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Preface

Science is advanced by new observations and technologies. The Human Genome

Project has led to a massive outpouring of genomic data, which has in turn fueled

the rapid developments of high-throughput biotechnologies. We are witnessing a

revolution driven by the high-throughput biotechnologies and data, a revolution that is

transforming the entire biomedical research field into a new systems level of genomics,

transcriptomics, and proteomics, fundamentally changing how biological science and

medical research are done. This revolution would not have been possible if there had

not been a parallel emergence of the new field of computational molecular biology,

or bioinformatics, as many people would call it. Computational molecular biology/

bioinformatics is interdisciplinary by nature and calls upon expertise in many di¤erent

disciplines—biology, mathematics, statistics, physics, chemistry, computer science,

and engineering; and is ubiquitous at the heart of all large-scale and high-throughput

biotechnologies. Though, like many emerging interdisciplinary fields, it has not yet

found its own natural home department within traditional university settings, it has

been identified as one of the top strategic growing areas throughout academic as well

as industrial institutions because of its vital role in genomics and proteomics, and its

profound impact on health and medicine.

At the eve of the completion of the human genome sequencing and annotation, we

believe it would be very useful and timely to bring out this up-to-date survey of cur-

rent topics in computational molecular biology. Because this is a rapidly developing

field and covers a very wide range of topics, it is extremely di‰cult for any individual

to write a comprehensive book. We are fortunate to be able to pull together a team of

renowned experts who have been actively working at the forefront of each major area

of the field. This book covers most of the important topics in computational molec-

ular biology, ranging from traditional ones such as protein structure modeling and

sequence alignment, to the recently emerged ones such as expression data analysis

and comparative genomics. It also contains a general introduction to the field, as well

as a chapter on general statistical modeling and computational techniques in molec-

ular biology. Although there are already several books on computational molecular

biology/bioinformatics, we believe that this book is unique as it covers a wide spec-

trum of topics (including a number of new ones not covered in existing books, such

as gene expression analysis and pathway databases) and it combines algorithmic,

statistical, database, and AI-based methods for biological problems.

Although we have tried to organize the chapters in a logical order, each chapter is

a self-contained review of a specific subject. It typically starts with a brief overview of

a particular subject, then describes in detail the computational techniques used and

the computational results generated, and ends with open challenges. Hence the reader

need not read the chapters sequentially. We have selected the topics carefully so that



family and superfamily representations of sequences, and to reveal evolutionary

histories of species (or genes). The authors discuss some of the most popular

mathematical models for multiple sequence alignment and e‰cient approximation

algorithms for computing optimal multiple alignment under these models. The main

focus of the chapter is on recent advances in combinatorial (as opposed to stochastic)

algorithms.

Kearney’s chapter illustrates the basic concepts in phylogenetics, the design and

development of computational tools for evolutionary analyses, using the quartet

method as an example. Quartet methods have recently received much attention in the

research community. This chapter begins by examining the mathematical, compu-

tational, and biological foundations of the quartet method. A survey of the major

contributions to the method reveals an excess of diverse and interesting concepts in-

dicative of a ripening research topic. These contributions are examined critically with

strengths, weakness, and open problems.

Sanko¤ and El-Mabrouk’s chapter describes the basic concepts of genome re-

arrangement and applications. Genome structure evolves through a number of non-

local rearrangement processes that may involve an arbitrarily large proportion of a

chromosome. The formal analysis of rearrangements di¤ers greatly from DNA and

protein comparison algorithms. In this chapter, the authors formalize the notion of a

genome in terms of a set of chromosomes, each consisting of an ordered set of genes.

The chapter surveys genomic distance problems, including the Hannenhalli-Pevzner

theory for reversals and translocations, and covers the progress to date on phyloge-

netic extensions of rearrangement analysis. Recent work focuses on problems of gene

and genome duplication and their implications for genomic distance and genome-

based phylogeny.

The chapter by Li describes the author’s work on compressing DNA sequences

and applications. The chapter concentrates on two programs the author has devel-

oped: a lossless compression algorithm, GenCompress, which achieves the best com-

pression ratios for benchmark sequences; and an entropy estimation program, GTAC,

which achieves the lowest entropy estimation for benchmark DNA sequences. The

author then discusses a new information-based distance measure between two se-

quences and shows how to use the compression programs as heuristics to realize such

distance measures. Some experiments are described to demonstrate how such a theory

can be used to compare genomes.

The third section covers computational methods for mining biological data and

discovering patterns hidden in the data.

The chapter by Xu presents an overview of the major statistical techniques for

quantitative trait analysis. Quantitative traits are defined as traits that have a con-
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tinuous phenotypic distribution. Variances of these traits are often controlled by the

segregation of multiple loci plus an environmental variance. Localization of these

quantitative trait loci (QTL) on the chromosomes and estimation of their e¤ects

using molecular markers are called QTL linkage analysis or QTL mapping. Results

of QTL mapping can help molecular biologists target particular chromosomal re-

gions and eventually clone genes of functional importance.

The chapter by Solovyev describes statistically based methods for the recognition

of eukaryotic genes. Computational gene identification is an issue of vital importance

as a tool of identifying biologically relevant features (protein coding sequences), which

often cannot be found by the traditional sequence database searching technique.

Solovyev reviews the structure and significant characteristics of gene components,

and discusses recent advances and open problems in gene-finding methodology and

its application to sequence annotation of long genomic sequences.

Zhang’s chapter gives an overview of computational methods currently used for

identifying eukaryotic PolII promoter elements and the transcriptional start sites.

Promoters are very important genetic elements. A PolII promoter generally resides in

the upstream region of each gene; it controls and regulates the transcription of the

downstream gene.

In their chapter, Shamir and Sharan describe some of the main algorithmic ap-

proaches to clustering gene expression data, and briefly discuss some of their prop-

erties. DNA chip technologies allow for the first time a global, simultaneous view of

the transcription levels of many thousands of genes, under various cellular conditions.

This opens great opportunities in medical, agricultural, and basic scientific research. A

key step in the analysis of gene expression data is the identification of groups of genes

that manifest similar expression patterns. This translates to the algorithmic problem of

clustering gene expression data. The authors also discuss methods for evaluating the

quality of clustering solutions in various situations, and demonstrate the performance

of the algorithms on yeast cell cycle data.

The chapter by Kanehisa and Goto dsecribes the latest developments of the

KEGG database. A key objective of the KEGG project is to computerize data and

knowledge on molecular pathways and complexes that are involved in various cellu-

lar processes. Currently KEGG consists of (1) a pathway database, (2) a genes data-

base, (3) a genome database, (4) a gene expression database, (5) a database of binary

relations between proteins and other biological molecules, and (6) a ligand database,

plus various classification information. It is well known that the analysis of individual

molecules would not be su‰cient for understanding higher order functions of cells

and organisms. KEGG provides a computational resource for analyzing biological

networks.
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the book would be useful to a broad readership, including students, nonprofessionals,

and bioinformatic experts who want to brush up topics related to their own research

areas.

The 19 chapters are grouped into four sections. The introductory section is a chapter

by Temple Smith, who attempts to set bioinformatics into a useful historical context.

For over half a century, mathematics and even computer-based analyses have played

a fundamental role in bringing our biological understanding to its current level. To a

very large extent, what is new is the type and sheer volume of new data. The birth of

bioinformatics was a direct result of this new data explosion. As this interdisciplinary

area matures, it is providing the data and computational support for functional

genomics, which is defined as the research domain focused on linking the behavior of

cells, organisms, and populations to the information encoded in the genomes.

The second of the four sections consists of six chapters on computational methods

for comparative sequence and genome analyses.

Liu’s chapter presents a systematic development of the basic Bayesian methods

alongside contrasting classical statistics procedures, emphasizing the conceptual im-

portance of statistical modeling and the coherent nature of the Bayesian methodology.

The missing data formulation is singled out as a constructive framework to help one

build comprehensive Bayesian models and design e‰cient computational strategies.

Liu describes the powerful computational techniques needed in Bayesian analysis,

including the expectation-maximization algorithm for finding the marginal mode,

Markov chain Monte Carlo algorithms for simulating from complex posterior distri-

butions, and dynamic programming-like recursive procedures for marginalizing out

uninteresting parameters or missing data. Liu shows that the popular motif sampler

used for finding gene regulatory binding motifs and for aligning subtle protein motifs

can be derived easily from a Bayesian missing data formulation.

Huang’s chapter focuses on methods for comparing two sequences and their

applications in the analysis of DNA and protein sequences. He presents a global

alignment algorithm for comparing two sequences that are entirely similar. He also

describes a local alignment algorithm for comparing sequences that contain locally

similar regions. The chapter gives e‰cient computational techniques for comparing

two long sequences and comparing two sets of sequences, and it provides real appli-

cations to illustrate the usefulness of sequence alignment programs in the analysis of

DNA and protein sequences.

The chapter by Jiang and Wang provides a survey on computational methods

for multiple sequence alignment, which is a fundamental and challenging problem

in computational molecular biology. Algorithms for multiple sequence alignment

are routinely used to find conserved regions in biomolecular sequences, to construct
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The chapter by Wong presents an introduction to what has come to be known as

datamining and knowledge discovery in the biomedical context. The major reason

that datamining has attracted increasing attention in the biomedical industry in recent

years is due to the increased availability of huge amount of biomedical data and the

imminent need to turn such data into useful information and knowledge. The knowl-

edge gained can lead to improved drug targets, improved diagnostics, and improved

treatment plans.

The last section of the book, which consists of six chapters, covers computational

approaches for structure prediction and modeling of macromolecules.

Wang and Zhang’s chapter presents an overview of predictions of RNA secondary

structures. The secondary structure of an RNA is a set of base-pairs (nucleotide

pairs) that form bonds between A-U and C-G. These bonds have been traditionally

assumed to be noncrossing in a secondary structure. Two major prediction approaches

considered are thermodynamic energy minimization methods and phylogenetic com-

parative methods. Thermodynamic energy minimization methods have been used to

predict secondary structures from a single RNA sequence. Phylogenetic comparative

methods have been used to determine secondary structures from a set of homologous

RNAs whose sequences can be reliably aligned.

The chapter by Solovyev and Shindyalov provides a survey of computational

methods for protein secondary structure predictions. Secondary structures describe

regular features of the main chain of a protein molecule. Experimental investigation

of polypeptides and small proteins suggest that a secondary structure can form

in isolation, implying the possibility of identifying rules for its computational pre-

diction. Predicting the secondary structure from an amino acid sequence alone is an

important step toward our understanding of protein structures and functions. It may

provide a starting point for tertiary structure modeling, especially in the absence of a

suitable homologous template structure, reducing the search space in the simulation

of protein folding.

The chapter by Chan et al. surveys currently available physics-based computa-

tional approaches to protein folding. A spectrum of methods—ranging from all-atom

molecular dynamics to highly coarse-grained lattice modeling—have been employed

to address physicochemical aspects of protein folding at various levels of structural

and energetic resolution. The chapter discusses the strengths and limitations of some

of these methods. In particular, the authors emphasize the primacy of self-contained

chain models and how they di¤er logically from non-self-contained constructs with

ad hoc conformational distributions. The important role of a protein’s aqueous en-

vironment and the general non-additivity of solvent-mediated protein interactions are

illustrated by examples in continuum electrostatics and atomic treatments of hydro-
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phobic interactions. Several recent applications of simple lattice protein models are

discussed in some detail.

In their chapter, Peitsch et al. discuss how protein models can be applied to

functional analysis, as well as some of the current issues and limitations inherent

to these methods. Functional analysis of the proteins discovered in fully sequenced

genomes represents the next major challenge of life science research, and compu-

tational methods play an increasingly important part. Among them, comparative

protein modeling will play a major role in this challenge, especially in light of the

Structural Genomics programs about to be started around the world.

Xu and Xu’s chapter presents a survey on protein threading as a computational

technique for protein structure calculation. The fundamental reason for protein

threading to be generally applicable is that the number of unique folds in nature is

quite small, compared to the number of protein sequences, and a significant portion

of these unique folds are already solved. A new trend in the development of com-

putational modeling methods for protein structures, particularly in threading, is to

incorporate partial structural information into the modeling process as constraints.

This trend will become more clear as a great amount of structural data will be gen-

erated by the high-throughput structural genomics centers funded by the NIH Struc-

tural Genonics Initiative. The authors outline their recent work along this direction.

The chapter by Nussinov, Ma, and Wolson describes highly e‰cient, computer-

vision and robotics based algorithms for docking and for the generation and match-

ing of epitopes on molecular surfaces. The goal of frequently used approaches, both in

searches for molecular similarity and for docking, that is, molecular complementarity,

is to obtain highly accurate matching of respective molecular surfaces. Yet, owing to

the variability of molecular surfaces in solution, to flexibility, to mutational events,

and to the need to use modeled structures in addition to high resolution ones, utili-

zation of epitopes may ultimately prove a more judicious approach to follow.

This book would not have been possible without the timely cooperation from all

the authors and the patience of the publisher. Many friends and colleagues who have

served as chapter reviewers have contributed tremendously to the quality and read-

ability of the book. We would like to take this opportunity to thank them individu-

ally. They are: Nick Alexandrov, Vincent Berry, Mathieu Blanchette, David Bryant,

Alberto Caprara, Kun-Mao Chao, Jean-Michel Claverie, Hui-Hsien Chou, Bhaskar

DasGupta, Ramana Davuluri, Jim Fickett, Damian Gessler, Dan Gusfield, Loren

Hauser, Xiaoqiu Huang, Larry Hunter, Shuyun Le, Sonia Leach, Hong Liu, Satoru

Miyano, Ruth Nussinov, Victor Olman, Jose N. Onuchic, Larry Ruzzo, Gavin Sher-

lock, Jay Snoddy, Chao Tang, Ronald Taylor, John Tromp, Ilya A. Vakser, Martin

Vingron, Natascha Vukasinovic, Mike Waterman, Liping Wei, Dong Xu, Zhenyu
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Xuan, Lisa Yan, Louxin Zhang, and Zheng Zhang. We would also like to thank Ray

Zhang for the artistic design of the cover page. Finally, we would like to thank

Katherine Almeida, Katherine Innis, Ann Rae Jonas, Robert V. Prior, and Michael

P. Rutter from The MIT Press for their great support and assistance throughout the

process, and Dr. Guokui Liu for connecting us with the Tsinghua University Press

(TUP) of China and facilitating copublication of this book by TUP in China.
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I INTRODUCTION



 

1The Challenges Facing Genomic Informatics

Temple F. Smith

What are these areas of intense research labeled bioinformatics and functional

genomics? If we take literally much of the recently published ‘‘news and views,’’ it

seems that the often stated claim that the last century was the century of physics,

whereas the twenty-first will be the century of biology, rests significantly on these new

research areas. We might therefore ask: What is new about them? After all, compu-

tational or mathematical biology has been around for a long time. Surely much of

bioinformatics, particularly that associated with evolution and genetic analyses, does

not appear very new. In fact, the related work of researchers like R. A. Fisher, J. B.

S. Haldane, and Sewell Wright dates nearly to the beginning of the 1900s. The modern

analytical approaches to genetics, evolution, and ecology rest directly on their and

similar work. Even genetic mapping easily dates to the 1930s, with the work of T. S.

Painter and his students of Drosophila (still earlier if you include T. H. Morgan’s

work on X-linked markers in the fly). Thus a short historical review might provide

a useful perspective on this anticipated century of biology and allow us to view the

future from a firmer foundation.

First of all, it should be helpful to recognize that it was very early in the so-called

century of physics that modern biology began, with a paper read by Hermann Müller

at a 1921 meeting in Toronto. Müller, a student of Morgan’s, stated that although of

submicroscopic size, the gene was clearly a physical particle of complex structure, not

just a working construct! Müller noted that the gene is unique from its product, and

that it is normally duplicated unchanged, but once mutated, the new form is in turn

duplicated faithfully.

The next 30 years, from the early 1920s to the early 1950s, were some of the most

revolutionary in the science of biology. In my original field of physics, the great

insights of relativity and quantum mechanics were already being taught to under-

graduates; in biology, the new one-gene-one-enzyme concept was leading researchers

to new understandings in biochemistry, genetics, and evolution. The detailed physical

nature of the gene and its product were soon obtained. By midcentury, the unique

linear nature of the protein and the gene were essentially known from the work of

Frederick Sanger (Sanger 1949) and Erwin Chargra¤ (Chargra¤ 1950). All that

remained was John Kendrew’s structural analysis of sperm whale myoglobin (Ken-

drew 1958) and James Watson and Francis Crick’s double helical model for DNA

(Watson and Crick 1953). Thus by the mid-1950s, we had seen the physical gene and

one of its products, and the motivation was in place to find them all. Of course, the

genetic code needed to be determined and restriction enzymes discovered, but the

beginning of modern molecular biology was on its way.



We might say that much of the last century was the century of applied physics, and

the last half of the century was applied molecular biochemistry, generally called mo-

lecular biology! So what happened to create bioinformatics and functional genomics?

It was, of course, the wealth of sequence data, first protein and then genomic. Both

are based on some very clever chemistry and the late 1940s molecular sizing by

chromatography. Frederick Sanger’s sequencing of insulin (Sanger 1956) and Wally

Gilbert and Allan Maxam’s sequence of the Lactose operator from E. coli (Maxam

and Gilbert 1977) showed that it could be done. Thus, in principle, all genetic se-

quences, including the human genome, were determinable; and, if determinable, they

were surely able to be engineered, suggesting that the economics and even the ethics

of biological research was about to change. The revolution was already visible to

some by the 1970s.

The science or discipline of analyzing and organizing sequence data defines for

many the bioinformatics realm. It had two somewhat independent beginnings. The

older was the attempt to related amino acid sequences to the three-dimensional

structure and function of proteins. The primary focus was the understanding of the

sequence’s encoding of structure and, in turn, the structure’s encoding of biochemical

function. Beginning with the early work of Sanger and Kendrew, progress continued

such that, by the mid-1960s, Margaret Dayho¤ (Dayho¤ and Eck 1966) had for-

mally created the first major database of protein sequences. By 1973, we had the start

of the database of X-ray crystallographic determined protein atomic coordinates

under Tom Koetzle at the Brookhaven National Laboratory.

From early on, Dayho¤ seemed to understand that there was other very funda-

mental information available in sequence data, as shown in her many phylogenetic

trees. This was articulated most clearly by Emile Zuckerkandl and Linus Pauling as

early as 1965 (Zuckerkandl and Pauling 1965), that within the sequences lay their

evolutionary history. There was a second fossil record to be deciphered.

It was that recognition that forms the true second beginning of what is so often

thought of as the heart of bioinformatics, comparative sequence analyses. The semi-

nal paper was by Walter Fitch and Emanuel Margoliash, in which they constructed a

phylogenetic tree from a set of cytochrome sequences (Fitch and Margoliash 1967).

With the advent of more formal analysis methods (Needleman and Wunsch 1970;

Smith and Waterman 1981; Wilbur and Lipman 1983) and larger datasets (GenBank

was started at Los Alamos in 1982), the marriage between sequence analysis and

computer science emerged as naturally as it had with the analysis of tens of thousands

of di¤raction spots in protein structure determination a decade before. As if proof

was needed that comparative sequence analysis was of more than academic interest,

Russell Doolittle (Doolittle et al. 1983) demonstrated that we could explain the onc
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gene v-sis’s properties as an aberrant growth factor by assuming that related func-

tions are carried out by sequence similar proteins.

By 1990, nearly all of the comparative sequence analysis methods had been refined

and applied many times. The result was a wealth of new functional and evolutionary

hypotheses. Many of these led directly to new insights and experimental validation.

This in turn made the 40 years between 1950 and 1990 the years that brought reality

to the dreams seeded in those wondrous previous 40 years of genetics and biochem-

istry. It is interesting to note that during this same 40 years, computers developed

from the wartime monsters through the university mainframes and the lab bench

workstation to the powerful personal computer. In fact, Doolittle’s early successful

comparative analysis was done on one of the first personal computers, an Apple II.

The link between computers and molecular biology is further seen in the justification

of initially placing GenBank at the Los Alamos National Laboratory rather than at

an academic institution. This was due in large part to the laboratory’s then immense

computer resources, which in the year 2000 can be found in a top-of-the-line laptop!

What was new to computational biology was the data and the anticipated

amount of it. Note that the human genome project was being formally initiated by

1990. Within the century’s final decade, the genomes of more than two dozen micro-

organisms, along with yeast and C. elegans, the worm, would be completely se-

quenced. By the summer of the new century’s very first year, the fruit fly genome

would be sequenced, as well as 85 percent of the entire human genome. Although

envisioned as possible by the late 1970s, no one foresaw the wealth of full genomic

sequences that would be available at the start of the new millennium.

What challenges remained at the informatics level? Major database problems and

some additional algorithm development will still surely come about. And, even though

we still cannot predict a protein’s structure or function directly from its sequence, de

novo, straightforward sequence comparisons with such a wealth of data can generally

infer both function and structure from the identification of close homologues pre-

viously analyzed. Yet it has slowly become obvious that there are at least four major

problems here: first, most ‘‘previously analyzed’’ sequences obtained their annotation

via sequence comparative inheritance, and not by any direct experimentation; sec-

ond, many proteins carry out very di¤erent cellular roles even when their biochemical

functions are similar; third, there are even proteins that have evolved to carry out

functions distinct from those carried out by their close homologues (Je¤ery 1999);

and, finally, many proteins are multidomained and thus multifunctional, but identified

by only one function. When we compound these facts with the lack of any universal

vocabulary throughout much of molecular biology, there is great confusion, even

with interpreting standard sequence similarity analysis. Even more to the point of the
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future of bioinformatics is knowing that the function of a protein or even the role in

the cell played by that function is only the starting point for asking real biological

questions.

Asking questions beyond what biochemistry is encoded in a single protein or pro-

tein domain is still challenging. However, asking what role biochemistry plays in the

life of the cell, which many refer to as functional genomics, is clearly even more chal-

lenging from the computational side. The analysis of genes and gene networks and

their regulation may be even more complicated. Here we have to deal with alternate

spliced gene products with potentially distinct functions and highly degenerate short

DNA regulatory words. So far, sequence comparative methods have had limited

success in these cases.

What will be the future role of computation in biology in the first few decades of

this century? Surely many of the traditional comparative sequence analyses, including

homologous extension protein structure modeling and DNA signal recognition, will

continue to play major roles. As already demonstrated, standard statistical and clus-

tering methods will be used on gene expression data. It is obvious, however, that the

challenge for the biological sciences is to begin to understand how the genome parts

list encodes cellular function—not the function of the individual parts, but that of the

whole cell and organism. This, of course, has been the motivation underlying most of

molecular biology over the last 20 years. The di¤erence now is that we have the parts

lists for multiple cellular organisms. These are complete parts lists rather than just a

couple of genes identified by their mutational or other e¤ects on a single pathway or

cellular function. The past logic is now reversible: rather than starting with a path-

way or physiological function, we can start with the parts list either to generate test-

able models or to carry out large-scale exploratory experimental tests. The latter, of

course, is the logic behind the mRNA expression chips, whereas the former leads to

experiments to test new regulatory network or metabolic pathway models. The design,

analysis, and refinement of such complex models will surely require new computa-

tional approaches.

The analysis of the RNA expression data requires the identification of various

correlations between individual gene expression profiles and between those profiles

and di¤erent cellular environments or types. These, in turn, require some model con-

cepts as to how the behavior of one gene may e¤ect that of others, both temporally

and spatially. Some straightforward analyses of RNA expression data have identified

many di¤erences in gene expression in cancer versus noncancer cells (Golub et al.

1999) and for di¤erent growth conditions (Eisen et al. 1998). Such data have also

been used in an attempt to identify common or shared regulatory signals in bacteria

(Hughes et al. 2000).

6 Temple F. Smith



Yet expression data’s full potential is not close to being realized. In particular,

when gene expression data can be fully coupled to protein expression, modification,

and activity, the very complex genetic networks should begin to come into view. In

higher animals, for example, proteins can be complex products of genes through

alternate exon splicing. We can anticipate that mRNA-based microarray expression

analysis will be replaced by exon expression analysis. Here again, modeling will surely

play a critical role, and the type of computational biology envisioned by population

and evolutionary geneticists such as Wright may finally become a reality. This, the

extraction of how the organism’s range of behavior or environment responses is

encoded in the genome, is the ultimate aim of functional genomics.

Many people in what is now called bioinformatics will recall that much of the

wondrous mathematical modeling and analysis associated with population and evo-

lutionary biology was at best suspect and at worst ignored by molecular biologists

over the last 30 years or so. At the beginning of the new millennium, perhaps those

thinkers should be viewed as being ahead of their time. Note, it was not that serious

mathematics is not necessary to understand anything as complex as interacting

populations, but only that the early biomodelers did not have the needed data! Today

we are rapidly approaching the point where we can measure not only a population’s

genetic variation, but nearly all the genes that might be associated with a particular

environmental response. It is the data that has created the latest aspect of the bio-

logical revolution. Just imagine what we will be able to do with a dataset composed

of distributions of genetic variation among di¤erent subpopulations of fruit fly living

in distinctly di¤erent environments, or what might we learn about our own evolution

by having access to the full range of human and other primate genetic variation for

all 40,000 to 100,000 human genes?

It is perhaps best for those anticipating the challenges of bioinformatics and com-

putational genomics to think about how biology is likely to be taught by the end of

the second decade of this century. Will the complex mammalian immune system be

presented as a logical evolutionary adaptation of an early system for cell-cell com-

munication that developed into a cell-cell recognition system, and then self-nonself

recognition? Will it become obvious that the use by yeast of the G-protein couple

receptors to recognize matting types would become one of the main components of

nearly all higher organisms sensor systems? Like physics, where general rules and

laws are taught at the start and the details are left for the computer, biology will

surely be presented to future generations of students as a set of basic systems that

have been duplicated and adapted to a very wide range of cellular and organismic

functions following basic evolutionary principles constrained by Earth’s geological

history.
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II COMPARATIVE SEQUENCE AND GENOME ANALYSIS



 

2 Bayesian Modeling and Computation in Bioinformatics Research

Jun S. Liu

2.1 Introduction

With the completion of decoding the human genome and genomes of many other

species, the task of organizing and understanding the generated sequence and struc-

tural data becomes more and more pressing. These datasets also present great re-

search opportunities to all quantitative researchers interested in biological problems.

In the past decade, computational approaches to molecular and structural biology

have attracted increasing attention from both laboratory biologists and mathematical

scientists such as computer scientists, mathematicians, and statisticians, and have

spawned the new field of bioinformatics. Among available computational methods,

those that are developed based on explicit statistical models play an important role in

the field and are the main focus of this chapter.

The use of probability theory and statistical principles in guarding against false

optimism has been well understood by most scientists. The concepts of confidence

interval, p-value, significance level, and the power of a statistical test routinely appear

in scientific publications. To most scientists, these concepts represent, to a large extent,

what statistics is about and what a statistician can contribute to a scientific problem.

The invention of clever ideas, e‰cient algorithms, and general methodologies seem to

be the privilege of scientific geniuses and are seldom attributed to a statistical meth-

odology. In general, statistics or statistical thinking is not regarded as very helpful

in attacking a di‰cult scientific problem. What we want to show here is that, quite

in contrast to this ‘‘common wisdom,’’ formal statistical modeling together with

advanced statistical algorithms provide us a powerful ‘‘workbench’’ for developing

innovative computational strategies and for making proper inferences to account for

estimation uncertainties.

In the past decade, we have witnessed the developments of the likelihood approach

to pairwise alignments (Bishop and Thompson 1986; Thorne et al. 1991); the proba-

bilistic models for RNA secondary structure (Zuker 1989; Lowe and Eddy 1997); the

expectation maximization (EM) algorithm for finding regulatory binding motifs

(Lawrence and Reilly 1990; Cardon and Stormo 1992); the Gibbs sampling strategies

for detecting subtle similarities (Lawrence et al. 1993; Liu 1994; Neuwald et al. 1997);

the hidden Markov models (HMM) for DNA composition analysis and multiple

alignments (Churchill 1989; Baldi et al. 1994; Krogh et al. 1994); and the hidden semi-

Markov model for gene prediction and protein secondary structure prediction (Burge

and Karlin 1997; Schmidler et al. 2000). All these developments show that algo-



rithms resulting from statistical modeling e¤orts constitute a major part of today’s

bioinformatics toolbox.

Our emphasis in this chapter is on the applications of the Bayesian methodology

and its related algorithms in bioinformatics. We prefer a Bayesian approach for the

following reasons: (1) its explicit use of probabilistic models to formulate scientific

problems (i.e., a quantitative storytelling); (2) its coherent way of incorporating all

sources of information and of treating nuisance parameters and missing data; and (3)

its ability to quantify numerically uncertainties in all unknowns. In Bayesian analy-

sis, a comprehensive probabilistic model is employed to describe relationships among

various quantities under consideration: those that we observe (data and knowledge),

those about which we wish to learn (scientific hypotheses), and those that are needed

in order to construct a proper model (a sca¤old). With this Bayesian model, the basic

probability theory can automatically lead us to an e‰cient use of the available in-

formation when making predictions and to a numerical quantification of uncertainty

in these predictions (Gelman et al. 1995). To date, statistical approaches have been

primarily used in computational biology for deriving e‰cient algorithms. The utility

of these methods to make statistical inferences about unobserved variables has

received less attention.

An important yet subtle issue in applying the Bayes approach is the choice of a

prior distribution for the unknown parameters. Because it is inevitable that we inject

certain arbitrariness and subjective judgments into the analysis when prescribing a

prior distribution, the Bayes methods have long been regarded as less ‘‘objective’’

than its frequentist counterpart (section 2.2), and thus, disfavored. Indeed, it is often

nontrivial to choose an appropriate prior distribution when the parameter space is of

a high dimension. All researchers who intend to use Bayesian methods for serious

scientific studies need to put some thought into this issue. However, any scientific in-

vestigation has to involve a substantial amount of assumptions and personal judge-

ments from the scientist(s) who conduct the investigation. These subjective elements,

if made explicit and treated with care, should not undermine the scientific results of

the investigation. More importantly, it should be regarded as a good scientific prac-

tice if the investigators make their subjective inputs explicit. Similarly, we argue

that an appropriate subjective input in the form of a prior distribution should only

enhance the relevance and accuracy of the Bayesian inference. Being able to make

an explicit use of subjective knowledge is a virtue, instead of blemish, of Bayesian

methods.

This chapter is organized as follows. Section 2.2 discusses the importance of formal

statistical modeling and gives an overview of two main approaches to statistical

inference: the frequentist and Bayesian. Section 2.3 outlines the Bayesian procedure
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for treating a statistical problem, with an emphasis on using the missing data for-

mulation to construct scientifically meaningful models. Section 2.4 describes several

popular algorithms for dealing with statistical computations: the EM algorithm, the

Metropolis algorithm, and the Gibbs sampler. Section 2.5 demonstrates how the

Bayesian method can be used to study a sequence composition problem. Section 2.6

gives a further example of using the Bayesian method to find subtle repetitive motifs

in a DNA sequence. Section 2.7 concludes the chapter with a brief discussion.

2.2 Statistical Modeling and Inference

2.2.1 Parametric Statistical Modeling

Statistical modeling and analysis, including the collection of data, the construction of

a probabilistic model, the quantification and incorporation of expert opinions, the

interpretation of the model and the results, and the prediction from the data, form an

essential part of the scientific method in diverse fields. The key focus of statistics is on

making inferences, where the word inference follows the dictionary definition as ‘‘the

process of deriving a conclusion from fact and/or premise.’’ In statistics, the facts are

the observed data, the premise is represented by a probabilistic model of the system

of interest, and the conclusions concern unobserved quantities. Statistical inference

distinguishes itself from other forms of inferences by explicitly quantifying uncer-

tainties involved in the premise and the conclusions.

In nonparametric statistical inference, one does not assume any specific distribu-

tional form for the probability law of the observed data, but only imposes on the data

a dependence (or independence) structure. For example, an often imposed assump-

tion in nonparametric analyses is that the observations are independent and identically

distributed (iid). When the observed data are continuous quantities, what one has to

infer for this nonparametric model is the whole density curve—an infinite dimen-

sional parameter. A main advantage of nonparametric methods is that the resulting

inferential statements are relatively more robust than those from parametric methods.

However, a main disadvantage of the nonparametric approach is that it is di‰cult, and

sometimes impossible, to build into the model more sophisticated structures (based

on our scientific knowledge). It does not facilitate ‘‘learning.’’

Indeed, it would be ideal and preferable if we could derive what we want without

having to assume anything. However, the process of using simple models (with a small

number of adjustable parameters) to describe natural phenomena and then improving

upon them (e.g., Newton’s law of motion versus Einstein’s theory of relativity) is at

the heart of all scientific investigations. Parametric modeling, either analytically or

qualitatively, either explicitly or implicitly, is intrinsic to human intelligence; it is the
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only way we learn about the outside world. Analogously, statistical analysis based on

parametric modeling is also essential to our scientific understanding of the data.

At a conceptual level, probabilistic models in statistical analyses serve as a mech-

anism through which one connects observed data with a scientific premise or hy-

pothesis about real-world phenomena. Because bioinformatics explicitly or implicitly

concerns the analysis of biological data that are intrinsically probabilistic, such

models should be also at the core of bioinformatics. No model can completely rep-

resent every detail of reality. The goal of modeling is to abstract the key features of

the underlying scientific problem into a workable mathematical form with which the

scientific premise may be examined. Families of probability distributions charac-

terized by a small number of parameters are most useful for this purpose.

Let y denote the observed data. In parametric inference, we assume that the ob-

servation follows a probabilistic law that belongs to a given distribution family. That

is, y is a realization of a random process (i.e., a sample from a distribution) whose

probability law has a particular form (e.g., Gaussian, multinomial, Dirichlet, etc.),

f ðy j yÞ, which is completely known other than y. Here y is called a (population)

parameter, and it often corresponds to a scientific premise for our understanding of

a natural process. To be concrete, one can imagine that y is a genomic segment of

length n from a certain species, say, human. The simplest probabilistic model for a

genomic segment is the ‘‘iid model,’’ in which every observed DNA base pair (bp) in

the segment is regarded as independent of others and produced randomly by nature

based on a roll of a four-sided die (maybe loaded). Although very simple and un-

realistic, this model is the so-called ‘‘null model’’ behind almost all theoretical anal-

yses of popular biocomputing methods. That is, if we want to assess whether a pat-

tern we find can be regarded as a ‘‘surprise,’’ the most natural analysis is to evaluate

how likely this pattern will occur if an iid model is assumed.

Finding a value of y that is most compatible with the observation y is termed as

model fitting or estimation. We make scientific progresses by iterating between fitting

the data to the posited model and proposing an improved model to accommodate

important features of the data that are not accounted for by the previous model.

When the model is given, an e‰cient method should be used to make inference on the

parameters. Both the maximum likelihood estimation method and the Bayes method

use the likelihood function to extract information from data and are e‰cient; these

methods will be the main focus of the remaining part of this chapter.

2.2.2 Frequentist Approach to Statistical Inference

The frequentist approach, sometimes simply referred to as the classical statistics

procedure, arrives at its inferential statements by using a point estimate of the un-
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known parameter and addressing the estimation uncertainty by the frequency behavior

of the estimator. Among all estimation methods, the method of maximum likelihood

estimate (MLE) is most popular.

The MLE of y is defined as an argument ŷy that maximizes the likelihood function,

that is,

ŷy ¼ arg max
all y

Lðy j yÞ

where the likelihood function Lðy j yÞ is defined to be any function that is proportional

to the probability density f ðy j yÞ. Clearly, ŷy is a function of y and its form is deter-

mined completely by the parametric model f ð Þ. Hence, we can write ŷy as ŷyðyÞ to ex-

plicate this connection. Any deterministic function of the data y, such as ŷyðyÞ, is called
an estimator. For example, if y ¼ ðy1; . . . ; ynÞ are iid observations from Nðy; 1Þ, a
Normal distribution with mean y and variance 1, then the MLE of y is ŷyðyÞ ¼ y, the

sample mean of the yi, which is a linear combination of the y. It can be shown that,

under regularity conditions, the MLE ŷyðyÞ is asymptotically most e‰cient among all

potential estimators. In other words, no other way of using y can perform better

asymptotically, in terms of estimating y, than the MLE procedure. But some inferior

methods, such as the method of moments (MOM), can be used as alternatives when

the MLE is di‰cult to obtain.

Uncertainty in estimation is addressed by the principle of repeated sampling. Imag-

ine that the same stochastic process that ‘‘generates’’ our observation y can be

repeated indefinitely under identical conditions. A frequentist studies what the ‘‘typi-

cal’’ behavior of an estimator, for example, ŷyðyrepÞ, is. Here yrep denotes a hypothetical

dataset generated by a replication of the same process that generates y and is, there-

fore, a random variable that has y’s characteristics. The distribution of ŷyðyrepÞ is

called the frequency behavior of estimator ŷy. For the Normal example, the frequency

distribution of yrep is Nðy; 1=nÞ. With this distribution available, we can calibrate the

observed ŷyðyÞ with the ‘‘typical’’ behavior of ŷyðyrepÞ, such as Nðy; 1=nÞ, to quantify

uncertainty in the estimation. As another example, suppose y ¼ ðy1; . . . ; ynÞ is a

genomic segment and let na be the number of ‘‘A’’s in y. Then ŷya ¼ na=n is an esti-

mator of ya, the ‘‘true frequency of A’’ under the iid die-rolling model. To understand

the uncertainty in ŷya, we need to go back to the iid model and ask ourselves: How

would na fluctuate in a segment like y that is generated by the same die-rolling pro-

cess? The answer is rather simple: na follows distribution Binom(n; ya) and has mean

nya and variance nyað1� yaÞ.
We want to emphasize that the concepts of an ‘‘estimator’’ and its uncertainty only

make sense if a generative model is contemplated. For example, the statement that
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‘‘ŷya estimates the true frequency of A’’ only makes sense if we imagine that an iid

model (or another similar model) was used to generate the data. If this model is not

really what we have in mind, then the meaning of ŷya is no longer clear. A imaginary

random process for the data generation is crucial for deriving a valid statistical

statement.

A ð1� aÞ100% confidence interval (or region) for y, for instance, is of the form

ðyðyrepÞ; yðyrepÞÞ, meaning that under repeated sampling, the probability that the in-

terval (the interval is random under repeated sampling) covers the true y is at least

1� a. In contrast to what most people have hoped for, this interval statement does

not mean that ‘‘y is in ðyðyÞ; yðyÞÞ with probability 1� a.’’ With observed y, the true

y is either in or out of the interval and no meaningful direct probability statement can

be given unless y can be treated as a random variable.

When finding the analytical form of the frequency distribution of an estimator ŷy

is di‰cult, some modern techniques such as the jackknife or bootstrap method can be

applied to numerically simulate the ‘‘typical’’ behavior of an estimator (Efron 1979).

Suppose y ¼ ðy1; . . . ; ynÞ and each yi follows an iid model. In the bootstrap method,

one treats the empirical distribution of y (the distribution that gives a probability

mass of 1=n to each yi and 0 to all other points in the space) as the ‘‘true underlying

distribution’’ and repeatedly generates new datasets, yrep;1; . . . ; yrep;B, from this dis-

tribution. Operationally, each yrep;b consists of n data points, yrep;b ¼ ðyb;1; . . . ; yb;nÞ,
where each yb; i is a simple random sample (with replacement) from the set of the ob-

served data points fy1; . . . ; yng. With the bootstrap samples, we can calculate ŷyðyrep;bÞ
for b ¼ 1; . . . ;B, whose histogram tells us how ŷy varies from sample to sample assuming

that the true distribution of y is its observed empirical distribution.

In a sense, the classical inferential statements are pre-data statements because they

are concerned with the repeated sampling properties of a procedure and do not have

to refer to the actual observed data (except in the bootstrap method, where the

observed data is used in the approximation of the ‘‘true underlying distribution’’). A

major di‰culty in the frequentist approach, besides its awkwardness in quantifying

estimation uncertainty, is its di‰culty in dealing with nuisance parameters. Suppose

y ¼ ðy1; y2Þ. In a problem where we are only interested in one component, y1 say, the

other component y2 becomes a nuisance parameter. No clear principles exist in clas-

sical statistics that enable us to eliminate y2 in an optimal way. One of the most

popular practices in statistical analysis is the so-called profile likelihood method, in

which one treats the nuisance parameter y2 as known and fixes it at its MLE. This

method, however, underestimates the involved uncertainty (because it treats unknown

y2 as if it were known) and can lead to incorrect inference when the distribution of

ŷy1 depends on y2, especially if the dimensionality of y2 is high. More sophisticated
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methods based on orthogonality, similarity, and average likelihood have also been

proposed, but they all have their own problems and limitations.

2.2.3 Bayesian Methodology

Bayesian statistics seeks a more ambitious goal by modeling all related information

and uncertainty, such as physical randomness, subjective opinions, prior knowledge

from di¤erent sources, and so on, with a joint probability distribution and treating

all quantities involved in the model, be they observations, missing data, or unknown

parameters, as random variables. It uses the calculus of probability as the guiding

principle in manipulating data and derives its inferential statements based purely on

an appropriate conditional distribution of unknown variables.

Instead of treating y as an unknown constant as in a frequentist approach, Bayesian

analysis treats y as a realized value of a random variable that follows a prior distri-

bution f0ðyÞ, which is typically regarded as known to the researcher independently of

the data under analysis. The Bayesian approach has at least two advantages. First,

through the prior distribution, we can inject prior knowledge and information about

the value of y. This is especially important in bioinformatics, as biologists often have

substantial knowledge about the subject under study. To the extent that this infor-

mation is correct, it will sharpen the inference about y. Second, treating all the vari-

ables in the system as random variables greatly clarifies the methods of analysis. It

follows from the basic probability theory that information about the realized value of

any random variable, y, say, based on observation of related random variables, y,

say, is summarized in the conditional distribution of y given y, the so-called posterior

distribution. Hence, if we are interested only in a component of y ¼ ðy1; y2Þ, say y1,

we have just to integrate out the remaining components of y, the nuisance parameters,

from the posterior distribution. Furthermore, if we are interested in the prediction of

a future observation yþ depending on y, we can obtain the posterior distribution of

yþ given y by completely integrating out y.

The use of probability distributions to describe unknown quantities is also sup-

ported by the fact that probability theory is the only known coherent system for

quantifying objective and subjective uncertainties. Furthermore, probabilistic models

have been accepted as appropriate in almost all information-based technologies, in-

cluding information theory, control theory, system science, communication and sig-

nal processing, and statistics. When the system under study is modeled properly, the

Bayesian approach is coherent, consistent, and e‰cient.

The theorem that combines the prior and the data to form the posterior distribu-

tion (section 2.3) is a simple mathematical result first given by Thomas Bayes in 1763.

The statistical procedure based on the systematic use of this theorem appears much
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later (some people believe that Laplace was the first Bayesian) and is also named after

Bayes. The adjective Bayesian is often used for approaches in which subjective proba-

bilities are emphasized. In this sense, Thomas Bayes was not really a Bayesian.

A main controversial aspect of the Bayesian approach is the use of the prior dis-

tribution, to which three interpretations can be given: (1) as frequency distributions;

(2) as objective representations of a rational belief of the parameter, usually in a state

of ignorance; and (3) as a subjective measure of what a particular individual believes

(Cox and Hinkley 1974). Interpretation (1) refers to the case when y indeed follows a

stochastic process and, therefore, is uncontroversial. But this scenario is of limited

applicability. Interpretation (2) is theoretically interesting but is often untenable in

real applications. The emotive words ‘‘subjective’’ and ‘‘objective’’ should not be taken

too seriously. (Many people regard the frequentist approach as a more ‘‘objective’’

one.) There are considerable subjective elements and personal judgements injected

into all phases of scientific investigations. Claiming that someone’s procedure is

‘‘more objective’’ based on how the procedure is derived is nearly meaningless. A

truly objective evaluation of any procedure is how well it attains its stated goals. In

bioinformatics, we are fortunate to have a lot of known biological facts to serve as

objective judges.

In most of our applications, we employ the Bayesian method mainly because of its

internal consistency in modeling and analysis and its capability to combine various

sources of information. Thus, we often take a combination of (1) and (3) for deriving

a ‘‘reasonable’’ prior for our data analysis. We advocate the use of a suitable sensi-

tivity analysis, that is, an analysis of how our inferential statements are influenced by

a change in the prior, to validate our statistical conclusions.

2.2.4 Connection with Some Methods in Bioinformatics

Nearly all bioinformatics methods employ score functions—which are often func-

tions of likelihoods or likelihood ratios—at least implicitly. The specification of

priors required for Bayesian statistics is less familiar in bioinformatics, although not

completely foreign. For example, the setting of parameters for an alignment algo-

rithm can be viewed as a special case of prior specification in which the prior dis-

tribution is degenerate with probability one for the set value and zero for all other

values. The introduction of non-degenerate priors can typically give more flexibility

in modeling reality.

The use of formal statistical models in bioinformatics was relatively rare before

the 1990s. One reason is perhaps that computer scientists, statisticians, and other

data analysts were not comfortable with big models—it is hard to think about many

unknowns simultaneously. Additionally, algorithms for dealing with complex statis-
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tical models were not su‰ciently well known and the computer hardware was not

yet as powerful. Recently, an extensive use of probabilistic models (e.g., the hidden

Markov model and the missing data formalism) has contributed greatly to the ad-

vance of computational biology.

Recursive algorithms for global optimization have been employed with great ad-

vantage in bioinformatics as the basis of a number of dynamic programming algo-

rithms. We show that these algorithms have very similar counterparts in Bayesian

and likelihood computations.

2.3 Bayes Procedure

2.3.1 The Joint and Posterior Distributions

The full process of a typical Bayesian analysis can be described as consisting of three

main steps (Gelman et al. 1995): (1) setting up a full probability model, the joint dis-

tribution, that captures the relationship among all the variables (e.g., observed data,

missing data, unknown parameters) in consideration; (2) summarizing the findings

for particular quantities of interest by appropriate posterior distributions, which is

typically a conditional distribution of the quantities of interest given the observed data;

and (3) evaluating the appropriateness of the model and suggesting improvements

(model criticism and selection).

A standard procedure for carrying out step (1) is to formulate the scientific ques-

tion of interest though the use of a probabilistic model, from which we can write down

the likelihood function of y. Then a prior distribution f0ðyÞ is contemplated, which

should be both mathematically tractable and scientifically meaningful. The joint

probability distribution can then be represented as Joint ¼ likelihood � prior, that is,

pðy; yÞ ¼ pðy j yÞ f0ðyÞ ð2:1Þ
For notational simplicity, we use pðy j yÞ, hereafter, interchangeably with f ðy j yÞ to
denote the likelihood. From a Bayesian’s point of view, this is simply a conditional

distribution.

Step (2) is completed by obtaining the posterior distribution through the application

of Bayes theorem:

pðy j yÞ ¼ pðy; yÞ
pðyÞ ¼ pðy j yÞ f0ðyÞÐ

pðy j yÞ f0ðyÞ dy z pðy j yÞ f0ðyÞ ð2:2Þ

When y is discrete, the integral is replaced by summation. The denominator pðyÞ,
which is a normalizing constant for the function, is sometimes called the marginal
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likelihood of the model and can be used to conduct model selection (Kass and Raftery

1995). Although evaluating pðyÞ analytically is infeasible in many applications,

Markov chain Monte Carlo methods (section 2.4) can often be employed for its

estimation.

In computational biology, because the data to be analyzed are usually categorical

(e.g., DNA sequences with a four-letter alphabet or protein sequences with a twenty-

letter alphabet), the multinomial distribution is most commonly used. The parameter

vector y in this model corresponds to the frequencies of each base type in the data.

A mathematically convenient prior distribution for the multinomial families is the

Dirichlet distributions, of which the Beta distribution is a special case for the binomial

family. This distribution has the form

f0ðyÞz
Yk
j¼1

y
aj�1
j ð2:3Þ

where k is the size of the alphabet and aj > 0 for all j. Here a ¼ ða1; . . . ; akÞ is often
called the hyper-parameter for the Dirichlet distribution and the sum a¼ a1þ � � � þ ak
is often called the ‘‘pseudo-counts,’’ which can be understood heuristically as the

total ‘‘worth’’ (in comparison with actual observations) of one’s prior opinion. When

a simple iid model is imposed on an observed sequence of letters, y ¼ ðy1; . . . ; ynÞ, its
likelihood function is

pðy j yÞ ¼
Yn
i¼1

yyi ¼
Yk
j¼1

y
nj
j

where nj is the number of counts of residual type j in y. If a DirichletðaÞ prior used
for its parameter y, the posterior distribution for y is simply another Dirichlet distri-

bution with hyperparameter ða1 þ n1; . . . ; ak þ nkÞ. The posterior mean of, say, yj, is

ðnj þ ajÞ=ðnþ aÞ.
Suppose the parameter vector has more than one component, that is, y ¼ ðy1;y½�1�Þ;

where y½�1� denotes all but the first component. One may be interested only in one of

components, y1, say. The other components that are not of immediate interest but are

needed by the model, nuisance parameters, can be removed by integration:

pðy1 j yÞ ¼ pðy; y1Þ
pðyÞ

¼
Ð
pðy j y1; y½�1�Þ f0ðy1; y½�1�Þ dy½�1�Ð Ð

pðy j y1; y½�1�Þ f0ðy1; y½�1�Þ dy1 dy½�1�
ð2:4Þ
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Note that computations required for completing a Bayesian inference are the integra-

tions (or summations for discrete parameters) over all unknowns in the joint distribu-

tion to obtain the marginal likelihood and over all but those of interest to remove

nuisance parameters. Despite the deceptively simple-looking form of equation (2.4),

the challenging aspects of Bayesian statistics are: (1) the development of a model,

pðy j yÞ f0ðyÞ, which must e¤ectively capture the key features of the underlying scien-

tific problem; and (2) the necessary computation for deriving the posterior distribu-

tion. For aspect (1), the missing data formulation is an important tool to help one

formulate a scientific problem; for (2), the recent advances in Markov chain Monte

Carlo techniques are essential.

2.3.2 The Missing Data Framework

The missing data formulation is an important methodology for modeling complex

data structures and for designing computational strategies. This general framework

was motivated in early 1970s (and maybe earlier) by the need for a proper statistical

analysis of certain survey data where parts of the data were missing. For example, a

large survey of families was conducted in 1967 in which many socioeconomic vari-

ables were recorded. A follow-up study of the same families was done in 1970. Nat-

urally, the 1967 data had a large amount of missing values due to either recording

errors or some families’ refusal to answer certain questions. The 1970 data had an

even more severe kind of missing data caused by the fact that many families studied

in 1967 could not be located in 1970.

The first important question for a missing data problem is under what conditions

can we ignore the ‘‘missing mechanism’’ in the analysis. That is, does the fact that an

observation is missing tell us anything about the quantities we are interested in esti-

mating? For example, the fact that many families moved out of a particular region

may indicate that the region’s economy was having problems. Thus, if our interested

estimand is a certain ‘‘consumer confidence’’ measure of the region, the standard

estimate resulting only from the observed families might be biased. Rubin’s (1976)

pioneering work provides general guidance on how to judge the ignorability. Because

everything in a Bayes model is a random variable, it is especially convenient and

transparent in dealing with these ignorability problems in a Bayesian framework.

The second important question is that how one should conduct computations, such

as finding the MLE or the posterior distribution of the estimands. This question has

motivated statisticians to develop several important algorithms: the EM algorithm

(Dempster et al. 1977), data augmentation (Tanner and Wong 1987), and the Gibbs

sampler (Gelfand and Smith 1990).
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In late 1970s and early 1980s, people started to realize that many other problems

can be treated as missing data problems. One typical example is the so-called latent-

class model, which is most easily explained by the following example (Tanner and

Wong 1987). In the 1972–1974 General Social Surveys, a sample of 3,181 partici-

pants were asked to answer the following questions. Question A: Do you think it

should be possible for a pregnant woman to obtain a legal abortion if she is married

and does not want any more children. In question B, the italicized phrase in A is

replaced with ‘‘if she is not married and does not want to marry the man.’’ A latent-

class model assumes that a person’s answers to A and B are conditionally indepen-

dent given the value of a dichotomous latent variable Z (either 0 or 1). Intuitively,

this model asserts that the population consists of two ‘‘types’’ of people (e.g., con-

servative and liberal) and Z is the unobserved ‘‘label’’ of each person. If you know

the person’s label, then his/her answer to question A will not help you to predict his/

her answer to question B. Clearly, variable Z can be thought of as a ‘‘missing data,’’

although it is not really ‘‘missing’’ in a standard sense. For another example, in a

multiple sequence alignment problem, alignment variables that must be specified for

each sequence (observation) can be regarded as missing data. Residue frequencies or

scoring matrices, which apply to all the sequences, are population parameters. This

generalized view eventually made the missing data formulation one of the most ver-

satile and constructive workbenches for sophisticated statistical analysis and advanced

statistical computing.

The importance of the missing data formulation stems from the following two main

considerations. Conceptually, this framework helps in making model assumptions

explicit (e.g., ignorable versus nonignorable missing mechanism), in defining precise

estimands of interest, and in providing a logical framework for causal inference

(Rubin 1976). Computationally, the missing data formulation inspired the invention

of several important statistical algorithms. Mathematically, however, the missing

data formulation is not well defined. In real life, what we can observe is always par-

tial (incomplete) information and there is no absolute distinction between parameters

and missing data (i.e., some unknown parameters can also be thought of as missing

data, and vice versa).

To a broader scientific audience, the concept of ‘‘missing data’’ is perhaps a little

odd because many scientists may not believe that they have any missing data. In the

most general and abstract form, the ‘‘missing data’’ can refer to any unobserved com-

ponent of the probabilistic system under consideration and the inclusion of this part

in the system often results in a simpler structure. This component, however, needs

to be marginalized (integrated) out in the final analysis. That is, when missing data

ymis is present, a proper inference about the parameters of interest can be achieved
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by using the ‘‘observed-data likelihood,’’ Lobsðy; yobsÞ ¼ pðyobs j yÞ, which can be ob-

tained by integration:

Lobsðy; yobsÞz
ð
pðyobs; ymis j yÞ dymis

Because it is often di‰cult to compute this integral analytically, one needs advanced

computational methods such as the EM algorithm (Dempster et al. 1977) to compute

the MLE.

Bayesian analysis for missing data problems can be achieved coherently through

integration. Let y ¼ ðy1; y½�1�Þ and suppose we are interested only in y1. Then

pðy1 j yobsÞz
ðð

pðyobs; ymis j y1; y½�1�Þpðy1; y½�1�Þ dymis dy½�1�

Because all quantities in a Bayesian model are treated as random variables, the inte-

gration for eliminating the missing data is no di¤erent than that for eliminating nui-

sance parameters.

Our main use of the missing data formulation is to construct proper statistical

models for bioinformatics problems. As will be shown in the later sections, this

framework frees us from being afraid of introducing meaningful but perhaps high-

dimensional variables into our model, which is often necessary for a satisfactory de-

scription of the underlying scientific knowledge. The extra variables introduced this

way, when treated as missing data, can be integrated out in the analysis stage so as to

result in a proper inference for the parameter of interest. Although a conceptually

simple procedure, the computation involved in integrating out missing data can be

very di‰cult. Section 2.4 introduces a few algorithms for this purpose.

2.3.3 Model Selection and Bayes Evidence

At times, biology may indicate that more than one model is plausible. Then we are

interested in assessing model fit and conducting model selection (step [3] described in

section 2.2.1). Classical hypothesis testing can be seen as a model selection method in

which one chooses between the null hypothesis and the alternative in light of data.

Model selection can also be achieved by a formal Bayes procedure. First, all the

candidate models are embedded into one unified model. Then the ‘‘overall’’ posterior

probability of each candidate model is computed and used to discriminate among the

models (Kass and Raftery 1995).

To illustrate the Bayes procedure for model selection, we focus on the comparison

of two models: M ¼ 0 indicates the ‘‘null’’ model, and M ¼ 1 the alternative. The

joint distribution for the augmented model becomes
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pðy; y;MÞ ¼ pðy j y;MÞpðy;MÞ
Under the assumption that the data depend on the models through their respective

parameters, the above equation is equal to

pðy; y;MÞ ¼ pðy j ymÞpðym jM ¼ mÞpðM ¼ mÞ
where pðym jM ¼ mÞ is the prior for the parameters in model m, and pðM ¼ mÞ is
the prior probability of model m. Note that the dimensionality of ym may be di¤erent

for di¤erent m. The posterior probability for model m is obtained as:

pðM ¼ m j yÞz pðy jM ¼ mÞpðM ¼ mÞ

¼
ð
pðy j ymÞpðym jM ¼ mÞ dym

� �
pðM ¼ mÞ

The choice of pðM ¼ mÞ, which is our prior on di¤erent models, is assigned inde-

pendently of data in study. A frequent choice is pðM ¼ 0Þ ¼ pðM ¼ 1Þ ¼ 0:5 if we

expect that both models are equally likely a priori. But in other cases, we might set

pðM ¼ 1Þ very small. For example, in database searching, the prior probability that

the query sequence is related to a sequence taken at random from the database

is much smaller. In this case we might set pðM ¼ 1Þ inversely proportional to the

number of sequences in the database.

2.4 Advanced Computation in Statistical Analysis

In many practical problems, the required computation is the main obstacle for apply-

ing both the Bayesian and the MLE methods. In fact, until recently, these computa-

tions have often been so di‰cult that sophisticated statistical modeling and Bayesian

methods were largely for theoreticians and philosophers. The introduction of the

bootstrap method (Efron 1979), the expectation maximization (EM) algorithm

(Dempster et al. 1977), and the Markov chain Monte Carlo (MCMC) method (Gilks

et al. 1998) has brought many powerful statistical models into the mainstream of

statistical analysis. As we illustrate in section 2.5, by appealing to the rich history of

computation in bioinformatics, many required optimizations and integrations can be

done exactly, which gives rise to either an exact solution to the MLE and the poste-

rior distributions or an improved MCMC algorithm.

2.4.1 The EM Algorithm

The EM algorithm is perhaps one of the most well-known statistical algorithms for

finding the mode of a marginal likelihood or posterior distribution function. That is,
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the EM algorithm enables one to find the mode of

F ðyÞ ¼
ð
f ðymis; yobs j yÞ dymis ð2:5Þ

where f ðymis; yobs j yÞV 0 and FðyÞ < y for all y. When ymis is discrete, we simply

replace the integral in equation (2.5) by summation. The EM algorithm starts with an

initial guess yð0Þ and iterates the following two steps:

. E-step. Compute

Qðy j yðtÞÞ ¼ Et½log f ðymis; yobs j yÞ j yobs�

¼
ð
log f ðymis; yobs j yÞ f ðymis j yobs; yðtÞÞ dymis

where f ðymis j yobs; yÞ ¼ f ðymis; yobs j yÞ=F ðyÞ, the conditional distribution of ymis.

. M-step. Find yðtþ1Þ to maximize Qðy j yðtÞÞ.
The E-step is derived from an ‘‘imputation’’ heuristic. Because we assume that

the log-likelihood function is easy to compute once the missing data ymis is given,

it is appealing to simply ‘‘fill-in’’ a set of missing data and conduct a complete-data

analysis. However, the simple fill-in idea is incorrect because it underestimates the

variability caused by the missing information. The correct approach is to average the

log-likelihood over all the missing data. In general, the E-step considers all possible

ways of filling in the missing data, computes the corresponding complete-data log-

likelihood function, and then obtains Qðy j yðtÞÞ by averaging these functions accord-

ing to the current ‘‘predictive density’’ of the missing data. The M-step then finds the

maximum of the Q function.

It is instructive to consider the EM algorithm for the latent-class model of section

2.3.2. The observed values are yobs ¼ ðy1; . . . ; ynÞ, where yi ¼ ðyi1; yi2Þ and yij is the

ith person’s answer to jth question. The missing data are ymis ¼ ðz1; . . . ; znÞ, where
zi is the latent-class label of person i. Let y ¼ ðy0;1; y1;1; y0;2; y1;2; gÞ, where g is the

frequency of zi ¼ 1 in the population and yk; l is the probability of a type-k person

saying ‘‘yes’’ to the lth question. Then the complete-data likelihood is

f ðymis; yÞ ¼ pðyobs j ymis; yÞpðymis j yÞ

¼
Yn
i¼1

Y2
k¼1

fyyik
zi ;k

ð1� yzi ;kÞ1�yikggzið1� gÞ1�zi

" #
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The E-step requires us to average over all label imputations. Thus, Qðy j yðtÞÞ is equal
to

Et

"Xn
i¼1

(X2
k¼1

fyik log yzi ;k þ ð1� yikÞ logð1� yzi ;kÞg

þ zi log gþ ð1� ziÞ logð1� gÞ
)����� yobs

#

where the expectation sign means that we need to average out each zi according to its

‘‘current’’ predictive probability distribution

ti 1 pðzi ¼ 1 j yobs; yðtÞÞ ¼
gðtÞyðtÞ1yi

gðtÞyðtÞ1yi þ ð1� gðtÞÞyðtÞ0yi
Hence, in the E-step, we simply fill-in a probabilistic label for each person, which

gives

Qðy j yðtÞÞ ¼
X1
m¼0

X2
k¼1

� X
i: yik¼1

tmi ð1� tiÞ1�m log ym;k

þ
X

i: yik¼0

tmi ð1� tiÞ1�m logð1� ym;kÞ
�

þ
Xn
i¼1

ti

 !
log gþ

Xn
i¼1

ð1� tiÞ
 !

logð1� gÞ

Although the above expression looks overwhelming, it is in fact quite simple and the

M-step simply updates the parameters as gðtþ1Þ ¼Pn
i¼1 ti=n and

y
ðtþ1Þ
m;k ¼

P
i: yik¼1 t

m
i ð1� tiÞ1�mP

i: yik¼1 t
m
i ð1� tiÞ1�m þPi: yik¼0 t

m
i ð1� tiÞ1�m

There are three main advantages of the EM algorithm: (1) it is numerically

stable (no inversion of a Hessian matrix); (2) each iteration of the algorithm strictly

increases the value of the objective function unless it has reached a local optima; and

(3) each step of the algorithm has an appealing statistical interpretation. For example,

the E-step can often be seen as ‘‘imputing’’ the missing data and the M-step can be

viewed as the estimation of the parameter value in lights of the current imputation.
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The idea of iterating between filling-in missing data and updating estimate of the

parameter has been around much longer than the EM algorithm. But Dempster et al.

(1977) provided the first general and mathematically correct formulation of this in-

tuitive idea (see Meng and van Dyk 1997 and discussions therein for an overview of

recent advances of the EM algorithm).

2.4.2 Monte Carlo and Bayesian Analysis

As we have mentioned previously, the Bayesian analysis of a statistical problem can

be made based on the joint posterior distribution of all unknown variables:

pðy; ymis j yobsÞ ¼
pðyobs; ymis j yÞ f0ðyÞÐ Ð

pðyobs; y 0
mis j y 0Þ f0ðy 0Þ dy 0

mis dy
0 ð2:6Þ

Note that this joint distribution is almost completely known—except for the de-

nominator, which is often called the normalizing constant (or the partition function in

physics). Suppose, for example, we are interested only in estimating the first compo-

nent y1 of y, say. We may need to evaluate its posterior mean (and perhaps other

characteristics):

Eðy1 j yÞ ¼
ðð

y1pðy; ymis j yobsÞ dymis dy

¼
Ð Ð

y1 pðyobs; ymis j yÞ f0ðyÞ dymis dyÐ Ð
pðyobs; y 0

mis j y 0Þ f0ðy 0Þ dy 0
mis dy

0 ð2:7Þ

Neither the numerator nor the denominator in equation (2.7) is easy to compute in

practice.

If, however, we can generate a random sample ðyð1Þmis; y
ð1ÞÞ; . . . ; ðyðmÞ

mis ; y
ðmÞÞ, either

independently or dependently (as in a Markov chain), from the joint posterior dis-

tribution (2.6), then we can approximate the marginal posterior distribution of y1 by

the histogram of the first component, y
ð jÞ
1 , of each yð jÞ, and approximate (2.7) by the

Monte Carlo sample average

~yy1 ¼ 1

m
ðyð1Þ1 þ � � � þ y

ðmÞ
1 Þ ð2:8Þ

2.4.3 Simple Monte Carlo Techniques

To begin with basic ideas, we describe two simple algorithms for generating random

variables from a given distribution. As a starting point, we assume that independent

uniform (in region [0,1]) random variables can be produced satisfactorily. Algorithms
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that serve this purpose are called random number generators. In fact, this task is not

as simple it looks, and the interested reader is encouraged to study further on this

topic (Marsaglia and Zaman 1993).

Inversion Method When we have available the cumulative distribution function

(cdf ) for a one-dimensional target distribution pðxÞ, we can implement the following

procedure.

. Draw U @Unif[0,1];

. Compute x ¼ F�1ðUÞ, where F�1ðuÞ ¼ inffx;FðxÞV ug.
Then x so produced must follow p. The interested reader can try to prove this fact.

However, because many distributions (e.g., Gaussian) do not have a closed-form cdf,

it is often di‰cult to directly apply the inversion method. To overcome this di‰culty,

von Neumann (1951) invented the ingenious rejection method, which can be applied

very generally.

Rejection Method Suppose lðxÞ ¼ cpðxÞ is known (but c may be unknown) and we

can find a sampling distribution gðxÞ together with a constant M such that the enve-

lope property, that is, MgðxÞV lðxÞ for all x, is satisfied. Then we can apply the fol-

lowing procedure.

(1) Draw x@ gðxÞ and compute the ratio r ¼ lðxÞ=MgðxÞ (which should always be

U1);

(2) Draw U @Unif[0,1]; accept and return x if U U r; reject x and go back to (a) if

U > r.

To show that the accepted sample follows distribution p, we let I be the indicator

function so that I ¼ 1 if sample X drawn from gð Þ is accepted, and I ¼ 0, otherwise.

Thus,

pðI ¼ 1Þ ¼
ð
pðI ¼ 1 jX ¼ xÞgðxÞ dx

¼
ð
cpðxÞ
MgðxÞ gðxÞ dx

¼ c

M

and
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pðx j I ¼ 1Þ ¼ cpðxÞ
MgðxÞ gðxÞ=pðI ¼ 1Þ

¼ pðxÞ

It is seen that the ‘‘success rate’’ for obtaining an accepted sample is c=M. Thus, the

key to a successful application of the algorithm is to find a good trial distribution

gðxÞ, which gives rise to a small M. Because it is usually di‰cult to find a good g-

function in high-dimensional problems, the rejection method alone tends to be not

very useful in di‰cult problems.

2.4.4 Markov Chain Monte Carlo Methods

Markov chain Monte Carlo (MCMC) is a class of algorithms for simulating random

variables from a target distribution, pðxÞ, given up to a normalizing constant. A

major advantage of these algorithms is their ability to ‘‘divide and conquer’’ a high-

dimensional and complex problem. These algorithms serve our purpose well because

in Bayesian analysis we want to draw random samples from the joint posterior dis-

tribution (2.6) without having to know its denominator. The basic idea behindMCMC

algorithms is to design and simulate a Markov chain whose equilibrium distribution

is exactly pðxÞ. Here we describe two methods for constructing such chains—the

Metropolis algorithm and the Gibbs sampler—both being widely used in diverse

fields. More versatile algorithms and their analyses can be found in Liu (2001).

Metropolis-Hastings Algorithm Let pðxÞ ¼ c expf�hðxÞg be the target distribution

with unknown constant c. Metropolis et al. (1953) introduced the fundamental idea

of Markov chain sampling and prescribed the first general construction of such a

chain. Hastings (1970) later provided an important generalization. Starting with any

configuration xð0Þ, the M-H algorithm evolves from the current state xðtÞ ¼ x to the

next state xðtþ1Þ as follows:

. Propose a new state x 0 that can be viewed as a small and random ‘‘perturba-

tion’’ of the current state. More precisely, x 0 is generated from a proposal function

TðxðtÞ ! x 0Þ (i.e., it is required that T V 0 and
P

all y T ½x ! y� ¼ 1 for all x) deter-

mined by the user.

. Compute the Metropolis ratio

rðx; x 0Þ ¼ pðx 0ÞTðx 0 ! xÞ
pðxÞTðx ! x 0Þ ð2:9Þ
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. Generate a random number u@Unif[0,1];

—let xðtþ1Þ ¼ x 0 if uU rðx; x 0Þ;
—let xðtþ1Þ ¼ xðtÞ otherwise.

A more well-known form of the Metropolis algorithm is described as iterating the

following steps: (1) a small random perturbation of the current configuration is made;

(2) the ‘‘gain’’ (or loss) in an objective function (i.e., �h½x�) resulting from this per-

turbation is computed; (2) a random number U is generated independently; and (4)

the new configuration is accepted if logðUÞ is smaller than or equal to the ‘‘gain,’’

and is rejected otherwise. The well-known simulated annealing algorithm (Kirkpatrick

et al. 1983) is built upon this basic Metropolis iteration by adding an adjustable ex-

ponential scaling parameter to the objective function (i.e., p½x� is scaled to pa½x� and
alpha ! 0).

Metropolis et al. (1953) restricted their choices of the ‘‘perturbation’’ function to be

the symmetric ones. That is, the chance of proposing x 0 from perturbing x is always

equal to that of proposing x from perturbing x 0. Intuitively, this means that there

is no ‘‘trend bias’’ at the proposal stage. Mathematically, this symmetry can be ex-

pressed as Tðx ! x 0Þ ¼ Tðx 0 ! xÞ. Hastings (1970) generalized the choice of T to all

those that satisfies the property: Tðx ! x 0Þ > 0 if and only if Tðx 0 ! xÞ > 0. It is

easy to see that the ‘‘actual’’ transition probability function resulting from the M-H

transition rule is, for x0 y,

Aðx ! yÞ ¼ Tðx ! yÞ minf1; rðx; yÞg
where rðx; yÞ is the Metropolis ratio as in (2.9). It is easy to see that

pðxÞAðx ! yÞ ¼ minfpðxÞTðx ! yÞ; pðyÞTðy ! xÞg
which is a symmetric function in x and y. Thus, the detailed balance condition

pðxÞAðx ! yÞ ¼ pðyÞAðy ! xÞ
is satisfied by A. This condition then implies that p is the invariant distribution for the

Metropolis-Hastings transition. That is,ð
pðxÞAðx ! yÞ dx ¼ pðyÞ

Heuristically, p can be seen as a ‘‘fixed point’’ under the M-H operation in the space

of all distributions. It follows from the standard Markov chain theory that if the

chain is irreducible (i.e., it is possible to go from anywhere to anywhere else in a finite

number of steps), aperiodic (i.e., there is no parity problem), and not drifting away,
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then in the long run the chain will settle at its invariant distribution (Neal 1993). The

random samples so obtained eventually are like those drawn directly from p.

The Metropolis algorithm has been extensively used in statistical physics over the

past 40 years and is the cornerstone of all MCMC techniques recently adopted and

generalized in the statistics community. Another type of MCMC algorithm, the Gibbs

sampler (Geman and Geman 1984), di¤ers from the Metropolis algorithm in its ex-

tensive use of conditional distributions based on pðxÞ for constructing Markov chain

moves.

Gibbs Sampler Suppose x ¼ ðx1; . . . ; xdÞ. In the Gibbs sampler, one randomly or

systematically chooses a coordinate, say x1, and then update its value with a new

sample x 0
1 drawn from the conditional distribution pð� j x½�1�Þ, where x½�A� refers to

fxj; j A Acg. Algorithmically, the Gibbs sampler can be implemented as follows:

Random Scan Gibbs Sampler. Suppose currently xðtÞ ¼ ðxðtÞ1 ; . . . x
ðtÞ
d Þ. Then

. Randomly select i from f1; . . . ; dg according to a given probability vector

ða1; . . . ; adÞ.
. Let x

ðtþ1Þ
i be drawn from the conditional distribution pð� j xðtÞ½�i �Þ, and let x

ðtþ1Þ
½�i � ¼ x

ðtÞ
½�i �.

Systematic Scan Gibbs Sampler. Let the current state be xðtÞ ¼ ðxðtÞ1 ; . . . x
ðtÞ
d Þ.

. For i ¼ 1; . . . ; d, we draw x
ðtþ1Þ
i from the conditional distribution

pðxi j xðtþ1Þ
1 ; . . . ; x

ðtþ1Þ
i�1 ; x

ðtÞ
iþ1; . . . ; x

ðtÞ
d Þ

It is easy to check that every individual conditional update leaves p invariant. Sup-

pose currently xðtÞ @ p. Then x
ðtÞ
½�i � follows its marginal distribution under p. Thus,

pðxðtþ1Þ
i j xðtÞ½�i �Þ � pðxðtÞ½�i �Þ ¼ pðxðtþ1Þ

i ; x
ðtÞ
½�i �Þ

implying that the joint distribution of ðxðtÞ½�i �; x
ðtþ1Þ
i Þ is unchanged at p after one update.

The Gibbs sampler’s popularity in statistics community stems from its extensive use

of conditional distributions in each iteration. Tanner and Wong’s (1987) data augmen-

tation first linked the Gibbs sampling structure with missing data problems and the

EM algorithm. Gelfand and Smith (1990) further popularized the method by point-

ing out that the conditionals needed in Gibbs iterations are commonly available in

many Bayesian and likelihood computations.

Under regularity conditions, one can show that the Gibbs sampler chain converges

geometrically and its convergence rate is related to how the variables correlate with

each other. Therefore, grouping highly correlated variables together in the Gibbs

update can greatly speed up the sampler (Liu 1994).
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Other Techniques A main problem with all MCMC algorithms is that they may, for

some problems, move very slowly in the configuration space or may be trapped in the

region of a local mode. This phenomena is generally called slow-mixing of the chain.

When chain is slow-mixing, estimation based on the resulting Monte Carlo samples

becomes very inaccurate. Some recent techniques suitable for designing more e‰-

cient MCMC samplers in bioinformatics applications include simulated tempering

(Marinari and Parisi 1992), parallel tempering (Geyer 1991), multicanonical sam-

pling (Berg and Neuhaus 1992), multiple-try method (Liu et al. 2000), and evolu-

tionary Monte Carlo (Liang and Wong 2000). These and some other techniques are

summarized in Liu 2001.

2.5 Compositional Analysis of a DNA Sequence

Suppose our observation is a DNA sequence,R ¼ ðr1; r2; . . . ; rnÞ, and we are interested

in understanding various aspects of it, such as its general compositions, dependence

between neighboring base pairs, regions with di¤erent statistical characteristics (e.g.,

G-C rich regions), repeated short sequence patterns, and so on. In this and the next

sections we show how progressively complex statistical models can be developed to

address these scientific questions. Note that the problem setting is very general be-

cause a dataset of multiple sequences can always be regarded as a single ‘‘super se-

quence’’ by joining all the individual sequences.

2.5.1 Multinomial Modeling

The simplest statistical model for a DNA sequence is, as we discussed in section

2.3.1, the iid multinomial model, in which each ri is assumed to be independently

generated according to probability vector y ¼ ðya; . . . ; ytÞ. The likelihood function of

y is then Lðy jRÞ ¼ yna
a . . . ynt

t , where n ¼ ðna; . . . ; ntÞ is the vector of counts of the

four types of nucleotides. Vector ŷy ¼ ðna=n; . . . ; nt=nÞ maximizes Lðy jRÞ and is the

MLE of y. The distribution of nŷy under hypothetical replications is Multinomðn; yÞ;
hence, for example, nŷya @Binom(n; ya). Inverting this relationship gives us an approxi-

mate confidence interval for ya.

With a Dirichletða) prior (3), the posterior of y is Dirichletðnþ aÞ and

Eðy jRÞ ¼ na þ aa

nþ a
; . . . ;

nt þ at

nþ a

� �

where a ¼ aa þ � � � þ at. This result is not that much di¤erent from the MLE. If one

is interested in the posterior distribution of ya, say, an easy calculation gives us

ya jR@Betaðna þ aa; nþ a� na � aaÞ
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2.5.2 Homogeneous Markov Model

A natural next-step model is the Markov model, in which one assumes that the ob-

served sequence follows a Markov chain with transition matrix Pðri ! riþ1Þ ¼ yri ; rtþ1
,

where the parameter vector is a 4� 4 matrix

y ¼
yaa . . . yat

..

. . .
. ..

.

yta . . . ytt

0
BB@

1
CCA

where each row sums to one. The MLE of each component, yat, say, in the parameter

matrix is nat=na�, where nat is the total count of neighboring AT pairs in the sequence

and na� ¼ naa þ � � � þ nat is the total count of A’s excluding the first bp r1. When a

conjugate prior is used, a similar procedure to that for the multinomial model gives

us the posterior distribution of y, which is a product of four (one for each row of y)

independent Dirichlet distributions.

2.5.3 A Hidden Markov Model

Let us now consider a model that can accommodate compositional heterogeneity in

DNA sequences. For this we can think of sequence R as consisting of di¤erent seg-

ments, and the sequence composition are homogeneous within each segment. Based

on this heuristics, Liu and Lawrence (1999) proposed and analyzed a Bayesian seg-

mentation model. Another model, as first proposed by Churchill (1989), is based on

the HMM structure shown in figure 2.1.

In this HMM model, we assume that the hidden layer h ¼ ðh0; h1; . . . ; hnÞ is a

Markov chain Each hi, for example, may have two possible states where hi ¼ 0 implies

that the corresponding ri follows one compositional model, Multinomðy0Þ, and hi ¼ 1

indicates that ri @Multinomðy1Þ. Here yk ¼ ðyka; . . . ; yktÞ. A 2� 2 transition matrix,

t ¼ ðtklÞ, where tkl ¼ Pðhi ¼ k ! hiþ1 ¼ lÞ, dictates the generation of h. Krogh et al.

(1994) have developed a similar model to predict protein coding regions in E. coli

genome.

Figure 2.1
A graphical illustration of the hidden Markov model.
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Let y ¼ ðy0; y1; tÞ. The likelihood function of y under this HMM is

Lðy0; y1; t jRÞ ¼
X
h

pðR j h; y0; y1Þpðh j tÞ

¼
X
h

p0ðh0Þ
Yn
i¼1

pðri j hi; yÞpðhi j hi�1; tÞ

¼
X
h

p0ðh0Þ
Yn
i¼1

yhirithi�1hi

where h0 is assumed to follow a known distribution p0. For a given set of parameter

values, we can find the exact value of this likelihood function via a recursive sum-

mation method as described in equation (2.10), below.

However, finding the MLE of y is still nontrivial. One possible approach is to

maximize L by a Newton-Raphson’s method in which the first and the second

derivatives of L can all be computed recursively. But this method may be unstable

because y’s dimensionality is a bit too high (the Hessian is a 9� 9 matrix). A more

stable alternative is the EM algorithm, which involves iterations of the following two

steps.

. E-step. Compute the Q-function:

Qðy j yðtÞÞ ¼ E
Xn
i¼1

logfyhirithi�1hig jR; yðtÞ
" #

¼
Xn
i¼1

X
hi

X
hi�1

flog yhiri þ log thi�1higPðtÞ
i ðhi�1; hiÞ

" #

¼
X1
k¼0

Xt

j¼a

n
ðtÞ
kj log ykj þ

X1
k¼0

X1
l¼0

m
ðtÞ
kl log tkl

Here P
ðtÞ
i ðhi�1; hiÞ ¼ pðhi�1; hi jR; yðtÞÞ, the marginal posterior distribution of ðhi�1; hiÞ

when the parameter takes value yðtÞ. This quantity can be obtained by using the

B-function defined in equation (2.16) and a procedure similar to the computation of

equation (2.17). The P
ðtÞ
i can be derived by a recursive procedure similar to equation

(2.10). The n
ðtÞ
kj and the m

ðtÞ
kl are the sums of the corresponding P

ðtÞ
i ðk; lÞ.

. M-step. Maximize the Q-function. It is obvious that the maximizer of Qðy j yðtÞÞ
is
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y
ðtþ1Þ
kj ¼ n

ðtÞ
kj =n

ðtÞ
k� and t

ðtþ1Þ
kl ¼ m

ðtÞ
kl =m

ðtÞ
k�

in which n
ðtÞ
k� ¼ n

ðtÞ
ka þ � � � þ n

ðtÞ
kt and m

ðtÞ
k� ¼ m

ðtÞ
k0 þm

ðtÞ
k1

To avoid being trapped at a singular point corresponding to zero count of certain

base type, we may want to give a nonzero pseudo-count to each type.

A Bayesian analysis of this problem is also feasible. With a prior distribution f0ðyÞ,
which may be a product of three independent Dirichlet distributions, we have the

joint posterior of all unknowns:

pðy; h jRÞz pðR j h; yÞpðh j yÞ f0ðyÞ
In order to get the marginal posterior of y, we may implement a special Gibbs sampler,

data augmentation, which iterates the following steps:

. Imputation: draw hðtþ1Þ @ pðh jR; yðtÞÞ;

. Posterior Sampling: draw yðtþ1Þ @ pðy jR; hðtþ1ÞÞ.
The imputation step needs to draw a path, h, from its posterior distribution with

a given parameter value. Its implementation requires a recursive method for sum-

ming up all the contributions from h0 to hn and then sampling backward. Thus, this

method is very similar to dynamic programming and is sometimes called the forward-

backward method. More precisely, this distribution can be written as

pðh jR; yÞ ¼ cpðh;R j yÞ
¼ cpðR j h; yÞpðh j yÞ

¼ cp0ðh0Þ
Yn
i¼1

fpðri j hiÞpðhi j hi�1Þg

¼ cp0ðh0Þ
Yn
i¼1

ðyhirithi�1hiÞ

where c is the normalizing constant, that is,

c�1 ¼
X
h

p0ðh0Þ
Yn
i¼1

ðyhirithi�1hiÞ
( )

The key observation is that c, and also other required marginal distributions, can

be computed exactly by a recursive method. Define F0ðhÞ ¼ p0ðhÞ, and compute

recursively
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FiðhÞ ¼
X2
hi�1¼1

fFi�1ðhi�1Þthi�1hyhrig; for h ¼ 0; 1 ð2:10Þ

At the end of the recursion we obtain c�1 ¼ Fnð0Þ þ Fnð1Þ and

pðhn jR; yÞ ¼ FnðhnÞ
Fnð0Þ þ Fnð1Þ ð2:11Þ

In order to sample h properly, we draw hn from distribution (2.11) and then draw hi
recursively backward from the distribution

pðhi j hiþ1;R; yÞ ¼ FiðhiÞthihiþ1

Fið0Þt0hiþ1
þ Fið1Þt1hiþ1

ð2:12Þ

The posterior sampling step in the Gibbs sampler needs us to draw from the pos-

terior distribution of y given h and R. This is a very simple task and only involves

finding appropriate counts and sampling from the corresponding Dirichlet distribu-

tions. For example, y0 should be drawn from Dirichletðn0a þ aa; . . . ; n0t þ atÞ, where
n0a, say, is the counts of the ri whose type is A and whose hidden state hi is zero.

2.5.4 HMM with More than Two Hidden States

It is straightforward to extend the previous two-state HMM to a k-state HMM so as

to analyze a sequence with regions of k di¤erent compositional types. In a k-state

HMM, we will need a k � k transition matrix (kðk � 1Þ free parameters) to describe

the transitions between the hidden Markov chain, and a probability vector yj for

each compositional type (3k free parameters). The total number of free parameters is

thus kðk þ 2Þ.
It is a nontrivial problem, however, to determine what value of k is proper for a

given sequence R. A Bayesian model selection procedure as described in section 2.3.3

can be applied to resolve this issue. More precisely, we introduce a model variable K.

For given K ¼ k, we can fit a k-state HMM to the sequence and obtain the model

likelihood

pðR jK ¼ kÞ ¼
ðð

pkðR j h; yÞpkðh j yÞ fkðyÞ dh dy

where subscript k indicates that the employed distributions correspond to a k-state

model. With a prior distribution p0ðkÞ on K, we can derive the posterior distribution

of K given the sequence. Although conceptually simple, this model selection proce-

dure involves a di‰cult integral that is di‰cult to solve analytically. One often has
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to resort to some special MCMC methods designed for estimating the ratio of nor-

malizing constants (Liu 2001).

As an alternative to the HMM, Liu and Lawrence (1999) and Schmidler et al.

(2000) describe a segmentation model based on the so-called hidden semi-Markov

model (HSMM). Sequence segmentation models have been developed for many pur-

poses in bioinformatics, including models for protein sequence hydrophobicity (Kyte

and Dolittle 1982; Auger and Lawrence 1989), models for protein secondary struc-

ture (Schmidler et al. 2000), models for sequence complexity (Wootton 1994), and

models for gene identification (Snyder and Stormo 1995; Burge and Karlin 1997).

What is common to all these methods is that a single sequence is characterized by a

series of models that only involve local properties. That is, we assume in this model

that the sequence can be segmented into m parts, where m is unknown, and each

segment is described by a ‘‘local’’ model. An advantage of this model is that a

Bayesian method for determining the number of segments m is relatively easy (Liu

and Lawrence 1999).

2.6 Find Repetitive Patterns in DNA Sequence

Similar to the objective of the previous section, our primary interest here is in the

analysis of a single ‘‘super-sequence.’’ Our focus, however, is one step further than

the compositional analysis: we want to find repetitive motif elements in the sequence.

The main motivation for this task is that repetitive patterns in biopolymer sequences

often correspond to functionally or structurally important parts of these molecules.

For example, repetitive patterns in noncoding regions of DNA sequences may cor-

respond to a ‘‘regulatory motif ’’ to which certain regulatory proteins bind so as to

control gene expressions. The multiple occurrences of a regulatory motif in R is thus

analogous to the multiple occurrences of a word in a long sentence. It is of interest

to find out what this motif is and where it has occurred. What makes things worse,

however, is that although the motif occurs in the sequence multiple times, no two

occurrences are exactly identical. In other words, there are often some ‘‘typos’’ in

each occurrence of the word. It is therefore rather natural for us to employ proba-

bilistic models to handle this problem.

2.6.1 Block-Motif Model with IID Background

A simple model that conveys the basic idea of a motif that repeats itself with random

variations is the block-motif model shown in figure 2.2. It was first developed in Liu

et al. (1995) and has been employed to find subtle repetitive patterns, such as helix-
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turn-helix structural motifs (Neuwald et al. 1995) or gene regulation motifs (Roth

et al. 1998), in both protein and DNA sequences.

This model says that at unknown locations A ¼ ða1; . . . ; aKÞ there are repeated

occurrence of a motif, so the sequence segments at these locations should look simi-

lar to each other. In another part of the sequence, called the background, the residues

follow an independent multinomial model. Suppose the motif ’s width is w. We need

wþ1 probability vectors to describe the motif and the background: y0 ¼ ðy0a; . . . ; y0tÞ
describe the base frequencies in the background; and each yk describes the base fre-

quency at position k of the motif. The matrix Y ¼ ½y1; . . . ; yw� is called the profile

matrix for the motif. We again use the generic notation y to denote the collection of

all parameters, ðy0;YÞ.
With a Dirichlet prior DirichletðaÞ for all the yi, we can obtain the Bayes estimates

of the yi very easily if we know the positions of the motif. To facilitate analysis, we

introduce an indicator vector I ¼ ðI1; . . . ; InÞ and treat it as missing data. An Ii ¼ 1

means that position i is the start of a motif pattern, and Ii ¼ 0 means otherwise. We

assume a priori each Ii has a small probability p0 to be equal to 1. With this setup, we

can write down the joint posterior distribution:

pðy; I jRÞz pðR j I ; yÞpðI j yÞ f0ðyÞ (2.13)

where

pðI j yÞz
Yn
i¼1

pIi
0 ð1� p0Þ1�Ii

If we do not allow overlapping motifs, we need to restrict that in I there are no pair

Ii ¼ 1 and Ij ¼ 1 with i � j < w. Because the motif region is a very small fraction of

the whole sequence, we may estimate y0 based on the whole sequence and treat it as

known.

A simple Gibbs sampler algorithm can be designed to draw from this joint poste-

rior distribution (Liu et al. 1995). More specifically, we can iterate the following

steps:

Figure 2.2
A graphical illustration of the repetitive motif model.

38 Jun S. Liu



. For a current realization of y, we update each Ii, i ¼ 1; . . . ; n, by a random draw

from its conditional distribution, pðIi j I ½�1�;R; yÞ, where

pðIi ¼ 1 j I ½�i �;R; yÞ
pðIi ¼ 0 j I ½�i �;R; yÞ

¼ p0

1� p0

Yw
k¼1

yk; riþk�1

ŷy0riþk�1

 !
ð2:14Þ

Intuitively, this odds ratio is simply the ‘‘signal-to-noise’’ ratio.

. Based on the current value of I , we update the profile matrix Y column-by-column.

That is, each yj, j ¼ 1; . . . ;w, is drawn from an appropriate posterior Dirichlet dis-

tribution determined by I and R.

After a burn-in period (until the Gibbs sampler stabilizes), we continue to run

the sampler for m iterations and use equation (2.8) to estimate the profile matrix Y.

The estimated Y can then be used to scan the sequence to find the locations of the

motif.

2.6.2 Block-Motif Model with a Markovian Background

Here the extra complication is that the motif can have a Markovian background.

Thus, we need a 4� 4 transition matrix, B0 ¼ ðbjj 0 Þ, to describe the background. We

also assume that the transition from the end of a motif to the next nonsite position

follows the same Markov law. Because the total number of bp’s that belong to a

motif is a very small fraction of the total number of base pairs in R, we may estimate

B0 from the raw data directly, pretending that the whole sequence of R is homoge-

neous and governed by the transition matrix B0. In this way, the transition proba-

bilities can be estimated as b̂bj1 j2 ¼ nj1 j2=nj1 ; similar to that in section 2.5.2. We may

then treat B0 as a known parameter. The joint posterior distribution of ðy; IÞ in this

case di¤ers from equation (2.13) only in the description of the residues in the back-

ground.

A Gibbs sampler very similar to the one described in section 2.6.1 can be im-

plemented. The only di¤erence is in the distribution pðIi j I ½�i �;R; yÞ that is needed in

the conditional update of I . That is, conditional on y;R, we slide through the whole

sequence position-by-position to update Ii according to a random draw from

pðIi j I ½�i �;R; yÞ, which satisfies

pðIi ¼ 1 j I ½�i �;R; yÞ
pðIi ¼ 0 j I ½�i �;R; yÞ

¼ p0

1� p0

Yw
k¼1

yk; riþk�1

b̂briþk�2riþk�1

 !

For given I , we update the profile matrix Y in the same way as in section 2.6.1.
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2.6.3 Block-Motif Model with Inhomogeneous Background

It has long been noticed that DNA sequences contain regions of distinctive compo-

sitions. As discussed in sections 2.5.3 and 2.5.4, a HMM can be employed to delineate

a sequence with k types of regions. Suppose we decide to use a HMM to model se-

quence inhomogeneity. As we mentioned before, because the total motif residue is a

very small fraction of the whole sequence, we may estimate the background model

parameters directly by the methods in section 2.5.3, pretending that R does not con-

tain any motifs. Then we treat these parameters as known at the estimated values.

After these, there are two strategies to modify the odds ratio formula (2.14).

In the first strategy, we treat each position in the sequence as a ‘‘probabilistic bp’’

(i.e., having probabilities to be one of the four letters) and derive the frequency model

from it. That is, we need to find y�
ij ¼ pðr�i ¼ j jRÞ for a future r�i and then treat resi-

due ri in the background as an independent observation from Multinom(y�
i Þ, with

y �
i ¼ ðy�

ia; . . . ; y
�
itÞ. But this computation is nontrivial because

y�
ij ¼ pðr�i ¼ j jRÞ ¼ y0jpðhi ¼ 0 jRÞ þ y1jpðhi ¼ 1 jRÞ ð2:15Þ

where pðhiÞ can be computed via a recursive procedure similar to equation (2.10).

More precisely, in addition to the series of forward functions Fi, we can define the

backward functions Bi. Let BnðhÞ ¼
P

hn
thhnyhnrn , and let

BkðhÞ ¼
X
hk

fthhkyhkrkBkþ1ðhkÞg; for k ¼ n� 1; . . . ; 1 ð2:16Þ

Then we have

pðhi ¼ 1 jRÞ ¼ Fið1ÞBiþ1ð1Þ
Fið1ÞBiþ1ð1Þ þ Fið0ÞBiþ1ð0Þ ð2:17Þ

This is the marginal posterior distribution of hi and can be used to predict whether

position i is in state 1 or 0. Thus, in the Gibbs sampling algorithm we only need to

modify the denominator of the right hand side of equation (2.14) to
Q iþw�1

k¼i y�
krk

.

In the second strategy, we seek to obtain the probability of the whole segment,

R½i:iþw�1� 1 ðri; . . . ; riþw�1Þ
conditional on the remaining part of the sequence, under the background HMM.

Then we modify equation (2.14) accordingly. Clearly, compared with the first strat-

egy, the second one is more faithful to the HMM assumption. The required proba-

bility evaluation can be achieved by a method similar to that in the first strategy.
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More precisely,

pðR½i:iþw�1� jR½1:i�1�;R½iþw:n�Þ ¼ pðRÞ
pðR½1:i�1�;R½iþw:n�Þ

¼ pðRÞP
h pðR½1:i�1�;R½iþw:n�; hÞ

¼ Fnð0Þ þ Fnð1ÞP
h1;...;hw

Fiðh1Þth1h2 . . . thw�1hwBiþwðhwÞ ð2:18Þ

where the denominator can also be obtained via recursions.

2.6.4 Extension to Multiple Motifs

Previously, we have assumed that there is only one kind of motif in the sequence and

the prior probability for each Ii ¼ 1 is known as p0. Both of these assumptions can be

relaxed. Suppose we want to detect and align m di¤erent types of motifs of lengths

w1; . . . ;wm, respectively, and each occurring unknown number of times in R. We can

similarly introduce the indicator vector I , where Ii ¼ j indicates that an element from

motif j starts at position i, and Ii ¼ 0 means that no elements start from position i.

For simplicity, we only consider the independent background model.

Let pðIi ¼ jÞ ¼ �j , where �0 þ � � � þ �m ¼ 1, is an unknown probability vector.

Given what is known about the biology of the sequences being analyzed, a crude

guess kj for the number of elements for motif j is usually possible. Let k0 ¼ n�
k1 � � � � � km. We can represent this prior opinion about the number of occurrences

of each type of elements by a Dirichlet distribution on e ¼ ð�0; . . . ; �mÞ, which has the

form Dirichletðb0; . . . ; bmÞ with bj ¼ J0ðkj=nÞ, where J0 represents the ‘‘weight’’

(or ‘‘pseudo-counts’’) to be put on this prior belief. Then the same predictive updat-

ing approach as illustrated in section 2.6.1 can be applied. Precisely, the update for-

mula (2.14) for I is changed to

pðIi ¼ j j I ½�i �;RÞ
pðIi ¼ 0 j I ½�i �;RÞ

¼ �
j

�0

Ywj

k¼1

 
y
ð jÞ
kriþk�1

y0riþk�1

!

where Yð jÞ ¼ ½yð jÞ1 ; . . . ; yð jÞwj
� is the profile matrix for the jth motif. Conditional

on I , we can then update e by a random sample from Dirichletðb0 þ n0; . . . ; bm þ nmÞ,
where nj ð j > 0Þ is the number of motif type j found in the sequence, that is, the

total number of i such that Ii ¼ j, and n0 ¼ n�P nj. More details can be found in

Neuwald et al. 1995.
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2.7 Discussion

As in classical statistics, optimization has been the primary tool in bioinformatics,

in which point estimates of very high-dimensional objects obtained by dynamic

programming or other clever computational methods are used. Characterizations of

uncertainty in these estimates are mostly limited to simple significance test or com-

pletely ignored. The removal of nuisance parameters is also problematic, most fre-

quently being the profile likelihood method in which the nuisance parameters are fixed

at their best estimates. In comparison, the Bayesian method has no di‰culties in

these important aspects: the uncertainty in estimation is addressed by posterior cal-

culations and the nuisance parameters are removed by summation and integration.

When achievable, this class of principled approaches is particularly advantageous in

treating bioinformatics problems (Liu et al. 1999; Zhu et al. 1998). In exchange for

these advantages, however, one needs to set prior distributions and overcome com-

putational hurdles, none of which are trivial in practice.

The most important limitation on the Bayesian method is the need for additional

computational resources. Recursion-based Bayesian algorithms generally have time

and space requirements of the same order as their dynamic programming counter-

parts, although the constants are generally much larger. With the availability of fast

workstations with large memories, however, this moderate increase in computing

need is not a serious di‰culty for most applications. For those problems where there

is no polynomial time solution, MCMC methods (and other Monte Carlo methods)

provides alternative means to implement a full Bayesian analysis. Although the use of

MCMC methods and recursive methods can ease some of the computational con-

cerns, di‰culties remain for the specification of sensible prior distributions.
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3 Bio-Sequence Comparison and Applications

Xiaoqiu Huang

3.1 Introduction

The structure of a genome is a linear sequence of nucleotides that encodes genes and

regulatory elements. Genes are homologous if they are related by divergence from a

common ancestor (Attwood 2000). Homologous genes perform the same or similar

functions. The sequences of homologous genes in related organisms are usually sim-

ilar. For example, the sequences of homologous genes in humans and mice are 85

percent similar on average (Makalowski et al. 1996). If a new genomic DNA sequence

is very similar to the sequence of a gene whose function is known, it is very likely

that the genomic DNA sequence contains a gene and its function is similar to the

function of the known gene. If a new genomic DNA sequence is highly similar to a

cDNA sequence, then the genomic DNA sequence contains a gene and the structure

of the gene can be found by aligning the two sequences. Thus methods for comparing

sequences are very useful for understanding the structures and functions of genes

in a genome. This chapter focuses on methods for comparing two sequences, which

often serve as a basis for multiple sequence comparison methods, a topic for the next

chapter.

In the first part of this chapter, we describe algorithms for comparing two sequences.

We present a global alignment algorithm for comparing two sequences that are en-

tirely similar. We give a local alignment algorithm for comparing sequences that

contain locally similar regions. We also describe e‰cient computational techniques

for comparing long sequences. In the second part, we consider a general problem of

comparing two sets of sequences. Every sequence in one set is compared with every

sequence in the other set. We describe an e‰cient algorithm for this problem. In the

third part, we present four applications to illustrate that sequence alignment pro-

grams are useful for the analysis of DNA and protein sequences. In the last part, we

provide two directions for developments of new and improved sequence comparison

methods.

3.2 Global Alignment

In this section, we first define a global alignment model. Then we describe a dynamic

programming algorithm for computing an optimal global alignment of two sequences.

Next we present a linear-space algorithm for computing an optimal global alignment.

Finally we look at a way of reducing the time requirements of the algorithms.



3.2.1 An Alignment Model

A similarity relationship between two sequences, A and B, can be represented by an

alignment of two sequences, an ordered list of pairs of letters of A and B. The align-

ment consists of substitutions, deletion gaps, and insertion gaps. A substitution pairs

a letter of A with a letter of B. A substitution is a match if the two letters are identical,

and a mismatch otherwise. A deletion gap is a gap where letters of A correspond to no

letter of B, and an insertion gap is a gap where letters of B correspond to no letter of

A. The length of a gap is the number of letters involved. Deletion and insertion gaps

are defined with regard to transformation of sequence A into sequence B. An align-

ment of A and B shows a way to transform A into B, where a letter of A is replaced

by a letter of B in every substitution, the letters of A in every deletion gap are deleted,

and the letters of B in every insertion gap are inserted.

Below is an alignment of two DNA sequences, AGCTACGTACACTACC and

AGCTATCGTACTAGC. This alignment contains 13 matches, one mismatch, an

insertion gap of length 1, and a deletion gap of length 2.

AGCTA–CGTACACTACC

AGCTATCGTAC––TAGC

The similarity of an alignment is measured by a numerical number. Let sða; bÞ be
the score of a substitution involving letters a and b. Let numbers q and r be gap-open

and gap-extension penalties, respectively. The numbers q and r are nonnegative. The

score of a gap of length k is �ðqþ k � rÞ. Values for the parameters s, q and r are

specified by the user. A letter-independent substitution table is usually used for com-

parison of DNA sequences. For example, each match is given a score of 10 and each

mismatch a score of �20. Possible values for q and r are 40 and 2, respectively, for

DNA sequences. A letter-dependent substitution table such as PAM250 (Dayho¤

et al. 1978) and BLOSUM62 (Heniko¤ and Heniko¤ 1992) is usually used for com-

parison of protein sequences. Possible values for q and r are 10 and 2, respectively,

for proteins. The similarity score of an alignment is just the sum of scores of each

substitution and each gap in the alignment. The score of the example alignment given

above is 24 using the given set of values for DNA sequences. An optimal (global)

alignment of two sequences A and B is an alignment of A and B with the maximum

score.

3.2.2 A Dynamic Programming Algorithm

Let A ¼ a1a2 . . . am and B ¼ b1b2 . . . bn be two sequences of lengths m and n. A

technique called dynamic programming in computer science is used to compute an
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optimal global alignment of A and B. Let Ai ¼ a1a2 . . . ai and Bj ¼ b1b2 . . . bj be ini-

tial segments of lengths i and j of A and B. In this technique, a matrix S is intro-

duced: Sði; jÞ is the maximum score of all alignments of Ai and Bj. Thus Sðm; nÞ is
the score of an optimal alignment of A and B. To compute the matrix S e‰ciently,

two additional matrices, D and I, are introduced. Let Dði; jÞ (D for deletion) be the

maximum score of all alignments of Ai and Bj that end with a deletion gap. Let Iði; jÞ
(I for insertion) be the maximum score of all alignments of Ai and Bj that end with an

insertion gap.

First consider how to compute Sði; jÞ. For i > 0 and j > 0, let PðAi;BjÞ denote an
alignment of Ai and Bj with the maximum score Sði; jÞ, that is, an optimal alignment

of Ai and Bj. The last aligned pair of PðAi;BjÞ has to be one of the following aligned

pairs: a substitution pair ðai; bjÞ, a deletion pair (ai, –), or an insertion pair (–, bj).

If the last aligned pair of PðAi;BjÞ is a substitution pair ðai; bjÞ, then the portion of

PðAi;BjÞ before the last substitution pair ðai; bjÞ is an alignment of Ai�1 and Bj�1

with the maximum score Sði � 1; j � 1Þ, because PðAi;BjÞ is an alignment of Ai and

Bj with the maximum score. In this case, alignment PðAi;BjÞ consists of alignment

PðAi�1;Bj�1Þ and the substitution pair ðai; bjÞ. Thus the score of PðAi;BjÞ is equal to
the score of PðAi�1;Bj�1Þ plus sðai; bjÞ, that is,
Sði; jÞ ¼ Sði � 1; j � 1Þ þ sðai; bjÞ
If the last aligned pair of PðAi;BjÞ is a deletion pair (ai, –), then PðAi;BjÞ is an

alignment of Ai and Bj that ends with a deletion and has the maximum score. By the

definition of Dði; jÞ, we have
Sði; jÞ ¼ Dði; jÞ
Similarly, if the last aligned pair of PðAi;BjÞ is an insertion pair (–, bj), we have

Sði; jÞ ¼ Iði; jÞ
By the definitions of the matrices S, D, and I, the following inequalities are always

true.

Sði; jÞVSði � 1; j � 1Þ þ sðai; bjÞ
Sði; jÞVDði; jÞ
Sði; jÞV Iði; jÞ
Thus we conclude that for i > 0 and j > 0,

Sði; jÞ ¼ maxfSði � 1; j � 1Þ þ sðai; bjÞ;Dði; jÞ; Iði; jÞg
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Next consider how to compute Dði; jÞ. For i > 0 and j > 0, let XðAi;BjÞ denote

an alignment of Ai and Bj with the maximum score Dði; jÞ, which ends with a dele-

tion pair (ai, –). Let Y ðAi�1;BjÞ denote the portion of XðAi;BjÞ before the last pair.
If YðAi�1;BjÞ ends with a deletion pair, then Y ðAi�1;BjÞ is an alignment of Ai�1 and

Bj with the maximum score Dði � 1; jÞ, because XðAi;BjÞ is a largest-scoring align-

ment of Ai and Bj that ends with a deletion gap. In other words, XðAi;BjÞ consists of
X ðAi�1;BjÞ and the deletion pair (ai, –). So we have

Dði; jÞ ¼ Dði � 1; jÞ � r

Note that the gap open penalty for the gap that includes the deletion pair (ai, –) is

already included in Dði � 1; jÞ. If Y ðAi�1;BjÞ does not end with a deletion pair, then

Y ðAi�1;BjÞ is an alignment of Ai�1 and Bj with the maximum score Sði � 1; jÞ, be-
cause XðAi;BjÞ is a largest-scoring alignment of Ai and Bj that ends with a deletion

gap. In other words, XðAi;BjÞ consists of PðAi�1;BjÞ and the deletion pair (ai, –).

So we have

Dði; jÞ ¼ Sði � 1; jÞ � q� r

where the expression �q� r is the score of the gap that consists only of the deletion

pair (ai, –), and Sði � 1; jÞ is the score of an optimal alignment PðAi�1;BjÞ, which
ends with a substitution pair or an insertion pair.

Appending the deletion pair (ai, –) to alignment XðAi�1;BjÞ yields an alignment of

Ai and Bj with score Dði � 1; jÞ � r. Similarly, appending the deletion pair (ai, –) to

alignment PðAi�1;BjÞ yields an alignment of Ai and Bj with score Sði � 1; jÞ � q� r.

Because both alignments end with a deletion pair, we have by the definition of Dði; jÞ
that

Dði; jÞVDði � 1; jÞ � r

Dði; jÞVSði � 1; jÞ � q� r

Note that if i ¼ 1, then Dði � 1; jÞ is undefined. We assume that Dð0; jÞ is given a

value of Sð0; jÞ � q, so that the inequality involving Dði � 1; jÞ still holds if i ¼ 1.

Combining all those inequalities together, we conclude that for i > 0 and j > 0,

Dði; jÞ ¼ maxfDði � 1; jÞ � r;Sði � 1; jÞ � q� rg
The recurrence for computing the matrix I for i > 0 and j > 0 is developed similarly.

The recurrences for the matrices S, D, and I for i ¼ 0 or j ¼ 0 can be easily

developed. The recurrences for computing the matrices S, D, and I are summarized

below.
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Sð0; 0Þ ¼ 0

Sði; 0Þ ¼ Dði; 0Þ for i > 0

Sð0; jÞ ¼ Ið0; jÞ for j > 0

Sði; jÞ ¼ maxfSði � 1; j � 1Þ þ sðai; bjÞ;Dði; jÞ; Iði; jÞg for i > 0 and j > 0

Dð0; jÞ ¼ Sð0; jÞ � q for jV 0

Dði; 0Þ ¼ Dði � 1; 0Þ � r for i > 0

Dði; jÞ ¼ maxfDði � 1; jÞ � r;Sði � 1; jÞ � q� rg for i > 0 and j > 0

Iði; 0Þ ¼ Sði; 0Þ � q for iV 0

Ið0; jÞ ¼ Ið0; j � 1Þ � r for j > 0

Iði; jÞ ¼ maxfIði; j � 1Þ � r;Sði; j � 1Þ � q� rg for i > 0 and j > 0

We present an alternative way for developing the recurrences for computing the

three matrices. The alternative presentation is based on a grid graph of mþ 1 rows

and nþ 1 columns in figure 3.1. Each entry in the graph consists of three nodes that

correspond to the three matrices, respectively. For i > 0, each vertical edge from row

i � 1 to row i corresponds to a deletion pair (ai, –). For j > 0, each horizontal edge

from column j � 1 to column j corresponds to an insertion pair (–, bj). For i > 0 and

j > 0, each diagonal edge from entry ði � 1; j � 1Þ to entry ði; jÞ corresponds to a

substitution pair ðai; bjÞ. Each directed path from node S of entry ð0; 0Þ to node S of

entry ði; jÞ corresponds to an alignment of Ai and Bj. Assume that for any entry, the

edge from node D to node S and the edge from node I to node S have a score of 0.

The score of a path from node S of entry ð0; 0Þ to a node of entry ði; jÞ is the sum of

scores of every edge on the path. For any entry ði; jÞ, define Sði; jÞ to be the maxi-

mum score of paths from node S of entry ð0; 0Þ to node S of entry ði; jÞ, and define

Dði; jÞ and Iði; jÞ similarly with respect to nodes D and I of entry ði; jÞ. If there is no
path from node S of entry ð0; 0Þ to node D (or I ) of entry ði; jÞ, then Dði; jÞ (or I ½i; j�)
can be set to Sði; jÞ � q or any smaller value. This will simplify the presentation of a

recurrence for computing the matrix D (or I ) without causing any change to the

value Dði þ 1; jÞ (or I ½i; j þ 1�).
Consider how to compute Sði; jÞ for an internal entry ði; jÞ with i > 0 and j > 0.

We partition the paths from from node S of entry ð0; 0Þ to node S of entry ði; jÞ into
three groups. One group contains all the paths that end with a diagonal edge of

score sðai; bjÞ. The maximum score of paths in this group is Sði � 1; j � 1Þ þ sðai; bjÞ.
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Another group contains all the paths that end with a vertical edge. The maximum

score of paths in this group is Dði; jÞ. The last group contains all the paths that end

with a horizontal edge. The maximum score of paths in this group is Iði; jÞ. Thus
Sði; jÞ is the maximum of the three expressions, which is exactly identical to the re-

currence for Sði; jÞ with i > 0 and j > 0 given previously. Next consider how to

compute Sði; jÞ for a border entry ði; jÞ with i ¼ 0 or j ¼ 0. It is easy to see that

Sð0; 0Þ ¼ 0. For i ¼ 0 and j > 0, all the paths from node S of entry ð0; 0Þ to node S

of entry ði; jÞ end with a horizontal edge, and hence Sði; jÞ is equal to Iði; jÞ. Simi-

larly, for i > 0 and j ¼ 0, Sði; jÞ is equal to Dði; jÞ. The recurrences for computing

the matrices D and I can be developed in the same way.

The matrices can be computed in order of rows or columns. The value Sðm; nÞ is
the score of an optimal alignment of A and B. If only the score Sðm; nÞ is needed,

then two linear arrays and a few scalars are su‰cient to carry out the computation.

This algorithm is the result of a number of developments (Needleman and Wunsch

1970; Sellers 1974; Wagner and Fisher 1974; Waterman et al. 1976; Gotoh 1982).

An optimal alignment is found by a traceback procedure on the matrices S, D, and

I. An optimal alignment corresponds to a path through the grid graph (figure 3.1)

from node S of entry ð0; 0Þ to node S of entry ðm; nÞ. Let the current node be a newly

determined node. An optimal path is recovered by repeatedly determining a node

that is immediately before the current node on the path. Thus the pairs of an optimal

alignment are generated in a reverse order, with the last pair produced first. Initially,

the current node is node S of entry ðm; nÞ. First consider the case where the current

node is node S of entry ði; jÞ. The recurrences for S are used to determine a new node.

If i ¼ 0 and j ¼ 0, then the traceback procedure terminates. Otherwise, if j ¼ 0 or

Sði; jÞ ¼ Dði; jÞ, then the new node is node D of entry ði; jÞ. Otherwise, if i ¼ 0 or

Sði; jÞ ¼ Iði; jÞ, then the new node is node I of entry ði; jÞ. Otherwise, the new node

is node S of entry ði � 1; j � 1Þ and a new pair for the optimal alignment is a substi-

tution pair ðai; bjÞ. Next consider the case where the current node is node D of entry

ði; jÞ. The recurrences for D are used to determine a new node. If i ¼ 1 or Dði; jÞ ¼
Sði � 1; jÞ � q� r, then the new node is node S of entry ði � 1; jÞ. Otherwise, then

the new node is node D of entry ði � 1; jÞ. In each situation, a new pair for the opti-

mal alignment is a deletion pair (ai, –). The case where the current node is node I of

entry ði; jÞ is similarly handled.

The traceback procedure requires that the complete matrices be saved or addi-

tional information be saved to indicate how the value at each matrix entry is gen-

erated, which takes computer memory proportional to the product m� n. Thus for

two sequences of length 10,000, the algorithm takes computer memory in the order

of 100,000,000 words. Because of the high computer memory requirement, only an
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Figure 3.1
A grid graph. (a) An overview of the grid graph. (b) A detailed view of four adjacent entries in the graph.
The edges from D to S and from I to S have a score of 0. The score of each remaining edge is shown next to
the edge.
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optimal alignment of two sequences of at most a few thousand letters can be con-

structed on an ordinary computer using this algorithm. The time requirement of the

algorithm is also proportional to the product m� n. For two sequences of length

10,000, it takes less than a minute to compute the matrix S on an ordinary work-

station. Thus the space requirement of this algorithm is much more limiting than the

time requirement.

3.2.3 A Linear-Space Algorithm

Hirschberg (1975) developed a linear-space algorithm for computing an optimal

alignment of two sequences for the case q ¼ 0. The algorithm takes computer

memory in the order of mþ n and computer time in the order of m� n. Because of

the Hirschberg algorithm, computer memory is no longer a limiting factor for long

sequences. In practice, the Hirschberg algorithm is even faster than the quadratic-

space algorithm because an access to a linear array takes less time than an access to a

quadratic array. As computers become faster, longer sequences can be aligned by the

Hirschberg algorithm. Currently it takes about one hour on an ordinary workstation

to produce an optimal alignment of two sequences of 100,000 letters. Myers and

Miller (1988) generalized the algorithm of Hirschberg to handle the case where q is

nonnegative.

The main idea of the space-e‰cient algorithm is to determine a middle pair of

positions on an optimal alignment in linear space. Then the portions of the optimal

alignment before and after the middle pair of positions are constructed recursively.

Let imid be bm=2c, where byc is the largest integer less than or equal to y. We de-

velop an algorithm for finding a position jmid such that the pair of positions imid and

jmid is on an optimal alignment of A and B. Let PðA;BÞ denote an optimal align-

ment of A and B. Partition PðA;BÞ into two parts immediately after position imid of

sequence A such that the first part does not end with any insertion gap. Let jmid be

the largest position of sequence B in the first part. What is the necessary condition on

jmid? Let As
i denote the su‰x aiþ1aiþ2 . . . am of sequence A. Notation Bs

j is similarly

defined. Then the first part of PðA;BÞ is an alignment, denoted by P1ðAimid ;BjmidÞ, of
Aimid and Bjmid , and the second part is an alignment, denoted by P2ðAs

imid ;B
s
jmidÞ, of

As
imid and Bs

jmid .

If P1ðAimid ;BjmidÞ ends with a deletion gap and P2ðAs
imid ;B

s
jmidÞ begins with a dele-

tion gap, then we have

scoreðPðA;BÞÞ ¼ scoreðP1ðAimid ;BjmidÞÞ þ scoreðP2ðAs
imid ;B

s
jmidÞÞ þ q

where scoreðxÞ is the score of an alignment x. Including the term q on the righthand

side ensures that the deletion gap containing both aimid and aimidþ1 is charged by a
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gap open penalty exactly once. Because PðA;BÞ is an optimal alignment of A and B,

P1ðAimid ;BjmidÞ has to be a largest-scoring alignment of Aimid and Bjmid that ends with

a deletion gap and P2ðAs
imid ;B

s
jmidÞ has to be a largest-scoring alignment of As

imid and

Bs
jmid that begins with a deletion gap. Define Dði; jÞ to be the maximum score of

alignments of As
i and Bs

j that begins with a deletion gap. From the definitions of the

matrices D and D, we obtain

Sðm; nÞ ¼ Dðimid; jmidÞ þDðimid; jmidÞ þ q

Because Dðimid; jÞ þDðimid; jÞ þ q is the score of an alignment of sequences A and

B for each j, 0U jU n, we have

Sðm; nÞVDðimid; jÞ þDðimid; jÞ þ q for each j; 0U jU n

Thus jmid is a position j such that Dðimid; jÞ þDðimid; jÞ þ q is the maximum. The

maximum value is the score of an optimal alignment of A and B.

If P1ðAimid ;BjmidÞ does not end with a deletion gap or P2ðAs
imid ;B

s
jmidÞ does not

begin with a deletion gap, then we have

scoreðPðA;BÞÞ ¼ scoreðP1ðAimid ;BjmidÞÞ þ scoreðP2ðAs
imid ;B

s
jmidÞÞ

Note that P1ðAimid ;BjmidÞ cannot end with any insertion gap because of the way jmid

is defined. Because PðA;BÞ is an optimal alignment of A and B, P1ðAimid ;BjmidÞ has
to be an alignment of Aimid and Bjmid with the maximum score and P2ðAs

imid ;B
s
jmidÞ

has to be an alignment of As
imid and Bs

jmid with the maximum score. Define Sði; jÞ to
be the maximum score of alignments ofAs

i and Bs
j . From the definitions of the matrices

S and S, we obtain

Sðm; nÞ ¼ Sðimid; jmidÞ þ Sðimid; jmidÞ
Because Sðimid; jÞ þ Sðimid; jÞ is the score of an alignment of sequences A and B for

each j, 0U jU n, we have

Sðm; nÞVSðimid; jÞ þ Sðimid; jÞ for each j; 0U jU n

Thus jmid is a position j such that Sðimid; jÞ þ Sðimid; jÞ is the maximum. The

maximum value is the score of an optimal alignment of A and B.

Define df to be

df ¼ maxfDðimid; jÞ þDðimid; jÞ þ q j 0U jU ng
Define st to be

st ¼ maxfSðimid; jÞ þ Sðimid; jÞ j 0U jU ng
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Then we have

Sðm; nÞ ¼ maxfdf ; stg
If df > st, then a pair of positions imid and jmid is on an optimal alignment of

sequences A and B, where jmid is a position at which the maximum value df is

obtained and df is the score of the optimal alignment of A and B. Otherwise, a pair of

positions imid and jmid is on an optimal alignment of sequences A and B, where jmid

is a position at which the maximum value st is obtained and st is the score of the

optimal alignment of A and B.

Define Iði; jÞ to be the maximum score of alignments of As
i and Bs

j that begin with

an insertion gap. The recurrences for computing the matrices S, D, and I can be

developed similarly as those for the matrices S, D, and I. Here we present the recur-

rences for S, D, and I without justification.

Sðm; nÞ ¼ 0

Sði; nÞ ¼ Dði; nÞ for 0U i < m

Sðm; jÞ ¼ Iðm; jÞ for 0U j < n

Sði; jÞ ¼ maxfSði þ 1; j þ 1Þ þ sðaiþ1; bjþ1Þ;Dði; jÞ; Iði; jÞg
for 0U i < m and 0U j < n

Dðm; jÞ ¼ Sðm; jÞ � q for 0U jU n

Dði; nÞ ¼ Dði þ 1; nÞ � r for 0U i < m

Dði; jÞ ¼ maxfDði þ 1; jÞ � r; Sði þ 1; jÞ � q� rg for 0U i < m and 0U j < n

Iði; nÞ ¼ Sði; nÞ � q for 0U iUm

Iðm; jÞ ¼ Iðm; j þ 1Þ � r for 0U j < n

Iði; jÞ ¼ maxfIði; j þ 1Þ � r; Sði; j þ 1Þ � q� rg for 0U i < m and 0U j < n

An algorithm for computing an optimal alignment of A and B in linear space

consists of the following steps. If m is small enough, compute an optimal alignment

of A and B using a traceback procedure. Otherwise, determine a pair of positions

imid and jmid on an optimal alignment of A and B, and recursively compute the

portions of the alignment before and after the pair of positions.

The positions imid and jmid are determined as follows. Set imid ¼ bm=2c. Com-

pute the matrices S, D, and I from row 0 to row imid, and save Sðimid; jÞ and
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Dðimid; jÞ for 0U jU n. Compute the matrices S, D, and I from row m down to row

imid, and save Sðimid; jÞ and Dðimid; jÞ for 0U jU n. Let jd be a position at which

the maximum score df is obtained. Let js be a position at which the maximum score st

is obtained. If df > st, then set jmid ¼ jd. Otherwise, set jmid ¼ js. The algorithm is

illustrated in figure 3.2.

We first look at the space requirement of the algorithm. Because it requires only a

few linear arrays to carry out the computation of the matrices, the algorithm requires

space linear in the lengths of sequences. Next we look at the time requirement of the

algorithm. Let tðm; nÞ be the time required by the algorithm to compute an optimal

alignment of two sequences of lengths m and n. If m is less than or equal to a constant

c1, then a traceback procedure is used to compute an optimal alignment. Choose a

constant c2 such that

tðm; nÞU c2ðmþ nÞ for mU c1

Figure 3.2
Three pairs of positions on an optimal alignment and four sub-subproblems produced by the alignment
algorithm after two levels of division. An optimal alignment is indicated by a line of dots. In an initial call
to the algorithm, a pair of positions i1 and j1 is determined and the original problem is divided into two
subproblems. The time required by the non-recursive portion of the algorithm in the initial call is propor-
tional to m� n. The initial call makes two recursive calls, one for each subproblem. In each recursive call, a
pair of positions is determined and the subproblem is further divided into two sub-subproblems. The total
time required by the non-recursive portion of the algorithm in the two calls is proportional to ðm� nÞ=2.

Bio-Sequence Comparison and Applications 55



If m is greater than the constant c1, then an optimal alignment is computed by finding

a pair of positions imid and jmid on the alignment and computing the portions before

and after the pair recursively. The length of Aimid is imid ¼ bm=2c and the length of

As
imid is m� imid ¼ dm=2e. Thus the time to compute an optimal alignment of Aimid

and Bjmid is tðbm=2c; jmidÞ and the time to compute an optimal alignment of As
imid

and Bs
jmid is tðdm=2e; n� jmidÞ. Choose a constant c3 such that the time on the non-

recursive part of the algorithm is at most c3mn. Thus we have

tðm; nÞU c3mnþ tðbm=2c; jmidÞ þ tðdm=2e; n� jmidÞ for m > c1

It can be proved by induction that

tðm; nÞU 2c3mnþ 2c2ðmþ nÞ
This means that the algorithm takes time in proportion to the product of the sequence

lengths.

3.2.4 Performing Computation in a Band

One approximation for reducing the time of the global alignment algorithm is to re-

strict the computation to a band of diagonals in each matrix (Sanko¤ and Kruskal

1983; Pearson and Lipman 1988). A diagonal k of a matrix consists of those entries

ði; jÞ with j � i ¼ k. A band from diagonals ld to hd consists of those entries with

ldU j � iU hd. If sequences A and B are very similar, it is likely that an optimal

alignment of A and B is completely within a narrow band of diagonals. To carry out

the computation in a band of diagonals, each entry outside the band is given a value

of negative infinity and each entry inside the band is computed according to the

recurrences. Note that any band that covers an optimal alignment of A and B has to

contain entries ð0; 0Þ and ðm; nÞ. Later we describe a fast method to estimate the

width of a band so that it is likely to cover an optimal alignment. However, the

method does not guarantee that the band always covers an optimal alignment. Chao

et al. (1992) developed an e‰cient algorithm for computing an alignment in a band.

Others proposed a few computational techniques to compute an optimal alignment in

a band or a small matrix area (Fickett 1984; Ukkonen 1985; Spouge 1991).

3.3 Local Alignment

The global alignment algorithm described above is intended for sequences that are

similar over their entire lengths. However, there are situations where two sequences

are not globally similar, but contain similar regions. For instance, genomic sequences
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from distantly related organisms contain short similar exons, but long di¤erent

introns and intergenic regions. A local alignment algorithm should be used to find

similar regions between two sequences. A local alignment between two sequences A

and B is an alignment of a region of A and a region of B. An optimal local alignment

between A and B is a local alignment with the maximum score.

An algorithm for computing an optimal local alignment between A and B is

developed using dynamic programming. Define LSði; jÞ (L for local) to be the maxi-

mum score of local alignments ending at positions i and j of A and B. Similarly, de-

fine LDði; jÞ for alignments that end with a deletion gap and LIði; jÞ for alignments

that end with an insertion gap. The recurrences for computing the matrices LS, LD,

and LI are developed in a similar way as those for the matrices in the global align-

ment algorithm.

LSði; jÞ ¼ 0 for i ¼ 0 or j ¼ 0

LSði; jÞ ¼maxf0;LSði� 1; j� 1Þ þ sðai; bjÞ;LDði; jÞ;LIði; jÞg for i > 0 and j > 0

LDð0; jÞ ¼ �q for jV 0

LDði; jÞ ¼ maxfLDði � 1; jÞ � r;LSði � 1; jÞ � q� rg for i > 0 and j > 0

LIði; 0Þ ¼ �q for iV 0

LIði; jÞ ¼ maxfLIði; j � 1Þ � r;LSði; j � 1Þ � q� rg for i > 0 and j > 0

The zero in the recurrence for LS is the score of the empty local alignment, an

alignment of two regions of length 0. The zero in the recurrence serves two purposes.

First, an optimal local alignment can start at any positions i and j in sequences A and

B. There is no penalty for not including, in the optimal local alignment, the initial

regions of A and B before positions i and j. Second, any local alignment of a negative

score is ignored because it cannot be an initial portion of any optimal local align-

ment. The justification for the recurrences is similar to that for the recurrences in the

global alignment algorithm and is omitted.

An entry ðie; jeÞ with the maximum value in the matrix LS is the end point of an

optimal local alignment between A and B. The optimal local alignment can be found

by a traceback procedure starting at the entry ðie; jeÞ, which requires quadratic space.

This algorithm is the result of Smith and Waterman (1981) and Gotoh (1982). Select-

ing an entry with the maximum value serves similar purposes to terminal regions of A

and B as including the zero in the recurrence to initial regions of A and B. Those two

features in the local alignment algorithm are responsible for the generation of an

optimal local alignment, instead of an optimal global alignment.
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Alternatively, an optimal local alignment is computed in linear space by first

determining its start point ðis; jsÞ and then applying the linear space global alignment

procedure to sequences aisaisþ1 . . . aie and bjsbjsþ1 . . . bje. The end point ðie; jeÞ is an

entry with the maximum value in the matrix LS. The start point ðis; jsÞ is obtained by

computing the matrices S, D, and I with respect to sequences Aie and Bje. Then

ðis; jsÞ is an entry with the maximum value in the matrix S.

Waterman and Eggert (1987) generalized the algorithm to compute k best local

alignments between two sequences. Two local alignments are independent if they

share no substitution from a common pair of positions in the sequences. A first best

local alignment is an optimal local alignment between the two sequences. A second

best local alignment is a largest-scoring local alignment that is independent of the

first best local alignment. A third best local alignment is a largest-scoring local align-

ment that is independent of the first and second best local alignments. Other best

local alignments are similarly defined. Huang and Miller (1991) developed a space-

e‰cient algorithm, SIM. The SIM algorithm computes k best local alignments be-

tween two sequences in linear space.

3.4 A Fast Algorithm

The sequence alignment algorithms described in the previous sections take time

in proportion to the product of sequence lengths. Thus it is impractical to use those

alignment algorithms to compare very long sequences. Fast approximation algo-

rithms are required to compare long sequences. Below we describe a fast algorithm to

identify similar regions between two sequences and to produce an alignment for each

pair of similar regions.

The fast algorithm consists of three major steps. In step 1, high-scoring segment

pairs between the two sequences are computed. A segment pair is an alignment

without any gaps. Segment pairs of scores greater than a cuto¤ are saved for the next

step. In step 2, high-scoring chains of segment pairs are computed using dynamic

programming and chains that begin with the same segment pair are grouped together.

The score of a chain group is the maximum score of chains in the group. In step 3, for

each chain group of score greater than a cuto¤, a chain with the maximum score in

the group is selected. The two sequence regions involved in the chain and a band of

diagonals that covers all segment pairs in the chain are determined. Then the linear-

space global alignment algorithm is applied to the two regions to compute a largest-

scoring alignment of the regions over the band of diagonals. We define chains of

segment pairs and describe computation of chains of segment pairs in detail below.
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3.4.1 Chains of Segment Pairs

A segment pair between sequences A and B is a gap-free alignment of two segments

of A and B. The score of a segment pair is the sum of scores of each match and

mismatch in the segment pair. For a segment pair s, let astartðsÞ and aendðsÞ denote
the starting and ending positions of the segment in sequence A, let bstartðsÞ and

bendðsÞ denote the starting and ending positions of the segment in sequence B, and let

scoreðsÞ denote the score of s. The first antidiagonal of a segment pair s is defined to

be antisðsÞ ¼ astartðsÞ þ bstartðsÞ, and the last antidiagonal of s is defined to be

antidðsÞ ¼ aendðsÞ þ bendðsÞ.
A chain of segment pairs is a list of segment pairs in increasing order of their last

antidiagonals such that each segment pair is not far from its predecessor and adjacent

segment pairs do not have a large overlap. Specifically, any two adjacent segment

pairs s and s 0 in the list satisfy the requirement

antisðs 0Þ � antidðsÞ < d1

astartðs 0Þ � aendðsÞ > �d2

bstartðs 0Þ � bendðsÞ > �d2

for some nonnegative integers d1 and d2. Let closeðs; s 0Þ denote the condition given

above. A chain of segment pairs is used as an approximation of a local alignment

between sequences A and B with the segment pairs being ungapped portions of the

alignment. Note that the use of the d1 cuto¤ permits e‰cient computation of high-

scoring chains.

A linear gap penalty is charged for the regions between two adjacent segment

pairs. For some nonnegative integers q and r, the penalty for connecting two segment

pairs s and s 0 is

gapðs; s 0Þ ¼ qþ r� ½lðastartðs 0Þ � aendðsÞÞ þ lðbstartðs 0Þ � bendðsÞÞ�
where lðxÞ ¼ x if x > 0 and 0 otherwise. For two adjacent segment pairs s and s 0 in a

chain, define tscoreðs; s 0Þ to be the score of the longest portion of s 0 that has no

overlap with s. The score of a chain c of segment pairs s1; s2; . . . ; sk is defined to be

scoreðcÞ ¼ scoreðs1Þ þ
Xk
i¼2

½tscoreðsi�1; siÞ � gapðsi�1; siÞ�

To ensure that each segment pair contributes to the chain, we require that for any

two adjacent segment pairs s and s 0 in the chain, tscoreðs; s 0Þ be greater than a cuto¤
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ic. Two segment pairs s and s 0 are identical if astartðsÞ ¼ astartðs 0Þ and bstartðsÞ ¼
bstartðs 0Þ. Two chains of segment pairs are non-intersecting if they don’t have any

common segment pair (Chao and Miller 1995).

3.4.2 Fast Computation of Chains of Segment Pairs

Segment pairs of scores greater than a cuto¤ between sequences A and B are ap-

proximately computed using a hashing technique, as follows. Assume that mU n. A

lookup table is constructed for sequence A such that for each word of length w, the

table provides the positions of each occurrence of the word in sequence A. The word

length w is chosen such that the size of the lookup table is close to the length m of A.

For each position p of sequence B, a word of length w beginning at position p of B is

considered as follows. The lookup table is used to locate each occurrence of the word

in sequence A. Each exact match of length w is extended in both directions until the

score drops below the maximum score by at least d3 units (Altschul et al. 1990). If

a word match is contained in a segment pair already considered, the match is not

extended. The segment pair of the maximum score found during the extension is

saved if the score is greater than the cuto¤.

After the computation of segment pairs between A and B, non-intersecting chains

of segment pairs with scores greater than a cuto¤ f are computed. Let s1; s2; . . . ; sk be

a list of all the segment pairs in increasing order of their last antidiagonals. Let QðsiÞ
be the maximum score of chains ending with segment pair si. The matrix Q is com-

puted using dynamic programming (Wilbur and Lipman 1983; Pearson and Lipman

1988; Chao and Miller 1995; Huang 1996).

Qðs1Þ ¼ scoreðs1Þ
QðsiÞ ¼ maxfscoreðsiÞ;QðsjÞ þ tscoreðsj; siÞ � gapðsj ; siÞ

j 1U j < i; closeðsj; siÞ; and tscoreðsj; siÞ > icg for i > 1

For segment pairs sj and si with j < i, if the overlap cuto¤s d1 and d2 are violated or

the score of the nonoverlapping portion of si is not large enough, then sj is excluded

from consideration as an immediate predecessor to si in any chain. To compute QðsiÞ,
it su‰ces to use each sj in decreasing value of j such that antidðsjÞ > antisðsiÞ � d1.

To compute tscoreðsj; siÞ e‰ciently for each sj, an array R of size d2 is computed for

si before QðsiÞ, where for 0U t < d2, RðtÞ is the sum of the scores of the first tþ 1

aligned pairs in si if there are at least tþ 1 aligned pairs in si and scoreðsiÞ otherwise.
Let aoverðsj ; siÞ denote astartðsiÞ � aendðsjÞ and let boverðsj ; siÞ denote bstartðsiÞ�
bendðsjÞ. Then for each sj, if aoverðsj; siÞ > 0 and boverðsj; siÞ > 0, then tscoreðsj; siÞ is
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equal to scoreðsiÞ. Otherwise, we have

tscoreðsj; siÞ ¼ scoreðsiÞ � Rðmaxf�aoverðsj; siÞ;�boverðsj; siÞgÞ
Largest-scoring chains of segment pairs are partitioned into equivalence classes by

the starting segment pair of the chains (Huang and Miller 1991; Chao and Miller

1995). Two chains are in the same class if and only if they begin with the same seg-

ment pair. The score of an equivalence class is the maximum score of chains in the

class.

Chain classes of scores greater than f can be easily computed along with the

matrix Q as follows (Huang and Miller 1991; Chao and Miller 1995). Let KðsiÞ be
the first segment pair of a largest-scoring chain ending with segment pair si. For each

segment pair si, KðsiÞ is initialized to si. When QðsiÞ is set to QðsjÞ þ tscoreðsj; siÞ�
gapðsj; siÞ, KðsiÞ is set to KðsjÞ. For an equivalence class c, let startðcÞ be the start-

ing segment pair for the class, let endðcÞ be the ending segment pair of a largest-

scoring chain in the class, and let scoreðcÞ be the score of the class. Thus we have

QðendðcÞÞ ¼ scoreðcÞ. The equivalence classes of scores greater than f are saved.

After QðsiÞ and KðsiÞ are computed, we perform one of the two tasks below if QðsiÞ
is greater than f . If there is an equivalence class c with startðcÞ ¼ KðsiÞ, set endðcÞ
to si and scoreðcÞ to QðsiÞ if scoreðcÞ < QðsiÞ. If there is no equivalence class c

with startðcÞ ¼ KðsiÞ, create a new class c with startðcÞ ¼ KðsiÞ, endðcÞ ¼ si, and

scoreðcÞ ¼ QðsiÞ. After the computation of the equivalence classes is completed, for

each saved equivalence class, a largest-scoring chain in the class is obtained by a

traceback technique. These largest-scoring chains are nonintersecting. To see this, if

two chains were intersecting, that is, they had a common segment pair s, then the two

chains would begin with the same segment pair KðsÞ and hence would belong to the

same equivalence class. This contradicts the fact that the two chains are from di¤er-

ent equivalence classes.

3.5 An Algorithm for Comparing Two Sets of Sequences

We consider a general problem of comparing every sequence in one set with every

sequence in the other set. The goal is to find pairs of sequences with similar regions

between the two sets and to report those similar regions. If one set is a large database

of sequences and the other set is a set of query sequences, then the problem is a

database searching problem.

We develop an e‰cient algorithm for this general problem as follows. All sequences

in the smaller set are concatenated to form a composite string with a new character
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inserted at every sequence boundary (Huang and Madan 1999). One lookup table is

made for the composite string. For each sequence in the larger set, the fast algorithm

in the previous section is used to compare the sequence with the composite string

through the lookup table. Special care is taken to ensure that no word match is

extended beyond any sequence boundary indicated by the new character in the com-

posite string and that only segment pairs from the same sequence in the composite

string can be combined into chains. Note that the construction of one lookup table

for the composite string enables us to find directly pairs of sequences with similar

regions without going through every pair of sequences from the two sets, many of

which may not contain similar regions.

3.6 Applications

We present four applications of sequence alignment programs to analysis of DNA

and protein sequences. First, we give an example of using a global alignment pro-

gram to compare homologous human and mouse protein sequences. Second, we look

at a case of using a global alignment program to compare syntenic human and mouse

genomic DNA sequences. Third, we provide an example of using a fast comparison

program and a rigorous alignment program to identify the exon-intron boundaries of

genes in a genomic DNA sequence. Fourth, we give an instance of using a fast com-

parison program to determine the similarity relationships between two large sets of

sequences. All the applications were performed on a Sun Ultra 5 workstation with

128 Mb of main memory.

3.6.1 Comparison of Two Protein Sequences

A novel gene named Usp29 was recently found in a region of mouse chromosome 7

and a homologous region of human chromosome 19 (Kim et al. 2000). The cDNA

sequence of mouse gene Usp29 encodes a protein of 869 amino acids (GenBank

accession no. AF229257). Because the sequence of the mouse protein is similar to

the sequences of yeast and nematode proteins from the type-2 family of ubiquitin

carboxyl-terminal hydrolases, the mouse protein is likely to function as a ubiquitin

carboxyl-terminal hydrolase and is therefore named Usp29 (ubiquitin-specific pro-

cessingprotease 29). (Ubiquitin carboxyl-terminal hydrolase is also knownasubiquitin-

specific processing protease.) Proteins in the type-2 family contain two conserved

domains named the cys box and the his box, which define the active sites of those

proteins. The cDNA sequence of human gene Usp29 encodes a protein of 922 amino

acids (GenBank accession no. AF229438). Two questions could be asked about the

mouse and human proteins. What is the level of overall sequence conservation between
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the mouse and human proteins? Are the two conserved domains that are unique to the

type-2 family highly conserved between the mouse and human proteins?

The two questions were addressed by computing an optimal alignment of the

mouse and human protein sequences with a program named GAP (global alignment

program). The GAP program computes an optimal global alignment of two sequences

in quadratic time and linear space, where terminal gaps are not penalized and long

internal gaps in the shorter sequence are given a constant penalty (Huang 1994). An

alignment of the two mouse and human Usp29 sequences was produced by GAP with

the following values for its parameters: BLOSUM62 for substitution matrix, 15 for

gap open penalty, and 2 for gap extension penalty. The running time of GAP was less

than a second. The alignment showed that the two sequences have a low identity of

41 percent, well below an average identity of 85 percent between human and mouse

protein sequences. However, the two conserved domains are highly conserved between

the mouse and human proteins (figure 3.3). The high level of sequence conservation

between the two domains of the mouse and human proteins also suggests that the

mouse and human proteins belong to the type-2 family.

3.6.2 Comparison of Two Genomic Sequences

We look at an example of comparing two large genomic sequences from syntenic

regions of the human and mouse genomes. The number, order, and orientation of

genes in syntenic regions of two di¤erent species are conserved between the two spe-

cies. The 223-kb human genomic sequence (GenBank accession no. U47924) is from

a gene-rich cluster at the CD4 locus on human chromosome 12p13 (Ansari-Lari et al.

1996). The 227-kb mouse genomic sequence (GenBank accession no. AC002397) is

from the syntenic region on mouse chromosome 6 (Ansari-Lari et al. 1998). The two

CD4 sequences were previously compared with a modified version of SIM program

by Ansari-Lari et al. (1998). In this application, we show that coding regions in the

two CD4 sequences can be identified by computing a global alignment of the two

sequences.

A program named GAP3 was used to compare the CD4 genomic sequences. The

GAP3 program computes an optimal global alignment of two sequences in quadratic

time and linear space, where long, di¤erent regions in the two sequences are given a

constant penalty (Huang, unpublished results). To align the two CD4 sequences on

the basis of coding regions, instead of repeat elements, the repeat elements in the CD4

genomic sequences were masked by RepeatMasker (Smit and Green 1996) and the

masked versions of the sequences were used by GAP3 for alignment. The GAP3

program produced a large alignment of the two sequences, which contains 46,019

base matches (20 percent). Many of the matching regions on the alignment corre-
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Figure 3.3
Portions of an alignment of mouse and human Usp29 protein sequences. Two conserved domains are
indicated by asterisks.
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spond to exons of the sequences. Portions of the alignment corresponding to two

exons are shown in figure 3.4. The following values were used for the parameters of

GAP3: 10 for match score, �15 for mismatch score, 60 for gap open penalty, and 3

for gap extension penalty. The computation took 4 hours and 39 minutes and 6.7 Mb

of main memory.

3.6.3 Identification of Exon-Intron Boundaries

In this application, we demonstrate that sequence alignment programs are useful for

finding the exon-intron boundaries of a gene in a genomic sequence if the cDNA

sequence of the gene is known. The genomic sequence used in this example is the

CD4 mouse genomic sequence from the last subsection. The mouse genomic sequence

Figure 3.4
Portions of a large alignment of mouse and human CD4 genomic sequences. Two mouse exons are cor-
rectly aligned with two human exons with respect to exon-intron boundaries. The four exon-intron bound-
aries are indicated by asterisks under exon bases and plus signs under intron bases.
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contains a gene whose cDNA sequence had been determined eight years earlier. The

cDNA sequence (GenBank accession no. NM_013509) encodes a protein of 434

amino acids, which functions as a gamma enolase. The mouse genomic sequence was

compared with the cDNA sequence by a software tool named AAT (analysis and

annotation tool) (Huang et al. 1997).

The AAT tool contains a fast database search program named DDS (DNA-DNA

search) and a rigorous alignment program named GAP2 for comparing a genomic

sequence with a database of cDNA sequences. The DDS program quickly computes

high-scoring chains of segment pairs between the genomic sequence and the database

of cDNA sequences. Every high-scoring chain indicates that a region of the genomic

sequence is similar to a cDNA sequence. For each pair of a genomic region and a

cDNA sequence, the GAP2 program computes an optimal alignment of the genomic

region and the cDNA sequence. The GAP2 program is an improvement to the GAP

program, where dinucleotides AG and GT are used by GAP2 to identify exon-intron

boundaries.

On the CD4 mouse genomic sequence and the cDNA sequence, DDS reported a

high-scoring chain between a region of the CD4 sequence from bases 129,471 to

137,445 and the cDNA sequence. The GAP2 program produced a 8,424-bp align-

ment of the genomic region and the cDNA sequence, where 11 exons of the genomic

region are aligned with portions of the cDNA sequence. Portions of the alignment are

shown in figure 3.5. The exon-intron boundaries identified by GAP2 in the genomic

region are exactly identical to those reported in the GenBank entry of the CD4

mouse sequence. The DDS program took less than a second and the GAP2 program

took 22 seconds on the data. The default values were used for the parameters of DDS

and GAP2. Note that in this application, the database just contains one cDNA se-

quence. In a real situation, the database contains all cDNA sequences that have been

produced.

3.6.4 Comparison of Two Sets of Sequences

We describe an application of a program to comparison of two large sets of se-

quences. We developed a version, named DDS.BTAB, of the DDS program (Huang

et al. 1997) for comparing two sets of sequences. The DDS.BTAB program quickly

computes high-scoring chains between sequences in one set and sequences in the other

set. The DDS.BTAB program was applied to comparison of two sets of sequences

produced by two DNA sequence assembly programs. The two assembly programs

were used to assemble the same set of raw DNA fragments into long sequences. One

program produced a set of 47 sequences of a total of 1.9 megabases; the other pro-

gram produced a set of 623 sequences of a total of 2.2 megabases. Obviously, the
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results from the two assembly programs were quite di¤erent. We wanted to know the

major di¤erences between the two assembly results by finding major similarities be-

tween the two sets of sequences. The DDS.BTAB program was used to compute

major similarities between the two sets of sequences.

The DDS.BTAB program produced 286 chains of scores greater than 2,000, where

a match was given a score of 2, a mismatch a score of �3, a gap was penalized with a

gap open penalty of 10, and a gap extension penalty of 1, and segment pairs of scores

greater than 80 were used. A high value of 2,000 was used for the chain score cuto¤

in order for DDS.BTAB to report only significant matches. The computation took 68

seconds. The word length used in this run was 11. Those major matches between the

Figure 3.5
Portions of an alignment of a genomic region and a cDNA sequence. The cDNA sequence is correctly
aligned with the genomic region with respect to exon-intron boundaries. The 5 0 and 3 0 coordinates of exons
9 and 10 are shown.
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two sets of sequences allowed us to figure out the relationships between the two sets

of sequences.

3.7 Future Developments

We suggest two directions for developments of new and improved sequence com-

parison methods. One direction is to improve existing methods so that they can dis-

tinguish distantly related sequences from unrelated sequences. If two related protein

sequences have an identity of 30 percent or higher, then existing methods can deter-

mine that the two sequences are related. On the other hand, if two protein sequences

have an identity of 25 percent, then existing methods cannot determine if the two

sequences are related or not. The other direction is to develop new methods for

comparing two large genomes, such as the human and mouse genomes. The imme-

diate objectives of the genome comparison are to identify conserved coding regions

and regulatory elements between the two genomes. Exons are often conserved be-

tween the human and mouse genomes, whereas introns and intergenic regions are

often divergent. The new methods must be e‰cient enough to handle huge sequences

and have new features to address various issues.
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4 Algorithmic Methods for Multiple Sequence Alignment

Tao Jiang and Lusheng Wang

4.1 Introduction

Multiple sequence alignment is a fundamental and challenging problem in compu-

tational molecular biology (Altschul and Lipman 1989; Carrillo and Lipman 1988;

Gusfield 1993, 1997; Sanko¤ and Kruskal 1983; Waterman 1995). Algorithms for

multiple sequence alignment are routinely used to find conserved regions in biomo-

lecular sequences, to construct family and superfamily representations of sequences,

and to reveal evolutionary histories of species (or genes). Conserved subregions in

DNA/protein sequences may represent important functions or regulatory elements.

The profile or consensus sequence obtained from a multiple alignment can be used to

characterize a family or superfamily of species. Multiple sequence alignment is also

closely related to phylogenetic analysis. For example, most phylogeny reconstruction

algorithms use multiple sequence alignments as their input. Moreover, some versions

of multiple sequence alignment, such as tree alignment, can be used directly to mea-

sure the goodness of candidate trees (Wang et al. 2001). Along with the fantastic

advances in worldwide sequencing projects, e‰cient methods for multiple sequence

alignment are becoming ever more important for understanding the sequences that

are being produced every day.

From a mathematical point of view, multiple sequence alignment is a a natural

extension of pairwise sequence alignment (see chapter 3). Computer programs for

multiple sequence alignment are becoming critical tools for biological sequence

analysis, and can help extract and represent biologically important commonalities

(conserved motifs, conserved characters in DNA or protein, common secondary or

tertiary structures, etc.) from a set of sequences. Biological commonalities may be

very non-obvious and hard to detect, especially when two sequences are being com-

pared. However, they may become more clear when a set of related sequences are

being compared. Below, we include two examples of multiple sequence alignment.

The first example is given in figure 4.1 (Gusfield 1997; McLure et al. 1994). The

abbreviations on the left indicate the organisms that the globin sequences are from.

Because of the lengths of the sequences, the multiple alignment is folded into three

sections. Columns in the alignment containing a high concentration of similar resi-

dues in regions of known secondary structure are marked with a ‘‘v,’’ and columns

with identical residues are marked with a star. Two residues are considered similar if

they belong to the same class of the following partition: (F,Y), (M,L,I,V), (A,G),

(T,S), (Q,N), (K,R), and (E,D).



Figure 4.1
A multiple alignment of several amino acid sequences of globin proteins modified from the paper of
McLure, Vasi, and Fitch (316).



The second example is concerned with the cystic fibrosis (CF) gene (Waterman

1995). Cystic fibrosis is an autosomal recessive genetic disorder a¤ecting a number of

organs (Riordan et al. 1989). Two long repeated regions of the CF gene sequence

(known as CFTR), RN , starting at position nearer the N terminus, and RC , starting

at position nearer the C terminus, have been identified using a computer program.

Via a database search, a number of similar sequences have been found. The names of

these sequences are omitted here. The search has highlighted similarities of CFTR to

a family of related ATP binding proteins that were already discovered and studied. In

figure 4.2, we illustrate a multiple alignment of the repeated CFTR regions and some

selected ATP binding sequences that are of high similarity to CFTR. These selected

sequences align very well to RN or RC . This tells us that RN and RC comprise two

ATP binding sites in CFTR. If CFTR had been found similar to only one of the

members of the ATP binding family, or if the similarity had not been to the ATP

binding sites, then these powerful conclusions could not have been so easily drawn.

In this chapter, we discuss some of the most popular mathematical models for

multiple sequence alignment and e‰cient algorithms for computing optimal multiple

alignment under these models. Due to the space constraint, we will focus on recent

advances in combinatorial (as opposed to stochastic) algorithms, and leave many

other important results on multiple sequence alignment untouched. Some surveys and

reviews on multiple sequence alignment can be found in Apostolico and Giancarlo

1998; Chan et al. 1992; and McClure et al. 1994.

Section 4.2 presents some basic definitions and several popular mathematical (in

fact, combinatorial optimization) models for multiple sequence alignment. Section

4.3 gives some hardness results, demonstrating that computing optimal multiple

alignments under these models is computationally di‰cult. Section 4.4 discusses exact

algorithms that give optimal solutions. We then present some approximation algo-

rithms with guaranteed performance in section 4.5 and heuristic algorithms that are

popular in practice in section 4.6—in particular, the algorithms in programs Clustal

W and GCG and the Gibbs sampling technique. Some concluding remarks and open

problems are given in section 4.7.

4.2 Optimization Models for Multiple Sequence Alignment

Given a set of k, kb 2, sequences, a multiple alignment A is obtained as follows:

spaces are inserted into each sequence so that the resulting sequences s 0i ði ¼ 1;

2; . . . ; kÞ have the same length m, and the sequences are arranged in k rows of l col-

umns each. Each column of the alignment contains a space or a letter (nucleotide or
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Figure 4.2
Local alignment to RN and RC .
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amino acid) from each sequence. Figure 4.3 shows an example of multiple sequence

alignment.

The cost of the multiple alignment A formed above is defined as

Xl

i¼1

mðs 01ðiÞ; s 02ðiÞ; . . . ; s 0kðiÞÞ

where s 0j ðiÞ denotes the i-th letter in the resulting sequence s 0j , j ¼ 1; 2; . . . ; k, and

mðs 01ðiÞ, s 02ðiÞ; . . . ; s 0kðiÞÞ denotes the cost of the i-th column. In general, the cost of

a column reflects the degree of dissimilarity among letters in the column. The multi-

ple sequence alignment problem is to construct a multiple alignment minimizing its

cost.1

The multiple sequence alignment problem is combinatorial in nature because

there are exponentially many ways of inserting spaces to form an alignment, even if

we limit the length of the alignment. Clearly, the cost of a multiple alignment A is

uniquely determined by the column cost function mð Þ. Many forms of column cost

have been proposed in the literature, resulting in di¤erent models for multiple se-

quence alignment as a combinatorial optimization problem. In the following, we only

introduce the most popular models (Altschul and Lipman 1989; Carrillo and Lipman

1988; Gusfield 1993, 1997; Sanko¤ and Kruskal 1983; Waterman 1995): SP align-

ment, consensus alignment (also called star alignment), and tree alignment. In all of

these models, the column cost function mð Þ is defined in terms of costs between pairs

Figure 4.3
An example multiple alignment of four DNA sequences.

1. It is popular among biologists to consider the score of a column instead that reflects the degree of sim-
ilarity among letters in the column, and attempt to find a multiple alignment to maximize its total score.
The two forms of multiple alignment are easily seen as equivalent in terms of the optimal solution (actually,
complementary) optimization problems (Waterman 1989). For simplicity, we will discuss all results in
terms of cost and minimization.
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of letters and spaces, and we assume that we are given a pairwise cost function (also

called cost scheme), also denoted as mða; bÞ, that measures the dissimilarity between a

pair of letters or spaces a and b. More discussion on popular pairwise cost schemes

will be given later in this section.

Throughout this paper, we use D to denote a space and S to denote the set (i.e.,

alphabet) of letters that form input sequences.

4.2.1 SP Alignment

In this model, the cost of the i-th column of alignment A is defined as:

mðs 01ðiÞ; s 02ðiÞ; . . . ; s 0kðiÞÞ ¼
X

1ap<qak

mðs 0pðiÞ; s 0qðiÞÞ

where mðs 0pðiÞ; s 0qðiÞÞ is the cost of the two opposing letters s 0pðiÞ and s 0qðiÞ in the column.

This column cost function is often referred to as the Sum-of-all-Pairs (or SP) cost.

Example 1 Assume that in the pairwise cost scheme mð Þ, a match costs 0 and a

mismatch costs 1: mða; bÞ ¼ 0 if a ¼ b and mða; bÞ ¼ 1 otherwise. The SP-cost of the

first column of the alignment given in figure 4.3 is 2þ 2þ 0 ¼ 4. The SP-costs of the

second, third, fourth, and fifth columns are 2þ 2þ 1 ¼ 5, 1þ 1þ 1 ¼ 3, 1þ 2þ 0 ¼
3, and 2þ 2þ 0 ¼ 4, respectively. Therefore, the total SP-cost of the alignment is

4þ 5þ 3þ 3þ 4 ¼ 19.

SP alignment is a useful model in applications such as finding conserved regions,

and has previously been studied extensively (Baconn and Anderson 1986; Bafna et al.

1997; Carrillo and Lipman 1988; Gupta et al. 1995; Gusfield 1993; Li et al. 2000;

Lipman et al. 1989; Pevzner 1992; Schuler et al. 1991). In an SP alignment, each

sequence is assumed to be equally related to all other sequences and thus all pairs of

sequences are given the same weight in the definition of alignment cost. This makes

sense when all sequences are closely related to each other or when the relationship

between the sequences are not known. On the other hand, SP alignment would not be

an appropriate model when the sequences considered contain both closely related and

remotely related sequences, such as in applications such as phylogeny reconstruction.

4.2.2 Consensus Alignment

The consensus cost of the i-th column of alignment A is defined as follows:

mðs 01ðiÞ; s 02ðiÞ; . . . ; s 0kðiÞÞ ¼ min
s ASUfDg

Xn
j¼1

mðs 0j ðiÞ; sÞ
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In other words, to define the cost of A, we attempt to reconstruct a letter or space for

each column of A and thus obtain a consensus sequence that has the smallest over

cost to all input sequences. The consensus sequence can be used as a representative of

the input sequences in various applications (Gusfield 1997).

Example 2 Again, assume that a match costs 0 and a mismatch costs 1 in the pair-

wise cost scheme. Consider the same four sequences as in example 1. Two consensus

sequences for A are shown in figure 4.4. (Note that the consensus sequence may not

be unique for an alignment.) The cost of the first column is 2. The costs of the second,

third, fourth and fifth columns are 2, 1, 1, and 2, respectively. Hence, the total con-

sensus cost of A is 2þ 2þ 1þ 1þ 2 ¼ 8.

4.2.3 Tree Alignment

In order to define the tree-cost of alignment A, an evolutionary (or phylogenetic) tree

T ¼ ðV ;EÞ with k leaves is assumed to be given, where V and E denote the sets of

nodes and edges of T. Each leaf j of T corresponds to an input sequence sj. Let k þ 1,

k þ 2; . . . ; k þm be the internal nodes of T. To obtain the tree-cost mðs 01ðiÞ; s 02ðiÞ; . . . ;
s 0kðiÞÞ of the i-th column of A, we need reconstruct a letter or space s 0j ðiÞ for each

internal node j, such thatX
ðp;qÞ AE

mðs 0pðiÞ; s 0qðiÞÞ

Figure 4.4
An example alignment and its consquence sequences.
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is minimized. The tree-cost of the column is thus defined as

mðs 01ðiÞ; s 02ðiÞ; . . . ; s 0kðiÞÞ ¼
X

ðp;qÞ AE
mðs 0pðiÞ; s 0qðiÞÞ

In other words, if we think of the pairwise cost scheme mða; bÞ as a measure of the

‘‘evolutionary cost’’ from a to b, then the tree-cost of the i-th column of alignment A

is really the least cost to generate the letters or spaces s 01ðiÞ; s 02ðiÞ; . . . ; s 0kðiÞ via the

given evolutionary tree T.

Although computing the tree-cost of a column of A is nontrivial because it

involves assigning a letter or space to each internal node of T optimally, there is

a simple dynamic programming algorithm that computes tree-cost for a column of

k letters/spaces in OðkjSjÞ time (Sanko¤ and Rousseau 1975). (See section 4.4.1

for more details.) Figure 4.5 illustrates a multiple alignment of four DNA sequences,

a given evolutionary tree connecting the sequences, and an optimal assignment of

letters (in this case, nucleotides) at the internal nodes of the tree for the rightmost

column of the alignment, assuming the same simple pairwise cost scheme as in exam-

ples 1 and 2. The tree-cost of the column is thus 1.

This model of multiple alignment was first studied by D. Sanko¤ in 1975 (Sanko¤

1975). Since then, multiple sequence alignment with tree-cost has received a lot of

attention in the computational molecular biology community (Altschul and Lipman

1989; Hein 1989; Jiang et al. 1994; Sanko¤ 1975; Sanko¤ et al. 1976; Sanko¤ and

Kruskal 1983; Wang et al. 1996). For simplicity, multiple sequence alignment with

tree-cost is often referred to as tree alignment in the literature (Sanko¤ 1975).

It is easy to see that if we consider arbitrary evolutionary trees T in tree alignment,

then consensus alignment is in fact a special case of tree alignment where the evolu-

tionary tree is simply a star with one internal node connecting to all leaves. However,

in practical evolutionary trees, internal nodes often have bounded degrees. In fact,

most evolutionary trees studied in the literature are binary trees.

Figure 4.5
An optimal assignment of nucleotides at internal nodes for the rightmost column.
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Note that a tree alignment induces a set of reconstructed sequences, one for each

internal node of the tree T. Thus, it is convenient to reformulate tree alignment as a

sequence reconstruction problem as follows.

4.2.4 An Alternative Formulation of Tree Alignment

Suppose that we are given k sequences and a (rooted) evolutionary tree containing

k leaves, each of which is labeled with a unique given sequence. The problem is to

assign a sequence to each internal node of the tree such that the cost of the resulting

fully labeled tree is minimized. Here, the cost of a fully labeled tree is the total cost of

its edges and the cost of an edge is the optimal pairwise alignment cost between the

two sequences associated with both ends of the edge.

Observe that once a sequence for each internal node has been reconstructed, a

multiple alignment can be obtained by optimally aligning the pair of sequences

associated with each edge of the tree. Moreover, the tree-cost of this induced multiple

alignment equals the cost of T as defined above. In this sense, the two formulations of

tree alignment are equivalent.

We demonstrate this by an example in which the sequences inferred for the internal

nodes of an evolutionary tree actually induce a multiple alignment of the k leaf

sequences. Such a multiple alignment is likely to expose significant evolutionary rela-

tionships among the leaf sequences, according to the maximum parsimony principle.

Example 3 Consider again four given sequences ACTG, ATCG, GCCA, and

GTTA, and the evolutionary tree shown in figure 4.6a connecting these sequences.

Suppose that the internal sequences are reconstructed as in figure 4.6b. For each edge

of the tree in (b) we can construct an optimal pairwise alignment of the two sequences

associated with the edge. Then we can induce a multiple alignment that is consistent

with all six pairwise alignments by ‘‘merging’’ the pairwise alignments incrementally

(Feng and Doolittle 1987; Thompson et al. 1994), taking the spaces embedded in

each sequence into consideration. For example, from the given pairwise alignments

of sequences s1; h1 and of sequences s2; h1, we can obtain a multiple alignment of

s1; s2; h1 as shown in figure 4.6d. The final induced multiple alignment of the four leaf

sequences is shown in figure 4.6e (if we ignore everything below the line).

The biological interpretation of the model is that the given tree represents the

evolutionary history (known by means other than sequence analysis or postulated in

a phylogeny reconstruction procedure) that has created the biomolecular (DNA,

RNA, or amino acid) sequences written at the leaves of the tree. The leaf sequences

are ones found in organisms existing today and the sequences to be determined at the

internal nodes of the tree represent inferred sequences that may have existed in the

ancestral organisms.
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Figure 4.6
Reconstructed Sequences at the internal nodes induce a multiple alignment.
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We note in passing that some variants of tree alignment have also been studied

in the literature. Tree alignment with recombination has recently been proposed by

Wang et al. (2000). It takes recombination events into consideration, in addition to

the usual substitution, insertion, and deletion events. Another variant, generalized

tree alignment, was studied by Hein (1989, 1990), Sanko¤ and Kruskal (1983),

Schwikowski and Vingron (1997), and Wang and Jiang (1994). In generalized tree

alignment, we are only given k sequences and we are supposed to construct an evo-

lutionary tree T as well as a multiple sequence alignment minimizing its tree-cost

(or, equivalently, a sequence at each internal node of T minimizing the cost of the

resulting fully labeled tree).

We end the section with a brief discussion on pairwise cost schemes and some key

concepts in approximation algorithms.

4.2.5 Pairwise Cost Schemes

The choice of cost schemes for pairs of letters is an important issue in sequence anal-

ysis. In general, such a cost scheme reflects the probabilities of evolutionary events,

including substitution, insertion, and deletion. For protein sequences, the PAMmatrix

and BLOSUM matrix are the most popular ones (Heniko¤ and Heniko¤ 1992;

Schwarz and Dayho¤ 1979).2 For DNA sequences, the simple match/mismatch cost

scheme mentioned in examples 1–3 is often used. More sophisticated cost schemes

include transition/transversion costs (Sanko¤ et al. 1976) and DNA PAM matrices.

From a computational point of view, cost schemes that satisfy the following con-

ditions are especially interesting:

ðC1Þ mða; aÞ ¼ 0

ðC2Þ mða; bÞ ¼ mðb; aÞ
ðC3Þ mða; cÞa mða; bÞ þ mðb; cÞ for any c

Such a cost scheme is called a metric cost scheme (Sanko¤ and Kruskal 1983). Metric

cost schemes are popular because they enable us to design e‰cient approximation

algorithms with guaranteed performance.

4.2.6 Basics of Approximation Algorithms

We assume that the readers are familiar with the NP-hardness theory (see Garey and

Johnson 1979 for a complete treatment). If a problem is NP-hard, then it is unlikely

2. Again, these matrices in fact contain similarity scores rather than dissimilarity costs. The scores can be
easily converted into costs so that optimal alignments are the same under both objective functions (i.e.,
maximizing the score or minimizing the cost).
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for us to have a polynomial time algorithm to exactly solve the problem. For some

optimization problems, we might be interested in designing approximation algorithms

that produce solutions with a cost close to that of the optimum.

Let A be an approximation algorithm for a minimization problem. (The definition

for maximization problems is symmetric.) The performance ratio of A is defined as a

number r such that for any instance I of the problem,

AðIÞ
OPTðIÞ a r ð4:1Þ

where AðIÞ is the cost of the solution—for instance, I produced by algorithm A—and

OPTðIÞ is the cost of an optimal solution for instance I. An approximation scheme

for a minimization problem is an algorithm A that takes as input both instance I and

an error bound �, and achieves the performance ratio

RAðI ; �Þ ¼ AðIÞ
OPTðIÞ a 1þ �

Such an algorithm A can in fact be viewed as a family of algorithms fA� j � > 0g, for
each error bound �. A polynomial time approximation scheme (PTAS) is an approxi-

mation scheme fA�g, where the algorithm A runs in time polynomial in the size of the

instance I, for any fixed �. (For more details on approximation algorithms and

schemes, see Garey and Johnson 1979.)

In terms of approximability of problems, the best one can hope for are PTASs.

Some problems have good approximation algorithms, such as PTASs, whereas some

other problems are hard to approximate. If a problem is MAX SNP-hard, then it

is unlikely to have a PTAS. Recently, the theory on inapproximability has been

developed (see Hochbaum 1996).

4.3 Hardness Results

In this section, we summarize the computational complexity of computing optimal

multiple sequence alignment under the models described in the previous section.

These results give motivation for studying approximation algorithms for these prob-

lems in section 4.5.

SP alignment was proved to be NP-hard (Jiang et al. 1994; Wang and Jiang 1994).

Thus, it is unlikely to be solved in polynomial time. However, the pairwise cost scheme

used in this proof does not satisfy the triangle inequality, and is thus not a metric. P.

Bionizzoni and G. Della Vedova recently strengthened the result and proved that SP
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alignment is NP-hard even if the alphabet size is 2 and the pairwise cost scheme is a

metric.

theorem 1 (Bonizzoni and Della Vedova 2000) SP Alignment is NP-hard for the

case where the alphabet size is 2 and the cost scheme is metric.

The pairwise cost scheme (Bonizzoni and Vedova to appear) is a metric cost scheme

using numbers 0, 1, and 2, and the alphabet size is 2. The proof is quite involved.

W. Just has recently proved that SP alignment is NP-hard for the case where

insertions of spaces are restricted to both ends of the sequences (Just 1998). The

pairwise cost scheme used in the proof is also a metric. A slightly stronger result is

given in Li et al. 2000.

theorem 2 (Li et al. 2000) SP Alignment is NP-hard when all insertions of spaces

are restricted to both ends of the sequences and the pairwise cost scheme has the

simplest form, i.e., a match costs 0 and a mismatch costs 1.

Tree alignment was shown to be NP-hard (Jiang et al. 1994). The cost scheme used

in the proof is a metric cost scheme using numbers 0, 1, and 2 and the alphabet size is 4.

theorem 3 Tree alignment is NP-hard even when the given phylogeny is a binary

tree.

For consensus alignment, we have the following theorems:

theorem 4 (Li et al. 1999) Consensus alignment is NP-hard when the alphabet size

is 4 and the cost scheme has the simplest form, i.e., a match costs 0 and a mismatch

costs 1.

Consensus alignment is also hard in terms of approximation.

theorem 5 (Jiang et al. 1994; Wang and Jiang 1994) Consensus alignment is MAX

SNP-hard if the pairwise cost scheme is arbitrary.

This means that it is unlikely to have a PTAS for consensus alignment if the cost

scheme is arbitrary. The cost scheme used in the proof of the theorem does not satisfy

the conditions (C1) and (C3) of a metric cost.

4.4 Exact Algorithms

The hardness results in the previous section imply that exact algorithms for the

models of multiple alignment described in section 4.2 have to run in exponential time.
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However, these exact algorithms are sometimes useful when the number of sequences

involved is not too large and the sequences have moderate lengths.

4.4.1 Dynamic Programming in k Dimensions

An optimal solution for a multiple sequence alignment of k given sequences can

be obtained by a standard dynamic programming algorithm. Gusfield (1997) and

Sanko¤ and Kruskal (1983) o¤er extensive discussion of such algorithms.

Let s1; s2; . . . ; sk be k given sequences, each of length m (for simplicity). Let si½ j; l �
denote the substring of si containing the letters j through l, and si½ j� denote the j-th

letter of si. If j > l, si½ j; l � is empty. Let dði1; i2; . . . ; ikÞ be the cost of an optimal

alignment for the k prefixes s1½1; i1�, s2½1; i2�; . . . ; sk½1; ik�. All the values dði1; i2; . . . ; ikÞ
together form a k-dimensional matrix containing ðmþ 1Þk cells, where each ij may

take on mþ 1 values 0; 1; . . . ;m. We can use the following recurrence equation to

compute dði1; i2; . . . ; ikÞ.
dði1; i2; . . . ; ikÞ ¼ minfdði 01; i 02; . . . ; i 0kÞ þ mðs1½i 01 þ 1; i1�; s2½i 02 þ 1; i2�; . . . ; sk½i 0k þ 1; ik�Þg

ð4:2Þ
where each i 0j is either ij or ij � 1, the operator min is taken among the 2k � 1 pos-

sible configurations (the configuration where all i 0j are ij is excluded), mðs1½i 01 þ 1; i1�;
s2½i 02 þ 1; i2�; . . . ; sk½i 0k þ 1; ik�Þ is the cost of the last column in the alignment for the k

prefixes s1½1; i1�, s2½1; i2�; . . . ; sk½1; ik�, containing k letters/spaces, one from each given

sequence.

A cell dði1; i2; . . . ; ikÞ of the k dimensional matrix is called a boundary cell if at least

one of its index ij is 0. From formula (4.2), we know that computing dði1; i2; . . . ; ikÞ
needs the values of its 2k � 1 neighbors in the matrix. Thus, if the value

mðs1½i 01 þ 1; i1�; s2½i 02 þ 1; i2�; . . . ; sk½i 0k þ 1; ik�Þ and the values of the boundary cells are

known, we can compute the values of all the cells in the matrix one by one in the

order as suggested by the above recurrence relation. Similar to the pairwise alignment

(Gusfield 1997), a standard back-tracing process gives the actual multiple alignment.

theorem 6 If mðs1½i 01 þ 1; i1�; s2½i 02 þ 1; i2�; . . . ; sk½i 0k þ 1; ik�Þ is known, then the above

dynamic programming algorithm runs in Oð2kmkÞ time for all the three models

multiple alignment: SP alignment, consensus alignment, and tree alignment.

Now, we will explain how to compute the value mðs1½i 01 þ 1; i1�; s2½i 02 þ 1; i2�; . . . ;
sk½i 0k þ 1; ik�Þ and the values of boundary cells.

SP Score For SP alignment, the values of boundary cells are computed recursively.

If i1 ¼ 0, we can use the following equation:
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dð0; i2; . . . ; ikÞ ¼ dði2; . . . ; ikÞ þ
Xk
i¼2

Xij
j¼1

mðsi½ j�;DÞ ð4:3Þ

where mðsi½ j�;DÞ is the cost of deleting letter si½ j�. The case where ij ¼ 0, j > 1, is

similar.

Let A1;A2; . . . ;Ak be k letters or spaces. The computation of mðA1;A2; . . . ;AkÞ is
trivial:

mðA1;A2; . . . ;AkÞ ¼
X

1aj<lan

mðAj;AlÞ ð4:4Þ

where mðAj;AlÞ is the cost for the two opposing letters or spaces Aj and Al .

Tree Score For tree alignment, the value for boundary cell is computed recursively.

For example, if i1 ¼ 0, we can use the following equation:

dð0; i2; . . . ; ikÞ ¼ Dði2; . . . ; ikÞ ð4:5Þ
where Dði2; . . . ; ikÞ is the cost of an optimal tree alignment for the k prefixes s1½1::0�,
s2½1::i2�; . . . ; sk½1; ik�. Here s1½1; 0� denotes an empty sequence. Note that the number

of indices in Dði2; . . . ; ikÞ is now reduced to k � 1, and Dði2; . . . ; ikÞ can then be

computed recursively in a similar fashion.

Let A1;A2; . . . ;Ak be k letters or spaces assigned to the k leaves of the given evo-

lutionary tree T. The computation of mðA1;A2; . . . ;AnÞ also requires a dynamic pro-

gramming algorithm. Let mði;BÞ denote the cost of the subtree rooted at node i such

that node i is assigned the letter/space B. mði;BÞ can be computed as follows using the

following recurrence relation:

mði;BÞ ¼ min
Bj AS

fmði1;B1Þ þ mði2;B2Þ þ � � � þ mðid ;BdÞ
þ mðB;B1Þ þ mðB;B2Þ þ � � � þ mðB;BdÞg ð4:6Þ

where i1; . . . ; id denote the children of node i. Figure 4.7 illustrates ideas involved in

the equation (4.6). If i is a leaf node and B is the letter initially assigned to i, then

mði;BÞ ¼ 0. Otherwise, mði;BÞ is set to be infinity. mði;BÞ can be computed bottom up

using dynamic programming in time OðjT j � jSjÞ ¼ OðkjSjÞ.
Consensus alignment can be treated as special case of tree alignment in this

context.

4.4.2 Reducing the Computation Volume

Carrillo and Lipman proposed a method to cut down the computational volume of

the dynamic programming algorithm for SP alignment (Carrillo and Lipman 1988).
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The basic idea is to compute upper bounds on alignment costs for each pair of

sequences in the computation of the k dimensional matrix and eliminate those cells of

the matrix that violate the upper bounds.

Given an SP alignment A, let Ai; j be the pairwise alignment between sequences si
and sj induced by A (simply get rid of the other sequences in A and delete columns

containing spaces in both sequences si and sj). Let cðAÞ denote the cost of A and

cðAi; jÞ the cost of Ai; j.

Let B be an optimal SP alignment and Cb cðBÞ an upper bound on the cost cðBÞ.
Let Ci; j be the optimal alignment cost between sequences si and sj. Then we have, for

any 1 < x < y < k,

Cb cðBÞ ¼
X
i< j

cðBi; jÞb cðBx;yÞ � Cx;y þ
X
i< j

Ci; j ð4:7Þ

That is,

cðBx;yÞaCx;y þ
�
C �

X
i< j

Ci; j

�
ð4:8Þ

Because Ci; j can be computed quickly, if we know how to choose Cb cðBÞ, we
would have an upper bound Cx;y þ ðC �Pi< j Ci; jÞ on cðBx;yÞ. Therefore, in the

computation of the k dimensional matrix, we do not have to go through all the cells

in the matrix. Instead, we can rule out those cells that violate inequality (4.8). These

cells can be identified easily using dynamic programming on sx and sy. This approach

allows one to be able to optimally align up to six sequences of practical lengths

(Carrillo and Lipman 1988). Improved versions of this technique are reported by

Gupta et al. (1995) and Altschul and Lipman (1989).

Altschul and Lipman proposed a similar method for tree alignment (Altschul and

Lipman 1989). They designed a nice method to compute the upper bound for tree

alignment. Moreover, special care was given for consensus alignment as a special

Figure 4.7
(a) A subtree rooted at i. (b) Assigning letters/spaces to node i and its children.
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case of tree alignment. We refer interested readers to Altschul and Lipman (1989) for

more details.

We emphasize that the speed of the above algorithm depends very much on the

quality of the upper bound C, although the algorithm always produces an optimal

solution.

4.5 Approximation Algorithms

Because computing optimal SP/tree/consensus alignment is NP-hard and the running

times of exact algorithms for these problems are exponential in the number of given

sequences k, there has been a lot of interest in finding e‰cient approximation algo-

rithms for these problems. In this section, we give a summary of recent approxima-

tion results on SP alignment, consensus alignment, and tree alignment.

4.5.1 SP Alignment and Diagonal Band

SP alignment has been extensively studied recently. With great e¤ort, the best known

approximation ratio for SP alignment has been improved from 2� 2

k
to 2� l

k
for any

constant l, where k is the number of the sequences (Bafna et al. 1997; Gusfield 1993;

Pevzner 1992). The 2� oð1Þ barrier on approximation ratio appears to be formidable.

A more recent progress is a PTAS for a special case of the problem: multiple alignment

within a band. The restriction of aligning sequences within a constant diagonal band is

often used in practical situations. Methods under this assumption have been exten-

sively studied as well. Sanko¤ and Kruskal (1983) discussed the problem under the

rubric of ‘‘cutting corners.’’ Alignment within a band is used in the final stage of the

well-known FASTA program for rapid searching of protein and DNA sequence

databases (Pearson and Lipman 1988; Pearson 1990). Pearson showed that alignment

within a band gives very good results for many protein superfamilies (Pearson 1991).

Other references on the subject include Altschul and Lipman (1989), Chao et al.

(1992), Fickett (1984), Galil and Ciancarlo (1989), and Ukkonen (1985). Spouge

(1991) gives a survey on this topic.

A formal definition of multiple alignment within a constant band is given below.

c-diagonal sp alignment Let S ¼ fs1; s2; . . . ; skg be a set of k sequences, each of

length m (for simplicity), and M an alignment of the k sequences. Let the length of

the alignment M be M. M is called a c-diagonal alignment if for any pam and

1 < i < j < k, if the p-th letter of si is in column q of M and the p-th letter of sj is in

column r of M, then jq� rja c. In other words, the inserted spaces are ‘‘evenly’’

Algorithmic Methods for Multiple Sequence Alignment 87



distributed among all sequences and the i-th position of a sequence is about c posi-

tions at most away from the i-th position of any other sequence.

The Center Star Approach for SP Alignment The first approximation algorithm for

SP alignment was given by D. Gusfield (Gusfield 1993). He introduced the center star

method, which is very simple and e‰cient. The method begins by selecting a se-

quence (called the center sequence ) sc from the set of k given sequences S such thatPk
i¼1 mðsc; siÞ is minimized, where mðsc; siÞ denotes the optimal pairwise alignment

cost between sc and si. It then optimally aligns the sequences in S� fscg to sc,

yielding k � 1 pairwise alignments. These k � 1 pairwise alignments can be combined

together to form a single multiple alignment for all k sequences in S. If the cost

scheme for pairs of letters is a metric, the cost of the multiple alignment produced by

the center star algorithm is at most twice the optimal cost (Gusfield 1993, 1997).

theorem 7 (Gusfield 1993, 1997) The approximation ratio of the center star algo-

rithm is 2� 2

k
for metric pairwise cost schemes.

The l-star Approach Bafna, Lawer, and Pevzner extended the center star approach

to l-stars that improve upon the approximation ratio of the center star algorithm

(Bafna et al. 1996). The basic idea is to (1) select a center sequence sc; (2) decompose

the k given sequences into many groups, each of which contains l sequences including

sequence sc; (3) optimally align the l sequences in each group; and (4) combine the

multiple sequence alignments of l sequences into an alignment for k sequences using

the common sequence sc.

The di‰culty here is how to partition the k given sequences. Pevzner (1992) solved

the case for l ¼ 3 using graph matching and obtained an approximation ratio 2� 3

k
.

Bafna et al. (1996) use an algorithm designed to compute a good set of groups of size

l or l þ 1 sequences.

theorem 8 (Bafna et al. 1996) There is an approximation algorithm with perfor-

mance ratio 2� l

k
that runs in time Oðk lþ1ð2k þ k � gðl;mÞÞ time, where gðl;mÞ is the

time required to optimally align l sequences of length m.

Another algorithm that has the same performance ratio but runs in

Oðk3gð2l þ 3;mÞÞ time was also proposed by Bafna et al. (1996). Although this latter

algorithm is truly polynomial in both m and k, its running time might be in fact

slower than the former one when l is large (compared with k), as optimally aligning

2l þ 3 sequences is very time consuming.
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The above algorithms all require a good method for partitioning the k sequences

into groups. A simple and e‰cient approach is the randomized algorithm given in

figure 4.8.

theorem 9 If l � 1 divides k � 1, then for any � > 0, algorithm RandomAlign runs

in time O k2 log
k

�

� �
gðl;mÞ

� �
and achieves a performance ratio 2� l

k
with proba-

bility 1� �.

A PTAS for c-diagonal SP Alignment A major open problem in multiple sequence

alignment is if SP alignment has a PTAS (Jiang et al. 2000). In this section, we sketch

a recent PTAS for a restricted version of SP alignment where spaces are inserted

‘‘evenly,’’ that is, c-diagonal SP alignment. Our PTAS works for all metric cost

schemes, but for the ease of presentation, here we will consider the simple match/

mismatch cost scheme (i.e., a match costs 0 and a mismatch costs 1.) We need some

definitions first.

definition 1 Let s1; . . . ; sk be sequences and A a multiple alignment of the

sequences. Suppose that s 01; . . . ; s
0
k are the rows ofA containing the padded sequences.

If s 0i ½ p� is D, whereas s 0j ½ p� is not, then position p represents to an insertion in sequence

sj. On the other hand, if si½ p� is not D, whereas sj ½ p� is, then position p represents a

deletion in sj.

In a multiple alignment, an insertion may correspond to many deletions and vice

versa. Moreover, for a column of alignment, the number of insertions uniquely deter-

mines the number of deletions and vice versa. In the construction of our algorithms,

we will use the smaller of the numbers of insertions and deletions when we count the

total number of insertions and deletions. For example, in the multiple alignment

Figure 4.8
A randomized algorithm for partitioning sequences.
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in figure 4.9, the total number of insertions/deletions (or simply indel ) should be

counted as 1 instead of 3 (or 4).

The following restricted version of SP alignment, called Average c-Indel SP Align-

ment, would serve as a useful intermediate step toward our PTAS for c-diagonal SP

alignment.

definition 2 The Average c-Indel SP Alignment problem is to find a multiple align-

ment for a given set S of sequences with the minimum possible SP cost such that on

average, there are at most c indels per sequence.

Let l be the length of alignment A of sequences s1; . . . ; sk. Let lj;a be the number of

the occurrences of letter a at the j-th position of A. The SP-cost of A can be re-

written as:

mðAÞ ¼
Xl

j¼1

X
a0b

a;b ASUfDg

lj;a � lj;b

Clearly,
lj;a

k
is the frequency of letter (or space) a in the j-th column of the align-

ment. We call the l � ðjSj þ 1Þ matrix formed by
xj;a

k
the frequency matrix of A. The

frequency matrix is called a profile in the literature.

Our algorithm consists of two major steps: (1) Randomly choose (or try all com-

binations) r sequences from the k sequences, where r is a constant parameter. By

trying all possible ‘‘feasible’’ alignments of the r sequences involving at most c indels

per sequence, we can suppose that we know the ‘‘correct’’ alignment A r of the r

sequences that is induced by A. Then we calculate the frequency matrix of A r, which

is hopefully an approximation of the frequency matrix of A. Align every sequence

with the frequency matrix of Ar. This can be done by using a slight modification of

the standard dynamic programming algorithm for pairwise sequence alignment. The

complete algorithm is given in figure 4.10.

Figure 4.9
One insertion corresponds to three deletions.
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theorem 10 If hb 4, rb 1, algorithm AverageSPAlign in figure 4.10 outputs an

alignment with SP-cost no more than 1þ 2

r
þ 2

h
times the SP-cost of an optimal

average c-indel SP alignment.

The proof of theorem 10 is quite involved. The basic idea is to show that if we ran-

domly choose r sequences from S, construct the frequency matrix from the r chosen

sequences, and ‘‘align’’ the sequences in S with the constructed frequency matrix, we

then obtain an alignment with an expected cost at most 1þ 2

r
þ 2

l
times of the opti

mum (for the complete proof, see Li et al. 2000).

For c-Diagonal SP Alignment, we introduce a new constant parameter, t, that

plays a crucial role in cutting the sequences into segments so that on average each

segement contains about ct indels in an optimal c-diagonal alignment. The di‰culty

is that we do not know exactly where to cut the sequences. The c-diagonal condition

allows us to find approximate cutting positions so that each segment has at most c

Figure 4.10
A PTAS for Average c-Indel SP Alignment.
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‘‘incorrect’’ letters (either c extra letters or c missing letters) at each end. Because each

segment has on average about OðctÞ indels, the error rate for each sequence is about

1

t
. After cutting the sequences, we can use the PTAS for Average c-Indel SP Align-

ment for each group of segments.

In the algorithm, we dynamically cut the input sequences into small segments such

that the SP alignment cost for each group of segments is about ctk2, for some con-

stant t. This can be easily done by trying to cut all the sequences at the i-th position

(i ¼ 1; 2; . . .m) and test if such a i leads to a group of segments whose SP alignment

cost is about ctk2.

The complete algorithm is given in figure 4.11. Let r ¼ 1þ 2

h
þ 2

r
.

theorem 11 Approximation ratio of algorithm DiagonalSPAlign is

r

0
@1þ 2

t� 2� 1

c

1
A:

4.5.2 Consensus Alignment

It turns out that the center star approach can also give a ratio 2 approximation algo-

rithm for consensus alignment.

Figure 4.11
A PTAS for c-Diagonal SP Alignment.
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theorem 12 (Gusfield 1997) The performance ratio of center star algorithm is 2 for

consensus alignment if the cost scheme is metric.

Here we present a PTAS for c-Diagonal Consensus Alignment. The ideas are

similar to those of the PTAS for c-Diagonal SP Alignment sketched in the previous

section. Again, we need the following restricted version of consensus alignment.

definition 3 The Average c-Indel Consensus Alignment problem is to find a mul-

tiple alignment of S with the minimum possible consensus cost such that on the

average, there are at most c indels per sequence.

The algorithm for this version of consensus alignment is similar to that for Average

c-Indel SP Alignment. However, instead of constructing a frequency matrix, here we

construct a ‘‘center’’ sequence S. The complete algorithm is given in figure 4.12.

Again, the cost scheme assumed here is the simple match/mismatch scheme.

theorem 13 For h > 2 and r > 2, algorithm AverageConsensusAglign produces an

alignment with consensus cost at most

Figure 4.12
PTAS for Average c-Indel Consensus Alignment.
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1þmax

(
4

h� 2
;

8ffiffiffi
e

p ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
4rþ 1

p � 3Þ

)
jSj

times that of the optimum in polynomial time, where e is the natural constant.

The proof of the theorem is again quite involved, and we refer to reader to Li et al.

(2000) for details. The basic idea of the analysis is to show that the average consensus

cost of the
k

r

� �
di¤erent alignments tried in the algorithm is upper bounded by

1þmax

(
4

h� 2
;

8ffiffiffi
e

p ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
4rþ 1

p � 3Þ

)
jSj times the optimum. The techniques used here

for the analysis of algorithm AverageConsensusAlign are quite di¤erent from that for

Average SP Alignment.

We now present a PTAS for c-Diagonal Consensus Alignment. The algorithm is

almost the same as our PTAS for c-Diagonal SP Alignment: (1) Dynamically cut the

k sequences into small segments such that the optimal consensus alignment cost for

each group of segments is about ctk for some constant t. This implies that there are at

most ct indels in each piece on average. (2) Because of the c-diagonal condition, each

cut brings in at most OðckÞ errors. Thus, the parameter t acts against the errors

caused by the uncertainty of the cutting. (3) Use algorithm AverageConsensusAlign

on each group of segments and concatenate the segment alignments together.

The complete algorithm is given in figure 4.13. Here,

r ¼ 1þmax

(
4

h� 2
;

8ffiffiffi
e

p ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
4rþ 1

p � 3Þ

)
jSj:

theorem 14 The approximation ratio of algorithm DiagonalConsensusAlign is

r

0
@1þ 2

t� 2� 1

c

1
A.

The algorithm DiagonalConsensusAlign in fact forms a PTAS for all pairwise cost

schemes m satisfying mði; iÞ ¼ 0 and maxa;b ASUfDg mða; bÞ=mina;b ASUfDg mða; bÞ is

bounded by some constant (see Li et al. 2000).

The PTAS’s for both the SP model and consensus model can be extended to work

for the case where we know the ‘‘approximate’’ positions of all letters of all sequences

in an optimal alignment. That is, we know that the j-th letter of si is at the position

that is at most c positions away (either left or right) from the k-th letter of another

sequence, where c is a constant. (This may happen when we are given a multiple
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alignment whose shape is close to being optimal.) The di¤erence here from c-diagonal

alignment is that in an optimal alignment, some sequences may have many spaces

clustered in an area because they are not so similar to others in this area. In other

words, the spaces are not evenly distributed for some sequences. The extended algo-

rithm is the same except that we may cut sequences at di¤erent locations to obtain

segments.

4.5.3 Tree Alignment

The first approximation algorithm for tree alignment with guaranteed performance

is a ratio-2 algorithm (see Jiang et al. 1994). The algorithm was extended into a

polynomial-time approximation scheme in the same paper. In this section, we sketch

an improved version of the ratio 2 algorithm (see Wang and Gusfield 1997) and

describe briefly how the PTAS works. For convenience, we will use the alternative

formulation of tree alignment, that is, we will view tree alignment as a sequence re-

construction problem on trees.

A Ratio-2 Algorithm Using Uniform Lifting Let T be a binary (evolutionary) tree

such that each of its leaves is labeled with a unique given sequence. For convenience,

we convert T to an ordered tree by specifying the children of each internal node as left

and right children arbitrarily. A loaded tree for T is a tree in which each internal node

is also assigned a sequence label (not necessarily equal to a given sequence). A loaded

tree is called a lifted tree if the sequence label of every internal node v equals the

Figure 4.13
A PTAS for c-Diagonal Consensus Alignment.
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sequence label of some child of v. Figure 4.14a exhibits a lifted tree. In the figure,

numbers indicate from where a label is lifted. A lifted tree is called a uniformly lifted

tree if, for each level of T, either every internal node at the level receives its sequence

label from its left child or every internal node at the level receives its sequence label

from its right child. In other words, the lifting decisions for the internal nodes at the

same level are uniform. Figure 4.14b exhibits a uniformly lifted tree.

The following result explains why uniformly lifted trees are interesting.

theorem 15 There exists a uniformly lifted tree for T with a cost at most twice the

cost of the optimal tree alignment cost.

Now, let us explain how to compute an optimal uniformly lifted tree. To simplify

the presentation, we just give an algorithm for full binary trees here, although the

algorithm can be easily extended to arbitrary binary trees.

Suppose that T is a full binary tree. Let VðTÞ denote the set of internal nodes of T
and LðTÞ the set of leaves of T. For each node v, let Tv denote the subtree of T rooted

at v and SðvÞ denote the set of sequence labels of all descendent leaves of v. For each
v A VðTÞULðTÞ and each label s A SðvÞ, C½v; s; d� denotes the cost of the uniformly

lifted tree that labels node v with sequence s. We can compute C½v; s� iteratively using

dynamic programming. For each leaf v, we define C½v; si� ¼ 0 if the label of v is si. Let

v be an internal node, and v1 and v2 its two children. Suppose that si A SðvpÞ and

sj A SðvqÞ, where 1a pa 2, q A f1; 2g � fpg, and si and sj are at the same position of

the subtrees of Tv1 and Tv2 . (In other words, the two leaves of Tv1 and Tv2 labeled by

the sequences si and sj have the same rank in the left-to-right orderings of the leaves

in Tv1 and Tv2 .) Then C½v; si� can be computed as follows:

C½v; si� ¼ C½vp; si� þ C½vq; sj � þ mðsi; sjÞ ð4:9Þ
where mðsi; sjÞ is the optimal pairwise alignment cost between si and sj. Because the

sizes of both VðTÞULðTÞ and SðvÞ are bounded by OðkÞ, we can compute all the

Figure 4.14
(a) A lifted tree. (b) A uniform lifted tree.
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values C½v; si� in Oðk2Þ time if the pairwise alignment costs have been precomputed.

Hence the total running time of the algorithm is Oðk2m2 þ k2Þ ¼ Oðk2m2Þ, where m
is the length of the given sequences.

In fact, a better bound on the time complexity of the above algorithm can be

obtained by a more careful analysis. A pair of two sequences ðsi; sjÞ is a legal pair if si
and sj can be assigned at the ends of a same edge in a uniformly lifted tree. It is easy

to see that a sequence si can be involved in at most dðTÞ legal pairs, where dðTÞ is the
depth of T. Thus, there are at most kd legal pairs of sequences in total. Therefore, the

running time of our new algorithm is actually Oðkd þ kdm2Þ ¼ Oðkdm2Þ.
Using a data structure called extended tree, one can design an algorithm that works

for the general binary trees with the same time complexity (Wang and Gusfield 1997).

A PTAS for Tree Alignment Given any lifted tree, we may further reduce its cost by

keeping the lifted sequences on some nodes and reconstructing the sequences on the

other (internal) nodes to minimize the cost of the edges incident upon these (latter)

nodes. For example, based on the lifted sequences 2; 3; 5, we can compute a sequence

for the dark circled node in figure 4.14a such that the total cost of the three thin edges

incident on the dark circled node is minimized. The new sequence should in general

reduce the cost of the tree. This suggests the idea of partitioning a (uniformly) lifted

tree into a collection of overlapping components, keeping the lifted sequences at the

leaves of these components intact, and optimally reconstructing the sequences for the

internal nodes in each component, that is, doing a local optimization on each com-

ponent. The computation can be done in polynomial time as long as each component

has a constant size. Based on this idea, several polynomial time approximation

schemes have been proposed (Jiang et al. 1994; Wang and Gusfield 1997; Wang et al.

2001). Wang et al. (2001) gives the fastest algorithm. The running time and perfor-

mance ratio of the PTAS (Wang et al. 2001) are as follows:

theorem 16 For any fixed r, where r ¼ 2 t�1 þ 1� q and 0a qa 2 t�2 � 1, the PTAS

runs in time OðkdmrÞ and achieves an approximation ratio of 1þ 2 t�1

2 t�2ðtþ 1Þ � q
.

Here the parameter r represents the ‘‘size’’ of local optimization. In particular, when

r ¼ 2 t�1 þ 1, its approximation ratio is simply 1þ 2

tþ 1
.

4.6 Popular Heuristic Approaches

In this section, we describe some popular heuristic approaches that work reasonably

well in practice. Emphasis will be given to the progressive alignment (in particular
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Clustal W) and Gibbs sampling paradigms. McClure et al. (1994) o¤er a compara-

tive study on the performance of some of these methods on protein sequences.

4.6.1 Progressive Alignment Methods

A general strategy of this approach is to progressively merge two multiple alignments

of two subsets of sequences into one multiple alignment of the union of the two sub-

sets of sequences. Di¤erent progressive alignment methods use di¤erent criteria for

selecting two subsets of sequences to merge and di¤erent algorithms to perform the

merge. The best-known progressive alignment programs are perhaps DFALIGN and

Clustal W, which merge subsets of sequences and their alignments following a guide

tree (Feng and Doolittle 1987; Thompson et al. 1994). (Therefore these methods can

also be viewed as approximate methods for tree alignment.) In this section, we will

only outline the algorithm used in Clustal W. Thompson et al. (1994) o¤er the details

of Clustal W and Feng and Doolittle (1987) for DFALIGN.

The basic algorithm behind Clustal W proceeds in three steps: (1) Compute the

optimal alignment cost for each pair of sequences using standard dynamic program-

ming. This results in a distance matrix whose entries indicates the degree of diver-

gence of each pair of sequences in evolution. (2) Compute an evolutionary tree from

the distance matrix using some phylogeny reconstruction method. This tree will

be used as the guide tree. (3) Align the sequences progressively according to the

branching order given in the guide tree. The steps are explained in a bit more detail

below.

Although the dynamic programming algorithm for pairwise alignment is straight-

forward, step 1 can in fact be very time consuming and become the bottleneck of the

whole process, because here we have to align
k

2

� �
pairs. So, Clustal W also o¤ers

the option of using a fast approximate method based on the exact matching of small

tuples (Wilbur and D. Lipman 1983). On the other hand, the (slower) dynamic pro-

gramming algorithm for pairwise alignment of Clustal W incorporates the notion of

a‰ne gap cost functions. In a pairwise alignment, a gap is defined as a maximal

sequence of consecutive spaces. Hence, a gap represents a series of insertions (or

deletions) that happened at consecutive positions. Intuitively, it is logical to consider

such a series of insertions (or deletions) as a single evolutionary event rather than as

independent events, and hence assign cost accordingly. A popular gap cost function,

called a‰ne cost function, charges a gap of i spaces with a cost of gopen þ i � gext,
where gopen is a constant denoting the cost of opening a gap and gext is another con-

stant denoting the cost of extending the gap by a space. Pairwise alignment with

a‰ne gap costs can be computed in quadratic time by using dynamic programming
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(Gusfield 1997). The pairwise alignment costs are normalized taking into account the

lengths of sequences involved.

The guide tree is computed from the distance matrix by first using a popular

distance-based phylogeny reconstruction method, the Neighbor-Joining method

(Saitou and M. Nei 1987). This produces an unrooted tree with edge lengths propor-

tional to estimated divergence along each edge. The tree is then converted into a

rooted tree by placing the root at a ‘‘mid-point’’ on some edge where the means of

edge lengths on either side of the mid-point are equal. These edge lengths are also

used to derive a weight for each sequence as follows: Divide the length of an edge by

the number of descendent leaves sharing this edge. The weight of a sequence s is the

total (divided) lengths of edges on the path from the root to the leaf labeled by s.

Figure 4.15 illustrates an example guide tree with edge lengths and weights for

sequences. The sequence weights are given in brackets.

Once a guide tree and sequence weights have been computed, we do progressive

alignment by moving from the bottom of the tree toward the root and merging

alignments for larger and larger groups of sequences. For example, in the tree given

in figure 4.15, we could start by merging the pairwise alignment of sequences s3 and

s4 with sequence s5, and then merging this alignment with the pairwise alignment of

sequences s1 and s2. Each merger involves aligning two multiple alignments, and can

be computed by using a dynamic programming algorithm similar to that for the

alignment of a pair of sequences, as a multiple alignment can be viewed as a sequence

of columns of letters/spaces. In particular, the cost of a pair of columns is calculated

as follows. Suppose that A1 is an alignment of k1 sequences with weights w1; . . . ;wk1

Figure 4.15
Calculating weights for each sequence from the guide tree.
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and A2 is an alignment of k2 sequences with weights u1; . . . ; uk2 . Let c1 ¼ ða1; . . . ; ak1Þ
be a column of A1 and c2 ¼ ðb1; . . . ; bk2Þ a column of A2. Then the cost of these col-

umns is the weighted average of the cost between every letter/space in c1 and every

letter/space in c2:

mðc1; c2Þ ¼
X

1aiak1;1a jak2

wi � uj � mðai; biÞ=ðk1k2Þ

In this way, sequences that are highly divergent from the rest of the sequences are

given due consideration in the alignment process. (Note that the cost is in fact similar

to SP-cost.)

Dealing with gap costs in the process is a more complicated and subtle issue, and

we refer the reader to the original paper (Thompson et al. 1994).

GCG is another software package that is popular in sequence analysis. In GCG,

there is a program called PileUp for multiple sequence alignment. The algorithm

in PileUp is actually a simplification of DFALIGN and is very similar to earlier ver-

sions of Clustal W, although it employs di¤erent algorithms to build guide trees and

pairwise alignments. We refer the reader to websites such as http://gcg.nhri.org.tw/

pileup.html for details.

4.6.2 Iterative Method for Tree Alignment

Sanko¤ proposed an iterative method for tree alignment (Sanko¤ et al. 1976; Sanko¤

and Kruskal 1983). The basic idea is to (1) assign a sequence to each internal nodes,

(2) choose an internal node v, and (3) use the three sequences assigned to the three

neighbors of v to update the sequence assign to v, by local optimization, and (4) re-

peat the process until the cost of the tree cannot be improved.

To illustrate the iterative method (Sanko¤ et al. 1976), consider the phylogeny

in figure 4.16, which contains nine species on its leaves. A loaded tree is computed

initially (for example, by arbitrarily assigning leaf sequences to internal nodes). To

improve the cost of the tree, we divide the phylogeny into seven 3-components, as

shown in figure 4.16, each consisting of a center and three terminals. Local opti-

mization is done for every 3-component based on the labels of its three terminals

sequentially. The new center label can then be used to update the center label of an

overlapping 3-component. The algorithm converges eventually as each local opti-

mization reduces the cost of the tree by at least one. Thus, if the process is repeated

long enough, every 3-component will become optimal, although the resulting loaded

tree may not be optimal overall. Empirical results show that the algorithm produces a

reasonably good loaded tree within five iterations (Sanko¤ et al. 1976).
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4.6.3 Sequence Graph Approach

J. Hein (1989) introduced an approach for tree alignment based on the concept of

sequence graph. A sequence graph between two sequences can be obtained from the

two-dimensional matrix computed in the dynamic programming algorithm for an op-

timal pairwise alignment between the two sequences. Recall that the two-dimensional

matrix can be computed as follows:

cði; jÞ ¼ minfcði � 1; j � 1Þ þ mðs1½i�; s2½ j�Þ; cði � 1; jÞ þ mðs1½i�;DÞ;
cði; j � 1Þ þ mðD; s2½ j�Þg ð4:10Þ

where cði; jÞ is the cost between the two prefixess s1½1::i� and s2½1:: j� and mða; bÞ is the
cost of the pair of opposing letters/spaces a and b. Once the two-dimensional matrix

is computed, one can use the standard back-tracing method to obtain an optimal

alignment. In the back-tracing process, if value cði; jÞ is obtained from cði 0; j 0Þ, where
i 0 (or j 0) is either i (or j) or i � 1 (or j � 1, respectively), then we move from cell ði; jÞ
in the matrix to cell ði 0; j 0Þ. This move determines a column of the optimal alignment.

The process is repeated until we reach cell ð0; 0Þ of the matrix. In this way, we com-

pute a path in the matrix that represents an optimal alignment.

In order to obtain all the optimal alignments, we can modify the above back-tracing

process such that each time when we move back, we consider all the cði 0; j 0Þ’s that
lead to the smallest value in equation (4.10). In this way, we obtain a graph from the

Figure 4.16
A phylogeny with nine species, which is divided into seven 3-components.
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back-tracing process, instead of a path. This graph is called the sequence graph be-

tween the two sequences, which contains information about all optimal alignments

between the two sequences and thus all the ‘‘intermediate’’ sequences between them.

In fact, every path in the graph from cell ð0; 0Þ to cell ðjs1j; js2jÞ represents an optimal

alignment. An example is given in figure 4.17.

Recall that for tree alignment, we are given a tree T and a set of sequences, one on

each leaf of T. Hein’s sequence graph method computes a sequence graph between

two sequences assigned to a pair of two sibling leaves and assigns the sequence graph

on the parent node v. Then it treats v as a leaf (i.e., it deletes the two children of v)

and repeats the process until one node remains. In a general step of this process, one

may have to align a sequence with a sequence graph or align a sequence graph with

another sequence graph. This can be done by using dynamic programming in a way

similar to computing a sequence graph between two sequences. Here each node in the

sequence graph represents a set of substrings. Let i and j be two nodes in two sequence

graphs. d½i; j� denotes the smallest tree alignment cost for any two sequences, one from

each sequence graph. The cost d½i; j� can be computed as follows:

d½i; j� ¼ minfmðlðiÞ; lð jÞÞ þ d½i 0; j 0�g ð4:11Þ
where i 0 (or j 0) is either i (or j) or one of the nodes in the sequences graph preceding i

(or j), lðiÞ (or j) is either a space or one of the last letters in the substrings represented

by i (or j) (the choices depend on i 0 [or j 0]), and the minimum is taken among all

possible configurations (see Hein 1989 for details). Eventually, every internal node is

assigned a sequence graph. We choose the sequences from the set of sequences rep-

resented by sequence graphs that lead to the smallest tree-cost.

This approach is similar to the lifting methods for tree alignment in the sense that

lifting methods assign each internal node with a given sequences whereas the sequence

graph approach assigns each internal node with a set of intermediate sequences. Note

Figure 4.17
(a) An optimal alignment. (b) Another optimal alignment. (c) The sequence graph.
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that this approach cannot guarantee that the solutions obtained are optimal. More-

over, it is not known how well this algorithm approximates the optimum. The time

and space complexity of the algorithm in the worst case is exponential in terms of k,

the number of given sequences (leaves), because the sequence graph assigned to the

root of the tree is in fact k-dimensional.

In practice, this approach works relatively fast and the results obtained are rea-

sonably good (Hein 1989). It is an interesting open problem to give a mathematical

analysis on the average size of the sequence graphs used in this approach.

When combined with the progressive alignment approach, the sequence graph

method can also be extended to work for SP alignment and consensus alignment.

4.6.4 Stochastic Algorithms

An important application of multiple sequence alignment is in the identification of

conserved regions. In this case, we can think of a conserved region as a pattern or, as

more commonly called, motif that appears in multiple sequences or multiple regions

of a sequence. Such a motif may represent a significant functional or regulatory ele-

ment. Recently, there has been extensive research on using stochastic (or probabilistic)

algorithms to find motifs based on techniques such as hidden Markov model (HMM)

and Gibbs sampling (Durbin et al. 1998). The basic idea behind these algorithms is to

treat a motif as a multinomial probabilistic distribution and try to infer the distribu-

tion from given data using some kind of unsupervised learning technique. In Gibbs

sampling, the elements of a motif are assumed to be more or less independent from

each other. On the other hand, HMM relates the elements to each other by the means

of a state.

In this section, we only outline how the Gibbs sampling technique works, to give a

flavor of the stochastic methods. For details on the HMM technique, we refer the

reader to Durbin et al. 1998.

The Motif Identification Problem A motif can be encoded in many ways. For in-

stance, a motif can be encoded as a consensus sequence, an alignment of sequences,

or a profile (or frequency matrix), a table giving the probabilities of occurrence of all

letters in the sequence-alphabet at each position in the motif (see chapter 14 and

Gusfield 1997). To a limited extent, it is possible to transform one type of motif-

encoding into another; for instance, a motif encoded as an alignment of sequences

can be transformed into a profile by computing the frequencies of occurrence of every

letter in each column of the alignment, and this profile can in turn be transformed

into a consensus sequence by selecting for each position in that sequence the letter

with the maximum frequency of occurrence in that position of the profile.
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Each motif has an associated function that is used to assess how well a given se-

quence matches that motif. A motif matches a sequence if the value of that motif ’s

associated cost (or similarity score) function relative to the motif and that sequence is

below (or above) a specified threshold value. The nature of this function depends on

the type of motif-encoding; for instance, if the motif is encoded as a sequence, the

function might be a distance function between pairs of sequences, and if the motif is

encoded as an alignment of sequence, the function might be the cost of an optimal

alignment of the sequences already in the alignment and the new sequence. When

motifs are encoded as sequences, two popular matching functions are Hamming dis-

tance (the number of positions at which letters di¤er in two sequences of equal length)

and edit distance (the minimum number of letter substitutions, insertions, and dele-

tions that must be applied to transform one of the given sequences into the other). Note

that both of these functions can be rephrased as similarity functions, which measure

the number of identical-letter positions and the maximum number of identical-letter

positions relative to a padding of both sequences with special indel letters, respec-

tively. A motif that matches one or more substrings of a given sequence is said to

appear in that sequence.

A motif may allow gaps or spaces, which correspond to positions at which inser-

tions or deletions can occur in the matching of that motif to a given sequences. These

gaps can be explicit in the motif itself (either as special letters D in a motif-sequence

or profile or as the gaps/spaces in an alignment of sequences) or implicit in that

motif ’s associated matching function. For instance, the latter would be the case if a

motif is encoded as a sequence and the matching function is edit distance. If the motif

incorporates gaps, it is a gapped motif; else, it is an ungapped motif. Formally, motif

identification can be formulated as an optimization problem as:

definition 4 (Motif Identification) Given a set S of sequences over alphabet S and

a motif-to-sequence distance function d, find a motif M and a substring x 0 (a motif

instance) for each sequence x A S such that
P

x 0 dðM; x 0Þ is minimized.

Gibbs Sampling for Motif Identification Gibbs sampling is essentially a general

stochastic strategy for determining the parameters of a statistical model relative to a

given data set. This strategy starts with some setting of parameter-values and itera-

tively changes the value of one parameter at a time by assuming that the remaining

parameters are correct and invoking Bayes’s theorem until all parameters converge to

stable (if not optimal) values (see Lawrence et al. 1993; Liu et al. 1995, and references

for details). With reference to the motif identification problem, the model is a motif

encoded as an alignment of sequences, the parameters are the positions of the motif

within each sequence in a given setS (the motif-instances), and the stochastic heuristic
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modifies these motif-instances one sequence at a time, one sequence per iteration, until

the alignment of these motif-instances denotes a stable (if not optimal) motif.

Figure 4.18 gives a generic algorithm for Gibbs sampling motif identification.

Though several steps of this algorithm may be stochastic, the primary stochastic ele-

ment is the selection performed in step 8. Under stochastic selection, an element in a

set is selected at random relative to the probabilities derived by normalizing the

weights assigned to the elements in that set. This type of selection is intuitively more

appealing than a deterministic selection that would always select the highest- or

lowest-weighted value because stochastic selection can allow a local-search heuristic

algorithm to escape from (and hence avoid being trapped in) local optima.

Due to the space constraint, we only describe in more detail how the Gibbs motif

identification algorithm works for ungapped motifs. (Extensions to gapped motifs

can be found in Lawrence et al. 1993; Liu and Lawrence 1995; Rocke and Tompa

1998.)

Lawrence et al. (1993) give the first algorithm for identifying motifs by Gibbs

sampling. The algorithm finds ungapped motifs of a pre-specified length W. In this

algorithm, a motif is modeled as a collection of W þ 1 multinomial probability dis-

tributions over the sequence alphabet S, where the first W of these distributions cor-

respond to a profile-encoding of the motif, that is, the first W of these distributions

Figure 4.18
Generic Gibbs sampling algorithm for motif identification.
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correspond to the frequencies of occurrence qi; j, 1a iaW , and 1a ja jSj, of letter
j at position i in the motif, and the final distribution corresponds to the ‘‘back-

ground’’ frequencies of occurrence pj, 1a ja jSj, of letter j in parts of the sequences

that are not in the motif. A candidate motif-instance sequence x ¼ x1x2 . . . xW over

alphabet S is evaluated against the motif in terms of the ratio

Qx=Px ¼
YW
i¼1

qi; sym�indðxiÞ=psym�indðxiÞ ð4:12Þ

where sym�indðsÞ is the index of letter s in S. For numerical reasons, this product of

ratios is more often computed as an equivalent sum of log-ratios.

The so called F-value is defined (Lawrence et al. 1993) to measure the quality of a

motif

F ¼
XW
j¼1

XjSj
i¼1

ci; j log qi; j=pj ð4:13Þ

where ci; j is the unnormalized count of the number of occurrences of letter i at posi-

tion j in the motif, and qi; j and pj are computed from the motif in a way similar to

equation 4.12.

Intuitively, by seeking motifs that maximize the ratio Qx=Px, the algorithm is

searching for the motif whose collective letter-occurrence distribution is probabilisti-

cally the most distinct from the background letter-occurrence distribution. As such,

the distance function encoded in this algorithm is a variant of the Kullback-Leibler

distance

HðQ kPÞ ¼
X
x

QðxÞ log QðxÞ=PðxÞ ð4:14Þ

that gives a measure of the distinctness of probability distributions Q and P.

(H½Q kP� is also known as the relative entropy of Q to P). This connection is more

easily seen in the re-formulation of the ratio Qx=Px in terms of F.

Each iteration of the main loop in this algorithm runs in OðkmþW jSjÞ space and
OðkmW jSjÞ time, where k is the number of given sequences and m is the length of the

longest given sequence. Simulations and rules-of-thumb derived from practical expe-

rience (Lawrence et al. 1993) suggest that the number of iterations required for the

algorithms to converge on a motif is small on real datasets; however, no upper

bounds on the number of iterations is known, and hence no worst-case time com-

plexity can be given for the algorithm as a whole. That being said, it is known that if
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the algorithm is allowed to run to infinity, it will always find an optimal motif (Liu

et al. 1995; Liu and Lawrence 1995).

The algorithm described above is the most basic version of the Gibbs sampling

motif-finding algorithm, in that it assumes that there is one motif in the given set of

sequences, one copy of that motif in each sequence, and the length of that motif is

known. Modifications of this basic algorithm that allow it to automatically set motif

length and automatically determine both the number of copies of a motif in each

sequence as well as the number of motifs present in the set of given sequences are

described (albeit often in statistical rather than algorithmic terms) in Lawrence et al.

1993; Liu and Lawrence 1995; and Liu et al. 1995.

4.7 Concluding Remarks and Open Problems

Although many approaches have been attempted for multiple sequence alignment

and many algorithms designed, the problem still remains one of the most challenging

problems in computational biology, both theoretically and practically.

A major open problem in theory is if SP alignment has a PTAS assuming metric

pairwise cost schemes. Open questions that are more relevant in practice include (1)

How do we make the multiple alignment programs fast enough to handle hundreds

or thousands of sequences simultaneously? (2) How do we integrate multiple sequence

alignment with phylogeny reconstruction? And (3) Can we make multiple sequence

alignment a more interactive process to take advantage of special domain knowlege

about the sequences being aligned? Question (2) is closely related to the generalized

tree alignment problem that is known to be MAX SNP-hard and thus have no PTAS.

Question (3) could be a key for overcoming the combinatorial complexity of multiple

sequence alignment.
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5 Phylogenetics and the Quartet Method

Paul Kearney

5.1 Introduction

Evolution is a catchall phrase that encompasses a collection of processes that operate

on DNA sequences. Roughly speaking, these processes operate on the species, genome

and, nucleotide levels.

A species is a population of individuals in which similar yet distinct genotypes

are observed. Genotypes di¤er due to gene variants called alleles. Allele frequencies

within a species change from generation to generation due to forces such as random

genetic drift and natural selection.

Genomes are also altered by events such as gene duplication, horizontal gene

transfer, gene rearrangements, and tandem sequence duplications. These events can

act as forces of innovation. For example, a gene duplication event can yield two

genes, A and B, that initially have the same function. However, over time they may

follow di¤erent evolutionary paths, permitting B to take on a function distinct from

the function of A. An example of this is trypsin and chromotrypsin (Barker and

Dayho¤ 1980), which cleave polypeptide chains at di¤erent residues.

Finally, evolution also operates on a very low level where nucleotides are sub-

stituted, inserted, and deleted. These point mutations can be advantageous, delete-

rious, or neutral in their e¤ect upon genes. To illustrate by analogy, consider the

three mutations of the phrase ‘‘nothing last forever’’ below and the e¤ect that the

mutations have upon its meaning.

no thing last forever

nothing lass forever

nothing lasts forever

The first mutation (insertion of a space) is neutral in the sense that the meaning of the

phrase is still clear. The second mutation (substitution of ‘‘s’’ for ‘‘t’’) is deleterious

because the phrase is now meaningless. The third mutation (insertion of ‘‘s’’) is ad-

vantageous in the sense that grammatically, the sentence has been improved. The

same results hold true for gene sequences. Point mutations can have little functional

e¤ect upon the gene, cause the gene to lose function, or improve the functionality of

the gene.

Computational techniques are employed in the analysis of all evolutionary pro-

cesses, the details of which would fill several texts. This chapter focuses on the de-

velopment of computational techniques for the analysis of gene sequence evolution

by point mutation. Gene sequence evolution, and more generally molecular evolu-



tion, are of interest for several reasons:

. Because gene sequences are the direct product of evolution, gene sequences contain

clues to the evolutionary processes that produced them.

. Gene sequences encode proteins that are the functional and structural units of life.

Studying the evolution of gene sequences permits an understanding of how biological

functions have evolved.

. Unlike morphological features, there are genes that are shared by most organisms.

Consequently, evolutionary studies of species using gene sequences can permit more

breadth than the evolutionary study of species using morphological features.

. In 1963, Margoliash published the first evolutionary tree based on the amino acid

sequence of the protein cytochrome c (Margoliash 1963). Advances in sequencing

technology now permit the routine evolutionary analysis of large collections of gene

and protein sequences.1

This chapter avoids, when possible, material covered in excellent sources such as

Molecular Phylogenetics (Swo¤ord et al. 1996) and Molecular Evolution (Li 1997).

These books discuss the application of computational techniques to sequence data,

whereas this chapter focuses on the development of computational techniques for the

evolutionary analyses of gene sequences. To this end, we will use the quartet method

as an illustrative example. In section 5.3, we present an introduction to the quartet

method and its foundations. In section 5.4, we o¤er and assess several examples of

the quartet method. Finally, in section 5.5 we discuss future trends and present a list

of resources.

5.2 Rational Development of Computational Methods for Evolutionary Analyses

Phylogenetics is the design and development of computational and statistical methods

for evolutionary analyses. The general concepts that arise in phylogenetics are briefly

introduced here and will be discussed in more depth in later sections. For the purposes

of this discussion, we restrict our attention to the evolutionary analyses of sequences.

5.2.1 Models of Evolution

The rational development of a phylogenetic method requires a model of evolution as

a starting point. Models of evolution have two components: a model of cladogenesis

and a model of gene sequence evolution.

1. For example, the Ribosomal Database Project contains evolutionary trees based on ribosomal RNA
sequences obtained from thousands’s of species (Maidak et al. 1999).
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Models of cladogenesis describe the process of species/sequence creation and

species/sequence loss (Slowinski and Guyer 1989; Losos and Adler 1995). Funda-

mental to these models is the belief that the evolutionary history of a family of related

genes can be represented by an evolutionary tree:

definition 1 Let S be a set of gene sequences. An evolutionary tree T for S is a

rooted tree where the leaves are labeled by elements of S. T is called weighted if the

edges of T have associated lengths.

Internal nodes of an evolutionary tree represent ancestral gene sequences. Conse-

quently, internal nodes also correspond to speciation events where the parent lineage

gives rise to two or more child lineages. If an evolutionary tree is binary (all internal

nodes have two children), it is called resolved. Edge weights are typically proportional

to the amount of mutation that has occurred from the parent sequence to the child

sequence.

One must be careful to distinguish between species trees and gene trees. A species

tree represents the evolutionary history of a collection of species, whereas a gene tree

represents the evolutionary history of a collection of related genes. Even if homol-

ogous genes are sampled from each species, the resulting gene tree may not be the

same as the species tree (Li 1997) due to paralogous and orthologous gene evolution.

Even the assumption that evolutionary histories can be described using trees is not

always true due to horizontally transferred genes (Li 1997).

Models of sequence evolution, such as the Jukes-Cantor model (Jukes and Cantor

1969), describe how sequences evolve over time as a result of point mutations. Models

are varied and incorporate transition versus transversion bias, rate variance among

sites, codon position bias, and other complexities of sequence evolution. These models

are stochastic in nature. The reader is directed to Swo¤ord et al. 1996 for a detailed

presentation. Note that these models do not address the evolutionary of protein sec-

ondary and tertiary structure constraints (Benner et al. 1997, 1993).

5.2.2 Methodology

Phylogenetic methods vary considerably in the concepts upon which they are devel-

oped. In this section, we briefly overview and contrast several popular phylogenetic

methods, which are discussed in detail elsewhere (Swo¤ord et al. 1996; Li 1997). In

the next section, we explore the quartet method in depth.

The maximum likelihood method (Felsenstein 1981) is widely accepted as the most

accurate method for inferring evolutionary trees from sequence data. This statisti-

cal approach is based on an assumed model of evolution. The goal is to obtain the

evolutionary tree that most likely produced the observed sequences. However, the
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maximum likelihood tree is extremely costly to compute as it requires a search of the

entire space of evolutionary trees, including ancestral sequence assignments. Heu-

ristic versions of maximum likelihood have been developed, such as fastDNAML

(Olsen et al. 1994), which can analyze large data sets but at the cost of accuracy.

The maximum parsimony method (Farris 1970) is based on the assumption that

the correct evolutionary tree is the one that requires the smallest number of point

mutations to explain the observed sequences. Of course, this assumption is violated in

reality, as point mutations can be superimposed; nevertheless, for low mutation rates,

the assumption is reasonable. The maximum parsimony method lends itself to dis-

crete analysis, and so has received much attention from the computational biology

research community.

Distance methods such as neighbor joining (Saitou and Nei 1987) are based on the

observation that the distance metric dT of an evolutionary tree T is unique to T

(Hakimi and Yau 1964; Waterman et al. 1977) where, for each pair of sequences x

and y, dTðx; yÞ is the path length in T from x to y. Because dT is unique to T, dT is

very specific and useful information for reconstructing T. Distance methods estimate

dTðx; yÞ by assessing the similarity of sequences x and y and then correcting for

unobserved superimposed mutations under some model of sequence evolution. This

information is then used to produce an estimate of T. A criticism of distance methods

is that they lose information by reducing sequence information to similarity data,

whereas maximum likelihood and maximum parsimony do not. However, distance

methods tend to be very e‰cient, permitting the analysis of large data sets.

Many phylogenetics methods, typically distance methods, require an initial align-

ment of the sequences. In this case, the alignment of the sequences is itself an evolu-

tionary hypothesis and a¤ects the accuracy of the evolutionary analysis (Doolittle

1986; Feng and Doolittle 1987). Consequently, multiple sequence alignment methods

are phylogenetic methods. Recently, distance methods that do not require sequence

alignment have been developed (Li et al. 2001).

5.2.3 Assessment

There are many criteria by which a phylogenetic method can be assessed. Some of

these are discussed briefly below. More detailed discussions appear in the following

section.

Topological accuracy The topology of an evolutionary tree is defined by its set of

edges. An edge e of an evolutionary tree T is defined by the bipartition ðX ;YÞ of the
sequences induced by the removal of e from T, yielding two evolutionary trees labeled

by X and Y, respectively. Given two evolutionary trees T1 and T2, their topological
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intersection is the set of edges common to T1 and T2. Clearly, the larger the topo-

logical intersection between T and an estimate T 0 of T, the better the estimate.

Consistency A phylogenetic method is consistent if it converges to the correct evo-

lutionary tree given an infinite amount of sequence data (Felsenstein 1988). In prac-

tice there is not an infinite, or even a large, amount of sequence data. Nevertheless,

consistency is considered a desirable property, whereas inconsistency (Felsenstein

1978a) is an indication that the phylogenetic method has limitations.

Power The power of a consistent phylogenetic method is the rate at which it con-

verges to the correct evolutionary tree as more and more sequence data is used. More

powerful methods require less sequence data to produce the correct evolutionary tree,

and so are preferable.

Computational e‰ciency The problem of inferring an evolutionary tree is large on

many dimensions. In particular, the number of evolutionary trees with n leaves is

enormous:

ð2n� 3Þ!
2n�2ðn� 2Þ!
As data sets become larger and larger, the e‰ciency of a phylogenetic method

becomes crucial. In particular, present-day datasets are so large that only heuristic

methods can be used for analysis.

Robustness A phylogenetic method is robust if it remains accurate even when its

assumptions are violated. This is important because phylogenetic methods are based

upon simplified models of evolution and are used to analyze sequence data sets that

have evolved in di¤erent ways.

Transparency The reality is that many biologists will only use phylogenetic methods

that are understandable, and so often mathematically complicated methods are not

utilized. In particular, methods that make their biological assumptions explicit are

preferable.

5.3 Introduction to Quartet Methods

The quartet method is a paradigm for developing phylogenetic methods. In this sec-

tion, I introduce the quartet method and explore its foundations. In the next section,

I present several examples of the quartet method. A diagram depicting the two stages

of the quartet method appears in figure 5.1.

The input to the quartet method is a collection of sequences S. A quartet is a set of

four sequences, and a quartet topology is an evolutionary tree for a set of four
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sequences. The first stage of the quartet method infers a set Q of quartet topologies

from S using a phylogenetic method such as maximum likelihood, maximum parsi-

mony, or neighbor joining. The four possible quartet topologies for sequence quartet

fa; b; c; dg, denoted ab j cd, ac j bd, ad j bc and ðabcdÞ, appear in figure 5.2. The first

three of these quartet topologies are resolved, whereas the last is unresolved. Quartet

topology ab j cd is induced in an evolutionary tree T if PT ða; bÞVPTðc; dÞ ¼ q.

The second stage of the quartet method is called recombination. In this stage, the

quartet topologies in Q are recombined to form an estimate T of the unknown evo-

lutionary tree Ttrue, where Ttrue is the evolutionary tree that models the actual his-

torical evolution of sequences in S. This requires the definition of an optimization

criterion for assessing an evolutionary tree T, given Q and an algorithm for obtaining

Figure 5.1
The two stages of the quartet method.

Figure 5.2
The four possible quartet topologies for quartet fa; b; c; dg.
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or approximating the optimal evolutionary tree. The computational challenge and

biological di‰culty of recombination is that Q will contain quartet errors that make

the recombination stage nontrivial. A quartet topology ab j cd A Q is a quartet error if

ab j cd B QTtrue
, where QT denotes the set of quartet topologies induced in an evolu-

tionary tree T. That is, Q is an estimate of QTtrue
.

When stated explicitly, the optimization criterion upon which current quartet

methods are based is typically a variation of the following:

maximum quartet consistency (MQC)

Instance: A set Q of quartet topologies over sequence set S.

Goal: Find an evolutionary tree T for sequences S that maximizes jQT VQj.
There are many variations of MQC. For example, quartet topologies may be

assigned confidence values or weights that can be incorporated into the recombi-

nation optimization criterion. A set of quartet topologies is interweighted if each

quartet topology q is assigned a nonnegative weight wðqÞ. A set of quartet topologies

is intraweighted if for each quartet fa; b; c; dg, weights for ab j cd, ac j bd, and ad j bc
are specified. If a set of quartet topologies Q contains a quartet topology for each

quartet of sequences in S, then Q is called complete. Otherwise, Q is incomplete. A set

of quartet topologies is rooted if each quartet topology is assigned a root. These

roots can then be utilized during recombination.

Like many phylogenetic methods, some quartet methods produce an unrooted and

unweighted evolutionary tree T. Other methods can then be applied to obtain edge

weights if desired (Swo¤ord et al. 1996). Usually the outgroup method is used to de-

termine the root of T. For the remainder of the chapter, one can assume that the

evolutionary trees discussed are unrooted and unweighted.

5.3.1 Foundations of the Quartet Method

Several requirements must be met in order for the quartet method to be a viable

phylogenetic method:

. QT must contain su‰cient information to reconstruct T. In fact, because the set Q

of quartet topologies inferred from the sequence data S almost always contains

quartet errors, it is necessary that estimates Q of QT be su‰cient to reconstruct T.

. Quartet methods must either accelerate existing methods such as maximum likeli-

hood and maximum parsimony, or improve their accuracy. That is, it must be either

more e‰cient or more accurate to use a quartet method to obtain an estimate, where

the set Q of quartet topologies is obtained using maximum likelihood, than it is to

obtain an estimate directly from the sequence data using maximum likelihood.
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. Q must be a good estimate of QT , otherwise it would be impossible to reconstruct T

from Q.

Let’s review evidence that the quartet method satisfies these requirements. The

mathematical basis for the quartet method is formalized by the four point condition

(Buneman 1971):

theorem 1 D is the distance metric of an evolutionary tree if and only if, for all

quartets fa; b; c; dg:
Dða; bÞ þDðc; dÞaDða; cÞ þDðb; dÞ ¼ Dða; dÞ þDðb; cÞ
for some permutation of a, b, c, and d, where Dðx; yÞ denotes the path length from

leaf x to leaf y.

It follows from the four-point condition that indeed quartet topology information

is highly specific and can be used to recover an evolutionary tree (Colonius and

Schulze 1981):

theorem 2 QT is unique to T and T can be reconstructed from QT e‰ciently.

A more relevant result for the recovery of an evolutionary tree T from an estimate

Q of QT , as is necessary in practice, appears below (Jiang et al. 1998). Here an edge

e of an evolutionary tree T is defined by the bipartition ðX ;YÞ of the sequences

induced by the removal of e from T yielding two evolutionary trees labeled by X

and Y, respectively. Given Q and an edge e ¼ ðX ;Y Þ, the number of quartet errors

on e is

jfxx 0 j yy 0 j x; x 0 A X ; y; y 0 A Yg �Qj
theorem 3 If each edge e ¼ ðX ;YÞ of T has less than ðjX j � 1ÞðjY j � 1Þ=2 quartet

errors, then T is the unique evolutionary tree that minimizes jQT �Qj. Furthermore,

this bound on quartet error is tight.

This result quantifies the amount of quartet error that is tolerable while Q still

gives specific information about T. In section 5.4.5, the hypercleaning algorithm is

presented, which realizes T given a set Q satisfying the quartet error bound in theo-

rem 3.

The computational basis for the quartet method is that computationally intensive

methods such as maximum likelihood and maximum parsimony, though infeasible

for inferring even moderately sized evolutionary trees, can be applied to infer quartet

topologies e‰ciently. A discussion of the tractability of recombination appears be-
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low, in section 5.4.2. Initial research indicates that the quartet method is more e‰-

cient than methods such as maximum parsimony and maximum likelihood (Berry

et al. 2000, 1999; Strimmer and von Haeseler 1996), while still providing a high degree

of accuracy. However, further research is required.

5.3.2 Inferring Quartet Topologies and Taxonomic Sampling

Whereas quartet recombination is primarily the combinatorial problem of reassem-

bling pieces (quartet topologies) of the unknown evolutionary tree, the inference

stage is primarily a biological problem where the goal is to infer the evolutionary

history of a sequence quartet. There is evidence to suggest that this dichotomy has

advantages:

. General advances in phylogenetic methods automatically transfer to the quartet

method. Specifically, phylogenetic methods can be optimized for inferring quartet

topologies. For example, maximum likelihood methods such as fastDNAML (Olsen

et al. 1994) are heuristic for moderate to large sequence sets but are exact methods for

instances of size four.

. Our knowledge of how well various phylogenetic methods infer quartet topology

under various conditions is substantial (for example, see Huelsenbeck and Hillis

1993). This wealth of knowledge can be leveraged to infer quartet topology more

accurately.

The ability to accurately infer quartet topologies is closely related to the concept of

taxonomic sampling. Hendy and Penny (1989) introduced the idea that adding taxa

(in our case sequences) to the dataset so that long branches of the evolutionary tree

are shortened may increase the accuracy of the resulting estimate (see also Lecointre

et al. 1993). This idea later received support from a study conducted by Hillis (1996)

that resulted in a series of papers validating, criticizing, or clarifying taxonomic sam-

pling (e.g., Kim 1996; Greybeal 1998; Poe 1998; Smith and Warnow 1998).

From the perspective of the quartet method, the relevant question is whether or not

quartet topologies are more accurately estimated when embedded within a larger set

of sequences. That is, should a given quartet topology be extracted from an evolu-

tionary tree inferred from a super sample of the quartet of interest?

Graybeal (1998) used a simulation study to examine the e¤ect of adding taxa to a

Felsenstein zone (Felsenstein 1978b) quartet topology and found that there was an

advantage to super sampling a quartet topology when using maximum parsimony

but not when using maximum likelihood. Similarly, Smith and Warnow (1998) used

a simulation study that examined the e¤ects of adding more taxa to a Felsenstein
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zone quartet topology and found that when sequence length is su‰ciently long, there

is an advantage to super sampling when using maximum parsimony and neighbor

joining.

Although these results suggest that super sampling a single pathological quartet

results in improved accuracy, they do not address the issue of how the accuracy of all

quartets are a¤ected by super sampling. For example, super sampling can create ad-

ditional Felsenstein zone quartet toplogies. Badger and Kearney (2000) examined the

simultaneous e¤ects of super sampling on distributions of quartet topologies in an

experimental study where it was found that the overall accuracy of quartets was not

significantly increased by super sampling strategies.

5.4 A Survey of Quartet Methods

Quartet methods have received much attention in both the biological and computa-

tional communities in recent years. Here some of the highlights of this research is

presented. Although this survey is certainly not exhaustive, it does present several

important and interesting concepts that arise in the development of quartet methods.

Essential contributions of the presented methods are presented, along with critical

assessments and indications of research remaining to be conducted.

5.4.1 Quartet Puzzling

Quartet puzzling, introduced by Strimmer and von Haeseler (1996), is designed to be

a practical heuristic quartet method for inferring evolutionary trees and is currently

the most widely used quartet method.

Method Overview Quartet puzzling proceeds by first inferring quartet topologies

using maximum likelihood, although any phylogenetic method could be used. The

sequences are then randomly ordered and an evolutionary tree is built by sequentially

inserting the sequences into the evolutionary tree. The branch of the evolutionary tree

onto which sequence s is inserted is determined by polling all quartets involving se-

quence s. Specifically, for each quartet topology sx j yz, the edges on the path in the

evolutionary tree from y to z receive a penalty. The edge in the evolutionary tree

penalized the least is then the insertion point for s. Ties are broken arbitrarily. This

randomized procedure is repeated several times to produce a collection of evolution-

ary trees T1;T2; . . . ;Tk. From this collection a maximum consensus evolutionary tree

T is obtained (Margush and McMorris 1981). The maximum consensus evolutionary

tree contains those edges that occur in more than half of the evolutionary trees

T1;T2; . . . ;Tk.
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Method Assessment Although the optimization criterion is not explicit, implicitly

it attempts to optimize the MQC criterion. The procedure is randomized and re-

peated in order to avoid local optima in the evolutionary tree space. The probability

of selecting a sequence insertion order that yields an optimal or near optimal evolu-

tionary tree, in the sense of the MQC criterion, stands as the most important un-

resolved question surrounding quartet puzzling. This is crucial because if this

probability is small or zero, then it is unlikely or impossible that quartet puzzling will

find the optimal tree even with substantial computational resources. In practice, one

would simply iterate as many times as computationally feasible.

The motivation for the penalty rule is that an edge should be penalized if the in-

sertion of s onto that edge results in sx j yz not being realized by the evolutionary

tree. However, the quartet puzzling penalty rule is slightly flawed in that it does not

penalize edges in subtrees of the path from y to z excepting the subtree containing x

as depicted in figure 5.3.

The maximum consensus evolutionary tree is well-defined in the sense that if two

edges appear in more than half of the evolutionary trees T1;T2; . . . ;Tk, then at least

one of these evolutionary trees contains both e1 and e2. This implies that e1 and e2 are

compatible, as required. A collection of bipartitions of the sequence set S (i.e., edges)

are compatible if they can coexist within the same evolutionary tree. It is well-known

that a set of bipartitions is compatible if they are pairwise compatible.

The weakness of the maximum consensus evolutionary tree T is that it may not be

resolved despite there being edges in T1;T2; . . . ;Tk that could fully resolve T yet do

not appear in over half of the evolutionary trees Ti. Hence, quartet puzzling often

produces a conservative estimate of the unknown evolutionary tree Ttrue. Various

heuristics can be utilized to further resolve this conservative estimate.

Quartet puzzling utilizes unweighted quartet topologies but could easily be extended

to utilize both intraweighted and interweighted quartet topologies. Quartet puzzling

is publicly available at http://www.tree-puzzle.de/.

Figure 5.3
Dashed lines are edges that s should not be inserted on if sx j yz A Q.
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5.4.2 Maximum Quartet Consistency

Here we discuss the complexity status of the recombination stage of the quartet

method and describe an approximation algorithm that addresses the recombination

problem. As discussed above in section 5.3, the recombination stage is typically

formulated as the Maximum Quartet Consistency (MQC) problem. Analysis of the

complexity status of a problem is important because it informs the algorithm design

strategy for solving the problem.

An interesting observation is that the distinction between a complete and incom-

plete quartet topology set is crucial to the complexity status of the MQC problem.

The incomplete version of MQC is NP-hard (Steel 1992) and can easily be shown to

be MAX-SNP–hard (Papadimitriou 1994). The complete version of MQC is also

NP-hard (Berry et al. 1999); however, it can be approximated with arbitrary accuracy

with the approximation algorithm described below (Jiang et al. 1998). This result

is fundamental to establishing the feasibility of the quartet method paradigm as it

establishes a performance guarantee for quartet topology recombination.

Instances of complete MQC are dense relative to instances of incomplete MQC. In

recent years, it has been discovered that dense versions of MAX-SNP problems such

as Max-Cut, Betweenness, and Max-k-Sat have yielded polynomial time approxi-

mation schemes (PTAS) for these problems (Arora et al. 1996, 1995). Dense instances

of problems such as Max-Cut are graphs with Wðn2Þ edges, whereas dense instances

of Max-k-Sat are boolean k-Sat formulae with WðnkÞ clauses.
Method Overview Let Q be a complete instance of MQC with label set S and let

TOPT be an optimal solution. Because a randomly selected tree has a one-third

chance of inducing ab j cd A Q, for each quartet fa; b; c; dg, jQTOPT
VQjb n

4

� �
=3

(Ben-Dor et al. 1998b; Berry 1998). The goal is then to find an approximation algo-

rithm such that

jQTAPX
VQjb jQTOPT

VQj � �n4

where TAPX is the result of the approximation algorithm. The approximation algo-

rithm that accomplishes this is founded upon two concepts: a k-bin decomposition of

TOPT and smooth integer polynomial programs.

definition 2 Tk is a k-bin decomposition of TOPT if there is a partition of S into

bins S1;S2; . . .Sk such that

. For each Si, jSija 6n=k. Furthermore, there is a vertex vi of degree jSij þ 1, called

the bin root, that is adjacent to each vertex in Si.
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. For all quartets fa; b; c; dg where a, b, c, and d are in di¤erent bins of Tk,

ab j cd A QTOPT
if and only if ab j cd A QTk

.

There is a k-bin decomposition Tk of TOPT such that jQTk
VQjb jQTOPT

VQj �
ðc 0=kÞn4, for some constant c 0. To approximate TOPT , it su‰ces to approximate Tk.

Consider a fixed k and let K be Tk with all leaves removed (and thus the leaves of K

are the bin roots of Tk). K is called the kernel of Tk, and Tk is called a completion of

K. K is completed to Tk by providing a label-to-bin assignment.

If the kernel K of Tk is known, then to approximate Tk, it su‰ces to determine an

approximately optimal label-to-bin assignment for K. This problem is formalized as

follows:

label-to-bin assignment (LBA)

Instance: Set Q of quartet topologies and (degree-3) kernel K with k leaves.

Goal: Find a completion T 0 of K that maximizes jQT 0 VQj.
LBA is NP-hard (Bryant 1997) but LBA can be formulated as a smooth integer

polynomial problem and a resulting PTAS for LBA defined (Jiang et al. 1998). This

PTAS utilizes the fact that the problem instance is dense. In particular, it is shown

that for any � > 0, jQT 0 VQjb jQT̂T VQj � �n4, where Q and K denote the instance of

LBA, T 0 is the completion of K produced by the PTAS and T̂T is an optimal com-

pletion of K.

Because k is a constant, for every tree with k leaves, an instance of LBA can be

solved approximately in polynomial time. Let TAPX be the completed tree obtained

that maximizes jQTAPX
VQj. Because the kernel K of Tk is one of the trees completed,

it follows that jQTAPX
VQjb jQT 0 VQj where T 0 is the completion of K.

Method Assessment It should be noted that although the above PTAS produces an

evolutionary tree with an accuracy guarantee it is not yet a practical algorithm.

Further research is required in order for it to become e‰cient enough to solve mod-

erate to large instances. However, the existence of the PTAS suggests that MQC can

be e‰ciently and approximately solved with further research.

5.4.3 Semi-Definite Programming

The semi-definite programming (SDP) approach taken by Ben-Dor, Chor, Graur,

Ophir, and Pelleg (Ben-Dor et al. 1998a) is the only quartet method presented here

that utilizes a geometric interpretation of the quartet recombination problem.

Method Overview The SDP approach begins with a set Q of quartet topologies

where each quartet topology q has an assigned confidence value cðqÞ obtained using
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the bootstrap technique (Felsenstein 1985) although the confidence value could be

obtained using other methods. The set Q may be incomplete. The score of an evolu-

tionary tree T, scoreðTÞ, is defined to be

X
q AQT VQ

cðqÞ þ 1

3

X
q unresolved in T

cðqÞ

The latter term in the above expression is the expected increase in the score of a

random expansion of T if T is not resolved.

The SDP approach then attempts to embed each sequence on the unit sphere in Rn

such that for each quartet topology ab j cd, the pairs ða; bÞ and ðc; dÞ are close,

whereas the pairs ða; cÞ; ða; dÞ; ðb; cÞ, and ðb; dÞ are more distant. This is accomplished

by formulating the embedding problem as a semidefinite program with an appropri-

ate objective function. Once an embedding is obtained, a hierarchical clustering al-

gorithm is applied using Euclidean distance to group sequences into a tree.

Method Assessment The SDP approach is a heuristic quartet method that essen-

tially transforms quartet topology information to sequence distance information. It is

unclear how faithfully the sphere embedding of sequences represents the quartet to-

pology information or on what basis this distance information is a priori advanta-

geous over other forms of sequence distance information.

Examples of other distance measures that the SDP approach can be compared to

include the following:

. For each pair of sequences x and y, define sðx; yÞ to be the number of quartets of

the form ax j by (Barthélemy and Guénoche 1991; see also Sattath and Tversky 1977).

The motivation for sðx; yÞ is that it is correlated to distance in an evolutionary tree

T given that Q approximates QT . Hence, sðx; yÞ relates quartet topology directly to

evolutionary similarity.

. For each pair of aligned sequences x and y, define dðx; yÞ to be

�e
3

4
lnð1� 4

3
Dðx; yÞÞ

where Dðx; yÞ is the Hamming distance between x and y.

The distance dðx; yÞ is the corrected Jukes-Cantor distance, based on the Jukes-

Cantor model of sequence evolution (Jukes and Cantor 1969). Although this distance

does not utilize quartet topology, it does use a correlation between sequence similarity

and evolutionary tree topology.
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In contrast, the SDP approach does not have an evolutionary basis, and so further

research is required. Nevertheless, the SDP approach successfully illustrates how

advances in another branch of computer science (solving semidefinite programs e‰-

ciently) can be leveraged to solve quartet recombination.

It should be noted that Ben-Dor et al. (1998a) present an e‰cient (but still expo-

nential) algorithm for solving quartet recombination exactly. This was later improved

upon by Bryant and Steel (1999).

5.4.4 Short Quartet Method

The key idea behind the short quartet method, introduced by Erdös, Rice, Steel,

Székely, and Warnow (Erdös et al. 1997), is that there is a subset of quartet topol-

ogies in QT that is su‰cient to recover the evolutionary tree T and that tend to be

more accurately inferred. The short quartet method identifies these quartet topologies

and utilizes them to reconstruct an evolutionary tree.

Method Overview Let e be an edge in the evolutionary tree T and let fa; b; c; dg be a

quartet such that a, b, c, and d are sequences in the four subtrees of T induced by

removing e and its endpoints from T. The quartet fa; b; c; dg is called a short quartet

if maxðfa; b; c; dgÞ is minimum among all such quartets where

maxðfa; b; c; dgÞ ¼ maxðdTða; bÞ; dT ða; cÞ; dT ða; dÞ; dTðb; cÞ; dTðb; dÞ; dTðc; dÞÞ
T can be reconstructed e‰ciently from its set of short quartet topologies (Erdös et al.

1997).

Let D be a distance matrix obtained from the sequence data. The weak four-point

method can be used to infer a set Q of quartet topologies from D:

ab j cd A Q , Dða; bÞ þDðc; dÞ
< minðDða; cÞ þDðb; dÞ;Dða; dÞ þDðb; cÞÞ

The weak four-point method is a variation on the four-point method motivated by

the fact that D is an approximation to an evolutionary tree metric, and so, equality

between Dða; cÞ þDðb; dÞ and Dða; dÞ þDðb; cÞ is unlikely to be observed.

For a threshold t define Qt to be those quartet topologies ab j cd A Q such that

maxðfa; b; c; dgÞa t. If t is su‰ciently large and all short quartet topologies in Q are

correctly inferred, then Qt will contain all short quartets of the unknown evolutionary

tree Ttrue. Ttrue can then be reconstructed from Qt (Erdös et al. 1997). The details of

the reconstruction are omitted.

Method Assessment The motivation for the short quartet method is that short

quartet topologies are su‰cient for recovering the unknown evolutionary tree and that
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they are more accurately inferred than longer quartet topologies, for example, because

long branch attraction can be avoided (Hendy and Penny 1982). This assumption can

be violated in several ways. First, depending on the topology of the evolutionary tree,

short quartet topologies do not always avoid long branch attraction. Second, very

short branch lengths can also be problematic, and so very short quartet topologies

are not necessarily more accurate. Third, the short quartet method is not robust to

error—it will fail even if only one of the short quartet topologies is erroneous.

To illustrate the dependence of the short quartet method on the topology of the

underlying evolutionary tree, consider the two evolutionary trees in figure 5.4. The

leftmost evolutionary tree is called a caterpillar due to its linear structure. Here

the number of short quartets is n� 1. For the rightmost evolutionary tree, consisting

of four subtrees each with n=4 leaves, the number of short quartets across the edge

e alone is n4=256. Clearly the ratio of short quartets to total number of quartets
n

4

� �
varies greatly with topology. Specifically, the caterpillar requires as mall specific set

of quartet topologies to be inferred correctly, whereas the rightmost evolutionary tree

requires most of its quartet topologies to be inferred correctly. A thorough examina-

tion of the short quartet method requires that the method be assessed on a wide range

of evolutionary tree topologies.

Despite these concerns, the short quartet method introduces an interesting and

important observation: some quartet topologies are more important than others for

recovering an evolutionary tree. Related work examines the question of which in-

complete subsets of QT can be extended uniquely to obtain T (Bryant and Steel

1995). For example, an incomplete set of quartet topologies can be extended using

inference rules such as the following (these can be easily verified by examining all

evolutionary trees consistent with the given assumptions):

. If ab j cd and ab j ce A QT then ab j de A QT .

. If ab j cd and ac j de A QT then ab j ce, ab j de and bc j de A QT .

. If ab j cd, ab j ef and ce j df A QT then ab j df A QT .

Figure 5.4
E¤ects of topology on the short quartet method.
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It is known that there are inference rules of arbitrarily high order (Bryant and Steel

1995).

The short quartet method utilizes the fact that the application of the first two in-

ference rules above to a set of short quartet topologies will yield a complete set of

quartet topologies.

Unlike the other quartet methods presented here, the short quartet method is not

heuristic, nor does it solve an optimization problem. Rather, it specifies the require-

ments needed in order to recover the unknown evolutionary tree exactly and then

determines whether these requirements are met by the data.

Finally, the short quartet method is a fast converging method. This means that the

short quartet method requires relatively short sequences to converge upon the correct

evolutionary tree. This is an important property because, in practice, the amount of

sequence data available is limited. To establish fast convergence one must assume a

model of evolution, and so fast convergence results hold as long as these assumptions

are not violated.

5.4.5 Hypercleaning

The topology of an evolutionary tree can be specified by its set of edge-induced bi-

partitions. One approach to recovering an evolutionary tree is to first recover all

bipartitions highly supported by the sequence data and then to select from these

bipartitions a compatible set (see section 5.4.1) of bipartitions. To accomplish this,

the following must be defined:

. a bipartition support function,

. a method for obtaining highly supported bipartitions, and

. a method for selecting a subset of compatible bipartitions.

This approach is illustrated by hypercleaning (Berry et al. 2000).

Bipartition Support Let Q be a set of inferred quartet topologies. For a given bipar-

tition ðX ;YÞ, define QðX ;YÞ to be the set of quartet topologies of the form xx 0 j yy 0

where x; x 0 A X , and y; y 0 A Y . QðX ;YÞ is the set of quartet topologies induced by the

bipartition ðX ;YÞ. Bipartition support is defined in terms of the amount of disagree-

ment between Q and QðX ;YÞ. Define ab j cd to be a quartet error across bipartition

ðX ;Y Þ if ab j cd A QðX ;Y Þ �Q. The normalized distance from a set of quartets Q to

a bipartition ðX ;Y Þ is defined to be

dðQ; ðX ;YÞÞ ¼ 4jQðX ;YÞ �Qj
jX jðjX j � 1ÞjY jðjY j � 1Þ
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where the number of quartet topologies in QðX ;Y Þ is jX jðjX j � 1ÞjY jðjY j � 1Þ=4.
Normalization permits the comparison of the support values for two di¤erent bipar-

titions. When ðX ;YÞ is trivial (jX j ¼ 1 or jY j ¼ 1), the normalized distance is defined

to be 0.

Recovering Neighborhoods of Q The task of recovering bipartitions highly sup-

ported by Q is the task of generating a bipartition neighborhood of Q

fðX ;YÞ j dðQ; ðX ;YÞÞa rg
which is called the closed r-neighborhood of Q. When the inequality is strict, it is

called the open r-neighborhood of Q.

The closed 0-neighborhood of Q corresponds to those bipartitions that have 0

quartet topology di¤erences with Q. There is an Oðn4Þ time algorithm, called the Q�

method, for recovering this set of bipartitions (Berry and Gascuel 1997). However,

the Q� tree, also known as the Buneman tree (Buneman 1971), is a very conservative

estimate of T as it includes only those bipartitions with 0 quartet topology di¤erence

with Q.

The open
2

jX j jY j-neighborhood of Q is known to be compatible (Berry et al. 1999)

and there is an Oðn5Þ algorithm for recovering this neighborhood from Q (Berry et al.

2000). Note that the closed
2

jX j jY j-neighborhood of Q is not necessarily compatible

(Jiang et al. 1998).

Although the open
2

jX j jY j-neighborhood of Q is compatible, it is not likely to

return all n� 3 compatible, nontrivial bipartitions of the underlying evolutionary tree

Ttrue (Berry et al. 2000). In order to include more edges of Ttrue, a parameter m > 0 is

introduced and the following neighborhood of Q is defined

BestðQ;mÞ ¼ ðX ;YÞ j dðQ; ðX ;YÞÞ < 2m

jX j jY j
� �

Thus the set BestðQ;m 0Þ contains the set BestðQ;mÞ for all m 0 bm. Increasing the

value of m increases the neighborhood of Q, including bipartitions more weakly

supported by Q.

BestðQ;mÞ can be obtained by hypercleaning in time polynomial in n but ex-

ponential in m (Berry et al. 2000). Specifically, a time bound on hypercleaning is

Oðn5f ð2mÞ þ n7f ðmÞÞ time where f ðmÞ ¼ 4m2ð1þ 2mÞ4m. The hypercleaning algo-

rithm has many properties that make it useful in practice:
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. Although the running time of hypercleaning is exponential in m, in practice, only

small values of m (a5) are required in order to recover all edges of Ttrue. In fact,

hypercleaning can be successfully applied to relatively large sequence data sets (one

hundred’s of sequences) (Badger et al. 2000).

. The running time of hypercleaning varies with m, which is exponential in the

amount of quartet error in the bipartitions being recovered. Hence, highly supported

edges of Ttrue are recovered more quickly than poorly supported edges. In practice,

hypercleaning can be applied to very large sequence data sets to obtain all highly

supported edges of Ttrue. The sequence data set can then be subdivided into smaller

subproblems using the edges recovered.

. Hypercleaning is an exact algorithm and not a heuristic. That is, it satisfies the

following accuracy guarantee:

theorem 4 The hypercleaning algorithm recovers all bipartitions ðX ;Y Þ in the un-

derlying evolutionary tree Ttrue with fewer than mðjX j � 1ÞðjY j � 1Þ=2 quartet errors.

If Q is reasonably correlated to QT , then hypercleaning is a powerful tool for esti-

mating evolutionary trees.

. Hypercleaning finds all highly supported alternative bipartitions, which gives the

researcher a sense of the uniqueness of the evolutionary tree produced.

Selecting Bipartitions from BestðQ;mÞ BestðQ;mÞ may be very large, and so will

contain incompatible bipartitions. A greedy algorithm can be defined to select a

compatible subset of BestðQ;mÞ. Let ðX1;Y1Þ; ðX2;Y2Þ; . . . ; ðXk;YkÞ be the biparti-

tions in BestðQ;mÞ ordered by increasing normalized distance to Q. The greedy

algorithm selects the following subset, called CompðQ;mÞ, of BestðQ;mÞ:
. ðX1;Y1Þ A CompðQ;mÞ
. ðXj;YjÞ A CompðQ;mÞ if ðXj;YjÞ is compatible with all ðXi;YiÞ A CompðQ;mÞ

where i < j.

Observe that CompðQ;mÞ is a set of compatible bipartitions and can be easily

obtained from BestðQ;mÞ.
Note that the above simple algorithm is only a heuristic for selecting the maximal

set of compatible bipartitions that minimizes the sum of normalized distances to Q.

For other criteria, there are exact polynomial time algorithms. For example, having

inferred a set BestðQ;mÞ with enough edges to construct an evolutionary tree, a

maximal set of compatible bipartitions minimizing

maxðX ;Y ÞfdðQ; ðX ;YÞÞg
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which is the Ly norm on bipartitions can be obtained using the exact polynomial

time algorithm (Bryant 1997), which has time complexity OðjBestðQ;mÞj2Þ.
Further research into the e‰cient and accurate selection of compatible bipartitions

from BestðQ;mÞ is required.

5.5 Closing Remarks and Resources

The development of computational methods for the evolutionary analysis of gene

sequences is simultaneously complicated and enriched by the need for biological rel-

evance and computational feasibility. Although much progress has been made, it is

unclear if the research has resulted in more answers than new questions. Some of the

major challenges facing phylogenetics include:

. The development of computational methods for inferring large evolutionary trees.

Current datasets far exceed the capacity of current accurate computational methods.

As sequencing technology improves and becomes more automated, this gap will

widen.

. The development of integrated, interactive, and graphical methods for evolution-

ary analyses. Due to the large and complex datasets now available, computational

methods that can incorporate diverse evolutionary data are required. Furthermore,

methods need to be more interactive and graphical in order for the scientist to con-

ceptualize the entire evolutionary history of large datasets.

. The development of benchmarks and techniques for comparing phylogenetic tech-

niques. The diversity of phylogenetic methods, even when considering only quartet

methods, makes comparison of methods challenging. It is unclear under which con-

ditions a given phylogenetic method will outperform another method.

Some phylogenetic resources:

. Phylip: http://evolution.genetics.washington.edu/phylip.html

A collection of phylogenetic tools maintained by Joe Felsenstein.

. Tree of Life: http://phylogeny.arizona.edu/tree/phylogeny.html

The Tree of Life is a project containing information about the diversity of organisms

on Earth, their history, and characteristics. Presented in an easy to navigate format.

Maintained by David Maddison.

. Green Plant Phylogeny: http://ucjeps.berkeley.edu/bryolab/greenplantpage.html

A repository of green plant evolutionary information and large data sets.
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. Ribosomal RNA Database Project: http://www.cme.msu.edu/RDP/html/index.

html

A repository of ribosomal RNA evolutionary information including large data sets

that are easily accessed and navigated.

. TreeBASE http://herbaria.harvard.edu/treebase/

TreeBASE stores phylogenetic trees and the data matrices used to generate them

from published research papers.

. Phylogenetic Resources http://www.ucmp.berkeley.edu/subway/phylogen.html

Information including software, meetings, databases, publications, and societies of

interest to evolutionary biologists.
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6 Genome Rearrangement

David Sanko¤ and Nadia El-Mabrouk

6.1 Introduction

The di¤erence between genome rearrangement theory and other approaches to com-

parative genomics, and indeed most other topics in computational molecular biology,

is that it is not directly based on macromolecular sequences, either nucleic acids or

proteins. Rather like classical genetics: its building blocks are genes, and the struc-

tures of interest are chromosomes, abstracted in terms of the linear order of the genes

they contain. Of course, genes and their RNA and protein products are macro-

molecules, but here we do not focus on the internal structure of genes and assume

that the problems of determining the identity of each gene, and its homologs in other

genomes, have been solved, so that a gene is simply labeled by a symbol indicating

the class of orthologs to which it belongs. Moreover, the linearity of chromosomal

structure does not evolve by a nucleotide substitution process in the way DNA does,

or even by the same type of insertion/deletion processes, but by a number of very

di¤erent rearrangement processes that are nonlocal, the scope of which may involve

an arbitrarily large proportion of a chromosome. As a consequence, the formal anal-

ysis of rearrangements bears little resemblance in detail to DNA or protein compar-

ison algorithms.

Nevertheless, in analogy with sequence comparison, the study of genome rear-

rangements has focused on inferring the most economical explanation for observed

di¤erences in gene orders in two or more species, as represented by their genomes, in

terms of a small number of elementary processes. After first formalizing in section 6.2

the notion of a genome as a set of chromosomes, each consisting of an ordered set of

genes, we will proceed in section 6.3 to a survey of genomic distance problems. More

detail on the Hannenhalli-Pevzner theory for ‘‘signed’’ distances follows in section

6.4. Section 6.5 will be devoted to phylogenetic extensions, and section 6.6 to prob-

lems of gene and genome duplication and their implications for genomic distance and

genome-based phylogeny.

6.2 The Formal Representation of the Genome

As a first approximation, a genome can be thought of as a set containing on the order

of 103 (some bacteria) to 105 (human) distinct elements called genes. In more realistic

analyses, it may be necessary to consider that some genes occur with a multiplicity of



two or higher in a genome, which cannot be captured in a set formulation. This

situation will be explored in section 6.6.

6.2.1 Synteny

The genes in plants, animals, yeasts, and other eukaryotes are partitioned among a

number of chromosomes, generally between 10 and 100, though it can be as low as

two or three (Jackson 1957; Lima-de Faria 1980), or much higher than 100. Two

genes located on the same chromosome in a genome are said to be syntenic in that

genome.

Some genome rearrangements involve parts of one chromosome being relocated to

another chromosome. Syntenic structure is generally di¤erent between di¤erent species

and usually identical among all the members of a single species. A few species tolerate

population heterogeneity involving small di¤erences in syntenic structure, where het-

erokaryotypic individuals are not only viable, but fertile (McAllister 2000).

In prokaryotic genomes, comprising both eubacteria and archaebacteria, the

genome typically resides on a single chromosome. Organelles, such as the mito-

chondria found in most eukaryotes and the chloroplasts in plants and algae, also

have relatively small single-chromosome genomes, containing fewer than a hundred

(mitochondria) or 250 (chloroplasts) genes, and are believed to be the highly reduced

descendants of prokaryotic endosymbionts.

6.2.2 Order and Polarity

Syntenic structure, as we shall see in section 6.3.6, su‰ces to initiate the study of

genome rearrangements. Two additional levels of chromosomal structure, when they

are available, add valuable information about rearrangement. The first is gene order.

The genes on each chromosome have a linear order that is characteristic of each

genome. Note that although our discussion in this paper is phrased in terms of the

order of genes along a chromosome, the key aspect for mathematical purposes is

the order and not the fact that the entities in the order are genes. They could as well

be blocks of genes contiguous in the two (or N) species being compared, conserved

chromosomal segments in comparative genetic maps (cf. Nadeau and Sanko¤ 1998)

or, indeed, the results of any decomposition of the chromosome into disjoint ordered

fragments, each identifiable in the two (or in all N) genomes.

The next level of structure is the transcription direction associated with each gene.

In the double-stranded DNA of a genome, typically some genes are found on one

strand and are read in the direction associated with that strand, whereas other genes

are on the complementary strand that is read in the opposite direction. To capture
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this distinction in the mathematical notation for a genome, the genes on one strand

are designated as of positive polarity and those on the other as negative. The latter

are written with a minus sign preceding the gene label. Genome distance problems

where this level of structure is known and taken into account are called ‘‘signed,’’ in

contrast to the ‘‘unsigned’’ case, where no directional information is known (or used).

6.2.3 Linearity versus Circularity

In eukaryotes such as yeast, amoeba, or humans, the genes on a chromosome are

ordered linearly. There is no natural left-to-right order, no structural asymmetry or

polarity between one end of a chromosome and the other. Biologists distinguish be-

tween the short and long ‘‘arms’’ of a chromosome for nomenclatural purposes, and

although we shall see in section 6.2.4 that this has a structural basis, there is no bio-

logical reason to order the long arm before the short arm, or vice-versa.

In prokaryotes and organelles, the single chromosome is generally circular. This

leads to terminological and notational adjustments—the arbitrariness of left-to-right

order becomes the arbitrariness of clockwise versus counterclockwise ordering, and

the notion of one gene appearing in the order somewhere before another is no longer

meaningful. Most computational problems in genome comparison are no more di‰-

cult for circular genomes than linear ones, though there is one clear exception where

the circular problem is much harder, as described in section 6.3.1.

6.2.4 Centromeres and Telomeres

Two structural aspects of eukaryote chromosomes are especially pertinent to genome

rearrangements. The centromere is a structurally specialized noncoding region of the

DNA, situated somewhere along the length of the chromosome, physically associated

with specific proteins. It plays a key role in assuring the proper allocation of chro-

mosomes among the daughter cells during cell division. The centromere divides the

chromosome into two arms, both of which normally contain genes. The end of each

arm is the telomere, also consisting of noncoding DNA in association with particular

proteins.

Because the telomere ‘‘protects’’ the end of the chromosome and is generally nec-

essary in cell division, as is the centromere, genome rearrangements usually do not

involve the telomere and do not entail the creation of a chromosome without a cen-

tromere or with more than one centromere, though on the evolutionary time scale

there are exceptions. New centromeres occasionally emerge remote from existing

centromeres and take over the role of the latter, which quickly lose their erstwhile

function. Chromosomes sometimes fuse in an end-to-end manner, involving the
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loss of two telomeres and a centromere; sometimes the opposite process, fission, also

occurs.

6.2.5 Multigene Families

Implicit in the rearrangements literature is that both genomes being compared con-

tain an identical set of genes and the one-to-one homologies (orthologies) between all

pairs of corresponding genes in the two genomes have previously been established.

Although this hypothesis of unique genesmay be appropriate for some small genomes,

such as viruses and mitochondria, it is clearly unwarranted for divergent species where

several copies of the same gene, or several homologous (paralogous) genes—a multi-

gene family—may be scattered across a genome.

The Pertinence of Sequence Comparison We stressed at the outset that genome

rearrangement analysis is usually carried out separately from, and subsequent to,

gene homology assessments. A partial exception to this must be made in the study

of multigene families, where we must take into account degrees of homology, so

that the input data are more subtle than the binary distinction between homologous

genes and unrelated genes.

6.3 Operations and Distances

There are many ways of comparing two linear (or circular) orders on a set of objects.

In subsection 6.3.1, we first discuss one that is not directly based on any biologically

motivated model. In subsection 6.3.2, we introduce a distance that is motivated by

general characteristics of genome rearrangements. In the remainder of this section,

we review the many edit distances that are based on particular types of rearrangement.

6.3.1 Alignment Traces

One of the earliest suggestions for comparing genomes was to adapt concepts of

alignment in sequence comparison, in particular the notion of the trace of an align-

ment. In its graphic version, this requires displaying the n genes in each of the two

genomes, ordered from left to right, one genome above the other, and connecting

each of the n pairs of homologous genes with a line. The number of intersections

between pairs of lines is a measure of how much one genome is scrambled with re-

spect to the other (Sanko¤ and Goldstein 1989). (In a classical sequence alignment,

there are no intersections.) For linear orders, this measure is easily calculated and

analytical tests are available for detecting nonrandom similarities in order; the cir-
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cular case is much more di‰cult. The problem has to do with the optimal alignment

of the two genomes, where one circular genome is superimposed on the other and

rotated in such a way as to minimize the number of intersections between trace lines

connecting genes in the two genomes (Sanko¤ et al. 1990; Bafna et al. 2000).

6.3.2 Breakpoints

Because genome rearrangements generally involve incorrectly repaired breaks be-

tween adjacent genes, it seems appropriate to focus on adjacencies when comparing

rearranged genomes. For two genomes X and Y , we define bðX ;YÞ to be the number

of pairs of genes that are adjacent in genome X but not in Y . The easily calculated

measure b was first defined in the context of genome rearrangements by Watterson et

al. (1982), but was already implicit much earlier in cytogenetic assessments of chro-

mosomal evolution. For signed genomes, the notion of adjacency requires that the

configuration of transcription directions be conserved, so that if genome X contains

two genes ordered as gh, then these two genes are adjacent in Y only if they occur as

gh or as �h� g.

The breakpoint distance can be extended to apply to two genomes X and Y that

do not contain identical sets of genes. Here we create two smaller genomes X 0 and Y 0

by simply deleting those genes that are only in one of the genomes. Then the

‘‘induced breakpoint’’ distance bI ðX ;Y Þ between X and Y is defined to be bðX 0;Y 0Þ.
For multiple comparisons, as in phylogenetic applications, it is preferable to use

the normalized measure bnðX ;YÞ ¼ bI ðX ;Y Þ=l, where l is the number of genes in X 0

and Y 0.

6.3.3 Edit Distances

Distance problems motivated by particular types of rearrangement processes require

calculating an edit distance between two linear or circular orders on the same set of

objects, representing the ordering of homologous genes in two genomes. The elemen-

tary edit operations may include one or more of the processes depicted in figure 6.1.

6.3.4 Reversal Distances

Reversal, or inversion, reverses the order of any number of consecutive terms in the

ordered set, which, in the case of signed orders, also changes the sign of each term

within the scope of the reversal. Kececioglu and Sanko¤ (1995) re-introduced the

problem—earlier posed by Watterson et al. (1982), and even earlier in the genetics

literature, such as in Sturtevant and Novitski (1941)—of computing the minimum

reversal distance between two given permutations in the unsigned case, and gave ap-
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proximation algorithms and an exact algorithm feasible for moderately long per-

mutations. Bafna and Pevzner (1996) gave improved approximation algorithms and

Caprara (1997) showed this problem to be NP-complete. Recent progress on practi-

cal solutions was presented by Caprara et al. (2000). For the signed case, Kececioglu

and Sanko¤ (1994) found tight lower and upper bounds and implemented an exact

algorithm that worked rapidly for long permutations. Indeed, Hannenhalli and

Pevzner (1999) showed that the signed problem is only of polynomial complexity.

Their algorithm was improved by Berman and Hannenhalli (1996) and by Kaplan

et al. (2000). We will return to the Hannenhalli-Pevzner approach in sections 6.4

and 6.6.

6.3.5 Transposition Distance

A transposition moves any number of consecutive terms from their position in the

order to a new position between any other pair of consecutive terms. Computation of

the transposition distance between two permutations was considered by Bafna and

Pevzner (1998) and Christie (1999), but its NP-completeness has not yet been con-

firmed. This has been more di‰cult to analyze than the reversals distance problem

(Meidanis and Dias 2000).

Figure 6.1
Schematic view of genome rearrangement processes. Letters represent positions of genes. Vertical arrow at
left indicates breakpoints introduced into original genome. Reciprocal translocation exchanges end seg-
ments of two chromosomes. Reversal (or inversion) reverses the order and sign of genes between two
breakpoints (dotted segment). Transposition removes a segment defined by two breakpoints and inserts it
at another breakpoint (dotted segment) in the same chromosome or another.
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6.3.6 Translocation Distance

Kececioglu and Ravi (1995) began the investigation of translocation distances.

Hannenhalli (1996) showed that the problem is of polynomial complexity for signed

genomes, using methods similar to the reversals distance algorithm.

Syntenic Distance Ferretti et al. (1996) proposed a relaxed form of translocation

distance applicable when chromosomal assignment of genes, but not their order, is

known. Let A and B be two chromosomes, considered to be sets of genes. A trans-

location then transforms A and B into ðA� A 0ÞUB 0 and ðB� B 0ÞUA 0, respec-

tively, where at least one of A 0 and B 0 is a proper subset of A or B. A fusion occurs

when, for example, A 0 ¼ A and B 0 ¼ the null set, and a fission when either A or B is

replaced by the null set, in this formulation.

Then the syntenic distance between two genomes G and H, considered as two

di¤erent partitions of the same set into subsets (chromosomes), is defined to be the

minimum number of translocations necessary to transform G into H. The com-

plexity of its calculation was shown to be NP-complete by DasGupta et al. (1998).

Its structure was further investigated by Liben-Nowell (1999) and Kleinberg and

Liben-Nowell (2000).

6.3.7 Combined Distances

Distances based on single operations may be of mathematical interest and are ap-

propriate starting points for investigating genomic rearrangements, but realistic

models must allow for several types of operation. Several studies have attempted

this. The most successful is the extension of the Hannenhalli-Pevzner (1995) theory

to cover the case where both translocation and reversal operations are considered.

Another exact polynomial algorithm extending the Hannenhalli-Pevzner theory

applies to two genomes that do not have the identical set of genes. This requires

calculating the minimum number of reversals and insertions or deletions of con-

tiguous segments of the chromosome necessary to convert one genome into another

(El-Mabrouk 2000).

There have also been a number of studies combining transposition and reversals

(Gu et al. 1997; Walter et al. 1998), with partial results.

An edit distance that is a weighted combination of inversions, transpositions, and

deletions has been studied by Sanko¤ (1992), Sanko¤ et al. (1992) and Blanchette

et al. (1996). Dalevi et al. (2000) developed a simulation-based method for deter-

mining appropriate weighting parameters in the context of prokaryotic evolution.

They applied this to the divergence of Chlamydia trachomatis and Chlamydia pneu-

moniae (see also Andersson and Eriksson 2000). Their results quantify a propensity
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for shorter rather than longer inversions, similar to that reported for eukaryotes by

McLysaght et al. (2000).

6.4 The Hannenhalli-Pevzner Theory

In this section, we introduce the structures necessary to understand the results of the

three polynomial-time algorithms devised by Hannenhalli and Pevzner. In particular,

we sketch how they calculate the edit distance between two genomes, although we do

not enter into the details of how they recover the actual operations that convert one

of the genomes into the other.

Given two genomes, H1 and H2, containing the same genes, where each gene ap-

pears exactly once in each genome, the genome rearrangement problem is to find the

minimum number of rearrangement operations necessary to transform H1 into H2

(or H2 into H1). Polynomial algorithms were designed for the reversals-only version

of the problem (in the case of single-chromosome genomes) (Hannenhalli and Pevzner

1999), the translocations-only version (Hannenhalli 1996), and the version with both

reversals and translocations (Hannenhalli and Pevzner 1995) (the latter two for mul-

tichromosomal genomes). The two methods allowing translocations require that the

genomes H1 and H2 share the same set of chromosomal endpoints, but this can be

taken care of by means of the addition of dummy endpoints, if necessary.

The algorithms all depend on a bicoloured graph G constructed from H1 and

H2, for which the main ideas were introduced by Bafna and Pevzner (1996) and

Kececioglu and Sanko¤ (1993). The details of this construction vary from model to

model, due to the di¤erent ways chromosomal endpoints must be handled, but the

general characteristics of the graph, as illustrated in figures 6.2 and 6.3, are the same

and may be summarized as follows.

Graph G: If gene x of H1 has positive sign, replace it by the pair xtxh, and if it is

negative, by xhxt. Then the vertices of G are just the xt and the xh for all genes x.

Figure 6.2
Graph G corresponding to circular genomes (i.e., first gene is adjacent to last gene) H1 ¼ þ1þ 4� 6þ
9� 7þ 5� 8þ 10þ 3þ 2þ 11� 12 and H2 ¼ þ1þ 2þ 3 � � � þ 12. A, B, C, D, E, and F are the 6 cycles
of G. ½A;Eg, fB;C;Dg, and fFg are the three components of G.
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Any two vertices that are adjacent in some chromosome in H1, other than xt and xh

from the same x, are connected by a black edge, and any two adjacent in H2, by a

gray edge. In the case of a single chromosome, the black edges may be displayed

linearly according to the order of the genes in the chromosome. For a genome con-

taining N chromosomes, N such linear orders are required; in the model allowing

both reversals and translocations, however, the N orders are concatenated in each of

the two genomes, so that we are again left with a single linear order.

Now, each vertex is incident to exactly one black and one gray edge, so that there

is a unique decomposition of G into c disjoint cycles of alternating edge colours. By

the size of a cycle we mean the number of black edges it contains. Note that c is

maximized when H1 ¼ H2, in which case each cycle has one black edge and one gray

edge.

A rearrangement operation r, either a reversal or a translocation, is determined by

the two black edges e and f where it ‘‘cuts’’ the current genome. Rearrangement

operations may change the number of cycles, so that minimizing the number of oper-

ations can be seen in terms of increasing the number of cycles as fast as possible. Let

G be a cycle graph, r a rearrangement operation, and DðcÞ the di¤erence between the

number of cycles before and after applying the operation r. Hannenhalli and Pevzner

showed that DðcÞ may take on values 1, 0, or �1, in which cases they called r proper,

improper, or bad, respectively. Roughly, an operation determined by two black edges

in two di¤erent cycles will be bad, whereas one acting on two black edges within the

same cycle may be proper or improper, depending on the type of cycle and the type

of edges considered.

Key to the Hannenhalli-Pevzner approach are the graph components. Two cycles,

say cycles 1 and 2, all of whose black edges are related by the same linear order (i.e.,

Figure 6.3
Graph G corresponding to genomes H1, H2, both with three chromosomes, where H1 ¼ f1: 1 3 9;
2: 7 8 4 5 6; 3: 10 2 11 12 13g and H2 ¼ f1: 1 2 3 4 5 6; 2: 7 8 9; 3: 10 11 12 13g. All genes are signed
‘‘þ.’’ The edges that are on the same horizontal row of the graph correspond to a chromosome of H1.
Seven cycles are present. As no cycle of size > 1 is contained in one row, G does not contain any com-
ponent. Both genomes have the same set of endpoints, so we can omit the first vertices (xt for initial genes
and xh for terminal genes).
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are on the same line), and containing gray edges that ‘‘cross,’’ for example, gene i

linked to gene j by a black edge (i.e., in H1) in cycle 1, gene k linked to gene t by a

black edge in cycle 2, but ordered i; k; j; t in H2, are connected. For example, in figure

6.2, cycle A crosses cycle E by virtue of the four genes, 1, 4, 3 and 10. A component

of G is a subset of the cycles (not consisting of a single cycle of size 1), built recur-

sively from any of its cycles, at each step adding all the remaining cycles connected

to any of those already in the construction. A component is termed good if it can be

transformed to a set of cycles of size 1 by a series of proper operations, and bad

otherwise. Bad components are called subpermutations in the translocations-only

model, hurdles in the reversals-only model, and knots in the combined model. This

property may be readily ascertained for each component by means of simple tests.

The Hannenhalli-Pevzner formulae for all three models may be summarized as

follows:

dðH1;H2Þ ¼ nðGÞ � cðGÞ þmðGÞ þ f ðGÞ
where dðH1;H2Þ is the minimum number of rearrangement operations (reversals and/

or translocations), nðGÞ is the number of black edges of G, cðGÞ is the number of

cycles, mðGÞ is the number of bad components, and f ðGÞ is a correction of size 0, 1,

or 2 depending on the set of bad components.

6.5 Phylogenetic Analyses

Reconstruction of phylogeny may be approached through the application of generic

methods (neighbor-joining, least-squares fitting, agglomerative clustering, etc.) to a

distance matrix, independent of the nature of the data giving rise to the summary

distances, or through ancestral inference methods (maximum likelihood, parsimony,

etc.), where the tree shape is optimized simultaneously with the reconstruction of

ancestral forms associated with nonterminal nodes, analogous to the input data asso-

ciated with the terminal nodes. Distance matrices based on genomic distances have

been used in traditional ways for phylogenetic reconstruction (Sanko¤ et al. 1992,

2000b), but approaches involving ancestral inference pose new analytical problems.

The problem of inferring ancestors may be decomposed into two aspects that must

be solved simultaneously—finding the optimal shape, or topology, of the tree, and

optimizing the ancestral reconstruction at each nonterminal node. Again, there are

traditional search methods for optimal trees, but the reconstruction of ancestral

genomes, given a fixed topology, is a new type of task, and it is on this question that

we focus in this section.

144 David Sanko¤ and Nadia El-Mabrouk



6.5.1 The Median Problem

The solution of the median problem is of key importance in inferring the ancestral

states in a phylogenetic tree. Given a distance d and three genomes A, B, and C,

the median is a genome M A S, some set of eligible genomes, such that the sum

dðA;X Þ þ dðB;X Þ þ dðC;X Þ is minimal over S for X ¼ M. Algorithms for finding

the median can be used to reconstruct ancestors in a given phylogeny through the

process of steinerization. Unfortunately, the median problem is NP-hard, even in the

case of unique genes, for all known rearrangement distances d including signed in-

version distance. Even heuristic approaches to this problem work well only for very

small instances (cf. Hannenhalli et al. 1995; Sanko¤ et al. 1996; Caprara 2000).

Reversals Recall that reversal distance on signed genomes can be calculated in poly-

nomial time; indeed, in only quadratic time. Can polynomial e‰ciency be extended

to the median problem? The answer is no, as proved by Caprara (1999). Moreover,

no heuristics for this problem have been shown to be reasonably e¤ective for even

moderate size instances.

Breakpoints For the breakpoint distance d, where dðY ;ZÞ is the number of pairs of

genes that are adjacent in genome Y but not in Z, the median problem is also NP-

hard (Pe’er and Shamir 1998; Bryant 1998). Nevertheless, it can be solved in a rela-

tively simple manner for three genomes A, B, and C, having the same gene content.

Indeed, in this case, the problem can be reduced to the Traveling Salesman Problem

(TSP) (Sanko¤ and Blanchette 1997).

For unsigned genomes, consider the complete graph G whose vertices are all the

genes. For each edge gh, let uðghÞ be the number of times g and h are adjacent in

the three genomes A, B, and C. Set wðghÞ ¼ 3� uðghÞ. Then the solution to TSP on

ðG;wÞ traces out an optimal genome M, because if g and h are adjacent in M, but not

in A, for example, then they form a breakpoint in M.

For signed genomes, the reduction of the median problem to TSP must be some-

what di¤erent to take into account that we must specify whether the median genome

contains xtxh or xhxt, in the notation of section 6.4. Let G be a complete graph

whose vertices include xt and xh for each gene x. For each pair of distinct genes x

and y, let uðxyÞ be the number of times xh and yt are adjacent in the genomes A, B,

and C, and wðxyÞ ¼ 3� uðxyÞ. We also set wðxtxhÞ ¼ �Z, where Z is large enough

to assure that a minimum weight cycle must contain the edge xtxh.

Although the TSP is also NP-hard, the very rigid structure of the TSP graph G

derived above may be exploited by developing specific heuristics (Sanko¤ and

Blanchette 1997). There are a number of TSP algorithms and software packages ap-

plicable in particular contexts (Reinelt 1991). These allow us to find the median of
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three genomes of size n ¼ 100 in a matter of minutes (Sanko¤ and Blanchette 1998).

Recently, we have developed a heuristic for this problem in the much more di‰cult

case where the genomes do not have the same set of genes (Sanko¤ et al. 2000a, b).

Further work on these problems was done by Bryant (2000) and Pe’er and Shamir

(2000).

6.5.2 Steinerization Algorithm

An optimal tree is one where the sum of the edge lengths is minimal, the length being

defined as the number of breakpoints (or any other genomic distance) when the two

genomes associated with the endpoints of the edge are compared. A binary unrooted

tree may be decomposed into a number of overlapping median configurations. Each

median consists of a nonterminal node together with its three adjacent nodes, terminal

or nonterminal, and the three edges that join them. In an optimal tree, the genome

reconstructed at each nonterminal node will be a solution to the median problem

defined by its three neighbors. We can heuristically exploit this fact to reconstruct

the ancestral genomes, starting with some reasonable initialization, and iterating the

median algorithm on the list of nonterminal nodes until no improvement is found

with any node. This may result in a local optimum, but su‰cient repeated trials of

the whole algorithm, with somewhat di¤erent initializations, should eventually indi-

cate the best possible solution, or one very close to it. Blanchette et al. (1999) applied

this method to animal mitochondrial genomes, and Cosner et al. (2000) to the chloro-

plast genomes of a family of flowering plants.

6.5.3 Probability-Based Models

The development of likelihood or other probability-based methods for phylogenetic

inference from gene order data requires the prior probabilization of genome rear-

rangement models, which is much more di‰cult than modeling sequence divergence

according to the Jukes-Cantor, Kimura, or the many other available parametrizations

for nucleotide or amino acid residue substitutions, or even models allowing gaps.

Sanko¤ and Blanchette (2000, 1999) gave a complete characterization of the evolution

of gene adjacency probabilities for random reversals on unsigned circular genomes,

as well as a recurrence in the case of reversals on signed genomes. Concepts from the

theory of invariants developed for the phylogenetics of homologous gene sequences

(Fu 1995) were used to derive a complete set of linear invariants for unsigned rever-

sals, as well as for a mixed rearrangement model for signed genomes, though not

for pure transposition or pure signed reversal models. The invariants are based on

an extended Jukes-Cantor semigroup. The use of these invariants was illustrated by

relating mitochondrial genomes from a number of invertebrate animals.
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6.5.4 Reducing Gene Order Data to ‘‘Characters’’

Gene adjacencies may be treated as characters in inferring a parsimony, maximum

likelihood, or compatibility tree from gene order data (cf. Gallut et al. 2000; Cosner

et al. 2000). The advantage of this is that it allows the use of existing phylogenetic

software. The disadvantage is that the character sets it reconstructs at the ancestor

nodes are generally incompatible with any gene order.

6.6 Gene Copies, Gene Families

There are a number of di¤erent ways in which duplicate genes can arise: tandem re-

peat through slippage during recombination, hybridization, polyploidization, dupli-

cation of all or part of a chromosome, gene conversion, and transposition of foreign

genetic material, particularly horizontal (lateral) transfer from other genomes.

Analytical methods for genome rearrangement, predicated on the hypothesis that

the gene order of two genomes are basically permutations of each other, eventually

run into the problem of duplicate genes. It is no longer clear how to obtain the basic

datum for rearrangement analysis: caba is not a permutation of abc. Complicating

the situation further is the process of sequence divergence, whereby duplicate genes

gradually become structurally and functionally di¤erentiated; at some point they are

no longer duplicates, but members of a gene family sharing some functional sim-

ilarities as well as homology. Duplicate copies are also particularly prone to be lost,

not so much through physical deletion but by becoming pseudogenes (nonfunctional

ex-genes) through sequence divergence. This seems to happen much more rapidly in

the case of individual gene duplication than in the context of whole or partial genome

duplication (Nadeau and Sanko¤ 1997; Lynch and Conery 2000). It is in these con-

texts that the study of gene order is often forced to take account of the degree of

similarity among di¤erent genes, and not to rely on a binary distinction between

homologous and nonhomologous.

This section is structured according to the mechanism giving rise to duplicate

genes. First, we discuss the doubling of the whole genome and the hybridization

through fusion of two distinct genomes, then the processes of individual gene dupli-

cation, and finally horizontal transfer.

6.6.1 Genome Doubling

There is a di¤erence between the duplication of single genes and processes that results

in the doubling of large portions of a chromosome or even of the entire genome. In

the latter case, not only is one copy of each gene free to evolve its own function (or to
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lose its function, becoming a pseudogene and mutating randomly, eventually beyond

recognition), but it can evolve in concert with any subset of the hundreds or thousands

of other extra gene copies. Whole new physiological pathways may emerge, involving

novel functions for many of these genes.

Evidence for the e¤ects of genome duplication can be seen across the eukaryote

spectrum, though it is always controversial (Ohno et al. 1968; Wolfe and Shields

1997; Postlethwait et al. 1998; Skrabanek and Wolfe 1998; Hughes 1999; Smith et al.

1999). Genome duplication and other mechanisms for combining two genomes (hy-

bridization, allotetraploidization) are particularly prevalent in plants (Devos 2000;

Parkin 2000; Paterson et al. 2000).

From the analytical point of view, partial or total genome duplication di¤ers from

mechanisms of duplication such as duplication-transposition, gene conversion, or

horizontal transfer in that it conserves gene order within conserved segments, and this

can facilitate the analysis of genomes descended from a duplicated genome.

A duplicated genome contains two identical copies of each chromosome, but

through genome rearrangement parallel linkage patterns between the two copies are

disrupted. Even after a considerable time, however, we can hope to detect a number

of scattered chromosome segments, each of which has one apparent double, so that

the two segments contain a certain number of paralogous genes in a parallel order.

Similar patterns should be visible after hybridization through allotetraploidization

(El-Mabrouk and Sanko¤ 1999a). The main methodological question addressed

in this field is: How can we reconstruct some or most of the original gene order at

the time of genome duplication or hybridization, based on traces conserved in the

ordering of those duplicate genes still identifiable? Some of the contributions to this

methodology include work by Skrabanek and Wolfe (1998); El-Mabrouk et al. (1998,

1999); El-Mabrouk and Sanko¤ (1999b), the latter applicable to single, circular

chromosomal genomes, such as typical prokaryotes.

6.6.2 Multigene Families and Exemplar Distances

Implicit in definitions of rearrangement distances is that both genomes contain an

identical set of genes and the one-to-one homologies (orthologies) between all pairs

of corresponding genes in the two genomes have previously been established. As we

have stressed, although this hypothesis of unique genes may be appropriate for some

small genomes such as viruses and mitochondria, it is clearly unwarranted for diver-

gent species where several copies of the same gene, or several homologous (paralo-

gous) genes—a multigene family—may be scattered across a genome.

In a recent publication (Sanko¤ 1999), we formulated a generalized version of the

genomic rearrangement problem, where each gene may be present in a number of
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copies in the same genome. The central idea, based on a model of gene copy move-

ment, is the deletion of all but one member of each gene family—its exemplar—in

each of the two genomes being compared, so as to minimize some rearrangement

distance d between the two reduced genomes thus derived. Therefore, the exemplar

distance between two genomes X and Y is edðX ;YÞ ¼ min dðX 0;Y 0Þ, where the

minimum is taken over all pairs of reduced genomes X 0 and Y 0 obtained by deleting

all but one member of each gene family.

6.6.3 Duplication, Rearrangement, Reconciliation

The notion of exemplar distance takes on particular relevance in the phylogenetic

context. Sanko¤ and El-Mabrouk (2000) investigated the problem of inferring an-

cestral genomes when the data genomes contain multigene families. We define a

gene tree as a phylogenetic tree built from the sequences (according to some given

method) of all copies of a gene g or all members of a gene family in all the gen-

omes in the study. There are a number of techniques for inferring gene duplication

events and gene loss events by projecting a gene tree Tg onto a ‘‘true’’ species tree T ;

this is known as reconciliation (e.g., Page and Cotton 2000).

We ask: Given

. a phylogenetic tree T on N species;

. their N genomes: strings of symbols belonging to an alphabet of size F ;

. F gene trees, each Tg relating all occurrences of one symbol g in the N genomes;

. a distance d between two gene orders containing only unique genes,

the problem is to find, in each ancestral genome (internal node) of T,

. its set of genes, as well as

. their relationships with respect to genes in the immediate ancestor,

. the order of these genes in the genome, and

. among each set of sibling genes (o¤spring of the same copy in the immediate an-

cestor), one gene, designated as the exemplar,

such that the sum of the branch lengths of the tree T is minimal. The length of the

branch connecting a genome G to its immediate ancestor A is edðG 0;AÞ, where G 0 is
the genome built from G by deleting all but the exemplar from each family.

6.6.4 Horizontal Transfer

Though molecular biologists have employed various filters, such as testing for aber-

rant codon usage, to detect horizontally transferred genes within genomes, formal
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methods for this phenomenon are just beginning to be developed. Hallett and Lager-

gren (2000) have investigated a problem where a number of (conflicting) gene trees

are to be mapped to a species tree in such a way as to minimize the number of

transfer events implied.

6.7 Future Directions

Analyzing the complexity of simple measures of genomic distance, such as those

involving transpositions, and devising exact and heuristic algorithms for them remains

a rich source of research problems for theoretical computer scientists. But perhaps

more important is the development of parametrized models of gene order divergence

and the inferential apparatus, both combinatorial and statistical, necessary to apply

these in a meaningful way to prokaryotic and eukaryotic genomes. Some of the

parameters are those pertaining to type of rearrangement (e.g., inversion, transposi-

tion, translocation), the size of the chromosomal segment(s) involved, and the initial

and final chromosomal positions of the segment (e.g., centromeric, telomeric).

Interesting problems in combinatorial probability await researchers modeling gene

order evolution, and this may turn out to be of particular importance for prokaryotic

genomes (Sanko¤ 2000), where conserved gene ‘‘clusters’’ may play a role analogous

to that of conserved segments in higher eukaryotic genomes.

Phylogenetic analysis based on gene order is a di‰cult field, but one that is increas-

ingly important. Progress on the median problem or other approaches to recovering

ancestral gene order is crucial.

The integration of gene duplication and gene family studies with genome rear-

rangement theory is a new but potentially powerful way of resolving ambiguity, non-

uniqueness, and other questions of interpretation within each of these fields separately.

Practical algorithms in this area would seem to depend on progress in phylogenetic

analysis, but there is much theoretical work to be done as well.

In contrast to many areas of computational biology, genome rearrangement theory

is driven less by the immediate preoccupations of molecular biologists and geneticists,

and even less by commercial applicability, though there has been considerable invest-

ment by researchers in domesticated plants and animals (cf. Devos 2000; Womack

2000). Thus the emergence of new problems depends on the intrinsic interest provoked

by comparative genomic data now being produced, and by the analytical approaches

favoured by those that study them.

One area of great importance that has not been analyzed from the perspectives of

the work reviewed here is that of chromosomal rearrangements in oncology. There

are rich data on the extensive and diverse karyotypes, and the rearrangement events
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underlying them, in a range of cancers (Mitelman et al. 1997). These neoplastic pat-

terns, arising somatically, have not been examined from the modeling and algorithmic

points of view discussed in this chapter. The analysis of tumor genome rearrange-

ments, in comparison to the genetic rearrangements we have been reviewing, includ-

ing pathological, otherwise deleterious and relatively neutral ones with evolutionary

consequence, could well contribute to our understanding of cancer cell biology.
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Bryant, D. (2000). A lower bound for the breakpoint phylogeny problem. In Proceedings of the Eleventh
Annual Symposium on Combinatorial Pattern Matching (CPM 2000), Giancarlo, R. and Sanko¤, D., eds.,
vol. 1848 of Lecture Notes in Computer Science, 235–247. Berlin: Springer.

Caprara, A. (1997). Sorting by reversals is di‰cult. In Proceedings of the First Annual International Con-
ference on Computational Molecular Biology (RECOMB 97), 75–83. New York: ACM Press.

Caprara, A. (1999). Formulations and hardness of multiple sorting by reversals. In Proceedings of the Third
Annual International Conference on Computational Molecular Biology (RECOMB 99), Istrail, S., Pevzner,
P. A., and Waterman, M. S., eds., 84–93. New York: ACM.

Caprara, A. (2000). Practical solution for the reversal median problem. Manuscript.

Caprara, A., Lancia, G., and Ng, S. K. (2000). Fast practical solution of sorting by reversal. In Proceedings
of the 11th ACM-SIAM Symposium on Discrete Algorithms, 12–21. New York: ACM.

Genome Rearrangement 151



Christie, D. A. (1999). Genome Rearrangement Problems. Ph.D. dissertation, Univeristy of Glasgow.

Cosner, M. E., Jansen, R. K., Moret, B. M. E., Raubeson, L. A., Wang, L.-S., Warnow, T., and Wyman,
S. (2000). An empirical comparison of phylogenetic methods on chloroplast gene order data in Campanu-
laceae. In Comparative Genomics, Sanko¤, D. and Nadeau, J. H., eds., 99–121. Dordrecht, NL: Kluwer
Academic Press.

Dalevi, D., Eriksen, N., Eriksson, K., and Andersson, S. (2000). Genome comparison: The number of
evolutionary events separating C. pneumoniae and C. trachomatis. Technical report, University of Uppsala.

DasGupta, B., Jiang, T., Kannan, S., Li, M., and Sweedyk, E. (1998). On the complexity and approxi-
mation of syntenic distance. Discrete Appl. Math. 88(1–3): 59–82.

Devos, K. M. (2000). Comparative genetics: From hexaploid wheat to arabidopsis. In Comparative
Genomics, Sanko¤, D. and Nadeau, J. H., eds., 411–423, Dordrecht, NL: Kluwer Academic Press.

El-Mabrouk, N. (2000). Genome rearrangement by reversals and insertions/deletions of contiguous seg-
ments. In Proceedings of the Eleventh Annual Symposium on Combinatorial Pattern Matching (CPM 2000),
Giancarlo, R. and Sanko¤, D., eds., vol. 1848 of Lecture Notes in Computer Science, 222–234. Berlin:
Springer.

El-Mabrouk, N., Bryant, B., and Sanko¤, D. (1999). Reconstructing the predoubling genome. In Pro-
ceedings of the Third Annual International Conference on Computational Molecular Biology (RECOMB
’99), Istrail, S., Pevzner, P. A., and Waterman, M. S., eds., 154–163. New York: ACM Press.

El-Mabrouk, N., Nadeau, J. H., and Sanko¤, D. (1998). Genome halving. In Proceedings of the Ninth
Annual Symposium on Combinatorial Pattern Matching (CPM ’98), Farach-Colton, M., ed., vol. 1448 of
Lecture Notes in Computer Science, 235–250. Heidelberg: Springer Verlag.

El-Mabrouk, N., and Sanko¤, D. (1999a). Hybridization and genome rearrangement. In Proceedings of the
Tenth Annual Symposium on Combinatorial Pattern Matching (CPM 1999), Crochemore, M. and Pater-
son, M., eds., vol. 1645 of Lecture Notes in Computer Science, 78–87. Berlin: Springer Verlag.

El-Mabrouk, N., and Sanko¤, D. (1999b). On the reconstruction of ancient doubled circular genomes
using minimum reversals. In Genome Informatics 1999, Asai, K., Miyano, S., and Takagi, T., eds., 83–93.
Tokyo: Universal Academy Press.

Ferretti, V., Nadeau, J. H., and Sanko¤, D. (1996). Original synteny. In Proceedings of the Seventh Annual
Symposium on Combinatorial Pattern Matching (CPM ’96), Hirschberg, D. and Myers, G., eds., vol. 1075
of Lecture Notes in Computer Science, 159–167. Berlin: Springer.

Fu, Y. X. (1995). Linear invariants under Jukes’ and Cantor’s one-parameter model. J. Theoret. Biol. 173:
339–352.

Gallut, C., Barriel, V., and Vignes, R. (2000). Gene order and phylogenetic information. In Comparative
Genomics, Sanko¤, D. and Nadeau, J. H., eds., 123–132. Dordrecht, NL: Kluwer Academic Press.

Gu, Q.-P., Iwata, K., Peng, S., and Chen, Q.-M. (1997). A heuristic algorithm for genome rearrangements.
In Proceedings of the Eighth Workshop on Genome Informatics 1997, Miyano, S. and Takagi, T., eds., 268–
269. Tokyo: Universal Academy Press.

Hallett, M. T., and Lagergren, J. (2000). E‰cient algorithms for horizontal gene transfer problems.
Manuscript.

Hannenhalli, S. (1996). Polynomial-time algorithm for computing translocation distance between genomes.
Discrete Appl. Math. 71: 137–151.

Hannenhalli, S., Chappey, C., Koonin, E. V., and Pevzner, P. A. (1995). Genome sequence comparison
and scenarios for gene rearrangements: A test case. Genomics 30: 299–311.

Hannenhalli, S., and Pevzner, P. (1995). Transforming men into mice (polynomial algorithm for genomic
distance problem). In Proceedings of the IEEE 36th Annual Symposium on Foundations of Computer
Science, 581–592. Los Alamitos, CA: IEEE Computer Society.

Hannenhalli, S., and Pevzner, P. A. (1999). Transforming cabbage into turnip (polynomial algorithm for
sorting signed permutations by reversals). J. ACM 48: 1–27.

Hughes, A. L. (1999). Adaptive Evolution of Genes and Genomes. New York: Oxford University Press.

152 David Sanko¤ and Nadia El-Mabrouk



Jackson, R. (1957). New low chromosome number for plants. Science 126: 1115–1116.

Kaplan, H., Shamir, R., and Tarjan, R. E. (2000). A faster and simpler algorithm for sorting signed per-
mutations by reversals. SIAM J. Comput. 29: 880–892.

Kececioglu, J., and Sanko¤, D. (1993). Exact and approximation algorithms for the inversion distance
between two permutations. In Proceedings of the Fourth Annual Symposium on Combinatorial Pattern
Matching (CPM ’93),Apostolico, A., Crochemore, M., Galil, Z., and Manber, U., eds., vol. 684 of Lecture
Notes in Computer Science, 87–105. Berlin: Springer.

Kececioglu, J., and Sanko¤, D. (1994). E‰cient bounds for oriented chromosome inversion distance. In
Proceedings of the Fifth Annual Symposium on Combinatorial Pattern Matching (CPM ’94), Crochemore,
M. and Gusfield, D., eds., vol. 807 of Lecture Notes in Computer Science, 162–176. Berlin: Springer.

Kececioglu, J., and Sanko¤, D. (1995). Exact and approximation algorithms for sorting by reversals, with
application to genome rearrangement. Algorithmica 13: 180–210.

Kececioglu, J. D., and Ravi, R. (1995). Of mice and men: Algorithms for evolutionary distance between
genomes with translocations. In Proceedings of the Sixth ACM-SIAM Symposium on Discrete Algorithms,
604–613. New York: ACM Press.

Kleinberg, J., and Liben-Nowell, D. (2000). The syntenic diameter of the space of N-chromosome
genomes. In Comparative Genomics, Sanko¤, D. and Nadeau, J. H., eds., 185–197. Dordrecht, NL: Kluwer
Academic Press.

Liben-Nowell, D. (1999). On the structure of syntenic distance. In Proceedings of the Tenth Annual Sym-
posium on Combinatorial Pattern Matching (CPM ’99), Crochemore, M. and Paterson, M., eds., vol. 1645
of Lecture Notes in Computer Science, 43–56. Berlin: Springer.

Lima-de Faria, A. (1980). How to produce a human with 3 chromosomes and 1000 primary genes.
Hereditas 93: 47–73.

Lynch, M., and Conery, J. S. (2000). The evolutionary fate and consequences of duplicated genes. Science
1151–1155.

McAllister, B. F. (2000). Fixation of chromosomal rearrangements. In Comparative Genomics, Sanko¤, D.
and Nadeau, J. H., eds., 19–27. Dordrecht, NL: Kluwer Academic Press.

McLysaght, A., Seoighe, C., and Wolfe, K. H. (2000). High frequency of inversions during eukaryote gene
order evolution. In Comparative Genomics, Sanko¤, D. and Nadeau, J. H., eds., 47–58, Dordrecht, NL:
Kluwer Academic Press.

Meidanis, J., and Dias, Z. (2000). An alternative algebraic formalism for genome rearrangements. In
Comparative Genomics, Sanko¤, D. and Nadeau, J. H., eds., 213–233. Dordrecht, NL: Kluwer Academic
Press.

Mitelman, F., Mertens, F., and Johansson, B. (1997). A breakpoint map of recurrent chromosomal rear-
rangements in human neoplasia. Nature Genet. 15: 417–474.

Nadeau, J. H., and Sanko¤, D. (1997). Comparable rates of gene loss and functional divergence after
genome duplications early in vertebrate evolution. Genetics 147: 1259–1266.

Nadeau, J. H., and Sanko¤, D. (1998). Counting on comparative maps. Trends Genet. 14: 495–501.

Ohno, S., Wolf, U., and Atkin, N. B. (1968). Evolution from fish to mammals by gene duplication.
Hereditas 59: 169–187.

Page, R. D. M., and Cotton, J. A. (2000). Genetree: A tool for exploring gene family evolution. In Com-
parative Genomics, Sanko¤, D. and Nadeau, J. H., eds., 525–536. Dordrecht, NL: Kluwer Academic Press.

Parkin, I. (2000). Unraveling crucifer genomes through comparative mapping. In Comparative Genomics,
Sanko¤, D. and Nadeau, J. H., eds., 425–537, Dordrecht, NL: Kluwer Academic Press.

Paterson, A. H., Bowers, J. E., Burow, M. D., Draye, X., Elsik, C. G., Jiang, C.-X., Katsar, C. S., Lan,
T.-H., Lin, Y.-R., Ming, R., and Wright, R. J. (2000). Comparative genomics of plant chromosomes. In
Comparative Genomics, Sanko¤, D. and Nadeau, J. H., eds., 439–457, Dordrecht, NL: Kluwer Academic
Press.

Genome Rearrangement 153



Pe’er, I., and Shamir, R. (1998). The median problems for breakpoints are NP-complete. Electronic Col-
loquium on Computational Complexity Technical Report 98-071. http://www.eccc.uni-trier.de/eccc.

Pe’er, I., and Shamir, R. (2000). Approximation algorithms for the median problem in the breakpoint
model. In Comparative Genomics, Sanko¤, D. and Nadeau, J. H., eds., 225–241. Dordrecht, NL: Kluwer
Academic Press.

Postlethwait, J. H., Yan, Y.-L., Gates, M. A., Horne, S., Amores, A., Brownlie, A., Donovan, A., Egan,
E. S., Force, A., Gong, Z., Goutel, C., Fritz, A., Kelsh, R., Knapik, E., Liao, E., Paw, B., Ransom, D.,
Singer, A., Thomson, T., Abduljabbar, T. S., Yelick, P., Beier, D., Joly, J.-S., Larhammar, D., Rosa, F.,
Westerfield, M., Zon, L. I., and Talbot, W. S. (1998). Vertebrate genome evolution and the zebrafish gene
map. Nature Genet. 18: 345–349.

Reinelt, G. (1991). The Traveling Salesman—Computational Solutions for TSP Applications. Berlin:
Springer Verlag.

Sanko¤, D. (1992). Edit distance for genome comparison based on nonlocal operations. In Proceedings of
the Third Annual Symposium on Combinatorial Pattern Matching (CPM ’92), Apostolico, A., Crochemore,
M., Galil, Z., and Manber, U., eds., vol. 644 of Lecture Notes in Computer Science, 121–135. Berlin:
Springer.

Sanko¤, D. (1999). Genome rearrangements with gene families. Bioinformatics 15: 909–917.

Sanko¤, D. (2000). Short inversions and conserved gene clusters. Manuscript.

Sanko¤, D., and Blanchette, M. (1997). The median problem for breakpoints in comparative genomics. In
Computing and Combinatorics, Proceeedings of COCOON ’97, Jiang, T. and Lee, D. T., eds., vol. 1276 of
Lecture Notes in Computer Science, 251–263. Berlin: Springer.

Sanko¤, D., and Blanchette, M. (1998). Multiple genome rearrangement and breakpoint phylogeny. J.
Comput. Biol. 5: 555–570.

Sanko¤, D., and Blanchette, M. (1999). Phylogenetic invariants for genome rearrangements. J. Comput.
Biol. 6: 431–445.

Sanko¤, D., and Blanchette, M. (2000). Comparative genomics via phylogenetic invariants for Jukes-
Cantor semigroups. In Stochastic Models: A Conference in Honour of Professor Donald A. Dawson,
Gorostiza, L. and Ivano¤, B., eds., vol. 26 of Canadian Mathematical Society Conference Proceedings
Series, 399–418. Providence, RI: American Mathematical Society.

Sanko¤, D., Bryant, D., Deneault, M., Lang, B. F., and Burger, G. (2000a). Early eukaryote evolution
based on mitochondrial gene order breakpoints. J. Comput. Biol. 7: 521–535.

Sanko¤, D., Cedergren, R., and Abel, Y. (1990). Genomic divergence through gene rearrangement. In
Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences, Doolittle, R. F., ed., vol.
183 of Methods in Enzymology, 428–438. Academic Press.

Sanko¤, D., Deneault, M., Bryant, D., Lemieux, C., and Turmel, M. (2000b). Chloroplast gene order and
the divergence of plants and algae, from the normalized number of induced breakpoints. In Comparative
Genomics, Sanko¤, D. and Nadeau, J. H., eds., 89–98. Dordrecht, NL: Kluwer Academic Press.

Sanko¤, D., and El-Mabrouk, N. (2000). Duplication, rearrangement and reconciliation. In Comparative
Genomics, Sanko¤, D. and Nadeau, J. H., eds., 537–550. Dordrecht, NL: Kluwer Academic Press.

Sanko¤, D., and Goldstein, M. (1989). Probabilistic models of genome shu‰ng. Bull. Math. Biol. 51: 117–
124.

Sanko¤, D., Leduc, G., Antoine, N., Paquin, B., Lang, B. F., and Cedergren, R. J. (1992). Gene order
comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc. Natl. Acad. Sci.
USA 89(14): 6575–6579.

Sanko¤, D., Sundaram, G., and Kececioglu, J. (1996). Steiner points in the space of genome rearrange-
ments. Int. J. Found. Comput. Sci. 7: 1–9.

Skrabanek, L., and Wolfe, K. H. (1998). Eukaryote genome duplication—where’s the evidence? Curr.
Opinion Genet. Devel. 8: 694–700.

154 David Sanko¤ and Nadia El-Mabrouk



Smith, N. G. C., Knight, R., and Hurst, L. D. (1999). Vertebrate genome evolution: A slow shu¿e or a big
bang? BioEssays 21: 697–703.

Sturtevant, A. H., and Novitski, E. (1941). The homologies of chromosome elements in the genus Droso-
phila. Genetics 26: 517–541.

Walter, M. E., Dias, Z., and Meidanis, J. (1998). Reversal and transposition distance of linear chromo-
somes. In String Processing and Information Retrieval: A South American Symposium (SPIRE ’98), 96–
102. Los Alamitos, CA: IEEE Computer Society.

Watterson, G., Ewens, W., Hall, T., and Morgan, A. (1982). The chromosome inversion problem. J.
Theoret. Biol. 99: 1–7.

Wolfe, K. H., and Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast
genome. Nature 387: 708–713.

Womack, J. E. (2000). The essential role of comparative maps in livestock genomics. In Comparative
Genomics, Sanko¤, D. and Nadeau, J. H., eds., 401–409, Dordrecht, NL: Kluwer Academic Press.

Genome Rearrangement 155



 

7 Compressing DNA Sequences

Ming Li

7.1 Overview

With the imminent completion of the Human Genome project and the fast increase

of many complete genomes of prokaryotes and eukaryotes, fundamental questions

regarding the characteristics of these sequences arise (Koonin 1999; Wooley 1999),

the first of which is how to compare genomes. We introduce an e¤ective general tool

for such questions: compression programs for DNA sequences. We will first review

some compression algorithms for biological sequences, and then switch our attention

to the question of how to use such compression programs to compare genomes.

Why are we interested in compressing DNA sequences? From a strictly mathe-

matical point of view, compression implies understanding and comprehension (Li and

Vitanyi 1997); from a more utilitarian point of view, as we will demonstrate soon,

compression is a great tool for genome comparison and for studying various prop-

erties of genomes.

Life represents order. It is neither chaotic nor random (Li and Vitanyi 1997). In

other words, DNA sequences, which encode life, should be compressible. There is

also strong biological evidence that supports this claim: it is well known that DNA

sequences, especially in higher eukaryotes, contain many (approximate) tandem

repeats; it is also well known that many essential genes (like rRNAs) have many

copies; it is believed that there are only about a thousand basic protein folding pat-

terns; it also has been conjectured that genes duplicate themselves sometimes for

evolutionary or simply for ‘‘selfish’’ purposes. All these reasons give more concrete

support that DNA sequences should be reasonably compressible. However, such

regularities are often blurred by random mutation, translocation, cross-over, and re-

versal events, as well as sequencing errors.

The compression of DNA sequences is a very di‰cult task (Curnow and Kirwood

1989; Grumback and Tahi 1994; Rivals et al. 1995; Lanctot et al. 2000; Chen et al.

2000). DNA sequences consist of only four nucleotide bases fa; c; g; tg; two bits are

enough to store each base. However, if one applies standard compression software

such as the Unix ‘‘compress,’’ ‘‘bzip2,’’ and ‘‘gzip,’’ or the MS-DOS archive programs

‘‘winzip’’ and ‘‘arj,’’ they all expand the file with more than two bits per base, as shown

in table 7.1, although all this compression software uses universal compression algo-

rithms. These software tools are designed for English text compression (Bell et al.

1990), but the regularities in DNA sequences are subtler.

One may treat compressibility study as the ultimate generalization of the simpler

(and fruitful) biological studies such as G-C contents of various species. More sophis-



ticated studies on DNA sequences will give us a deeper understanding about the nature

of these sequences. Di¤erent regions on a genome, di¤erent genes, di¤erent species

may have di¤erent compression ratios. Such di¤erences may imply, for example, dif-

ferent mutation rates in di¤erent genes (Lanctot et al. 2000).

We will also discuss conditional compressibility where one compresses one sequence

given another sequence as free information. Intuitively, conditional compressibility

implies some relatedness between two sequences. However, directly using it results in

an incorrect measure, which is not symmetric. We define a proper distance to mea-

sure how much information two DNA sequences or two genomes share. As an ex-

ample, we will show how our compression programs can be used to construct whole

genome trees.

Unless otherwise mentioned, we will use the lower case letters u; v;w; x; y to denote

finite strings over the alphabet fa; c; g; tg. juj denotes the length (i.e., number of char-

acters) of u. ui is the i-th character of u. ui : j is the substring of u from position i to

position j. The first character of u is u0. Thus u ¼ u0 : juj�1. We use � to denote empty

string and j�j ¼ 0.

7.2 GenCompress: A DNA Sequence Compression Program

Grumbach and Tahi (1993, 1994) proposed two lossless compression algorithms for

DNA sequences, namely Biocompress and Biocompress-2, in the spirit of the Ziv and

Lempel (1977) data compression method. Biocompress-2 detects exact repeats and

complementary palindromes located earlier in the target sequence, and then encodes

them by repeat length and the position of a previous repeat occurrence. In addition,

Table 7.1
Compression measured in bits per base

Sequence
Size
(bases) compress arith-2

Biocom-
press-2

GenCom-
press-1

GenCom-
press-2

MTPACGA 100314 2.116 1.873 1.875 1.861 1.861

MPOMTCG 186608 2.202 1.966 1.938 1.898 1.898

CHNTXX 155844 2.187 1.934 1.617 1.614 1.614

CHMPXX 121024 2.075 1.837 1.685 1.669 1.670

HUMGHCSA 66495 2.194 1.938 1.307 1.092 1.097

HUMHBB 73323 2.195 1.918 1.877 1.813 1.814

HUMHDABCD 58864 2.230 1.943 1.877 1.800 1.809

HUMDYSTROP 38770 2.233 1.924 1.926 1.924 1.923

HUMHPRTB 56737 2.202 1.929 1.907 1.826 1.830

VACCG 191737 2.167 1.898 1.761 1.761 1.761

HEHCMVCG 229354 2.213 1.965 1.848 1.847 1.847
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Biocompress-2 also uses arithmetic coding of order 2 if no significant repetition is

found. In fact, the di¤erence between Biocompress and Biocompress-2 is the addition

of order-2 arithmetic coding.

Rivals et al. (1995) give another compression algorithm, Cfact, which searches the

longest exact matching repeat in an entire sequence using a su‰x tree data structure.

The idea of Cfact is basically the same as Biocompress-2 except that Cfact is a two-

pass algorithm. It builds the su‰x tree in the first pass. In the encoding phase, the

repetitions are coded with guaranteed gain; otherwise, two-bit per base encoding is

used. This is similar to the codeword encoding condition in Biocompress-2 except that

the order-2 arithmetic coding is not used in Cfact. É. Rivals et al. (1997) also

designed a compression algorithm as a tool to detect the approximate tandem repeats

in DNA sequences.

Lempel and Ziv proposed two algorithms (Ziv and Lempel 1977; Lempel and Ziv

1978) to compress universal data sequences. These are dictionary based compression

algorithms that rely on exact repeats. The Lempel-Ziv algorithms can be viewed as

having two components: the first component is to parse the input data sequence into

variable-length strings based on the history of the dictionary. The second component

is to replace the variable-length prefix by a proper binary codeword—concatenation

of these codewords yields the encoder’s output sequence in response to the input data

sequence. We follow the same framework and generalize it to approximate matching

for DNA sequences.

GenCompress (Chen et al. 2000) achieves significantly higher compression ratios

than either Biocompress-2 or Cfact. Such improvement is key to its application in

genome comparison. GenCompress is a one-pass algorithm. It proceeds as follows:

For input w, assume that a part of it, say v, has already been compressed, and the

remaining part is u, that is, w ¼ vu. GenCompress finds an ‘‘optimal prefix’’ of u such

that it approximately matches some substring in v so that this prefix of u can be

encoded economically. After outputting the code of this prefix, remove the prefix

from u, and append it to the su‰x of v. Continue the process till u ¼ �.

We adopt the following constraint in GenCompress to limit the search. If the

number of edit operations (insert, delete, replace) located in any substring of length k

in the prefix s of u for an edit operation sequence lðs; tÞ is not larger than a threshold

value b, we say that lðs; tÞ satisfies the condition C ¼ ðk; bÞ for compression. In Gen-

Compress, we only search for approximate matches that satisfy condition C. This

way we limit our search space. Experiments show that setting C to ðk; bÞ ¼ ð12; 3Þ
gives good results.

We defined a compression gain function G in order to evaluate if a particular ap-

proximate repeat provides profit in the encoding.
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Let input w ¼ vu, where v has already been processed. Given Gðs; t; lÞ and C, the

optimal prefix is a prefix s of u such that Gðs; t; lÞ is maximized over all l and t such

that t is a substring of v and l is an edit transcription from t to s satisfying condi-

tion C.

The algorithm carefully finds the optimal prefix, and uses order-2 Arithmetic en-

coding (Nelson 1991; Bell et al. 1990) whenever needed. GenCompress also detects

the approximate complemented palindrome in DNA sequences.

Some standard benchmark data has been used (Grumback and Tahi 1994). These

standard sequences (available at GeneBank 1999) come from a variety of sources and

include the complete genomes of two mitochondria, MPOMTCG, PANMTPACGA

(also called MIPACGA); two chloroplasts, CHNTXX and CHMPXX (also called

MPOCPCG); five sequences from humans, HUMGHCSA, HUMHBB, HUMH-

DABCD, HUMDYSTROP, HUMHPRTB; and finally the complete genome from

the two viruses, VACCG and HEHCMVCG (also called HS5HCMVCG).

The compression ratios of GenCompress, as well as those of Biocompress-2 and

some other compression algorithms, are presented in table 7.1. The comparison of

GenCompress with Cfact is presented in table 7.2, using the data from Rivals et al.

(1995). Note that although Cfact looks for the best matches globally, whereas our

GenCompress only searches for the best approximate match from the current prefix to

the part of the text seen so far. GenCompress has a much better compression ratio

than Cfact. From these experiments, it is clear that approximate matching plays a

key role in finding similarities or regularities in DNA sequences.

In conclusion, the compression results of GenCompress for DNA sequences indi-

cate that our method based on approximate matching is more e¤ective than others.

GenCompress is able to detect more regularities and achieve better compression

results.

Table 7.2
Compression measured bits per base

Sequence
Size
(bases) LZW 15 arith-2 Cfact

GenCom-
press-1

GenCom-
press-2

atatsgs 9647 2.237 1.951 1.785 1.664 1.673

atef1a23 6022 2.297 1.994 1.585 1.541 1.540

atrdnaf 10014 2.300 2.009 1.814 1.789 1.786

atrdnai 5287 2.239 1.994 1.468 1.419 1.410

hsg6pdgen 52173 2.168 1.937 1.928 1.785 1.800

xlxfg512 19338 2.084 1.923 1.490 1.376 1.385

mmzp3g 10833 2.244 1.953 1.911 1.854 1.857

celk07e12 58949 2.108 1.912 1.713 1.597 1.605
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7.3 GTAC: A DNA Sequences Entropy Estimator

In many applications, we are more interested in estimating DNA sequence entropy

than really achieving the final compression. The final compression size in bits usually

overestimates the true entropy.

There have been several attempts to characterize the entropy of DNA. One of the

most common approaches is to estimate the probability of n-tuples for large n, and

use this value to compute the block entropy (entropy of n-tuples). One problem with

this approach is that it converges too slowly, requiring an exponentially large data-

set. Even though genome databases are large and growing larger, the values that are

obtained systematically overestimate the entropy due to the finite sample e¤ect, and

must be corrected. Several researchers address this problem and have developed

methods to correct it, such as Liò et al. (1996), and Schmitt and Herzel (1997).

Farach et al. (1994) developed a novel algorithm to estimate the entropy of DNA

sequences called a match length entropy estimator. This algorithm was used to test

the di¤erences between the entropy of introns and exons. Farach et al. also proved

that their algorithm was universal, that is, that the entropy estimate will approach the

true entropy as the size of the sequence increases, but only under the assumption that

the sequence is generated by a Markov process.

Loewenstern and Yianilos (1999) developed CDNA, a program that estimates the

entropy of DNA sequences. The motivation for CDNA comes from the observa-

tion that naturally occurring DNA sequences contain many more near repeats than

Table 7.3
Comparison of entropy values in bits per symbol

Sequence name
Sequence
length

UNIX
compress

Biocom-
press-2

CDNA
compress GTAC

PANMTPACGA 100314 2.12 1.88 1.85 1.74

MPOMTCG 186609 2.20 1.94 1.87 1.78

CHNTXX 155844 2.19 1.62 1.65 1.53

CHMPXX 121124 2.09 1.68 — 1.58

SCCHRIII 315339 2.18 1.92 1.94 1.82

HUMGHCSA 66495 2.19 1.31 0.95 1.10

HUMHBB 73308 2.20 1.88 1.77 1.73

HUMHDABCD 58864 2.21 1.88 1.67 1.70

HUMDYSTROP 38770 2.23 1.93 1.93 1.81

HUMHPRTB 56737 2.20 1.91 1.72 1.72

VACCG 191737 2.14 1.76 1.81 1.67

HEHCMVCG 229354 2.20 1.85 — 1.74

Note that UNIX-compress and Biocompress-2 are lossless compression algorithms. CDNA and GTAC are
entropy estimators.
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would be expected by chance. Two parameters that CDNA uses to capture the in-

exact matches are w, which represents the substring size, and h, which represents the

Hamming distance. These parameters are used to create a panel of predictive experts

pw;h, each with di¤ering values of w and h. CDNA then learns the weightings of these

various experts, using Expectation Maximization, so that their predictive ability is

maximized when combined into a single prediction. CDNA uses everything to the left

of a nucleotide as the learning set to predict its value. The average over-all position is

calculated and is the value recorded in table 7.3.

We have developed a new entropy estimator of DNA sequences, GTAC (Lanctot

et al. 2000), which is based on the idea of Kie¤er and Yang (1999) regarding the design

and analysis of grammar based codes, and which recognizes the repeats and reverse

complement property of DNA sequences. This entropy estimator is universal as it does

not assume any source model and works for any individual sequence. This entropy

estimator is proved to be universal. Table 7.4 compares GTAC with several entropy

estimators.

Kie¤er and Yang (1999) recently put forth a new type of lossless source code called

a grammar based code, and developed a new universal lossless source coding theory.

In this theory, a grammar based code has the structure shown in figure 7.1.

The idea is as follows. Given a sequence x, we generate a particular context-free

grammar Gx such that one can recover x from Gx. For example, here is Gx for x ¼
aataaatgcaatatatatgc.

S ! BADBCCD

A ! aa

B ! At

C ! at

D ! Cgc

Then we use an arithmetic coder to encode Gx.

Table 7.4
Features of various entropy estimators

Algorithm Universal Linear run time Entropy estimate

UNIX compress yes yes worst

Match length limited yes —

Biocompress-2 yes yes 3rd best

CDNA no no 2nd best

GTAC yes yes best
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To characterize the resulting compression rate, let oðGxÞ be the sequence obtained
by concatenating the righthand side of all production rules of Gx in some order and

then deleting the first appearance of each variable (because they can be uniformly

replaced by one special symbol and, during decoding, can be recovered by their order

of apparences). Let

HðGxÞ ¼
X
s

nðsÞ log joðGxÞj
nðsÞ ð7:1Þ

where the summation is taken over all variables and terminal symbols in Gx, nðsÞ
denotes the number of times the variable (or terminal symbol) s appears in oðGxÞ,
and joðGxÞj denotes the length of the sequence oðGxÞ. Also, in formula (7.1), the

logarithm is relative to base 2, and the convention 0 log y ¼ 0 is adopted. In terms

of the terminology in Kie¤er and Yang (1999), the quantity HðGxÞ is called the

unnormalized entropy of the grammar Gx. For the CFG Gx shown in example 1,

oðGxÞ ¼ BCDaaAtatCgc and HðGxÞ ¼ 34:26. The following theorem, proved by

Kie¤er and Yang (1999), characterizes the resulting compression rate.

theorem 7.1. According to arithmetic coding or enumerative coding, one can assign

a uniquely decodable binary codeword BðGxÞ to each admissible CFG Gx (or its

equivalent form) such that

jBðGxÞj ¼ f ðGxÞ þHðGxÞ ð7:2Þ
where jBðGxÞj denotes the length of the binary codeword BðGxÞ, and f ðGxÞ repre-

sents the overhead paid to the universality of grammar based codes. In (7.2), f ðGxÞ is
negligible compared to HðGxÞ and is upper bounded, by

f ðGxÞU 5jGxj þ 4

where jGxj denotes the total length of the righthand sides of all production rules of Gx.

Because it can be shown that f ðGxÞU 5jGxjUOðjxj=logjxjÞ, HðGxÞ=jxj goes to

the actual per-bit-entropy of x (Kie¤er and Yang 1999). This justifies the use HðGxÞ
as the entropy of x.

Figure 7.1
Structure of a grammar-based code.
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In order to estimate HðGxÞ, we need to first construct Gx. Our task is to repeatedly

find a longest match, and then replace it by a nonterminal and create a new rule in

the grammar Gx. Such a task, done trivially, easily costs Wðn3Þ. Using a su‰x tree

data structure (Gusfield 1997), and by carefully maintaining changes on the su‰x

tree, a linear time algorithm is possible for computing Gx (Lanctot et al. 2000). Note

that the linear time algorithm is important here because the sequences we are com-

pressing are often of many megabases. Table 7.3 compares the entropy estimates on

the standard benchmark data using various programs. GTAC gives the lowest en-

tropy estimates in most cases.

Together with Jonathan Badger, we have performed some preliminary experiments

with interesting consequences. One such experiment is concerned with coding and

noncoding regions in E. coli. Around 90 percent of the genome of higher eukaryotes

is noncoding, whereas about 15 percent of the genome of E. coli is noncoding. If

noncoding regions have a definite role, they may be more regular than coding regions,

which would support the conjecture that noncoding regions in prokaryotes are not

junk. Our results confirmed this hypothesis. When comparing coding and noncoding

regions of E. coli, we found the following entropy values:

. 1.85 bits/symbol for coding regions (4,090,525 bases)

. 1.80 bits/symbol for noncoding regions (640,039 bases).

7.4 A New Distance Measure and Whole Genome Comparison

As we accumulate an enormous amount of nucleotide data (doubling every 18

months), one exciting challenge facing bioinformatics researchers is to provide tools

to analyze such data (Koonin 1999; Wooley 1999). Entropy estimators provide a

convenient tool for some aspects of such a task.

Given two sequences x and y, DNA or otherwise, we (Chen et al. 2000; Li et al.

2000) have defined a distance measure between x and y as:

dðx; yÞ ¼ 1� KðxÞ � Kðx j yÞ
KðxyÞ

where KðxÞ is the Kolmogorov complexity of the string x, that is, the the length in

bits of the shortest program causing a standard universal computer to compute x as

its unique output. Kðx j yÞ is the conditional Kolmogorov complexity, assuming the

above program has y as extra free information. See Li and Vitanyi (1997) for a

comprehensive introduction to the subject and its applications. The numerator of the
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fraction is the amount of information y knows about x, which is equal to the amount

of information x knows about y, by a theorem in Kolmogorov complexity (Li and

Vitanyi 1997), to within a logarithmic error. This is called mutual algorithmic infor-

mation, which is not itself a distance and does not satisfy the triangle inequality;

however, dðx; yÞ as defined above does (Li et al. 2001), ranging from a minimum

of 0 when x ¼ y, to a maximum of 1 when x and y are independent strings of equal

or di¤ering length. Distance function dðx; yÞ is not only well-defined, it is also uni-

versal in the sense that if any distance measure uncovers some similarity between

two sequences, so will d. Of course, it is well known that K is an uncomputable

function (Li and Vitanyi 1997); accordingly, we used our program GenCompress,

discussed in section 7.2, to heuristically approximate it. Notice that GTAC is an un-

conditional entropy estimator, and at this point it cannot be used to do conditional

entropy estimation. The corresponding conditional entropy theory and program is

under development.

Di¤erent approaches for comparing genomes or general sequences have been pro-

posed (Grumback and Tahi 1994; Varre et al. 1998; Snel et al. 1999; Boore and Brown

1998; Fitz-Gibbon and House 1999; Bennett et al. 1998). Grumback and Tahi (1994)

proposed to use conditional compression. Using ideas of Kolmogorov complexity,

Varre, Delahaye, and Rivals (Varre et al. 1998) defined ‘‘transformation distance.’’

Essentially, this can be regarded as conditional compression using biologically related

operations. Although very attractive, both of these measures are not symmetric, and

hence cannot be used as distance in general. This situation can in fact be remedied by

using Information Distance as defined by Bennett et al. (1998) (see theorem 8.3.1 in

Li and Vitanyi 1997). However, information distance (Bennett et al. 1998; Li and

Vitanyi 1997), although symmetric, is also not a right measure in this case. The In-

formation Distance is not suitable in genome comparison because it would over-

punish long deletions.

Biologists (Snel et al. 1999; Boore and Brown 1998; Fitz-Gibbon and House 1999)

proposed to use more involved and laborious methods like counting the number of

shared genes in two genomes or comparing the ordering of the genes. These distances

theoretically may be regarded as special cases of our dðx; yÞ, because each of these

proposed measures may be regarded simply as one way of compression.

These distances, together with GþC content, edit distance, and reversal and rear-

rangement distances (Kececioglu and Sanko¤ 1995; Hannenhalli and Pevzner 1995;

Nadeau and Sanko¤ 1998) compare genomes using only partial genome information,

and with a pre-assumed model of similarity, whereas our new distance uses all genome

information and makes no assumption of evolutionary model, at least in theory.
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To demonstrate that this theory is applicable, we have performed many experi-

ments on genomes. One is described here. It has been debated which two of the three

main groups of placental mammals are more closely related: primates, ferungulates,

and rodents. This is because by the maximum likelihood method, some proteins sup-

port the (ferungulates, (primates, rodents)) grouping, whereas other proteins support

the (rodents, (ferungulates, primates)) grouping (Cao et al. 1998). Cao et al. (1998)

aligned 12 concatenated mitochondrial proteins from the following species: rat (Rattus

norvegicus), house mouse (Mus musculus), grey seal (Halichoerus grypus), harbor seal

(Phoca vitulina), cat (Felis catus), white rhino (Ceratotherium simum), horse (Equus

caballus), finback whale (Balaenoptera physalus), blue whale (Balaenoptera musculus),

cow (Bos taurus), gibbon (Hylobates lar), gorilla (Gorilla gorilla), human (Homo

sapiens), chimpanzee (Pan troglodytes), pygmy chimpanzee (Pan paniscus), orang-

utan (Pongo pygmaeus), and Sumatran orangutan (Pongo pygmaeus abelii), using

opossum (Didelphis virginiana), wallaroo (Macropus robustus), and platypus (Orni-

thorhynchus anatinus) as the outgroup, and built the maximum likelihood tree to

confirm the grouping (rodents, (primates, ferungulates)). Using the complete mito-

chondrial genomes of these species, we approximated our new distance dðx; yÞ be-

tween each pair of species x and y. We then constructed a tree (figure 7.2) using

the neighbor joining (Saitou and Nei 1987) program in Adachi and Hasegawa’s

MOLPHY package (Adachi et al. 1996). The tree is identical to the maximum like-

lihood tree of Cao et al. (1998). Because neighbor-joining is sometimes distrusted

(Hillis et al. 1994; Kuhner and Felsenstein 1994), to further corroborate this grouping

we applied our own hypercleaning program (Berry et al. 2000) to the same distance

matrix and obtained the same tree. The hypercleaning program constructs an evo-

lutionary tree using the edges best supported by all possible four taxa subtrees

(commonly called ‘‘quartets’’). Thus using the new information-theoretic distances

derived from the complete mtDNA genomes we have re-confirmed the hypothesis of

(rodents, (primates, ferungulates)). The distance matrix can be found at the author’s

homepage: http://www.math.uwaterloo.ca/@mli/distance.html.

The simple asymmetric measure Kðx j yÞ leads to a wrong tree using the same data

and programs, as expected (data not shown). The gene order (Boore and Brown

1998) and gene content (Snel et al. 1999; Fitz-Gibbon and House 1999) approaches,

although yielding symmetric distances, have the disadvantage of requiring laborious

human analysis of the sequences and also are unlikely to provide enough information

to distinguish closely related species such as the above data set. Note that this com-

plete process is fully automatic and utilizes the information contained in noncoding

regions in addition to the information contained in the genes.
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Of course, the question is whether this method will in fact work on complete

genomes. We have performed a small-scale experiment with the following seven

complete genomes (GeneBank 1999):

. Archaea Bacteria: Archaeoglobus fulgidus (u1), Pyrococcus abyssi (u2), Pyrococcus

horikoshii OT3 (u3)

. Bacteria: Escherichia coli K-12 MG1655 (u4), Haemophilus influenzae Rd (u5),

Helicobacter pylori 26695 (u6); Helicobacter pylori, strain J99 (u7).

The resulting distance matrix, using 100ð1� dðx; yÞÞ, is given in table 7.5 and the

corresponding evolutionary tree is in figure 7.3.

Figure 7.2
The evolutionary tree built from complete mammalian mtDNA sequences.
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Table 7.5
Distance dðu; vÞ between all pairs u; v

Sequence u1 u2 u3 u4 u5 u6 u7

u1 4226821b 4226743 4228299 4228411 4228356 4228392

2178400a 0.018326c 0.019550 �0.000548 �0.002399 �0.001765 �0.002259

u2 3443540 3391432 3445299 3445242 3445257 3445264

1765118 0.023072 0.797546 0.000089 0.000988 0.000812 0.000705

u3 3362288 3310372 3364086 3363996 3364031 3364045

1738505 0.023055 0.794383 �0.000391 0.000617 0.000109 �0.000109

u4 8920179 8920362 8920294 8914204 8919249 8919224

4639221 0.000373 �0.001084 �0.000537 0.048760 0.008160 0.008371

u5 3440205 3440216 3440229 3434165 3439033 3439068

1830138 0.000274 0.000145 �0.000044 0.049059 0.018303 0.017776

u6 3079174 3078992 3079021 3077924 3077935 1226333

1667867 �0.002217 0.000307 �0.000140 0.009068 0.016523 43.069863

u7 3075330 3075285 3075238 3074059 3073952 1219515

1643831 �0.001314 �0.000782 �0.000062 0.009796 0.019680 43.171044

aNumber of bases in the input sequence.
bNumber of bits of conditionally compressed file between ui and uj .

c100
KðvÞ � KðvjuÞ

KðuvÞ .

Figure 7.3
The phylogeny for seven genomes derived from table 7.5.
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7.5 Discussion

We hope this new methodology and the automatic tool we have developed could

serve as an alternative approach to comparing genomes and constructing whole

genome trees. It perhaps would serve as a quick and dirty initial way to compare

genomes. This new method for whole genome comparison and phylogeny requires

neither gene identification nor any human intervention; in fact, it is totally auto-

matic, and mathematically well-founded. It works when there are no agreed upon

evolutionary models, as further demonstrated by the successful construction of a

chain letter phylogeny (Bennett et al. 2000) and when individual gene trees do not

agree (Cao et al. 1998; Doolittle 1999; Lawrence and Ochman 1998), as is the case

for genomes.

However, there are many questions that remain to be answered and experiments

to be performed. It is important to design a good conditional entropy estimator for

DNA sequences. Only with a better and fast conditional entropy estimator can

this method become e¤ective. It is important to perform more experiments with this

method to identify the range of data such a method works for. One potential objection

to our method is that if noncoding regions are usually junk, then are we measuring

junk? For prokaryotes, at least, this is not the case, as our experiments (performed by

J. H. Badger, using GTAC ) show that coding regions for E. coli have higher entropy

than noncoding regions of E. coli. It is also interesting to extend our study here to

other domains, such as program comparison. Currently we are working on this

project.
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III DATA MINING AND PATTERN DISCOVERY



 

8 Linkage Analysis of Quantitative Traits

Shizhong Xu

8.1 Introduction

Quantitative traits are usually defined as traits that have a continuous phenotypic

distribution (Falconer and Mackey 1996; Lynch and Walsh 1998), such as the growth

rate of plants. Variances of these traits are often controlled by the segregation of

many loci; therefore, quantitative traits are also called polygenic traits. Another

characteristic of quantitative traits is that environmental e¤ects can play a large role

in the variation of phenotypic distribution. The polygenic nature and the ability of

being modified by the environment make the study of the genetic basis for quantita-

tive traits more di‰cult than that for monogenic traits. There is another class of

traits that appear to be qualitative phenotypically but have a polygenic genetic

background. These traits are called threshold traits, such as disease susceptibility.

Threshold characters are usually studied using statistical methods similar to those

used in the study of quantitative traits. Therefore, the study of the genetic basis for

threshold traits is also covered by quantitative genetics.

Because of the polygenic nature, traditional methods of quantitative genetics that

use only the phenotypic and pedigree information cannot separate the e¤ects of indi-

vidual loci but study the collective e¤ect of all. With the rapid development of mo-

lecular technology, a large number of highly polymorphic molecular markers (DNA

variants) can be generated with ease. Most molecular markers are functionally

neutral, but they normally obey the laws of Mendelian inheritance. Therefore, the

relative relationship of the markers in the genome (called the marker map) can be

reconstructed using observed recombinant events. The joint segregating patterns of

markers under a given marker map, in conjunction with phenotypic and pedigree

information, provides additional information about the genetic basis of quantitative

traits, including the number of quantitative trait loci (QTL), the mode of gene action

and the e¤ects of each QTL, and the locations of these QTL along the chromosomes.

A complete description of the properties of these individual loci is called the genetic

architecture of quantitative traits. Study of the genetic architecture of quantitative

traits using molecular markers is called linkage analysis or QTL mapping.

QTL mapping could lead to several useful applications. First, it could improve the

e‰ciency of selective breeding. Second, transgenic technology might be applied to

quantitative traits. Third, the identification of alleles causing predisposition to com-

mon multifactorial diseases could lead to improved methods of prevention. Fourth,

quantitative genetics theory will be made more realistic when the number and prop-



erties of the genes are known, and more realistic theories will improve our under-

standing of evolution (Falconer and Mackey 1996).

8.2 Overview of QTL Mapping Statistics

Linkage disequilibrium is the foundation for QTL mapping, as it creates marker-trait

associations, with di¤erent marker genotypes having di¤erent expected values for

characters influenced by QTL linked to these markers (Weir 1996). Therefore, the

first step of QTL mapping is to create a population with linkage disequilibrium. The

simplest method for creating such a population is to make a cross between two inbred

lines. For mapping purposes, crosses between inbred lines have the fewest complica-

tions. The progeny from such crosses display maximum disequilibrium. Using F1

parents, a variety of populations, such as backcross and F2, can be generated for

mapping. However, many organisms in nature are outbred. Creating inbred lines

may not be easy for some species due to temporal, economical, or biological limi-

tations. Mapping QTL in such outbred populations must take advantage of existing

data. Such data, however, do not usually show strong linkage disequilibrium. There-

fore, we have to take a family based approach, where each family is considered as a

small mapping population. If multiple families are used, results are usually combined

and mapping is actually conducted within families. The theoretical basis of within

family mapping is that linkage disequilibrium is always expected within a family,

even if equilibrium is expected across families in the population.

Analyses of data obtained from di¤erent populations often require di¤erent statis-

tical methods. The statistical methods reviewed in this section are only applicable to

populations derived from the crosses of inbred lines. Developing methods for map-

ping outbred populations with pedigree data is the main scheme of this study and will

be described in section 8.4.

There are many di¤erent designs of line crossing experiments. However, I will

use a backcross (BC), the simplest design of line cross, as an example to discuss

the methods. This design starts with the cross of two inbred lines. The hybrid is called

the F1, which is then crossed back to one of the inbred parents to generate a collec-

tion of BC individuals. QTL mapping is performed in this BC family.

8.2.1 Least Squares

The least squares (LS) method is derived by treating each marker as a candidate

QTL. Define the genotypes of the two inbred parents at the locus of interest by A1A1

and A2A2, respectively. The F1 hybrid will have a genotype of A1A2. Assume that the
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F1 is crossed back to the A1A1 parent. The two possible genotypes in the BC family

are A1A1 and A1A2, and assuming additivity, with corresponding genotypic values

of a and 0, respectively. Note that the genotypic value of A1A2 has been arbitrarily

assigned zero and thus a becomes the substitution e¤ect of allele A1 relative to allele

A2. Define zj ¼ 1 if individual j has inherited the A1 allele from the F1 parent, that is,

j is of genotype A1A1, and zj ¼ 0 if j inherited the A2 allele from the F1 parent. The

phenotypic value of individual j can be described by the following linear model,

yj ¼ mþ zjaþ ej ð8:1Þ
where m is the mean and ej is the residual error with an assumed Nð0; s2

e Þ distribu-
tion. This is a typical linear model with zj as the regressor and a as the regression

coe‰cient. The estimate of a is obtained through the ordinary least squares analy-

sis. A simple t or F test can be applied to test the significance of the estimated a.

In reality, the genotype of the QTL is not observable, and thus zj is missing. What

we can observe is the segregation of a marker locus linked to the QTL. Assume that

the recombination fraction between the marker and the QTL is c. Define the two

possible genotypes of the marker in the BC family as M1M1 and M1M2, respectively.

Similar to zj , let us further define the indicator variable for the marker genotype by

mj, where mj ¼ 1 for M1M1 and mj ¼ 0 for M1M2. Substituting zj by its expectation

conditional on mj, we get

yj ¼ mþ Eðzj jmjÞaþ ej ð8:2Þ
where Eðzj jmjÞ ¼ b0 þ b1mj ¼ cþ ð1� 2cÞmj. Therefore,

yj ¼ m� þmja
� þ ej ð8:3Þ

where m� ¼ mþ b0a ¼ mþ ca and a� ¼ b1a ¼ ð1� 2cÞa. When a marker genotype

is used in place of the QTL genotype, we actually estimate and test a� instead of a.

Note that a� is a confounded e¤ect of the size of the QTL and the recombination

fraction. Either 1� 2c ¼ 0 or a ¼ 0 will cause a� ¼ 0. The first term, 1� 2c, is the

correlation coe‰cient between z and m, which ranges from 0 as c ¼ 1=2 (no linkage)

to 1 as c ¼ 0 (complete linkage).

Lander and Botstein (1989) proposed to use two markers simultaneously, one

on each side of the QTL, to infer the distribution of zj. Because the two flanking

markers define an interval covering a range of possible locations of the putative

QTL, the method is referred to as interval mapping. Lander and Botstein (1989)

used a maximum likelihood (ML) method to estimate and test a, which will be

discussed in the next section. Only the LS method for interval mapping will be
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described in this section. The LS method was independently developed by Haley

and Knott (1992) and Martinez and Curnow (1992). It is a simple extension of the

single marker analysis with Eðzj jmjÞ substituted by Eðzj jm1j;m2jÞ, where m1j and

m2j are indicator variables for the left and right flanking markers, respectively. Be-

cause zj is a Bernoulli variable, Eðzj jm1j;m2jÞ ¼ Prðzj ¼ 1 jm1j;m2jÞ. Let ci (for i ¼
1; 2) be the recombination fraction between marker i and the QTL, and c12 be the

recombination fraction between the two markers. The conditional probabilities are

Prðzj ¼ 1 j 1; 1Þ ¼ ð1� c1Þð1� c2Þ=ð1� c12Þ, Prðzj ¼ 1 j 1; 0Þ ¼ ð1� c1Þc2=c12, Prðzj ¼
1 j 0; 1Þ ¼ c1ð1� c2Þ=c12 and Prðzj ¼ 1 j 0; 0Þ ¼ c1c2=ð1� c12Þ. Letting pj ¼ Prðzj ¼
1 jm1j;m2jÞ and substituting zj by pj, we have a re-expressed linear model of

yj ¼ mþ pjaþ ej ð8:4Þ
The usual least squares method and the t or F test are then applied to estimate and

test a.

The recombination fraction between the two markers, c12, is assumed to be known

(estimated prior to QTL mapping). Given c12, c2 is a simple function of c1, as implied

in c12 ¼ c1ð1� c2Þ þ ð1� c1Þc2. This relationship provides a simple scheme of chro-

mosome scanning. We start from the marker in one end of the chromosome and test

each putative position until we reach the marker in the other end of the chromosome.

For every putative position, only the flanking markers are used to infer the condi-

tional expectation of zj . While walking along the chromosome, we plot the test sta-

tistic value against the position and form a test statistic profile. The regions where the

peaks of the profile occur are candidate locations for QTL along the chromosome.

8.2.2 Maximum Likelihood

When pj is used in place of zj, the residual error in the original model ðejÞ is replaced
by ej accordingly. In fact, ej has a mixture of two normal distributions. This is due to

the fact that an individual cannot take a genotypic value of pja; rather, the genotypic

value will be either a or 0, with a probability of pj or 1� pj, respectively. If the value

is 0, the distribution of ej will be Nð0; s2
e Þ; otherwise, the it will be Nða; s2

e Þ. So the

distribution is actually pjNða; s2
e Þ þ ð1� pjÞNð0; s2

e Þ. The variance of ej has been

inflated as a result of neglecting the mixed nature of the distribution. In addition, the

substitution of zj by pj has violated the assumption of homogenous residual variance

in ordinary least squares. Xu (1995) showed that

VarðejÞ ¼ pjð1� pjÞa2 þ s2
e ð8:5Þ

The amount of inflation is determined jointly by the uncertainty of zj, that is,

VarðzjÞ ¼ pjð1� pjÞ, and the size of the QTL, a. Therefore, the simple least squares
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method is only approximately valid when the markers are closely linked to the QTL

or the QTL has a small e¤ect. The maximum likelihood method of interval mapping

(Lander and Botstein 1989) actually takes into account the mixture distribution and

has been proven to be optimal.

Let fðyj j zjÞ be a normal density with mean mþ zja and variance s2
e , the exact

form of the likelihood function,

Lðm; a; s2
e Þ ¼

YN
j¼1

½fðyj j 1Þpj þ fðyj j 0Þð1� pjÞ� ð8:6Þ

where N is the number of individuals in the mapping population. The optimal prop-

erty of ML is achieved at the expense of losing the explicit solution for the estimated

QTL e¤ect. Fortunately, with a simple modification of the least squares program, the

Expectation Maximization (EM) iteration algorithm (Dempster et al. 1977) can be

easily implemented.

The test statistic for a ¼ 0 under the ML framework is the likelihood ratio statistic,

x ¼ �2½lnðL0Þ � lnðL1Þ� ð8:7Þ
where L1 ¼ Lðm̂m; âa; ŝs2

e Þ is the likelihood value under the full model and L0 ¼
Lðm̂m; 0; ŝs2

e Þ is the likelihood value under the restricted model, that is, under a ¼ 0.

8.2.3 Weighted Least Squares

The simple LS method fails to take into account two facts in the QTL model: (1) the

mixture distribution of the residual error, and (2) the heterogeneous residual vari-

ances across individuals. Xu (1998) proposed a weighted least squares method to

eliminate the second problem. The weight given to the jth individual is

wj ¼ a2

s2
e

pjð1� pjÞ þ 1

� 	�1

ð8:8Þ

Because the weight is a function of the parameters, iterations are required. The iter-

ation starts with wj ¼ 1 for all j’s. The solutions at the first iteration are actually the

ordinary least squares estimates. The weight is then updated using the estimated a

and s2
e in the previous iteration. We then use the updated weight to reestimate the

parameters. The iteration process continues until a given convergence criterion has

been reached. Because recalculations of the weight are required, the method is called

iteratively reweighted least squares (IRWLS). The result of this method is almost

identical to that of ML. Unlike the EM iterations in ML, however, IRWLS normally

takes only a few iterations to converge.

Linkage Analysis of Quantitative Traits 179



8.2.4 Bayes Method

Although LS and ML are still the main statistical methods used in QTL mapping,

considerable attention has been paid to the study of Bayesian mapping. For simple

genetic models, such as with no more than one QTL on each chromosome, the LS

and ML methods are adequate, but they are not optimal for handling multiple QTL

models. In particular, they do not allow the inference of the number of QTL, one of

the important parameters in QTL mapping. The composite interval mapping ap-

proach (Jansen 1993; Zeng 1994) was developed for multiple QTL. However, it is still

a one-dimension algorithm and thus provides a partial solution for the multiple QTL

problem. Recently, a stepwise regression approach has been suggested to search for

the optimal number of QTL (Kao et al. 1999). Unfortunately, the method has nu-

merous unsolved problems. The Bayesian method provides a possible optimal solu-

tion for this problem (Satagopan et al. 1996; Hoeschele et al. 1997; Sillanpää and

Arjas 1998). The Bayesian method implemented via the Markov chain Monte Carlo

(MCMC) technique can solve relatively more complicated models. The cost of the

MCMC, however, is high because of the intensive computation required in the sam-

pling process. This had previously prohibited the use of the Bayesian method. The

barrier has now disappeared due to the ever growing power of computers.

Bayesian mapping allows the use of prior knowledge of QTL parameters. In the

situation where no prior information is available, one can choose a flat (uninforma-

tive) prior. In most situations, Bayesian estimates with a flat prior are identical to the

ML estimates. Because Bayesian mapping provides a posterior distribution of QTL

parameters, one automatically obtains the posterior variances and credibility inter-

vals for the estimated parameters. Bayesian mapping is robust to the formulation of

the model e¤ects because all parameters are estimable if informative priors are used.

This is clearly in contrast to ML, which frequently requires estimation of linear

contrasts of unestimable model e¤ects. One of the major hurdles of ML is finding

the number of QTL. This involves a change in the dimensionality of the model. The

recently developed reversible jump MCMC algorithm (Green 1995) allows the num-

ber of QTL to change in a convenient and objective way. This has revolutionized

QTL mapping studies.

In Bayesian analysis, we treat parameters as unknown variables with a prior dis-

tribution. The purpose of Bayeisan analysis is to combine the prior distribution with

the observed data to obtain a posterior distribution for the unknown paramaters. The

summary statistic of the posterior distribution, for example, the mean, the mode, or

the median, can be considered as Bayesian estimates. It should be noted that the prior

distribution is not an actual distribution of the parameters. The parameters them-
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selves are something fixed. It is our belief of the parameter values that is variable.

Therefore, the prior distribution is actually the distribution of our subjective belief.

Similarly, the posterior distribution of parameters is the updated distribution of our

belief after incorporation of data.

8.3 Bayesian Mapping in Line Crosses

8.3.1 Probability Model

Let y ¼ fyjg for j ¼ 1; . . . ;N be a vector of phenotypic values for N individuals in

the mapping population. Let q be the number of QTL, ai and li the e¤ect and posi-

tion, respectively, of the ith QTL for i ¼ 1; . . . ; q. Define zij as the indicator variables

for the genotype of the jth individual at the ith QTL. Assume that there are s

markers available with known genome locations and define mkj as the indicator

variables for the jth individual at the kth marker. We now call y and M ¼ fmkjg
the observables (data). The parameters of interest include q, a ¼ faig, l ¼ flig, m,
and s2

e . The inheritance patterns (genotypes) of QTL, Z ¼ fzijg, are missing values.

The parameters and missing values are grouped together and called unobservables,

denoted by a vector y. Using pðxÞ and pðx j yÞ as generic expressions for probability
density and conditional probability density, respectively, where the actual form of

the distribution does not depend on p but on its argument. The posterior distribution

of y has the form of

pðy j y;MÞz pðy;M j yÞpðyÞ ð8:9Þ
where pðy;M j yÞ ¼ pðy j yÞpðM j yÞ is the likelihood and pðyÞ is the prior probability
density of the unobservables. Under the assumption of normal distribution for y, the

first part of the likelihood is

pðy j yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

e

p exp � 1

2s2
e

XN
j¼1

yj � m�
Xq
i¼1

zijai

 !22
4

3
5 ð8:10Þ

and the second part is

pðM j yÞ ¼ pðM;Z j l; gÞ=pðZ j lÞ ð8:11Þ
where g ¼ fgkg for k ¼ 1; . . . ; s is a known vector of positions for the s markers on

the genome, pðM;Z j l; gÞ is the joint distribution of the genotypes of the s markers,

and the q QTL and pðZ j lÞ is the distribution of the genotypes of the q QTL. Both

pðM;Z j l; gÞ and pðZ j lÞ are determined by the positions of the QTL and markers.
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Under the assumption of no interference between neighboring loci, they can be cal-

culated using a Markov chain with two states. The transition probability between two

loci is determined by the recombination fraction. Let ci; iþ1 be the recombination frac-

tion between loci i and i þ 1. The transition probabilities between the two loci are

pðziþ1; j ¼ 1 j zi; j ¼ 1Þ ¼ pðziþ1; j ¼ 0 j zi; j ¼ 0Þ ¼ 1� ci; iþ1 and pðziþ1; j ¼ 1 j zi; j ¼ 0Þ ¼
pðziþ1; j ¼ 0 j zi; j ¼ 1Þ ¼ ci; iþ1. If locus i or i þ 1 is a marker, we simply replace zi; j
or ziþ1; j by mi; j or miþ1; j. The recombination fraction relates to the map distance

through the Haldane (1919) map function,

ci; iþ1 ¼ 1

2
½1� expð�2jli � liþ1jÞ� ð8:12Þ

The joint prior probability density for the unobservables is further decomposed as

pðyÞ ¼ pðZ j lÞpðqÞpðlÞpðaÞpðmÞpðs2
e Þ ð8:13Þ

where pðZ j lÞ ¼QN
j¼1 pðZj j lÞ and Zj ¼ fzijg is the row vector of matrix Z that cor-

responds to the jth individual. As previously mentioned, pðZj j lÞ ¼ pðz1j; . . . ; zqj j lÞ
is obtained using a heterogeneous Markov chain with two states. As an example,

let us assume q ¼ 4 and try to find the following joint probability,

pðz1j ¼ 0; z2j ¼ 1; z3j ¼ 0; z4j ¼ 0 j lÞ
¼ pðz1j ¼ 0Þpðz2j ¼ 1 j z1j ¼ 0Þpðz3j ¼ 0 j z2j ¼ 1Þpðz4j ¼ 0 j z3j ¼ 0Þ

¼ 1

2
c12c23ð1� c34Þ

where pðz1j ¼ 0Þ ¼ 1
2 is the Mendelian prior. The prior for the QTL number can take

a uniform distribution between 0 and qmax. Sillanpää and Arjas (1998) used a Poisson

prior. The prior for the locations of the QTL along the genome is pðlÞ ¼Qq
i¼1 pðliÞ,

where pðliÞ is uniform along the genome. Similarly, we use pðaÞ ¼Qq
i¼1 pðaiÞ, where

pðaiÞ is either a uniform or a normal. A uniform prior is chosen for pðmÞ. Finally, a
vague prior is taken for the residual variance, that is, pðs2

e Þz 1=s2
e .

8.3.2 Markov Chain Monte Carlo

Given the complexity of the likelihood and the prior, the joint posterior probability

density does not have a standard form. In addition, Bayesian inference should be

made at the marginal level for each unobservable. Let us partition y into y ¼ ½yiy�i�,
where yi is a single element of y and y�i is a vector of the remaining elements. The

marginal posterior distribution of yi is
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pðyi j y;MÞz
ðð

pðy;M j yi; y�iÞpðyi; y�iÞ dy�i ð8:14Þ

Bayesian inference for yi should be made from the above marginal distribution.

Unfortunately, this marginal distribution has no explicit expression. Numerical inte-

gration is often prohibited because of the high dimensionality of y�i. Therefore, we

must use the MCMC algorithm to simulate a sample from the joint posterior distri-

bution, pðy j y;MÞ. Using a realized sample, we can easily infer the marginal distri-

bution of yi by simply looking at the empirical distribution of yi and ignoring the

variation of y�i. With the MCMC algorithm, we do not directly generate the sample

from pðy j y;MÞ; rather, we only generate realizations from the conditional posterior

distribution for each unobservable, pðyi j y�i; y;MÞ. This conditional posterior distri-
bution has an identical form to the joint posterior distribution except that, in the

conditional distribution, y�i is treated as constant and yi as a variable. Starting from

an initial value for y, denoted by yð0Þ ¼ ½yð0Þ1 ; . . . ; yð0Þr �, where r is the total number

of unobservables, we update one unobservable at a time with other unobservables

fixed at their initial values. After all the unobservables have been updated, we

complete one cycle of the Markov chain; the updated values are denoted by y ð1Þ ¼
½yð1Þ1 ; . . . ; yð1Þr �. The chain will grow and eventually reach a stationary distribution.

Let C be the length of the chain. Because there is one realization of y in each

cycle of the chain, we will have a realized sample of y with sample size C, denoted

by fy ð1Þ; . . . ; yðCÞg. Discarding data points of the first few thousand cycles (burn-in

period) and thereafter saving one realization in every hundred cycles (to reduce the

serial correlation between consecutive observations), we get a random sample of y

drawn from pðy j y;MÞ.
Metropolis-Hastings Algorithm I now discuss how to sample yi from pðyi j y�i; y;MÞ.
This conditional posterior distribution usually has a standard form, for example,

normal. In this case, we can directly draw yi from the standard distribution. The

method is called the Gibbs sampler (Geman and Geman 1984). If pðyi j y�i; y;MÞ
does not have a standard form, we will take a general acceptance-rejection approach,

called the Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970).

Define y
ðt�1Þ
i as the values simulated at the t� 1 cycle. We want to draw y

ðtÞ
i from the

target distribution, pðyi j y�i; y;MÞ. Instead of directly drawing y
ðtÞ
i from this target

distribution, the Metropolis-Hastings algorithm draws a candidate yi from a pro-

posal density, qðyð�Þi j yðt�1Þ
i Þ, which may be di¤erent from pðyð�Þi j y�i; y;MÞ but has an

easy form. We then use the Metropolis-Hastings rule to decide whether to accept y
ð�Þ
i

or not. If y
ð�Þ
i is accepted, we let y

ðtÞ
i ¼ y

ð�Þ
i ; othewise, we simply let y

ðtÞ
i ¼ y

ðt�1Þ
i . In

either case, we will move to the next element. With the Metropolis-Hastings rule, we
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accept y
ð�Þ
i with probability

a ¼ min
pðyð�Þi j yðt�1Þ

�i ; y;MÞqðyðt�1Þ
i j yð�Þi Þ

pðyðt�1Þ
i j yðt�1Þ

�i ; y;MÞqðyð�Þi j yðt�1Þ
i Þ

; 1

" #
ð8:15Þ

The easiest form of the proposal density is qðyð�Þi j yðt�1Þ
i Þ ¼ wðyð�Þi � y

ðt�1Þ
i Þ which

characterizes the random walk chain. The candidate y
ð�Þ
i is drawn according to

y
ð�Þ
i ¼ y

ðt�1Þ
i þ d, where d is a noise random variable drawn from distribution wðdÞ.

The actual form of wðdÞ can be uniform or normal. In either case, wðyð�Þi � y
ðt�1Þ
i Þ ¼

wðyðt�1Þ
i � y

ð�Þ
i Þ, leading to

a ¼ min
pðyð�Þi j yðt�1Þ

�i ; y;MÞ
pðyðt�1Þ

i j yðt�1Þ
�i ; y;MÞ

; 1

" #
ð8:16Þ

which is the Metropolis rule (Metropolis et al. 1953).

Reversible Jump MCMC The Gibbs sampler and Metropolis-Hastings algorithm

described above can be used for updating all unobservables except q, the number of

QTL. This is because parameter q is the dimension of the model and the Metropolis-

Hastings algorithm in its original form only works when the dimensionality of the

model is fixed. Green (1995) developed a reversible jump MCMC algorithm to ac-

complish the variable dimension problem. Sillanpää and Arjas (1998) applied this

method to QTL mapping by drawing the number of QTL in BC mapping. Instead of

drawing a proposed QTL number randomly and using the Metropolis-Hastings rule

to accept the proposed QTL number, here we only consider one of two possibilities:

add a new QTL to the model (with a probability pa) or delete an existing QTL

from the model (with probability pd ¼ 1� pa). Because q is also the dimension of the

model, when q changes, the set of parameters will change accordingly.

Let us define the set of unobservables under the current model (with q QTL) by

y ðt�1Þ. If we propose to add a QTL, the new QTL number becomes qð�Þ ¼ qþ 1. We

should propose a new position ðlqþ1Þ and a new e¤ect ðaqþ1Þ corresponding to this

new QTL. In addition, a genotype should be drawn for each individual correspond-

ing to this new QTL ðzqþ1; jÞ. Define the additional unobservables after a new QTL

has been added by v ¼ ½lqþ1; aqþ1;Zqþ1�, where Zqþ1 ¼ fzqþ1; jg is a column vector

corresponding to the genotypes of newly added QTL. Therefore, the proposed set of

parameters becomes yð�Þ ¼ ½yðt�1Þ; v�. We now accept the new QTL with probability

a ¼ min
pðyð�Þ j y;MÞqðyðt�1Þ j yð�ÞÞ

pðy ðt�1Þ j y;MÞqðyð�Þ j yðt�1ÞÞpðvÞ ; 1
" #

ð8:17Þ
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where pðvÞ ¼ pðlqþ1Þpðaqþ1ÞpðZqþ1Þ, pðlqþ1Þ is uniform along the genome, pðaqþ1Þ is
uniform or normal highly concentrated around 0, and pðZqþ1Þ is the Mendelian

prior for the genotype of the new QTL. The proposal probability of adding a QTL

is predefined by pa, and thus, qðyð�Þ j yðt�1ÞÞ ¼ pa. The reverse process is to delete the

ðqþ 1Þth QTL from model yð�Þ to obtain model y ðt�1Þ. Because each one of the qþ 1

QTL has an equal chance to be deleted, the probability that the deletion happens

to be the ðqþ 1Þth QTL is 1=ðqþ 1Þ. Therefore, qðyðt�1Þ j y ð�ÞÞ ¼ pd=ðqþ 1Þ. If yð�Þ is
accepted, yðtÞ ¼ yð�Þ, the new QTL is added to the model and all the unobservables

corresponding to the new QTL are accepted simultaneously. If yð�Þ is rejected, yðtÞ ¼
yðt�1Þ, and the model stays the same. However, all the unobservables are updated

using the regular Metropolis-Hastings algorithm as described before.

Deleting a QTL simply takes the reverse process of adding a QTL. Again, define

yðt�1Þ as the set of unobservables under the current model with q QTL. We now de-

fine yð�Þ as the set of unobservables after one QTL has been deleted from the model,

with qð�Þ ¼ q� 1 QTL. The relationship between y ðt�1Þ and yð�Þ is yðt�1Þ ¼ ½yð�Þ; v�,
where v ¼ ½lq; aq;Zq�. The proposal probability is qðyð�Þ j yðt�1ÞÞ ¼ pd=q and the

density of the reverse process is qðyðt�1Þ j yð�ÞÞ ¼ pa. The probability of accepting

the deletion is

a ¼ min
pðyð�Þ j y;MÞqðyðt�1Þ j yð�ÞÞpðvÞ
pðyðt�1Þ j y;MÞqðyð�Þ j y ðt�1ÞÞ ; 1

" #
ð8:18Þ

Similar to the process of adding QTL, if the proposal is rejected, the model dimen-

sion will stay the same, but each unobservable in the existing model will be updated

according to the regular Metropolis-Hastings rule.

8.3.3 Post–Bayesian Analysis

Data sampled from the posterior distribution contain all the information we need to

infer the statistical properties of the parameters, so, the MCMC algorithm serves as

an experiment to generate data. After the experiment, we need to summarize the data

and draw conclusions. In fact, the statistical properties of parameters are ‘‘directly

observed’’ from the data rather than inferred as in usual data analyses. This is be-

cause the sampled data points from the posterior distribution are made directly on

the parameters.

Empirical Distribution The most informative summary from the posterior sample is

the frequency table for each parameter of interest. The table may be converted into a

histogram, which is a visual representation of the posterior density. The posterior

mean, posterior variance, and credibility interval are also easily obtained from the
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posterior sample. If a proper and continuous prior is chosen for each parameter, we

expect that the posterior distribution is asymptotically normal. Therefore, a severe

deviation from normality indicates insu‰cient sample size. The summary statistics of

the posterior distribution are useful for QTL parameters when a single QTL is fitted

to the model. The most important parameter of interest is the location of the QTL in

the genome. The marginal posterior distribution of the QTL position can be depicted

via plotting the number (frequency) of QTL occurrence in a short interval against the

genome location of the interval. The regions frequently hit by the QTL are candidate

locations of the QTL. The uncertainty of each candidate region is reflected by the

width of the peak in the posterior density (see the posterior distribution of QTL loca-

tion depicted in figure 8.1).

For multiple QTL, we use the reversible jump MCMC for the change of model

dimension. As the number of QTL frequently changes, most QTL have lost their

identities. For instance, the first QTL in one observation may not be the first QTL in

another observation if new QTL have been added. When the QTL lose their identities,

the posterior distributions of the corresponding QTL e¤ects also lose their meanings.

Although the posterior distributions of q, m, and s2
e are still meaningful in the mul-

tiple QTL model, we must seek alternative representations of the summary statistics

for other QTL parameters.

QTL Intensity and Profile of QTL E¤ect As mentioned earlier, the posterior density

of the location of a QTL is estimated by the proportion of the number of hits by the

Figure 8.1
Posterior density of QTL location obtained from a simulation experiment. The true location of the QTL is
indicated by the arrow.
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QTL to a short interval surrounding that location. When a QTL loses its identity,

we are unable to keep track of the hits by individual QTL; rather, we can only keep

record of the total number of hits to a particular interval. Multiple hits to a short

interval may be due to di¤erent hits of the same QTL from di¤erent observations or

due to multiple hits by di¤erent QTL from the same observation. As a consequence,

we completely ignore the origins of the hits and record the total number of hits by

QTL along the whole genome. We then divide the whole genome into many equi-

distant short intervals, say 1 cM, and count the number of hits to each short interval.

The proportion of the hits to each interval, PðtÞ, is plotted against t, the genome loca-

tion of the interval. In contrast to a single QTL model, the curve is no longer called

the posterior density of QTL location; rather, it is called the QTL intensity profile

(see the QTL intensity profile in figure 8.2). Therefore, the posterior density of QTL

location and QTL intensity are used interchangably, only under a single QTL model.

Similarly, when the identity of a QTL is lost, the e¤ects associated with individual

QTL also lose their meanings. Corresponding to the QTL intensity profile, we cal-

culate the average e¤ect for each of the short intervals of the genome (sum of the

QTL e¤ects of multiple hits divided by the number of hits) and form a profile for the

QTL e¤ect, EðtÞ. For the candidate regions of QTL (regions repeatedly hit by QTL),

we can visualize the average e¤ect of QTL in those regions. One should be cautious

that sometimes the profile of the QTL e¤ect can be misleading. We have noticed that

regions rarely hit by QTL can sometimes show a large average e¤ect (see the QTL

Figure 8.2
Profile of QTL intensity obtained from a simulation experiment. The true locations of the two simulated
QTL are indicated by the arrows.
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e¤ect profiles in figure 8.3). The e¤ect profile is only meaningful for regions with high

QTL intensity.

A weighted QTL intensity was recently proposed (Xu and Yi 2000) in which the

product of the QTL intensity and QTL e¤ect, denoted by WðtÞ ¼ PðtÞEðtÞ, is plotted
against the chromosomal position. This weighted QTL intensity will eliminate the

peaks in the regions rarely hit by QTL, even if the average e¤ect in the regions is

large. For other designs in which dominance e¤ect can be examined, there are two

weighted QTL intensities: (1) the weighted additive intensity,WaðtÞ ¼ PðtÞAðtÞ, where
AðtÞ is the average additive e¤ect at location t; and (2) the weighted dominance

intensity, WdðtÞ ¼ PðtÞDðtÞ, where DðtÞ is the average dominance e¤ect at location

t. By looking at the weighted QTL intensities, we can immediately tell the sources

of genetic variances (additive and dominance) of the QTL in a particular region of

the genome (see figure 8.4 for the weighted QTL intensity profiles).

8.4 Bayesian Mapping in Pedigrees

Pedigrees are used for QTL mapping in outbred populations, such as humans, where

the development and crossing of inbred lines is not feasible. Most domesticated

animal and plant populations are not inbred. They are usually bred in pedigrees

with complicated mating designs, such as a diallel cross design. Even if inbred lines

are used, di¤erent crosses may be connected by one or two common ancestors. QTL

Figure 8.3
Profiles of QTL e¤ects obtained from a simulation experiment. The true locations of the two simulated
QTL are indicated by the arrows.
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mapping in such a population with irregular mating systems is complicated enough

to consider use of the pedigree analysis approach. The Bayesian method via the

MCMC algorithm is the ideal tool for pedigree analysis.

8.4.1 Mixed Model

Consider a hybrid population contributed by several genetically distinguishable source

populations. The hybrid population has gone through one or more generations of

random mating. All individuals in the mapping population have a complete record of

pedigree traced back to the ancestors in the source populations. In pedigree analysis,

it is convenient to deal with alleles (haploid) rather than genotypes (diploid). There-

fore, the genetic parameters are defined exclusively in terms of allelic rather than

genotypic values. We consider only a single locus in the description of the mixed

model theory, and multiple loci will be discussed in a later section. Let S be the

number of source populations, and define the expectation and variance of the allelic

values for population k by bk and s2
k , respectively. For diploid organisms, both the

mean and variance of the additive genetic values take twice the values of their allelic

counterparts. Assume that all the source populations are of equal size. The total allelic

variance of the combined population in the current generation is

s2
A ¼ 1

S

XS
k¼1

s2
k þ

XS
k¼1

ðbk � bÞ2
" #

ð8:19Þ

Figure 8.4
Weighted QTL intensity profiles obtained from a simulation experiment. The true locations of the two
simulated QTL are indicated by the arrows.
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where b ¼ 1

S

PS
k¼1 bk. This partitioning of the total genetic variance indicates that

the locus under study contributes to the trait variation if at least one of the compo-

nents is not zero.

Let 1
2 nk be the numbers of contributing parents from population k so that the

number of founder alleles from this population is nk. Each of the nk allelic values is

assumed to be randomly sampled from population k with a N@ ðbk; s2
kÞ distribution.

The mean value of the nk alleles, bk, is a fixed e¤ect. Therefore, the model is called a

mixed model. Assume that a parent from one population has an equal chance to

mate with any parent from the other population. The mating of the F1’s are com-

pletely random, so that the alleles of the original populations are well integrated into

the hybrid population. We can take F2 as our mapping population, but including

advanced generations can be more e‰cient because the alleles from di¤erent popu-

lations are well mixed. In this case, we can estimate each variance component of s2
A .

Unfortunately, such a mating design produces complex pedigrees that prevent the

use of a simple method for estimation. Assume that there are N individuals in the

mapping population. We denote the e¤ects of the paternal and maternal alleles of

individual j by v
p
j and vmj , respectively, for j ¼ 1; . . . ;N. The phenotypic value of

individual j can be described by the following linear model:

yj ¼ mþ v
p
j þ vmj þ ej ð8:20Þ

where m is the population mean (fixed e¤ect) and ej is the residual error with a

Nð0; s2
e Þ distribution. Using the notation of Fernando and Grossman (1989), we de-

fine v p
p and vmp as the paternal and maternal alleles for the father of j so that

v
p
j ¼ z

p
j v

p
p þ ð1� z

p
j Þvmp ð8:21Þ

where z p
j indicates the allelic inheritance of the paternal allele of the father. Similarly,

define v p
m and vmm as the paternal and maternal alleles of the mother and

vmj ¼ zmj v
p
m þ ð1� zmj Þvmm ð8:22Þ

where zmj indicates the allelic inheritance of the paternal allele of the mother. The

above model can be rewritten as

yj ¼ mþ z
p
j v

p
p þ ð1� z

p
j Þvmp þ zmj v

p
m þ ð1� zmj Þvmm þ ej ð8:23Þ

We have now expressed the allelic values of the current generation as a linear

function of allelic values in the parental generation. The parental alleles can be fur-

ther expressed as a linear function of the allelic values of their parents. With such a

recurrent process, each allele can be traced back to its origin in the S founder popu-
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lations. Let n ¼PS
k¼1 nk be the total number of founder alleles from all the source

populations and define a as an n� 1 vector containing the values of all the founder

alleles. Assume that the founder alleles in a are ordered according to their source

populations, that is, the first n1 elements of a store the founder alleles from the first

source population. If ai, for i ¼ 1; . . . ; n, comes from source population k, we assume

ai @Nðbk; s2
kÞ. The linear model in matrix notation is

y ¼ 1mþ ðZp þ ZmÞaþ e ð8:24Þ
where Zp and Zm are N � n indicator matrices connecting the paternal and mater-

nal alleles of all individuals to the founder alleles. Let b ¼ ½b1; . . . ; bS� 0 and W ¼
diagf1n1 ; . . . ; 1nSg. We can describe a by a linear function, a ¼ Wbþ u, where u ¼
fuig is an n� 1 vector of variables corresponding to a but with ui @Nð0; s2

kÞ being
assumed if ui comes from the kth source population. Substituting a in equation (8.24)

by the above linear combination, we get

y ¼ 1mþ ðZp þ ZmÞWbþ ðZ p þ ZmÞuþ e ð8:25Þ
Let X ¼ ðZp þ ZmÞW and Z ¼ Zp þ Zm. The above model is then expressed as a

typical mixed model:

y ¼ 1mþ Xbþ Zuþ e ð8:26Þ
where b is the vector of fixed e¤ects and u is the vector of random e¤ects with zero

expectation and a variance matrix of G ¼ diagfIs2
1 ; . . . ; Is

2
Sg. This model is di¤erent

from the usual mixed model in that the design matrices, X and Z, are unknown be-

cause the actual allelic inheritance of the QTL is not observable. What we can ob-

serve is the allelic inheritance of markers in the neighborhood of the QTL. These

markers can be used to infer Z and thus X.

8.4.2 Probability Model

Denote the allelic inheritance patterns of markers by M. The class of observables

includes y and M. The class of unobservables includes the parameters of interest

fm; b; s2
1 ; . . . ; s

2
S; s

2
e ; lg and the missing factors fZ; ug, where l is the position of the

QTL. Again, we use a single QTL model to demonstrate the procedure and discuss

the multiple QTL model in a later section. Define the collection of unobservables as

y ¼ fm; b; s2
1 ; . . . ; s

2
S; l; s

2
e ;Z; ug. The joint posterior probability density of y is

pðy j y;MÞz pðy;M j yÞpðyÞ ð8:27Þ
The joint prior probability is defined as
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pðyÞ ¼ pðmÞpðbÞpðs2
1 Þ . . . pðs2

SÞpðlÞpðs2
e ÞpðZÞpðu j s2

1 ; . . . ; s
2
SÞ ð8:28Þ

We take uniform priors for all the unobservables except Z and u in which we take

pðu j s2
1 ; . . . ; s

2
2 Þz

1

ðs2
1 Þn1=2 . . . ðs2

SÞnS=2
exp � 1

2
u 0G�1u

� �
ð8:29Þ

The Mendelian prior is taken for Z which will be discussed in the next section. The

likelihood is

pðy;M j yÞ ¼ pðy j m; b;Z; u; s2
e ÞpðM jZ; lÞ ð8:30Þ

Given X and Z, our linear model is a standard mixed model. Bayesian inference of

variance components under the standard mixed model has been extensively studied

(e.g., Wang et al. 1993; Clayton 1999). Herein, we only describe methods of gen-

erating Z, evaluating the likelihood and simulating b and u, given other unobserv-

ables fixed at values previously simulated.

8.4.3 Evaluating the Likelihood Function

The likelihood has been factorized into that of the phenotypic values of the trait and

that of marker genotype, that is, pðy;M j yÞ ¼ pðy j yÞpðM j yÞ. Conditional on their

genotypic values, the phenotypic values of any two individuals are independent. This

leads to a convenient way to evaluate the likelihood

pðy j m; b;Z; u; s2
e Þ ¼

YN
j¼1

pðyj j m; v p
j ; v

m
j ; s

2
e Þ ð8:31Þ

The fact that v p
j and vmj can be expressed as functions of the allelic values of the

parents of individual j allows dynamic programming to be used for evaluation of the

likelihood function. This algorithm requires individuals to be entered into the pedi-

gree in the chronological order of their birth so that the likelihoods of parents are

always evaluated before their children (van Arendonk et al. 1994).

Starting from given values of b and u, we obtain a ¼ Wbþ u, which contains n

allelic values of the original founders in the S source populations. Let aðiÞ be the

value of the ith founder allele for i ¼ 1; . . . ; n. Instead of using the conventional no-

tation of ai for the ith element of vector a, here we use a pseudo-code notation aðiÞ.
Recall that each allele in the mapping population can eventually be traced back

to one (and only one) of the founder alleles. Define i
p
j and imj as the identifiers of

the paternal and maternal alleles of individual j in the founder alleles. For exam-

ple, if the paternal and maternal alleles of individual j originated from the fourth
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and eighth founder alleles, respectively, then i
p
j ¼ 4, imj ¼ 8, v

p
j ¼ aði pj Þ ¼ að4Þ and

vmj ¼ aðimj Þ ¼ að8Þ. This leads to a pseudo-code expression of the linear model for

individual j,

yj ¼ mþ aði pj Þ þ aðimj Þ þ ej ð8:32Þ
The identifiers, i pj and imj , can be easily found using a dynamic programming ap-

proach as shown below. Because individuals must be evaluated in chronological

order, parents must be evaluated before their progeny. If individual j is a founder

and it is the f founder, then i
p
j ¼ 2f � 1 and imj ¼ 2f for f ¼ 1; . . . ; 12 n. If j is not a

founder, we know that the parents of j must have been evaluated. Define i pp and imp as

the identifiers for the paternal and maternal alleles of j’s father and i pm and imm as the

identifiers for the paternal and maternal alleles of j’s mother. Given the allelic iden-

tifiers of the parents, the identifiers of j are calculated as

i
p
j ¼ z

p
j i

p
p þ ð1� z

p
j Þimp ð8:33Þ

and

imj ¼ zmj i
p
m þ ð1� zmj Þimm ð8:34Þ

where z
p
j and zmj are the parental allelic inheritance indicators for individuial j, as

defined earlier.

This dynamic programming approach to evaluating the likelihood is extremely

simple. It only requires four variables for each individual, fi pj g, fimj g, fz p
j g, and fzmj g.

Yet the algorithm is so powerful that no restrictions are made in terms of the com-

plexity of the pedigrees. If i
p
j ¼ imj , then j is inbred at the locus of interest. If any one

of the following, i pj ¼ i
p
k , i

p
j ¼ imk , i

m
j ¼ i

p
k , or i

m
j ¼ imk , is true, individuals j and k are

genetically related. Therefore, the algorithm can be applied to QTL mapping in

arbitrarily complicated mating systems, including selfing.

The likelihood of the markers pðM j yÞ is evaluated by taking the product of

individual-wise likelihood. For individual j, the marker likelihood is derived as

follows. Define the QTL genotypes of the father and mother by Qp
pQ

m
p and Qp

mQ
m
m ,

respectively. Individual j can take one of the four possible ordered genotypes fQp
pQ

p
m;

Qp
pQ

m
m ; Q

m
p Q

p
m; Q

m
p Q

m
mg. Define Uj ¼ ½U1j U2j U3j U4j � as a vector of indicator vari-

ables where Ukj ¼ 1 and Uk 0j ¼ 0 for k 0 0 k if the progeny takes the kth ordered

genotype. Define the jth row of Z by Zj ¼ ½z p
j ; 1� z

p
j ; z

m
j ; 1� zmj � 0. We can see that

Zj and Uj have a linear relationship, that is, z p
j ¼ U1j þU2j and zmj ¼ U1j þU3j.

Similar to Uj , we denote the genotype indicator vectors for the left and right markers

flanking the QTL by ML
j and MR

j , respectively. The likelihood of markers condi-
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tional on Zj, and thus Uj , can be expressed by

pðML
sj ;M

R
tj jUkj; lÞ ¼ pðML

sj jUkj ; lÞpðMR
tj jUkj; lÞ ð8:35Þ

where pðML
sj jUkj; lÞ or pðMR

tj jUkj; lÞ is found from the following transition matrix:

PMU ¼

ð1� cMU Þ2 ð1� cMU ÞcMU ð1� cMU ÞcMU c2MU

ð1� cMU ÞcMU ð1� cMU Þ2 c2MU ð1� cMU ÞcMU

ð1� cMU ÞcMU c2MU ð1� cMU Þ2 ð1� cMU ÞcMU

c2MU ð1� cMU ÞcMU ð1� cMU ÞcMU ð1� cMU Þ2

2
66664

3
77775

where cMU is the recombination fraction between the QTL and the left or right

marker. It is calculated from l using the Haldane (1919) map function.

Because only two flanking markers are used to calculate the posterior probability

of Ukj , the approach is called interval mapping (Lander and Botstein 1989). If a

marker, for example, ML
sj , is not fully informative, we generate a realization of ML

sj

based on markers flanking ML
sj . Alternatively, we can take the multipoint method

using all markers on the lefthand side of the QTL in place of ML
sj .

8.4.4 Sampling the Unobservables

Given the relationships, z p
j ¼ U1j þU2j and zmj ¼ U1j þU3j, the problem of sampling

z
p
j and zmj has become that of sampling Uj. Here we take a Gibbs sampling approach

and simulate Uj directly from its posterior distribution. The posterior distribution of

Ukj is

pðUkj j yj ;ML
sj ;M

R
tj ; yÞ ¼

pðyj j m;Ukj; v
p
j ; v

m
j ; s

2
e ÞpðML

sj ;M
R
tj jUkj; lÞpðUkjÞP4

k¼1 pðyj j m;Ukj; v
p
j ; v

m
j ; s

2
e ÞpðML

sj ;M
R
tj jUkj ; lÞpðUkjÞ

ð8:36Þ
for k; s; t ¼ 1; . . . ; 4 where the Mendelian prior pðUkjÞ ¼ 1=4 for k ¼ 1; . . . ; 4 is taken.

Sampling m, s2
e , and l has been described in the section of line crosses and will not

be further discussed here. We now describe the sampling process for other parameters.

The vector of fixed e¤ects, b ¼ fbkg, can be sampled simultaneously (block-wise) or

separately using a random walk Metropolis algorithm. As in the usual mixed model

analysis, we put a constraint on the fixed e¤ects to obtain a meaningful estimate of b

by letting b1 ¼ 0. The random e¤ects u are sampled in the same way as b except that

no constraint is needed here. Because the posterior distributions of b and u are nor-

mals, a Gibbs sampler may also be used. The allelic variance of each source popula-

tion, s2
k , is sampled via the Metropolis-Hastings algorithm. Although a Gibbs sampler
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may be used, the posterior distribution may be hard to derive. For a multiple QTL

model, we need to sample the number of QTL using the reversible jump MCMC as

described earlier.

8.4.5 Dominance and Epistatic E¤ects

Recall that the genetic value of individual j has been defined as v p
j þ vmj . The sum is

also called the additive genetic value or breeding value. In fact, the genotypic value,

denoted by gj , may be di¤erent from the breeding value due to interaction between

the two alleles. This deviation is called the dominance e¤ect, denoted by dj ¼ gj �
ðv p

j þ vmj Þ. Therefore, the dominance genetic model is

yj ¼ mþ v
p
j þ vmj þ dj þ ej ð8:37Þ

Similar to the allelic value that can be traced back to one of the founder alleles, the

dominance e¤ect can also be traced back to the interaction e¤ect between two

founder alleles. For a total of n founder alleles, there are nðnþ 1Þ=2 possible inter-

actions, including the interaction of an allele with its own copy. Let d ¼ fdijg for

i; j ¼ 1; . . . ; n be an n� n symmetric matrix storing all the interaction e¤ects of the

founder alleles. While two founder alleles are transmitted to a progeny, the inter-

action e¤ect between the two is also passed to the progeny. Therefore, the pseudo-

code expression of the dominance model is

yj ¼ mþ aði pj Þ þ aðimj Þ þ dði pj ; imj Þ þ ej ð8:38Þ
The dominance e¤ect of the founder alleles, dij, has a distribution depending on the

origins of the two alleles. If allele i comes from the kth source population and allele j

comes from the lth source population, then dij @Nðmkl ; g2klÞ is assumed, where mkl
is the mean e¤ect of dominance and g2kl is the dominance variance. The number of

parameters grows quickly as the number of source populations increases. Therefore,

to examine dominance e¤ects, one should choose to use fewer source populations.

If a trait is controlled by multiple QTL, an allele from one QTL may interact with

an allele from another QTL. This interaction e¤ect is called the additive-by-additive

epistatic e¤ect, or simply epistatic e¤ect. Higher order interaction between alleles

from di¤erent loci may also occur. For example, if two alleles from locus one interact

with one allele from locus two, the interaction e¤ect is called the dominance-by-

additive epistatic e¤ect. By the same token, the dominance-by-dominance e¤ect results

from the interaction of four alleles. The additive-by-additive e¤ect is easy to handle

and is usually more important than the higher order epistatic e¤ects. Therefore, only

the additive-by-additive e¤ect is discussed. For simplicity, let us consider a model with

two loci only. Define A ¼ faijg as an n� 2 matrix, each column containing values of
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the n founder alleles for each locus. Also define D ¼ fdijkg as a 2� n� n (three-

dimension) matrix with fd1jkg and fd2jkg denoting the dominance e¤ects among the

founder alleles of loci one and two, respectively. Further, define H ¼ fhijg as an n� n

matrix with hij denoting the interaction (epistatic) e¤ect between the ith founder allele

from locus one and the jth founder alleles from locus two. Similar to i
p
j and imj , let us

define the allele identifiers for the second locus as kp
j and km

j . The epistatic model is

yj ¼ mþ að1; i pj Þ þ að1; imj Þ þ dð1; i pj ; imj Þ þ að2; kp
j Þ þ að2; km

j Þ þ dð2; kp
j ; k

m
j Þ

þ hði pj ; kp
j Þ þ hði pj ; km

j Þ þ hðimj ; kp
j Þ þ hðimj ; km

j Þ þ ej ð8:39Þ
Similar to dominance e¤ects, each epistatic e¤ect is assumed to follow a normal dis-

tribution with mean and variance depending on the origins of the two alleles in the

source populations. The number of parameters can be large for a large number of

source populations. Therefore, epistatic e¤ects can be examined with su‰cient accu-

racy only if the sample size is large.

8.5 Discussion

Because the phenotype of a quatitative trait is determined jointly by the e¤ect of

genes and an environmental error, the behaviors of individual genes cannot be

examined separately using the traditional quantitative genetics techniques; rather,

they must be studied collectively using indirect information such as phenotype of the

trait in question, phenotypic values of correlated traits and phenotypic measurements

of genetically related individuals. Linkage analysis of quantitative traits uses more

direct information such as molecular markers and candidate genes, in addition to

phenotype and pedigree information. Markers are located along the chrosmosomes

where the QTL may reside. As a result, segregation patterns of markers partially re-

flect those of the QTL. If a marker actually overlaps with a QTL, the segregation of

the QTL is observed through the marker. Furthermore, segregations of molecular

markers are usually not a¤ected by the change of environmental factors, so the in-

formation that comes from markers is more direct than the phenotypic information.

As the development of molecular technology, marker maps can be made arbitrarily

dense so that all genes are actually observed. Genetic improvement of organisms can

be made more e‰cient if genes can be directly manipulated.

The mixed model approach implemented via the MCMC algorithm provides a

unified QTL mapping algorithm. It can analyze data collected from arbitrarily com-

plicated mating designs, including simple line crossing experiments and random

mating populations. If all the source populations are inbred lines, we know a priori
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that s2
k ¼ 0 for k ¼ 1; . . . ;S, so that the total genetic variance is contributed only by

the bewteen-line di¤erence, the second term of equation (8.19). In this case, the model

is simply a fixed model, as commonly seen in the QTL mapping literature. The simple

F2 or BC design of QTL mapping is a special case when S ¼ 2. On the other hand, if

the mapping population is a random sample from a single large homogeneous

(unstructured) population (S ¼ 1), the bewteen-line variance is a prori set to zero and

only the within-line variance, the first term of equation (8.19) is retained in the total

genetic variance. The method then becomes a random model approach that is com-

monly used in QTL mapping for outbred populations. With a single statement to

turn on/o¤ the option of fixed/random, the mixed model approach can handle a

mating design with any level of complexity. This unified QTL mapping program can

potentially replace most mapping programs currently available, and thus eliminate

unnecessary comparisons of the major mapping programs commonly seen in the

reports of QTL experiments.

The major hurdle in implementing the unified Bayesian mapping algorithm is the

high demand for computer power. To analyze a single data set with a few thousand

individuals, the analysis can take a few days, whereas the simple least square method

or maximum likelihood method, if available, may take only a few minutes. The other

limitation is the high demand for memory storage when the number of founders is

large. Although this is not a big problem for the additive model, the problem can be

very serious for dominance and epistatic models with a large number of QTL. For

each QTL, we need to save nðnþ 1Þ=2 dominance e¤ects in the founders. For every

pair of QTL, we need to save n2 epistatic e¤ects. The amount of memory storage

grows quickly as the number of QTL increases. Therefore, for the epistatic model,

one must restrict the founders to a reasonable number, say na 100. When n is large,

we may consider using a multiplicative dominance and epistatic model. This model

assumes that the interaction (dominance or epistatic) e¤ect between two alleles is

proportional to the product of the two allelic (additive) values. The proportion is

sI=ðskslÞ, where sI is the standard deviation of the interaction e¤ect, and sk and

sl are the standard deviations of alleles k and l, respectively. With the multipli-

cative interaction e¤ect model, we only need to save the allelic values of founders.

As a consequence, one can easily incorporate higher order interactions, for example,

dominance-by-dominance. We can even consider interactions of alleles among mul-

tiple loci.

Marker genotypes have been treated as data (observables) in this study. In sit-

uations where an individual does not have a complete array of genotypes, special

algorithms are required to handle missing genotypes. If the individual with missing

genotypes is a progeny (no children), one can simply skip the missing marker and use
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markers nearby to infer the allelic inheritance of a QTL. If the individual is a founder

or a parent, one needs to recover the missing genotypes using available marker geno-

types of all its relatives. The method of descent graphs is particularly designed for this

purpose (Sobel and Lange 1996). Implementation of descent graph in the mixed

model analysis is still under investigation.

Finally, a computer program implementing the mixed model Bayesian mapping

statistics has been developed. The program is written in FORTRAN language.

Although still in its infant form and not necessarily user friendly, with some modi-

fications, the program can analyze real data.
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9 Finding Genes by Computer: Probabilistic and Discriminative Approaches

Victor V. Solovyev

The more comprehensive and accurate initial computational analysis performed for

new genomic sequences, the less time-consuming and costly experimental work will

have to be done to determine their functions. For this reason, computational gene

identification is an issue of obvious importance as a tool of identifying biologically

relevant features (protein coding sequences) that often cannot be found by the tra-

ditional sequence database searching technique. This chapter describes statistically

based methods for the recognition of eukaryotic genes. We review the structure and

significant characteristics of gene components, and discuss recent advances and open

problems in gene-finding methodology and its application to sequence annotation of

long genomic sequences. Finally, we consider the application of gene expression data

for large-scale verification of predicted genes.

9.1 General Features of Eukaryotic Genes

Genes carry and express the hereditary information encoded by segments of nucleic

sequence involved in producing protein or RNA molecules. Genetic organization and

packaging of eukaryotic genes is fundamentally di¤erent from those of prokaryotes.

The major di¤erences are large proportion of noncoding DNA (regulatory sequences,

introns, repeats, pseudogenes) and the existence of interruptions (introns) that sepa-

rate di¤erent parts of protein coding region in DNA. A typical DNA fragment of

protein coding gene includes noncoding regulatory sequences, exons, and introns

(figure 9.1).

9.1.1 Gene Expression Steps

The gene is expressed by a several stage process comprising transcription and

translation (figure 9.1). Transcription (or pre-mRNA synthesis on DNA template)

involves initiation, elongation, and termination steps. RNA polymerase catalyzing

RNA synthesis binds a special region (promoter) at the start of the gene and moves

along the template, synthesizing RNA, until it reaches a terminator sequence.

Post-transcriptional processing of messenger RNA precursors includes capping, 3 0-
polyadenilation, and splicing. The processing events of mRNA capping and polyA

addition take place before pre-mRNA splicing and result in producing the mature

mRNA. The mRNA consist of sequences (called exons) that encode the protein

product (according to the rules of the genetic code). The gene sequence often

includes noncoding regions, called introns, that are removed from the primary tran-



script during RNA splicing. Eukaryotic pre-mRNA is processed in the nucleus and

then transported to the cytoplasm for translation. The sequence of mRNA contains

a series of triplet codons that interact with the anticodons of aminoacyl-tRNAs

(carrying the amino acids) so that the corresponding series of amino acids is incor-

porated into a polypeptide chain. The small subunit of eukaryotic ribosome binds to

the 5 0-end of mRNA and then migrates to the special sequence on mRNA (preceding

to the start codon) called the ribosome binding site, where it is joined by a large

ribosome subunit, forming a complete ribosome. The ribosome initiates protein

synthesis at the start codon (AUG in eukaryotes) and moves along the mRNA syn-

thesizing polypeptide chain until it reaches a stop codon sequence (TAA, TGA, or

TAG), where release of polypeptide and dissociation the ribosome from the mRNA

take place. After that, many proteins undergo post-translational processing (i.e.,

covalent modifications such as proteolytic cleavage, attachment of carbohydrates and

phosphates) before they become functional.

9.1.2 Structural Characteristics

Information about gene structure is accumulated in GenBank and EMBL nucleotide

sequence databases. These databases contain annotations of contiguous sequences;

 

 

 

 

 

  

 

 

 

 

 

 

 
 

 

 

 

 

  

Figure 9.1
Expression stages and structural organization of typical eukaryotic protein-coding gene including asso-
ciated regulatory regions.
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therefore, one gene can be described in dozens of entries with partially sequenced

gene regions, alternative splicing forms, or mRNA. The gene-centric database Info-

Gene (Solovyev and Salamov 1999) contains descriptions of known genes and their

basic functional signals extracted from GenBank (Benson et al. 1999). InfoGene also

includes all predicted genes for human and Drosophila draft genomes and several

chromosomes of the Arabidopsis genome. InfoGene is realized under JAVA inter-

active environment system (Seledtsov and Solovyev 1999) that provides visual

analysis of known information about complex gene structure (figure 9.2) and

search for di¤erent gene component and signals. The database is currently available

at http://www.softberry.com/infodb.html. A similar project, ENSEMBL, was started

 

  

 

 

 

 

 

  

Figure 9.2
InfoGene Java viewer (Seledtsov and Solovyev 1999) presentation of Homo sapiens gene PACE4. This
gene has several alternative forms and is described in 17 records of GenBank. Continues sequences regions
corresponding di¤erent GenBank entries are separated by the vertical bars.
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as a collaboration between the Sanger center and European Bioinformatics Institute

(http://www.ensembl.org/).

Major organisms are presented in the InfoGene separate divisions. The human di-

vision (based on GenBank 119 release) contains about 21,000 genes, 53,000 coding

regions, 83,000 exons, and about 58,000 donor and acceptor splice sites. Table 9.1

shows the major structural characteristics of human genes.

About 41 percent of sequenced human DNA consists of di¤erent kinds of re-

peats. Only about 3 percent of the genome sequence contains protein coding exon

sequences. Table 9.2 presents the characteristics of genes in major model organisms

such as mouse, D. melanogaster, C. elegans, S. cerevisiae, and Arabidopsis.

The gene sizes are often larger in vertebrates, and especially in primates. The aver-

age size of an exon is about 190 bp, which is close to the DNA length associated with

the nucleosome particle. Human exon sizes are significantly smaller than the gene

sizes. There are many exons as short as several bases.

Computational identification of small exons (1–20 bp) cannot be done using the

composition based methods that were successful for predicting prokaryote coding

regions. Eukaryotic gene prediction approaches should be based on recognition of

functional signals encoded in the DNA sequence.

Figure 9.3 illustrates how the same DNA sequences may code several di¤erent

proteins due to alternative promoters or terminators and alternative splicing. These

processes also can significantly complicate computational gene finding.

Table 9.1
Structural characteristics of human genes deposited in Genbank (Release 119)

Gene features Numbers from the Infogen database

CDS/partially sequenced CDS 53435/29404

Exons/partial sequenced exons 83488/21342

Genes/partial sequenced genes 20791/16141

Alternative splicing 2167, 10.4%

Pseudogenes 8.5%

Genes without introns 1552, 7.4%

Number of exons (maximal, average) 117, 5.7

Exon length (range, average) 1–1088, 201.6

Intron length (maximal, average) 259776, 2203.5

Gene length (maximal, average) 401910, 9033

Repeats in genome 41% of total DNA

DNA occupied by coding exons 3%

Donor sites 58707, 98.0%

Acceptor sites 58112, 98.53%

Statistics based on InforGene records.
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9.2 Functional Signals Description and Identification

In this section, we focus on several approaches for gene functional signal recognition

and some features of these signals used in gene identification. We describe the appli-

cation of di¤erent weight matrices, which usually contain more information about

the structure of functional signal than the corresponding consensus sequences, and

later elaborate their implementation gene prediction approaches to score potential

functional signals.

9.2.1 Position Specific Discrimination

The consensus sequence consists of the most common base at each position of an

alignment of binding sites of a particular type. Often it uses a special letters (IUPAC)

to indicate the potential presence of more than one nucleotide at a given position.

Position weight matrices usually provide better representation of functional signals

including quantitative information (Staden 1984; Zhang and Marr 1993; Burge

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

Figure 9.3
DNA region coding alternative gene products.
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1997). We can consider the weight matrix as a simple model based on a set of position-

specific probability distributions fpi
sg, that give the probability of observing a par-

ticular type of nucleotide in a particular position of a functional signal (S) sequence.

The probability of generating the signal sequence sequence Xðx1; . . . ; xkÞ under this
model is

PðX=SÞ ¼
Xk
i¼1

pi
xi

ð9:1Þ

where nucleotides of the signal are generated independently. The corresponding model

can be constructed for nonsite (N) sequences, fp i
sg, with the same probability distri-

bution in each position. A discriminative function based on these models is the log

likelihood ratio:

LLRðXÞ ¼ log PðX=SÞ=PðX=NÞ ð9:2Þ
It can be written in weight matrix notation, wði; sÞ ¼ flogðpi

s=p
i
sÞg, and

Score ¼ LLRðXÞ ¼ 1

k

Xk
i¼1

wði; xiÞ ð9:3Þ

The other types of weight functions can be used to score the sequence of signal.

For example, weights can be generated by some optimization procedures such as

perceptron or neural network (Stormo 1982); di¤erent position-specific probability

distributions fpi
sg might also be considered.

More general types of weight matrix uses position-specific probability distributions

fpi
sg of oligonucleotides (instead of nucleotides). Oligonucleotide frequencies are suc-

cessfully used in Markov chain models, where the probability to generate a particular

nucleotide xi of the signal sequence depends on k0 � 1 previous bases (i.e., depends

on oligonucleotide [k0 � 1 base long] ended at the position i � 1). Then the proba-

bility of generating the signal sequence X is:

PðX=SÞ ¼ p0
Yk
i¼k0

pi�1; i
si�1;xi

ð9:4Þ

where pi�1; i
si�1;xi

is the conditional probability of generating nucleotide xi in position i

given that oligonucleotide si�1 ends at position i � 1; p0 is the probability of gen-

erating oligonucleotide x1 . . . xk0�1. A simple weight matrix represents an indepen-

dent mononucleotide model (or 0-order Markov chain), where k0 ¼ 1, p0 ¼ 1 and
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pi�1; i
xi�1;xi

¼ pi
xi
. When we use dinucleotides (first order Markov chain) k0 ¼ 2, p0 ¼ p1

x1 ,

and pi�1; i
xi�1;xi

is the conditional probability of generating nucleotide xi in position i

given nucleotide xi�1 at position i � 1. The conditional probability can be estimated

from the ratio of observed frequency of oligonucleotide k0 bases long ðk0 > 1Þ ending
at position iðsi�1; xiÞ to the frequency of the oligonucleotide k0 � 1 bases long ending

at position i � 1ðsi�1Þ in a set of aligned sequences of some functional signal:

pi�1; i
si�1;xi

¼ fðsi�1; xiÞ=fðsi�1Þ
Amodel for nonsite sequences for computing PðX=NÞ is usually based on a 0-order

Markov chain with genomic base frequencies (or even equal frequencies [0.25]).

A log likelihood ratio (9.3) with Markov chains was used in a description of pro-

moter, splice sites, and start and stop of translation signals in gene finding programs

such as Genscan (Burge and Karlin 1997), Fgenesh (Salamov and Solovyev 1998,

2000) and GeneFinder (Green and Hillier 1998).

A useful discriminative measure taking into account a priori knowledge can be

based on computing Bayesian probabilities as components of position-specific dis-

tributions fpi
sg:

PðS=oi
sÞ ¼ Pðoi

s=SÞPðSÞ=ðPðoi
s=SÞPðSÞ þ Pðoi

s=NÞPðNÞÞ ð9:5Þ
where Pðoi

s=SÞ and Pðoi
s=NÞ can be estimated as position specific frequencies of

oligonucleotides oi
s in the set of aligned sites and nonsites; P(S) and P(N) are the

a priori probabilities of site and nonsite sequences, respectively, and oi
s is a type of

the oligonucleotide starting (or ending) in ith position (Solovyev and Lawrence 1993).

The probability of a sequence X to belong to a signal, if one assumes independence

of oligonucleotides in di¤erent positions, is

PðS=XÞ ¼
Xk
i¼1

PðS=oi
sÞ

Another empirical discriminator, called ‘‘Preference,’’ uses average positional prob-

ability to belong to a signal:

PrðS=XÞ ¼ 1=k
Xk
i¼1

PðS=oi
sÞ ð9:6Þ

This measure was used in constructing discriminant functions for the Fgenes gene

finding program (Solovyev 1998).
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9.2.2 Content Specific Discrimination

To take into account general oligonucleotide composition of a functional region

(such as GC-rich promoter sequences) we can use probability distributions and their

estimations by oligonucleotide frequencies computed on the whole set of functional

signal sequences. Then the Markov chain based probability formula (9.4) of gen-

erating the signal sequence X is:

PðX=SÞ ¼ p0
Xk
i¼k0

psi�1;xi ð9:7Þ

9.2.3 Frame Specific Discrimination

The best discrimination of coding and noncoding sequences in gene prediction ap-

proaches was achieved by frame specific recognizers (Claverie and Bougueleret 1986;

Claverie et al. 1991; Fickett and Tung 1992). The coding sequence is a sequence of

triplets (codons) read continuously from a fixed starting point. Three di¤erent read-

ing frames with di¤erent codons are possible for any nucleotide sequence (six, if a

complementary chain is also considered). It was noted that nucleotides are distri-

buted very unevenly relative to the positions within codons. Therefore, the proba-

bility of observing a specific oligonucleotide in coding sequences depends on its

position relative to the coding frame (three possible variants), as well as on neighbor-

ing nucleotides (Shepherd 1981; Borodovsky et al. 1986; Borodovsky and McIninch

1993). Asymmetry in base composition between codon positions arises due to uneven

usage of amino acids and synonymous codons, in addition to the particular structure

of genetic code (Guigo 1999). In Markov chain approaches, the frame dependent

probabilities p f
si�1;xi

ð f ¼ f1; 2; 3gÞ are used to model coding regions. The probability

of generating a protein coding sequence X is

PðX=CÞ ¼ p0
Xk
i¼k0

p f
si�1;xi

ð9:8Þ

where f is equal 1, 2, or 3 for oligonucleotides ending at codon position 1, 2, or 3,

respectively.

9.2.4 Prediction Performance Measures

Sensitivity and specificity measures are widely used to characterize the accuracy of an

algorithm or a recognition function (Fickett and Tung 1993; Snyder and Stormo 1993;
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1994; Dong and Searls 1994). Let us have S sites (positive examples) and N nonsites

(negative examples). By applying the recognition function, we identify correctly Tp

sites (true positives) and Tn nonsites (true negatives). At the same time, Fp (false

positives) sites are wrongly classified as nonsites and Fn (false negative) nonsites are

wrongly classified as sites. Note that S ¼ Tp þ Fn and N ¼ Tn þ Fn. Sensitivity ðSnÞ
measures the fraction of the true positive examples that are correctly predicted:

Sn ¼ Tp=ðTp þ FnÞ. Specificity ðSpÞ measures the fraction of the predicted examples

that are correct: Sp ¼ Tp=ðTp þ FpÞ. When we see only one value of accuracy esti-

mation, it means the average accuracy of sites and nonsites is a true prediction:

AC ¼ 0:5ðTp=S þ Tn=NÞ. The more general single measure (correlation coe‰cient)

takes into account a possible di¤erence in the sizes of site and nonsite sets (Matthews

1975):

CC ¼ ðTpTn � FpFnÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTp þ FpÞðTn þ FnÞðTp þ FnÞðTn þ FpÞ

q
9.2.5 Fisher’s Linear Discriminant

The linear discriminant analysis approach provides a method to select a ‘‘best’’ set of

an objects features and combine them in a discriminant function that yields an output

that is an estimate of the class membership of this object. We assume that each given

sequence fragment can be described by a vector _xx of p characteristics ðx1; x2; . . . ; xpÞ,
which can be measured. The procedure of linear discriminant analysis is to find a

linear combination of the measures (called the linear discriminant function or LDF)

that provides maximum discrimination between sites sequences (class 1) and nonsite

examples (class 2). The LDF

Z ¼
Xp
i¼1

aixi

classifies (X) into class 1 if Z > c and into class 2 if Z < c. The vector of coe‰cients

ða1; a2; . . . :apÞ and the threshold constant c are derived from the training set by

maximizing the ratio of the between-class variation of z to within-class variation (or

minimizing expected probability of misclassification) and are equal to (Duda and

Hart 1973; Afifi and Aizen 1979)

_aa ¼ s�1ð _mm1 � _mm2Þ

c ¼ _aað _mm1 þ _mm2Þ=2þ ln
p02
p01
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where _mmi are the sample mean vectors of characteristics for class 1 and class 2, re-

spectively; s is the pooled covariance matrix of characteristics,

s ¼ 1

n1 þ n2 � 2
ðs1 þ s2Þ

si is the covariation matrix, p0i is the prior probability, and ni is the sample size of

class i. Based on these equations, we can calculate the coe‰cients of LDF and the

threshold constant c using the characteristics of site and nonsite sequences from the

training sets, and we can then test the accuracy of LDF on the test set data. This

classification actually assigns a feature vector _xx to the category of the nearest mean

measure, the squared Mahalanobis distance

_DD2 ¼ ð _xx� _mmiÞs�1ð _xx� _mmiÞ
from _xx to each of the mean vectors mi. The significance of a given characteristic or

a set of characteristics can be estimated by the Mahalonobis distance between two

classes:

_DD2 ¼ ð _mm1 � _mm2Þs�1ð _mm1 � _mm2Þ
which is computed based on values of the characteristics in the training sequences of

classes 1 and 2. To find discriminating sequence features, many possible character-

istics, such as score of weigh matrices, distances, oligonucleotide preference at di¤erent

subregions, and so on, are generated. Selection of the subset of significant charac-

teristics q (among the tested p) is performed by a step-wise discriminant procedure

including only characteristics, which significantly increases the Mahalonobis distance.

The procedure to test this significance uses the fact that the quantity:

F ¼ n1 þ n2 � p� 1

p� q

n1n2ðD2
p �D2

qÞ
ðn1 þ n2Þðn1 þ n2 � 2Þ þ n1n2D2

q

has an F ðp� q; n1 þ n2 � p� 1Þ distribution when testing hypothesis H0: D
2
p ¼ D2

q ,

where D2
m is the population Mahalonobis distance based on m variables (Afifi and

Aizen 1979).

9.2.6 Quadratic Discriminant Analysis

Classical linear discriminant analysis often assumes the probability model in which

the observations for classes have di¤erent means, but a common covariation matrix.

The feature space is partitioned by hyperplane optimally separating observations of

di¤erent classes. To classify groups having di¤erent covariation matrices, one can use
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the quadratic discriminant analysis (QDA). Quadratic discriminant analysis provides

a curved boundary in multidimensional feature space. Maximum discrimination be-

tween the two classes is achieved with the quadratic discriminant function QDF:

QDF ¼ log
p01
p02

� 1

2
ðD2

1 �D2
2Þ �

1

2
log

jS1j
jS2j

where D2
i is Mahalonobis distance from an object to the mean and Si is the cova-

riation matrix of class i ði ¼ 1; 2Þ. Quadratic discriminant function might provide a

more e¤ective discrimination, but will require a larger learning set of observations to

accurately define its larger set of parameters. Such an approach was used in exon

prediction method developed by Zhang (1997) to improve the accuracy of the linear

discriminant exon predictor (Solovyev et al. 1994).

9.2.7 Splice Sites Conservative Features

The precise removal of introns from mRNA precursors is mainly defined by the

highly conserved sequences near the ends of introns (Breatnach and Chambon 1981;

Wieringa et al. 1983). The donor (or 5 0-splice site) is characterized by a sequence of

eight nucleotides AG|GTRAGT. The acceptor (or 3 0-splice site) possesses a sequence

of four nucleotides preceded by a pyrimidine rich region: YYTTYYYYYYNC|AGG

(Senapathy et al. 1990). The third less conserved intron sequence (branch site), of

about 5–8 nucleotides and containing an adenosine residue, usually lies between 10

and 50 nucleotides upstream of the acceptor splice site.

The vast majority of introns contains invariant GT and AG dinucleotides at their

termini excised from pre-mRNA by the spliceosome, including U1, U2, U4/U6, and

U5 snRNPs (Breatnach et al. 1978; Breatnach and Chambon 1981; Nilsen 1994). A

rare type of splice pair, the AT-AC, has also been discovered. It is processed by re-

lated but di¤erent splicing machinery (Jackson 1991; Hall and Padget 1994). For the

AT-AC group, di¤erent conserved positions have been noticed: |ATATCCTTT for

the donor site and YAC| for the acceptor site (Deitrich et al. 1997; Sharp and Burge

1997; Wu and Krainer 1997).

Burset et al. (2000) have recently done a comprehensive investigation of ca-

nonical and noncanonical splice sites. They applied ESTs and high-throughput ge-

nomic (HTG) sequences to analyze 43,437 pairs of exon-intron boundaries and their

sequences from InfoGene (Seledtsov and Solovyev 1999) database, including all

annotated genes in mammalian genomic sequences. Of the 43,437 pairs of donor and

acceptor splice sites (splice pairs), 1,215 were annotated as nonstandard donor sites

(2.80 percent), and 1,027 were annotated as nonstandard acceptor sites (2.36 per-

cent). Forty-one thousand seven hundred and sixty-seven splice pairs (96.18 percent)
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contained the standard splice site pair GT-AG. Analysis showed that of 1,615 non-

canonical pairs, 441 were supported by EST (27.3 percent) and just 290 (18 percent)

were supported by EST after removing potential annotation errors and examples

with ambiguity in the position of the splice junction (table 9.3).

Analysis of human noncanonical splice pairs that have corresponding EST and

HTG sequences shows that all human EST-supported GC-AG cases having HTS

matches were supported (39 cases). Thirty-one errors were found damaging the

standard splice pairs (seven cases had one or both intronic GenBank sequences

completely unsupported by HTS, whereas eight cases had intronic GenBank se-

quences supported; there was a gap between exonic and intronic parts, and in the end,

16 cases had small errors, such as insertions, deletions, or substitutions). Three of

five observed AT-AC pairs were correctly annotated in the original noncanonical set;

two were recovered from errors. Two more cases were annotated as introns, but in

HTS, the exonic parts were continuous (accession numbers: U70997 and M13300).

This analysis shows that the overwhelming majority of splice sites contain con-

served dinucleotides GT-AG (99.2 percent). The other major group includes GC-AG

pairs (0.62 percent), the alternative splicing machine group AC-AT (about 0.08 per-

cent), and a very small number of other noncanonical splice sites (about 0.03 per-

cent). Therefore, gene-finding approaches using just standard GT-AG splice sites

can potentially correctly predict 97 percent genes (if we assume four exons per gene,

on average). Including the GC-AG splice pair will increase this level to 99 percent.

Twenty-two thousand two hundred and fifty-three verified examples of canonical

splice pairs were presented in a SpliceDB database, which is available at http://

genomic.sanger.ac.uk (Burset et al. 2000). It also includes 1,615 annotated and 292

EST-supported and shift-verified noncanonical pairs. The weight matrices and con-

sensus sequences for the major group of splice sites are presented in figure 9.4.

Table 9.3
Splice sites sequences presented in the SpliceDB (Burset, Seledtsov, and Solovyev 2001)

Sequences of splice pairs Canonical Noncanonical

Mammals

Original from GenBank 41722 (96.27%) 1615 (3.73%)

EST supported 22374 (98.07%) 441 (1.93%)

EST supportedþ corrected 22199 (98.71%) 290 (1.29%)

Human

Original from GenBank 27486 (96.55%) 982 (3.45%)

EST supported 15384 (98.33%) 261 (1.67%)

EST supportedþ corrected 15263 (98.89%) 171 (1.11%)

HTG supported 156
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Figure 9.4
Consensus sequences and weight matrices for major groups of splice site pairs. Numbering splice site
positions is provided relative to the splice junction along the gene sequence.



9.2.8 Computational Recognition of Splice Sites

Computational analysis of splice site sequences demonstrates that their consensuses

are slightly specific for distant classes of organisms (Senapathy et al. 1990; Mount

1993) and that some important information is encoded by the sequences outside the

short conserved regions. There were several attempts to develop accurate splice site

identification algorithms based on consensus sequences or weight matrices, which take

into account the information about open reading frames, free energy of base pairing of

RNA with snRNA, and other sequence features. These approaches reached the accu-

racy of about 80 percent for the prediction splice site positions (Nakata et al. 1985;

Gelfand 1989). More accurate prediction was achieved by neural network algorithms

(Lapedes et al. 1988; Brunak et al. 1991). To demonstrate what sequence features can

help identify authentic splice sites, we will describe a simple method using a linear

discriminant function (Solovyev and Lawrence 1993; Solovyev et al. 1994).

Donor Splice Site Recognition To test the significance of di¤erent sequence features

by liner discriminant approach described in section 9.2.5, seven characteristics were

selected for donor splice site identification. In table 9.4, we can see the Mahalonobis

distances showing the significance of each characteristic. The strongest characteristic

of donor sites is triplet composition in consensus region (D2 ¼ 9.3), in the adjacent

intron region (D2 ¼ 2.6), and in coding region (D2 ¼ 2.5). Other significant charac-

teristics are a number of significant triplets in conserved consensus region; the number

of G bases, GG doublets, and GGG triplets; and the octaplet composition of the

coding and intron regions.

A rigorous testing of several splice site prediction programs on the same sets of

new data demonstrated that the linear discriminant function (implemented in SPL

program: http://www.genomic.sanger.ac.uk) provides the most accurate local donor

site recognizer (table 9.5) (Milanesi and Rogozin 1998).

Table 9.4
Significance of various characteristics for discimination of donor splice sites

Characteristics 1 2 3 4 5 6 7

Individual D2 9.3 2.6 2.5 0.1 1.5 0.01 0.4

Combined D2 9.3 11.8 13.6 14.9 15.5 16.6 16.8

1, 2, 3 are the triplet preference (13) of consensus (_4 __ þ6), intron G rich (þ7 __ þ50) and coding regions
(_30 __ _5), respectively. 4 is the number of significant triplets in the consensus region. 5 and 6 are the
octanucleotide preference for being coding 54 bp region on the left and for being intron 54 bp region on
the right of donor splice site junction. 7 is the number of G bases, GG doublets, and GGG triplets in
þ6 __ þ50 intron G rich region.
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A single weight matrix provides less accurate recognition than more sophisticated

approaches, but it can be easily recomputed for new organisms and is very conve-

nient to use in probabilistic HMM gene prediction methods. Using maximal depen-

dence decomposition procedure (Burge 1998), we constructed five donor recognition

weight matrices for di¤erent subsets of splice site sequences. The subclassification of

donor signals and the matrices constructed, based on 22,306 EST supported splice

sites, are presented in figure 9.5. Performance of these matrices comparing with the

other methods was estimated on the Burset and Guigo (1996) data set (figure 9.6).

It shows that several weight matrices provide better splice site discrimination than

just one. However, their discriminative power is similar to the triplet matrix and

lower for most levels of sensitivity than the liner discriminant function of the SPL

program.

Acceptor Splice Site Recognition The performance of acceptor site recognition

(Rogozin and Milanesi 1997) by di¤erent computational methods is presented in table

9.6. We can see that acceptor site recognition accuracy is lower than the accuracy of

predicting donor sites. The linear discriminant function (Solovyev et al. 1994) imple-

mented in the SPL program demonstrates the higher accuracy.

Burge (1998) demonstrated that the first order Markov chain model formula (9.11)

based on dinucleotide frequencies of [�20,þ3] acceptor site region gives slightly better

discrimination than the simple weight matrix model. Such a model was implemented

in the Genscan gene prediction method (Burge and Karlin 1997). Recently, Thanaraj

(2000) evaluated several splice site recognitions. Among them, the SPL program re-

mains the best local recognizer. Of course, complex gene prediction systems (HMM

gene, Genscan, Fgenes, Fgenesh, and some intermediate approaches such as Net-

Gene2) using a lot of global information about optimal exon (or splice site) combi-

nation will have a better accuracy level. However, they cannot be applied to study

possible alternative splice sites in a particular gene. Local recognizers might be useful

for such tasks.

Table 9.5
Comparing the prediction accuracy of local donor splice site recognizers

Method/program
False
positives

False
negatives CC Reference

Weight matrix 5.0% 20% 0.22 Guigo et al. 1991

Neural network (NETGENE) 16.3% 6.7% 0.35 Brunak et al. 1991

Discriminant analysis (SPL) 22.0% 2.3% 0.51 Solovyev et al. 1994

The accuracy is averaged for three tested sets.
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9.2.9 PolII Promoter Recognition

Because each eukaryotic polymerase II promoter has a unique selection and ar-

rangement of regulatory elements providing a unique program of gene expression,

the computational identification of promoter sequences in genomic DNA is an ex-

tremely di‰cult problem (see chapter 2). Here we consider a version of promoter rec-

ognition program TSSW (Solovyev and Salamov 1997), several modules of which

are implemented in the gene prediction program FGENES (Solovyev 1997). In the

last version of TSSW, it was assumed that TATAþ and TATA� promoters have

very di¤erent sequence features, so these groups were analyzed separately. Potential

Figure 9.5
Classification of donor splice sites by several weight matrices reflecting di¤erent splice site groups. Classi-
fication computed on 21,252 verified splice sites from SpliceDB. Each cell represents the frequency (in
percent) of a particular base in some position of donor site. H is (A, C, or T), B is (C, G, or T), V is (A, C,
or G).

Finding Genes by Computer 217



TATAþ promoter sequences were selected by the value of the score of Bucher TATA

box weight matrix (Bucher 1990) with the threshold close to the minimal score value

for the TATAþ promoters in the learning set. Such a threshold divides the learning

sets of known promoters into approximately equal groups. Selected significant char-

acteristics of both groups found by discriminant analysis are presented in table 9.7.

This analysis demonstrated that TATA� promoters have much weaker general fea-

tures than TATAþ promoters. Probably TATA� promoters possess more gene spe-

cific structure; they will be extremely di‰cult to predict by any general-purpose

methods.

Figure 9.6
Comparing accuracy of donor splice site recognizers: single weight matrix, five weight matrices, matrix of
triplets, linear discriminant function.

Table 9.6
Comparing the prediction accuracy of local acceptor splice site recognizers

Method/program
False
positives

False
negatives CC Reference

Weight matrix 2.3% 53% 0.13 Guigo et al. 1992

Consensus MAG/GURAGU 6.0% 18% 0.27 Mount 1982

Consensus MAG/GURAGU 6.0% 18% 0.27 Mount 1982

Five consensuses 4.2% 15% 0.31 Rogozin and Milanesi 1997

Neural network (NETGENE) 25.0% 2.7% 0.51 Brunak et al. 1991

Discriminant analysis (SPL) 10.0% 3.0% 0.56 Solovyev et al. 1994

The accuracy is averaged for three tested sets.
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For each position of a given sequence, the TSSW program evaluates the occur-

rence of TSS using two linear discriminant functions (for TATAþ and TATA�
promoters) with characteristics computed in the (�200, þ50) region around the given

position. If we find a TATA-box (using TATA-box weight matrix) in this region,

then we compute the value of LDF for TATAþ promoters, otherwise the value of

LDF for TATA-less. Only one prediction with the highest score of LDF and greater

than some threshold will be selected within any 300-bp region. If we observe a lower

scoring promoter predicted by the TATA� LDF near a higher scoring promoter

predicted by TATAþ LDF, then the first prediction is also displayed as a potential

enhancer region.

Figure 9.7 shows an example of TSSW program results for the sequence of the

human connexin 32 (GJB1) gene (GenBank accession number L47127). The TSSW

predicts one enhancer at position 246 and one potential TSS at position 428, with

corresponding TATA-box at the position 388. GenBank annotation based on experi-

mental data shows real TATA-signal in positions 389–394. TSSW also optionally

lists all potential TF binding sites around predicted promoters or enhancers (figure

9.7). It outputs the position, the strand (G), TRANSFAC identifier, and the con-

sensus sequences of found sites. The information about these sites may be of interest

for researchers studying the transcription of a particular gene.

Due to a high false positive rate of promoter prediction in long genomic sequences,

they are more useful when we can remove some predictions about the positions of

coding regions. The TSSW was additionally tested on the several GenBank entries

that have information about experimentally verified TSS and were not included in the

Table 9.7
Characteristics of promoter sequences used by TSSW programs for identification of TATAþ and TATA�
promoters

Characteristics D2 for TATAþ promoters D2 for TATA� promoters

Hexaplets �200 –�45 2.6 1.4 (�100 –�1)

TATA box score 3.4 0.9

Triplets around TSS 4.1 0.7

Hexaplets þ1 –þ40 0.9

Sp1-motif content 0.9

TATA fixed location 0.7

CpG content 1.4 0.7

Similarity �200 –�100 0.3 0.7

Motif Density (MD) �200 –þ1 4.5 3.2

Direct/Inverted MD �100 –þ1 4.0 3.3 (�100 –�1)

Total Mahalonobis distance 11.2 4.3

Number promoters/nonpromoters 203/4000 193/74000
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Figure 9.7
Results of promoter prediction by TSSW program in human connexin 32 (GJB1) gene (GenBank accession
number L47127).
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learning set (table 9.8). The lengths of sequences varied from 950 to 28,438 bp, with a

median length of 2,938 bp. All true TSS in these sequences can be considered as cor-

rectly predicted, with an average of 1.5 false positives per sequence or 1 false positive

per 3,340 bp. The distances between true TSS and the correctly predicted ones varied

from exact matching to 196 bp, with the median deviation of about 15 bp, which

means that half of the predictions are close to the experimental mapping of TSS with

the estimated precision of G5 bp (Perier et al. 2000).

The above prediction algorithm uses the propensities of each TF binding site

independently, not taking into account their mutual orientation and positioning. At

the same time, the transcription regulation is a highly cooperative process, involving

the simultaneous binding of several transcription factors to their corresponding sites.

In future algorithms we should analyze patterns of regulatory sequences, where mu-

tual orientation and location of individual regulatory elements are necessary.

9.2.10 Recognition of PolyA Signals

A 3 0-untranslated region (3 0UTR) has a diversity of cytoplasmic functions a¤ecting

the localization, stability, and translation of mRNAs (Decker and Parker 1995).

Practically all eukaryotic mRNAs undergo 3 0-end processing, which involves endo-

nucleotide cleavage followed by polyadenylation of the upstream cleavage product

(Wahle 1995; Manley 1995). The formation of large RNA-protein complexes is es-

sential for 3 0-end processing (Wilusz et al. 1990). RNA sequences directing the binding

of specific proteins are usually poorly conserved and often recognized in a cooperative

fashion (Wahle 1995). Therefore, the approaches for poly-A signal identification use

statistical characteristics of poly-A regions, which can reflect some unknown func-

tional sequences.

Table 9.8
The TSSW predictions on some GenBank entries with experimentally verified TSS

Gene

GenBank
accession
number

Length
(bp)

True
TSS

Predicted
TSS

Number
of false
positives

CXCR4 AJ224869 8747 2632 2631 4

HOX3D X61755 4968 2280 2278 2

DAF M64356 2003 733 744 1

GJB1 L47127 950 404 428 0

ID4 AF030295 1473 1066 1081 1

C inhibitor M68516 15571 2200 2004 4

MBD1 AJ132338 2951 1964 1876 1

Id �3 X73428 2481 665 663 0
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There are three types of basic RNA sequences defining a 3 0-processing site (Wahle

1995; Proudfoot 1991) (figure 9.8). The most conserved is the hexamer signal

AAUAAA (polyA signal), situated 10–30 nucleotides upstream of the 3 0-cleavage
site. About 90 percent of sequenced mRNAs have a perfect copy of this signal. Two

other types, the upstream and the downstream elements, are poorly conserved and

characterized. Downstream elements are frequently located within approximately 50

nucleotides 3 0 of the cleavage site and often GU or U rich (Wahle and Keller 1992).

Comparing their sequences, McLachlan et al. (1985) suggest a possible consensuse

of one downstream element: YGUGUUYY. The e‰ciency of polyadenylation in a

number of genes can be also increased by generally U-rich sequences upstream of

AAUAAA (Wahle 1995).

A few computer programs were developed to identify 3 0-processing. Yada et al.

(1994) analyzed human DNA sequences in the vicinity of the poly-A signal, trying

to distinguish them from other AATAAA sequences nonactive in polyadenylation

(pseudo polyA signals). They found that C frequently appears on the upstream side

of the AATAAA signal and T or C often appears on the downstream side, generat-

ing an extended consensus of poly-A signal: CAATAAA(T/C). Kondrakhin et al.

(1994) constructed a generalized consensus matrix using 63 sequences of cleavage/

polyadenylation sites in vertebrate pre-mRNA. The matrix elements were the abso-

lute frequencies of triplets at each site position. Using this matrix for recognition of

polyadenylation regions produces a very high number of false positive predictions.

A LDF recognition function for poly-A signal was developed by Salamov and

Solovyev (1997). The prediction algorithm was realized in the POLYAH program. It

searches for the AATAAA pattern by using weight matrix. After it finds the pattern,

it computes the value of the linear discriminant function, defined by seven sequence

characteristics around this position. The POLYAH program has been tested on the

sequence of Ad2 genome, where for eight correctly identified sites, it predicts only

four false sites.

Further improvement of poly-A recognition was reached in using a pair of qua-

dratic discriminant function in the Polyadq program (Tabaska and Zhang 1999).

 

 

  

 

 

 
 

Figure 9.8
Basic structure of poly-A signal sequences.
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This program outperformed the POLYAH detection method and is the first that can

detect significant numbers of ATTAAA-type signals.

9.3 ORF, Exon, and Single Gene Prediction Approaches

The first generation of computational gene finding programs searched for open read-

ing frames with organism-specific codon usage (Staden and McLachlan 1982). These

approaches worked successfully for bacterial genes (Staden 1984; Borodovsky et al.

1986), but short eukaryotic exons and spliced eukaryotic genes require algorithms

taking into account additional information about functional signals. One application

of such approaches is useful for predicting coding regions or coding ORF in partially

or completely sequenced mRNA(EST) sequences. Several HMM-based predictors

developed recently, such as BESTORF (Solovyev and Salamov 1999a) and ESTscan

(Iseli et al. 1999), significantly improve the accuracy of earlier approaches.

The internal exon prediction program SORFIND (Hutchinson and Hayden 1992)

was designed based on codon usage and Berg and von Hippel (1987) discrimination

energy for intron-exon boundary recognition. The accuracy of exact internal exons

prediction (at both 5 0- and 3 0-splice junctions and in the correct reading frame) by the

SORFIND program reaches 59 percent, with a specificity of 20 percent. Snyder and

Stormo (1993) applied a dynamic programming approach (an alternative to the rule-

based approach) to internal exon prediction in the GeneParser algorithm. It recog-

nized 76 percent of internal exons, but the structure of only 46 percent of the exons was

exactly predicted when tested using entire GenBank entry sequences. The HEXON

(Human EXON) program (Solovyev et al. 1994a), based on linear discriminant anal-

ysis, was one of the most accurate in exact internal exon prediction. It was recently

upgraded to predict all type of exons (and renamed FEX—find exon) (Solovyev et al.

1994b). The FEX program can be useful to analyze a possible set of alternatively

spliced exons in a given sequence in addition to the optimal variant of gene structure

produced by exon assembling programs. In an e¤ort to improve the accuracy of exon

prediction, Zhang (1997) applied quadratic discriminant technique (in the MZEF

program) as a direct extension of the classical liner discriminant approach used in

the HEXON program. The statistical evaluation of MZEF predictions on 473 genes

(partially included in MZEF training) demonstrated a better performance than the

HEXON program.

Later, a number of single-gene prediction programs were developed to assemble

potential eukaryotic coding regions into translatable mRNA sequences, selecting op-

timal combinations of compatible exons (Fields and Soderlund 1990; Gelfand 1990;

Guigo et al. 1992; Dong and Searls 1994). Dynamic programming was suggested as
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a fast method to find an optimal combination of pre-selected exons (Gelfand and

Roytberg 1993; Solovyev and Lawrence 1993b; Xu et al. 1994), which is di¤erent

from the approach in the GeneParser algorithm suggested by Snyder and Stormo

(1993) to recursively search for exon-intron boundary positions. The FGENEH (Find

GENE in Human) algorithm incorporated 5 0-, internal, and 3 0-exon identification

linear discriminant functions and a dynamic programming approach (Solovyev et al.

1994, 1995). Burset and Guigo (1996) conducted a comprehensive test for it and the

other gene finding algorithms; the FGENEH program was one of the best in the

tested group, having an exon prediction accuracy 10 percent higher than the others

and the best level of accuracy on the protein level. A novel step in gene prediction

approaches was the application of generalized hidden Markov models implemented

in the Genie algorithm (Kulp et al. 1996). Genie is similar in design to GeneParser,

but is based on a rigorous probabilistic framework. It is similar to FGENEH in

performance (Kulp et al. 1996).

9.4 Multiple Gene Prediction by Discriminative and Probabilistic Approaches

Whole genome sequencing projects were initiated for a number of organisms, from

bacteria to higher eukaryotes. They require gene-finding approaches that are able to

identify many genes encoded in the genomic sequences. The most accurate multiple

gene prediction programs include such HMM-based probabilistic approaches as

Genscan (Burge and Karlin 1997) and Fgenesh (Salamov and Solovyev 2000), Fgenes

(discriminative approach) (Solovyev 1997), and Genie (generalized HMM with neural

network splice site detectors) (Reese et al. 2000). In the next section, we will describe

a general scheme of HMM-based gene prediction that was initially realized in the

works of Dr. Haussler’s group (Krogh et al. 1994; Kulp et al. 1996). This pattern-

based approach can also be considered as a variant in which transition probabilities

are not taken into account.

9.4.1 HMM-Based Eukaryotic Gene Identification

Exons, introns, 5 0-, and 3 0-untranslated regions are di¤erent components (states)

of gene structure that occupy k non-overlapping subsequences of a sequence X ¼
6

i¼1;k
xi. There are 35 states constituting an eukaryotic gene model, considering di-

rect and reverse chains as possible gene locations (figure 9.9). The absence of protein

coding characteristics reduces significantly prediction accuracy of noncoding 5 0- and
3 0-exons (and introns; therefore, they are not considered in the current gene predic-

tion algorithms. The other 27 states consist of six exon states (first, last, single, and

three types of internal exons due to three possible reading frames) and seven non-
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coding states (three intron, noncoding 5 0- and 3 0-, promoter, and polyA) in each

chain, plus the noncoding intergenic region.

A gene structure can be considered as the ordered set of state/subsequence pairs,

f ¼ fðq1; x1Þ; ðq2; x2Þ; . . . ; ðqk; xkÞg, called the parse. We call the predicted gene

structure to be such a parse f that the probability PðX ; fÞ of generating X according

to f is maximal over all possible parses (or when some score is optimal in some

meaningful sense, i.e., best explains the observations [Rabiner 1989]). This probability

can be computed using statistical parameters describing a particular state and gen-

erated from the training set of known gene structures and sequences.

Successive states of this HMM model are generated according to the Markov

process with the inclusion of explicit state duration density. A simple technique based

on the dynamic programming method for finding the optimal parse (or the single best

state sequence) is called the Viterbi algorithm (Forney 1973). The algorithm requires

oðN 2D2LÞ calculations, where N is the number of states, D is the longest duration,

and L is the sequence length (Rabiner and Juang 1993). Burge (1997) introduced

a helpful technique to reduce the number of states and simplify computations by

Figure 9.9
Di¤erent states and transitions in eukaryotic gene model.
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modeling noncoding state length with a geometrical distribution. We will shortly con-

sider the algorithm of gene finding using these technique, which was initially imple-

mented in the Genscan program (Burge 1977; Burge and Karlin, 1997) and used later

in the Fgenesh program (Salamov and Solovyev 2000). As any valid parse will consist

of only alternating series of noncoding and coding states, NCNCNC; . . . ; NCN, we

need only 11 variables, corresponding to the di¤erent types of N states. For each

sequence position (starting from 1), we select the maximum joint probability to con-

tinue the current state or to move to another noncoding state defined by a coding

state (from a pre-computed list of possible coding states) that terminates at the ana-

lyzed sequence position. The parse probability is

PðX ; €ooÞ ¼ Pðq1Þ
Xk�1

i¼1

Pðxi j lðxiÞ; qiÞPðlðxiÞ j qiÞðPðqiþ1; qiÞÞPðxi j lðxkÞ; qkÞPðlðxkÞ j qkÞ

where Pðq1Þ denotes the initial state probability; Pðxi j lðxiÞ; qiÞPðlðxiÞ j qiÞ and

Pðqiþ1; qiÞ are the independent joint probabilities of generation of the subsequence xi
of length l in the state qi and transitioning to the qiþ1 state. Pðxi j lðxiÞ; qiÞPðlðxiÞ j qiÞ
is a production of a probability of generation l-length sequence xi and the probability

of observing such an l-length sequence in the state qi, which are computed using the

sequence of xi and the statistical data from a training set of known genes. To com-

pute Pðxi j lðxiÞ; qiÞ for an internal exon state, we use donor and acceptor site models

based on position specific weight matrices and frame-specific Markov models based

on hexaplet frequencies in exons and introns.

Search for Optimal Parse Let us define the best score (the highest joint probability

gi½ j� of the optimal parse of the subsequence S1; j ½s1; s2; . . . ; sj�, which ends in state

qi at position j). Assume a set Aj of coding states fckg of lengths fdkg, starting at

positions fmkg and ending at position j, which have the previous states fbkg. The
length distribution of state ck is denoted by fck ðdÞ. The searching procedure can be

stated as follows:

initialization:

gið1Þ ¼ piPiðs1Þpi and Zið1Þ ¼ 0; i ¼ 1; . . . 11

recursion:

gið j þ 1Þ ¼ max

�
gið jÞpiPiðsjþ1Þ;max

ckbAj

fgiðmk � 1Þð1� pbk Þtbk ; ck fck ðdkÞPðSmk ; jÞ

� tck ; ipiPiðsjþ1Þg
�

i ¼ 1; . . . 11; j ¼ 1; . . . ;L� 1:
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termination:

giðLþ 1Þ ¼ max giðLÞ; max
ckbAj

fgiðmk � 1Þð1� pbk Þtbk ; ck fck ðdkÞPðSmk ; jÞtck ; ig
� �

i ¼ 1; . . . 11

On each step we record the location and type of transition maximizing the functional

to restore the optimal set of states (gene structure) by a backtracking procedure.

Most parameters of these equations can be calculated from the learning set of known

gene structures. Instead of scores of coding states PðSmk ; jÞ, it is better to use log-

likelihood ratios, which do not produce scores below the limits of computer precision.

This technique to predict multiple eukaryotic genes was initially implemented in

the Genscan algorithm (Burge and Karlin 1997). Several other HMM-based gene

prediction programs were developed later: Veil (Hederson et al. 1997), HMMgene

(Krogh 1997), Fgenesh (Salamov and Solovyev 1999, 2000), a variant of Genie

(Kulp et al. 1996), and GeneMark (Lukashin and Borodovsky 1998). Fgenesh (Find

GENES using Hmm) is currently the most accurate program. It is di¤erent from

Genscan in computing the coding scores of potential exons, where a priori proba-

bilities of exons were taken into account according to the Bayes theorem. As a result,

the coding scores of potential exons are generally lower than in Genscan. Some minor

di¤erences exist in the functional signal description and preparing of training sets to

compute specific parameters for each model organism, such as human, Drosophila,

nematode, yeast, Arabidopsis, monocotolydons, and so on. Coding potentials were

calculated separately for four isochores (human) and for two isochores (other species).

The run time of Fgenesh is practically linear; the current version has no practical limit

on the length of analyzed sequence. Prediction of about one thousand genes in 34.5

MB of chromosome 22 sequence takes about 1.5 minutes with a Dec-alpha processor

EV6.

9.4.2 Discriminant Analysis–Based Gene Prediction

The Fgenes (Find GENES) program predicts multiple genes using dynamic program-

ming and discriminant classifiers to generate a set of exon candidates. The following

major steps describe analysis of genomic sequences by the Fgenes algorithm:

1. Create a list of potential exons by selecting: ATG . . . GT, AG-GT, AG. Stop se-

quence regions having exons scores higher than the specific thresholds depending on

GC content (four groups);

2. Find a set of compatible exons with the maximal total score. Guigo (1999) de-

scribed an e¤ective procedure for finding such a set. Fgenes uses a simpler variant of
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this algorithm: we order all exon candidates according to their 3 0-end positions.

Then, going from the first to the last exon, we select for each exon the maximal score

path (compatible exons combination) terminated by this exon using a dynamic pro-

gramming approach. Include in the optimal set either this exon or an exon with the

same 3 0-splicing pattern ending at the same position or earlier, whichever has the

higher maximal score path.

3. Take into account promoter or polyA scores (if predicted) in terminal exon scores.

The run time of the algorithm grows approximately linearly with the sequence length.

Fgenes is based on usage linear discriminant functions developed for identification of

splice sites, exons, promoter, and polyA sites (Solovyev et al. 1994; Solovyev and

Salamov 1997). We consider these functions for internal exons to demonstrate what

sequence features are important to exon identification.

Internal Exon Recognition We consider as potential internal exons all open reading

frames in a given sequence flanked by AG (on the left) and GT (on the right). The

structure of such exons is presented in figure 9.10. The values of five exon character-

istics were calculated for 952 authentic exons and for 690,714 pseudo-exon training

sequences from the set. Table 9.9 gives the Mahalonobis distances, showing the sig-

nificance of each characteristic. We can see that the strongest characteristics are the

recognition functions of flanking donor and acceptor splice sites (D2 ¼ 15:04 and

D2 ¼ 12:06, respectively). The preference of ORF as a coding region has D2 ¼ 1:47

and adjacent left intron region has D2 ¼ 0:41 and right intron region has D2 ¼ 0:18.

The accuracy of the discriminant function based on these characteristics was esti-

mated on the recognition of 451 exon and 246,693 pseudo-exon sequences from the

test set. The sensitivity of exact internal exon prediction is 77 percent, with a specif-

icity of 79 percent. At the level of individual nucleotides, the sensitivity of exon pre-

diction is 89 percent, with a specificity of 89 percent; the sensitivity of intron positions

prediction is 98 percent, with a specificity of 98 percent. This accuracy is better than

that demonstrated by dynamic programming and neural network based methods

Table 9.9
Significance of internal exon characteristics selected by LDA

Characteristics 1 2 3 4 5

a Individual D2 15.0 12.1 0.4 0.2 1.5

b Combined D2 15.0 25.3 25.8 25.8 25.9

Characteristics 1 and 2 are the values of donor and acceptor site LD recognition functions. 3 gives the
octanucleotide preference for being coding of potential exon region. 4 gives the octanucleotide preference
for being intron 70-bp region on the left and 70-bp region on the right of potential exon region.
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(Snyder and Stormo 1993), which have a 75 percent sensitivity of the exact internal

exons prediction, with a specificity of 67 percent.

5 0_coding exon recognition LDF uses the average value of positional triplet pref-

erence in the (_15, 10) region around ATG codon (instead of donor splice site score).

3 0-exon coding region recognition LDF includes the average value of positional triplet

preference in the (_10, 30) region around the stop codon (instead of the acceptor site

score). The recognition function of single exons combines corresponding character-

istics of 5 0- and 3 0-exons (figure 9.10) (Solovyev et al. 1994; Solovyev and Salamov

1997). Features describing sequences near initial and stop codons have much less

discriminative power than the splice site characteristics; therefore, terminal and short

single exons have a lower accuracy of recognition.

9.5 Accuracy of Gene Identification Programs

Burset and Guigo (1996) specially selected a set of 570 single-gene sequences of

mammalian genes, which they used to evaluate the performance of many gene finding

approaches. The results of this test are presented in table 9.10. Of course, some of

these data have only a historical value to show the progress in gene finding develop-

ment, and some of these programs have been improved since the test. We can see

that the best programs on average predict accurately 93 percent of exon nucleotides

 

 

 

 

 

 

 

  

  

  

  
 

  

 

 

 

 

 

  

 

Figure 9.10
Di¤erent functional regions of the first (a), internal (b), last (c) corresponding to components of recognition
functions. Single exons include left and right characteristics of first and last exons, respectively.
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ðSn ¼ 0:93Þ, with just 7 percent false positive predictions. However, the accuracy on

the nucleotide level does not completely reflect the quality of gene structure predic-

tion because missing small exons and the imperfect location of exon ends will not

much a¤ect its value. Therefore, it is important to provide the accuracy of exact exon

prediction level, which is usually lower than at the nucleotide level.

The table clearly demonstrates that the recent multiple gene prediction programs

such as Fgenesh, Fgenes, and Genscan significantly outperform the older approaches.

The exon identification rate is actually even higher than the presented data because the

overlapped exons were not counted as true predictions in exact exon accuracy evalua-

tion. Yet there is still room for significant improvement. The accuracy of exact gene

prediction is only 59 percent for Fgenesh, 56 percent for Fgenes, and 45 percent for

Genscan programs computed on this relatively simple test with single gene sequences.

A more practical task is to identify multiple genes in long genomic sequences con-

taining genes in both DNA strands. We selected a test set of 19 long genomic sequences

of 26,000–240,000 bp and 19 multigene sequences with 2–6 genes from GenBank to

compare performance of gene-finding programs in analyzing genomic DNA. Table

9.11 demonstrates the results of gene prediction for these data. The results show that

Table 9.10
Characteristics of accuracy for the gene prediction programs on single gene sequences of Burset and Guigo
1996 dataset

Algorithm/
program

Sn
(exons)

Sp
(exons)

Sn
nucleo-
tides

Sp
nucleo-
tides Reference

Fgenesh 0.84 0.86 0.94 0.95 Salamov & Solovyev 1998

Fgenes 0.83 0.82 0.93 0.93 Solovyev 1997

Genscan 0.78 0.81 0.93 0.93 Burge & Karlin 1997

Fgeneh 0.61 0.64 0.77 0.88 Solovyev et al. 1995

Morgan 0.58 0.51 0.83 0.79 Salsberg et al. 1998

Veil 0.53 0.49 0.83 0.79 Henderson et al. 1997

Genie 0.55 0.48 0.76 0.77 Kulp et al. 1996

GenLang 0.51 0.52 0.72 0.79 Dong & Searls 1994

Sorfind 0.42 0.47 0.71 0.85 Hutchinson & Hyden 1992

GeneID 0.44 0.46 0.63 0.81 Guigo et al. 1992

Grail2 0.36 0.43 0.72 0.87 Xu et al. 1994

GeneParser2 0.35 0.40 0.66 0.79 Snyder & Stormo 1995

Xpound 0.15 0.18 0.61 0.87 Thomas & Skolnick 1994

Sn (sensitivity) ¼ number of exactly predicted exons/number of true exons (or nucleotide); Sp (specific-
ity) ¼ number of exactly predicted exons/number of all predicted exons. Accuracy data for programs
developed before 1996 were estimated by Burset and Guigo (1996). The other data were produced by the
authors of the corresponding programs.
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the accuracy is still pretty good on the nucleotide and exon level, but exact gene

prediction is lower than for the test with short single gene sequences. Sensitivity for

exact internal exon prediction is 85–90 percent, but 5 0-, 3 0-, and single exons have a

prediction sensitivity of about 50–75 percent, which can partially explain relatively

low level of exact gene prediction. As a result, we observe the splitting of some actual

genes and/or joining some other multiple genes into a single one.

Another limitation of current gene-finding programs is that they cannot detect the

nested genes, that is, genes located inside introns of other genes. This is one of the

future directions for improvement of gene-finding software. Although this is probably

a rare event for the human genome, for organisms like Drosophila, it presents a real

problem. For example, annotators identified 17 examples of such cases in the Adh

region. (Ashburner et al. 1999). Masking repeats is important. It significantly increases

(@10 percent) the specificity of prediction.

9.6 Knowledge of Similar Protein or EST Can Improve Gene Prediction

Automatic gene prediction approaches can take into account some information about

exon similarity with a known protein or EST (Gelfand et al. 1996; Xu and Uberbacher

1996; Krogh 2000; Birney and Durbin 2000). Fgeneshþ (Salamov and Solovyev 2000)

is a modification of the Fgenesh algorithm, which uses additional information from

available similar proteins. These proteins can be acquired by running Fgenesh on a

given sequence. Then the predicted proteins (or amino acid fragments translated

from predicted exons) are used to select similar proteins in some protein database.

After that, we can use selected proteins to improve prediction accuracy. Fgeneshþ

Table 9.11
Performance of gene-finding for 38 genomic sequences

Accuracy per
nucleotide

Accuracy per
exon

Program
Sequences/
Genes Sn Sp CC Sn/Sn_o Sp Me We

Genes/
Entries

Fgenesh 38/77 M_r 0.94 0.87 0.90 0.85/0.93 0.80 0.08 0.14 0.36/0.11

0.94 0.78 0.85 0.84/0.92 0.75 0.08 0.21 0.34/0.08

Genscan 38/77 M_r 0.93 0.82 0.87 0.80/0.90 0.74 0.10 0.18 0.29/0.03

0.92 0.70 0.79 0.79/0.90 0.66 0.11 0.30 0.29/0.03

Fgenes 38/77 M_r 0.91 0.80 0.84 0.84/0.92 0.72 0.08 0.21 0.36/0.18

0.92 0.76 0.83 0.84/0.93 0.68 0.07 0.30 0.39/0.21

Me, missing exons; WE, wrong exons. M_r lines provide predictions on sequences with masked repeats.
Sn_o, exon prediction accuracy including overlapping exons.
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reads the protein homolog sequence and aligns all predicted potential exons with that

protein using the Smith-Waterman algorithm, as implemented in the Sim program

(Huang et al. 1990) or the Lial (local iterative alignments) algorithm developed by

Seledtsov and Solovyev (1999). To improve the computational time, all overlapped

exons in the same reading frame are combined into one sequence and aligned only

once.

Fgeneshþ includes two major additions to the Fgenesh algorithm: augmentation

of the exon score (for exons having detected similarity) by an additional term pro-

portional to the alignment score and imposing a penalty for the adjacent exons in a

dynamic programming procedure, when the distance between their corresponding

protein segments is significantly di¤erent from the distance between the correspond-

ing fragments of a similar protein. We tested Fgeneshþ on a set of 61 GenBank

human sequences, which have imperfect ab initio Fgenesh predictions and known

protein homologs from other organisms with identity varying from 99 percent to 40

percent. The results of applying Fgeneshþ to these sequences show (table 9.12) that

when the alignment covers the entire lengths of both proteins, the accuracy increases

(relative to Fgenesh) and the improvement does not depend significantly on the level

of percent identity (for ID > 40 percent). This feature makes valuable the proteins

from distant organisms for improving the accuracy of gene identification. Having a

sequence of the human genome, we can find where in the genomic sequence a given

protein is located using Blast-like search in all predicted proteins of this genome.

Then we use Fgeneshþ for a prediction of the full-length mRNA (its coding part) for

a given protein using its sequence and the selected genomic sequence. Recently we

have developed a Fgeneshþþ script, which initially predicts genes using the Fgenesh

program and then selects from NR (nonredundant protein database) similar proteins

for predicted genes using the Dbscan program (a Blast-like program, but about 10

times faster). The Fgeneshþþ script uses found protein sequences to improve initial

gene prediction and can automatically generate annotation of the entire chromosome.

Table 9.12
The accuracy of Fgenesh and Fgeneshþ on the same set of human genes with known protein homologs
from another organisms

Program CG Sn_e Sp_e Sn Sn CC

Fgenesh 0 63 68 86 83 0.74

Fgeneshþ 46 82 85 96 98 0.95

The set includes 61 genes and 370 exons. CG—percent of correctly predicted genes; Sn_e, Sp_e—sensitivity
and specificity at the exon level (in %); Sn, Sp—sensitivity and specificity at the nucleotide level (in %);
CC—correlation coe‰cient.
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Similar to the Fgeneshþ algorithm scheme of exploiting known EST/cDNA infor-

mation to improve accuracy of gene identification is the program Fgenesh_c (Salamov

and Solovyev 2000a). Fgeneshþ and Fgenesh_c are very fast programs. For example,

gene prediction by Fgeneshþ for a sequence of 80,000 bp with a protein of eight

hundred amino acids takes about 1 second on an EV6 processor in a Dec-alpha

computer.

9.7 Annotation of Genomic Sequences

GenBank (Benson et al. 1999) and EMBL (Stoesser et al. 1999) databases have for

many years collected information about sequences of di¤erent genomes. A sequence-

based structure of these databases often produces annotations of one gene in many

di¤erent records when several gene fragments are sequenced independently. Last

year, the vast amount of sequence information was produced by genome sequencing

projects. Absence of experimental information about genes in a major part of these

sequences makes valuable a presentation of computationally identified genes to pro-

vide positional cloners, gene hunters, and others with the gene candidates contained

in finished and unfinished genomic sequences. Using these predictions, the scientific

community can experimentally work with most real genes, because gene finding pro-

grams usually predict correctly most exons in a gene sequence.

9.7.1 Gene-Centered InfoGene Database

The InfoGene database database (http://www.softberry.com/inf/infodb.html) is cre-

ated to collect and interactively work with information about known and predicted

gene structures of human and other model genomes. Known genes are presented in

17 separate divisions (including human, mouse, Drosophila, nematode, Arabidopsis,

rice, maize, and wheat), which contain records uniting available information about

a particular gene from many GenBank (Release 119) entries. The human InfoGene

division, for example, contains about 20,791 genes (including 16,141 partially se-

quenced genes), 54,558 coding regions, 83,488 exons, and about 58,000 donor and

acceptor splice sites. This information can be applied to create di¤erent sets of func-

tional gene components for extraction of their significant characteristics as used in

gene prediction systems.

The interactive Java Viewer of Gene Structures has been designed by Igor Seledtsov

and Victor Solovyev (1999) to visually inspect the gene structure of Infogene entries

of known genes and predicted genes and to use for analysis of di¤erent gene predic-

tion algorithms in annotating genomic sequences from genome sequencing projects.
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The viewer has four main panels (see figures 9.2, 9.12): General View, Detail View,

Locus Selection Panel, and the Output Message Panel. Both the General View Panel

and the Detail View Panel have horizontal zoom scroll bars at the bottom of the

windows. You can also zoom in and out by entering a scaling value from a pull-down

menu: Action > Set Horizontal Scaling Factor.

9.7.2 General View Panel

The General View Panel shows all genes found in a given locus. If the locus contains

overlapping genes, such as alternatively spliced ones, every such gene is displayed on

its own line. As an example, let us look at the InfoGene locus HSAB001898. This

locus should be automatically displayed in the General View Window if you have

chosen the default setting from the Infogene page (the button ‘‘Show data’’ on this

page). This example is also shown on the picture above. Genes are shown as red bars.

When the mouse cursor points to one of the genes, the gene’s name is displayed in the

Output Message Panel. If you press and hold the right mouse button, detailed infor-

mation about the gene is displayed in a separate temporary window. When the button

is released, the temporary window disappears. The same operation performed with the

Shift key leaves the temporary window open after the release of the mouse button. The

number of temporary information windows that can be opened at the same time is

unlimited. You can mark genes or groups of genes in General View Panel by pressing

and dragging the left mouse button. Marked gene(s) will then be displayed in the

Detail View Window, replacing its previous content. If you press the Shift key at the

same time as pressing and dragging the left mouse button, you can add new marked

regions to the current ones. Then all marked regions will be displayed one under

another in the Detail View Panel.

9.7.3 Detail View Panel

This panel o¤ers detailed view of selected genes. Each selected gene or region is

drawn on a separate line, the number of which is unlimited. Dark gray bars represent

genes, yellow bars show exons, red bars show coding regions, and green bars show

gene regions that are not included in a transcript. Symbols < and > at the end of exon

or coding region mean that their exact boundaries are unknown. White separators

that cut through genes separate the unsequenced regions. Colored triangles above

genes represent functional signals: black—CAAT box, blue—TATA box, green—

transcription start point, red—PolyA signal, pink—polyA site. When the mouse

cursor points to any bar or triangle, information about this object is displayed in the

Output Message Panel. If the mouse cursor goes across a gene, the gene name is

displayed in the Output Message Panel.
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9.7.4 Locus Selection Panel

This panel has five fields: Selection List, Locus Info Button, Back Button, Forward

Button, and Search Input Window. Selection List shows the list of sequence identifiers

that satisfy current criteria, set forth in the Divisions, Options, and Search Fields

menus of the Viewer. The Divisions menu allows the user to choose the source of data:

Genbank/Infogen known genes for several taxonomic group, or predicted genes for

several organisms. The Options menu allows the user to chose a field to search in

Infogen loci, GenBank Identifiers, GenBank Accession Codes, or Context. The latter

option allows a search through all fields, performed by typing a search string (the

wildcard * is allowed) into the Search Input Window and pressing Enter. Entries that

satisfy search criteria are displayed in a Selection List. To display an entry from the

list in the General View panel, double-click on an entry or select it and press the

Enter key. The Forward and Back buttons display the next/previous thousand

entries in selection list. Pressing the Locus Info button opens a separate window with

detailed information on a given locus.

InfoGene exon-intron gene structures can be visualized by Dbscan program

(http://www.softberry.com/scan.html), which searches for conserved regions in two

sequences. This tool is useful to compare the localization of conservative regions with

the localization of corresponding exon sequences or gene regulatory signals. In figure

9.11, we present the results of searching similar regions for mouse mRNA in a data-

base of known human genes. We can see that all exons shown by red boxes (in the

second window) have corresponding conserved regions (in the first window). In this

way we can see exon boundaries in the mouse RNA. If we use predicted gene data-

base and a given mRNA sequence, we can verify the corresponding predicted exons

using this tool.

9.7.5 Predicted Genes in the Drosophila Genome

The Predicted Genes division includes an annotation of a draft of the Drosophila

genome and a draft human genome sequence. The nucleotide sequence of nearly all

euchromatic portion of the Drosophila genome (@120 MB) has been determined

(Adams et al. 2000). These sequences were annotated by predicting genes with the

Fgenesh program and checking exon similarity with PfamA domains (Bateman et al.

2000). The results of this analysis are shown in table 9.13. In this table, in addition

to computer predicted genes, also shows the results of removing (filtering out) most

unreliable genes. Two criteria were used: (1) remove genes with the total length of

protein coding region less than 30 amino acids; and (2) remove genes with total score

of exons < 15. Such filtering proved useful to improve the accuracy of gene predic-
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Figure 9.11
Dbscan visualization of results of searching similar regions for a mouse mRNA in a database of known
human genes. We can see that all exons shown by red boxes (in the second window) have corresponding
conserved regions (in the first window). By this we can detect exon boundaries in the mouse RNA. In third
window we can display alignment by marking some conserved region in the first window.

Table 9.13
Summary of predicted genes and proteins in Drosophila genome sequences

X 2L 2R 3L 3R 4 Y Unknown Total

Size (MB) 22.2 23.0 21.4 24.1 28.3 1.2 0.02 4.6 124.8

All genes
filtered

4071 4610 4573 4851 5954 133 1 691 24884

3349 3768 3915 4017 4962 105 1 504 20622

All exons
filtered

13036 15215 16310 16047 20382 679 10 1804 83483

11767 13713 15138 14561 18654 625 10 1467 75935

Exons-PfamA
filtered

1932 2148 2348 2130 2919 109 0 159 11745

1925 2141 2341 2126 2916 105 0 147 11701

United Pfam
Pfam types

1138 1193 1287 1216 1654 58 0 76 6622

431 475 499 460 546 43 0 40 1017
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tion (Salamov and Solovyev 2000). We should note that 20,622 genes include some

pseudogenes and genes of mobile elements. The sequences of exons and gene anno-

tation data can be copied from http://www.softberry.com/inf/dro_ann.html for using

them locally or to create microarray oligos.

The predicted genes and proteins for each human chromosome can be seen in figure

9.12, and used for further investigation at http://www.softberry.com/inf/infodb.html.

9.7.6 Predicted Genes in the Human Genome

The nucleotide sequence of nearly 90 percent of the human genome (3 GB) has been

determined by an international sequencing e¤ort. Assembly of the current draft of

the human genome was done by Prof. Haussler’s Human Genome Project Team at

UC Santa Cruz. Half of this sequence is occupied by repeat sequences and undefined

 

Figure 9.12
InfoGene viewer representation of Fgenesh annotation of chromosome 4 of Drosophila melanogaster.
Genes marked in the upper panel are presented in the lower panel. Coding exons are marked by red and
introns by dark color. The triangles show the starts of transcription and the poly-A signals. Underlined red
genes have similarity with Pfam domains. Pointing with the mouse to the first exon, we can see in down
information line the similarity with Src domain; the exon in reverse chain (marked by 3) has a similarity
with EGF-like domain.
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nucleotides inserted during assembling. The Fgenesh program was used on this se-

quence (with masked repeats) to predict exons and assemble predicted genes. Anno-

tation of similarity of each exon with the PfamA protein domain database (Bateman

et al. 2000) was produced by the Blast program (Altshul et al. 1977). A total of

49,171 genes and 282,378 coding exons were predicted. On average, one gene was

found per about 68,623 bp, and one exon per 11,949 bp. Complete summary of this

analysis including the gene and exon numbers in di¤erent chromosomes, is presented

at http://www.softberry.com/inf/humd_an.html and can be viewed in the InfoGene

database. Sequences of predicted exons and gene annotation data can also be copied

from this site. One thousand one hundred and fifty-four types of PfamA di¤erent

domains were found in the predicted proteins. The top part of the domain list is

presented in table 9.14.

9.8 Using Expression Data for Characterization and Verification of Predicted Genes

Large-scale functional analysis of predicted, as well as known, genes might be done

using expression micro array technology, which gives us the possibility of presenting

all human genes on one or several A¤ymetrix type GeneChips. Traditionally genes

are presented on the chips by unique oligonucleotides close to the 3 0-end of the

mRNA, but there are a lot of predicted new genes that have no known corresponding

EST sequences. However, the expression of such genes could be studied using pre-

dicted exon sequences. We can present all predicted human exons (about 300,000) on

Table 9.14
PfamA domains found in predicted human genes

Number PfamA short name Name

467 Pkinase Eukaryotic protein kinase domain

372 7tm_1 7 transmembrane receptor (rhodopsin family)

308 Myc_N_term Myc amino-terminal region

256 Topoisomerase_I Eukaryotic DNA topoisomerase I

224 Ig Immunoglobulin domain

183 Rrm RNA recognition motif

182 PH PH domain

180 Myosin_tail Myosin tail

166 EGF EGF-like domain

159 Filament Intermediate filament proteins

154 Syndecan Syndecan domain

143 Ras Ras family

Domain of the same type localized in neighboring exons were counted only once.
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a few chips and use expression profiling across many tissues to verify the predicted

exons, observing if they are expressed in some of them.

Moreover, with this approach, we can verify the structure of genes (identify a

subset of predicted exons that really belong to the same gene) based on the similar

expression behavior of exons from the same gene in a set of tested tissues. Exons

wrongly included in a predicted gene will have di¤erent expression patterns, and

exons wrongly excluded by prediction will have similar expression patterns (figure

9.13). It is interesting that such gene verification on a large scale can be done in

parallel with identification of disease (tissue) specific drug target candidates. The re-

cent chip designed by EOS Biotechnology included all predicted by Fgenesh and

Genescan exons from chromosome 22, as well as predicted exons from human ge-

nomic sequences of phase 2 and 3. It was found that the predicted exon sequences

present a good alternative to EST sequences, which opens a possibility of working

with predicted genes on a large scale.

An example of expression behavior of three exons of the myoglobin gene in dif-

ferent tissues is presented in figure 9.14 (expression data were received in EOS Bio-

technology Inc.). Tissue-specific expression of this gene is clearly seen with the major

peaks located in skeletal muscle, heart, and diaphragm tissues. The level of expres-

sion in these tissues is 10–100 times higher than the level of signals for other tissues,

as well as the average level of expression signal for randomly chosen exons. We can

observe that for specific tissues, all three exons demonstrate such a high level (with

correlation coe‰cient 0.99; for random exons it is about 0.06). These exons were

predicted correctly by the Fgenesh program and were used for selection of oligonu-

cleotide probabilities. From this result we can conclude that the predicted exons can

be used as a gene representatives. An additional application of expression data is the

Figure 9.13
Using expression data to verify gene boundaries and reality of exons predicted along genomic sequences.
Real exons will have expression signals. Exons from one gene will have the same expression pattern in
di¤erent tissues. Expression signal will increase toward 3 0-exons.
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Figure 9.14
Coordinative expression of three exons of human myoglobin gene from chromosome 22 (exons were pre-
dicted by Fgenesh program and used to design EOS Biotechnology Human genome chip). The high level of
expression is observed only in several specific tissues.

Figure 9.15
Exon representation can be used to characterize alternatively spliced variants of genes. Oligonucleotides
selected in 3 0-end of mRNA/EST sequences will not be selective for di¤erent gene variants. We will observe
the sum of two genes’ signal and we can miss cancer specificity of three exons’ gene structure. Using oli-
gonucleotides derived from exon sequences, we can detect di¤erent expressions of these two forms.
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Table 9.15
Web servers for eukaryotic gene and functional signal prediction

Program/task WWW address

Fgenesh /HMM-based gene prediction (human,
Drosophila, dicots, monocots, C. elegans, S. pombe)

http://genomic.sanger.ac.uk/gf/gf.shtml
http://searchlauncher.bcm.tmc.edu:9331/
seq-search/gene-search.html
http://www.softberry.com/nucleo.html

Genscan /HMM-based gene prediction (human,
Arabidipsis, maize)

http://genes.mit.edu/GENSCAN.html

HMM-gene /HMM-based gene prediction (human,
C. elegans)

http://www.cbs.dtu.dk/services/HMMgene/

Fgenes /Disciminative gene prediction (human) http://genomic.sanger.ac.uk/gf/gf.shtml
http://searchlauncher.bcm.tmc.edu:9331/
seq-search/gene-search.html

Fgenes-M /Prediction of alternative gene structures
(human)

http://genomic.sanger.ac.uk/gf/gf.shtml
http://www.softberry.com/nucleo.html

FgeneshB/Fgenesh_c /gene prediction with the help of
similar protein/EST

http://www.softberry.com/nucleo.html

Fgenesh-2 /gene prediction using 2 sequences of close
species

http://genomic.sanger.ac.uk/gf/gf.shtml
http://www.softberry.com/nucleo.html

BESTORF /Finding best CDS/ORF in EST (human,
plants, Drosophila)

http://genomic.sanger.ac.uk/gf/gf.shtml
http://www.softberry.com/nucleo.html

Mzef / internal exon prediction (human, mouse,
Arabidopsis)

http://argon.cshl.org/genefinder/

TSSW/TSSG /promoter prediction http://searchlauncher.bcm.tmc.edu:9331/
seq-search/gene-search.html
http://genomic.sanger.ac.uk/gf/gf.shtml

Promoter 2.0 /promoter prediction http://www.cbs.dtu.dk/services/Promoter/

CorePromoter /promoter prediction http://argon.cshl.org/genefinder/
CPROMOTER/index.htm

SPL / splice site prediction (human, Drosophila, plants,
yeast)

http://genomic.sanger.ac.uk/gf/gf.shtml
http://www.softberry.com/nucleo.html

NetGene2/NetPGene / splice site prediction (human,
C. elegans, plants)

http://www.cbs.dtu.dk/services/NetPGene/

Dbscan / searching for similarity in genomic sequences
and its visualization altogether with known gene
structure

http://www.softberry.com/nucleo.html
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functional analysis and identification of alternatively spliced genes (exons), when in

particular tissues some exons (or their parts) have very di¤erent expression intensities

compared to the other exons from the same gene. Moreover, sometimes 3 0-EST gen-

erated probabilities cannot be used for the identification of disease-specific gene vari-

ants in contrast with the using exon representation of a gene (figure 9.15).

9.9 Internet Resources for Gene Finding and Functional Site Prediction

Prediction of genes, ORF, promoter, and splice sites finding by the methods described

above is available on the World Wide Web. Table 9.15 presents just a few useful

programs. It does not provide a comprehensive list.
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10 Computational Methods for Promoter Recognition

Michael Q. Zhang

10.1 Introduction

In this chapter, we shall describe the problem of promoter recognition. We begin with

a brief introduction to the biology of promoter structure and function. We then re-

view some of the current computational approaches to the problem, with emphasis

on basic concepts and methodologies in real applications. Interested readers should

consult the references for more technical details or program specifications.

There are two main classes of functional information encoded in the genomic DNA

of every living organism. One class is the coding regions, which specify the structure

and function of each gene product; the other class is the regulatory regions (occasion-

ally, but very rarely, overlapping with a coding region), which control and regulate

when, where, and how the genes are expressed. Promoter is the most important regu-

latory region that controls and regulates the very first step of gene expression: mRNA

transcription. For a comprehensive review on the related biology, see the excellent

book Transcriptional Regulation in Eukaryotes by Carey and Smale (1999).

Promoter is commonly referred to as the DNA region that is required to control

and regulate the transcriptional initiation of the immediately downstream gene. For a

typical eukaryotic (PolII or protein-coding) gene, it contains a core promoter of about

100 bp centered around the transcriptional start site (TSS), and a proximal promoter

of about 500 bp immediately upstream of the core promoter. Often complex regula-

tion in vivo can involve many more features, such as enhancers, locus control regions

(LCRs), and/or sca¤old/matrix attachment regions (S/MARs). Some people refer to

enhancers as the distal promoter elements, which can be either upstream or down-

stream of the gene or within an intron and can be in any orientation. For our purpose,

we use the region (�500, þ100) with respect to a TSS as a specific definition.

The main characteristic of a promoter is that it contains aggregates of transcription

factor (TF) binding sites. During the process of development, genes are turned on

and o¤ in a preprogrammed fashion, a process that eventually generates cell specif-

icity. This developmental program is orchestrated by TFs, which bind to specific

DNA sites in the promoters near genes they control. A single TF is not dedicated to

each regulatory event. Instead, di¤erent combinations of ubiquitous and cell-specific

regulatory factors are used to achieve a combinatorial control.

Core promoter, approximately in (�50, þ50), (1) binds to and controls assembly

of the preinitiation complex (PIC) containing PolII, the general transcription factor

(GTF), and coactivators; (2) positions the TSS and controls the direction of tran-

scription; and (3) responds to nearby or distal activators (we use the same terms,



‘‘activators’’ or ‘‘enhancers,’’ to also imply ‘‘repressors’’ and ‘‘silencers,’’ depending

on the context, for simplicity) binding proximal promoter and enhancers. The PIC

comprises the GFTs (PolII, TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH) and

coactivators that mediate response to regulatory signals. A typical core promoter

contains four DNA elements (figure 10.1): TATA-box (binding site for the TBP

subunit of TFIID. Although recently some alternative TATA binding proteins have

been discovered in a few specific types of cells (see Holmes and Tjian 2000), this review

deals with only the major types of TBP: Inr (overlapping with TSS), DPE (downstream

core promoter element), and BRE (TFIIB recognition element). Not every element

occurs in a core promoter. People have classified core promoters according to the

presence or the absence of TATA and/or Inr elements (reviewed in Novina and Roy

1996). Many ‘‘housekeeping gene’’ core promoters appear to lack both TATA and

Inr elements but instead contain several TSSs, a high GþC content, and multiple

binding sites for the ubiquitous TF Sp1 (Smale 1994), which directs the formation of

PIC to a region 40–100 bp downstream of its binding sites. Purified GTFs and PolII

mediate basal (low-level) transcription on a core promoter in vitro but cannot sup-

port activated transcription in the absence of coactivators. More recent studies indi-

cate that the functional form of PIC in vivo must also include coactivators/mediators.

The interaction of activators with any surface of this large GTF-containing complex

(also called holoenzyme, reviewed in Parvin and Young 1998) allows recruitment of

the complex to the core promoter and response of the polymerase to the regulatory

signals.

Transcriptional regulation is controlled by the binding of sequence-specific DNA-

binding TFs to proximal promoters, approximately in (�500, �50) (also called reg-

ulatory promoters), and enhancers (reviewed in Blackwood and Kadonaga 1998).

It should be noticed that there is no real distinction between proximal and distal

Figure 10.1
Sequence elements and GTF footprints in a typical core promoter.
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(enhancer) regulatory elements; they often involve the same set of TF binding sites.

Some cooperative binding of activators to enhancers and proximal promoters can

lead to the assembly of nucleoprotein structures termed ‘‘enhanceosomes’’ (figure

10.2; see also Thanos and Maniatis 1995).

In a living eukaryotic cell, DNA is not naked; instead, it is wrapped into nucleo-

somes by histones. With the help of many other non-histone proteins (NHP), nucleo-

somes are further condensed into chromatin filament. These higher order structures

are believed to be necessary to keep most genes in a (default) repressed state. To

activate a gene, the chromatin encompassing that gene and its control regions must

be altered or ‘‘remodeled’’ to permit TFs to access their specific binding sites. Because

of the complexity of such long-range interaction among many global regulators,

chromatin remodeling is beyond the reach of current promoter recognition algorithms.

Therefore, all existing computational methods implicitly assume all TF sites are ac-

cessible, which is the intrinsic source of a large number of false positives.

In summary, promoter is the key DNA region that controls and regulates tran-

scription. Delineation of the promoter architecture is fundamental for understanding

gene expression patterns, regulation networks, cell specificity, and development. It is

Figure 10.2
Recruitment and activation of the PIC.
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also important for designing e‰cient expression vectors or to target specific delivery

systems in gene therapy. In the large-scale genomic sequencing era, promoter predic-

tion is also crucial for gene discovery and annotation.

There have been many computational approaches to this extremely di‰cult prob-

lem. I recommend some recent reviews (e.g., Pedersen et al. 1999; Werner 1999; Fickett

and Wasserman 2000; Stormo 2000) where one can find further references.

Depending on the goals, computational approaches can be divided into two classes:

general promoter recognition methods and specific promoter recognition methods.

The primary goal for the general methods is to identify TSS and/or core promoter

elements for all genes in a genome; the specific methods focus on identifying specific

regulatory elements (TF sites) that are shared by a particular set of transcriptionally

related genes. Specific methods can have very high specificity when searching against

the whole genome and can provide immediate functional clues to the downstream

gene. But because of their broad coverage, the general methods are extremely useful

for large-scale genome annotation. I shall first describe the specific promoter recog-

nition problem, which is how to find functional TF sites. I shall then take on the gen-

eral problem, how to discriminate a promoter region from other genomic regions.

10.2 Finding Transcription Factor (TF) Binding Sites

10.2.1 Site, Consensus, and Weight Matrix

As a specific promoter class is characterized by a specific set of TFs, finding TF binding

sites is the most important step in promoter recognition. There are at least two classes

of TFs (from now on, we use TF to refer to DNA binding transcription factors). One

class is the general or ubiquitous TFs, such as TATA-box binding protein (TBP) or

Sp1. Their binding sites can be identified by simply collecting a large number of

promoter (�500, þ50) sequences. The other class is the specific TFs, which can only

be identified by getting a specific set of promoters that share the same site (i.e., their

target genes are co-regulated by the same TF). Experimentally, biologists are able to

identify a TF site de novo with a single promoter sequence. They can characterize

such a site by mutagensis and obtain a consensus description (such as the E. coli

TATA-box TATAAT or allowing degeneracy TATRNT). As more sites are known,

one can get the same information by aligning the sites. Although it is easy to write a

consensus pattern to represent aligned sites, it is di‰cult to find one that is optimal

for predicting the occurrence of new sites (generalizability) or for discriminantly

ranking the binding activities of the sites (di¤erentiability). In most applications, a

position weight matrix (PWM) is often superior.
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10.2.2 Constructing a Matrix Given the Alignment

To explain the high degeneracy found in many sites, Berg and von Hippel (1987)

proposed a theory on the selection of DNA binding sites by regulatory proteins. They

assumed that specific sites have been selected according to some functional constraint

(e.g., the binding a‰nity or activity must be in some tolerable range), and all sequences

that can fulfill this requirement are equally likely to occur. This theory, which has been

checked by experiments, provided a link between a natural scoring function (minus

binding energy) and observed base frequency at each position:

Sbx ¼ logðpbx=p0xÞ ð10:1Þ
where sbx is the score (PWM element) for a base ‘‘b’’ at position ‘‘x,’’ pbx is the fre-

quency of the base ‘‘b’’ found at ‘‘x’’ in the site, and ‘‘0’’ indicates the base (consensus

base) that has the lowest energy. Often it is desirable to use a scoring function that

can best discriminate the set of target sites from a set of control sites. In this situation,

we replace p0x by p0b , the base frequency evaluated in the control set (here, we assume

they do not depend on the position). Choosing p0b appropriately (representing the cor-

rect background contrast) can be very important for searching other such sites in a

genome. The total score of the site is the sum of individual position scores. Using a

single base frequency implies the assumption of independence between any pair of

bases, although this can be easily generalized to high-order Markov models (e.g.,

Zhang and Marr 1993).

It should be mentioned that to construct a statistical measure, the quality of

sequences is obviously extremely crucial. In addition to the integrity of the data,

statistical independence of the sequences is essential so that the result will not be

biased by the sample. There are many ways to reduce the redundancy; a simple cri-

terion may be that no pair of sequences should have more than 90 percent identity

within the 100-bp surrounding region.

There are many ways to introduce pseudo-counts in order to avoid a null fre-

quency. This is equivalent to introducing a prior probability, which is necessary when

an observed count is rare. The Laplace plus-one method (i.e., add one to every base

count at every position, and hence correspond to a uniform prior) is a simple and

popular choice.

How to determine the length of a motif can be a very subtle problem. Conven-

tionally, one uses the relative information to measure the significance of each position

(Schneider et al. 1986):

Ix ¼ Sbpbx logðpbx=p0bÞ ¼ Sbpbxsbx ð10:2Þ

Computational Methods for Promoter Recognition 253



which obviously has the meaning of the average binding energy of all the known sites

at position ‘‘x.’’ The optimal length of the motif can be obtained by an optimization

procedure. One procedure, consistent with the Berg and von Hippel theory, would be

to find an optimal window site so that the total information within the window (the

area under the curve of Ix) minus the average of the total information in the two

flanking windows become maximum. It can be further refined by the discriminant

procedure described below.

10.2.3 Searching for a Known Binding Site

Given a motif, either in the form of a consensus or a matrix, one must first assess the

quality of the motif and determine a threshold value before one can use it to search

for new members of the site. The way to do this is to perform a standard classification

test (e.g., Fukunaga 1990) in which both the threshold score and the motif length

may be optimized by minimizing the classification (Bayesian) error. Because a single

TF site does not have enough specific information due to its short length (about 5 to

25 bp) and high degeneracy, any unconstrained genome search will almost certainly

result in a lot of false positives. The specificity can only be achieved by combining

interactive (correlated) sites into a promoter module (also called a composite site)

and by higher order structure constraints (long-range control elements).

10.3 Identifying Motifs with Unaligned Sequences

In order to discover novel motif sites, one has to use more sophisticated approaches.

Given a set of related sequences, these methods must be able to find motif(s) shared

by majority of the sequences and statistically significant, in a reasonable time. Al-

though we are focusing on TF sites, all methods should be applicable to more general

sequence motif discovery problems. There are existing numerous algorithms (see

reviews: e.g., Vanet et al. 1999; Brazma et al. 1998; Pesole et al. 1996; French et al.

1997). Below is necessarily a personal selection that represents a short list of generic

methodologies. HMM (Hidden Markov Model see e.g., Durbin et al. 1998) and

neural network (see e.g., Baldi and Brunak 1998) are not included because there are

special books describing these machine learning approaches.

10.3.1 k-tuple or Exhaustive Pattern Search Methods

For finding short and highly conserved motifs (such as many typical TF sites

in yeast), k-tuple-based methods can be very e¤ective. The basic idea is to detect

over-represented (with respect to a control set or to a background set) k-tuples

systematically.
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Relative Information (RI) The simplest method is to calculate the frequencies for all

k-tuples in both the target set and the control set. k is usually limited by the size of

the sample data (4k U ðL� k þ 1Þ�N, where L is the length of each sequence and N

is the number of sequences). One can define a RI for every word w of length k as (also

called LOG-ODD Ratio, or negative relative entropy):

RIðwÞ ¼ logð f ðwÞ=f 0ðwÞÞ ð10:3Þ
Although the exact statistic is not known, one can use z ¼ ðRI�meanðRIÞÞ=stdðRIÞ
to estimate the significance. If f 0 represents a random background (usually a

Markov approximation of order less than k), one could use chi-square test on w2 ¼
Sw½OðwÞ � EðwÞ�2=EðwÞ, where OðwÞ is the observed number of w and EðwÞ is the

expected number (calculated using f 0). This has been applied in yeast promoter

analysis (Zhang 1999, and see 10.3.5 below). This method can be easily generalized to

allow limited degeneracy and/or iterative extension of the k-tuple motif (see Zhu and

Zhang 2000, where a motif pattern was defined as a 6-tuple, allowing up to one

mismatch and an iterative procedure for extending such a motif using the w2-test).

WORDUP This is a similar method but requiring the motif to be shared by majority

of the sequences (Pesole et al. 1992). The statistical significance of each k-tuple word

w is determined by comparing, through a w2-test, the actual number of di¤erent se-

quences in which w is present with the expected occurrences. Expectations are calcu-

lated on the basis of two assumptions: (1) oligonucleotides are Poisson distributed,

and (2) nucleotide sequences can be generated according to a first order Markov

chain. Because the probability piðwÞ that w is found at least once in the ith

sequence is piðwÞ ¼ 1� exp½�liðwÞ� with liðwÞ ¼ p0i ðwÞðLi � k þ 1Þ and p0i ðwÞ is

the Markov approximation of fiðwÞ, namely p0i ðwÞ ¼ f ðw1;2Þ f ðw2;3Þ . . . f ðwk�1;kÞ=
f ðw2Þ f ðw3Þ . . . f ðwk�1Þ. The expected number of sequences containing w is given

by EðwÞ ¼ SipiðwÞ. If OðwÞ is the observed number of sequences containing w, the

standard w2-value given above can be used to rank significant k-tuples (the default

threshold is 20) that form a vocabulary. An iterative procedure was also used to

construct a new vocabulary containing all significant words of length greater or equal

to k (http://bigarea.area.ba.cnr.it:8000/EmbIT/coda_word.html).

A similar method was developed by van Helden et al. (1998) using slightly di¤erent

statistical criterion. More sophisticated algorithms for detecting more complex pat-

terns (with multiple sites) have also been developed recently (Marsan and Sagot 2000).

10.3.2 Multiple Sequence Alignment Methods

For longer and more degenerate motifs, one has to use multiple sequence (local)

alignment algorithms. Given N (number of sequences), L (length of each sequence)
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and k (length of the motif with indels), there are ðL� k þ 1ÞN possible alignments.

Finding an optimal alignment that maximizes an objective function (say, I ¼ SxIx)

is a hard problem. Various heuristic approaches are available to attack this multi-

dimensional optimization problem. I describe here three generic methods: CON-

SENSUS (a greedy algorithm), EM/MEME (EM algorithms), and Gibbs sampler (a

stochastic sampling algorithm).

CONSENSUS A greedy algorithm originally developed by Stormo and Hartzell

(1989) and implemented in CONSENSUS (Hertz et al. 1990) this is a heuristic

method, which is quite e‰cient and has been widely used in DNA motif discoveries.

The basic idea is illustrated in a toy example shown in figure 10.3. Given the three

sequences (a) to be aligned, the algorithm starts by forming a frequency matrix for

each of the k-tuples in the first sequence (b). Each of these matrices is then combined

Figure 10.3
A diagram of the algorithm in CONSENSUS (Hertz et al. 1990).
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with each k-tuple in the second sequence to form new matrices containing two k-

tuples (c). However, for each k-tuple from the first sequence, the program only saves

the ‘‘best’’ progeny matrix (measured by the information content). In the next cycle,

each saved matrix is combined with each k-tuple in the third sequence to form new

matrices, each containing three k-tuples (d). Again, the program only saves the best

progeny of each matrix from the previous cycle. This cycle is repeated until the last

sequence in the set has contributed a k-tuple to the saved matrices. Of the matrices

saved after the last cycle, the one with the lowest probability of occurring by chance

is considered to describe the consensus motif (the first in D). In practice, ties occur

during the cycles, so that the number of matrices at the end is greater than the number

of k-tuples in the first sequence.

The CONSENSUS program was first used to accurately identify the known con-

sensus pattern for the E. coli CRP protein binding sites (Stormo and Hartzell 1989).

It was then further improved and tested for robustness on the E. coli LexA protein

binding sites (Hertz et al. 1990). In both cases, the order in which the sequences are

presented is not critical (the latest version of the program allows the user to set a

parameter so that the result will not depend on the input order at all). The program is

also robust enough to tolerate some sequences that do not contain binding sites.

Thanks to the e¤ort of Hertz, CONSENSUS has been constantly improved upon.

Some of the important additions to the original algorithm are (1) independence of the

input sequence order, (2) autodetecting motif length, (3) allowing limited insertions/

deletions, and (4) more rigorous statistical evaluation of the p-value (Hertz and

Stormo 1999).

EM and MEME EM (expectation maximization) is a standard technique widely

used in maximum-likelihood estimations (Dempster et al. 1977). Expectation maxi-

mization algorithms are named for their two iterative steps, the expectation (E) step

and the maximization (M) step, which are alternately repeated until a convergence

criterion is satisfied. Lawrence and Reilly (1990) first developed an EM algorithm

and tested it on cyclic adenosine monophosphate receptor protein (CRP) binding

sites. One starts with an initial guess on the base probability pbx within the sites and

the background p0b for the nonsites, then the probability of the event Bjy that the site

begins at position y in sequence j can be calculated by Bayes formula:

PðBjy j p;SÞ ¼ PðS jBjy; pÞ=SxPðS jBjx; pÞ ð10:4Þ
where S is the sequence data and the prior probability P0ðBjyÞ is uniform, that is,

1=ðL� k þ 1Þ and PðS jBjy; pÞ ¼ the product of probabilities for all bases. Using
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formula 10.4, one can complete the E-step by calculating the expected number nbx
of the base b at position x in the site and the expected number n0b of the base b in

the nonsites. The M-step is simply to replace p ¼ fpbx; p0bg by fnbx=N; n0b=Ng (the

maximum likelihood estimators). One then iterates this to convergence when the

parameter estimates no longer change.

MEME (Bailey and Elkan 1994) added several extensions to EM to overcome

some limitations. MEME chooses starting points systematically, based on all sub-

sequences of the data. It eliminates the assumption of one motif per sequence and

allows each sequence to contain zero, one, or several appearances of the shared motif.

Furthermore, MEME probabilistically ‘‘erases’’ the appearances of a site after it is

found, and continues searching for other shared motifs in the dataset. The newer ver-

sion has made MEME smarter and more robust as an unsupervised motif-discovering

tool, as it will automatically determine the motif length and/or choose whether or not

to enforce the palindrome constraint (Bailey and Elkan 1995). Once a MEME motif

is found, MAST (Bailey and Gribskov 1998) can be used to search other sequences

for new members. Both MEME and MAST are available at http://www.sdsc.edu/

MEME.

Gibbs Sampler As greedy or EM-based algorithms cannot guarantee to find the

global maximum and may be prone to local optima, stochastic algorithms have been

developed to overcome this problem. The Gibbs sampler, which consists of a site

sampler (Lawrence et al. 1993) and a motif sampler (Neuwald et al. 1995), has been a

very successful one.

The site sampler assumes every sequence contains at least one site. The algorithm

is initialized by choosing random starting positions within all the sequences. It then

proceeds through two steps of Gibbs sampler iteratively. First, it builds a model step

by constructing a model p ¼ fpb;x; p0bg, as in the EM case, using all the sequences

with the selected sites except the first sequence. Then it samples a new site for the first

sequence from every possible position according to a relative weight pb;x=p
0
b . Then it

repeats both steps for subsequent sequences. A cycle is complete when the site for the

last sequence is re-sampled. Theoretically, after an infinite number of cycles, the rel-

ative information I ¼ SxIx (formula 10.2) will reach its maximum. In practice, the

alignment often converges fairly fast. Sometimes the sampler can get stuck at sub-

optima, which may require a simultaneous shift of all the aligned sites to the left or

to the right by few bases. To speed up the convergence, the Gibbs sampler automat-

ically samples a shift again according to the relative weight of the likelihood ratio

after a certain specified number of cycles. This basic algorithm was also generalized

to allow more than one type of motif per sequence.
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In order to find sites that may have multiple copies in some sequences and zero

copies in others, the motif (or Bernoulli) sampler was designed to concatenate all the

sequences into a single one. It is initialized to an alignment of sites randomly spread

throughout (no site can overlap another or across a sequence boundary); the rest are

nonsites. The algorithm starts with picking the first possible site position out of either

the aligned set or the nonsite set, updates the model p ¼ fpbx; p0bg (i.e., recalculates

the base counts), then samples this position into the aligned set or the nonsite set

according to the odd ratio ½PðsiteÞ�pbx�=½PðnonsiteÞ�p0b �, where the posterior (prior þ
pseudo-counts) P(site) and P(nonsite) may be specified by a user. Then the algorithm

continues with picking the second site, and so on. One cycle is complete when the

last possible site position is sampled. Iterate enough cycles untill convergence of the

motif alignment (or the maximum number of cycles specified). This has been gener-

alized to handle more than one type of motif. Two other useful technical features are

the column sampling (to allow automatically increasing the site length by sampling in

more conserved flanking columns) and the near optimal sampling (to allow estimat-

ing relative probability, each site is sampled into the alignment). A Gibbs sampler

server is currently maintained at http://bayesweb.wadsworth.org/gibbs/. Two other

modified versions of the Gibbs sampler for DNA sequence analysis have been re-

ported in microarray data analysis applications (AlignACE: Roth et al. 1998; and

GibbsDNA: Zhang 1999a).

10.3.3 Statistical Significance

It is also important to know how significant a particular alignment is with respect to

a random model. Because all the alignments are ranked by the relative information I,

it would be desirable to calculate the p-value, namely, the probability of finding an

alignment with relative information greater than or equal to I. Assuming the null

model for each alignment column is an independent multinomial model:

Pmatrix ¼
Xk
x¼1

N!QT
b¼A

nbx

YT
b¼A

pnbx
b ð10:5Þ

If I is small and N is large, 2NI tends to a w2 distribution (df ¼ 3k). Unfortunately,

promoter analyses generally involve very large scores and frequently few sequences,

and the limiting distribution tends to give poor probability estimates. Using large-

deviation technique, Hertz and Stormo (1999) obtained the approximate mathemat-

ical formula for the p-value and the E-value (expected number of alignments with I or

greater). They also implemented an e‰cient algorithm for calculating these values in
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CONSENSUS. Other methods have also been reported for estimating the statistical

significance of a matrix search result (e.g., Staden 1989; Claverie and Audic 1996).

10.3.4 Constructing Regulatory Modules

Because promoter is regulated by TF modules made of composite sites, simulta-

neous detecting of correlated sites is much more significant and hence provides better

specificity. Claverie and Sauvaget (1985) published one of the earliest methods for

detecting two sites in a fixed distance and orientation in the heat-shock promoters.

Another interesting example was given by the identification of regulatory modules

that confer muscle-specific gene expression (Wasserman and Fickett 1998), where a

logistic regression analysis (LRA: Hosmer and Lemeshow 1989) was used to combine

matrix scores for multiple TF sites in each module. This directly generalized the study

of the two-site module (MEF2/MyoD model: Fickett 1996).

More recently, experimental analysis and computer prediction of CTF/NFI TF

sites were reported (Roulet et al. 2000) where a generalized profile model for CTF-1

DNA binding specificity was proposed. This model consists of a conserved half-site

(5 bp)þ a spacer (5,6,7, or y)þ a less conserved (palindromic) repeat. Detailed ex-

perimental analysis reveals the flexible and correlated nature of this protein binding

site.

With detailed modeling of TF modules, one will be able to recognize promoters of

a specific class with extremely high specificity (French et al. 1998). Unfortunately,

generation of these models requires high quality as well as systematic experimental

data, which are still very rare. The development of composite site databases such as

COMPEL and TRRD (Heinemayer et al. 1998) will greatly facilitate advances in

this field.

10.3.5 Large-Scale Gene Expression

Recent advent of large-scale gene expression technologies is having a great impact on

the understanding of gene regulation (e.g., Schena et al. 1995; Lockhart et al. 1996).

By clustering gene expression profiles, di¤erent groups of co-regulated genes can be

identified and their promoter elements may be detected by either k-tuple (Zhu and

Zhang 2000; van Helden et al. 1998) or multiple alignment (Zhang 1999a; Hughes et

al. 2000) methods once the upstream sequences become available for the transcrip-

tionally co-regulated genes (e.g., DeRisi et al. 1997; Spellman et al. 1998; Cho et al.

1998; Roth et al. 1998). Using large-scale expression data to detect novel promoters

and to infer regulation networks will become the cutting-edge bioinformatics in the

functional genomics era (Zhang 1999b; Bucher 1999; McGuire et al. 2000). Species-

specific promoter databases such as SCPD (Zhu and Zhang 1999) shall become ex-

tremely useful resources for studying large-scale transcription data.
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10.3.6 Phylogenetic Footprinting

As more genomes become available, comparative analysis of noncoding regions has

also become an important approach for detecting promoters or regulatory regions in

general (Aparicio et al. 1995; Gumucio et al. 1996; Jareborg et al. 1999). Phyloge-

netic footprinting is referred to (Fickett and Wasserman 2000) as the identification of

any functional region by comparison of orthogous genomic sequences between species.

Although the orthologous coding regions (ORFs) are highly conserved, the conserva-

tion of regulatory regions varies widely with particular genes. To detect short TF sites,

one would want to compare orthologous regulatory regions between species that are

not too close (so that the sequences have enough time to diverge) and not too distant

(so that some related regulatory regions are still recognizable; see Duret and Bucher

1997). But we are currently limited to the few sequenced model systems. Several

methods for detecting conserved blocks from a multple alignment have been evaluated

by Stojanovich et al. (1999). Programs designed for very long alignments of syntenic

regions have also become available (e.g., PIPmaker: Schwartz et al. 2000; MUMmer:

Delcher et al. 1999). Among many applications, PIPmaker was very successfully used

for the identification of a coordinate regulator of interleukins 4, 13, and 5 (Loots

et al. 2000).

10.4 Predicting Transcriptional Start Site (TSS)

Because TF sites can occur anywhere, even with the location of a regulatory module

in proximal promoter, identification of TSS is still not easy. General promoter pre-

diction methods mainly focus on TSS site prediction in order to locate the beginning

of a gene instead of seeking specific regulatory elements.

10.4.1 CpG Islands

Vertebrate genomic DNA is known to be generally depleted in the dinucleotide CpG.

In the human genome, for example, the occurrence of CpG dinucleotides is five times

less than statistically predicted from the nucleotide composition (Bird 1980). CpG

depletion is believed to result from methylation of Cs at 80 percent CpG dinucleo-

tides, which leads to mutation of the methylated C to T, and thus conversion of the

CpG dinucleotides to TpG (Bird 1999). There are, however, genomic regions of high

GþC content, termed CpG islands, where the level of methylation is significantly

lower than the overall genome. In these regions, the occurrence of CpGs is significantly

higher, close to the expected frequency. As defined by Gardiner-Garden and Frommer
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(1987), CpG islands are greater than 200 bp in length, have more than 50 percent of

GþC content, and have a ratio of CpG frequency to the product of the C and G

frequencies above 0.6. The CpG island is an important signature of the 5 0 region of

many mammalian genes, often overlapping with, or within, a thousand bases down-

stream of the promoter (Cross and Bird 1995), where a promoter associate nucleo-

some is found (Ioshikhes et al. 1999). The identification of promoters by CpG islands

with a resolution of 2 KB will be most useful for large-scale sequence annotation.

Although visual inspection of CpG islands is often used for gene identification

by many molecular biologists, Ioshikhes and Zhang (2000) recently optimized the

features that can best discriminate the promoter-associate CpG islands from the

non-associated ones. This led to an e¤ective algorithm (CpG_Promoter) for large-

scale promoter mapping with 2 KB resolution. Statistical tests showed that about

85 percent of CpG islands within an interval from �500 to þ1500 around the TSS

(transcriptional start site) were correctly identified, and that roughly 93 percent of

the CpG island containing promoters were correctly mapped. The basic procedure

is to use CpGPlot program of R. S. Lopez (available at http://www.sanger.ac.uk/

Software/EMBOSS/, see Larsen et al. 1992) for mapping of potential CpG islands

and then to use a Quadratic Discriminant classifier for prediction of promoter asso-

ciated islands. The EMBL CPGISLE database of human CpG islands was used for

training the classifier on three discriminant features: length, GþC content, and the

CpG ratio (obversed/expected). The information about CpG_Promoter is available

at ftp://cshl.org/pub/science/mzhanglab/ioshikhes/. It should be mentioned that, like

CpGPlot, PIPmaker can also display CpG islands in a large genome.

10.4.2 TSS Prediction Based on TF Site Scan

As TF sites are over-represented in the promoter region, it is natural to seek a pre-

diction program based on putative TF site density. PROMOTERSCAN is one such

program developed by Prestridge (1995). It was based on the study of three datasets:

a TF database (TFD: Ghosh 1993), a promoter database (EPD: Bucher and Trifonov

1986), and a nonpromoter set constructed from protein and RNA gene sequences.

Density of all putative TF sites is calculated separately for promoter and non-

promoter sequences (within a 250-bp window upstream of TSS for promoters) and

use the radio R ¼ Dp=Dn of the two densities as the scoring function supplemented

with a TATA-matrix score (Bucher 1990) when scanning a test sequence using the

same window. A web server for the program is available at http:// molbio.cbs.umn.

edu/software/software.html.

A very similar, albeit statistically more sophisticated, approach was taken by

Kondrakhin et al. (1995) and implemented in AUTOGENE.
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10.4.3 TSS Prediction Based on k-tuples

Methods based on putative TF sites do have severe limitations: important context

e¤ect may be overlooked, the majority of putative sites are false positives, site matrices

are scoring function/cut-o¤ dependent, the database is biased by the limited number of

known samples, and so on. A statistical learning approach without using any putative

TF site information has become the attractive alternative. PromFind (Hutchinson

1996) is based on the di¤erence in 6-mer frequencies between promoters, coding

regions and noncoding regions downstream of the first coding exon. Among all sites

in an input sequence where the promoter versus coding region discriminant exceeds

a certain threshold, the site where the promoter versus noncoding region discrimi-

nant reaches its maximum (over the input sequence) is taken as a promoter. But this

‘‘content’’ approach would lose all the positional information. TSSG and TSSW

(Solovyev and Salamov 1997) both use LDA (linear discriminant analysis) to com-

bine (1) a TATA score, (2) triplet preferences around TSS, (3) 6-tuple score in three

non-overlapping windows of 100 bp upstream TSS, and (4) putative binding site

scores. TSSG is based on TFD (Ghosh 1993); TSSW is based on TRANSFAC

(Wingender et al. 1996). They are available at http://dot.imgen.bcm.tmc.edu:9331/

gene-finder/gf.html. Fickett and Hatzigeorgious (1997) had evaluated several earlier

promoter prediction algorithms, including a Markov model–based algorithm (Audic

and Claverie 1997). TSSW appeared to be ranked as one of the best, with a sensitivity

of 42 percent and specificity of 1 false positive per 800 bp.

Using positional dependent 5-tuple measures, a QDA method for core promoter

prediction was implemented in CorePromoter (Zhang 1998). Statistical tests indicated

that when given a 2 KB upstream region, CorePromoter was able to localize the TSS to

a 100-bp interval approximately 60 percent of the time. The ultility of CorePromoter

and CpG_Promoter was recently demonstrated (Zhang 2000) in the re-analysis of

human chromosome 22 genes in conjunction with our internal exon finder MZEF

(Zhang 1997) and the terminal exon finder JTEF (Davuluri et al. 2000a).

A recent algorithm PromoterInspector (Scherf et al. 2000) is based on libraries of

degenerate words extracted from training sequences by an unsupervised learning

approach. It consists of three classifiers that discriminate promoter from intron,

exon, and 3 0-UTR separately and predicts a promoter when all three classifiers

agree. Their test showed that 43 percent of the predictions can be expected to be

true positives, whereas 43 percent of the annotated TSS were predicted correctly.

PromoterInspector is available at http://genomatix.gsf.de/cgi-bi/promoterinspector/

promoterinspector.pl.
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In principle, TSS may also be predicted by discriminant analysis of 5 0UTRs. With

more full-length cDNAs becoming available, 5 0UTR features will become as impor-

tant as promoter features in TSS prediction (Davuluri et al. 2000b).
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11Algorithmic Approaches to Clustering Gene Expression Data

Ron Shamir and Roded Sharan

11.1 Introduction

Technologies for generating high-density arrays of cDNAs and oligonucleotides are

developing rapidly, changing the landscape of biological and biomedical research.

They enable, for the first time, a global, simultaneous view of the transcription levels

of many thousands of genes, when the cell undergoes specific conditions or processes.

For several organisms that have had their genomes completely sequenced, the full set

of genes can already be monitored this way today. The potential of such technologies

is tremendous. The information obtained by monitoring gene expression levels in dif-

ferent developmental stages, tissue types, clinical conditions, and di¤erent organisms

can help the understanding of gene function and gene networks, and assist in the di-

agnostic of disease conditions and e¤ects of medical treatments. Undoubtedly, other

applications will emerge in coming years.

A key step in the analysis of gene expression data is the identification of groups of

genes that manifest similar expression patterns. This translates to the algorithmic

problem of clustering gene expression data. A clustering problem consists of elements

and a characteristic vector for each element. A measure of similarity is defined between

pairs of such vectors. (In gene expression, elements are usually genes, the vector of

each gene contains its expression levels under each of the monitored conditions, and

similarity can be measured, for example, by the correlation coe‰cient between vec-

tors.) The goal is to partition the elements into subsets, which are called clusters, so

that two criteria are satisfied: homogeneity—elements in the same cluster are highly

similar to each other; and separation—elements from di¤erent clusters have low

similarity to each other.

In this chapter we describe some of the main algorithmic approaches to clustering

gene expression data. Clustering is a fundamental problem that has numerous other

applications in biology as well as in many other disciplines. It also has a very rich

literature, going back at least a century, and according to some authors, all the way

to Aristo. Any such review is thus necessarily incomplete, and reflects the back-

ground, taste, and biases of the authors.

11.2 Biological Background

In this section we outline three technologies that generate large-scale gene expression

data. All three are based on performing of a large number of hybridization experi-

ments in parallel on high-density arrays (a.k.a. ‘‘DNA chips’’) between probes and



targets. They di¤er in the nature of the probes and the targets and in other techno-

logical aspects, which raise di¤erent computational issues in analyzing the data. For

more on the technologies and their applications see, for example, Marshall and

Hodgson (1998), Ramsay (1998), Eisen and Brown (1999), Chipping (1999), Lockhart

and Winzeler (2000).

11.2.1 cDNA Microarrays

cDNA microarrays (Schena et al. 1996; Schena 1996; Marshall and Hodgson 1998;

Ramsay 1998) are microscopic arrays that contain large sets of cDNA sequences

immobilized on a solid substrate. In an array experiment, many gene-specific cDNAs

are spotted on a single matrix. The matrix is then simultaneously probed with fluo-

rescently tagged cDNA representations of total RNA pools from test and reference

cells, allowing one to determine the relative amount of transcript present in the pool

by the type of fluorescent signal generated. Current technology can generate arrays

with over ten thousand cDNAs per square centimeter.

cDNA microarrays are produced by spotting PCR products of approximately 0.6–

2.4 KB, representing specific genes onto a matrix. The spotted cDNAs are usually

chosen from appropriate databases, such as GenBank (Benson et al. 1999) and

UniGene (Schuler 1997). Additionally, cDNAs from any library of interest (whose

sequences may be known or unknown) can be used. Each array element is generated

by the deposition of a few nanoliters of purified PCR product. Printing is carried out

by a robot that spots a sample of each gene product onto a number of matrices in a

serial operation.

To maximize the reliability and precision with which quantitative di¤erences in the

abundance of each RNA species are detected, one directly compares two samples (test

and reference) by labeling them with spectrally distinct fluorescent dyes and mixing the

two probes for simultaneous hybridization to one array. The relative representation

of a gene in the two samples is assayed by measuring the ratio of the (normalized)

fluorescent intensities of the two dyes at the target element. Cy3-dUTP and Cy5-

dUTP are frequently used as the fluorescent labels. For the comparison of multiple

samples, such as in time-course experiments, one often uses the same reference sample

with each of the test samples.

11.2.2 Oligonucleotide Microarrays

In oligonucleotide microarrays (Fodor et al. 1993; Lipshutz et al. 2000; Harrington

et al. 2000), each spot on the array contains a short synthetic oligonucleotide (oligo),

typically 20–30 bases long. The oligos are designed based on the knowledge of the

DNA (or EST) target sequences, to ensure high a‰nity and specificity of each oligo to
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a particular target gene. Moreover, they should not be near-complementary to other

RNAs that may be highly abundant in the sample (e.g., rRNAs, tRNAs, alu-like

sequences, etc.).

One of the leading approaches to the construction of high-density DNA probe

arrays employs photolithography and solid-phase DNA synthesis. First, synthetic

linkers, modified with a photochemically removable protecting groups are attached

to a glass substrate. At each phase, light is directed through a photolithographic mask

to specific areas on the surface to produce localized deprotection. Specific Hydroxyl-

protected deoxynucleosides are incubated with the surface, and chemical coupling

occurs at those sites that have been illuminated. Current technology allows for ap-

proximately 300,000 oligos to be synthesized on a 1:28� 1:28 cm array. Key to this

approach is the use of multiple distinct oligonucleotides designed to hybridize to dif-

ferent regions of the same RNA. This use of multiple detectors greatly improves

signal-to-noise ratio and accuracy of RNA quantitation, and reduces the rate of

false-positives and miscalls.

An additional level of redundancy comes from the use of mismatch control

probes that are identical to their perfect match partners except for a single base

di¤erence in a central position. These probes act as specificity controls. They allow

the direct subtraction of both background and cross-hybridization signals, and allow

discrimination between ‘‘real’’ signals and those due to non-specific or semi-specific

hybridizations.

11.2.3 Oligonucleotide Fingerprinting

Historically, the Oligonucleotide Fingerprinting (ONF) method preceded the other

two (Lennon and Lehrach 1991; Drmanac et al. 1991; Vicentic and Gemmell 1992;

Drmanac and Drmanac 1994; Drmanac et al. 1996; Meier-Ewert et al. 1995; Milo-

savljevic et al. 1995). It was initially proposed in the context of sequencing by hybrid-

ization, as an alternative to DNA sequencing. Although that approach to sequencing

is currently not competitive, ONF has found other good applications, including gene

expression. It can be used to extract gene expression information about a cDNA

library from a specific tissue under analysis, without prior knowledge of the genes

involved. Conceptually, it takes the ‘‘reverse’’ approach to that of the oligo micro-

arrays: The target is on the array, and the oligos are ‘‘in the air.’’

The ONF method is based on spotting the cDNAs on high density nylon mem-

branes (about 31,000 di¤erent cDNA can be spotted currently in duplicates on one

filter. See (Drmanac et al. 1996). A large quantity of a short synthetic oligo, typically

7–12 bases long, radioactively labeled, is put in touch with the membrane in proper
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conditions. The oligos hybridize to those cDNAs that contain a DNA sequence com-

plementary to that of the oligo. By inspecting the filter one can detect to which of the

cDNAs the oligo hybridized. Hence, ideally, the result of such an experiment is one

1/0 bit for each of the cDNAs.

The experiment is repeated with p di¤erent oligos, giving rise to a p-long vector

for each cDNA spot, indicating which of the (complements of ) oligo sequences are

contained in each cDNA. This fingerprint vector, similar to a barcode, identifies the

cDNA. Thus, distinct spots of cDNAs originating from the same gene should have

similar fingerprints. By clustering these fingerprints, one can identify cDNAs origi-

nating from the same gene. The larger that number, the higher the expression level of

the corresponding gene. Gene identification can subsequently be obtained by sample

sequencing or by comparison of average cluster fingerprints to a sequence database

(Poustka et al. 1999).

Because of the short oligos used, the hybridization information is rather noisy, but

this can be compensated by using a longer fingerprint. The method is probably less

e‰cient than the other two methods, which measure abundance directly in a single

spot. However, it has the advantage of applicability to species with unknown genomes,

which oligo microarrays cannot handle, and it requires relatively lower mRNA quan-

tities than cDNA microarrays.

11.3 Mathematical Formulations and Background

Let N ¼ fe1; . . . ; eng be a set of n elements, and let C ¼ ðC1; . . . ;ClÞ be a partition of

N into subsets. That is, the subsets are disjoint and their union is N. Each subset is

called a cluster, and C is called a clustering solution, or simply a clustering. Two ele-

ments, ei and ej, are called mates with respect to C if they are members of the same

cluster in C. In the gene expression context, the elements are the genes and we often

assume that there exists some correct partition of the genes into ‘‘true’’ clusters.

When C is the true clustering of N, elements that belong to the same true cluster are

simply called mates.

The input data for a clustering problem is typically given in one of two forms: (1)

Fingerprint data—each element is associated with a real-valued vector, called its

fingerprint, or pattern, which contains p measurements on the element, such as

expression levels of an mRNA at di¤erent conditions (cf. Eisen and Brown 1999), or

hybridization intensities of a cDNA with di¤erent oligos (cf. Lennon and Lehrach

1991). (2) Similarity data—pairwise similarity values between elements. These values

can be computed from fingerprint data, such as by correlation between vectors. Alter-
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natively, the data can represent pairwise dissimilarity, for example, by computing

distances. Fingerprints contain more information than similarity, but the latter is

completely generic and can be used to represent the input to clustering in any appli-

cation. (Note that there is also a practical consideration regarding the presentation:

the fingerprint matrix is of order n� p, whereas the similarity matrix is of order

n� n, and in gene expression applications often ng p.)

The goal in a clustering problem is to partition the set of elements N into homo-

geneous and well-separated clusters. That is, we require that elements from the same

cluster will be highly similar to each other, whereas elements from di¤erent clusters

will have a low similarity to each other. Note that this formulation does not define a

single optimization problem: homogeneity and separation can be defined in various

ways, leading to a variety of optimization problems. Note also that even when the

homogeneity and separation are precisely defined, those are two objectives that are

typically conflicting: the higher the homogeneity, the lower the separation, and vice

versa. The lack of a single objective agreed upon by the community is inherent in the

clustering problem, a point we will return to in the sequel.

Clustering problems and algorithms are often represented in graph-theoretic

terms. We therefore include some basic definitions on graphs. We refer the readers to

Golumbic (1980), and Even (1979) for more background and terminology on graphs.

Let G ¼ ðV ;EÞ be a weighted graph. We denote the vertex set of G also by VðGÞ.
For a subset RJV , the subgraph induced by R, denoted GR, is obtained from G by

deleting all vertices not in R and the edges incident on them. That is, GR ¼ ðR;ERÞ
where ER ¼ fði; jÞ A E j i; j A Rg. For a vertex v A V , define the weight of v to be the

sum of weights of the edges incident on v. A cut C in G is a subset of its edges, whose

removal disconnects G. The weight of C is the sum of the weights of its edges. A

minimum weight cut is a cut in G with minimum weight. In case of non-negative edge

weights, a minimum weight cut C partitions the vertices of G into two disjoint non-

empty subsets A;BHV , AUB ¼ V , such that E V fðu; vÞ : u A A; v A Bg ¼ C. For a

pair of vertices u; v A V , the distance between u and v is the length of the shortest path

that connects them. The diameter of G is the maximum distance between a pair of

vertices in G. For an example of these definitions, see figure 11.1.

For a set of elements KJN, we define the fingerprint or centroid of K to be the

mean vector of the fingerprints of the members of K . For two fingerprints x and y, we

denote their similarity by Sðx; yÞ and their dissimilarity by dðx; yÞ. A similarity graph

is a weighted graph in which vertices correspond to elements and edge weights are

derived from the similarity values between the corresponding elements. Hence, the

similarity graph is just another representation of the similarity matrix.
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An alternative formulation of the clustering problem is hierarchical: rather than

asking for a single partition of the elements, one seeks an iterated partition: A den-

dogram is a rooted weighted tree, with leaves corresponding to elements. Each edge

defines the cluster of elements contained in the subtree below that edge. The edge’s

weight (or length) reflects the dissimilarity between that cluster and the remaining

elements. In this formulation the clustering solution is the dendogram, and each non-

singleton cluster, corresponding to a rooted subtree, is split into subclusters. The de-

termination of disjoint clusters is left to the judgment of the user. Typically, one tends

to consider as genuine clusters elements of a subtree just below a connecting edge of

high weight.

Irrespective of the representation of the clustering problem input, judicious pre-

processing of the raw data is key to meaningful clustering. This preprocessing is ap-

plication dependent and must be chosen in view of the expression technology used

and the biological questions asked. The goal of preprocessing is to normalize the data

and calculate the pairwise element (dis)similarity, if applicable. Common procedures

for normalizing fingerprint data include transforming each fingerprint to have mean

of 0 and variance of 1, a fixed norm, or a fixed maximum entry. Statistically based

methods for data normalization have also been developed recently (cf. Kerr et al.

2000).

11.4 Algorithms

Several algorithmic techniques were previously used in clustering gene expression data,

including hierarchical clustering (Eisen et al. 1998), self-organizing maps (Tamayo

et al. 1999), and graph theoretic approaches (Hartuv et al. 2000; Ben-Dor et al. 1999;

Sharan and Shamir 2000b). We describe these approaches in the sequel. For other

approaches to clustering expression patterns, see Milosavljevic et al. (1995); Alon

Figure 11.1
A graph and a corresponding minimum weight cut, assuming that all edge weights are 1. Minimum cut
edges are denoted by broken lines. The length of the shortest path between u and v is 3, which is also the
diameter of the graph.
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et al. (1999); Getz et al. (2000b); and Heyer et al. (1999). Much more information

and background on clustering is available (cf. Hartigan 1975; Everitt 1993; Mirkin

1996; Hansen and Jaumard 1997).

Several algorithms for clustering were developed by first designing a ‘‘clean’’ al-

gorithm that has proven properties, either in terms of time complexity, or in terms of

(deterministic or probabilistic) solution quality. Then a more e‰cient yet heuristic

algorithm is developed based on the same idea. We shall describe here the heuristics

used in practice, but refer also briefly to the properties of the theoretical algorithm

that motivated them.

11.4.1 Hierarchical Clustering

Hierarchical clustering solutions are typically represented by a dendogram. Algo-

rithms for generating such solutions often work either in a top-down manner, by

repeatedly partitioning the set of elements, or in a bottom-up fashion. We shall de-

scribe here the latter. Such agglomerative hierarchical clustering algorithms are

among the oldest and most popular clustering methods (Cormack 1971). They pro-

ceed from an initial partition into singleton clusters by successive merging of clusters

until all elements belong to the same cluster. Each merging step corresponds to join-

ing two clusters. The general scheme due to Lance and Williams (1967) is presented

in figure 11.2. It is assumed that D ¼ ðdijÞ is the input dissimilarity matrix.

Common variants of this scheme are the following:

. Single linkage: dk;i �U j � ¼ minfdki � ; dkj �g. Here ai � ¼ aj � ¼ 1=2 and g ¼ �1=2.

. Complete linkage: dk;i �U j � ¼ maxfdki � ; dkj �g. Here ai � ¼ aj � ¼ 1=2 and g ¼ 1=2.

Figure 11.2
The agglomerative hierarchical clustering scheme.
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. Average linkage: dk;i �U j � ¼ ni �dki �=ðni � þ nj � Þ þ nj �dkj �=ðni � þ nj � Þ, where ni denotes
the number of elements in cluster i. Here ai � ¼ ni �=ðni � þ nj � Þ, aj � ¼ nj �=ðni � þ nj � Þ,
and g ¼ 0.

Eisen et al. (1998) developed a clustering software package based on the average-

linkage hierarchical clustering algorithm. The software package is called Cluster,

and the accompanying visualization program is called TreeView. Both programs are

available at http://rana.Stanford.EDU/software/. The gene similarity metric used

is a form of correlation coe‰cient. The algorithm iteratively merges elements whose

similarity value is the highest, as explained above. The output of the algorithm is a

dendogram and an ordered fingerprint matrix. The rows in the matrix are permuted

based on the dendogram, so that groups of genes with similar expression patterns are

adjacent. The ordered matrix is represented graphically by coloring each cell accord-

ing to its content. Cells with log ratios of 0 are colored black, increasingly positive

log ratios with reds of increasing intensity, and increasingly negative log ratios with

greens of increasing intensity.

11.4.2 K-Means

K-means (MacQueen 1965; Ball and Hall 1967) is another classical clustering algo-

rithm. It assumes that the number of clusters k is known, and aims to minimize the

distances between elements and the centroids of their assigned clusters. Let M be the

n�m fingerprint matrix. For a partition P of the elements in f1; . . . ; ng, denote by

PðiÞ the cluster assigned to i, and by cð jÞ the centroid of cluster j. Let dðv1; v2Þ denote
the Euclidean distance between the fingerprint vectors v1 and v2. K-means tries to

find a partition P for which the error-function EP ¼Pn
i¼1 dði; cðPðiÞÞÞ is minimum.

Each iteration of K-means modifies the current partition by checking all possible

modifications of the solution in which one element is moved to another cluster, and

making a switch that reduces the error function. Figure 11.3 describes the most basic

Figure 11.3
The K-means algorithm.
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scheme. A more e‰cient variant moves in one iteration all elements that would benefit

from a move: for each i simultaneously, if minj E
ij
P < EP, move i to the cluster j mini-

mizing E ij
P . This algorithm is very easy to implement and is used in many applications.

Another heuristic inspired by K-means was developed by Herwig et al. (1999) to

cluster cDNA oligo-fingerprints. Unlike the regular K-means algorithm, this algo-

rithm does not require a prespecified number of clusters. Instead, it uses two param-

eters: g is the maximal admissible similarity of two distinct clusters, and r is the

maximal admissible similarity between an element and a cluster di¤erent from its

own cluster. (Similarity to a cluster is similarity to its centroid.) Elements are handled

one at a time, added to su‰ciently close clusters, or otherwise, form a new cluster.

Whenever centroids become too close, their clusters are merged. Unlike the K-means

algorithm, an element may be tentatively assigned to more than one cluster, and thus

influence the location of several centroids to which it is su‰ciently close. The algo-

rithm is shown in figure 11.4. Here Sði;CÞ is the similarity between element i and

cluster C.

11.4.3 HCS and CLICK

The HCS (Hartuv et al. 2000; Hartuv and Shamir 1999) and CLICK (Sharan and

Shamir 2000a, b) algorithms use a similar graph theoretic approach to clustering.

The input data is represented as a similarity graph. The algorithm recursively parti-

tions the current set of elements into two subsets. Before a partition, the algorithm

Figure 11.4
The algorithm of Herwig et al.
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considers the subgraph induced by the current subset of elements. If the subgraph

satisfies a stopping criterion, then it is declared a kernel. Otherwise, a minimum

weight cut is computed in that subgraph, and the set is split into the two subsets

separated by that cut. The output is a list of kernels that serve as a basis for the

eventual clusters. This scheme is detailed in figure 11.5.

HCS and CLICK di¤er in the similarity graph they construct, their stopping crite-

ria, and the postprocessing of the kernels. We describe each of the algorithms below.

HCS The HCS algorithm (Hartuv et al. 2000; Hartuv and Shamir 1999) builds

from the input data an unweighted similarity graph G (each edge has weight 1 and

each non-edge has weight 0) in which there is an edge between two vertices if and

only if the similarity between their corresponding elements exceeds a predefined

threshold.

The following notion is key to the algorithm: A highly connected subgraph (HCS) is

an induced subgraph H of G, whose minimum cut value exceeds jVðHÞj=2. That is,
H remains connected if any bjVðHÞj=2c of its edges are removed. The algorithm

identifies highly connected subgraphs as kernels. Figure 11.6 demonstrates an appli-

cation of the algorithm.

The HCS algorithm possesses several good properties for clustering (Hartuv and

Shamir 1999): The diameter of each cluster it produces is at most two, and each

cluster is at least half as dense as a clique. Both properties indicate strong cluster

homogeneity. Inter-cluster separation is harder to prove, but it is argued that if errors

are random, any nontrivial set split by the algorithm is unlikely to have diameter two

unless the involved sets are small.

Figure 11.5
The basic scheme of HCS and CLICK. Procedure MinWeightCut (G ) computes a minimum weight cut of
G and returns a partition of G into two subgraphs H and H according to this cut.
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To improve separation in practice, several heuristics are used to expand the kernels

and speed up the algorithm:

iterated-HCS When the minimum cut value is obtained by several distinct cuts,

the HCS algorithm chooses one arbitrarily. This process may break small clusters

into singletons. (For example, a di¤erent choice of minimum cuts by the algorithm

for the graph in figure 11.6 may split x from G2 and eventually find the clusters G1

and G3, leaving x; y; z as singletons.) To overcome this, several (1–5) HCS iterations

are carried out until no new cluster is found.

singletons adoption Singletons can be ‘‘adopted’’ by clusters. For each singleton

element x we compute the number of neighbors it has in each cluster and in the

singletons set S. If the maximum number of neighbors is su‰ciently large, and is

obtained by one of the clusters (rather than by S), then x is added to that cluster.

The process is repeated several times.

removing low-degree vertices When the similarity graph contains vertices with

low degrees, one iteration of the minimum cut algorithm may simply separate a low

degree vertex from the rest of the graph. This is computationally very expensive, not

Figure 11.6
An example of applying the HCS algorithm to a graph. Minimum cut edges are denoted by broken lines.
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informative in terms of the clustering, and may happen many times if the graph is

large. Removing low-degree vertices from G eliminates such iterations, and sig-

nificantly reduces the running time. The process is repeated with several thresholds on

the degree. This simple procedure is very powerful for large problems.

CLICK The CLICK algorithm (CLuster Identification via Connectivity Kernels)

(Sharan and Shamir 2000b), available at http://www.math.tau.ac.il/@rshamir/click/

click.html, builds on a statistical model. The model gives probabilistic meaning to

edge weights in the similarity graph and to the stopping criterion. The key proba-

bilistic assumption of CLICK is that pairwise similarity values between elements are

normally distributed: similarity values between mates are Normally distributed with

mean mT and variance s2
T , and similarity values between nonmates are normally dis-

tributed with mean mF and variance s2
F , where mT > mF . This situation often holds on

real data, and can be asymptotically justified (Sharan and Shamir 2000b).

The algorithm uses the values of mT ; mF ; sT , and sF , as well as the probability

pmates, that two randomly chosen elements are mates. These parameters can be com-

puted directly from a known solution on a subset of the elements (which is often

available in ONF experiments [Poustka et al. 1999]), or estimated using the EM

algorithm, assuming the above probabilistic model for similarity values (see, e.g.,

Mirkin 1996, sec. 3.2.7).

Let S ¼ ðSijÞ be the input similarity matrix. Form a weighted similarity graph

G ¼ ðV ;EÞ, in which the weight wij of the edge ði; jÞ reflects the probability

that i and j are mates, and is derived from the normal density function f ðxÞ ¼
1ffiffiffiffiffiffi
2p

p
s
e�ððx�mÞ2=2s2Þ and Bayes theorem:

wij ¼ ln
Probði; j are mates jSijÞ

Probði; j are non-mates jSijÞ

¼ ln
pmatessF

ð1� pmatesÞsT þ ðSij � mF Þ2
2s2

F

� ðSij � mT Þ2
2s2

T

CLICK uses the same basic scheme as HCS (see figure 11.5) to form kernels. The

current subgraph is determined to be a kernel if the value of a minimum cut in it is

positive. This is the case if and only if for every cut C in the current subgraph, the

probability that it contains only edges between mates exceeds the probability that C

contains only edges between nonmates.

The actual implementation omits from the graph all edges with values below some

predefined non-negative threshold, computes the minimum cut in that simplified

graph, and corrects the solution value for the missing edges.
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CLICK first produces kernels that form the basis of the eventual clusters. Subse-

quent processing includes singleton adoption, recursive clustering process on the

set of remaining singletons, and an iterative merging step. The singletons adoption

step is based on computing similarities between singletons’ and clusters’ fingerprints.

The merging step iteratively merges two kernels whose fingerprint similarity is the

highest, provided that this similarity exceeds a predefined threshold. The use of the

fingerprints (rather than average similarity values) here is very powerful. Similar

ideas were employed in Milosavljevic et al. (1995) and Hartuv et al. (2000). Finally, a

last singleton adoption step is performed. The full algorithm is detailed in figure 11.7.

In order to reduce the running time of CLICK on very big instances, a screening

heuristic is applied, similar to the low-degree heuristic of the HCS algorithm. Low-

weight vertices are screened from large components in the following manner: First,

the average vertex weight W of the component is computed, and is multiplied by a

factor that is proportional to the logarithm of the size of the component. Denote the

resulting threshold by W �. Then vertices whose weight is below W � are removed

repeatedly, each time updating the weight of the remaining vertices, until the updated

weight of every (remaining) vertex is greater than W �. The removed vertices are

marked as singletons and handled at a later stage.

11.4.4 CAST

Ben-Dor et al. (1999) developed a polynomial algorithm for finding true clustering

with high probability, under the following stochastic model of the data. The under-

lying correct cluster structure is represented by a graph that is a disjoint union of

Figure 11.7
The CLICK algorithm. N is the complete set of elements (all the vertices in the similarity graph).
Throughout the algorithm, L is the current list of kernels and R is the set of singletons. GR is the subgraph
of G induced by the vertex set R. Adoption(L;R) performs the iterative singletons adoption procedure.
Merge(L) is the iterative merging procedure.
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cliques, and errors are subsequently introduced in the graph by independently remov-

ing and adding edges between pairs of vertices with probability a. If all clusters are

of size at least cn, for some constant c > 0, the algorithm solves the problem to a

desired accuracy with high probability.

CAST uses as input the similarity matrix S. The a‰nity of an element v to a

putative cluster C is aðvÞ ¼Pi AC Sði; vÞ. The polynomial algorithm motivated the

use of a‰nity to develop a faster heuristic called CAST (Clustering A‰nity Search

Technique) (Ben-Dor et al. 1999), which is implemented in the package BIOCLUST.

The algorithm uses a single parameter t. Clusters are generated one by one. The next

cluster is started with a single element, and elements are added or removed from the

cluster if their relative a‰nity is larger or lower than t, respectively, until the process

stabilizes. The algorithm is shown in figure 11.8.

An additional heuristic is employed at the end of the algorithm. A series of

moving steps aims at a clustering in which the a‰nity of every element is higher to its

assigned cluster than to any other cluster.

11.4.5 Self-organizing Maps

The self-organizing maps were developed by Kohonen (1997) as a method for fitting

a number of ordered discrete reference vectors to the distribution of vectorial input

samples. A self-organizing map (SOM) assumes that the number of clusters is known.

Those clusters are organized as a set of nodes in a hypothetical ‘‘elastic network,’’

with a simple neighborhood structure on the nodes, for example, a two-dimensional

k � l grid. Each of these nodes is associated with a reference vector in Rn. In the

process of running the algorithm, the input vectors direct the movement of the ref-

erence vectors, so that an organization of the input vectors over the network emerges.

Figure 11.8
The CAST algorithm.
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In the following we describe the SOM algorithm in the Euclidean space, and use

dðx; yÞ to denote the distance between points x and y.

The SOM process is iterative. Denote by fiðnÞ the position of node n at the

i-th iteration. The initial positioning f1 is random. The algorithm iteratively selects a

random data point p, identifies the nearest reference node np, and updates the refer-

ence nodes according to a learning function tð�Þ, where nodes closer to np are updated

more. The updates also decrease with the iteration number. The algorithm is described

in figure 11.9. The function tð�Þ represents the ‘‘sti¤ness’’ of the network. The intuition
for this learning process is that the nodes that are close enough to p will ‘‘activate’’

each other to learn something from p.

Two popular choices for the learning function are:

. Neighborhood function: For each node n we denote by NiðnÞ the set of nodes

within some distance from n. (These distances are with respect to the neighbor-

hood structure in the network.) We then define tðn; np; iÞ ¼ 0 if n B NðnpÞ and

tðn; np; iÞ ¼ aðiÞ otherwise. aðiÞ is called the learning rate, and it decreases with i.

. Gaussian function: tðn; np; iÞ ¼ aðiÞ � exp � dðn; npÞ2
2s2ðiÞ

 !
, where aðiÞ and sðiÞ de-

crease with i.

For much more on self-organizing maps, see Kohonen (1997).

Tamayo et al. (1999) devised a gene expression clustering software, GeneCluster,

which uses the SOM algorithm. The software is available at http://waldo.wi.mit.edu/

MPR/. In their implementation, they incorporated a neighborhood learning func-

tion, for which aðiÞ ¼ 0:02T=ðT þ 100iÞ, where T is the maximum number of itera-

Figure 11.9
The Self Organizing Map algorithm. The learning function tð�Þ monotonically decreases with dðn; npÞ and
with the iteration number i.
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tions; and NiðnpÞ contains all nodes whose distance to np is at most rðiÞ, where rðiÞ
decreases linearly with i, rð0Þ ¼ 3.

GeneCluster accepts an input file of expression levels together with a two-

dimensional grid geometry for the nodes. The number of grid points is the prescribed

number of clusters. The resulting clusters are visualized by presenting for each cluster

its average expression pattern with error-bars. Clusters are presented in their grid

order, as clusters of close nodes tend to be similar.

Another implementation of SOM for clustering gene expression profiles was

developed by Toronen et al. (1999).

11.5 Assessment of Solutions

A key question in the design and analysis of clustering techniques is how to evaluate

solutions. We present in this section figures of merit for measuring the quality of a

clustering solution. Di¤erent measures are applicable in di¤erent situations, depend-

ing on whether a partial true solution is known or not, and whether the input is

fingerprint or similarity data. We describe below some of the applicable measures in

each case. For other possible figures of merit, we refer the reader to Everitt (1993),

Hansen and Jaumard (1997), and Yeung et al. (2000).

11.5.1 Assessment Given the True Solution

Suppose at first that the true solution is known, and we wish to compare it to a sug-

gested solution. Any clustering solution can be represented by a binary n� n matrix

C, in which Cij ¼ 1 if and only if i and j belong to the same cluster in that solution.

Let T and C be the matrices for the true solution and the suggested solution, re-

spectively. Let nkl , k; l ¼ 0; 1, denote the number of pairs ði; jÞ (i0 j) for which

Tij ¼ k and Cij ¼ l. Thus, n11 is the number of true mates that are also mates in the

suggested solution, n00 is the number of nonmates correctly identified as such,

whereas n01 and n10 count the disagreements between the true solution and the sug-

gested one.

The Minkowski measure (see, e.g., Sokal 1977) is defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n01 þ n10

n11 þ n10

r

Hence, it measures the proportion of disagreements to the total number of mates in

the true solution. A perfect solution has score of 0, and the lower the score, the better

the solution. The Jaccard coe‰cient (see, e.g., Everitt 1993) is the ratio
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n11

n11 þ n10 þ n01

It is the proportion of correctly identified mates to the sum of the correctly identified

mates plus the total number of disagreements. Hence, a perfect solution has score of

1, and the higher the score, the better the solution. This measure is a lower bound for

both sensitivity
n11

n11 þ n10

� �
and specificity

n11

n11 þ n01

� �
of the solution.

Note that both measures do not (directly) involve the term n00, as solution matrices

tend to be sparse and this term would dominate the other three in good and bad

solutions alike. When the true solution is known only for a subset N � HN, the

Minkowski and Jaccard measures can be computed on the submatrices correspond-

ing to N �. In some cases, such as for cDNA oligo-fingerprint data, we have the

additional information that no element of N � has a mate in NnN �. In such a case,

the Minkowski and Jaccard measures are evaluated using all the pairs fði; jÞ : i A N �;
j A N UN �; i0 jg.
11.5.2 Assessment When the True Solution is Unknown

When the true solution is not known, we evaluate the quality of a suggested solution

by computing two figures of merit that measure its homogeneity and separation.

For fingerprint data, homogeneity is evaluated by the average similarity between

the fingerprint of an element and that of its cluster. Precisely, if clðuÞ is the cluster

of u, F ðXÞ and FðuÞ are the fingerprints of a cluster X and an element u, respectively,

then

HAve ¼ 1

jNj
X
u AN

SðF ðuÞ;FðclðuÞÞÞ

Separation is evaluated by the weighted average similarity between cluster finger-

prints. That is, if the clusters are X1; . . .Xt, then

SAve ¼ 1P
i0j jXij jXjj

X
i0j

jXij jXj jSðFðXiÞ;FðXjÞÞ

Related measures that take a worst case instead of average case approach are

minimum homogeneity: HMin ¼ minu AN SðF ðuÞ;F ðclðuÞÞÞ; and minimum separation:

SMax ¼ maxi0j SðF ðXiÞ;FðXjÞÞ. Hence, a solution improves if HAve or HMin increase,

and if SAve or SMax decrease. In computing all the above measures, singletons are

considered as additional one-member clusters.
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11.6 A Case Study

In order to highlight the characteristics of each of the methods described above, we

applied them to a yeast cell-cycle dataset containing the gene expression levels of

yeast ORFs over 79 conditions. This dataset is available at http://cellcycle-www.

stanford.edu.

The original dataset (Spellman et al. 1998) contains samples from yeast cultures

synchronized by four independent methods: a factor arrest (samples taken every seven

minutes for 119 minutes), arrest of a cdc15 temperature sensitive mutant (samples

taken every 10 minutes for 290 minutes), arrest of a cdc28 temperature sensitive

mutant (this part of the data is from Cho et al. 1998; samples taken every 10 minutes

for 160 minutes), and elutriation (samples taken every 30 minutes for 6.5 hours). It

also contains separate experiments in which G1 cyclin Cln3p or B-type cyclin Clb2p

were induced.

Spellman et al. identified in this data eight hundred genes that are cell-cycle regu-

lated (Spellman et al. 1998). The dataset that we used contains the expression levels

of 698 out of those eight hundred genes, which have no missing entries, over the 72

conditions that cover the a factor, cdc28, cdc15, and elutriation experiments. (As in

Tamayo et al. 1999, the 90-minutes datapoint was omitted from the cdc15 experi-

ment.) Each row of the 698� 72 matrix was normalized to have mean 0 and variance

1. (Note that by normalizing the variance di¤erent gene amplitudes are deempha-

sized and periodicity is more prominent.)

Based on the analysis conducted by Spellman et al., we expect to find in the data

five main clusters: G1-peaking genes, S-peaking genes, G2-peaking genes, M-peaking

genes, and M/G1-peaking genes. Each of these was shown to contain biologically

meaningful subclusters.

The 698� 72 dataset was clustered using five of the methods described above: K-

means, SOM, CAST, hierarchical, and CLICK. The similarity measure used was the

Pearson correlation coe‰cient. The authors of each of the programs were given the

dataset and asked to provide a clustering solution. The identity of the dataset was not

described and genes were permuted in an attempt to perform a ‘‘blind’’ test (although

anyone familiar with the gene expression literature could have identified the nature of

the data). The authors were told that the average homogeneity and average separa-

tion would be used to evaluate the quality of the solutions.

We present below the results for each of the methods. To allow the reader an im-

pression of the results, we added for each of the clusterings (except the hierarchical

one, which does not produce a hard partition of the elements) a reference figure pre-

pared using MATLAB. This figure depicts the average pattern of the clusters along
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Figure 11.10
The clustering produced by the K-means algorithm of Herwig et al. x axis: time points 1–18 for the a factor
experiment. y axis: normalized expression levels. The solid line in each subfigure plots the average pattern
for that cluster. Error bars display the measured standard deviation. The cluster size is printed above each
plot.
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with error-bars for the first 18 datapoints, which correspond to the a factor experi-

ment. We have chosen not to show full expression patterns over all the 72 conditions,

as these are much harder to interpret visually. Over the first 18 datapoints, one

expects to view periodic behavior, with a distinct, typical pattern in each cluster. We

also omitted from these figures small clusters with fewer than four members. As most

programs output a variation of this figure, we have chosen to include the character-

istic graphical output only for the programs Cluster and CAST.

The following table summarizes the solutions produced by each program (except

for Cluster), and their homogeneity and separation parameters. The so-called ‘‘True’’

Figure 11.11
The clustering produced by the CAST algorithm of Ben-Dor et al.
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clustering, reported by Spellman et al. (1998) is that obtained manually by inspecting

the expression patterns and comparing to the literature. The solution produced by

CLICK contains 67 unclustered singletons.

The reference figures for each of the solutions are given in figures 11.10 to 11.14.

The output of CAST is shown in figure 11.15. It depicts the similarity matrix before

and after ordering its rows and columns based on the clustering. The output of Cluster

is shown in figure 11.16. It includes a dendogram and a graphical representation of

the ordered fingerprint matrix. (Experiments are also clustered and the solution is

represented as a second dendogram on the same figure.) Figure 11.17 depicts the

values of each solution on a plot of the homogeneity versus separation.

Figure 11.12
The clustering produced by the GeneCluster algorithm of Tamayo et al.
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11.7 Concluding Remarks

Clustering remains, to certain extent, an art. There are no universal, agreed-upon

criteria for evaluating solutions, and there is no ultimate algorithm. The clustering

problem is so general, covering diverse disciplines and applications, that it is impos-

sible to choose a single, ‘‘best’’ algorithm for solving the problem. This holds true

even for the specific application of gene expression that we have addressed here. The

eventual decision on what solution and what algorithm works best depends on the

user and on the specific questions the clustering process is supposed to answer. Each

of the algorithms that we have described has its strong points and its disadvantages.

We shall address briefly below several key issues.

Figure 11.13
The clustering produced by the CLICK algorithm.
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. Choosing the clustering approach. The hierarchical method is exceptional in our

review, as it gives an overall view of the structure without an attempt to force a hard

clustering. This can be viewed as an advantage or a disadvantage, depending on the

experimental goals. The other methods aim to split the universe of elements into

clusters, either by geometric approaches that move cluster centers (SOM, K-Means)

or by using a graph theoretic approach. The latter may take a global view (CLICK)

or single out one a‰nity-stable cluster at a time (CAST). As noted above, many

other approaches were developed in other applications.

. How should we evaluate solution quality? We have described above several mea-

sures that evaluate solutions, both in the presence of a ‘‘correct’’ solution and in its

Figure 11.14
The ‘‘True’’ clustering of Spellman et al.
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absence. The obvious advantage of having an objective function is the ability to

compare solutions and measure progress in algorithm development. The caveat is

that the measures may not reflect exactly the intuition that the biologist may have.

Even if one accepts the need of a numerical measure, the clustering literature is not

in agreement on which measure to use, so we have presented two measures instead:

an intra-cluster measure (homogeneity) and an inter-cluster measure (separation). The

two are inherently conflicting, as an improvement in one will correspond to worsening

of the other. One idea of overcoming this is by presenting a curve of homogeneity

versus separation (A. Ben-Dor, private communication). Such a curve can naturally be

obtained in CAST (by varying the single threshold parameter used) and can also be

obtained by multiple runs of other algorithms. This curve can tell that one algorithm

dominates another if it provides better homogeneity for all separation values, but

typically each algorithm will dominate in a particular range. For another approach

for comparing solutions across a range of parameters, see Yeung et al. (2000).

One way of getting around the ‘‘two objectives’’ problem is to fix the number of

clusters. This is done by SOM and the classical K-means. When the number of clusters

is known this is of course the way to go. When it is not known, what users often do is

run such algorithms several times with several numbers of clusters (or grid topologies,

in the case of SOM). However, this brings back the problem of evaluating and com-

Figure 11.15
Representation of the solution produced by CAST. Left: the original similarity matrix. Right: the same
matrix reordered according to the clustering. Grey level is inversely proportional to similarity. Genes
belonging to the same cluster appear contiguously.
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paring solutions, so algorithms that seek a globally optimal solution seem preferable.

Alternative methods of determining the number of clusters are given, for example, by

Hartigan (1975) and Tibshirani et al. (2000).

. Should we cluster all elements? The SOM, K-means, and hierarchical algorithms

require that the solution will constitute a partition of all the elements. Other algo-

rithms, such as CLICK, allow some singletons to be left unclustered. By allowing

singletons to be discarded, intra-cluster deviations can be reduced, perhaps at the

expense of weaker separation. (Obviously, the number of discarded singletons must

be kept to a small fraction of all elements, or else the solution would be meaningless.)

In gene expression applications, one often does not seek an identification of all the

genes involved, particularly as many genes have already been discarded in prepro-

cessing steps, because of insignificant fingerprint variations. It is thus desirable to

Figure 11.17
A comparison of homogeneity (x-axis) and separation (y-axis) values for all solutions. Recall that a solu-
tion improves if homogeneity increases or separation decreases.
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allow some room for discarding elements from a solution. It is not hard to add

such flexibility into virtually all clustering algorithms that we have discussed.

. Fingerprints versus similarity. Some algorithms use only similarity values between

elements, whereas others use the fingerprints themselves. Obviously, one loses some

information by using the fingerprints to compute pairwise similarities only. One of

the advantages of CLICK over HCS, for example, is by explicit use of the finger-

prints for merging and adoption. Geometric algorithms like K-means and SOM use

only fingerprints. Other algorithms like CAST may benefit from using such infor-

mation more.

. Visualization is crucial. As the datasets and the solutions are very large, it is im-

perative to have tools to visualize summaries of the data and its solution from various

viewpoints. The average patterns figures are useful to show trends, and SOM goes a

step further by putting similar patterns in neighboring cells in a grid, generating

a convenient ‘‘executive summary.’’ The dendograms of Eisen et al. (1998) viewed

together with the color-coded expression patterns of the genes are also very useful.

Yet, devising additional novel, sophisticated (and ideally interactive) visualizations is

an important challenge.

. We need more testing data. In order to improve the algorithms, we need more

data. The best kind is actual gene expression data, along with a known clustering

solution, so that it can be compared to the algorithmic solution. This is quite hard to

obtain (except perhaps for oligofingerprint data) in the current status of biological

knowledge. A second best is generating synthetic (simulated) datasets with known

solutions, in which one can directly control individual parameters (cluster structure,

errors, etc.). Some initial work has been done in this direction (Ben-Dor et al. 1999;

Hartuv et al. 2000), but more work is needed in order to understand how to make the

simulations realistic. Generating a publicly accessible benchmark of datasets—both

synthetic and real—with known solutions, would be of great benefit to developing

Table 11.1
A summary of the clustering solutions and their figures of merit

Homogeneity Separation

Program
No. of
Clusters HAve HMin SAve SMax

K-Means 49 0.629 �0.339 0.086 0.911

CAST 5 0.6 0.037 �0.146 0.322

GeneCluster 6 0.617 0.067 �0.073 0.584

CLICK 6 0.656 0.097 �0.098 0.546

‘‘True’’ 5 0.572 �0.322 �0.133 0.73
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better algorithms. In the absence of such resources, the available real data can be

combined with evaluation methods as demonstrated here.

. Clustering is only the first step. In analyzing gene expression data, clustering is

an essential initial step, but there is a lot more that can be done with the data. For

example, one can use supervised learning techniques to cluster or classify the con-

ditions. Such methods were recently shown to yield very good results in determining

cancer types, with important potential applications to diagnostics (Golub et al. 1999;

Alizadeh et al. 2000; Ben-Dor et al. 2000; Brown et al. 2000; Califano et al. 2000).

Another useful idea is to cluster both the genes and the conditions, and to pinpoint

subsets of the genes and the conditions (‘‘biclustering’’) (Getz et al. 2000a; Cheng and

Church 2000). Given the clusters, a variety of biological inference steps are possible.

For example, identification of common control regions of upstream regions of genes

from the same cluster (see chapter 10 of this book).
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12 KEGG for Computational Genomics

Minoru Kanehisa and Susumu Goto

12.1 Introduction

Once a complete genome sequence is known, it should in principle be possible to

identify all the genes and uncover all their functions by computational methods. In

reality, this is not possible. Is it because the current computational methods are im-

perfect or because the information in the genome is insu‰cient? Whichever to be-

lieve, anyone would agree that additional data and knowledge will help to interpret

the complete genome sequence information. Post-genomics is an emerging field for

developing new experimental and computational technologies, such as DNA chips

and protein chips, for generating and analyzing di¤erent types of systematic data,

such as gene expressions and polymorphisms, and for expanding our biological knowl-

edge based on the genomic information. Here again, as figure 12.1 illustrates, di¤er-

ences arise depending on the views or directions taken for post-genome analyses.

In the traditional view of molecular biology, after the genome is the transcriptome,

and then the proteome. The transcriptome represents a whole set of mRNAs expressed

in the cell of a given tissue under a given condition. The proteome usually represents

a whole set of proteins expressed in the cell and how they interact with each other,

but it may also mean structural genomics to systematically determine a catalog of

protein 3D structures. Computational molecular biology has been the discipline of

choice to analyze sequence and 3D structural information of DNAs, RNAs, and pro-

teins in order to understand molecular functions. However, the analysis of individual

molecules would never be su‰cient for understanding higher order functions of cells

and organisms, represented by another axis in figure 12.1. Furthermore, although the

biological macromolecules of DNAs, RNAs, and proteins may play major roles,

there are other substances that together make up the entire chemical complement of

the cell. The third axis emphasizes the roles of chemical compounds and metal ions in

biological functions.

The two additional axes in figure 12.1 represent an extension of the traditional

molecular biology (Kanehisa 2000a); they are in fact the conceptual basis of KEGG,

the Kyoto Encyclopedia of Genes and Genomes (Kanehisa 1997a). In our view, the

genome is simply an information storage of how to make individual molecular build-

ing blocks of life. The genome does not contain much information about the wiring

of building blocks—for example, how they interact to make up a cell or to exert cel-

lular functions. The wiring information is likely to be distributed in the cell and

more dynamic in nature. Although the molecular wiring diagram of the cell may



not be computable from the information in the genome alone, it may still be pre-

dictable, at least to some extent, if we have su‰cient knowledge of actual wiring

in living cells and if empirical relations to genomes can be found. Thus, we have

been computerizing current knowledge on molecular pathways and complexes in the

PATHWAY database, and analyzing possible relations to the gene catalogs of all

the completely sequenced genomes and some partial genomes that are stored in the

GENES database in KEGG. We have also been collecting information about chem-

ical compounds and chemical reactions in the LIGAND database (Goto et al. 1998).

Such information is essential for understanding the dynamic interactions of the cell

with its environment.

In traditional computational molecular biology, the data objects to be analyzed

consist of elements that are abstracted to symbols at the atomic level, such as C for

carbon in the protein 3D structure, or to other symbols at the molecular level, such as

C for cysteine in the amino acid sequence. In computational genomics as we define

here, the data objects to be analyzed are the genome, which is a sequence of genes,

the pathway that is a network of interacting proteins, and other types of relations

among genes or gene products. Thus, symbols are used for an abstract representation

of data elements at a higher level, such as polA for a gene in the genome and Ras for

a protein in the pathway. KEGG is a computational resource for analyzing networks

Figure 12.1
Post-genomics in three directions.
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of such higher level symbols. It is highly integrated with the existing molecular biol-

ogy resources for analyzing sequences of molecular symbols and networks of atomic

symbols.

12.2 KEGG Ontology

12.2.1 Complex Systems

Life is a manifestation of biological complex systems at di¤erent levels, as exemplified

in table 12.1. A complex system consists of nodes and edges, namely, building blocks

and their interactions, and it is interacting with the environment. The protein is a

complex system consisting of atoms and atomic interactions. Under the physiological

environment, the protein assumes the native 3D structure, which makes it possible to

perform a specific biological function. When the environment is perturbed, the native

structure is disrupted and the protein loses its function. The structural change occurs

in a narrow range of environmental conditions, which is like a phase transition in

physical phenomena and which represents a systemic behavior of the complex system.

At a higher level of abstraction, the cell may be viewed as a complex system con-

sisting of molecules and molecular interactions (table 12.1). When there is a proper

network of molecules, such as a series of enzymes catalyzing successive reaction steps

in a metabolic pathway or a set of proteins that forms a signal transduction pathway,

then the cell is able to perform its specific function, such as biosynthesis of amino

acids or response to environmental stresses. Thus, the specific network of molecules

in the cell can be related to a higher order cellular function, which is like relating the

specific 3D structure of the protein to its molecular function. When the cell is per-

turbed, for example, by a foreign substance in the environment or a mutation in the

genome, a dynamic change may be observed in the global network of interacting

molecules. Such a systemic response to a perturbation is again a common feature of

complex systems.

Table 12.1
Examples of biological complex systems at di¤erent levels

Complex system Node Edge (interaction)

Protein Atom Atomic interaction

Cell Molecule Molecular interaction

Brain Cell Cellular interaction

Ecosystem Organism Organism interaction

Civilization Human Human interaction
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12.2.2 Graph Representation

Although there are other systemic phenomena at still higher levels (table 12.1), we

focus our analysis on the level of molecular interactions because this is the level where

the information in the genome can be directly correlated. We also extend the concept

of edges to other types of relations. Thus, many data objects in KEGG are represented

by a graph, which is a set of nodes and edges, as summarized in table 12.2. The genome

is a graph consisting of one-dimensionally connected nodes (genes). The transcriptome

generated by systematic gene expression profile analyses can be interpreted as a graph

of expression similarity from which clusters of coregulated genes can be identified.

The proteome obtained by yeast two hybrid system experiments or mass spectroscopy

experiments suggest a graph of possible protein-protein interactions in complexes

and pathways. In addition to experimental data on genomes, transcriptomes, and pro-

teomes, the result of computational analyses can also be represented by a graph, such

as the protein universe viewed as a hierarchy of structurally similar proteins and the

gene universe representing evolutionary relations of genes and organisms.

One of the major objectives of KEGG is to computerize data and knowledge on

molecular pathways and complexes that are involved in various cellular processes.

Thus, KEGG contains a unique data object termed the generalized protein-protein

interaction network, or simply the network, which is an abstract network of gene prod-

ucts (Kanehisa 2000a, b). Although there may be di¤erent ways of representing a net-

work of interacting molecules in the cell, the representation in KEGG focuses on

proteins and RNAs that are directly linked to genes in the genome. As shown in

figure 12.2, the generalized protein-protein interaction includes: (a) a direct interac-

tion such as binding, modification, or cleavage; (b) an indirect interaction involving

Table 12.2
Graph representation of KEGG data objects

Graph (data object) Node Edge (interaction or relation)

Genome Gene Ajacency

Transcriptome Gene Expression similarity

Proteome Protein Direct interaction

Protein universe Protein Sequence similarity or 3D structural similarity

Gene universe Gene Orthology, paralogy, or xenology

Complex Gene product (protein
or RNA)

Direct interaction

Pathway Gene product or
complex

Generalized protein-protein interaction (direct
interaction, gene expression relation, or
enzyme-enzyme relation)

Network ::¼ Pathway jComplex
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gene expression, namely, the relation between a transcription factor and a target gene

product; and (c) another indirect interaction representing the relation of two enzymes

that catalyze two successive reaction steps. It must be noted that DNAs and chemical

compounds are not considered as the nodes of the network, but rather they are part

of the edges. Of course, details of protein-DNA interactions in gene expressions and

protein-ligand interactions in enzymatic reactions are useful information in actual

data analysis. It must also be noted that the term protein used here actually includes

an RNA or a complex of proteins and/or RNAs.

12.2.3 Functional Hierarchy

The graph representation shown in table 12.2 is the most basic content of the KEGG

ontology, which is a formal specification of entities and their relations in KEGG.

In addition, the network (pathway or complex) is hierarchically structured, as shown

in figure 12.3. The three categories in the top hierarchy, metabolism, genetic infor-

mation processing, and environmental information processing, are the three essential

aspects of life in any organism; the fourth category of cellular processes contains di-

vergent aspects of cellular functions in various organisms. As of October 2000, the

KEGG network hierarchy has been further subdivided into 21 subcategories (figure

12.3) and over 120 sub-subcategories (not shown).

Figure 12.2
The network of interacting molecules in the cell, such as a pathway or a complex, is represented in KEGG
by the three types of generalized protein-protein interactions.
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Once the complete genome sequence is determined, it has become customary to

present a hierarchical classification of gene functions. In contrast to various existing

classification schemes (Riley 1993; Ashburner et al. 2000), the KEGG functional hier-

archy is assigned to the network, rather than to individual genes, because any higher

order function involving a cell or an organism is an attribute of the network. KEGG

does provide a hierarchical classification of genes for each genome, which is auto-

matically generated in the process of matching genes in the genome and gene prod-

ucts in the network (see below).

12.3 Suite of KEGG Databases

12.3.1 PATHWAY Database

The KEGG ontology summarized above is implemented in the databases shown in

table 12.3, which are all available at the GenomeNet (http://www.genome.ad.jp/).

The main database PATHWAY is a collection of known pathways (and complexes)

that are involved in various cellular processes. Mostly from the literature, a pathway

is drawn manually as a graphical diagram based on the concept of the generalized

protein-protein interaction network. This is, what is called a reference pathway from

which a number of organism-specific pathways are computationally generated by

matching against individual genes in the genome. At the moment, there are about

two hundred reference pathways; each pathway contains, on the average, about 30

proteins.

Figure 12.3
The functional hierarchy of the KEGG network data. The top two levels are shown here.
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The KEGG pathways are divided into metabolic pathways and regulatory path-

ways, which correspond to metabolism and the rest, respectively, in the functional

hierarchy shown in figure 12.3. A metabolic pathway involving enzymatic reactions

on chemical substances consists of enzyme-enzyme relations, whereas a regulatory

pathway involving macromolecular reactions and interactions mostly consists of di-

rect interactions and gene expression relations. For computational purposes of using

KEGG metabolic pathways, an auxiliary file is provided containing an entire list of

enzyme-enzyme relations. Such binary relation files are not yet available for regula-

tory pathways.

12.3.2 GENES Database

The GENES database provides the gene catalog information for all the completely

sequenced genomes and some partial genomes, including human and mouse. An entry

in GENES contains sequence information and functional annotation, together with

links to the PATHWAY and GENOME databases in KEGG and to other outside

databases. When the complete genome sequence is publicly made available in Gen-

Bank, it is incorporated in the GENES database within a few days, and the assignment

of EC numbers and ortholog identifiers is performed within a few weeks. Here the

ortholog identifier is an extension of the EC numbering system for enzymes (Kanehisa

and Goto 2000). It is applicable to all proteins and RNAs, and it can distinguish

subunits or genes with the same EC number.

Once the assignment of ortholog identifiers is manually performed, organism-

specific pathways are automatically generated by matching genes in the genome and

gene products in the pathway. They are represented by the coloring of gene product

nodes (boxes) in the reference pathways. This is possible because each node in the

Table 12.3
KEGG databases

Data object Database Data type Content

Network PATHWAY Graph Generalized protein-protein interaction
networks for various cellular processes

Genome GENES Node Gene catalogs for completely sequenced
genomes and some partial genomes

GENOME Graph Genome maps and information about
organisms

Transcriptome EXPRESSION Graph Microarray gene expression profiles

Proteome BRITE Graph Protein-protein interactions and relations

Environment LIGAND Edge Chemical compounds and chemical
reactions
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pathway is associated either with an ortholog identifier or with the combination of an

organism name and a gene name. The matching process also generates a gene catalog

for each organism, which is a hierarchical classification of genes according to the

functional hierarchy of KEGG pathways (figure 12.3). The gene catalog is manipu-

lated by what is called the hierarchical text browser. For most genomes, the hierar-

chical classification of gene functions provided by the original authors is also made

compatible with the hierarchical text browser.

After the initial annotation of ortholog identifiers, e¤orts are continuously made to

standardize the terminology across organisms and to provide the most up-to-date

information according to new experimental evidence reported in the literature, con-

vincing results of our pathway analysis, and functional annotations of the SWISS-

PROT and other databases. The gene annotations are maintained by the Web-based

KEGG annotation tool, which is linked to a relational database and which is inte-

grated with GFIT (Bono et al. 1998) and other computational tools.

12.3.3 GENOME Database

The GENOME database is a collection of genome maps containing information

about chromosomal locations of genes for completely sequenced genomes. The ge-

nome map is manipulated by the Java-based genome map browser. There are again

two versions of genome maps, original and KEGG, corresponding to the two ver-

sions of the gene catalogs. They di¤er in the coloring of genes that represent func-

tional hierarchy and also the links made to individual gene entries. The GENOME

database is associated with the taxonomy and text information about each organism.

12.3.4 Ortholog Group Table

The KEGG ortholog group table is a condensation of the results obtained by the

integrated analysis of the PATHWAY, GENES, and GENOME databases. In con-

trast to e¤orts such as the COG database (Tatusov et al. 1997), which attempts to

classify all genes into clusters of orthologous genes, the concept of the ortholog group

is applied here to sets of functionally correlated genes, such as orthologous operons,

rather than to individual genes. The ortholog group table was first constructed for

each conserved portion of the metabolic pathway that was identified as a correlated

cluster (see below) of genes in the genome and gene products in the pathway; for

example, a set of genes in an operon responsible for a biosynthetic pathway (Ogata

et al. 2000). The collection of ortholog group tables was then expanded to other

pathways and molecular complexes by examining correlated clusters of genes in

multiple genomes (Fujibuchi et al. 2000), also based on knowledge in the literature.
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The ortholog group table is an HTML table with an embedded manipulation pro-

gram for row-wise and column-wise operations. Each row indicates whether genes

are present or not for a given organism and also whether there are adjacent genes in

the genome, possibly forming operons, by coloring. Each column contains a set of

orthologous genes based not simply on sequence similarity but also on the positional

correlation of genes and the completeness of the pathway. Thus, the compilation of

ortholog group tables has been extremely useful in identifing unannotated or mis-

annotated genes in the original databases. The table can also be viewed as a multiple

alignment of organism-specific pathways, indicating a pathway motif or a functional

unit of the cellular processes.

12.3.5 EXPRESSION Database

The EXPRESSION database is a new addition to the KEGG system. It is being

developed for our ongoing project to analyze microarray gene expression profiles in

Saccharomyces cerevisiae, Synechocystis PCC6803, Bacillus subtilis, and Escherichia

coli. An entry in EXPRESSION corresponds to a piece of hybridization data, which

can be viewed and analyzed in combination with the PATHWAY and GENOME

information by the Java-based expression browser.

12.3.6 BRITE Database

BRITE (Biomolecular Relations in Information Transmission and Expression) is

a database of binary relations between proteins or other biological molecules. The

concept of binary relations, which is equivalent to the concept of edges (tables 12.1

and 12.2), has also been used in the DBGET/LinkDB system (Kanehisa 1997b; Fuji-

buchi et al. 1998) to compute indirect (deduced) links between databases. BRITE

is still at an early stage of development, but it aims at enhancing such deductive

database capabilities for biological relations of genes and gene products. In view of

the developments in experimental technologies for protein-protein interactions,

there will be a huge amount of biological binary relation data that will be part of the

BRITE database.

12.3.7 LIGAND Database

The role of the LIGAND database (Goto et al. 1998) in the KEGG system has been

to provide detailed molecular information about one type of the generalized protein-

protein interaction, namely, the enzyme-enzyme relation. LIGAND is a composite

database of ENZYME and COMPOUND. The ENZYME section stores the infor-

mation about enzymatic reactions and enzyme molecules according to the up-to-date

classification of the EC numbers, whereas the COMPOUND section is a collection
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of about six thousand chemical compounds, most of which are metabolites in the

metabolic pathways. The ENZYME and COMPOUND entries are linked from the

KEGG reference pathways for metabolism, thus providing molecular details of net-

work information.

The future role of LIGAND is to integrate the information about the environment

of the network. We will organize data and knowledge of chemical compounds and

chemical reactions that a¤ect living cells and organisms, including drugs, environmen-

tal compounds, and their metabolisms, in the COMPOUND section and the third

REACTION section of the LIGAND database.

12.3.8 Hierarchical Classifications

The data objects shown in table 12.2 are collected in the KEGG databases shown in

table 12.3, except for the protein universe and the gene universe. These data objects

have been derived from the sequence and 3D structure databases; KEGG just makes

use of the existing compilations. For example, the hierarchy of protein folds and se-

quence similarities in the SCOP database (Murzin et al. 1995) can be used to analyze

pathway information by the hierarchical text browser in KEGG.

In addition to hierarchically classified gene catalogs and protein catalogs, other

types of classifications, such as diseases and cell types, are being integrated in KEGG

in order to make links between genotypes and phenotypes.

12.4 Graph Comparison and Network Prediction

12.4.1 Graph Comparison to Detect Correlated Clusters

Sequence comparison has been the most powerful method to identify molecular

functions of proteins and nucleic acids. At the network level of interacting molecules,

because all the data objects are represented by graphs (table 12.2), the graph com-

parison is bound to become the most powerful method to understand higher order

functions. We have developed a heuristic graph comparison algorithm to detect cer-

tain graph similarities called correlated clusters (Ogata et al. 2000). In contrast to

the standard notion of graph similarity, or graph isomorphism, this algorithm detects

loose similarities that are biologically more relevant by allowing gaps and mismatches.

A cluster is a set of nodes that are closely positioned in a graph. A correlated cluster

is a set of clusters in two or more graphs whose nodes are correlated by certain

relations. For example, when comparing the genome graph and the pathway graph,

the correspondence of nodes is given by the relation of genes to gene products. The

resulting correlated cluster will be a set of genes that are adjacent in the genome and

whose protein products are functioning at close positions in the pathway, such as a
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specific pathway coded by an operon. When comparing the genome graph of one or-

ganism to the genome graph of another organism, the correspondence may be given

by the amino acid sequence similarity. The resulting cluster may then be a conserved

operon consisting of similar genes. Note that the order of individual genes in each

operon does not have to be conserved, which is the essence of loose similarity.

12.4.2 Network Prediction from Genomic Information

The network prediction in KEGG is to compute the generalized protein-protein in-

teraction network, or the network of gene products, from the catalog of genes in the

genome, as illustrated in figure 12.4. The prediction is based on the reference knowl-

edge of real networks in the PATHWAY database and additional information of

transcriptomes and proteomes in the EXPRESSION and BRITE databases. The

problem can be viewed as a conversion of the genome graph to the network graph by

integrating additional graphs of transcriptomes, proteomes, and similar networks.

Figure 12.4
The network prediction is formulated as a conversion of the genome graph with genes as nodes to the
network graph with gene products as nodes. The prediction is based on the reference knowledge of similar
networks as well as sets of binary relations in transcriptomes and proteomes.
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Thus, the graph comparison is an essential feature to integrate di¤erent information

represented by di¤erent types of graphs.

Although we do not yet have a fully automated method, the current KEGG

databases and computational tools can be utilized for network prediction. A general

strategy is to first generate cores of known networks according to the knowledge in

the KEGG reference pathways and then to extend the cores by searching for addi-

tional partners that are associated in the genome (e.g., genes in the same operon), the

transcriptome (e.g., coexpressed genes), and the proteome (e.g., binding partners).

The first step is called pathway reconstruction, which is basically the matching of

genes in the genome and gene products in the pathway. To enable this matching, the

genes in the genome must be assigned the ortholog identifiers according to, for ex-

ample, sequence similarities and positional correlations of genes in other genomes.

The second step is a more ambitious step, which can be formulated as a path com-

putation problem in a graph or a set of binary relations. The path computation has

been used to compute alternative enzymatic reaction pathways from a set of substrate-

product relations (Goto et al. 1997). A similar strategy should be e¤ective and it is

being implemented in the BRITE database.

12.4.3 Gene Annotation by Pathway Reconstruction

When an organism-specific pathway is reconstructed by matching genes in the ge-

nome against KEGG reference pathways, a few genes are often missing in an other-

wise complete pathway. Most of the cases can be solved by reexamining gene

annotations and assignments of ortholog identifiers. The information about path-

ways and complexes imposes an additional constraint of completeness, which is

extremely useful for interpreting sequence similarity scores, especially when many

paralogs are present, because in general there is no predefined level of sequence simi-

larity that can safely be extended to functional identity.

A case in point is the lysine biosynthesis pathway (Bono et al. 1998; Kanehisa

2000b), in which an aminotransferase gene was missing, as shown in figure 12.5. Here

each box is an enzyme (gene product) with the EC number inside and the shading

indicates that the corresponding gene is present in the genome. This pathway was bio-

chemically determined in E. coli, and the gene names were assigned by genetic studies,

as indicated alongside the boxes. However, when the complete genome sequences

were determined, the dapC gene for succinyldiaminopimelate aminotransferase

(EC 2.6.1.17) could not be found in E. coli or any other genomes. Recently, it was

reported that N-acetylornithine aminotransferase (EC 2.6.1.11) in E. coli, which is

encoded in argD and which functions in the arginine biosynthesis pathway, had a

dual role of catalyzing the reaction by DapC as well (Ledwidge and Blanchard 1999).
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Furthermore, dapC was found as part of the operon encoding dapCDE in Bordetella

pertussis (Fuchs et al. 2000).

Aminotransferases form a family of paralogous proteins. It is impossible to predict

substrate specificity from sequence similarity alone because the number of paralogs is

di¤erent in di¤erent genomes and some aminotransferases must have dual roles. For

example, aspartate aminotransferase (EC 2.6.1.1) and tyrosine aminotransferase

(EC 2.6.1.5) are encoded by di¤erent genes with high sequence similarity in E. coli,

but there is apparently no tyrosine aminotransferase gene in Haemophilus influenzae,

and aspartate aminotransferase appears to function in the tyrosine pathway as well.

In most genomes there are unassigned aminotransferases, especially those similar to

aspartate aminotransferases, and B. pertussis dapC belongs to the aspartate amino-

transferase subfamily. We have searched homologs of E. coli argD and B. pertussis

dapC in the genomes of other organisms. The result shown in figure 12.5 has iden-

tified a homolog of B. pertussis dapC in E. coli, b1748, which is annotated as putative

aminotransferase in the original database. It would be interesting to see if this gene

product does have the DapC activity. Although the new findings did fill in the gaps in

many genomes, some genomes are still unaccounted for, such as H. influenzae. It is

Figure 12.5
The aminotransferase gene dapC in the lysine biosynthesis pathway had not been found in any of the
completely sequenced genomes, but two recent reports found probable genes for this missing enzyme. The
enclosed table summarizes homologs for these genes in di¤erent genomes.
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still possible that aspartate aminotransferase or its paralog takes care of the lysine

pathway as well in some genomes.

12.5 Concluding Remarks

For all the genomes that have been sequenced, there is a considerable number of

genes whose functions are not yet understood. The fraction of unknown genes varies

in the genomes and also depends on the definition of function. As we have seen, the

assignment of a general molecular function like an aminotransferase, a kinase, or an

ABC transporter, does not tell much about a specific role of the gene in a cellular

function. When this is considered, perhaps one-half to two-thirds of the genes are still

unknown in most genomes. There have been attempts to systematically uncover

functions of unknown genes in functional genomics experiments. Although such

experiments may be useful to obtain a rough draft of gene functions, they are unlikely

to provide detailed pictures of molecular interactions and pathways that are respon-

sible for specific cellular functions. It is necessary to integrate with more accurate,

traditional methods in biochemistry, molecular and cellular biology, and genetics.

The KEGG resource should be useful for this integration.

We have limited our discussions to the level of molecular interactions, but there

are still more issues concerning the association of genes and higher level biological

phenomena, such as brain functions, diseases, and human behaviors, where cellular

interactions and organism interactions must play more dominant roles (table 12.1).

Although KEGG does not attempt to move up to such higher level phenomena, it

contains information about, for example, disease classification and cell lineages in

order to better understand underlying molecular phenomena.

The wiring information represented in KEGG pathway diagrams may appear to be

static. However, there are two mechanisms to incorporate time- and space-dependent

behaviors of the network of interacting molecules. One is the coloring mechanism

used to generate organism-specific pathways. For example, the coloring of micro-

array hybridization data can be mapped onto the KEGG reference pathways and the

time-course of gene expression changes can be followed by the changes in the color-

ing. The other mechanism is to simply draw additional pathway diagrams, each of

which is considered to represent a snapshot of the dynamic change. KEGG is not

suitable for simulating continuous behaviors of the cell because it does not contain

any kinetic parameters. However, we still hope that KEGG will become useful to

simulate perturbations to the cell, such as gene mutations and environmental changes,

and their dynamic consequences.
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13 Datamining: Discovering Information from Bio-Data

Limsoon Wong

13.1 Introduction

This chapter is an introduction to what has come to be known as datamining and

knowledge discovery in the biomedical context. The major reason that datamining

has attracted increasing attention in the biomedical industry in recent years is due to

the increased availability of a huge amount of biomedical data and the imminent

need to turn such data into useful information and knowledge. The knowledge gained

can lead to improved drug targets, improved diagnostics, and improved treatment

plans.

Datamining is the task of discovering patterns from large amounts of potentially

noisy data where the data can be kept in regular relational databases or other forms

of information repositories such as the flat text files commonly used by biologists. It

is a very interdisciplinary subject, relying on ideas and developments in database sys-

tems, statistics, machine learning, data visualization, neural networks, pattern recog-

nition, signal processing, and so on. More background on datamining is presented in

section 13.2, where we describe the key steps of the knowledge discovery process, the

diverse functionalities of datamining, and some popular datamining techniques.

Datamining has many functionalities, such as association analysis, classification,

prediction, clustering, and trend analysis. The material in this chapter is presented

from the classification perspective, where emphasis is placed on basic techniques for

uncovering interesting factors that di¤erentiate one class of samples from a second

class of samples. Specifically, the chapter describes datamining techniques for the clas-

sification of MHC-binding peptides and diabetes clinical study data. These two types

of data are chosen because they are very di¤erent in nature and thus require very

di¤erent datamining techniques.

The classification of MHC-binding peptides is described in section 13.3. It is a

target discovery problem in computational immunology. It is an illustration of the

application of an artificial neural network to the classification of noisy homogeneous

biomedical data. Our description is based on a collaboration (Brusic and Zeleznikow

1999) between Kent Ridge Digital Labs and the University of Pittsburgh.

The classification of diabetes clinical study data is described in section 13.4. It is a

problem of forecasting the onset of diabetes. It is an illustration of the application of

an idea known as emerging patterns to the classification of heterogenous biomedical

data. Our description is based on a collaboration (Dong et al. 1999) between Kent

Ridge Digital Labs and the University of Melbourne.



13.2 Datamining Background

Datamining is a natural evolution of information technology along the path of data

collection, database creation, database management, and data analysis and inter-

pretation (Han and Kamber 2000). Here, we briefly explain various aspects of data-

mining and knowledge discovery in general terms.

13.2.1 Process

The knowledge discovery process can be broken down into six stages (Adriaans

and Zantinge 1996): data selection, cleansing, enrichment, coding, datamining, and

reporting.

The first stage of the knowledge discovery process is collection and selection. In

the case of the MHC-binding peptide example, it is the collection of information on

what peptides are known to bind or not bind which MHC molecules. In the case of

the diabetes example, it is the collection of certain clinical information from a select

group of diabetic and non-diabetic patients.

The second stage is a data cleansing process to remove noise or irrelevant data. An

important element of this process is the de-duplication of data records to produce a

non-redundant dataset. For example, the same MHC-binding peptide information

may be reported in two separate papers. Another important element of this process is

the normalization of data records to deal with pollution caused by the lack of domain

consistency. This type of pollution is particularly damaging because it is hard to

trace. For example, MHC-binding peptide information reported in a paper might be

wrong due to a variety of experimental factors. In fact, Schoenbach et al. (2000b)

made a detailed study of swine MHC sequences and found that of the 163 records

they examined, there were 36 critical mistakes. Similarly, clinical records from dif-

ferent hospitals may use di¤erent terminologies, di¤erent measures, capture infor-

mation in di¤erent forms, or use di¤erent default values to fill in blanks. As another

example, gene expression experiments under similar conditions may produce di¤erent

data because the overall intensity of a DNA chip can vary substantially from chip to

chip.

The third stage, enrichment, is the acquisition of extra information that can be

integrated into the existing data. For example, disease demographic data or linkage

data in the case of clinical records, or known biological pathway information relating

to genes on a DNA chip.

The fourth stage is coding, where data are transformed or consolidated into forms

appropriate for datamining. In the case of clinical records, this might be the trans-
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formation of the absolute age of a patient into groupings such as ‘‘young,’’ ‘‘middle

aged,’’ and ‘‘old.’’ In the case of MHC-binding peptides, this might be the transfor-

mation of the MHC-binding a‰nity into groups such as ‘‘nonbinder,’’ ‘‘weak binder,’’

‘‘moderate binder,’’ and ‘‘strong binder.’’ Sometimes, this coding step is performed

using an automatic discretization algorithm such as the entropy method (Kohavi and

Sahami 1996).

The fifth stage, data mining, is the phase of real discovery. It is an essential process

where intelligent methods are applied in order to extract data patterns. We discuss it

in greater detail shortly. The last stage is reporting, where visualization and knowl-

edge representation techniques are used to present the mined knowledge to the user,

or where a prediction system is produced.

13.2.2 Functionalities

In general, datamining tasks can be split into two categories: descriptive and pre-

dictive (Han and Kamber 2000). Descriptive datamining tasks characterize the gen-

eral properties of the data. Predictive datamining tasks perform inference on the

current data in order to make predictions. We briefly touch on the main varieties of

datamining tasks and functionalities below.

Classification is the process of finding a set of models that describe and distinguish

between two or more data classes or concepts. The model is derived by analyzing a

set of training data that have been explicitly labeled with the classes that they belong

to. The model is then used to predict the class of objects whose class label is un-

known. In the rest of this chapter, we describe in detail two examples of classification

and prediction and also briefly survey a number of other examples of classification

and prediction in molecular biology.

Cluster analysis, by contrast, is used in situations where the training data do not

have any known class labels. The purpose of clustering is to generate class labels for

the data. The data objects are typically clustered so that objects within a cluster have

a high similarity to each other but are very dissimilar to objects in other clusters.

Much work (Ben-Dor 1999; Eisen et al. 1998) on analyzing gene expression data be-

long to this category of datamining tasks.

Outlier analysis deals with objects that do not comply with the general behavior of

a model of the data. Most datamining applications discard outliers. However, in some

applications, the rare events can be more interesting than the more regularly occurring

ones—for example, the detection of new particles in nuclear accelerator experiments.

Trend analysis describes and models regularities or trends for objects whose be-

havior changes over time. The distinctive features of such an analysis include time-

series data analysis, periodicity pattern matching, and clustering of time-related data.
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The inference of gene relationships from large-scale temporal gene expression patterns

(D’haeseleer et al. 1998) is an example of this topic.

Association analysis is the discovery of rules showing attribute-value conditions

that occur frequently together in a dataset, such as the co-expression of genes. It is

not di‰cult to develop algorithms for detecting association rules in a large database.

The problem is that such an algorithm often returns so many associations that it

is di‰cult to distinguish interesting associations from uninteresting ones. The idea of

emerging patterns, to be seen later in the classification of diabetes clinical data, is one

method for separating interesting information from uninteresting information.

13.2.3 Techniques

Many techniques have been used in datamining. We now briefly survey some data-

mining techniques that have been successfully used for classification in the biomedical

context.

The most popular classification technique is the idea of decision tree induction,

where a dataset is recursively partitioned into discrete subgroups based on the value

of an attribute in the dataset. The remaining attributes in the dataset are selected as

to whether or not they provide a predictive segregation of the remaining data for

di¤erent values of the classification variable. The final result is a set of series of splits

on values of the attributes, each series of which leads to a classification value. Algo-

rithms for decision tree induction include CART (Breiman et al. 1984), ID3 (Quinlan

1986), C4.5 (Quinlan 1992), SLIQ (Mehta et al. 1996), FACT (Loh and Vanich-

setakul 1988), QUEST (Loh and Shih 1997), PUBLIC (Rastogi and Shim 1998),

CHAID (Kaas 1980), ID5 (Utgo¤ 1988), SPRINT (Shafer et al. 1996), and BOAT

(Gehrke et al. 1999). This group of algorithms are most successful for analysis of

clinical data and for diagnosis from clinical data. Some examples are diagnosis of cen-

tral nervous system involvement in hematooncologic patients (Lossos et al. 2000),

prediction of post-traumatic acute lung injury (Rainer et al. 1999), identification of

acute cardiac ischemia (Selker et al. 1995), prediction of neurobehavioral outcome in

head-injury survivors (Temkin et al. 1995), diagnosis of myoinvasion (Longacre et al.

1995), and so on.

Another popular classification technique is Bayesian classification. It is based on

the Bayes theorem, PðH jXÞ ¼ PðX jHÞ � PðHÞ=PðX Þ, which provides a way to

derive the posterior probability PðH jX Þ that a hypothesis H holds given a sample X

from the prior probabilities PðHÞ, PðXÞ, and PðX jHÞ. Note that many Bayesian

classifiers make the simplifying assumption that the e¤ect of an attribute value of

a given class is independent of the values of the other attributes. Nevertheless, these

Bayesian classifiers are comparable in performance to decision tree and neural net-
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work classifiers in many applications. (More information on algorithms for Bayesian

classifiers can be obtained in Baldi and Brunak 1999; Duda and Hart 1973; Mitchell

1997; John 1997; Heckerman 1996; Jensen 1996; Russell et al. 1995; and Lauritzen

1995). Some example applications of Bayesian classifiers in the biomedical context

are mapping of a locus controlling a genetic trait (Ghosh and Majumder 2000),

screening for macromolecular crystallization (Hennessy et al. 2000), classification of

cNMP-binding proteins (McCue et al. 2000), prediction of carboplatin exposure

(Huitema et al. 2000), prediction of prostate cancer recurrence (Demsar et al. 1999),

prognosis of femoral neck fracture recovery (Kukar et al. 1996), prediction of protein

secondary structure (Kasif and Delcher 1998; Stultz et al. 1997; Arnold et al. 1992),

and so on.

Related to the Bayesian classifiers are the hidden Markov models, or HMMs.

An HMM is a stochastic generative model for sequences defined by a finite set S

of states, a finite alphabet A of symbols, a transition probability matrix T , and an

emission probability matrix E. The system moves from state to state according to T

while emitting symbols according to E. In an n-th order HMM, the matrices T and E

depend on all n previous states. (More detailed introduction to HMMs can be found

in Baldi and Brunak 1999; Krogh 1998; Durbin et al. 1998; and Eddy 1996). HMMs

have been applied to a variety of problems in sequence analysis, including protein

family classification and prediction (Bateman 1999; Baldi and Chauvin 1994; Krogh

et al. 1994), tRNA detection in genomic sequences (Lowe and Eddy 1997), Methyl-

ation guide snoRNA screening (Lowe and Eddy 1999), gene finding and gene structure

prediction in DNA sequences (Borodovsky et al. 1995; Borodovsky and McIninch

1993; Baldi et al. 1997; Krogh 1998; Salzberg et al. 1998), protein secondary structure

modeling (Di Francesco et al. 1997), promoter recognition (Yada et al. 1996; Pedersen

et al. 1996), and so on.

Artificial neural networks are another important approach to classification that

have a high tolerance to noisy data. A more detailed introduction to them is presented

in a later section on the prediction of peptide binding toMHCmolecules. (Other useful

presentation of artificial neural network algorithms can be found in Rumelhart et al.

1986; Baldi and Brunak 1999; and Chauvin and Rumelhart 1995). Successful appli-

cations of artificial neural networks in the biomedical context include protein sec-

ondary structure prediction (Riis and Krogh 1996; Rost and Sander 1994; Qian and

Sejnowski 1988), signal peptide prediction (Claros et al. 1997; Nielsen et al. 1997;

Emanuelsson et al. 1999), gene finding and gene structure prediction (Uberbacher

and Mural 1991; Snyder and Stormo 1995), protein translation initiation site recog-

nition (Pedersen and Nielsen 1997), T-cell epitope prediction (Honeyman et al. 1998),

RNA secondary structure prediction (Steeg 1993), toxicity prediction (Burden and
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Winkler 2000), disease diagnosis and outcome prediction (Vriesema et al. 2000; Scott

et al. 2000; Turton et al. 2000), and so on.

Support vector machines or SVMs are a new approach to the classification problem

that has clear connections to statistical learning theory. They di¤er radically from

approaches such as artificial neural networks. In particular, SVM training always

finds a global minimum. A SVM is largely characterized by the choice of its kernel

function. Thus SVMs connect the problem they are desgined for to a large body of

existing research on kernel-based methods. (For a detailed discussion of SVMs, see

Raudys 2000; Vapnik 1995; and Burges 1998). Some recent applications of SVM in

the biomedical context include protein translation initiation site recognition (Zien

et al. 1999), protein homology detection (Jaakkola et al. 2000), microarray gene ex-

pression data classification (Brown et al. 2000), breast cancer diagnosis (Mangasarian

et al. 1995; Friess et al. 1998), and so on.

Let us now embark on our datamining examples on the classification of MHC-

binding peptides and diabetes clinical data.

13.3 Short Peptides

Short peptides are a special case of protein sequence data. They are often the key to

the functional role of protein sequences such as active sites, binding core, and so on.

Their short length makes it possible to perform certain types of analysis on them that

are not computationally feasible on long protein sequences. In this section, we de-

scribe a general method called ‘‘artificial neural networks’’ that has worked well on a

broad class of classification and prediction problems involving short peptides.

13.3.1 Problem

The immune system employs two means of recognition: soluble antibodies and T-

cell receptors. T-cell mediated immunity is the more subtle of the two and is further

divided into those associated with class-I versus class-II MHC molecules. Killer T-

cells continually scan the surface of all cells and destroy those with foreign markings

that came from short peptides—derived from cytosolic proteins—bound to class-I

MHC molecules. Helper T-cells scan cell surfaces for short peptides—derived from

proteins internalized by endocytosis—bound to class-II MHC molecules; association

of a foreign peptide to a class-II MHC molecule signals that a cell has encountered

a pathogen and serves as a call for help (Stryer 1995). Peptides that induce immune

response are called immunogenic peptides or T-cell epitopes. T-cell epitopes are targets

for the discovery of vaccine and immunotherapeutic drug components.
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We use the work of Brusic and Zeleznikow (1999) and Brusic et al. (1998b) as an

example classification problem in analysing short peptides. Brusic employs an artifi-

cial neural network (Patterson 1996), implemented using the PlaNet package (Miyata

1991), for the identification of T-cell epitopes from melanoma antigens. That is, given

a short peptide derived from a melanoma antigen, his artificial neural network

classifies it according to its binding a‰nity to particular MHC molecules. Brusic’s

work scans four melanoma-related antigens (MART-1, gp100/pmel17, MAGE-3, and

MAGE-6) to identify short peptides that bind HLA-DR4, a class II MHC molecule.

Brusic’s artificial neural network is trained from a set of 602 HLA-DR4 binding pep-

tides and 713 nonbinders drawn from MHCPEP (Brusic et al. 1998a), experimental

binding data (Hammer et al. 1994), and FIMM (Schoenbach et al. 2000a). Each train-

ing sample has an associated binding a‰nity that we refer to as the ‘‘targeted output’’

for that training sample. In the rest of this section, we supply the technical details.

13.3.2 Solution

Artificial neural networks are networks of highly interconnected neural computing

elements that have the ability to respond to input stimuli and to learn to adapt to the

environment. Although the architecture of neural networks di¤er in several charac-

teristic ways, a typical artificial neural network computing element is a comparator

that produces an output when the cumulative e¤ect of the input stimuli exceeds a

threshold value.

Figure 13.1 depicts a single computing element. Each input xi has an associated

weight wi, which acts to either increase or decrease the input signal to the computing

element. The computing element behaves as a monotonic function f producing an

output y ¼ f ðnetÞ, where net is the cummulative input stimuli to the neuron. The

number net is usually defined as the weighted sum of the inputs:

Figure 13.1
A artificial neural network computing element.
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net ¼
X
i

xiwi

and the function f is usually defined as a sigmoid:

f ðnetÞ ¼ 1

1þ e�net

Such computing elements can be connected in multiple layers into an artificial neural

network. Figure 13.2 depicts a fully connected feed-forward artificial neural network

with two layers of computing elements. The output from the two hidden computing

elements in the first layer are fed as inputs into the computing element at the second

layer. The network is used for classifiction decision as follows. The inputs xi are fed

into the network. Each computing element at the first layer produces its correspond-

ing output, which is fed as input to the computing elements at the next layer. This

process continues until an output is produced at the computing element at the final

layer.

Figure 13.2
A fully connected feedforward artificial neural network with two layers of computing elements.
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The artificial neural network used by Brusic and Zeleznikow (1999) has just two

layers, with two computing elements at the first layer and one computing element at

the second layer. It is also fully connected in the sense that each input xi is connected

to both computing elements at the first layer, both of which are in turn connected to

the computing element at the second layer. From previous experience (Brusic et al.

1998b), other architectures for the artificial neural network are possible but are not

expected to yield significant di¤erences. A short peptide derived from an antigen is

converted into input values xi according to a sparse coding scheme, where each

amino acid in the short peptide is represented as a string of 20 bits. For example,

Alanine is represented by ‘‘100000000000000000000’’ and Cysteine is represented by

‘‘01000000000000000000.’’ From previous experience (Brusic et al. 1994), other rep-

resentations are possible but are not expected to produce significantly di¤erent results.

Because HLA-DR4 is a class-II MHC molecule, a short peptide will bind it through

a 9-mer core with the rest of the peptide flanking outside the MHC cleft (Rammensee

et al. 1995). In other words, we need to consider only 9-mers and thus there are

9� 20 ¼ 180 bits to be used as inputs per peptide. So Brusic’s artificial neural net-

work has 180 inputs, x1; . . . ; x180. An input sample is classified as HLA-DR4 binding

if the final output exceeds a threshold, and as non-HLA-DR4 binding otherwise.

The details are in how the weights on the links between the inputs and comput-

ing elements are chosen. These weights are learned from training data using the

error back-propagation method (Rumelhart et al. 1986). To describe the error back-

propagation method, we need to introduce some notations. Let vij denote the weight

on the link between xi and the jth computing element of the first layer in the artificial

neural network. Let wj denote the weight on the link between the jth computing ele-

ment of the first layer and the computing element of the last layer. Let zj denote the

output produced by the jth computing element of the first layer. Then the output y

produced by the artificial neural network for a given training sample is given by

y ¼ f
�X

j

wj f
�X

i

xivij

��

This y may di¤er from the targeted output t for that particular training sample by an

error amount D. We need a method to reduce this error through an adjustment of the

weights vij and wj. This is accomplished by adjusting the weights in proportion to the

negative of the error gradient. For mathematical convenience, the squared error E

can be defined as

E ¼ ðt� yÞ2
2
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In finding an expression for the weight adjustment, we must di¤erentiate E with re-

spect to weights vij and wj to obtain the error gradients for these weights. Applying

the chain rule a couple of times and recalling the definitions of y, zj, E, and f , we

derive

dE

dwj

¼ dE

d
P

j wj f ð
P

i xivijÞ
d
P

j wj f ð
P

i xivijÞ
dwj

¼ dE

d
P

j wj f ð
P

i xivijÞ
f
�X

i

xivij

�

¼ dE

dy

dy

d
P

j wj f ð
P

i xivijÞ
f
�X

i

xivij

�

¼ ðt� yÞ f 0
�X

j

wj f
�X

i

xivij

��
f
�X

i

xivij

�

¼ ðt� yÞ f 0
�X

j

wjzj

�
ðzjÞ

¼ ðDÞðyÞð1� yÞðzjÞ
The last step follows because f is a sigmoid and thus f 0ðxÞ ¼ f ðxÞð1� f ðxÞÞ. Then
the adjustment Dwj

to wj is defined as below, where h is a fixed learning rate.

Dwj
¼ �h

dE

dwj

¼ �hðDÞðyÞð1� yÞðzjÞ

However, for the weights vij, we do not have a targeted output to compute errors, so

we have to use the errors Dwj
as surrogates and apply a similar derivation to obtain

Dvij ¼ �hðDwj
ÞðzjÞð1� zjÞðxiÞ

The above derivation provides the adjustments on the weights for one training sam-

ple. An ‘‘epoch’’ in the training process is a complete iteration through all training

samples. At the end of an epoch, we compute the total error of the epoch as the

sum of the squares of the D of each sample. If this total error is su‰ciently small, the

training process terminates. If the number of epochs exceeds some predefined limit,

the training process also terminates.

An artificial neural network model for HLA-DR4 binding was built as described

above using 602 HLA-DR4 binding peptides and 713 nonbinders. The model was

then used to process a pool of 1,374 peptides from MART-1, gp100/pmel17, MAGE-
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3, and MAGE-6. Thirty candidate binders identified by the aritificial neural network

were synthesized and tested for T-cell responses and DR4 binding. Eighteen novel

T-cell epitopes were confirmed, giving a 18=30 ¼ 60% success rate in predicting T-cell

epitopes.

13.3.3 Remarks

A systematic experimental study of a protein antigen for T-cell epitopes would in-

clude the following steps. First, a large number of overlapping peptides spaning the

length of the protein must be synthesized. Second, each of these peptides must be tested

in binding assays. Typically, much less than 5 percent of peptides emerge from these

assays as binders. Third, each of those peptides that bind must be further tested in

T-cell assays to confirm immunogenicity. Typically much less than 1 percent of the

original peptides emerge through these assays as immunogenic. Such an exhaustive

study would be prohibitively expensive and time consuming.

A highly accurate method of predicting the binding of peptides to MHC molecules

enables binding assays to be skipped or significantly reduced (Gulukota 1998; Brusic

and Zeleznikow 1999). Given the protein sequence of the antigen, all overlapping

peptides spanning the sequence are derived by computer. Each peptide is then clas-

sified using the MHC-peptide binding prediction method described earlier. Only those

peptides classified by this method as a MHC-binder proceed to be tested in T-cell

assays for their immunogenicity. Only for those peptides tested positive in T-cell assays

do we perform binding assays. This new procedure would reduce the number of bind-

ing assays dramatically.

There are several alternatives to the artificial neural network approach described

here. The simplest is the peptide-binding motif approach; many motifs have been

proposed for various MHC molecules (Rammensee et al. 1995). These motifs usually

indicate primary anchor positions and amino acids acceptable as primary anchors.

The more sophisticated motifs usually take the form of a quantitative matrix that

specifies the observed frequencies of di¤erent amino acids in each position. Their sen-

sitivity and specificity levels are weaker than the artificial neural network approach

(Brusic and Zeleznikow 1999) when there is a large amount of training data available.

However, when only a small amount of training data is available, a quantitative ma-

trix may be more useful. Molecular modeling has also been used for the prediction of

peptide binding to MHC molecules (Rognan et al. 1994). Nevertheless, the accu-

racy of molecular models needs to be improved before they can be used for new pre-

dictions. Additional methods for predicting MHC-peptide binding are described in

several newly published articles (Borras-Cuesta et al. 2000; Raddrizzani and Hammer

2000; Savoie et al. 1999). Based on their reported sensitivity and precision figures, an
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artificial neural network-based methodology, as reported by Brusic et al. (1998b) and

described above, appears to be more accurate.

13.4 Clinical Records

The clinical record of a patient is a more general type of data. The characteristics of

clinical records are very di¤erent from those of protein sequences or gene expression

results. The most important di¤erence is perhaps the heterogeneity in the attributes of

a clinical record. The meaning of one attribute in a clinical record can be very dif-

ferent from another attribute. For example, a clinical record may have an attribute

recording the age of the patient and an attribute recording the blood pressure of the

patient. In contrast, in a gene expression record, the attributes correspond to genes

and the value of each attribute is the expression level of the corresponding gene, and

thus all attributes have the same kind of values. Furthermore, clinical records kept

for di¤erent studies or by di¤erent organizations can di¤er significantly in the infor-

mation they capture. Therefore, the general analysis of patient clinical records calls

for datamining methods that make fewer assumptions and interpretations of the

data. In this section, we describe a general method called ‘‘classification by aggre-

gating emerging patterns,’’ or CAEP for short, that has worked well on clinical

records and other similar types of data (Dong et al. 1999).

13.4.1 Problem

Classification is an interesting problem in analyzing patient clinical records. Suppose

we have a population of patients (more generally, samples or instances) that are

divided into two groups. For example, we can divide our population of patients with

a particular type of cancer into those who responded to a treatment versus those who

did not. As another example, we can divide a population of samples into those who

showed signs of a disease versus those who did not. The task of a classifier is to dis-

cover the factors that di¤erentiate the two groups and to find a way to use these

factors to predict to which group a new patient should belong.

As our example, we use the Pima Indians dataset (Smith et al. 1988). The data

were collected by the U.S. National Institute of Diabetes and Digestive and Kidney

Diseases from a population of 768 women who were at least 21 years old, of Pima

Indian heritage, and living near Phoenix, Arizona. They were tested for diabetes

according to World Health Organization criteria; that is, the two-hour post-load

plasma glucose was at least 200 mg/dl at any survey examination or during routine

medical care. For each patient, eight attributes were obtained: (1) number of times
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pregnant, (2) plasma glucose concentration, (3) diastolic blood pressure, (4) triceps

skin fold thickness, (5) two-hour serum insulin, (6) body mass index, (7) diabetes

pedigree function, and (8) age. Obviously these attributes are heterogeneous; for ex-

ample, age is in years and diastolic blood pressure in mm Hg. Also, there is a size bias

in this dataset in that it contains 29 percent diabetic instances and 71 percent non-

diabetic instances.

The CAEP method, in this particular example, builds a classifier using the Pima

Indian dataset. Given a new patient record with these eight attributes, the classifier

predicts if the patient has diabetes according to World Health Organization criteria.

13.4.2 Solution

The CAEP relies on the recently proposed idea of emerging patterns (Dong and Li

1999). An emerging pattern is a pattern whose frequency increases significantly from

one class of data to another class of data. For example, the pattern fodor ¼ none,

stalk-surface-below-ring ¼ smooth, ring-number ¼ 1g in the description of mush-

rooms by the Audubon Society (Linco¤ 1981) is a typical emerging pattern. Its fre-

quency increases from 0.2 percent in the poisonous case to 57.6 percent in the edible

case, at a growth rate of 57:6=0:2 ¼ 288. Each emerging pattern can have very strong

power for di¤erentiating the class membership of some instances. For example, with

odds of 99.6 percent—we will show how this is derived later—a mushroom that

contains the above pattern is edible. The di¤erentiating power of an emerging pattern

is a function of its growth rate and frequency. However, an individual emerging

pattern may only be able to classify a small number of instances. Thus it may have

poor overall accuracy if it is used by itself on all instances. So to build an accurate

classifier, it is necessary to make use of multiple emerging patterns. The CAEP dis-

covers, for each class of data, all the emerging patterns of that class satisfying some

threshold on frequency and growth rate. The di¤erentiating power of these emerging

patterns are then summed and normalized. The CAEP then chooses the class with the

largest normalized score as the winner. We now proceed to describe the CAEP in

detail.

We need to discretize of the dataset into a binary one. The value range of each

attribute is discretized into a number of intervals using the entropy method (Kohavi

and Sahami 1996). Each (attribute, interval ) pair is called an item in the binary

database. An instance t in the raw dataset is then thought of as a set of items such

that an item ðA; vÞ is in t if and only if the value of the attribute A of t is within the

interval v. We use the term itemset to refer to t under this representation. In an item

ðA; vÞ in an itemset, the value v is not allowed to be a null value. As a consequence,

missing data that often plague clinical records are conveniently taken care of.
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The (binary) Pima Indian dataset is divided into two sets that we denote D1 and

D2, corresponding to diabetic and non-diabetic class of instances. We also use the

notation D to denote either one of D1 or D2 and D 0 to denote the other set. Let I be

the set of all possible items and X J I be an itemset. The support of X in D is defined

as

suppDðX Þ ¼ jft A D jX J tgj
jDj

The growth rate of X in D is defined as

growDðXÞ ¼ suppDðXÞ
suppD 0 ðXÞ

An emerging pattern of class D is an itemset that has ‘‘large’’ growth rate in D. Here

‘‘large’’ is an application-dependent threshold chosen by CAEP automatically based

on the training dataset.

Each emerging pattern can di¤erentiate the class membership of a fraction of

instances that contain that emerging pattern. This di¤erentiating power is derived

from the di¤erence between its support in the two sets. Suppose an instance t contains

a particular emerging pattern X of class D. What is the likelihood that t belongs to

class D? If D and D 0 are roughly equal in size, this likelihood is

likelihoodDðXÞ ¼ suppDðXÞ
suppDðX Þ þ suppD 0 ðXÞ

Now, using growDðXÞ ¼ suppDðX Þ=suppD 0 ðX Þ, we have

likelihoodDðXÞ ¼ growDðX Þ � suppD 0 ðX Þ
growDðX Þ � suppD 0 ðX Þ þ suppD 0 ðXÞ ¼

growDðXÞ
growDðXÞ þ 1

If D and D 0 di¤er significantly in size, the supports should be replaced by counts of X

in D and D 0; and thus

likelihoodDðXÞ ¼ suppDðX Þ � jDj
suppDðX Þ � jDj þ suppD 0 ðXÞ � jD 0j ¼

growDðX Þ � jDj
growDðX Þ � jDj þ jD 0j

Now consider a specific emerging pattern X of class D, say the diabetic class, having

a moderate growth rate in D, say 3, and likelihood, say 75 percent, that appears in

a relatively large number of instances in D, say 30 percent. Then X appears in

30%=3 ¼ 10% of instances in D 0. If we were to use X as our sole clue for class pre-

diction, the achieved sensitivity for class D would be 30 percent and specificity would
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be 55 percent. (Recall that the number of non-diabetic samples is 545 ¼ 71% � 768
and diabetic samples is 223 ¼ 29% � 768. Furthermore, sensitivity is defined as the

ratio of the number of correctly predicted diabetic instances to the number of diabetic

instances and specificity is defined as the ratio of the number of correctly predicted

diabetic instances to the number of predicted diabetic instances.) Hence the overall

accuracy, defined as the percentage of instances correctly classified, would be 72

percent.

In spite of the relatively high accuracy in using this particular emerging pattern as

the sole clue for class prediction, there is a crucial problem. It could only identify

30 percent of the diabetic patients. This level of sensitivity cannot be considered

acceptable as it is much more important to recognize a diabetic person than a non-

diabetic one. Furthermore, in real-life clinical data, there may be no emerging pattern

that has more than 3–5 percent support. This situation calls for a more innovative

use of emerging patterns, where we combine the strength of several emerging patterns

to produce a good classifier.

Given a test instance t, we let all emerging patterns of the class D that t contains

contribute to the decision of whether t belongs to D. The advantage is that this way

more cases can be covered because di¤erent emerging patterns can complement each

other in their applicable populations. In order to combine emerging patterns, we need

a scoring method. Given an instance t and a set E of emerging patterns of a class D,

the score of t for D is defined as

scoreðt;DÞ ¼
X

XJt;X AE

likelihoodDðXÞ � suppDðXÞ

It is tempting to classify a test instance t as D if scoreðt;DÞ > scoreðt;D 0Þ, and as D 0

otherwise. However, such a simple-minded approach is not robust when the numbers

of emerging patterns in D and D 0 di¤er significantly. This situation is quite common

in clinical records where one of the classes have more random distribution of values

and consequently fewer emerging patterns. In order to be more robust, the score

should be normalized by dividing with a score at a fixed percentile of the instances in

each class. More specifically, for each class D, a base score base�scoreðDÞ should be

found for D and then the normalized score is defined as

norm�scoreðt;DÞ ¼ scoreðt;DÞ
base�scoreðDÞ

Now given a new instance t, we classify it as a member of class D if

norm�scoreðt;DÞ > norm�scoreðt;D 0Þ and as D 0 otherwise.
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It remains to choose base�scoreðDÞ. It can be chosen as the median of scores

scoreðt;DÞ over all t A D. In this case, exactly half of the instances in D have score

greater than base�scoreðDÞ and half exactly less than it. In practice, other percentiles

between 50–85 percent produce roughly similar results. However, one should avoid

percentiles at the extreme ends, say 3 percent, because clinical records are likely to

contain some outliers and choosing such percentiles would give these outliers too

much influence.

We compare the performance of the CAEP method described above with two

state-of-the-art methods, C4.5 (Quinlan 1992), and CBA (Liu et al. 1998) under 10-

fold cross validation. The accuracy of C4.5 is 71.1 percent. The accuracy of CBA is

73.0 percent. The accuracy of CAEP is higher at 75.0 percent. In fact, its sensitivity

and specificity for the diabetic class are 70.5 percent and 63.3 percent, and for the

non-diabetic class are 77.4 percent and 83.1 percent.

It is also reasonable to expect that the emerging patterns used for such highly

accurate classification can give insight into important factors of diabetes. Unfortu-

nately, the CAEP method described above produces a very large number of emerging

patterns in general. It produces about twenty-three hundred emerging patterns with

the Pima Indian dataset. It is too time consuming for a medical expert to analyze

such a large number of emerging patterns. This brings us to add a reduction step.

The CAEP method reduces the number of emerging patterns based on the follow-

ing factors: the strength of emerging patterns, the relationships between emerging

patterns, and the di¤erence between their supports and growth rates. The main idea

is to prefer strong emerging patterns over their weaker relatives. Let r be a new

growth rate threshold chosen that is larger than the initial threshold. Let X1 >D X2

means X1, X2 are both emerging patterns of class D and X1 is preferrable to X2; and

it is defined as the relation such that

X1 >D X2 i¤ ðaÞ X1 JX2 and growDðX1Þ > growDðX2Þ
or ðbÞ X1 JX2 and suppDðX1Þg suppDðX2Þ and growDðX1Þ > r

The motivation for this definition is as follows. If X1 >D X2 holds because of (a), then

X1 covers more cases than X2—as X1 JX2—and also has stronger di¤erentiating

power—as growDðX1Þ > growDðX2Þ. The case where X1 >D X2 holds because of (b)

is more subtle. A typical situation captured by it is when X2 is an emerging pattern

with infinite growth rate but with very small support, whereas X1 is an emerging

pattern with lesser growth rate but has a much larger support, say 30 times more.

In such a situation, X1 is preferred because it covers many more cases than X2, pro-

vided X1 has a su‰ciently high di¤erentiating power—as guaranteed by the condition

growDðX1Þ > r. To illustrate this point, suppose suppDðX1Þ ¼ 100%, growDðX1Þ ¼
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22:25%, suppDðX2Þ ¼ 3%, and growDðX2Þ ¼ y. Clearly, X1 is more useful than X2, as

it covers 33 times more instances and its associated likelihood, 22:25=ð22:25þ 1Þ ¼
95:7%, is also very close to that of X2.

The reduced set of emerging patterns of D is simply any maximal antichain of this

relation. That is, for any X1 and X2 in the reduced set of emerging patterns, it is the

case that neither X1 >D X2 nor X2 >D X1; and for any emerging pattern X1 not in this

set, it is the case that there is some emerging pattern X2 in the reduced set such that

X2 >D X1.

Then norm�score, score, and base�score are all redefined in terms of the reduced

set of emerging patterns. Now, given a new instance, we classify it as before: assign it

to the class with the larger norm�score. We investigate the performance of the CAEP

method with reduction of emerging patterns under 10-fold cross validation. As ex-

pected, the number of emerging patterns it produces is about sixteen hundred, which

is considerably less than the twenty-three hundred emerging patterns without reduc-

tion. Its accuracy (75.1 percent), sensitivity for the diabetic class (69.0 percent), spe-

cificity for the diabetic class (64.1 percent), sensitivity for the non-diabetic class (78.4

percent), and specificity for the non-diabetic class (82.6 percent) are comparable to

those without reduction of emerging patterns. Thus there is no loss in prediction

performance using reduction of emerging patterns.

Let us summarize the steps of the CAEP method. It has two major types of inputs.

The first input is the ‘‘training’’ dataset, which is the Pima Indian dataset set in our

example. The second input is the ‘‘test’’ dataset, which contains test instances that

we want to classify as diabetic or non-diabetic in this case. The CAEP method goes

through two phases. The first phase is called the training phase and consists of dis-

cretizing the training dataset; datamining the discretized dataset for emerging patterns;

computing the support, growth rate, and likelihood of each of these emerging patterns

with respect to each of the classes; and computing the base score for each of the classes.

The second phase is called the prediction phase and consists of computing the score

and normalized score of each of the test instances with respect to each class, and

making a prediction for each test instance. The training phase is the time-consuming

part of the CAEP method and may take an hour or more. However, it needs to be

done just once. Its results can be reused for many predictions, each of which typically

takes much less than a second.

13.4.3 Remarks

In addition to the Pima Indian dataset, we have also tested the CAEP method on a

large number of benchmark datasets. The CAEP method has very good predictive
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accuracy on all data sets we have tested (Dong et al. 1999). It gives better accuracy

than previous classification algorithms such as C4.5 (Quinlan 1992) and CBA (Liu et

al. 1998) in general. The CAEP is highly accurate and is usually equally accurate on

all classes, even if their proportions are unbalanced. Being equally accurate on all

classes is very useful for many applications, where there is a dominant class and a

minority class and the main purpose of classification is to accurately predict instances

of the minority class. For example, in a preliminary diagnostic situation, one should

err on the cautious side and call for further diagnostic tests for the gray cases.

The CAEP is rather di¤erent from previous classifiers because of the novelty of the

emerging pattern idea. To arrive at a classification decision, the CAEP uses a set of

emerging patterns and each emerging pattern corresponds to a multi-attribute test.

Most previous classifiers such as C4.5 (Quinlan 1992) consider only one test on one

attribute at a time. A few exceptions such as CBA (Liu et al. 1998) consider only one

multi-attribute test to make a decision. It is also di¤erent from boosting (Schapire

1990), which manipulates training data to generate di¤erent classifiers and then ag-

gregate the votes of these classifiers. In the CAEP case, although the emerging patterns

are easy to determine, they are too weak to serve as individual classifiers.

There is, however, some similarity between the CAEP and Bayesian prediction.

Let an instance t be viewed as a pattern. Bayesian prediction would classify t as

belonging to a class Ck, where the probability PðCkÞ � Pðt jCkÞ is largest among the

classes. The optimal Bayesian classifier needs to ‘‘know’’ the probability Pðt jCkÞ for
every possible t, which is rather impractical for high-dimensional data sets. We

view the score used in the CAEP as a (not very rigorous) ‘‘surrogate’’ for

PðCkÞ � Pðt jCkÞ.
The CAEP method is the first application of emerging patterns to classification.

There are several variations around the main ideas of the CAEP method. We close

this section by mentioning two of these variations: the JEP method (Li et al. 2000b)

and the DeEP method (Li et al. 2000a). The JEP method uses exclusively emerging

patterns whose supports increases from zero in one class to nonzero in the other class;

such emerging patterns are called ‘‘jumping’’ emerging patterns. In the situation

where there are many jumping emerging patterns, the JEP method would perform

well and the classifier would be more e‰cient to train. The DeEP method is an

instance-based method in the sense that it does not have a single training phase. In-

stead, for each instance to be predicted, a separate training phase is involved that is

automatically ‘‘customized’’ for that instance. So although the DeEP method has to

train as many times as there are instances to be predicted, each training phase takes

much less time than the CAEP method. However, as each prediction must be pre-

ceded by its corresponding training phase, the overall prediction time for the DeEP
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method is typically an order of magnitude longer than the CAEP method. In terms of

accuracy, the DeEP method is usually slightly better than the CAEP method. How-

ever, its biggest advantage is that it can incorporate new training data easily. This

feature makes it very useful for applications where the training data must be fre-

quently updated.

13.5 Conclusion

In this chapter, we began with a description of datamining in general and then focused

on the classification and prediction aspect of datamining. Classification is the process

of finding a set of models that describe and distinguish data classes or concepts. The

model can then be used for the purpose of predicting the class of newly encountered

data. The derived model could be in various forms such as if-then rules, decision

trees, mathematical formulae, artificial neural networks, or emerging patterns.

In the MHC-binding peptide example, we encountered artificial neural networks.

We gave a brief introduction to feed-forward artificial neural networks and showed

how to do back propagation on these neural networks. Using the work of Brusic and

Zeleznikow (1999), we demonstrated that such neural networks can be trained to

di¤erentiate peptides that bind the class-II MHC molecule, HLA-DR4, from those

that do not bind this molecule. We also briefly mentioned other MHC-binding pep-

tide classification methods (Hammer et al. 1994; Rammensee et al. 1995; Rognan

et al. 1994).

In the diabetes example, we encountered emerging patterns. We gave a brief in-

troduction to the concept of emerging patterns and showed how to perform classifi-

cation by aggregating emerging patterns. Using the work of Dong et al. (1999), we

demonstrated that this method can be used to di¤erentiate diabetic Pima Indians

from non-diabetic ones. We also briefly mentioned other emerging pattern-based

datamining methods (Dong and Li 1999; Li et al. 2000a, b).

In addition to artificial neural networks and emerging patterns, we also briefly

surveyed other techniques such as Bayesian classifiers, hidden Markov models, and

support vector machines. All of these techniques have proven useful in applications

such as disease diagnosis, gene finding, protein family classification, gene expression

data classification, protein secondary structure prediction, and so on. However, we

did not go into their details due to space constraint.

All these techniques are general knowledge discovery methods. With appropriate

data preparation, they are applicable in a large variety of classification applications.

However, in some situations, more specialized algorithms can produce better results,

such as in the detection of translation initiation sites in RNA sequences (Hannenhalli
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et al. 1999) and the detection of significant di¤erentially expressed genes in gene ex-

pression data (Slonim et al. 2000).

Finally, we should mention that classification may need to be preceded by rele-

vance analysis, which attempts to identify attributes that do not contribute to the

classification process. These attributes can then be excluded. In our two examples, we

did not use a separate relevance analysis. However, in order to deal with datasets of

much higher dimension, a separate relevance analysis step is often crucial. The reason

is that datamining algorithms are in general exponential in complexity with respect to

the number of attributes present in the datasets. For example, a gene expression rec-

ord typically contains several thousand attributes, each attribute corresponding to the

expression level of a distinct gene. A fast and cheap relevance analysis should be used

to reduce these thousands of genes into several tens of most relevant genes for sub-

sequent classification analysis (Slonim et al. 2000). There are of course applications

involving a large number of dimensions where a separate relevance analysis step is

not necessary. For example, Temkin et al. (1995) reported that a methodology like

CART (Breiman et al. 1984), which does not require a separate relevance analysis

step, is able to produce a classifier of su‰ciently high accuracy for predicting neuro-

behavioral outcome of head-injury survivors. Note also that although relevance

analysis is useful in ranking the importance of each dimension of a dataset, it is not

always desirable to aggressively eliminate lower ranking dimensions. For example,

Spellman et al. (1998) would not have identified eight hundred cell cycle genes if they

blindly reduced all the yeast genes to just the several tens of the most relevant ones!
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14 RNA Secondary Structure Prediction

Zhuozhi Wang and Kaizhong Zhang

14.1 Introduction

Ribonucleic Acid (RNA) is an important molecule that performs a wide range of

functions in biological systems. In particular, it is RNA (not DNA) that contains the

genetic information of viruses such as HIV and thereby regulates the functions of

these viruses. RNA has recently become the center of much attention because of its

catalytic properties (Cech and Bass 1988), leading to an increased interest in obtain-

ing structural information.

RNA molecules have two sets of structural information: first, the primary structure

of RNA is a single strand made of the ribonucleotides A (adenine), C (cytosine), G

(guanine), and U (uracil). Secondly, the ribonucleotide sequences fold over onto

themselves to form double-stranded regions of base pairings, yielding higher order

tertiary structures.

It is well known that the structural features of RNAs are important in the molec-

ular mechanisms involving their functions. The presumption, of course, is that to a

preserved function there corresponds a preserved molecular confirmation and, there-

fore, a preserved structure. The RNA secondary structure is a restricted subset of the

tertiary structure that plays an important role between primary structure and tertiary

structure, as the problem of inferring the tertiary structures of RNA molecules is

often intractable. Based on a reliable secondary structure, the possible tertiary inter-

actions that occur between secondary structural elements, as well as between these

elements and single-stranded regions of RNAs, can be characterized.

Currently, the only completely accurate method of determining the folded struc-

ture of an RNA molecule is by X-ray crystallography; however, this is not only time

consuming, but also expensive.

The use of computational methods to predict RNA secondary structure began

more than 30 years ago. Many computational methods have been proposed in an

attempt to predict RNA secondary structures. Although computational methods

sometimes only provide an approximate RNA structural model, they facilitate the

future study of RNA structures. To date, several approaches have been established

for predicting RNA secondary structure, most notably the phylogenetic comparative

method (James et al. 1989; Winker et al. 1990; Chiu and Kolodziejczak 1991; Chan

et al. 1991; Gutell et al. 1992; Eddy and Durbin 1994; Gutell et al. 1994; Le et al.

1995), the thermodynamic energy minimization method (Nussinov et al. 1978;

Waterman 1978; Zuker and Stiegler 1981; Turner et al. 1988; Zuker 1989; Rivas and

Eddy 1999; Zuker 2000), and the stochastic context-free grammar method (Searls



1992, 1993; Eddy and Durbin 1994; Sakakibara et al. 1994; Knudsen and Hein 1999).

There are other approaches for RNA secondary structure prediction, including the

equilibrium partition function method (McCaskill 1990), genetic algorithms (Shapiro

and Wu 1996), algorithms that combine the phylogenetic and the thermodynamic

methods (Sanko¤ 1985; Le and Zuker 1990; Wang and Zhang 1999), and method

based on the hybridization of the thermodynamic and the phylogenetic methods as

well as genetic algorithm (Chen et al. 2000). In this chapter we discuss algorithms/

methods to predict RNA secondary structure.

14.2 Basic Definitions

definition 1 (Primary Structure) Because an RNA sequence is composed of four

possible bases, we can use a four-letter alphabet to represent an RNA sequence,

S ¼ fA;C;G;Ug. This base sequence is usually referred to as primary structure.

Formally, it is written as follows:

R ¼ r1; r2; . . . ; rn; ri A S

Following convention, we denote the left end of the sequence as the 5 0 end and the

right side of the sequence as the 3 0 end.
An RNA sequence folds by intramolecular base pairing and is stabilized by the

hydrogen bonds that result from that base pairing. Additionally, the stacking of base

pairs in a helix stabilizes the molecule and decreases the free energy of the folded

structure, but the appearance of loops (see the definition below) destabilizes the

molecule and increases the free energy of the RNA structure.

definition 2 (Canonical Base Pairs) In an RNA secondary structure, base pairs are

formed as one of the three kinds of pairs, C-G (G-C), A-U (U-A), and G-U (U-G).

There are three hydrogen bonds between C-G (G-C) pairs, two between A-U (U-A),

and one between G-U (U-G). Base pairs C-G (G-C) and A-U (U-A) are called

Watson-Crick base pairs. The base pair G-U (U-G) is referred to as a wobble base

pair. These three types of pairings are referred to as canonical base pairs.

definition 3 (Secondary Structure) We use i � j to represent the base pair formed by

the ith base, ri, and the jth base, rj, where 1a i < ja n. Let S be a set of base pairs

for sequence R, then set S is called RNA secondary structure if S satisfies the follow-

ing conditions:

1. For any base pair i � j in S, the base pairing of ri and rj is a canonical base pair (see

definition 2);
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2. For any two base pairs i1 � j1 and i2 � j2, either i1 ¼ i2 and j1 ¼ j2 or i1 0 i2, i1 0 j2,

j1 0 i2 and j1 0 j2;

3. If h < i < j < k, then S cannot contain both rh � rj and ri � rk;
4. If S contains ri � rj, then j j � ijb 4.

Following condition 2, a base ri can be in one of the two states: either it is paired with

another base, or it is unpaired. Condition 3 is usually referred to as the non-crossing

condition. In reality, conditions 2 and 3 may not be true, which will result in ‘‘triples,’’

‘‘knots,’’ and so on; however, all these are considered as features of the higher level

structure (that is, the tertiary structure). Still, it is possible to violate condition 1, which

will result in noncanonical pairs, such as G�A.

Obviously, the RNA secondary structure is much more complicated than the RNA

primary structure.

To facilitate the study of RNA secondary structure, the RNA secondary structures

are analytically decomposed, using a process called K-loop decomposition, into five

kinds of substructures, namely stacked pairs, hairpin loops, bulge loops, interior loops,

and multiple loops (sometimes we group the latter four simply as loops).

definition 4 (K-loop Decomposition) If i � j is a base pair and i < k < j, we say

that k is accessible from i � j if there is no i 0 � j 0 such that i < i 0 < k < j 0 < j. Similarly,

we say that the base pair k � l is accessible from i � j if both k and l are accessible from

i � j. The set of ðk � 1Þ base pairs and k 0 single-stranded bases accessible from i � j
is called the k-loop closed by i � j. The null k-loop, s0, consists of those single bases

and base pairs accessible from no base pair. They are also called the free bases and

base pairs. Any secondary structure S decomposes the set f1; 2; . . . ; ng uniquely into

k-loops s0; s1; . . . ; sm, where m > 0 if and only if S0q. This decomposition was first

introduced by Sanko¤ et al. (1983). The present definition follows Zuker and Sanko¤

(1984) and Zuker (1986), where the closing base pair is not contained in the k-loop. A

k-loop is sometimes also referred to as a k-cycle.

Biochemists had developed their nomenclature for k-loops long before any formal

definition was given. The various cases and subcases are as follows:

. k ¼ 1: A 1-loop is called a hairpin loop.

. k ¼ 2: Let i 0 � j 0 be the base pair accessible from i � j. Then the 2-loop is called a

1. stacked pair if i 0 � i ¼ 1 and j � j 0 ¼ 1, a

2. bulge loop if i 0 � i > 1 or j � j 0 > 1, but not both, and an

3. interior loop if both i 0 � i > 1 and j � j 0 > 1.

. k > 2: These k-loops are called multi-branched or multiple loops.
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Figure 14.1 shows an RNA secondary structure. The nucleotides are laid out in

such a way that paired bases are proximal with a . indicating the base pairing.

. In figure 14.1, base pair 18 � 26 encloses a hairpin loop; all the bases that are sur-

rounded by base pair 18 � 26 are not paired.

. Base pairs 2 � 86, 3 � 85, 4 � 84, 5 � 83, and 6 � 82 as a whole is called a helix or stem.

Generally, only more than two consecutive pairs will be referred to as a helix or stem.

. The area closed by base pair 52 � 73 and 56 � 69 is called an interior loop. Note that

all the bases are single bases.

. Base pairs 46 � 77 and 49 � 76 enclose a bulge loop; all the bases between 46 and 49

are not base paired.

Figure 14.1
An RNA secondary structure.
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. In this figure, a multiple loop is formed by the base pair 7 � 81, single bases 8–9, base
pairs 10 � 34 and 35 � 43, single base 44, base pair 45 � 78, and single bases 79–80.

. The (external) single-stranded region consists of the single bases that are not sur-

rounded by any base pairs in the structure, in this case single base 1 and single bases

87–90.

14.3 Combinatorial Algorithm

In 1975, Pipas and McMahon published the combinatorial method, which is believed

to be the first widely used method of predicting RNA secondary structures by using

the free energy rules. The main idea of this algorithm is to form the structures by

combining all potential helices in all possible ways. This algorithm works well when

dealing with short RNA sequences, but is infeasible for long sequences. The algo-

rithm consists of three steps.

In the first step, the RNA sequence is read and a bonding matrix B and a com-

patible matrix C are constructed.

A complete bonding matrix B for the sequence is set up by using the following

rules:

. If base i is able to form a classical Watson-Crick hydrogen-bonding pair, C�G,

G�C, A�U, or U�A, with base j, then the matrix element Bi; j ¼ 1.

. If base i forms a G�U or U�G pair with base j, then Bi; j ¼ 2.

. If base i and base j do not form the kind of base pairs discussed above, Bi; j ¼ 0.

From this matrix, all stable helical regions can be determined. A stable helical

region is defined as three or more consecutive base pairs ordered such that the

strands are antiparallel. On the bonding matrix this corresponds to find a set,

fBi; j;Biþ1; j�1; . . . ;Biþm; j�mg, where all elements are nonzero.

After the program has compiled the list of all possible helical regions derivable

from the given primary sequence, it will set up a compatibility matrix (C-matrix) to

indicate whether two regions can occur together in a given secondary structure. The

elements of this matrix are defined as:

. Let i; j be two helical regions, if i and j are compatible, which means that these two

helical regions can exist together in a given structure, then the matrix element will be

Ci; j ¼ 1, otherwise, Ci; j ¼ 0.

The following two criteria are given in the paper. The first criterion excludes

overlapping helices. The second criterion disallows pseudo-knots.
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. Let i and j be two helical regions and let Ri and Rj be two sets whose elements are

the bases forming region i and j respectively. Then Ci; j will be assigned 1 if and only

if Ri VRj ¼ q; otherwise Ci; j will be given 0. This is used to avoid conflicting stems.

. Let i and j be two helical regions and let Hi be a set whose elements are the bases

enclosed by region i. Let Qi be a set whose elements are all bases not included in Ri

and Hi. Then Ci; j will be assigned 1 if and only if Rj VHi ¼ q or Rj VQi ¼ q;

otherwise Ci; j ¼ 0.

The second step is permutation. The main purpose of this step is to create all pos-

sible structures that are obtainable from the given polynucleotide sequence. This is

accomplished by generating all possible permutations of the nonzero (compatible)

elements in the C-matrix. Here, a structure is defined as a set of three or more com-

patible helical regions.

In the third step, all the generated structures are evaluated, base by base, and

assigned a total free energy. The structures are then ordered by their free energies,

and the best (e.g., the most negative one) will be selected out and considered as the

optimal structure from the given RNA primary structure. Favorable free energy

contributions are assumed to be made by stacking interactions of stacked base pairs.

The specific values assigned are empirical. Unfavorable free energy contributions are

assigned to loops, as originally proposed by Tinoco et al. (1971).

This method can easily handle relatively short sequences, such as transfer RNAs.

However, it is not very e‰cient for folding long RNA sequences: the time needed for

long RNA sequences is at least proportional to 2n, where n is the number of nucleo-

tides in the sequence. Its major advantage is that it can predict a great many di¤erent

RNA secondary structures.

14.4 Energy Minimization Algorithms

The main idea of free energy minimization algorithms is that the whole structure can

be considered as a collection of substructures; thus, if one can obtain all the optimal

substructures, the whole optimal structure can also be determined. Generally, an en-

ergy minimization method has two stages. One is the filling algorithm that computes

the energy values of optimal structure of all fragments of a sequence. The other is the

trace back algorithm that computes an optimal structure by searching systematically

through the matrix of stored energy values.

Energy minimization algorithms all use dynamic programming. Dynamic pro-

gramming methods for RNA structure began with Nussinov et al. (1978) and Water-

man (1978). Since then, many improvements have been made (Zuker and Stiegler
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1981; Zuker and Sanko¤ 1984; Waterman and Smith 1986; Zuker 1989; Lyngø et al.

1999). Currently the most popular software for RNA folding, MFOLD, is based on

Zuker’s algorithm (Mathews et al. 1999).

14.4.1 Base Pair Dependent Energy Minimization Algorithm

Nussinov et al. (1978) were the first to apply the dynamic programming method to the

folding problembymaximizing base pairings.Nussinov’s algorithm is recursive. It com-

putes the optimal structure for small subsequences, and works its way up toward larger

and larger subsequences. The recurrence relation of Nussinov’s algorithm is as follows:

Mi; j ¼ max
n
Miþ1; j;Mi; j�1;Miþ1; j�1 þ 1; max

i<k< j
fMi;k þMkþ1; jg

o

where the Mi; j represents the maximum number of base pairs a secondary structure

from subsequence ri; . . . ; rj can possess. This equation states that the maximum

number of base pairs between i and j is computed from the maximum number be-

tween i þ 1 and j, the maximum number between i and j � 1, one (because i pairs

with j) plus the maximum number between i þ 1 and j � 1, and the maximum

number between i to k and between k þ 1 to j for some k.

The above equation is a very simple one, in which only the number of base pairs is

considered, and the biological/chemical information is ignored. One improvement is

to assign energy value to each base pair in a secondary structure. Suppose that there

is a function e such that eðri; rjÞ is the energy value of a base pair i � j. The above

equation can be modified as:

Wi; j ¼ min
n
Wiþ1; j;Wi; j�1;Wiþ1; j�1 þ eðri; rjÞ; min

i<k< j
fWi;k þWkþ1; jg

o

Unfortunately, this simple method cannot fully reflect the destabilizing e¤ects of

various loops, or the nearest neighbor interactions in helices and loops.

14.4.2 Loop Dependent Energy Minimization Algorithms

An RNA molecule tends to exist in a conformation characterized by the minimum

free energy E. The exact calculation of E from basic physical and chemical principles

for an arbitrary secondary structure S of an RNA is not feasible. However, free energy

E of an RNA secondary structure can be approximated as the sum of individual con-

tributions from stacked pairs and loops.

The weakness of the base pair dependent energy minimization method is that it

cannot easily be modified to incorporate stacking, stabilizing, and loop destabilizing

energy rules.
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The most sophisticated energy minimization algorithm for RNA secondary struc-

ture prediction is the Zuker algorithm. In Zuker’s algorithm, the entire RNA sec-

ondary structure S is considered as a set of loops (K-loop decomposition), s0 . . . sm,

where m > 0. Note that stacked pairs are also referred as loops. Energies are assigned

to the k-loops, and the energy of a structure S can be calculated as:

EðSÞ ¼
Xm
i¼0

eðsiÞ

Note that e is now a function of k-loops instead of a function of base pairs. In gen-

eral, eðsÞ is only negative when s is a stacked pair, because only stacked pairs con-

tribute directly to the stability of the molecule. Hairpin loops, bulge loops, interior

loops, and multiple loops all make positive energy contributions and therefore reduce

the stability of the molecule. The goal of the algorithm is to find a secondary struc-

ture that minimizes the free energy.

Energy parameters for various loops have been fitted to the results of experimental

thermodynamic studies of small model RNAs (Freier et al. 1986; Turner et al. 1987,

1988). They include parameters for stacking, hairpin loop lengths, bulge loop lengths,

interior loop lengths, multiple loop lengths, single dangling bases, and terminal mis-

matches on stems.

For the exterior-loop, s0, the energy is set to zero. We use ehði; jÞ to represent the

free energy of a hairpin loop closed by pair i � j. We use ebiði; j; i 0; j 0Þ to represent the

free energy of the bulge or interior loop closed by the two base pairs i � j and i 0 � j 0. We

use esði; jÞ to represent the free energy of stacked pairs, i � j and ði þ 1Þ � ð j � 1Þ.
A Simple Loop Dependent Energy Minimization Algorithm We first discuss a sim-

plified version of Zuker’s algorithm where the energy contribution of multiple loops

is set to zero and dangling single bases have no e¤ect.

For i < j, let Wði; jÞ be the minimum folding energy of all non-empty foldings

on the subsequence ri; . . . ; rj and Vði; jÞ be the minimum energy of all foldings

on the subsequence ri; . . . ; rj that contains the base pair i � j. Initially, Wði; jÞ ¼
Vði; jÞ ¼ þy, for those j j � ij < 4. The recurrence equation for W is as follows:

Wði; jÞ ¼ min

Wði þ 1; jÞ; (1)

Wði; j � 1Þ; (2)

Vði; jÞ; (3)

min
iak< j

fWði; kÞ þWðk þ 1; jÞg (4)

8>>>><
>>>>:
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This equation is obtained by considering the following cases. The first case is that,

in the optimal structure, base i does not pair with any other base; therefore we have

Wði; jÞ ¼ Wði þ 1; jÞ. The second case is that, in the optimal structure, base j does

not pair with any other base, and therefore we have Wði; jÞ ¼ Wði; j � 1Þ. The third
case is that, in the optimal structure, both base i and base j are paired and they pair

to each other, and therefore we have Wði; jÞ ¼ Vði; jÞ. The fourth case is that, in the

optimal structure, both base i and base j are paired but they do not pair to each

other. Because in secondary structures there are no crossings, the optimal structure

will come from two optimal substructures from subsequences i; . . . ; k and k þ 1; . . . ; j

for some k. Therefore, we have

Wði; jÞ ¼ min
iak< j

fWði; kÞ þWðk þ 1; jÞg

We now consider how to compute Vði; jÞ. Consider the optimal structure; there are

several possibilities. Base pair i � j can be part of a hairpin, or can be part of a bulge

or an interior loop, or can be stacked on base pair ði þ 1Þ � ð j � 1Þ, or can be part of a

multiple loop. This leads to the formula

Vði; jÞ ¼ min

ehði; jÞ; (1)

esði; jÞ; (2)

VBIði; jÞ; (3)

VMði; jÞ (4)

8>>><
>>>:

where VBIði; jÞ is for bulge or interior loop and VMði; jÞ is for multiple loop.

The formulas for VBIði; jÞ and VMði; jÞ are the following:
VBIði; jÞ ¼ min

i<i 0< j 0< j
i 0�iþ j�j 0>2

febiði; j; i 0; j 0Þ þ Vði 0; j 0Þg

VMði; jÞ ¼ min
iþ1<k< j�1

fWði þ 1; kÞ þWðk þ 1; j � 1Þg

A Revised Loop Dependent Energy Minimization Algorithm Zuker’s algorithm con-

siders some additional features in the folding process.

First, for the hairpin loop whose length is greater than 3, the so-called terminal

mismatched pairs are considered; that is, if base pair i � j closes a hairpin loop, then

the bases i þ 1 and j � 1 have some e¤ects on the free energy of the hairpin loop. In

addition, specific tetraloops, that is, hairpin loops with four bases, are assigned

enhanced stability. These tetraloops are known to be more stable or to be important

in stabilizing tertiary structures (Antao and Tinoco 1992; Lehnert et al. 1996;Mathews
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et al. 1999). Furthermore, there are special hairpin loops—for instance, the hairpin

with three single Gs, with their own energy rules. These considerations have been in-

corporated into the values of ehði; jÞ.
It has also been shown by experiments that the single bases also can stabilize the

RNA secondary structure. Suppose base i and base j form a base pair, and base

i þ 1 or base j þ 1 is a single base, then base i þ 1 or base j þ 1 is called a 3 0-dangling
base; if base i � 1 or base j � 1 is a single base, then base i � 1 or base j � 1 is called

a 5 0-dangling base. Because single bases adjacent to helices are assumed to stack

if the stacking is favorable, the algorithm considers that all dangling energies are

nonpositive.

The assumption that the contribution of a multiple loop is zero is too far from re-

ality. Biologists have shown that the multiple loops indeed play an important role in

constructing RNA secondary structure. A general energy function for multiple loops

may require exponential computing time. Zuker’s algorithm uses a linear energy

function to calculate the energy of multiple loops,

eðk-loopÞ ¼ aþ bk 0 þ ck; where k > 2

where a, b, and c are non-negative constants, k 0 is the number of single bases in the

multiple loop.

To implement this equation, W 0ði; jÞ is used; the meaning of W 0ði; jÞ is almost the

same as Wði; jÞ, except that it treats the exterior loops of optimal structures as mul-

tiple loops with appropriate penalties. W 0 also considers the special rules for some

hairpin loops and dangling stabilizing energies.

W 0ði; jÞ ¼ min

W 0ði þ 1; jÞ þ b; (1)

edði þ 1; j; iÞ þ Vði þ 1; jÞ þ bþ c; (2)

W 0ði; j � 1Þ þ b; (3)

edði; j � 1; jÞ þ Vði; j � 1Þ þ bþ c; (4)

Vði; jÞ þ c; (5)

edði þ 1; j � 1; iÞ þ edði þ 1; j � 1; jÞ þ Vði þ 1; j � 1Þ þ 2bþ c; (6)

min
iak< j

fW 0ði; kÞ þW 0ðk þ 1; jÞg (7)

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

where ed is the energy of the single dangling base: edði; j; kÞ means that base k is

dangling on base pair i � j. In this new equation, three more cases are added due to

the consideration of dangling bases, cases (2), (4), and (6). In actuality, these cases
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just refine the equation for Wði; jÞ. In addition, b and c are added as appropriate to

match the linear penalty for multiple loop.

To understand this equation, consider the optimal structure of ri; . . . ; rj.

. In the optimal structure, if base i does not pair to any other base and does not stack

on a base pair, then we have W 0ði; jÞ ¼ W 0ði þ 1; jÞ þ b, where b is the penalty con-

tribution of base i.

. In the optimal structure, if base i does not pair to any other base but stacks on base

pair ði þ 1Þ � j, then we have W 0ði; jÞ ¼ edði þ 1; j; iÞ þ Vði þ 1; jÞ þ bþ c, where b

is the penalty contribution of base i and c is the penalty contribution of base pair

ði þ 1Þ � j.
. In the optimal structure, if base j does not pair to any other base and does not

stack on a base pair, then we have W 0ði; jÞ ¼ W 0ði; j � 1Þ þ b, where b is the penalty

contribution of base j.

. In the optimal structure, if base j does not pair to any other base but stacks on base

pair i � ð j � 1Þ, then we have W 0ði; jÞ ¼ edði; j � 1; jÞ þ Vði; j � 1Þ þ bþ c, where b

is the penalty contribution of base j and c is the penalty contribution of base pair

i � ð j � 1Þ.
. In the optimal structure, if base i and base j form a base pair i � j, then W 0ði; jÞ ¼
Vði; jÞ þ c, where c is the penalty contribution of base pair i � j.
. In the optimal structure, if base i and base j do not pair with any base and

they both stack on base pair ði þ 1Þ � ð j � 1Þ, then W 0ði; jÞ ¼ edði þ 1; j � 1; iÞþ
edði þ 1; j � 1; jÞ þ Vði þ 1; j � 1Þ þ 2bþ c, where 2b are the penalty contribution of

base i and base j and c is the penalty contribution of base pair ði þ 1Þ � ð j � 1Þ.
. If none of the above is true, then the optimal structure will have at least two

branches and we choose the structure with minimum energy.

Therefore we have

W 0ði; jÞ ¼ min
iak< j

fW 0ði; kÞ þW 0ðk þ 1; jÞg

The equation for Vði; jÞ is exactly the same as before.

Vði; jÞ ¼ minfehði; jÞ; esði; jÞ þ Vði þ 1; j � 1Þ;VBIði; jÞ;VMði; jÞg
Recall that ehði; jÞ is for hairpin loops, esði; jÞ is for stacked pairs, VBIði; jÞ is for

bulge or interior loops, and and VMði; jÞ is for multiple loops. The computation for
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ehði; jÞ, esði; jÞ, and VBIði; jÞ has no change. However, the computation for VMði; jÞ
is now more complicated due to the stacking energy of single bases.

VMði; jÞ ¼ aþ cþminfe1ði; jÞ þ e2ði; jÞ þ e3ði; jÞ þ e4ði; jÞg
where

e1ði; jÞ ¼ min
i<k< j�1

fW 0ði þ 1; kÞ þW 0ðk þ 1; j � 1Þg

e2ði; jÞ ¼ bþ edði; j; i þ 1Þ þ min
iþ1<k< j�1

fW 0ði þ 2; kÞ þW 0ðk þ 1; j � 1Þg

e3ði; jÞ ¼ bþ edði; j; j � 1Þ þ min
i<k< j�2

fW 0ði þ 1; kÞ þW 0ðk þ 1; j � 2Þg

e4ði; jÞ ¼ 2bþ edði; j; i þ 1Þ þ edði; j; j � 1Þ
þ min

iþ1<k< j�2
fW 0ði þ 2; kÞ þW 0ðk þ 1; j � 2Þg

Because i � j closed a multiple loop, in the equation for VMði; jÞ we have a penalty

a for this multiple loop and a penalty c for base pair i � j.
The functions e1ði; jÞ, e2ði; jÞ, e3ði; jÞ, and e4ði; jÞ are obtained by considering

various cases of dangling bases. When base i þ 1 and base j � 1 are not stacked on

i � j, we have e1ði; jÞ. When base i þ 1 but not j � 1 is stacked on i � j, we have e2ði; jÞ.
When base j � 1 but not base i þ 1 is stacked on i � j, we have e3ði; jÞ. When both

base i þ 1 and base j � 1 are stacked on i � j, we have e4ði; jÞ.
The order to compute W 0ði; jÞ and Vði; jÞ is for j to increase from 1 to n, and for

i to decrease from j to 1. Once W 0ði; jÞ and Vði; jÞ are computed, a linear array

W5ðiÞ ¼ Wð1; iÞ, where 1a ia n, is computed. Finally, Wð1; nÞ ¼ W5ðnÞ contains

the energy value of the optimal structure. The computation of W5ðiÞ is necessary

because W 0ð1; nÞ treats exterior loops as multiple loops with penalty, whereas our

energy rule for exterior loops is to assign them zero energy. The equation for W5ðiÞ is
obtained by considering that dangling bases will contribute to the stability of the

structure and that the energy for an exterior loop is zero.

W5ð0Þ ¼ W5ðnþ 1Þ ¼ 0

W5ðiÞ ¼ minfW5ði � 1Þ;W 1
5 ðiÞ;W 2

5 ðiÞ;W 3
5 ðiÞ;W 4

5 ðiÞg
where

W 1
5 ðiÞ ¼ min

0ak<i
fW5ðkÞ þ Vðk þ 1; iÞg
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W 2
5 ðiÞ ¼ min

0ak<i
fW5ðkÞ þ edðk þ 2; i; k þ 1Þ þ Vðk þ 2; iÞg

W 3
5 ðiÞ ¼ min

0ak<i
fW5ðkÞ þ edðk þ 1; i � 1; iÞ þ Vðk þ 1; i � 1Þg

W 4
5 ðiÞ ¼ min

0ak<i
fW5ðkÞ þ edðk þ 2; i � 1; k þ 1Þ þ edðk þ 2; i � 1; iÞ þ Vðk þ 2; i � 1Þg

Time Complexity The time complexity of a direct implementation of this algorithm

is Oðn4Þ, as we need Oðn4Þ to compute VBIði; jÞ, the bulge or interior loop energy.

Waterman and Smith (1986) and Lyngø et al. (1999) have used alternative equations

to compute the bulge or interior loop energy by considering the lengths of the loops,

which reduced the computation time to Oðn3Þ. Therefore, the time complexity of

Zuker’s algorithm is Oðn3Þ. With this time complexity, this algorithm can easily

handle relatively long sequences.

Suboptimal Structures Another useful feature of Zuker’s algorithm is that along

with the optimal secondary structure, it can also produce suboptimal secondary

structures (Zuker 1989). The biologically correct structure is often not the calculated

optimal structure, but rather a structure within a few percent of the calculated mini-

mum energy. Therefore suboptimal secondary structures will present alternative

models for further investigation.

Suppose that Emin is the minimum folding energy. Let DE be a small energy in-

crement; then, with some constraints, this algorithm can produce suboptimal sec-

ondary structures with energy value within DE of the optimal. Wuchty et al. (1999)

proposed a di¤erent method to predict suboptimal foldings.

14.5 Phylogenetic Comparative Methods

Given a single RNA sequence, Zuker’s folding algorithm (Zuker 1989) can produce

optimal and suboptimal structures according to minimum energy criteria. However,

in some cases, these structures do not closely resemble the real structure. Biologists

use phylogenetic comparative methods on a set of related RNA sequences to deter-

mine common structures that are closer to the real structure.

One of the guiding principles in molecular biology is that structure is much more

closely conserved than sequence. This principle also holds for RNA structures. The

implication for secondary structure is that secondary structure is conserved even

though sequence drift occurs. Thus when one base of a pair changes, we usually find

that its partner also changes so as to conserve that base pair. This phenomenon is

called a compensatory base change or covariation.
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This leads to the following observation: if we have a set of related (meaning evo-

lutionarily close) RNA sequences, then they are expected to have similar secondary

structures. If a helical region appears in all the sequences, then it is more reliable than

those that only appear in a small number of sequences. If a common secondary

structure can be determined from the set, then it is probably more reliable than the

one produced by using a thermodynamic algorithm on a single RNA sequence. This

is the essence of the phylogenetic comparative method.

The framework of the phylogenetic comparative method is the following.

1. Select a set of related RNA sequences.

2. Perform multiple sequence alignment for the set of sequences.

3. Compute the covariation of any two columns of the alignment.

4. Determine the conserved helices and structures.

We need to select the sequences of homologous RNAs from di¤erent organisms

among which the sequences vary. The choice of appropriate organisms for RNA

structure comparisons requires a quantitative view of evolutionary relatedness. The

molecules compared must be di¤erent enough to provide numerous instances of

sequence variation with which to test pairing possibilities, yet they must not di¤er so

much that residues cannot be aligned with confidence in the alignment step. In gen-

eral, sequence similarities of 60–80 percent are favorable for inspecting the equivalent

base pairings occurring in these sequences (James et al. 1989).

In order to accurately evaluate the covariations, a good multiple alignment of the

sequences is required. Depending on the actual sequences, reliable alignments can be

derived either from alignment software or from alignment software followed by man-

ual adjustment. The result of this step is a multiple alignment of m RNA sequences:

R1 ¼ r1½1�; r1½2�; r1½3�; . . . ; r1½n�
R2 ¼ r2½1�; r2½2�; r2½3�; . . . ; r2½n�
R3 ¼ r3½1�; r3½2�; r3½3�; . . . ; r3½n�
. . . . . . . . .

Rm ¼ rm½1�; rm½2�; rm½3�; . . . ; rm½n�
For any i, 1a ia n, the set of bases rk½i� with 1a kam, is referred to as a

column of the alignment. Two columns of the alignment are said to be covarying

when the variation in one column is echoed complementarily in the other column.

The covariation of the two columns provides evidence for a conserved base pair.
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The degree of covariation can be measured by several quantitative measures. One

such measure is the mutual information content of two columns. For a single column

i, let fiðrÞ be the frequency of the nucleotide r (where r A fA;C;G;Ug) in the ith

column. Consider another column j, and let fi; jðr1; r2Þ be the joint frequency of the

two nucleotides, r1 from the ith column and r2 from the jth column. If two columns

vary independently, then fi; jðr1; r2Þ is roughly fiðr1Þ � fjðrjÞ. Therefore we would ex-

pect log2ð fi; jðr1; r2Þ=fiðr1Þ fjðr2ÞÞ to be roughly zero. We are interested in measuring

the divergence from independence. This leads to the definition of mutual information

content (Chiu and Kolodziejczak 1991; Gutell et al. 1992), Mði; jÞ, between two dif-

ferent columns, i and j:

Mði; jÞ ¼
X

r1; r2 A fA;C;G;Ug
fi; jðr1; r2Þ log2

fi; jðr1; r2Þ
fiðr1Þ fjðr2Þ

Mði; jÞ is maximized when both columns are highly variable and also completely

correlated. Two advantages of this measure are that any types of correlations can be

found and that correlations that are quantitatively low, but still significant, can also

be found (Gutell et al. 1992).

Once the covariation measure is computed, possible conserved helices can be cal-

culated (Winker et al. 1990; Chan et al. 1991) by searching the matrixMði; jÞ. Finally,
a conserved common secondary structure can be constructed from conserved helices

(Chan et al. 1991; Gutell et al. 1992; Han and Kim 1993; Eddy and Durbin 1994; Le

et al. 1995). One can apply Nussinov/Zuker algorithms for this step where the score

being optimized is a function of covariation measure instead of the number of base

pairs or of thermodynamic stacking energies. Nevertheless, this step normally requires

manual intervention.

Phylogenetic comparative methods are currently considered the most e¤ective

methods, the advantage being that they produce reliable secondary structures. The

disadvantage is that they depend on the availability of high-quality multiple align-

ments and that they normally involve manual intervention.

Phylogenetic comparative methods have also been used to determined RNA ter-

tiary interactions (Gutell et al. 1992).

14.6 Stochastic Context-Free Grammar Method

A more recent approach uses a stochastic context-free grammar to model the com-

mon features of a set of RNA structures (Searls 1992, 1993; Eddy and Durbin 1994;
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Sakakibara et al. 1994; Knudsen and Hein 1999). We will now give a brief descrip-

tion of this method.

One can view DNA and RNA sequences as sentences derived from a formal

grammar (Searls, 1992, 1993). In the simplest kind of grammar, a regular grammar,

sequences are derived from productions of the form S ! aS and S ! a, where S is a

non-terminal symbol and a is a terminal symbol. DNA sequences can be described by

a regular grammar. Base pairing in RNA secondary structure can be described by a

context-free grammar (CFG). Context-free grammars are more powerful than regu-

lar grammars because they allow additional forms of productions, such as these of

the form S ! SS and S ! aSa. The process of generating a sequence by repeatedly

applying productions is called derivation. For CFGs, a derivation can be arranged in

a tree structure called a parse tree.

Productions of the following forms can be used to model a RNA secondary struc-

ture: S ! SS, S ! aSa, S ! aS, and S ! a, where S is a non-terminal symbol and

a is a terminal symbol. The production S ! aSa describes base pairings; S ! aS and

S ! a describe unpaired bases; and S ! SS describes branching of secondary struc-

ture. A parse tree of these productions represents an RNA secondary structure. To

model a family of RNA sequences, additional production forms will be needed.

A stochastic context-free grammar (SCFG) is a context-free grammar such that

each production is associated with a probability value. The probability of a derivation

(parse tree) can be calculated as the product of the probabilities of the productions

producing the derivation. The probability of a sequence S under SCFG G is the sum of

probabilities over all possible derivations of G that produce the sequence (Sakakibara

et al. 1994):

Probðs jGÞ ¼
X

all derivations d

ProbðS0 )
d
s jGÞ

¼
X

a1;...;an

ProbðS0 ) a1 jGÞ � Probða1 ) a2 jGÞ � � � � � Probðan ) s jGÞ

Because CFGs are ambiguous grammars, a sequence can be derived by more than

one derivation or parse tree. For a single RNA, di¤erent parse trees usually represent

di¤erent secondary structures. Because an SCFG assigns a probability to each parse

tree, it has the advantage that the most likely parse tree for a given sequence can be

determined. Intuitively, this most likely parse tree corresponds to the correct sec-

ondary structure if the SCFG G models the RNA sequences correctly.

In order to apply SCFG to RNA secondary structure prediction, we need to solve

the following problems:
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1. Given a set of example sequences/structures, determine the optimal SCFG. This

includes the determination of the productions and the estimation of optimal proba-

bility parameters.

2. Given a SCFG G and an RNA sequence R, determine the most likely parse tree

that corresponds to the correct RNA secondary structure.

The first problem can be solved by the inside-outside algorithm (Lari and Young

1990; Baker 1979), which is an expectation maximization (EM) algorithm that cal-

culates maximum likelihood estimates of an SCFG’s parameters based on training

data. The second problem can be solved by a dynamic programming procedure sim-

ilar to the Viterbi algorithm for hidden Markov models (HMMs) (Rabiner 1989).

Given a set of RNA sequences, Eddy and Durbin (1994) use multiple sequence

alignment to construct a model (SCFG). They then iteratively reestimate the model

by an EM algorithm. With a new model generated, a new alignment can be con-

structed. This process is repeated until the model stabilizes.

Sakakibara et al. (1994) proposed a method where an initial grammar instead of a

multiple alignment is used. Their algorithm is based on a tree grammas and is more

e‰cient than the inside-outside algorithm.

One can view SCFG method as an automated phylogenetic comparative method.

Durbin et al. (1989) suggested that currently this aspect of the SCFG method is

mostly theoretical rather than of practical interest.

14.7 Conclusions

RNA secondary structure prediction is an important problem in molecular biology.

Thermodynamic energy minimization methods have been used to predict secondary

structures from a single RNA sequence. Phylogenetic comparative methods have

been used to determine secondary structures from a set of homologous RNAs whose

sequences can be reliably aligned. One interesting problem is how to combine e‰-

ciently those two approaches, though there seems to be some inherent di‰culties.

Another challenging problem is to predict RNA tertiary structures. Although some

initial attempts have been made, those problems have not been solved satisfactorily.
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15 Properties and Prediction of Protein Secondary Structure

Victor V. Solovyev and Ilya N. Shindyalov

15.1 Introduction

Secondary structure describes regular features of the main chain of protein molecules.

Experimental investigations on polypeptides and small proteins suggest that second-

ary structure can form in isolation, implying the possibility of identifing rules for its

computational prediction. Predicting secondary structure from the amino acid se-

quence alone is an important step toward our understanding of protein structure and

function. It may provide a starting point for tertiary structure modeling, especially in

the absence of a suitable homologues template structure, reducing the search space in

simulation of protein folding. Advances in fold recognition (or threading) techniques

(Fischer and Eisenberg 1996; Russel et al. 1996; Koretke et al. 1999; Di Francesco et

al. 1999; Hargbo and Elofsson 1999; Fisher 2000) have been where secondary structure

predictions and other protein characteristics were combined to suggest resemblance

to a known fold. The predictions can also be used in various aspects of molecular

biology research to provide clues about the functional properties of proteins under

analysis. The goal in secondary structure prediction approaches is to extract the max-

imum information from the primary sequence in the absence of a tertiary structure

model (King and Sternberg 1996). In this chapter we will deal with the description of

secondary structure characteristics, assignment of secondary structure using known

3D coordinates, and prediction of secondary structure based on primary sequence.

15.2 Secondary Structure Elements in Globular Proteins

The term ‘‘secondary structure’’ was first introduced by Linderstrom-Lang

(Linderstrom-Lang and Schnellman 1959) more than 40 years ago to describe regular

structural patterns of polypeptide backbone independent of the types of amino acid

side chains. There are three major types of secondary structure: a-helix, b-structure

and b-turn.

The occurrence of di¤erent kinds of secondary structure can be seen in the Ram-

achandran plot (Ramachandran et al. 1966). In figure 15.1, one can see the distri-

bution of j and c angles for a total of 9,156 amino acid residues from 4,413 protein

chains, based on crystallographic data. There are two areas where the density of points

is high: (1) around j ¼ �60� and c ¼ �60�, which corresponds to the a-helix; (2) and

around j ¼ �90� and c ¼ 120�, which corresponds to the b-structure.



Figure 15.2 shows the Ramachandran plots for valine (a) and leucine (c) residues

calculated for five thousand randomly chosen amino acids. The highly occupied areas

of these plots have a good correspondence with low energy conformation of amino

acid residues (Némethy and Scheraga 1977). All other residues have very similar

plots, with the exception of glycine (figure 15.2D) and proline (figure 15.2B). Glycine

has a much wider low-energy area because it does not have a C a atom. Proline has its

side chain covalently bound to backbone amine; hence its j angle is limited to the

range of j ¼ �60� G 20�.
j and c angles associated with low-energy areas on energy plots are the angles

observed in major types of secondary structure: a-helices and b-structures, as shown

in figure 15.3. (Pauling et al. 1951). The largest area corresponding to b-structures

can be seen as divided into four parts due to the limits of representation of continuous

map. Two separate areas (aR and aL) correspond to right-handed and left-handed a-

Figure 15.1
Distribution of main chain dihedral angles for random sample of 9,156 amino acids from 4,413 protein
chains.
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Figure 15.2
Comparison of main chain dihedral angles distributions for (A) Valine; (B) Proline; (C) Leucine; (D)
Glycine.
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helices, respectively. Another two areas (310R and 310L) correspond to right-handed

and left-handed 310-helices.

15.2.1 Helices

Regular backbone conformations with the elements maintaining nearly identical ori-

entations (the same j and c angles) can be described as helices, which can be de-

scribed by the shift along the helical axis (d ), the number of residues per turn (n), and

the distance (r) from the specific residue location (e.g., C a atom) to the helical axis.

Figure 15.4 shows the overall geometry and the schematic diagrams for 310- and

a-helices. Protein helices are stabilized by hydrogen bonds between the amino and

Figure 15.3
Conformational states in proteins (adapted from Némethy and Scheraga 1977). aR and aL, right and left
a-helices; 310R and 310L , right and left 310 helices (or b-turn of type III); b, b-structural conformation
(extended polypeptide chain).
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carboxyl groups of the amino acid residue main chains: i, i þ 3 (310-helix); i, i þ 4

(a-helix); and i, i þ 5 (a-helix) (Schulz and Schirmer 1979).

The a-helix was first described by Pauling (Pauling et al. 1951), who modeled a

stable polypeptide chain based on peptide unit geometry. There are about 35 percent

of amino acids in the a-helical conformation, based on crystallographic data for 50

di¤erent proteins (Levitt 1978).

The average length of the a-helix is about 10–11 residues, which is approximately

17 Å, or three helical turns. The main chain angles in the a-helix are approximately

j ¼ c ¼ �60� (Schulz and Schirmer 1979).

Some amino acid residues have small but distinguished preference to forming a-

helical conformation. Ala, Glu, Leu, and Met are often found in a-helices, whereas

Figure 15.4
Helices with internal hydrogen bonds in proteins. (A) 310-helix; (B) a-helix.

Properties and Prediction of Protein Secondary Structure 369



Pro, Gly, Ser, Thr, and Val occur relatively rarely (Levitt 1978; Chou and Fasman

1974a). Proline mainly occurs in the first turn of an a-helix because it can not donate

a hydrogen bond in the middle of a helix, and it creates sterical problems in a-helical

conformation (Richardson 1981).

In a regular a-helix, all dipoles formed by the NaH . . . OaC main chain groups

point along the helical axis. It creates total nonzero dipole moment of the a-helix and

partial charges of about one-half of the electron charge (positive charge at N-terminus

of the a-helix and negative charge at the C-terminus).

In addition to local interactions within neighboring residues, the a-helix is sta-

bilized by the gain of hydrophobic energy when nonpolar side chains of amino acids

are shielded from the solvent. According to Chothia (1976), when an a-helix is

formed, the energy goes down by 2–3 kcal/mol per residue.

Most a-helices are immersed into protein interior from one side and form an exte-

rior protein surface from the other side. Analysis has shown that nonpolar residues

are usually located on one side of a-helix (forming a hydrophobic cluster) and polar

and charged residues are on the other side (Eisenberg et al. 1984). A typical cluster

includes hydrophobic amino acids in positions i, iG 1, iG 3, iG 4; . . . (Palau and

Puigdoménech 1974). In the folded protein, the a-helices are additionally stabilized

by interacting with their hydrophobic clusters, thus forming hydrophobic core of the

protein globule.

In addition to the a-helix, there is a 310-helical conformation that is relatively

common in proteins. The 310-helix contains three residues and 10 main chain atoms

per turn (see figure 15.3). j and c angles in the 310-helix equal approximately �60�

and �30�, respectively. Long 310-helices are energetically unfavorable, compared to

a-helices; hence the majority of such helices contain no more than two turns. The 310-

helix is often located at the C-terminus of an a-helix (Richardson 1981). Dipoles

formed with hydrogen bonds in 310-helices are not parallel to the helical axis because

the energy minimum is not reached. Furthermore, the side chains are placed into a

sterically unfavorable conformation, where the residues i and i þ 3 are not on the

same line along the helical axis (see section 15.2.3) (Schulz and Schirmer 1979).

Several left a-helices have been found in proteins. The longest one occurs in alco-

hol-dehydrogenase and has three hydrogen bonds. A left a-helix containing six amino

acids has been found in thermolysine (Kabsch and Sander 1983).

15.2.2 b-structures

The second common type of ordered polypeptide conformation (after the a-helix) is

the b-structure. About 36 percent of amino acid residues in globular proteins are in b-

structural state (Levitt 1978).
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The j and c main chain angles of the b-structure are spread widely in the upper-

left corner of the Ramachandran plot (see figure 15.3). j ¼ c ¼ 180� corresponds to
the allowed conformation on (j;c)-map and represents the fully extended confor-

mation of the polypeptide chain (Richardson 1981). When looking along the poly-

peptide framework, one can see that the neighboring side chain groups are pointing

to the opposite directions. However, such fully extended conformation is favorable

for polyglycine (figure 15.5) only. In the presence of other amino acids, the j and c

angles are slightly di¤erent.

The flat layer of b-strands (b-sheet) was first described by Pauling et al. (1951) as

one of the structures with the maximum hydrogen bonding between the CbO and

NaH groups of the main chain. There are two possible mutual arrangements of b-

strands in the b-sheet with respect to polypeptide chain direction: parallel and anti-

parallel (figure 15.6).

Most b-sheets in proteins are not flat but have a left twist, if one looks along a

single b-strand (Schulz and Schirmer 1979). Every b-strand can be considered a very

extended left helix, which turns 60� per two residues (figure 15.7). The twist in b-

structure allows for conformational stabilization, providing energetically favorable

contacts between the side chains of neighboring b-strands and the optimal orientation

of the hydrogen bonds (Richardson 1981). In addition, such b-sheets are capable of

dense packing between them, as well as with a-helices

Parallel b-structures usually occur inside a protein. They are often surrounded by

a-helices protecting them from the solvent on both sides. Parallel b-structures usually

do not form layers with fewer than five b-strands. The j and c angles in parallel b-

strands are more regular than in antiparallel b-strands. This indicates that parallel b-

sheets are less stable than the antiparallel. In b-strands, one side is typically exposed

to solvent and the other side is embedded inside the protein. This results in the char-

acteristic interchange of hydrophobic and polar amino acids in antiparallel b-sheets

(figure 15.7). The area in a b-strand involved in H-bonding with another b-strand

ranges from one to nine residues in antiparallel b-sheets and from one to five residues

in parallel b-sheets, respectively. The number of b-strands in a b-sheet varies from

two to thirteen. b-sheets of mixed parallel and antiparallel b-strands comprise less

than 20 percent of all cases. Main chain angles are distorted in the mixed b-sheets

because some b-strands are involved in both parallel and antiparallel interactions on

the opposite sides (Richardson 1981).

Amino acids Val, Ile, Tyr, and Thr have a preference for the b-structural confor-

mation, whereas Glu, Gln, Lys, Asp, Pro, and Cys are rarely found in it (Levitt 1978).

In general, b-structures are favored by bulky amino acids, which usually have limited
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Figure 15.5
b-structural conformation. (A) b-strand geometry; (B) Interacting b-strands.
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conformational flexibility due to branching at the Cb atom or a large aromatic

group.

15.2.3 b-turns

After the exclusion of a-helices and b-structures, the rest of the polypeptide chain

usually denotes as random coil or non-regular structure. Nevertheless, there are some

fragments with recurring conformation within coiled structures. The most frequent

one is the b-turn, which accounts for nearly 32 percent of all amino acid residues

(Chou and Fasman 1977).

b-turn is a polypeptide fragment comprised of four consecutive amino acid residues

in a region where the polypeptide chain changes direction roughly 180� (Chou and

Fasman 1977). Conformation of the b-turn was first described in a theoretical study

of three peptide units (or four neighboring residues) that are stabilized by a hydrogen

bond between CbO of residue i and NaH of residue i þ 3. Two most stable con-

formations were revealed, corresponding to type I and type II b-turns (figure 15.8),

which represent 35 percent and 15 percent, respectively, of all b-turns. In addition, 15

percent of all turns are single turns of the 310-helix (type III b-turns), and 10 percent

of all turns are mirror conformations of the type I–III turns.

Figure 15.6
Features of b-structural conformation. (A) Antiparallel b-sheet; (B) Parallel b-sheet.
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Non-standard turns (or bends) containing no hydrogen bonds occur in 25 percent

of cases. They can be recognized if the distance between the C b atoms of residues i

and i þ 3 is less than 7 Å and those residues are not the part of an a-helix.

b-turns are usually located on the protein surface and contain many polar and

charged amino acid side chains. Most turns contain glycine in the second or third

position, where the absence of a side chain in glycine is favorable for the interaction

among main chain atoms (Richardson 1981). Proline often occurs at the second posi-

tion of turns. About two-thirds of Pro-Gly and Pro-Asp sequences in proteins with

known 3D structures are located in the two middle residues of b-turns (Richardson

1981). Many b-turns connect neighboring fragments of secondary structures (a-a, a-b,

and b-b). In these cases, the b-turn conformation can be stabilized by non-local interac-

tions between the long secondary structures (Schulz and Schirmer 1979; Richardson

1981).

Figure 15.7
Twist in b-sheets.
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Figure 15.8
Type I and type II of b-turns. (A) Type I b-turn in tenascin (PDB ID 1TEN) at positions 815–818, length
of H-bond 2.77 Å. (B) Type II b-turn in mannose permease (PDB ID 1PDO) at positions 84–87, length of
H-bond 2.99 Å.
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15.3 Assignment of Secondary Structure for Known 3D Structures

Secondary structure assignment can be defined as the detection of regions that belong

to the various major types of secondary structure in polypeptide chains with known

3D structure. Major criteria for the detection of secondary structure are the presence

of a hydrogen bond between main chain COa and NHa groups and local geometry.

Several approaches have been developed for secondary structure assignment (Levitt

and Greer 1977; Kabsch and Sander 1983; Frishman and Argos 1995). We will de-

scribe in detail the algorithm proposed by Kabsch and Sander (1983), which is known

as DSSP, by the name of the database where secondary structure assignments for all

structures in the Protein Data Bank (PDB) are provided.

The DSSP algorithm takes a single decision parameter—the presence or absence of

an H bond. H-bonding patterns are described as ‘‘n-turns,’’ which are H-bonds be-

tween CO of residue i and NH of residue i þ n, where n ¼ 3; 4; 5; and ‘‘bridges,’’ which

are H-bonds, between residues not near each other in sequence. In this definition, a-

helices can be described as repeating 4-turns and b-structure as repeating bridges. The

results can be easily summarized and presented as a single character string corre-

sponding to the amino acid sequence (figure 15.9). It detects the most commonly used

representation of a protein secondary structure.

An H-bond is defined based on an electrostatic model with energy calculated as

follows:

E ¼ q1q2ð1=rðONÞ þ 1=rðCHÞ � 1=rðOHÞ � 1=rðCNÞÞ � f
with q1 ¼ 0:42e and q2 ¼ 0:20e, where e is the unit electron charge, r(AB) is the

interatomic distance from A to B in Angstroms, f ¼ 332 is the dimensional factor,

and E is the energy in kcal/mol.

If the energy is below �0.5 kcal/mol, then an H-bond is assigned. The choice of the

energy cuto¤ takes into account weak or bifurcated H-bonds and errors in the 3D

coordinates. Figure 15.10 summarizes the types of turns and bridges detected and the

corresponding H-bonding patterns. In the next step, turns and bridges are analyzed

for cooperative H-bonding patterns.

Minimal helices are defined as two consecutive turns of the corresponding type

(e.g., 3-turn for 3-helix). There are three types of helices defined: 3-helix, 4-helix, and

5-helix, corresponding to 310, a, and p helices, respectively. Minimal 4-helix of length

4 (starting at residue i) requires two 4-turns at residues i � 1 and i. Longer helices are

built from the overlapping minimal helices. In the summary (figure 15.9), the helices

are represented with letters G, H, and I for 3-, 4-, and 5-helices, respectively, brack-

eted with H-bonds (shown as ‘‘>’’ and ‘‘<’’).
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To describe a b-structure, two types of patterns are introduced: ‘‘ladder’’ and

‘‘sheet.’’ A ladder is a set of one or more consecutive bridges of the same type. A

sheet is one or more ladders connected by shared residues. Ladders and sheets are

labeled alphabetically, parallel ladders by lower case, antiparallel by upper case, and

sheets by upper case. Ladders of size 1 are labeled by ‘‘B,’’ and longer ladders are

labeled by ‘‘E’’ in the summary.

Additional rules were introduced to handle the secondary structure irregularities.

For helices, it follows implicitly from the definition that two overlapping minimal

helices o¤set by two or three residues are joined into one helix. For a b-structure, it

was explicitly defined that allowance for b-bulges is such that two perfect ladders or

bridges can be connected through a gap of one residue in one strand and four residues

in the other strand. In the summary, all bulge-linked ladders are labeled with ‘‘E.’’

In addition to secondary structure, two geometrical features of polypeptide chains

are also incorporated into the summary: ‘‘bend’’ and ‘‘chirality’’ (see figure 15.10

for details). The bend is assigned at sites where the polypeptide chain has an angle of

Figure 15.9
Sample of secondary structure assignment by DSSP (Kabsch and Sander 1983).
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Figure 15.10
Hydrogen bonding patterns (adapted from Kabsch and Sander 1983).
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more than 70� between line segments connecting Ca atoms from residue i to i � 2 and

i to i þ 2. The chirality for residue i is defined as a sign of the dihedral angle built on

Ca atoms from residues i � 1, i, i þ 1, i þ 2.

A similar approach to secondary structure assignment was introduced by Frishman

and Argos (1995) in the STRIDE algorithm, which extends the DSSP definition by

adding information on backbone torsion angles. H-bonding criteria were also im-

proved by incorporation of experimental information on hydrogen bonds geometry

and refining energy function. This resulted in better approximation to the assignment

of secondary structure provided by experimentalists who determined the 3D struc-

ture. For 226 proteins in a test data set, STRIDE assigns 58 percent of the proteins

closer to experimental assignment compared to DSSP, whereas DSSP assigns only 31

percent closer than STRIDE. For 11 percent of the proteins, both computational

assignments are in the same proximity to the experimental ones.

15.4 Computational Methods of Secondary Structure Prediction

15.4.1 Summary of Earlier Approaches

Methods for the prediction of secondary structure from amino acid sequence have

been developed for more than 30 years. They can be grouped into the following basic

groups: (1) those that are based on stereo-chemical rules (Lim 1974), (2) those that

use a combination of rules and statistical parameters (Chou and Fasman 1974a, b,

1978), (3) those that apply physical models of secondary structure formation (Ptitsyn

and Finkelstain 1983), (4) those that are based on statistical information and infor-

mation theory (Nagano 1973; Garnier et al. 1978; Gibrat et al. 1987), (5) those that

analyze sequence patterns (Cohen et al. 1983, 1986), (6) those that are based on dis-

criminant analysis (Solovyev and Salamov 1991, 1994), (7) neural-network approaches

(Qian and Sejnowski 1988; Holley and Karplus 1989; Zhang et al. 1992), (8) analyzing

evolutionary conservation in multiple alignments (Zvelebil et al. 1987), (9) nearest-

neighbor algorithms (Salzberg and Cost 1992), and (10) consensus prediction algo-

rithms (Viswanadhan et al. 1991). There are also methods that combine characteristics

and principles from several of these categories.

At the beginning of 1990, these methods had achieved about 65 percent accuracy

in predicting secondary structure in three states: a-helices, b-strands, and coil seg-

ments. During the last decade, there has been much improvement in methods based

on discriminant analysis, neural network, and nearest-neighbor based approaches;

algorithms such as PHD (Rost and Sander 1993, 1994), NNSP (Salamov and Solovyev

1995), SSPAL (Salamov and Solovyev 1997), DSC (King and Sternberg 1996, 1997),
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alignment based nearest-neighbor (Ito et al. 1997; Frishman and Argos 1997), and

PSI-PRED and its modifications (Jones 1999; Petersen et al. 2000) have yielded an

accuracy generally ranging from 70 to 80 percent. In the following sections, we will

describe the major features of these methods and discuss their performance.

15.4.2 Discriminant-analysis Approaches

The definition of secondary structure is somewhat imprecise and di¤erent authors

may arrive at di¤erent secondary structure assignments for the same protein by using

di¤erent assignment algorithms. For the purpose of modeling tertiary structures, it is

more important to predict accurately the location of entire a-helix and b-strand seg-

ments than to reach higher single residue accuracy (Rost et al. 1994). Taking this into

account, Solovyev and Salamov (1991, 1994) developed the Secondary Structure Pre-

diction (SSP) program for the identification of whole a-helices and b-strands. They

postulated that a particular conformation of protein segment can be determined by the

combined action of three elements (figure 15.11): N-terminal, internal, and C-terminal

regions, because the N- and C-terminal of a-helices and b-strands are formed by amino

acids with specific properties (Richardson and Richardson 1988; Presta and Rose

1988) that are di¤erent from the characteristics of internal regions of these structures.

The preference of these segments for the a-helix or b-strand conformation was esti-

mated on the basis of the corresponding values of linear discriminant functions (LDF),

which combined three characteristics of segments: average single-residue, a pair of

residues preference parameters, and hydrophobic moment. The LDF were determined

using linear discriminant analysis (Afifi and Azen 1979), described in detail in chapter

9 on a database of proteins of pairs of alternative classes: a-helical/non-a-helical and

b-strand/non-b-strand segments. Because the mechanisms of formation of long and

short secondary structures may di¤er during protein folding, and also to increase the

Figure 15.11
A model of a-helical (b-strand) segments.
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discriminating power of LDF, Solovyev and Salamov separately examined the cases

of long and short structures. Thus, four pairs of alternative classes were considered

for short and long a-helical and b-strand segments.

Characteristics Description Only three simple characteristics were used to assign a

given amino acid region to one of the secondary structure classes.

The singleton characteristic is an average of single-residue preferences. Using a

database of known protein structures, we calculated preferences (Chou and Fasman

1978) of all 20 types of amino acids to be in di¤erent part of a-helix and b-strand

segments (N- and C-terminal, internal part, adjacent N- and C-terminal regions). For

any segment, the average preference for a-helix or b-strand was computed as the sum

of the individual preferences of all residues in the segment (15.1):

S ¼ 1

L

Xli�1

i¼l1�m

SNl

i þ
Xliþm�1

i¼l1

SN
i þ

Xl2�m

i¼l1þm

Sin
i þ

Xl2
i¼l2�mþ1

SC
i þ

Xl2þm

i¼l2þ1

SCr

i

 !
ð15:1Þ

Here L ¼ l2 � l1 þ 2mþ 1, l1 and l2 are the first and the last position of the

segment; m ¼ 4 or 3 for long a-helices and b-structures, respectively; m ¼
Int½ðl2 � l1 þ 1Þ=2� for short segments; SNl

i , SN
i , S in

i , SC
i , SCr

i are the preference

parameters of amino acid in position i that is adjacent to N-terminal, N-terminal,

internal, C-terminal, or adjacent to the C-terminal part of the segment, respectively

(Chou and Fasman 1978):

Skð jÞ ¼ Pkð jÞ
Pð jÞ ð15:2Þ

Here Pð jÞ and Pkð jÞ are the fractions of amino acid of type j in the whole database

and in the secondary structure of k type, respectively ð j ¼ 1; 20; k ¼ Nl ;N; in;C;CrÞ.
The doublet characteristic is similar to the Chou-Fasman singleton characteristic.

The pair of residues can be separated by k (k may be 0, 1, 2, or 3) other residues.

Preferences for a particular type of secondary structure s (a-helix, b-strand, or their

N- or C-terminals) of a pair of amino acids of type i and j, separated by k residues

(pair of the ijk type), are defined as:

Ds
ijk ¼ Ps

ijk

Pijk

ð15:3Þ

Here Pijk and Ps
ijk are the fractions of the ijk pair in the whole database and in a

given secondary structure s, respectively. For N- and C-terminal regions, only those

pairs that have one residue inside and one outside of these secondary structure seg-
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ments were taken into consideration. The average preference of a segment to be in

the s conformation (a-helix or b-strand) was calculated as the sum of all its possible

pair characteristics occurring in the N-terminal, internal segment, and C-terminal of

the s.

Eisenberg et al. (1984) described the hydrophohic moment characteristic and peri-

odicity in hydrophobicity of a fragment of amino acid sequence as

M ¼
Xl�1

k¼0

hk cos ðkwÞ
 !2

þ
Xl�1

k¼0

hk sin ðkwÞ
 !22

4
3
5
1=2

ð15:4Þ

Here hk; k ¼ 0; 1; . . . ; l, is the value of the hydrophobicity (Cornette et al. 1987)

of the k-th residue in the fragment with the length l, and w is an angle of the amino

acid residue hydrophobic moment in the corresponding conformation of the poly-

peptide chain. The hydrophobic moments with a periodicity corresponding to a-helix

ðw ¼ 1000Þ and b-strand ðw ¼ 1800Þ were taken as the characteristics for discrimi-

nating a-helix and b-strand segments, respectively.

The Mahalonobis distances, showing the significance of each characteristic and

their combined value for each pair of alternative classes, are given in table 15.1. In all

four cases (long and short a-helices and b-strands), we observe that the strongest

characteristic is the average pair preference parameter, followed by the single prefer-

ence parameter and hydrophobic moment. As expected, long a-helix and b-strand

segments were discriminated much better than the shorter ones.

SSP Algorithm of Secondary Structure Prediction To predict the secondary struc-

ture, a nucleus of potential a-helix is searched for as a region five residues long with

an average single characteristic higher than a particular threshold. The value, d, of

the LDF for short a-helices is calculated for this segment. If the segment has d < Pas
(Pas is a threshold distinguishing short a-helices from non-helical regions), the next

Table 15.1
Mahalonobis’s distances

Segment type D S M Total D2

Long a-helices 3.97 2.31 1.77 5.19

Long b-strands 4.16 2.91 0.27 4.31

Short a-helices 2.10 1.16 0.98 2.76

Short b-strands 2.69 1.85 0.20 2.74

Significance of various characteristics of secondary structure segments measured by Mahalonobis dis-
tance D2. D, doublet preferences; S, singleton preferences; M, hydrophobic moment.
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sequence segment displaced to the right one position was examined. On condition

d > Pas, the segment was expanded in both directions one residue at each step. The

LDF value for a short or long a-helix for the corresponding segment was calculated

depending on the segment length. A segment with the maximal d was considered a

potential a-helix (the maximal extension on both sides was up to 15 positions). The

search for other structures was continued after the C-terminus of the last selected helix.

A similar procedure was performed for the potential b-strand segments. The result is

a set of a potential a-helices and b-strands segments. In the final prediction, over-

lapping regions were assigned to the structures with the highest LDF value in the

region of overlap. Non-overlapping edges of the segments with lower values of LDF

were retained or discarded depending on their length (the minimum length for assign-

ing an a-helix was five residues; for the b-strands, three residues).

Measures of Prediction Accuracy The jackknife procedure was used for estimating

the prediction accuracy of the method on 126 nonhomologous proteins (Rost and

Sander 1993), the secondary structure of which was assigned by the DSSP program

(Kabsch and Sander 1983). For assessing single-residue accuracy, several perfor-

mance measures were used: the percentage of correct residue predictions Q3 ¼
1=LðPa þ Pb þ PcoilÞ � 100% and Sensitivity (Sn), Specificity (Sp), as well as Matthew’s

(1975) correlation coe‰cient (CC) as defined in chapter 9. Measures for single-residue

accuracy do not completely reflect the quality of a prediction. For example, the clear

wrongly predicted structure ababab in the a-helix region would still assign correctly

the conformational states of 50 percent of the residues. That is why in addition to

single-residue accuracy, a measure reflecting the number of correctly predicted sec-

ondary structure segments is also introduced. In this case, a-helices and b-strands are

considered as correctly identified if they had more than a pre-defined number of

correctly predicted residues (Rost et al. 1994a).

The prediction accuracy Q3 for various combinations of the considered character-

istics is shown in table 15.2. Prediction using only a single characteristic gave an

Table 15.2
Single-residue prediction accuracy Q3 for various combinations of secondary structure characteristics

Characteristics Q3 (%)

Singleton characteristic (S) 58.5

Sþ hydrophobic moment of the segment (M) 61.4

Doublet characteristic (D) 62.2

DþM 64.8

Dþ SþM 65.1
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overall 58.2 percent prediction accuracy for three states. Therefore, the model used

in this method is better than the standard Chou-Fasman method (about 50 percent

accurate; Kabsch and Sander 1983), although both methods used similar parameters.

Using only pair characteristics gave 62.2 percent accuracy, which is better than

analogous characteristics used in the GOR III method (Gibrat et al. 1987), which

have 53.5 percent accuracy. It can be seen that the addition of single characteristics

only slightly increased overall prediction, from 64.8 percent to 65.1 percent. This

can be explained by the high correlation between single and pair characteristics

ðr ¼ 0:80Þ.
Assignment of a secondary structure according to the three-dimensional coordinates

performed by di¤erent methods may di¤er up to 21 percent (Woodcock et al. 1992).

However, a detailed comparison of the secondary structure of proteins belonging to

the same structural family showed that a per-residue comparison is not su‰cient to

assess the presence of segments in a three-dimensional structure of proteins (Rost

et al. 1994).

Single-residue accuracy measures sometimes poorly reflect the actual prediction of

secondary structure. For example, assigning coil state to all amino acids in the pro-

tein 4sgb gave Q3 ¼ 76:7 percent, but this protein has several missed b-structures.

Conversely, for the protein 3b5c, SSP correctly predicted four out of five real a-helices

and three out of five real b-strands, although Q3 was only 56.5 percent. A simple

measure for assessing the quality of predicted secondary structure segments may be

the average lengths of the predicted segments (Rost and Sander 1993). The observed

and predicted average lengths for a-helices are 10.6 and 10.7 amino acids, and for b-

strand segments are 5.1 and 5.8 amino acids, respectively. The predicted values are

very close to the real ones.

The segment prediction accuracy can be estimated by a simple measure comparable

to that proposed by Taylor (1984): the structure is considered correctly predicted if it

has at least two amino acids in common with the real one. It was observed that long

segments were predicted much better than short ones: 89 percent of a-helices longer

than eight residues and approximately 7l percent of b-strands longer than six residues

were correctly located with specificity of correct prediction 0.82 and 0.78, respectively

(table 15.3).

An example of SSP secondary structure prediction is given in figure 15.12. The

output of the prediction program presents not only the final optimal variant of the

secondary structure assignment, but also a set of potential a-helix and b-strand seg-

ments that were computed without consideration of their competition. Because the

protein secondary structure is finally stabilized during the formation of the tertiary
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Table 15.3
Segment prediction accuracy for short and long a-helices and b-strands

Sn (%) Sp (%)

All a-helices 75 78

Long a-helices 89 82

Short a-helices 52 51

All b-strands 51 71

Long b-strands 71 79

Short b-strands 45 64

Figure 15.12
An example of secondary structure prediction for Lysozyme protein. SSP outputs potential a-helices (pred
A) and b-structures (pred B) with the final prediction (Predic). The last actual helix is predicted as b-strand,
but we can observe potential a-helix here also with approximately the same weight.
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structure, the alternative variants of the a-helix and b-strand segments may be im-

portant for methods of tertiary structure prediction. Occurrence of alternative struc-

ture may often point to wrongly predicted regions.

To improve the prediction accuracy of the method, a simple version, which treats

multiple sequence alignments used as input in place of single sequences, has been

developed. For testing, the alignment of homologous proteins was obtained from the

HSSP database (Sander and Schneider 1991). Using the mean values of discriminant

functions over the aligned sequences of homologous proteins, a prediction accuracy

of 68 percent has been achieved.

The main feature of the SSP method is that it recognizes a-helix and b-strand seg-

ments rather than single residues. Another advantage is that even though the method

is very simple in nature, it gives results comparable with more elaborated methods

(table 15.4).

Table 15.4 lists the results of three-state accuracy for many published methods.

Due to the di¤erent training sets and testing procedures, direct comparison among

methods was rather di‰cult. Except for the PHD (Rost and Sander 1993) and SSP

methods, most methods published before 1994 used databases that contained pro-

teins with larger than 30 percent homology. Among algorithms using statistical or

neural network approaches, that is, algorithms that did not use homology infor-

mation, SSP, and nearest-neighbor methods (Salzberg and Cost 1992; Zhang et al.

1992; Yi and Lander 1993) give the best results. As mentioned by Rost and Sander

(1993a), actual performance of some methods may be even lower, when testing on

non-homologous datasets or using a jackknife procedure. For example, GOR III

(Gibrat et al. 1987) was originally reported to give 63 percent accuracy, but when

tested on the enlarged database gave only 56.7 percent (Geourjon and Deleage 1994).

DCS Method The method proposed by King and Sternberg (1996) is also based on

linear discriminant functions involving from 10 to 27 protein features. Many of them

are similar to those introduced earlier in the GOR method (Garnier et al. 1978). The

features are represented as a set of amino acid propensities calculated for 20 residue

types in three conformational states at positions i � 8 to i þ 8, thus providing

20� 3� 17 ¼ 1;020 parameters.

Additionally, several new characteristics were introduced, such as distance from

the end of a protein chain, and the moment of hydrophobicity. The distance from the

chain end accounts for greater flexibility of residues at the end of protein chain.

Moment of hydrophobicity evaluates possible hydrophobic patches typical for a-

helices and b-structures.
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Information from aligned sequences provides additional features, such as position

of deletions and insertions. The moment of conservation measures the degree of

variability at a particular position.

The weak part of this approach is that the linear discriminant function per se cannot

capture some higher order properties such as auto-correlation, secondary structure

feedback e¤ects, and neighborhood constraints on secondary structures. Hence a post-

processing step was introduced to take this into account by using some ‘‘if-then’’

filtering rules. These rules are based on short patterns of five to seven consecutive

positions, and they introduce corrections into secondary structure assignment made

Table 15.4
Comparison of prediction results

Type Q3 (%)

Methods using single sequences

GOR III (Gibrat et at. 1987) Inform 63

Qian and Sejnowski 1988 NNw 64.3

Gibrat et al. 1987; Holley and Karplus 1989 NNw 63.2

Kneller et al. 1990 63

SM (Zhang et al. 1992) 63.5

Expert-NN (Zhang et al. 1992) NNw 63.1

Reference network (Rost and Sander 1993b) NNw 61.7

SSP Segment prediction DA 65.1

Combined methods using nearest neighbors

COMBINE (Biou et at. 1988) NNb 65.5

Hybrid (Zhang et at. 1992) NNb 66.4

PHD (Rost and Sander 1993, 1994) NNw 62.6

Yi and Lander 1993 NNb 66.5

NNSSP (Salamov and Solovyev 1995) NNb 67.6

SSPAL (Salamov and Solovyev 1997) NNb 71.0

Methods using homology information

Levin and Gamier 1988 NNb 63

MBR (Zhang et at. 1992) NNb 64.5

Salzberg and Cost 1992 NNb 65.1

SSP (Solovyev and Salamov 1994) DA 68.2

Levin et al. 1993 NNb 68.5

SDC (King and Sternberg 1996) DA 70.1

PHD (Rost and Sander 1994) NNw 71.6

NNSSP (Salamov and Solovyev 1995) NNb 72.2

SSPAL (Salamov and Solovyev 1997) NNb 73.2

PSIPRED (Jones 1999) NNw 76–78

Single-residue prediction accuracy Q3 for di¤erent methods of secondary structure prediction. Whenever
available, the accuracy data shown for 126 nonhomologues protein data set (Rost and Sander 1993).
Inform, information theory–based approach; NNw, neural networks based; NNb, nearest-neighbor based;
DA, discriminant analysis–based approaches.
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on the previous steps. The filtering rules were found using the machine learning

approach.

Overall prediction ðQ3Þ achieved by this algorithm when trained on 126 protein

chains (the same set was used for PHD algorithm) was 70.1 percent (an overall per

residue three-state accuracy).

15.4.3 Neural Networks–Based Approaches

Several algorithms using neural networks for secondary structure prediction have

been developed (Rost and Sander 1993; Jones 1999). One of the most popular is the

PHD algorithm by Rost and Sander (1993), which we are going to consider in detail.

The algorithm (figure 15.13) takes multiple alignments of protein sequences as an

input. The sequences for the network training come from the HSSP database (Sander

and Schneider 1991), where alignments of similar sequences are provided with respect

to known 3D structures—that is, at least one sequence in the alignment has known

structure. For prediction (when the structure is unknown) similar sequences are

searched using the BLAST program (Altschul et al. 1997) and then aligned using the

MaxHom algorithm (Sander and Schneider 1991).

Prediction of secondary structure makes sense for proteins, which are not homol-

ogous to any other proteins with known 3D structure; otherwise, the secondary

structure can be predicted by homology with higher accuracy than by any existing

secondary structure prediction algorithm (Rost 1996). To reproduce this situation

in the training set, all sequences with similarity to any other sequence in the set

exceeding the level given by the so-called HSSP curve (Sander and Schneider 1991)

were excluded. This means exclusion of proteins, which can be aligned at 80 or more

residue positions with a sequence identity b25 percent. Thus 130 protein chains were

selected from seven hundred protein chains of PDB in 1992.

The multiple alignment is converted into a profile: for each position, the vector of

amino acid frequencies is calculated based on the alignment. The neural net is applied

sequentially to all protein sequence positions to predict secondary structure in every

position as a state from three possible alternatives: helix, strand, and loop. Prediction

at a given position depends on amino acid frequencies (in the profile) at that position

and neighboring positions within a range defined by the window for which inputs are

collected.

The architecture of the neural net (figure 15.13) consists of three layers. The first

layer takes 21 � w inputs, where 21 corresponds to 20 amino acid residues plus one for

the missing residues at the beginning or at the end of the sequence; w is the window

size, that is, how many neighboring residues are involved in secondary structure cal-
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culation for a single position—w ¼ 13 was used (figure 15.13 depicts the w ¼ 7 case).

Amino acid frequencies for every position as well as for neighboring positions within

the window are fed into the first layer of the neural network.

The frequencies are processed by the network according to

s
2; v
i ¼ f

XN 1þ1

j¼1

J 2
ij f

XN 0þ1

k¼1

J 1
jks

0; v
k

 ! !
ð15:5Þ

where J l
ij is the junction (describing the connection between the nodes) between unit j

in layer l� 1 and unit i in layer l (0 for the input layer, 1 for the hidden layer, and 2

for the output layer), N 0 and N 1 are the numbers of input and hidden units, respec-

tively, s0; vk is the input from kth input unit for a given sample of data v, f ðxÞ ¼
1=ð1þ e�bxÞ is the sigmoid trigger function, which describes how the output from the

units is computed. Training the neural net was done using a straightforward gradient

descent method. The first level produces classification of independent segments of

residues with respect to the state of the central residue according to three classes of

protein secondary structure: helix (a), strand ðbÞ, and loop (L). Therefore, each seg-

ment is characterized by three output values.

In the second layer of the network, the information from the first layer is modified,

providing accounting of correlation between adjacent residues. Inputs are collected

from the w ¼ 17 units of the first layer, where w is the window size of the second

layer. These inputs are converted into four binary units according to the following

rule:

0000 for frequency f < 0:02

0001 for 0:02a f < 0:33

0011 for 0:33a f < 0:66 ð15:6Þ
0111 for 0:66a f < 0:98

0011 for f b 0:98

The output of the second layer is again three values corresponding to the three

classes of protein secondary structure.

In the third layer, called ‘‘jury decision,’’ the integration of outputs from di¤erent

networks takes place. What was described above as layers one and two represents a

single instance of one from many networks, which all contribute to the third level.

Introduction of many networks addresses the issue of local optimums occurring in
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the gradient descent training protocol. Depending on initial choices of junctions,

there will be di¤erent optimal solutions achieved, referred to here as di¤erent archi-

tectures. Combining these architectures together even by the simplest way as arith-

metic averages results in improved overall performance.

Overall, a three-state prediction accuracy of 70.8 percent was achieved. If we con-

sider the prediction for only half of the sequence positions with the best reliability

of prediction, then the accuracy reaches 82 percent. Further modifications of this

approach increased its performance to 72 percent (Rost and Sander 1994).

The improvement was achieved by changing the algorithm to use the evolutionary

information from multiple sequence alignment instead of single sequences. According

to the authors, the evolutionary information is responsible for a 6–8 percent of ac-

curacy gain compared to prediction for single sequences.

Further improvement in overall prediction accuracy was achieved by Jones

(1999) in the algorithm called PSIPRED by using a slightly di¤erent neural networks

design and essentially di¤erent source of aligned sequences. Instead of HSSP (used

in the PHD algorithm), sequence alignments produced by the PSI-BLAST program

(Altschul et al. 1997) were considered here for training and prediction (figure 15.14).

PSI-BLAST also builds sequence profiles needed for the prediction algorithm. Using

PSI-BLAST brings two major advances: (1) significantly faster calculation of predic-

tion; it takes only two minutes on a Silicon Graphics Origin 200 to produce predic-

tion starting from the query sequence; and (2) higher accuracy of prediction, about

76.5 percent compared to 72 percent for the PHD algorithm.

15.4.4 Nearest-neighbor Approaches

The basic idea of the nearest-neighbor approach is the prediction of the secondary

structure state of the central residue of a given segment, based on the secondary struc-

ture of homologous segments from the proteins with known three-dimensional

structure. The predicted type of secondary structure of a test residue is selected as the

type of the majority of its nearest neighbors, as maxðna; nb; ncÞ, where na, nb, and nc
are the numbers of nearest neighbors with the helix, strand, and coil types, respec-

tively. The test residue is considered as the center of n consecutive amino acid residues

of a sequence window. The nearest neighbors are selected by comparison of the test

window sequence against all n residue windows from the database using the similarity

score measure averaged over all window residues.

A key element in any nearest-neighbor prediction algorithm is the choice of a

scoring measure for evaluation of similarity. The local structural environment scoring

developed by Eisenberg and coworkers (Bowie et al. 1991) assigns every residue of a

protein with known three-dimensional structure to an ‘‘environment class’’ based on
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the local structural features of the residue position, such as the solvent accessibility,

polarity, and secondary structure. Yi and Lander (1993) suggested a score of match-

ing a query residue with the database residue as the environment score plus a score,

estimated by mutation matrix. The environment score (Bowie et al. 1991) for matching

a residue in position i of type Ri with the database residue in position j having known

local structural environment Ej is defined as

Envði; jÞ ¼ log10
PðRi=EjÞ
PðRiÞ

� �
ð15:7Þ

where PðRi jEjÞ is the probability of finding residue Ri in environment Ej, and PðRiÞ
is the probability of finding residue Ri in any environment. The score of central posi-

tion i is computed as the average score in a window of length l:

Scoreði; jÞ ¼ 1

l

Xk¼l=2

k¼�l=2

Envði þ k; j þ kÞ þ SMði þ k; j þ kÞ ð15:8Þ

Figure 15.14
A schematic diagram of the PSIPRED method (adapted from Jones 1999).

392 Victor V. Solovyev and Ilya N. Shindyalov



where Envði; jÞ is the score for matching a residue at position i of query sequence

with the environment class of position j of the target protein (Salamov and Solovyev

1995) and SMði; jÞ is an element of an amino acid substitution matrix for residues at

positions i and j of the query and target protein sequences, respectively. A substitu-

tion matrix was calculated based on the multiple sequence alignments for 126 data-

base proteins taken from the HSSP database (Sander and Schneider 1991).

The NNSSP (Salamov and Solovyev 1995) method has created additional en-

vironment classes as N- and C-ends of a-helices and b-strands. Also, b-turns were

considered as a specific class. In this way, 12 classes of secondary structure (five for a-

helices: internal, N- and C-caps, the left N- and the right C-adjacent positions; the

analogous five for a b-strands, b-turns, and coils) were combined with six categories

of solvent accessibility/polarity, giving 72 environmental classes. Twelve classes of

secondary structure were used only for nearest-neighbors selection (equation 15.8),

but the only three-state secondary structure type (a, b, or c) of the center residue of

nearest-neighbor windows was used for secondary structure assigning by majority

rule.

An additional improvement of the predicting accuracy was reached by reducing

the database where we search for amino acid fragments similar to a test protein se-

quence. We limited the database to a subset of proteins closest to the test protein in

some general properties. Distance measure, based on the Chou-Fasman preference

parameters (Chou and Fasman 1978) for helices, strands, and coils ðDcf Þ, is used

during selection of the subset.

Dcf ¼
X3
k¼1

ð1=ltÞ
Xlt
j¼1

f k
t ð jÞ � ð1=lbÞ

Xlb
j¼1

f k
b ð jÞ

 !2
; ð15:9Þ

where ftðiÞ and fbðiÞ are frequencies of amino acid of type i; f k
t ð jÞ and f k

b ð jÞ are

Chou-Fasman co-e‰cients of the amino acid residue in the j-th position for the sec-

ondary structure type k (a, b, c), and lt and lb are the lengths of a test and database

proteins, respectively.

To exclude small elements, a few simple filtering rules were applied: (1) all helices

of length 1 or 2 are converted to coils, except the case of bab, which is converted to

bbb; (2) all strands of length 1 are converted to coils; and (3) all strands of length 2

surrounded by a-helical residues are converted to a-helices, that is, abba to aaaa.

The NNSSP method provides about 72 percent of sustained overall three-state

accuracy when we use multiple sequence alignment, or about 68 percent accuracy

for single sequence input (table 15.5), when tested on a benchmark database of 126

nonhomologous proteins (Rost and Sander 1994).
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It is more informative to provide more than one state prediction to compute

probability values of three possible states for each residue. Let na, nb, and nc be

numbers of the best selected nearest-neighbors for some positions of our database of

proteins with known 3D structure. One can compute the proportion of a-, b-, and c-

states for these positions and use these data as probability estimation (Yi and Lander

1993). We scale our na, nb, and nc values in 1–10 scale and produce a ð10� 10� 10Þ
matrix with probabilities belonging to a particular state. These probabilities can be

used in scoring the resemblence to a tested fold, providing a better accuracy of rec-

ognition in comparing with the one-state secondary structure prediction. An example

of secondary structure prediction by NNSP approach is shown in figure 15.15.

Matching any query sequence segment with segments from the database can be

viewed as un-gapped alignments between the segments of fixed length. The fixed

length of segments and the absence of gaps can significantly decrease the accuracy of

nearest-neighbor methods, as the best local alignments usually have di¤erent lengths

for di¤erent sequence regions and often contain deletions and/or insertions. Taking

this into account, several new approaches for secondary structure prediction using

local or global alignments were developed (Frishman and Argos 1997; Ito et al. 1997;

Salamov and Solovyev 1997).

The SSPAL method (Salamov and Solovyev 1997) used the Waterman-Eggert al-

gorithm (1987) to compute the K best non-intersecting local alignments of a query

Table 15.5
A comparison of prediction results using SSPAL method with results using the PHD method (Ross and
Sander 1994) and the NNSSP method (Salamov and Solovyev 1995) tested on the same data set of 126
proteins (set 1) and on a big data set of 461 proteins (set 2)

Qa
3 Sna Spa Ca hLai Snb Spb Cb hLbi

Input: single sequences

PHD (Set 1) 62.6 57 62 0.42 6.2 42 53 0.35 3.8

NNSSP (Set 1) 67.6 69.1 67.6 0.55 6.2 38.2 66.0 0.41 3.1

SSPAL (Set 1) 71.0 70.5 71.4 0.60 9A 52.6 66.3 0.49 4.4

SSPAL (Set 2) 71.0 72.9 71.8 0.61 9.8 51.4 67.1 0.49 4.4

Input: multiple sequence alignments

PHD (Set 1) 71.6 70 76 0.61 9.3 62 63 0.52 5.0

NNSSP (Set 1) 72.2 72.4 76.2 0.64 11.5 52.2 67.4 0.50 4.3

SSPAL (Set 1) 73.5 75.8 73.6 0.65 9.5 52.7 72.2 0.53 4.3

Per-residue measures Q3 residues predicted correctly in three states (helix, strand, loop) divided by all resi-
dues; Sna correctly predicted residues in helix divided by observed residues in helix; Snb the same as helix,
but for strand; Spa correctly predicted residues in helix divided by predicted residues in helix; Spb the same
as helix, but for strand. Ca and Cb are the Matthews correlation coe‰cients for helix and strand, respec-
tively (Matthews 1975). ðLaÞ and ðLbÞ are the average segment lengths of the predicted helices and strands,
respectively (for observed helices ðLaÞ ¼ 10:6 and for observed strands ðLb ¼ 5:1Þ.
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sequence with each sequence of the subset selected from the database of known 3D

structures. Then the prediction is based on the information about secondary structure

states of aligned sequence segments. The term ‘‘non-intersecting’’ assumes that each

next suboptimal alignment do not share any of the aligned pairs with the preceding

alignments (Waterman and Eggert 1987). It was shown that if we choose K large

enough (in the range of 30–60), it significantly improves the prediction accuracy. For

a given query protein, the approach produced up to N � K local alignments, vari-

ously located along the entire sequence, where N is the number of used database

sequences. The score of a local alignment is taken as the score assigned to a given

aligned position. The score of each one of three conformational states is computed as

the sum of alignment scores with corresponding positions belonging to a particular

conformational state. The first 50 alignments with the highest scores were taken into

account. The predicted state of position is the state having the highest total score.

The best performance (Q3 ¼ 71:2%) was observed at K ¼ 30 when the gap-opening

penalty equals �20 and the gap-extension penalty equals �10. Another test of the

method was performed using a representative list of 461 proteins (PDB_SELECT)

Figure 15.15
An example of NNNSP secondary structure prediction for Lysozime protein. NNSPP computes probabil-
ity of b- and b-structures for each position. The small last a-helix actually is G-helix according to DSSP
and we can observe that it has lower probability values for a-helix than the other predicted a-helices.
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with less than 25 percent sequence similarity (Hobohm and Sander 1994). Four

hundred and sixty-one protein sequences were selected from 486 protein chains of

this list (PDB_SELECT, March 1996), excluding all PDB entries with only known

Ca atom coordinates and membrane proteins according to the SCOP (Murzin et al.

1994). For this dataset, a prediction accuracy of 71 percent was achieved. In addition

to the Q3 score, we also computed several other measures of prediction accuracy

(table 15.5) that take into account some of the characteristics of predictions that can

be important for building tertiary structural models.

Secondary structure predictions can be evaluated by subcategorizing the incorrect

predictions into three categories: OVER (extra a or b), UNDER (unpredicted a or b),

and WRONG (a as b or b as a) (Defay and Cohen 1995). Table 15.6 presents the

values of these categories for SSPAL method. It is assumed that the WRONG pre-

dictions can a¤ect the fold recognition more seriously.

The SSPAL method presents an improvement of nearest-neighbor algorithms us-

ing local alignments and their scores instead of fixed-length un-gapped segment pairs.

It is simple in realization and shows a certain increase in accuracy with using the

database constructed from PDB_SELECT list with a 35 percent cuto¤ value. An ad-

ditional advantage of the method is obviously a high level of prediction accuracy (up

to 100 percent) when we analyze a sequence having some similarity with one of the

database sequences.

In the previous realization of nearest-neighbor methods, the score was computed as

the score of similarity of two short segments and the best nearest-neighbor score was

not significantly higher than the scores of the other nearest-neighbors. In the current

method, the prediction is mostly based on the first optimal alignment between a query

sequence and homologous target, because the score of this alignment will significantly

dominate the scores of all other alignments (figure 15.16).

There are several attempts to create a consensus method of secondary structure

prediction by combining the prediction from di¤erent approaches (Viswanadhan

et al. 1991; Zhang et al. 1992). Jpred (combining the NNSSP, DSC, PREDATOR,

MULPRED, ZPRED, and PHD methods) provides better and probably more stable

results then each of the single methods used (Cu¤ et al. 1998; Cu¤ and Burton 1999).

Table 15.6
Percentage of OVER, UNDER, and WRONG SSPAL predictions on the data set of 126 proteins

Input OVER UNDER WRONG

Single sequences 10.5 15.3 3.3

Multiple sequence alignments 9.4 14.4 2.6
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Figure 15.16
Prediction of the secondary structure state of Phe at position 261 of chymosin B (4 cm) based on: (a) the 50
best local alignments; and (b) the 50 nearest-neighbor segments. The PDB identifier, the first position of
matched segment and the score are shown.
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Nearest-neighbor approaches have the potential to improve their performance

from about 70–75 percent to 80 percent with an increasing number of known tertiary

structures and the number of homologous sequences in protein databases, as we

observed recently for neuralnetwork approaches (Jones 1999; Petersen et al. 2000).

Further progress will probably be di‰cult due to dependence of small secondary

structure elements formation on the 3D structural environments, as well as on the

limitations of secondary structure assignment. However, we can envision some im-

provement in secondary structure assignment and further development of approaches

that predict the entire secondary structure segments (Solovyev and Salamov 1994;

Schmidler et al. 2000; Petersen et al. 2000) rather than single residue state.

Prediction of secondary structure by the methods described above is available via

theWorldWideWeb (table 15.7). Protein secondary structure assignment from atomic

coordinates by the STRIDE (Frishman and Argos 1995) program can be done at

http://bioweb.pasteur.fr/seqanal/interfaces/stride-simple.html.
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16 Computational Methods for Protein Folding: Scaling a Hierarchy of
Complexities

Hue Sun Chan, Hüseyin Kaya, and Seishi Shimizu

A knowledge of the molecular basis of life is crucial for advances in biomedical and

agricultural research. Proteins are a diverse class of biomolecules performing vital

functions in all living things. Therefore, developing a fundamental understanding of

how proteins fold is of immense intellectual and technological significance. A solu-

tion to the protein folding problem is often likened to the deciphering of the ‘‘second

genetic code’’ (Chan and Dill 1993, and references therein). The question is simple to

pose: Given a specific sequence of amino acids, how do physical and chemical forces

determine its myriad properties, especially the essentially unique folded structure of a

globular protein? In principle, this question should be answerable because numerous

proteins fold and unfold reversibly in vitro. Protein folding is much more complex in

vivo, with the involvement of chaperones and other cellular machineries. Neverthe-

less, any first-principles account of these complicated processes must begin with an

understanding of the considerably simpler folding processes in vitro.

16.1 Physics and Knowledge-Based Approaches to Protein Folding

Like all natural phenomena, protein folding is a physico-chemical process. Hence, all

methods for protein structure prediction require various degrees of understanding of,

or assumption about the underlying energetics. Recent protein structure prediction

techniques, which include comparative or homology modeling, fold recognition, and

‘‘ab initio’’ approaches, have focused primarily on empirical and statistical analyses

of sequence and structure databases. Because of their inductive nature, techniques

that rely predominantly on correlative parameters derived from collections of existing

structural and sequence information are called ‘‘knowledge-based.’’ These methods

are often contrasted with ‘‘physics-based’’ methods that attempt to deductively explain

or predict protein behaviors from elementary physical forces. At present, knowledge-

based approaches—some of which are covered in excellent chapters elsewhere in this

volume—seem to be more successful than any current physics-based technique in

predicting native structures from given amino acid sequences. In fact, as Moult et al.

(1999) and Shortle (2000) have noted, most current protein structure prediction

algorithms give little consideration to biophysical questions such as balance of forces,

energetic components, or folding pathways. Indeed, with the advent of experimental

structural genomics (see, e.g., Šali and Kuriyan 1999), comparative modeling will

certainly become increasingly important for providing structural and functional in-

sight into the world’s rapidly expanding sequence databases.



Protein folding is complex. To make progress, correlations among observations of

all kinds need to be sought at every level, even if the underlying physical reasons

are not quite known. Knowledge-based methods for protein structure prediction

have contributed tremendously in this regard. But one should never lose sight of the

importance of developing physics-based theories. First, aside from their intrinsic in-

tellectual value, such endeavors are necessary for justifying or improving knowledge-

based methods (Osguthorpe 2000); examples are discussed below. Second, even if

technologies for predicting protein native structure turn out to be achievable by

purely knowledge-based means, to ascertain how a protein functions or malfunctions

often requires biophysical information that cannot be gleaned from a static picture of

its native conformation alone. Notably, a protein’s dynamic properties can be crucial

for its functions (Kay 1998; Zidek et al. 1999; Forman-Kay 1999). Conformational

distribution and fluctuation in a protein’s denatured state (Wu 1931; Dill 1990; Edsall

1995; Shortle 1996) are important for native thermodynamic stability, and bear di-

rectly on a protein’s tendency to adopt disease-causing misfolded and/or aggregated

forms (Cohen and Prusiner 1998; Kelley 1998; Dobson 1999). Physics-based theories,

which are the main focus of this chapter, are necessary to address these essential

aspects of protein behavior.

Our purpose here is to provide a broad-stroke panoramic view of this area of re-

search. As illustrations of general principles, several physics-based theoretical and

computational approaches to protein folding are highlighted. We place special em-

phasis on critical evaluations of methods and identifying unresolved issues that are

crucial for future progress. We assess the strengths and limitations of a number of

approaches, focusing especially on features and assumptions that are important in

determining whether a model is proteinlike or not, but whose ramifications have not

been fully appreciated in the literature. The following is an outline of the rest of this

chapter: (1) a rough sketch of all-atom simulations and driving forces in protein

folding; (2) an introductory discussion of solvation e¤ects in protein energetics and

the complexities they entail, using electrostatic and hydrophobic interactions as

examples; (3) a delineation of the advantages and limitations of using simplified chain

representations to study protein folding, and the physical implications of popular

modeling approaches; and (4) summaries of recent applications of simple lattice

protein models to evolutionary landscapes, protein aggregation, protein calorimetric

cooperativity, and folding kinetics.
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16.2 Driving Forces in Protein Folding and Model Potentials

16.2.1 All-Atom Models

A protein molecule is a large collection of covalently linked atoms. In principle, its

properties should be deducible from these atoms’ interactions among themselves and

with the atoms of the solvent molecules. Computational approaches using all-atom

empirical force fields are predicated on this premise. Typically, the potential energy

(force field) V in these studies is a sum of contributions and a function of the spatial

position vectors r1; r2; . . . ; rN of all atoms in the system (Leach 1996; Rapaport 1997).

For example, equation 3.1 in Leach (1996) may be rewritten to make explicit its

dependences on atomic coordinates:
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¼
XN
½i< j�

wij

2
ðjri�rj j�b0ijÞ2 þ

XN
½i; j�
½ j;k�
i<k

vijk

2

�
cos�1 ðri�rjÞ � ðrj�rkÞ

jri�rjj jrj�rkj � y0ijk

�2

þ
XN
½i; j�
½ j<k�
½k; l�

Xm
n¼0

V
ðnÞ

ijkl

2
1þcos

�
n cos�1 ½ðri�rjÞ�ðrj�rkÞ� � ½ðrj�rkÞ�ðrk�rlÞ�

jðri�rjÞ�ðrj�rkÞj jðrj�rkÞ�ðrk�rlÞj �gijkl

�� 	

þ
XN
i< j

nonbonded

4Eij

�
sij

jri�rj j
�12

�
�

sij

jri�rj j
�6" #

þ qiqj

4p�0jri�rjj

( )
ð16:1Þ

where the square brackets in the expressions ½i; j� and ½i < j� indicate that a summa-

tion is only over atoms i and j that are covalently linked (to form bond i– j); wij and

vijk are force constants for deviations of bond length (between atoms i and j) and

bond angle (subtended by bonds i– j and j–k) from their reference (natural) values b0ij
and y0ijk, respectively; V

ðnÞ
ijkl ’s are ‘‘barrier-height’’ parameters and gijkl is the phase

factor for the torsion angle between bonds k–l and i– j; Eij and sij are, respectively,

the well depth and collision diameter of Lennard-Jones interactions between atoms i

and j, qi is the e¤ective electric charge of atom i, �0 is vacuum permittivity,1 and the

1. Electrostatic relations are given in SI units. Equivalent formulas in Gaussian units may be obtained by
replacing 1=e0 with 4p in Eq. (16.1) and subsequent expressions.
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last summation over pairwise non-bonded interactions is over atom pairs i; j that are

not covalently bonded.

Because of the large number of atoms involved, simulations of proteins using all-

atom force fields such as equation (16.1) are computationally intensive. The CPU

time needed is many orders of magnitude that of the physical time simulated. For an

up-to-date review of advances in relatively long-timescale protein and peptide simu-

lations, see Daggett 2000. To date, the longest simulation of any protein folding pro-

cess has been Duan and Kollman’s 1998 study of the 36-residue villin headpiece

(involving 9,295 atoms), tracking a single dynamic trajectory that corresponds to 1

microsecond of physical time. Results from some recent all-atom simulations are

encouraging. For example, a short (7-unit) b-peptide in methanol has been successfully

folded by molecular dynamics simulation to its experimentally determined stable con-

formation (Daura et al. 1998). However, no corresponding success has yet been

reported for globular proteins. A reason may be that even the fastest folding proteins

known to date take tens of microseconds to fold (see, e.g., Spector and Raleigh 1999),

which is more than one order of magnitude longer than the longest simulations per-

formed so far.

The functional form in equation (16.1) and others similar to it represent the most

detailed atomistic considerations currently feasible for building workable protein

folding models. However, as a matter of principle, it is important to realize that they

are still drastic simplifications of the real physics. In particular, the pairwise poten-

tials in the last summation do not model the true fundamental interactions between

pairs of isolated atoms. Instead, they are empirically parameterized to approximate

the e¤ects of many-body interactions that are often intrinsically not pairwise additive.

A clear example is that the dipole moment of many water models are significantly

stronger than that of a single isolated water molecule in the gas phase, because the

models are parameterized to reproduce properties of liquid water. It follows that

parameters in empirical force fields are not universal, as they need to be optimized for

particular sets of applications (Leach 1996). Indeed, even for the relatively simple

system of argon atoms in the liquid state, quantum mechanical calculations have

shown that there is no universal e¤ective pairwise potential that can adequately re-

produce three-body dispersion (London) interactions for all applications (van der

Hoef and Madden 1999).

16.2.2 Rationale for Coarse-Grained Statistical Mechanics Models

All-atom treatments are impractical if broad conformational sampling is required

because they are computationally intensive, and general inferences cannot be reliably

drawn from a small number of molecular dynamics trajectories (Braxenthaler et al.
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1997). In view of these limitations and the non-universality of empirical force-field

parameters, researchers have also pursued complementary coarse-grained statistical

mechanical models of proteins. As for ferromagnetism in condensed matter physics, a

hierarchy of organizing principles is expected to be needed to bridge our conceptual

understanding of physical phenomena of atomic and macroscopic length scales as well

as phenomena that take place at intermediate ‘‘mesoscopic’’ length scales to which

proteins belong (Laughlin et al. 2000). It is natural to use coarse-grained models for

low-resolution descriptions in this regard. Furthermore, coarse-grained models are

computationally more tractable, and, because of their relative simplicity, can often

provide insight that would have been obscured otherwise. A case in point is the recent

‘‘Gaussian network model’’ of collective motions and correlations in folded states

of globular proteins. At a computational cost approximately three orders of magni-

tude less than that required by all-atom calculations, the predicted dynamics of these

coarse-grained models are similar to that obtained by all-atom molecular dynamics

simulation and normal mode analysis (Bahar et al. 1999; Haliloglu and Bahar 1999;

Doruker et al. 2000).

In ‘‘big-picture’’ conceptual formulations of protein folding and in coarse-grained

models, it is customary to classify noncovalent interactions into a few energetic com-

ponents or interaction types, namely hydrophobic, hydrogen bonding, electrostatic,

and dispersion (attractive) and repulsive van derWaals forces (reviewed by Kauzmann

1959; Dill 1990; Honig and Yang 1995). In terms of the atomic interactions presumed

by equation 16.1 above, ‘‘hydrophobic interaction’’ may be viewed as the combined

e¤ect of van der Waals interactions between nonpolar atoms in the protein and their

interactions with the surrounding water and cosolvent molecules. Hydrogen bonding

interaction is sometimes treated as a type of electrostatic interaction, as provided by

the last term in equation 16.1 or sometimes it is implemented by extra terms (Leach

1996). As Cooper (1999) noted, the short list of interaction types that are believed to

be relevant to protein folding has not changed for the past 40 years. However, even at

this coarse-grained level, a coherent physical picture is still lacking. For instance,

even the basic question of whether hydrogen bonding stabilizes or destabilizes native

states of proteins remains controversial (Myers and Pace 1996; Ben-Tal et al. 1997;

Pace et al. 1998).

16.3 Solvation E¤ects and Non-additivity of Potentials of Mean Force

A major di‰culty in accounting for protein energetics is the e¤ect of the aqueous

solvent (Roux and Simonson 1999). Solvent-mediated interactions between constitu-
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ent groups of a protein can have more complex properties than the corresponding

direct interactions in vacuum. For instance, ions in a solvent can lead to partial

screening of the direct electrostatic interactions between two macromolecules (figure

16.1), and hydrophobic e¤ects in proteins involve protein-water as well as water-water

interactions (figure 16.2).

16.3.1 Example: Electrostatic Interactions

To illustrate the complexities of solvation e¤ects, we present a brief outline of the

Poisson-Boltzmann approach, which is an approximate continuum treatment of

solvent-mediated electrostatic interactions. The analysis starts with the Poisson

equation, ‘ � ½�ðrÞ‘fðrÞ� ¼ �rðrÞ=�0, which is a re-statement of Gauss’ law generalized

to include polarizable media. Here �ðrÞ is the position-dependent dielectric constant

of a given system, rðrÞ is the free charge density (which excludes the bound charges,

whose e¤ects are approximately accounted for by �ðrÞ of the dielectric media), and

fðrÞ is the electrostatic potential for the corresponding macroscopic electric field

(Jackson 1975).

In the presence of mobile ions in the solvent and free charges fixed at a given set of

spatial positions (figure 16.1c), rðrÞ may be expressed as a sum of fixed charge density

rfixðrÞ and contributions from the mobile ions. Let the discrete charges of the ions be

þq (> 0) and �q. The standard Poisson-Boltzmann argument posits that the equi-

librium populations of theGq mobile ions at any position r accessible to the ions are

proportional to the Boltzmann factors expðHqfðrÞ=kBTÞ, where kBT is Boltzmann’s

constant times absolute temperature. Now let CqðrÞb 0 be the average (bulk) con-

centration of either theþq or the�q ions at these positions; and CqðrÞ ¼ 0 at positions

Figure 16.1
Schematics of solvent-mediated electrostatic interactions. (a) Solvent with dissolved ions. (b) Direct inter-
action in vacuum between two macromolecules (shaded shapes). (c) Solvent-mediated interaction between
the two macromolecules. Ions in the solvent tend to migrate near oppositely charged macromolecules,
partially shielding their direct electrostatic interaction.
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inaccessible to mobile ions (in the core of a folded globular protein, for example). The

bulk concentrations of the two oppositely charged ions are equal because the solvent

is electrically neutral macroscopically. It follows that the mobile-ion contribution to

the charge density is equal to qCqðrÞ½expð�qf=kBTÞ � expðþqf=kBTÞ�.
The approximation introduced into this line of argument is not di‰cult to discern:

The discrete ionic charge density (upon which an earlier step in the argument is

premised) has been smeared out in the last expression to a continuous smooth distri-

bution in the solvent. Consequently, possible sharp variations in fðrÞ that might have

resulted from discrete charges are precluded. The Poisson-Boltzmann equation is

obtained by incorporating this approximate mobile-ion contribution into the Poisson

Figure 16.2
Schematics of hydrophobic interactions in protein energetics. (a) Native structure of chymotrypsin inhibi-
tor 2 (protein databank entry 2CI2). As an illustration, two hydrophobic residues—a leucine at position 12
and an isoleucine at position 63—are highlighted by space-filling representations. (b) A blown-up view of
the two hydrophobic residues in water. Water molecules are depicted by V-shaped representations, whereas
the methyl and methylene groups of the residues are shown as spheres. (c, d) Modeling hydrophobic
interactions among methyl and methylene groups by water-mediated interactions among methanes. Here
each methane (sphere) is treated as a united atom, meaning that its nonpolar hydrogen atoms are not
modeled explicitly. The distance x defines the two-methane (c) and three-methane (d) configurations for the
potentials of mean force in figure 16.3.
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equation, viz.,

‘ � ½�ðrÞ‘fðrÞ�� 2qCqðrÞ
�0

sinh
qfðrÞ
kBT

� 	
þ rfixðrÞ

�0
¼ 0 ð16:2Þ

where the value of CqðrÞ in the solvent is proportional to its ionic strength (see dis-

cussions in Honig and Nicholls 1995; Gilson 1995; Dill and Stigter 1995; Roux and

Simonson 1999; and references therein); and the (simpler) direct interaction case in the

absence of mobile ions (figure 16.1b) corresponds to CqðrÞ ¼ 0 for all r. Equation

16.2 implies that fðrÞ can be solved for any system with a given set of fixed charges, a

solvent ionic strength, and a position-dependent dielectric constant. This continuum

treatment of solvent charge e¤ects has been applied to complex-shaped biomolecules

to provide useful physical insight into, and graphical visualization of the role of

electrostatic interactions in a wide range of biological phenomena (e.g., by using the

DelPhi and GRASP programs; see Honig and Nicholls 1995).

16.3.2 Example: Hydrophobic Interactions

Solvent-mediated interactions can be modeled directly by empirical force-field simu-

lations with explicit water and other solvent molecules. Explicit-solvent simulations

take into account the shapes of discrete solvent molecules, giving predictions that are

often more physical than that from continuum solvent models (Daura et al. 1998).

Figure 16.3 shows recent explicit-solvent simulation results that bear on our under-

standing of hydrophobic e¤ects.

Plotted in this figure are potentials of mean force2 (PMF) amongmethane molecules

in water (for recent reviews, see, e.g., Sorenson et al. 1999; Hummer et al. 2000). These

systems have been investigated extensively as models for hydrophobic interactions in

proteins because methane is chemically similar to the nonpolar methyl and methylene

groups in hydrophobic amino acid residues (figure 16.2). Each PMF in figure 16.3 is a

free energy function obtained from averaging over water configurations. It represents

the sum total of solvent e¤ects plus the direct interaction between the methanes, and

it determines the relative probabilities of di¤erent methane configurations. Methane-

water and water-water interactions lead to PMFs with spatial dependences that are

more structured than that of the direct two-methane interaction (figure 16.3a). The

salient features of two-methane PMFs are: (1) a contact minimum at xA3:8 Å that is

significantly more favorable to methane-methane association than that contributed

2. The physical potential of mean force considered here is di¤erent from the knowledge-based ‘‘potentials
of mean force’’ (Sippl 1995) derived from database analyses.
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Figure 16.3
Hydrophobic potentials of mean force (PMF). The variable x in (a) is defined in figure 16.2c, whereas x in

(b) and (c) is defined in figure 16.2d. (a) Two-methane PMFs, W ð2ÞðxÞ, simulated under atmospheric pres-
sure at 298K (25 �C) and 368K (95 �C). Included for comparison are the direct Lennard-Jones (LJ) model
potential between the two methanes, and a W ð2ÞðxÞ simulated at an average water density of 829 kg/m3 at
498K (225 �C) under constant volume conditions. Computational details are given in Shimizu and Chan
2000. (b) Three-methane PMF results from Rank and Baker (1997), adapted from their figure 4a. The free
energy W ð3ÞðxÞ plotted here is for bringing a methane from infinity to position x relative to the other two
methanes that are already in contact. The ‘‘Actual’’ curve is the simulated three-methane PMF, W ð3ÞðxÞ.
For each three-methane configuration specified by x, the sum of two-methane PMF values for the two pairs
of methanes (between one of the contacting methanes and the third methane) is plotted as the ‘‘Additivity
assumed’’ curve. (c) Corresponding three-methane PMF results from Czaplewski et al. 2000 for the same
three-methane system as in (b), adapted from the 12-window plots of their figure 8d.
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by the attractive direct methane-methane interaction alone, underscoring the role of

water in promoting hydrophobic association; (2) a free energy barrier (desolvation

peak) at xA5:7 Å; and (3) a second, shallow (solvent-separated) minimum near

xA7:0 Å. Implications of these features on protein folding have recently been dis-

cussed (Shimizu and Chan 2000, 2001a; and references therein).

In protein folding energetics, a crucial question is to what extent interactions can

be treated as additive (Mark and van Gunsteren 1994; Dill 1997; and references

therein). This issue is pertinent to the question as to whether an appropriate scoring

function for protein structure prediction can be devised using only pairwise additive

amino-acid-based contact energies (see, e.g., Vendruscolo et al. 2000). Whether

hydrophobic and other interactions are additive is also relevant to understanding

protein calorimetric data (Chan 2000). Potential of mean force simulations can help

address these issues. Here, figure 16.3b,c demonstrates that even if the underlying

non-bonded atomic interactions of a model are assumed to be pairwise additive—as

is the case for the force field used in these simulations—the resulting PMFs, which

are e¤ective interactions, are not necessarily additive. From the results of Rank and

Baker (1997) in figure 16.3b, e¤ective interactions among methanes in water appear

to be anti-cooperative (Shimizu and Chan 2000c), at least for the interaction at the

contact minimum. Free energy for bringing three methanes from infinity to contact

is predicted by their simulation to be less favorable (less negative) than the sum of

bringing three pairs of methanes together separately. On the other hand, the results

in figure 16.3c from a di¤erent simulation of the same system by Czaplewski et al.

(2000) implies the opposite—that e¤ective contact interactions among methanes in

water are slightly cooperative; in other words, the free energy for bringing three

methanes from infinity to contact is more favorable (more negative) than the sum of

bringing three pairs of methanes together separately. More recently, the discrepancy

between these two studies has apparently been resolved. Using the same water model

as that in Rank and Baker (1997) and Czaplewski et al. (2000) but a more reliable

technique of analysis, simulation data from our group indicates that multiple methane

hydrophobic interactions are largely anti-cooperative under ambient conditions. See

Shimizu and Chan (2001b) for details.

Explicit-water simulations show that PMFs can be temperature dependent even

when the underlying non-bonded atomic potential function of the model is tempera-

ture independent (figure 16.3a). Take two methanes in water as an example. The ef-

fective interaction W ð2ÞðxÞ at each separation x between the two methanes involves

an average over a huge number of di¤erent configurations of water molecules. The

relative populations of these configurations are temperature dependent because not

all configurations have the same energy. HenceW ð2ÞðxÞ depends on temperature. This
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fact is equivalent to characterizing the e¤ective interaction as having an entropic part,

whereas temperature-independent interaction may be referred to as being ‘‘purely

enthalpic.’’

Temperature dependences of potentials of mean force have ramifications for recent

all-atom simulations of protein unfolding kinetics. In an attempt to circumvent cur-

rent computational limitations on all-atom simulations of protein folding (see above),

all-atom unfolding molecular dynamics have been performed (Daggett 2000) at a high

simulation temperature of 498K (225 �C) to speed up the unfolding process, using a

significantly reduced average water density of 829 kg/m3 (Daggett and Levitt 1992)

compared to densities of 958–1000 kg/m3 for water under atmospheric pressure be-

tween 0� and 100 �C. It has been asserted that kinetic protein folding pathways are

temperature independent (Daggett and Levitt 1994), but this assertion is not valid in

general. PMFs in aqueous solutions are sensitive to temperature and average water

density (Shimizu and Chan 2000). Just as the PMF at each position involves aver-

aging many solvent configurations, the probability for a protein molecule taking any

microscopic folding or unfolding pathway (as defined by the trajectories of all atoms

in the protein but not the trajectories of solvent degrees of freedom) is a function of

the probabilities of many possible trajectories of the solvent molecules consistent with

the given kinetic pathway of the protein. Because the relative probabilities of solvent

trajectories can shift as temperature is varied (because they can involve di¤erent en-

ergy barriers), the relative favorabilities of di¤erent protein folding and unfolding

pathways can change with temperature. Figure 16.3a shows a two-methane PMF

simulated under conditions that have been used for high-temperature unfolding

molecular dynamics simulation. It has features significantly di¤erent from PMFs at

ambient temperatures and pressure. The high temperature and low water density lead

to a much more favorable contact minimum, and the desolvation peak and solvent-

separated minimum are all but abrogated. These observations suggest that, though

insight can be gained from high temperature unfolding simulations (Lazaridis and

Karplus 1997; Alonso and Daggett 2000), caution should be exercised in their

interpretation.

16.4 Simple Self-Contained Polymer Models of Proteins

Proteins are chain molecules. Chain connectivity, sti¤ness, and excluded volume im-

pose significant constraints on protein behavior (Chan and Dill 1991). In addressing

the physical forces in protein folding, self-contained polymer models are indispens-

able. By self-contained polymer models, we refer to theoretical constructs in which
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the conformational distribution of a chain molecule is determined solely by the ener-

getic components that are being considered explicitly. This is the most intuitive and

straightforward approach to physical modeling. Our only reason for emphasizing it

here is because the traditional discourse of protein energetics often involves non-self-

contained constructs. Typically, denatured states in non-self-contained constructs

are simply assumed to have certain a priori conformational distributions (partially

unfolded, random-coil-like) that are not derived from the elementary interactions

under consideration. As a result, logical connections between elementary interactions

and predicted properties cannot be unequivocally established using non-self-contained

constructs. (For details, see discussions in Chan 2000; Kaya and Chan 2000a.)

Obviously, all-atom protein models based on empirical force field such as equation

16.1 are self-contained polymer models. The ability to use these models to simulate

biochemical processes is expected to be steadily enhanced by advances in computer

technologies, improvements in simulation techniques (Duan and Kollman 1998), and

the development of e‰cient conformational sampling algorithms (Hansmann and

Okamoto 1999; Feldman and Hogue 2000). Nevertheless, brute-force all-atom sim-

ulation of folding is still beyond our reach (Daggett 2000). More fundamentally, it is

not always straightforward to clarify the essential physics of a complex system from a

huge amount of detailed simulation data generated by a large number of parameters.

Therefore, to address general principles in protein folding, it is necessary to also

construct and analyze self-contained polymer models with simplifed representations

of protein chain geometries and intrachain interactions, as we have argued above.

Research in the past decade has demonstrated that simplified models can lead to novel

concepts and provide useful insight (Bryngelson et al. 1995; Dill et al. 1995; Hinds and

Levitt 1996; Thirumalai and Woodson 1996; Pande et al. 1997; Shakhnovich 1997;

Chan and Dill 1998). But they also raise new questions, especially with regard to

their relations to real proteins.

16.4.1 Lattice Representations of Chain Geometries

Simple protein models use reduced representations of the polypeptide chain. Chains

in most of the recent simple models are configured on regular lattices. Simple o¤-lattice

protein models with chains configured in the continuum (see e.g., Sun 1993; Sun et al.

1995; Hao and Scheraga 1998; Thirumalai and Klimov 1999; Klimov and Thirumalai

2000; Irbäck et al. 2000; and references therein) and o¤-lattice discretized conforma-

tional spaces (Park and Levitt 1995) have also been investigated. Owing to space lim-

itations, only lattice models are discussed below.

The basic components of typical lattice chain models are shown in figure 16.4.

Lattice models are more tractable because the number of possible chain conformations
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is restricted by lattice regularities, allowing for faster searches and broad coverage of

the discretized conformational space. Many recent lattice protein chain models are

configured on three-dimensional simple cubic lattices (figure 16.4a). A further sim-

plification is to configure them on two-dimensional square lattices. Both of these

extremely simplified representations are introduced to capture chain connectivity,

excluded volume, and certain general features of intrachain interactions (see below).

They do not attempt to model geometric details of polypeptide chains. In most appli-

cations, the nodes along these lattice chains are not specified to correspond to any

particular position of a real polypeptide; hence, they are not used as models for specific

proteins, but rather as theoretical tools to address general properties of generic pro-

Figure 16.4
Lattice representations of protein chains. Example bond constructions are drawn as thick lines joining two
solid circles. The dotted lines show the underlying mesh. (a) Simple cubic lattice models. (b) The hydrid-210
model. (c) The ultra-310 model. Bonds in the high-coordination lattice models (b) and (c) correspond to
protein Ca-Ca virtual connections (Godzik et al. 1993).
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teins (Abkevich et al. 1994; Chan 1998a).3 The rationale for this modeling approach

is discussed in Dill et al. 1995.

To model protein structures at higher resolutions, extensive investigations have

been undertaken by Kolinski, Skolnick, and coworkers to design lattice mimics of

polypeptide geometries (Godzik et al. 1993; Kolinski et al. 1999). This e¤ort began

more than a decade ago with protein chain models on diamond lattices (Kolinski

et al. 1987). Two of their models are shown in figure 16.4b,c, both of which use an

underlying simple cubic lattice mesh to construct model polypeptide CaaCa virtual

bond vectors. The unit length of the Cartesian coordinate system (i.e., the magnitude

of vectors ½G1; 0; 0� and their permutations) is equated with a length scale a to match

model dimensions to real proteins. Di¤erent bond-vector construction schemes re-

quire di¤erent values of a. In an early ‘‘knight’s walk’’ model, CaaCa virtual bonds

were constructed from the 24 permutations of the vectors ðG2;G1; 0Þ, and a was

set to 1.70 Å so that the model virtual bond length
ffiffiffi
5

p
a ¼ 3:80 Å matches that of

the predominant trans peptide bond; and amino acid side chains were treated as on-

lattice entities (Skolnick and Kolinski 1991).

In a subsequent ‘‘hybrid’’-210 system (figure 16.4b), CaaCa virtual bonds are con-

structed from the 56 permutations of the vectors in the set fðG2;G1; 0Þ, ðG2;G1;G1Þ,
ðG1;G1;G1Þg, and a ¼ 1:70 Å (Kolinski et al. 1993). This was followed by a finer

(less coarse-grained) ‘‘ultra’’-310 system (figure 16.4c) that constructs CaaCa virtual

bonds from the 90 permutations of the vectors in the set fðG3;G1; 0Þ, ðG3;G1;G1Þ,
ðG3; 0; 0Þ, ðG2;G2;G1Þ, ðG2;G2; 0Þg, with a ¼ 1:22 Å (Godzik et al. 1993; Kolinski

and Skolnick 1994). In more recent applications, amino acid side chains were incor-

porated as o¤-lattice entities (Kolinski and Skolnick 1994). To conform to polypep-

tide geometries, restrictions are placed on the directions of consecutive virtual bonds

to exclude some acute and open bond angles. Virtual bond angles are confined to

the range of 78.5–143.1� and 72.5–154� for the hybrid-210 and ultra-310 models,

respectively (Kolinski and Skolnick 1994). These ‘‘hybrid’’ and ‘‘ultra’’ systems are

‘‘fluctuating bond’’ models, in that CaaCa virtual bond lengths are not fixed within a

model. In units of a, possible virtual bond lengths are
ffiffiffi
3

p
,
ffiffiffi
5

p
,
ffiffiffi
6

p
for the hybrid-210

model, and
ffiffiffi
8

p
, 3,

ffiffiffiffiffi
10

p
,
ffiffiffiffiffi
11

p
for the ultra-310 model. The values of a were chosen so

that the predominant virtual bond length of 3.80 Å for real proteins corresponds

roughly to the average virtual bond lengths in these models. Bond fluctuation models

have been used to model polypeptides in other contexts (see, e.g., Chen 2001). Of

particular interest is a recent fluctuating-bond ‘‘side-chain-only’’ lattice protein model,

3. It is interesting to note that real non-protein chain molecules have recently been designed for lattice-like
folding in two dimensions (Choi et al., 2000).
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in which 646 possible model virtual bonds with lengths ranging from 3.8 Å to approx-

imately 10 Å are used to connect side-chain centers of mass instead of Ca’s (Kolinski

et al. 1999).

High-coordination lattices are quite flexible. Because many bond angles are al-

lowed, conformations constructed on these lattices can match quite closely any poly-

peptide conformation at the Ca level. Average root-mean-square deviation of fitted

lattice conformations from Ca traces of Protein Databank structures is@1.0 Å for the

hybrid-210 model, and@0.8 Å for the ultra-310 model and the recent side-chain-only

model (Godzik et al. 1993; Kolinski and Skolnick 1994; Kolinski et al. 1999).

16.4.2 Interaction Schemes in High-Coordination Lattice Models

Interaction schemes for high-coordination lattice protein models use knowledge-

based parameters statistically derived from protein native structure databases as well

as postulated potential functions. These schemes have evolved over the years (see,

e.g., Skolnick and Kolinski 1991; Kolinski et al. 1993; Sikorski et al. 2000). Typi-

cally, their potential functions include energetic contributions from: (1) local orienta-

tion correlations between amino acid side chain rotamers; (2) lattice-defined hydrogen

bonding interactions; (3) amino-acid-specific one-body terms (here a ‘‘body’’ refers to

an amino acid residue) that depend on a residue’s distance from the center of mass of

a given protein conformation, or the number of contact a residue made with other

residues; (4) pairwise (two-body) terms; and (5) four-body ‘‘tertiary interaction’’

terms to promote certain preferred side chain packing patterns. Parameters for the

assumed functional forms of (1)–(4) were derived from protein databases, whereas (5)

was postulated ‘‘by hand.’’ Other additional features have also been incorporated

(Sikorski et al. 2000; Kolinski et al. 1993).

Even with their rather complex chain representation and interaction schemes, these

lattice models are computationally more tractable than all-atom models, and have

provided insight into folding thermodynamics and kinetics (Kolinski et al. 1999;

Sikorski et al. 2000), many of which cannot be addressed by other current models

at comparably high levels of structural resolution. Physical interpretation of high-

coordination lattice model results, however, is not always straightforward. This is

because of the large number of tunable knowledge-based and postulated parameters

involved, whose relationships with physical forces are sometimes not entirely clear.

For instance, a ‘‘one-body’’ term described above postulates a gravitation-like pull

on some residues toward a certain attractive center in a protein. But physically the

collapse of a protein chain must originate from the solvent-mediated interactions

among the residues, and therefore should be describable by atomic interactions, or

two- and higher-body interactions at the residue level. It is not certain whether a

Computational Methods for Protein Folding 417



universal high-coordination lattice interaction scheme that can describe a broad

range of protein properties would ultimately emerge.

16.4.3 Why Study Simple Low-Coordination Lattice Protein Models?

A complementary route to physical understanding is to adopt an incremental ap-

proach (Rapaport 1997; Chan 2000) that, as a first step, seeks to establish a workable

conceptual framework to account for general properties of proteins. For this purpose,

highly coarse-grained chain representations, such as those on simple cubic and square

lattices, are used to capture only the rudimentary chain nature of protein but not

their structural details. The postulated interactions in these models are simple, but can

nonetheless be based on physical considerations, in a spirit very much akin to that

of Ising models for ferromagnetism and related phenomena (Pathria 1980). These

models have an important logical advantage because they are readily falsifiable.

Their results are essentially direct deductions from the basic axioms of a given model’s

energetics, derived without intervening approximations and additional assumptions.

(Unlike more complex models in which ad hoc approximations are often introduced

for computational expediency.) Most of these models consider only contact inter-

actions (see below), but orientation-dependent interactions can also be incorporated

(Borg et al. 2001). Because of their highly simplified nature, extra care is needed

to assess whether the basic interaction scheme of a given model warrants certain

conclusions about real proteins, especially with regard to structural specifics and mi-

croscopic mechanisms of protein folding. Several such questions are raised below.

Nonetheless, provided that both the advantages and shortcomings of simplified

modeling are taken seriously, much can be learned about protein energetics from

these exercises. This is underscored by the fact that although there can be many

designs for highly simplified chain models, obtaining predictions consistent with ex-

perimental observations is nontrivial (Chan 1998b, 2000; Chan and Dill 1998; Kaya

and Chan 2000a, 2000b). With proper applications of experimental constraints, sim-

ple protein model construction is not as arbitrary as it might seem.

16.4.4 Interaction Potentials in Simple Lattice Models: What Do They Represent?

Gō and HPþ Models The ‘‘Gō potential’’ is one of the first interaction schemes

used in simple lattice models (Taketomi et al. 1975). Starting with a target native

structure, a Gō model assigns equal favorable energies (< 0) to all contacts between a

pair of residues (monomers) that occur in the given target structure, and assigns

neutral energies (¼ 0) to all non-native contacts that do not belong to the target

structure. Recent variants include an ‘‘HPþ’’ model that assigns repulsive (> 0) in-

stead of neutral energies to nonnative contacts (Chan and Dill 1998). From a physi-
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cal perspective, such teleological constructs (Kaya and Chan 2000a) may appear

trivial because they do not seek to account for the energetic favorability of the native

state in terms of universal elementary physical interactions but, instead, fabricate a

di¤erent interaction scheme for each di¤erent target structure. Because of their non-

universality, Gō and Gō-like potentials do not provide a model solution to the most

basic question in protein folding, which is how the amino acid sequence of a protein

determines its native structure.

Having said that, in view of our severely limited knowledge at present, it is profit-

able to test all kinds of assumptions and ask ‘‘what if ’’ questions whenever possible.

Such exercises are useful because they allow us to partially sort out the many logical

relationships that may lead to further progress, even though the physical origin of the

assumptions remains to be elucidated. Pursuing nontrivial implications of Gō-like

interactions can be fruitful within such a conceptual framework. In fact, currently

some generic protein properties can only be qualitatively reproduced by such highly

artificial constructs (Chan 1998b; Chan and Dill 1998); and results from some Gō

model studies can provide remarkable and unexpected information (Micheletti et al.

1999; Clementi et al. 2000). Gō-like native-centric approaches have also been applied

to model protein folding in non-lattice contexts (Alm and Baker 1999b; Galzitskaya

and Finkelstein 1999; Muñoz and Eaton 1999; Zhou and Karplus 1999). However, it

should always be borne in mind that these approaches by themselves do not tell us

what physical interactions can conspire to create the highly specific ‘‘molecular rec-

ognition’’ features they assume. Answers to such basic questions have to be sought in

studies that attempt to model the physical driving forces in proteins.

HP Models A widely applied simple lattice protein potential designed to capture

physical driving forces is that of the HP model. It uses an extremely coarse-grained

two-letter folding alphabet: sequences are strings of monomers that are either H

(hydrophobic) or P (polar). (These model monomer names should not be confused

with the one-letter codes for histidine and proline!) To mimic hydrophobic e¤ects,

each nearest-neighbor contact between two H monomers not consecutive along the

sequence is assigned a favorable energy, irrespective of whether the contact is in the

native (ground-state) structure or not; all other contacts are modeled as neutral (Lau

and Dill 1989; Dill et al. 1995). Thus, ground-state structures of HP sequences are

determined by a universal model potential. This contrasts with the Gō-model ap-

proach, which uses a particular potential for each target native structure. Example

HP sequence and ground-state structures are given in figure 16.5a,d. Other two- and

three-letter potentials have also been investigated (see discussion in Kaya and Chan

2000a).
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Figure 16.5
Simple lattice protein model examples. (a) One of three ground-state (lowest-energy) conformations of a
67-monomer (67mer) three-dimensional HP model sequence (Yue and Dill 1995). H and P monomers are
depicted as filled and open circles, respectively. (b) The conformation with the lowest simulated energy for
the 20-letter 48mer sequence shown (as given by the one-letter codes for the amino acids), computed with a
particular set of interaction parameters modified by Shakhnovich et al. (1996) from table VI of Miyazawa
and Jernigan 1985. Black circles are used for monomers corresponding to eight amino acid types (A, V, L,
I, M, P, F, W) that are customarily considered to be hydrophobic. White circles are used for monomers
corresponding to the other 12 amino acid types, including D, E, K, R, and H that are customarily referred
to as charged. Each dotted line indicates a salt-bridge-like contact between a pair of monomers with op-
posite charges. (c) Same conformation as in (b), but for a di¤erent 20-letter 48mer sequence governed by a
di¤erent set of interaction parameters. This conformation has the lowest simulated energy for the given
sequence according to a set of contact energies modified (Shakhnovich et al. 1996) from the two-body in-
teraction parameters of Kolinski et al. (1993). (d) A 32mer two-dimensional HP model sequence in the
conformation with the lowest simulated energy (Irbäck et al. 1998).
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The HP model potential is quite nonspecific and interaction heterogeneity is not

high (Wolynes 1997). As a result, ground-state degeneracy (number of conformations

with the same lowest energy) is generally high for HP sequences. The fraction of short

HP sequences with up to approximately 20 monomers that have a unique ground-

state conformation is A2.5 percent on two-dimensional square lattices (Chan and

Dill 1996a). Degeneracy is higher in three dimensions. Determining the ground-state

conformations of long HP sequences is a computational challenge (Yue et al. 1995)

because in general it is an NP-complete problem (Berger and Leighton 1998; Crescenzi

et al. 1998). No HP sequence configured on simple cubic lattices has been found to

possess a unique ground-state conformation (Yue and Dill 1995; Yue et al. 1995).

Recently, Buchler and Goldstein (2000) suggested that certain structural conclusions

from HP model studies (see, e.g., Li et al. 1996) may not be general because these

features are sensitive to the size of the alphabet and the particular energy model used.

(For further discussion, see Tang 2000.) Limitations of HP-like 2-letter models have

also been identified in theoretical investigations of coarse-graining techniques for

reducing larger folding alphabets to smaller ones (Backofen et al. 1999; Micheletti et

al. 1998; Wang and Wang 1999, 2000). These observations raise a fundamental mod-

eling question: To what extent are HP and other simple lattice potentials proteinlike?

Despite its obvious limitations, the HP potential is useful in the study of proteins,

for the following reasons.

First, in light of a host of simplifications in any simple model, a model folding al-

phabet is not necessarily less proteinlike solely because it has two instead of 20 letters.

Other physical issues beside alphabet size can be equally, if not more, critical. These

include the nature of a model’s packing forces, namely the model interactions’ spe-

cificity and stabilizing mechanisms (see below), the discriminating role of repulsive

interactions, and whether the model conformational ensemble is unphysically re-

stricted to only the maximally compact conformations (see dicussions in Chan and

Dill 1996a, 1998; Backofen et al. 1999; Chan 2000).

Second, HP models should be useful for exploring the mapping between protein

sequences and their native structures inasmuch as di¤erent energetic components

contributing to protein folding (hydrophobic and other interactions) have no signifi-

cant conflict with one another in the native conformation, that is, inasmuch as the

situation envisioned by the consistency principle (Gō 1983) or principle of minimal

frustration (Bryngelson and Wolynes 1987) is valid. In that case, we may adopt the

working assumption that for a sequence to be proteinlike, it must have only a unique

most-favored conformation or a very small set of near-unique most-favored con-

formations based on its hydrophobic-polar pattern alone, notwithstanding the fact

that contributions from other energetic components have to be incorporated to fully
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account for its thermodynamic and other properties (Kaya and Chan 2000a, b). This

formulation has been motivated by the observation that symmetries exhibited by many

HP model ground-state structures are intuitively more proteinlike (Yue and Dill 1995;

Li et al. 1996) than the ground-state conformations favored by other model potentials,

including some with larger alphabets (c.f. figure 16.5).

In this view, the unique model ground-state conformations determined by an HP

(Lau and Dill 1989) or HP-like (Li et al. 1996; Hirst 1999) potential are adopted as

coarse-grained models of protein native conformations, but with the understanding

that additional consistent stabilizing driving forces may have to be invoked in appli-

cations that address more refined features of protein energetics (Chan 2000; Kaya

and Chan 2000b). The viability of the present physical interpretation is buttressed by

the recent finding that hydrophobicity patterns in two-dimensional HP model pro-

teins as characterized by mean-square block fluctuation (Irbäck et al. 1996) are indeed

qualitatively similar to that found in real protein sequences (Irbäck and Sandelin

2000).

Twenty-Letter Models Simple lattice models that use 20-letter alphabets have also

been extensively studied (Shakhnovich 1997). As for the HP model, ground-state

conformations in these models are determined by a universal set of interaction

parameters (figure 16.5b,c). Typically, the interaction parameters are modified from

knowledge-based pairwise contact energies between amino acid residues (Tanaka and

Scheraga 1976; Miyazawa and Jernigan 1985, 1996), which are often represented as

a symmetric 20� 20 energy matrix with 210 independent elements. In general,

knowledge-based statistical potentials can be quite di¤erent from physical inter-

actions (Thomas and Dill 1996; Mirny and Shakhnovich 1996), although under cer-

tain restrictive conditions the former statistically derived parameters can provide a

reasonable description of the underlying physics (Zhang and Skolnick 1998). Figure

16.6 provides one such example.

Here we analyze the 1985 version of the Miyazawa-Jernigan (MJ) contact energies

(Miyazawa and Jernigan 1985, upper half of their table V) by a matrix diagonaliza-

tion technique (Chan 1999). This method is a variation of an earlier analysis of Li

et al. (1997). Shown on the left in figure 16.6a is the spectrum of eigenvalues of this

particular MJ matrix. One of the eigenvalues is favorable (< 0) and dominant

(¼ �64:7); others have much smaller magnitudes, between �1.93 and þ3.42. In this

formulation, the eigenvector of a given eigenvalue corresponds to a hypothetical

linear combination of amino acid residues that has only one nonzero interaction,

namely with itself; whereas its interactions with all other eigenvectors are zero. It

follows that when a model system has a dominant eigenvalue, which may be inter-
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Figure 16.6
Matrix analyses of statistical contact energies.‘‘MJ table V’’ and ‘‘MJ table VI’’ here and in the text refers
to the upper half of table V, and table VI of Miyazawa and Jernigan 1985, respectively. The ‘‘KGS’’
pairwise interaction parameters are from table III of Kolinski et al. 1993. The eigenvalues of these three
matrices are given in (a). The upper plot in (b) shows the amino-acid components of the eigenvector of the
dominant eigenvalue of MJ table V. See text and Chan 1999 for details. The lower plot in (b) is an
hydrophobicity scale from Fauchère and Pliška 1983, in which an amino acid’s experimental preference to
be in octanol rather than in water is given by a transfer free energy in units of kJ/mol.
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preted as a dominant mode of interaction, the interaction of the system may be

approximated by the interaction involving only the eigenvector of the dominant

eigenvalue. The projection of each amino acid along this dominant eigenvector (upper

plot in figure 16.6b) may then be interpreted as the given amino acid’s participation

in the dominant mode of interaction.

Figure 16.6b strongly suggests that the main physical interactions captured by the

MJ parameters are the ‘‘hydrophobic interactions,’’ as has been pointed out pre-

viously (Godzik et al. 1995; Li et al. 1997). This is because the magnitudes of the

amino acids’ projections on the dominant eigenvector (upper plot in figure 16.6b)

correlate quite well with amino acid hydrophobicity scales determined from water/oil

solute transfer experiments (see, e.g., Karplus 1997; DeVido et al. 1998; Chan 2001),

one of which is included here (lower plot in figure 16.6b). In general, residues that are

more hydrophobic (i.e., those with lower water-to-oil transfer free energies) have

larger components along the dominant eigenvector. These results are very similar to

that obtained earlier (Chan 1999) for the 1996 version of this MJ matrix (Miyazawa

and Jernigan 1996, upper half of their table 3), the latter is the physical basis for a

recent novel algorithm for designing optimal sets of reduced amino acid alphabets

with fewer than 20 letters (Wang and Wang 1999).

These findings are consistent with the original interpretation, based on a quasi-

chemical approximation, of MJ table V as an approximate physical description of

solvent-mediated interactions between amino acid pairs (Miyazawa and Jernigan

1985). In view of this, it is noteworthy that the MJ parameters in Shakhnovich and

coworker’s 20-letter model (Shakhnovich 1994) are not from MJ table V but from

MJ table VI.4 The latter was derived from MJ table V by shifting contact energies by

a certain amount. Physically, this procedure may be viewed as the adoption of a new

solvent or ‘‘reference state’’ di¤erent from that of the original system (Jernigan and

Bahar 1996). In general, just like changing the solvent in a protein experiment can

change the protein’s conformational distribution, ‘‘shifting’’ a set of energy parameters

can change the physics of a model system (Chan and Dill 1996a; Hirst 1999; Giu-

gliarelli et al. 2000). This is clearly demonstrated by the fact that, unlike that for MJ

table V, the spectrum of eigenvalues for MJ table VI lacks a dominant eigenvalue

(figure 16.6a). Because the 20-letter model of Shakhnovich et al. is the foundation of

a large body of interesting work (Shakhnovich 1997), we now take a closer look at

the physical implications of its interaction parameters.

4. All 210 MJ interaction parameters they use are from MJ table VI, except three entries they chose to
modify (see footnote on page 342 in Chan and Dill 1996a).
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One conspicuous consequence of using MJ table VI is the prevalence of salt-bridge-

like charge interactions in the cores of model native conformations, as in figure 16.5b.

Instead of a proteinlike hydrophobic core, the core of this model sequence is made up

entirely of charged monomers. All hydrophobic monomers are on the surface, none is

inside. In short, compared to real proteins, the native structure of this model has an

‘‘inside-out’’ hydrophobicity distribution.

Does this matter? Whether this ostensively non-proteinlike feature is a cause for

concern depends on what knowledge about proteins we are seeking from these models.

If our interest is restricted to how highly coarse-grained protein properties may arise

from general properties of heteropolymers, we may view the use of MJ table VI just

as a convenient way of implementing a model interaction scheme with su‰cient het-

erogeneity, without regard as to whether its details are proteinlike or not. The class of

20-letter models in question can be instrumental in such investigations. In that case,

however, we should refrain from, or at least be very conservative about identifying

detailed features of the model with structural or mechanistic aspects of real proteins.

By contrast, if we are interested in how physical interactions in proteins a¤ect folding

mechanisms, it is only logical to inquire to what degree the model interaction scheme

coincides with the driving forces in proteins. If this is one’s goal, it is necessary to

ascertain whether the very nature of the physical interactions has been changed by

using MJ table VI instead of MJ table V.

To get to the root of this matter, we look beyond the nominal identities of the

model monomers and focus on the mathematical properties, namely the signs and

magnitudes, of the contact energies themselves. The native core of the 20-letter model

in figure 16.5b is stablilized by a network of 15 contact interactions between nomi-

nally charged monomers (dotted lines), all but one of which are contacts between

negatively charged monomer types D, K and positively charged monomer types K,

R. There are 6 E-K, 3 D-K, 3 E-R, and 2 D-R contacts. According to MJ table VI,

the energies of these contact types are �0.97, �0.76, �0.74, and �0.72, respectively.5

Second only to the �1.06 value for a pair of cysteines, these are the next four most

favorable interactions in MJ table VI. The (unweighted) average of these four

strongly attractive contact types in the native state equals �0.80. On the other hand,

the corresponding average for the six contact types among D, E, R, and K that do not

appear in the native structure is þ0.16, as they are either intermediately to strongly

5. The energies in the present discussion are read o¤ directly from MJ table VI. In their analysis, Shakh-
novich et al. (1996) use a set of modified parameters obtained by shifting MJ table VI so that the average of
all resultant parameters equal zero. This amounts to adding �0.018 to every energy parameter in MJ table
VI. Because the magnitude of �0.018 is small compared to almost all of the parameters, the conclusions
reached here are independent of whether this shift is used or not, as can be readily verified.
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repulsive or essentially neutral to slightly attractive: according to MJ table VI, the

D-D, D-E, E-E, R-R, R-K, and K-K contact energies are þ0.04, �0.15, �0.03,

þ0.11, þ0.75, and þ0.25, respectively. This implies that the interactions among these

four monomer types in this model do have features similar to that of electrostatic

interactions, although MJ table VI provides for stronger attractions between opposite

charges than the repulsions between like charges.

This analysis reveals the mechanism by which alternate nonnative core packing

arrangements are energetically disfavored in this model. Native stability is the out-

come of a competition between native and nonnative configurations. Structural spe-

cificity and thermodynamic stability of the native structure increase if compact

nonnative configurations are disfavored. The above observation means that this

model’s relatively high degree of interaction specificity originates from an ionic-

crystal-like interaction pattern in its native core. Interactions with high specificities

are likely to be needed to account for real protein behaviors (Chan 2000; Kaya and

Chan 2000b). However, the currently accepted physical picture is that nonlocal elec-

trostatic interactions, whose features the model in figure 16.5b appears to be captur-

ing, do not play a significant role in stabilizing the protein core (Dill et al. 1990;

Honig and Yang 1995).

The interaction patterns of some other 20-letter lattice models are more protein-

like, at least ostensively. Examples include models based on KGS parameters (figure

16.5c). The two-body KGS interaction parameters of Kolinski et al. (1993) were not

intended by the original authors to be used as the sole contribution to the energy of

a model protein, because there are many other terms in their potential. The dis-

tribution of KGS eigenvalues is quite similar to that for MJ table VI but not the

hydrophobicity-dominant MJ table V (figure 16.6a), presumably because hydro-

phobic e¤ects are described mainly by the one-body term in the KGS formulation.

Nonetheless, the core of the conformation in figure 16.5c is made up of hydrophobic

monomers, with 21 contacts among A, V, L, I, M, F, and W, encompassing 10 of the

28 possible pairings among these monomers. The KGS two-body parameters stip-

ulates that all these 28 contact types are favorable except one (the slightly unfavor-

able þ0.1 for A and M).6 The (unweighted) average energy of the 10 pairwise

interaction types that occur in the native structure is �0.87, which is only slightly

more favorable than the average of �0.68 for the 18 pairwise interaction types that

do not appear in the native conformation. Hence the interaction pattern stabilizing

6. In Shakhnovich et al. 1996, the KGS parameters are shifted so that the resultant parameters average to
zero. This amounts to adding a small number þ0.15 to all the KGS energies used in the present discussion.
Because this amount is small compared to most KGS energies, the e¤ect of this shift on our conclusions is
negligible.
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the native core of this model may be characterized as low-specificity hydrophobic

interactions, which are believed to be a significant contributing factor to protein native

stability (Dill 1990; Honig and Yang 1995). A similar example is a 24mer model

sequence of Betancourt and Thirumalai (1999b), whose native core is stabilized by

eight contacts among V, L, and A monomers. Consistent with the usual notion of

hydrophobicity, their interaction parameter set (Betancourt and Thirumalai 1999a)

stipulates that contact energies between all possible pairs among V, L, and A are

favorable. These include contact pairs that do and do not occur in the model native

conformation in question.

These observations suggest that the stablization mechanisms of the latter two 20-

letter models are quite di¤erent from that of Shakhnovich and coworkers. Besides

figure 16.5b, other native structures in the model of Shakhnovich et al. also tend to

have nominally charged monomers buried in their cores, though it is sometimes

possible to achieve similar results with less stable model sequences that bury nomi-

nally hydrophobic monomers (Abkevich et al. 1995a). The above analysis shows that

the issue at hand is not a trivial semantic quibble about the nominal identities of the

model monomers, because in essence it is about the underlying mathematical and

physical properties of the model potential function that determine folding mecha-

nisms and a model’s ability or inability to predict real protein properties. The 20-letter

model in question has provided insight in many applications (Shakhnovich 1997), but

apparently this model fails to capture some key features of protein energetics. An

indication is that although the importance of native-structure topology to protein

folding is generally recognized by its authors (Abkevich et al. 1994), this model has

predicted a correlation trend (Abkevich et al. 1995b) between folding rate and rela-

tive contact order (which is a measure of the average sequence separation of contact

residues) that is opposite to the observed experimental trend (Plaxco et al. 1998, 2000;

see also Chan 1998a; Dinner and Karplus 1998). Significant advances have been

made in the past decade in simple lattice protein modeling, but much work is still

needed to achieve better matches between theory and experiment (Alm and Baker

1999a; Plaxco et al. 2000).

16.5 Recent Applications of Simple Lattice Protein Models

We now turn to more recent results. Because a comprehensive review is beyond the

scope of this chapter, the topics covered below are necessarily selective and obviously

biased by our own research interests. A major purpose in presenting them here is to

illustrate how physical insight can be gained from simple modeling.
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16.5.1 Mutations and Evolutionary Landscapes

Simple lattice protein models are useful for addressing conceptual issues in evolution.

In general, a model of evolution requires a mapping from sequence (genotype) to

fitness. Such a relation is often referred to picturesquely as a given model’s evolu-

tionary landscape. Biologically, a sequence’s fitness is derived from its function, and

function is intimately related to the structure(s) (phenotype) the given sequence enc-

odes. Analytical models of sequence-fitness mapping (see, e.g., Perelson and Macken

1995) are instructive and useful in many respects. But these models do not address the

underlying physical mechanisms by which sequences are mapped onto structures.

To tackle these questions, many theoreticians have adopted computational ap-

proaches, focusing on constructing models of sequence-structure mapping that are

motivated by various aspects of polymer physics. To our knowledge, the first such

e¤ort was the seminal work of Fontana and Schuster (1987) on RNA secondary

structures, which has led to an elucidation of continuous versus discontinuous evo-

lutionary changes (Fontana and Schuster 1998). For globular proteins, mutations

and evolutionary issues were addressed using the HP model (Lau and Dill 1989),

which was applied early on by Lipman and Wilbur (1991) to investigate whether non-

lethal mutations form a connected network. Since then, protein evolution has also

been investigated using other simplifed chain models. These include approaches that

employ sampling and/or enumeration of the full ensemble of chain conformations

in on-lattice (Bussemaker et al. 1997; Mirny et al. 1998) and o¤-lattice (Nelson and

Onuchic 1998) models, and analyses based on enumeration of maximally compact

lattice conformations (see, e.g., Li et al. 1996; Govindarajan and Goldstein 1997),

among others. (For an updated comprehensive review of analytical and computa-

tional approaches to protein evolution, see Voigt et al. 2001.)

Neutral Nets ‘‘Neutral net’’ is an evolutionary concept whose properties can be

explored using these simple physical models. A neutral net is a collection of sequences

interconnected via single-point mutations and encoding for the same ground-state

structure (Bornberg-Bauer 1997; Bornberg-Bauer and Chan 1999; and references

therein). An interesting idea emerging from these studies is that neutral net topology—

the pattern of the sequences’ interconnections in a neutral net—can have an e¤ect on

the distribution of steady-state evolutionary population among the sequences in the

net. This hypothesis posits that, when all else is equal, sequences that have more con-

nections to other sequences in the same neutral net are expected to be more populated

in evolution simply by virtue of their mutational stabilities. As a determinant of evo-

lutionary population, simple lattice model studies show that this neutral net topology
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factor often acts in concert—as in the superfunnel scenario with a prototype sequence—

but can also oppose the evolutionary force that arises from the relative functional fit-

ness of individual sequences (Bornberg-Bauer and Chan 1999). Van Nimwegen et al.

(1999) have independently arrived at a similar conclusion via a di¤erent modeling

approach. In principle, this topology-population hypothesis should be testable by

extensive mutagenesis experiments. Simple lattice model studies also show that

sequences in a neutral net are often homologous (figure 16.7). Results from these

investigations have been applied to provide theoretical underpinning (Cui and Wong

2000) for a recent technique that uses ‘‘averaged’’ information from a set of homol-

ogous sequences to reduce the statistical noise in knowledge-based potentials

(Finkelstein 1998).

To illustrate the methods used in these studies, figure 16.7 lists the sequences of two

HP model neutral nets obtained by exhaustive enumeration of all possible confor-

mations (Bornberg-Bauer and Chan 1999). As in real proteins (Bowie et al. 1990), the

HP model protein cores are made up of conserved hydrophobic monomers. The

‘‘bridge’’ sequence in the center box serves as an intermediate step (Bornberg-Bauer

1997) along a possible mutational path by which a sequence changes from encoding

uniquely for one conformation to another (see caption for figure 16.7). Remarkably,

some features of these HP model predictions are reminiscent of the elegant experi-

ments recently performed by Sauer and coworkers (Cordes et al. 1999, 2000).

Cordes et al. found that interchanging a hydrophobic core residue and a surface

polar residue in each of the two subunits of the Arc repressor homodimer changes a

surface inter-subunit two-strand b-sheet in the wild-type native conformation to a

pair of a-helices in the native conformation of what they called a ‘‘switch’’ mutant

(Cordes et al. 1999). Analogously, in figure 16.7, a pair of mutations that inter-

changes the sequence positions of an H and a P results in a similar e¤ect: starting

with the unique sequence connected to the left side of the center box, the pair of

substitutions P ! H at site a and H ! P at site b leads to a di¤erent local fold on the

surface (dashed boxes) of the HP model protein, namely from the ‘‘L’’ shape on the

left to the ‘‘G’’ shape on the right. More recently, Cordes et al. (2000) discovered that

a sequence that is a single-substitution mutant of both the wild-type Arc repressor

and the ‘‘switch’’ mutant have approximate equal populations in the wild-type native

conformation and the ‘‘switch’’ mutant’s native conformation. The role of this new

Arc repressor mutant is thus analogous to that of the model ‘‘bridge’’ sequence in

figure 16.7.

This set of experiments has important implications for evolution because it dem-

onstrates the possibility that for some proteins a very small number of mutations can

lead to a new fold. It shows that such processes can be determined in large measure
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Figure 16.7
A switch between two neutral nets. Sequences in an HP model neutral net are connected via a network of
single-site H ! P or P ! H mutations (Bornberg-Bauer 1997; Bornberg-Bauer and Chan 1999). (a) The
complete list of all two-dimensional HP sequences that constitute a neutral net in Bornberg-Bauer and
Chan (1999; their figure 1a). Each of the 48 sequences encodes uniquely for the left conformation in the
center box. (b) A smaller neutral net with seven sequences; each encodes uniquely for the right conforma-
tion in the center box. In both the (a) and (b) columns, sequences are listed from top to bottom in
decreasing order of native stability. In each neutral net, the top sequence is the most stable; and conserved
H or P monomers are shaded. Shown in the center box is a doubly degenerate sequence that encodes for
both conformations and serves as a ‘‘bridge’’ between the two unique sequences connected by horizontal
lines to the box. The bridge sequence di¤ers from either of these two unique sequences in (a) and (b) by
only a single-site substitution, at the specific sites a and b marked by arrows, respectively. Thus it may be
viewed as an evolutionary link between the two neutral nets.
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by the evolution of the hydrophobicity pattern of the protein sequence. In this regard,

as we have argued above, even a minimalist notion of hydrophobicity as imple-

mented in the HP model can be used to rationalize coarse-grained properties of the

mapping between protein sequences and their native structures.

16.5.2 Protein Aggregation and Conformational Propagation

Because of their computational tractability and broad coverage of conformational

space, simple lattice models can be used to investigate protein misfolding and aggre-

gation. For instance, lattice models have been applied to explore the feasibility of

a proposed iterative annealing mechanism of chaperonin action, which hypothesizes

that a chaperonin functions by partially unfolding a misfolded protein—multiple

times if necessary—so as to give the protein more chances to fold correctly (Todd et

al. 1996; Lorimer 1997; Sigler et al. 1998). Lattice kinetics models of the proposed

process have been used to study the physical factors involved (Chan and Dill 1996b;

Sfatos et al. 1996; Betancourt and Thirumalai 1999b). More recently, simple lattice

models have been applied to protein aggregation. In most cases, high-resolution

modeling is not currently feasible for these multiple-chain processes. The thermody-

namics and kinetics of two-chain systems have been studied using lattice models in

both two (Harrison et al. 1999, 2001; Istrail et al. 1999) and three (Broglia et al. 1999;

Harrison et al. 1999) dimensions (see figures 16.8, 16.9). Kinetics simulations of

three-chain systems in two dimensions (Harrison et al. 2001) and a concentrated so-

lution of up to 40 two-dimensional HP 20mer sequences (Gupta et al. 1998) have

been conducted. Based on a presumed idealized packing geometry for an extensive

two-dimensional aggregate state (figure 16.8b), Giugliarelli et al. (2000) investigated

how aggregated chains may adopt a stable fold di¤erent from that of its single-chain

native conformation.

Many of these studies have been motivated by ‘‘protein misfolding’’ diseases, in-

cluding Alzheimer’s, systematic amyloidoses, and prion diseases (Cohen and Prusiner

1998; Kelley 1998; Dobson 1999). Prion diseases of humans and other mammals are

believed to be caused by a misfolded form PrPSc of the normal cellular prion protein

PrPC (Cohen and Prusiner 1998). Other prions in lower organisms have also been

discovered (Lindquist 1997; Li and Lindquist 2000). Here we highlight several recent

findings of Harrison et al. (1999, 2001). Their modeling identifies PrPC with the

ground-state (native) conformation of a single isolated model chain, whereas multiple-

chain aggregates with two or more model chains in alternate folds di¤erent from that

of the single-chain conformation are identified with PrPSc. Consistent with the pro-

posed prion disease mechanism, they found that a non-negligible fraction of HP

sequences adopt thermodynamically more stable alternate folds upon dimerization

Computational Methods for Protein Folding 431



Figure 16.8
Models of protein aggregation. (a) In the box on the left is the unique ground-state (native) conformation
with six HH contacts of a single isolated HP model chain.The same sequence gives rise to six di¤erent (two-
chain) homodimers shown, each of which has 14 HH contacts. These energetically equally favorable
homodimer configurations are obtained from extensive conformational enumerations (Harrison et al.
1999). They are thermodynamically more stable than any docking of two single-chain native conformations
because the latter can at most have a total of 13 HH contacts. (b) A ‘‘super-lattice’’ of aggregated model
proteins studied by Giugliarelli et al. (2000). This model is based on shifted forms of Li et al.’s (1996)
modified HP potential.
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(figure 16.8a), and that model proteins whose single-chain native states are less stable

are more susceptible to this form of misfolding. Multiple alternate folds that are

equally stable can arise upon dimerization of the same sequence (figure 16.8a). This

lattice scenario o¤ers a perspective for understanding PrPSc strains, which have dis-

tinct self-propagating properties that are apparently encrypted in their di¤erent ter-

tiary structures (Cohen and Prusiner 1998; Harrison et al. 1999).

A characteristic of the prion diseases is that apparently the disease-causing form

PrPSc can serve as a template to lower the kinetic barriers that normally prevent PrPC

from converting to PrPSc (Cohen and Prusiner 1998). The lattice scenario in figure

16.9 suggests that multiple-chain kinetics with these postulated features are feasible

(Harrison et al. 2001). This perspective suggests that, vis-à-vis the onset of prion

diseases, the normal healthy condition corresponds to a situation in which the normal

form of the prion protein is kinetically prevented from reaching thermodynamically

Figure 16.9
A simple 4-letter chain model of conformational propagation kinetics. Kinetic process a is a spontaneous
two-chain conversion from two single-chain native conformations (on the left) to a more stable homodimer
in which the chains adopt an alternate fold di¤erent from the single-chain native conformation. b is a
templated three-chain conversion whereby a chain in the single-chain native conformation is placed near an
already converted homodimer, then all three chains are allowed to refold in close proximity with one an-
other to the more stable three-chain aggregate shown. c is a spontaneous three-chain conversion process
whereby all three chains initially in the single-chain native conformation are converted to the same three-
chain aggregate as in b. Simulated templated process b proceeds at approximately five times the rate of
spontaneous process c; see Harrison et al. 2001 for details.
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more stable disease-causing forms. Model simulation suggests that molecular crowd-

ing e¤ects may be a main reason for the extremely slow kinetics. In other words, in

normal situations, the conversion of PrPC to PrPSc may have been arrested by kinetic

traps, the physics of which is reminiscent of the sluggish dynamics in glassy materials

(Kauzmann 1948; Bryngelson and Wolynes 1987; Bryngelson et al. 1995; Harrison et

al. 2001).

16.5.3 Calorimetric Cooperativity as Modeling Constraint

One of the generic thermodynamic properties of small single-chain proteins is their

calorimetric two-state cooperativity, that the ratio of their van’t Ho¤ to calorimetric

enthalpies DHvH=DHcalA1 (Privalov 1979; Freire 1995; Makhatadze and Privalov

1995). Recently, it has been pointed out that this criterion, in conjunction with other

experimental protein properties from small-angle X-ray scattering and NMR mea-

surements, can be used to ascertain the extent to which a self-contained polymer

model is proteinlike (Chan 2000; Kaya and Chan 2000a).

The main ideas are illustrated in figure 16.10, which shows that to satisfy the cal-

orimetric two-state criterion (DHvH=DHcal ¼ k0A1), the denatured density of states

has to be very narrow (figure 16.10a). The heat capacity function CP of a calorimetri-

cally more cooperative model protein is sharper, whereas that of a less cooperative one

has a long tail of appreciable non-zero contribution at high temperatures (figure

16.10b). The physical origin of the latter behavior is that the average enthalpy of the

denatured population of a less cooperative or non-cooperative model protein under-

goes a significant shift as temperature is raised (figure 16.10c), whereas the enthalpy

distribution of a calorimetrically cooperative model’s denatured population does not

shift significantly over a wide range of temperature (figure 16.10d). Chan (2000) and

Kaya and Chan (2000a, b) o¤er detailed analyses.

Nearly all popular contact energy based models, except three-dimensional Gō

models, were found to fall short of meeting the calorimetric two-state criterion to

various degrees (Chan 2000; Kaya and Chan 2000a, b). This suggests that some key

energetic ingredients are missing in existing simple protein models. Therefore, the

calorimetric two-state criterion should be applied as a constraint to facilitate the de-

velopment of more proteinlike models. Preliminary analyses suggest that both local

(Irbäck et al. 1997; Baldwin and Rose 1999) and nonlocal interactions (Dill 1990;

Chan and Dill 1991; Yue and Dill 1996) and their cooperative interplay (Chan 2000;

Kaya and Chan 2000b, and references therein) are necessary for calorimetric two-

state cooperativity. This investigation has provided novel insight into theoretical and

experimental aspects of native-state conformational diversity, including a clarifica-

tion of the physical meaning (Kaya and Chan 2000a) of the multiple-conformation
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Figure 16.10
Density of states determines calorimetric cooperativity. Results are obtained using the random-energy
Gaussian model in Chan 2000 and Kaya and Chan 2000a, which are based on experimental parameters
from chymotrypsin inhibitor 2. Here gðHÞ, H, CP, and T denote density of states, enthalpy in units of kB,
heat capacity in units of kB, and absolute temperature, respectively; the native enthalpy is equal to zero; k0
is the population-based van’t Ho¤ to calorimetric enthalpy ratio DHvH=DHcal defined in Kaya and Chan
2000a. Here a model protein’s density of states is its number of conformations as a function of enthalpy.
Results for a high-cooperativity model (k0 ¼ 0:98, solid curves) and a low-cooperativity model (k0 ¼ 0:6,
dashed curves) are compared. The curves in (a) are the denatured parts of the densities of states of the two
models; and (b) shows their heat capacity functions. The two lower plots show the distribution of denatured-
state enthalpy at the temperatures indicated, for the model with k0 ¼ 0:6 (c) and k0 ¼ 0:98 (d), respectively.
The shaded areas under the curves are proportional to the total fractional denatured population. Note that
di¤erent vertical scales are used for di¤erent temperatures. See Kaya and Chan 2000a for details.
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native state defined in some 20-letter models (Gutin et al. 1998). Moreover, because

the calorimetric criterion addresses energetic distributions among the unfolded non-

native conformations, it also bears on the Z-score used in empirical protein structure

prediction (see discussion in Chan 2000).

16.6 Issues in Simple Lattice Modeling of Folding Kinetics

Recent years witness extensive e¤orts in using simple lattice models to study protein

folding kinetics. (For early e¤orts, see, e.g., Shakhnovich et al. 1991; Leopold et al.

1992; Miller et al. 1992.) We do not repeat their many findings here, as there is no

shortage of comprehensive studies and reviews on the subject (see, e.g., Dill and

Chan 1997; Onuchic et al. 1997; Shakhnovich 1997; Chan and Dill 1998; Thirumalai

and Klimov 1999), including perspectives on a proposed nucleation folding mecha-

nism (Shakhnovich 1998; Thirumalai and Klimov 1998). Here we only focus on mod-

eling issues that we believe are basic, but that have received relatively little attention.

For protein folding kinetics, in-depth analyses are often necessary to match simple

lattice model results to experimental data. One noteworthy example is that tempera-

ture dependences have to be introduced into both the model intrachain interaction and

the ‘‘Monte Carlo clock’’ of the model dynamics in order to provide a self-consistent

account of the experimentally observed chevron plots and non-Arrhenius kinetics

(Chan 1998b; Chan and Dill 1998).

Extra caution has to be used in kinetic than in thermodynamic applications of

lattice models. The main reason is that, unlike continuum molecular dynamics, lattice

dynamics are not governed by Newton’s equation of motion. To mimic reality, model

dynamics on lattices are designed with ingredients that are intuitively recognized to

be physical features of real dynamics. It has long been realized that lattice protein

folding kinetics models with local chain moves alone may have serious artifacts

(Skolnick and Kolinski 1991). As a result, authors of high-coordination models have

been careful in choosing moves and assigning physically plausible weights to the

moves. To ensure that various possible mechanisms of protein assembly are not a

priori excluded, they have designed their lattice moves in such a way that the model

dynamics allow for the slow di¤usion of assembled fragments of secondary and

supersecondary structure, but at the same time the assembled fragments can also dis-

solve and reassemble at a di¤erent location (Kolinski and Skolnick 1994).

On the other hand, the move sets in many recent simple lattice model simulations

of folding kinetics are limited to local moves (e.g., Abkevich et al. 1994; Pande and

Rokhsar 1999). These studies are still useful because they can demonstrate the pos-
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sibility of a particular folding path or a folding mechanism, for example, how the

conformational search problem can be solved (Abkevich et al. 1994). But obviously

they cannot be used to exclude physically plausible folding mechanisms their move

set a priori precludes.

Significant move-set dependences have been observed in the folding times of two-

dimensional HP model sequences by comparing two move sets, MS1 and MS2 (Chan

and Dill 1994). Figure 16.11 shows a similar comparison, now over a continuous

class of dynamics models that have di¤erent relative weights (probabilities) for the

moves in the two move sets. In this particular example, folding times in di¤erent

dynamics models can di¤er by more than six orders of magnitude (figure 16.11b).

The underlying physical reason is pictorically illustrated in figure 16.11a: a rigid ro-

tation (in MS2)—even at a low di¤usion rate (i.e., low relative probability in figure

16.11b)—can bring two assembled fragments of a nonnative conformation together

to form the native structure, and can do so without encountering any energy barrier.

However, a move set limited to local moves (MS1) must take many steps and break

at least two existing HH contacts along the way to arrive at the same end point. This

implies that the kinetics with the two move sets are very di¤erent when breaking of

existing contacts are energetically costly, as is the case in this calculation.

It is clear from this example, as have been pointed out before (Skolnick and

Kolinski 1991; Abkevich et al. 1994; Chan and Dill 1994), that rotation and di¤usion

of intact assembled fragments of a protein, as envisioned by Karplus and Weaver

(1976, 1979) in their di¤usion-collision-adhesion model, are precluded by lattice move

sets with only local moves. Figure 16.11 suggests that di¤erent folding mechanisms

would be predicted if di¤erent move sets are assumed, even though the underlying

interaction potential remains unchanged. Therefore, to gain a clear picture of the re-

lationship between protein energetics and the predicted folding mechanisms in a lattice

model, the role of move sets must be taken into account.

16.7 Concluding Remarks

We have emphasized physics-based approaches in this survey of computational

methods for protein folding, from very brief sketches of all-atom simulations, con-

tinuum electrostatics, and high-coordination lattice models to an exposition of sim-

plified statistical mechanics models. This is not a comprehensive review; in fact, we

have devoted more e¤ort to raising questions than to providing answers. Neverthe-

less, it is hoped that the brief summaries, analyses, and cited references in this chapter

would make recent developments more accessible to the interested reader, and help
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Figure 16.11
Folding kinetics of lattice protein models depend on move set. Two move sets MS1 and MS2 defined by
Chan and Dill (1994) are compared using a two-dimensional HP model sequence. MS1 contains only three-
point flips and end flips, whereas MS2 includes also crankshafts and rigid rotations. Folding paths from
any nonnative conformation to the native conformation (upper right corner) can be very di¤erent for the
two move sets. For example, the conformation at the upper left corner can reach the native state via one
single rigid rotation step in MS2 (top). But at least 36 MS1 steps are needed if the number of energetically
unfavorable breaking of HH contacts is minimized along the folding path. (a) is the energy landscape along
one such folding path, where h is the number of HH contacts. Selected conformations along this path are
shown, chain moves (i) and (ii) are examples of three-point and end flips, respectively. (b) is the folding
time of the model HP sequence at HH interaction energy ¼ �9:3kBT , computed by a reduced transition
matrix method (Chan and Dill 1994) for a range of probabilities of the additional moves in MS2 (crank-
shafts and rigid rotations) relative to the local moves in MS1. The upper and lower curves are the time
needed to achieve 95 percent and 50 percent native populations, respectively, from an initial ensemble of
open conformations. Even relative probabilities as low as 10�6 speed up folding considerably in this case.
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him or her evaluate results reported in the literature. A few examples have been ana-

lyzed and discussed in some detail to highlight issues we believe are important, espe-

cially with regard to physical interpretations of simple lattice model results. Protein

folding is a vast field; many approaches are complementary to one another. Protein

folding is a many faceted problem; its elucidation requires theories at many levels,

and models that account for di¤erent degrees of complexity. To move forward in

physical understanding, it is necessary to critically evaluate theoretical predictions

against experiments, to clarify the relationship between the basic modeling assump-

tions and the physico-chemical forces in real proteins, and to establish rigorous logical

connections from a model’s basic assumptions to its predictions. Clearly, the degree to

which one is successful in these endeavors would determine the amount of physical

knowledge and the quality of information that one can gain from any modeling e¤ort.
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17 Protein Structure Prediction by Comparison: Homology-Based
Modeling

Manuel C. Peitsch, Torsten Schwede, Alexander Diemand, and Nicolas Guex

17.1 Introduction

Understanding the function and the physiological role of proteins is a basic require-

ment for the discovery of novel medicines (small molecules) and ‘‘biologicals’’

(protein-based products) with medical, industrial, or commodity applications. Al-

though the draft sequence of the complete human genome is about to be ready, hu-

mankind is very far from understanding the function and the physiological role of the

gene products it encodes. Indeed, being able to read the letters and the words is dis-

connected from understanding their meaning. Therefore, the attention of many biol-

ogists is now shifting to the functional analysis of the genome. The term ‘‘functional

analysis,’’ however, merits a few short comments, as one can easily distinguish three

levels of gene-related knowledge. First, once a gene sequence is known, one has to

discover what transcripts it encodes. Indeed, genes can have several splice products

yielding as many raw protein transcripts. Then, each transcript can be further altered

by post-transcriptional modifications, which can be context specific (such as cell cycle).

Second, proteins will often be attributed to a broad functional class (such as kinase,

G protein-coupled receptor, etc.) by analogy with well-studied family members.

However, in most cases, it is necessary to confirm these inferred functions through

experimental approaches. By doing so, the knowledge base on protein will grow and

functional predictions will become increasingly precise. Third, the physiological role

of a protein has to be defined, meaning that the precise role of the protein in physi-

ological processes has to be uncovered. This is a higher level of knowledge than the

function. Indeed, one can know the precise activity of an enzyme, including well

worked-out reaction kinetics, but not understand how it contributes to the processes

of life. This is very frequent, as one still discovers new roles for well-studied proteins.

The ‘‘full picture’’ will thus take a very long time before it takes shape and represents

the ultimate grand challenge in biology.

Functional analysis, the first major step after genome sequencing and gene identi-

fication, must rely on a combination of technologies. Consequently, new experimental

approaches, and their automation for large-scale applications, will need development.

Concurrently, and in order to maximize the value of large data sets, one will witness

the development of new data mining methods and mathematical models for biologi-

cal processes simulation.

A protein’s function is tightly linked to its three-dimensional (3D) structure. As

residues located far apart in the primary sequence can be very close in space, and

only a few residues are generally responsible for a protein’s function, insights into the



3D structure of a protein can represent a key component of the functional analysis

process. Consequently, an atomic-level 3D representation to assign roles to specific

residues is a major asset, both for planning experiments and explaining observations.

The ‘‘folding’’ process of a protein is very complex and as yet there is no objective

and reliable way to determine it from the sole sequence. The scientific community is

thus dependent on experimental protein structure elucidation. The usual approaches,

both X-ray di¤raction and NMR (nuclear magnetic resonance), are both hampered

by many technical hurdles and limitations. Consequently, several concerted ‘‘struc-

tural genomics’’ e¤orts are being launched in both private and the public sector to

address these di‰culties and increase the throughput of experimental structure eluci-

dation. However, these will not be su‰cient to elucidate the structure of all proteins

of interest. Although today the protein sequence databases SWISS-PROT and

trEMBL are populated with over 250,000 proteins, only approximately 10,000 of

them have known 3D structures. Furthermore, SWISS-PROT and trEMBL hold

fewer than 20,000 human proteins, meaning that at least another 80,000 will be added

in the near future. The direct consequences of this is that only the ‘‘highly interesting’’

proteins should be elucidated experimentally in the foreseeable future.

In this context, comparative modeling methods (homology based) have been

developed and have matured to a point where many of the resulting models yield

enough insights into a protein’s 3D structure to be useful in functional analysis

(Westhead and Thornton 1998).

17.2 What Is Comparative Protein Modeling?

Proteins from di¤erent sources and sometimes diverse biological functions can have

similar sequences. It is generally accepted that high sequence similarity is reflected by

structural similarity. Indeed, the relative mean square deviation (rmsd) of the alpha-

carbon co-ordinates for protein cores sharing 50 percent residue identity is expected

to be around 1 Å (Chothia and Lesk 1986). Thus the most reliable prediction methods,

termed comparative protein modeling (also often called modeling by homology),

consist of the extrapolation of the structure for a new (target) sequence from the

known 3D structure of related family members (templates) (Bajorath et al. 1993).

17.2.1 Identification of Modeling Templates

Comparative protein modeling requires at least one sequence of known 3D structure

with significant similarity to the target sequence. In order to determine if a modeling

request can be carried out, one generally compares the target sequence with a data-
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base of sequences derived from the Brookhaven Protein Data Bank (PDB) (Bernstein

et al. 1977). This can be performed using sequence similarity search tools such as

FastA (Pearson and Lipman 1988), BLAST (Altschul et al. 1997), and PSI-BLAST

(Altschul et al. 1997). Generally speaking, sequences with a FastA score 10.0 stan-

dard deviations above the mean of the random scores and a Poisson unlikelyhood

probability PðNÞ lower than 10�5 (BLAST) can be considered for the model building

procedure. The choice of template structures should be further restricted to those that

share at least 25 percent residue identity with 40 percent of the target sequence as

determined by sequence alignment algorithms such as SIM (Huang and Miller 1991).

The above procedure might allow the selection of several suitable templates for a

given target sequence. The best template structure—the one with the highest se-

quence similarity to the target—should serve as the reference. Other selected tem-

plates can be used and must be optimally superposed onto it in 3D. As a result, each

residue of the reference structure is then aligned with a residue from the other avail-

able templates. This yields a structurally corrected multiple sequence alignment.

17.2.2 Aligning the Target Sequence with the Template Sequence(s)

The target sequence can then be aligned with the template sequence or, if several

templates are selected, with the structurally corrected multiple sequence alignment,

using the best-scoring diagonals obtained by sequence alignment algorithms such as

SIM (Huang and Miller 1991). Residues, which should not be used for model build-

ing, for example those located in non-conserved loops, will be ignored during the

modeling process. Thus, the common core of the target protein and the loops com-

pletely defined by at least one supplied template structure will be built.

17.2.3 Building the Model

Two very distinct classes of methods have been developed to build a model. One,

implemented in MODELLER (Sali and Blundell 1993), is based on the satisfaction

of spatial restraints derived from the alignment between the target sequence and its

templates. The other, described below, is based on the building of an averaged

framework from the coordinates of the templates.

The coordinates of the model can then be built. Initially, an average framework

for the target sequence will by calculated based on the multiple sequence alignment

described above. The spatial location for as many atoms of the target as possible will

be derived from the positions of the corresponding atoms in the template structures.

The coordinates will be calculated as a weight averaged position based on the corre-

sponding atoms available from the templates. Each template will contribute to the
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average to an extent determined by its local degree of sequence similarity with the

target (Peitsch 1995, 1996). As the selected templates do not contain structural in-

formation about non-conserved loops and many of the side chains, these must be

rebuilt in consecutive steps.

Rebuilding non-conserved loops can be performed using a ‘‘spare parts’’ algo-

rithm, as described by Jones and Thirup (Jones and Thirup 1986; Greer 1991).

Although most of the known 3D structures available share no sequence or structure

similarity with the target and templates, there might be similarities in the loop

regions, which can be inserted in the protein model. Each loop is defined by its length

and the geometry of its ‘‘stems,’’ namely the coordinates of the alpha carbon (Ca)

atom of the four residues preceding and following the loop. The fragments that cor-

respond to the above loop definition are extracted from the PDB entries if the rmsd

computed for their ‘‘stems’’ is lower than a specified cut-o¤ value. Furthermore, only

fragments that do not overlap with neighboring parts of the structure are considered

possible candidates. The accepted spare parts are sorted according to their rmsd and

their degree of sequence similarity with the target. The best fitting fragment is then

added to the model.

Because the spare parts algorithm does not always lead to convincing solutions,

one can also use an approach based on a conformational space search driven by the

satisfaction of stereochemical, distance, and steric constraints. Loops modeled with

these methods are filtered according to criteria such as the surface exposure of

hydrophobic moieties and relative conformational energies.

In the final step of coordinate generation, it is necessary to determine the geometry

of fully defined side chains, and build those that are incomplete or lacking. This can

be achieved by using libraries of allowed side chain rotamers. Such tables are deduced

from the highest resolution structures from the PDB, and each rotamer is ranked

according to its frequency of occurrence (Ponder and Richards 1987). More sophis-

ticated tables provide the distribution of the side chain rotamers based on backbone

conformations (Helix, Sheet, Turn, and Coil). Whereas the optimization of the fully

defined side chain geometries is performed by replacing each one by its best fitting

rotamer, the partially defined and lacking residues are built by searching for a com-

bination of side chain conformations that minimizes the steric overlaps in the model

structure.

17.2.4 Model Refinement

The final step of the coordinate generation process in the idealization of stereo-

chemistry of the model; it consists mainly of the optimization of bond geometry and

452 Manuel C. Peitsch et al.



the removal of unfavorable non-bonded contacts. This step can be performed by

energy minimization packages such as CHARMM (Brooks et al. 1983) or GROMOS

(van Gunsteren et al. 1996).

Excessive energy minimization will cause the model to deviate markedly from the

original model, which is not suitable and should be avoided. Indeed, experience has

shown that the changes induced by force field computations do not improve the ac-

curacy of the model with respect to a control experimental structure (Moult 1999;

Venclovas et al. 1999). Thus, one should keep the number of minimization cycles to

a minimum, but su‰cient to improve the stereochemistry of the model. A typical

energy minimization procedure will use no more than three hundred cycles of energy

minimization (a combination of 50–100 steps of steepest descent and 200–250 steps

of conjugate gradient minimization) while imposing a harmonic force constant to the

Ca carbon atoms.

17.3 Automated Protein Modeling

By comparing all entries of the SWISS-PROT/trEMBL sequence database (release

36) with a non-redundant subset of all sequences of known 3D structure, we found

that approximately 30 percent of the database entries have at least one suitable

modeling template for a portion of their sequence. This number increases every year

by roughly 5 percent, showing that the growth in available templates allows an ever

increasing number of sequences to be modeled by comparative methods. Hence, we

might speculate that comparative modeling procedures could be applied to more than

90 percent of the protein sequences within the next 20 years. However, this projection

does not address the issue that many protein structures do not cover the full length of

the transcripts. Indeed, it is generally necessary to express only a domain or part of a

protein in order to get crystals, so one often has only partial structural information

for a protein sequence. A typical example is the Fas ligand, which is composed of

three domains: first, an intracellular domain for which there is an NMR-derived

structure (PDB entry 1DDF); second, a membrane spanning domain for which there

is no experimental information; and third, although there is no available experimen-

tal structure for the extracellular domain, a model can easily be built based on the

tumor necrosis factor structure (PDB entry 1TNR). This means that in many cases,

especially for multidomain proteins, several structure elucidation experiments have to

be conducted before the entire sequence can be covered with structural information,

and even then the overall structure will only result from an assembly of ‘‘pieces.’’

Furthermore, the N-terminal and C-terminal parts of many protein structures are not
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resolved well enough and thus cannot be ‘‘seen’’ in the electron density map. Conse-

quently, the average length of a protein model will be of 180 residues (ranging from

30 to 900).

For the sequences that share a similarity of at least 30–35 percent with a template,

it is generally feasible to attempt comparative protein modeling using a completely

automated approach with some limitations, which we will illustrate later in this

chapter. The emerging structural genomics e¤orts will make a major contribution to

the broader application of comparative modeling as they will yield new modeling

templates at a high rate. However, most large multidomain complex models cannot

presently be built, mainly because no suitable modeling templates are available for

such complexes and because the prediction of protein-protein contacts is inaccurate

and still in its infancy. There is no doubt that the scrutiny of multiple sequence

alignments is more informative than the analysis of an isolated sequence. This allows

the identification of conserved and variable residues, and improves the rationaliza-

tion of site-directed mutagenesis experiments. Likewise, comparative structure anal-

ysis involving several members of a protein family, as opposed to single structure

inspection, is expected to be invaluable in a number of situations. The understanding

of the structural di¤erences between residues occupying a similar portion of space

in several family members or species variants will provide a strong basis for such

applications as planning mutagenesis experiments and understanding the selectivity

of compounds binding to active sites (drug design). Such a collection of structures

can also be used during the rational design of combinatorial libraries of compound. It

will thus be increasingly valuable to have models for as many members of a protein

family as possible.

17.4 Very Large-Scale Protein Modeling

Two years ago, we submitted all entries of the sequence databases SWISS-PROT and

trEMBL to comparative protein modeling in a single experiment (Guex et al. 1999),

called 3DCrunch. This followed several smaller experiments during which the full

protein complement of bacterial and the yeast genome we (Peitsch 1997; Peitsch

et al. 1997) and others (Sanchez and Sali 1998) subjected to comparative modeling.

In all cases we used the software framework underlying SWISS-MODEL. For this

project, run in collaboration with Silicon Graphics Inc., we used a 64-processor Sili-

con Graphics CRAY Origin2000 server with 32Gb of memory. 3DCrunch needed

6828.4 cpu-hours to complete (4.4 days). This corresponds to 284.5 days of comput-

ing on a single processor machine. During the experiment, over 64,000 protein models
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were generated. This project is ongoing, as both the Protein Data Bank and SWISS-

PROT/trEMBL are updated regularly and thus new sequences can be modeled on a

monthly basis. To date, over 90,000 protein models have been generated and are

available over the Internet at http://www.expasy.ch/swissmod/.

In order to provide information about the reliability of the modeling method

implemented in 3DCrunch and SWISS-MODEL, we also generated twelve hundred

models for proteins of known 3D-structure using modeling templates sharing be-

tween 25 and 95 percent sequence identity with the submitted sequences. This is the

first time that a modeling method was assessed at this scale, providing relevant in-

formation about its reliability. We then derived all degrees of identity between target

and template sequences and the relative mean square deviation (base on Ca atoms)

of the models from their corresponding experimental control structure. First, this

allowed us to confirm a few observations:

1. We could confirm the observation (Chothia and Lesk 1986) that the common core

of proteins sharing 50 percent sequence identity deviates by approximately 1 Å rela-

tive mean square deviation. However, this deviation can be much increased if the

protein structures are solved by NMR (Harrison et al. 1995) (also true for structures

with identical sequences).

2. We could also confirm the long-known fact that the most reliable part of a protein

model is the portion it shares with the modeling template, whereas the rebuilt non-

conserved loop were a major contributor to model inaccuracy.

Furthermore, we made three observations that are particularly relevant in the context

of automated comparative protein modeling in general and our approach in particular:

1. As shown in table 17.1, 63 percent of the sequences sharing 40–49 percent identity

with their template yield a model deviating by less than 3 Å from their control

structure. This number increases to 79 percent for sequence identities ranging from 50

to 59 percent. One can also see that below 30 percent sequence identity, the accuracy

of completely automated protein modeling is rapidly degrading.

2. Comparative protein modeling is guided by the alignment between target and

template sequence. Error introduced by the alignment algorithm will have profound

e¤ects on the model. We have observed that these errors start to appear when the

sequence identity between target and template sequence is lower than 30–35 percent,

which parallels and confirms the rule of thumb set forth by John Moult (Moult 1999).

It is noteworthy that less than 5 percent of the models generated by SWISS-MODEL

are inaccurate because of such errors. Analyzing several cases, we realized that visual

inspection of the alignment and manual optimization of the alignment can in some
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cases improve the model markedly. This is not a general rule, as there is often no

objective function able to distinguish between right and wrong in low similarity seg-

ments. Therefore, further benchmarks are needed to assess whether manual or fully

automated alignment methods would yield the best results below the 30–35 percent

sequence identity threshold (Sternberg et al. 1999).

3. The choice of the ‘‘right’’ modeling template is crucial, as most high deviations

between model and experimental control structures can be traced back to the selected

modeling templates. Indeed, in table 17.1, we can see, for instance, that 9 percent of

the models using templates with sequence identity of 90–95 percent have an rmsd of

5 Å or more. After analysis of a number of those models, we realized that the tem-

plate and experimental control structures were elucidated under sometimes very dif-

ferent conditions (including the use of NMR versus X-ray crystallography as an

experimental method, presence or absence of ligands), which cause major structural

di¤erences between highly similar sequences. As set forth later in this chapter, the

experimental conditions at the time of structure elucidation strongly impacts the

resulting structure. It is thus crucial that the users be aware of the templates that are

used by the modeling procedure or make their own informed choice.

Andrej Sali and co-workers at Rockefeller University (Sanchez and Sali 1998) are

also addressing very large-scale protein modeling. Using the Saccharomyces cere-

visiae genome as a starting point, they have developed a similar automated model-

Table 17.1
Probabilities of SWISS-MODEL accuracy for target-template identity classes

Percent
sequence
identitya

Total
number of
modelsb

Percentc
models
with rmsd
< 1 Å

Percent
models
with rmsd
< 2 Å

Percent
models
with rmsd
< 3 Å

Percent
models
with rmsd
< 4 Å

Percent
models
with rmsd
< 5 Å

Percent
models
with rmsd
> 5 Å

25–29 125 0 10 30 46 67 33

30–39 222 0 18 45 66 77 23

40–49 156 9 44 63 78 91 9

50–59 155 18 55 79 86 91 9

60–69 145 38 72 85 91 92 8

70–79 137 42 71 82 85 88 12

80–89 173 45 79 86 94 95 5

90–95 88 59 78 83 86 91 9

aRange of sequence identity between target and template sequence.
bTotal number of models in any given class of sequence identity. The table summarizes 1201 model-control
structure pairs.
cProbability in percent that the Ca atoms of a model, sharing X% sequence identity with its template, de-
viate by 1 Å or less from the corresponding experimental control structure. The following columns provide
these probabilities for other relative mean square deviations.
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ing pipeline using PSI-BLAST and MODELLER (Sali and Blundell 1993). Their

goal is to build models for as many protein sequences as possible. Although the

modeling software cannot be used over the Web, one can easily search their model

database (ModBase) (Sanchez et al. 2000) and download the pre-computed models at

http://guitar.rockefeller.edu/modbase. Today, their database contains close to sev-

enteen thousand models from 10 complete genomes.

17.5 Web-Based Automated Protein Modeling

In practice, using standard molecular graphics software, comparative protein mod-

eling is a complex activity requiring an expert knowledge of the available methods

and software functionality. Furthermore, most freely available software packages do

not provide integrated visualization, analysis, and modeling capabilities optimized

for protein modeling. Consequently, over the last several years we have concentrated

on developing an automated comparative protein modeling server (Peitsch 1995, 1996;

Guex and Peitsch 1997) called SWISS-MODEL and its graphical front end Swiss-

PdbViewer (Deep View) in order to provide the scientific community with a freely

available sequence to structure workbench (Guex et al. 1999). Both server and client

application are evolving systems, which are regularly updated to incorporate new

algorithms and methods as we develop them. The major goal is to improve the ac-

curacy of the models returned by the server, while providing an ever more flexible

and user friendly graphical user interface. The internet site http://www.expasy.ch/

swissmod/ provides access to the client software and to the modeling server.

More recently, several new sites have started o¤ering comparative protein model-

ing capabilities of the Web. A list of these sites can be found at http://www.expasy.

ch/swissmod/SM_WEBMODEL.html. It contains links to:

1. CPHmodel (Lund et al. 1997), developed by S. Brunak and coworkers, at the

Centre for Biological Sequence Analysis of the Technical University of Denmark.

This server can be reached at http://www.cbs.dtu.dk/services/CPHmodels/.

2. SDSC1, developed by I. N. Shindyalov and P. E. Bourne at the San Diego

Supercomputer Center. This server can be reached at http://cl.sdsc.edu/hm.html.

3. 3D-JIGSAW (Bates and Sternberg 1999), developed by P. A. Bates and M. J. E.

Sternberg at the Imperial Cancer Research Fund. This server can be reached at

http://www.bmm.icnet.uk/people/paulb/3dj/form.html.

4. The Full Automatic Modeling System (FAMS) (Ogata and Umeyama 1998),

developed by K. Ogata and H. Umeyama at Kitasato University in Japan. This server

can be reached at http://physchem.pharm.kitasato-u.ac.jp/FAMS/fams.html.
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17.6 Note about Detailed Modeling

As stated above (17.4), it is unclear under which conditions detailed (manual) model-

ing yields better results than automated approaches. However, it is important to realize

that homology modeling can be tricky, especially when the degree of similarity be-

tween target and template sequences drops below the 30–35 percent range in some

regions of the alignment. It is then generally advisable to further fine-tune the model

manually. The resulting models can be of higher quality than their automated coun-

terparts. The process we routinely apply to modeling projects is to build an initial

automated model using the first approach mode of SWISS-MODEL. We then fine-

tune this model using the interactive modeling features implemented in the Swiss-

PdbViewer (Deep View). However, any combination of the above mentioned Web-

based modeling servers and detailed modeling packages such as MODELLER (Sali

and Blundell 1993) (http://guitar.rockefeller.edu/modeller/modeller.html), COM-

POSER (Topham et al. 1990) (http://www-cryst.bioc.cam.ac.uk), CONGEN (Bruc-

coleri 1993) (http://www.congenomics.com/congen/congen_toc.html), or WHATIF

(Vriend 1990) (http://swift.embl-heidelberg.de/whatif ) can be used to follow a similar

process.

17.7 What Defines the Accuracy of a Model

The quality of a model is determined by two distinct criteria, which will determine its

applicability. First, the correctness of a model is dictated by the quality of the se-

quence alignment used to guide the modeling process. If the sequence alignment is

wrong in some regions, then the spatial arrangement of the residues in this portion of

the model will be incorrect. The first edition of the community-wide experiment

known as critical assessment of protein structure prediction (CASP) already under-

scored that most severe modeling errors can be traced back to sequence alignment

mistakes (Mosiman et al. 1995). This remains, despite many e¤orts to address this

issue (Martin et al. 1997; Jones and Kleywegt 1999), the main weakness of compar-

ative protein modeling. Second, the accuracy of a model is essentially limited by the

deviation of the used template structure(s) relative to the experimental control struc-

ture. This limitation is inherent to the methods used, as models result from an ex-

trapolation. As a consequence, the core Ca atoms of protein models that share 35–50

percent sequence identity with their templates will generally deviate by 1.5 to 1.0 Å

from their experimental counterparts, as do experimentally elucidated structures

(Chothia and Lesk 1986). However, one should not overlook the contributions of the

templates to the model accuracy. The templates, which are obtained through experi-
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mental approaches, are subject to structural variations not only caused by experi-

mental errors and di¤erences in data collection conditions, such as the temperature

(Tilton et al. 1992), but also because of di¤erent crystal lattice contacts and the

presence or absence of ligands. Furthermore, X-ray crystallography and NMR gen-

erally yield 3D structures with an even broader rmsd spread. This is well illustrated

by a typical example: the structure of interleukin-4 (IL-4) (Harrison et al. 1995), a

cytokine consisting of a 130-residue four-helix bundle, was elucidated by X-ray crys-

tallography as well as by NMR. The backbones of three IL-4 crystal structures (PDB

entries 1RCB, 2INT, and 1HIK) show rms deviations of 0.4 to 0.9 Å, whereas those

of three IL-4 NMR forms (PDB entries 1ITM, 1CYL, and 2CYK) deviated by 1.2 to

2.6 Å. These values illustrate the structural di¤erences due to experimental proce-

dures and the molecular environment at the time of data collection. It is thus crucial

to know the experimental conditions under which the modeling templates were col-

lected, as this has a direct impact on the accuracy of the derived models and thereby

on their potential use.

Almost every protein model contains non-conserved loops, which are expected to

be the least reliable portions of a protein model. Indeed, non-conserved loops often

deviate markedly from experimentally determined control structures. In many cases,

however, these loops also correspond to the most flexible parts of the structure as

evidenced by their high crystallographic temperature factors (or multiple solutions in

NMR experiments). On the other hand, the core residues—the least variable in any

given protein family—are usually found in essentially the same orientation as in ex-

perimental control structures, although far larger deviations are observed for surface

amino acids. This is expected as the core residues are generally well conserved and

the rotamers of their side chains are constrained by neighboring residues. In contrast,

the more variable surface amino acids will tend to show more deviations because

there are few steric constraints imposed upon them.

Some structural aspects of a protein model can be verified using methods based on

the inverse folding approach. Two of them, namely the 3D profile based verification

method (Lüthy et al. 1992) and ProsaII, developed by Sippl (Sippl 1993), are widely

used. The 3D profile of a protein structure is calculated by adding the probability of

occurrence for each residue in its 3D context (Lüthy et al. 1992). Each of the 20

amino acids has a certain probability to be located in one of the 18 environmental

classes (defined by criteria such as solvent-accessible surface, buried polar and exposed

nonpolar area, and secondary structure) presently defined by Eisenberg and col-

leagues. In contrast, ProsaII (Sippl 1993) relies on empirical pseudo-conformational

energy potentials derived from the pairwise interactions observed in well-defined pro-

tein structures. These terms are summed over all residues in a model and result in a
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more (more negative) or less (more positive) favorable energy. Both methods can

detect a global sequence to structure incompatibility and errors corresponding to to-

pological di¤erences between template and target. They also allow the detection of

more localized errors such as b-strands that are ‘‘out of register’’ or buried charged

residues. These methods are, however, unable to detect the more subtle structural

inconsistencies often localized in non-conserved loops, and cannot provide an as-

sessment of the correctness of their geometry.

Finer details of a model, especially deviations from the ideal stereochemistry (bond

length, dihedral angles, etc.), internal residue packing, and so on, can be easily

analyzed with programs such as WhatCheck (Hooft et al. 1996) or PROCHECK

(Laskowski et al. 1993). It is, however, crucial to realize that proper stereochemistry

is not su‰cient as a criterion for model correctness or value. It is possible, if not easy,

to build models complying with all tests implemented in WhatCheck or PROCHECK

but having little or no biological meaning. Nevertheless, these programs allow us to

select the best model among a number of very closely related ones, especially when

stereochemistry is the last distinguishing feature between a collection of models.

17.8 About the Use of Protein Models

Protein models obtained with comparative modeling methods can be classified into

three broad categories: (1) models that are based on incorrect alignments between

target and template sequences. Such alignment errors, which generally reside in the

inaccurate positioning of insertions and deletions, are caused by the weaknesses of

the alignment algorithms and often cannot be resolved in the absence of a control

experimental structure. It is, however, often possible to correct such errors by produc-

ing several models based on alignment variants and by selecting the most ‘‘sensible’’

solution. Nevertheless, it turns out that such models are often useful as the errors are

not located in the area of interest, such as within a well-conserved active site. (2)

Models based on correct alignments are of course much better, but their accuracy can

still be medium to low as the templates used during the modeling process have a

medium to low sequence similarity with the target sequence. Such models, as the ones

described above, are still very useful tools for the rational mutagenesis experiment

design. They cannot be of great assistance during detailed ligand binding studies. (3)

The last category of models comprises all those that were built based on templates

that share a high degree of sequence identity (> 70%) with the target. Such models

have proven useful during drug design projects and allowed the taking of key deci-

sions in compound optimization and chemical synthesis. For instance, models of
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several species variants of a given enzyme can guide the design of more specific non-

natural inhibitors.

However, nothing is absolute and there are numerous occasions in which models

falling in any of the above categories could either not be used at all or in contrast

prove to be more useful and correct than initially thought. In our experience, several

applications of medium-accuracy models have proven successful. These can be clas-

sified into three categories.

17.8.1 Interpreting the Impact of Mutations on Protein Function: Potential Link to

Diseases

One of the first uses one can make of a model structure is to interpret the impact a

mutation can have on the overall function of a protein. Although the development of

objective scoring functions has begun only recently, ‘‘visual inspection’’ associated

with a good knowledge of the rules underlying protein structure has proven useful

in defining the broad reasons for mutant malfunction (Hahne et al. 1995; Lalioti et al.

1997; Notarangelo et al. 1996). With the upcoming high-throughput production of

single nucleotide polymorphisms (SNP), objective scoring functions will be crucial to

make maximum use of the information. Indeed, a sizeable proportion of the SNPs

will alter the translated protein sequences, and thus interpreting the potential func-

tional e¤ects of these mutants will be crucial to elucidate the molecular basis of

human diseases.

17.8.2 Prioritization of Residues to Mutate to Determine Protein Function

As mentioned previously, the discovery of gene function in the genomic era will

require a sustained experimental e¤ort, including the creation of molecular mutants.

The prioritization of residues to mutate will be greatly optimized by considering

the 3D structure of the target protein (Peitsch and Tschopp 1995; Schneider et al.

1997).

17.8.3 Providing Hints for Protein Function

This is probably the broadest and least defined spectrum of potential applications

for 3D models. The common feature of these applications is that models can be used

to formulate a hypothesis around a protein, which can then be tested in experimental

settings. It is well known that low, yet significant, degrees of sequence similarity are

often not su‰cient to attribute a function to a protein. In such cases, protein model-

ing can provide useful insights and help determine or confirm a potential functional

assignment (Duret et al. 1998; Peitsch and Jongeneel 1993). Furthermore, one can
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use models to create hypotheses around potential enzymatic activities (Peitsch and

Boguski 1991) and possible ligand binding functions (Peitsch and Boguski 1990).

17.9 Modeling Membrane Proteins

Membrane proteins still remain a class of proteins that represent an even greater

challenge to modelers. G-protein coupled receptors in particular also represent a group

of molecules of special interest to the pharmaceutical industry, as a very large pro-

portion of today’s medicines are modulators of their activities. Modeling such proteins

has thus been attempted in many occasions by both de novo (Donnelly et al. 1993;

Sankararamakrishnan and Sansom 1996; Thomas 1996; Herzyk and Hubbard 1998)

and comparative approaches (Thomas 1996). The two main steps along the path to

a model have been automated: (1) algorithms have been developed to identify the

transmembrane domains (Persson et al. 1996; von Heijne 1992) and (2) to generate

3D models using de novo approaches (Donnelly et al. 1993; Herzyk and Hubbard

1995) and comparative methods (Peitsch et al. 1996). In all cases, however, the se-

quence analysis and coordinate generation steps were separated and could not be

linked automatically due to the relatively low reliability of the first step. Consequently,

this group of proteins is not yet amenable to high-throughput model building. This

will of course dramatically change with the future availability of experimentally de-

termined structure of one of their family members.

17.10 The Future

Over the next years we will focus on two main aspects of comparative protein model-

ing: (1) improving the sensitivity of the template identification and selection procedure

in the sequence similarity ‘‘twilight zone,’’ and (2) improving the model accuracy.

17.10.1 Increasing the Template Selection Sensitivity

The availability of iterative local similarity search algorithms (Altschul et al. 1997)

allows for the identification of suitable template structures even at very low sequence

similarity levels. In cases where the search results are not significant enough to choose

a template, multiple models for a family of sequences based on several possible tem-

plates can be constructed. Evaluating the multiple model assembly will then enable

the discrimination of compatible template folds. This would allow us to choose the

correct template even beyond the limit of the search algorithms, provided a reliable
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function discriminating ‘‘good’’ from ‘‘wrong’’ models can be defined over a broad

range of di¤erent types of errors.

17.10.2 Improving the Accuracy of Models

In order to improve both model correctness and accuracy, we will address two of the

main causes of modeling errors. First, there is the sequence alignment, which guides

the modeling procedure. Automated sequence alignment procedures often introduce

errors by placing insertions and deletions (‘‘indels’’) incorrectly. This phenomenon is

mainly observed when the overall sequence identity between target and template

sequences drops below 35 percent. The identification and subsequent multiple align-

ment of all members of a protein family results in more accurate ‘‘indel’’ placement.

Second, side chain and loop rebuilding are also among the main causes of model

inaccuracies. The increasing number of available high-resolution X-ray structures

will improve the model accuracy by providing more high-quality templates. In addi-

tion, this will allow deriving improved secondary structure specific side chain rotamer

libraries and broader loop databases. Both will contribute to the improvement of

model accuracy.

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search
tool. J. Mol. Biol. 215: 403–410.
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18 Protein Structure Prediction by Protein Threading and Partial
Experimental Data

Ying Xu and Dong Xu

18.1 Introduction

The Human Genome Project and other genome sequencing e¤orts are producing

DNA sequence at a prodigious rate, yielding thousands to millions of new genes and

proteins. A major challenge facing the entire biological community is to understand

the functions of these newly identified proteins in biological systems and how the

functions are performed at the molecular level. The three-dimensional (3D or tertiary)

structures provide the essential information for defining the proteins’ biological func-

tions. In addition, the 3D structures provide a key to engineering proteins and design-

ing drugs targeted at proteins related to diseases. As we move toward the post-genome

era, we expect that the demand for rapid protein structure determination will grow

drastically. Traditional experimental methods for protein structure determination

alone, such as X-ray crystallography and NMR (nuclear magnetic resonance), will

probably not be able to keep up with the pace at which protein sequences are being

generated. Computational methods could play a significant role, in conjunction with

experimental methods, in protein structure determination on a genome-scale.

The earliest work on prediction of protein tertiary structures can be traced back

to 1970s (Levitt and Warshel 1975). Significant advancement has been made in the

capability of protein structure prediction since then. In the past several years, many

nontrivial structure predictions (Nilges and Brünger 1993; Hu et al. 1995; Madej

et al. 1995; de las Alas et al. 1998; Villoutreix et al. 1999), prior to the experimental

structures, turned out to be fairly accurate. Most notably, the success of protein

structure prediction has been demonstrated in the community-wide experiments on

the ‘‘critical assessment of techniques for protein structure prediction’’ (CASP)

(CASP, 1995, 1997, 1999), which started about six years ago. In each of the past three

CASP experiments and the ongoing CASP4, predictors are given a list of protein

sequences whose structures have been solved experimentally (or are expected to be

solved during the CASP prediction season) but unpublished. The prediction teams

submit their predictions before a preset expiration date for each prediction target.

Their prediction results are then evaluated against the experimental structures at the

end of the prediction season. It has been shown that many predictions in CASP have

good enough qualities to make some functional inferences. Even in cases where the

entire predicted structure is not accurate enough to make a direct functional analysis,

the predictions, when in conjunction with supporting experimental data, can provide

valuable insights into the structure and function of a protein. In particular, predicted

structures can often give experimenters some leads for further studies.



There are two main classes of tertiary structure prediction methods: ab initio struc-

ture prediction, and template-based structure prediction. Ab initio prediction methods

(Li and Scheraga 1987; Friedrichs andWolynes 1989; Skolnick and Kolinski 1991; Sali

et al. 1994; Pedersen and Moult 1997) attempt to predict protein structure based on

physi-chemical principles directly. A comprehensive review of ab initio methods

appears in chapter 16. Template-based methods use known 3D structures in PDB

(Protein Data Bank) (Bernstein et al. 1977) as templates to derive the structure of

a query protein. Homology modeling and fold recognition methods belong to this

class. A homology modeling method (also known as comparative modeling) (Sali and

Blundell 1993; Srinivasan and Blundell 1993; Peitsch 1996) predicts the 3D coor-

dinates of atoms of a query protein mainly based on an optimal sequence alignment

between the query protein and a template protein with known structure. It is dis-

cussed in detail in chapter 17. Fold recognition methods attempt to recognize the

‘‘correct’’ templates from a structure library for the query protein and generate

an alignment between the query and the recognized template protein, from which

the backbone structure of the query protein can be predicted. Recognition of the

correct templates are typically achieved by either the sequence profile approach or

the sequence-structure comparison (or threading) approach. Sequence profile methods

(Krogh et al. 1994; Altschul et al. 1997) detect remote homologs through recognizing

similar sequence profiles exhibited by the templates and by the query protein and its

homologs through multiple sequence alignments. Threading identifies a homolog or

analog through aligning the query protein sequence onto template structures. The

main di¤erence between threading and sequence profile methods is that threading

uses not only information related to sequence but also structure information such as

residue-residue contact patterns in a structure. As researchers start to develop hybrid

methods through combining information from di¤erent methods, the boundaries be-

tween these methods become more and more blurred. For example, one can use the

alignment derived from fold recognition in homology modeling, or assemble partial

structures predicted by threading in an ab initio prediction.

Each prediction method has its own strength and limitations. In theory, ab initio

methods are the most general prediction methods, but at the current stage, they are

far from being practical due to their poor prediction reliability and long computing

time, though a few isolated successful predictions have been reported. Homology

modeling, as a relatively mature method, has been widely used. It can provide rela-

tively reliable atomic coordinates with a low root mean square deviation (rmsd)

between a model and a high-quality experimental structure. However, homology

modeling applies to only proteins having structure templates with high sequence

similarity. Fold recognition, which does not require significant sequence similarity
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between a query and the template protein, has gained significant ground in recent

years. It has substantially extended the applicability of template-based methods and

often generates useful backbone structures. When compared with ab initio methods,

the search space for threading is intrinsically discrete rather than continuous, imply-

ing a much lower computational cost (time) needed for searching for an optimally

folded state. Among these prediction methods, protein threading probably applies to

the largest class of proteins, though it is limited to backbone predictions only.

A new trend in structure prediction is to incorporate partial experimental data as

constraints in the computation process, blurring the boundary between structure

prediction and determination. Such data may include anything that is relatively easy

to obtain and helpful for structure calculation, ranging from disulfide bonds, active

sites, cross-linking data from mass spectrometry, or sparse NMR data, to X-ray or

neutron scattering data. The merge of sophisticated computational methods and

partial experimental data could potentially lead to new and more e‰cient paradigms

of protein structure determination.

This chapter focuses on protein structure prediction based on protein threading.

We will first introduce the fundamentals of protein threading and use our own pro-

gram PROSPECT (Xu et al. 1998a; Xu and Xu 2000) as an example to illustrate the

basic ideas of threading methods. Then we will describe enhanced threading methods

with partial experimental data. In the last part of this chapter, we will discuss chal-

lenging issues and future outlook of the threading method. A reader can find more

information about threading from the cited literature and the Web pages listed in the

appendix.

18.2 Fundamentals of Protein Threading

The idea of threading was originated from the observation that proteins with no ap-

parent sequence similarity could have similar structural folds1 (Levitt and Chothia

1981; Finkelstein and Ptitsyn 1987). Recent studies have further indicated that the

total number of di¤erent structural folds in nature may be quite small (Li et al. 1996;

Wang 1998), possibly in the range of a few thousand or even fewer, which is at least

two orders of magnitude fewer than the number of known protein sequences. Having

realized this, a structure prediction problem can be potentially reduced to a recog-

nition problem—which fold(s) the query protein sequence will fold into—plus a

modeling problem of side chains. The realization shifted the paradigm of protein

1. A structural fold is the 3D conformation of a protein’s backbone.
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structure prediction. An inverse folding problem (Drexler 1981; Pabo 1983; Ponder

and Richards 1987) was then formulated—searching for sequences that are compat-

ible with a specified structural fold based on sequence-structure relationships. It has

long been known that di¤erent amino acids may prefer di¤erent structural environ-

ments: for example, a hydrophobic amino acid tends to be in the interior of a glob-

ular protein, and proline rarely occurs in an a-helix. In addition, certain amino-acid

pairs (e.g., salt bridges) in space are more favorable than other pairs. Using these

sequence-structure relationships, one can di¤erentiate which sequence-structure pairs

are more favorable in order to predict which structure is most likely to be adopted

by a given sequence. This new paradigm for protein structure prediction, called

‘‘threading,’’ achieved its initial success by the pioneering work of Eisenberg and col-

leagues (Bowie et al. 1991; Luthy et al. 1992). Since then, threading has been developed

into a widely used technology for structure prediction through the further e¤orts of

many other research groups (Sippl and Weitckus 1992; Jones et al. 1992; Godzik

et al. 1992; Bryant and Altschul 1995; Fischer et al. 1996b; Alexandrov et al. 1996;

Xu et al. 1998a).

The computational formulation of threading can be summarized as follows. Given

a query protein sequence s of unknown structure, threading searches a structure

template library T to find the best sequence-structure pair s-t, t A T, measured by the

overall preference of individual residues to their structural environment and of residue-

residue contacts. A threading method typically consists of four components (Smith et

al. 1997): (1) a library T of representative 3D protein structures for use as templates;

(2) an energy function for measuring the fitness between a query s and a template t,

where t A T; (3) a threading algorithm for searching for the lowest energy among the

possible alignments for a given s-t pair; and (4) a criterion for estimating the confi-

dence level of the predicted structure. In the rest of this section, we will address each

aspect in detail.

18.2.1 Fold Templates

Protein threading rests on the premise that the 3D structures of proteins have been

better conserved during evolution than their sequences. Proteins can be classified into

groups, at di¤erent levels, according to their structural and evolutionary relationships.

A widely used classification scheme consists of three levels of groups: family, super-

family, and fold (Murzin et al. 1995). A family consists of proteins that have high

sequence identity among each other and share a common evolutionary ancestor.

Proteins of di¤erent families sharing a common evolutionary origin (reflected by their

common structural and functional features) are placed in the same superfamily. Dif-

ferent superfamilies are grouped into a fold family if their proteins have the same
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major secondary structures in the same arrangement and with the same topological

connections. The structural similarities among proteins of the same fold family (but

not the same superfamily) may arise just from the protein energetics favoring certain

packing arrangements instead of a common evolutionary origin. The structural dif-

ference generally gets larger among proteins of the same family, superfamily, and fold.

Most template libraries of the existing threading programs are based on three

widely used databases of protein structure classifications: CATH (Orengo et al. 1997),

FSSP (Holm and Sander 1996), and SCOP (Murzin et al. 1995). CATH is a hierar-

chical classification of protein domain structures. FSSP contains the similar infor-

mation but is based on protein chains rather than domains; in addition, it contains

sequence neighbors and multiple structure alignments. SCOP uses a manual proce-

dure to classify protein domains into folds, superfamilies, and families. Hence, its

classification is probably of higher quality than the other two. However, SCOP has

not been updated as frequently as desired simply due to the amount of manual work

involved, whereas FSSP and CATH have been following the Protein Date Bank

(PDB) updates closely. The classifications for folds by the three databases di¤er

somewhat due to their di¤erent classification criteria (e.g., classification on a whole

chain or a structure domain) and structure-structure comparison methods. As a re-

sult, the number of folds (or unique folds) di¤er among the three databases. Based on

the data available as of June 2000, CATH contains 580 folds (updated June 2000),

FSSP has 556 folds (updated June 2000), and SCOP consists of 548 folds (updated

February 2000).

In principle, one can use one representative from each fold family as the template

library for threading. However, it is often helpful to include a representative for each

superfamily or even each family in the template library to cover variations among

structures of a fold family and to achieve better prediction accuracy. In designing the

template library, one can use both protein chains as well as protein domains.

The general applicability of protein threading is based on the widely held belief

that there are only a small number of protein folds. The argument used to support

this is that the existing protein structures have evolved from a small number of

‘‘primordial folds’’ (Dorit et al. 1990). During evolution, although protein sequences

have diverged significantly, their 3D structural folds have been more conserved and

maintained a small number. Another line of argument for the small size of the fold

universe is a stereo-chemical one—the vast majority of geometrically possible folds

are simply not energetically favorable enough to exist due to stereo-chemical con-

straints and physical interactions (Finkelstein and Ptitsyn 1987). This suggestion is

supported by a computer simulation of protein folding using a simple lattice model

(Li et al. 1996). The simulation has demonstrated that only a handful of proteinlike
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folds can adopt many di¤erent sequences and keep the energy favorable, whereas

other folds do not. The results suggest that protein structures have been selected in

nature because they are readily designed and stable against mutations, and that such

a selection simultaneously leads to thermodynamic stability. This line of argument

seems to be convincing and may possibly explain the assumption used in the first

argument, that the number of primordial folds was small.

The next question is how many unique folds for globular proteins exist in nature.

Many suggest that this number is less than a thousand, so about half of all possible

unique folds are already known (Chothia 1992; Wang 1996; Zhang and DeLisi 1998).

A recent estimate (Wang 1998) even suggests that the total number of unique folds

may be as low as 650. These estimates are based on statistical analysis of the novel-

fold occurrence in the PDB. However, there is a danger in deriving incorrect con-

clusions from such an analysis due to the possibility that the distribution of the PDB

structures is biased. For example, some types of proteins are di‰cult to purify or are

not soluble enough to have either crystal structures or NMR structures. It is quite

possible that one thousand or fewer folds may be an underestimate. On the other

hand, some have suggested that the number of unique folds could be as high as eight

thousand (Orengo et al. 1994). The argument was that 3 percent of sequence data-

bases has yielded 80 folds at the time of estimation. If the sequences represent one-

third of all superfamilies, the number of folds should be 80� 3=0:03 ¼ 8;000. The

underlying assumption used here is that every fold is equally populated in protein

sequences. This is evidently incorrect. For example, the TM barrel fold occurs much

more frequently than other folds. Hence, the eight thousand folds may be an overes-

timate. Though it is still an open question about the number of folds in nature, it

is clear that the percentage of proteins being submitted to PDB that have new folds

has been decreasing. As one can see from the statistics at the PDB Web site, http://

www.rcsb.org/pdb/holdings.html, this percentage has dropped from about 30 percent

in the 1980s to about 10 percent during the past three years. These numbers may have

a more practical meaning for threading: given a new sequence of globular protein,

what is the probability that it has a template in PDB? The Live Bench program

(http://BioInfo.PL/LiveBench/1/) recently carried out a survey on 125 structures sub-

mitted to PDB between October 29, 1999, and April 6, 2000. Only five proteins had

no structurally similar proteins in PDB; 96 percent proteins submitted to PDB during

this period are not unique folds. This percentage may be a bit too high for globular

proteins genome-wide, given the biased distribution of proteins in PDB. However, it

is safe to say that the percentage should be at least 50–70 percent (Jones 1999). This

number is clearly growing as more and more structures are being solved and put into

PDB.
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18.2.2 Energy Function

The energy function describes how favorable an alignment between a query sequence

and a template structure is. Threading generally uses knowledge-based energy func-

tions rather than physical energies. The main consideration is that even though a

query protein may share the same fold of the template, the exact 3D coordinates of

their corresponding atoms may di¤er to a degree that the physical energy (including

bond, van der Waals, electrostatics based on CHARMM potential [Brooks et al.

1983]) of the correct query-template alignment may not be favorable. This is simply

because these physical energies are too sensitive to small displacement of atomic

coordinates, making them less suitable for threading. Another consideration comes

from the fact that the calculation of these physical energies is too time-consuming. A

recent study has shown that knowledge-based threading energy by and large captures

the detailed atomic potentials (Mohanty et al. 1999).

Theoretically, one could build a probabilistic model of knowledge-based threading

energy that accounts for di¤erent factors and the correlations between these factors.

Such a model could directly give the probability of adopting a certain fold by a given

sequence. However, this type of model has not been successfully developed yet, due

to our limited understanding of the complicated factors that determine a fold. Cur-

rently, most researchers use simplified energy functions without calculating proba-

bilities or considering any correlation between di¤erent energy terms. A typical

threading energy function has the following form:

Etotal ¼ Emutate þ Egap þ Esingle þ Epair ð18:1Þ
The mutation energy Emutate describes the compatibility of substituting one amino

acid type by another; Egap is the alignment gap penalty; the singleton energy Esingle

represents a residue’s preference to its local secondary structures (a-helix, b-strand,

and loop) and its preference to being in certain solvent environment (either exposed

to solvent or in the interior of the protein); Epair is the pairwise potential between

spatially close residues that are not neighbors in the protein sequence. The di¤erent

energy terms are weighted, as elaborated later in section 18.32.

The mutation energy and the alignment gap penalty are similar to the ones used in

sequence alignments. The original concept of threading did not include the mutation

energy but assumed that sequence-structure alignment (i.e., Esingle and Epair) should

be su‰cient for fold recognition. Prediction practices in the past few years have

clearly demonstrated the usefulness of the mutation energy, so, most existing threading

programs include it. Several matrices have been developed based on mutation rates

found in sequence databases; the most popular ones are the PAM (Dayho¤ 1978)
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and BLOSUM (Heniko¤ and Heniko¤ 1992) matrices. BLOSUM-62 is a widely used

matrix for searching for close homologs, whereas PAM250 (Gonnet et al. 1992) is

more suitable for identifying remote homologs. It has been shown that PAM250 is

one of the best substitution matrices available for threading (Fischer et al. 1996a;

Abagyan and Batalov 1997). The gap penalty is often a linear function of the gap

size, with a penalty for opening a gap and a small penalty for each extension thereafter.

Both Esingle and Epair are typically derived from Boltzmann statistics from a non-

homologous protein database. The basic idea is that if an amino acid is frequently

observed in the interior of protein structures, a favorable energy value will be rewarded

when it is aligned to an interior position of a template. Though most of the threading

programs follow a similar principle in implementing their energy functions, detailed

variations may exist. For example, some use the degree of environmental polarity

(the degree of burial by polar rather than apolar atoms [Bowie et al. 1991]) and/or

secondary structure fitness between the template and the query protein (Rost 1995),

whereas others may not explicitly use the singleton term (Bryant and Lawrence 1993)

as they believe that the information of singleton energy is covered in the pairwise

term (e.g., a favorable packing between hydrophobic residues reflects a similar infor-

mation of solvent accessibilities). The Epair term is based on a pairwise energy param-

eter epairði; jÞ, which describes the preference for the combination of two spatially close

residues of type i and j (say, up to 15 Å between the Cb atoms). Some threading

programs further divide this range into subintervals and have a di¤erent preference

value for each subinterval (Sippl and Weitckus 1992; Jones et al. 1992; Bryant and

Lawrence 1993), whereas others simply treat the whole range as one interval (Alex-

androv et al. 1996; Xu et al. 1998a). Di¤erent programs may measure the distance

between two residues somewhat di¤erently. Some measure the distance between the

Cb atoms (Sippl and Weitckus 1992; Alexandrov et al. 1996), whereas others may

measure between the backbone atoms (Jones et al. 1992), or even between projected

centroids of side chains (Bryant and Lawrence 1993). There are also more sophisti-

cated methods for measuring residue-residue contacts, such as ‘‘visible volume’’ (Lo

Conte and Smith 1997) or Voronoi contacts (Zimmer et al. 1998).

We now use our own threading program PROSPECT (Xu and Xu 2000) as an

example to illustrate how the Esingle and Epair terms are calculated. We calculate Esingle

based on a singleton energy parameter esingleði; ss; solÞ (Xu et al. 2000a), that is,

Esingle ¼
P

i esingleði; ssi; soliÞ. esingleði; ss; solÞ describes the energy or preference for a

particular combination of amino acid type i, secondary structure type ss, and solvent

accessibility type sol, that is,

esingleði; ss; solÞ ¼ �log
Nði; ss; solÞ
NEði; ss; solÞ ð18:2Þ
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where log denotes the natural logarithm; Nði; ss; solÞ is the number of amino acids of

type i in ss with sol, counted from the database; NEði; ss; solÞ is the average of the

reference state—the estimated number of amino acids of type i in ss and sol assuming

i, ss, and sol are independent. NEði; ss; solÞ is calculated by

NEði; ss; solÞ ¼ NðiÞNðssÞNðsolÞ
N 2

ð18:3Þ

where NðiÞ is the number of amino acids of type i, NðssÞ is the number of residues in

secondary structures of type ss, NðsolÞ is the number of residues with solvent acces-

sibility type sol, and N is the total number of residues (in our database).

Similarly, Epair is calculated based on a pairwise energy parameter epairði; jÞ, that is,
Epair ¼

P
iaj epairði; jÞ. In PROSPECT, the cuto¤ distance for epairði; jÞ is 7.0 Å be-

tween Cb atoms, which accounts for most of the important inter-residue interactions

(Jones et al. 1992; Alexandrov et al. 1996). We only consider the residue pairs that

are separated by at least three amino acids in the protein sequence2. epairði; jÞ is

derived from the frequency of the inter-residue pairs, that is,

epairði; jÞ ¼ �log
Mði; jÞ
MEði; jÞ ; MEði; jÞ ¼ MðiÞMð jÞ

M
ð18:4Þ

where Mði; jÞ is the number of pairs between residues of types i and j in the database;

MEði; jÞ is the average of the reference state, the estimated number of i-j pairs

assuming that residues of types i and j form pairs without any preference. MðkÞ ¼P
s Mðk; sÞ ðk ¼ i; jÞ. M is the total number of pairs—M ¼Pij Mði; jÞ. In the cal-

culation, the number of pairs between residues of types i and j are partitioned equally

in Mði; jÞ and Mð j; iÞ such that Mði; jÞ ¼ Mð j; iÞ. All statistics are collected from

our protein database.

18.2.3 Alignment Algorithm

If we do not consider the pairwise energy, a threading problem is essentially the same

as a sequence alignment problem. Such a problem can be solved e‰ciently by a dy-

namic programming approach (Needleman and Wunsch 1970; Smith and Waterman

1981). There are a number of computer programs that use dynamic programming

for their threading problem, such as 123D (Alexandrov et al. 1996), TOPITS (Rost

1995), SAS (Milburn et al. 1998), and the UCLA-DOE Structure Prediction Server

(Fischer and Eisenberg 1996). An advantage of a threading algorithm without con-

2. The pairs separated by one or two amino acids in the protein sequence represent local interactions,
which are less important in determining an overall fold.

Protein Structure Prediction by Protein Threading 475



sidering pairwise energy is its speed. However, without pairwise interactions, the

threading accuracy is severely compromised (Xu and Xu 2000).

Threading with pairwise terms and variable-length gaps is generally considered to

be a very di‰cult problem. Under the assumption that pairwise interactions between

every pair of amino acids in a protein structure should be considered in threading, the

problem was proved to be NP-hard (meaning that the problem’s intrinsic computa-

tional complexity is too high for an e‰cient rigorous solution) (Lathrop 1994). Two

previous existing threading programs with rigorous solutions both have exponential

computational complexity (Bryant and Lawrence 1993; Lathrop and Smith 1996).

To overcome the computational di‰culty, several approaches have been proposed.

One approach is to employ the ‘‘frozen approximation,’’ that is, when calculating a

pairwise contact potential for a residue it is assumed that its contacting residues are

the same in the template and in the query structure. Such an assumption has reduced

the general threading problem to a problem solvable by dynamic programming but

at the expense of threading accuracy (Zhang et al. 1997; Xu et al. 1998a). Another

approach attacks the problem through statistical sampling (Sippl and Weitckus 1992;

Jones et al. 1992; Bryant and Altschul 1995; Crawford 1999). Generally this type of

approach does not guarantee to find the globally optimal threading alignment,3

though they typically work better than the frozen approximation approach. We have

developed a threading algorithm (Xu et al. 1998a) that guarantees to solve the glob-

ally optimal threading problem e‰ciently under the assumption that residue-residue

contact potentials need to be considered only between spatially close pairs in thread-

ing. The detailed algorithm will be discussed in the following section.

18.2.4 Assessment of Threading Results

A threading score between a query sequence and a template structure may not pro-

vide enough information about whether the template is the ‘‘correct’’ fold. This is

because the scores are generally not normalized to the same scale. Consider a query

protein and a false template. It is conceivable that their threading score would be

improved if we artificially increased the length of the template sequence by appending

some irrelevant protein sequence to it without actually changing the ‘‘significance’’ of

the threading alignment. So from the threading scores between a query and a pool of

templates, we generally cannot tell if the query’s correct fold template is in the pool,

nor can we always tell which is the correct fold even if it is there.

There have been a number of attempts to ‘‘normalize’’ threading scores so that

they can be compared with each other. An early attempt was to use z-score (Flockner

3. Note that the threading problem is a discrete and finite problem; hence, a globally optimal solution is
always obtainable. The problem is if the global optimum can be found e‰ciently.
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et al. 1995). For the energy E resulting from a particular alignment, the z-score of E

is defined as

z ¼ E � E

s
ð18:5Þ

where E and s are, respectively, the average and the standard deviation of the energy

distribution resulting from the same alignment after re-shu¿ing the amino acids of

the query sequence. However, it has been shown that the z-score is clearly not e¤ec-

tive (Marchler-Bauer and Bryant 1997).

There have also been attempts to use the P-value scheme (Karlin et al. 1990; Karlin

and Altschul 1990) as a way to assign a meaning to a threading score. P-value, which

estimates the probability of having a particular alignment score between two random

sequences, have been successfully applied to sequence alignment, thanks to Karlin’s

seminal work on a rigorous model of gapless alignments (Karlin et al. 1990; Karlin

and Altschul 1990). Due to the lack of a rigorous model for threading, the P-values

are typically estimated through compiling a ‘‘large’’ number of threading scores be-

tween a query sequence and a template after randomly shu¿ing its residues (Bryant

and Altschul 1995). Although some usefulness of the estimated P-value has been

demonstrated, the problem of developing a rigorous P-value scheme for threading

remains a challenging open problem. The recent work of Jones (1999) seems to have

provided a practical way to ‘‘normalize’’ the threading scores. The idea is to feed a

neural network the threading scores along with various normalization factors, such

as sequence length, and to let the neural network learn to ‘‘optimally’’ combine these

factors based on a training set. The result of the training is a mapping from a threading

score to a real number between 0 and 1, with an estimated probability that this number

corresponds to a correct fold recognition. We will further explain the idea in the next

section using our own implementation of this strategy.

18.3 PROSPECT: A Threading-Based Protein Structure Prediction System

PROSPECT (PROtein Structure Prediction and Evaluation Computer Toolkit) (Xu

and Xu 2000) is a computer program that we have developed for protein structure

prediction. The core of the program is a threading algorithm (Xu et al. 1998a, b),

which guarantees to find the globally optimal alignment between a query sequence and

a template structure for an energy function as defined in section 18.2.2. Compared with

other threading programs, two unique features of the algorithm are (1) that it finds the

globally optimal alignment e‰ciently when using a widely accepted cuto¤ distance
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between residue-residue contacts, 7 Å between the Cb atoms; and (2) that it allows

a user to incorporate experimental data as constraints in the threading process, and

guarantees to find the globally optimal threading under the specified constraints.

Currently it allows following types of constraints: (1) disulfide bonds between speci-

fied residues; (2) active sites involving a specified set of residues; (3) long-range NOE

(nuclear Overhauser e¤ects) restraints from NMR experiments; (4) secondary struc-

tures predicted by computer programs like PHD (Rost and Sander 1993) or deter-

mined from chemical shift data of NMR experiments; and (5) position-dependent

profiles based on multiple sequence alignment using SAM (Hughey and Krogh 1996).

PROSPECT provides a confidence value for each of its predictions being a true fold-

recognition. Recently, PROSPECT has been ported to a 184-node IBM/SP3 super-

computer at Oak Ridge National Laboratory. In this section, we will first give an

informal description of the threading algorithm and explain how its computational

e‰ciency is achieved. Then we will briefly explain how we assign a confidence value

to each threading result, followed by PROSPECT’s prediction performance. This

section concludes with a short description on the application side of the PROSPECT

program.

18.3.1 Algorithm

The basic problem solved by PROSPECT’s threading algorithm is to find an align-

ment between a query sequence and a template structure, which optimizes an energy

function as defined in section 18.2.2. To simplify the problem, we have applied two

widely adopted assumptions (Bryant and Lawrence 1993; Lathrop and Smith 1996):

(1) no gap can occur within a core secondary structure; (2) any pairwise interaction

involving a non-core secondary structure is ignored. Figure 18.1 shows a schematic of

such an alignment. What makes the threading problem di‰cult is the consideration

of pairwise contacts, which separate the problem from sequence alignment. Consider

the example of figure 18.1. When we are aligning the first part of the query sequence

with the first core (and its loop regions), we do not have any knowledge about which

residues of the query protein will be aligned to the third, fourth, and fifth cores of the

template (in the final optimal alignment), and so do not have enough information for

calculation of the corresponding pairwise contact potentials. This illustrates why the

dynamic programming scheme, which has been widely used for sequence alignment,

does not work for the threading problem.

The very basic idea of our solution to the threading problem follows the idea out-

lined above—considering all possible amino acid types when considering which type

of amino acid is aligned to the template position at the other end (e.g., the third,

fourth, and fifth cores of the above example) of each arc, and calculating the pairwise
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contact potential for each amino acid type. Clearly doing this directly is not compu-

tationally practical because of the enormous number of combinations we need to

consider. We have developed an e‰cient way to implement this idea, which we now

explain. Detailed formal description can be found elsewhere (Xu et al. 1998a, b).

The algorithm employs a divide and conquer strategy to solve the optimal threading

problem. For this purpose, we first pre-process the template by repeatedly dividing

(bi-partitioning) it into substructures until each substructure contains only one core

secondary structure. Dividing the template cuts an interaction between two cores into

two open links, represented as an arc with one of its ends being a hollow circle as

shown in figure 18.2. Our divide and conquer algorithm works correctly on any bi-

partition of the template. However, the way a template is partitioned a¤ects the

computing time.

The algorithm solves the entire optimal alignment problem by recursively solving a

series of subalignment problems between substructures and subsequences, under

various constraints, and then combining these subalignments in a consistent and op-

timal way. Figure 18.3 illustrates the basic idea, using an example from the last par-

tition step in figure 18.2. In this example, the substructure AB is partitioned into two

cores, A and B. The interaction link between A and B in the partition is cut into two

open links, that is, a3 and b1.

The algorithm first calculates the alignment score between A (similarly B) and each

sequence position (meaning that the leftmost residue of A is aligned with that posi-

tion). Because we assume that there is no alignment gap within a core alignment, this

score can be calculated by simply adding the singleton scores, Esingle, of the aligned

Figure 18.1
A schematic sequence-structure alignment. Each box represents a core secondary structure; the connecting
line between two boxes represents a loop region of the template structure. A core secondary structure, or a
core, means an a-helix or a b-strand. An arc between two cores indicates that at least one pair of residues
from the two cores have contacts (i.e., their Cb atoms are within our cuto¤ distance). The thick horizontal
line represents a query sequence. Lines connecting the query sequence and the template represent a possible
sequence-structure alignment.
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residues and structural positions, plus the Epair scores. The calculation of Epair is tricky

because we do not know the sequence positions that the cores at the other ends of the

open links a1, a2, and a3 (i.e., the first, fourth, and third cores in figure 18.2) are

aligned to. Once the other end of an open link is determined, all the pairwise inter-

actions between the two cores connected by the open link can be subsequently cal-

culated. To overcome the missing information, we simply consider all possible legal

alignments of these cores. Note that not every combination of the alignments of these

cores makes a legal (overall) alignment as some of them may (1) violate the relative

order of these cores (e.g., the first core is aligned to a sequence position that is to the

Figure 18.2
A partition for a template structure. The first row shows the template with five core secondary structures.
The second row shows a partition of the template into two substructures, one with three cores and the other
with two cores. A broken arc ended with a circle is called an open link. The third and fourth rows show
further partition of the template until each substructure contains only one core secondary structure. Note
that a partition forms a tree structure as indicated by the arrows.
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right of the aligned sequence position of the fourth core); (2) overlap each other; and

(3) violate the allowed minimum and maximum length di¤erence in a loop alignment

(we allow a user to specify these numbers in PROSPECT). Though now we have to

consider many possible aligned positions of the cores connected with a1; a2; a3 (from

now on, we simply call them assignments to a1; a2; a3), we have enough information

to calculate the pairwise contact term Epair for each fixed assignment to the open

links.

To avoid double counting, we treat the two open links created from each interac-

tion di¤erently. We use a dashed arc to represent one open link and a solid arc to

represent the other. We only calculate the pair contact energy Epair for the solid arc;

both open links are assigned to the aligned position of the core with a dashed arc.

Here only a2 is used to calculate Epair. The corresponding Epair terms for a1 and a3
will be calculated when the alignment for the first and the third cores are calculated,

respectively. In addition, we define a3 ¼ b1 ¼ sA, where sA is the aligned position of

the leftmost residue of core A on the sequence.

After the algorithm calculates the core alignment scores for each core under vari-

ous assumptions that their open links are assigned to particular sequence positions, it

calculates the alignment scores for larger substructures consisting of multiple cores.

We continue to use the above example to illustrate the basic idea. We now want to

calculate the optimal alignment score for AB under the assumption that a1, a2, and b2
are assigned to particular sequence positions. Calculation of this optimal score con-

sists of two parts: (1) the sum of the alignment scores for A and for B under the

Figure 18.3
A schematic example of the divide-and-conquer algorithm.
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condition that the two partial alignments for A and B are consistent, and (2) the

alignment score of the loop connecting A and B. The optimal alignment score for AB

is the lowest combined score of (1) and (2) among all possible legal assignments to

a3 and b1. To find the lowest combined score, the algorithm goes through all the

alignment scores for A and B under the conditions (1) that a3 and b1 have the same

sequence-position assignment, and (2) that a2 ¼ b2, because they point to the same

core (i.e., core C, see figure 18.3). For each such assignment, the algorithm calculates

the optimal loop alignment (now the aligned positions of both A and B are fixed)

using the dynamic programming method (Smith and Waterman 1981), and adds up

the total alignment score for AB. The assignment to a3 (b1) that has the lowest com-

bined score gives the optimal alignment score for AB under the specified assignment

condition.

This process continues for larger substructures (e.g., the next step is substructure

ABC ) until the top level of the partition tree is reached, and the whole template is

considered. Note that in the lower level calculations, the algorithm repeatedly solves

the constrained alignment problem, such as finding the optimal alignment score for a

substructure under the condition that its open links have particular assignments. On

the top level, the whole structure has no open links, and the optimal alignment

obtained gives the final solution to our threading problem. We have shown that the

final solution of this procedure gives the globally optimal threading for the given

energy function defined in section 18.2.2 (Xu et al. 1998a, b).

We have found that the computational bottleneck of this algorithm is the consid-

eration of all legal combinations of link assignments. More specifically, the domi-

nating term in the algorithm’s computational complexity (running time) increases

exponentially with the maximum number of links among all division points. For-

tunately, this (maximum) number is generally a small number if we only consider

pairwise contacts between residues that are spatially close, given the optimal way to

divide a template. We have previously demonstrated that the maximum number of

links changes according to how a template structure is divided (e.g., where to cut first,

and then second, etc.), and presented an algorithm for finding a division scheme that

minimizes the maximum link number among all division points (Xu et al. 1998a, b).

The minimized maximum link number is called the topological complexity of a tem-

plate. The topological complexity is a small number (a 8) in all the cases that we

have studied when the cuto¤ distance between the Cb atoms is no more than 15 Å.

Table 18.1 shows the distribution of the topological complexity versus the cuto¤

distance between Cb atoms for pairwise contacts. The statistics were compiled from

750 structures in a subset of the FSSP database (Holm and Sander 1996) (March
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1998 release). The lengths of these proteins range from 31 to 793; the numbers of

their core secondary structures range from 1 to 34.

By using a similar analysis to that of Xu et al. (1998a, b), it can be proved that this

threading algorithm runs in a time proportional to mnþMnTCNTC=2, where m and n

represent the lengths of the template and query protein sequences, respectively; M is

the number of core secondary structures of the template; N is the maximum allowed

di¤erence between the lengths of two aligned loops; and TC is the topological com-

plexity of the template. This function shows how various parameters a¤ect the run-

ning time of the algorithm. Using a recently improved version of PROSPECT, the

actual threading time on a workstation is typically less than a minute.

18.3.2 Performance by PROSPECT

In a recent study (Xu and Xu 2000), we tested PROSPECT on 312 pairs of query-

template proteins, each pair being from the same superfamily and having a sequence

identity a 30%. We randomly selected 175 pairs as the training set to obtain the

Table 18.1
Distribution of topological complexity

Cuto¤ (Å)

TC 5 6 7 8 9 10 11 12 13 14 15

0 52

(7%)

52

(7%)

52

(7%)

52

(7%)

52

(7%)

52

(7%)

52

(7%)

52

(7%)

52

(7%)

52

(7%)

52

(7%)

1 87

(12%)

87

(12%)

87

(12%)

87

(12%)

87

(12%)

87

(12%)

87

(12%)

87

(12%)

87

(12%)

87

(12%)

87

(12%)

2 218

(29%)

162

(22%)

135

(18%)

118

(16%)

112

(15%)

106

(14%)

102

(14%)

98

(13%)

96

(13%)

94

(13%)

92

(12%)

3 364

(49%)

318

(42%)

245

(33%)

189

(25%)

152

(20%)

131

(17%)

114

(15%)

104

(14%)

93

(12%)

83

(11%)

77

(10%)

4 29

(4%)

126

(17%)

216

(29%)

245

(33%)

218

(29%)

198

(26%)

185

(25%)

175

(23%)

161

(21%)

156

(21%)

154

(21%)

5 0

(0%)

5

(.7%)

15

(2%)

58

(8%)

121

(16%)

156

(21%)

162

(22%)

151

(20%)

136

(18%)

120

(16%)

105

(14%)

6 0

(0%)

0

(0%)

0

(0%)

1

(.1%)

8

(1%)

19

(3%)

47

(6%)

82

(11%)

117

(16%)

135

(18%)

141

(19%)

7 0

(0%)

0

(0%)

0

(0%)

0

(0%)

0

(0%)

1

(.1%)

1

(.1%)

1

(.1%)

8

(1%)

23

(3%)

38

(5%)

8 0

(0%)

0

(0%)

0

(0%)

0

(0%)

0

(0%)

0

(0%)

0

(0%)

0

(0%)

0

(0%)

0

(0%)

4

(.5%)

Each column represents a cuto¤ distance, and each row represents the number of proteins having a par-
ticular topological complexity (TC).
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weights between di¤erent energy terms, and another 137 pairs as the independent test

set to verify the threading performance. Figure 18.4 gives a benchmark of CPU time for

threading the 312 pairs on a Linux workstation with a Pentium III 550 MHz CPU.

For each pair of proteins, we put one into the query set and the other into the

template set (both proteins of each pair have solved structures). In the fold recogni-

tion test, we ran each protein from the query set against the whole template set. Table

18.2 shows the performance of threading accuracies. Overall, PROSPECT recognizes

69 percent of the templates correctly (among top five in ranking) and aligns 66 per-

cent of the structurally alignable residues correctly (defined as being aligned to within

a four-residue shift from the SARF’s [Alexandrov 1996] structure-structure align-

ment position). Interestingly, these numbers may be compared with the 55 percent

fold recognition and 64 percent alignment accuracy for the same test set without

using the pairwise energy, indicating the significant contribution from the pairwise

term, particularly for fold recognition. The fold recognition and alignment accuracy

are further improved to 72 percent and 74 percent, respectively, when the secondary

structure information predicted by the PHD program is used in scoring.

18.3.3 Normalization of Threading Scores

The goal of normalizing PROSPECT’s threading scores is to map all its scores to a

fixed range, say [0, 1], so that we can assign a fixed meaning to each normalized

Figure 18.4
CPU time of PROSPECT vs. the length of query sequence for threading each of 312 proteins on the tem-
plate of its native folds using a Linux workstation with Pentium III 550 MHz. To show the majority of the
data clearly, two extreme data points (421 amino acids, 117.9 seconds) and (907 amino acids, 8.4 seconds)
are not included within the scale of the figure.
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score. We have trained the neural network (Hertz et al. 1991) to accomplish such a

mapping. To train a neural network, we need to provide a list of training vectors,

each of which consists of an array of input data and a desired output value. In our

case, the input data for each training vector consists of the following values: the total

threading score, the pair contact potential, the singleton potential, the mutation

energy, the gap penalty, and a series of ‘‘normalization’’ factors, including the lengths

of the query and the template, the sequence identity between the query and the tem-

plate in threading, and the (threading) scoring distribution between the template and

the protein sequences of all the representative entries in FSSP (Holm and Sander

1996) (the actual input to the neural net includes the two extreme values and the av-

erage value of the distribution). One way to define the desired output value is simply

to use 1 or 0, representing whether the template is the correct fold of the query or not,

respectively, as Jones did in his recent work (1999).

We have used a di¤erent function to define a desired output value. For each query-

template pair, we calculate the number of structurally alignable residues between

them (note that all query proteins in our training set have 3D experimental structures

in PDB) defined by the SARF program (Alexandrov 1996). Then for each query-

template pair, the two proteins are considered to be the ‘‘true’’ pair if their FSSP in-

dices share the same first digit (Holm and Sander 1996), that is, they belong to the

same fold family. The frequency of the true pairs within a range of alignable residues

provides a continuous function of how probable it may correspond to a true query-

template pair if measured by structure-structure alignments alone. For example, on

our dataset of 17,000þ false pairs and 708 true pairs, this number has the distribution

shown in table 18.3. We found that using the relative frequencies listed as the desired

outputs for neural net training has generated better normalization results (than the 0/

1 output value) on our training set. This is probably because they provide more in-

formation than simply 0 or 1 to the neural net. Detailed discussion about the strength

and properties of this training function is described by Xu et al. (2001).

Our neural net consists of 14 input nodes, one output node, and one hidden layer

with 20 nodes. Among the entire data set (more than 18,000 pairs in total), one-half is

used as the training set and the remaining half as the (independent) testing set. The

goal of the training is to find a mathematical function that maps the input data to

Table 18.3
Relative frequency of true query-template pairs

Number of
alignables 0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90–

Frequency being
a true pair

0.000 0.001 0.003 0.020 0.150 0.500 0.750 0.900 0.990 1.000
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values in the range of [0,1], which are as close to the desired output values as possible.

Similar prediction results are achieved on the training and the testing sets, both hav-

ing an error rate of about 11 percent. Table 18.4 summarizes the prediction perfor-

mance on the combined set of training and testing.

This normalization by neural net has clearly given a meaning to each (normalized)

score. For example, if a (normalized) score is between 0.6 and 0.7, we know that the

probability of having a true fold recognition is about 0.83. Our preliminary test

shows that ranking templates using normalized scores improves the accuracy of fold

recognition, compared with using raw scores.

18.3.4 Using PROSPECT for Structure Prediction

PROSPECT provides a suite of options for various applications. It also has an

interface to MODELLER (Sali et al. 1994) for generating atomic structures after a

sequence-structure alignment has been constructed. It currently uses two template

libraries that a user can choose: protein chains defined by the FSSP non-redundant

set (Holm and Sander 1996), and compact domains defined by the DALI non-redun-

dant domain library (Holm and Sander 1998). A detailed manual of PROSPECT is

at http://compbio.ornl.gov/structure/prospect/. AWeb server using supercomputers is

also available at http://compbio.ornl.gov/structure/prospect_server/.

We now use the CASP-3 target t0057 (the CbiK protein) as a prediction example

of applying the PROSPECT program. To obtain a template for t0057, we ran

PROSPECT against the database of more than two thousand protein templates. The

template 1ak1 was identified. Then we refined the alignment between t0053 and the

template 1ak1 using the information of an active site. Through a detailed analysis, we

found that 1ak1 has an active site at His-183 (Al-Karadaghi et al. 1997). Searching

the BLOCK database (Heniko¤ and Heniko¤ 1994), we identified His-145 of t0053

as the corresponding active site. We then re-ran PROSPECT using the constraint

that His-145 of t0053 should be aligned with His-183 of 1ak1. The final alignment

between t0053 and 1ak1 (with a sequence identities of 12.2 percent) is given in figure

18.5. The refined alignment agrees quite well with the structure-structure alignment,

Table 18.4
Prediction performance on combined set of training and testing

Neural net output 0–
0.1

0.1–
0.2

0.2–
0.3

0.3–
0.4

0.4–
0.5

0.5–
0.6

0.6–
0.7

0.7–
0.8

0.8–
0.9

0.9–
1.0

No. of false pairs 17279 474 143 56 25 7 7 2 0 0

No. of true pairs 314 135 60 51 44 38 34 14 12 8

Percent of true pairs 1.7% 22% 30% 48% 64% 84% 83% 87% 100% 100%
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and it is significantly better than the original one without the constraint. The struc-

ture using MODELLER based on the refined alignment is shown in figure 18.6. A

detailed description of our prediction experience using PROSPECT in CASP-3

appears in Xu et al. 1999.

18.4 Application of Experimental Data as Threading Constraints

Though threading often provides valuable information, the computational structure

models are still predictions. One way to significantly improve the reliability of pre-

dictions is through the incorporation of partial experimental data related to protein

structures. Two classes of data have proven to be particularly useful in the pursuit of

combined methods of experiments and computation for protein structure determina-

tion: (1) intramolecular cross-links from mass spectrometry, and (2) chemical shifts

and long-range NOEs from NMR experiments. Potentially, these experimental pro-

Figure 18.5
Sequence alignment between t0053 and 1ak1, where |, :, and . indicate the two aligned residues are identi-
cal, similar, as related, respectively.
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cedures could produce structural data, not necessarily su‰cient for an accurate

structure determination, in a high-throughput mode. Our experience has shown that

even a small number of distance restraints from NMR or cross-links could sig-

nificantly reduce the search space size of feasible threading alignments, quickly ruling

out the vast majority of the wrong folds and incorrect sequence-structure alignments.

As the number of such distance restraints increases, we have observed that the quality

of the predicted structures rapidly approaches the ones of the experimental structures.

We could foresee the emergence of a new paradigm for protein structure determina-

tion in the near future, which will fully utilize the structural information derived from

both the experiments and sophisticated computational procedures, making the

structure determination process much more e‰cient and cost e¤ective.

18.4.1 Intramolecular Cross-Links and Threading

A recent study by Young et al. (2000) demonstrates the e¤ectiveness of using lysine

(Lys-Lys) cross-links as constraints on threading for high-throughput protein fold

Figure 18.6
A comparison between the predicted structure (left) based on the template 1ak1 and the experimental one
(right) for the CASP-3 target t0053. The target t0053 and the template 1ak1 belong to the same super-
family. The cylinders represent a-helices, the strands denote b-strands, the dark lines are for turns, and the
thin lines represent loops.
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recognition. The basic idea of this approach is to probe a protein structure with a

lysine-specific cross-linking agent, bis(sulfosuccinimidyl) suberate. Then a few cross-

linked sites can be determined by tryptic peptide mapping using time-of-flight mass

spectrometry. The distance between a pair of cross-linked lysines is bounded by the

length of the cross-linking agent, that is, 24 Å between Ca-Ca atoms. The distance

restraints are then used to assess the quality of threading models—how consistent the

predicted structure models are with the obtained distance measures. The model that

is most consistent with the cross-links is then chosen. Young et al. (2000) used 18

unique lysine cross-links, in conjunction with threading, and correctly identified

FGF-2 as a member of the b-trefoil fold family. The structure model has a backbone

error of 4.8 Å rmsd. This method is fast and uses a small amount of material. It is

easy for automation and should be broadly applicable, so it has a potential for the

high-throughput fold recognition.

18.4.2 Use of NMR Partial Data as Threading Constraints

The NMR method for protein structure determination is based on (1) proton and

heteronuclear chemical shifts, (2) a network of distance restraints between spatially

close (a 5 Å) hydrogen atoms derived from nuclear Overhauser e¤ects (NOEs), (3)

dihedral angle restraints calculated from scalar coupling constants, and so on. An

NMR structure is generally determined through molecular dynamics simulation and

energy minimization under the constraints specified by NMR restraints (Braun and

Gō 1985; Levy et al. 1989; Brünger 1992; Karimi-Nejad et al. 1998). It typically

requires 15–20 NOE restraints per residue to obtain an accurate (mean) structure

(equivalent to a@2 Å X-ray structure).

It is well known that NMR methods work only for small proteins and that the

e¤ectiveness goes down rapidly as the weight of a protein goes beyond 30 kD. Of

the 1,901 NMR structures in PDB (March 2000 release) (Bernstein et al. 1977), only

27 are larger than two hundred amino acids. The largest NMR structure in PDB

is intimin (PDB code 1inm), with 282 residues (30.1 kD). The main problems with

larger proteins are the increased number of resonances and line broadening, which

result in spectral crowding and reduction in the fraction of spectral peaks that can be

identified and assigned. Although NMR experiments generally cannot produce su‰-

cient data for 3D structure determination of large proteins, it is often possible to get

some NMR data (Lin and Wagner 1999). These partial NMR data have turned out

to be highly valuable as constraints on threading-based fold recognition and back-

bone structure prediction, as we have recently demonstrated (Xu et al. 2000b, c).

Particularly, we have found that (1) the topological information provided by just a

few long-range NOEs (NOEs between residues that are not adjacent in the protein
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sequence) can quickly rule out certain false fold classes and alignments during

threading, as shown in figure 18.7; and (2) the geometric patterns of a group of NOEs,

as shown in figure 18.8, can rapidly narrow down the list of potential alignments

between a query protein and a template structure in threading.

We can define an NOE-constrained threading problem as to find a globally optimal

threading ( just as defined in section 18.2) between a query sequence and a template

structure, under the constraint that no NOEs are ‘‘significantly’’ violated; that is, two

residues with an NOE between them should not be aligned to template positions that

are ‘‘too far’’ from each other. This can be implemented using a penalty function that

penalizes threading alignments with ‘‘significant’’ deviations from the NOE-specified

distances. We can treat structural information from other types of NMR data in a

similar fashion.

The following gives a case study on how long-range NOEs a¤ect the threading

accuracy in both fold recognition and threading alignments. For this study, we have

selected from the FSSP database (Holm and Sander 1996) 17 proteins as the queries.

These proteins were selected randomly under the following conditions: (1) the query

proteins have experimental NMR data in PDB; (2) they should evenly represent three

classes of proteins: all-a, all-b, and a and b mixed; and (3) each has a native-like

structure in the template set, with sequence identity less than 35 percent. In this test, we

first ran the NMR-constrained threading program, and then ran MODELLER (Sali

et al. 1994) to generate detailed 3D structures based on threading alignments without

using additional data. The fold recognition study is done against 667 unique folds.

Figure 18.7
Ruling out false topological classes of proteins by using a few NOEs. On the left is a Greek key substruc-
ture, and on the right is a 4-antiparallel (flat) b-strand motif. A partial sequence with two NOEs is given in
the bottom. Although an alignment between the Greek key structure and the partial sequence may exist
that does not violate the NOE restraints, there is no such alignment between the 4-antiparallel b-strand
motif and the sequence because it has the ‘‘wrong’’ topology.
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We tested how the amount of NOE information a¤ects the threading performance,

using 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 NOEs (including both long- and short- NOEs)

per residue, respectively. The NOEs are selected randomly and uniformly from the

NMR data file of the corresponding protein. Table 18.5 summarizes the test results.

The tabulated alignment accuracy between structurally equivalent residues in the

query and template (Ca-RMSD) is the highest accuracy in ten runs.4 The fold rec-

ognition accuracy is based on a single run.

In this test, NOEs improve the threading performance in 13 out of the 17 cases,

with seven cases showing improvements in fold recognition and 11 cases showing

improvements in alignment accuracy. One observation we have is that although the

pure threading results on all three analogous pairs (1afi-2acy, 3phy-1bv6, and 1bla-

1hce, as classified by SCOP [Murzin et al. 1995]) are generally poor and worse than

those of homologous pairs, the prediction results with at least one NOE per residue

Figure 18.8
Comparison between the structurally equivalent b-sheets in the two proteins of similar folds. Residues 74–
78 and 103–107 for template 1hce, and residues 83–87 and 113–117 for the query protein 1bla, are shown.
The dashed lines with the numbers give the distance in Å.

4. Each run represents a di¤erent sampling of NOEs given a fixed number of NOEs per residue.
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for the analogous pairs and the remaining 14 homologous pairs are quite comparable.

This seems to suggest the possibility of reliably extending the scope of threading from

homologs to analogs, with the help of a few NOEs.

18.5 Discussion

18.5.1 Implications of Threading for the Structural Genomics Initiative

Traditionally, protein structures were solved at a low-throughput mode, one protein

at a time. Recent advances in synchrotron and high-resolution NMR have substan-

tially accelerated the rate of protein structure determination. There is an overwhelming

consensus in the structural biology community that protein structures can be solved

massively (an e¤ort called ‘‘structural genomics’’), in a similar fashion to how DNA

sequences are being sequenced. The goal of the recent NIH Structural Genomics

Initiative (National Institute of General Medical Sciences 1999) is to determine the

structures of a hundred thousand human proteins. The potential impact of such

a project could be as significant as the Human Genome Project. The basic strategy

of the project is to first select a representative from each fold family and solve them

using experimental means including X-ray crystallography and NMR, and then to

computationally model the rest of the structures using the representative structures as

templates. This would save a tremendous amount of time and resources if successful.

Two key computational challenges in this ambitious initiative are (1) to identify

which protein sequences represent novel folds, and (2) to computationally model the

rest of the structures based on the representative structures. Clearly threading could

play a key role in addressing these challenges.

Several groups have employed threading tools to structurally model all coding

sequences from a whole genome (Fischer and Eisenberg 1997; Jones 1999). These

studies have provided timely analysis for the current genome sequencing e¤orts, and

allow gene-hunting researchers to find valuable structure information quickly. It has

been found that about 17 percent of the identified genes fall into the category of

homology modeling (Sanchez and Sali 1998). The sequence profile approach extends

the genome-wide coverage from 17 percent to about 30–40 percent (Gerstein 1998).

The threading approach can predict about an additional 10–20 percent of identified

genes with good confidence (Jones 1999). For the rest of the proteins, either existing

threading methods cannot recognize the templates with good confidence, or templates

do not exist in the structure database (i.e., novel folds). This raises two challenging

issues—how to further improve the e‰cacy of threading methods, and how to reli-

ably determine if a protein has a new fold? Among some of the proteins with new

folds is the class of membrane proteins, which have not been touched by threading
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methods. Due to the technical di‰culty of experimentally solving these structures

and the lack of available templates for computational methods like threading, it may

take a long time to solve all these proteins. However, with the advancement of new

experimental techniques and computational methods, it is foreseeable to have the

structures of all globular proteins solved within the next ten years, and hence put an

end to the folding problem of globular proteins.

18.5.2 Challenging Issues and New Developments

Although about 90 percent of new globular proteins may have native-like folds in the

structure database, as we discussed in section 18.2, current threading results clearly

fall short of these theoretical limits (CASP 1995, 1997, 1999). Among all the predic-

tion targets in CASP-3, 25 proteins were considered as ‘‘solvable’’ by protein threading

and were put in the category of fold recognition. Only 13 of the 25 proteins had their

correct folds recognized and had at least 50 percent of the alignable residues aligned

correctly by any participating team (Marchler-Bauer et al. 1999). Further improving

the accuracy and enlarging the scope of protein threading are among the key chal-

lenging issues in computational structural biology.

Local Threading Virtually all existing threading programs attempt to solve the

‘‘global’’ threading problem, finding an optimal alignment between the whole se-

quence of a query protein and the entire structure of a template protein. This type of

threading method is not very sensitive in detecting templates when the percentage of

structurally alignable residues is low (say, <50%)—existing threading methods work

well only when the query protein has a template in PDB with at least 60–70 percent

of their residues structurally alignable (Marchler-Bauer et al. 1999). This has clearly

limited the applicability of protein threading.

One way to solve this problem is through ‘‘local threading’’, locating good partial

sequence-structure alignments (e.g., a structure domain or a super-secondary struc-

ture). This will extend the scope of current threading methods to deal with a much

larger class of structure prediction problems. Local threading may provide a better

way to recognize function-related structural motifs (for example, the EF-hand motif

frequently found in calcium binding proteins with various folds) than sequence-based

motif search methods. However, as we know, many of the motifs do not have strong

sequence characteristics, so sequence-based motif search methods may not work well.

Mini-Threading Threading takes advantage of enormous structure information in

PDB and provides more reliable structure predictions than ab initio methods. How-

ever, threading does not apply to the proteins that do not have templates in PDB or

have templates that threading cannot recognize. On the other hand, ab initio pre-
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diction applies to all proteins. However, it generally requires a significant amount of

computing resource, and its prediction results might be unreliable. Mini-threading

(Simons et al. 1997) attempts to combine the strengths of these two approaches. It

first builds local structures through sequence comparison or local threading, and then

assembles them into a global structure through ab initio methods. Current mini-

threading methods typically recognize structure segments in PDB that are most sim-

ilar to a segment of the query sequence (with a typical size of nine amino acids) in

terms of sequence similarity. Then a distribution profile is constructed for the f and c

angles of the query protein’s backbones, based on the distributions in the structure

segments. It is possible to use templates that are fine-tuned for small structure seg-

ments like I-sites (Bystro¤ and Baker 1998) to obtain more reliable local structure

templates. Once local structures are more or less defined, assembling them based on

their backbone distributions would require significantly fewer computational resources

than pure ab initio methods. The optimization process is typically carried out using

genetic algorithms (Unger and Moult 1992) or Monte Carlo simulations (Skolnick

and Kolinski 1991). Some success of mini-threading has been demonstrated in CASP-

3 (CASP 1999). Mini-threading provides a promising method to generate low reso-

lution structures for the proteins to which threading might not apply.

Using Multiple-Sequence or Multiple-Structure Information One of the problems in

threading is the structural variations among proteins of the same fold, which is not

well captured in the existing threading scoring functions. When two proteins share

the same fold, the length of the structurally alignable secondary structures and the

packing between the secondary structures may di¤er, particularly when the two pro-

teins are structural analogs (in the same fold but not the same superfamily), where the

variations in the secondary structures of peripheral elements as well as in some core

elements are much larger than structural homologs. The solvent accessibilities, the

secondary structure types, and the Cb pairs of the template may not correspond ex-

actly to those of the query protein in the aligned positions.

One way to overcome the problem is to derive the basic statistics (used to calculate

the scoring functions) from the ‘‘consensus’’ of the query sequence or template fold.

One can generate a sequence profile for the query’s protein family based on multiple-

sequence alignments. Such a profile reflects common characteristics of the protein

family, and hence it can enhance threading sensitivity while reducing noises. Another

way to use protein classification is to construct the sequence profile for the protein

family containing the fold template or to build profile for the structures of the same

fold through multiple structure alignments (Panchenko et al. 2000). By using the

structure alignment, one can identify which positions (as well as solvent accessibilities,
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the secondary structure types, or the Cb pairs) are more conserved across di¤erent

templates of the same fold. The advantage of using multiple templates instead of

multiple sequences in the query’s family is that the former covers the profile of pro-

teins of the same fold (not necessarily of the same family or superfamily).

18.5.3 Future Outlook

Protein threading is becoming a major tool in computational biology. Its applica-

bility will probably cover all globular proteins within the next decade. We will con-

tinue to see improvement in the prediction accuracy and computational e‰ciency of

threading-based structure prediction methods. Genome-scale application of thread-

ing will become routine in the next few years. As technologies mature in high-

throughput experimental and computational structural biology, we will see a merger

of the two approaches. Information from structural experiments and template-based

computation will be tightly combined for significantly more e‰cient and cost-e¤ective

ways of determining protein structures.
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Appendix. Web Addresses of Protein Threading Programs

123D http://cartan.gmd.de/ToPLign.html server

123Dþ http://www-lmmb.ncifcrf.gov/@nicka/123Dþ.html server

3D-PSSM http://www.bmm.icnet.uk/servers/3dpssm/ server

bioinbgu http://www.cs.bgu.ac.il/@bioinbgu/ server

FFAS http://bioinformatics.burnham-inst.org/FFAS/ server

FUGUE http://www-cryst.bioc.cam.ac.uk/@fugue/prfsearch.html server

GenTHREADER http://www.psipred.net server

loopp http://ser-loopp.tc.cornell.edu/loopp.html server

NCBI Package http://www.ncbi.nlm.nih.gov/Structure/ executables

PROFIT http://lore.came.sbg.ac.at/ executables

PROSPECT http://compbio.ornl.gov/structure/prospect_server/ server

PROSPECTOR http://bioinformatics.danforthcenter.org/services/threading.html server

SAS http://www.biochem.ucl.ac.uk/bsm/sas/ server

Sausage http://rsc.anu.edu.au/@arussell/TheSausageMachine.html server

TOPITS http://dodo.cpmc.columbia.edu/predictprotein/ server

ToPLign http://cartan.gmd.de/ToPLign.html server

UCLA-DOE http://www.doe-mbi.ucla.edu/people/frsvr/frsvr.html server
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19 Computational Methods for Docking and Applications to Drug
Design: Functional Epitopes and Combinatorial Libraries

Ruth Nussinov, Buyong Ma, and Haim J. Wolfson

19.1 Introduction

Several ingredients are needed in order to e‰ciently and successfully search a library

of inhibitors, or drugs, with the goal of optimally docking them onto a specific target

receptor (Nussinov and Wolfson 1999a, b): first, an adequate molecular surface rep-

resentation; second, e‰cient docking techniques; third, a practical way of accounting

for molecular surface variability; and fourth, providing for molecular flexibility. These

four ingredients yield the candidate molecules. The fifth critical component is a fast,

empirical way of scoring the large number of obtained solutions and ranking them.

Currently, although there exist a variety of computational docking approaches, the

scoring step has proven to be the most di‰cult hurdle.

Prediction of the docked conformation of a receptor-ligand molecule pair without

any additional knowledge as to their binding sites is an extremely complex problem

(e.g., Goodsell and Olson 1990; Bacon and Moult 1992; Kuntz et al. 1982; Connolly

1986; Cherfils et al. 1991; Katchalsky-Katzir et al. 1992; Jiang and Kim 1991; Shoichet

and Kuntz 1991; Wang 1991; Cherfils and Janin 1993; Norel et al. 1994a, b; Helmer-

Citterich and Tramontano 1994; Fischer et al. 1995; Norel et al. 1995; Lengauer and

Rarey 1996; Wallqvist and Covell 1996; Rarey et al. 1996; Jones et al. 1997; Kasinos

et al. 1992; Gabb et al. 1997). The problem can be defined as follows: Given the

atomic coordinates of the two molecules, predict their native bound association.

Clearly, in principle, every portion of surface of one molecule should be matched

with every portion of the other, in all rotations and translations. The number of pos-

sible matched configurations is immense. Further, even if the binding site can be pre-

dicted (via, for example, its being the largest cavity, e.g., Peters et al. 1996; Laskowski

et al. 1996), there is no guarantee that the corresponding candidate trial ligand will

not bind at other, alternate sites. A particularly severe complication is the molecular

surface variability. In solution, the surfaces of the molecules are in constant motion.

Movements of side chains and surface atoms implicitly forces taking account of inter-

molecular penetrations of the docked molecule pair. In solution, such surface pene-

trations are alleviated by the movements of the groups of atoms on the molecular

surface (Norel et al. 1998, 1999a). By contrast, obviously, allowing full-fledged mo-

lecular flexibility, that is, allowing every two atoms to move with respect to each

other while we search through databases of molecules is entirely infeasible. Thus, we

need to devise some practical approaches in which some degree of flexibility will still

be permitted. Moreover, in addition to molecular surface variability, one needs to



consider domain motions. Docking rigid molecules may miss the correct solutions

altogether.

Below we describe e‰cient computational approaches to the docking problem. We

focus on two computational techniques. The first is a rigid body docking technique

(Norel et al. 1994b, Helmer-Citterich and Tramontano 1994; Norel et al. 1998,

1999a, b); the second allows conformational flexibility of molecular parts, through

hinge-bending motions (Sandak et al. 1995, 1996a, b, 1998, 1999). We note the geo-

metrical representation of the molecular surface they currently employ (Connolly

1986; Norel et al. 1994b; Connolly 1983a, b; Lin et al. 1994, 1996) and pattern

matching algorithms to detect geometric surface complementarity (Norel et al. 1994a;

Fischer et al. 1995; Sandak et al. 1995). These techniques derive from computer vision

and robotics (Wolfson 1991; Lamdan and Wolfson 1998; Lamdan et al. 1990). They

are highly e‰cient, yielding candidate solutions in very short CPU matching times.

They are straightforward to run, using an SGI workstation or a PC. However, despite

all of these encouraging attributes, we are still faced with very serious di‰culties,

namely, the scoring and ranking of the obtained, predicted, docked configurations.

Are there then ways to quickly sift through potential docked configurations and

rank the correct native configurations at the top of the obtained list? Analyses of

protein-protein interfaces have illustrated that the binding interfaces do not neces-

sarily have the largest extent of buried surface areas. Furthermore, native-like bound

conformations do not manifest the largest nonpolar buried surface areas as compared

to other potentially feasible docked solutions (Norel et al. 1999a). They do not con-

tain the largest number of hydrogen bonds or the smallest number of unsatisfied

buried polar groups. In solution, these are likely to be handled by surface motions,

eliminating such unfavorable energy contributions. Hence, the problem is how, de-

spite these hurdles, to still conceivably be able to detect candidate lead compounds/

protein inhibitors. Here we outline one potential way of handling this problem,

namely, through utilization of a library of functional epitopes. Such a library can be

generated e‰ciently using techniques based on the same principles. We further con-

sider the pros and cons of their utilization.

This chapter is divided into two parts. In the first, we describe computer vision

based rigid and hinge-bending docking algorithms, and the generation of potential

solutions. In the second, we focus on the generation of functional epitopes, and some

attributes of binding epitopes that we have recently obtained (Hu et al. 2000).

Docking is an alternate, complementary tool to that of drug design. In drug design,

the molecule is built, normally in the binding site of the receptor, by ligating groups

of atoms, in a step-by-step, trial-and-error calculation. Here we focus on docking

algorithms. In such algorithms the three-dimensional structures of the ligands are

taken as single entities from the database.
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19.2 Rigid-Body Docking

We have devised two rigid-body computer vision based docking techniques (Norel

et al. 1994b, 1995; Fischer et al. 1995). In both the representation and the matching

are 3D rotation and translation invariant. The principles of both algorithms are simi-

lar. Here we describe briefly only one. Additional details on this, and the second algo-

rithm, are in Fischer et al. 1995.

To align the surfaces of two molecules in a complementary manner, we need to

compute a rigid transformation that superimposes the surfaces without allowing one

molecule to penetrate or overlap the other. To obtain hypotheses for such trans-

formations it su‰ces to align a triplet of ordered non-collinear points (congruent

triangles) from both molecules. However, it may happen that there are no three

independent matching point-pairs between the receptor and the ligand. For docking,

the points we utilize are those describing the molecular surfaces. These are computed

to accurately represent the maxima (holes) and minima (knobs) of the shape function

(Norel et al. 1994b, 1999a, b). We also compute the surface normal, associated with

the point. Below, these points are dubbed critical points. The docking strategy utilizes

only pairs of matching critical points with the additional geometric information on

their normals. In order to compute a candidate rigid transformation, we need to detect

a pair of critical points in both molecules that share the same internal distance, and, if

superimposed, have opposing surface normals. This reduces the number of potential

docked configurations, and concomitantly reduces the run-time complexity of the

program.

For each pair of critical points from each of the molecules (any two critical points

combination for the protein-protein docking; two holes for the receptor and two

knobs for the ligand in the protein-drug cases) we compute a transformation invari-

ant signature. The signature includes the distance between the two critical points ðdÞ;
the two angles formed by the line between these critical points and their respective

normals (a1; a2); and the torsion angle defined by the two normals and the line seg-

ment between them (o). If the signatures of the ligand and of the receptor are com-

patible, the best rigid transformation (Schwartz and Sharir 1987) between the two

pairs of the critical points is computed. In compatible pairs (1) a knob in one mole-

cule matches a hole in the other; (2) the di¤erence between the two distances ðdÞ in
the two molecules is less than a predefined threshold; and (3) the di¤erence between

the corresponding a 0s and the two o 0s is also within the allowed limits. We impose

stronger cumulative constraints on the alignment of the surface normals: the sums of

the di¤erences of the two a 0s and of the three angles should not exceed certain limits.

In order to qualify as a candidate match, if one of the normals is not well aligned, the

other must compensate and have a reasonable alignment. There are several advan-
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tages in employing the surface normals in the signature, in addition to the critical

points: (1) we need only two critical points in the interface area; (2) the combinatorics

of finding correct matches is lower (we use pairs of points, rather than triplets or

quartets, as Connolly has used in his original 1986 implemention); (3) the orientation

of the normal is used for fast rejection of a large number of wrong solutions.

Because the matching is computed for local patches of the surface, it is essential to

verify that the solution is viable for the entire protein. A problem may arise when the

entire ligand molecule is brought to dock onto the entire receptor. It is conceivable

that although there is a good complementarity at the matching interface, there could

be an overlap between the two molecules elsewhere. To verify that the docked con-

figurations do not seriously interpenetrate each other, we compute a scoring function.

The function is based on geometric features: surface contact is awarded, and overlaps

where ligand atom centers invade the outer shell of the molecular representation of

the receptor are penalized, but retained. However, potential solutions where ligand

atoms fall into the ‘‘core’’ of the receptor are rejected. By allowing a certain extent of

intermolecular penetrations, we implicitly take into account molecular surface vari-

ability. The details of the scoring and ranking function along with a simple hydro-

phobicity function utilized in the docking of protein-protein pairs are described

elsewhere (Norel et al. 1999a).

Inspection of the obtained complexed conformations immediately reveals that many

molecular associations are relatively similar to each other. These represent virtually

the same docked solution (Fischer et al. 1995). Clustering similar solutions both

reduces the number of solutions and allows focusing on alternate configurations. A

good clustering scheme should group similar solutions. However, at the same time, it

should properly distinguish between alternate binding modes. The relative rotation

between two conformations is computed from their individual rotations against the

initial conformation (Norel et al. 1999a).

This computer vision based docking algorithm is highly e‰cient. Its fast CPU

matching times—on the order of minutes on a PC, even for large protein-protein

cases—allows large-scale docking trials of large and small molecules. We have car-

ried out such experiments on about 230 receptor-ligand molecule pairs, including 26

protein-protein ‘‘bound’’ and 19 ‘‘unbound’’ protein-protein cases, where the struc-

tures have been determined separately (Norel et al. 1999a). These have variable,

imperfectly matching surfaces. We have further docked about 160 cases of protein-

drugs, 13 cases of protein-DNA, and 14 cases of DNA-drugs (Norel et al. 1999b).

The molecules vary substantially both in size and in the hydrophobic/polar chemical

nature of their surfaces. The location of the active site, or the identity of particular

residues/atoms in either the receptor or the ligand, which participate in the binding,
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has not been taken into account in any of these. As can be seen in Norel et al. (1999a,

b), the quality of the results (low rmsds of the docked configuration as compared to

the crystal-complex) and the speed of our techniques are highly attractive. Thus,

based on this examination of the docking and the results it has obtained, we conclude

that shape complementarity almost always enables attaining correct docked config-

urations. Nevertheless, it is insu‰cient for ranking.

Above, we have outlined a computer vision based algorithm for rigid docking. On

the technical side, rigid docking algorithms are faster and obtain fewer candidate

solutions than those allowing molecular flexibility. If the flexibility is limited, treating

the molecules as rigid bodies will still detect the native bound conformations. Such

cases are handled simply by the ‘‘error thresholds.’’

Below we extend the docking repertoire, by describing an e‰cient method for

handling a special kind of flexibility, namely, allowing hinge-bending motions.

19.3 Hinge-Bending Flexible Matching

Here we dock a ligand onto a receptor surface, allowing hinge-bending movements of

domains, subdomains, or any structural parts. The advantage of our algorithm is that

we allow all angular rotations, although we still avoid a conformational space search

(Sandak et al. 1995, 1996a, b, 1998, 1999). We pick a hinge point, to divide the mole-

cule into two parts. However, we do not dock each of the molecular parts separately,

necessitating a subsequent reconstruction of the consistently docked molecules. In-

stead, we dock all parts simultaneously. In particular, we utilize the position of

the hinge from the start. Like pliers closing on a screw, in an automated fashion, the

receptor closes on its ligand. Movements are allowed either in the ligand or in the

larger receptor. Hence, the algorithm mimicks the so-called ‘‘induced’’ molecular fit.

More than one hinge can be allowed in the docking. Interestingly, contrary to intu-

itive expectation, there is no increase in the matching (docking) times as the number

of hinges increases. However, the ranking (scoring) times increase. This is the out-

come of the necessity to examine two types of penetrations, both intramolecular part

penetration and intermolecular as in rigid-body docking. The hinge-bending docking

is illustrated in the schematic diagram of figure 19.1.

Hinge-bending movements are frequently related to molecular association (Gerstein

et al. 1994). Such motions can involve domains, subdomains, loops, secondary struc-

ture elements, or be between any portions of the molecules connected by flexible joints.

Currently, we have implemented the hinges at points and at bonds. Clearly, in reality,

the only molecular movements that are possible are rotations around a covalent
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bond. Hence, in principle, we could have limited the matching to the simpler, one

degree of freedom rotation. Nevertheless, by enabling full three-dimensional rota-

tions around a point, rather than around a bond, we can implicitly take into account

several rotations about consecutive or nearby bonds. If we so wish, the point rotation

can be restricted to bond rotation. We can also permit the molecule to rotate around

several, simultaneous hinges. In enabling several hinge motions to occur simulta-

neously, in e¤ect we are simulating the cumulative e¤ect of multiple mutations, each

introducing a limited motion. In practice, to date, the algorithm has been imple-

mented to enable two simultaneous hinges (Sandak et al. 1995, 1996a, b, 1998, 1999),

although initial prototypes for multiple hinges are already being tested.

We have successfully applied our algorithm to a number of bound and unbound

molecular configurations, achieving fast recognition times of their surfaces. As in the

rigid-body case, the atomic coordinates are extracted from the PDB (Bernstein et al.

1997). The location of the hinge has been pre-defined, through a comparison of similar

structures in di¤erent, that is, ‘‘open’’ and ‘‘closed’’ conformations, in cases where

both types of structures exist. When we applied our method to molecules taken from

bound conformations, we were able to reproduce the molecular association, in ex-

Figure 19.1
A schematic illustration of the molecular hinges allowed in ligands and receptors in the hinge-bending
docking. (A) The hinges in the ligands. (B) The ligand is hinge-bent to optimally fit in the receptor active
site. (C) The hinge is in the receptor. (D) The receptor is hinge-bent, closing on its ligand.
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cellent agreement with the experimental crystal structure. Because the ligand and the

receptor have been picked in their complexed form, near-native geometrical solutions

correspond to those with near zero rotations and translations. The binding modes our

algorithm has obtained have small rmsds compared to the native crystal complexes.

The average rmsd of a correct solution is 1.4 Å, with average run-time for each

complex around 1 min (on a SGI-Challenge R8000 machine). Additionally, for the

bound cases, ‘‘correct’’ bound configurations typically rank high. In addition, geo-

metrically well-fitting, alternate binding modes have also been generated (Sandak

et al. 1995, 1996a, b, 1998, 1999).

19.4 Hinge-Bending Flexible Matching: The Algorithm

For simplicity and clarity, here we outline the description of this robotics-based

method (Wolfson 1991) for the single hinge case, where the hinge is positioned in the

ligand molecule and the receptor is assumed to be rigid. Nevertheless, although we

describe the algorithm for flexible ligands, the roles of the ligands and the receptors

are interchangeable. That is, the hinges can be positioned in the receptors as well.

Elsewhere we describe further enhancements that we have implemented for the mul-

tiple hinges case (Sandak et al. 1999).

The algorithm is based on a voting scheme designed to find the most suitable ligands

(out of a library of ligands), and for the respective transformations for matching each

of their parts to a given receptor. Both the ligand and the receptor molecular surfaces

are described by their 3D sets of ‘‘interest points.’’ This molecular surface representa-

tion is essentially similar to the one described above for the rigid body docking. Details

are given in Lin et al. refs. 36, 37. Here we proceed to outline the hinge-bending algo-

rithm and its two phases, the preprocessing and the recognition. (For additional details

of the algorithm, see Sandak et al. 1995, 1996a, b, 1998, 1999.)

An Overview of the Algorithm The ligands may undergo translations and rotations

of their parts in order to optimally dock to the surface of the receptor. The ligand

information is stored in a look-up table, which is invariant to this type of trans-

formation. The table is generated in the preprocessing phase of the hinge-bending

algorithm. The position of the hinge in each of the ligands is pre-determined by

considerations of its more flexible joints. Nevertheless, because this robotics-based

algorithm is fast, numerous other, alternate, hinge locations may be tried. The

structure of the receptor is presented to the system in the second, recognition phase of

the algorithm. If a ligand has an interest point configuration (i.e., a portion of the

molecular surface) similar to the receptor interest point configuration, the algorithm

Computational Methods for Docking 509



scores a match. This is done by casting a vote for this ligand, together with the

computed location of its hinge. This hinge location is computed from the transfor-

mation between the corresponding receptor and ligand interest point surface config-

urations. The highest scoring (voted for) hinge locations of candidate ligands are

sought. No knowledge of the binding site, or of the hinge locations relative to the

receptor, is assumed.

In the preprocessing step, the ligand molecule (model) is described as a set of in-

terest points. The (predetermined) hinge location is positioned at the origin of a 3D

Cartesian coordinate frame. This frame is the ligand frame. The orientation of this

frame is set arbitrarily. For each non-collinear triplet of interest points, in each of the

ligand’s parts, a unique triplet-based Cartesian frame is defined. This is the triplet

frame. One way in which this can be done is by defining the origin at the first triplet

point, the x-axis in the direction of the vector from the first point to the second, the z-

axis, which is the normal to the triangle plane in the direction of the cross-product of

the two vectors originating from the first triangle point, and the y-axis in the direc-

tion of the cross product of the x and z unit vectors. However, in practice, in order

not to overlook any potential solution, we define three such frames, one for each

triplet point. The shape signature of each triplet of points is the ordered triangle side

lengths. This geometric shape signature of the triplet constitutes an address to a look-

up hash table. The information that is stored at this entry at this address is the ligand

identification, the part number, and the transformations between the triplet frames

and the ligand frame.

In the recognition step, the molecular surface of the receptor is similarly described

by its set of interest points. All non-collinear triplets of the interest points of the re-

ceptor are considered in the docking stage. For each of these triplets, the triplet-based

Cartesian frames are computed. Each is the receptor triplet frame. The mode of cal-

culation is as above. The lengths of the triangle sides of each of the triplets are simi-

larly calculated. This calculation is invariant under rotation and translation. Thus

(almost) congruent ligand triangles will result in similar values. The look-up table

calculated in the preprocessing phase is entered using as an address of the currently

computed ordered triplet of triangle side lengths of the receptor. For each ligand-

record present at that entry in the table, a candidate ligand frame is computed, cal-

culated by applying the pre-recorded ligand transformation at that (hash table) entry

to the current receptor triplet frame. The origin of the candidate ligand frame is the

candidate hinge location. We vote for the identity of the ligand molecule, along with

the location and orientation of the candidate, hinge-centered, ligand frame. At the end

of this procedure, we seek high scoring pairs of (ligand, hinge location). This hinge

location defines the 3D translation that the ligand would need to undergo in this
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candidate docking. The appropriate rotations are calculated separately for each part

only at a later scoring and filtering stage. In the current step, hinges that have

received a large number of votes are selected.

This hinge-bending algorithm exploits the fact that both parts of the molecule

share the same hinge. The essential point here is that the way it is taken into account

is by locating the origin of the reference frame of the ligand at the hinge. In this way,

both parts contribute votes to a reference frame at the same location, although the

orientations of both parts with respect to each other may di¤er. Most importantly, by

picking up votes from both molecular parts, a ligand, which might otherwise have

only a small portion of surface complementary to the receptor surface in each of the

parts, may still score high. Thus, although each of the individual parts of the ligand

can obtain an insignificant score, the sum of the votes obtained from both of the

ligand’s parts may yield an overall acceptable match, which can be automatically

detected.

This algorithm is general. It can handle the rigid docking as a particular case. For

the rigid-body docking, the ligand reference frame is located arbitrarily.

Above, we have outlined the algorithm for the case of a single hinge. However, it

may be extended to multiple hinges. There, rather than pick a single ligand frame,

multiple ligand frames are defined. Each of these frames is centered at a di¤erent,

pre-defined hinge. Next, in the preprocessing step, for each ligand triplet in a single

part, we encode the transformations of its triplet frame to all ligand frames of that

part. Hence, if a part has two hinges (as might be the case if the part is the middle of

a protein), we will store two transformations for each triplet. On the other hand, if a

part has only one hinge (i.e., if it is an edge part), we store only one transformation.

(A drug-ligand with a branched structure may have more than two hinges per part).

The recognition phase is unchanged. The exception is that each receptor triplet par-

ticipates in the voting for as many frames as the number of di¤erent transformations

stored in its table entry. Run times at the di¤erent steps of the algorithm on several

examples are given by Sandak et al. (1999).

19.5 The Ranking Problem

Above we have described two algorithms for docking ligands to the surfaces of their

respective receptors. The two methods are very e‰cient, producing high-quality results

for cases where the complementarity between the surfaces of the molecules is relatively

good. Nevertheless, despite the advantages of these techniques, they face considerable

di‰culties as the fit deteriorates. This problem is uniformly encountered by all current
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methodologies. If docking initiates from entire molecular surfaces where the structures

of the molecules have been determined separately, that is, when they are in their

uncomplexed conformation, a range of solutions is obtained. The problem of how to

rank the solutions, with near-native solutions ranking near the top of the list, is still

a major hurdle. Because the number of candidate solutions may be large, detailed

chemical calculations are unrealistic, and fast empirical approaches have yielded

unsatisfactory results. Among the many schemes that have been tested over the last

years we find derivation and utilization of pairwise, knowledge-based potentials, either

residue-based or atom-based; calculations of the nonpolar buried surface area, or of

the total buried surface area; inspection and counts of hydrogen bonds and salt

bridges; minimization of the number of buried polar groups; and minimization of the

energies. Any of these may be satisfactory for some cases; however, they fail for the

others. Thus, even if the docking programs are good and can scan quickly large

databases of drugs or inhibitors, the ranking problem still constitutes a huge stum-

bling block.

19.6 Binding Epitopes

The definitions of binding epitopes vary. In general, the term refers to a recurring

pattern of molecular surface in a family (or, families) of proteins, where at least in

one family member the site is known to be a binding site. A similar binding epitope

can also be observed across family boundaries. To construct a library of binding epit-

opes we may start by picking a known site as a pattern, and search for similar portions

of surface, or of arrangement of residues at/near the surface, in other molecules.

19.6.1 Characteristics of Binding Sites

Locating a priori unknown active (binding) sites on the surfaces of enzymes or

receptors is important for a number of reasons. First, detection of binding sites is the

initial step in the design of drugs. Second, being able to identify active sites on the

surfaces of proteins enables their modification to enhance their activity toward specific

ligands and functions. Knowledge of likely binding sites enables focusing on these

locations in the docking simulations. Finally, they can further be used to filter and rank

the obtained solutions at later stages. Although the former is more e‰cient, we may

nevertheless also wish to obtain alternate geometrically feasible configurations.

In an insightful review, Ringe (1995) surveys the definition of ‘‘what makes a

binding site a binding site.’’ She describes some guidelines, and proposes that binding

sites are in general depressions in the protein surface, ‘‘in which there is greater than
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average degree of exposure of hydrophobic groups.’’ These frequently contain dis-

ordered, easily displaced water molecules. Ringe further suggests that conformation-

ally flexible residues at the binding site may be particularly useful in replacing the

disordered water by the competing ligand. Laskowski et al. (1996) have also examined

the active sites. Their extensive study indicates that active sites of enzymes typically

consist of large clefts. Their study shows that in the majority of single chain enzymes,

the ligand binds in the largest cleft. Hence, active sites of enzymes may well be iden-

tified using geometrical criteria alone. Peters et al. (1996) utilized alpha-shapes (Edels-

brunner and Mucke 1994), a computational geometry tool, in an automated search

for ligand binding sites on protein surfaces. This strictly geometry-based algorithm

has also found a correlation between the depth of the clefts and enzyme active sites.

In addition, a correlation between patches of hydrophobic surfaces and binding

sites has also been noted (e.g., Young et al. 1994; Vakser et al. 1994; Clackson and

Wells 1995). Both the results of Peters et al. (1996), and of Laskowski et al. (1996),

confirm an older observation (Connolly 1986), that protein-protein binding sites are

characteristically more shallow, unlike the enzyme active sites.

A straightforward approach to locate an active site in proteins if their structures

are available is to select a known active site of a (model) protein and use it as a

template, searching for similar ones in target proteins. This can be done by initially

describing the molecular surfaces of the proteins and picking the points that faithfully

represent the surfaces. Alternatively, we can use the location of the atoms that line

the surface, or are near it. In the latter case, we may either select the coordinates of

surface atoms or of Ca-atoms. Ca-atoms may be those whose atoms line the molecular

surface, or more likely, they will be in a certain shell from the surface, and will belong

to functionally important residues, such as those of the catalytic triad of the serine

proteases. Such search methods need to be flexible enough to allow both inexact and

partial matching of the model and target molecules.

Molecular surfaces are flexible. In particular, that may hold for active site regions.

Flexibility may be particularly advantageous for proteins with a broad range of

ligands/substrates. The less specific the receptor-ligand (enzyme-substrate) inter-

actions, and the broader the range of binding, the more flexible the binding site is

likely to be. Further, enzymes and proteins having a broad range of bound sub-

strates/ligands may also make substantial use of water molecules to mediate binding

to their ligands (e.g., Ringe 1995; Bhat et al. 1994; Ladbury 1996). Ladbury (1996)

outlines the rationale and the consistent evidence, arguing that water is likely to have

a dual role in binding. Water molecules may increase the promiscuity of the binding;

however, water might also increase the specificity and a‰nity. In general, bridging

water molecules are not accounted for in molecular surface matching algorithms.
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That is largely due to the di‰culty in predicting their locations on the surfaces of the

proteins. A further di‰culty is to pinpoint the residues that are critical for binding.

Residues may be observed to be in contact with their cognate ligands in a number of

di¤erent members of the family. This, however, does not necessarily imply that these

residues are critical for binding. There is a growing body of examples showing that

mutating such residues still enables molecular association. What happens is that

owing to side chain flexibility, side chains that are nearby move, taking over the role

played by the residue that was originally at that location. A binding epitope should

therefore always be taken with a grain of salt. Still, as initial guesses, especially when

a certain sloppiness in the stipulated requirements is allowed, they are useful to have.

19.6.2 Detection of Conserved Residues at Binding Sites

A method such as Geometric Hashing (Nussinov and Wolfson 1991; Tsai et al.

1996a, b) enables carrying out a comprehensive and systematic structural analysis of

protein-protein interfaces. Because the crystal structures of the families of these

interfaces are geometrically similar (Tsai et al. 1996b), the dataset can be used to study

structural characteristics of protein-protein interfaces. In particular, such a dataset

may be used to address questions such as, given a geometric similarity among members

of a protein-protein interface family, how similar are their binding surfaces? Which

residues at the interface are conserved? What are the determinants of the binding

(hydrophobicity, electrostatic, etc.)? Which residues are preferred, avoided, or neutral

at the interface? Which residues are poor interface formers? These questions have

important consequences for both protein-protein binding prediction and protein

ligand design. An insight into such questions should enable searches for homologous,

potential sites in other structures, where the existence/location of these sites are

unknown.

A number of studies addressed the question of which are the critical residues at

protein binding sites (Clackson and Wells 1995). The studies examined either a single

or a few protein-protein interfaces. Bogan and Thorn (1998) carried out an extensive

analysis of alanine scanning mutagenesis. However, although the total number of

mutations was large, the number of protein interfaces was small, with some of the

interfaces closely related.

Recently, we have shown (Hu et al. 2000) that although binding sites are hydro-

phobic, they are seeded with conserved polar residues at specific locations, possibly

serving as energy ‘‘hot spots.’’ Our results have confirmed and generalized the alanine

scanning data analysis (Bogan and Thorn 1998). In that earlier study, Trp, Arg, and

Tyr were observed to constitute energetic hot spots. They were rationalized by their

polar interactions and by their surrounding rings of hydrophobic residues. Never-
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theless, there was no compelling reason to explain why it is specifically these residues.

Our study has illustrated that other polar residues are similarly conserved. Conserved

residues that are in contact across the protein-protein interfaces have been observed

in all the examined families. These results are based on 11 clustered interface families,

comprising a total of 97 crystal structures. The families have at least five members,

with sequence similarity between the members in the range of 20–90 percent. Because

the matching was carried out by the Geometric Hashing structural comparison al-

gorithm (Nussinov and Wolfson 1991; Tsai et al. 1996a, b), the conserved residues

are at spatially similar environments.

Additionally, for the enzyme-inhibitors, we have observed that residues are more

conserved at the interfaces than at other locations. On the other hand, antibody-

protein interfaces have similar surface conservation as compared to their corre-

sponding linear sequence alignment, consistent with the suggestion that evolution has

optimized protein interfaces for function.

Protein-protein interfaces are largely hydrophobic, with hydrophobicity being a

dominant force in protein-protein interactions (Young et al. 1994; Korn and Burnett

1991). Analysis of protein-protein interfaces has shown that the extent of hydro-

phobicity, as measured by the nonpolar buried surface area between the two chains,

may vary to a large extent between the interfaces (Tsai et al. 1997). Consistently, there

are also indications of the existence of hydrophilic regions (Korn and Burnett 1991;

Janin et al. 1988). Two recent studies have highlighted the importance of hydrophilic

interactions in biological function (Tormo et al. 1999; Wang et al. 1999; Xu et al.

1997). With regard to specific residues, the reported preferences vary from case to

case, mainly due to the change in the systems studied. In studies of a specific system,

it is di‰cult to di¤erentiate between residue conservation conferring binding spe-

cificity and conservation owing to the role of the residues in constituting energy hot

spots.

19.6.3 Distribution of Interface Residues

We have examined the distributions of all interface residues, of identically matched

residues between the representative of the family and each of the family members,

and of conserved residues in the whole family. For individual families, there are sig-

nificant preferences of certain residues to be at the interfaces. However, when exam-

ining the counts of identically matched residues, the preferences become much less

significant.

Although the distribution of all interface residues yields simple statistics, the pro-

pensities of conserved residues provide clues to the more important driving forces

(Hu et al. 2000). Table 19.1 summarizes the propensities in terms of hydrophobic or
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hydrophilic residue classifications. Here aromatic residues are considered hydro-

phobic. The table shows that with respect to the total number of interface residues,

hydrophobic residues have higher propensities than polar residues (12.4 : 9.6), con-

sistent with previous, statistically based studies (Young et al. 1994; Tsai et al. 1997).

However, remarkably, the preference of hydrophobic residues decreases when ana-

lyzed in terms of the propensities of identically matched residues (8.3 : 7.0). In terms

of conserved residues, polar residues are observed to dominate (11.2 : 14.9). Hence,

we observe a trend of preferred conservation of polar residues in protein-protein

interfaces.

A comparison of our conserved interface residues with experimentally identified

energetical hot spots illustrates that the two most conserved residues are cysteine and

arginine (figure 19.2). The high propensity of cysteine stems from the disulfide bond

conservation, either to maintain the interface structure or to chemically bind inter-

faces together. The identification of cysteine validates our conserved residue propen-

sity computations.

Table 19.2 and figure 19.3 show that our selection of conserved residues corre-

sponds to experimentally identified hot spots. There is a surprising match between the

propensities of most of our conserved residues and the residue enrichment in hot

spots compiled from the database of alanine scanning mutagenesis. Except for a few

outliers, the correlation coe‰cient of the experimentally determined amino acid en-

richment and our computed conservation propensity is 0.72 (Bogan and Thorn 1998).

Of the unmatched residues, alanine is clearly incomparable. Cysteine is favored in

our database owing to its forming covalent bonds. Tryptophan has a lower propen-

sity in our analysis, probably because of its rareness. Serious disagreement is found

for lysine. Lysine is well represented in our interface database. However, although in

our analysis we failed to identify conserved lysine residues, lysine has a good enrich-

ment in the alanine scanning data. A possible reason for this failure may relate to our

Table 19.1
Propensities in terms of hydrophobic or hydrophilic residue classifications for all residues, identical resi-
dues, and conserved residues

Residue classificationsa
Total interface
residures

Identically matched
interface residues

Conserved
interface residue

Hydrophobic 5.9 4.6 5.7

Aromatic 6.5 3.7 5.4

HydrophobicþAromatic 12.4 8.3 11.1

Polar 9.6 7.0 14.9

aHydrophobic residues include Ala, Vla, Pro, Met, Ile, and Leu; polar residues include Asp, Glu, Lys, Arg,
Ser, Thr, Asn, and Gln; aromatic residues include Phe, Tyr, His, and Trp.
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high criteria of cuto¤ percentage (80 percent) for a conserved interface residue.

Alternatively, lysine is a highly flexible surface residue, projecting into the solvent.

It is quite possible that it is not detected as a matched residue pair in the super-

positioning owing to slightly larger shifts in its position. At first sight, it appears that

there is also a serious disagreement between our results and the alanine scanning with

respect to leucine. However, if we combine the contributions of leucine and iso-

leucine, we obtain a good agreement (1.80 from alanine scanning, 1.74 from conser-

vation propensity). This agreement further addresses Bogan and Thorn’s question

as to why isoleucine has a higher frequency than leucine in their database. Taken

together, the solution may be that one should consider the sum of leucine and iso-

Figure 19.2
Propensities of all interface residues (A), of identically matched residues (B) and of conserved residues (C).

Computational Methods for Docking 517



leucine, as we did in figure 19.3. There are also disagreements in the lower third of the

table, particularly in Gln, Phe, and Gly. Although the di¤erence in Gly can be related

to flexibility, we have no explanation for the more frequent occurrence in Gln and

Phe in our interface families as compared to the alanine scanning, apart from the

limited number of dissimilar interfaces examined by the alanine scanning (Hu et al.

2000). In general, we see a higher preponderance in conserved polar residues (His,

Asn, Gln, Thr, Ser), or partially polar (Phe, Met), as compared to the alanine scan-

ning. Further, Bogan and Thorn (1998) have examined the location of the hot spots

across interfaces. They found that the hot spots are usually located around the center

of the interfaces, and hence protected from bulk solvent. This is also observed in our

location of conserved interface residues. We note, however, that the number of data-

points, particularly the number of conserved interface residues, is small. Some of the

Table 19.2
Conserved residue propensities vs. experimentally determined enrichment in hot spots

Residue
Propensity to
conservationa

Enrichment
in hot spotsb

Val 0.36 0

Ser 0.67 0.21

Thr 0.75 0.28

Gly 1.29 0.45

Met 0.74 0.54

Phe 1.12 0.56

Gln 1.73 0.58

Glu 0.52 0.68

Asn 1.24 0.93

Lys 0 1.17

Pro 1.33 1.25

His 1.68 1.49

Asp 1.59 1.67

Ile 0.29 1.79

Leu 1.45 0.01

Leuþ Ile 1.74 1.80

Tyr 1.35 2.29

Arg 2.01 2.47

Trp 1.22 3.91

aThe propensity of conservation ðPkÞ of a residue to occur at the interface is calculated as the fraction
of the count of residue k in the interface as compared with its fraction in the whole chains. Pk ¼
ðnk=nÞ=ðNk=NÞ, where nk is the number of conserved residues of type k at the interface, n is the number
of residues at the interface, Nk is the number of residues of type k in the chain, and N is the total number of
residues in the chain.
bEnrichment in hot spot gives fold enrichment of that residue type in hot spots (DDGV 2 kcal/mol in
alanine mutations) over whole database of 2,325 alanine mutations (Tsai et al. 1997).
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outliers may be due to poor statistics. Another point worthy of note is with regard to

the residue conservation and protein function. Although these residues recur in all

interfaces, with the interfaces belonging to di¤erent families and fulfilling di¤erent

functions, it is still possible that some conservation is due to protein function.

Hence, although overall interfaces manifest a higher frequency of occurrence of

hydrophobic residues (Young et al. 1994; Korn and Burnett 1991, Tsai et al. 1997),

the polar residues are those that are preferentially conserved. Within these, Bogan

and Thorn find a special enrichment of Trp, Arg, Tyr, Asp, Pro, and His. Analysis of

the residue conservation in a larger number of interfaces shows Arg, Gln, His, Asp,

Pro, and Asn to be especially enriched.

Figure 19.3
A correlation of experimentally determined amino acid enrichment and our computed conservation pro-
pensity. Residues are indicated by their one-letter code. Outliers are indicated. They are not included in the
least square fitting. Note that Val is classified as an outlier due to its zero value in the experimental results.
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19.6.4 Binding Epitopes and Docking: Conclusions

Our goal was to detect binding epitopes shared by members of the same family. In

particular, we sought to probe the potential existence of common principles that hold

in general for protein-protein binding sites, and as such can be used in docking. Sev-

eral observations have been made in the literature. First, binding sites are generally

hydrophobic, indicating that the hydrophobic e¤ect plays a major role in protein-

protein interactions. Second, the extent of the hydrophobicity is variable, with some

interfaces considerably more hydrophobic than others. Consistently, hydrophilic side

chains play a more important role in binding than in folding. Third, for some inter-

faces, it has been shown that electrostatics plays a major role, steering the ligand onto

the binding site of the receptor. Fourth, the availablility of a large number of clustered

interfaces, combined with the Geometric Hashing structural comparison tool, which

enables superimposing the interfaces despite the fact that they are composed of dis-

continuous pieces of the chains, provide powerful tools.

The interface families that we have examined show a preference for conservation

of polar residues at their interfaces. In particular, conserved interface residues are

strongly correlated with the experimentally identified ‘‘hot spots’’ compiled from the

database of experimental alanine scanning mutagenesis. Specifically, the more highly

conserved residues in our analysis are Arg, Gln, His, Asp, Pro, and Asn. Bogan and

Thorn (1998) argue that energetic hot spots are critically important for the a‰nity of

a protein interface. The fact that these residues tend to be conserved at specific loca-

tions indicates that they may constitute binding epitopes (functional epitopes). As

such, they may be utilized in searches for potential unknown binding sites. They may

further be engineered in binding site design. Conserved interface residues may play a

dual role in binding, both thermodynamic and kinetic.

Additionally, the surface alignment identified conserved residues in the eleven clus-

tered protein-protein interfaces. In enzyme-inhibitors, we find that the residues are

more conserved at the interfaces than in other locations in the proteins, as shown by

multiple sequence alignments. In contrast, antibody-protein antigen interfaces illus-

trate similar surface conservation as compared to linear sequence alignment, consis-

tent with the proposition that evolution has optimized protein interfaces to achieve

optimal function, as conserved residues are more likely to be optimized.

The main advantage in the utilization of binding epitopes in docking is that they

are inherently resilient to the atomic conformational detail and provide a practi-

cal (albeit statistically based) way of treating surface variability and flexibility. They

further enable the utilization of modeled structures, in addition to high-resolution

ones.
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Hüseyin Kaya
Department of Biochemistry
Faculty of Medicine, University of
Toronto
Toronto, Ontario, Canada

Paul Kearney
Assistant Professor, Department of
Computer Science
University of Waterloo
Waterloo, Ontario, Canada

Ming Li
Professor, Department of Computer
Science
University of California, Santa Barbara
Santa Barbara, California

Jun S. Liu
Professor, Department of Statistics
Harvard University
Cambridge, Massachusetts

Buyong Ma
Laboratory of Experimental and
Computational Biology
National Cancer Institute
Frederick, Maryland

Ruth Nussinov
Professor, Laboratory of Experimental
and Computational Biology
National Cancer Institute
Frederick, Maryland

Manuel C. Peitsch
Head and Director, GlaxoWellcome
Experimental Research (GWER) and
Scientific Computing (World-Wide)
Geneva, Switzerland

David Sanko¤
Professor, Center for Mathematical
Research
University of Montreal
Montreal, Quebec, Canada



Torsten Schwede
GlaxoWellcome Experimental Research
(GWER) and Scientific Computing
(World-Wide)
Geneva, Switzerland

Ron Shamir
Professor, Department of Computer
Science
Tel Aviv University
Tel Aviv, Israel

Roded Sharen
Department of Computer Science
Tel Aviv University
Tel Aviv, Israel

Seishi Shimizhu
Department of Biochemistry
Faculty of Medicine, University of
Toronto
Toronto, Ontario, Canada

Ilya N. Shindyalov
Sta¤ Scientist, San Diego
Supercomputer Center
University of California, San Diego
La Jolla, California

Temple F. Smith
Professor and Director, Department of
Biomedical Engineering
Boston University
Boston, Massachusetts

Victor V. Soloveyv
Director, EOS Biotechnology
South San Francisco, California

Lusheng Wang
Assistant Professor, Department of
Computer Science
City University of Hong Kong
Kowloon, Hong Kong, China

Zhuozhi Wang
Department of Computer Science
University of Western Ontario
London, Ontario, Canada

Haim J. Wolfson
Associate Professor, Computer Science
Department
Tel Aviv University
Tel Aviv, Israel

Limsoon Wong
Deputy Director, Bioinformatics Lab
Kent Ridge Digital Labs
Singapore

Dong Xu
Sta¤ Scientist, Computational Biology
Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Shizhong Xu
Associate Professor, Department of
Botany and Plant Sciences
University of California, Riverside
Riverside, California

Ying Xu
Group Leader/Senior Sta¤ Scientist,
Computational Biology Section
Life Sciences Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Kaizhong Zhang
Associate Professor, Department of
Computer Science
University of Western Ontario
London, Ontario, Canada

Michael Q. Zhang
Associate Professor, Watson School of
Biological Sciences
Cold Spring Harbor Laboratory
Cold Spring Harbor, New York

526 Contributors



 
Index

AAT (analysis and annotation tool), 66
Ab initio approaches, 403, 467–469. See also

Protein folding
Acceptor splice site, 216
Accuracy, 209–210, 229–230
homology-based modeling, 458–460, 463
prediction by similarity, 231–233
ACT binding, 75
Activators, 250
A‰nity, 282
A¤ymetrix, 238
Agglomerative clustering, 144
Aggregation, 431–434
Algorithms. See also Datamining; Recognition

function
approximation, 81–82, 87–97
AverageConsensusAlign, 93
AverageSPAlign, 91
Biocompress, 158–159
BLAST, 238, 388, 391, 451
CAST, 281–282, 286–290, 292
center star approach, 88
Cfact, 159–160
CLICK, 277–278, 280–281, 286–290, 294–295
combinatorial, 349–350
computation volume reduction, 85–87
DiagonalConsensusAlign, 93–95
DiagonalSPAlign, 92–93
DSC, 379
DSSP, 376–379
dynamic programming, 46–52 (see also Dynamic
programming)

EM, 21, 23–27, 32, 34, 162, 257–258
energy minimization, 350–357, 453
exact, 83–87
FGENEH, 224, 226–227
Fgenes, 227–230
Fgenesh, 230, 235, 238–239
Fgeneshþ, 232–233
Fgenesh_c, 233
GenCompress, 158–160
HCS, 277–280
hierarchical clustering, 275–276
hinge-bending, 509–511
Hirschberg, 52–56
k dimension programming, 84–85
K-means, 276–277
linear-space, 52–56
linear time, 164
l-star approach, 88–89
MaxHom, 388
MCMC, 182–185
Metropolis-Hastings, 29–31, 183–184, 194
multiple sequence alignment, 71–73 (see also
Multiple sequence alignment)

nearest-neighbor, 391–398
neural-network based, 388–391
NNSP, 379
NNSSP, 393–395
Nussinov’s, 351
PHD, 379–380, 386, 388, 391
PromoterInspector, 263
PROSPECT, 478–483
PSI-BLAST, 391, 451, 457
PSI-PRED, 380, 391
RandomAlign, 89, 92
reversal, 139–140, 145
reversible jump MCMC, 180, 184–185
self-organizing maps, 282–284
SIM, 58
solution assessment, 284–285
SSP, 382–386
SSPAL, 379–380, 394–396
Steinerization, 146
stochastic, 103–107, 345, 359–361
STRIDE, 379, 398
trace back, 50, 52, 350
Waterman-Eggert, 394–395
Zuker’s, 350–357
Alignment. See also Docking; Protein folding
approximation algorithms, 81–82
Clustal W, 98–100
comparative modeling, 451
consensus, 76–77, 83, 85–87, 92–95
content specific discrimination, 209
covariation, 357–359
exon-intron identification, 65–66
frame specific discrimination, 209
genomic comparison, 63–65
hardness, 81–83
iterative methods, 100
multiple sequence, 255–259, 393 (see also
Multiple sequence alignment)
pairwise cost schemes, 81
phylogenetics, 114
position specific discrimination, 206–208
progressive methods, 98–100
PROSPECT, 477–478
protein threading, 475–476
RandomAlign, 92
SP, 76, 82–92
TF binding sites, 252–261
tree, 71, 77–81, 85–87, 95–97, 100–103
All-atom models, 405–406, 414
Alleles, 111. See also Mapping
epistatic e¤ects, 195–196
maximum likelihood estimate (MLE), 192–
194
probability model, 191–192
Alzheimer’s disease, 431



Amino acids, 62–63. See also Protein folding
characteristics description, 381–382
DCS method, 386–388
discriminant analysis, 380–388
helices, 368–370
protein threading, 476
Ramachandran plots, 365–368

Annotation, 233–238
pathway reconstruction, 312–314

Anticodons, 202
Aperiodicity, 30–31
Approximation algorithms, 81–82
multiple sequences, 87–97

Arabidopsis, 204
Arc repressor homodimer, 429
Arrays, 270–272. See also Clusters
Association analysis, 320
Asymmetric measurement, 166
ATP binding, 73
Augmented model, 23–24
Auto-correlation, 387
AUTOGENE, 262
AverageConsensusAlign algorithm, 93
AverageSPAlign algorithm, 91

Bacteria, 135, 167
Band computation, 56
Basal machine, 251
Bayesian modeling, viii, 11–12, 42–44
block-motif, 37–41
CLICK, 280
datamining, 320–321, 335
EM algorithm, 24–27
empirical distribution, 185–186
epistatic e¤ects, 195–196
frequentist approach, 14–17
joint distributions, 19–21
likelihood function, 192–194
Markov chain, 29–37, 39
MCMC, 182–185
missing data framework, 21–23
Monte Carlo algorithm, 27–32
multinomial, 32–33
parametric-statistical, 13–14
posterior distribution, 19–21
prediction programs, 227
probability model, 181–182, 191–192
score functions, 18–19
unobservables sampling, 194–195

Bend, 377–378
Bernoulli variable, 178
BESTORF, 223
b structures
DCS method, 386–388

discriminant analysis, 380–388
nearest-neighbor approaches, 391–398
neural-network-based approaches, 388–
391

prediction accuracy, 383–386
protein threading, 473
SSP algorithm, 383
Binary coding, 163
Binding sites, 520
acceptor splice, 216
ACT, 75
ATP, 73
characteristics of, 512–514
datamining, 319 (see also Datamining)
residue detection, 514–515
residue distribution, 515–519
Biocompress algorithms, 158–159
Bioninformatics. See Computational molecular

biology
Bionizzoni, P., 82
Bio-sequence. See Sequence data
Bipartitions. See Partitions
BLAST, 238, 388, 391, 451
Block-motif model
inhomogeneous background, 40–41
Markovian background, 39
multiple motifs, 41
BLOSUM, 46, 63, 81, 474
BOAT, 320
Boltzmann statistics, 474
Bond energy, 473–475
Bonding matrix, 349
Bootstrap method, 16
Bordetella pertussis, 313
Breakpoints, 139, 145–146
BRITE, 309
Brookhaven National Laboratory, 4
Brookhaven Protein Data Bank, 451
Bulge loops, 347–348

CAEP (classification by aggregating emerging
patterns), 328–335

Calorimetric cooperativity, 434–436
Candidate ligand frame, 510
Canonical base pairs, 246–247
CART, 320, 336
Cartesian coordinates, 416
CASP, 467, 487, 495–496
CAST, 281–282, 292
case study, 286–290
Catalysts, 201
CATH, 471
CD4 genome, 63–66
C-diagonal alignment, 87–92

528 Index



cDNA
exon-intron identification, 65–66
fingerprinting, 271–272
microarrays, 270
CDNA program, 161–162
C. elegans, 5, 204
Center star approach, 88
Centromeres, 137–138, 150
Cfact, 159–160
C4.5, 320
CFTR sequence, 73
CHAID, 320
Chain geometries, 413–417. See also Docking;

Lattice models
Chan, Hue Sun, xi, 403–447, 525
Characterization, 238–242, 381–382
Character reduction, 147
Chargra¤, Erwin, 3
CHARMM, 453, 473
Chips, 238–242
Chirality, 377–378
Chlamydia pneumoniae, 141
Chlamydia trachomatis, 141
Chou-Fasman distance, 393
Chromosomes. See also Genome
centromeres, 137–138
oncology, 150–151
polarity, 136–137
QTL mapping, 178 (see also Mapping)
sequence comparison, 63–65
telomeres, 137–138
Circularity, 137
alignment traces, 138–139
breakpoints, 139
edit distances, 139
reversal, 139–140
translocation, 141
transposition, 140
Cladogenesis model, 112–113
Cleansing, 318
Cleavage, 221–223
CLICK, 277–278, 280–281, 294–295
Clinical records, 328–335
Cloners, 233
Clustal W, 98–100
Clusters, 150, 269, 291–293, 295–299
agglomerative, 144
approach choice, 291
CAST, 281–282
cDNA microarrays, 270
CLICK, 277–278, 280–281
datamining, 319
HCS, 277–280
hierarchical, 275–276

KEGG, 301–315
K-means, 276–277
oligonucleotide microarrays, 270–272
quality evaluation, 291, 294
self-organizing maps, 282–284
solution assessment, 284–285
C matrix, 350
Coarse-grained statistical modeling, 406–407
Coding, 163–164. See also Sequence data
content specific discrimination, 209
50-exon, 229
frame specific discrimination, 209
gene expression, 201–202
HMM-based approaches, 224–227
maximum likelihood estimate (MLE), 192–194
ORFs, 223–224, 228–229, 261, 286–290
position specific discrimination, 206–209
promoter recognition, 249–267
Collection, 318
Column cost function. See Cost
Combinatorial algorithm, 349–350
Combined distances, 141–142
Comparative modeling, 403, 449, 464–466
automation, 453–454
construction of model, 451–452
membranes, 462
mutations, 461
refinement, 452–453
synopsis, 450–453
template identification, 450–451, 462–463
COMPEL, 260
Compensatory base change, 357–359
Complex systems, 303
COMPOSER, 457
Compression, 157, 169–171
gain function, 159–160
GenCompress, 158–160
GTAC, 161–164
whole genome comparison, 164–168
Computational e‰ciency, 85–87, 115
Computational molecular biology
cluster algorithms, 269–299
datamining, 317–341
history of, 3–4
interdisciplinary nature of, vii
Conditional distributions, 31
Confidence interval, 11
Conformational propagation, 414, 431–434
CONGEN, 458
CONSENSUS, 256–257
Consensus alignment, 76–77, 92–95
computation volume reduction, 86–87
hardness, 83
Consistency, 115

Index 529



Content specific discrimination, 209
Context-free grammar (CFG) method, 359–361
Cost, 75. See also Time
consensus alignment, 76–77, 93–94
graph matrix, 102
maximum likelihood estimate (MLE), 113–114
pairwise, 81
SP alignment, 76
tree alignment, 77–81

Covariation, 211–212, 357–359
CpG islands, 261–262
CPHmodel, 457
Crick, Francis, 3
Critical points, 505–506
Cross links, 489–490
Cuto¤s, 60–61
Cystic fibrosis (CF) gene, 73

DALI, 487
dapC, 312–313
Data. See also Mapping
augmentation, 21
missing, 21–23, 38
prior distribution, 17

Databases, 73. See also Docking
Annotation, 233–238
CATH, 471
comparative modeling, 403
COMPEL, 260
EMBL, 202
FSSP, 471, 486, 491
GenBank, 5, 202–204, 219, 232–233
HSSP, 386, 388
InfoGene, 203–204, 212, 233–235
KEGG, 301–315
PDB, 376, 451–453, 472, 495–496, 508
SCOP, 471
SWISS-PROT, 450, 453–455
trEMBL, 450, 453–455
TRRD, 260

Datamining, 317, 336–341
Dayho¤, Margaret, 4
Dbscan, 232, 235–236
DCS method, 386–388
Deduction, 403
DeEP method, 334–335
Deletion. See Indels
DelPhi, 410
Dendograms, 275
Desolvation peak, 412
DFALIGN, 98, 100
Diagonal band, 87–92
DiagonalConsensusAlign algorithm, 93–95
DiagonalSPAlign algorithm, 92

Dielectric constant, 408, 410
Diemand, Alexander, 449–466, 525
Dirchlet distribution, 20, 32, 35, 38
Discriminant analysis
characteristics description, 381–382
DCS method, 386–388
position specific, 206–209
quadratic, 211–212, 222–223
SSP algorithm, 382–383
Diseases, 73, 431, 433, 461
Disequilibrium, 176
Distances, 114, 138, 142, 144
Chou-Fasman, 393
edit, 139
energy function, 474
exemplar, 148–149
Hamming, 162
Jukes-Cantor, 124, 146
Mahalonobis, 211–212, 215
normalized, 127–128
translocation, 141
transposition, 140
Distributions
block-motif model, 37–41
Dirchlet, 20, 32, 35, 38
EM algorithm, 24–27
empirical, 185–186
epistatic e¤ects, 195–196
geometrical, 226
Gibbs sampler, 31
iid, 13–14, 20, 37–39
multinomial modeling, 32
position specific, 206–209
posterior distribution, 17–21, 24–27, 35
quadratic analysis, 211–212
statistical significance, 259–260
Divide and conquer strategy, 479
D. melangaster, 204
DNA, viii, ix–x. See also Sequence data
block-motif model, 37–41
cDNA microarrays, 270
compression, 157–171
double helix, 3
exon-intron identification, 65–66
function comparison, 45, 249
gene expression, 201–202 (see also Genes)
multinomial modeling, 32–33
promoter recognition, 249–264
repetitive patterns, 37
Docking, 503–504, 521–524
binding epitopes, 512–520
critical points, 505–506
hinge-bending flexible matching, 507–511
residue detection, 514–515

530 Index



residue distribution, 515–519
rigid-body, 505–507
site characteristics, 512–514
Donor splice sites, 215–216
Doolittle, Russell, 4–5
Double helix, 3, 136–137. See also Helices
Doubling, 147–148, 381
Drosophila, 3, 235, 237
Drug design. See Docking
DSC, 379
DSSP algorithm, 376–379
Duplication, 111, 147–151
Dynamic programming, 84
Clustal W, 98–100
docking, 504
energy minimization algorithms, 350–357
Fgenes, 227–229
HMM-based approaches, 224–227
internal exon recognition, 228–229
maximum likelihood estimate (MLE), 192–194
single gene prediction, 223–224

E. coli, 4, 312
Edit distances, 139
Electrostatics, 408–410
all-atom models, 405–406
docking, 514
protein threading, 473–475
El-Mabrouk, Nadia, ix, 135–155, 525
EM algorithm, 32, 34, 162
Bayesian modeling, 21, 23–27
promoter recognition, 257–258
EMBL, 202
Emerging patterns. See Datamining
Empirical distribution, 185–186
Empirical force fields, 407, 414
Enchancesomes, 251
Energy function, 473–475
Energy minimization algorithm, 350
base pairs, 351
homology-based modeling, 453
loop dependent, 351–357
Enhancers, 249–250
Enrichment, 318
ENSEMBL, 203–204
Enthalpy, 434
Entropy, 106, 161–164
Environmental e¤ects, 175
Environment class, 391–393
EOS Biotechnology, 239
Epistatic model, 195–196
Epitopes, 520–524
residue detection, 514–515
residue distribution, 515–519

site characterization, 512–514
Equations
amino acid frequencies, 390
Bayes, 257
block-motif, 38, 40–41
characteristics description, 381–382
Chou-Fasman distance, 393
computation volume reduction, 86
Dirichlet distribution, 20
EM algorithm, 25
energy function, 473–475
energy minimization algorithm, 351–357
entropy estimation, 163
environment score, 392
epistatic model, 196
Gibbs, 39
HMM, 36
joint distribution, 19, 38
least squares, 177–179
likelihood function, 20
linear model, 177
maximum likelihood estimate (MLE), 178–179,
192–194
MCMC, 29, 183
Metropolis-Hastings, 184
Monte Carlo analysis, 27, 29
nuisance parameters, 20
Poisson-Boltzmann, 410
posterior distribution, 19
potential energy, 405
probability model, 181–182, 191–192
PROSPECT, 474–475
relative information, 255
reversible jump MCMC, 184–185
SCFG, 360
statistical significance, 259
unobservables sampling, 194
weighted least squares, 179
z-score, 477
Equivalence, 61
Estimators, 14–16
ESTs, 212–213, 238
Eukaryotes, 136–137
functional signals, 206–223
gene expression, 201–202
Hannenhalli-Pevzner theory, 141–144
multiple gene prediction, 224–229
PolII promoter, 217–221
PolyA signals, 221–223
promoter recognition, 249–254
structural characteristics, 202–205
European Bioinformatics Institute, 204
Evolution, 141. See also Tree models
mutations, 428–431

Index 531



Exact algorithms, 83
computation volume reduction, 85–87
k dimension programming, 84–85

Exemplar distances, 148–149
Exhaustive pattern search, 254–255
Exons, 57, 62, 201
50-coding, 229
GTAC, 161–164
HMM-based approaches, 224–227
QDA, 211–212
single gene prediction, 223–224

Expectation Maximation (EM), 34, 162
Bayesian modeling, 21, 23–27
promoter recognition, 257–258

EXPRESSION, 309

FACT, 320
Fas ligand, 453
fastDNAML, 114, 119
Felsenstein zone, 119–120
Ferromagnetism, 407
FGENEH, 224, 226–227
Fgenes, 227–230
Fgenesh, 230, 235, 238–239
Fgeneshþ, 232–233
Fgenesh_c, 233
Filling algorithm, 350
Fingerprinting, 271
cluster algorithms, 275–284
solution assessment, 284–285

Fisher, R. A., 3
Fisher’s linear discriminant, 210–211
Fitch, Walter, 4
50-coding exon, 229
Folding. See Protein folding
Force fields, 407, 414
FORTRAN, 198
Forward-backward method, 35
Frames, 209, 510
Free energy rules, 349–350, 412
Frequency matrix, 90
Frequentist approach, 14–17
Frozen approximation, 476
FSSP, 471, 486, 491
Full Automatic Modeling System, 457
Functional signals
content specific discrimination, 209
frame specific discrimination, 209
linear discriminant function (LDF), 210–
211
PolII promoter recognition, 217–221
PolyA recognition, 221–223
position specific discrimination, 206–208
prediction performance measures, 209–210

quadratic discriminant analysis, 211–212
splice sites, 212–216

GAP (global alignment program), 63, 65–66
Gaps, 46
Clustal W, 98–100
Gauss’ law, 408
Gaussian network model, 407
GCG, 100
GenBank, 5, 202–204, 219, 232–233
GenCompress, 158–160
GeneChips, 238
GeneCluster, 283
GeneParser, 224
Genes, 302, 307–308. See also Clusters; Mapping
accuracy of identification, 229–231
CF, 73
cladogenesis model, 112–113
epistatic e¤ects, 195–196
eukaryotic, 136–137 (see also Eukaryotes)
evolution models, 111–115
expression steps, 201–202
functional signal recognition, 206–223
homologous, 45, 113, 139
horizontal transfer, 111
inheritance, 189–191
large-scale expression, 260
mutation, 111
physical structure, 3 (see also Structure)
PolII promoter, 217–221
promoter recognition, 249–264
splice sites, 212–216
Usp29, 62–63
GeneScan, 239
Gene Structures’ Java Viewer, 233–235
Genie, 227
Genome, ix, 151–155, 308. See also Mapping
annotation, 233–238
breakpoints, 139, 145–146
CD4, 63–66
centromeres, 137–138
character reduction, 147
combined distances, 141–142
DNA sequence compression, 157–171
edit distances, 139
exemplar distances, 148–149
exon-intron identification, 65–66
Hannenhalli-Pevzner theory, 142–144
horizontal transfer, 149–150
Human Genome Project, vii, 5, 157, 237–238,
467, 494

KEGG, 301–315
linearity vs. circularity, 137
median problem, 145–146

532 Index



multigene families, 138, 148–149
multiple gene prediction, 224–229
network prediction, 311–312
phylogenetic analyses, 144–147 (see also
Phylogenetics)

polarity, 136–137
probability models, 146
protein threading, 494–497 (see also Protein
threading)

reversal, 139–140, 145
sequence comparison, 63–65 (see also Sequence
data)

species, 111
Steinerization algorithm, 146
synteny, 136, 141
telomeres, 137–138, 150
translocation distances, 141
transposition distances, 140
Genscan, 230
Geometry. See also Docking
chain, 58–61, 413–417
distribution, 226
Hashing, 514
3D assignment, 376–379, 449–450, 452
Gibbs sampling, 11, 21, 31
block-motif model, 38–40
HMM, 35–36
motif identification, 104–107
promoter recognition, 258–259
unobservables, 194–195
Gilbert, Wally, 4
Global alignment, 45
band computation, 56
dynamic programming algorithm, 46–52
GAP, 63
linear-space algorithm, 52–56
Globular proteins, 365–367
b structures, 370–373
b turns, 373–375
fold templates, 472
helices, 368–370
Poisson-Boltzmann approach, 409
Glycine, 366
Go models, 418–419
GOR III, 386
Goto, Susumu, x, 301–315, 525
Graphs, 101–103. See also Mapping
KEGG, 304–305, 310–314
Ramachandran plots, 365–367
GRASP, 410
Green Plant Phylogeny, 130
GROMOS, 453
Group table, 308–309
GTAC program, 161–164

Guex, Nicolas, 449–466, 525
Gusfield, D., 88

Hairpin loops, 347–348
Haldane, J. B. S., 3
Hamming distance, 162
Hannenhalli-Pevzner theory, 141–144
MAX SNP, 107
MQC, 122–123
NP, 81–82
PTAS, 82
SP alignment, 82–83
Traveling Salesman Problem, 145–146
HCS, 270–280
Helices, 348
a, 365, 368–370, 376–378
DCS method, 386–388
discriminant analysis, 380–388
nearest-neighbor approaches, 391–398
neural-network-based approaches, 388–391
prediction accuracy, 383–386
protein threading, 473–475
secondary structure, 368–370
SSP algorithm, 382–383
3D structure assignment, 376–379
Heuristic approach, 97
fastDNAML, 114
iterative methods, 100
progressive alignment, 98–100
sequence graphs, 101–103
stochastic algorithms, 103–107
HEXON, 223
Hidden Markov model (HMM), 40, 321
Bayesian modeling, 33–37
Hidden semi-Markov model (HSMM), 37
Hierarchical clustering, 275–276
H. influenzae, 313
Hinge-bending flexible matching, 507–509
Hirschberg algorithm, 52–56
Homogeneity, 269
Homology-based modeling, 45, 449, 464–466
membranes, 462
mutations, 461
refinement, 452–453
template identification, 450–451, 462–463
Horizontal transfer, 149–150
HPþ models, 419–422, 437
H. pylori, 167
HSSP, 386, 388
HTG sequences, 213
Huang, Xiaoqiu, viii, 45–69, 525
Human Genome Project, vii, 5, 157, 467, 494
Hybrid-210 system, 416
Hybrids, 189–191

Index 533



Hydrophobic interactions, 410–413
docking, 514
moment characteristic, 382

Hypercleaning, 127–130

ID3, 320
ID5, 320
If-then filtering, 387–388
imid position, 52–56
Inbred lines, 176
Indels (insertions/deletions)
global alignment, 46–52
linear-space algorithm, 52–56
SP alignment, 93

Independent and identically distributed (iid)
model, 13–14, 20
block motif model, 37–39

Inference, 119–120
Bayesian, 182–185
frequentist approach, 14–17
statistical modeling, 13–17

InfoGene, 203–204, 212, 235
annotation, 233–234

Inheritance. See Alleles
Initial state probability, 226
Insertion. See Indels
Interaction schemes, 417–418
Interior loops, 347–348
Internet. See Web resources
Introns, 57, 62, 201
accuracy of identification, 229–231
GTAC, 161–164
HMM-based approaches, 224–227
splice sites, 212–216

Inversion, 28, 139–140
Ions, 405–406, 408–410. See also Electrostatics
Irreducibility, 30

Jaccard coe‰cient, 284–285
Jackknife method, 16, 383
JEP method, 334
Jiang, Tao, viii–ix, 71–110, 525
jmid position, 52–56
Joint distributions, 19–21
augmented model, 23–24
quantitative traits, 175 (see also Quantitative
traits)

Jukes-Cantor distance, 124, 146

Kanehisa, Minoru, x, 301–315, 525
Karyotypes, 150–151
Kaya, Huseyin, 403–447, 525
k dimensional programming, 84–85
Kearney, Paul, ix, 111–133, 525

KEGG (Kyoto Encyclopedia of Genes and
Genomes), x, 301–302, 315

annotation, 312–314
BRITE, 309
complex systems, 303
GENES, 307–308
GENOME, 308
LIGAND, 309–310
network prediction, 311–312
PATHWAY, 306–307
Kendrew, John, 3
Kent Ridge Digital Labs, 317
Kinetic energy. See also Protein folding
conformational propagation, 431–434
non-Arrhenius, 436
PMF, 408–413
K-loop decomposition, 347–349
energy minimization, 351–357
K-means, 276–277, 292, 294–295
Knobs, 505
Knots, 347
Knowledge-based approaches, 403–404. See also

Datamining
Koetzle, Tom, 4
Kolmogorov complexity, 164–165

Lactose operator, 4
Latent-class model, 22
Lattice models
aggregation, 431–434
calorimetric cooperativity, 434–436
chain geometries, 414–417
conformational propagation, 431–434
HPþ models, 419–422
interaction potentials, 417–427
Least squares fitting, 144
QTL mapping, 176–179
Leucine, 366
Li, Ming, ix, 157–171, 525
Lifted tree, 95
LIGAND, 302, 309–310
Ligands
docking, 505–512
Fas, 453
hinge-bending, 507–511
Likelihood function, 15
EM algorithm, 24–27
HMM, 33–37
profile, 16, 42, 90
Linear discriminant function (LDF), 210–211,

219, 229, 380–381
Linearity, 137
alignment traces, 138–139
breakpoints, 139

534 Index



combined distances, 141–142
edit distances, 139
reversal, 139–140
space, 52–56
translocation, 141
transposition, 140
Line crosses. See Bayesian mapping
Liu, Jun S., viii, 11–44, 525
Loaded tree, 95
Local alignment, 56–58
Locus control regions (LCRs), 249
Loops
bulge, 347–348
energy minimization algorithm, 351–357
hairpin, 347–348
non-conserved, 452
Los Alamos National Laboratory, 5
Low-degree vertices, 279–280
l-star approach, 88–89

Ma, Buyong, xii, 503–525
Mahalonobis distances, 211–212, 215
Mapping, 3
Bayesian, 181–196 (see also Bayesian modeling)
disequilibrium, 176
maximum likelihood estimate (MLE), 192–194
MCMC, 182–185
mixed model, 189–191
mutations, 428–431
neural networks, 486
probability model, 191–192
QTL, 175–176 (see also Quantitative trait loci
(QTL))

Ramachandran plots, 365–368
self-organizing, 282–284, 286–290, 292, 294–295
Marginal mode, viii
Margoliash, Emanuel, 4
Markers, 175
Bayesian mapping, 181–186
least squares method, 176–179
maximum likelihood estimate (MLE), 192–194
Markov chain, viii
Bayesian mapping, 182–185
content specific discrimination, 209
distributions, 20
HMM-based approaches, 225
homogenous model, 33
Monte Carlo method, 29–32
position specific discrimination, 208
reversible jump MCMC algorithm, 184–185
Markov model
block-motif model, 39
hidden, 33–37, 40, 224–227, 321
homogeneous, 33

Mass spectrometry, 469
Matching, 507–511
MATLAB, 286
Matrices, 47
BLOSUM, 81
bonding, 349
combinatorial algorithm, 349–350
CONSENSUS, 256–257
covariation, 211–212
energy function, 473–475
epistatic e¤ects, 195–196
functional signals, 206–223
global alignment, 46–56
motif identification, 106
mutation, 392
PAM, 81
similarity, 273
substitution, 393
TF binding sites, 252–261
weighted, 216, 218, 252, 273, 278–280
Maxam, Allan, 4
MaxHom, 388
Maximum likelihood estimate (MLE), 15–17
Bayesian mapping, 192–194
genome rearrangement, 144
homogenous Markov model, 33
missing data formulation, 21
multinomial modeling, 32
phylogenetics, 113–114
QTL mapping, 178–179
quartet methods, 117, 121–123
Maximum parsimony method, 114, 120, 144
Maximum quartet consistency (MQC), 117, 121–
123

MAX SNP-hard, 107
Mean force potentials, 407
electrostatics, 408–410
hydrophobic interactions, 410–413
Median problem, 145–146
Membrane proteins, 462
MEME, 258
Mendelian inheritance, 175, 194
Mesoscopic length, 407
Metropolis-Hastings algorithm, 29–31, 183–184,
194

MFOLD, 351
MHC-binding peptide, 317–319, 335
short, 322–328
Mice, 204
Midposition, 52–56
Minkowski measure, 284
Missing data formulation, 21–23, 38
Mixed model, 189–191
Model fitting, 14

Index 535



MODELLER, 451, 457, 487–488
Molecular surface variability. See Docking
Monte Carlo analysis, viii
Bayesian mapping, 182–185
Gibbs sampler, 31
inversion method, 28
Markov chain, 29–32
rejection method, 28–29
reversible jump MCMC algorithm, 184–185
simple, 27–28

Morgan, T. H., 3
Motifs
conserved, 71
Gibbs sampling, 104–107
Identification, 103–107
TF binding sites, 252–261

Move sets, 437
mRNA
gene expression, 201–202
splice sites, 212–216

Muller, Hermann, 3
Multigene families, 138, 147
duplication, 150–151
exemplar distances, 148–149

Multinomial distributions, 20, 32
protein threading, 496–497

Multiple loops, 347, 349
Multiple sequence alignment, 71–72, 108–110
approximation algorithms, 81–82, 87–97
computation volume reduction, 85–87
consensus, 76–77, 92–95
diagonal band, 87–88
exact algorithms, 83–87
heuristic approaches, 97–107
k dimension programming, 84–85
l-star approach, 88–89
pairwise cost schemes, 81
PTAS, 89–92, 97
sequence graph approach, 101–103
SP, 76, 87–92
stochastic algorithms, 103–107
tree, 77–81, 95–97, 100–101

Mutation matrix, 392
Mutations, 3, 111, 461
Mutual algorithmic information, 165
Myoglobin, 239
MZEF, 223

National Institute of General Medical Sciences,
494

Nearest-neighbor approaches, 391–398
Neighborhood recovery, 128–129
Neighbor joining, 114, 144
Nematodes, 62

Neoplastic patterns, 151
Neural networks
protein folding, 428–431
protein secondary structure, 388–391
threading normalization, 484–487
training of, 486
Newton-Raphson’s method, 34
NIH Structural Genomics Initiative, 494–495
NMR, 450, 453, 467, 469
intra-molecular cross-links, 489–490
NNSP, 380
NNSSP, 393–394
Nodes, 49–50
NOEs, 488–494
Non-histon proteins (NHP), 251
Non-parametric approach, 13–14
Normalization, 484–487
Normalized distance, 127–128
NP-completeness, 140
NP-hardness, 81–82. See also Hardness
Nuisance parameters, 16, 20
Null model, 14
Nussinov, Ruth, xii, 503–525
Nussinov’s algorithm, 351

Observed-data likelihood, 23
Observables, 197–198
mixed model, 189–191
probability model, 191–192
Oligonucleotide microarrays, 270–272
Oncology, 150–151
Optimal alignment, 50
band computation, 56
linear-space algorithm, 52–56
local, 56–58
Optimal parse, 226–227
Optimization models, 73–75
approximation algorithms, 81–82
consensus alignment, 76–77
pair-wise cost schemes, 81
SP alignment, 76
tree alignment, 77–81
ORFs (orthologous coding regions), 228–229, 261
Ortholog group table, 308–309
Outbred populations, 176
Outlier analysis, 319
OVER, 396

Painter, T. S., 3
Pairs, 59–61, 71
all-atom models, 405–406
PAM, 46, 81, 473–474
Parametric modeling
all-atom models, 414

536 Index



Bayesian model, 12, 180–181
empirical force-field, 407
frequentist approach, 14–17
least squares method a, 176–179
nuisance parameters, 20
QDA, 211–212
statistical modeling, 13–14
Parse probability, 226–227
Partitions, 272–274. See also Algorithms
bipartitions, 127–130
CAST, 281–282
CLICK, 277–278, 280–281
HCS, 277–280
K-means, 276–277
self-organizing maps, 282–284
PATHWAY, 302, 306–307
Pathway reconstruction, 312–314
Patterns. See Datamining
Pauling, Linus, 4, 369
Pedigrees, 188
dominance, 195–196
epistatic e¤ects, 195–196
maximum likelihood estimate (MLE), 192–194
mixed model, 189–191
probability model, 191–192
unobservables sampling, 194–195
Peitsch, Manuel C., xii, 449–466, 525
Penalty rule, 121
Peptides
b structure, 370–375
chain geometries, 413–417
MHC-binding, 317–319, 322–328, 335
short, 322–328
Performance ratio, 82
Permutation, 350
Perturbation, 30
PHD, 379–380, 386, 388, 391
Phenotypic distribution, 175
Phylogenetics, ix
assessment, 114–115
character reduction, 147
comparative methods, 357–359
evolution models, 111–115
footprinting, 261
genome rearrangement, 144–147
maximum likelihood estimate (MLE), 113–114
median problem, 145–146
probability theory, 146
quartet methods, 115–131
Steinerization algorithm, 146
trees, 4, 77–78
Phylogenetic resources, 131
Pima Indians, 328–335
PMF (potentials of mean force), 408–413

Point mutations, 111
Poisson-Boltzmann approach, 408–410
Polarity, 136–137
PolII promoters, 217–221
PolyA, 201, 221–223, 228
Polyadq program, 222–223
POLYAH program, 222–223
Polygenic traits. See Quantitative traits
Polymer models, 413
chain geometries, 414–417
Go models, 418–419
HPþ models, 419–422
interaction potentials, 417–427
lattice representation, 414–437
Polymorphic molecular markers, 175
Polynomial time approximation scheme (PTAS),
82, 107
DiagonalConsensusAlign algorithm, 93–95
SP alignment, 89–92
tree alignment, 95, 97
Positional cloners, 233
Position specific discrimination, 206–209
Posterior distribution, 17–21
EM algorithm, 24–27
HMM, 35
Potential energy, 405–407. See also Lattice models
electrostatics, 408–410
hydrophobic interactions, 410–413
PMF, 408–413
protein threading, 473–475
Prediction, 223–224, 399–401. See also
Datamining
ab initio, 468
annotation, 235, 237
CAEP, 328–335
combinatorial algorithm, 349–350
discriminant analysis, 227–229, 380–388
docking, 503–504 (see also Docking)
energy minimization algorithm, 350–357
globular proteins, 365–365
homology-based modeling, 449–456 (see also
Homology-based modeling)
nearest-neighbor approaches, 391–398
neural networks-based approaches, 311–312,
388–390
OVER, 396
phylogenetic comparison, 357–359
PROSPECT, 477–478
RNA secondary structure, 345–361
stochastic context-free grammar method, 359–361
3D structure assignment, 376–379
TSS, 261–264
UNDER, 396
WRONG, 396

Index 537



Preinitation complex (PIC), 249–250
Primordial folds, 471
Principle of repeated sampling, 15
Prion diseases, 431, 433
Prior distribution, 17–18
Probability, 11, 191–192. See also Prediction
Bayesian modeling, 181–182, 191–192 (see also
Bayesian modeling)
CLICK, 280–281
content specific discrimination, 209
EM, 257–258
frame specific discrimination, 209
frequentist approach, 14–17
initial state, 226
linear discriminant function, 210–211
multiple gene prediction, 224–229
position specific discrimination, 206–209
quadratic discriminant analysis, 211–212
SCFG, 359–361
single gene prediction, 223–224
splice site recognition, 215–217
TSSW program, 217–221

Profile likelihood, 16, 42, 90
Prokaryotes, 137, 141
Proline, 366
PromoterInspector, 263
Promoter recognition, 201, 249–251, 265–267
exhaustive pattern search, 254–255
large-scale expression, 260
multiple sequence alignment, 255–259
regulatory module construction, 260
statistical significance, 259–260
transcription factor binding sites, 252–255
TSS prediction, 261–264

PROMOTERSCAN, 262
PROSPECT, 469, 477
energy function, 474–475
score normalization, 484–487
structure prediction, 487–488

Protein Data Bank (PDB), 376, 451–453
fold templates, 472
protein threading, 495–496

Protein folding, 438–447
aggregation, 431–434
all-atom models, 405–406, 414
calorimetric cooperativity, 434–436
chain geometries, 414–417
conformational propagation, 431–434
electrostatics, 408–410
Go models, 418–419
HPþ models, 418–422, 437
hydrophobic interactions, 410–413
interaction potentials, 417–427
kinetics, 436–437

knowledge-based approach, 403–404
lattice representation, 414–417, 427–437
mean force potentials, 407–413
model constraints, 434–436
polymer models, 413–417
solvation e¤ects, 407–413
statistical mechanics models, 406–407
Proteins, 3, 399–401
docking, 506 (see also Docking)
families, 470–471
folding, 380
globular, 365–375, 409, 472
homology-based modeling, 449–456 (see also
Homology-based modeling)

KEGG, 301–315
membrane, 462
superfamilies, 470–471
3D structure assignment, 376–379
Protein threading, 467–469
alignment, 475–476
assessment, 476–477
energy function, 473–475
fold templates, 470–472
intra-molecular cross-links, 489–490
local, 495
mini, 495–496
multiple-sequence data, 496–497
PROSPECT system, 477–478
PSI-BLAST, 391, 451, 457
PSI-PRED, 380, 391
Pseudo-knots, 349
PUBLIC, 320
Puzzling, 120–121
p-value, 11, 477

Q-function, 34
Quadratic discriminant analysis (QDA), 211–

212
Quadratic discriminant function (QDF), 212, 222–

223
Quantitative trait loci (QTL), x, 175
Bayesian mapping, 180–196
least squares, 176–179
maximum likelihood estimate (MLE), 178–179
Quantitative traits, 17–18, 197–199
Bayesian mapping, 181–196
empirical distribution, 185–186
epistatic e¤ects, 195–196
likelihood function, 192–194
MCMC mapping, 182–185
mixed model, 189–191
probability model, 181–182, 191–192
QTL mapping, 175–181
unobservables sampling, 194–195

538 Index



Quartet methods, 115–116
bipartition support, 127–130
hypercleaning, 127–130
maximum consistency, 122–123
neighborhood recovery, 128–129
semi-definite programming, 123–125
taxonomic sampling, 119–120
topological inference, 119–120
QUEST, 320

Ramachandran plots, 365–368
RandomAlign algorithm, 89, 92
Randomness, 17
block-motif model, 39
genetic drift, 111
Gibbs sampler, 31
SOM, 282–284
Ranking problem, 511–512
Receptors. See Docking
Recognition function
annotation, 233–238
characterization/verification, 238–242
internal exon, 228–229
ORF, 223–224
PolII promoter, 217–221
PolyA signals, 221–223
prediction by similarity, 231–233
promoter, 249–250 (see also Promoter
recognition)

single gene prediction, 223–224
splice sites, 215–217
TSSW program, 217–221
Recombination, 81, 116
Reconciliation, 149
Recursion, 19, 42
HMM, 35–36
Reduction, 147
Regulatory regions, 249, 260
Rejection method, 28
Relative entropy, 106
Relative information (RI), 255
Remodeling, 251
Representation theory, 152–155
alignment traces, 138–139
breakpoints, 139, 145–146
centromeres, 137–138
character reduction, 147
combined distances, 141–142
edit distances, 139
exemplar distances, 148–149
gene order, 136–137
Hannenhalli-Pevzner theory, 142–144
horizontal transfer, 149–150
linearity vs. circularity, 137

median problem, 145–146
multigene families, 138, 148–149
phylogenetic analyses, 144–147 (see also
Phylogenetics)
polarity, 136–137
probability models, 146
reconciliation, 149
reversal, 139–140, 145
Steinerization algorithm, 146
synteny, 136, 141
telomeres, 137–138
translocation distances, 141
transposition distances, 140
Repressors, 250
Residues, 71, 366, 370
distribution of, 515–519
Reversal, 139–140, 145
Reversible jump MCMC algorithm, 180, 184–185
Ribosomal Database Project, 112n1, 131
RNA, xi, 157
canonical base pairs of, 346
covariation, 357–359
k-loop decomposition, 347
primary structure of, 346
probabilistic models for, 11
secondary structure prediction, 345–361
30-processing site, 221–223
Robustness, 115
rRNA, 157

Salamov, Asaf, 242
Sanger, Frederick, 3–4
Sanko¤, David, ix, 135–155, 525
SARF, 486
SAS, 475
Sca¤old/matrix attachment regions (S/MARs),
249

S. cerevisiae, 204
Schwede, Torsten, 449–466, 525
SCOP, 471
Score functions, 18, 49–50
chains, 59–61
docking, 503 (see also Docking)
PolII promoter, 217–221
PROSPECT, 479–480
SP alignment, 84–85
TF binding sites, 252–261
threading normalization, 484–487
tree alignment, 85
z-score, 476–477
SDSC1, 457
Secondary structure. See also Structure
b structures, 370–377
discriminant-analysis approaches, 380–388

Index 539



Secondary structure (cont.)
helices, 368–370
nearest-neighbor approaches, 391–398
neural networks-based approaches, 388–391
Ramachandran plots, 365–368
RNA prediction, 345–351
3D assignment, 376–379

Seledtsov, Igor, 233, 242
Self-organizing maps (SOM) Semi-definite

programming (SDP), 123–125
Sensitivity, 209–210
Separation, 269
Sequence data, 69, 157. See also Structure
annotation of, 233–238
CFTR, 73
characterization/verification, 238–242
comparison pertinence, 138
compositional analysis of, 32–37
DNA, 6 (see also DNA)
dual comparison algorithms, 61–62
dynamic programming algorithm, 46–52
exon-intron boundaries, 65–66
frame specific discrimination, 209
functional signals, 206–223
GenCompress, 158–160
genomic comparison, 63–65
ORF, 223–224
PolyA signals, 221–223
position specific discrimination, 206–209
prediction by similarity, 231–233 (see also
Prediction)
profile methods, 468
promoter recognition, 249–264
PROSPECT, 477–478
protein comparisons, 62–63 (see also Proteins)
splice sites, 212–216
whole genome comparison, 164–168

Shamir, Ron, x, 269–299, 526
Sharan, Roded, x, 269–299, 526
Shimizu, Seishi, 403–447, 526
Shindyalov, Ilya N., xi, 365–401, 526
Significance level, 11
Silencers, 250
Silicon Graphics Inc., 454
SIM algorithm, 58
Single-stranded region, 349
Singletons
adoption, 279
characteristic, 381
PROSPECT, 479–480
protein threading, 473–474

SLIQ, 320
Slow-mixing, 32
Smith, Temple F., viii, 3–8, 526

Softberry, Inc., 205, 237–238
Solovyev, Victor V., x–xi, 201–248, 365–401, 526
Solvation e¤ects, 407
electrostatics, 408–410
hydrophobic interactions, 410–413
SORFIND, 223
SP alignment, 76
computation volume reduction, 86
diagonal band, 87–92
Specificity, 209–210
Splice sites, 212–216
SPL program, 216
SPRINT, 320
SSP, 382–386
SSPAL, 379–380, 394–396
Stacked pairs, 347
Statistical modeling, 11. See also Bayesian

modeling; Probability
coarse-grained, 406–407
energy function, 474
frequentist approach, 14–17
parametric, 13–14
protein folding, 403–404 (see also Protein folding)
Steinerization algorithm, 146
Stochastic algorithms
context-free grammar method, 345, 359–361
motif identification, 103–107
STRIDE, 379, 398
Strings, 61–62
Structural Genomics Initiative, 494–495
Structure, 399–401. See also Genome; Helices
ab initio prediction, 468
DNA, 3 (see also DNA)
docking, 514–519 (see also Docking)
energy minimization algorithm, 350–357
entropy estimation, 164
eukaryotic genes, 202–205
functional signals, 206–213
function comparison, 45
globular proteins, 365–375, 409, 472
HMM-based approaches, 224–227
homology-based modeling, 449–456 (see also
Homology-based modeling)

k-loop decomposition, 347
nearest-neighbor approaches, 391–398
neural networks-based approaches, 388–390
PROSPECT, 487–488
RNA, 346–349 (see also RNA)
stochastic context-free grammar method, 359–361
Structural Genomics Initiative, 494–495
suboptimal, 357
tertiary, 345, 347, 467–469
TF binding sites, 252–261
3D assignment, 376–379

540 Index



Substitution, 46, 111, 393
Super sampling, 120
Support vector machines (SVMs), 322
SWISS-MODEL, 457
SWISS-PROT, 450, 453–455
Symmetry, 30
Synteny, 136, 141
Synthesis, 201–202
Systematic amyloidoses, 431
Systematic scan Gibbs sampler, 31

TATA box, 217–221, 250, 252
Taxonomic sampling, 119–120
T-cells, 321
Telomeres, 137–138, 150
Temperature. See also Kinetic energy
calorimetric cooperativity, 434–436
protein folding, 408–409, 412–413
Templates, 450–452
ab initio approaches, 467–469
fold, 470–472
PROSPECT, 477–478
selection sensitivity, 462–463
topological complexity, 482–483
Tertiary structures, 345, 347, 467–469
Thermolysine, 370
3D-JIGSAW, 457
30-processing site, 221–223, 228
Threshold traits. See Quantitative traits
Time complexity
ab initio approaches, 469
all-atom models, 406
energy minimization algorithm, 357
exact algorithms, 83–87
GAP, 63, 65
hypercleaning, 129
sequence alignment, 50, 52
TOPITS, 475
Topology and quartet topology
fold templates, 470–472
genome rearrangement, 144–147
hypercleaning, 127–130
interweighted, 117
neighborhood recovery, 128–129
short quartet method, 125–127
Toxicity, 321
Trace back algorithm, 50, 52, 350
Transcriptional start site (TSS), 249
CpG islands, 261–262
k-tuples, 263–264
TF site scan, 262
Transcription factor (TF)
finding, 252–254
gene expression, 201–202

promoter recognition, 249–254
TSS prediction, 261–264
TRANSFAC identifier, 219
Transformation, 165
Transition, 33, 226–227
Translation, 201–202
Translocation, 141–144
Transparency, 115
Transposition, 140
Traveling Salesman Problem (TSP), 145–146
Tree alignment, 71, 77–78, 95–96, 100
computation volume reduction, 86–87
PTAS, 97
sequence graphs, 101–103
TreeBASE, 131
Tree models, 113
entropy estimation, 164
genome rearrangement, 144–147
quartet methods, 115–121, 125–127
reconciliation, 149
semi-definite programming, 123–125
topological accuracy, 114–115
Tree of Life, 130
TreeView, 276
trEMBL, 450, 453–455
Trend analysis, 319–320
Triangle inequality, 165
Triplet frame, 510
TRRD, 260
TSSW program, 217–221
Twenty-letter models, 422–427

Ubiquitin carboxyl-terminal hydrolase, 62–63
UCLA-DOE Structure Prediction Server, 475
Ultra-310 system, 416
UNDER, 396
Uniform lifting, 95–97
Unique genes hypothesis, 138, 148–149
Unobservables, 194–195
Usp29 gene, 62–63

Vacuum permitivity, 405, 408
Valine, 366
van der Waals energy, 473–475
Vedova, G. Della, 82
Veil, 227
Verification, 238–242
Vertices, 279–280
Viruses, 138
Voting scheme, 509–510

Wang, Lusheng, 71–110, 526
Wang, Zhuozhi, 345–363, 526
Waterman-Eggert algorithm, 394–395

Index 541



Watson, James, 3
Web resources
CLICK, 280
Cluster, 276
COMPOSER, 457
CONGEN, 457
CPHmodel, 457
distance matrix, 166
ENSEMBL, 204
FAMS, 457
GeneCluster, 283
InfoGene, 203, 233
MEME/MAST, 258
MODELLER, 457
PDB, 472
phylogenetics, 130–131
PromoterInspector, 263
PROSPECT, 487
SDSC1, 457
secondary structure prediction, 398
Softberry, Inc., 205, 237–238
STRIDE, 398
3D-JIGSAW, 457
TreeView, 276
TSS prediction, 262
WHATIF, 457

Weighted least squares method, 179
Weighted matrices, 216, 218
HCS, 278–280
TF binding sites, 252

Weight functions, 206–209
WHATIF, 457
Wolfson, Haim J., xii, 503–524, 526
Wong, Limsoon, x–xi, 317–341, 526
WORDUP, 255
Wright, Sewell, 3
WRONG, 396

X-rays, 4, 345, 434
protein structure, 450, 467, 469
Structural Genomics Initiative, 494

Xu, Dong, 467–502, 526
Xu, Shizhong, 175–199, 526
Xu, Ying, 467–502, 526

Yeast, 5, 62, 227
linearity vs. circularity, 137

Zhang, Kaizhong, 345–363, 526
Zhang, Michael Q., 249–267, 526
z-score, 476–477
Zuckerkandl, Emile, 4
Zuker’s algorithm, 350
energy minimization, 351–357
MFOLD, 351

542 Index


