t).

In those cases where g is representative of a change in the solvent response due
to outside forces, we have thus far explored the iGLE with constant and biased
potentials. The form of g has been taken as a switching function that changes the
solvent from a lower to higher effective friction constant, yo.?? This has resulted
in ademonstration that the iIGLE dynamics does satisfy equipartition well beyond
the equilibrium limit. Two general classes of barrier potentials are also of interest:
potentials in which there exists one bound region (e.g., cubic polynomials), and
double-well potentials (e.g., quartic polynomials). The former class models
dissociation, while the latter models chemical rearrangements. Through the use
of stochastic dynamics simulations of the iGLE, one may obtain both a better
understanding of the behavior of these systems as well as benchmark results for
testing extensions of reaction-rate theory applicable to the irreversibly driven
solvent regime of the iGLE.

A version of this formalism which includes explicit and direct dependence
on space and time in g is the obvious next development. But a more exciting
development has come from the perspective that the time dependence in g arises
from a change in the collective behavior of the environment.2 As stated in
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the introduction this could arise from the behavior of some collective normal
mode(s) which indirectly affects the chosen particle P through its effect on P’s
environment. Letting A be the observable that represents the projection of these
collective normal modes, then at first order we posit that the the mean field
behavior of g is related to the mean behavior of A through a power law with
exponent Ca,

g(t) = (AN, (14)
where the angle brackets correspond to averages over the ensemble at time
0. Continuing further, if the behavior of (A) is correlated to the behavior of
(R(t)) through some non-exponential physical process, we can further claim the
existence of a dominant power law relation between them. Thus, we obtain the
phenomenological scaling law,

g(t) = (R(1))". (15)

This relation provides a simple closure to the iGLE in which the microscopic
dynamics is connected to the macroscopic behavior. Because of this closure, the
microscopic dynamics are said to depend self-consistently on the macroscopic
(averaged) trajectory. Formally, this construction is well-defined in the sense that
if the true (R(t)) is known a priori, then the system of equations return to that of
the iIGLE with a known g(t). In practice, the simulations are performed either by
iteration of (R(t)) in which a new trajectory is calculated at each step and (R(t))
is revised for the next step, propagation of a large number of trajectories with
(R(t)) calculated on-the-fly, or some combination thereof.

The self-consistent scenarios of the iGLE thus provide for an additional com-
plexity in the response of the environment. Even at the modestly simple level
of such inclusion through the use of the scaling law of Eq. (15) the complexity
must be accounted for by determining the scaling exponent £ for a given physical
problem. In Sec. Ill., this class of scaling laws will be used to explore the reac-
tion dynamics of polymers in the dense limit in which the growing polymers play
a significant role in each others’ solvation, and thereby affect their subsequent
reactivity.

1.4 WIiGLE FORMALISM

Although the iGLE with the nonstationarity of Eq. (15) is formally correct, it
is nonetheless too strict. The underlying assumption is that the environment is
homogeneous at a given time t, and hence the solvation of the environment to
each stochastic particle is exactly the same and characterized by g(t). However,
in many cases, each of the particles will be in a unique environment, and can each
be characterized by its own iGLE,

o = J Aty (t, V() + En(t) + F(1) (16)
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where the n subscript specifies the quantities with respect to the nth particle, and
we now define the friction kernel as:

Yalt,t) = ga(t)gn(t')yvolt—1t") (17a)
Enlt) = ognlt), (17b)

where o (t) satisfies the fluctuation-dissipation theorem for stationary random
forces as before, i.e.,

{Eo(t) - Eo(t)) = kpTovo(t —t'). (18)

In an argument similar to the scaling argument at the end of Sec. 11.3, we now
claim that each particle is solvated heterogeneously by an environment whose
response is dictated not by the average behavior of all the particles, but rather
by the w neighbors which are in the local region that characterize the solvation
environment of the nth particle. The nonstationarity is therefore included through
theterm,

gnlt) = (REG (19a)
1
(Rit)), = m%nmi(tn, (19b)

where S,,,n (3 n) is the set of labels of the w + 1 realizations in the local
environment of the n" chosen coordinate (i.e. the particle, itself, plus its w
tagged neighbors). This phenomenological set of stochastic equations has been
called the iGLE of degree w, or WiGLE.

The WIGLE model satisfies two interesting limits with respect to w. In the
w — oo limit, the different averages gn(t) all go uniformly to the same average
(IR Thisisprecisely aniGLE withself-consistent friction. In the w —0
limit, the “averages” gn(t) each reduce to Ry(t)>. That is a power law of the
particle position, and is simply the case of space-dependent friction that was
discussed in Sec. 11.2. In between these limits, the WiGLE model can include a
physically interpretable mixing of the nonstationarity in time and space which is
not available with the iGLE.

Unfortunately, the problem of determining the heterogeneity has been hidden
in the determination of the neighbor sets, S,,n. In principle, the neighbor sets
are not static. To properly account for this, one would need to solve the full-
dimensional dynamics and keep track of S,, n(t) for the stochastic —reduced-
dimensional— dynamics. But that would be self-defeating because the motiva-
tion for doing the stochastic dynamics is the avoidance of the full-dimensional
calculation. Furthermore, in analogy with the use of random matrix theory for the
calculation of energy levels,** it may be the case that the detailed sets are not
as critical as the average structure of the sets. To this end, Fig. 1 illustrates two
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Figure 1 4 matrix representation of two possible coupling schemes in the WiGLE for-
malism. The rows correspond to N, the index of a particular realization of the ensemble,
and the columns correspond to the index of the other realization of the ensemble which may
or may not be in the set Swn, depending on whether the matrix element is full or empty,
respectively. The matrix on the left (8) corresponds to the banded coupling case, in which
a given particle is coupled to the nearest w particles (for a specified ordering) through the
Sriction. The matrix on the right (b) corresponds to the block-diagonal case, in which a given
particle is always coupled to a prespecified set of w particles.

different limits for the representation of the coupling in the fixed sets, S,,, n. In
both cases, suppose that there exists an ordering of the particles. In the banded-
coupling case (a), a given set consists of the particle and the w/2 neighbors to
its left and right. Physically this corresponds to a stack of (d — 1)-dimensional
particles in a d-dimensional space whose interaction with its neighbors dies off
at w/2. In the matrix representation of Fig. 1, it appears as a banded matrix. In
the block-diagonal-coupling case (b), a given set consists of a fixed setof (w+ 1)
particles. Physically this corresponds to a system that can be separated into
regions in which the (w + 1) particles are strongly affecting the solvation of the
givenregion. In the matrix representation of Fig. 1, itappears as ablock-diagonal
matrix. Although not shown here, many of the dynamical observables for these
two rather different cases® are similar for the same w. An alternate coupling
scheme that would include an effective dynamics would be that in which the sets
S,,,n are random matrices with binary entries that are correlated in time. This
and other alternate coupling schemes are presently being studied. Nonetheless,
the preliminary assessment is that the WiGLE model provides the possibility of
studying stochastic nonstationary dynamics in heterogeneous environments with
only one additional parameter w necessary to characterize the heterogeneity.
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Figure2  The double-well potential with minima atR = 1 and R = 2 is displayed in
contrast to the instantaneous friction for the { = 0 and { = 1 as a function of {R).

1.5 ILLUSTRATION WITH A DOUBLE-WELL POTENTIAL

In previous work, the iGLE and WiGLE models have been illustrated through
the use of free-particle, biased, and biased-washboard potentials.*** Rather
than repeat these calculations, in this section we illustrate the dramatic role that
the asymmetry in the nonstationary friction can play in the dynamics of the
symmetric double-well potential. The specific question to be explored is whether
the equilibrium position of the double-well particles is affected by the asymmetry
in the nonstationary friction.

The explicit form of the double-well potential of mean force displayed in
Fig. 2 is that of three merged harmonic potentials as in Straub et al.3” The
normed frequencies of the three parabolas are chosen to be equal, the minima
are setat R = 1 and R = 2, and the barrier height is 2 at R = 1.5. (Note that for
simplicity, the parameters and observables are reported in dimensionless units
throughout.) The stationary part of the response function is taken to be that of
Eq. (5a), with yo(0) = 8.0 x 10% and t = 0.714. The calculations are performed
at a temperature, ksT = 1.0, that is sufficiently smaller than the barrier height
that the dynamics must involve significant energy activation in order to cross
between the wells, The time steps in the numerical integration of the stochastic
equations are Ate = 2.5 x 1 0~ for the auxiliary equation with Gaussian noise,
and At = 2.5 x 107 for the iGLE.

Two different test cases for the form of the nonstationarity in Eq. (15) are
explored. If £ = 0O, then g(t) = 1 for all t, and the system reduces to the
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stationary GLE with a constant instantaneous friction y(t, t) that is represented
as the straight line in Fig. 2. If = 1, then the nonstationary instantaneous
friction y(t, t) is quadratic in (R(t)) as is illustrated in Fig. 2. The (€ = 1)
choice also serves to complement the ({ = 2) choice that has been used in our
prior work. The lower value of ¢ slows down the relaxation times, but it does
not change the qualitative conclusions concerning the nonstationary effects. A
systematic study of the role of ¢ is presently in preparation. All the simulations
involve averages of N = 1020 realizations of the iGLE. The nonzero  case was
simulated using block-diagonal WiGLE dynamics with w = 16.

In Fig. 4, the mean-square velocity for the various simulations are displayed in
order to show that equipartition was in fact satisfied throughout the dynamics. For
each of the two ( cases, the average position of the double-well particle is plotted
as a function of time for two sets of initial conditions. The initial conditions are
the left and right wells with Rn(0) equal to 1 and 2, respectively. In all cases,
the velocities vn (0) are chosen from a Maxwell-Boltzmann distribution. Not
surprisingly, the average position is 0 for the stationary case with { = 0 as can
be argued by symmetry. However, the average position for the £ = 1 is clearly
shifted toward the left well. This is a direct consequence of the asymmetry in the
friction kernel which affects the competition between the forward and backward
rates across the double-well barrier. Further work to obtain these rates from the
simulations as well as analytic theories is in progress. Nonetheless, these results
are aclear illustration that the nonstationarity in the iGLE and WiGLE models can
lead to dramatic and observable differences notjust in time-dependent properties,
but also in equilibrium properties.

1.6 NONSTATIONARITY IN TEMPERATURE

Thus far, the nonstationarity in the environment has included a change in
the environmental response assuming isothermal conditions. However, in many
cases— such as in chemical reactions under temperature-ramping conditions—
the effective temperature of the solvation environment may also change in a
nonstationary fashion. If the change is slow enough, then an adiabatic treatment
of the GLE or iGLE should suffice. However, such changes may not always be
adiabatic, and so a generalization of the iGLE in which the temperature is allowed
to change irreversibly has also been constructed.”

As before, the iGLE may be written as:

t
V= _J dt'y(t, t')v(t’) + £(t) + F(t) (20)
where the friction kernel is now defined as:

y(t,t") = g(t)a(t)yvolt—t) (21)
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Figure3  The mean-square velocity for two different cases of the double-well problem
are displayed above. In the top panel, { = 0 corresponds to a stationary environment.
In the bottom panel, L = 1 corresponds to selfconsistent heterogeneous nonstationary
environments of degree w = 16 Vis-a-Vis the WiGLE model.
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Figure 4  The average position of a stochastic particle in a double well is displayed
as a function of time for the two different environments of Fig. 3 and for two different
nonequilibrated initial conditions corresponding to localization at each of the wells.
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M=

Elt) = (9%—)) 6(t)Eo (1) 22
v(t) = R(t), (23)

where &q (t) satisfies the fluctuation-dissipation theorem for stationary random
forces &o (t) at the reference temperature To, i.e.,

(Eo(t) - &o(t)) =kpTovo(t —t'), (24)

and 6(t) is some specified temperature ramp in the solvating bath.

If 6(t) = To for all t, the formalism reduces to the iGLE. Otherwise, by
construction, a nonstationary and non-isothermal version of the fluctuation-
dissipation relation (FDR) may now be written,

1
(8(1) - &(t) = ks (B(1)B(t')) 2 y(t,t) . (25)

This is to be contrasted with the adiabatic method which forces a version of the
FDR which is not symmetric in the two times,

(E(t) - &(t")) = kpB(t)y(t, t)) . (26)

Numerical simulations of these stochastic equations under fast temperature ramp-
ing conditions indicate that the correlations in the random forces obtained by way
of the adiabatic method do not satisfy the equipartition theorem whereas the pro-
posed iGLE version does.?’ Thus though this new version is phenomenological,
it is consistent with the physical interpretation that 6(t) specifies the effective
temperature of the nonstationary solvent.

Il. APPLICATION TO POLYMER SYSTEMS
1.1 BACKGROUND

The understanding of the polymer-length distribution in equilibrium poly-
merization has been a topic of longstanding interest.** In particular, living
polymerization®* —that is, addition polymerization in which the active sites
remain unterminated or active— has been a focus of the statistical models because
the sequence distribution equilibrates at long times. Tobolsky and Eisenberg®
first treated equilibrium polymerization using mechanistic master equations. De
Gennes* and des Cloiseaux® used renormalization group theory in interpret-
ing continuum models of polymerization as a phase transition between small and
high polymers, This interpretation was further validated by Wheeler and Pfeuty,*
who showed that Scott’s generalization®” of the Tobolsky and Eisenberg model
is equivalent to an Ising spin magnet in the limit that the spin vector dimension
goes to 0. Several groups®™™ have studied equilibrium distributions and phase
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diagrams of living polymers by exploiting the isomorphism between continuum
and lattice models.

Under the typical conditions of these equilibrium polymerizations the environ-
mental response is predominantly stationary. However, nonstationary response
may be seen in thermosetting and solid-state polymerizations.” Thermoset-
ting reactions play an important role in reaction-injected molding™™ and have
been the subject of large-scale finite-element calculations with semi-empirical
kinetic and visco-elastic equations.”® Because of the self-similarity of polymer
growth, macroscopic Kinetic equations provide a reasonably accurate reaction
mechanism. But as the material undergoes a vulcanization transition as a result
of further cross-linking, the reaction rates which are inputs to such calculations
change and lead to a different dynamics. The nonstationarity in themoset-
ting polymerization is clearly due to cross-linking reactions whose description
would require a treatment of the branching. Nonetheless, it does suggest that
straight-chain polymerization reactions of highly concentrated (or dense) poly-
mer solutions could undergo similar changes in the environmental response as
the presence of longer polymers induce macroscopic phase transitions.

Similarly, though kinetic models have been used to study solid-state polymer-
ization (SSP) with some success,”™ they leave out two important processes. (i)
The microscopic environments —cages— “solvating” the reactive chain ends are
changing with temperature and with increasing extent of reaction. During SSP,
the oligomers first undergo a phase transition from semi-crystalline to amorphous
and continue polymerization within this heterogeneous environment. Through-
out this process, the viscosity is changing, and must therefore Bead to different
reaction environments (cages). Thus, though the microscopic elongation reaction
in the vacuum may be independent of molecular weight, the average environment
of the cage —the potential of mean force— for polymerization will differ as the
population of the molecular-weight distribution shifts toward higher polymers.
(ii) The diffusion of the side products away from the reaction sites as well as the
diffusion of the reactants toward each other has been included in the kinetic mod-
els only in an averaged sense. However, as the viscosity changes for the reasons
explained above, these diffusion processes will also be affected time-dependently.

Thus a theory is needed that can describe chain polymerization in increasingly
viscous environments.22 O’Shaughnessy and coworkers®® have constructed
a Fokker-Planck master equation to describe the growth of the sequence distri-
bution as a function of the extent of polymerization. Their results exhibit the
autoacceleration of polymer lengths —e.g., the Trommsdorff effect— that is
characteristic of free-radical polymerization. The natural complement to this
master equation is a stochastic model describing the dynamics of each member
of the ensemble of growing polymers. In the remainder of this section, we de-
scribe the use of the iIGLE as an appropriate stochastic model for the overall chain
lengthening of a polymer ensemble.?
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Figure 5 Phenomenological representations of the polymer PMF are displayed in terms
of the effective polymer-length reaction coordinate. The dashed curve corresponds to a
growth in which there is no structure in the potential other than a soft core that prevents
the polymer length from becoming negative but otherwise has a constant enthalpic force
leading to growth. The solid curve introduces a series of wells with minima corresponding
to the polymer lengths that are proportional to the average monomer-monomer distance,
and barriers in between. These are self-similar from minimum to minimum because the
polymerization is self-similar with respect to the polymer length.

1.2 iIGLE POLYMER MODEL

There are two primary associations that must be made between the polymer
systems and the iGLE: (i) the construction of the potential of mean force (PMF),
and (i) characterization of the nonstationary friction kernel by way of g(t).

We have shown that a PMF characteristic of polymer growth can be written as

n—1

e BF(R) — Q! ZI dre BVIgR— Z [Fig1 — T}, 27
—Ja, i=1

where R is a position coordinate corresponding not to the size of the polymer
but roughly to its contour length.?> R should be interpreted as the effective
global reaction path coordinate for the chain polymerization. V is the potential
interaction between the n-mers represented by the 3n-dimensional vector, r =
{Ty,72,...,Tn Where 7; denotes the position of the i monomer. Q" is the
partition function of the monomer. The choice of Q" sets the zero of free energy
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to be at R near I, where | is the average monomer length. Notice that the sum
over the space Qn (which is the space of all phantom polymer chains with n
monomer units) in addition to the §-function constraint distinguishes this PMF
from the usual polymer PMF** that characterizes the polymer size in a constant
n ensemble.

In the work thus far, we have emphasized polymerization reactions which
quench due to diffusion-limited mechanisms. This would be the operative
quenching mechanism in dense polymerizations in which the elongating poly-
mers lead to highly viscous regimes in a matter similar to that of thermosetting
polymers; albeit, the latter undergo vulcanization due to cross-linking, not to
elongation. In these dense polymerizations, the friction can presumably be writ-
ten in the scaling form of Eq. (15) i.e.,

g(t) = IR, 28)

where ¢ is now a scaling exponent characteristic of the particular monomer
system. This choice of g(t) completely specifies the dynamics of the iGLE in
Eqg. (11). g(t) will behave like a switching function as long as (R(t)) quenches
at long time. The latter must be true because eventually the growth of (R(t)) will
lead to a large enough friction that the solvent response will quench as we have
shown.?3

This phenomenological treatment, however, can be extended to include other
quenching mechanisms. For example, living polymers are known to quench when
the monomers are reacted to completion. In the context of the iGLE, a friction
kernel that would simulate such a mechanism is the addition of the term,

—Cc
gelt) = [N—AJdR(%)P(R;t)] : (29)

where N is the total number of initial monomers, A is the number of activated
monomers, % is the effective number of monomers in a polymer of contour length
R, and P(R;t) is the normalized probability distribution of a polymers of a given
R at time t. The positive exponent, Cc, serves to characterize the change in the
diffusion rate ofthe scavenging polymers as the monomers are added. In the case
of dense living polymerization, both of the mechanisms would be competitive as
may be characterized through the combined form,

glt) = (REDI® + ge(t) . (30)

Another additional chemical complication can arise from the presence of quench-
ing reagents which deactivate the reactive polymers. This kinetic quenching
mechanism may also be included in the formalism through the addition of an
additional differential equation. A more thorough treatment of these extensions
and their applications to polymerization reactions is currently in progress.
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Figure 6 The extent of conversion is displayed as a function of time for several effective
barrier heights in the polymer PMF': (a) no barrier, i.e., the constant force or biased poterttial
case, (b) 4ksT, () 6ksT, and (d) 8kgT.

1.3 ILLUSTRATION OF DENSE POLYMERIZATION

In order to illustrate the use of the iGLE and WiGLE models for polymer-
ization reactions, we®* have studied several phenomenological forms of the
polymer PMF of Fig. 5. In the studies to date, the nonstationary frictions have
always included the form of Eq. (28) and as such are applicable only to dense
polymerizations. This class would certainly include solid-state polymerization
(SSP) as long as none of the other quenching mechanisms discussed above were
also operative, and the assumptions of the separation of time scales in the en-
vironmental motion are satisfied. In SSP, the heterogeneity in the environment
would further require the use of the WiGLE dynamics with the possible inclusion
of a time dependence in the w parameter.

In the present illustration, the polymer PMF is written as a series of merged
harmonic potentials in analogy to the double-well potential of Straub ez al.*
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Specifically, it may be written in the form,
[ Jwi(R—n1)2 —fp(n—1);,

forR <R/ + Jlwithn=1,
V' (R) = orR4n+(n—%)1<R§R£n+nl

PMF

(31)
~Jw3(R—nl—2R! )2 —fy(n—1I+E, |
for Rj, +nl <R <R+ (m+ )1

where n is determined implicitly according to the region which is satisfied by
R. The phenomenological parameters determining the polymer PMF are the
monomer size |, the driving force to growth, fo(= AE/I), and the barrier height
Eito growth. The first case of Eq. (31) corresponds to the well regions, while
the second case corresponds to the barrier regions. The relative position of the
transition state and the frequency are specified by

Rn = i—ux (32a)
1\ 2
wo = 2fy (21:_1 e I P 2 ) . (32b)

As in the earlier illustration in Sec. 11.5, the units will be assumed to be dimen-
sionless; e.g., | is taken as | thereby setting the effective unit of distance. In each
of the polymer iGLE simulations, (N = 100) effective polymers are monitored
at the temperature, keT = 2.0. The stationary part of the response function is
taken to be that of Eq. (5a) with yo(0) = 1.0 and t = 10, and the nonstationary
exponent in Eq. (28) is taken to be { = 2. The time steps in the numerical
integration of the stochastic equations are Ats = .0007 for the auxiliary equation
with Gaussian noise, and At = .007 for the WiGLE. In the present simulations,
the exothermicity is held constant at f, = 1 and the barrier height El in the
forward direction is taken to be either 4kg T, 6ks T, or 8kg T.

In earlier work,” it was shown that the iGLE dynamics for the polymer PMF
satisfies equipartition. The nonstationary effects through Eq. (28) are on a time
scale that is much longer than the solvent relaxation time in a manner which
satisfies the separation of time scales argued in the introduction. Nonetheless,
the growth of the effective polymers from an initial configuration of activated
monomers is clearly visible in the time-dependent average of the polymers,
(R(t)). Moreover, because the length of each of the polymers is known at a given
time t, the distribution of polymer lengths can also be obtained. Because of the
separation of time scales, these polymers are in a quasi-equilibrium regime which
should locally satisfy the conditions for the Flory distribution® of polymers of a
size n,

Pr=n(l—p)p"", (33)
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where p is the extent of conversion. In previous work, it was shown that each
of the iGLE distributions were in agreement with a Flory distribution within
the numerical error. Thus the extent of conversion may be ‘backed out’ of
this calculation, and is shown in Fig. 6 for four cases of the barrier height.
The qualitative features of this plot are all in agreement with what is known
to occur in polymerization reactions. For low enough barrier heights (such as
with a 4kgT barrier), the long-time result is indistinguishable with the barrierless
polymerization. The higher the barrier height, the slower the system polymerizes.
For large enough barrier heights, the long-time result is quenched at lower extents
of conversion. It even displays the Trommsdorff effect82in which for high enough
barriers there exists an auto-acceleration at the initial polymerization times. Thus
the iIGLE model for polymerization is capable of reproducing the rich structure of
polymerization correctly. Present work is being performed to obtain quantitative
results by obtaining precise parametrizations of the polymer PMF and scaling
exponents for specific polymerizing systems.

V. APPLICATION TO PROTEIN FOLDING
V.1 STATIONARY MODELS

There has recently been a strong and directed effort toward understanding
the statistical mechanics of reduced-dimensional models for protein folding.**
The main idea pursued in these models is the projection of the energy landscape
onto a potential of mean force that depends on a reduced dimensional coordinate
space characteristic of the folding transition —and typically chosen to be the
fraction of native contacts Q. In projecting out the intra- and inter-molecular
degrees of freedom of the solvated protein, one obtains frictional and random
forces that are connected through the fluctuation-dissipation relation. This leads
to a stochastic equation of motion —the the generalized Langevin equation (GLE)
of Eq. (1)— with respect to a continuous position variable R which represents
the order parameter along the folding direction, and in which the friction kernel
v(t, t') represents the stationary —and possibly local— response of the solvent
from the past at t* to the present at t. The problem is completely specified
once the friction kernel and the PMF with respect to the folding order parameter
are obtained. The PMF may be obtained either directly by ensemble averages
of the correlation function specifying the order parameter, or indirectly, as in
Ref. 95, through a projection of the many-body propagator of the probability
distribution onto a 1-dimensional such propagator. Meanwhile, the stationary
—but colored— frictional kernel is obtained through a spectral analysis of the
coupling modes. (Note also that this picture may include the projection of the
solvent in so far as it is represented in the friction kernel.) The rate of such
a system is well understood through the Kramers rate theory and its various
extensions.”*** Thus a simple and direct picture of the folding dynamics
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has emerged, and it corresponds to a directed folding event that is affected by
diffusional and random forces.

V.2 NONSTATIONARY MODELS

Unfortunately, there is a problem with the approach of the previous section.
As the protein folds, the projected orthogonal modes explore ever more restricted
subspaces of the manifold, and consequently their spectral profile changes. This
corresponds to a time-dependent —i.e., nonstationary— change in the friction
kernel that is self-consistently coupled to the folding coordinate.* Assuming that
the initial folding conditions are spatial diffusion-limited —i.e., the moderate to
high friction typically seen in solution— this would be seen phenomenologically
as an increasing rate as the protein folds. A slowing down of the rate could occur
toward the end of the dynamics if the friction where to reduce below the Kramers
turnover into the energy-diffusion limited regime. Moreover, space-dependent
friction may not be sufficient to characterize the change in the response as there
may also be an additional time scale due to solvent reorganization. As such, these
models should be addressed with nonstationary frictions.

The irreversible Generalized Langevin Equation (iGLE) described in Sec. II.
is capable of modeling some of the nonstationary folding dynamics motivated
in this section.2?#2% Sych an application is the subject of present work, but
it has been mentioned here in order to further motivate the reader to assess the
ubiquity of nonstationary phenomenon in physical problems.

V. CONCLUDING REMARKS

This chapter summarizes an ongoing effort toward understanding the nature of
chemical reactions and isomerizations in environments which are, in turn, driven
irreversibly by forces at longer length and/or time scales. The iGLE has been
shown to describe such changes that directly affect the frictional response of the
environment while still maintaining constant temperature. It may also include
temperature changes,®° thereby allowing for the characterization of rates in the
presence of temperature ramps.

The iGLE also presents a novel approach for studying the reaction dynamics
of polymers in which the chemistry is driven by a macroscopic force that is
representative of the macroscopic polymerization process itself. The model
relies on a redefined potential of mean force depending on a coordinate R which
corresponds locally to the reaction-path coordinate between an n-mer and an
(n + 1 )-mer for R = nl. The reaction is quenched not by a kinetic termination
step, but through an (R(t))-dependent friction kernel which effects a turnover
from energy-diffusion-limited to spatial-diffusion-limited dynamics. The iGLE
model for polymerization has been shown to exhibit the anticipated qualitative
dynamical behavior: It is an activated process, it is autocatalytic, and it quenches
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at finite polymer lengths. In particular, we have shown that in the equilibrium
limit, it reproduces the Flory distribution® of polymer lengths.2 Moreover, it
provides a non-equilibrium time-dependent distribution of polymer lengths for
step and chain polymerizations that can be characterized by a limited number of

parameters: barrier heights in the forward and backward direction, local friction
(viz. viscosity), and the scaling of the friction with polymer length.

A second possible application of nonstationary stochastic dynamics is toward
the understanding of the dynamics in protein folding. Such an application has
been described and is currently being pursued in this laboratory.

A major limitation of the dissipative mechanisms involving multiplicative
noise —and by extension the iGLE and WiGLE models— is that they involve
equilibrium changes only in the strength of the response with respect to the
instantaneous friction kernel. They do not involve a change in the response time
of the solvent at equilibrium limits. Presumably the response time also changes
in some systems, and the inclusion of this variation is a necessary component
of the minimal class of models for nonstationary stochastic dynamics. How this
should be included, however, is an open problem which awaits an answer.
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Chapter 5

ORBITAL-FREE KINETIC-ENERGY DENSITY
FUNCTIONAL THEORY

Yan Alexander Wang and Emily A. Carter
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Abstract In the beginning of quantum mechanical Density-Functional Theory (DFT),
there was theThomas-Fermi (TF) model, which uses the electron density p(r)
(a function of only 3 coordinates) as the only physical variable. Calculations
with this model were inexpensive but yielded poor numerical results due
to a lack of understanding of exchange-correlation effects and the kinetic-
energy density functional. Many years later, Hohenberg and Kohn (HK)
established the formal foundation for DFT; Kohn and Sham (KS) devised a
practical implementation and brought DFT into mainstream calculations of
electronic structure. Although the KS formulation allows exact evaluation of
the KS kinetic energy (Ts [p]), the one-electron orbitals introduced by the KS
scheme inevitably encumber the formulation in three ways: (i) 3N (vs. 3)
degrees of freedom, (ii) orbital orthonormalization, and (iii) Brillouin-zone
(k-point) sampling in condensed phases. Given the accuracy of DFT with
present exchange-correlation density functionals, it is logical to conclude
that the last frontier in DFT is a better representation of the kinetic energy
solely in terms of the density. If this is true, KS orbitals will be completely
eliminated from DFT formulation, and the density can be solved directly from
the TF-HK equation. This is certainly superior to the KS scheme because all
energy terms can be computed in momentum space with an effectively linear
scaling,O(MInM), where M is the integration grid size. This work reviews
major ideas in the design of such optimal orbital-free kinetic-energy density
functionals and their applications.
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Average-Density Approximation

Average Fermi Wave-Vector Approach
averaging weight function

Conventional Gradient Expansion

correct large-g limit

density -dependent

Density-Functional Theory

density -independent

first-order reduced density matrix

energy density functional

electronic energy density functional
free-electron gas

fast Fourier transformation

Fermi wave-vector

Generalized-Gradient Approximation
ground state

Hartree-Fock

Hartree gas

Hohenberg-Kohn

HK universal energy density functional
highest occupied molecular orbital

Hartree repulsion energy density functional
kinetic-energy density functional
Kohn-Sham

Local-Density Approximation

local pseudopotential

linear response

Nonlocal Density Approximation

nonlocal pseudopotential

orbital-based

orbital-free

pair-correlation function

quadratic response
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Thomas-Fermi
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Weighted-Density Approximation
exchange-correlation

exchange-correlation energy density functional
exchange-correlation hole

exchange energy density functional

von Weizsécker

von Weizsécker- A-Thomas-Fermi
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I.  INTRODUCTION

Calculations of ground state (GS) properties of fermionic systems have a long
history. While many strategies focused on calculating a many-body wavefunction,
other approaches sought to solve directly for the physical observable, namely,
the electron density. Such are the techniques of Density-Functional Theory
(DFT). Historically, DFT** began with the Thomas-Fermi (TF) model,*** with
considerable contributions from Dirac,” Wigner,* von Weizsacker,* Slater® *
and Géspar.¥ The Thomas-Fermi-Dirac-von Weizsacker model:> ®4 and the
Xomethod®™™* are the two major achievements before the “modern age.” Not
until some ten years later, Hohenberg and Kohn* laid the formal foundation for
DFT; Kohn and Sham*® then devised a practical implementation of DFT (in the
similar spirit of the Xamethod). The theoretical foundation of DFT was further
strengthened by Percus,* Levy,45 Lieb,” Englisch and Englisch.***

For the GS, the two Hohenberg-Kohn (HK) theorems# legitimize the density
®n) (a function of only 3 coordinates) as the basic variational variable; hence,
all terms in the GS electronic energy of a quantum system are functionals of the
density:

Ee[p] = T[P] + Vne[p] ali Eee[p] ) (l)

where Ee[p], T[p], Vrel[p], and Eee[p] are the total electronic, total kinectic, nuclear-
electron attraction, and total inter-electron repulsion energy density functionals
(EDF’s), respectively. The sum (T[p]+Eee [p]) is normally called the HK universal
energy density functional (HKUEDF). However, the existence of the HK theo-
rems does not provide much information about how to construct the electronic
energy density functional (EEDF) solely in terms of the density explicitly, with-
out relying on an orbital or wavefunction picture*. For an isolated many-electron
quantum system, Vne [p] has a simple analytical OF expression,

Vne[p] = <Vext(r)p(r)> » (2)

where vext (1) is the local nuclear-electron Coulomb attraction potential (one form
of the so-called external potential). The other two terms in Eq. (1), however, do
not have analytical OF expressions directly in terms of the density.

The Kohn-Sham (KS) scheme*® introduces a single-determinant wavefunction
in terms of the KS orbitals and partitions the HKUEDF into three main pieces:

Tlp] + Eeelp) = Tslp] + Jip] 4 Exclol, (3)

where Ts[p], J[p], and Exc[p] are the KS kinetic, inter-electron Coulomb repul-
sion (also called the Hartree repulsion), and exchange-correlation (XC) EDF’s,

*Hereafter, we will use “orbital-free” (OF) to describe any physical entity that does not rely on an orbital
or wavefunction picture and use “orbital-based” (OB) for the opposite.
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respectively. The Hartree repulsion energy density functional (HREDF) has its
classical OF appearance,

2 r—x'| /° 4
Because of different scaling properties, the exchange-correlation energy density

functional (XCEDF) can be further decomposed into separate exchange and
correlation components, -

Exclp]l = Exlp] + Eclp] (5)

where Ex[p] and Ec[p] are the exchange and correlation EDF’s, respectively
Within the KS scheme, the KS kinetic-energy density functional (KEDF) car
be evaluated exactly through the KS orbitals, but the exact OF expression of
the XCEDF remains unknown. Fortunately, the absolute value of the XCEDF
is much smaller than that of the KS KEDF or the HREDF, and even crude OF
approximations of the XCEDF are generally fine in practice.**® In contrast, the
situation is not so fortunate for the KEDF because its value is nearly the same
as the total energy (the electronic energy plus the nuclear-nuclear Coulomb re-
pulsion energy); crude OF approximations of the KEDF do not bring satisfactory
results."”

After more than seventy years of intense study,* a thorough understanding
ofthe OF-KEDF remains as elusive as before. Ofcourse, formally, one can easily
write Kinetic energy in the following well-known expression:

1
T=—= <ny(r, r’)

1
2 ":l"> - 2 (Ve Vr’Y(r’r/)]rzr’> ) 6)

for a given first-order reduced density matrix (DM1),s-sz A(r,r"). In conven-
tional OB methods,®* the DM1 has a spectral resolution:

yre) =) vibi(r)di(r'),

where {yi} are the occupation numbers of the orbitals {®j(r)}, and {®ij(r)} can
be canonical KS orbitals,” canonical Hartree-Fock (HF) orbitals,** the more
general Lowdin natural orbital %% or even the Dyson orbitals.®™ If
the orbitals are spin orbitals, the occupation numbers will lie between 0 and 1;
otherwise, the occupation numbers range between 0 and 2. The latter is
usually called the spin-compensated case. When the occupation numbers are
either 0 or 1 and the spin orbitals are mutually orthogonal, the DM1 has the
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useful idempotency property,

vt e = vin ). @)

The spin-compensated version of Eq. (8) has a prefactor of 2, due to the double
occupancy of occupied orbitals,

jy(r,r")v(r“,r')dr“ = 2y(r,r'). ©)

Such orbitals are solutions of the following one-particle Schrodinger-like equa-
tions

(_;vz Orele [pn) $i(r) = exdhs (1), (10)

whose effective potential operator Oef(r ;[p]) is generally a complicated func-
tional of the density, which is the diagonal element of the DM1

p(r) =y(rr). (11)

For the GS, the HK theorems*? guarantee that Eq. (10) of different exact theories
all deliver the same GS density in spite of distinct mathematical structures of
Oeft (r; [p]) within different theoretical approaches® ™ (i.e. local vs. nonlocal
operators). The reason is simple: the density is one-to-one mapped on to the GS
wavefunction, regardless of how the exact wavefunction and the exact density are
calculated.

However, the major obstacle lies in the fundamental quest: how to express
the DM1 in terms of a given density without solving Eq. (10) for orbitals. If
this can be done, all terms in the HKUEDF will be accurately approximated.
Consequently, the GS energy and density of a system with a fixed number of
electrons can be obtained via solving a single Thomas-Fermi-Hohenberg-Kohn
(TF-HK) equation:*

OE.[p] 8Tlp] | dVnelpl | SEcelp) . 5Ts(p)

S ... ___
Solr) ~ 5ol T 8e(0) T Ber) ~ el T Vel =r, (12)

where the density is the sole variational variable and  is the Lagrange multiplier
needed to keep the density normalized to the number of electrons in the system, N.

tIt is clear that electrons are interacting with one another through the exchange hole or the exchange-
correlation hole (see Section V), even within the quasi-independent-particle models, i.e., the HF method
in the former and the KS method in the latter. We feel that the idempotency property cannot simply
arise from a non-interacting or independent-particle nature. It is then more appropriate to use the term
“idempotent” than “non-interacting” to characterize any entity that originates from the idempotency
property.
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The KS (local) effective potential has three components: the external potential,
the Hartree potential, and the XC potential,

VEZ (1 [0)) = Vext (1) + Vi (r) + vie (1) (13)
which are just functional derivatives of corresponding EDF’s:

_ 5Vnelp)

Vext (r) = '35*(}‘)— ) (14)
_dJlp) [ i) .,

i) = gy = e s)

_ 8Exclpl
ch(r) - 6p(l’) N (16)

Obviously, the OF-DFT approach based on Eq. (12) has many advantages
over the OB approaches. First, the degrees of freedom is reduced from 3N to
3. Second, without any orbital dependence, the complication and cost associated
with orbital manipulation, including orbital orthonormalization and orbital local-
ization (for linear-scaling implementations), are avoided. Third, for metals, the
need for Brillouin-zone (k-point) sampling of the wavefunction’* is completely
eliminated. Fourth, the utilization of the fast Fourier transformation (FFT)®® in
solving Eq. (12) is essentially linear-scaling with respect to system size*, while
the cost in exactly solving Eq. (10) scales at least O(N?), because of the ma-
trix diagonalization step. Although OB linear-scaling O(N) density-functional
methods®™** do exist, they are still much more complicated to implement and
computationally more intensive than the OF-DFT approach.®” In addition, these
OB linear-scaling density-functional methods rely on orbital localization, which
limits such techniques to non-metallic systems.%

All these positive features will be realized only if one knows all functionals in
Eq. (1) solely in terms of the density. The accuracy of recent XCEDF’s accounts
for the popularity enjoyed by DFT via the KS scheme. Comparing to such high-
quality XCEDF’s, OF-KEDF's are still lacking accuracy and transferability for all
kinds of systems in diverse scenarios, even after over seventy years of research.
For this very reason, it has been widely recognized that the OF-KEDF is the
most difficult component in the EEDF to be represented approximately.>s Only
very recently, better designed OF-KEDF’s*™** have begun to appear, along with
highly efficient numerical implementations™****2 for large-scale condensed-
phase simulations.”** We set our task in this review to provide readers a

*The computational cost of an FFT scales essentially linearly O(MInM) with respect to the integration
grid size M.
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clear picture of past advances and possible routes to be taken in the future. It is
our hope that more studies on OF-KEDF's along these lines will soon revive the
OF scheme”™* based on Eq. (12) as the preferred method of implementation of
DFT.

In this review, atomic units will be used throughout unless otherwise noted.
The most relevant atomic units for this review are the Hartree unit for energy and
the Bohr unit for length. One Hartree is about 27.211 electron volts and equals 2
Rydbergs; one Bohr is about 0.52918 Angstroms. More details can be found in
Ref. [58], p. 41-43pr Ref. [59], p. Xiv—xv,

1. THE THOMAS-FERMI MODEL AND EXTENSIONS

The TF model marks the true origin of DFT, although its simplicity goes
hand-in-hand with many defects. Most notably, it produces no binding for
any system,**** and is only exact for the free-electron gas (FEG). Numerical
results based on this model are quite poor in general: the self-consistent density
of Eq. (12) exhibits no shell structure for atomic species and falls off algebraically
instead of exponentially. Although the Conventional Gradient Expansion (CGE)
does improve the energy if a good density is used for the calculation, it does not
remedy any defects of the original TFmodel, if Eq. (12) is solved self-consistently.
Time has produced a vast number of gapers on this subject; interested readers are
advised to consult other review articles and books for details."** Here, we
only provide a brief summary to gain some physical understanding and lay the
foundation for later sections.

1.1 THE THOMAS-FERMI MODEL

The TF model expresses the DM1 in terms of the plane wave basis of the FEG,

occ.

! 2 ik (r—r’
’Y(r)r):(_z'ﬁj'j‘zek( )v (17)
k

where the prefactor of 2 comes from the Pauli exclusion principle** that
allows two electrons per plane wave. When the number of electrons becomes
large, the summation in Eq. (17) can be replaced by an integration and an analytic
expression can then be obtained for the DML1,

occ.

Yirx) = gy | etrran, = S0V _Vocosve

43 ‘ (18)

2 —r/>

where yo ils a natural variable® for a FEG with a Fermi wave-vector (FWV)
ke=(3mpo)s and an uniform density po,

Yo =kelr—r| . (19)



124 Y. A. WangandE. A. Carter
1 1
For later convenience, let us define a new variable B(r) =p3 (r), and Bo=p§ .
Multiplying and dividing Eq. (18) by ki we can rewrite it in a simpler form:

ki sinyo —yocosyo _, j1(uo)
o = = 3po
T Yo Yo

y(r,r') = : (20)

where j; is the spherical Bessel function.” Direct insertion of Eq. (20) into
Eq. (6) yields

T= <—1§pro+cwﬁg> = Cre (B3) (1)

where CTF is the TF constant, 1—30 (3752)%. Clearly, Eq. (21) is different from the

TF functional for general systems,

Tre = (tre(r)) = Cre (B7(r)) . (22)

Going from Eq. (21) to Eq. (22), one has to replace po with p(r) in Eqg. (20) for
general systems,
i1(y)

y(r,r') =3p(r) v (23)

with a local FWV kg(r) = (3n2)%B(r) and y = ke(r) |[r — r|. Then, the TF
functional naturally follows.

However, one should ask whether the ansatz Eq. (23) is a valid one, and
exactly how good is the TF approximation. It is certain that for systems other
than the FEG, the idempotency property in Eq. (9) satisfied by any idempotent
DM1 will no longer be true for Eq. (23). Hence, the TF functional is actually
not an approximation for the Ts functional, the KS idempotent KEDF. Further,
Eqg. (23) has the wrong asymptotic behavior for isolated finite systems as both r
and r” become large, where the exact DM1 goes like the product of the highest
occupied molecular orbital (HOMO) of Eq. (10) at two different points r and

’
66,148-153
r 1

lim y(r,r') = ibi(0)dF )] _nomo = P2 (r)p? (r') . (24)

T,r’—00

Inserting Eq. (24) into Eq. (6) yields the von Weizsacker (VW) functional:3*

2
Tl = (rowte) = 5 (o) 25)

which is considerably different from the TF functional. In fact, at those regions
where the density can be accurately described by a single orbital, the DM1 has
the asymptotic form and the KEDF reduces to the vW functional. Therefore, the

TF ansatz should actually be thought of as merely a simple extension that reduces
to the exact form at the FEG limit.




Orbital free kinetic-energy density functional theory 125

11.2 THE CONVENTIONAL GRADIENT EXPANSION AND
GENERALIZED-GRADIENT APPROXIMATION

Dissatisfied with the TF model, researchers thought that including gradients
of the density might allow the model to adjust to the local environment (i.e.,
deviations from the FEG limit) and might even remedy its defects. A great deal
of effort was put into this strategy.>>**** The highest order gradient expansion
with an analytic form is the sixth,*’

3

Tegelp] Z Tailol = ) (tai) - (26)
i=0
With the definition of natural variables:®
m
tn = S @
the integrands have a very compact form
ty = B> ()f2u(81,82, 83, .., E1) (28)

where {f2i} are analytic functions of the natural variables:

fo=Crr, (29)
2
fa= (5,712) , (30)

_ (8a)? - 2820812+ 3(81)*

% 1800Cr ‘ (31)
T , 2575 249 E?? ,
fe = 504000C2, 13(&3)° + (Ez) Te —(&1)%Ea + (£1)%(E2)
T 307 343 8341 1600495
[[E-.l) E3) + Tg‘(il-iz)z 5 &2 (&2)* — 5592 —=—(E)°| . (32

As one can see from above equations, the derivation quickly gets prohibitively
involved that no analytic expression is available beyond sixth order. Nonetheless,
a careful inspection of the detailed derivation reveals that f2j has a more definite
form™

f2i(&1,82,83,...,821) = Z Cot(Ea)(E)Y, (33)

ac+bd=21i
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where {a, b, ¢, d} are non-negative integers, {C$$} are expansion coefficients,
and &o is defined as 1. This immediately reveals that for any isolated, localized
system whose density decays exponentiallys,t366. 189-202 T»; js divergent for all
orders sixth and higher (2i > 6), because every term in Eq. (28) is unbounded
asymptotically

lim B (r)(£4)¢(84)% x B34 (r) = 0. (34)

T—00

One can further show that the corresponding potential, the functional deriva-
tive 8T2i/dp, is divergent for all orders fourth and higher (2i > 4) under the
same condition. More generally, the same conclusion will hold for those re-
gions where the density falls off exponentially (e.g., areas close to any nuclear
centers). The consequence of such a property is that if the CGE is used for the
OF-KEDF, the density from the self-consistent solution of Eq. (12) always de-
cays algebraically,* 2 1 where it should have exponential behavior.5 182
Moreover, itwill be shown in later sections that the CGE derivation has its flaws:
the linear response (LR) of the CGE up to infinite order is wrong even at the
FEG limit. As a result, the self-consistent solution based on the CGE will not
produce any shell structure for atomic species,**>* regardless of the order of
expansion.
Due to its simplicity, the second-order CGE™*****"

1
Teelel = Trelol + 5 Tuw o] (35)

has been the most used and has stimulated the development of the so-called
TFIVW model 518

Treawwlpl = Trelp] + ATuwlpl (36)

where A is some constant. After careful numerical fits, A = si has been found
to be the optimal choice.*** *™*® |n general, aside from some intellectual
value, the CGE is of little practical use for a full solution of the TF-HK equation,
let alone the difficulty in accurately evaluating those high-order gradients of the
density and complicated expressions of higher-order integrands.

Simultaneous with success of the Generalized-Gradient Approximation (GGA)
for the XCEDF’s,***? similar efforts were being invested in analogous forms
for the OF-KEDF's. Instead of going to higher and higher orders of gradients of
the density, the GGA tries to capture most of those higher-order effects utilizing
some proper functions of lower-order gradients, while retaining the form shown
in Eq. (28),

Teealpl = (B°(r)feeal&n, &2)) . (37)

sAS I — oo, both p(r) and Vmp(r) decay exponentially. Therefore, rﬁ)rgcf.m o B7™(r).
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Such GGA OF-KEDF’s are abundant in the literature,**° but none of them
delivers satisfactory results if Eq. (12) is solved variationally. The problem
remains that they exhibit the wrong LR behavior (as discussed Section IV). On a
deeper level, one recognizes that the XCEDF has a much smaller value compared
with the total inter-electron repulsion energy or the total energy, while the value
of the KEDF is of the same magnitude as the total energy, due to virial theorem.
Therefore, a successful scheme for the XCEDF might not be expected to work
for the KEDF, which needs a much higher accuracy. A corollary to this insight
indicates that any successful treatment of the KEDF will most likely be more
than sufficient for the XCEDF. We discuss this aspect more in Section V.

5.0

Exact |
T e J
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=== T (4th)
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Figurel Comparing the kinetic-energy potentials for H atom. The Tok GGA OF-KEDF
is from Ref. [244].

We conclude this section by providing a comparison in Figures 1—5of the
kinetic-energy potentials of the CGE and several “better” GGA OF-KEDF’s,
using accurate densities for H, He, Be, Ne, and Ar atoms. For many-electron
atoms, highly accurate densities (from atomic configuration interaction calcu-
lations)*>** are fed into the OF-KEDF’s. Accurate potentials are obtained
via a two-step procedure: the exact vk2(r; [p]) is obtained for a given accurate
density,”**"2 and then the Kinetic-energy potential is computed via Eq. (12)

5Ts(p] o KS
5p(r) = H — Vs (l', [P]) 3 (38)

where | is taken to be the negative of the first ionization potential 222202
Figures 1-5 clearly shows that for general many-electron systems, the quality
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Figure2  Comparing the kinetic-energy potentials for He atom. The T.c GGA OF-KEDF
is from Ref. [245].
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Figure 3 Comparing the kinetic-energy potentials for Be atom. The Toy. and Tup GGA
OF-KDEF's are from Refs. [246] and [247], respectively. The Tcee(2nd) and Tovy curves
are almost on top of each other.

of CGE and GGA OF-KEDF’s potentials are rather poor, and sometimes the
potential even exhibits unphysical asymptotic behavior (see Figure 1). As stated
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Figure4 Comparing the kinetic-energy potentials for Ne atom. The TT and TP GGA
OF-KEDF'’s arefrom Refs. [248] and [249], respectively.
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Figure5 Comparing the kinetic-energy potentials for Ar atom.

above, the potential of the fourth-order CGE OF-KEDF diverges both near and
far away from the nucleus (see Figures 1 and 2). Various GGA OF-KEDF’s?*%®
do not improve the description of the potential, sometimes even worsening the
agreement (see Figure 4). In fact, the potentials of various GGA OF-KEDF’s are
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very similar to those of the second-order CGE and the TF functionals. It is also
amazing to see very little difference between the second-order CGE and the TF
functionals at the potential level. The potential of the vW functional, however,
departs from the exact potential significantly, except for the regions very close
to and far away from the nuclear core, where only one orbital dominates the
contribution to the density (see Figure 5). These figures further suggest that the
local truncation of the CGE?™ is not a significant improvement over the TF
functional at the potential level because the CGE at various orders still cannot
reproduce the exact kinetic-energy potential well. Such numerical comparisons
demonstrate that the conventional wisdom in density functional design has its
shortcomings: frequently only the energy value is fitted, while the physical
content of the potential is seldom considered carefully.*s** Given the objective
of the variational solution to the TF-HK equation, the importance of the accuracy
of the kinetic-energy potential of any OF-KEDF cannot be overstated.

1. THE VON WEIZSACKER MODEL AND EXTENSIONS

The vW model looks at the OF-KEDF problem from a different angle. As
already shown in Egs. (24) and (25), the vW functional is the exact OF-KEDF for
systems or regions of single orbital nature, such as the nuclear core and asymptotic
regions of localized systems, one-electron systems, idempotent two-electron GS
systems, and of course, all bosonic systems. However, it is completely wrong at
the FEG limit, where the gradient of the density is zero everywhere and the TF
functional is correct. Nonetheless, the vW functional offers a potentially good
starting point for further approximation if the system is far away from the FEG
limit (i.e. atoms, molecules, and realistic surfaces). Originally, the vW model was
derived* after introducing modified plane waves of a certain form to account for
inhomogeneity of the density, but we will present a general approach®****¥
that naturally unifies the TF and vW models together and plants the seed for
further improvement in later sections.

1.1 THE ORIGIN OF THE VON WEIZSACKER MODEL

Looking at Egs. (20) and (23), one realizes that there are many other choices
that reduce to the exact FEG limit. For example, taking Eq. (24) into account,
one can introduce a much more general ansatz for the DM1,

y(r,r') = pZ(r)pZ(r')g(yz), (39)
valr,r') = Ge(r,e') e — 1’ (40)

Cr(r,r’) = Cr(ke(r), ke(r")) (41)
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where g(y,) is an analytic function of the two-body natural variable y,,%° and
Cr(r, 1) is a two-body Fermi wave-vector (TBFWV). The specific functional
forms of g(y2) and r are not important at present, as long as they both are
symmetric analytic functions of rand r’, and satisfy the following constraints:

. 1
lim ya(r,r’) =0, (42)
ylzlglog(yz) =1, (43)
Jim. Ce(r, r') =ke(r), (44)
fin ):3i1(yo)
o olY2 T (45)
From Egs. (40) and (41), one can further show that
rli)nrl/(VmVr/)g(yz) =0. (46)
Based on Egs. (6) and (39)—(46), one can derive exactly
T =Towlp] + Txlpl, (47)
1/ 1 ,
Txlpl = 5 (¥ ()| 8(r =) (Ve - Vi) glu2) [ (1)) (48)
where the vW functional appears naturally. Further manipulation yields
1/, d*gly2) | 2 dg(ya)) :
T /03 5(r—r')12 ’ <3 2 1
e L R [ e

5

P (")) (50)

S5c. /o2 d?g(ya) | 2 dg(v2)
=—=C zto Slr—r’ il 2
3 n:<_p (r)‘ (r r)( a2 +y2 dyz)

= Glg]Trlp] , (51)
where a is some constant, and G[g] is a functional of g(y2),
5 (d*glyz) | 2 dglya)
Glgl = -3 ( e > .
9 3 dy% Yz dyZ 20 (52)

If g(y2) is chosen such that G[g] = 1, Tx[p] will become the TF functional. It
is straightforward to show that the simple choice g(y2) = 3j.(y2)/y2 satisfies
this condition.>®#**%® |n general, however, the value of G[g] depends on the
specific form of g(y2). Nonetheless, it is desirable to enforce G[g] = 1, so that
the general OF-KEDF model

T = Towlp] + Glgl Trp] (53)

exactly recovers the TF functional at the FEG limit and the vW functional at the
asymptotic region of localized systems. Unfortunately, numerical tests show that
this simple model greatly overestimates the Kinetic energy.®® 4 179281283
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1.2 EXTENSIONS OF THE VON WEIZSACKER MODEL

Since the above simple derivation unifies the TF model and the vW model in
a coherent approach, researchers were quite encouraged to try other extensions
based on Eq. (53) to improve its accuracy.** There are two simple ways to
accomplish this: replacing G[g] by a function of electron number N and nuclear
charge Z,2>*

T =Towlpl + G(N, Z)Trelp] , (54)
or introducing a local prefactor for the TF functional, 28
T = Tywlpl + (G(r)tre(r)) . (55)

The first proposed form of G(N, Z) was

A

with the optimized empirical parameters A = 1.412 for neutral atoms only and
A =1.332 for atoms and ions.?8% A later version of G (N, Z) was®***

2 Aq Az
G[N,Z):(l——ﬁ> (1—N1/3+W) , (57)

with the optimized empirical parameters A1 = 1.314 and A =0.0021 .** The
first factor in Eq. (57) allows Eq. (54) to recover the right limit (the vW functional)
for one-electron systems (with the correct spin-polarization) and idempotent two-
electron GS’s. However, there are other ways to enforce the right limit, yet retain
similarity to Egs. (56). For example, one might replace the first factor in Eq. (57)
by (1 -81n —02n), where §; is the Kronecker delta function.

Both Eqgs. (54) and (55) can yield remarkably accurate results if G is fitted
to the target systems, though nontransferability remains to be the key problem.
For instance, highly accurate local behavior of the density, including the shell
structure of atomic species, can be achieved for the local extension shown in
Eq. (55), but the resulting system-dependent G(r) is not transferable.® Simi-
larly, Eq. (54) can give accurate results for the energy if good densities are used,
but it again cannot reproduce the shell structure nor accurate energies if Eq. (12)
is variationally solved.?%?

Imperfect though they are, the impact of these functionals on later, more refined
developments cannot be overstated. To this end, some general observations can
be made. Eq. (53) certainly lacks flexibility, since once g(y2) is chosen, G[g] will
have a fixed value for all systems. Eq. (54) is better due to the global dependence
of G(N, Z) on specific system parameters. Eq. (55) is the best among these three,
since it accounts for the local behavior of the OF-KEDF.
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V. CORRECT RESPONSE BEHAVIOR

It has long been established in the molecular physics community that the atomic
shell structure is the barometer to measure the quality of any OF-KEDF.** In
solid state physics, the corresponding physical standard is the oscillations in
the density, including both the short-range (near-neighbor) oscillations and the
asymptotic Friedel oscillations for metals.®*** The Friedel oscillations are
caused by the occupation of orbitals at the Fermi surface.*** It is also well
understood that the correct LR behavior is the key to predicting such oscillations:
the overall shape and the weak logarithmic singularity of the LR function are
responsible for the short-range and asymptotic oscillations, respectively.®**
In this section, we review the derivation of the LR function (for there are some
mistakes with the derivation in Ref. [301]) and the strategy for incorporating it
into the design of better OF-KEDF’s.

v.1 LINEAR-RESPONSE THEORY

In terms of LR theory,”*** a small change in the potential causes a first-order
change in the density,

Solr) = | xtr ~r")ov(r e, (58)

where x(r —r) is the real-space LR function

n
x{r—r') = ) (59)
After Fourier transformation, Eq. (58) can be written in momentum space as'

6p(q) = Xx(q)ov(q) , (60)

where %(q) is the momentum-space LR function. Moreover, from Eg. (59) and
the chain rule for functional derivatives, one has

dp(r") dv(r) J iy Sv(r)
ety — — _ .
str'—r) = | Z satees = | xir —rigyes (61)
Taking the Fourier transform of the resulting equation yields
ov(r) 1
?< ): x(q)
5oir)) T X@) 62

where f denotes the Fourier transform.

THereafter, the Fourier transform of a red-space function f(r) will share the same symbol but with a
tilde, f(q).
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Different pieces in Eqg. (12) can be chosen to be the above perturbation po-
tential, resulting in different LR functions,®**** which are closely related to the
second functional derivatives of corresponding EDF’s. For example, the (static)
external LR function of only the nuclear-electron attraction potential is given by

8p(q) = Xext(q)dVext(q) , (63)
] 6Vex (r) 52Vne[P]
-+ (52) " (ot
el \ Bo(r') 5o(r)5p(r') (64
The XC LR function of only the XC potential is given by
66((1} = ixc(q]éf’xc(q) » (65)
1 Svye(r) 82Exc[p)
=" (5) -+ sz
Tecld) -\ 5p() 5o(r)5p(r’) (66)
The Hartree LR function of only the Hartree repulsion potential is given by
3p(q) = Xn(q)éVn(q) , (67)
1 dvp (r) 4n
=t ()=
i@ \elr)) T @ (68)

The LR function within the Random Phase Approximation (RPA) for a Hartree
gas (HG) without XC is given by

50(q) = Xrral@)dV,s(a) (69)
§9,6(Q) = 59K (q) — 5Vxc () = SVext(q) + 50n(q) , (70)
1T N 1
kkp/\(q) - )Zext(Q) ih(q) . (71)
Then, the total LR function of the entire KS effective potential is given by
5p(q) = Reot(q)8VE5(q) , (72)
1 5v§f5f(r)>_?<6z(Ee[p]—Ts[p])>__?< 52T, [p] >
itot(q)'?(ép(r') T\ Toemsery )T \semser) ()
T N 1 N 1T 1 N 1
ot @ Xert(@ (@ Ko@) Xeen @ | Roel) D

In Eqg. (73), the second functional derivative of the EEDF is zero due to the
TF-HK equation. Accurate numerical values of various LR functions for nearly
FEG’s can be found in Refs. [305] and [306].
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V.2 THE LINDHARD FUNCTION

For a nearly FEG, an analytic expression for the total LR function is already
available, due to Lindhard.®” For completeness, we provide a concise derivation
below.

We start from the FEG limit, where the density p is uniform, orbitals {®x(r)}
are simple plane waves,

bi(r) = (2m)~Fetkr (75)

and the zeroth-order Hamiltonian is just the summation of all the kinetic-energy
operators,

N
' o2
ﬂO:;—zVi , (76)
i=

where index i runs over all electrons in the system. Now, let us introduce a weak
perturbation potential v(r) into this system, so that to first order the orbitals can
be written accurately as

by (r) = d(r B

K’k

Vi
— ‘ ';k, i (r) 77)

where the coupling element Vi« is given by first-order perturbation theory as
Vie = (e (1) v(r) i (1)) = (27) 30k — k') . (78)

Introducing a new variable q = k—k” and replacing the summation by an integra-
tion, one rewrites Eq. (77) as

oM (r) = dulr) + o J\?(q)m-q(r)

(2m)3 % k? — (k— q)? drq . (79)
q

Then, the first-order change in the density due to the first-order change in the
potential is

cc.
so(r) = Zf Udak” I—!cbk(rnz}
- 4 qulrocc
= G J Zkz 747, (80)
q7#0
or in momentum space,
] occe. fk

8p(q) = ﬁ\")(q) % m ) (81)
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where fi is the occupancy of (®k(r). At zero Kelvin, fx is a step function;
otherwise, it is the Fermi-Dirac distribution function. Comparing Egs. (60) and
(81), one immediately has

occ.

Xtot(q) 27-[3 Z k2 — (82)

In Eq. (82), setting fk =2, replacing the summation by an integration, and doing
some algebra, one finally obtains the Lindhard function®*”

N 1% (™ sin®
Xinal@) = ;L Zﬂkj TRaqooss g2 04k
1 q+ 2k
= ——| kin
n2q L I -2k dk
ke (1, 1-m2 |1+4n
- =Gl )

where n = ¢/(2kr) is a dimensionless momentum. This finishes the derivation
of the LR function at the FEG limit". Therefore, the FEG limit of Eq. (73) is

? 62Ts[p]
Sp(r)dp(r')j,

FLina(n) = ( I1 tn ) (85)

Extension to finite temperature T can be made by using the Fermi-Dirac
distribution function for fx in Eq. (82)
1 r" k 1 iq + 2k

=T _
Xtot(d) = m2q |y 11 e Kh/(ZkeT) | q— 2k

1 n?
= = T Fialn),
o) Roma(@ R el (84)

' dk, (86)

where kg is the Boltzmann constant. More generally, higher-order response
functions can be obtained if the perturbation theory is carried out to higher
orders, but the derivation quickly becomes tediously involved.*# 08 10306310

A few comments need to be made here. First, it turns out that the restriction
g # 0 in the integration of Eq. (80) is not a problem at all because the Lindhard
function is analytic for g= 0. Second, there is a weak logarithmic singularity
atn=1 or g =2kr where the slope of the Lindhard function is divergent. This
singularity can be attributed to the pole of the denominator of Eq. (82), and is

TCareful readers might notice that in Ref. [301], there is asign error in Eq. (6.38). Our derivation should
be the correct version.
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closely related to the step function behavior of fx at the Fermi surface at zero
Kelvin. In fact, the singularity persists even at finite temperature, as one can
easily see this from Eq. (86). It can be further shown that from Eq. (86), the
asymptotic Friedel oscillations in the density at a finite low temperature T are of
the following form™ee33:2

lim dp(r) o _—_COS(ZskFT‘) e~ckelr/ke 87)

T— 00 T
where ¢ is some positive constant. Moreover, the overall shape of the LR
function is the key for a good description of the short-range oscillations in the
density.®** Therefore, the fine details of the LR function are essential to
reproduce any correct physics. Third, the utilization of the step-function form of
fk dictates that the Lindhard function is only valid for idempotent DM1 ’s, because
the occupancy is either 0 or 2. Fourth, for later reference, one can rewrite the
Lindhard function in terms of a polynomial expansion®-**

f n&/(4n? —1) for <1,
Xiinalq) n=0
gy (88)

n/(4n? —1) for n>1.
1

M8

Taking the inverses of Eq. (88), one can also rewrite Fijng(1) in terms of a
polynomial expansion

o0
T+ Y ann®® for n<1,

n=1

Frina(n) = (89)
?—243 Y bpym " for n>1.
n=1%

Here the expansion coefficients {an} and {b,} satisfy the same recurrence relation
(c is either a or b)

n ) _ 1 _ _
= ) enomfm, €0 =T, T =z, Ba=—38ua. (0

The first few coefficients are shown in Table I. Finally, it should be clear that none
of those potential pieces in Eq. (12) are included in the zeroth-order Hamiltonian
Ap in Eq. (76) and the entire KS effective potential is treated as the perturbation.

**Apparently, the correct decay prefactor is proportional to r=, rather than to r2 as “proved” in

Refs, [311] and [313]. The r2 decay prefactor is obtained without taking into account the correct LR
behavior.
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Tablel  First few coefficients of the polynomial expansion of Fjng(n). Here an =
p2/q% and bn = —p%/q%.

n Pa as pY af

1 1 3 1 5

2 8 45 8 175

3 104 945 8 315

4 1048 14175 12728 1010625

5 24536 467775 551416 65690625

6 24735544 638512875 41587384 6897515625

7 2262184 76621545 2671830232 586288828125

8 1024971464 44405668125 15330117543304 4288702777734375
9 3592514217256  194896477400625  185527734659128 64330541666015625

10 481989460497736 32157918771103125 1601650275310046776 6732191185348535156251

Therefore, it is not relevant to talk about the XC effects on the Lindhard function
unless, of course, one starts from some Hamiltonian that includes exchange and/or
correlation, like the HF Hamiltonian or the KS Hamiltonian. If the latter step is
taken, simple plane waves cannot be used as the zeroth-order orbitals any more.
Nonetheless, the Lindhard function is ideal for our purpose because it is a “pure”
kinetic model [see Eq. (84)].

V.3 COMPARISON OF VARIOUS KINETIC-ENERGY
DENSITY FUNCTIONALS

With Eq. (84) in hand, we can easily assess the quality of various OF-KEDF’s
mentioned in previous sections, by comparing their momentum-space LR func-
tions with the Lindhard function. For instance, the momentum-space LR function
of the TF functional is just the constant prefactor in Eq. (83),

1)

which is only correct at g = 0, the FEG limit. For convenience, the TF LR
function is usually used to renormalize the momentum-space LR function of a
given model K for the OF-KEDF,

_ % 2 52TX[p] 1
%o = 25 = (—) Hlememl | == 92)
Xre  \kr dp(r)dp(r’)|,, Fx(n)
It is straightforward to work out the momentum-space LR functions for any given
model OF-KEDF’s. Table Il shows some of the results.
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Table Il The momentum-space LR functions of some model OF-KEDF'’s at the FEG limit,
in terms of Fk () via Eq. (92), where n\ = Ql(2kr). The recurrence relation for expansion
coefficients {an} is given in Eq. (90), and the first ten coefficients are shown in Table I

Model Ts [p] Frx (M)
Exact Fuind (h)
Trelp] 1

Towl[p] 3

Trelp] + ATvW[p] 1 +3a?
Tvw[p] + ATre[p] 3 + 1
Teee [p] oo ann2V

Table Il clearly indicates that none of the previously mentioned OF-KEDF’s
has the correct LR behavior at the FEG limit. Even more interestingly, the TF
functional is supposed to be exact at the FEG limit, but its LR function has no
momentum dependence. At first glance, one would think that there is some
inconsistency involved. In fact, there is no conflict because the TF functional is
only the zeroth-order perturbation result, while the Lindhard function is the first-
order result. A similar “paradox” exists for the asymptotic Friedel oscillations in
Eq. (87).

More specifically, the weak logarithmic singularity atn =1 divides the Lind-
hard function [see Eqgs. (88) and (89)] into two branches: the low-momentum
(m < 1) branch with the TF LR function as the leading term, and the high-
momentum (n > 1) branch with the vW LR function as the leading term. By
itself, the vW LR function is completely wrong at low momentum: becoming
divergent at 1 = 0. Combinations of the TF and vW functionals, either the TFAVW
model [see Eq. (36)] or the VWATF model [see Eq. (54)], cannot reproduce the
overall shape of the Lindhard function. As a side note, it is desirable to keep A
positive so that the resulting LR function will not have a singularity. However, it
is clear that both Egs. (56) and (57) are not always semipositive definite for all
positive real N, and thus should be used with caution. To aid our understanding,
we plots the renormalized LR functions at the FEG limit in Figures 6 and 7.

It is also intriguing to notice that the complicated CGE (or the GGA) is not
doing much better either. In fact, if one carries out the CGE derivation to infinite
order, one only gets the low-momentum branch of the Lindhard function right,
because the weak logarithmic singularity of the exact LR function was never
taken into account properly in the CGE derivation. Moreover, the LR function of
the higher-order CGE converges to the Lindhard function very slowly and decays
to zero very quickly, as clearly shown in Figure 7. It should be understood that
the CGE is correct up to all orders in perturbation theory, not like any finite
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Figure 6 Comparing the Lindhard function with the momentum-space LR functions of
various model OF-KEDF'’s at the FEG limit.
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Figure 7 Comparing the Lindhardfunction with the momentum-space LRfunctions of the
CGE OF-KEDF'’s (up to infinite order) at the FEG limit.

response theory, but its mishandling of the weak logarithmic singularity and the
complexity in its derivation lend to its highly impractical nature. Similar to the
second-order, low-momentum CGE, one can easily see from Eq. (89) and Table
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Il that the second-order, high-momentum CGE, which will be referred as the
correct large-q limit (CLQL)Y" in later sections, is given by

Terqr = Tiwlpl - %TTF [p] . (93)

We believe that the CLQL is the right OF-KEDF for rapidly varying density
regions. However, one should not attempt to use the CLQL generally, because
its LR function 1/(3n2- g’.) has a pole atn = 1//5.

In summary, all exercises so far seem to lead nowhere: simple-minded exten-
sions based on the TF and vW functionals hit a dead end. A more innovative
path has to be taken. Fortunately, there are such paths, mainly fueled by the ad-
vances in the design of the XCEDF’s, namely the Average-Density Approxima-
tion (ADA)34-316 and the Weighted-Density Approximation (WDA).98260.315-318

Before we go any further, it is instructive to point out that almost all schemes
(except for the CGE) discussed in this review, as well as by others, are unani-
mously based upon Eq. (20). In retrospect, this is not surprising, once one knows
that Eq. (20) isjust the zeroth-order term in the semiclassical expansion (in orders
of % , the Planck constant divided by 2rw) of the DM1 **®

y(r,r) =y ) +y ('), (94)
YO (r,r') = kelr) jr(u) ) (95)

2.2 o 2
Yy (e r') = 56—]7-;{4 Goty) —uiiy)l V—kF—k(fr—()i) — 24 [yjoly)] E%M
le]Z:(r)lz |(r—r’)-Vk%(r)|2

— [+ yHjoly) — viily)]

_1?%—(1')— + 3 [joly) — yir(y)] T (1)

, (r—r')-Vki(r)
+8 [yjoly)] (r—r’)V(—ﬁjﬁ— ) (96)
where jo and j; are the spherical Bessel functions.2: Clearly, the overwhelming
complexity of Eq. (96) precludes any efforts to more general OF-KEDF’s based
upon Eqg. (94). Therefore, in the following, we will only concentrate on ideas

that manipulate Eq. (95) to more general approximations.

V. NONLOCAL DENSITY APPROXIMATIONS

Before introducing the Nonlocal Density Approximations (NLDA’s) for the
OF-KEDF,*** we would like to briefly outline the essence of the ADA and the
WDA for the XCEDF#®260314-318 to aid our understanding later.
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V.1 THE ESSENCE OF THE AVERAGE- AND
WEIGHTED-DENSITY APPROXIMATIONS

In the language of the adiabatic connection formulation,®*%* the XCEDF
can be exactly written as

1 1
Exclpl = E <p(r) m ‘_)XC(I‘,I',)> ) (97)
Pxc(r,r’) = p(rl}ﬁxc (r,r'), (98)
_ 1
Fee(yr’) = | Ia(r, ), (©9)

where Py (r, r) and hyc (r, r) are the coupling-constant-(A)-averaged exchange-
correlation hole (XCH) and pair-correlation function (PCF), respectively. The
PCF is symmetric in its variables

ha(r,r’) =ha(r',1); (100)
the averaged XCH satisfies the sum rule
[ﬁxc(r.r’)dw’ - J p(r" e (r, )’ = 1| (101)

One can further split the XC effects into separate exchange and correlation
contributions:

EXC(r)rl) - px(r)rl) + pC(r)r,) ’ (102)

hee(r,r’) = he(r,r') + he(r,r') (103)

which satisfy different sum rules

[ patrxiar’ = [otr e, =1, (104)

Jpc(r,r')m' — [ ot hefr,rjer 0. (105)

(Interested readers should consult Refs. [50] and [51] for a concise, yet full
description about the details of the adiabatic connection formulation. For brevity,
we will not repeat them here.) The benefits of such a formulation are clear:
the XCEDF has a quasi-Coulombic interaction form, where the pseudocharge
Prc(r,r") and the PCF hy(r, r’) carry all the information about XC effects.
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Various approximations are built around the XCH and the PCF. For example,
the well-known, widely-used Local-Density Approximation (LDA)3-104243, 324-326
assumes

1
pre e, ) =p(r)R P Ap(r), Ir —1r'l) = p(r)J P p(r), Ie —r))dA, (106)

0

which satisfies the sum rule required by Eq. (101)

Jﬁi?A(r,r’)dT’ =-1. (107)

Similar to the generalization of the DM1 from Egs. (20) to (23), one can think
of the LDA is a generalization again of the FEG formula, i.e., replacing po with
p(r)in ﬁ;ge (r’r/)’324ﬁ326

=FEG

PrEC (1) = poh EC (o, Ir — 1'[) — p(r)REPA(

p(r),lr—x'l} . (108)
Unlike the poor performance of the LDA counterpart for the OF-KEDF, the LDA
for the XCEDF actually does quite well most of the time, despite that Eq. (106)
has the wrong density prefactor: p(r) should be p(r’) as in Eq. (98). Its success
is attributable to Eq. (107) (which allows a systematic cancellation of errors) and
the recipe shown in Eq. (108) (which provides a reasonable approximation for
the spherically averaged XCH).316

In light of the success of the LDA, the ADA34-3¢ closely follows the LDA
and proposes

pro A (r,r') = pAPAORPA (APA (), Ik — 1)) (109)

where the weighted-average density (WAD) is given by
PO ) = [w(pAPA ) I — ) plr')ar (110)
The peculiar recursion in Eq. (110) is mainly due to a lack of understanding of

the TBFWV and due to the convenience of the automatic fulfillment of the sum
rule for the XCH,

Jﬁch"(r,r’)dT’ =—1. (111)

The averaging weight function (AWF) w(p*®* (r), |r — r’|) is determined by
enforcing the correct LR of the ADA XCEDF at the FEG limit,30>:3%6

52EAPA [o]
8p(r)5p(r")

I R 110
) T @ T @ Xewld  xnl@ 12
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where Egs. (66) and (74) are employed. In comparison, the LR function of the
LDA XCEDF is only exact at @ = 0 and has ho momentum dependence,®®"
while the LR functions of the GGA XCDEF’s are also exact at =0 and have
momentum dependence.®** More interestingly, the LDA does a better job in
reproducing the correct LR behavior than the GGA does, especially for the region
of q < 2kr.306327.328 This s the third reason for the success of the LDA XCEDF.
Unfortunately, the LDA OF-KEDF does not enjoy similar success, because its
LR function resembles the Lindhard function poorly (see Figure 6).

Since both the LDA and the ADA ignore the strict form of Eq. (98), the
WDA?%%:260315-318 offers an alternative to obey it exactly,

pre M (e e’) = p(e)REPA (BWPA (), fr —x)) (113)
where the effective density pVPA (1) is determined pointwise by enforcing the
sumrule

Jﬁ!‘éDA(r,r’)dT’ =—1. (114)

Interestingly, numerical tests show that both the WDA and the ADA are gener-
ally superior to the LDA, but the ADA is the best8136-141,260314-318329-345 among
the three. These results come with no surprise because all three approximations
honor the sum rule of the XCH, but only the ADA complies with the right LR
behavior at the FEG limit. It has been shown that the WDA XCEDF generally
does not have the correct LR behavior,3?® which might be the cause of its poor
performance, especially for the correlation energy. Nonetheless, by preserving
the exact form of the XCH, the WDA should capture more of the anisotropic
nature of the exact XCH, while the LDA and the ADA are spherically symmetric
around r. Furthermore, since the PCF’s of both the ADA and the WDA have the
same form as that of the LDA, they inevitably fail the symmetric requirement of
Eg. (100). A simple symmetrization can fix this problem,s
REPA(B(r), e —r/l) + WA (B(x'), I —x'))

7 ) (115)
but it destroys the automatic fulfillment of the sum rules in Egs. (107) and (111)
for the LDA and the ADA, and puts a heavier burden for the WDA to satisfy its
own sum rule in Eq. (114).

It is also important to discuss the effect of the symmetrization on the XC
potential, SE}"éDA/Sp. For the exact XCEDF, the symmetric nature of the PCF
directly leads to a two-term summation for the XC potential,

_ SExclol
dp(r)

hEPA () =

Vxe(r) =vi(r} + 2vz (1), (116)

1” p(r')p(r") Shyc(r’,x")

vilr) = 2 r’ —r”| 5p(r)

dt’dt”, (117)



Orbital-free kinetic-energy density functional theory 145

1 N -
va(r) = 2 j %—r)ﬂhxc(r, r')dt’ . (118)

At large distance from a neutral atom, va(r) goes to —_%_r and vi(r) decays
exponentially 315316341342 |f 3 symmetric ansatz for the PCF is employed,
the WDA XC potential will be symmetric automatically, just like the exact
case above. Additionally, a symmetric XC potential has the exact asymptotic
behavior (-+) and the spurious self-interaction effect in the HREDF J[d is
mostly removed.35316342 Unfortunately, because of the nonsymmetric nature
of the ansatz for the PCF in Eq. (113), the XC potential within the present WDA
framework has three terms instead,

VA ) = P () + v PA () + i PR ) (119)

! 11y SHLDA (=WDA (./ -
WDA(r)zﬂjp(r)p(r oLl el ol ) PR

v/ —r”| op(r)

WDA (1) — IJ' p(r) RLDA (GWDA (1) [ — 1/]) d |

vy =7 r—r1 p . (121)
1 )
VWPA(r) = EJ lffr)/l LDA (gWPA (r/) |r — /) dt’ . (122)

Asymptotically, both v}¥P* (r) and v4'®* (r) decay exponentially and v3'®* (r)
goes to — L .%53163432 The inequality between v 3'** (r) and v{'PA (r) makes
Eq. (119) differ from the exact form in Eq. (116). Although an ad hoc symmetriza-
tion can restore the exact form for the XC potential ®:-3*

VPA () = v{YPA (r) + 2v1PA () (123)

the corresponding XCEDF is unknown. For the sake of the internal self-
consistency between the XCEDF and the XC potential, introducing a symmetric
TBFWV [see Eq. (41)] seems to be the more elegant approach.

On the practical side, neither the ADA nor the WDA was widely applied in
general to many-electron, realistic systems, due to their complicated functional
forms.os,136-141,260314-318,329-34s Only very recently did efficient implementa-
tions of the WDA become available.33¢-342 Even today, the ADA is still a
“museum artifact,” which has been applied only io spherical atomic species and
the spherical jellium model.2#33¢ The main obstacle lies in Eq. (110), where
in addition to the recursion problem, one needs to do the integration over all space
of r” for every point r, yielding a numerical cost scaling quadratically, O( M?),
with respect to the integration grid size M. A straightforward application of the
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FFT cannot be used to finesse this integration, because of the density dependence
of the AWF, w(*"* (1), |r - r']).

What does all of the above analysis teach us? First and above ail, the correct
LR behavior at the FEG limit is vital for design of a good EDF. Second, proper
sum rules should be satisfied to build in systematic error cancellation. Third, the
introduction of a weight function releases the constraints on the original formulas
at the FEG limit, allows any nonlocal effects to be modeled, and somewhat more
importantly, provides a new degree of freedom so that other restrictions can be
simultaneously satisfied. Fourth, any recursion should be avoided to permit more
efficient implementation.®** This in turn calls for a better understanding of the
TBFWV. Finally, the O(M?) numerical barrier must be overcome so that any
general application will be possible.

V.2 THE CLASSICAL WEIGHTED-DENSITY
APPROXIMATION

In the lineage of the methodology developed above, the ADA and the WDA
are nonlocal extensions of the LDA formulation. In this sense, the TF model
discussed in Section 11.1 is the LDA counterpart for the OF-KEDF. however, the
vW model discussed in Section I11.1 is somewhat different, because the ansatz in
Eq. (39) departs from the LDA ansatz in Eq. (23). For later convenience, we name
the strategy in Section 111.1 the Semilocal-Density Approximation (SLDA). In the
following, through a detailed analysis of the exchange energy density functional
(XEDF) and the OF-KEDF,*® we shall see the classical WDA is actually closely
related to the SLDA.

Right from the birth of the WDA, ajoint approach to the XEDF and the OF-
KEDF was presented.®® It is not surprising because both are related to the DM1.
For closed-shell systems, the XEDF has a simple analytic forms®<

1/ (e,
Exlp] =—Z<-YTr—r_—rr—,|—> . (124)

After an inspection of Egs. (97), (98), and (124), one can then readily write the
exchange hole and the exchange PCF as

n_ )P

px(r,r’) = 2o (125)
, y(r,r")?

hy(r, ') = —-——2p(r)p(r,) . (126)

The fulfillment of the sum rule in Eq. (104) is simply given by

[ rteur? &’ = 2v(rm) = 2010). (127)
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Itis clear that Eq. (127) is less restrictive than the enforcement of the idempotency
property in Eq. (9), because the right-hand side of Eq. (127) is the density, not
the full DM1. Now, following the general LDA scheme and employing Egs. (20)
and (23), one has the LDA exchange PCF,

9 /i 2
hPArr) =—5 (“Ly)> : (128)

and the celebrated Dirac LDA XEDF,3

9 2 q 2
Bl =~ <lrp_(rr),‘ (%y—)> > =—Cp (p*(r)) , (129)

where Cp isthe Diracconstant, % (% )% . Invoking the WDA yields

_ 2
/ 9 (1H{E"YPH)
hYPA (r,r) = —5 (”]JWSA— ; (130)
9 /p)o(r') (H1(TWPA)\?
WDA
Ex [p:[ = —Z < 'r_r,| ( gWDA ) (131)
where the effective variables are given by

gV =kPA ) e -] (132)
RWDA (1) — (3712)% EWDA () (133)
BWPA(r) = pVPA)]” . (134)

Comparing Egs. (126) and (130) immediately reveals the WDA ansatz for the
DM1:

— 07 (r)p?(r')g

yWPA(r,r') = p2 LDA (gWDAY | (135)
_ j1(g"WPA)

Itis striking that Eq. (135) closely resembles Eq. (39); hence, the classical WDA
is actually a generalized SLDA [of course, the element of the TBFWYV of Egs. (40)
and (41) is missing]. Similarto the derivation shown in Egs. (46)—(53), the WDA
OF-KEDF can be easily derived from Eq. (135),%

TWPAl) = Tawlel + Cre (p(x) [BYPA (1)) - (137)
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It is important to note that the effective density p"YPA (r) must be everywhere
semipositive definite so that all effective quantities are then properly defined.
Within the WDA, the explicit enforcement of the sum rule [see Eq. (127)]

J o(r') [g"PA [EWPA)]* dr’ = 2, (138)

might just ensure this because all papers on the WDA have not reported a single
violation so far.98136-141.260315-318329-34;  Nonetheless, more thorough studies
should definitely clarify this issue.

Ignoring the correlation component in Eq. (12), one can solve the exchange-
only TF-HK equation within the WDA. Numerical results are in favor of this ap-
proach in terms of energy, butthe density still exhibits no shell structure for lighter
atomic species (Z < 30).136-140 |n addition, because the WDA ansatz of Eq. (135)
is a generalization of the single-orbital form in Eq. (24), the WDA greatly im-
proves the description of the density both near and far away from nuclear centers,
as the nuclear cusp conditions7347-34 and asymptotic decay®366. 189202 gre hetter
modeled over the LDA. ©-10 Specifically for idempotent two-electron GS sys-
tems, the fulfillment of the sum rule for the exchange hole [see Eq. (138)] yields
a null effective density p_WDA(r) and hence exactly cancels the self-interacting
effects from the HREDF and reduces the WDA OF-KEDF to the correct limit:
the vW functional.%8

However, studies on the WDA are far from finished yet; many important
questions can be asked. For example, we still do not know whether it is the WDA
XEDF or the WDA OF-KEDF that causes the appearance of the shell structure
in heavier atoms (Z > 30). Nor do we know the reason why the shell structure
is not evident for lighter atomic species. How does the ad hoc symmetrization
scheme==2= [see Eq. (123)] effect the LR behavior? How does the individual
WDA XEDF compare with the exact HF exchange if the KS and the HF equations
are solved? Similarly, how good is the WDA OF-KEDF by itself if the TF-HK
equation is solved with the LDA XCEDF instead of the WDA XCEDF?

On the other hand, the WDA has two quite severe defects. First, the correct
LR behavior has not been taken into account. Second, a consistent, efficient
symmetrization scheme for the exchange PCF at both the energy and potential
levels is still lacking. In fact, one can symmetrize the exchange PCF in Eq. (1 30)
by introducing a symmetric TBFWV in Eq. (132),

T = GPA ) e -], (139)
GPA (e, ) = GPA (RPA (), kP ) (140)

which still delivers the same expression as Eq. (137) forthe OF-KEDF. Strangely,
there has yet to appear a study on this coherent symmetrization scheme.
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V.3 THE SEMILOCAL AVERAGE-DENSITY
APPROXIMATIONS

As all numerical results indicate that the WDA is heading into the right direc-
tion, incorporating the correct LR behaviores-10431434 hecomes the next logical
step. The ADA immediately comes into mind, but proper modifications have to be
made. The Semilocal Average-Density Approximation (SADA)%-1% constitutes
the first step towards this goal.

If ajoint approach is taken for both the XEDF and the OF-KEDF, the ADA
ansatz for the DM1 has the LDA form:

LDA (gADA i1 (@APA)

APA(r,r') Y )= 3P(P)Q/\T ) (141)

Y = p(r)g
which inherits all the weak points of the LDA, outlined in Section Il. To overcome
this dilemma, one can simply preserve the WDA ansatz shown in Eq. (135), but
replace all WDA effective entities by its SADA counterparts,

LDA( ~SADA ]:3‘)%(1.) p%(r/) j 1(gSADA)

SADA
( Y GSADA

YSAPA (r, ') =p3(r)p (r')g - (142)
To avoid the recursion problem in Eq. (110), the SADA further simplifies the

definition for the WAD,%-104346

FAPA() = [ w (r(ry ) I = o) (143)

where the TBFWV symmetrizes the AWFand consequently the kinetic-energy
potential, 8T $APA/8p. Analogous to the TBFWV symmetrization scheme in
Egs. (139) and (140), one obtains all the corresponding SADA entities,

YEMRA r,r') = p2 (r)p? (r)g"PA (G (144)
hAPA(r,r) =—1§ ERaliReola (145)

1 /p(r)p(r’) _ '
DA ] :”Z<p;Tr)—P—rrfT[ LDA(yfg‘n‘?A)]2> , (146)
TSADA[o] = Tuwlp) + Crr <p(r) [BSADA(r)]2> . (147)

tiEarlier papers on the SADA99,'%*¢ did not introduce the TBFWV in the AWF, but instead used
p(r), very much similar to the nonsymmetric ADA AWF in Eg. (110).
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where the averaged variables are given by

Gt = AP ) -] (148)
GAPA (1) = APA(IRAPA (), kAP () (149)
REAPA(r) = (372) ¥ BSAPA(), (150)
- 1

BSADA(T) — [[_)SADA(I‘)]s . (151)

The Kkinetic-energy potential of Eq. (147) is then readily given by

STSAPA[]  sTywlp] | STRAPA[p]

Solr) spr) | spr) (152)

STowlel __1V2A/l) _ 1IVe()® _ 1V7(r)
o) 2 o) 8 o2 4 plr) (153)

STSAPAL] 2k ([ ol o awnr] L
O ” BSADA (1] [W“’”“’(” 30(r) }dT

n P(l')( )J (r,)ﬁﬂﬁr_)dT'} +CTF[BSADA(r)]2 » (154)

BSADA r ap(r)

where w(r, r) is the AWF shown in Eq. (143).

It should be clear that the three TBFWV’s introduced in Egs. (139), (143),
and (148) need not to be identical; proper functional forms have to be chosen
individually. It is also curious to note that the final forms of the OF-KEDF
within the WDA and the SADA, Eqgs. (137) and (147), are indifferent to the
symmetrization ofthe exchange PCF or the DM1 and only depend on the relevant
average or effective density. In fact, the functional form for g(y2) in Eq. (39)
has little influence over the final form of the OF-KEDF. Hence, other functional
forms can also be considered.260.318350-352 Yet, there is currently no systematic,
coherent, and consistent scheme to fix the functional forms for the TBFWV and
g (y2) in conjunction with the simultaneous enforcement of the idempotency
property for the DM1 and the correct LR behavior.

Unlike the WDA that enforces the idempotency property for its DM1 ansatz,
the SADA trades the idempotency requirement for the correct LR behavior of the
OF-KEDF: %%

(SZTSSADA[[J]
( bp(r)8p(r)

1
p ) = I (155)
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for a given form of the TBFWYV in Eq. (143),50101-103111

G r,r) = (‘—‘f@;kﬂ) | (156)

Eqg. (155) yields a universal second-order differential equation for the AWF for
every fixed value of g,**

612" () — W' )12 + 61’ (m) [2W(n) — 11 +~] + 36w (n) [6 — vo(n)]
=180 [FLLnd( ) TI ] ) (157)

where w’(1) and W"(n) are the first and the second derivatives of w(n) with
respect to m, respectively. Note that v is explicitly involved in the determination
of the AWF If Eq. (156) is replaced by the FEG FWV kg, all terms involving
derivatives in the left-hand side of Eq. (157) will be removed, yielding the density-
independent (DI) AWF This universal differential equation can be numerically
solved via standard techniques.®? Figure 8 compares one such density-dependent
(DD) AWF in momentum space for v = %10“03 with its DI counterpart; there
is a sizable effect of the density dependence on the AWE (The discussion and
comparison of the SNDA results in Figure 8 are provided in Section V.4.)

1.0 T T T T ‘ T r ¥ T I
NN
LR —-—- SADA-DD AWF
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03 | \ ———- SNDA-DI AWF -
\
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B (R
‘\‘ \\
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\ \\‘ - j__"_-_-;r‘:"'—"“"‘"n“.""--—
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Figure 8  The DD and DIAWF s in momentum spacefor the FEG. The parameter v of the
SADA OF-KEDF with the DD AWF is 1/2, while the three parameters {§, K, v) of the SNDA
OF-KEDF with the DD AWF are {5/6 +\/5/6,2.7}. See Ref. [111] for details.

Unfortunately, no direct numerical comparison is available for us to assess the
quality of this trade-off from the WDA to the SADA. Nonetheless, we believe
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that by itself, the SADA OF-KEDF should be better than the WDA one because
of the correct LR behavior, but this might only be true for a nearly FEG, which
should approximately satisfy the idempotency property of the FEG DM1. For
other highly inhomogeneous systems, the WDA OF-KEDF might eventually win
over the SADA one.

It is also fascinating to discuss the origin of the atomic shell structure within
the WDA and the SADA. Recall from Section V.2, shell structure appears for
heavier atomic species (Z >30) within the exchange-only WDA treatment. ¢4
The SADA without the proper symmetrization of the AWF in Eq. (143) behaves
very much the same' (even only with the LDA XCEDF). This implies that the
WDA effectively captures most of the overall shape of the correct LR function
even without any explicit enforcement, and that enforcing the correct LR behavior
for the OF-KEDF alone, the SADA is able to remedy the defects of the LDA
XCEDF. This is certainly encouraging for both the WDA and the SADA. On the
other hand, the SADA with a proper symmetrization of the AWF in Eq. (143)
is able to produce shell structure for all atomic species,* because the kinetic-
energy potential is properly symmetrized this time. This further emphasizes the
importance of the symmetrization on the potential level.

At this point, one might wonder whether there is a better scheme that con-
currently enforces the exact idempotency property for the DM1 and the correct
LR behavior. The answer is yes; we have started to look into this possibility.
Two driving forces are behind this idea. First, numerical results show that the
empirically optimal v value —%101402 is good for the energy but bad for the
density; a universal v value for all systems seems to be unphysical. Second, the
specific form ofthe TBFWYV in Eq. (156) can bejustified, but the natural variable
arguments actually allows more general forms for the TBFWV as long as they
satisfy**

aCF (r) 1./)
Okr(r)

Introduction of the AWF within the ADA and the SADA allows foran extradegree
of freedom so that the correct LR behavior can be exactly obeyed. Then, the
explicit enforcement of the idempotency property on the DM1 should in principle
determine an unique functional form for the TBFWYV ofthe AWE We have started
to work on this idea; numerical results will be published elsewhere. For later
reference, we call this scheme the Weighted-Average-Density Approximation
(WADA)

Similar to the requirement of the semipositivity on the WDA effective density
PYPA (1), the WAD pSAPA (1) must be everywhere semipositive definite as well

aCF(r> r,)

ke (r) + kF(I'I)W = Ce(r,r'). (158)

*The rather complicated Feynman-path-integral-like local averaging scheme due to Wang and Teter'®
is consistent with the natural variable argument.



Orbital-free kinetic-energy density functional theory 153

so that all average quantities are properly defined. Unfortunately, this condition
is not generally satisfied in Eq. (143).% It is unclear to us how Eg. (151) can
be evaluated for a negative pSAPA (r). Some measures must be taken by the
authors who developed the SADA for the OF-KEDF to rescue the situation, but
no details have been given on this matter.s-23 |f by any chance, the absolute
value of ﬁSADA(r) is always used in Eq. (151), then the kinetic-energy potential
and pertinent quantities should be adjusted to this change accordingly; otherwise,
the entire SADA formulation lacks internal self-consistency.

However, there have been some attempts to deal with this problem in gen-
eral.100101104 Inspection of Egs. (134) and (151) immediately reveals that the
problemisdueto the fractional power (33) raised on the effective density E)WDA( r
and the WAD p>*PA(r). To preserve the integrity of the formulation, one can di-
rectly use §">"(r) and BSADA (r) instead, making no reference to their density
counterparts. Of course, this is subject to suitable TBFWV’s £™"°*(r, r") and
Q_FADA(r, r'). For simple symmetrization purposes, the arithmetic mean [i.e.,
setting v = 1 in Eq. (156)] might be both physically and numerically meaningful.
Consequently, the core equation of the SADA, Eq. (143), should be changed

to 100,104

BSADA (1) — Jw(cp(r,rr), v — 1)) B(r')dr’ | (159)
and consequently, the second term of Eq. (147) becomes00104
2
TEAPAp] = Cre (ofr) [FFPR()] ) (160

One can then straightforwardly derive the potential of Eq. (160):

6—|—>S<ADA[p] B 20T {J p(r/)BSADA (p/) [w(r,r’) aw[r,r/)] dt’

sp(r) 3 B(r) B(r) op(r)
+ ﬁ(r)ﬁSADA(r]JB(r’)a—%dr’} + Crr [BSADA(r)}Z . (161)

where w(r, r') is the AWF in Eqg. (159). This idea goes beyond the conventional
sense of averaging: from averaging the density to averlaging the local FWV,
which differs from B(r) by a constant prefactor of (3n%)3. For later reference,
we call this idea the Average Fermi Wave-Vector Approach (AFWVA). Some
primary studies on such an idea have been reported,100101104 byt the AFWVA is
not totally free of potential problems. For an asymptotically decaying density,
the first integral in Eq. (161) might be divergent because the denominator has the
decaying density.2t More studies should be carried out to see whether a suitable
choice of the TBFWV can overcome this problem.
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V.4 SIMPLIFIED NONLOCAL DENSITY APPROXIMATIONS

So far, we have been mainly following the most logical route: from an ansatz
for the DML1 to its resulting OF-KEDF. However, if the DM1 and the XEDF or
more general XCEDF are not our major interests, is there any simpler way to
approximate the OF-KEDF? This is indeed a legitimate question. First, numerous
numerical tests show that the WDA and the ADA only improve the description
of the XCEDF marginally; it is very hard to further refine the systematic error
cancellation built in the LDA for the XCEDF .34 136-141,260,315-318,329-342 For
a large number of practical applications, the LDA for the XCEDF is more or
less sufficient.> Second, the SADA OF-KEDF with the DD AWF is able to
reproduce shell structure for all atomic species; this is achieved just with the
LDA XCEDF and without explicit enforcement of the idempotency property.
Especially for nearly FEG systems, such as extended metallic materials, where the
SLDA OF-DM1 formulaforthe FEG [see Eq. (39)] will approximately satisfy the
exact idempotency property, the SADA OF-KEDF alone will be a highly accurate
model. Additionally, due to the nature of the metallic band structure, a very fine
mesh for the Brillouin-zone (k-point) sampling7-%° is needed to converge the
KS calculations. Numerically, this is quite expensive because one needs to
calculate the wavefunction for all symmetrically unique K points, increasing the
computational cost greatly. Therefore, the OF-DFT approach based on the TF-
HK equation with a highly accurate approximation for the OF-KEDF alone might
be sufficient for general practical purposes, and is certainly better for metallic
systems.

To accomplish this, let us go back to Section I11.1 and pay close attention to
Egs. (49) and (50). Both Egs. (137) and (147) are generalizations of Eq. (53)
along the SLDA path,

TSLPA o] = Tywlpl + Crr (p(r)B2(r)) . (162)

On the other hand, the double integration form in Egs. (48)—(50) suggests the
following Simplified Nonlocal Density Approximation (SNDA),105-11t

TINPA (o] = Towlpl + TRV PA (o], (163)

T;NDA[Q] =Cr <p8 (1‘)] w (Cr(r,r’), e =1’} [p*(x")) , (164)

where {8, K} are positive parameters, and the TBFWV can take the form shown in
Eq. (156). The potential of T3P [p] takes a much simpler form than Eq. (154),

ST PA{p]
dp(r)

+ Kp‘-‘(r)Jp@(r')w(r,r')dr' + pK(r)jp“’ ('

ow(r,r")
0p(r)

dT’} , (165)

=cn{ep@"(r)jmr’)w(r,r')d~c' o) 0" 1r') ar’

ow(r,r’)
dp(r)
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where w(r,r) is the AWF shown in Eq. (164). Again, this Kinetic-energy
potential has a possible divergence problem if one of the two positive parameters
{9,k} is smaller than 1.
A direct comparison between Egs. (162) and (163) immediately suggests that
the SNDA effectively takes the whole piece B (r) to a weighted average
——SNDA 5, (

B2(r) ) [ - et er . (e
This averaging is considerably different from those of the WDA, the SADA,
and even the AFWVA. It has been said before that the averaging employed by
the WDA and the SADA still preserves or requires the semipositivity of the
final average density [see Eqgs. (134) and (151)]. The AFWVA goes one step
further [see Eq. (159)] and allows negative average FWV’s in the formulation,
but still maintains the semipositivity of the square of the average FWV as used
in Egs. (137) and (147). The SNDA is much more drastic and permits even a
negative average square of the FWV. In doing so, the link between the DM1 and
the OF-KEDF is obscured, because the effective local FWV from any negative
average square of the FWV is imaginary, if a simple square root operation is
taken. Nonetheless, if the DM1 is not our concern, the SNDA should be an
efficient solution to the OF-KEDF problem.

After enforcing the correct LR at the FEG limit as done in Eq. (155), one
obtains the following universal second-order differential equation for every fixed
value of g,

20 (M, po) + v + 1= 6(9 + K)Inw'(n, po) + 368x3w(n, po)
- K
=20 [Frina(m) —3n%] o5 ", (167)

which is considerably simpler than Eq. (157). Moreover, the simple form of
Eq. (167) allows a power series solution for the inhomogeneous part and an
analytic solution for the homogeneous part so that the AWF can be calculated up
to arbitrary accuracy. This in turn further permits us to do a careful analysis of
the limits of the SNDA OF-KEDF for ¢ — 0 and q — < limits.""* This involves
Fourier transforming the exact solution of Eq. (167) and substituting the resultant
expression into Eq. (164). The results are, at the g — 0 limit (corresponding to
slowly varying densities),
th(r)>

— Trelp] + (1 +do) Tow o] + do®+«—1) (Soltyw (r)) + O(50%) , (168)

S4k-1
TSNDALG] L, Trelo] + Towlo] + do < (%)

329k

d =]
ST 9P k—N (@ +rKk+1—Y) 365k’

(169)
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and at the g — o limit (corresponding to rapidly varying densities),
p(r) 19+|<~%
TENPA L] — Towlpl + Trelpl + doo <p—) tTF(l‘)>

0
= Twwlpl + (1 +do) Trelp] + doo<19+ K—g) (doltre(r)) + O(50%) , (170)

32
(ley = ,
9 +x—3) (@+K+I—3) - 360K (171)

where 8o = p(r)/po — 1. For a nearly FEG, |6c] < 1. It is clear that the
first two terms of Egs. (168) and (170) closely resemble the second-order CGE
[Eqg. (35)] and the CLQL [Eqg. (93)], respectively. However, there is no single
set of {§,K,v} that simultaneously removes all spurious &c terms in Egs. (168)
and (170), and makes them reduce to the second-order CGE and the CLQL,
respectively. Numerical tests strongly suggest that the fulfillment of the CLQL
is more important than the correct behavior at the g — 0 limit (the second-
order CGE).»” Therefore, the parameters {8,K} are chosen such that Eq. (170) is
identical to the CLQL.!* This leads to the following two equations:

{ 3+k = 3 a7
3 3
whose solution is symmetrically displaced around g
5+/5
B k= 5 (173)

We can then use the remaining parameter v to fine-tune the behavior around the
g — 0 limit so that the effect of the spurious 6o terms and the leading terms in
Eq. (168) can be well-balanced. We have found that v=2.7 is the optimal value
at least for A1 metal surfaces and bulk phases.** Interestingly, without going
through the above analysis, Eq. (50) already suggests that 8+ K = g’— because
this particular choice leaves most of the density dependence out of the AWF
For comparison, we plot both the DD and DI AWF’s of the SNDA in Figure
8. Again, we find a sizable effect of the density dependence on the AWF It is
also interesting to note that the AWF’s of the SNDA and the SADA behave very
similarly to each other.

VI. NUMERICAL IMPLEMENTATIONS

Having laid the theoretical foundation for the OF-KEDF’s, we now face three
technical issues in their numerical implementation: how to solve the TF-HK
equation efficiently, how to generate suitable local pseudopotentials (LPS’s), and
most importantly, how to make the entire OF-DFT scheme linear-scaling with
respect to the system size. We will address these topics in turn.
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V1.1 VARIATIONAL OPTIMIZATION OF THE
THOMAS-FERMI-HOHENBERG-KOHN EQUATION

Given the total electronic energy in Eqg. (1), one can write down a general
density functional IT[g for a system with a fixed number of electrons N,

Tlpl = Eelp] — wl{p(r)) = N, (174)

where i is a Lagrange multiplier. I[p] will be minimized with respect to (),
to determine the GS of the system. However, it has been found?06.12512 that
the positivity of p(r) is not guaranteed in general if p(r) is used directly as
the generalized coordinate in conventional optimization algorithms®? like the
steepest-descent or conjugate-gradient methods. To circumvent this problem,
one can work with a new variational variable ¢(r)

r), (175)

to ensure a positive p(r) during the entire minimization process.?’.1t 124-126
On the other hand, because ¢(r) has a richer structure than pg(r) in momen-
tum space,®” more plane waves and a finer Fourier grid are needed to represent
o(r) well. This is an inevitable trade-off. If @(r) can be thought of as a
quasi-orbital,*2>126 we can utilize the same numerical technique as in the imple-
mentations of the KS scheme: just using a Fourier grid twice as dense in each
spatial direction as the grid required for p(r).3>® In other words, the maximum
integer multiple of the basic momentum vector along one particular direction is
given by

1

nmex =2 (———“ Vzi””) ) (176)

where Ecut is the plane-wave cutoff in Rydbergs, and L is the dimension of the
simulation box along this direction.

Aside from the numerical stability consideration, one can actually rationalize
the ¢ (r)-formulation. Starting from the following identity,

Tslp] = Twwlpl + Txlpl (177)
and utilizing Eq. (153),

STowlpl 1 V7g(r)
solr) 2 () (178)

one can easily rewrite the TF-HK equation in a fully equivalent quasi-orbital form

5Tx[p]
p(r)

1

(—EVZ + V&S (r [p]) +

)(P(r) = po(r), (179)
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closely resembling the equation of the conventional +/p(x-formulation, 20835430

1 8Tx([p]
(=372 + vismton + 320 V5T = /o (180)

However, this ¢ (r)-formulation is more general than the /p(r)-formulation,
because o¢(r) behaves truly like an orbital, with positive and negative regions,
while |/p(r) is everywhere semipositive. It is also interesting to notice that
Eq. (177) closely resembles Eqgs. (47), (137), (147), (162), and (163).

Based on a first-order differential equation with a fictitious time t

- =@, (181)

the steepest-descent approach is the simplest schemg82353361.362

dTT[p]
@it (r) = nlr) —A&pnfr) , (182)
STTlpl ~ _ dlT[p] Spn(r) — 20 (r) (6Ee[p] 3 )
5@n (1) Spn(r) Spn(r) T\ Spnir) H
_ OEelp] (r)
= 6([)“(1') On Hz , (183)

where A is the step size, p2 = 2y, and 8IT[p]/8pn(r) is the steepest-descent
vector at the nth iteration. To obtain the value for ,, one takes the square of
both sides of Eq. (182), integrates over all space, enforces the same normalization
for the density at different iterations, and derives a quadratic equation for p,:%

Alpz)? +2(1 = Al )z + (Al - 211) =0, (184)
N = (92,(r) = (92(r) , (185)

1/ .
=% <<pn(r) ‘%> , (186)

1 /( 8Eep] \*
Iz:ﬁ<(é«pnm> > ' (187

Solving this equation yields®’

(AL} — 1) £ /1 +A2[(11)2 — 1]

U2 = A

(188)
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At convergence, the density is stationary for the TF-HK equation; hence, from
Eq. (183),

Jim 11 = & (on (0 [on(hz) = 12, (189)
1
lim T, = N<<pi(r)(uz)2> = (p2)?. (190)

Thus, the equality between both sides of Eq. (188) only permits the “+” solution,

iy = (1, - %) TRy S 8l (192)

To keep p2 always real during the entire iteration process, the maximum step size
is given by®’

1
AT = ——es 192
LWy (192

where the generalized Schwarz inequality®! guarantees the right-hand side to be
real.

This scheme is concurrent for both the density and p2: at every iteration step,
one first tests whether A is less than the maximum value allowed according to
Eq. (192), then calculates p2 according to Eq. (191), and propagates the density
to the next step. It is important to know®” that no extra density normalization
effort is needed because the density is always normalized by choosing the value
for 2 according to Eq. (191). Numerical tests show that the steepest-descent
scheme still has an instability problem and the convergence radius for A is quite
small. 1

To overcome these problems, we have formulated the energy minimization
in terms of a damped second-order equation of motion36.32 for the generalized
coordinate ¢(r) with a damping or friction coefficient @,

d?e(r)  _do(r)  aMlp]
dt? +© dt + de(r) =0, (193)
which yields
Oni1(r) = zn(r) + (QA%12) O (r), (194)
5Ee
2a(e) = (14 Q)gu(r) ~ Qon-11r) ~ Q&7 = L (195)
.

e 196)
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Using similar procedures to those shown above, one can easily work out the
formula for p2 that automatically ensures the normalization of the density at
every iteration,

Ji)2=J2+1-T

H2 = QAZ ) (197)
Ji = &r)ﬁ"ﬂ : (198)

2
2= <Z“r\(f)> . (199)

The maximum A can be computed by enforcing the real solution for p:

) =Ja+1>0, (200)

but it proves to be a very costly exercise because of the complicated structure
of zn(r) in Eqg. (195). One can, however, tackle this problem through a much
simpler path outlined below.

We first observe that the damping factor Q normally has a small value and
after some iterations, two consecutive ¢(r) will not differ too much. Then, one
has approximately

SE.[p]
Spn(r)

zn(r) & @n(r) — QA? (011

Substituting Eq. (201) into Eq. (200), one has something very similarto Eq. (192):

AZ
< max
Trea =4 (202)

which yields directly

(@A;nax)z +4A‘1rnax _i_@A{naX
AT = \/ 5 , (203)

where AT is defined in Eq. (192). We have found that this scheme is not
only easy to implement, but also offers greater stability even when A becomes
much larger than that of the simple steepest-descent method. We have also found
that minimization algorithms based on the conjugate-gradient method actually
converge faster, but require very accurate line minimizations that can be difficult
to implement.
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V1.2 GENERATION OF LOCAL PSEUDOPOTENTIALS

Since the OF-DFT scheme is purely based on the density, only LPS’s (pseu-
dopotentials that depend only on r)3%3-3%¢ can be used to calculate the Ve term in
Eq. (2). More general nonlocal pseudopotentials (NLPS’s) that depend on both r
and r” require either the DM1 or the full wavefunction for the calculation of V.
We therefore will concentrate on how to construct high-quality LPS’s.3® Before
that, however, it is pedagogical to briefly outline the essence of the conventional
OB NLPS theory.370-372

Let us start from any general set of one-particle Schrédinger-like equations
like Eq. (10),

R (r) = eas(r) , (204)

where i, {@(r)], and {e} are a one-particle Hamiltonian and its associated
eigen-orbitals and eigen-orbital energies, respectively. For practical purposes,
the orbitals are classified into two groups: valence orbitals {®° (r)} (those with
high orbital energies) and core orbitals {®¢ (1)} (those with low orbital energies).
Of course, the criterion on how high is “high” and how low is “low” depends
on the nature of the system and problems under investigation; we just assume
that such a partition is permissible and meaningful. Then, we introduce a set
of valence pseudo-orbitals {¥}(r)} such that the exact valence orbitals can be
expressed as

N

GY(r) =Py (r) =D (b5 (r)bY(r)) d(r), (205)

j

where N¢ is the number of the core orbitals. (This expansion projects the
exact core orbitals out of the valence pseudo-orbitals, to make a meaningful
partitioning.) Substituting Eq. (205) into Eq. (204) for the valence orbitals, we
obtain

RP*WY () = ecth? (1), (206)

where the orbital-dependent pseudo-Hamiltonian ﬂ’i)s relates to the exact Hamil-
tonian fi via an orbital-dependent nonlocal operator 97'°¢:

Nc
Oploe= P —R =3 (e —ef) |5 (r)) (¢5 ()] . (207)
j

The NLPS is simply the sum of 9%° and the external potential vex(r) in f,

I3 e = Vexe (1) + 9710 . (208)
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It is clear from Eq. (207) that the pseudization only turns on for the valence
orbitals and has a null effect on the core orbitals. More interestingly, the exact
orbital energies are not altered. Similar to Eq. (7), one can define the valence
pseudo-density in terms of the valence pseudo-orbitals:

N,
Ph(r) =D Y pY(r)l® . (209)

where N, and y} are the number of the valence orbitals and the occupation
numbers of the valence orbitals, respectively. It is important to notice that in this
formal NLPS theory, the exact GS wavefunction is still one-to-one mapped on to
the GS valence pseudo-density for a given valence-core partitioning, because the
NLPS’s are uniquely defined via Egs. (207) and (208), in which all the exact enti-
ties are functionals of the exact GS density. Various numerical implementations
are readily available to construct such NLPS’s.370-38

Having read the above, one might wonder about the origin of the LPS. His-
torically, earlier LPS’s were designed from empirical fitting of experimental
data;363-3¢7 [ater, more refined, ab initio schemes required the reproduction of the
valence orbital energies.?® However, theoretically speaking, only NLPS’s will
be able to exactly reproduce the same orbital energies. Therefore, it is natural to
conclude that the theoretical foundation for LPS’s has to be built according to a
very different blueprint from that of the NLPS’s. On the other hand, the solution
seems already to be self-evident if one thinks a little bit deeper. The conventional
NLPS theory concentrates mostly on the reproduction ofthe exact orbital energies
and further requires the atomic pseudo-orbitals and atomic pseudo-density to re-
produce the exact ones in the valence region.?’*-372 Since often only the valence
density is of greatest concern to chemistry and condensed matter physics, one
can just pay attention to the weakest condition for pseudopotentials: the pseudo-
density should reproduce the exact density in the valence region. Furthermore,
because there are already an abundant number of high-quality NLPS’s,370-38
one can just instead devise a LPS scheme to reproduce the same pseudo-density
from a NLPS calculation. This proves to be a logically meaningful theoretical
foundation for LPS’s.

The first level of sophistication®®® is quite simple: for a suitable LPS, the
solution of the TF-HK equation should yield the same NLPS pseudo-density
pIic (r) for a given model XCEDF,

_ps 5Ts[p] | d]lp] 5Exc[p]>
u—vloc(r)+<5p(r) 5o0) T 5olr) e-ostecte (210)

However, one has to additionally choose a model for the QF-KEDF to make this
work. Consequently, the resulting LPS will have some contribution from the
difference between the exact KEDF and the model OF-KEDF. This is less than
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optimal and can be avoided if and only if the OF-KEDF is not involved in any
way. We therefore need a scheme that relates the pseudo-density directly to a
LPS. In fact, there are already many mature schemes to obtain the effective local
potential from a given input density.?3-272\We can just employ one such scheme
and obtain the exact LPS for an input NLPS pseudo-density within a given model
XCEDF. This scheme makes no reference to any approximation of the OF-KEDF
or the response function, and one only needs to perform one KS-like calculation.
More importantly, this scheme allows LPS’s to be calculated within the same
realistic environment of systems under investigation. Therefore, transferability
will not be a problem, if NLPS’s are chosen carefully for the target systems.

In the literature, there are some attempt?-134to directly use NLPS’s with the
OF-DIT scheme via Eq. (1SO), but the following argument proves such practice
is not sound. First, NLPS’s will introduce a phase to the quasi-orbital, hence it
is Eq. (179), notEq. (1S0), that should be used in the first place. Second, even if
one accepts the utilization of NLPS’s, Eq. (179) cannot be derived with NLPS’s.
In general, for a NLPS 977 ((r,r), one needs the DM1 to calculate the Vpe
term,

VT\E h’] = (0?1?0(;(1‘)1")1/(1.)1.,)) » (211)

which is very different from the LPS case,

Vielp] = (Vi (r)p(m) (212)

With Eq. (211), one cannot derive Eg. (1 SO) [nor Eg. (179)] without the assump-
tion

y(r,r') = p¥(r)pI(r)), (213)

which is certainly not true in general. On the other hand, this calls for research
into highly accurate OF approximations to the DM1 so that conventional NLPS’s
can be readily applied even in the OF-DFT scheme,’ just like the OB KS
scheme. More studies along the lines discussed in Section V ought to be done to
pursue this goal.

VI3 EVALUATION OF THE DENSITY-DEPENDENT
AVERAGING WEIGHT FUNCTION

Having gone thus far with the OF-KEDF’s, one ultimately faces the most diffi-
cult problem: how to make the entire OF-DFT scheme, especially the evaluation
of the DD AWF, linear-scaling with respect to the system size. This is a general
numerical bottleneck of all the NLDA’s, as discussed in Section V: the presence
of DD terms inside the AWF in Eq. (164) makes a straightforward application of
the FFT impossible. However, one can use a Taylor series expansions: to factor
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out the density dependence in the AWF, because the DD AWF is not a functional,
but some analytic function, of the density. For example, the DD AWF in real
space can be written as (up to second order),**

W(Cr(r, ¥),[F—1'|) = w(k,f_,|r—r'\)+aW(CF(ra’;(Il’)lr“rI” o(r)
P
w(Ce(r,r'), [t —r']) ,
< 3o(r') p‘0'(1')
N 2W(Ce(r,r’), It —1'|)| o*(r)
dp%(r) o 2
N W(Cr(r,x’),r—1')| o?(r)
0p2(r") o, 2
ZW(CF(rlr’)»‘r_rl” 12
b ety |, TN )

1
where o(r) = p(r) — p«, and ki = (3n?p«)® are the deviation from, and the
FWV magnitude of, a reference uniform density p.. It is clear that the density
dependence is absorbed into simple powers of 6(r), and that all the partial
differentials are functions of p., which can be evaluated via an FFT

aw(C¥(r,r’)>il‘—r'l) __H*W'(ﬂnp*)
?< dp(r) p,> T ep. (215)

?<62w(5¥(r.l"), Ir—r’))
9p2(r)

2,1 o
_Mw (M, P) + (7 = VMW (N4, 04

? aZW(Q’(r, rl)) |l' - rll)
9p(r)op(r’)

where n* = g/(2kf), and W ’(n«, p«) and w (fi=,p+) are the first and the second
derivatives of W (m«, p=) with respect to n«, respectively. Figure 9 shows one such
AWEFand its derivatives in momentum space for {%,K,V}:{gs * %, 2.7}

For maximum numerical efficiency, all derivative terms of the AWF are kept
in momentum space so that one FFT is saved for each of their evaluations. For
example, during the evaluation of the following general double integral, the first
FFT can be avoided:

("))

(f1 (E)hw(e — )l fa(r VZW q) (f1(r)]e (e

1 - ; 1 - .
= qu'_w(q] (f1(r)e ' 97) (fa(r)e's") = VZW(q)ﬁ (—q)f2(q) , (218)

2750 =
_Nw (M, p) + (1 +vINW' (N, 04)
0 ) - 369% 3 (217)
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Figure 9  The DD AWF and its derivatives in momentum spacefor the FEG. The three
parameters {§, KV} of the SNDA OF-KEDF are {5/6 +/5/6, 2.7}.

where V is the volume of the simulation cell, and f1 (r) and f2(r) are some
functions of the density. Now, the computational cost has been reduced from
scaling quadratically with grid size®-1 to scaling essentially linearly with the
system size, O(MInM). The current scheme is only three times as expensive as
the conventional one based on the 